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t. Digital data volumes are growing exponentially in all s
ien
es. To handle this abundan
e in data availability,s
ientists must use data analysis te
hniques in their s
ienti�
 pra
ti
es and solving environments to get the bene�ts 
omingfrom knowledge that 
an be extra
ted from large data sour
es. When data is maintained over geographi
ally remote sites the
omputational power of distributed and parallel systems 
an be exploited for knowledge dis
overy in s
ienti�
 data. In this s
enariothe Grid 
an provide an e�e
tive 
omputational support for distributed knowledge dis
overy on large datasets. In parti
ular, Gridservi
es for data integration and analysis 
an represent a primary 
omponent for e-s
ien
e appli
ations involving distributed massiveand 
omplex data sets. This paper des
ribes some resear
h a
tivities in data-intensive Grid 
omputing. In parti
ular we dis
ussthe use of data mining models and servi
es on Grid systems for the analysis of large data repositories.Key words: e-s
ien
e, knowledge dis
overy, grid, parallel data mining, distributed data mining, grid-based data mining1. Introdu
tion. The past two de
ades have been dominated by the advent of in
reasingly powerful andless expensive ubiquitous 
omputing, as well as the appearan
e of the World Wide Web and related te
h-nologies [12℄. Due to su
h advan
es in information te
hnology and high performan
e 
omputing, digital datavolumes are growing exponentially in many �elds of human a
tivities. This phenomenon 
on
erns s
ienti�
dis
iplines, as well as industry and 
ommer
e. Su
h te
hnologi
al development has also generated a whole newset of 
hallenges: the world is drowning in a huge quantity of data, whi
h is still growing very rapidly both inthe volume and 
omplexity.Jim Gray in some talks in 2006 identi�ed four 
hronologi
al steps for the methodologies employed bys
ientists for dis
overies. The �rst step o

urred thousand years ago, when s
ien
e was empiri
al and it wasoriented to just des
ribe natural phenomena. The se
ond one is temporally lo
ated around a few hundred yearsago, when a theoreti
al bran
h was born, aimed at formulating some general models des
ribing the empiri
alknowledge. The third step o

urred in the latest few de
ades, when a 
omputational bran
h started up and
omplex phenomena started to be simulated by the resour
es made available by the 
urrent te
hnology. Finally,the fourth step is run today, when s
ientists are working to unify theories, experiments and simulations withdata pro
essing and exploration to extra
t knowledge hidden in it.The abundan
e of digitally stored data require to 
onsider in detail this phenomenon. In parti
ular, thereare two important trends, te
hnologi
al and methodologi
al, whi
h seem to parti
ularly distinguish the new,information-ri
h s
ien
e from the past:
• Te
hnologi
al. There is a lot of data 
olle
ted and warehoused in various repositories distributed over theworld: data 
an be 
olle
ted and stored at high speeds in lo
al databases, from remote sour
es or fromthe our galaxy. Some examples in
lude data sets from the �elds of medi
al imaging, bio-informati
s,remote sensing and (as very innovative aspe
t) several digital sky surveys. This implies a need forreliable data storage, networking, and database-related te
hnologies, standards and proto
ols.
• Methodologi
al. Huge data sets are hard to understand, and in parti
ular data 
onstru
ts and patternspresent in them 
annot be 
omprehended by humans dire
tly. This is a dire
t 
onsequen
e of thegrowth in 
omplexity of information, and mainly its multi-dimensionality. For example, a 
omputationalsimulation 
an generate terabytes of data within a few hours, whereas human analysts may take severalweeks to analyze these data sets. For su
h a reason, most of data will never be read by humans, ratherthey are to be pro
essed and analyzed by 
omputers.We 
an summarize what we foresaid as follows: whereas some de
ades ago the main problem was the la
kof information, the 
hallenge now seems to be (i) the very large volume of information and (ii) the asso
iated
omplexity to pro
ess for extra
ting signi�
ant and useful parts or summaries.Nevertheless, the �rst aspe
t does not represent a limitation or a problem for the s
ienti�
 
ommunity:
urrent data storage, ar
hite
tural solutions and 
ommuni
ation proto
ols provide a reliable te
hnologi
al baseto 
olle
t and store su
h abundan
e of data in an e�
ient and e�e
tive way. Moreover, the availability ofhigh throughput s
ienti�
 instrumentation and very inexpensive digital te
hnologies fa
ilitated this trend fromboth te
hnologi
al and e
onomi
al view point. On the other hand, the 
omputational power of 
omputers is
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252 E. Cesario and D. Talianot growing as fast as the demand of su
h a data 
omputation requires, and this represents a limit for theknowledge that potentially 
ould be extra
ted. As an additional aspe
t, we have to 
onsider that storage 
ostsare 
urrently de
reasing faster than 
omputing 
osts, and this trend makes things worse.For example, the impa
t of foresaid issues in the biologi
al �eld is well des
ribed in [20℄. It points out thatthe emergen
e of genome and post-genome te
hnology has made huge amount of data available, demandinga proportional support of analysis. Nevertheless, an important fa
tor to be 
onsidered is that the numberof available 
omplete genomi
 sequen
es is doubling almost every 12 months, whereas a

ording to Moore'slaw available 
ompute 
y
les (i. e., 
omputational power) double every 18 months. Additionally, we have to
onsider that analysis of genomi
 sequen
es require binary 
omparisons of the genes involved in it. As a dire
t
onsequen
e of that, the 
omputational overhead is very very high. We 
an see the impa
t of su
h issuesin Figure 1.1 (sour
e: [20℄), whi
h 
ontrasts the number of geneti
 sequen
es obtained with the number ofannotations generated. The �gure shows that the knowledge (annotations, models, patterns) has a sub-linearrate with respe
t to the the available data sequen
es whi
h they are extra
ted from.

Fig. 1.1. Growth of sequen
es and annotations sin
e 1982 (Sour
e: [20℄)To handle this abundan
e in data availability (whose rate of produ
tion often far outstrips our abilityto analyze), appli
ations are emerging that explore, query, analyze, visualize, and in general, pro
ess verylarge-s
ale data sets: they are named data intensive appli
ations. Computational s
ien
e is evolving towarddata intensive appli
ations that in
lude data integration and analysis, information management, and knowledgedis
overy. In parti
ular, knowledge dis
overy in large data repositories 
an �nd what is interesting in them byusing data mining te
hniques. Data intensive appli
ations in s
ien
e help s
ientists in hypothesis formation andgive them a support on their s
ienti�
 pra
ti
es and solving environments, getting the bene�ts 
oming fromknowledge that 
an be extra
ted from large data sour
es.When data is maintained over geographi
ally distributed sites the 
omputational power of distributed andparallel systems 
an be exploited for knowledge dis
overy in s
ienti�
 data. Parallel and distributed datamining algorithms are suitable to su
h a purpose. Moreover, in this s
enario the Grid 
an provide an e�e
tive
omputational support for data intensive appli
ation and for knowledge dis
overy from large and distributeddatasets. Grid 
omputing is re
eiving an in
reasing attention from the resear
h 
ommunity, wat
hing at thisnew 
omputing infrastru
ture as a key te
hnology for solving 
omplex problems and implementing distributedhigh-performan
e appli
ations [14℄.Today many organizations, 
ompanies, and s
ienti�
 
enters produ
e and manage large amounts of 
omplexdata and information. Climate, astronomi
, and genomi
 data together with 
ompany transa
tion data are justsome examples of massive amounts of digital data that today must be stored and analyzed to �nd usefulknowledge in them. This data and information patrimony 
an be e�e
tively exploited if it is used as a sour
eto produ
e knowledge ne
essary to support de
ision making. This pro
ess is both 
omputationally intensive,
ollaborative, and distributed in nature. The development of data mining software for Grids o�ers tools andenvironments to support the pro
ess of analysis, inferen
e, and dis
overy over distributed data available inmany s
ienti�
 and business areas. The 
reation of frameworks on top of data and 
omputational Grids is the
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e 253enabling 
ondition for developing high-performan
e data mining tasks and knowledge dis
overy pro
esses, andit meets the 
hallenges posed by the in
reasing demand for power and abstra
tness 
oming from 
omplex datamining s
enarios in s
ien
e and engineering. For example, some proje
ts des
ribed in Se
tion 2 su
h as NASAInformation Grid, TeraGrid, and Open S
ien
e Grid use the 
omputational and storage fa
ilities in their Gridinfrastru
tures to mine data in a distributed way. Sometime in these proje
ts are used ad ho
 solutions for datamining, in other 
ases generi
 middleware is used on top of basi
 Grid toolkits. As pointed out by William E.Johnston in [19℄, the use of general purpose data mining tools may e�e
tively support the analysis of massiveand distributed data sets in large s
ale s
ien
e and engineering.The Grid allows to federate and share heterogeneous resour
es and servi
es su
h as software, 
omputers,storage, data, networks in a dynami
 way. Grid servi
es 
an be the basi
 element for 
omposing software and dataelements, and exe
uting 
omplex appli
ations on Grid and Web systems. Today the Grid is not just 
ompute
y
les, but it is also a distributed data management infrastru
ture. Integrating those two features with �smart"algorithms we 
an obtain a knowledge-intensive platform. The driving Grid appli
ations are traditionallyhigh-performan
e and data intensive appli
ations, su
h as high-energy parti
le physi
s, and astronomy andenvironmental modeling, in whi
h experimental devi
es 
reate large quantities of data that require s
ienti�
analysis.In the latest years many signi�
ant Grid-based data intensive appli
ations and infrastru
tures have beenimplemented. In parti
ular, the servi
e-based approa
h is allowing the integration of Grid and Web for handlingwith data. We will brie�y report some of these appli
ations in the �rst of the paper; then we dis
uss about theuse of high performan
e data mining te
hniques for s
ien
e in Grid platforms.The rest of the paper is organized as follows. Se
tion 2 des
ribes some Grid-based data intensive proje
ts andappli
ations. Se
tion 3 gives an overview of approa
hes for parallel, distributed and Grid-based data miningte
hniques. Se
tion 4 introdu
es the Knowledge Grid, a referen
e software ar
hite
ture for geographi
allydistributed knowledge dis
overy systems. The Se
tion 5 gives 
on
luding remarks.2. Grid Te
hnologies for dealing with S
ienti�
 data. Several s
ienti�
 teams and 
ommunities areusing Grid te
hnology for dealing with intensive appli
ations aimed at s
ienti�
 data pro
essing. As examplesof this approa
h, in the following we shortly des
ribe some of them.2.1. The DataGrid Proje
t: Grid for Physi
s. The European DataGrid [11℄ is a proje
t funded bythe European Union with the aim of setting up a 
omputational and data-intensive Grid of resour
es for theanalysis of data 
oming from s
ienti�
 exploration. The main goal of the proje
t is to 
oordinate resour
esharing, 
ollaborative pro
essing and analysis of huge amounts of data produ
ed and stored by many s
ien-ti�
 laboratories belonging to several institutions. It is made e�e
tive by the development of a te
hnologi
alinfrastru
ture enabling s
ienti�
 
ollaborations where resear
hers and s
ientists will perform their a
tivitiesregardless of geographi
al lo
ation. The proje
t develops s
alable software solutions in order to handle manyPBs1 of distributed data, tens of thousand of 
omputing resour
es (pro
essors, disks, et
.), and thousands ofsimultaneous users from multiple resear
h institutions. The three real data intensive 
omputing appli
ationsareas 
overed by the proje
t are biology/medi
al, earth observation and parti
le physi
s. In parti
ular, thelast one is oriented to answer longstanding questions about the fundamental parti
les of matter and the for
esa
ting between them. The goal is to understand why some parti
les are mu
h heavier than others, and whyparti
les have mass at all. To that end, CERN2 has built the Large Hadron Collider (LHC), the most powerfulparti
le a

elerator ever 
on
eived, that generates huge amounts of data. It is estimated that LHC generatesapproximately 1 GB/se
 and 10 PB/year of data. The DataGrid Proje
t provided the solution for storing andpro
essing this data, based on a multi-tiered, hierar
hi
al 
omputing model for sharing data and 
omputingpower among multiple institutions. In parti
ular, a Tier-0 
entre is lo
ated at CERN and is linked by highspeed networks to approximately ten major Tier-1 data pro
essing 
entres. These fan out the data to a largenumber of smaller ones (Tier-2).The DataGrid proje
t ended on Mar
h 2004, but many of the produ
ts (te
hnologies, infrastru
ture, et
.)are used and extended in the EGEE proje
t. The Enabling Grids for E-s
ien
E (EGEE) [13℄ proje
t bringstogether s
ientists and engineers from more than 240 institutions in 45 
ountries world-wide to provide a seamlessGrid infrastru
ture for e-S
ien
e that is available to s
ientists 24 hours/day. Expanding from originally two
1PetaByte = 10

6GigaBytes
2European Organization for Nu
lear Resear
h
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ienti�
 �elds, high energy physi
s and life s
ien
es, EGEE now integrates appli
ations from many others
ienti�
 �elds, ranging from geology to 
omputational 
hemistry. The EGEE Grid 
onsists of over 36,000CPUs available to users 24 hours a day, 7 days a week, in addition to about 5 PB disk of storage, and maintains30,000 
on
urrent jobs on average. Having su
h resour
es available 
hanges the way s
ienti�
 resear
h takespla
e. The end use depends on the users' needs: large storage 
apa
ity, the bandwidth that the infrastru
tureprovides, or the sheer 
omputing power available. Generally, the EGEE Grid infrastru
ture is ideal for anys
ienti�
 resear
h espe
ially where the time and resour
es needed for running the appli
ations are 
onsideredimpra
ti
al when using traditional IT infrastru
tures.2.2. The NASA Information Power Grid (IPG) Infrastru
ture. The NASA's Information PowerGrid (IPG) [18℄ is a high-performan
e 
omputing and data grid built primarily for use by NASA s
ientistsand engineers. The IPG has been 
onstru
ted by NASA between 1998 and the present making heavy use ofGlobus Toolkit 
omponents to provide Grid a

ess to heterogeneous 
omputational resour
es managed by severalindependent resear
h laboratories. S
ientists and engineers a

ess the IPG's 
omputational resour
es from anylo
ation with Grid interfa
es providing se
urity, uniformity, and 
ontrol. S
ientists beyond NASA 
an also usefamiliar Grid interfa
es to in
lude IPG resour
es in their appli
ations (with appropriate authorization). TheIPG infrastru
ture has been and is being used by numerous s
ienti�
 and engineering e�orts both within andbeyond NASA. Some of its most important appli
ations are 
omputational �uid dynami
s and meteorologi
aldata mining.2.3. TeraGrid. TeraGrid [29℄ is an open s
ienti�
 dis
overy infrastru
ture 
ombining leadership 
lassresour
es (in
luding super
omputers, storage, and s
ienti�
 visualization systems) at nine partner sites to 
reatean integrated, persistent 
omputational resour
e. It is 
oordinated by the Grid Infrastru
ture Group (GIG)at the University of Chi
ago. Using high-performan
e network 
onne
tions, the TeraGrid integrates high-performan
e 
omputers, data resour
es and tools, and high-end experimental fa
ilities around the 
ountry.Currently, TeraGrid resour
es in
lude more than 250 tera�ops of 
omputing 
apability and more than 30 PBsof online and ar
hival data storage, with rapid a

ess and retrieval over high-performan
e networks. Resear
hers
an also a

ess more than 100 dis
ipline-spe
i�
 databases. With this 
ombination of resour
es, the TeraGrid isone of the world's largest and most 
omprehensive distributed Grid infrastru
ture for open s
ienti�
 resear
h.2.4. NASA and Google. Re
ently NASA initiated a joint proje
t with Google, In
. for applying Googlesear
h te
hnology to help s
ientists to pro
ess, organize, and analyze the large-s
ale streams of data 
omingfrom the Large Synopti
 Survey Teles
ope (LSST), lo
ated in Chile. When 
ompleted, the LSST will generateover 30 terabytes of multiple 
olor images of visible sky ea
h night. Google will 
ollaborate with LSST todevelop sear
h and data a

ess te
hniques and servi
es that 
an pro
ess, organize and analyze the very largeamounts of data 
oming from the instrument's data streams in real time. The engine will 
reate �data images"for s
ientists to view signi�
ant spa
e events and extra
t important features from them. This joint proje
t willshow how 
omplex data management te
hniques generally used in sear
h engines 
an be exploited for s
ienti�
dis
overy.In the general framework of this 
ollaboration, the main NASA's goal is to make its huge stores of data
olle
ted during everything from spa
e
raft missions, moon landings to landings on Mars to orbits aroundJupiter�available to s
ientists and the publi
. Some of the data 
an already be found on NASA's Web site butexploiting Google te
hniques with high performan
e fa
ilities, this data will be a

essible in an easy way.2.5. Open S
ien
e Grid. The Open S
ien
e Grid [24℄ is a 
ollaboration of s
ien
e resear
hers, softwaredevelopers and 
omputing, storage and network providers. It gives a

ess to shared resour
es worldwide tos
ientists (from universities, national laboratories and 
omputing 
enters a
ross the United States). The OpenS
ien
e Grid links storage and 
omputing resour
es at more than 30 sites a
ross the United States. TheOSG works a
tively with many partners, in
luding Grid and network organizations and international, national,regional and 
ampus Grids, to 
reate a Grid infrastru
ture that spans the globe. S
ientists from many di�erent�elds use the OSG to advan
e their resear
h. Appli
ations of OSG proje
t are a
tive in various areas of s
ien
e,like parti
le and nu
lear physi
s, astrophysi
s, bioinformati
s, gravitational-wave s
ien
e, mathemati
s, medi
alimaging and nanote
hnology. OSG resour
es in
lude thousands of 
omputers and 10 of terabytes of ar
hivaldata storage.2.6. myExperiment. myExperiment [22℄ is a 
ollaborative resear
h environment whi
h enables s
ientiststo share, reuse and repurpose experiments. It is based on the idea that s
ientists usually prefer to share
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e 255experimental results than data. myExperiment has been in�uen
ed by so
ial networking programs su
h asWired and Fli
kr, and is based on the mySpa
e infrastru
ture. myExperiment enables s
ientists to share anduse work�ows and redu
e time-to-experiment, share expertise and avoid reinvention. myExperiment 
reates anenvironment for s
ientists to adopt Grid te
hnologies, where they 
an de�ne, when they share data, with whomthey share it and how mu
h of it 
an be a

essed. The myExperiment proje
t mainly fo
uses its appli
ationsat 
ase studies for the spe
i�
 areas of astronomy, bio-informati
s, 
hemistry and so
ial s
ien
e.2.7. National Virtual Observatory. The National Virtual Observatory [23℄ is a new resear
h proje
twhose goal is to make all the astronomi
al data in the world qui
kly and easily a

essible by anyone. Su
h aproje
t enables a new way of doing astronomy, moving from an era of observations of small, 
arefully sele
tedsamples of obje
ts in one or a few wavelength bands, to the use of multi-wavelength data for millions, or evenbillions of obje
ts. Su
h large 
olle
tion of data makes resear
hers able to dis
over subtle, but signi�
ant,patterns in statisti
ally ri
h and unbiased databases, and to understand 
omplex astrophysi
al systems throughthe 
omparison of data to numeri
al simulations. With the National Virtual Observatory (NVO), astronomersexplore data that others have already 
olle
ted, �nding new uses and new dis
overies in existing data. NVOenables astronomers to do a new type of resear
h that, 
ombined with traditional teles
ope observations, willlead to many new and interesting dis
overies. It is worth noti
ing that the NVO has proposed to exploit the
omputational resour
es of the TeraGrid proje
t (des
ribed in the Se
tion 2.3), in order to enable astronomersin the exploration and analysis of the physi
al pro
esses that drive the formation and evolution of our universe,and en
ouraging new ways to use super
omputing fa
ilities for s
ien
e.2.8. Southern California Earthquake Center. The Southern California Earthquake Center proje
t[26℄ is aimed at developing new 
omputing 
apabilities, that 
an lead to better fore
asts of when and whereearthquakes are likely to o

ur in Southern California, and how the ground will shake as a result. The �nalgoal is to improve mathemati
al models about the stru
ture of the Earth and how the ground moves duringearthquakes. The proje
t team in
ludes 
ollaborating resear
hers from Southern California Earthquake Center(SCEC), the Information S
ien
es Institute (ISI) at USC, the San Diego Super
omputing Center (SDSC), theIn
orporated Institutions for Seismology (IRIS), and the United States Geologi
al Survey (USGS). The proje
theavily exploits Grid te
hnologies, allowing s
ientists to organize and retrieve information stored throughoutthe 
ountry, and giving advantages of the pro
essing power of a network of many 
omputers.3. Data Mining and Knowledge Dis
overy. After dis
ussing signi�
ant data management issues andproje
ts, here we fo
us on data mining te
hniques for knowledge dis
overy in large s
ienti�
 data reposito-ries. Data Mining is the semi-automati
 dis
overy of patterns, models, asso
iations, anomalies and (statisti
allysigni�
ant) stru
tures hidden in data. Traditional data analysis is assumption-driven, that is the hypothesisis formed and validated against the data. Data mining, in 
ontrast, is dis
overy-driven, in the sense thatthe patterns (and models) are automati
ally extra
ted from data. Data mining founds its appli
ation to sev-eral s
ienti�
 and engineering domains, in
luding astrophysi
s, medi
al imaging, 
omputational �uid dynami
s,biology, stru
tural me
hani
s, and e
ology.From a s
ienti�
 viewpoint, data 
an be 
olle
ted by many sour
es: remote sensors on a satellite, teles
opes
anning the sky, mi
roarrays generating gene expression data, s
ienti�
 simulations, et
. Moreover, in su
hinfrastru
tures data are 
olle
ted and stored at enormous speeds (GBs/hour). Both su
h aspe
ts imply thats
ienti�
 appli
ation have to deal with massive volume of data.Mining large data sets requires powerful 
omputational resour
es. A major issue in data mining is s
alabilitywith respe
t to the very large size of 
urrent-generation and next-generation databases, given the ex
essivelylong pro
essing time taken by (sequential) data mining algorithms on realisti
 volumes of data. In fa
t, datamining algorithms working on very large data sets take a very long time on 
onventional 
omputers to getresults. In order to improve performan
es, some parallel and distributed approa
hes have been proposed.Parallel 
omputing is a viable solution for pro
essing and analyzing data sets in reasonable time by usingparallel algorithms. High performan
e 
omputers and parallel data mining algorithms 
an o�er a very e�
ientway to mine very large data sets [27℄, [28℄ by analyzing them in parallel. Under a data mining perspe
tive, su
ha �eld is known as parallel data mining (PDM ).Beyond the development of knowledge dis
overy systems based on parallel 
omputing platforms, a lot ofwork has been devoted to design systems able to handle and analyze multi-site data repositories. Mining knowl-edge from data 
aptured by instruments, s
ienti�
 analysis, simulation results that 
ould be distributed over theworld, questions the suitability of 
entralized ar
hite
tures for large-s
ale knowledge dis
overy in a networked
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h area named distributed data mining o�ers an alternative approa
h. It works byanalyzing data in a distributed fashion and pays parti
ular attention to the trade-o� between 
entralized 
ol-le
tion and distributed analysis of data. This te
hnology is parti
ularly suitable for appli
ations that typi
allydeal with very large amount of data (e.g., transa
tion data, s
ienti�
 simulation and tele
ommuni
ation data),whi
h 
annot be analyzed in a single site on traditional ma
hines in a

eptable times.Grid te
hnology integrates both distributed and parallel 
omputing, thus it represents a 
riti
al infrastru
-ture for high-performan
e distributed knowledge dis
overy. Grid 
omputing was designed as a new paradigm for
oordinated resour
e sharing and problem solving in advan
ed s
ien
e and engineering appli
ations. For thesereasons, Grids 
an o�er an e�e
tive support to the implementation and use of knowledge dis
overy systems byGrid-based Data Mining approa
hes.In the following parallel, distributed and Grid-based data mining are dis
ussed.3.1. Parallel Data Mining. Parallel Data Mining is 
on
erned with the study and appli
ation of datamining analysis done by parallel algorithms. The key idea underlying su
h a �eld is that parallel 
omputing
an give signi�
ant bene�ts in the implementation of data mining and knowledge dis
overy appli
ations, bymeans of the exploitation of inherent parallelism of data mining algorithms. Main goals of the use of parallel
omputing te
hnologies in the data mining �eld are: (i) performan
e improvements of existing te
hniques, (ii)implementation of new (parallel) te
hniques and algorithms, and (iii) 
on
urrent analysis using di�erent datamining te
hniques in parallel and result integration to get a better model (i. e., more a

urate results).As observed in [5℄, three main strategies 
an be identi�ed in the exploitation of parallelism algorithms:Independent Parallelism, Task Parallelism and Single Program Multiple Data (SPMD) Parallelism. We pointout that this is a well known 
lassi�
ation of general strategies for developing parallel algorithms, in fa
t theyare not ne
essarily related only to data mining purposes. Nevertheless, in the following we will des
ribe theunderlying idea of su
h strategies by 
ontextualizing them in data mining appli
ations. A short des
ription ofthe underlying idea of su
h strategies follows.Independent Parallelism. It is exploited when pro
esses are exe
uted in parallel in an independent way.Generally, ea
h pro
ess has a

ess to the whole data set and does not 
ommuni
ate or syn
hronize with otherpro
esses. Su
h a strategy, for example, is applied when p di�erent instan
es of the same algorithm are exe
utedon the whole data set, but ea
h one with a di�erent setting of input parameters. In this way, the 
omputation�nds out p di�erent models, ea
h one determined by a di�erent setting of input parameters. A validation stepshould learn whi
h one of the p predi
tive models is the most reliable for the topi
 under investigation. Thisstrategy often requires 
ommutations among the parallel a
tivities.Task Parallelism. It is known also as Control Parallelism. It supposes that ea
h pro
ess exe
utes di�erentoperations on (a di�erent partition of) the data set. The appli
ation of su
h a strategy in de
ision tree learning,for example, leads to have p di�erent pro
esses running, ea
h one asso
iated to a parti
ular subtree of thede
ision tree to be built. The sear
h goes parallely on in ea
h subtree and, as soon as all the p pro
esses�nish their exe
utions, the whole �nal de
ision tree is 
omposed by joining the various subtrees obtained by thepro
esses.SPMD Parallelism. The single program multiple data (SPMD) model [10℄ (also 
alled data parallelism) isexploited when a set of pro
esses exe
ute in parallel the same algorithm on di�erent partitions of a data set, andpro
esses 
ooperate to ex
hange partial results. A

ording to this strategy, the dataset is initially partitionedin p parts, if p is the apriori-�xed parallelism degree (i. e., the number of pro
esses running in parallel). Then,the p pro
esses sear
h in parallel a predi
tive model for the subset asso
iated to it. Finally, the global result isobtained by ex
hanging all the lo
al models information.These three strategies for parallelizing data mining algorithms are not ne
essarily alternative. In fa
t, they
an be 
ombined to improve both performan
e and a

ura
y of results. For 
ompleteness, we say also that in
ombination with strategies for parallelization, di�erent data partition strategies may be used : (i) sequentialpartitioning (separate partitions are de�ned without overlapping among them), (ii) 
over-based partitioning(some data 
an be repli
ated on di�erent partitions) and (iii) range-based query partitioning (partitions arede�ned on the basis of some queries that sele
t data a

ording to attribute values).Ar
hite
tural issues are a fundamental aspe
t for the goodness of a parallel data mining algorithm. In fa
t,inter
onne
tion topology of pro
essors, 
ommuni
ation strategies, memory usage, I/O impa
t on algorithmperforman
e, load balan
ing of the pro
essors are strongly related to the e�
ien
y and e�e
tiveness of theparallel algorithm. For la
k of spa
e, we 
an just 
ite those. The mentioned issues (and others) must be takeninto a

ount in the parallel implementation of data mining te
hniques. The ar
hite
tural issues are strongly
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e 257related to the parallelization strategies and there is a mutual in�uen
e between knowledge extra
tion strategiesand ar
hite
tural features. For instan
e, in
reasing the parallelism degree in some 
ases 
orresponds to anin
rement of the 
ommuni
ation overhead among the pro
essors. However, 
ommuni
ation 
osts 
an be alsobalan
ed by the improved knowledge that a data mining algorithm 
an get from parallelization. At ea
h iterationthe pro
essors share the approximated models produ
ed by ea
h of them. Thus ea
h pro
essor exe
utes a nextiteration using its own previous work and also the knowledge produ
ed by the other pro
essors. This approa
h
an improve the rate at whi
h a data mining algorithm �nds a model for data (knowledge) and make up for losttime in 
ommuni
ation. Parallel exe
ution of di�erent data mining algorithms and te
hniques 
an be integratednot just to get high performan
e but also high a

ura
y.3.2. Distributed Data Mining. Traditional warehouse-based ar
hite
tures for data mining suppose tohave 
entralized data repository. Su
h a 
entralized approa
h is fundamentally inappropriate for most of thedistributed and ubiquitous data mining appli
ations. In fa
t, the long response time, la
k of proper use ofdistributed resour
e, and the fundamental 
hara
teristi
 of 
entralized data mining algorithms do not work wellin distributed environments. A s
alable solution for distributed appli
ations 
alls for distributed pro
essing ofdata, 
ontrolled by the available resour
es and human fa
tors. For example, let us 
onsider an ad ho
 wirelesssensor network where the di�erent sensor nodes are monitoring some time-
riti
al events. Central 
olle
tion ofdata from every sensor node may 
reate tra�
 over the limited bandwidth wireless 
hannels and this may alsodrain a lot of power from the devi
es.A distributed ar
hite
ture for data mining is likely aimed to redu
e the 
ommuni
ation load and also toredu
e the battery power more evenly a
ross the di�erent nodes in the sensor network. One 
an easily imaginesimilar needs for distributed 
omputation of data mining primitives in ad ho
 wireless networks of mobile devi
eslike PDAs, 
ellphones, and wearable 
omputers [25℄. The wireless domain is not the only example. In fa
t, mostof the appli
ations that deal with time-
riti
al distributed data are likely to bene�t by paying 
areful attentionto the distributed resour
es for 
omputation, storage, and the 
ost of 
ommuni
ation. As an other example,let us 
onsider the World Wide Web as it 
ontains distributed data and 
omputing resour
es. An in
reasingnumber of databases (e.g., weather databases, o
eanographi
 data, et
.) and data streams (e.g., �nan
ial data,emerging disease information, et
.) are 
urrently made on-line, and many of them 
hange frequently. It is easyto think of many appli
ations that require regular monitoring of these diverse and distributed sour
es of data.A distributed approa
h to analyze this data is likely to be more s
alable and pra
ti
al parti
ularly whenthe appli
ation involves a large number of data sites. Hen
e, in this 
ase we need data mining ar
hite
turesthat pay 
areful attention to the distribution of data, 
omputing and 
ommuni
ation, in order to a

ess and usethem in a near optimal fashion. Distributed data mining (DDM ) 
onsiders data mining in this broader 
ontext.DDM may also be useful in environments with multiple 
ompute nodes 
onne
ted over high speed networks.Even if the data 
an be qui
kly 
entralized using the relatively fast network, proper balan
ing of 
omputationalload among a 
luster of nodes may require a distributed approa
h. The priva
y issue is playing an in
reasinglyimportant role in the emerging data mining appli
ations. For example, let us suppose a 
onsortium of di�erentbanks 
ollaborating for dete
ting frauds. If a 
entralized solution was adopted, all the data from every bankshould be 
olle
ted in a single lo
ation, to be pro
essed by a data mining system. Nevertheless, in su
h a 
asea distributed data mining system should be the natural te
hnologi
al 
hoi
e: it is able to learn models fromdistributed data without ex
hanging the raw data among di�erent repositories, and it allows dete
tion of fraudby preserving the priva
y of every bank's 
ustomer transa
tion data.For what 
on
erns te
hniques and ar
hite
ture, it is worth noti
ing that many several other �elds in�uen
eDistributed Data Mining systems 
on
epts. First, many DDM systems adopt the multi-agent system (MAS)ar
hite
ture, whi
h �nds its root in the distributed arti�
ial intelligen
e (DAI). Se
ond, although parallel datamining often assumes the presen
e of high speed network 
onne
tions among the 
omputing nodes, the devel-opment of DDM has also been in�uen
ed by the PDM literature. Most DDM algorithms are designed upon thepotential parallelism they 
an apply over the given distributed data. Typi
ally, the same algorithm operates onea
h distributed data site 
on
urrently, produ
ing one lo
al model per site. Subsequently, all lo
al models areaggregated to produ
e the �nal model. In Figure 3.1 a general distributed data mining framework is presented.The su

ess of DDM algorithms lies in the aggregation. Ea
h lo
al model represents lo
ally 
oherent patterns,but la
ks details that may be required to indu
e globally meaningful knowledge. For this reason, many DDMalgorithms require a 
entralization of a subset of lo
al data to 
ompensate it. The ensemble approa
h hasbeen applied in various domains to in
rease the a

ura
y of the predi
tive model to be learnt. It produ
es
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ombines them to enhan
e a

ura
y. Typi
ally, voting (weighted or un-weighted) s
hemaare employed to aggregate base model for obtaining a global model. As we have dis
ussed above, minimumdata transfer is another key attribute of the su

essful DDM algorithm. As a �nal 
onsideration, the homo-geneity/heterogeneity of resour
es is another important aspe
t to be 
onsidered in the distributed data miningapproa
hes. In this s
enario, the term "resour
es" refers both to 
omputational resour
es (
omputers withsimilar/di�erent 
omputational power) and data resour
es (datasets with horizontally/verti
ally partitioningamong nodes). The �rst meaning a�e
ts only the algorithm exe
ution time, while data heterogeneity plays afundamental role in the algorithm design. That is, dealing with di�erent data formats it requires algorithmsdesigned in a

ordan
e to the di�erent data formats.
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Fig. 3.1. General Distributed Data Mining Framework.3.3. Grid-based Data Mining. In the last years, Grid 
omputing is re
eiving an in
reasing attentionboth from the resear
h 
ommunity and from industry and governments, wat
hing at this new 
omputing in-frastru
ture as a key te
hnology for solving 
omplex problems and implementing distributed high-performan
eappli
ations. Grid te
hnology integrates both distributed and parallel 
omputing, thus it represents a 
riti
alinfrastru
ture for high-performan
e distributed knowledge dis
overy. Grid 
omputing di�ers from 
onventionaldistributed 
omputing be
ause it fo
uses on large-s
ale dynami
 resour
e sharing, o�ers innovative appli
ations,and, in some 
ases, it is geared toward high-performan
e systems. The Grid emerged as a privileged 
omputinginfrastru
ture to develop appli
ations over geographi
ally distributed sites, providing for proto
ols and servi
esenabling the integrated and seamless use of remote 
omputing power, storage, software, and data, managed andshared by di�erent organizations.Basi
 Grid proto
ols and servi
es are provided by toolkits su
h as Globus Toolkit (www.globus.org/toolkit), Condor (www.
s.wis
.edu/
ondor), Glite, and Uni
ore. In parti
ular, the Globus Toolkit is themost widely used middleware in s
ienti�
 and data-intensive Grid appli
ations, and is be
oming a de fa
to stan-dard for implementing Grid systems. This toolkit addresses se
urity, information dis
overy, resour
e and datamanagement, 
ommuni
ation, fault-dete
tion, and portability issues. A wide set of appli
ations is being devel-oped for the exploitation of Grid platforms. Sin
e appli
ation areas range from s
ienti�
 
omputing to industryand business, spe
ialized servi
es are required to meet needs in di�erent appli
ation 
ontexts. In parti
ular,data Grids have been designed to easily store, move, and manage large data sets in distributed data-intensiveappli
ations. Besides 
ore data management servi
es, knowledge-based Grids, built on top of 
omputational anddata Grid environments, are needed to o�er higher-level servi
es for data analysis, inferen
e, and dis
overy ins
ienti�
 and business areas [21℄. In some papers, see for example [1℄, [19℄, and [7℄, it is 
laimed that the 
reationof knowledge Grids is the enabling 
ondition for developing high-performan
e knowledge dis
overy pro
essesand meeting the 
hallenges posed by the in
reasing demand of power and abstra
tness 
oming from 
omplexproblem solving environments.4. The Knowledge Grid. The Knowledge Grid [3℄ is an environment providing knowledge dis
overyservi
es for a wide range of high performan
e distributed appli
ations. Data sets and analysis tools used in su
h
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ations are in
reasingly be
oming available as stand-alone pa
kages and as remote servi
es on the Internet.Examples in
lude gene and DNA databases, network a

ess and intrusion data, drug features and e�e
ts datarepositories, astronomy data �les, and data about web usage, 
ontent, and stru
ture. Knowledge dis
overypro
edures in all these appli
ations typi
ally require the 
reation and management of 
omplex, dynami
, multi-step work�ows. At ea
h step, data from various sour
es 
an be moved, �ltered, and integrated and fed into a datamining tool. Based on the output results, the developer 
hooses whi
h other data sets and mining 
omponents
an be integrated in the work�ow, or how to iterate the pro
ess to get a knowledge model. Work�ows are mappedon a Grid by assigning nodes to the Grid hosts and using inter
onne
tions for implementing 
ommuni
ationamong the work�ow nodes.For 
ompleteness of treatment, we point out some other Grid-based knowledge dis
overy systems and a
-tivities that have been designed in re
ent years. Dis
overy Net [8℄ is an infrastru
ture for e�e
tively supports
ienti�
 knowledge dis
overy pro
ess, in parti
ular in the areas of life s
ien
e and geo-hazard predi
tion. DataS-pa
e [17℄ is a framework providing e�
ient data a

ess and transfer over the Grid that implements an ad-ho
proto
ol for working with remote and distributed data (named DataSpa
e transfer proto
ol, DSTP). Info-Grid [16℄ is a servi
e-based data integration middleware engine, designed to provide information a

ess andquerying servi
es not in an 'universal' way, but by a personalized view of the resour
es for ea
h parti
ular ap-pli
ation domain. DataCutter [2℄ is another Grid middleware framework aimed at providing spe
i�
 servi
es forthe support of multi-dimensional range-querying, data aggregation and user-de�ned �ltering over large s
ienti�
datasets in shared distributed environments. Finally, GATES [4℄ (Grid-based AdapTive Exe
ution on Streams)is an OGSA based system that provides support for pro
essing of data streams in a Grid environment. Thissystem is designed to support the distributed analysis of data streams arising from distributed sour
es (e.g.,data from large s
ale experiments/simulations). GATES provides automati
 resour
e dis
overy and an interfa
efor enabling self-adaptation to meet real-time 
onstraints.The Knowledge Grid ar
hite
ture is designed a

ording to the Servi
e Oriented Ar
hite
ture (SOA), thatis a model for building �exible, modular, and interoperable software appli
ations. The key aspe
t of SOAis the 
on
ept of servi
e, that is a software blo
k 
apable of performing a given task or business fun
tion.Ea
h servi
e operates by adhering to a well de�ned interfa
e, de�ning required parameters and the nature ofthe result. On
e de�ned and deployed, servi
es are like �bla
k boxes", that is, they work independently ofthe state of any other servi
e de�ned within the system, often 
ooperating with other servi
es to a
hieve a
ommon goal. The most important implementation of SOA is represented by Web Servi
es, whose popularity ismainly due to the adoption of universally a

epted te
hnologies su
h as XML, SOAP, and HTTP. Also the Gridprovides a framework whereby a great number of servi
es 
an be dynami
ally lo
ated, balan
ed, and managed,so that appli
ations are always guaranteed to be se
urely exe
uted, a

ording to the prin
iples of on-demand
omputing.The Grid 
ommunity has adopted the Open Grid Servi
es Ar
hite
ture (OGSA) as an implementation ofthe SOA model within the Grid 
ontext. In OGSA every resour
e is represented as a Web Servi
e that 
onformsto a set of 
onventions and supports standard interfa
es. OGSA provides a well-de�ned set of Web Servi
einterfa
es for the development of interoperable Grid systems and appli
ations [15℄. Re
ently the WS-Resour
eFramework (WSRF) has been adopted as an evolution of early OGSA implementations [9℄. WSRF de�nesa family of te
hni
al spe
i�
ations for a

essing and managing stateful resour
es using Web Servi
es. The
omposition of a Web Servi
e and a stateful resour
e is termed as WS-Resour
e. The possibility to de�ne aâ��stateâ�� asso
iated to a servi
e is the most important di�eren
e between WSRF-
ompliant Web Servi
es,and pre-WSRF ones. This is a key feature in designing Grid appli
ations, sin
e WS-Resour
es provide a wayto represent, advertise, and a

ess properties related to both 
omputational resour
es and appli
ations.The Knowledge Grid is a software for implementing knowledge dis
overy tasks in a wide range of high-performan
e distributed appli
ations. It o�ers to users high-level abstra
tions and a set of servi
es by whi
hthey 
an integrate Grid resour
es to support all the phases of the knowledge dis
overy pro
ess.The Knowledge Grid supports su
h a
tivities by providing me
hanisms and higher level servi
es for sear
hingresour
es, representing, 
reating, and managing knowledge dis
overy pro
esses, and for 
omposing existing dataservi
es and data mining servi
es in a stru
tured manner, allowing designers to plan, store, do
ument, verify,share and re-exe
ute their work�ows as well as manage their output results. The Knowledge Grid ar
hite
tureis 
omposed of a set of servi
es divided in two layers: the Core K-Grid layer and the High-level K-Grid layer.The �rst interfa
es the basi
 and generi
 Grid middleware servi
es, while the se
ond interfa
es the user byo�ering a set of servi
es for the design and exe
ution of knowledge dis
overy appli
ations. Both layers make
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e metadata, exe
ution plans, and knowledge obtainedas result of knowledge dis
overy appli
ations.In the Knowledge Grid environment, dis
overy pro
esses are represented as work�ows that a user may
ompose using both 
on
rete and abstra
t Grid resour
es. Knowledge dis
overy work�ows are de�ned using avisual interfa
e that shows resour
es (data, tools, and hosts) to the user and o�ers me
hanisms for integratingthem in a work�ow. Information about single resour
es and work�ows are stored using an XML-based notationthat represents a work�ow (
alled exe
ution plan in the Knowledge Grid terminology) as a data-�ow graph ofnodes, ea
h one representing either a data mining servi
e or a data transfer servi
e. The XML representationallows the work�ows for dis
overy pro
esses to be easily validated, shared, translated in exe
utable s
ripts, andstored for future exe
utions. It is worth noti
ing that when the user submits a knowledge dis
overy appli
ationto the Knowledge Grid, she has no knowledge about all the low level details needed by the exe
ution plan. Morepre
isely, the 
lient submits to the Knowledge Grid a high level des
ription of the KDD appli
ation, named
on
eptual model, more targeted to distributed knowledge dis
overy aspe
ts than to grid-related issues. TheKnowledge Grid in a �rst step 
reates an exe
ution plan on the basis of the 
on
eptual model re
eived from theuser, and then exe
utes it by using the resour
es e�e
tively available. To realize this logi
, it initially modelsan abstra
t exe
ution plan (where some spe
i�ed resour
e 
ould remain 'abstra
tly' de�ned, i. e. they 
ould notmat
h with a real resour
e), that in a se
ond step is resolved into a 
on
rete exe
ution plan (where a mat
hingbetween ea
h resour
e and someone really available on the Grid is found).The Knowledge Grid has been used in various real s
enarios, pointing out its suitability in several heteroge-neous appli
ations. For la
k of spa
e we are not able to dis
uss about them. For su
h a reason we give here justsome outlines, more details 
an be found in the 
ited papers. The goal of the example des
ribed in [6℄ was toobtain a 
lassi�er for an intrusion dete
tion system, performing a mining pro
ess on a (very large size) dataset
ontaining re
ords generated by network monitoring. The example reported in [5℄ was a simple meta-learningpro
ess, that exploits the Knowledge Grid to generate a number of independent 
lassi�ers by applying learningprograms to a 
olle
tion of distributed data sets in parallel.As a s
ienti�
 appli
ation s
enario, let us 
onsider the 
olle
tion of sky observations and the analysisof their 
hara
teristi
s. Let us suppose to have distin
t image data obtained by observations and simula-tions, from whi
h we want to extra
t signi�
ant metri
s. Generally, a signi�
ative set of astronomy data isvery large size (≈ 20 − 30 terabytes). In addition, su
h kind of observation are very high-dimensional, be-
ause ea
h point is usually des
ribed by ≈ 103 attributes (in
luding morphologi
al parameters, �ux ratios,et
.). Finally, they usually are full of missing values and noise. Then, the main issue here is to analyzea distribution of ≈ 20 − 30 terabytes of points in a parameter spa
e of ≈ 103 dimensions. Let us sup-pose that our e�ort is devoted to identify how many distin
t types of obje
ts are there (i. e., stars, galax-ies, quasars, bla
k holes, et
.), and grouping them with respe
t to their type. This 
an be obtained by a
lustering analysis, however it is a non-trivial task if we 
onsider the large size data and their high dimen-sionality. To su
h a purpose, a distributed framework 
an be suitable to get results in a reasonable time.Initially we have a data repository where all su
h an observed sky data is 
olle
ted (for example, an astro-nomi
 observatory). Then, su
h a data is pro
essed by a distributed 
lustering algorithm. In order to dothat, they are partitioned on many nodes and pro
essed on those nodes in parallel. The results of every
lustering algorithm are 
olle
ted and 
ombined to obtain a global 
lustering model. In addition, ea
h out-lier 
an represent a possible (rare) new obje
t. For su
h a reason, and in order to get more knowledge fromthem, all the dete
ted outliers are transferred to another node for a further 
lassi�
ation, i. e. by a de
isiontree.Figure 4.1 shows su
h a distributed meta-learning s
enario, in whi
h a global 
lustering model 
lassi�er CMis obtained on NodeC starting from the original data set DS stored on NodeA (i.e, where the observatory islo
ated). Moreover, all the outliers dete
ted are 
olle
ted in an outlier set OS and are pro
essed by a 
lassi�er
Cl on a NodeB. This pro
ess 
an be des
ribed through the following steps:1. On NodeA, data sets DS1, . . . , DSn are extra
ted from DS by the partitioner P . Then DS1, . . . , DSn,are respe
tively moved from NodeA to Node1, . . . , Noden.2. On ea
h Nodei(i = 1, . . . , n) the 
lusterer Ci applies a 
lustering algorithms on ea
h dataset DSi.Then, ea
h lo
al result is moved from Nodei to NodeC .3. On NodeC , lo
al models re
eived from Node1, . . . , Noden are 
ombined by the 
ombiner C to produ
ethe global 
lustering model CM . Moreover, outliers dete
ted are 
olle
ted in an outlier set OS, andmoved to the NodeB for further analysis.
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e 2614. On NodeB, the 
lassi�er Cl pro
esses the OS outlier data set and extra
ts a suitable 
lassi�
ationmodel (i. e., a de
ision tree) from it.Being the Knowledge Grid a servi
e oriented ar
hite
ture, the Knowledge Grid user intera
ts with some servi
esto design and exe
ute su
h an appli
ation.As an additional 
onsideration, we noti
e that a 
lient appli
ation, that wants to submit a knowledgedis
overy 
omputation to the Knowledge Grid, has to intera
t not with all of these servi
es, but just withsome of them; there are, in fa
t, two layers of servi
es: high-level servi
es (DAS, TAAS, EPMS and RPS ) and
ore-level servi
es (KDS and RAEMS ). The design idea is that user level appli
ations dire
tly intera
t withhigh-level servi
es that, in order to perform a 
lient request, invoke suitable operations exported by the 
ore-levelservi
es. In turn, 
ore-level servi
es perform their operations by invoking basi
 servi
es provided by availablegrid environments running on the spe
i�
 host, as well as by intera
ting with other 
ore-level servi
es. In otherwords, operations exported by high-level servi
es are designed to be invoked by user-level appli
ations, whereasoperations provided by 
ore-level servi
es are thought to be invoked both by high-level and 
ore-level servi
es.More in detail, the user 
an intera
ts with the DAS (Data A

ess Servi
e) and TAAS (Tools and AlgorithmsA

ess Servi
e) servi
es to �nd data and mining software and with the EPMS (Exe
ution Plan ManagementServi
e) servi
e to 
ompose a work�ow (exe
ution plan) des
ribing at a high level the needed a
tivities involvedin the overall data mining 
omputation. Through the exe
ution plan, 
omputing, software and data resour
esare spe
i�ed along with a set of requirements on them. The exe
ution plan is then pro
essed by the RAEMS(Resour
e Allo
ation and Exe
ution Management Servi
e), whi
h takes 
are of its allo
ation. In parti
ular, it�rst �nds appropriate resour
es mat
hing user requirements (i. e., a set of 
on
rete hosts Node1, . . . , Noden,o�ering the software C1, . . . , Cn, and a node NodeW providing the C 
ombiner software and a node NodeZexporting the 
lassi�er Cl), then manages the exe
ution of overall appli
ation, enfor
ing dependen
ies amongdata extra
tion, transfer, and mining steps. Finally, the RAEMS manages results retrieving, and visualizethem by the RPS (Results Presentation Servi
e) servi
e (that o�ers fa
ilities for presenting and visualizing theextra
ted knowledge models).
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4Fig. 4.1. A distributed meta-learning s
enario.5. Con
lusion. In this paper we have pointed out that digital data volumes are growing exponentiallyin s
ien
e and engineering. Often digital repositories and sour
es in
rease their size mu
h faster than the
omputational power o�ered by the 
urrent te
hnology. To handle this abundan
e in data availability, s
ientistsmust embody knowledge dis
overy tools to �nd what is interesting in them.When data is maintained over geographi
ally distributed sites, Grid 
omputing 
an be used as a distributedinfrastru
ture for servi
e-based intensive appli
ations. Various s
ienti�
 appli
ations based on Grid infrastru
-tures, des
ribed in the paper, 
on
retely show how it 
an be exploited for s
ienti�
 purposes. Moreover, the
omputational power of distributed and parallel systems 
an be exploited for knowledge dis
overy in s
ienti�
data. Parallel and distributed data mining suites and 
omputational Grid te
hnology are two 
riti
al elementsof future high-performan
e 
omputing environments for e-s
ien
e. In su
h a dire
tion, the Knowledge Grid
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e software ar
hite
ture for geographi
ally distributed knowledge dis
overy systems that allows toimplement 
omplex data analysis appli
ations as a 
olle
tion of distributed servi
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