
S
alable Computing: Pra
ti
e and Experien
eVolume 11, Number 3, pp. 263�275. http://www.s
pe.org ISSN 1895-1767© 2010 SCPEMODELING STREAM COMMUNICATIONS IN COMPONENT-BASED APPLICATIONS ∗M. DANELUTTO†, D. LAFORENZA‡, N. TONELLOTTO‡, M. VANNESCHI†, AND C. ZOCCOLO†Abstra
t. Component te
hnology is a promising approa
h to develop Grid appli
ations, allowing to design very
omplex appli-
ations by hierar
hi
al
omposition of basi

omponents. Nevertheless,
omponent appli
ations on Grids have
omplex deploymentmodels. Performan
e-sensitive de
isions should be taken by automati
 tools, mat
hing developer knowledge about
omponentperforman
e with QoS requirements on the appli
ations, in order to �nd deployment plans that satisfy a Servi
e Level Agreement(SLA).This paper presents a steady-state performan
e model for
omponent-based appli
ations with stream
ommuni
ation semanti
s.The model stri
tly adheres to the hierar
hi
al nature of
omponent-based appli
ations, and is of pra
ti
al use in laun
h-timede
isions.Key words: grid
omputing; heterogeneous environments; stream
omputations; performan
e model; mapping.1. Introdu
tion. Grid
omputing is an emerging te
hnology that enables the aggregation of heteroge-neous, distributed resour
es to solve
omputational problems of ever in
reasing size and
omplexity. Theappli
ations that best perform on Grid platforms are the ones requiring large
omputational power, or thetreatment of large data sets, i. e. a sub
lass of High-Performan
e Appli
ations [17℄.Su
h appli
ations (e.g. data-mining [12℄, query pro
essing [3℄, image pro
essing and visualization [2℄ andmultimedia streaming [38℄)
an be
onveniently expressed using a formalism based on two fundamental notions:streams of data �owing between
omponents, and
omponents (either sequential or parallel) pro
essing them.Several programming languages are built on these
on
epts. Skeleton-based languages (e.g. SkIE [4℄ andSBASCO [14℄) and skeleton libraries (e.g. eSkel [11℄ and Ku
hen's C++ skeleton library [21℄) exploit thenotion of streams for task-parallel skeletons (e.g. pipe and farm). More general languages like ASSIST [33℄ andData
utter [15℄ introdu
e modules and streams as primitive
on
epts to stru
ture parallel appli
ations.Grid programming frameworks (e.g. GrADS [9℄, ASSIST [13℄) are in
harge of the
omplete automationof appli
ation exe
ution management, e�
iently exploiting Grid resour
es. Moreover, they should be able toexe
ute the appli
ation with user-required QoS, adapting the exe
ution to the dynami

hanges of Grid resour
es.The traditional
omponent mapping strategy, in whi
h
omponents are stati
ally deployed in a distributedenvironment by their developers, does not �t well in su
h s
enario. A broader deployment model is required,featuring(i) manual mapping, in whi
h the
omponents are already paired with their resour
es (on whi
h they aredeployed),(ii) resour
es dis
overy and sele
tion at laun
h time, to guarantee the initial desired performan
e,(iii) adaptive
omponents management, that at run-time adjust the set of
omputing resour
es exploited[31, 1℄, in order to adapt to di�erent performan
e requirements (on-demand
omputing) or to
hanging resour
esavailability.A

ording to this model, the deployment framework must automati
ally manage the operations needed toenfor
e the appli
ation desired QoS. This
an be obtained with the spe
i�
ation of a performan
e
ontra
t [34℄.Our approa
h intends to automatise the tasks needed to start the exe
ution of HPC appli
ations. Our �nalgoal is to allow an as large as possible user
ommunity to gain full bene�ts from the Grid, and at the same timeto give the maximum generality, appli
ability and easy of use.The main
ontributions of this paper are as follows:(i) We propose an analyti
al model of the dynami
 behavior of sequential/parallel
omponents, hierar-
hi
al
omponents and
omponent appli
ations,
ommuni
ating through typed streams of data. It is suitedto be used in simulation environments, to syntheti
ally generate
omponents and appli
ations to test map-ping/s
heduling solutions in a repeatable and
ontrolled setting. Eventually, the proposed dynami
 model
anbe exploited in the implementation of dynami
 re
on�guration poli
ies [1℄.
∗This work has been supported by: the Italian MIUR FIRB Grid.it proje
t, No. RBNE01KNFP, on High-performan
e Gridplatforms and tools, and the European CoreGRID NoE (European Resear
h Network on Foundations, Software Infrastru
tures andAppli
ations for Large S
ale, Distributed, GRID and Peer-to-Peer Te
hnologies,
ontra
t no. IST-2002-004265).
†Department of Computer S
ien
e, University of Pisa, Pisa, Italy
‡Information S
ien
e and Te
hnologies Institute, National Resear
h Coun
il, Pisa, Italy263

264 M. Danelutto, D. Laforenza, N. Tonellotto, M. Vannes
hi, C. Zo

olo(ii) Starting from the dynami
 model we identify the set of variables that
an be used to des
ribe theperforman
e behavior of an appli
ation, and we derive the set of relations among them whi
h hold at steady-state(performan
e model). In this way we abstra
t from parti
ular runtime platforms and we
apture all possiblesteady-state behaviors of an appli
ation. Moreover, their formulation by means of linear algebra allows us tohierar
hi
ally
ompose the performan
e models of several
omponents to derive the steady-state model of new
omponents or appli
ations.(iii) We introdu
e a de�nition of performan
e model for stream appli
ations, whi
h is exploited in laun
h-time mapping and runtime re
on�guration de
isions.After a survey of related work (Se
t. 2), this paper presents a dynami
 model of stream-based
omputations(Se
t. 3), and in Se
t. 4 su
h model is exploited to derive a steady-state performan
e model for stream-basedappli
ations. In Se
t. 5, su
h model is applied to a
ase study, to predi
t the program behavior at run-time,and to devise a
orre
t initial mapping for spe
i�ed QoS levels. Se
tion 6
on
ludes the paper, dis
ussing thepresented approa
h and future work.2. Related Work. Performan
e spe
i�
ation of
omponents and their intera
tions is a basi
 problemthat must be solved to enable software engineers to assemble e�
ient appli
ations [27℄. Moreover, performan
emodeling is one of the key aspe
ts that needs to be addressed to fa
e s
heduling/mapping problems in het-erogeneous platforms. It arises in automati

omponent pla
ement and re
on�guration. Several re
ent worksfo
us on performan
e modeling te
hniques to analyze the behavior of
omponent-based parallel appli
ations ondistributed, heterogenous, dynami
 platforms.Analyti
 performan
e models in software engineering make extensive use of UML formalism to des
ribesoftware
omponent behavioral models [35℄ and to derive models based on Queuing Networks [19℄ or Lay-ered Queueing Networks [36℄ to be exploited in design phase of the life
yle of software. The same holdsfor Sto
hasti
 Petri Nets [20℄ and Sto
hasti
 Pro
ess Algebras [18℄. Su
h models typi
ally translate a paral-lel appli
ation into an analyti
 representation of its exe
ution behavior and the target runtime system (a
-
ording to the Software Performan
e Engineering methodology [28℄). A detailed survey of su
h models isin [5℄. Su
h translation is usually not straightforward. It may require approximations to obtain mathemat-i
al models [29℄ for whi
h a
losed-form solution is known. Sto
hasti
 models usually require the solutionof the underlying Markov
hain whi
h
an easily lead to numeri
al problems due to the spa
e state explo-sion [5℄. More
omplex models
an be solved by means of simulation, at the
ost of a larger
omputationtime.Symboli
 performan
e modeling [32℄ is a methodology that enables a rapid development of low
omplexityand parametri
 performan
e models. Symboli
 performan
e models
an be derived from simulation models,trading o� result a

ura
y for model evaluation
ost. In [32℄ a symboli
 performan
e model for the Pamelamodeling language is introdu
ed. It derives lower bounds for steady-state performan
es of appli
ations startingfrom a model of the program and of the shared resour
es,
ombining deterministi
 Dire
t A
y
li
 Graphs (DAGs)modeling with mutual ex
lusion. One of the strengths of the Pamela approa
h is that it is fast and easy totransform a regularly stru
tured appli
ation into a performan
e model. The main limitation of su
h approa
his that it
omputes lower bounds of the performan
e of a program. Symboli
 performan
e models share severalproperties with the model we propose: both
an be extra
ted from the stru
ture of programs, are parametri
,and
an be e�
iently evaluated. The main di�eren
e is that the presented model does not
ompute a lowerbound, but the asymptoti
 steady-state performan
e of an appli
ation, that is in general a better approximationof the real performan
e.The asymptoti
 steady-state analysis has been pioneered by Bertsimas and Gamarnik [10℄. This approa
hhas been re
ently applied to mapping and s
heduling problems of parallel appli
ations on heterogeneous plat-forms [23, 7, 6℄, in whi
h the analysis is applied to parti
ular
lasses of parallel appli
ations (divisible load [23℄,master/slave [6℄, pipelined and s
atter operations [7℄), in the hypothesis that the set of resour
es is known inadvan
e. The existing steady-state approa
hes apply only to a restri
ted
lass of stru
tured parallel appli
a-tions, assuming to know the runtime environment in su
h a way to derive optimal s
heduling of the appli
ation
omponents. In a dynami
 environment like a Grid an optimal initial pla
ement of the
omponents may be-
ome useless very soon, be
ause the
onditions of the exe
ution platform may vary dynami
ally. The presentedsteady-state analysis
an be applied to a broader
lass of stru
tured parallel appli
ations and tries to solve adi�erent problem, i. e. to build a
on
rete model of
omponents/appli
ations to be exploited in their mappingon previously-unknown target platforms.

Modeling Stream Communi
ations in Component-based Appli
ations 265Stru
tural performan
e models [25℄ are the �rst e�ort to develop
ompositional performan
e models for
omponent appli
ations. Most s
ienti�
 and Grid
omponent models rely on the
on
ept of algorithmi
 skeleton.Skeletons are
ommon, reusable and e�
ient stru
tured parallelism exploitation patterns. One advantage ofthe skeletal approa
h is that parametri

ost models
an be devised for the evaluation of runtime performan
eof skeleton
ompositions. In [14, 8℄ di�erent
ost models are asso
iated to ea
h skeleton of an appli
ationto enhan
e its runtime performan
e through parallelism/repli
ation degree adjustments and initial mappingsele
tion, respe
tively. The authors of [14℄ propose parametri

ost models for pipe, farm and multiblo
kskeletons, that
an be arbitrarily
omposed and nested. In [8℄, analyti

ost models for appli
ations
omposed bypipes and deals are derived within a sto
hasti
 pro
ess algebra formulation. Stru
tural performan
e models areextended by the presented model by proposing a methodology well-suited for generi

omposition of skeletons,and by taking into a

ount the syn
hronization problems introdu
ed by using streamed
ommuni
ations.Tra
e-based performan
e models [34, 26℄ are
urrently exploited in parallel/Grid environments to model theperforman
e of sets of kernel appli
ations. Re
ording and analyzing exe
ution tra
es on referen
e ar
hite
turesof su
h appli
ation it is possible, with a
ertain degree of pre
ision, to fore
ast the performan
e of the same orsimilar appli
ations on di�erent resour
es. Tra
e information is exploited in the presented model, but in di�erentway with respe
t to the existing approa
hes. Instead of pro�ling a whole appli
ation on a set of representativeresour
es, the appli
ation model is kept independent from resour
es. When the appli
ation will be mapped ona
tual resour
es, histori
al information will be used to model the runtime behavior of single
omponents, andthen su
h information will be
oupled with the
omponent intera
tions information to obtain a predi
tion ofthe performan
e of the whole appli
ation.The problem of deriving a performan
e model for
omponents has been addressed also in the
ontextof
omponent frameworks su
h as EJB [37℄, COM+/.NET [16℄ and CCA [24℄. Su
h works apply analyti
alperforman
e model (LQN) or tra
e-based performan
e model to derive a model for
omponents. In [30℄, tra
e-based models are exploited to sele
t the most suitable
omponents, when multiple
hoi
es are available, to buildan optimal appli
ation, from the point of view of performan
e.3. Dynami
 Behavior. An appli
ation
an be stru
tured as a hypergraph whose nodes represent primitive
omponents and whose (hyper)edges represent
ommuni
ations or syn
hronizations between
omponents. Nodesintera
t with input (server) interfa
es and output (
lient) interfa
es. Edges are dire
ted and
an
onne
t twoor more nodes through their interfa
es. Two nodes may be linked by more than a single edge.3.1. Communi
ations. Communi
ations between
omponents are implemented through input/outputinterfa
es bindings. In this work data-�ow stream
ommuni
ations are studied. Every
omponent re
eives datathrough one or more input interfa
es, performs some
omputations, and generates new data to be sent throughone or more output interfa
es.In this
ontext, a stream represents a typed, unidire
tional
ommuni
ation
hannel between a non-empty,�nite set of
omponents (produ
ers) and a non-empty, �nite set of
omponents (
onsumers). The atomi
 pie
eof information transferred through a stream is
alled item. A produ
er is
onne
ted to a stream through anoutput interfa
e, while a
onsumer is
onne
ted to a stream through an input interfa
e. Every node
an beprodu
er or
onsumer of several streams, and it is possible to spe
ify
y
li
 stru
tures (i. e. the
ommuni
ationstru
ture is not restri
ted to be a DAG).Components
an be
onne
ted by streams a

ording to three di�erent patterns:(i) uni
ast: one-to-one
onne
tion. Every item sent on the output stream interfa
e is re
eived in orderby the input stream interfa
e.(ii) merge: many-to-one
onne
tion. Every item sent on the output stream interfa
es is re
eived by theinput stream interfa
e. The temporal ordering of the items
oming from ea
h input interfa
e is preserved, butthe interleaving between the di�erent sour
es is non-deterministi
.(iii) broad
ast: one-to-many
onne
tion. Every item sent on the output stream interfa
e is re
eived inorder by the input stream interfa
es. The re
eptions happening on di�erent input interfa
es are not syn
hronized.3.2. Computations. Components implement sequential as well as parallel
omputations. A sequential
omponent exe
utes a single fun
tion in a single a
tive thread, pro
essing items as they are re
eived. For aparallel
omponent, two s
enarios are possible:(i) data parallel: a single fun
tion is exe
uted in parallel on di�erent portions of the same data;(ii) task parallel: several fun
tions (or a
tivations of the same fun
tion) are exe
uted in parallel onindependent data.

266 M. Danelutto, D. Laforenza, N. Tonellotto, M. Vannes
hi, C. Zo

oloA primitive
omponent, either sequential or parallel, at runtime repeatedly re
eives items from its inputstreams, performs some
omputations and delivers result items to its output streams.A
omponent
an have several input streams. The set of input streams is partitioned between the
omputa-tions asso
iated with the
omponents. Ea
h input stream is asso
iated to only one
omputation; nevertheless,spontaneous
omputations may exist, that do not need input items to a
tivate, but follow own a
tivation poli
ies(e.g. periodi
ally).A
omputation
an be a
tivated if the following
onditions hold:(i) the
omponent
an exe
ute a new fun
tion (this means that it is idle, or it is parallel and threads areavailable to exe
ute it),(ii) the asso
iated input items have been re
eived, or no item is ne
essary.A sequential
omponent
an a
tivate a new fun
tion only when it is idle. A parallel
omponent
an have atmost one a
tive data-parallel
omputation at any given time (
omposed by a �xed number of threads), or severaltask-parallel
omputations running in parallel (up to the maximum number of threads in the
omponent).A
omponent
an have several output streams. One or more
omputations of the
omponent
an dispat
hdata on ea
h output stream.3.3. Node Behavior. In order to des
ribe the behavior of a
omputation at runtime,
onsider Fig. 3.1.
Fig. 3.1. Sequential
omponent at runtimeWithout loss of generality, a sequential
omponent is
onsidered; the displayed quantities represent:(i) ik(t): total number of re
eived items at time t from the kth input interfa
e;(ii) e(t): total number of
omputations
arried out at time t;(iii) oj(t): total number of sent items at time t through the jth output interfa
e.Continuous quantities are used to model partial evolution, e.g. e(t) = 3.5 means that the node rea
hed the halfway point in the fourth
omputation.The a
tivation of a
omputation
an happen only when the number of items
ompletely re
eived on ea
hasso
iated stream is greater than the number of partially
omputed items:
∀k = 1, . . . , n

⌊

ik(t)
⌋

− e(t) > 0 (3.1)The node implementation will exploit �nite bu�ers to store re
eived items for ea
h input interfa
e, therefore forea
h input interfa
e and asso
iated
omputation the following must hold:
∀k = 1, . . . , n ik(t)−

⌊

e(t)
⌋

≤ τ1k (3.2)where τ1k represents the maximum number of elements that
an be re
eived on the kth input interfa
e beforethe stream blo
ks. Then the maximum admissible value for ik(t) at time t is:
imax
k (t) = τ1k +

⌊

e(t)
⌋ (3.3)Assuming that no sensible delays are present between the end of
omputations and the beginning of the transmis-sion of the produ
ed items, the total number of transmitted items is related to the progress of the
omputationsof the node. In the general
ase of a node with s fun
tions, the following equation holds for ea
h output interfa
e:

∀j = 1, . . . ,m oj(t) = fj
(

e1(t), . . . , es(t)
) (3.4)where ei(t) represents the number of a
tivations
arried out at time t for the i − th fun
tion. The transferfun
tion fj relates the number of data outputs oj(t) to the number of performed
omputations e1(t), . . . , es(t).

Modeling Stream Communi
ations in Component-based Appli
ations 2673.4. Edge Behavior. In order to des
ribe the behavior of a data transmission on a stream,
onsider auni
ast stream. The involved variables are o(t), total number of items sent at time t from sour
e interfa
e, and
i(t), total number of items re
eived at time t by the destination interfa
e. A new transmission begins only aftera full item is produ
ed:

i(t) ≤ ⌊o(t)⌋ (3.5)The edge implementation will exploit �nite
ommuni
ation bu�ers and the network layer transfers
hunks ofdata. Let q−1 be the minimum fra
tion of item transferred atomi
ally. Then
o(t)−

⌊q · i(t)⌋

q
≤ τ2 (3.6)where τ2 represents the maximum number of items that
an be bu�ered. Therefore the maximum admissiblevalue for o(t) at time t is:

omax(t) = τ2 +
⌊q · i(t)⌋

q
(3.7)Whenever an edge bu�er is full, a produ
er will blo
k as soon as it tries and sends a new item. From (3.4) weobtain:

omax(t)− f
(

e1(t), . . . , em(t)
)

≤ 0 (3.8)For merge streams with k sour
e interfa
es and broad
ast streams with k destination interfa
es, the general
onstraints (Eqs. (3.5) and (3.6) for the uni
ast stream) be
ome:merge: {i(t) ≤ ∑

k ok(t)
∑

k ok(t)− i(t) ≤ τ2k
(3.9)broad
ast: {∀k ik(t) ≤ o(t)

∀k o(t)− ik(t) ≤ τ2k
(3.10)For simpli
ity, in the previous equations the network quantization
onstant q has been suppressed.3.5. Runtime Behavior. At runtime, a
omponent
an be seen as a dynami
 system. The system stateat time t is des
ribed by a set of state variables: i1,...,ni

(t), e1,...,ne
(t), o1,...,no

(t). Thus, the state spa
e P isa n = ni + ne + no dimension Eu
lidean spa
e. The dynami
 behavior of a
omponent
an be modeled by atraje
tory p(t) in su
h state spa
e.The runtime behavior of a
omponent is fully spe
i�ed when it is
oupled with hosting resour
es. A
omputing resour
e is modeled by w(t), the available
omputing power at time t (measured in MFlop/s) anda
ommuni
ation link is modeled by b(t), the instantaneous bandwidth at time t (measured in MByte/s).Moreover, a
hara
terization of the items is required. It is assumed that an item pro
essed by a
omponentrequires l units of
omputing work to be pro
essed (measured in MFlop) and s units of
ommuni
ation work tobe transmitted (measured in bytes).Introdu
ing the step fun
tion u(x), the number of performed (partial)
omputations per time unit is:
de

dt
= u

(

min
(

⌊

i1(t)
⌋

, . . . ,
⌊

in(t)
⌋

)

− e(t)

)

·

· u
(

omax(t)− f
(

e1(t), . . . , em(t)
)

)

·
w(t)

L

(3.11)while the equations governing the number of pa
kets �owing in the uni
ast, merge and broad
ast streams pertime unit are, respe
tively:
di

dt
= u

(

⌊

o(t)
⌋

− i(t)
)

· u

(

i
max(t) − i(t)

)

·

b(t)

s
(3.12a)

di

dt
= u

(

∑

k

⌊

ok(t)
⌋

− i(t)
)

· u

(

i
max(t) − i(t)

)

·

b(t)

s
(3.12b)

dik

dt
= u

(

⌊

o(t)
⌋

− ik(t)
)

· u

(

i
max(t) − ik(t)

)

·

b(t)

s
(3.12
)

268 M. Danelutto, D. Laforenza, N. Tonellotto, M. Vannes
hi, C. Zo

oloNote that an important assumption has been made. The work required to perform a
omputation issupposed to be independent from the values of the in
oming items; their values are used just to perform
omputations. This is a
ommon assumption in parallel data-�ow programming, but there are appli
ations (e.g.query pro
essing and data mining) that do not respe
t this assumption.The dynami
 equations provided by the model
an be written in the general form:
ṗ(t) = U(p(t))α(t) (3.13)We denote with U : P → Mn,n the fun
tion that, for every point in the state spa
e, provides the
ontrol partof the di�erential equations (the ones involving the step fun
tions), and with α(t) the resour
es part (involving

w(t) and b(t)).We observe that the
ontrol matrix is pie
e-wise
onstant over non-in�nitesimal time intervals: it des
endsfrom quantization in the general equations for the nodes (3.11), and in the equations for the streams (3.12).Then, the Cau
hy problem
an be solved
onstru
tively. Starting with t0 = 0, p0(t0) = 0, U0 = U(0), weindu
tively de�ne
pi(t) =

∫ t

ti

Uiα(τ)dτ

ti+1 = sup{t > ti|U(pi(t)) = Ui}

Ui+1 = lim
t→t+

i

U(pi(t))In this way, p(t) is de�ned as the
on
atenation of the pie
es pi|[ti,ti+1): it is a
ontinuous fun
tion (pi(ti) =
pi+1(ti)) and pie
e-wise di�erentiable.4. STEADY STATE BEHAVIOR. The steady-state behavior of the system
an be analysed by study-ing mean values p̄ for the rate of
hange of the state variables:

p̄ = E[ṗ|[t0,∞)] =

∫ ∞

t0

ṗ(t)dt = lim
t→∞

p(t)− p(t0)

t− t0
(4.1)The
hoi
e of t0 is arbitrary, in fa
t the weight of the transient phase fades away
onsidering in�nite exe
utions.However, to ease the reasoning about these quantities, we
an interpret t0 as the end of the transient phase,e.g. when the last stage
onsumes the �rst data item in a pipeline.The essential aspe
t to point out is that for the steady-state model the fo
us is on relations among thesteady-state variables, rather than in their values. In this way it is possible to abstra
t from parti
ular targetplatforms, and
apture the
lass of all possible steady-state behaviors of an appli
ation.The steady-state behavior of a node
an be modelled asso
iating to ea
h
omputation ek(t) its a
tivationrate

ēk = lim
t→∞

ek(t)− ek(t0)

t− t0
(4.2)Spontaneous
omputations are free variables in the steady-state model. Computations that are a
tivated bydata re
eption, instead, are subje
t to the following
ondition.Proposition 4.1. The steady-state exe
ution rate of a
omputation is bound to be equal to the input rateson the input interfa
es that a
tivate the
omputation.Proof. Let k ∈ Ai, we will prove that ēi − ı̄k = 0

ēi − ı̄k = lim
t→∞

ei(t)− ei(t0)

t− t0
− lim

t→∞

ik(t)− ik(t0)

t− t0

= lim
t→∞

ei(t)− ei(t0)− ik(t) + ik(t0)

t− t0

= lim
t→∞

ei(t)− ik(t)

t− t0
−

ei(t0)− ik(t0)

t− t0

Modeling Stream Communi
ations in Component-based Appli
ations 269The numerator of the �rst addend is limited by
onstants: (3.1) gives
ei(t)− ik(t) ≤ 0and (3.2) (noting that e(t) ≥ ⌊e(t)⌋) gives

ei(t)− ik(t) ≥ −τ1kwhile the numerator of the se
ond addend is
onstant, so the limit tends to zero when the denominator tendsto in�nity.The data transmission rate ōk of an output stream will depend on the a
tivation rates of one or more
omputations of the node. In the previous se
tion, the number of data outputs has been related to the numberof performed
omputations by means of a transfer fun
tion fk (Eqn. (3.4)).Proposition 4.2. If the transfer fun
tion is (asymptoti
ally) linear
ok = fk(e1, . . . , em) = α1

ke1 + . . . αm
k em + ck(e1, . . . , em)with

lim
‖e‖→∞

‖ck(e)‖

‖e‖
= 0then a steady-state is eventually rea
hed, in whi
h the output rate is a linear
ombination of the
omputationrates:

ōk =
m
∑

i=1

αkiēi (4.3)Proof.
ōk = lim

t→∞

fk(e(t))− fk(e(t0))

t− t0
= lim

t→∞

αk · (e(t)− e(t0)) + c(e(t)) − c(e(t0))

t− t0
=

αk · lim
t→∞

e(t)− e(t0)

t− t0
+ lim

t→∞

c(e(t))− c(e(t0))

t− t0
= αk · ē+ 0 =

m
∑

i=1

αm
k ēiThe steady-state behavior of streams
an be modelled by asso
iating to ea
h endpoint its data transmissionrate. Balan
e equations relating input and output endpoints are derived.Proposition 4.3. The steady-state transmission rate at the endpoints of a stream are
hara
terised by thefollowing balan
e equations: uni
ast: ōA = ı̄B (4.4a)merge: ōA + ōB = ı̄C (4.4b)broad
ast: ōA = ı̄B = ı̄C (4.4
)These equations are easily extended in the
ase of more endpoints.Proof. The proof is similar to the one of Prop. 4.1, exploiting:(i) (3.5) and (3.6) for uni
ast,(ii) (3.9) for merge,(iii) (3.10) for broad
ast.The exe
ution rate for ea
h
omputation, and the data transfer rate for ea
h input/output interfa
e
om-pletely spe
ify the appli
ation state from the point of view of its performan
e, therefore we will
all them theperforman
e features of our appli
ation.Proposition 4.2 allows us to express output rates as linear
ombinations of exe
ution rates, provided thatwe know the related
oe�
ients. These
oe�
ients must be provided by developers of programs/
omponents

270 M. Danelutto, D. Laforenza, N. Tonellotto, M. Vannes
hi, C. Zo

oloby means of some performan
e annotations, in order to build a performan
e model. Proposition 4.1 allowsus to eliminate exe
ution rates asso
iated to data-dependent
omputations. Proposition 4.3 allows us to relateoutput rates to input rates of linked modules.The performan
e model is therefore de�ned as an homogeneous system of simultaneous linear equations,that des
ribe the relations that hold in the steady-state among the performan
e features. The set of solutionsof the system is a ve
tor subspa
e of Rn (where n is the total number of variables, either input rates, outputrates or exe
ution rates); we
all the dimension of the solution spa
e the number of degrees of freedom ofthe appli
ation. If this dimension is 1, then the system is
ompletely determined as soon as a single value forany variable is imposed. The degenerate
ase of a spa
e with dimension 0 implies that the only solution to thesystem is the null ve
tor (i. e. every variable must be zero): this means that the predi
ted steady-state is adeadlo
k state, in whi
h no
omputation or
ommuni
ation
an pro
eed. The number of degrees of freedom ofthe system will impa
t on how many
onstraints must be provided in order to derive the expe
ted values forevery variable.Clearly, only positive values of the rates are meaningful, so we
an
on
lude that every assignment of positivevalues for the ve
tor [i e o]T ∈ R
n that is a solution of the system is a possible �operation point� for the modeledappli
ation.The outlined approa
h is e�
ient, in fa
t the simpli�
ation of the simultaneous equations
an be a
hievedusing well known te
hniques.5. Appli
ation of the Model. We show how the presented model
an be applied to a real appli
ation(see Fig. 5.1), a rendering pipeline. The �rst stage requests the rendering of a sequen
e of s
enes while these
ond renders ea
h s
ene (exploiting the PovRay rendering engine), interpreting a s
ript des
ribing the 3Dmodel of obje
ts, their positions and motion. The third stage
olle
ts images rendered by the se
ond one, andbuilds Groups Of Pi
tures (GOP), that are sent to the fourth stage, performing DivX
ompression. The laststage
olle
ts DivX
ompressed pie
es and stores them in an AVI output �le.
Fig. 5.1. Graph of the render-en
ode appli
ationFor GOPs of 12 pi
tures, the performan
e model for our test appli
ation is (we eliminated exe
ution ratesfor data-dependent
omputations):
C1e = C1o = C2i = C2o = C3i = 12 · C3o =

= 12 · C4i = 12 · C4o = 12 · C5iand has one degree of freedom.5.1. Convergen
e to Steady State. We start showing that the appli
ation behavior a
tually tends tosteady-state.Figure 5.2 shows performan
e features taken from a real exe
ution of the test appli
ation on a Blade
luster
onsisting of 32
omputing elements, ea
h equipped with an Intel Pentium III Mobile CPU at 800MHz and1GB of RAM, inter
onne
ted by a swit
hed Fast Ethernet dedi
ated network. The appli
ation was
on�guredto exploit 20 ma
hines in the render
omputation, and one ma
hine for ea
h remaining node.Performan
e features are measured as in (4.2), i. e. averaging the number of performed
omputations onthe duration of the exe
ution. The top diagram shows the performan
e of the Render and the GOP Assemblernodes, whi
h operate on frames, while the bottom diagram shows the En
oder and Colle
tor nodes, whi
hoperate on GOPs. The similarity of the
urves in the left and the right diagrams shows empiri
ally thatProp. 4.2 is satis�ed not only at the steady-state, but also during the �nite
omputation, as soon as bu�ers are�lled (
urves in the same diagram are related by a fa
tor of 1, while between the two diagrams there is a s
alingfa
tor of 12).

Modeling Stream Communi
ations in Component-based Appli
ations 271

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600 700 800

b
a

n
d

w
id

th
 (

a
c
ti
v
a

ti
o

n
/s

)

frame

Rendering engine
GOP Assembler

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60

b
a
n
d
w

id
th

 (
a
c
ti
v
a
ti
o
n
/s

)

GOP

Encoder
Collector

Fig. 5.2. Convergen
e to steady-state of averaged performan
e featuresMoreover, Fig. 5.2 shows that the averaged
omputation rates stabilize during the
omputation, allowingus to adopt a steady-state model to approximate the a
tual appli
ation run.5.2. From Desired Performan
e to Resour
e Requirements. Typi
ally, if someone is fa
ing a prob-lem by means of HPC tools, he has
lear in mind some sort of performan
e requirement for his appli
ation.This
an be expressed in di�erent forms, e.g.
ompletion time,
omputation rate, response time, et
. In ourframework we express requirements as bounds on
omputation rates. That is the most natural way dealingwith stream parallelism. This means that, if the problem is expressed in di�erent terms, some sort of prelim-inary transformation should be applied (e.g. study the initial transient length to relate
ompletion time to
omputation rate, or use the Little's Law to translate response time requirements in
omputation rate ones).Suppose that we require 1 frame/s (the
onstraint is expressed by C5i ≥
1

12
, be
ause ea
h input for C5 is
omposed by 12 frames). Applying the performan
e model we derive required
omputation and transfer ratesfor ea
h
omputation and
ommuni
ation.These values, paired with program annotations (see Tab. 5.1) on the weight of
omputation or
ommuni-
ation (e.g. MFLOP per task/MB transferred to/from memory and message size, respe
tively)
an be usedto derive requirements that the resour
es must ful�ll in order to meet the performan
e requirements on theappli
ation.For instan
e, we
an show the requirement for stream S2 = C2o. Sin
e it is required to
arry 1.19MBmessages with at least rate 1/s, a link of 9.5 Mbit/s is su�
ient. Likewise, the test appli
ation will nevers
ale above 10 frames/s with a 100 Mbit/s network, and needs to be redesigned, if we want to rea
h higherperforman
es.Computational requirements are handled in the same way. The performan
e model solution gives, forea
h
omputation, the minimum required exe
ution rate. Then we need an invertible performan
e model for

272 M. Danelutto, D. Laforenza, N. Tonellotto, M. Vannes
hi, C. Zo

oloTable 5.1Deployment annotations for the example appli
ation.Component C1 C2 C3 C4 C5Pro
essor i686 i686 i686 i686 i686Memory (MB) 64 256 64CPU Work 3307 52Mem. Work 302 104Conne
tor S1 S2 S3 S4data type param pi
 GOP zipdata size 54B 1.19MB 14.24MB 2MBea
h atomi

omputation that, given the required exe
ution rate, produ
es the resour
e requirements. This isessential in an exe
ution environment in whi
h resour
es are not known in advan
e.The model presented in [22℄ suits our needs. We
an asso
iate to ea
h
omputation a weight, represented bya pair of values w = (wMFLOP , wMB), spe
ifying the number of �oating point operations (expressed in MFLOP)and the data transferred to/from main memory (expressed in MB) per a
tivation. Resour
e power is des
ribedby the pair p = (pMFLOP/s, pMB/s), and exe
ution time is therefore estimated as t(p, w) = wMFLOP

pMFLOP/s
+

wMB

pMB/s
.This model
an be employed also to �nd appropriate parallelism degree for parallel
omputation nodes.We, in fa
t,
an relate t(p, w) for an aggregate resour
e p = [p1, . . . , pk] to the performan
e of the
ode on singleresour
es t(pi, w).Assuming perfe
t speedup, we obtain:

t(p, w) =
(

∑

i

t(pi, w)
−1

)−1In this way we
an derive, for ea
h
omputation node, mat
hing resour
e requirements. These will
on
ernsingle resour
es for sequential nodes, and aggregate ones for parallel nodes.Results
ommented. In Fig. 5.3, two mappings (top on an homogeneous
luster, bottom with heterogeneousresour
es) for the same
onstraint are displayed. The �rst thing to note is that, even if the heterogeneous runhas more varian
e in a
hieved bandwidth, the average bandwidth is
omparable with the homogeneous one.This provides eviden
e that the employed performan
e model
orre
tly handles heterogeneous sets of resour
es,determining the
orre
t parallelism degree. The good performan
e in heterogeneous run (its
ompletion time iseven shorter than the one for homogeneous run) is explained by the fa
t that the model
an mat
h
omputationrequirements with suitable resour
es, i. e. s
hedule memory bound
omputations (e.g. en
oding) on ma
hineswith faster memory, and FPU bound ones (e.g. rendering) on ma
hines with faster FPU.The obtained results are as expe
ted: the mapping
omputed using the performan
e model ful�lls the
onstraint, at the beginning and most of the time of the appli
ation run. This o

urs be
ause, in order to buildour model, we sampled the a
hieved performan
e on the �rst frames of the movie, but the appli
ation workloadslightly
hanges with the evolution of the movie. This is eviden
ed by the smoothed bandwidth
urve, that hasthe same
ourse in the two experimental settings: the workload is heavier around 100s and 300s, while it islighter in the middle and at the end.6. Con
lusions and Future Work. In this work we des
ribed an analyti
al approa
h to map a
lass ofappli
ations on a Grid. These appli
ations intera
t through streams of data, pro
essed by several autonomoussoftware
omponents, either sequential or parallel. We presented a steady state performan
e model for theseappli
ations and we applied it to a
ase study, a rendering pipeline of sequential and parallel
omponents. Themodel was exploited to predi
t a program behavior at run-time. Then we showed a general methodology todevise a
orre
t initial mapping for the appli
ation, driven by spe
i�ed QoS levels. At last, we showed the resultsof our mapping methodology with the presented appli
ation, and we dis
ussed the results of the mapping andthe exe
ution on homogeneous and heterogeneous sets of resour
es. We obtained good results in both
ases.The appli
ation was
orre
tly mapped and the QoS requirement respe
ted with a small error.Analyti
al [35, 19, 36, 20, 18, 29℄ and stru
tural performan
e models [25, 14, 8℄ dis
ussed in Se
t. 2need the full knowledge of the target platform to derive performan
e measures. Therefore, to
ompare re-sults of di�erent mappings, they must be evaluated multiple times. Our approa
h de
ouples the modeling

Modeling Stream Communi
ations in Component-based Appli
ations 273

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500 600

B
a

n
d

w
id

th
 (

fr
a

m
e

/s
)

Time (s)

Test results for cluster Fuji

instantaneous bandwidth
averaged bandwidth (100s)
constraint

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500 600

B
a

n
d

w
id

th
 (

fr
a

m
e

/s
)

Time (s)

Test results for heterogeneous configuration

instantaneous bandwidth
averaged bandwidth (100s)
constraint

Fig. 5.3. Two exe
utions of the test appli
ation: top) homogeneous
lusters of Athlons XP 2600+, down) set of heteroge-neous resour
es (9 P4�2GHz, 1 Athlon XP 2800+, 1 P4�2.8GHz).of the appli
ation performan
e from the target platform, allowing us to evaluate the model on
e to de-rive enough information to drive the mapping pro
ess. Tra
e-based approa
hes [34, 26℄ are used to over-
ome the limitations of previously dis
ussed approa
hes, but they are not
ompositional. Therefore theymust be applied from s
rat
h to every new appli
ation, even if it is built from the same set of
ompo-nents.All those models and the presented one share an assumption on the behavior of the appli
ations:
ompu-tation exe
utions must be independent from the a
tual values of the input set. Otherwise, two exe
utions ofthe same appli
ation would be not
omparable (this is
alled ergodi
ity for sto
hasti
 models). For appli
ationsthat do not meet this requirements, the best solution is to resort to runtime adaptation.The presented approa
h is not perfe
t. The initial mapping
an be
onsidered a good �hint� to start theexe
ution of an appli
ation on a Grid. The dynami

hanges in resour
es during the exe
ution
an not beeasily in
luded in laun
h-time strategies. Our approa
h must be
oupled with res
heduling strategies at run-time to solve su
h problems. Our future work is going in this dire
tion. The presented steady state model
an be exploited at run-time to adapt the behavior of
omponents to
hanges in resour
e performan
es. Inthis way, it should be possible to ful�ll the QoS requirements during the whole exe
ution of the appli
a-tion. REFERENCES[1℄ M. Aldinu

i, A. Petro
elli, E. Pistoletti, M. Torquati, M. Vannes
hi, L. Veraldi, and C. Zo

olo, Dynami
re
on�guration of grid-aware appli
ations in ASSIST, in Pro
. 11th Euro-Par Conferen
e, Lisboa, Portugal, Aug. 2005.[2℄ P. Ammirati, A. Clematis, D. D'Agostino, and V. Gianuzzi, Using a stru
tured programming environment for parallelremote visualization., in Pro
. 10th Euro-Par Conferen
e, Pisa, Italy, Sept. 2004.

274 M. Danelutto, D. Laforenza, N. Tonellotto, M. Vannes
hi, C. Zo

olo[3℄ B. Bab
o
k, S. Babu, M. Datar, R. Motwani, and J. Widom, Models and issues in data stream systems, in Pro
.21st ACM-SIGMOD-SIGACT-SIGART Symposium on Prin
iples of database systems (PODS'02), Madison, USA, 2002,pp. 1�16.[4℄ B. Ba

i, M. Danelutto, S. Pelagatti, and M. Vannes
hi, SkIE: a heterogeneous environment for HPC appli
ations,Par. Comp., 25 (1999), pp. 1827�1852.[5℄ S. Balsamo, A. D. Mar
o, P. Inverardi, and M. Simeoni, Model-Based Performan
e Predi
tion in Software Develop-ment: A Survey, IEEE Trans. on Software Engineering, 30 (2004), pp. 295�310.[6℄ C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert, S
heduling Strategies for Master-Slave Tasking on Heterogeneous Pro
essors platforms, IEEE Trans. on Parallel and Distributed Systems, 15 (2004),pp. 319�330.[7℄ O. Beaumont, A. Legrand, L. Mar
hal, and Y. Robert, Steady-State S
heduling on Heterogeneous Clusters: Whyand How?, in Pro
. of 18th International Parallel and Distributed Pro
essing Symposium (IPDPS 04) (IPDPS'04), April2004.[8℄ A. Benoit, M. Cole, S. Gilmore, and J. Hillston, S
heduling Skeleton-Based Grid Appli
ations Using PEPA and NWS,The Computer Journal, 48 (2005), pp. 369�378.[9℄ F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johnsson, K. Kennedy, C. Kesselman,J. Mellor-Crummey, D. Reed, L. Tor
zon, and R. Wolski, The GrADS Proje
t: Software Support for High-LevelGrid Appli
ation Development, Int. J. of High Performan
e Computing Appli
ations, 15 (2001), pp. 327�344.[10℄ D. Bertsimas and D. Gamarnik, Asymptoti
ally optimal algorithm for job shop s
heduling and pa
ket routing, Journal ofAlgorithms, 33 (1999), pp. 296�318.[11℄ M. Cole, Bringing skeletons out of the
loset: a pragmati
 manifesto for skeletal parallel programming, Par. Comp., 30(2004), pp. 389�406.[12℄ M. Coppola and M. Vannes
hi, High-Performan
e Data Mining with Skeleton-based Stru
tured Parallel Programming,Par. Comp., Sp. Iss. on Parallel Data Intensive Computing, 28 (2002), pp. 793�813.[13℄ M. Danelutto, M. Vannes
hi, C. Zo

olo, N. Tonellotto, R. Baraglia, T. Fagni, D. Laforenza, and A. Pa
-
osi, HPC Appli
ation exe
ution on Grids, in FGG: Future Generation Grid, CoreGRID, Springer, 2006.[14℄ M. Dìaz, B. Rubio, E. Soler, and J. M. Troya, SBASCO: Skeleton-based S
ienti�
 Components, in Pro
. of 12thEuromi
ro Conferen
e on Parallel, Distributed, and Network-Based Pro
essing (PDP'04), A Coruña, Spain, February2004.[15℄ W. Du and G. Agrawal, Language and
ompiler support for adaptive appli
ations, in Pro
. 2004 ACM/IEEE Conferen
eon Super
omputing (SC'04), Pittsburgh, USA, Nov. 2004.[16℄ N. Dumitras
u, S. Murphy, and L. Murphy, A Methodology for Predi
ting the Performan
e of Component-Based Appli-
ations, in Pro
. of 8th International Workshop on Component-Oriented Programming (WCOP 03), Darmstadt, Germany,July 2003.[17℄ I. Foster and C. Kesselman, eds., The Grid: Blueprint for a New Computing Infrastru
ture, Morgan Kaufmann Pub.,July 1998.[18℄ S. Gilmore, J. Hillston, L. Kloul, and M. Ribaudo, Software performan
e modelling using PEPA nets, in Pro
. of 4thInternational Workshop on Software and Performan
e (WOSP 04), New York, NY, USA, 2004, ACM Press, pp. 13�23.[19℄ K. Kant, Introdu
tion to Computer System Performan
e Evaluation, M
Graw-Hill, 1992.[20℄ P. J. B. King and R. Pooley, Derivation of Petri Net Performan
e Models from UML Spe
i�
ations of Communi
ationsSoftware, in Pro
. of 11th International Conferen
e on Computer Performan
e Evaluation: Modelling Te
hniques andTools (TOOLS 00), London, UK, 2000, Springer-Verlag, pp. 262�276.[21℄ H. Ku
hen, A Skeleton Library, in Pro
. 8th Euro-Par Conferen
e, London, UK, Aug. 2002.[22℄ A. Litke, A. Panagakis, A. D. Doulamis, N. D. Doulamis, T. A. Varvarigou, and E. A. Varvarigos, An advan
edar
hite
ture for a
ommer
ial grid infrastru
ture., in European A
ross Grids Conferen
e, M. D. Dikaiakos, ed., vol. 3165of Le
ture Notes in Computer S
ien
e, Springer, 2004, pp. 32�41.[23℄ L. Mar
hal, Y. Yang, H. Casanova, and Y. Robert, A realisti
 network/appli
ation model for s
heduling divisibleloads on large-s
ale platforms, in Pro
. of 19th International Parallel and Distributed Pro
essing Symposium (IPDPS 05)(IPDPS'05), April 2005.[24℄ J. Ray, N. Trebon, R. C. Armstrong, S. Shende, and A. D. Malony, Performan
e Measurement and Modeling ofComponent Appli
ations in a High Performan
e Computing Environment: A Case Study, in Pro
. of 18th InternationalParallel and Distributed Pro
essing Symposium (IPDPS 04), Santa Fé, USA, April 2004.[25℄ J. S
hopf, Stru
tural predi
tion models for high-performan
e distributed appli
ations, in Pro
. of the Cluster ComputingConferen
e (CCC'97), Atlanta, USA, Mar
h 1997.[26℄ L. J. Senger, M. J. Santana, and R. H. C. Santana, Using Runtime Measurements and Histori
al Tra
es for A
quiringKnowledge in Parallel Appli
ations, in Pro
. of the 2004 International Conferen
e on Computational S
ien
e (ICCS 04),M. Bubak, G. D. van Albada, P. M. Sloot, and J. J. Dongarra, eds., vol. 3036 of Le
ture Notes in Computer S
ien
e,Kraków, Poland, June 2004, Springer Verlag, pp. 661�665.[27℄ M. Sitaraman, G. Kul
zy
ki, J. Krone, W. F. Ogden, and A. L. N. Reddy, Performan
e spe
i�
ation of software
omponents, in Pro
. of the 2001 Symposium on Software Reusability (SSR 01), Toronto, Ontario, Canada, 2001, ACMPress, pp. 3�10.[28℄ C. U. Smith, Performan
e Engineering of Software Systems, Addison-Wesley, 1990.[29℄ B. Spitznagel and D. Garlan, Ar
hite
ture-Based Performan
e Analysis, in Pro
. of 10th International Conferen
e onSoftware Engineering and Knowledge Engineering (SEKE 98), Y. Deng and M. Gerken, eds., 1998, pp. 146�151.[30℄ N. Trebon, A. Morris, J. Ray, S. Shende, and A. Malony, Performan
e Modeling of Component Assemblies withTAU, in Pro
.of CompFrame 2005, Atlanta, USA, June 2005.[31℄ S. Vadhiyar and J. Dongarra, Self Adaptability in Grid Computing, Con
urrren
y and Computation: Pra
ti
e andExperien
e, 17 (2005), pp. 235�257.

Modeling Stream Communi
ations in Component-based Appli
ations 275[32℄ A. J. C. van Gemund, Symboli
 Performan
e Modeling of Parallel Systems, IEEE Trans. on Parallel and DistributedSystems, 14 (2003), pp. 154�165.[33℄ M. Vannes
hi, The programming model of ASSIST, an environment for parallel and distributed portable appli
ations, Par.Comp., 28 (2002), pp. 1709�1732.[34℄ F. Vraalsen, R. A. Aydt, C. L. Mendes, and D. A. Reed, Performan
e Contra
ts: Predi
ting and Monitoring GridAppli
ation Behavior, in Pro
. of 2nd International Workshop on Grid Computing (GRID 01), London, UK, 2001,Springer-Verlag, pp. 154�165.[35℄ L. G. Williams and C. U. Smith, PASA(SM): An Ar
hite
tural Approa
h to Fixing Software Performan
e Problems, inPro
. of 28th International Computer Measurement Group Conferen
e, Reno, Nevada, USA, 2002, pp. 307�320.[36℄ C. M. Woodside, J. E. Neilson, D. C. Petriu, and S. Majumdar, The Sto
hasti
 Rendezvous Network Model forPerforman
e of Syn
hronous Client-Server-like Distributed Software, IEEE Trans. on Computer, 44 (1995), pp. 20�34.[37℄ J. Xu, A. Oufimtsev, M. Woodside, and L. Murphy, Performan
e modeling and predi
tion of enterprise javabeans withlayered queuing network templates, in Pro
. of the 2005 Conferen
e on Spe
i�
ation and Veri�
ation of Component-basedSystems (SAVCBS 05), New York, NY, USA, 2005, ACM Press.[38℄ A. Zhang, Y. Song, and M. Mielke, NetMedia: Streaming Multimedia Presentations in Distributed Environments, IEEEMultiMedia, 9 (2002), pp. 56�73.Edited by: Pasqua D'Ambra, Daniela di Sera�no, Mario Rosario Guarra
ino, Fran
es
a PerlaRe
eived: June 2007A

epted: November 2008

