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t. One of the earliest appli
ations that explored the power and �exibility of the grid 
omputing paradigm was medi
alimage mat
hing. A typi
al 
hara
teristi
 of su
h appli
ations is the large 
ommuni
ation overheads due to the bulk of data thathave to be transferred to the 
ompute nodes.In this paper we study the problem of optimizing su
h appli
ations under a broad model that in
orporates not only 
ommu-ni
ation overheads but also the existen
e of lo
al data 
a
hes that 
ould exist as a result of previous queries. We study the 
asesof both 1- and N-port 
ommuni
ation setups. Our analyti
al approa
h is not only 
omplimented by a theorem that shows how toarrange the sequen
e of operations in order to minimize the overall 
ost, but also yields 
losed-form solutions to the partitioningproblem.For the 
ase where large load imbalan
es (due to big di�eren
es in 
a
he sizes) prevent the 
al
ulation of a 
losed-form solution,we propose an algorithm for optimizing load redistribution.The paper is 
on
luded by a simulation study that evaluates the impa
t of our analyti
al approa
h. The simulation, whi
hassumes a homogeneous parallel platform for easy interpretation of the results, 
ompares the 
hara
teristi
s of the 1- and N-portsetups.Key words: parallel image registration, divisible load, high performan
e1. Introdu
tion. In the past �ve years there has been a big drive towards harnessing the power of paralleland distributed systems to o�er improved medi
al servi
es in the domain of 2D and 3D modalities. Content-based queries are at the 
ore of these servi
es, allowing physi
ians to a
hieve higher-a

ura
y diagnoses, 
ondu
tepidemiologi
al studies or even a
quire better training among other things [1℄.In [2℄, the authors present a high-level overview of the methodologies used for medi
al image mat
hing. Theauthors identify two broad types of approa
hes: image retrieval that utilizes similarity metri
s to o�er suitable
andidate images and image registration that tries to �t the observed data onto �xed or deformable models.Finally, the authors suggest an integrated system ar
hite
ture that 
ould 
ombine the advantages of the twoapproa
hes. A 
omprehensive review and 
lassi�
ation of 
urrent medi
al image handling systems is publishedin [3℄.Apart from the 
lassi�
ation mentioned in [2℄, image registration te
hniques are also 
lassi�ed based onwhether:
• Image features are used (
ontrol-point based) or the whole (or an area of interest) image (global regis-tration).
• Work is done at the spatial or frequen
y domain.
• Global (rigid) or lo
al (non-rigid) geometri
al transformations are used.The key problem is determining the optimum geometri
al transformation. A brute-for
e approa
h entailshuge 
omputational requirements, leading resear
hers to either perform the sear
h in several re�nement steps[4, 5℄, or swit
h to heuristi
 te
hniques su
h as geneti
/evolutionary algorithms and simulated annealing [6, 7℄.Domain spe
i�
 te
hniques have been also suggested [8℄.A domain whi
h has been enjoying early su

ess is mammography [9, 1, 10℄. Many proje
ts that seek toharness the power of Grids [11℄ to o�er advan
ed medi
al servi
es have spawned over the last 8 years. A typi
alexample is the MammoGrid proje
t. Amendolia et.al present an overview of its servi
e ar
hite
ture design in [1℄.On the other side of the Atlanti
, the National Digital Mammography Ar
hive Grid is a similar initiative [10℄. AP2P system that seeks to address s
alability issues that arise with the operation of typi
al 
lient-server systemshas been also proposed in [12℄.While the problem of image registration is inherently `embarrassingly' parallel, the domain has seen littlework on performan
e optimization espe
ially over heterogeneous platforms. In [5℄ the authors use wavelets toperform global registration in in
reasing re�nement steps that allows them to redu
e the sear
h spa
e involved.Zhou et al. also evaluate four parallelization te
hniques and derive their 
omplexity in big-O notation by
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222 G. Barlasimpli
itly assuming a homogeneous platform. However, they fail to take into a

ount the 
ommuni
ationoverheads involved and use their analysis to optimize the load partitioning of their strategies.Ino et al. propose a uniform inter-image 2D partitioning for performing 2D/3D registration, i. e. estimatethe spatial lo
ation of a 3D volume from its proje
tion on a 2D plane [13℄. While Ino et al. dis
uss otherpossible distributions, they do not use an appropriate model that would allow for optimization. Subsequently,in [14℄ the authors 
ompare very favourably a GPGPU approa
h with their parallel implementation on 2D/3Dregistration.De Fal
o et al. have employed a di�erential evolution me
hanism for estimating the parameters of an a�netransformation for global registration [6℄. The load distribution is performed on the population level, while atregular intervals, individuals are ex
hanged between neighboring nodes on the torus ar
hite
ture used.One of the early systems is the one des
ribed in [9℄. Montagnat et.al use an array of high run-time 
ost, pixel-based, image retrieval algorithms to answer image similarity queries. As des
ribed in [15℄, the homogeneoussystem that is used to run the queries employs equal size partitioning, e.g. the M images that need to be
ompared against a new one, are split into k jobs of size M
k
. In [15℄ the authors develop empiri
al 
ost modelsfor ea
h of the similarity metri
s used to answer a 
ontent-based query. These are 
omplemented by a study ofthe s
heduling and data repli
ation 
osts that are in
urred upon submitting a job to a Grid platform.While the models shown in [15℄ 
apture mu
h of the inner workings of the algorithms used, they are not themost suitable for developing a strategy or 
riteria for optimizing the exe
ution of 
ontent-based queries. Instead,they fo
us on estimating the optimum number of jobs to spawn, given the high asso
iated 
ost of task/resour
es
heduling on Grids.A parti
ular problem in deriving an analyti
al partitioning solution is that upon performing a sequen
eof queries, the system is in a state where lo
al image 
a
hes 
an redu
e the 
ommuni
ation 
ost. This is of
ourse true as long as they refer to images of the same modality and type of 
ontent. To our knowledge, thispaper is the �rst attempt to treat this problem in an analyti
al fashion that in
orporates all the aforementionedsystem/problem parameters.Our analyti
al approa
h belongs to the domain of Divisible Load Theory [16℄, whi
h sin
e its in
eption inthe late 80s, has been su

essfully employed in a multitude of problems [17℄. In [17℄ the problem of optimallypartitioning and s
heduling operations for two 
lasses of problems identi�ed as query pro
essing and imagepro
essing respe
tively, has been studied. The problem 
hara
terizations were based on the 
ommuni
ation
hara
teristi
s and more spe
i�
ally, the relation between the 
ommuni
ation 
ost and the assigned load. Thispaper �lls a gap left by that work by proposing a model and an analyti
al solution to image-query pro
essingappli
ations.The 
ontribution of our work is that for the �rst time a fully analyti
al model is employed to devise anoptimizing strategy for the total exe
ution time, given 
ommuni
ation 
osts and the state (and not just the
apabilities) of the parallel platform. Our simulation study shows that the bene�ts of the proposed frameworkare signi�
ant, in both a single-shot and a series of queries s
enarios. Also, by isolating the spe
i�
s of themat
hing algorithms, our proposed solution is more adept to easy implementation and deployment, given thefew system parameters that need to be known/estimated.The organization of the paper goes as follows: in se
tion 2 the 
ost model used in our analysis is introdu
edand explained within a broader 
ontext. Se
tion 3.1 
ontains a study of the two-node s
enario that 
ultivates toTheorem 3.1 for the optimum sequen
e of operations. The 
losed-form solutions to the partitioning problem for

N nodes in 1-port 
on�guration, is given in 3.2, while the N-port problem is solved in Se
tion 4. An algorithmfor managing the 
a
he size of the 
ompute nodes towards minimizing the exe
ution time, is given in se
tion 5.Finally, the simulation study in Se
tion 6 highlights the bene�ts and drawba
ks of our analyti
al approa
h andbrings-up interesting fa
ts about the di�erent 
ommuni
ation setups.2. Model Formulation. The ar
hite
ture targeted in this paper 
onsists of N heterogeneous 
omputingnodes that re
eive image data from a load originating node and return the results of the image mat
hing pro
essto it. The network ar
hite
ture is a single-level tree or a bus-
onne
ted one. Be
ause this 
an be a repetitivepro
ess, ea
h node 
an build up a lo
al image 
a
he that 
an be reused for subsequent queries. Hen
e the loadoriginating node has to 
ommuni
ate to the 
omputing nodes only what they are missing, either be
ause of thein
orporation of new images or be
ause of the departure of nodes from the 
omputing pool.Our treatment of the problem is based on the formulation of an a�ne model that des
ribes the 
omputationand 
ommuni
ation overheads asso
iated with the query data distribution, the image mat
hing pro
ess and the



Optimizing Image Content-Based Query 223Table 2.1NotationsSymbol Des
ription Units
b is the 
onstant overhead asso
iated with load distribution. It 
onsists of theimage to be mat
hed in addition to any query spe
i�
 data (e.g. mat
hingthresholds). B

d is the 
onstant overhead asso
iated with result 
olle
tion. Typi
ally d < b. B
eX is the part of the load whi
h is resident at node X , i. e. a lo
al image 
a
he. B
I is the typi
al size of an image used for image mat
hing. B
L the load that is has to be 
ommuni
ated to the 
omputing nodes B
lX is inversely proportional to the speed of the link 
onne
ting X and its loadoriginating node. sec/B

pX is inversely proportional to the speed of X . sec/B
partX is the part of the load L assigned to X , hen
e 0 ≤ partX ≤ 1. The total loadassigned to X is partXL+ eX

NAresult 
olle
tion phase. These models are 
losely related with the ones introdu
ed in [17℄ although the semanti
sfor some of the 
onstants used here are di�erent. Given a node X that is 
onne
ted to a load originating nodewith a 
onne
tion of (inverse) speed lX , we assume that the load distribution tdistr, the 
omputation tcomp andthe result 
olle
tion tcoll 
osts are given by:
tdistr = lX (partXL+ b) (2.1)

tcomp = pX (partXL+ eX) (2.2)
tcoll = lXd (2.3)The symbols used above, along with all the remaining ones to be introdu
ed later in our analysis, are summarizedin Table 2.1.The total load to be pro
essed by N nodes is

N−1
∑

i=0

(partiL+ ei) (2.4)and for the 
ommuni
ated load parts we have:
N−1
∑

i=0

parti = 1 (2.5)The 
ontribution of the above 
omponents to the overall exe
ution time of node X depends on how 
om-muni
ation and 
omputation overlap. We 
an identify two 
ases:
• Blo
k-type 
omputation: no overlap between 
ommuni
ation and 
omputation. Node X 
an start
omputing only after all data are delivered:

tX = lX (partXL+ b+ d) + pX (partXL+ eX) (2.6)
• Stream-type 
omputation: node X 
an start using ea
h lo
al image 
a
he immediately after re
eivingthe query data. Computation 
an run 
on
urrently with the 
ommuni
ation of the extra data partXL.There are two 
ases depending on the relative speed between 
ommuni
ation and 
omputation:� Communi
ation speed is high enough to prevent X from going idle i. e.

pX (partXL+ eX − I) ≥ lXpartXL (2.7)where I is the size of the last image to be 
ompared against the required one. Then:
tX = lX (b+ d) + pX (partXL+ eX) (2.8)
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DFig. 3.1. The four possible 
on�gurations of pro
essing by two nodes when 1-port 
ommuni
ations are used. Result 
olle
tionis assumed to be separated by a 
onstant delay D.� Node X has to wait for the delivery of data through a slow link, i. e. 
ondition (2.7) is invalid.Then:
tX = lX (b+ d) + lXpartXL+ pXI (2.9)The additional parameter that 
ontrols the overall 
ost when N nodes are used, is whether single-port or

N -port 
ommuni
ations are employed, e.g. whether the load originating node 
an distribute L 
on
urrently tomultiple nodes.In the remaining se
tions we fo
us on blo
k-type tasks under both 1- and N-port 
ommuni
ation setups.Our derivations are based on the assumptions of uniform 
ommuni
ation media, i. e. li = l ∀i. A 
omparisonbetween the two 
ommuni
ation setups is performed in se
tion 6.It should be noted that the stati
 model proposed in this paper, while not apparently suitable for a grid
omputing s
enario, in whi
h 
omputation and 
ommuni
ation 
osts 
hange over time, it 
an form the basisfor an adaptive s
heduler that modi�es load distribution over time given 
ost estimates. This goes beyond thes
ope of this paper and should be the topi
 of further resear
h.3. The 1-port Communi
ation Case.3.1. The two-node s
enario. If we assume that there is a load originating node that distributes the loadto two nodes, then if single port 
ommuni
ations and a single installment [16℄ are used, the possible sequen
esof 
ommuni
ation and 
omputation operations are shown in Fig. 3.1, as imposed by the need to have no gapsbetween stages (otherwise, exe
ution time is not minimized). For reasons that will be
ome obvious in the restof the se
tion, we also assume that the two result 
olle
tion phases are separated by a 
onstant delay D.The total exe
ution time for 
on�guration #1 is given by:
t1 = l (part0L+ b) + p0 (part0L+ e0) + ld (3.1)where

p0(part0L+ e0) = l(part1L+ b) + p1(part1L+ e1) + l d+D (3.2)Eq. (3.2) 
oupled with the normalization equation part0 + part1 = 1 
an provide a solution for part0 and t1. Asimilar pro
edure 
an produ
e the times for the three remaining 
on�gurations. Thus we 
an form the pairwisedi�eren
es of running times:
t3 − t4 =

l (e1p1 − e0p0) + (dl − bl +D) (p1 − p0)

p0 + p1 + l
(3.3)

t3 − t2 =
l (e1p1 − e0p0 − b (p1 − p0)− dl −D)

p0 + p1 + l
(3.4)

t3 − t1 =
(dl +D)(p1 − p0 − l)

p0 + p1 + l
(3.5)
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t1 − t4 =

l (e1p1 − e0p0 − b (p1 − p0) + d l+D)

p0 + p1 + l
(3.6)

t1 − t2 =
l (e1p1 − e0p0 − (b+ d) (p1 − p0))

p0 + p1 + l
−

D (p1 − p0)

p0 + p1 + l
(3.7)

t4 − t2 = −
(d l +D) (p1 − p0 + l)

p0 + p1 + l
(3.8)Clearly, the problem is too 
omplex to have a single solution even for the simplest 
ase of two nodes. We
an however isolate a number of useful spe
ial 
ases that make a 
losed form solution to the N -node problemtra
table:

• No image 
a
hes (e0 = e1 = 0). If we assume than p0 ≤ p1 and given that b > d, we have:
t3 − t4 =

(dl − bl+D) (p1 − p0)

p0 + p1 + l
(3.9)

t3 − t2 =
l (−b (p1 − p0)− d l −D)

p0 + p1 + l
≤ 0 (3.10)

t3 − t1 =
(d l+D) (p1 − p0 − l)

p0 + p1 + l
(3.11)If dl−bl+D ≤ 0⇒ D ≤ l (b− d), then Eq. (3.11) di
tates that either 
on�guration #3 or 
on�guration#1 are optimum based on whether p1 − p0 − l is negative or not. If we assume that the di�eren
es inexe
ution speed are small relative to the 
ommuni
ation 
ost l (i. e. p1− p0 ≤ l) then 
on�guration #3is the optimum one.The exe
ution time is given by

t
(nc)
3 = l

(

part
(nc)
0 L+ b

)

+ p0part
(nc)
0 L+D + 2ld (3.12)where:

part
(nc)
0 =

p1L+ l(L− d+ b)−D

L (p0 + p1 + l)
(3.13)

• Homogeneous system (p0 = p1 = p). If we assume that e0 ≥ e1 then:
t3 − t4 =

pl (e1 − e0)

2p+ l
≤ 0 (3.14)

t3 − t1 = −
l (d l +D)

2p+ l
≤ 0 (3.15)

t1 − t2 =
pl (e1 − e0)

2p+ l
≤ 0 (3.16)whi
h again translates to having 
on�guration #3 as the optimum one. It should be noted that theoptimum order di
tates that load is sent �rst to the node with the biggest 
a
he, whi
h is a 
ounter-intuitive result! The exe
ution time is given by

t
(homo)
3 = l

(

part
(homo)
0 L+ b

)

+ p
(

part
(homo)
0 L+ e0

)

+D + 2ld (3.17)where:
part

(homo)
0 =

p(L+ e1− e0) + l(L− d+ b)−D

L (2p+ l)
(3.18)
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Fig. 3.2. (a) A possible ordering of load distribution and result 
olle
tion for N nodes. (b) Improving the exe
ution time byordering the operations of Pi and Pi+1 in non-de
reasing order of their speed (assuming pi ≤ pi+1). Note: the phase durationsare disproportionate to a
tual timings.The delay D that was introdu
ed above allows us to extend our analyti
al treatment from 2 nodes to N . Dis supposed to model the time taken by the result 
olle
tion operations of other nodes. Hen
e, D is a multipleof d · l with a maximum value of (N − 2) d · l. For the 
ase of no-
a
hes, as long as D ≤ l (b − d)⇒ N ≤ b
d
+ 1and the di�eren
es in 
omputation speed are smaller than the 
ommuni
ation speed, 
on�guration #3 is theoptimum one as stated by the following theorem. Given the 2-3 orders of magnitude di�eren
e expe
ted between

b and d, the range of N that the theorem applies is quite broad.Theorem 3.1. The optimum load distribution and result 
olle
tion order for an image query operationperformed by N nodes is given by:
• No image 
a
hes: distributing the load and 
olle
ting the results in non-in
reasing order of the nodes'speed (i. e. in non-de
reasing order of the pi parameters). The su�
ient but not ne
essary 
onditionsfor this to be true is N ≤ b

d
+ 1 and |pi − pj | ≤ l for any pair of nodes i, j.

• Homogeneous system: distributing the load and 
olle
ting the results in non-in
reasing order of thelo
al image 
a
he sizes.Proof. We will prove the above theorem for the no-
a
hes 
ase via 
ontradi
tion. The proof for thehomogeneous 
ase is identi
al. Let's assume that the optimum order is similar to the one shown in Fig. 3.2(a).Without loss of generality we assume that the distribution order is P0, P1, . . . PN−1For any two nodes Pi and Pi+1 that do not satisfy the order proposed by Theorem 3.1, we 
an rear-range the distribution and 
olle
tion phases so as the part of the load that is 
olle
tively assigned to them(L (parti + parti+1)) is pro
essed in a shorter time frame (as long as N ≤ b
d
+ 1), while o

upying in anidenti
al fashion the 
ommuni
ation medium (see Fig. 3.2(b)). Thus, the operation of the other nodes is notin�uen
ed. At the same time the shorter exe
ution time would allow additional load to be given to nodes Pi and

Pi+1 resulting in a shorter total exe
ution time. The out
ome is a 
ontradi
tion to having the original orderingbeing an optimum one. The only ordering that 
annot be improved upon by the pro
edure used in this proof,is the one proposed by Theorem 3.1.The above dis
ussion settles the ordering problem, allowing us to generate a 
losed-form solution to thepartitioning problem for N nodes.3.2. Closed-form solution for N nodes.3.2.1. No image 
a
hes. The following relation holds between every pair of nodes whi
h are 
onse
utivein the distribution and 
olle
tion phases (without loss of generality we will again assume that the nodes' orderis P0, P1, . . . , PN−1):
pipartiL+ ld = l (parti+1L+ b) + pi+1parti+1L⇒

parti+1 = parti
pi

pi+1 + l
+

l (d− b)

L (pi+1 + l)
(3.19)This 
an be extended to any pair of nodes Pi and Pj , where i > j:

parti = partj

i−1
∏

k=j

pk
pk+1 + l

+
l (d− b)

L

i
∑

k=j+1

[

(pk + l)
−1

i−1
∏

m=k

pm
pm+1 + l

] (3.20)
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an asso
iate ea
h parti with part0 and use the normalization equation:
N−1
∑

i=0

parti = 1 (3.21)to 
ompute a 
losed form solution for part0:
part0 =

1− l(d−b)
L

∑N−1
i=1

∑i

k=1

∏i−1

m=k

pm
pm+1+l

(pk+l)

1 +
∑N−1

i=1

∏i−1
k=0

pk

pk+1+l

(3.22)Equations (3.22) and (3.20) solve the partitioning problem. The total exe
ution time is:
t
(nc)
total = l (part0L+ b) + p0part0L+N l d (3.23)The above 
onstitute a 
losed form solution that 
an be 
omputed in time N2

−N
2 + 3(N − 1) +Nlg(N) =

O
(

N2
), where Nlg(N) is the node-sorting 
ost.3.2.2. Homogeneous System. Following a similar pro
edure to the previous se
tion, it 
an be shownthat:

p (partiL+ ei) + l d = l (parti+1L+ b) + p (parti+1L+ ei+1)⇒

parti+1 = parti
p

p+ l
+

l (d− b) + p (ei − ei+1)

L (p+ l)
(3.24)This 
an be extended to any pair of nodes Pi and Pj , where i > j:

parti = partj

(

p

p+ l

)i−j

+

i−1
∑

k=j

l (d− b) + p (ek − ek+1)

L (p+ l)

(

p

p+ l

)i−k−1 (3.25)Again, Eq. (3.25), and the normalization equation 
an produ
e a 
losed form solution for part0:
part0 =

d− b

L
+

l + l N(b−d)
L

p+ l − p
(

p

p+l

)N−1
−

l
∑N−1

i=1

∑i−1
k=0

(ek−ek+1)
L

(

p

p+l

)i−k

p+ l − p
(

p

p+l

)N−1
(3.26)The total exe
ution time 
an be then 
omputed as:

t
(homo)
total = l (part0L+ b) + p (part0L+ e0) +N l d (3.27)As with the previous 
ase, the solution requires an O

(

N2
) 
omputational 
ost.A spe
ial 
ase needs to be 
onsidered if L = 0 as the above equations 
annot be applied. The minimumexe
ution 
an be a
hieved only if the lo
al 
a
hes are appropriately sized to a

ommodate this. Similarly toEq. (3.25) for two nodes Pi and Pj , where i > j we would have:

piei + (j − i)ld = (j − i)lb+ pjej ⇒

ej = ei
pi
pj

+
(j − i)l(d− b)

pj
(3.28)If the 
a
hes do not satisfy 
ondition (3.28), the load must be reassigned/transferred between nodes. Inthis paper we assume that this is performed by the load originating node and not by a dire
t ex
hange betweenthe 
ompute nodes. Se
tion 5 elaborates more on how we 
an treat this 
ase.
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Fig. 4.1. Optimum s
heduling for a N-port 
ommuni
ation setup.4. The N-port Communi
ation Case.4.1. Closed-form solution for N nodes. The N-port 
ommuni
ation 
ase is mu
h simpler than the1-port one sin
e no expli
it node ordering is ne
essary. It 
an be easily shown in this 
ase that the optimumload partitioning has to produ
e identi
al running times on all the parti
ipating 
ompute nodes, i. e. all nodesmust start re
eiving data and �nish delivering results at the same instant. Sin
e all nodes must have the samestarting and ending times as shown in Fig.4.1, for any two nodes i and j, the following has to hold:
l (partiL+ b) + pi (partiL+ ei) + ld =

l (partjL+ b) + pji (partjL+ ej) + ld⇒

partiL (pi + l) + piei = partjL (pj + l) + pjej ⇒

parti = partj
pj + l

pi + l
+

pjej − piei
L (pi + l)

(4.1)The normalization equation (3.21) 
an then be used to produ
e a 
losed-form solution for part0 and subse-quently all parti:
N−1
∑

i=0

parti = 1⇒

part0

N−1
∑

i=0

p0 + l

pi + l
+

N−1
∑

i=1

p0e0 − piei
L (pi + l)

= 1⇒

part0 =
1 +

∑N−1
i=1

piei−p0e0
L(pi+l)

∑N−1
i=0

p0+l
pi+l

(4.2)The total exe
ution time is given by:
t
(Nport)
total = l (part0L+ b) + pi (part0L+ ei) + ld (4.3)4.2. Homogeneous System Solution. For a homogeneous system (∀pi ≡ p), the above equations aresimpli�ed to the following:

(4.1)⇒ parti = partj +
p (ej − ei)

L (p+ l)
(4.4)

(4.2)⇒ part0 = N−1

(

1 +
p

L

N−1
∑

i=1

ei − e0
p+ l

) (4.5)whi
h translates to having di�eren
es in the lo
al 
a
hes as the single 
ause of any imbalan
es in the split ofthe new load L. Otherwise the load should be evenly split.
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he Management. Eq. (3.20), (3.25), (4.1) and (4.4) allow for negative values for partis.Su
h an event indi
ates that the 
orresponding node should not parti
ipate in the 
al
ulation, either be
auseit is too slow or be
ause the lo
al 
a
he size is too large for a node to pro
ess and keep up with the othernodes. In the latter 
ase it is obvious that a node should use only a part of its 
a
he. The load surplus shouldbe transferred to other nodes. This situation 
an arise when following the initial distribution of load to thenodes, subsequent queries are no longer a

ompanied by big 
hunks of data, making the initial distribution asuboptimal one.In this se
tion we address this problem by proposing a algorithm for estimating the proper 
a
he size thatshould be used, along with the 
orresponding load L that should be 
ommuni
ated to other nodes.The algorithm presented below, is based on the assumption that the interse
tion of all 
a
hes is ∅. The keypoint of the algorithm is a re-assignment of load from the nodes with an over-full 
a
he (identi�ed as set S in line8) to the nodes with little or no 
a
he. This pro
ess redu
es the total exe
ution time as long as 
ommuni
ationis faster than 
omputation.This algorithm has been also enhan
ed from the version presented in [18℄ to address the 
ase when L = 0,i. e. when pro
essing is based entirely on the nodes' lo
al data. In that 
ase, L 
an be initialized to a smallvalue, e.g. L = 1 (lines 2-5), whi
h would be subsequently subtra
ted on
e a redistribution is dimmed ne
essary(lines 32-36).Set S does not 
hange after line 8 as the subsequent in
rease in L due to a load shift (line 31) does notpermit any other node from having a negative assignment. The loop of lines 13-46 is exe
uted for as long asthere is a negative parti, or a load shift is ne
essary for balan
ing the node workload. In line 17 the size of the
a
he that should be used in a node with a negative assignment is estimated. Be
ause the load is reassigned
olle
tively in line 31, the 
a
he size of ea
h node in S 
an be under-estimated (by �bloating" the load L thatshould be 
ommuni
ated). This defeats the optimization pro
edure by for
ing the 
ommuni
ation of data thatare already present at the nodes, and in order to guard against this possibility, lines 21-28 re-adjust any previousoverestimation for nodes that subsequently got to have positive partj . Lines 12 and 41-44 serve as sentinelsagainst 
ases where the outer while loop does not 
onverge. In that 
ase, �xing the part assigned to the last nodein the distribution sequen
e (smallest e) to 0, allows the 
onvergen
e of the outer loop. A value for threshold
THRES that was found to yield good results in our experiments is 20. Threshold values that depend on thenumber of 
ompute nodes did not provide any visible di�eren
e.Lines 32-36 
an
el the addition of 1 load unit that is done when L = 0. Finally, if L remains 0 after loadredistribution is examined, 
a
he sizes satisfy 
ondition (3.28) for a homogeneous system and nothing moreneeds to be done (lines 37-40).A key point that should be made here is that Algorithm 1 produ
es a sub-optimum solution when a seriesof query operations are to be s
heduled. Designing an optimum algorithm for this s
enario is beyond the s
opeof this paper.6. Simulation Study. Single-port 
ommuni
ation is surely not a 
ontemporary te
hnology limitation. Itis rather a design feature whereas the load originating node dedi
ates its attention to a single node at a time,with the obje
tive of minimizing the message ex
hange 
ost between itself and the 
orresponding node. Inthis se
tion we explore the impa
t of the two alternative design 
hoi
es with the assistan
e of our analyti
alframework. Also, we evaluate the performan
e a
hieved by the use of Algorithm 1 for managing the image
a
hes through a battery of image queries.We base the bulk of our simulations on the assumption of a homogeneous platform. While the require-ment of a homogeneous system may seem unrealisti
, it 
an be typi
al of many large s
ale installations in bigorganizations.The key points of our simulation s
enario whi
h 
onsists of a series of image query operations, are thefollowing:

• The image DB1 
onsists originally of 10000 images of size 1MB ea
h. This is a small number relevantto the yearly �produ
tion" of mammograms generated at a national level. Additionally, the image sizemat
hes real data only in the order of magnitude as high resolution mammograms 
an be mu
h larger(e.g. 8MB).
• Ea
h new image that is mat
hed against the DB is also 1MB in size, hen
e b = 1MB.

1We use the term DB to loosely refer to the 
olle
tion of available, tagged, medi
al images, and not to an a
tual DBMS system.Storage servi
es are o�ered in MammoGrid [1℄ by MySQL and in NDMA by IBM's DB2 [10℄



230 G. BarlasAlgorithm 1 Estimating the lo
al image 
a
he sizes that yield the minimum exe
ution time for the next queryoperation1: load_shift← 02: if L = 0 then3: added← TRUE4: L← 15: end if6: In the 
ase of 1-port 
ommuni
ation and a homogeneous system, sort the nodes in des
ending order of their
ei parameters.7: Cal
ulate the load part for ea
h node Pi via Eq. (3.26), (3.25) or (4.2), (4.1)8: Let S be the set of nodes with partj < 09: if S 6= ∅ then10: Copy the 
a
he sizes of all nodes in temporary variables e(orig)i11: end if12: iter← 013: while S 6= ∅ OR load_shift 6= 0 OR added = TRUE do14: load_shift← 015: for ea
h Pj ∈ S do16: if partj < 0 then17: aux← partjL+ ej18: load_shift← load_shift+ ej − aux19: ej ← aux20: else21: aux← partjL+ ej22: if aux > e

(orig)
i then23: diff ← e
(orig)
j − ej24: else25: diff ← aux− ej26: end if27: load_shift← load_shift− diff28: ej ← ej + diff29: end if30: end for31: L← L+ load_shift32: if added = TRUE then33: added← FALSE34: L← L− 135: load_shift← 136: end if37: if L = 0 then38: Set for all nodes Pj , partj ← 039: BREAK40: end if41: iter← iter + 142: if iter > THRES then43: Fix the partk assigned to the node with the smallest ek to 044: end if45: Cal
ulate the load part for ea
h Pi, other than the nodes �xed in step 43.46: end while
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Fig. 6.1. Average sequential disk read speed per thread. The ideal 
urve represents the 
ase where the total bandwidth isevenly divided between the threads without losses.
• Every 100 queries, 100 appropriately tagged images are in
orporated in the image DB, hen
e the residentload in
reases gradually.
• The data 
olle
ted from ea
h node 
onsist of the best 10 mat
hes, along with the 
orresponding imageIDs and obje
tive fun
tion values, assumed in total to be of size d = 10 · (2 + 4) = 60B.
• The tioben
h utility [19℄ was used to estimate realisti
 values for the data rates between the load origi-nating nodes and the 
ompute nodes. A variable number of threads were used to represent simultaneousa

ess from multiple 
lients. The results whi
h were 
olle
ted on a Linux laptop ma
hine, equippedwith a ATA 100 100GB hard disk spinning at 4200rpm, formatted using the ReiserFS �lesystem, areshown in Fig. 6.1. The e�e
t of the disk 
a
he was minimized by using a 3GB �le size. These speedswere used in the 1- and N-port simulations that are reported in this paper. For 1-port 
ommuni
ationsin parti
ular, l was set equal to 0.00997sec/Mb, whi
h translates to 0.0837sec/image.The �rst question we would like to answer, is what would be the improvement of using our analyti
alapproa
h over an Equal load Distribution (ED) strategy that is traditionally used in homogeneous systems [15℄,in a single-shot s
enario, i. e. when only one query operation is performed. For this purpose, we tested both1- and N-port approa
hes, where the 
omputing speed of all nodes was set to be one of the following values

{0.08, 0.17, 0.33, 0.67, 1.34}sec/image, roughly 
orresponding to 1x, 2x, 4x, 8x and 16x the time required to
ommuni
ate a single image when 1-port 
ommuni
ation is used. In the remainder of this se
tion we will referto these pro
essing speeds as 1l, 2l, 4l , 8l and 16l respe
tively. Su
h a sele
tion of pro
essing speeds/
ostsmat
hes 
losely the running times reported in [15℄ for real-life tests and they are supposed to help us probe thee�e
ts of di�erent 
omputation/
ommuni
ation ratios and the use of di�erent image registration algorithms.The results for the 1-port 
ase are shown in Figure 6.2 in the form of the improvement a
hieved over theED approa
h. In all the 
omparative results reported in this se
tion, we use the exe
ution time provided bythe 1-port non-uniform proposed distribution strategy (as given by Eq.(3.27) and denoted below as tSP ) as thebaseline. The improvement is de�ned as:
tED − tSP

tSP

(6.1)whi
h is basi
ally the per
ent overhead that ED (tED) is 
ausing over the proposed analyti
al solution. Allinitial 
a
hes were set equal to 0 whi
h is a typi
al initialization s
enario. It should be noted that all the resultsreported in Fig. 6.2 and the remaining graphs of this se
tion, 
orrespond to 
ases where all available nodes 
anbe utilized, hen
e the la
k of data points for big values of N when p is relatively small. This quali�
ation wasimposed to avoid skewed results.As 
an be observed in Fig. 6.2, the improvement is even higher when the 
omputational 
ost is proportionallyhigher than the 
ommuni
ation, topping around 28% for the p = 16l 
ase. In the majority of the tested 
ases,the gain is above 10%.
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ution time improvement o�ered by the 1-port over the N-port approa
h, for a single-shot s
enario.Comparing the 1-port and N-port 
ases is less straightforward as there is a question of whether the N-port
ommuni
ation setup is a

omplished by sharing the same medium - as is usually the 
ase in non-dedi
atedplatforms su
h as Networks of Workstations (NoW) -, or the load originating node is having a dedi
ated linkfor ea
h worker. In the following paragraphs we assume that the former setup is appli
able.The improvement o�ered (!) by the 1-port over the N-port 
ase is shown in Figure 6.3, where improvementis now 
omputed by Eq. (6.1) by repla
ing tED with the exe
ution time of the N-port arrangement tNP . It
omes as a surprise that the N-port arrangement 
an be su
h a poor performer! The reasons 
an be summarizedas follows: (a) sharing the 
ommuni
ation medium 
auses the 
omputation phase to be overly delayed whiledata are being downloaded and (b) the 
ost of swit
hing is taking a heavy toll on the available bandwidth, asobserved in Figure 6.1 if one 
ompares the measured against the ideal 
urves. In summary, the 1-port setupallows -some of- the 
ompute nodes to start pro
essing the load a lot sooner. Of 
ourse this result has to beseen in the proper 
ontext, i. e. we have blo
k-type tasks and the nodes have no image 
a
he. As it will beshown below, this pi
ture is far from the truth for a sequen
e of query operations.



Optimizing Image Content-Based Query 233In order to test what would be the situation if a sequen
e of queries were performed, we simulated thesu

essive exe
ution of 1000 queries. The 
orresponding improvement for the 1-port s
heme is shown in Fig. 6.4(a). As 
an be observed, the ED strategy is not worst in every 
ase due to the 
ost of 
a
he redistribution thatAlgorithm 1 is 
ausing. A
tually for fast 
omputation (p = l) and a relatively small number of nodes, ED isfaster. For the majority of the other 
ases, the gains seems insigni�
ant (in the order of 1%) as the 
onstantshu�ing of the 
a
hes slows down the whole pro
ess. These e�e
ts 
an be minimized if queries are run in bat
hesas 
an be 
learly seen in Fig.6.4 (b) and (
), for moderate (10 queries) and extreme bat
h sizes (100 queries)respe
tively. For bat
h pro
essing the same analyti
al models 
an be applied, if we multiply the 
onstants b,
d and p by the bat
h size. Bat
hing requests together does not 
ome 
lose to optimizing a sequen
e of themas performed in [20℄, but as it is shown in Fig.6.4, boosts performan
e substantially. Under su
h 
onditionsthe proposed strategy is 
onsistently better than the ED one, although the a
tual gains depend on the ratiobetween 
omputation and 
ommuni
ation 
osts. If the former are dominant (e.g. as in the p = 16l 
ase), anybene�ts made by e�e
tively s
heduling the 
ommuni
ation operations is marginalized.Fig. 6.4 does not 
onvey the 
omplete pi
ture though, as the gains seem insigni�
ant. However, when therunning times are as high as shown in Fig. 6.5 even small gains translate to big savings in time.For the N-port 
ase, bat
hing requests produ
es small absolute savings as shown at the bottom of Fig. 6.5(b), (
). While the gain barely rea
hes 1 hour overall, the real bene�t 
omes from in
reased s
alability, i. e. theability to use bigger sets of pro
essors for the task. For example, for p = l bat
hes of 100 queries 
an run on100 nodes, while individually queries are limited to 13 nodes.The pi
ture is 
ompletely reversed for the N-port 
ase when multiple queries are 
onsidered, as 
an beobserved in Fig. 6.6. Even with the redu
ed bandwidth available to ea
h 
ompute node and the deteriorationof the total available bandwidth, the N-port approa
h is a hands-down winner. This is espe
ially true whenthe number of nodes grows beyond a limit, making this the most s
alable strategy, despite the bandwidth lossidenti�ed in Fig. 6.1. Additionally, bat
hing queries together bene�ts the N-port approa
h even more than the1-port, non-uniform one.7. Con
lusion. In this paper we present an analyti
al solution to the problem of optimizing 
ontent-based image query pro
essing over a parallel platform under 
ommuni
ation 
onstraints. We solve the problemanalyti
ally for both the single and N-port 
ases and we also prove an important theorem for the sequen
e ofoperations that minimize the exe
ution time. Our analyti
al solution is a

ompanied by an algorithm for the
a
he management of the nodes of a system, either 1-port homogeneous or N-port heterogeneous. Our 
losed-form solution for the 1-port heterogeneous 
ase with no image 
a
hes, 
an be employed when a single-shotoperation is preferred.The extensive simulations that were 
ondu
ted were able to reveal the following design prin
iples, as far ashomogeneous platforms are 
on
erned:

• If a single-shot exe
ution is desired, a 1-port non uniform distribution as highlighted in Se
tion 3.2.2 isthe best one.
• For a sequen
e of operations, the N-port strategy is the best performer, espe
ially if the 
omputational
ost is proportionally higher, or the number of nodes is high.Future resear
h dire
tions 
ould in
lude:
• Using the proposed methodology as a part of a Grid middleware s
heduler. It is possible that the highoverhead of typi
al grid s
hedulers 
ompromises the bene�ts shown in this paper, requiring furtheroptimizations.
• Devising a solution for a heterogeneous system with lo
al 
a
he.
• Examine the 
ase of multiple image sour
es instead of a single load originating node. Although 
urrentgeneration systems rely mostly on a single image repository, next generation ones are moving away fromthis paradigm [1℄. REFERENCES[1℄ S. R. Amendolia, F. Estrella, R. M
Clat
hey, D. Rogulin, and T. Solomonides, �Managing pan-european mammographyimages and data using a servi
e oriented ar
hite
ture,� in Pro
. IDEAS Workshop on Medi
al Information Systems: TheDigital Hospital (IDEAS-DH'04), September 2004, pp. 99�108.[2℄ M. M. Rahman, T. Wang, and B. C. Desai, �Medi
al image retrieval and registration: Towards 
omputer assisted diagnosti
approa
h,� in Pro
. IDEAS Workshop on Medi
al Information Systems: The Digital Hospital (IDEAS-DH'04), September2004, pp. 78�89.
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Fig. 6.4. Exe
ution time improvement o�ered by the 1-port s
heme over the ED strategy, for a sequen
e of 1000 queries: (a)when ea
h query is run individually, (b) when queries are run in bat
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Fig. 6.5. Total exe
ution time o�ered by Algorithm 1 for a sequen
e of 1000 queries, under 1-port 
on�guration: (a) whenea
h query is run individually, (b) when queries are run in bat
hes of 10, and (
) when queries are run in bat
hes of 100. Theplain lines at the bottom of (b) and (
) show the 
orresponding absolute time gain over (a).[10℄ University of Pennsylvania Consortium and National Digital Mammography Ar
hive Grid: http://www.ibm.
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Fig. 6.6. Exe
ution time improvement o�ered by the 1-port s
heme over the N-port setup, for a sequen
e of 1000 queries:(a) when ea
h query is run individually, (b) when queries are run in bat
hes of 10, and (
) when queries are run in bat
hes of100. Negative s
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