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USING GRIDS FOR EXPLOITING THE ABUNDANCE OF DATA IN SCIENCE

EUGENIO CESARIO*AND DOMENICO TALIA* 1

Abstract. Digital data volumes are growing exponentially in all sciences. To handle this abundance in data availability,
scientists must use data analysis techniques in their scientific practices and solving environments to get the benefits coming
from knowledge that can be extracted from large data sources. When data is maintained over geographically remote sites the
computational power of distributed and parallel systems can be exploited for knowledge discovery in scientific data. In this scenario
the Grid can provide an effective computational support for distributed knowledge discovery on large datasets. In particular, Grid
services for data integration and analysis can represent a primary component for e-science applications involving distributed massive
and complex data sets. This paper describes some research activities in data-intensive Grid computing. In particular we discuss
the use of data mining models and services on Grid systems for the analysis of large data repositories.
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1. Introduction. The past two decades have been dominated by the advent of increasingly powerful and
less expensive ubiquitous computing, as well as the appearance of the World Wide Web and related tech-
nologies [12]. Due to such advances in information technology and high performance computing, digital data
volumes are growing exponentially in many fields of human activities. This phenomenon concerns scientific
disciplines, as well as industry and commerce. Such technological development has also generated a whole new
set of challenges: the world is drowning in a huge quantity of data, which is still growing very rapidly both in
the volume and complexity.

Jim Gray in some talks in 2006 identified four chronological steps for the methodologies employed by
scientists for discoveries. The first step occurred thousand years ago, when science was empirical and it was
oriented to just describe natural phenomena. The second one is temporally located around a few hundred years
ago, when a theoretical branch was born, aimed at formulating some general models describing the empirical
knowledge. The third step occurred in the latest few decades, when a computational branch started up and
complex phenomena started to be simulated by the resources made available by the current technology. Finally,
the fourth step is run today, when scientists are working to unify theories, experiments and simulations with
data processing and exploration to extract knowledge hidden in it.

The abundance of digitally stored data require to consider in detail this phenomenon. In particular, there
are two important trends, technological and methodological, which seem to particularly distinguish the new,
information-rich science from the past:

e Technological. There is a lot of data collected and warehoused in various repositories distributed over the
world: data can be collected and stored at high speeds in local databases, from remote sources or from
the our galaxy. Some examples include data sets from the fields of medical imaging, bio-informatics,
remote sensing and (as very innovative aspect) several digital sky surveys. This implies a need for
reliable data storage, networking, and database-related technologies, standards and protocols.

e Methodological. Huge data sets are hard to understand, and in particular data constructs and patterns
present in them cannot be comprehended by humans directly. This is a direct consequence of the
growth in complexity of information, and mainly its multi-dimensionality. For example, a computational
simulation can generate terabytes of data within a few hours, whereas human analysts may take several
weeks to analyze these data sets. For such a reason, most of data will never be read by humans, rather
they are to be processed and analyzed by computers.

We can summarize what we foresaid as follows: whereas some decades ago the main problem was the lack
of information, the challenge now seems to be (i) the very large volume of information and (i) the associated
complezity to process for extracting significant and useful parts or summaries.

Nevertheless, the first aspect does not represent a limitation or a problem for the scientific community:
current data storage, architectural solutions and communication protocols provide a reliable technological base
to collect and store such abundance of data in an efficient and effective way. Moreover, the availability of
high throughput scientific instrumentation and very inexpensive digital technologies facilitated this trend from
both technological and economical view point. On the other hand, the computational power of computers is

*ICAR-CNR, Via P. Bucci 41C, 87036 Rende (CS), Italy (cesario@icar.cnr.it, talia@icar.cnr.it).
TDEIS-University of Calabria, Via P. Bucci 41C, 87036 Rende (CS), Italy (talia@deis.unical.it).

251



252 E. Cesario and D. Talia

not growing as fast as the demand of such a data computation requires, and this represents a limit for the
knowledge that potentially could be extracted. As an additional aspect, we have to consider that storage costs
are currently decreasing faster than computing costs, and this trend makes things worse.

For example, the impact of foresaid issues in the biological field is well described in [20]. It points out that
the emergence of genome and post-genome technology has made huge amount of data available, demanding
a proportional support of analysis. Nevertheless, an important factor to be considered is that the number
of available complete genomic sequences is doubling almost every 12 months, whereas according to Moore’s
law available compute cycles (i. e., computational power) double every 18 months. Additionally, we have to
consider that analysis of genomic sequences require binary comparisons of the genes involved in it. As a direct
consequence of that, the computational overhead is very very high. We can see the impact of such issues
in Figure 1.1 (source: [20]), which contrasts the number of genetic sequences obtained with the number of
annotations generated. The figure shows that the knowledge (annotations, models, patterns) has a sub-linear
rate with respect to the the available data sequences which they are extracted from.
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Fia. 1.1. Growth of sequences and annotations since 1982 (Source: [20])

To handle this abundance in data availability (whose rate of production often far outstrips our ability
to analyze), applications are emerging that explore, query, analyze, visualize, and in general, process very
large-scale data sets: they are named data intensive applications. Computational science is evolving toward
data intensive applications that include data integration and analysis, information management, and knowledge
discovery. In particular, knowledge discovery in large data repositories can find what is interesting in them by
using data mining techniques. Data intensive applications in science help scientists in hypothesis formation and
give them a support on their scientific practices and solving environments, getting the benefits coming from
knowledge that can be extracted from large data sources.

When data is maintained over geographically distributed sites the computational power of distributed and
parallel systems can be exploited for knowledge discovery in scientific data. Parallel and distributed data
mining algorithms are suitable to such a purpose. Moreover, in this scenario the Grid can provide an effective
computational support for data intensive application and for knowledge discovery from large and distributed
datasets. Grid computing is receiving an increasing attention from the research community, watching at this
new computing infrastructure as a key technology for solving complex problems and implementing distributed
high-performance applications [14].

Today many organizations, companies, and scientific centers produce and manage large amounts of complex
data and information. Climate, astronomic, and genomic data together with company transaction data are just
some examples of massive amounts of digital data that today must be stored and analyzed to find useful
knowledge in them. This data and information patrimony can be effectively exploited if it is used as a source
to produce knowledge necessary to support decision making. This process is both computationally intensive,
collaborative, and distributed in nature. The development of data mining software for Grids offers tools and
environments to support the process of analysis, inference, and discovery over distributed data available in
many scientific and business areas. The creation of frameworks on top of data and computational Grids is the
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enabling condition for developing high-performance data mining tasks and knowledge discovery processes, and
it meets the challenges posed by the increasing demand for power and abstractness coming from complex data
mining scenarios in science and engineering. For example, some projects described in Section 2 such as NASA
Information Grid, TeraGrid, and Open Science Grid use the computational and storage facilities in their Grid
infrastructures to mine data in a distributed way. Sometime in these projects are used ad hoc solutions for data
mining, in other cases generic middleware is used on top of basic Grid toolkits. As pointed out by William E.
Johnston in [19], the use of general purpose data mining tools may effectively support the analysis of massive
and distributed data sets in large scale science and engineering.

The Grid allows to federate and share heterogeneous resources and services such as software, computers,
storage, data, networks in a dynamic way. Grid services can be the basic element for composing software and data
elements, and executing complex applications on Grid and Web systems. Today the Grid is not just compute
cycles, but it is also a distributed data management infrastructure. Integrating those two features with “smart"
algorithms we can obtain a knowledge-intensive platform. The driving Grid applications are traditionally
high-performance and data intensive applications, such as high-energy particle physics, and astronomy and
environmental modeling, in which experimental devices create large quantities of data that require scientific
analysis.

In the latest years many significant Grid-based data intensive applications and infrastructures have been
implemented. In particular, the service-based approach is allowing the integration of Grid and Web for handling
with data. We will briefly report some of these applications in the first of the paper; then we discuss about the
use of high performance data mining techniques for science in Grid platforms.

The rest of the paper is organized as follows. Section 2 describes some Grid-based data intensive projects and
applications. Section 3 gives an overview of approaches for parallel, distributed and Grid-based data mining
techniques. Section 4 introduces the Knowledge Grid, a reference software architecture for geographically
distributed knowledge discovery systems. The Section 5 gives concluding remarks.

2. Grid Technologies for dealing with Scientific data. Several scientific teams and communities are
using Grid technology for dealing with intensive applications aimed at scientific data processing. As examples
of this approach, in the following we shortly describe some of them.

2.1. The DataGrid Project: Grid for Physics. The European DataGrid [11] is a project funded by
the European Union with the aim of setting up a computational and data-intensive Grid of resources for the
analysis of data coming from scientific exploration. The main goal of the project is to coordinate resource
sharing, collaborative processing and analysis of huge amounts of data produced and stored by many scien-
tific laboratories belonging to several institutions. It is made effective by the development of a technological
infrastructure enabling scientific collaborations where researchers and scientists will perform their activities
regardless of geographical location. The project develops scalable software solutions in order to handle many
PBs! of distributed data, tens of thousand of computing resources (processors, disks, etc.), and thousands of
simultaneous users from multiple research institutions. The three real data intensive computing applications
areas covered by the project are biology/medical, earth observation and particle physics. In particular, the
last one is oriented to answer longstanding questions about the fundamental particles of matter and the forces
acting between them. The goal is to understand why some particles are much heavier than others, and why
particles have mass at all. To that end, CERN? has built the Large Hadron Collider (LHC), the most powerful
particle accelerator ever conceived, that generates huge amounts of data. It is estimated that LHC generates
approximately 1 GB/sec and 10 PB/year of data. The DataGrid Project provided the solution for storing and
processing this data, based on a multi-tiered, hierarchical computing model for sharing data and computing
power among multiple institutions. In particular, a Tier-0 centre is located at CERN and is linked by high
speed networks to approximately ten major Tier-1 data processing centres. These fan out the data to a large
number of smaller ones (Tier-2).

The DataGrid project ended on March 2004, but many of the products (technologies, infrastructure, etc.)
are used and extended in the EGEE project. The Enabling Grids for E-sciencE (EGEE) [13] project brings
together scientists and engineers from more than 240 institutions in 45 countries world-wide to provide a seamless
Grid infrastructure for e-Science that is available to scientists 24 hours/day. Expanding from originally two
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scientific fields, high energy physics and life sciences, EGEE now integrates applications from many other
scientific fields, ranging from geology to computational chemistry. The EGEE Grid consists of over 36,000
CPUs available to users 24 hours a day, 7 days a week, in addition to about 5 PB disk of storage, and maintains
30,000 concurrent jobs on average. Having such resources available changes the way scientific research takes
place. The end use depends on the users’ needs: large storage capacity, the bandwidth that the infrastructure
provides, or the sheer computing power available. Generally, the EGEE Grid infrastructure is ideal for any
scientific research especially where the time and resources needed for running the applications are considered
impractical when using traditional IT infrastructures.

2.2. The NASA Information Power Grid (IPG) Infrastructure. The NASA’s Information Power
Grid (IPG) [18] is a high-performance computing and data grid built primarily for use by NASA scientists
and engineers. The IPG has been constructed by NASA between 1998 and the present making heavy use of
Globus Toolkit components to provide Grid access to heterogeneous computational resources managed by several
independent research laboratories. Scientists and engineers access the IPG’s computational resources from any
location with Grid interfaces providing security, uniformity, and control. Scientists beyond NASA can also use
familiar Grid interfaces to include IPG resources in their applications (with appropriate authorization). The
IPG infrastructure has been and is being used by numerous scientific and engineering efforts both within and
beyond NASA. Some of its most important applications are computational fluid dynamics and meteorological
data mining.

2.3. TeraGrid. TeraGrid [29] is an open scientific discovery infrastructure combining leadership class
resources (including supercomputers, storage, and scientific visualization systems) at nine partner sites to create
an integrated, persistent computational resource. It is coordinated by the Grid Infrastructure Group (GIG)
at the University of Chicago. Using high-performance network connections, the TeraGrid integrates high-
performance computers, data resources and tools, and high-end experimental facilities around the country.
Currently, TeraGrid resources include more than 250 teraflops of computing capability and more than 30 PBs
of online and archival data storage, with rapid access and retrieval over high-performance networks. Researchers
can also access more than 100 discipline-specific databases. With this combination of resources, the TeraGrid is
one of the world’s largest and most comprehensive distributed Grid infrastructure for open scientific research.

2.4. NASA and Google. Recently NASA initiated a joint project with Google, Inc. for applying Google
search technology to help scientists to process, organize, and analyze the large-scale streams of data coming
from the Large Synoptic Survey Telescope (LSST), located in Chile. When completed, the LSST will generate
over 30 terabytes of multiple color images of visible sky each night. Google will collaborate with LSST to
develop search and data access techniques and services that can process, organize and analyze the very large
amounts of data coming from the instrument’s data streams in real time. The engine will create “data images"
for scientists to view significant space events and extract important features from them. This joint project will
show how complex data management techniques generally used in search engines can be exploited for scientific
discovery.

In the general framework of this collaboration, the main NASA’s goal is to make its huge stores of data
collected during everything from spacecraft missions, moon landings to landings on Mars to orbits around
Jupiter—available to scientists and the public. Some of the data can already be found on NASA’s Web site but
exploiting Google techniques with high performance facilities, this data will be accessible in an easy way.

2.5. Open Science Grid. The Open Science Grid [24] is a collaboration of science researchers, software
developers and computing, storage and network providers. It gives access to shared resources worldwide to
scientists (from universities, national laboratories and computing centers across the United States). The Open
Science Grid links storage and computing resources at more than 30 sites across the United States. The
OSG works actively with many partners, including Grid and network organizations and international, national,
regional and campus Grids, to create a Grid infrastructure that spans the globe. Scientists from many different
fields use the OSG to advance their research. Applications of OSG project are active in various areas of science,
like particle and nuclear physics, astrophysics, bioinformatics, gravitational-wave science, mathematics, medical
imaging and nanotechnology. OSG resources include thousands of computers and 10 of terabytes of archival
data storage.

2.6. myExperiment. myFEzperiment [22] is a collaborative research environment which enables scientists
to share, reuse and repurpose experiments. It is based on the idea that scientists usually prefer to share



Using Grids for Exploiting the Abundance of Data in Science 255

experimental results than data. myExperiment has been influenced by social networking programs such as
Wired and Flickr, and is based on the mySpace infrastructure. myExperiment enables scientists to share and
use workflows and reduce time-to-experiment, share expertise and avoid reinvention. myExperiment creates an
environment for scientists to adopt Grid technologies, where they can define, when they share data, with whom
they share it and how much of it can be accessed. The myExperiment project mainly focuses its applications
at case studies for the specific areas of astronomy, bio-informatics, chemistry and social science.

2.7. National Virtual Observatory. The National Virtual Observatory [23] is a new research project
whose goal is to make all the astronomical data in the world quickly and easily accessible by anyone. Such a
project enables a new way of doing astronomy, moving from an era of observations of small, carefully selected
samples of objects in one or a few wavelength bands, to the use of multi-wavelength data for millions, or even
billions of objects. Such large collection of data makes researchers able to discover subtle, but significant,
patterns in statistically rich and unbiased databases, and to understand complex astrophysical systems through
the comparison of data to numerical simulations. With the National Virtual Observatory (NVO), astronomers
explore data that others have already collected, finding new uses and new discoveries in existing data. NVO
enables astronomers to do a new type of research that, combined with traditional telescope observations, will
lead to many new and interesting discoveries. It is worth noticing that the NVO has proposed to exploit the
computational resources of the TeraGrid project (described in the Section 2.3), in order to enable astronomers
in the exploration and analysis of the physical processes that drive the formation and evolution of our universe,
and encouraging new ways to use supercomputing facilities for science.

2.8. Southern California Earthquake Center. The Southern California Farthquake Center project
[26] is aimed at developing new computing capabilities, that can lead to better forecasts of when and where
earthquakes are likely to occur in Southern California, and how the ground will shake as a result. The final
goal is to improve mathematical models about the structure of the Earth and how the ground moves during
earthquakes. The project team includes collaborating researchers from Southern California Earthquake Center
(SCECQC), the Information Sciences Institute (IST) at USC, the San Diego Supercomputing Center (SDSC), the
Incorporated Institutions for Seismology (IRIS), and the United States Geological Survey (USGS). The project
heavily exploits Grid technologies, allowing scientists to organize and retrieve information stored throughout
the country, and giving advantages of the processing power of a network of many computers.

3. Data Mining and Knowledge Discovery. After discussing significant data management issues and
projects, here we focus on data mining techniques for knowledge discovery in large scientific data reposito-
ries. Data Mining is the semi-automatic discovery of patterns, models, associations, anomalies and (statistically
significant) structures hidden in data. Traditional data analysis is assumption-driven, that is the hypothesis
is formed and validated against the data. Data mining, in contrast, is discovery-driven, in the sense that
the patterns (and models) are automatically extracted from data. Data mining founds its application to sev-
eral scientific and engineering domains, including astrophysics, medical imaging, computational fluid dynamics,
biology, structural mechanics, and ecology.

From a scientific viewpoint, data can be collected by many sources: remote sensors on a satellite, telescope
scanning the sky, microarrays generating gene expression data, scientific simulations, etc. Moreover, in such
infrastructures data are collected and stored at enormous speeds (GBs/hour). Both such aspects imply that
scientific application have to deal with massive volume of data.

Mining large data sets requires powerful computational resources. A major issue in data mining is scalability
with respect to the very large size of current-generation and next-generation databases, given the excessively
long processing time taken by (sequential) data mining algorithms on realistic volumes of data. In fact, data
mining algorithms working on very large data sets take a very long time on conventional computers to get
results. In order to improve performances, some parallel and distributed approaches have been proposed.

Parallel computing is a viable solution for processing and analyzing data sets in reasonable time by using
parallel algorithms. High performance computers and parallel data mining algorithms can offer a very efficient
way to mine very large data sets [27], [28] by analyzing them in parallel. Under a data mining perspective, such
a field is known as parallel data mining (PDM).

Beyond the development of knowledge discovery systems based on parallel computing platforms, a lot of
work has been devoted to design systems able to handle and analyze multi-site data repositories. Mining knowl-
edge from data captured by instruments, scientific analysis, simulation results that could be distributed over the
world, questions the suitability of centralized architectures for large-scale knowledge discovery in a networked



256 E. Cesario and D. Talia

environment. The research area named distributed data mining offers an alternative approach. It works by
analyzing data in a distributed fashion and pays particular attention to the trade-off between centralized col-
lection and distributed analysis of data. This technology is particularly suitable for applications that typically
deal with very large amount of data (e.g., transaction data, scientific simulation and telecommunication data),
which cannot be analyzed in a single site on traditional machines in acceptable times.

Grid technology integrates both distributed and parallel computing, thus it represents a critical infrastruc-
ture for high-performance distributed knowledge discovery. Grid computing was designed as a new paradigm for
coordinated resource sharing and problem solving in advanced science and engineering applications. For these
reasons, Grids can offer an effective support to the implementation and use of knowledge discovery systems by
Grid-based Data Mining approaches.

In the following parallel, distributed and Grid-based data mining are discussed.

3.1. Parallel Data Mining. Parallel Data Mining is concerned with the study and application of data
mining analysis done by parallel algorithms. The key idea underlying such a field is that parallel computing
can give significant benefits in the implementation of data mining and knowledge discovery applications, by
means of the exploitation of inherent parallelism of data mining algorithms. Main goals of the use of parallel
computing technologies in the data mining field are: (i) performance improvements of existing techniques, (%)
implementation of new (parallel) techniques and algorithms, and (7) concurrent analysis using different data
mining techniques in parallel and result integration to get a better model (i. e., more accurate results).

As observed in [5], three main strategies can be identified in the exploitation of parallelism algorithms:
Independent Parallelism, Task Parallelism and Single Program Multiple Data (SPMD) Parallelism. We point
out that this is a well known classification of general strategies for developing parallel algorithms, in fact they
are not necessarily related only to data mining purposes. Nevertheless, in the following we will describe the
underlying idea of such strategies by contextualizing them in data mining applications. A short description of
the underlying idea of such strategies follows.

Independent Parallelism. It is exploited when processes are executed in parallel in an independent way.
Generally, each process has access to the whole data set and does not communicate or synchronize with other
processes. Such a strategy, for example, is applied when p different instances of the same algorithm are executed
on the whole data set, but each one with a different setting of input parameters. In this way, the computation
finds out p different models, each one determined by a different setting of input parameters. A validation step
should learn which one of the p predictive models is the most reliable for the topic under investigation. This
strategy often requires commutations among the parallel activities.

Task Parallelism. It is known also as Control Parallelism. It supposes that each process executes different
operations on (a different partition of) the data set. The application of such a strategy in decision tree learning,
for example, leads to have p different processes running, each one associated to a particular subtree of the
decision tree to be built. The search goes parallely on in each subtree and, as soon as all the p processes
finish their executions, the whole final decision tree is composed by joining the various subtrees obtained by the
processes.

SPMD Parallelism. The single program multiple data (SPMD) model [10] (also called data parallelism) is
exploited when a set of processes execute in parallel the same algorithm on different partitions of a data set, and
processes cooperate to exchange partial results. According to this strategy, the dataset is initially partitioned
in p parts, if p is the apriori-fixed parallelism degree (i. e., the number of processes running in parallel). Then,
the p processes search in parallel a predictive model for the subset associated to it. Finally, the global result is
obtained by exchanging all the local models information.

These three strategies for parallelizing data mining algorithms are not necessarily alternative. In fact, they
can be combined to improve both performance and accuracy of results. For completeness, we say also that in
combination with strategies for parallelization, different data partition strategies may be used : (i) sequential
partitioning (separate partitions are defined without overlapping among them), (i7) cover-based partitioning
(some data can be replicated on different partitions) and (%) range-based query partitioning (partitions are
defined on the basis of some queries that select data according to attribute values).

Architectural issues are a fundamental aspect for the goodness of a parallel data mining algorithm. In fact,
interconnection topology of processors, communication strategies, memory usage, I/O impact on algorithm
performance, load balancing of the processors are strongly related to the efficiency and effectiveness of the
parallel algorithm. For lack of space, we can just cite those. The mentioned issues (and others) must be taken
into account in the parallel implementation of data mining techniques. The architectural issues are strongly
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related to the parallelization strategies and there is a mutual influence between knowledge extraction strategies
and architectural features. For instance, increasing the parallelism degree in some cases corresponds to an
increment of the communication overhead among the processors. However, communication costs can be also
balanced by the improved knowledge that a data mining algorithm can get from parallelization. At each iteration
the processors share the approximated models produced by each of them. Thus each processor executes a next
iteration using its own previous work and also the knowledge produced by the other processors. This approach
can improve the rate at which a data mining algorithm finds a model for data (knowledge) and make up for lost
time in communication. Parallel execution of different data mining algorithms and techniques can be integrated
not just to get high performance but also high accuracy.

3.2. Distributed Data Mining. Traditional warehouse-based architectures for data mining suppose to
have centralized data repository. Such a centralized approach is fundamentally inappropriate for most of the
distributed and ubiquitous data mining applications. In fact, the long response time, lack of proper use of
distributed resource, and the fundamental characteristic of centralized data mining algorithms do not work well
in distributed environments. A scalable solution for distributed applications calls for distributed processing of
data, controlled by the available resources and human factors. For example, let us consider an ad hoc wireless
sensor network where the different sensor nodes are monitoring some time-critical events. Central collection of
data from every sensor node may create traffic over the limited bandwidth wireless channels and this may also
drain a lot of power from the devices.

A distributed architecture for data mining is likely aimed to reduce the communication load and also to
reduce the battery power more evenly across the different nodes in the sensor network. One can easily imagine
similar needs for distributed computation of data mining primitives in ad hoc wireless networks of mobile devices
like PDAs, cellphones, and wearable computers [25]. The wireless domain is not the only example. In fact, most
of the applications that deal with time-critical distributed data are likely to benefit by paying careful attention
to the distributed resources for computation, storage, and the cost of communication. As an other example,
let us consider the World Wide Web as it contains distributed data and computing resources. An increasing
number of databases (e.g., weather databases, oceanographic data, etc.) and data streams (e.g., financial data,
emerging disease information, etc.) are currently made on-line, and many of them change frequently. It is easy
to think of many applications that require regular monitoring of these diverse and distributed sources of data.

A distributed approach to analyze this data is likely to be more scalable and practical particularly when
the application involves a large number of data sites. Hence, in this case we need data mining architectures
that pay careful attention to the distribution of data, computing and communication, in order to access and use
them in a near optimal fashion. Distributed data mining (DDM) considers data mining in this broader context.

DDM may also be useful in environments with multiple compute nodes connected over high speed networks.
Even if the data can be quickly centralized using the relatively fast network, proper balancing of computational
load among a cluster of nodes may require a distributed approach. The privacy issue is playing an increasingly
important role in the emerging data mining applications. For example, let us suppose a consortium of different
banks collaborating for detecting frauds. If a centralized solution was adopted, all the data from every bank
should be collected in a single location, to be processed by a data mining system. Nevertheless, in such a case
a distributed data mining system should be the natural technological choice: it is able to learn models from
distributed data without exchanging the raw data among different repositories, and it allows detection of fraud
by preserving the privacy of every bank’s customer transaction data.

For what concerns techniques and architecture, it is worth noticing that many several other fields influence
Distributed Data Mining systems concepts. First, many DDM systems adopt the multi-agent system (MAS)
architecture, which finds its root in the distributed artificial intelligence (DAT). Second, although parallel data
mining often assumes the presence of high speed network connections among the computing nodes, the devel-
opment of DDM has also been influenced by the PDM literature. Most DDM algorithms are designed upon the
potential parallelism they can apply over the given distributed data. Typically, the same algorithm operates on
each distributed data site concurrently, producing one local model per site. Subsequently, all local models are
aggregated to produce the final model. In Figure 3.1 a general distributed data mining framework is presented.
The success of DDM algorithms lies in the aggregation. Each local model represents locally coherent patterns,
but lacks details that may be required to induce globally meaningful knowledge. For this reason, many DDM
algorithms require a centralization of a subset of local data to compensate it. The ensemble approach has
been applied in various domains to increase the accuracy of the predictive model to be learnt. It produces
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multiple models and combines them to enhance accuracy. Typically, voting (weighted or un-weighted) schema
are employed to aggregate base model for obtaining a global model. As we have discussed above, minimum
data transfer is another key attribute of the successful DDM algorithm. As a final consideration, the homo-
geneity /heterogeneity of resources is another important aspect to be considered in the distributed data mining
approaches. In this scenario, the term "resources" refers both to computational resources (computers with
similar/different computational power) and data resources (datasets with horizontally/vertically partitioning
among nodes). The first meaning affects only the algorithm execution time, while data heterogeneity plays a
fundamental role in the algorithm design. That is, dealing with different data formats it requires algorithms
designed in accordance to the different data formats.

Global Model

Local Model 1 Local Model 2 ) { ™ (Local Model n

Data Mining Data Mining
Algorithm Algorithm

Data Mining
Algorithm

Fic. 3.1. General Distributed Data Mining Framework.

3.3. Grid-based Data Mining. In the last years, Grid computing is receiving an increasing attention
both from the research community and from industry and governments, watching at this new computing in-
frastructure as a key technology for solving complex problems and implementing distributed high-performance
applications. Grid technology integrates both distributed and parallel computing, thus it represents a critical
infrastructure for high-performance distributed knowledge discovery. Grid computing differs from conventional
distributed computing because it focuses on large-scale dynamic resource sharing, offers innovative applications,
and, in some cases, it is geared toward high-performance systems. The Grid emerged as a privileged computing
infrastructure to develop applications over geographically distributed sites, providing for protocols and services
enabling the integrated and seamless use of remote computing power, storage, software, and data, managed and
shared by different organizations.

Basic Grid protocols and services are provided by toolkits such as Globus Toolkit (www.globus.org/
toolkit), Condor (www.cs.wisc.edu/condor), Glite, and Unicore. In particular, the Globus Toolkit is the
most widely used middleware in scientific and data-intensive Grid applications, and is becoming a de facto stan-
dard for implementing Grid systems. This toolkit addresses security, information discovery, resource and data
management, communication, fault-detection, and portability issues. A wide set of applications is being devel-
oped for the exploitation of Grid platforms. Since application areas range from scientific computing to industry
and business, specialized services are required to meet needs in different application contexts. In particular,
data Grids have been designed to easily store, move, and manage large data sets in distributed data-intensive
applications. Besides core data management services, knowledge-based Grids, built on top of computational and
data Grid environments, are needed to offer higher-level services for data analysis, inference, and discovery in
scientific and business areas [21]. In some papers, see for example [1], [19], and [7], it is claimed that the creation
of knowledge Grids is the enabling condition for developing high-performance knowledge discovery processes
and meeting the challenges posed by the increasing demand of power and abstractness coming from complex
problem solving environments.

4. The Knowledge Grid. The Knowledge Grid [3] is an environment providing knowledge discovery
services for a wide range of high performance distributed applications. Data sets and analysis tools used in such
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applications are increasingly becoming available as stand-alone packages and as remote services on the Internet.
Examples include gene and DNA databases, network access and intrusion data, drug features and effects data
repositories, astronomy data files, and data about web usage, content, and structure. Knowledge discovery
procedures in all these applications typically require the creation and management of complex, dynamic, multi-
step workflows. At each step, data from various sources can be moved, filtered, and integrated and fed into a data
mining tool. Based on the output results, the developer chooses which other data sets and mining components
can be integrated in the workflow, or how to iterate the process to get a knowledge model. Workflows are mapped
on a Grid by assigning nodes to the Grid hosts and using interconnections for implementing communication
among the workflow nodes.

For completeness of treatment, we point out some other Grid-based knowledge discovery systems and ac-
tivities that have been designed in recent years. Discovery Net [8] is an infrastructure for effectively support
scientific knowledge discovery process, in particular in the areas of life science and geo-hazard prediction. DataS-
pace [17] is a framework providing efficient data access and transfer over the Grid that implements an ad-hoc
protocol for working with remote and distributed data (named DataSpace transfer protocol, DSTP). Info-
Grid [16] is a service-based data integration middleware engine, designed to provide information access and
querying services not in an ’universal’ way, but by a personalized view of the resources for each particular ap-
plication domain. DataCutter [2] is another Grid middleware framework aimed at providing specific services for
the support of multi-dimensional range-querying, data aggregation and user-defined filtering over large scientific
datasets in shared distributed environments. Finally, GATES [4] (Grid-based AdapTive Execution on Streams)
is an OGSA based system that provides support for processing of data streams in a Grid environment. This
system is designed to support the distributed analysis of data streams arising from distributed sources (e.g.,
data from large scale experiments/simulations). GATES provides automatic resource discovery and an interface
for enabling self-adaptation to meet real-time constraints.

The Knowledge Grid architecture is designed according to the Service Oriented Architecture (SOA), that
is a model for building flexible, modular, and interoperable software applications. The key aspect of SOA
is the concept of service, that is a software block capable of performing a given task or business function.
Each service operates by adhering to a well defined interface, defining required parameters and the nature of
the result. Once defined and deployed, services are like “black boxes", that is, they work independently of
the state of any other service defined within the system, often cooperating with other services to achieve a
common goal. The most important implementation of SOA is represented by Web Services, whose popularity is
mainly due to the adoption of universally accepted technologies such as XML, SOAP, and HTTP. Also the Grid
provides a framework whereby a great number of services can be dynamically located, balanced, and managed,
so that applications are always guaranteed to be securely executed, according to the principles of on-demand
computing.

The Grid community has adopted the Open Grid Services Architecture (OGSA) as an implementation of
the SOA model within the Grid context. In OGSA every resource is represented as a Web Service that conforms
to a set of conventions and supports standard interfaces. OGSA provides a well-defined set of Web Service
interfaces for the development of interoperable Grid systems and applications [15]. Recently the WS-Resource
Framework (WSRF) has been adopted as an evolution of early OGSA implementations [9]. WSRF defines
a family of technical specifications for accessing and managing stateful resources using Web Services. The
composition of a Web Service and a stateful resource is termed as WS-Resource. The possibility to define a
aAlJstateaAl associated to a service is the most important difference between WSRF-compliant Web Services,
and pre-WSRF ones. This is a key feature in designing Grid applications, since WS-Resources provide a way
to represent, advertise, and access properties related to both computational resources and applications.

The Knowledge Grid is a software for implementing knowledge discovery tasks in a wide range of high-
performance distributed applications. It offers to users high-level abstractions and a set of services by which
they can integrate Grid resources to support all the phases of the knowledge discovery process.

The Knowledge Grid supports such activities by providing mechanisms and higher level services for searching
resources, representing, creating, and managing knowledge discovery processes, and for composing existing data
services and data mining services in a structured manner, allowing designers to plan, store, document, verify,
share and re-execute their workflows as well as manage their output results. The Knowledge Grid architecture
is composed of a set of services divided in two layers: the Core K-Grid layer and the High-level K-Grid layer.
The first interfaces the basic and generic Grid middleware services, while the second interfaces the user by
offering a set of services for the design and execution of knowledge discovery applications. Both layers make
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use of repositories that provide information about resource metadata, execution plans, and knowledge obtained
as result of knowledge discovery applications.

In the Knowledge Grid environment, discovery processes are represented as workflows that a user may
compose using both concrete and abstract Grid resources. Knowledge discovery workflows are defined using a
visual interface that shows resources (data, tools, and hosts) to the user and offers mechanisms for integrating
them in a workflow. Information about single resources and workflows are stored using an XML-based notation
that represents a workflow (called execution plan in the Knowledge Grid terminology) as a data-flow graph of
nodes, each one representing either a data mining service or a data transfer service. The XML representation
allows the workflows for discovery processes to be easily validated, shared, translated in executable scripts, and
stored for future executions. It is worth noticing that when the user submits a knowledge discovery application
to the Knowledge Grid, she has no knowledge about all the low level details needed by the execution plan. More
precisely, the client submits to the Knowledge Grid a high level description of the KDD application, named
conceptual model, more targeted to distributed knowledge discovery aspects than to grid-related issues. The
Knowledge Grid in a first step creates an execution plan on the basis of the conceptual model received from the
user, and then executes it by using the resources effectively available. To realize this logic, it initially models
an abstract execution plan (where some specified resource could remain ’abstractly’ defined, i. e. they could not
match with a real resource), that in a second step is resolved into a concrete execution plan (where a matching
between each resource and someone really available on the Grid is found).

The Knowledge Grid has been used in various real scenarios, pointing out its suitability in several heteroge-
neous applications. For lack of space we are not able to discuss about them. For such a reason we give here just
some outlines, more details can be found in the cited papers. The goal of the example described in [6] was to
obtain a classifier for an intrusion detection system, performing a mining process on a (very large size) dataset
containing records generated by network monitoring. The example reported in [5] was a simple meta-learning
process, that exploits the Knowledge Grid to generate a number of independent classifiers by applying learning
programs to a collection of distributed data sets in parallel.

As a scientific application scenario, let us consider the collection of sky observations and the analysis
of their characteristics. Let us suppose to have distinct image data obtained by observations and simula-
tions, from which we want to extract significant metrics. Generally, a significative set of astronomy data is
very large size (=~ 20 — 30 terabytes). In addition, such kind of observation are very high-dimensional, be-
cause each point is usually described by a~ 103 attributes (including morphological parameters, flux ratios,
etc.). Finally, they usually are full of missing values and noise. Then, the main issue here is to analyze
a distribution of ~ 20 — 30 terabytes of points in a parameter space of ~ 10% dimensions. Let us sup-
pose that our effort is devoted to identify how many distinct types of objects are there (i. e., stars, galax-
ies, quasars, black holes, etc.), and grouping them with respect to their type. This can be obtained by a
clustering analysis, however it is a non-trivial task if we consider the large size data and their high dimen-
sionality. To such a purpose, a distributed framework can be suitable to get results in a reasonable time.
Initially we have a data repository where all such an observed sky data is collected (for example, an astro-
nomic observatory). Then, such a data is processed by a distributed clustering algorithm. In order to do
that, they are partitioned on many nodes and processed on those nodes in parallel. The results of every
clustering algorithm are collected and combined to obtain a global clustering model. In addition, each out-
lier can represent a possible (rare) new object. For such a reason, and in order to get more knowledge from
them, all the detected outliers are transferred to another node for a further classification, i. e. by a decision
tree.

Figure 4.1 shows such a distributed meta-learning scenario, in which a global clustering model classifier C M
is obtained on Nodec starting from the original data set DS stored on Node, (i.e, where the observatory is
located). Moreover, all the outliers detected are collected in an outlier set O.S and are processed by a classifier
Cl on a Nodep. This process can be described through the following steps:

1. On Nodey, data sets DSy, ..., DS, are extracted from DS by the partitioner P. Then DSy,..., DS,
are respectively moved from Nodey to Nodeq, ..., Node,.

2. On each Node;(i = 1,...,n) the clusterer C; applies a clustering algorithms on each dataset DS;.
Then, each local result is moved from Node; to Nodec.

3. On Nodeg, local models received from Nodey, ..., Node, are combined by the combiner C' to produce
the global clustering model CM. Moreover, outliers detected are collected in an outlier set OS, and
moved to the Nodeg for further analysis.
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4. On Nodegp, the classifier Cl processes the OS outlier data set and extracts a suitable classification
model (i. e., a decision tree) from it.
Being the Knowledge Grid a service oriented architecture, the Knowledge Grid user interacts with some services
to design and execute such an application.

As an additional consideration, we notice that a client application, that wants to submit a knowledge
discovery computation to the Knowledge Grid, has to interact not with all of these services, but just with
some of them; there are, in fact, two layers of services: high-level services (DAS, TAAS, EPMS and RPS) and
core-level services (KDS and RAEMS). The design idea is that user level applications directly interact with
high-level services that, in order to perform a client request, invoke suitable operations exported by the core-level
services. In turn, core-level services perform their operations by invoking basic services provided by available
grid environments running on the specific host, as well as by interacting with other core-level services. In other
words, operations exported by high-level services are designed to be invoked by user-level applications, whereas
operations provided by core-level services are thought to be invoked both by high-level and core-level services.
More in detail, the user can interacts with the DAS (Data Access Service) and TAAS (Tools and Algorithms
Access Service) services to find data and mining software and with the EPMS (Ezecution Plan Management
Service) service to compose a workflow (execution plan) describing at a high level the needed activities involved
in the overall data mining computation. Through the execution plan, computing, software and data resources
are specified along with a set of requirements on them. The execution plan is then processed by the RAEMS
(Resource Allocation and Ezecution Management Service), which takes care of its allocation. In particular, it
first finds appropriate resources matching user requirements (i. e., a set of concrete hosts Nodey, ..., Node,,
offering the software Ci,...,C},, and a node Nodey providing the C' combiner software and a node Nodez
exporting the classifier C1), then manages the execution of overall application, enforcing dependencies among
data extraction, transfer, and mining steps. Finally, the RAEMS manages results retrieving, and visualize
them by the RPS (Results Presentation Service) service (that offers facilities for presenting and visualizing the
extracted knowledge models).
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Fia. 4.1. A distributed meta-learning scenario.

5. Conclusion. In this paper we have pointed out that digital data volumes are growing exponentially
in science and engineering. Often digital repositories and sources increase their size much faster than the
computational power offered by the current technology. To handle this abundance in data availability, scientists
must embody knowledge discovery tools to find what is interesting in them.

When data is maintained over geographically distributed sites, Grid computing can be used as a distributed
infrastructure for service-based intensive applications. Various scientific applications based on Grid infrastruc-
tures, described in the paper, concretely show how it can be exploited for scientific purposes. Moreover, the
computational power of distributed and parallel systems can be exploited for knowledge discovery in scientific
data. Parallel and distributed data mining suites and computational Grid technology are two critical elements
of future high-performance computing environments for e-science. In such a direction, the Knowledge Grid



262

E. Cesario and D. Talia

is a reference software architecture for geographically distributed knowledge discovery systems that allows to
implement complex data analysis applications as a collection of distributed services.
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