ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 11, Number 3, pp. 239-249. http://www.scpe.org (© 2010 SCPE

DESIGN AND ANALYSIS OF A SCALABLE ALGORITHM TO MONITOR
CHORD-BASED P2P SYSTEMS AT RUNTIME*

ANDREAS BINZENHOFER] GERALD KUNZMANN${ AND ROBERT HENJEST

Abstract. Peer-to-peer (p2p) systems are a highly decentralized, fault tolerant, and cost effective alternative to the classic
client-server architecture. Yet companies hesitate to use p2p algorithms to build new applications. Due to the decentralized nature
of such a p2p system the carrier does not know anything about the current size, performance, and stability of its application. In
this paper we present an entirely distributed and scalable algorithm to monitor a running p2p network. The snapshot of the system
enables a telecommunication carrier to gather information about the current performance parameters of the running system as well
as to react to discovered errors.

1. Introduction. In recent years peer-to-peer (p2p) algorithms have widely been used throughout the
Internet. So far, the success of the p2p paradigm was mainly driven by file sharing applications. However,
despite their reputation p2p mechanisms offer the solution to many problems faced by telecommunication
carriers today [8]. Compared to the classic client-server architecture they are decentralized, fault tolerant, and
cost, effective alternatives. Those systems are highly scalable, do not suffer from a single point of failure, and
require less administration overhead than existing solutions. In fact, there are more and more successful p2p
based applications like Skype [14], a distributed VoIP solution, Oceanstore [4], a global persistent data store,
and even p2p-based network management [10].

One of the main reasons why telecommunication carriers are still hesitant to build p2p applications is the
lack of control a provider has over the running system. At first, the system appears as a black box to its operator.
The carrier does not know anything about the current size, performance, and stability of its application. The
decentralized nature of such a system makes it hard to find a scalable way to gather information about the
running system at a central unit. Operators, however, do not want to lose control over their systems. They want
to know what their systems look like right now and where problems occur at the moment. The first problems
already occur when testing and debugging a distributed application. Finding implementation errors in a highly
distributed system is a very complex and time consuming process [9]. A provider also needs to know whether
his newly deployed application can truly handle the task it was designed for.

The latest generation of p2p algorithms is based on distributed hash tables (DHTs). The algorithm that
currently attracts the most attention is Chord, which uses a ring topology to realize the underlying DHT [12].
DHTs are theoretically understood in depth and proved to be a scalable and robust basis for distributed
applications [7]. However, the problem of monitoring such a system from a central location is far from being
solved. [11] gives a good overview of different approaches to monitor and debug distributed systems in general.
In the field of p2p, the process of measuring and monitoring a running system was so far limited to unstructured
overlays. [13], e.g., introduces a crawling-based approach to query Gnutella-like networks.

In this paper, however, we exploit the special features of structured p2p overlays and present an entirely
novel and scalable approach to create a snapshot of a running Chord-based network. Using our algorithm a
provider can either monitor the entire system or just survey a specific part of the system. This way, he is able
to react to errors more quickly and can verify if the taken countermeasures are successful. On the basis of the
gathered information it is, e.g., possible to take appropriate action to relief a hotspot or to pinpoint the cause
of a loss of the overlay ring structure. The overhead involved in creating the snapshot is evenly distributed
to the participating peers so that each peer only has to contribute a negligible amount of bandwidth. Most
importantly, the snapshot algorithm is very easy to use for a provider. It only takes one parameter to adjust
the trade off between duration of the snapshot and bandwidth needed at the central unit which collects the
measurements.

The remainder of this paper is structured as follows. Section 2 gives a brief overview of Chord with a focus
on aspects relevant to this paper. The snapshot algorithm as well as some areas of application are described in
Section 3. The functionality of the algorithm is verified analytically in Section 4 and by simulation in Section 5.
Section 6 concludes this paper.

*Corresponding mail: binzenhoefer@informatik.uni-wuerzburg.de
TUniversity of Wiirzburg, Institute of Computer Science, Germany.
fTechnical University of Munich, Institute of Communication Networks, Germany.

239

240 A. Binzenhoefer, G. Kunzmann, and R. Henjes

peer z peer z f,
S~ £,
5
peer y
peer y 4
Fia. 2.1. A simple search. Fia. 2.2. Search using the fingers.

2. Chord Basics. This section gives a brief overview of Chord with a focus on aspects relevant to this
paper. A more detailed description can be found in [12]. The main purpose of p2p networks is to store data
in a decentralized overlay network. Participating peers will then be able to retrieve this data using some sort
of search algorithm. The Chord algorithm solves this problem by arranging the participating peers on a ring
topology. The position id, of a peer z on this overlay ring is determined by an m-bit identifier generated by
a hash function such as SHA-1 or MD5. In a Chord ring each peer knows at least the id of its immediate
successor in a clockwise direction on the ring. This way, a peer looking up another peer or a resource is able to
pass the query around the circle using its successor pointers. Figure 2.1 illustrates a simple search of peer z for
another peer y using only the immediate successor. The search has to be forwarded half-way around the ring,.
Obviously, the average search would require 5 overlay hops, where n is the current size of the Chord ring. To
speed up searches a peer z in a Chord ring also maintains pointers to other peers, which are used as shortcuts
through the ring. Those pointers are called fingers, whereby the i-th finger in a peer’s finger table contains the
identity of the first peer that succeeds z’s own id by at least 2! on the Chord ring. That is, peer z with hash
value id, has its fingers pointing to the first peers that succeed (idz + 2“1) mod 2™ for i = 1 to m, where 2™
is the size of the identifier space.

Figure 2.2 shows fingers f; to f4 for peer z. Using this finger pointers, the same search does only take two
overlay hops. For the first hop peer z uses its finger f;. Peer y can then directly be reached using the successor
of f4 as indicated by the small arrow. This way, a search only requires %log2 (n) overlay hops on average. A
detailed mathematical analysis of the search delay in Chord rings can be found in [3]. The snapshot algorithm
presented in Section 3 makes use of the finger tables of the peers.

3. Design of the Snapshot Algorithm. In this section we introduce a scalable and distributed algorithm
to create a snapshot of a running Chord system. The algorithm is based on a very simple two step approach.
In step one, the overlay is recursively divided into subparts of a predefined size. In step two, the desired
measurement is done for each of these subparts and sent back to a central collecting point (CP). In the
following, we describe both steps in detail.

3.1. Step 1: Divide Overlay into Subparts. The algorithm snapshot(Rs, Re, Smin, CP) divides a
specific region of the overlay into subparts. This function is called at an arbitrary peer p with id,. The peer then
tries to divide the region from R, = id, to R, into contiguous subparts using its fingers. The exact procedure
is illustrated in Figure 3.1. In this example peer p has four fingers f; to fy. It sends a request to the finger
closest to R, within [Rs; R.]. At first, finger f, is disregarded since it does not fall into the region between R
and R, (cf. a). This makes f3 the closest finger to R, in our example. If this finger does not respond to the
request, as illustrated by the bolt (cf. b), it is removed from the peer’s finger list and the peer tries to contact
the next closest finger f (cf. c). If this finger acknowledges the request, peer p recursively tries to divide the
region from R, = id, to R. = idg, — 1 into contiguous subparts. Finger f, partitions the region from R, = idy,
to R, accordingly.

As soon as a peer does not know any more fingers in the region between the current Ry and the current
R., the recursion is stopped. The peer changes into step two of the algorithm and starts a measurement of this
specific region. In this context, the parameter S,,;, can be used to determine the minimum size of the regions,
which will be measured in step two. Taking into account S,,.;,, a peer will already start the measurement if it

Monitoring P2P Systems 241

Fia. 3.1. Visualization of the algorithm.

does not know any more fingers in the region between the current Ry + Sy,;n, and the current R.. In this case
finger f; would be disregarded, as illustrated by the dotted line (cf. d in Figure 3.1), since it points into the
minimum measurement region. Parameter S,,;,, is designed to adjust the trade off between the duration of the
snapshot and the bandwidth needed at the collecting point. The larger the regions in step two, the longer the
measurement will take. The smaller the regions, the more results are sent back to the CP.

Algorithm 2
The snapshot algorithm (first call Ry = id))

SnapShOt(Rsa Rea Smina CP)
send acknowledgment to the sender of the request
idfm = maz({idy|id; € fingerlist A ids < R.})
while id¢,, > Ry + Spin do
send snapshot(id ., Re, Smin, CP) request to peer idspy,
if acknowledgment from idy,, then
call snapshot(idy, id¢m — 1, Smin, CP) at local peer
return //exit the function
else
remove idy,, from fingerlist
idfm = maz({idy|idy € fingerlist A idy < R.})
end if
end while

S = % / /explanation see step two

S

call countingtoken(idy, Re, Smin, CP, 0) at local peer

min

A detailed technical description of the procedure is given in Algorithm 2. Peer p will contact the closest
finger to R, until it does not know any more fingers in between Rs 4+ Sy and R.. If so, it changes into step
two and starts a measurement of this region calling the function countingtoken(id,, Re, Smin, CP, result) at
the local peer.

3.2. Step 2: Measure a Specific Subpart. The basic idea behind the measurement of a specific subpart
from Rs to R, is very simple. The first peer creates a token, adds its local statistics, and passes the token to its
immediate successor. The successor proceeds recursively until the first peer with an id > R, is reached. This
peer sends the token back to the collecting point, whose IP is given in the parameter CP.

Ideally, each of the regions measured in step two would be of size S,,.;,, as specified by the user. The problem,
however, is that the region from R, to R, is slightly larger than S,,;, according to step one of the algorithm.
In fact, if the responsible peer did not know enough fingers, the region might even be significantly larger than
Smin- The solution to this problem is to introduce checkpoints with a distance of Sy, in the corresponding
region. Results are sent to the C'P every time the token passes a checkpoint instead of sending only one answer

242 A. Binzenhoefer, G. Kunzmann, and R. Henjes

final
result result result
check check
point point
! Smln min
counting token |
o o o o (id space)
Rs H = Re
- 5 I Y
mn check : e check : i
point & point &
v v \
result result final
result

Fic. 3.2. Results sent after each checkpoint.

at the end of the region. This is illustrated in the upper part of Figure 3.2. The counting token is started at R;.
The first peer behind each checkpoint sends a result back to the C'P as illustrated by the large solid arrows.
The final result is still sent by the first peer with id > R..

A drawback of this solution is that the checkpoints might not be equally distributed in the region. In
particular, the last two checkpoints might be very close to each other. We therefore recalculate the positions of
the checkpoints according to the following equation:

g _ Re—R,

man W
Smin
The new checkpoints can be seen in the lower part of Figure 3.2. The number of checkpoints remains the same,
while their positions are moved in such a way, that the results are now sent at equal distance.

As can be seen at the end of Algorithm 2, the recalculation of S,,;, is already done in the first step,
just before the counting token is started. A detailed description of the counting token mechanism is given in
Algorithm 3. If a peer p receives a counting token it makes sure that its identifier is still within the measured
region, i.e. Ry <id, < R. . If not, it sends a result back to the C'P and stops the token. Otherwise it adds
its local measurement to the token and tries to pass the token to its immediate successor. If it is the first peer
behind one of the checkpoints, it sends an intermediate result back to the C'P and resets the token.

As mentioned above the parameter S,,;, roughly determines the minimum size of the regions measured in
step two. If S;4 is the total size of the identifier space, there will be N, counting tokens arriving at the CP,

whereas:
Sid Sid
2. |—— | >N,.> .
[szn—‘ o - ’7577”71—‘

A more detailed analysis of the snapshot algorithm is given in Section 4 as well as in [1].

3.3. Collect Statistics. Generally speaking, there are two different kinds of statistics, which can be
collected using the counting tokens. Either a simple mean value or a more detailed histogram. In the first case
the counting token memorizes two variables, V, for the accumulated value and V,, for the number of values. Each
peer receiving the counting token adds its measured value to V, and increases V,, by one. The sample mean can
then be calculated at the CP as % 2 In case of a histogram, the counting token maintains a specific number
of bins and their corresponding limits. Each peer simply increases the bin matching its measured value by one.
If the measured value is outside the limits of the bins it simply increases the first or the last bin respectively.

There are numerous things that can be measured using the above mentioned methods. Table 3.1 summarizes
some exemplary statistics and the kind of information which can be gained from them. The most obvious
application is to count the number of hops for each counting token. On the one hand, this is a direct measure
for the size of the overlay network. On the other hand, it also shows the distribution of the identifiers in the

Monitoring P2P Systems 243

Algorithm 3
The countingtoken algorithm (first call Ry = id))

countingtoken(Rs, Re, Smin, CP, result)
send acknowledgment to the sender of the request
if Ry <id, < R. then
if id, > Rs + Spin then
send result to CP

result =0
Rs = Rs + szn
end if

add local measurement to result
ids — id of direct successor
while 1 do
send countingtoken(Rs, Re, Smin, CP, result) request to direct successor ids
if acknowledgment then
break
else
remove id, from successor list
ids — id of new direct successor
end if
end while
else
send result to CP
end if

TaBLE 3.1
Possible statistics gathered during snapshot

| Statistic | Information gained |
Number of hops per token Size of the network, Distribution of the identifiers
Mean search delay Performance of the algorithm
Sender —— predecessor Overlay stability
Number of timeouts per token Churn rate
Number of resources per peer Fairness of the algorithm
Number of searches answered User behavior
Bandwidth used per time unit Maintenance overhead
Missing resources Data integrity

identifier space. To gain information about the performance of the Chord algorithm, the mean search delay or
a histogram for the search time distribution can be calculated and compared to expected values. Furthermore,
Chord’s stability can only be guaranteed as long as the successor and predecessor pointers of the individual peers
match each other correspondingly. This invariant can be checked by counting the percentage of hops, where the
sender of the counting token did not match the predecessor of the receiving peer. Additionally, the number of
timeouts per token can be used to measure the current churn rate in the overlay network. The more churn there
is, the more timeouts are going to occur due to outdated successor pointers. Similarly, the number of resources
stored at each peer is a sign of the fairness of the Chord algorithm. The number of searches answered at each
peer can likewise be used to get an idea of the search behavior of the end users. Finally, a peer can keep track
of the number of missing resources to verify the integrity of the stored data. This can, e.g., be done counting
the number of search requests which could not be answered by the peer.

All of the above statistics can be collected periodically to survey the time dependent status of the overlay.
Note, that it is also possible to monitor a specific part of the overlay network by setting R, and R, accordingly.
This can, e.g., be helpful if there are problems in a certain region of the overlay network and the operator needs
to verify that his countermeasures have been successful.

244 A. Binzenhoefer, G. Kunzmann, and R. Henjes

4. Analysis and Optimizations. To analyze our algorithm we derive the duration of a snapshot (cf.
Subsection 4.1) and the temporal distribution of the token arrival times at the C'P (cf. Subsection 4.2).

4.1. Duration of a Snapshot. To calculate an estimate of the duration of a snapshot, we assume a
scenario without any peers joining or leaving the network. It is quite straightforward to estimate the duration
of step one, the signaling step. The last counting token which will be started is the one covering the region
directly following the initiating peer. This is due to the fact, that the initiating peer will start its counting
token no sooner than it divided the ring into separate regions. Before it initiates the counting token, it contacts
its fingers until the first finger is closer to itself than S,,;,. The initiating peer has at most log,(n) fingers and
each of the fingers sends an acknowledgment, before the peer can go on with the algorithm. If Ty is the random
variable describing one overlay hop, then the duration of step one of the algorithm is at most

Dgiepr = 2 -logy(n) - E[To). (4.1)

The worst case for step two would be that the initiating peer does not know any fingers and directly sends
the counting token. This would take n - E[Tp], but is very unlikely to happen. In general, if there are n peers
in the overlay, there are roughly P, = 2:Smin peers per region. Furthermore, in the worst case Sy,;, is slightly
larger than a power of two and the regioﬁ covered by a counting token may become almost twice as large as
Smin- Therefore a good estimate for the duration of the counting step of the algorithm is:

Dstep2 =2 Pr ' E[TO] (42)
This results in the following total duration of a snapshot:

n- Smin

D=1
(ng(”) + S

) -2+ E[To]. (4.3)

4.2. Token Arrival Time Distribution. To get a rough estimate for the distribution of the arrival times
of the counting tokens at the C'P, we consider the special case where the size of the overlay n = 29 is a power of
two and S,,ip is such that N, = 2" with h < g. Furthermore, we assume that the individual peers are located
at equal distances on the ring as shown in Figure 4.1.

It can be shown, that in this case h = logy(N,.) is the number of overlay hops it takes until the first counting
token is started during a snapshot. Similarly, it takes 2-h hops until the last counting token is started according
to our assumptions. The probability p; that a counting token is started after exactly ¢ hops fori = h, h+1,...,2-h
can be calculated as:

p; = (th))
o ()

The above considerations are nontrivial, but can nicely be explained using the simple example shown in Figure
4.1, where g = 4, h = 2, and therefore n = 2% and N, = 22. The solid arrows in the figure show the messages
of the signaling step, the dotted arrows the corresponding acknowledgments. The numbers next to the arrows
represent the number of overlay hops, which have passed since the beginning of the snapshot.

In the example, peer A starts a snapshot of the entire ring. It sends a request to B to cover the region
between B and A. Peer B sends an acknowledgment back to A and a simultaneous request to C to cover the
region from C to A. C has no fingers outside its minimum measurement region and starts the first counting
token after h = 2 overlay hops. Simultaneously, it sends an acknowledgment back to B. Peer B then starts its
counting token after 3 overlay hops. In the meantime A signals D to cover the region from D to B. Peer D
immediately starts its counting token after a total of 3 overlay hops. Peer A waits for the final acknowledgment,
and starts its counting token after 4 = 2-h overlay hops. Summarizing the above, there are four counting tokens
started after 2, 3, 3, and 4 overlay hops respectively.

According to our assumptions, each counting token needs exactly P. = 4 hops to travel the corresponding
region and one final hop to arrive at the CP. A rough estimate for the distribution of the arrival times of the
counting tokens at the C'P is therefore given by the phase diagram shown in Figure 4.3. It indicates that the
signaling step takes i overlay hops with a probability p; for ¢ = h,h + 1,...,2 - h, which is followed by P, hops
of the counting token and the final hop to report the result back to the C'P.

(4.4)

Monitoring P2P Systems 245

x 107

Simulation—> ¢ "\ +——Analysis

Checkpoints

N
:

PDF
w

2000 3000 4(560 5000 6000 7000 8000 9000
Arrival time in ms

Fia. 4.1. Starting times of the counting tokens for N, = Fia. 4.2. Probability density function of the token ar-
22 and n = 24. rival time.

Stepl: Signaling Step2: Counting

(P,+1) times

2-h times

Fic. 4.3. Phase diagram of the token arrival time distribution.

To validate our analytical results, we simulated a Chord ring of size n = 2'° with S,.;, = 2° according
to the above assumptions. Figure 4.2 shows the probability density function of the token arrival times at the
CP. Obviously, the curves match very well and the binomial distribution of the duration of step one can be
recognized. So far, in our example each peer has a finger at an exact distance of S,.;,. In reality, however,
the finger would sit at a slightly different position, which again would result in an additional checkpoint at
the middle of the region. The curve labeled “Checkpoints” corresponds to a slightly modified phase diagram,
which adds an intermediate result in the middle of the measurement region. The first rise of the probability
density function (pdf) therefore represents the intermediate results sent back to the C'P at the checkpoint. The
second rise still represents the regular results at the end of the region. In the following section we will present
simulations of more realistic scenarios including churn and timeouts.

5. Results. The results in this section were obtained using our ANSI-C simulator, which incorporates a
detailed yet slightly modified Chord implementation. A good description of the general simulation model can
be found in [5, 6]. In this work an overlay hop is modeled using an exponentially distributed random variable
with a mean of 80ms. The results considering churn are generated using peers, which stay online and offline for
an exponentially distributed period of time with a mean as indicated in the corresponding description of the
figures.

The snapshot algorithm takes one single input argument S,,,;, which directly translates into NV, = [—Sw——‘,

SWLi‘n,

the number of areas the overlay will be divided into. This parameter influences the duration of the snapshot as
well as the number of results arriving at the central collecting point. Figure 5.1 shows the distribution of the

246 A. Binzenhoefer, G. Kunzmann, and R. Henjes

200

[or]
o

~
o
T

«—512 Areas

-

[¢)]

o
T

[2]

(=]
T

«<—1000 Areas

(o))
o
T

100

Number of results per 500ms
Number of results per 250ms
N
o

301 500 Areas

50 100 Areas 20r
/ 10t

0 " Mm . o lThihan., 0 Lo

0 1 2 3 4 5 6 0 2000 4000 _ 6000 8000 10000 12000
Time in ms 4 Time in ms
x 10
Fic. 5.1. Arrival times of the results. Fia. 5.2. Influence of N, for 20000 peers.

arrival times of the results in an overlay of 40000 peers using N, = 1000 and N, = 100 areas in times of no
churn. Obviously, the more areas the overlay is divided into, the faster the snapshot is completed. While the
snapshot using 1000 areas was finished after about ten seconds, the snapshot with 100 areas took about one
minute. In exchange the latter snapshot produces significantly smaller bandwidth spikes at the CP. The two
elevations of the second histogram correspond to the intermediate results (first elevation) and the final results
at the end of the measured subpart (second elevation). Note that the final results arrive about twice as late
as the intermediate results. The first step of the algorithm uses the fingers to divide the ring into subparts.
Since the distance between a peer and its fingers is always slightly larger than a power of two it is usually not
possible to divide the ring exactly into the desired number of areas. In fact it is very likely, that a peer stops
the recursion and starts its measurement once it contacted its zth finger, where 27! < S,,.;,, = f\;'d < 2%, That
is, the recursion stops at finger x with ids,, whereas the distance between the peer and this speciﬁcr finger might
almost be twice as large as the desired S,,;,. It is therefore advisable to choose N, as a power of two itself in
order to ensure that idy, is only slightly larger than id, + Spin. Figure 5.2 shows the different arrival times of
the results for N, = 512 and N,. = 500 in an overlay of 20000 peers without churn. The skewed shape of the
histogram in the foreground results from the fact that 500 is slightly smaller than a power of two, which in turn
makes Sy, slightly larger than a power of two. In this case it is likely that the peer has a finger just before
the end of the minimum measurement region idy, 4+ Sy, Thus, finger z sits at a distance of about twice Sp,ip
from the peer. The resulting counting token will therefore travel a distance of about twice S, as well.

A more detailed analysis of the influence of N, can be found in Figure 5.3, which shows the number of
results received at the C'P in dependence of N,.. As shown in [1], N., the number of counting tokens sent to
the C'P, is limited by 2+ N, > N, > N,. The straight lines in the figure show the corresponding limits. The
solid and dotted curves represent the results obtained for 20000 and 10000 peers, respectively. The number of
results sent to the C'P is within the calculated limits and independent of the overlay size. The curves roughly
resemble the shape of a staircase, whereas the steps are located at powers of two. There are two main reasons
for this behavior. First of all, the average counting token sends two results back to the C'P, one intermediate
result and the final result at the end of the measurement region. Hence, the smaller the region covered by the
average counting token, the more results arrive at the C'P. As explained above, the closer N, gets to a power
of two, the smaller the region covered by the average counting token. This accounts for the first part of the rise
of the number of results received at the C'P.

The distribution of the arrival times of the results is also influenced by the current size of the network. The
larger the network, the more peers are within one region. However, the more peers are within one region, the
more hops each counting token has to make, before it can send its results back to the CP. Figure 5.4 shows the
token arrival time distribution for three different overlay sizes of 10000, 20000, and 40000 peers, respectively.
We did not generate any churn in this scenario and set N, = 512 areas. As expected, the larger the overlay
network, the longer the snapshot is going to take. However, the curves are not only shifted to the right, but
also differ in shape. This can again be explained by the increasing number of hops per counting token.

As mentioned above, the average counting token sends two results back to the CP, whereas the checkpoints
are equally spaced. Thus, the final result takes twice as many hops as the intermediate result. In a network of

Monitoring P2P Systems 247

1200 " " " " 120
— 20000 peers
1000L 2 100} 10000 peers
---- 10000 peers S
o S
= 800 5 80f
g % 20000 peers
5 00l > 60]
o 600 § 60 40000 peers
£ 5
3 400- 3 407
E
200r Zz 20
‘FOO 200 300 400 500 600 2000 4000 6000 8000 10000
Number of areas Time in ms
Fic. 5.3. Number of results received at the CP. Fic. 5.4. Arrival times of the results at the CP.
60 " " " " 0.03
No Churn) .
£ 50r . 0.025¢ Pointer failures
])
(s}
o 401 0.02 10000 peers
Q 2
2 = - 20000 peers
g 30r g 0.015¢ — 40000 peers
5 o
= 20r Churn 60/60 0.01+
3 /
5
EpT 00050 T Toovheg oo
ol hoHsgt lad 0 e, o oLTimeouts ‘ ‘ ‘
0 0.5 15 2 2.5 0 2 40 60 _ 100
Time in ms < 10* Mean online/offline time [min]
Fia. 5.5. Influence of churn on the traffic pattern at Fia. 5.6. Relative frequency of timeouts and pointer fail-
the CP. ures.

10000 peers there are approximately 20 peers in each of the 512 regions. The intermediate results are therefore
sent after about 10 hops, the final results after about 20 hops, respectively. The two corresponding elevations
in the histogram overlap in such a way, that they build a single elevation. In a network of 40000 peers, however,
there are approximately 78 peers in each of the 512 regions. The intermediate results are therefore sent after
about 39 hops, the final results after about 78 hops, respectively. The difference between these two numbers
is large enough to account for the two elevations of the histogram in the foreground of Figure 5.4. Note, that
all curves are shifted to the right as compared to the mere hop count since it takes some time for the signaling
step until the counting tokens can be started. In practice the current size of the overlay can be estimated to be
able to choose an appropriate value for N, as suggested in [2].

The arrival time of the results at the C'P is also affected by the online/offline behavior of the individual
peers. To study the influence of churn we consider 80000 peers with an exponentially distributed online and
offline time, each with a mean of 60 minutes. This way, there are 40000 peers online on average, which makes
it possible to compare the results to those obtained using 40000 peers without churn. Figure 5.5 shows the
corresponding histograms.

As a result of churn in the system, the two elevations of the original histogram become noticeably blurred
and the snapshot is slightly delayed. This is due to the inconsistencies in the successor and finger lists of the
peer as well as the timeouts which occur during the forwarding of the counting tokens. In return the spike in
the diagram and thus the required bandwidth at the C'P becomes smaller.

It is easy to show, that the probability to lose a token is almost negligible [1]. Therefore, a more meaningful
method to measure the influence of churn is to regard the number of timeouts which occur during a snapshot.
Furthermore, the influence of churn on the stability of the overlay network can be studied looking at the

248 A. Binzenhoefer, G. Kunzmann, and R. Henjes

0.05
004 /%
[\ Global view
0.03- | .
w H o Snapshot
=) ; b
o |
° Q
0.01f
0 L L e 0.0, °
0 20 40 60 80 100

Number of documents on peer

Fia. 5.7. Results of a snapshot compared to the global view.

frequency at which the predecessor pointer of a peer’s successor does not match the peer itself. Figure 5.6
plots the relative frequency of timeouts and pointer failures against the mean online/offline time of a peer. The
smaller the online/offline time of a peer, the more churn is in the system.

The results represent the mean of several simulation runs, whereas the error bars show the 95 percent confi-
dence intervals. The relatively small percentage of both timeouts and failures is to some extent implementation
specific. More interesting, however, is the exponential rise of the curves under higher churn rates. The shape
of both curves is independent of the size of the overlay and only affected by the current churn rate. The curve
can therefore be used to map the frequency of timeouts or failures measured in a running system to a specific
churn rate.

Until now, we only regarded the traffic pattern at the central collecting point. From an operator’s point
of view, however, it is more important to know, whether the snapshot itself is meaningful. To validate the
accuracy of the snapshot algorithm, we again simulated an overlay network with 80000 peers, each with a mean
online/offline time of 60 minutes. Due to the properties of the hash function and the churn behavior in the
system the number of documents on a single peer can be regarded as a random variable. The measurement we
are interested in is the corresponding pdf in order to see whether the distribution of the documents among the
peers is fair or not. The pdf was measured using our snapshot algorithm as explained in Section 3.3. The result
of the snapshot is compared to the actual pdf obtained using the global view of our discrete event simulator (c.f.
Figure 5.7). The two curves are almost indistinguishable from each other. The same is true for all the other
statistics shown in Table 3.1, like the current size of the system or the average bandwidth used per time unit.
That is, the snapshot provides the operator with a very accurate picture of the current state of its system. This
nicely demonstrates that the results obtained by the snapshot can be used to better understand the performance
of the running p2p system. The multiple possibilities to interpret the collected data are well beyond the scope
of this paper.

6. Conclusion. One of the main reasons that telecommunication carriers are still hesitant to build p2p
applications is the lack of control a provider has over the running system. In this paper we introduced an entirely
distributed and scalable algorithm to monitor a Chord based p2p network at runtime. The load generated during
the snapshot is evenly distributed among the peers of the overlay and the algorithm itself is easy to configure.
It only takes one input parameter, which influences the trade-off between the duration of the snapshot and the
bandwidth required at the central server which collects the results. In general it takes less than one minute to
create a snapshot of a Chord ring consisting of 40000 peers. We performed a mathematical analysis of the basic
mechanisms and provided a simulative study considering realistic user behavior.

The algorithm is resistant to instabilities in the overlay network (churn) and provides the operator with a
very accurate picture of the current state of its system. It offers the possibility to monitor the entire overlay
network or to concentrate on a specific part of the system. The latter is especially useful if a problem oc-
curred in a specific part of the system and the operator wants to assure that his countermeasures have been
successful.

Monitoring P2P Systems 249

REFERENCES

A. BiNzENHOFER, G. KUuNzMANN, AND R. HENJES, A Scalable Algorithm to Monitor Chord-based P2P Systems at Runtime,
Tech. Report 373, University of Wiirzburg, November 2005.

A. BINZENHOFER, D. STAEHLE, AND R. HENJES, On the Fly Estimation of the Peer Population in a Chord-based P2P
System, in ITC19, Beijing, China, September 2005.

[3] A. BinzeNHOFER AND P. TrRaN-Gia, Delay Analysis of a Chord-based Peer-to-Peer File-Sharing System, in ATNAC 2004,
Sydney, Australia, December 2004.

U. B. C. S. Duwvision, The oceanstore project. URL: http://oceanstore.cs.berkeley.edu/.

G. KunzmaNN, A. BINZENHOFER, AND R. HENJIES, Analysis of the Stability of the Chord protocol under high Churn Rates,
in 6th Malaysia International Conference on Communications (MICC) icw International Conference on Networks (ICON),
Kuala Lumpur, Malaysia, November 2005.

[6] G. KunzmaNnN, R. NAGEL, AND J. EBERSPACHER, Increasing the reliability of structured p2p networks, in 5th International

Workshop on Design of Reliable Communication Networks, Island of Ischia, Italy, October 2005.

[7] J. L1, J. StriBLING, T. M. GIL, R. MoRrRis, AND M. F. KaasHOEK, Comparing the performance of distributed hash tables
under churn, in Proceedings of the 3rd International Workshop on Peer-to-Peer Systems (IPTPS04), San Diego, CA,
February 2004.

D. S. Mivosicic, V. KaLogeEraki, R. Lukose, K. Nagaraja, J. Pruyng, B. RicuarD, S. RoLLins, anp Z. Xu., P2P
Computing, Tech. Report HP1.-2002-57, Hewlett Packard Lab, 2002.

D. L. OPPENHEIMER, V. VaTkovskiy, H. WEAaTHERSPOON, J. LEE, D. A. PATTERSON, AND J. KUBIATOWICZ, Monitoring,
analyzing, and controlling internet-scale systems with acme, CoRR, ¢s.DC/0408035 (2004).

[10] V. N. PADMANABHAN, S. RAMABHADRAN, AND J. PADHYE, Netprofiler: Profiling wide-area networks using peer cooperation,
in Fourth International Workshop on Peer-to-Peer Systems (IPTPS), Ithaca, NY, USA, February 2005.

A. SingH, P. ManiaTis, T. RoscoE, AND P. DRuUScHEL, Using queries for distributed monitoring and forensics, in 1st
Eurosys, Leuven, Belgium, March 2006.
[12] I. Stoica, R. Morris, D. KArRGER, M. F. KaasHOEK, AND H. BALAKRISHNAN, Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications, in SIGCOMM 2001, San Diego, USA, August 2001.
[13] D. SturzBacu anD R. REjale, Capturing accurate snapshots of the gnutella network, in INFOCOM 2005, Miami, USA,
March 2005, pp. 2825-2830.
[14] S. TecuNoLOGIES, Skype. URL: http://www.skype.com.

[11]

Edited by: Pasqua D’Ambra, Daniela di Serafino, Mario Rosario Guarracino, Francesca Perla
Received: June 2007
Accepted: November 2008

