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HIGH PERFORMANCE COMPUTING THROUGH SOC COPROCESSORS
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ALVARO SPELGATTT*

Abstract. In this paper we describe DPFPA (Double Precision Floating Point Accelerator), a FPGA-based coprocessor
interfaced to the CPU through standard bus connections; it is conceived to accelerate double precision floating point operations,
featuring two double precision floating point units, a pipelined adder and a pipelined multiplier with a suitable number of stages.
We tested its performance by implementing a Montecarlo-Metropolis simulation of a dipolar system, using a proper software
development environment designed and realized in our laboratory. DPFPA can provide a speed-up equal to 4, with respect last
generation PC, showing also a good scalability in terms of clock frequency, memory capability and number of computing units.
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1. Introduction. Scientific research owes a lot to computer systems which allowed the achievement of
results otherwise unthinkable [Marsh, 2005][Boghosian et al., 2005]. A powerful computing system permits
the study of several phenomena through the employment of simulations like statistical ones into which the
system under analysis is made to evolve from a certain initial condition, by modifying a few of its characteristic
parameters and by evaluating the feasibility on the basis of a proper merit function. These operations are
iterated thousands of times to bring the system in a new stable state.

Several of these simulations perform double precision floating point operations since they provide the accu-
racy required to appreciate even the smallest fluctuations in the typical variables of the simulated phenomena.
On the other hand, this could represent a hard task even for the most powerful processors which take a lot of
clock cycles to execute a single floating point operation.

The lack of computing power is generally overcome by resorting to supercomputers or clusters [Dongarra et
al., 2005] but in the last years the use of accelerators, i. e. dedicated hardware systems, is gradually establishing
as a valid alternative, due to the feature of these devices which allow to perform those operations in less time
than traditional processors [Buell et al., 2007][Herbordt et al., 2007]. Several researchers worked in these years
not only in this sense but also to improve “methodology, tools and practices supporting the integration of
hardware and software components during system design and development” [Hankel et al., 2003][Wolf, 2003].

At present a similar project concerning a Double Precision Floating Point Accelerator (DPFPA) to process
complex functions has been carried out in the Microcomputer laboratory at the University of Pavia (Italy).
This activity suites well with the mission of the laboratory which aims to design and develop special purpose
architecture for computationally intensive applications. The designed accelerator is implemented onto a FPGA
device lodged on a board interconnected with a Personal Computer and is able to execute floating point opera-
tions faster than a traditional processor [Danese et al, 2007]. Moreover, a proper specific programming language
and a suitable software development environment were realised allowing the user to write, translate and load
proper instructions sequences written in a specific language.

This paper describes the implementation, onto the accelerator, of a Montecarlo-Metropolis simulation of a
dipolar system, a typical computational challenge for supercomputers.

The Montecarlo Metropolis algorithm is an excellent benchmark to test performance of a special purpose
calculation system, since its computational core consists of few floating point operations (double precision)
repeated over and over: this represents the ideal condition to exploit an application specific architecture devoted
to the acceleration of only particular instructions.

Moreover, the algorithm features a SIMD fashion so it is suitable for a distributed implementation which
can exploit more calculation units so increasing the overall achieved speed up.

Finally, typical Montecarlo simulations involve hundreds thousands particle systems and can run for weeks
or months on the most performing computers with a single CPU: the availability of powerful accelerating
units, in case connected into a cluster configuration, makes possible simulations currently unfeasible or sim-
ulations with more particles than now, achieving a better comprehension of the physical phenomena under
analysis.
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In the past other research groups proposed accelerators based on FPGA for Montecarlo simulations:

e one of the first proposal is presented in [Postula et al., 1996] where is described a metallurgical sintering
simulation implemented on a FPGA device with a two orders of magnitude speed-up with respect to a
mid 90’s workstation;

e in the same years, other authors conceived a FPGA implementation of a particular Montecarlo technique
(Swendsen-Wang clustering) with a considerable acceleration with respect to a 15 MHz DSP or making
use of cellular automata [Cowen et al, 1994][Monaghan et al, 1992];

e more recently, a reconfigurable computer was designed devoted to heat transfer simulations, working
on single precision floating point data and achieving an order of magnitude speed-up relative to a 3
GHz P4 processor [Gokhale et al, 2003]; the peculiarity of this contribute is the idea of using widely
available floating point libraries for implementing a calculation function onto FPGA, thus shortening
design time;

e finally, in [Zhang et al, 2005] it is presented a simulation of a financial model implemented on a FPGA
device to accelerate double precision floating point calculations. The achieved speed-up is 26 relative
to a 1.5 GHz P4 processor;

e with regard to FPGA based architectures specifically devoted to physics simulations, the recent lit-
erature proposed the works of Cruz and Belletti [Cruz et al, 2001][Belletti et al, 2006]; the first one
provides interesting architectural issues although using Altera Flex 10K30 components limits the work-
ing frequency to 48 MHz; the second is a project subsequent to our one, employing Altera Stratix family
components and aims to build a cluster of accelerators based on the most recent FPGA devices.

For what concerns a more general use of SoC for computing intensive applications there is a wide literature to
which the reader could refer. The most part of the October 2007 issue of IEEE Computer was devoted to that
topic [Wolf, 2007].

In the next section the architectural features of the accelerator, of the specific language designed and of
its software development environment will be described. Then, the basic physical principles of the simulation
and its needed modifications for optimizing the use of the accelerator will be highlighted. Finally, we will see
the implementation of the algorithm on the accelerator, taking advantage from the use of a ‘dedicated stage’
pipeline and the comparison with a few commercial and popular processors showing a clear speed-up. Some
remarks explaining the evolution of the project will conclude the paper.

2. The Accelerator. We realized a FPGA-based accelerator connected to a host PC to accelerate the
hardest part of a calculus. Our idea refers to a board with a FPGA device (Altera Stratix family) and a Flash
memory storing the configuration code; a JTAG port is used to send the program to the Flash memory from
the PC. Recently, Altera has made available some boards with these features. These boards can communicate
with PC through the network requiring a proper network manager. In this case, both the accelerators and
the network processor can be loaded on the same FPGA. The board we bought is equipped with a Stratix
1540 FPGA component on which a 32 bit RISC CPU, called Nios, is implemented; this processor can be
programmed using C language and is supplied with basic libraries to easily handle the on board devices:
2 MB Ram, 8 MB Flash Memory, 16 MB Compact Flash Memory, 100 Mb/s Ethernet Interface, 2 Serial
ports.

We designed an accelerating unit that is able to implement different functions (also complex like sin, cos,
log, ..., through Taylor series). Thus, it can be used for several applications, also very diversified. Moreover,
the instruction set is fully re-programmable according to the particular calculation to be performed.

The designed unit (DPFPA) can exploit the parallelism present in the operations since double precision
Floating Point MAC operations can be executed at the same time in the sum and multiply pipelines present
onto it. The main part of DPFPA is DPFPP (double precision floating point processor), whose architecture
consists of (fig. 2.1):

e 2 accelerating units, independently working;
e a Cache Memory (4 banks), which can store input data and results for the two accelerating units;

A suitable bus devoted to communication between Accelerator and Nios processor ("sub bus") has been
also implemented. The Math Unit functional core is a double-precision floating-point ALU, which integrates
both an adder and a multiplier operating in a parallel fashion. Both devices are pipelined (9 stages for the
adder and 15 for the multiplier) so that high clock rates are achievable. Note that, in the expected applications,
accurate coding can minimize the negative effects of such latency.
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Fia. 2.1. Architecture of the computational unit implemented onto the FPGA device.

Together with the adder and the multiplier, the ALU also contains 3 register banks, each able to store 4
double-precision floating point numbers. The banks are each tied to a particular purpose (one is for input data,
one for adder results and one for multiplier results).

Like in many similar applications, to make computing elements and storage space independent, a FIFO
memory for both inputs and outputs is implemented (there are two FIFO queues on the output since arithmetic
results are separated from logical ones).

The ALU operations are encoded in 37-bit words, able to simultaneously trigger either a sum or a com-
parison, a multiplication, a data fetch, 3 write operations to the internal register banks and the output of a
result.

To achieve better performance with our specific task, the operands of the adder can optionally be multiplied
by [—2, —1, 2] for the first operand, and [—1, —0.5, 0.5] for the second one. In a similar way, the multiplier result
can be doubled, halved or negated without extra clock cycles.

Since feeding the op-codes would require a large and mostly wasted bandwidth (the code is essentially cyclic,
so that the same op-codes are executed over and over again) the code sequences are stored in a Microcode
Sequencer. This device stores the program sequences in an internal RAM and associates to them a 6-bits op-
code (this is much like having a CPU with a micro-programmed control unit whose code can be changed by the
application to define a custom instruction set).

The Math Unit itself has no addressing capabilities toward either input or output channels, so every memory
I/0O operation must be managed by an external device. A Memory Manager was deemed to that task and
conceived for a specific application class: those where most computations are performed on data logically
organized in three-dimensional matrices. Decoupling the allocation issues from the computing algorithm, the
Memory Manager computes the memory addresses from semantic-level inputs, such as addresses in the matrix
domain (X — Y — Z coordinates) or offsets between elements (the matrix is supposed to be cyclic, so that
e.g. the leftmost element in a row is adjacent to the rightmost element in the same row). This is of extreme
importance, since otherwise the same code would require at least a recompilation to be executed on matrices
with different sizes.

The internal Control Unit (CU) decodes instructions coming from the host computer and drives the control
signals implementing the requested function. It mainly consists of 3 units:

e Instruction Decode: selects between data and instructions from host to the DPFPA. Only in the last
case it generates proper control signals;

e Jump Unit: sets the RAM address to the starting point of the next instruction sequence to be executed;

e RAM: stores sequences corresponding to the instruction set for the particular function to implement.
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Instructions are 64 bit wide exploiting part of the redundancy present in the IEEE 754 standard of floating
point representation, to distinguish them from double precision numbers. Two kinds of instructions have been
implemented:

e Programming instructions to store in the CU RAM executive sequences.

e FEzxecutive instructions to perform specific calculations, recalling sequences already loaded.
Programming instructions to store in the CU RAM executive sequences. Executive instructions to perform
specific calculations, recalling sequences already loaded.

A great advantage of our approach is that the sequences of an executive instruction are performed in an
iterative manner until a new executive instruction will be received by the CU. So, during the execution of the
calculus, CU has to decode only few instructions and can save a great amount of time.

3. Programming DPFPP. As previously stated, DPFPP can handle two types of instructions: pro-
gramming instructions and executive instructions. The former are used to store microcode sequences into the
CU RAM, making microcode words to be loaded at the correct address into the RAM of CU. The word of
microcode, allows the assertion of needed control signals for each clock cycle.

Each executive instruction allows, on the other hand, the recalling of sequences already stored.

We realised soon, that the sequence development using binary microcode was a very hard and inefficient
work. Thus, we chose to design and develop a pseudo-assembly dedicated language that simplifies the sequence
writing. The instructions of the language are mapped directly on the hardware and reflect the operation that
DPFPP can execute. Table 3.1 shows the list of the instructions and their syntax.

TaBLE 3.1
List and syntaz of the language instructions.

| Instruction Syntax |
MOV reg;

SUM c1 op ¢2 op ; SUM cl op ; SUM c1 op op SUM op c2 op; SUM op op
MUL c op op; MUL op op; MUL c op;

OUT xx;

INT;

)

A proper translator was also developed, using standard Unix tools such as Lex and Yacc.

Furthermore, we developed an allocator for an easy generation of the file with the programming instructions
that must be sent to the DPFPP. Finally, we designed a simulator, reproducing exactly the DPFPP working
and enabling pipeline and register inspection. The simulator also allows the visualisation of the clock cycles
needed by a specific sequence or by a set of sequences. Thanks to this tool, we can execute microcode sequences
without loading them into the DPFPP; thus, we can simplify the sequence debug, verify the results’ correctness
and check the performance.

All these tools are integrated in a unique development environment, realised in the Microcomputer labora-
tory to ease the sequence development. There are four main steps: first, we write and compile source code using
an internal editor, then we test the code using the simulator. Finally, we produce the programming file that
has to be sent to the DPFPP by using the allocator. More details on the hardware and software for DPFPA
are in [Danese et al., 2003].

4. The Considered Problem. Liquid crystals and colloidal suspensions are two examples of systems for
which the orientation order has been widely studied through simulations. In both cases interactions among
particles play a dominant role. In previous works, we realized a cubic lattice model describing the interactions
effects in a dipolar system in presence of an external lattice field [Bellini er al., 2001]: simulations made with
this model identified the presence of two phase transitions and the obtained results could in part explain the
phenomenon known as “anomalous bi-refringence” as analyzed in [0’ Konski et al., 1950][Radeva et al., 1996].

On the other hand, simulations take unacceptably long times even on the most recent and powerful com-
puting systems ranging from a few days up to some weeks depending on the size of the simulated system. The
core of the computation is, in fact, the evaluation of the energy since, according to the implemented algorithm
(Montecarlo-Metropolis), equilibrium in a system with N particles is reached through a sequence of moves,
carried out by randomly selecting a spin, changing its orientation through a random angular displacement and
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evaluating the corresponding change in energy. Each move can be accepted or rejected depending on the vari-
ation of the energy associated with it [Metropolis et al., 1953]. We simulated lattice systems with particles
ranging from a few hundreds up to 100.000 considering only first neighbor interactions, i. e. the interaction
between each spin and the six closest ones in the X+, X—, Y+, Y—, Z+, Z— directions. Periodic boundary
conditions were applied [Frenkel et al., 1996]. The associated energy of each dipole due to the presence of an
external field oriented toward z axis is:

(1) Egip = mom;(dip)
The terms due to the interactions between the considered dipole and each of its first neighbours are:

(2) Ex4+ = 2% momy(dip) x mom,(X+) +

—momy, (dip) * momy(X+) — mom(dip) * mom.(X+)
(3) Ex_ =2 xmomg(dip) x mom,(X—) +

—momy, (dip) * mom,, (X —) — mom.(dip) * mom (X —)
(4) Eyy = —momg(dip) * mom,(Y+) +

+2 % momy (dip) * mom, (Y +) — mom (dip) * mom, (Y +)
(5) Ey_ = —mom,/(dip) * mom, (Y —) +

+2 % momy, (dip) * momy (Y —) — mom (dip) * mom, (Y —)
(6) Ez+ = —momy(dip) * mom,(Z+) +

—momy, (dip) * momy(Z+) + 2 * mom, (dip) * mom(Z+)
)+

( (
(7) Ez_ = —momg(dip) x momgy(Z—
( (Z—) + 2« mom(dip) * mom,(Z—)

—momy (dip) * momy (Z
where the components of the moments for each dipole are:

(8) mom,, (dip) = cos(6
(9) momy (dip) = cos(6
(10) mom,(dip) = cos’(6)

and 6, ¢ are the angular co-ordinates of a generic dipole. The overall energy of the dipole is the sum of all these
contributes:

(11)  Erorldip] = 0,5 [Egip — k* (Exy + Ex_ +Eyy + Ey_ + Ez + Ez_)]

The global energy in the system is the sum extended on the whole dipolar set.

The simulated system is characterised by an initial random particle distribution not corresponding to that
achievable at the equilibrium. This means that the change in the orientation of a dipole will modify the
moments and the energy in the others, mainly in the neighbours. These ones, in turn, will influence their
respective neighbours and so on, propagating those variations in the moments throughout the lattice. This
reflects in energy fluctuations that disappear only after a sufficient number of cycles into which ETOT for each
dipole is calculated (equilibration). Only at this point, the Metropolis test on energy variation can be applied.
This loop series corresponds to nearly the 85% of the calculation but it consists of only few instructions, so
justifying the idea of an accelerator specialized in processing only those operations. To do this, we employed
the FPGA technology, which is cheaper and simpler than ASIC in terms of design and test.

However, during the design phase, we considered convenient to realise a more general chip able to accelerate
those double precision floating point instructions which can be often found in scientific simulations. This extends
the applicability of the DPFPA both to models different to that used (i. e. hexagonal lattices instead of cubic
ones) or to completely different fields where high performance computing is mandatory.

5. Energy Evaluation and Implementation. To simplify the readability of the energy calculation on
the DPFPA, as it will be described in the following, let’s rewrite the expressions reported in section 3. The

interaction energy of each dipole can be written as 7% and the sum on all the dipoles will return the
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global energy in the system. CT is the local field generated by the neighbors of the considered dipole and can
be expressed as:

(12) CT=CTX«xSCxk+CTY «SS+xk+CTZxCxk+C

where k is a constant depending on the system density and SC = sin(6)cos(p), SS = sin(0)sin(p), C = cos(8),
with 0, ¢ angular co-ordinates of the dipole. CTX, CTY e CTZ are the local components of the field generated
by the neighbour dipoles. They are respectively equal to:

(13) CTX =(MXX+MX*«X+MYX+MY*«X+MZX +MZ«X)
(14)  OTY = (MXY + MX*Y + MYY + MY Y + MZY + MZ Y)
(15)  CTZ=(MXZ+MX*Z+MYZ+MY xZ+MZZ+MZxZ)

We identify with M X X, M XY, M XZ the local field components generated by the first neighbor dipole in the
direction X —, and with M X x X, M X «Y, M X x Z the local field components generated by the first neighbor
dipole in the direction X +. The other terms due to the effect of dipoles in directions Y+ /Y — and Z+ /Z— are
defined accordingly to the same notation. Moreover the local field, due to the neighbors, changes the components
of the dipolar moment. These should be evaluated each time according to the following expressions:

(16) momy(dip) = CT « SC, momy(dip) = CT x SS, mom,(dip) = CT xC

While the SC, SS and C terms are evaluated at each movement, the other terms should be re-calculated for the
number of cycles necessary to equilibrate the energy in the system. All these operations, finally, are repeated
M x N times with M =cycle number (i. e. 10.000) and N = number of dipoles in the system. This accounts
for the high computational weight of the elaboration.

v

Dipole 4 Dipole 1

Y

v

Fia. 5.1. Diagonal scanning.

With ’scanning’ we mean the order through which the dipoles are processed during the simulation. The
identification of a suitable order can significantly affect the algorithm efficiency in terms of memory access and
reuse of data. If we would not use any particular scanning order but if we only would consider dipoles in the
same order of memorization (1%¢, 2", 374, .. .), their elaboration would need 21 input data (SC, SS and C of
the moved dipole plus the moments of its six first neighbors), returning the 3 new components of the moment
of the considered dipole.

However, if the selection order considers dipoles close to each other toward a diagonal direction, these last
ones share two first neighbors whose parameters are no more needed for the elaboration of the new dipole. Fig.
5.1 shows an example of this, since passing from dipole 1 to 2, dipoles 3 and 4 are preserved as first neighbors.
This reduces to 15 the number of input data needed, and a correspondent saving in transfer time per each dipole
is obtained. Another advantage yielded by the diagonal scanning consists in avoiding calculations. Considering
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again fig. 5.1 we note that dipoles 3 and 4 give the following contributes to each component of the local field in
dipole 1:
(17) MX X + MY Y = 2% momy(4) — momy(3)
(18) MX «Y + MY %Y = —momy(4) + 2 x momy(3)
(19) MX «Z + MY x Z = —mom_(4) — mom(3)
If we now consider the contribute of the same dipoles to dipole 2, the next reached by the diagonal scanning,
we find:
(20) MXX + MYX =2xmom,(3) — momg,(4)
(21) MXY + MY X = —momy(3) + 2 x mom,(4)
(22) MXZ+ MY Z = —mom,(3) — mom(4)
The values on the right are obtained by substituting at the terms on left, those values reported in equations in
section 3.
Equations 19 and 22 are equal and can be calculated only once. The same considerations are applicable in
case of movements toward Y Z or X Z direction with a consistent sparing of operations.
Finally, the moment components involved in equations 17-19 for the dipole 1 are also present (with different

coefficients) in equations 20-22 and, again, they can be calculated only once (i. e. for dipole 1, storing them in
registers from which they can be retrieved later for the next dipole) with a further saving of time.
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Fic. 5.2. Diagonals for scanning in XY face.

The diagonal scanning basically consists of XY movements as shown in fig. 5.2.

The cubic lattice is considered as made by ‘slices’ and when the last dipole is reached on an XY face, a
little movement toward the YZ or X Z direction allows to skip to the next XY slice. In each slice, different
starting points can be chosen depending on the odd/even number of dipoles present on the edge of the lattice,
but for sake of simplicity we don’t want to excessively detail these simulation aspects.

6. Implementation on DPFPA. As previously said, a sequence consists of a microinstruction set and
could be identified as a Setup or a Loop sequence. The first problem to deal with is the definition of those
operations more frequently executed which should be inserted into the Loop sequence. In the diagonal scanning,
the most frequent operation regards the interaction between dipoles located on diagonals belonging to the XY
side: thus, the Loop sequence should implement the energy calculation of these dipoles, while the Setup should
execute the movements in the X Z or Y Z faces of the lattice, through which the algorithm considers the first
dipole of the next XY ‘slice’ and another Loop sequence begins.

According to what said in the previous section, the number of the needed sums is 14 for evaluating CT X,
CTY e CTZ (one add is shared with the previous dipole), 3 for CT and 1 more to add these values to the
partial total energy obtained from the previous dipoles considered. Thus the adder pipeline is used as its best,
if 18 clock cycles are taken. For what concerns multiplications, instead, 6 are needed to calculate CT, 3 for the
new moment components of the considered dipole and 1 more for its global energy. Thus, 10 multiplications
are required. Let’s see how these operations could be efficiently implemented.
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Fia. 6.1. Stage 2 in the adder pipeline during the Loop phase

(CTX + CTY + CTZ)
TO register

(CTX + CTY + CTZ)
FROM register

# MX*X + MY*X # CTX + CTY +CTZ + C
9 cycles|
STAGE 4 () STAGE 4 (B)
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STAGE 4 (D) STAGE 4 (C)

Fia. 6.2. Stage 4 in the adder pipeline during the Loop phase

ETOT

To register

v STAGE 6 (D)
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N
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Energy 1°% dipole 9 cycles (for 2™ dipole)
STAGE 6 (4) STAGE 6 (B)
9 cycles
9 cycles
ETOT + ENEW MX*X + MY*X
d d
st qs < . €
Energy 1°° dipole 9 cycles| (for next dipole)

STAGE 6 (C)

ETOT
From register

Fia. 6.3. Stage 6 in the adder pipeline during the Loop phase

6.1. Adder Unit. Each stage is considered as an independent register containing the partial result which
can be stored every L clock cycles (L is the pipeline length). The Loop sequence evaluates the energy of dipoles
considered in the XY direction: 4 stages of adder pipeline were devoted to calculate CT X, CTY, CTZ and
CT. In fig. 6.1, the second pipeline stage devoted to the calculation of CTX is shown, with the particular
calculation highlighted in bold in each of the four sums needed. In the first step, the term in parentheses is
‘shared’ with the previous dipole considered and does not need to be re-calculated (see previous section). Each
partial result is available only when it has run across the whole pipeline i. e. after 9 clock cycles and the
complete value of C'T'X is available after 36 clock cycles. Then the stage proceeds to evaluate the CT X for the
next dipole. The same considerations can be made for CTY and CTZ. The calculation of CT is implemented
in the stage 4, which works again for 36 clock cycles. The CT X, CTY, CTZ values used in this case are those
coming from the multiplier where they have been multiplied by SC, SS and C. Since the calculation of CT takes
less than 36 cycles, the first stage is used to calculate that value shared with the next dipole:
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Stage Term Cycles 1-9 Cycles 10 - 18 Cycles 19 - 27 Cycles 28 - 36
9 CT2 CTX2+CTY2 (n-3) CTX2+CTY2+ mx*y + my*y CTX2+CTY2+CTZ2 +
CTZ2 (n-3) C2 (n-3)
8 CTZ2 mx*z+my*z + Mxz+myz+mx*z+ mxz+myz+mx*z+ mx*z + my*z (n+1)
(mxz + myz ) (n-1) my*z + mzz (n-1) my*z+mzz+
mz*z (n-1)
7 CTY2 mxy+myy+mx*y+ my*y + mzy mxy+myy+mx*+ (mxy+myy)+ mx*y+myy+mxy + my*y
(n-1) my"y+mzy+ mx*y (n-1) (n+1)
mz*y (n-1)
6 ETOT mx*y + my*y mx*x + my*x Etot+
Etot + Enew1 (n-6) EneW2 (n- 5)
5 CTX2 mxx+myx+mx*x+ mxx+myx+mx-*x+ (mx*x+mxx)+ mx*x+myx+mxx+ my*x
my*x + mzx (n-1) my*x+mzx + myx (n+1) (n+1)
mz*x (n- 1)
4 CT1 mx*x + my*x CTX1+CTY1+CT CTX1 + CTY1 (n-2) CTX+CTY+CTZ (n-2)
Z1+C1(n-4)
3 CTZ1 mx*z+my*z+mxz+ mx*z + my*z (n) mx*z+my*z+ mx*z+my*z+mxz+
myz+mz*z + mzz (n-2) (mxz + myz) (n) myz + mz*z (n)
2 CTX1 mx*x + (mxx+myx) (n) MX*X+mxx+myx mxX*x+my*x+mxx+ mX*x+my*x+mxx+
+ my*x (n) myx + mzx (n) myx+mzx+
mz*x (n)
1 CTY1 (mxy+myy) + mzy (n) mxy+myy+mzy + mxy+myy+mx*y+ mxy+myy+mx*y+
mx*y (n) my*y + mzy (n) my*y+mzy+ mz*y (n)
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Fic. 6.4. Stage 6 in the adder pipeline during the Loop phase.

Therefore the partial value of CT is saved in a register from which it will be retrieved during stage 4B
(fig. 6.2). To optimise the use of the pipeline the remaining stages are devoted to implement the same calculations
for a second dipole, so as to process 2 dipoles in 36 clock cycles. This corresponds, as previously seen, to an
optimal use of the adder. Finally, stage 6 is devoted to add to the global energy value Epor, those two energy
contributes (Enpw) calculated in the other stages of the pipeline up to this moment (fig. 6.3). Basically it
works in the same way as stage 4, including two sums shared with the successive elaborated dipoles (again to
optimise the pipeline use). Even though, during the 36 clock cycles all the sums needed for the energy of two
dipoles have been performed, the dipoles involved in the elaboration are more than 2. In fact, while the adder
is evaluating CT X, CTY and CTZ for the two dipoles, it is not possible to determine at the same time the
correspondent C'T terms, since the previous calculations (CT X, CTY and CY Z) should be completed and they
should also be multiplied by SC1 x k, SS1 x k and C1 x k (k is a suitable constant depending on the system
density). Therefore the CT term really computed refers to the previous Loop sequence. This means that while
CTX, CTY and CTZ for dipoles (n) and (n + 1) are evaluated, the CT terms refer to (n — 3) and (n — 4)
dipoles and the Enpgw corresponds to the couple (n — 5) and (n — 6) previously started. Moreover, also the
couple (n — 1,n — 2) is subjected to a partial elaboration making the pipeline always working,.

This configuration brings a consistent level of parallelisation in the execution of the algorithm. Fig. 6.4
shows the complete set of operations calculated during the 36 clock cycles of each Loop sequence. Per each
stage and clock cycle, the effective sum performed is reported in bold.

6.2. Multiplier Unit. This unit executes the multiplications needed in the terms that must be added, i.
e. 10 per each of the two dipoles of the adder unit (globally 20) and in a sequential way. To synchronise the
operations in the multiplier pipeline with those of the adder, the length of the pipeline (15 stages) is extended to
18 by adding three NOP (no operation) cycles: this means that in 36 clock cycles the multiplier works effectively
for 30 cycles, a time sufficient to execute the required 20 products, without loosing the synchronisation with the
correspondent terms in the adder unit. Fig. 6.5 describes the operations performed together with the output
from the pipeline at that instant, per each clock cycle. In parenthesis the order number is reported of the dipole
to which the calculation refers: n is the dipole for which the calculation of the energy is initiated in the current
sequence. At the end of each Loop sequence the pipeline outputs new moments and energy of the dipole couple
which started the evaluation 3 sequences before. Fictitious products have been inserted when needed to force
the pipeline going one step beyond.

7. Results. The whole system has been tested by executing Montecarlo simulations of different size lattices
(4 < ND < 100, where N D is the number of dipoles on each side of the cubic lattice).
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Output Cc OPERATION Output Cc OPERATION
SC1*K (n-2) 1 Fictitious product - 19 SC1*K (n)
C1*K (n-2) 2 Fictitious product - 20 C1*K (n)
SS1*K (n-2) 3 CTX1*(SC1*K) (n-2) CTX1*SC1*K (n-2) 21 SS1*K (n)
-1/2*CT172 (n-5) 4 CTY1* (SS1*K) (n-2) CTY1*SS1*K (n-2) 22 -1/2*CT142 (n-3)
CTX2*SC2*K (n-3) 5 SC2*K (n-1) SC2*K (n-1) 23 CTX2*(SC2*K) (n-1)
C1*1 (n-2) 6 NOP C1*1 (n-2) 24 NOP
C1*1 (n-2) 7 C1*1 (n-2) C1*1 (n-2) 25 C1*1 (n)
C1*1 (n-4) 8 Fictitious product - 26 C1*1 (n-2)
CTY2*SS2* K (n-3) 9 SS2*K (n-1) S$S82*K (n-1) 27 CTY2*(SS2*K) (n-1)
CT1*C1 (n-6) 10 CT2*SC2 (n-5) CT2*SC2 (n-5) 28 CT1*C1 (n-4)
CT1*SC1 (n-6) 1 CT2*SS2 (n-5) CT2*SS2 (n-5) 29 CT1*SC1 (n-4)
CT1*SS1 (n-6) 12 NOP CTZ1*C1*K (n-2) 30 NOP
CT1*SS1 (n-6) 13 CTZ1*(C1*K) (n-2) CTZ1*C1*K (n-2) 31 CT1*SS1 (n-4)
C2*1 (n-5) 14 CT2*C2 (n-5) CT2*C2 (n-5) 32 C2*1 (n-3)
- 15 -1/2*CT2A2 (n-5) -1/2*CT2"2 (n-5) 33 Fictitious product
C2*1 (n-3) 16 C2*1 (n-1) C2*1 (n-1) 34 C2*1 (n-1)
CTZ2*C2*K (n-3) 17 C2*K (n-1) C2*K (n-1) 35 CTZ2*(C2*K) (n-1)
- 18 NoOP SC1*K (n) 36 NOP

Fia. 6.5. Operations performed in the multiplication pipeline during 36 clock cycles.

Performance has been evaluated as speed-up respect to the execution of the same simulation on an Intel P4
processor with 1GB Ram memory; also FPGA occupation was used as a performance parameter. Simulation
code was written in C language and optimized using Microsoft Visual C++ environment. The Accelerator
elaboration times were measured by means of the clock counters implemented in the interface between Nios and
the coprocessor previously described.

In fig. 7.1 we show the performance as speed-up factor respect to two Intel P4 processors with 3 GHz and
1.7 GHz frequency respectively, calculating the dipolar energy of the simulated system. That computational
core is repeatedly executed k= N % 10000 times where k is the coefficient responsible for the interaction settlement
(equilibration) and N is the dipole number: this gives reason of the high computational load which can lead
(for big particle systems, e. g. 100000 dipoles) to wait a lot for results, if the simulation should be performed
on a PC. The speed-up factor is increasing for the 1.7 GHz processor due to cache effect, while for the most
performing Intel processor (3 GHz) sets around 2.

Considering the size of the FPGA we used, other 2 accelerating units could be implemented, we can
reasonably state that a speed-up factor equal to 4 can be achieved in case of a “full” implementation on the
FPGA component we chose (Stratix EP1540). Further speed-up could be obtained if other components of the
Altera’s family (Stratix2 or Stratix3 now available) should be employed.

The cost of each board we bought was nearly $1200: this represents an important indication when predicting
trade-off between a cluster of workstations versus a cluster of FPGA based accelerators. In practice, our work
indicates that each FPGA unit gives a computational power 4 times greater, only doubling costs with respect
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Fia. 7.1. Speed-up of the FPGA based accelerator with respect the Pj Intel processors.

to a computational unit in a PC cluster, providing the scientist with a COTS desktop computing system on
which he/she can run simulations.

8. Conclusions. Simulations allow the analysis of a physical system, even complex, without experimental
measures or, sometimes, to confirm what was experimentally observed. In certain situations such as microscopic
systems, simulations represent the simplest if not the only way to quickly foresee the behaviour of a particle
system in different environmental conditions. The high number of variables involved together with complex
interaction laws often make simulation times unacceptably long. Finally, several of the requested calculations
ask for double precision floating point arithmetic, further increasing the computational power needed.

In this paper, we have shown how an application specific architecture (DPFPA) specifically designed for
this kind of problems and based on FPGA technology could represent a good compromise between processing
capabilities and low costs. DPFPA can be programmed with a dedicated language to execute complex floating
point functions and it is equipped with a suitable software development environment. We executed the dipole
energy calculation through the simulator, achieving, thanks also to the new scanning algorithm purposely
designed and here described, a performance twice as that of a last generation Personal Computer but can be
easily “extended” to 4.

A further improvement could be achieved by a full custom ASIC implementation of the Accelerator which
is not justified at a prototyping level while it allows a large scale manufacturing with reduced costs. This would
make available several computing units connected in cluster fashion by means of a point to point network,
providing the user with a great computing power.
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