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t. Peer-to-peer (p2p) systems are a highly de
entralized, fault tolerant, and 
ost e�e
tive alternative to the 
lassi

lient-server ar
hite
ture. Yet 
ompanies hesitate to use p2p algorithms to build new appli
ations. Due to the de
entralized natureof su
h a p2p system the 
arrier does not know anything about the 
urrent size, performan
e, and stability of its appli
ation. Inthis paper we present an entirely distributed and s
alable algorithm to monitor a running p2p network. The snapshot of the systemenables a tele
ommuni
ation 
arrier to gather information about the 
urrent performan
e parameters of the running system as wellas to rea
t to dis
overed errors.1. Introdu
tion. In re
ent years peer-to-peer (p2p) algorithms have widely been used throughout theInternet. So far, the su

ess of the p2p paradigm was mainly driven by �le sharing appli
ations. However,despite their reputation p2p me
hanisms o�er the solution to many problems fa
ed by tele
ommuni
ation
arriers today [8℄. Compared to the 
lassi
 
lient-server ar
hite
ture they are de
entralized, fault tolerant, and
ost e�e
tive alternatives. Those systems are highly s
alable, do not su�er from a single point of failure, andrequire less administration overhead than existing solutions. In fa
t, there are more and more su

essful p2pbased appli
ations like Skype [14℄, a distributed VoIP solution, O
eanstore [4℄, a global persistent data store,and even p2p-based network management [10℄.One of the main reasons why tele
ommuni
ation 
arriers are still hesitant to build p2p appli
ations is thela
k of 
ontrol a provider has over the running system. At �rst, the system appears as a bla
k box to its operator.The 
arrier does not know anything about the 
urrent size, performan
e, and stability of its appli
ation. Thede
entralized nature of su
h a system makes it hard to �nd a s
alable way to gather information about therunning system at a 
entral unit. Operators, however, do not want to lose 
ontrol over their systems. They wantto know what their systems look like right now and where problems o

ur at the moment. The �rst problemsalready o

ur when testing and debugging a distributed appli
ation. Finding implementation errors in a highlydistributed system is a very 
omplex and time 
onsuming pro
ess [9℄. A provider also needs to know whetherhis newly deployed appli
ation 
an truly handle the task it was designed for.The latest generation of p2p algorithms is based on distributed hash tables (DHTs). The algorithm that
urrently attra
ts the most attention is Chord, whi
h uses a ring topology to realize the underlying DHT [12℄.DHTs are theoreti
ally understood in depth and proved to be a s
alable and robust basis for distributedappli
ations [7℄. However, the problem of monitoring su
h a system from a 
entral lo
ation is far from beingsolved. [11℄ gives a good overview of di�erent approa
hes to monitor and debug distributed systems in general.In the �eld of p2p, the pro
ess of measuring and monitoring a running system was so far limited to unstru
turedoverlays. [13℄, e.g., introdu
es a 
rawling-based approa
h to query Gnutella-like networks.In this paper, however, we exploit the spe
ial features of stru
tured p2p overlays and present an entirelynovel and s
alable approa
h to 
reate a snapshot of a running Chord-based network. Using our algorithm aprovider 
an either monitor the entire system or just survey a spe
i�
 part of the system. This way, he is ableto rea
t to errors more qui
kly and 
an verify if the taken 
ountermeasures are su

essful. On the basis of thegathered information it is, e.g., possible to take appropriate a
tion to relief a hotspot or to pinpoint the 
auseof a loss of the overlay ring stru
ture. The overhead involved in 
reating the snapshot is evenly distributedto the parti
ipating peers so that ea
h peer only has to 
ontribute a negligible amount of bandwidth. Mostimportantly, the snapshot algorithm is very easy to use for a provider. It only takes one parameter to adjustthe trade o� between duration of the snapshot and bandwidth needed at the 
entral unit whi
h 
olle
ts themeasurements.The remainder of this paper is stru
tured as follows. Se
tion 2 gives a brief overview of Chord with a fo
uson aspe
ts relevant to this paper. The snapshot algorithm as well as some areas of appli
ation are des
ribed inSe
tion 3. The fun
tionality of the algorithm is veri�ed analyti
ally in Se
tion 4 and by simulation in Se
tion 5.Se
tion 6 
on
ludes this paper.
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h using the �ngers.2. Chord Basi
s. This se
tion gives a brief overview of Chord with a fo
us on aspe
ts relevant to thispaper. A more detailed des
ription 
an be found in [12℄. The main purpose of p2p networks is to store datain a de
entralized overlay network. Parti
ipating peers will then be able to retrieve this data using some sortof sear
h algorithm. The Chord algorithm solves this problem by arranging the parti
ipating peers on a ringtopology. The position idz of a peer z on this overlay ring is determined by an m-bit identi�er generated bya hash fun
tion su
h as SHA-1 or MD5. In a Chord ring ea
h peer knows at least the id of its immediatesu

essor in a 
lo
kwise dire
tion on the ring. This way, a peer looking up another peer or a resour
e is able topass the query around the 
ir
le using its su

essor pointers. Figure 2.1 illustrates a simple sear
h of peer z foranother peer y using only the immediate su

essor. The sear
h has to be forwarded half-way around the ring.Obviously, the average sear
h would require n

2
overlay hops, where n is the 
urrent size of the Chord ring. Tospeed up sear
hes a peer z in a Chord ring also maintains pointers to other peers, whi
h are used as short
utsthrough the ring. Those pointers are 
alled �ngers, whereby the i-th �nger in a peer's �nger table 
ontains theidentity of the �rst peer that su

eeds z's own id by at least 2i−1 on the Chord ring. That is, peer z with hashvalue idz has its �ngers pointing to the �rst peers that su

eed (

idz + 2i−1
) mod 2m for i = 1 to m, where 2mis the size of the identi�er spa
e.Figure 2.2 shows �ngers f1 to f4 for peer z. Using this �nger pointers, the same sear
h does only take twooverlay hops. For the �rst hop peer z uses its �nger f4. Peer y 
an then dire
tly be rea
hed using the su

essorof f4 as indi
ated by the small arrow. This way, a sear
h only requires 1

2
log2(n) overlay hops on average. Adetailed mathemati
al analysis of the sear
h delay in Chord rings 
an be found in [3℄. The snapshot algorithmpresented in Se
tion 3 makes use of the �nger tables of the peers.3. Design of the Snapshot Algorithm. In this se
tion we introdu
e a s
alable and distributed algorithmto 
reate a snapshot of a running Chord system. The algorithm is based on a very simple two step approa
h.In step one, the overlay is re
ursively divided into subparts of a prede�ned size. In step two, the desiredmeasurement is done for ea
h of these subparts and sent ba
k to a 
entral 
olle
ting point (CP ). In thefollowing, we des
ribe both steps in detail.3.1. Step 1: Divide Overlay into Subparts. The algorithm snapshot(Rs, Re, Smin, CP ) divides aspe
i�
 region of the overlay into subparts. This fun
tion is 
alled at an arbitrary peer p with idp. The peer thentries to divide the region from Rs = idp to Re into 
ontiguous subparts using its �ngers. The exa
t pro
edureis illustrated in Figure 3.1. In this example peer p has four �ngers f1 to f4. It sends a request to the �nger
losest to Re within [Rs;Re]. At �rst, �nger f4 is disregarded sin
e it does not fall into the region between Rsand Re (
f. a). This makes f3 the 
losest �nger to Re in our example. If this �nger does not respond to therequest, as illustrated by the bolt (
f. b), it is removed from the peer's �nger list and the peer tries to 
onta
tthe next 
losest �nger f2 (
f. 
). If this �nger a
knowledges the request, peer p re
ursively tries to divide theregion from Rs = idp to R̂e = idf2 − 1 into 
ontiguous subparts. Finger f2 partitions the region from R̂s = idf2to Re a

ordingly.As soon as a peer does not know any more �ngers in the region between the 
urrent Rs and the 
urrent

Re, the re
ursion is stopped. The peer 
hanges into step two of the algorithm and starts a measurement of thisspe
i�
 region. In this 
ontext, the parameter Smin 
an be used to determine the minimum size of the regions,whi
h will be measured in step two. Taking into a

ount Smin, a peer will already start the measurement if it
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Fig. 3.1. Visualization of the algorithm.does not know any more �ngers in the region between the 
urrent Rs + Smin and the 
urrent Re. In this 
ase�nger f1 would be disregarded, as illustrated by the dotted line (
f. d in Figure 3.1), sin
e it points into theminimum measurement region. Parameter Smin is designed to adjust the trade o� between the duration of thesnapshot and the bandwidth needed at the 
olle
ting point. The larger the regions in step two, the longer themeasurement will take. The smaller the regions, the more results are sent ba
k to the CP.Algorithm 2The snapshot algorithm (�rst 
all Rs = idp)snapshot(Rs, Re, Smin, CP )send a
knowledgment to the sender of the request
idfm = max({idf |idf ∈ �ngerlist ∧ idf < Re})while idfm > Rs + Smin dosend snapshot(idfm, Re, Smin, CP ) request to peer idfmif a
knowledgment from idfm then
all snapshot(idp, idfm − 1, Smin, CP ) at lo
al peerreturn //exit the fun
tionelseremove idfm from �ngerlist

idfm = max({idf |idf ∈ �ngerlist ∧ idf < Re})end ifend while
Ŝ = Re−Rs

⌈

Re−Rs

Smin

⌉ //explanation see step two
all 
ountingtoken(idp, Re, Smin, CP , ∅) at lo
al peerA detailed te
hni
al des
ription of the pro
edure is given in Algorithm 2. Peer p will 
onta
t the 
losest�nger to Re until it does not know any more �ngers in between Rs + Smin and Re. If so, it 
hanges into steptwo and starts a measurement of this region 
alling the fun
tion 
ountingtoken(idp, Re, Smin, CP , result) atthe lo
al peer.3.2. Step 2: Measure a Spe
i�
 Subpart. The basi
 idea behind the measurement of a spe
i�
 subpartfrom Rs to Re is very simple. The �rst peer 
reates a token, adds its lo
al statisti
s, and passes the token to itsimmediate su

essor. The su

essor pro
eeds re
ursively until the �rst peer with an id > Re is rea
hed. Thispeer sends the token ba
k to the 
olle
ting point, whose IP is given in the parameter CP.Ideally, ea
h of the regions measured in step two would be of size Smin as spe
i�ed by the user. The problem,however, is that the region from Rs to Re is slightly larger than Smin a

ording to step one of the algorithm.In fa
t, if the responsible peer did not know enough �ngers, the region might even be signi�
antly larger than
Smin. The solution to this problem is to introdu
e 
he
kpoints with a distan
e of Smin in the 
orrespondingregion. Results are sent to the CP every time the token passes a 
he
kpoint instead of sending only one answer
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Fig. 3.2. Results sent after ea
h 
he
kpoint.at the end of the region. This is illustrated in the upper part of Figure 3.2. The 
ounting token is started at Rs.The �rst peer behind ea
h 
he
kpoint sends a result ba
k to the CP as illustrated by the large solid arrows.The �nal result is still sent by the �rst peer with id > Re.A drawba
k of this solution is that the 
he
kpoints might not be equally distributed in the region. Inparti
ular, the last two 
he
kpoints might be very 
lose to ea
h other. We therefore re
al
ulate the positions ofthe 
he
kpoints a

ording to the following equation:
Ŝmin =

Re −Rs⌈
Re−Rs

Smin

⌉ .The new 
he
kpoints 
an be seen in the lower part of Figure 3.2. The number of 
he
kpoints remains the same,while their positions are moved in su
h a way, that the results are now sent at equal distan
e.As 
an be seen at the end of Algorithm 2, the re
al
ulation of Smin is already done in the �rst step,just before the 
ounting token is started. A detailed des
ription of the 
ounting token me
hanism is given inAlgorithm 3. If a peer p re
eives a 
ounting token it makes sure that its identi�er is still within the measuredregion, i.e. Rs ≤ idp ≤ Re . If not, it sends a result ba
k to the CP and stops the token. Otherwise it addsits lo
al measurement to the token and tries to pass the token to its immediate su

essor. If it is the �rst peerbehind one of the 
he
kpoints, it sends an intermediate result ba
k to the CP and resets the token.As mentioned above the parameter Smin roughly determines the minimum size of the regions measured instep two. If Sid is the total size of the identi�er spa
e, there will be Nc 
ounting tokens arriving at the CP ,whereas:
2 ·

⌈
Sid

Smin

⌉
≥ Nc ≥

⌈
Sid

Smin

⌉
.A more detailed analysis of the snapshot algorithm is given in Se
tion 4 as well as in [1℄.3.3. Colle
t Statisti
s. Generally speaking, there are two di�erent kinds of statisti
s, whi
h 
an be
olle
ted using the 
ounting tokens. Either a simple mean value or a more detailed histogram. In the �rst 
asethe 
ounting token memorizes two variables, Va for the a

umulated value and Vn for the number of values. Ea
hpeer re
eiving the 
ounting token adds its measured value to Va and in
reases Vn by one. The sample mean 
anthen be 
al
ulated at the CP as ∑

Va
∑

Vn
. In 
ase of a histogram, the 
ounting token maintains a spe
i�
 numberof bins and their 
orresponding limits. Ea
h peer simply in
reases the bin mat
hing its measured value by one.If the measured value is outside the limits of the bins it simply in
reases the �rst or the last bin respe
tively.There are numerous things that 
an be measured using the above mentioned methods. Table 3.1 summarizessome exemplary statisti
s and the kind of information whi
h 
an be gained from them. The most obviousappli
ation is to 
ount the number of hops for ea
h 
ounting token. On the one hand, this is a dire
t measurefor the size of the overlay network. On the other hand, it also shows the distribution of the identi�ers in the
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ountingtoken algorithm (�rst 
all Rs = idp)
ountingtoken(Rs, Re, Smin, CP , result)send a
knowledgment to the sender of the requestif Rs ≤ idp ≤ Re thenif idp > Rs + Smin thensend result to CP

result = 0
Rs = Rs + Sminend ifadd lo
al measurement to result

ids = id of dire
t su

essorwhile 1 dosend 
ountingtoken(Rs, Re, Smin, CP , result) request to dire
t su

essor idsif a
knowledgment thenbreakelseremove ids from su

essor list
ids = id of new dire
t su

essorend ifend whileelsesend result to CPend if Table 3.1Possible statisti
s gathered during snapshotStatisti
 Information gainedNumber of hops per token Size of the network, Distribution of the identi�ersMean sear
h delay Performan
e of the algorithmSender ?

== prede
essor Overlay stabilityNumber of timeouts per token Churn rateNumber of resour
es per peer Fairness of the algorithmNumber of sear
hes answered User behaviorBandwidth used per time unit Maintenan
e overheadMissing resour
es Data integrityidenti�er spa
e. To gain information about the performan
e of the Chord algorithm, the mean sear
h delay ora histogram for the sear
h time distribution 
an be 
al
ulated and 
ompared to expe
ted values. Furthermore,Chord's stability 
an only be guaranteed as long as the su

essor and prede
essor pointers of the individual peersmat
h ea
h other 
orrespondingly. This invariant 
an be 
he
ked by 
ounting the per
entage of hops, where thesender of the 
ounting token did not mat
h the prede
essor of the re
eiving peer. Additionally, the number oftimeouts per token 
an be used to measure the 
urrent 
hurn rate in the overlay network. The more 
hurn thereis, the more timeouts are going to o

ur due to outdated su

essor pointers. Similarly, the number of resour
esstored at ea
h peer is a sign of the fairness of the Chord algorithm. The number of sear
hes answered at ea
hpeer 
an likewise be used to get an idea of the sear
h behavior of the end users. Finally, a peer 
an keep tra
kof the number of missing resour
es to verify the integrity of the stored data. This 
an, e.g., be done 
ountingthe number of sear
h requests whi
h 
ould not be answered by the peer.All of the above statisti
s 
an be 
olle
ted periodi
ally to survey the time dependent status of the overlay.Note, that it is also possible to monitor a spe
i�
 part of the overlay network by setting Rs and Re a

ordingly.This 
an, e.g., be helpful if there are problems in a 
ertain region of the overlay network and the operator needsto verify that his 
ountermeasures have been su

essful.



244 A. Binzenhoefer, G. Kunzmann, and R. Henjes4. Analysis and Optimizations. To analyze our algorithm we derive the duration of a snapshot (
f.Subse
tion 4.1) and the temporal distribution of the token arrival times at the CP (
f. Subse
tion 4.2).4.1. Duration of a Snapshot. To 
al
ulate an estimate of the duration of a snapshot, we assume as
enario without any peers joining or leaving the network. It is quite straightforward to estimate the durationof step one, the signaling step. The last 
ounting token whi
h will be started is the one 
overing the regiondire
tly following the initiating peer. This is due to the fa
t, that the initiating peer will start its 
ountingtoken no sooner than it divided the ring into separate regions. Before it initiates the 
ounting token, it 
onta
tsits �ngers until the �rst �nger is 
loser to itself than Smin. The initiating peer has at most log2(n) �ngers andea
h of the �ngers sends an a
knowledgment, before the peer 
an go on with the algorithm. If TO is the randomvariable des
ribing one overlay hop, then the duration of step one of the algorithm is at most
Dstep1 = 2 · log

2
(n) ·E[TO]. (4.1)The worst 
ase for step two would be that the initiating peer does not know any �ngers and dire
tly sendsthe 
ounting token. This would take n · E[TO], but is very unlikely to happen. In general, if there are n peersin the overlay, there are roughly Pr = n·Smin

Sid
peers per region. Furthermore, in the worst 
ase Smin is slightlylarger than a power of two and the region 
overed by a 
ounting token may be
ome almost twi
e as large as

Smin. Therefore a good estimate for the duration of the 
ounting step of the algorithm is:
Dstep2 = 2 · Pr · E[TO]. (4.2)This results in the following total duration of a snapshot:

D =

(
log

2
(n) +

n · Smin

Sid

)
· 2 · E[TO]. (4.3)4.2. Token Arrival Time Distribution. To get a rough estimate for the distribution of the arrival timesof the 
ounting tokens at the CP , we 
onsider the spe
ial 
ase where the size of the overlay n = 2g is a power oftwo and Smin is su
h that Nr = 2h with h < g. Furthermore, we assume that the individual peers are lo
atedat equal distan
es on the ring as shown in Figure 4.1.It 
an be shown, that in this 
ase h = log2(Nr) is the number of overlay hops it takes until the �rst 
ountingtoken is started during a snapshot. Similarly, it takes 2 ·h hops until the last 
ounting token is started a

ordingto our assumptions. The probability pi that a 
ounting token is started after exa
tly i hops for i = h, h+1, ..., 2·h
an be 
al
ulated as:

pi =

(
h

i−h

)
∑2·h

x=h

(
h

x−h

) . (4.4)The above 
onsiderations are nontrivial, but 
an ni
ely be explained using the simple example shown in Figure4.1, where g = 4, h = 2, and therefore n = 24 and Nr = 22. The solid arrows in the �gure show the messagesof the signaling step, the dotted arrows the 
orresponding a
knowledgments. The numbers next to the arrowsrepresent the number of overlay hops, whi
h have passed sin
e the beginning of the snapshot.In the example, peer A starts a snapshot of the entire ring. It sends a request to B to 
over the regionbetween B and A. Peer B sends an a
knowledgment ba
k to A and a simultaneous request to C to 
over theregion from C to A. C has no �ngers outside its minimum measurement region and starts the �rst 
ountingtoken after h = 2 overlay hops. Simultaneously, it sends an a
knowledgment ba
k to B. Peer B then starts its
ounting token after 3 overlay hops. In the meantime A signals D to 
over the region from D to B. Peer Dimmediately starts its 
ounting token after a total of 3 overlay hops. Peer A waits for the �nal a
knowledgmentand starts its 
ounting token after 4 = 2 ·h overlay hops. Summarizing the above, there are four 
ounting tokensstarted after 2, 3, 3, and 4 overlay hops respe
tively.A

ording to our assumptions, ea
h 
ounting token needs exa
tly Pr = 4 hops to travel the 
orrespondingregion and one �nal hop to arrive at the CP . A rough estimate for the distribution of the arrival times of the
ounting tokens at the CP is therefore given by the phase diagram shown in Figure 4.3. It indi
ates that thesignaling step takes i overlay hops with a probability pi for i = h, h + 1, ..., 2 · h, whi
h is followed by Pr hopsof the 
ounting token and the �nal hop to report the result ba
k to the CP .
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Fig. 4.3. Phase diagram of the token arrival time distribution.To validate our analyti
al results, we simulated a Chord ring of size n = 215 with Smin = 29 a

ordingto the above assumptions. Figure 4.2 shows the probability density fun
tion of the token arrival times at the
CP . Obviously, the 
urves mat
h very well and the binomial distribution of the duration of step one 
an bere
ognized. So far, in our example ea
h peer has a �nger at an exa
t distan
e of Smin. In reality, however,the �nger would sit at a slightly di�erent position, whi
h again would result in an additional 
he
kpoint atthe middle of the region. The 
urve labeled �Che
kpoints� 
orresponds to a slightly modi�ed phase diagram,whi
h adds an intermediate result in the middle of the measurement region. The �rst rise of the probabilitydensity fun
tion (pdf) therefore represents the intermediate results sent ba
k to the CP at the 
he
kpoint. These
ond rise still represents the regular results at the end of the region. In the following se
tion we will presentsimulations of more realisti
 s
enarios in
luding 
hurn and timeouts.5. Results. The results in this se
tion were obtained using our ANSI-C simulator, whi
h in
orporates adetailed yet slightly modi�ed Chord implementation. A good des
ription of the general simulation model 
anbe found in [5, 6℄. In this work an overlay hop is modeled using an exponentially distributed random variablewith a mean of 80ms. The results 
onsidering 
hurn are generated using peers, whi
h stay online and o�ine foran exponentially distributed period of time with a mean as indi
ated in the 
orresponding des
ription of the�gures.The snapshot algorithm takes one single input argument Smin whi
h dire
tly translates into Nr =

⌈
Sid

Smin

⌉,the number of areas the overlay will be divided into. This parameter in�uen
es the duration of the snapshot aswell as the number of results arriving at the 
entral 
olle
ting point. Figure 5.1 shows the distribution of the
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Fig. 5.2. In�uen
e of Nr for 20000 peers.arrival times of the results in an overlay of 40000 peers using Nr = 1000 and Nr = 100 areas in times of no
hurn. Obviously, the more areas the overlay is divided into, the faster the snapshot is 
ompleted. While thesnapshot using 1000 areas was �nished after about ten se
onds, the snapshot with 100 areas took about oneminute. In ex
hange the latter snapshot produ
es signi�
antly smaller bandwidth spikes at the CP. The twoelevations of the se
ond histogram 
orrespond to the intermediate results (�rst elevation) and the �nal resultsat the end of the measured subpart (se
ond elevation). Note that the �nal results arrive about twi
e as lateas the intermediate results. The �rst step of the algorithm uses the �ngers to divide the ring into subparts.Sin
e the distan
e between a peer and its �ngers is always slightly larger than a power of two it is usually notpossible to divide the ring exa
tly into the desired number of areas. In fa
t it is very likely, that a peer stopsthe re
ursion and starts its measurement on
e it 
onta
ted its xth �nger, where 2x−1 < Smin = Sid

Nr
≤ 2x. Thatis, the re
ursion stops at �nger x with idfx , whereas the distan
e between the peer and this spe
i�
 �nger mightalmost be twi
e as large as the desired Smin. It is therefore advisable to 
hoose Nr as a power of two itself inorder to ensure that idfx is only slightly larger than idp + Smin. Figure 5.2 shows the di�erent arrival times ofthe results for Nr = 512 and Nr = 500 in an overlay of 20000 peers without 
hurn. The skewed shape of thehistogram in the foreground results from the fa
t that 500 is slightly smaller than a power of two, whi
h in turnmakes Smin slightly larger than a power of two. In this 
ase it is likely that the peer has a �nger just beforethe end of the minimum measurement region idp + Smin. Thus, �nger x sits at a distan
e of about twi
e Sminfrom the peer. The resulting 
ounting token will therefore travel a distan
e of about twi
e Smin as well.A more detailed analysis of the in�uen
e of Nr 
an be found in Figure 5.3, whi
h shows the number ofresults re
eived at the CP in dependen
e of Nr. As shown in [1℄, Nc, the number of 
ounting tokens sent tothe CP , is limited by 2 · Nr > Nc ≥ Nr. The straight lines in the �gure show the 
orresponding limits. Thesolid and dotted 
urves represent the results obtained for 20000 and 10000 peers, respe
tively. The number ofresults sent to the CP is within the 
al
ulated limits and independent of the overlay size. The 
urves roughlyresemble the shape of a stair
ase, whereas the steps are lo
ated at powers of two. There are two main reasonsfor this behavior. First of all, the average 
ounting token sends two results ba
k to the CP , one intermediateresult and the �nal result at the end of the measurement region. Hen
e, the smaller the region 
overed by theaverage 
ounting token, the more results arrive at the CP . As explained above, the 
loser Nr gets to a powerof two, the smaller the region 
overed by the average 
ounting token. This a

ounts for the �rst part of the riseof the number of results re
eived at the CP .The distribution of the arrival times of the results is also in�uen
ed by the 
urrent size of the network. Thelarger the network, the more peers are within one region. However, the more peers are within one region, themore hops ea
h 
ounting token has to make, before it 
an send its results ba
k to the CP. Figure 5.4 shows thetoken arrival time distribution for three di�erent overlay sizes of 10000, 20000, and 40000 peers, respe
tively.We did not generate any 
hurn in this s
enario and set Nr = 512 areas. As expe
ted, the larger the overlaynetwork, the longer the snapshot is going to take. However, the 
urves are not only shifted to the right, butalso di�er in shape. This 
an again be explained by the in
reasing number of hops per 
ounting token.As mentioned above, the average 
ounting token sends two results ba
k to the CP, whereas the 
he
kpointsare equally spa
ed. Thus, the �nal result takes twi
e as many hops as the intermediate result. In a network of
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hurn on the tra�
 pattern atthe CP . 0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

Mean online/offline time [min]

P
ro

b
a
b
ili

ty

 

 

Pointer failures

Timeouts

10000 peers

20000 peers

40000 peers

Fig. 5.6. Relative frequen
y of timeouts and pointer fail-ures.10000 peers there are approximately 20 peers in ea
h of the 512 regions. The intermediate results are thereforesent after about 10 hops, the �nal results after about 20 hops, respe
tively. The two 
orresponding elevationsin the histogram overlap in su
h a way, that they build a single elevation. In a network of 40000 peers, however,there are approximately 78 peers in ea
h of the 512 regions. The intermediate results are therefore sent afterabout 39 hops, the �nal results after about 78 hops, respe
tively. The di�eren
e between these two numbersis large enough to a

ount for the two elevations of the histogram in the foreground of Figure 5.4. Note, thatall 
urves are shifted to the right as 
ompared to the mere hop 
ount sin
e it takes some time for the signalingstep until the 
ounting tokens 
an be started. In pra
ti
e the 
urrent size of the overlay 
an be estimated to beable to 
hoose an appropriate value for Nr as suggested in [2℄.The arrival time of the results at the CP is also a�e
ted by the online/o�ine behavior of the individualpeers. To study the in�uen
e of 
hurn we 
onsider 80000 peers with an exponentially distributed online ando�ine time, ea
h with a mean of 60 minutes. This way, there are 40000 peers online on average, whi
h makesit possible to 
ompare the results to those obtained using 40000 peers without 
hurn. Figure 5.5 shows the
orresponding histograms.As a result of 
hurn in the system, the two elevations of the original histogram be
ome noti
eably blurredand the snapshot is slightly delayed. This is due to the in
onsisten
ies in the su

essor and �nger lists of thepeer as well as the timeouts whi
h o

ur during the forwarding of the 
ounting tokens. In return the spike inthe diagram and thus the required bandwidth at the CP be
omes smaller.It is easy to show, that the probability to lose a token is almost negligible [1℄. Therefore, a more meaningfulmethod to measure the in�uen
e of 
hurn is to regard the number of timeouts whi
h o

ur during a snapshot.Furthermore, the in�uen
e of 
hurn on the stability of the overlay network 
an be studied looking at the
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Fig. 5.7. Results of a snapshot 
ompared to the global view.frequen
y at whi
h the prede
essor pointer of a peer's su

essor does not mat
h the peer itself. Figure 5.6plots the relative frequen
y of timeouts and pointer failures against the mean online/o�ine time of a peer. Thesmaller the online/o�ine time of a peer, the more 
hurn is in the system.The results represent the mean of several simulation runs, whereas the error bars show the 95 per
ent 
on�-den
e intervals. The relatively small per
entage of both timeouts and failures is to some extent implementationspe
i�
. More interesting, however, is the exponential rise of the 
urves under higher 
hurn rates. The shapeof both 
urves is independent of the size of the overlay and only a�e
ted by the 
urrent 
hurn rate. The 
urve
an therefore be used to map the frequen
y of timeouts or failures measured in a running system to a spe
i�

hurn rate.Until now, we only regarded the tra�
 pattern at the 
entral 
olle
ting point. From an operator's pointof view, however, it is more important to know, whether the snapshot itself is meaningful. To validate thea

ura
y of the snapshot algorithm, we again simulated an overlay network with 80000 peers, ea
h with a meanonline/o�ine time of 60 minutes. Due to the properties of the hash fun
tion and the 
hurn behavior in thesystem the number of do
uments on a single peer 
an be regarded as a random variable. The measurement weare interested in is the 
orresponding pdf in order to see whether the distribution of the do
uments among thepeers is fair or not. The pdf was measured using our snapshot algorithm as explained in Se
tion 3.3. The resultof the snapshot is 
ompared to the a
tual pdf obtained using the global view of our dis
rete event simulator (
.f.Figure 5.7). The two 
urves are almost indistinguishable from ea
h other. The same is true for all the otherstatisti
s shown in Table 3.1, like the 
urrent size of the system or the average bandwidth used per time unit.That is, the snapshot provides the operator with a very a

urate pi
ture of the 
urrent state of its system. Thisni
ely demonstrates that the results obtained by the snapshot 
an be used to better understand the performan
eof the running p2p system. The multiple possibilities to interpret the 
olle
ted data are well beyond the s
opeof this paper.6. Con
lusion. One of the main reasons that tele
ommuni
ation 
arriers are still hesitant to build p2pappli
ations is the la
k of 
ontrol a provider has over the running system. In this paper we introdu
ed an entirelydistributed and s
alable algorithm to monitor a Chord based p2p network at runtime. The load generated duringthe snapshot is evenly distributed among the peers of the overlay and the algorithm itself is easy to 
on�gure.It only takes one input parameter, whi
h in�uen
es the trade-o� between the duration of the snapshot and thebandwidth required at the 
entral server whi
h 
olle
ts the results. In general it takes less than one minute to
reate a snapshot of a Chord ring 
onsisting of 40000 peers. We performed a mathemati
al analysis of the basi
me
hanisms and provided a simulative study 
onsidering realisti
 user behavior.The algorithm is resistant to instabilities in the overlay network (
hurn) and provides the operator with avery a

urate pi
ture of the 
urrent state of its system. It o�ers the possibility to monitor the entire overlaynetwork or to 
on
entrate on a spe
i�
 part of the system. The latter is espe
ially useful if a problem o
-
urred in a spe
i�
 part of the system and the operator wants to assure that his 
ountermeasures have beensu

essful.
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