
Scalable Computing: Practice and Experience

Volume 11, Number 2, pp. 149–159. http://www.scpe.org
ISSN 1895-1767
c© 2010 SCPE

MANAGEMENT OF HIGH PERFORMANCE SCIENTIFIC APPLICATIONS

USING MOBILE AGENTS BASED SERVICES

SALVATORE VENTICINQUE∗, ROCCO AVERSA∗, BENIAMINO DI MARTINO∗, RENATO DONINI∗, SERGIO

BRIGUGLIO†, AND GREGORIO VLAD†

Abstract. High performance scientific applications are currently implemented using native languages for optimizing perfor-
mance and utilization of resources. It often deals with thousands of code lines in FORTRAN or in C built of legacy applications.
On the other hand new technologies can be exploited to improve flexibility and portability of services on heterogeneous and dis-
tributed platforms. We propose here an approach that allows programmers to extend their applications to exploit this kind of
services for management purposes. It can be done simply by adding some methods to the original code, which specialize application
management on occurrence of particular events. We mean that applications do not need to be rewritten into different languages or
adopting specific programming models. We implemented a native console that is used by Mobile Agents to control the application
life-cycle. Agents implement a mobile service that supports check-pointing, suspension, resume, cloning and migration of managed
applications. A WSRF interface has been provided to Grid users who do not need to be aware about agents technology. We used
a FORTRAN code for simulation of plasma turbolence as a real case study.

1. Introduction. We aim here at investigating how Mobile Agents technology can be used to develop
advanced services for management of resources in distributed systems. Mobile Agents mechanisms such as
autonomy, reactivity, clone-ability and mobility can be exploited for resource management and load balancing
when system conditions change dynamically. Most of all mobile agents platforms are executed by Virtual
Machines which make transparent the hardware/software architecture of the hosting node. It allows to distribute
and execute mobile agents code on heterogeneous environments in a flexible way. On the other hand, most of
legacy applications have been implemented by languages such as FORTRAN and C, and they are compiled for a
target machine in order to optimize their performances. Here we present a mobile agent based service that allows
for management of native applications on heterogeneous distributed systems. Agent technology has been used
to provide management facility on any node where the execution of applications will be started. Programmers,
in order to exploit the management service, can extend their application without modify the original code,
but by overriding some methods which specialize the application life-cycle. We aim at supporting checkpoint,
resume, migration and monitoring. Furthermore service is targeted to each Grid user, who is unaware about
Agent technology and can exploit services facilities by a compliant WSRF interface. A console that allows
the application control by an agent has been designed and implemented. An agent based service designed
and implemented to automatically perform management strategies. In the second section related works on
management services and load balancing mechanism are described. In section 3 we describe the facilities we
have implemented in order to control the application life-cycle. In section 4 the software architecture of our
service is presented. Section 5 provides an example of simple application that has been extended in order to
exploit the service.

2. Related work. Application management and migration are mechanisms developed in many environ-
ments for common purposes. There are many platforms which exploit migration to implement load balancing
in distributed and parallel systems. When we deal with homogeneous clusters, process migration is supported
to share resources dynamically and adaptively. MOSIX [1] provides a set of algorithms to react in real time
to the changes of resources utilization in a cluster of workstations. Migration of processes is preemptive and
transparent. The objective is to provide high performances to parallel and sequential applications. OpenMosix
[2] is a decentralized version of MOSIX. Each node behaves as an autonomous system. Kerrighed [3] supports
thread migration. When a node is less loaded a process is moved there from a more busy node. OpenSSI [3]
does not need to save part of the process on the original hosting node. System calls are called locally. Not all
the processes are candidates for migration.

On the other hand in heterogeneous systems process migration is not generally supported. Different en-
vironments are virtualized by a middleware that hides architectural details to the applications and supports
portability. In this case is possible to migrate code and status of applications, but not to resume the process
status. An hybrid approach that manage a Grid of homogeneous clusters is presented in [4] as an advance

∗Second University of Naples, Aversa (CE), Italy, emails: {rocco.aversa, salvatore.venticinque}@unina2.it,
renato.donini@gmail.com, beniamino.dimartino@unina.it

†Associazione EURATOM-ENEA sulla Fusione, Frascati, Rome, Italy,emails: {brigulgio, vlad}@enea.it

149

150 Salvatore Venticinque, Rocco Aversa et al.

Fig. 3.1. Application life-cycle

of research cited above. Some relevant contributions, which exploit Mobile Agents technology are [5, 6]. We
aim at exploiting flexibility of Mobile Agent programming to manage legacy applications without changing the
original code and without rewriting the application into another language or adopting a new programming
paradigm. Some approaches which should be compared with the one presented in this paper are cited below. [7]
presents an approach to support mobility of applications in a GRID environment. A mobile agent is described
by an UML-like language called blueprint. The blueprint description is transferred together its status. The
receiving platform translates the agent blueprint description in a Java or a Python application that implement
the original functionalities Blueprint is a language for a high level specification of agent functionalities and
of its operational semantics. A specification describes the behavior of an agent in terms of its basic building
blocks: components, control flow and data flow. Agent factories interpret the agent blueprint description and
generate executable code composed of, for example, Java, Python, or C components. To support migration of
common user applications, in [8], authors provide the possibility to insert some statements, such as go() or
hop(), between blocks of computation, such as for/while loops. A pre-compiler, such as ANTLR for C/C++
and JavaCC for Java source code, is used to substitute these statements with code that implements mobility.
A user program may be entirely coded in C/C++ and executed in native mode. As a result Java agent starts
the native code using a wrapper implemented by the JNI technology. In our approach programmers who want
to support migration do not need to deal with any models, but they have just to handle such events which ask
to save or resume the application status.

3. Management facilities and application life-cycle. We exploited Mobile Agents technology to allow
services execution on heterogeneous platforms. We mean that we can execute monitoring and control facilities
on heterogeneous nodes in a distributed environment. Furthermore we can move dynamically a service instance
from a node to another resuming the execution at destination. Mechanisms of Mobile Agents technology have
been adopted to design and implement advanced management facilities. Besides we provide the possibility to
extend the same facilities to the managed application. Our model of application life-cycle is shown in Fig: 3.1.
Regardless of the location, the process state could assume the following values: started, suspended, stopped
and resumed. In the suspended mode, the application status has been saved in order to allow process restoring
when a resume action will be invoked. Let us clClrify that the application status is saved not the process one.
That’s because we aim at supporting mobility across heterogeneous architectures. Life-cycle can be monitored
and controlled by a software console that generates and handles the following events:

1. start : starts the execution of a native application on a cluster node
2. suspend : suspends the native application saving its execution status.
3. resume: resumes the native application restoring the status saved on the last suspension.
4. stop: stops the native application.
5. checkpoint : saves the status of the native application without stopping its execution.
6. migrate: migrates the native application to a target node restoring its status at destination.
7. split : clones the native application and splits the job between the clones.

We have developed both an interactive GUI and a batch interpreter for submitting commands to the application
console.

Management of High Performance Scientific Applications 151

Fig. 4.1. Software Architecture

4. Service architecture. As shown in Fig:4.1 software architecture of the management service is com-
posed of different elements at different levels. A first set of components implements a portable service executed
by Mobile Agents. Distributed Agents perform different roles. They implement user interface, application mon-
itoring and control, code management. A monitor detects relevant changes of system conditions and notifies
these events to the Agent Scheduler. The Agent Scheduler reacts in order to avoid performance degradation.
It communicate and coordinates other agents. The Proxy Agent is responsible of the application execution. It
receives requests from other agents and manages the application by a Java console. An abstract console defines
the interface between the proxy and the application. It is obviously independent by the kind of application
that will be controlled. Native applications will be linked to the console by mean of a native implementation
of abstract methods. In order to support the execution on heterogeneous architectures, the programmer has
to make available a new shared library that overrides native methods and that has been compiled for a target
architecture. Libraries will be stored on a remote repository and the proxy agent is able to automatically
download them, when the execution is moved to a new heterogeneous node.

4.1. Agent level.

4.1.1. Agent Proxy. An Agent Proxy is delegated to manage an instance of users’ application. It can:

• save and resume the status of the native application (save, resume);
• migrate, clone or split the application;
• handle special conditions such as termination.

For instance whenever the agent manager requires the migration of a native application to a selected node, the
Agent Proxy has to transparently:

• suspend the native application as soon as possible;
• save the status of the native application;
• migrate to the target node;
• detect the target node hardware and software equipment;
• whenever it is necessary download and install the right library;
• restore the status of the native application;
• resume the native application.

4.1.2. Agent Manager. The Agent Manager provides a graphic interface for creating, migrating, cloning
and destroying both Agent Proxies and the native applications. It sends standard ACL messages (ACL stands
for Agent Communication Language) to ask for the actions ProxyAgents should take. The Manager allows
to load references to libraries which have been built and made available for different hardware and software
architecture. It can handle independently multiple execution instances of the same application. A snapshot of
the Management Console GUI is shown in Figure 4.2.

152 Salvatore Venticinque, Rocco Aversa et al.

Fig. 4.2. Management Console Gui

4.1.3. Agent Monitor. Our architecture includes a monitor module to detect relevant changes of system
conditions and notifies these events to the Autonomous Agent. As shown in the following the system is able
to react to the events which affect the performance of the both service and application. The way to generate
the events to send to the Batch Agent, could be less o more complex according to the particular requirements.
Currently a simple configuration of management strategy based on threshold mechanisms is supported. The
agent monitor checks the application’s performance and compares it with a target input, such as the throughput
of a web server; when a performance degrade was detected the right actions could be performed.

4.1.4. Agent Scheduler. The Agent Scheduler uses management facilities provided by Agent Proxies in
order to carefully distribute the cluster workload or to optimize performance of applications. For instance, it
can migrates native applications from a platform to another one that is less loaded. It can redistribute groups
of applications in order to reduce network traffic by minimizing inter-communications, or reducing the overhead
due to data transfer. Actually the user can configure the Scheduler behavior by associating a set of actions to a
notification event. When a specific ACL messages has been received from the agent monitor the related batch
file is interpreted and executed. A batch file can be written as described in Figure 4.1.4. In the example we
show a sequence of commands which are executed on the occurrence of two events: idle node and busy node.
Parameters of commands are extracted from content of related events notified by ACL messages.

<?xml version="1.0" encoding="UTF-8" ?>

<batch>

<activation>

<and>

<event name="idle_node">

<event name="busy_node">

</and>

</activation>

<sequence>

<operation>

<command type="suspend" agent="$busy_node.agent_name[0]"/>

</operation>

<operation>

<command type="move" agent="$busy_node.agent_name[0]">

<parameters>

<parameter>$idle_node.container[0] </parameter>

</parameters>

</command>

</operation>

<operation>

<command type="resume" agent="$busy_node.agent_name[0]"/>

</operation>

<sequence>

</batch>

Fig. 4.3. An XML batch file define the list of action that must be taken on an event occurence

Management of High Performance Scientific Applications 153

We are planning to adopt a more complete language such as the ones which support choreography or
orchestration [9].

4.2. Console level. In order to make transparent the management of different kinds of applications we
defined the ApplicationManager abstract class. An implementation needs to support management of each kind
of application. We provided a NativeManager class with java and native methods. Other classes implements
special utilities. In particular:

• ApplicationManager: is an abstract class that represents an application manager.
• NativeManager: is a class that extends ApplicationManger It overrides abstract methods in order to
interface with native applications.

• ApplicationThread: is a thread that starts native application and waits for events.
• Library: is a class that contains a set of parameters, which are used to identify and retrieve the compliant
version of application library for the target machine architecture.

• ManagementException: is a class that implements an exception that could be thrown by the Applica-
tionManager.

JNI (Java Native Interface) is the technology that has been used to link the native implementation of the
ApplicationManager to the Java implementation. JNI defines a standard naming and calling convention so the
Java virtual machine can locate and invoke native methods. A native implementation of these methods have
been developed in POSIX C and compiled for different architectures (AMD64, IA32, . . .). As it is shown in
Figure 4.4, in order to allow its application to be managed a programmer has to add those methods which
override the ones defined in the native console. Linking the original application code with the new methods and
the native console, a dynamic library for a target machine can be built. The native console is implemented by
two POSIX processes: a father and its son. The son is spawn when the application starts. The father waits for
requests from the Java part of the service, forwards them to the son that executes the application code by POSIX
signals. The son before to start registers signal handlers and communicate by two POSIX pipes with the father.
Pipes are used by the son to communicate to the father the file name where the application status has been
stored and to communicate events such as a termination. Handlers can be specialized by the programmer by
overriding the following methods (using C, FORTRAN, or any other native languages): start (), resume (char
status[]), stop (char status[]), suspend (char status[]), checkpoint (char status[]), split (char status[]), whose
meanings has been described in the previous sections.

Fig. 4.4. Building a new library

5. Plasma turbulence simulation. As case study, we chose a Fortran application for Particle-in-cell
simulation. Particle-in-cell simulation consists [15] in evolving the coordinates of a set of Npart particles in
certain fluctuating fields computed (in terms of particle contributions) only at the points of a discrete spatial
grid and then interpolated at each particle (continuous) position. Two main strategies have been developed
for the workload decomposition related to porting PIC codes on parallel systems: the particle decomposition
strategy [11] and the domain decomposition one [12, 13]. Domain decomposition consists in assigning different
portions of the physical domain and the corresponding portions of the spatial grid to different processes, along
with the particles that reside on them. Particle decomposition, instead, statically distributes the particle
population among the processes, while assigning the whole domain (and the spatial grid) to each process. As a
general fact, the particle decomposition is very efficient and yields a perfect load balancing, at the expenses of
memory overheads. Conversely, the domain decomposition does not require a memory waste, while presenting

154 Salvatore Venticinque, Rocco Aversa et al.

particle migration between different portions of the domain, which causes communication overheads and the
need for dynamic load balancing [14, 13]. The typical structure of a PIC code for plasma particle simulation
can be represented as follows. At each time step, the code

1. computes the electromagnetic fields only at the Ncell points of a discrete spatial grid (field solver phase);
2. interpolates the fields at the (continuous) particle positions in order to evolve particle phase-space

coordinates (particle pushing phase);
3. collects particle contribution to the pressure field at the spatial-grid points to close the field equations

(pressure computation phase).

We can schematically represent the structure of this time iteration by the following code excerpt:

call field_solver(pressure,field)

call pushing(field,x_part)

call compute_pressure(x_part,pressure)

Here, pressure(1:n cell), field(1:n cell) and x part(1:n part) (with n cell= Ncell and n part= Npart)
represent pressure, electromagnetic-field and particle-position arrays, respectively. In order to simplify the
notation, we will refer, in the pseudo-code excerpts, to a one-dimensional case, while the real code refers to a
three-dimensional (3-D) application. In implementing a parallel version of the code, according to the distributed-
memory domain-decomposition strategy, different portions of the physical domain and of the corresponding
spatial grid are assigned to the nnode different nodes, along with the particles that reside on them. This
approach yields benefits and problems that are complementary to those yielded by the particle-decomposition
one [11]: on the one hand, the memory resources required to each node are approximately reduced by the number
of nodes (n part∼ Npart/nnode, n cell∼ Ncell/nnode); an almost linear scaling of the attainable physical-space
resolution (i. e., the maximum size of the spatial grid) with the number of nodes is then obtained. On the other
hand, inter-node communication is required to update the fields at the boundary between two different portions
of the domain, as well as to transfer those particles that migrate from one domain portion to another. Such
a particle migration possibly determines a severe load unbalancing of the different processes, then requiring
a dynamic balancing, at the expenses of further computations and communications. Let us report here the
schematic representation of the time iteration performed by each process, before giving some detail on the
implementation of such procedures:

call field_solver(pressure,field)

call check_loads(i_check,n_part,n_part_left_v,

& n_part_right_v)

if(i_check.eq.1)then

call load_balancing(n_part_left_v,n_part_right_v,

& n_cell_left,n_cell_right,n_part_left,n_part_right)

n_cell_new=n_cell+n_cell_left+n_cell_right

if(n_cell_new.gt.n_cell)then

allocate(field_aux(n_cell))

field_aux=field

deallocate(field)

allocate(field(n_cell_new))

field(1:n_cell)=field_aux(1:n_cell)

deallocate(field_aux)

endif

n_cell=max(n_cell,n_cell_new)

n_cell_old=n_cell

call send_receive_cells(field,x_part,

& n_cell_left,n_cell_right,n_part_left,n_part_right)

if(n_cell_new.lt.n_cell_old)then

allocate(field_aux(n_cell_old))

field_aux=field

deallocate(field)

allocate(field(n_cell_new))

field(1:n_cell_new)=field_aux(1:n_cell_new)

deallocate(field_aux)

Management of High Performance Scientific Applications 155

endif

n_cell=n_cell_new

n_part=n_part+n_part_left+n_part_right

endif

call pushing(field,x_part)

call transfer_particles(x_part,n_part)

allocate(pressure(n_cell))

call compute_pressure(x_part,pressure)

call correct_pressure(pressure)

In order to avoid continuous reallocation of particle arrays (here represented by x part) because of the particle
migration from one subdomain to another, we overdimension (e.g., +20%) such arrays with respect to the initial
optimal-balance size, Npart/nnode. Fluctuations of n part around this optimal size are allowed within a certain
band of oscillation (e.g., ±10%). This band is defined in such a way to prevent, under normal conditions, index
overflows and, at the same time, to avoid excessive load unbalancing.

5.1. Restructuring the original code. Preliminary experiments deal with restructuring and manage-
ment of the sequential program that solves the problem presented above. The program performs, after an
inizialization phase, a number of iterations that at each run update values of fields, pressures, position and
velocity of simulation particles. The original application (about 5-thousands lines of fortran code) has been
provided by the ENEA1. It saves at the end of each iteration the intermediate results. We indentified the set of
additional relevant information that need to be saved, at the end of each iteration in order to checkpoint and
resume the application after a suspension. It means that before a new iteration starts, the application status
has been already saved. A suspension will cause the lost of work that has performed since the beginning of the
current iteration.

We restructured the original code by adding a number of functions to handle the start, stop, suspend and
resume events. start: it calls the init function that reads the input data. The init subroutine starts also the
main cycle that use many iterations to update particles data step by step.
integer function start()

start=1

call init

call main_cycle

end function

stop: it stops the execution, that will restart from the beginning of the application when the start-command
will be invoked. When the application restarts input data will be read again and intermediate results will be
lost.
integer function stop()

stop=1

end function

checkpoint: it writes in a file the intermediate information which describe the particles (pressure, position,
volume . . .), algorithm data such as the current iteration, the max number of iterations, and others. These
data are stored in two modules, which are global data and particles data. The write data subroutine uses the
dataout parameter as filename.
integer function checkpoint(dataout,n)

integer n

character dataout(n)

use global_data

use particles_data

checkpoint=1

call write_data(dataout)

end function

suspend: it suspends the execution that can be resumed at any time, restoring the application status. The write
status saves the application status in a file as it has been explained above. If a suspension has been requested,

1ENEA is the Italian Agency for New Technologies, Energy and Sustainable Economic Development - http :
//www.fusione.enea.it

156 Salvatore Venticinque, Rocco Aversa et al.

Iteration StartTime (sec) Duration (sec)
1 5,864 86,414
2 92,278 87,236
3 179,514 87,574
4 267,087 87,836
5 354.923 87,657
6 442,580 87,835
7 530,414 87,792
8 618,206 87,695
9 705,900 87,658
10 793,558 87,620

Fig. 6.1. Mean time for each iteration of plasma simulation

the function is executed at the end of the current iteration. In this case it does not need to perform any actions.
integer function suspend()

suspend=1

end

resume:it resumes the application execution after a suspension. The read data subroutine restores the ap-
plication status. The read data subroutine initializes the gobal varaiables of the program modules with the
values stored in the indata file. The start main cycle starts from the beginning of the same iteration that was
interrupted by the last suspension.
integer function resume(indata,n)

integer n

character indata(n)

use global_data

use particles_data

resume=1

call read_data(indata)

call start_main_cycle

end function

Migration is transparent to the programmer. It transfer the Java agent code and the data file, nedded for
resumption.

6. Experimental results. In order to build the native library we used the Ubuntu Linux Operative
System, GNU FORTRAN 4.4.1, GCC 4.4.1 and SUN JDK 1.6. The Jade platform v. 1.3.5 has been used
to develop and run agents. The C implementation of the native console and the FORTRAN restructured
application have been compiled and linked together. Agents can download different builds, for 64 bit and 32 bit
Linux platforms by a FTP server. Computing nodes are connected by a 100MB Ethernet network. Successful
experiments demonstrated that the prototype works properly, in fact the platform successfully supports check-
pointing, resume, migration and monitoring of native applications. Results allowed us to evaluate the overhead
due to cloning and migration when it is necessary to migrate the native code which was previously compiled for
the target machine, and the status of execution.

We experienced the native management of the application for the plasma simulation. The original code has
been executed on a dual-cpu Intel Xeon 3.06 GHz, 512K cache size and 2GB RAM. In a first experiment an
Agent Proxy is started from an Agent Manager on its same node. The Agent Proxy get the cpu architecture
and the operative system (i386,linux) and asks for the correct version of native library. A shared library is
downloaded via a public ftp server connected to the Internet by a 8MB connection in a different geographic
site . The application executes 10 iterations without suspension and resume, but saving at each iteration the
intermediate results of its computation in case of asynchronous requests for migration. In Table 6 we show the
measures we have collected after 100 runs. Wen can see that time needed to start the application, and to read
the input data is 5,86 sec. Before that the time needed to ask for the shared libraries, to get their location
and download it was 1,794 (sec). In a second experiment the Agent Manager sends randomly a request for

Management of High Performance Scientific Applications 157

migration from a node to another one of the cluster. Even if we know in advance that the nodes have the
same cpu an operative system we chose to ask for and download again the shared library. Furthermore, even
if the nodes share the same file system via NFS, however the agent servers and the application execute in two
different directory. In the first one we have the agents code and the input data, in the second one only the
intermediate results will be saved. The agent code will be transfered during migration and saved in a cache.
The status of application contains intermediate values of the program variables and of the particles. The total
size of information is about 95MB. To optimize the data transfer, the application compresses the data before
the migration, and decompresses the file at destination. The time spent to suspend, migrate and resume the
application will be:

Ttotal = Twrite + Tcompress + Tdecompress + Ttransfer + Tresume + Tlost (6.1)

When migration is asked the array of particles has been already written into a file at the end of the previous
iteration. Twrite represents the time needed to write only the current values of variables necessary for resumption.
Tcompress is the compression time that takes 6.2 sec, while the decompression takes 1.4 sec. The compression
reduce the data size to 30 MB. In the resume method of the native console, overridden by the application, we
call the tar utility, with the czf options to compress the application status. It could be done in the java code if
such utility is not available. The Proxy Agent, before to move, store the compressed file in a byte array and uses
the Jade APIs to migrate with its own code and attributes. Ttransfer is the time needed to transfer the agents
and the application status. On the target node we only need a running agent platform. Tresume represents
the time to restart the application that will read the intermediate values of its variable from the file system.
Tlost is the time elapsed since the beginning of the current iteration before the migration request. It depends
on when the signal interrupts the main thread. It will be less than the duration of a complete iteration. In
our implementation all the work that has been done since the beginning of the current iteration is lost. In the
formula we do not consider the time needed to download the native code because we could send an agent at the
new destination to identify the target architecture and to download the right version of native library before and
meanwhile the application is suspended. However in the following measures this strategy as not been applied
and Ttotal will include also that contribution.

After a test-set of 100 runs, we observed a mean turnaround of 16m 22,611s without migration, and 17m
18,993s with a random migration. That means a mean time of Ttotal equals to 56,382 secs to be spent for
migrating the execution from a node to another one of the local network. We can observe that the migration,
in this case, takes about 64% of a single iteration, that is not relevant if compared to a real execution of
hundreds iterations. We mean that the service can be effectively used to move the execution to a faster node,
or to continue when the hosting machine should be upgraded or restarted. Furthermore many performance
improvements can be designed. For example the choice to save the application status at each iteration is not
the most effective one. We could plan different strategies taking into account the duration of each iteration, the
time needed to suspend, migrate and resume the application, and the probability that it could be happening.
In Fig. 6 it is shown the time trace for one execution of the test-set. We can see step by step what happened.
In the first column we have who takes the time, in the second one the item is described and in the last one
the time duration. On the left side we describe what happened on the first node (Container 1) and on the
right side the second Container nodes works after the migration. The character @ represents the time elapsed
since the start of the native application, otherwise the time value represents the duration of that event. In this
case the suspension is received at 15,073 sec from the init of the application and Tlost is about 9,17 secs. As
the mean iteration lasts for 88,728 secs, the other contributions of Ttotal are all relevant. We can observe that
the library download takes more time at Container-2 because the Agent Proxy is running on a different node
than the Agent Manager, so the communication use the cluster network. Nevertheless the application needs
to resume the intermediate results before to start the first iteration, however all the needing initialization are
already done. That is because the first iteration starts already at 0,35 (sec).

7. Conclusions. We presented an approach for agents based management of high performance scientific
applications, providing a real case study as a proof of concept. We designed and implemented a Mobile Agents
based service and its interface to POSIX applications. Programmers can extend their native applications in
order to support checkpoint, migration, suspension, resuming, etc. Service implementation is in Java. It is
portable and mobile. Application portability on heterogeneous node is supported through the dynamic linking
of native libraries compiled for the target machine. The application life cycle can be controlled interactively from

158 Salvatore Venticinque, Rocco Aversa et al.

Container-1 Container-2
Code Event Time (sec) Code Event Time

Proxy Agent Library down. 1,629 - - - - - - - - - - - - - - -

Application Iteration 1 @5,893 ; 0 - - - - - - - - - - - - - - -

Application Suspend @15,073 - - - - - - - - - - - - - - -

Agent manager Ttotal 17,349 - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - Proxy Agent Library down. 2,015

- - - - - - - - - - - - - - - Application Iteration 1 @0,329 ; 89,168

- - - - - - - - - - - - - - - Application Iteration 2 @89,497 ; 89,194

- - - - - - - - - - - - - - - Application Iteration 3 @178,691 ; 89,186

- - - - - - - - - - - - - - - Application Iteration 4 @267,878 ; 89,047

- - - - - - - - - - - - - - - Application Iteration 5 @356,926 ; 88,348

- - - - - - - - - - - - - - - Application Iteration 6 @445,274 ; 88,615

- - - - - - - - - - - - - - - Application Iteration 7 @533,889 ; 88,537

- - - - - - - - - - - - - - - Application Iteration 8 @622,426 ; 88,364

- - - - - - - - - - - - - - - Application Iteration 9 @622,426 ; 88,88

- - - - - - - - - - - - - - - Application Iteration 10 @710,790 ; 87,932

Fig. 6.2. Trace of a migrated execution

a GUI or can be programmed by a scheduler that reacts to changes in the environment. An abstract console
defines the methods which are used by agents in order to interface with the application. An implementation
for POSIX application has been implemented and tested. We presented preliminary results which will be
extended and discussed in the camera ready version. We Future work will deal with the management of parallel
and distributed applications by cooperation of mobile agents which implement strategies for distributing the
workload in order to optimize system utilization or application performance.

REFERENCES

[1] Barak A. and La’adan O., The MOSIX Multicomputer Operating System for High Performance Cluster Computing. Journal
of Future Generation Computer Systems (13) 4-5, pp. 361-372, March 1998.

[2] J. Bilbao, G. Garate, A. Olozaga, A. del Portillo: Easy clustering with openMosix, World Scientific and Engineering Academy
and Society (2005)

[3] R. Lottiaux, B. Boissinot, P. Gallard, G. Valle, C. Morin: openMosix, OpenSSI and Kerrighed: a comparative study, INRIA
(2004)

[4] Maoz T., Barak A. and Amar L., Combining Virtual Machine Migration with Process Migration for HPC on Multi-Clusters
and Grids, IEEE Cluster 2008, Tsukuba, Sept. 2008.

[5] I. Foster, N. Jennings, Kesselman, Brain Meets Brawn: Why Grid and Agents Need Each Other, in Proceeding of the 3rd Joint
Conference Autonomous Agents and Multi-Agent Systems, pp. 8-15, 2004.

[6] B. Di Martino, O. F. Rana, Grid Performance and Resource Management using Mobile Agents, in: V. Getov et al. (Eds.),
Performance Analysis and Grid Computing, pp. 251-264, Kluwer Academic Publishers, 2004 (ISBN 1-4020-7693-2).

[7] F. M. T. Brazier, B. J. Overeinder, M. van Steen, and N. J. E. Wijngaards, “Agent Factory: Generative Migration of Mobile
Agents in Heterogeneous Environments”, Proceedings of the 2002 ACM symposium on Applied computing, ISBN:1-58113-
445-2, pp 101 - 106.

[8] M. Fukuda, Y. Tanaka, N. Suzuki, L. F. Bic, S. Kobayashi, “A mobile-agent-based PC grid”, Autonomic Computing Workshop,
ISBN: 0-7695-1983-0, pp 142- 150, June 2005.

[9] C. Peltz. Web Services Orchestration and Choreography. IEEE Computer Magazines, 2003.
[10] R. Donini, R. Aversa, B. Di Martino e S. Venticinque. Load balancing of mobile agents based applications in grid systems.

In Proceedings of 8 IEEE 17th Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises, Rome,
23-25 June 2008. IEEE.

[11] Di Martino, B., Briguglio, S., Vlad, G., Sguazzero, P.: Parallel PIC Plasma Simulation through Particle Decomposition
Techniques. Parallel Computing 27, n. 3, (2001) 295–314.

[12] Fox, G. C., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., Walker, D.: Solving Problems on Concurrent Processors (Prentice
Hall, Englewood Cliffs, New Jersey, 1988).

Management of High Performance Scientific Applications 159

[13] Ferraro, R. D., Liewer, P., Decyk, V. K.: Dynamic Load Balancing for a 2D Concurrent Plasma PIC Code, J. Comput. Phys.
109, (1993) 329–341.

[14] Cybenko, G.: Dynamic Load Balancing for Distributed Memory Multiprocessors. J. Parallel and Distributed Comput., 7,
(1989) 279–391.

[15] Birdsall, C. K., Langdon, A. B.: Plasma Physics via Computer Simulation. (McGraw-Hill, New York, 1985).

Edited by: June 21, 2010
Received: March 30, 2010
Accepted: June 21, 2010

