
Salable Computing: Pratie and ExperieneVolume 11, Number 3, pp. 251�262. http://www.spe.org ISSN 1895-1767© 2010 SCPEUSING GRIDS FOR EXPLOITING THE ABUNDANCE OF DATA IN SCIENCEEUGENIO CESARIO∗AND DOMENICO TALIA∗,†Abstrat. Digital data volumes are growing exponentially in all sienes. To handle this abundane in data availability,sientists must use data analysis tehniques in their sienti� praties and solving environments to get the bene�ts omingfrom knowledge that an be extrated from large data soures. When data is maintained over geographially remote sites theomputational power of distributed and parallel systems an be exploited for knowledge disovery in sienti� data. In this senariothe Grid an provide an e�etive omputational support for distributed knowledge disovery on large datasets. In partiular, Gridservies for data integration and analysis an represent a primary omponent for e-siene appliations involving distributed massiveand omplex data sets. This paper desribes some researh ativities in data-intensive Grid omputing. In partiular we disussthe use of data mining models and servies on Grid systems for the analysis of large data repositories.Key words: e-siene, knowledge disovery, grid, parallel data mining, distributed data mining, grid-based data mining1. Introdution. The past two deades have been dominated by the advent of inreasingly powerful andless expensive ubiquitous omputing, as well as the appearane of the World Wide Web and related teh-nologies [12℄. Due to suh advanes in information tehnology and high performane omputing, digital datavolumes are growing exponentially in many �elds of human ativities. This phenomenon onerns sienti�disiplines, as well as industry and ommere. Suh tehnologial development has also generated a whole newset of hallenges: the world is drowning in a huge quantity of data, whih is still growing very rapidly both inthe volume and omplexity.Jim Gray in some talks in 2006 identi�ed four hronologial steps for the methodologies employed bysientists for disoveries. The �rst step ourred thousand years ago, when siene was empirial and it wasoriented to just desribe natural phenomena. The seond one is temporally loated around a few hundred yearsago, when a theoretial branh was born, aimed at formulating some general models desribing the empirialknowledge. The third step ourred in the latest few deades, when a omputational branh started up andomplex phenomena started to be simulated by the resoures made available by the urrent tehnology. Finally,the fourth step is run today, when sientists are working to unify theories, experiments and simulations withdata proessing and exploration to extrat knowledge hidden in it.The abundane of digitally stored data require to onsider in detail this phenomenon. In partiular, thereare two important trends, tehnologial and methodologial, whih seem to partiularly distinguish the new,information-rih siene from the past:
• Tehnologial. There is a lot of data olleted and warehoused in various repositories distributed over theworld: data an be olleted and stored at high speeds in loal databases, from remote soures or fromthe our galaxy. Some examples inlude data sets from the �elds of medial imaging, bio-informatis,remote sensing and (as very innovative aspet) several digital sky surveys. This implies a need forreliable data storage, networking, and database-related tehnologies, standards and protools.
• Methodologial. Huge data sets are hard to understand, and in partiular data onstruts and patternspresent in them annot be omprehended by humans diretly. This is a diret onsequene of thegrowth in omplexity of information, and mainly its multi-dimensionality. For example, a omputationalsimulation an generate terabytes of data within a few hours, whereas human analysts may take severalweeks to analyze these data sets. For suh a reason, most of data will never be read by humans, ratherthey are to be proessed and analyzed by omputers.We an summarize what we foresaid as follows: whereas some deades ago the main problem was the lakof information, the hallenge now seems to be (i) the very large volume of information and (ii) the assoiatedomplexity to proess for extrating signi�ant and useful parts or summaries.Nevertheless, the �rst aspet does not represent a limitation or a problem for the sienti� ommunity:urrent data storage, arhitetural solutions and ommuniation protools provide a reliable tehnologial baseto ollet and store suh abundane of data in an e�ient and e�etive way. Moreover, the availability ofhigh throughput sienti� instrumentation and very inexpensive digital tehnologies failitated this trend fromboth tehnologial and eonomial view point. On the other hand, the omputational power of omputers is
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252 E. Cesario and D. Talianot growing as fast as the demand of suh a data omputation requires, and this represents a limit for theknowledge that potentially ould be extrated. As an additional aspet, we have to onsider that storage ostsare urrently dereasing faster than omputing osts, and this trend makes things worse.For example, the impat of foresaid issues in the biologial �eld is well desribed in [20℄. It points out thatthe emergene of genome and post-genome tehnology has made huge amount of data available, demandinga proportional support of analysis. Nevertheless, an important fator to be onsidered is that the numberof available omplete genomi sequenes is doubling almost every 12 months, whereas aording to Moore'slaw available ompute yles (i. e., omputational power) double every 18 months. Additionally, we have toonsider that analysis of genomi sequenes require binary omparisons of the genes involved in it. As a diretonsequene of that, the omputational overhead is very very high. We an see the impat of suh issuesin Figure 1.1 (soure: [20℄), whih ontrasts the number of geneti sequenes obtained with the number ofannotations generated. The �gure shows that the knowledge (annotations, models, patterns) has a sub-linearrate with respet to the the available data sequenes whih they are extrated from.

Fig. 1.1. Growth of sequenes and annotations sine 1982 (Soure: [20℄)To handle this abundane in data availability (whose rate of prodution often far outstrips our abilityto analyze), appliations are emerging that explore, query, analyze, visualize, and in general, proess verylarge-sale data sets: they are named data intensive appliations. Computational siene is evolving towarddata intensive appliations that inlude data integration and analysis, information management, and knowledgedisovery. In partiular, knowledge disovery in large data repositories an �nd what is interesting in them byusing data mining tehniques. Data intensive appliations in siene help sientists in hypothesis formation andgive them a support on their sienti� praties and solving environments, getting the bene�ts oming fromknowledge that an be extrated from large data soures.When data is maintained over geographially distributed sites the omputational power of distributed andparallel systems an be exploited for knowledge disovery in sienti� data. Parallel and distributed datamining algorithms are suitable to suh a purpose. Moreover, in this senario the Grid an provide an e�etiveomputational support for data intensive appliation and for knowledge disovery from large and distributeddatasets. Grid omputing is reeiving an inreasing attention from the researh ommunity, wathing at thisnew omputing infrastruture as a key tehnology for solving omplex problems and implementing distributedhigh-performane appliations [14℄.Today many organizations, ompanies, and sienti� enters produe and manage large amounts of omplexdata and information. Climate, astronomi, and genomi data together with ompany transation data are justsome examples of massive amounts of digital data that today must be stored and analyzed to �nd usefulknowledge in them. This data and information patrimony an be e�etively exploited if it is used as a soureto produe knowledge neessary to support deision making. This proess is both omputationally intensive,ollaborative, and distributed in nature. The development of data mining software for Grids o�ers tools andenvironments to support the proess of analysis, inferene, and disovery over distributed data available inmany sienti� and business areas. The reation of frameworks on top of data and omputational Grids is the



Using Grids for Exploiting the Abundane of Data in Siene 253enabling ondition for developing high-performane data mining tasks and knowledge disovery proesses, andit meets the hallenges posed by the inreasing demand for power and abstratness oming from omplex datamining senarios in siene and engineering. For example, some projets desribed in Setion 2 suh as NASAInformation Grid, TeraGrid, and Open Siene Grid use the omputational and storage failities in their Gridinfrastrutures to mine data in a distributed way. Sometime in these projets are used ad ho solutions for datamining, in other ases generi middleware is used on top of basi Grid toolkits. As pointed out by William E.Johnston in [19℄, the use of general purpose data mining tools may e�etively support the analysis of massiveand distributed data sets in large sale siene and engineering.The Grid allows to federate and share heterogeneous resoures and servies suh as software, omputers,storage, data, networks in a dynami way. Grid servies an be the basi element for omposing software and dataelements, and exeuting omplex appliations on Grid and Web systems. Today the Grid is not just omputeyles, but it is also a distributed data management infrastruture. Integrating those two features with �smart"algorithms we an obtain a knowledge-intensive platform. The driving Grid appliations are traditionallyhigh-performane and data intensive appliations, suh as high-energy partile physis, and astronomy andenvironmental modeling, in whih experimental devies reate large quantities of data that require sienti�analysis.In the latest years many signi�ant Grid-based data intensive appliations and infrastrutures have beenimplemented. In partiular, the servie-based approah is allowing the integration of Grid and Web for handlingwith data. We will brie�y report some of these appliations in the �rst of the paper; then we disuss about theuse of high performane data mining tehniques for siene in Grid platforms.The rest of the paper is organized as follows. Setion 2 desribes some Grid-based data intensive projets andappliations. Setion 3 gives an overview of approahes for parallel, distributed and Grid-based data miningtehniques. Setion 4 introdues the Knowledge Grid, a referene software arhiteture for geographiallydistributed knowledge disovery systems. The Setion 5 gives onluding remarks.2. Grid Tehnologies for dealing with Sienti� data. Several sienti� teams and ommunities areusing Grid tehnology for dealing with intensive appliations aimed at sienti� data proessing. As examplesof this approah, in the following we shortly desribe some of them.2.1. The DataGrid Projet: Grid for Physis. The European DataGrid [11℄ is a projet funded bythe European Union with the aim of setting up a omputational and data-intensive Grid of resoures for theanalysis of data oming from sienti� exploration. The main goal of the projet is to oordinate resouresharing, ollaborative proessing and analysis of huge amounts of data produed and stored by many sien-ti� laboratories belonging to several institutions. It is made e�etive by the development of a tehnologialinfrastruture enabling sienti� ollaborations where researhers and sientists will perform their ativitiesregardless of geographial loation. The projet develops salable software solutions in order to handle manyPBs1 of distributed data, tens of thousand of omputing resoures (proessors, disks, et.), and thousands ofsimultaneous users from multiple researh institutions. The three real data intensive omputing appliationsareas overed by the projet are biology/medial, earth observation and partile physis. In partiular, thelast one is oriented to answer longstanding questions about the fundamental partiles of matter and the foresating between them. The goal is to understand why some partiles are muh heavier than others, and whypartiles have mass at all. To that end, CERN2 has built the Large Hadron Collider (LHC), the most powerfulpartile aelerator ever oneived, that generates huge amounts of data. It is estimated that LHC generatesapproximately 1 GB/se and 10 PB/year of data. The DataGrid Projet provided the solution for storing andproessing this data, based on a multi-tiered, hierarhial omputing model for sharing data and omputingpower among multiple institutions. In partiular, a Tier-0 entre is loated at CERN and is linked by highspeed networks to approximately ten major Tier-1 data proessing entres. These fan out the data to a largenumber of smaller ones (Tier-2).The DataGrid projet ended on Marh 2004, but many of the produts (tehnologies, infrastruture, et.)are used and extended in the EGEE projet. The Enabling Grids for E-sienE (EGEE) [13℄ projet bringstogether sientists and engineers from more than 240 institutions in 45 ountries world-wide to provide a seamlessGrid infrastruture for e-Siene that is available to sientists 24 hours/day. Expanding from originally two
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254 E. Cesario and D. Taliasienti� �elds, high energy physis and life sienes, EGEE now integrates appliations from many othersienti� �elds, ranging from geology to omputational hemistry. The EGEE Grid onsists of over 36,000CPUs available to users 24 hours a day, 7 days a week, in addition to about 5 PB disk of storage, and maintains30,000 onurrent jobs on average. Having suh resoures available hanges the way sienti� researh takesplae. The end use depends on the users' needs: large storage apaity, the bandwidth that the infrastrutureprovides, or the sheer omputing power available. Generally, the EGEE Grid infrastruture is ideal for anysienti� researh espeially where the time and resoures needed for running the appliations are onsideredimpratial when using traditional IT infrastrutures.2.2. The NASA Information Power Grid (IPG) Infrastruture. The NASA's Information PowerGrid (IPG) [18℄ is a high-performane omputing and data grid built primarily for use by NASA sientistsand engineers. The IPG has been onstruted by NASA between 1998 and the present making heavy use ofGlobus Toolkit omponents to provide Grid aess to heterogeneous omputational resoures managed by severalindependent researh laboratories. Sientists and engineers aess the IPG's omputational resoures from anyloation with Grid interfaes providing seurity, uniformity, and ontrol. Sientists beyond NASA an also usefamiliar Grid interfaes to inlude IPG resoures in their appliations (with appropriate authorization). TheIPG infrastruture has been and is being used by numerous sienti� and engineering e�orts both within andbeyond NASA. Some of its most important appliations are omputational �uid dynamis and meteorologialdata mining.2.3. TeraGrid. TeraGrid [29℄ is an open sienti� disovery infrastruture ombining leadership lassresoures (inluding superomputers, storage, and sienti� visualization systems) at nine partner sites to reatean integrated, persistent omputational resoure. It is oordinated by the Grid Infrastruture Group (GIG)at the University of Chiago. Using high-performane network onnetions, the TeraGrid integrates high-performane omputers, data resoures and tools, and high-end experimental failities around the ountry.Currently, TeraGrid resoures inlude more than 250 tera�ops of omputing apability and more than 30 PBsof online and arhival data storage, with rapid aess and retrieval over high-performane networks. Researhersan also aess more than 100 disipline-spei� databases. With this ombination of resoures, the TeraGrid isone of the world's largest and most omprehensive distributed Grid infrastruture for open sienti� researh.2.4. NASA and Google. Reently NASA initiated a joint projet with Google, In. for applying Googlesearh tehnology to help sientists to proess, organize, and analyze the large-sale streams of data omingfrom the Large Synopti Survey Telesope (LSST), loated in Chile. When ompleted, the LSST will generateover 30 terabytes of multiple olor images of visible sky eah night. Google will ollaborate with LSST todevelop searh and data aess tehniques and servies that an proess, organize and analyze the very largeamounts of data oming from the instrument's data streams in real time. The engine will reate �data images"for sientists to view signi�ant spae events and extrat important features from them. This joint projet willshow how omplex data management tehniques generally used in searh engines an be exploited for sienti�disovery.In the general framework of this ollaboration, the main NASA's goal is to make its huge stores of dataolleted during everything from spaeraft missions, moon landings to landings on Mars to orbits aroundJupiter�available to sientists and the publi. Some of the data an already be found on NASA's Web site butexploiting Google tehniques with high performane failities, this data will be aessible in an easy way.2.5. Open Siene Grid. The Open Siene Grid [24℄ is a ollaboration of siene researhers, softwaredevelopers and omputing, storage and network providers. It gives aess to shared resoures worldwide tosientists (from universities, national laboratories and omputing enters aross the United States). The OpenSiene Grid links storage and omputing resoures at more than 30 sites aross the United States. TheOSG works atively with many partners, inluding Grid and network organizations and international, national,regional and ampus Grids, to reate a Grid infrastruture that spans the globe. Sientists from many di�erent�elds use the OSG to advane their researh. Appliations of OSG projet are ative in various areas of siene,like partile and nulear physis, astrophysis, bioinformatis, gravitational-wave siene, mathematis, medialimaging and nanotehnology. OSG resoures inlude thousands of omputers and 10 of terabytes of arhivaldata storage.2.6. myExperiment. myExperiment [22℄ is a ollaborative researh environment whih enables sientiststo share, reuse and repurpose experiments. It is based on the idea that sientists usually prefer to share



Using Grids for Exploiting the Abundane of Data in Siene 255experimental results than data. myExperiment has been in�uened by soial networking programs suh asWired and Flikr, and is based on the mySpae infrastruture. myExperiment enables sientists to share anduse work�ows and redue time-to-experiment, share expertise and avoid reinvention. myExperiment reates anenvironment for sientists to adopt Grid tehnologies, where they an de�ne, when they share data, with whomthey share it and how muh of it an be aessed. The myExperiment projet mainly fouses its appliationsat ase studies for the spei� areas of astronomy, bio-informatis, hemistry and soial siene.2.7. National Virtual Observatory. The National Virtual Observatory [23℄ is a new researh projetwhose goal is to make all the astronomial data in the world quikly and easily aessible by anyone. Suh aprojet enables a new way of doing astronomy, moving from an era of observations of small, arefully seletedsamples of objets in one or a few wavelength bands, to the use of multi-wavelength data for millions, or evenbillions of objets. Suh large olletion of data makes researhers able to disover subtle, but signi�ant,patterns in statistially rih and unbiased databases, and to understand omplex astrophysial systems throughthe omparison of data to numerial simulations. With the National Virtual Observatory (NVO), astronomersexplore data that others have already olleted, �nding new uses and new disoveries in existing data. NVOenables astronomers to do a new type of researh that, ombined with traditional telesope observations, willlead to many new and interesting disoveries. It is worth notiing that the NVO has proposed to exploit theomputational resoures of the TeraGrid projet (desribed in the Setion 2.3), in order to enable astronomersin the exploration and analysis of the physial proesses that drive the formation and evolution of our universe,and enouraging new ways to use superomputing failities for siene.2.8. Southern California Earthquake Center. The Southern California Earthquake Center projet[26℄ is aimed at developing new omputing apabilities, that an lead to better foreasts of when and whereearthquakes are likely to our in Southern California, and how the ground will shake as a result. The �nalgoal is to improve mathematial models about the struture of the Earth and how the ground moves duringearthquakes. The projet team inludes ollaborating researhers from Southern California Earthquake Center(SCEC), the Information Sienes Institute (ISI) at USC, the San Diego Superomputing Center (SDSC), theInorporated Institutions for Seismology (IRIS), and the United States Geologial Survey (USGS). The projetheavily exploits Grid tehnologies, allowing sientists to organize and retrieve information stored throughoutthe ountry, and giving advantages of the proessing power of a network of many omputers.3. Data Mining and Knowledge Disovery. After disussing signi�ant data management issues andprojets, here we fous on data mining tehniques for knowledge disovery in large sienti� data reposito-ries. Data Mining is the semi-automati disovery of patterns, models, assoiations, anomalies and (statistiallysigni�ant) strutures hidden in data. Traditional data analysis is assumption-driven, that is the hypothesisis formed and validated against the data. Data mining, in ontrast, is disovery-driven, in the sense thatthe patterns (and models) are automatially extrated from data. Data mining founds its appliation to sev-eral sienti� and engineering domains, inluding astrophysis, medial imaging, omputational �uid dynamis,biology, strutural mehanis, and eology.From a sienti� viewpoint, data an be olleted by many soures: remote sensors on a satellite, telesopesanning the sky, miroarrays generating gene expression data, sienti� simulations, et. Moreover, in suhinfrastrutures data are olleted and stored at enormous speeds (GBs/hour). Both suh aspets imply thatsienti� appliation have to deal with massive volume of data.Mining large data sets requires powerful omputational resoures. A major issue in data mining is salabilitywith respet to the very large size of urrent-generation and next-generation databases, given the exessivelylong proessing time taken by (sequential) data mining algorithms on realisti volumes of data. In fat, datamining algorithms working on very large data sets take a very long time on onventional omputers to getresults. In order to improve performanes, some parallel and distributed approahes have been proposed.Parallel omputing is a viable solution for proessing and analyzing data sets in reasonable time by usingparallel algorithms. High performane omputers and parallel data mining algorithms an o�er a very e�ientway to mine very large data sets [27℄, [28℄ by analyzing them in parallel. Under a data mining perspetive, suha �eld is known as parallel data mining (PDM ).Beyond the development of knowledge disovery systems based on parallel omputing platforms, a lot ofwork has been devoted to design systems able to handle and analyze multi-site data repositories. Mining knowl-edge from data aptured by instruments, sienti� analysis, simulation results that ould be distributed over theworld, questions the suitability of entralized arhitetures for large-sale knowledge disovery in a networked



256 E. Cesario and D. Taliaenvironment. The researh area named distributed data mining o�ers an alternative approah. It works byanalyzing data in a distributed fashion and pays partiular attention to the trade-o� between entralized ol-letion and distributed analysis of data. This tehnology is partiularly suitable for appliations that typiallydeal with very large amount of data (e.g., transation data, sienti� simulation and teleommuniation data),whih annot be analyzed in a single site on traditional mahines in aeptable times.Grid tehnology integrates both distributed and parallel omputing, thus it represents a ritial infrastru-ture for high-performane distributed knowledge disovery. Grid omputing was designed as a new paradigm foroordinated resoure sharing and problem solving in advaned siene and engineering appliations. For thesereasons, Grids an o�er an e�etive support to the implementation and use of knowledge disovery systems byGrid-based Data Mining approahes.In the following parallel, distributed and Grid-based data mining are disussed.3.1. Parallel Data Mining. Parallel Data Mining is onerned with the study and appliation of datamining analysis done by parallel algorithms. The key idea underlying suh a �eld is that parallel omputingan give signi�ant bene�ts in the implementation of data mining and knowledge disovery appliations, bymeans of the exploitation of inherent parallelism of data mining algorithms. Main goals of the use of parallelomputing tehnologies in the data mining �eld are: (i) performane improvements of existing tehniques, (ii)implementation of new (parallel) tehniques and algorithms, and (iii) onurrent analysis using di�erent datamining tehniques in parallel and result integration to get a better model (i. e., more aurate results).As observed in [5℄, three main strategies an be identi�ed in the exploitation of parallelism algorithms:Independent Parallelism, Task Parallelism and Single Program Multiple Data (SPMD) Parallelism. We pointout that this is a well known lassi�ation of general strategies for developing parallel algorithms, in fat theyare not neessarily related only to data mining purposes. Nevertheless, in the following we will desribe theunderlying idea of suh strategies by ontextualizing them in data mining appliations. A short desription ofthe underlying idea of suh strategies follows.Independent Parallelism. It is exploited when proesses are exeuted in parallel in an independent way.Generally, eah proess has aess to the whole data set and does not ommuniate or synhronize with otherproesses. Suh a strategy, for example, is applied when p di�erent instanes of the same algorithm are exeutedon the whole data set, but eah one with a di�erent setting of input parameters. In this way, the omputation�nds out p di�erent models, eah one determined by a di�erent setting of input parameters. A validation stepshould learn whih one of the p preditive models is the most reliable for the topi under investigation. Thisstrategy often requires ommutations among the parallel ativities.Task Parallelism. It is known also as Control Parallelism. It supposes that eah proess exeutes di�erentoperations on (a di�erent partition of) the data set. The appliation of suh a strategy in deision tree learning,for example, leads to have p di�erent proesses running, eah one assoiated to a partiular subtree of thedeision tree to be built. The searh goes parallely on in eah subtree and, as soon as all the p proesses�nish their exeutions, the whole �nal deision tree is omposed by joining the various subtrees obtained by theproesses.SPMD Parallelism. The single program multiple data (SPMD) model [10℄ (also alled data parallelism) isexploited when a set of proesses exeute in parallel the same algorithm on di�erent partitions of a data set, andproesses ooperate to exhange partial results. Aording to this strategy, the dataset is initially partitionedin p parts, if p is the apriori-�xed parallelism degree (i. e., the number of proesses running in parallel). Then,the p proesses searh in parallel a preditive model for the subset assoiated to it. Finally, the global result isobtained by exhanging all the loal models information.These three strategies for parallelizing data mining algorithms are not neessarily alternative. In fat, theyan be ombined to improve both performane and auray of results. For ompleteness, we say also that inombination with strategies for parallelization, di�erent data partition strategies may be used : (i) sequentialpartitioning (separate partitions are de�ned without overlapping among them), (ii) over-based partitioning(some data an be repliated on di�erent partitions) and (iii) range-based query partitioning (partitions arede�ned on the basis of some queries that selet data aording to attribute values).Arhitetural issues are a fundamental aspet for the goodness of a parallel data mining algorithm. In fat,interonnetion topology of proessors, ommuniation strategies, memory usage, I/O impat on algorithmperformane, load balaning of the proessors are strongly related to the e�ieny and e�etiveness of theparallel algorithm. For lak of spae, we an just ite those. The mentioned issues (and others) must be takeninto aount in the parallel implementation of data mining tehniques. The arhitetural issues are strongly



Using Grids for Exploiting the Abundane of Data in Siene 257related to the parallelization strategies and there is a mutual in�uene between knowledge extration strategiesand arhitetural features. For instane, inreasing the parallelism degree in some ases orresponds to aninrement of the ommuniation overhead among the proessors. However, ommuniation osts an be alsobalaned by the improved knowledge that a data mining algorithm an get from parallelization. At eah iterationthe proessors share the approximated models produed by eah of them. Thus eah proessor exeutes a nextiteration using its own previous work and also the knowledge produed by the other proessors. This approahan improve the rate at whih a data mining algorithm �nds a model for data (knowledge) and make up for losttime in ommuniation. Parallel exeution of di�erent data mining algorithms and tehniques an be integratednot just to get high performane but also high auray.3.2. Distributed Data Mining. Traditional warehouse-based arhitetures for data mining suppose tohave entralized data repository. Suh a entralized approah is fundamentally inappropriate for most of thedistributed and ubiquitous data mining appliations. In fat, the long response time, lak of proper use ofdistributed resoure, and the fundamental harateristi of entralized data mining algorithms do not work wellin distributed environments. A salable solution for distributed appliations alls for distributed proessing ofdata, ontrolled by the available resoures and human fators. For example, let us onsider an ad ho wirelesssensor network where the di�erent sensor nodes are monitoring some time-ritial events. Central olletion ofdata from every sensor node may reate tra� over the limited bandwidth wireless hannels and this may alsodrain a lot of power from the devies.A distributed arhiteture for data mining is likely aimed to redue the ommuniation load and also toredue the battery power more evenly aross the di�erent nodes in the sensor network. One an easily imaginesimilar needs for distributed omputation of data mining primitives in ad ho wireless networks of mobile devieslike PDAs, ellphones, and wearable omputers [25℄. The wireless domain is not the only example. In fat, mostof the appliations that deal with time-ritial distributed data are likely to bene�t by paying areful attentionto the distributed resoures for omputation, storage, and the ost of ommuniation. As an other example,let us onsider the World Wide Web as it ontains distributed data and omputing resoures. An inreasingnumber of databases (e.g., weather databases, oeanographi data, et.) and data streams (e.g., �nanial data,emerging disease information, et.) are urrently made on-line, and many of them hange frequently. It is easyto think of many appliations that require regular monitoring of these diverse and distributed soures of data.A distributed approah to analyze this data is likely to be more salable and pratial partiularly whenthe appliation involves a large number of data sites. Hene, in this ase we need data mining arhiteturesthat pay areful attention to the distribution of data, omputing and ommuniation, in order to aess and usethem in a near optimal fashion. Distributed data mining (DDM ) onsiders data mining in this broader ontext.DDM may also be useful in environments with multiple ompute nodes onneted over high speed networks.Even if the data an be quikly entralized using the relatively fast network, proper balaning of omputationalload among a luster of nodes may require a distributed approah. The privay issue is playing an inreasinglyimportant role in the emerging data mining appliations. For example, let us suppose a onsortium of di�erentbanks ollaborating for deteting frauds. If a entralized solution was adopted, all the data from every bankshould be olleted in a single loation, to be proessed by a data mining system. Nevertheless, in suh a asea distributed data mining system should be the natural tehnologial hoie: it is able to learn models fromdistributed data without exhanging the raw data among di�erent repositories, and it allows detetion of fraudby preserving the privay of every bank's ustomer transation data.For what onerns tehniques and arhiteture, it is worth notiing that many several other �elds in�ueneDistributed Data Mining systems onepts. First, many DDM systems adopt the multi-agent system (MAS)arhiteture, whih �nds its root in the distributed arti�ial intelligene (DAI). Seond, although parallel datamining often assumes the presene of high speed network onnetions among the omputing nodes, the devel-opment of DDM has also been in�uened by the PDM literature. Most DDM algorithms are designed upon thepotential parallelism they an apply over the given distributed data. Typially, the same algorithm operates oneah distributed data site onurrently, produing one loal model per site. Subsequently, all loal models areaggregated to produe the �nal model. In Figure 3.1 a general distributed data mining framework is presented.The suess of DDM algorithms lies in the aggregation. Eah loal model represents loally oherent patterns,but laks details that may be required to indue globally meaningful knowledge. For this reason, many DDMalgorithms require a entralization of a subset of loal data to ompensate it. The ensemble approah hasbeen applied in various domains to inrease the auray of the preditive model to be learnt. It produes



258 E. Cesario and D. Taliamultiple models and ombines them to enhane auray. Typially, voting (weighted or un-weighted) shemaare employed to aggregate base model for obtaining a global model. As we have disussed above, minimumdata transfer is another key attribute of the suessful DDM algorithm. As a �nal onsideration, the homo-geneity/heterogeneity of resoures is another important aspet to be onsidered in the distributed data miningapproahes. In this senario, the term "resoures" refers both to omputational resoures (omputers withsimilar/di�erent omputational power) and data resoures (datasets with horizontally/vertially partitioningamong nodes). The �rst meaning a�ets only the algorithm exeution time, while data heterogeneity plays afundamental role in the algorithm design. That is, dealing with di�erent data formats it requires algorithmsdesigned in aordane to the di�erent data formats.
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Fig. 3.1. General Distributed Data Mining Framework.3.3. Grid-based Data Mining. In the last years, Grid omputing is reeiving an inreasing attentionboth from the researh ommunity and from industry and governments, wathing at this new omputing in-frastruture as a key tehnology for solving omplex problems and implementing distributed high-performaneappliations. Grid tehnology integrates both distributed and parallel omputing, thus it represents a ritialinfrastruture for high-performane distributed knowledge disovery. Grid omputing di�ers from onventionaldistributed omputing beause it fouses on large-sale dynami resoure sharing, o�ers innovative appliations,and, in some ases, it is geared toward high-performane systems. The Grid emerged as a privileged omputinginfrastruture to develop appliations over geographially distributed sites, providing for protools and serviesenabling the integrated and seamless use of remote omputing power, storage, software, and data, managed andshared by di�erent organizations.Basi Grid protools and servies are provided by toolkits suh as Globus Toolkit (www.globus.org/toolkit), Condor (www.s.wis.edu/ondor), Glite, and Uniore. In partiular, the Globus Toolkit is themost widely used middleware in sienti� and data-intensive Grid appliations, and is beoming a de fato stan-dard for implementing Grid systems. This toolkit addresses seurity, information disovery, resoure and datamanagement, ommuniation, fault-detetion, and portability issues. A wide set of appliations is being devel-oped for the exploitation of Grid platforms. Sine appliation areas range from sienti� omputing to industryand business, speialized servies are required to meet needs in di�erent appliation ontexts. In partiular,data Grids have been designed to easily store, move, and manage large data sets in distributed data-intensiveappliations. Besides ore data management servies, knowledge-based Grids, built on top of omputational anddata Grid environments, are needed to o�er higher-level servies for data analysis, inferene, and disovery insienti� and business areas [21℄. In some papers, see for example [1℄, [19℄, and [7℄, it is laimed that the reationof knowledge Grids is the enabling ondition for developing high-performane knowledge disovery proessesand meeting the hallenges posed by the inreasing demand of power and abstratness oming from omplexproblem solving environments.4. The Knowledge Grid. The Knowledge Grid [3℄ is an environment providing knowledge disoveryservies for a wide range of high performane distributed appliations. Data sets and analysis tools used in suh



Using Grids for Exploiting the Abundane of Data in Siene 259appliations are inreasingly beoming available as stand-alone pakages and as remote servies on the Internet.Examples inlude gene and DNA databases, network aess and intrusion data, drug features and e�ets datarepositories, astronomy data �les, and data about web usage, ontent, and struture. Knowledge disoveryproedures in all these appliations typially require the reation and management of omplex, dynami, multi-step work�ows. At eah step, data from various soures an be moved, �ltered, and integrated and fed into a datamining tool. Based on the output results, the developer hooses whih other data sets and mining omponentsan be integrated in the work�ow, or how to iterate the proess to get a knowledge model. Work�ows are mappedon a Grid by assigning nodes to the Grid hosts and using interonnetions for implementing ommuniationamong the work�ow nodes.For ompleteness of treatment, we point out some other Grid-based knowledge disovery systems and a-tivities that have been designed in reent years. Disovery Net [8℄ is an infrastruture for e�etively supportsienti� knowledge disovery proess, in partiular in the areas of life siene and geo-hazard predition. DataS-pae [17℄ is a framework providing e�ient data aess and transfer over the Grid that implements an ad-hoprotool for working with remote and distributed data (named DataSpae transfer protool, DSTP). Info-Grid [16℄ is a servie-based data integration middleware engine, designed to provide information aess andquerying servies not in an 'universal' way, but by a personalized view of the resoures for eah partiular ap-pliation domain. DataCutter [2℄ is another Grid middleware framework aimed at providing spei� servies forthe support of multi-dimensional range-querying, data aggregation and user-de�ned �ltering over large sienti�datasets in shared distributed environments. Finally, GATES [4℄ (Grid-based AdapTive Exeution on Streams)is an OGSA based system that provides support for proessing of data streams in a Grid environment. Thissystem is designed to support the distributed analysis of data streams arising from distributed soures (e.g.,data from large sale experiments/simulations). GATES provides automati resoure disovery and an interfaefor enabling self-adaptation to meet real-time onstraints.The Knowledge Grid arhiteture is designed aording to the Servie Oriented Arhiteture (SOA), thatis a model for building �exible, modular, and interoperable software appliations. The key aspet of SOAis the onept of servie, that is a software blok apable of performing a given task or business funtion.Eah servie operates by adhering to a well de�ned interfae, de�ning required parameters and the nature ofthe result. One de�ned and deployed, servies are like �blak boxes", that is, they work independently ofthe state of any other servie de�ned within the system, often ooperating with other servies to ahieve aommon goal. The most important implementation of SOA is represented by Web Servies, whose popularity ismainly due to the adoption of universally aepted tehnologies suh as XML, SOAP, and HTTP. Also the Gridprovides a framework whereby a great number of servies an be dynamially loated, balaned, and managed,so that appliations are always guaranteed to be seurely exeuted, aording to the priniples of on-demandomputing.The Grid ommunity has adopted the Open Grid Servies Arhiteture (OGSA) as an implementation ofthe SOA model within the Grid ontext. In OGSA every resoure is represented as a Web Servie that onformsto a set of onventions and supports standard interfaes. OGSA provides a well-de�ned set of Web Servieinterfaes for the development of interoperable Grid systems and appliations [15℄. Reently the WS-ResoureFramework (WSRF) has been adopted as an evolution of early OGSA implementations [9℄. WSRF de�nesa family of tehnial spei�ations for aessing and managing stateful resoures using Web Servies. Theomposition of a Web Servie and a stateful resoure is termed as WS-Resoure. The possibility to de�ne aâ��stateâ�� assoiated to a servie is the most important di�erene between WSRF-ompliant Web Servies,and pre-WSRF ones. This is a key feature in designing Grid appliations, sine WS-Resoures provide a wayto represent, advertise, and aess properties related to both omputational resoures and appliations.The Knowledge Grid is a software for implementing knowledge disovery tasks in a wide range of high-performane distributed appliations. It o�ers to users high-level abstrations and a set of servies by whihthey an integrate Grid resoures to support all the phases of the knowledge disovery proess.The Knowledge Grid supports suh ativities by providing mehanisms and higher level servies for searhingresoures, representing, reating, and managing knowledge disovery proesses, and for omposing existing dataservies and data mining servies in a strutured manner, allowing designers to plan, store, doument, verify,share and re-exeute their work�ows as well as manage their output results. The Knowledge Grid arhitetureis omposed of a set of servies divided in two layers: the Core K-Grid layer and the High-level K-Grid layer.The �rst interfaes the basi and generi Grid middleware servies, while the seond interfaes the user byo�ering a set of servies for the design and exeution of knowledge disovery appliations. Both layers make



260 E. Cesario and D. Taliause of repositories that provide information about resoure metadata, exeution plans, and knowledge obtainedas result of knowledge disovery appliations.In the Knowledge Grid environment, disovery proesses are represented as work�ows that a user mayompose using both onrete and abstrat Grid resoures. Knowledge disovery work�ows are de�ned using avisual interfae that shows resoures (data, tools, and hosts) to the user and o�ers mehanisms for integratingthem in a work�ow. Information about single resoures and work�ows are stored using an XML-based notationthat represents a work�ow (alled exeution plan in the Knowledge Grid terminology) as a data-�ow graph ofnodes, eah one representing either a data mining servie or a data transfer servie. The XML representationallows the work�ows for disovery proesses to be easily validated, shared, translated in exeutable sripts, andstored for future exeutions. It is worth notiing that when the user submits a knowledge disovery appliationto the Knowledge Grid, she has no knowledge about all the low level details needed by the exeution plan. Morepreisely, the lient submits to the Knowledge Grid a high level desription of the KDD appliation, namedoneptual model, more targeted to distributed knowledge disovery aspets than to grid-related issues. TheKnowledge Grid in a �rst step reates an exeution plan on the basis of the oneptual model reeived from theuser, and then exeutes it by using the resoures e�etively available. To realize this logi, it initially modelsan abstrat exeution plan (where some spei�ed resoure ould remain 'abstratly' de�ned, i. e. they ould notmath with a real resoure), that in a seond step is resolved into a onrete exeution plan (where a mathingbetween eah resoure and someone really available on the Grid is found).The Knowledge Grid has been used in various real senarios, pointing out its suitability in several heteroge-neous appliations. For lak of spae we are not able to disuss about them. For suh a reason we give here justsome outlines, more details an be found in the ited papers. The goal of the example desribed in [6℄ was toobtain a lassi�er for an intrusion detetion system, performing a mining proess on a (very large size) datasetontaining reords generated by network monitoring. The example reported in [5℄ was a simple meta-learningproess, that exploits the Knowledge Grid to generate a number of independent lassi�ers by applying learningprograms to a olletion of distributed data sets in parallel.As a sienti� appliation senario, let us onsider the olletion of sky observations and the analysisof their harateristis. Let us suppose to have distint image data obtained by observations and simula-tions, from whih we want to extrat signi�ant metris. Generally, a signi�ative set of astronomy data isvery large size (≈ 20 − 30 terabytes). In addition, suh kind of observation are very high-dimensional, be-ause eah point is usually desribed by ≈ 103 attributes (inluding morphologial parameters, �ux ratios,et.). Finally, they usually are full of missing values and noise. Then, the main issue here is to analyzea distribution of ≈ 20 − 30 terabytes of points in a parameter spae of ≈ 103 dimensions. Let us sup-pose that our e�ort is devoted to identify how many distint types of objets are there (i. e., stars, galax-ies, quasars, blak holes, et.), and grouping them with respet to their type. This an be obtained by alustering analysis, however it is a non-trivial task if we onsider the large size data and their high dimen-sionality. To suh a purpose, a distributed framework an be suitable to get results in a reasonable time.Initially we have a data repository where all suh an observed sky data is olleted (for example, an astro-nomi observatory). Then, suh a data is proessed by a distributed lustering algorithm. In order to dothat, they are partitioned on many nodes and proessed on those nodes in parallel. The results of everylustering algorithm are olleted and ombined to obtain a global lustering model. In addition, eah out-lier an represent a possible (rare) new objet. For suh a reason, and in order to get more knowledge fromthem, all the deteted outliers are transferred to another node for a further lassi�ation, i. e. by a deisiontree.Figure 4.1 shows suh a distributed meta-learning senario, in whih a global lustering model lassi�er CMis obtained on NodeC starting from the original data set DS stored on NodeA (i.e, where the observatory isloated). Moreover, all the outliers deteted are olleted in an outlier set OS and are proessed by a lassi�er
Cl on a NodeB. This proess an be desribed through the following steps:1. On NodeA, data sets DS1, . . . , DSn are extrated from DS by the partitioner P . Then DS1, . . . , DSn,are respetively moved from NodeA to Node1, . . . , Noden.2. On eah Nodei(i = 1, . . . , n) the lusterer Ci applies a lustering algorithms on eah dataset DSi.Then, eah loal result is moved from Nodei to NodeC .3. On NodeC , loal models reeived from Node1, . . . , Noden are ombined by the ombiner C to produethe global lustering model CM . Moreover, outliers deteted are olleted in an outlier set OS, andmoved to the NodeB for further analysis.



Using Grids for Exploiting the Abundane of Data in Siene 2614. On NodeB, the lassi�er Cl proesses the OS outlier data set and extrats a suitable lassi�ationmodel (i. e., a deision tree) from it.Being the Knowledge Grid a servie oriented arhiteture, the Knowledge Grid user interats with some serviesto design and exeute suh an appliation.As an additional onsideration, we notie that a lient appliation, that wants to submit a knowledgedisovery omputation to the Knowledge Grid, has to interat not with all of these servies, but just withsome of them; there are, in fat, two layers of servies: high-level servies (DAS, TAAS, EPMS and RPS ) andore-level servies (KDS and RAEMS ). The design idea is that user level appliations diretly interat withhigh-level servies that, in order to perform a lient request, invoke suitable operations exported by the ore-levelservies. In turn, ore-level servies perform their operations by invoking basi servies provided by availablegrid environments running on the spei� host, as well as by interating with other ore-level servies. In otherwords, operations exported by high-level servies are designed to be invoked by user-level appliations, whereasoperations provided by ore-level servies are thought to be invoked both by high-level and ore-level servies.More in detail, the user an interats with the DAS (Data Aess Servie) and TAAS (Tools and AlgorithmsAess Servie) servies to �nd data and mining software and with the EPMS (Exeution Plan ManagementServie) servie to ompose a work�ow (exeution plan) desribing at a high level the needed ativities involvedin the overall data mining omputation. Through the exeution plan, omputing, software and data resouresare spei�ed along with a set of requirements on them. The exeution plan is then proessed by the RAEMS(Resoure Alloation and Exeution Management Servie), whih takes are of its alloation. In partiular, it�rst �nds appropriate resoures mathing user requirements (i. e., a set of onrete hosts Node1, . . . , Noden,o�ering the software C1, . . . , Cn, and a node NodeW providing the C ombiner software and a node NodeZexporting the lassi�er Cl), then manages the exeution of overall appliation, enforing dependenies amongdata extration, transfer, and mining steps. Finally, the RAEMS manages results retrieving, and visualizethem by the RPS (Results Presentation Servie) servie (that o�ers failities for presenting and visualizing theextrated knowledge models).
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4Fig. 4.1. A distributed meta-learning senario.5. Conlusion. In this paper we have pointed out that digital data volumes are growing exponentiallyin siene and engineering. Often digital repositories and soures inrease their size muh faster than theomputational power o�ered by the urrent tehnology. To handle this abundane in data availability, sientistsmust embody knowledge disovery tools to �nd what is interesting in them.When data is maintained over geographially distributed sites, Grid omputing an be used as a distributedinfrastruture for servie-based intensive appliations. Various sienti� appliations based on Grid infrastru-tures, desribed in the paper, onretely show how it an be exploited for sienti� purposes. Moreover, theomputational power of distributed and parallel systems an be exploited for knowledge disovery in sienti�data. Parallel and distributed data mining suites and omputational Grid tehnology are two ritial elementsof future high-performane omputing environments for e-siene. In suh a diretion, the Knowledge Grid
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