
S
alable Computing: Pra
ti
e and Experien
eVolume 11, Number 3, pp. 277�288. http://www.s
pe.org ISSN 1895-1767© 2010 SCPEHIGH PERFORMANCE COMPUTING THROUGH SOC COPROCESSORSGIANNI DANESE, FRANCESCO LEPORATI, MARCO BERA, MAURO GIACHERO, NELSON NAZZICARI, ANDALVARO SPELGATTI∗Abstra
t. In this paper we des
ribe DPFPA (Double Pre
ision Floating Point A

elerator), a FPGA-based
opro
essorinterfa
ed to the CPU through standard bus
onne
tions; it is
on
eived to a

elerate double pre
ision �oating point operations,featuring two double pre
ision �oating point units, a pipelined adder and a pipelined multiplier with a suitable number of stages.We tested its performan
e by implementing a Monte
arlo-Metropolis simulation of a dipolar system, using a proper softwaredevelopment environment designed and realized in our laboratory. DPFPA
an provide a speed-up equal to 4, with respe
t lastgeneration PC, showing also a good s
alability in terms of
lo
k frequen
y, memory
apability and number of
omputing units.Key words: FPGA; hardware a

elerator; high performan
e embedded system; parallel pro
essing.1. Introdu
tion. S
ienti�
 resear
h owes a lot to
omputer systems whi
h allowed the a
hievement ofresults otherwise unthinkable [Marsh, 2005℄[Boghosian et al., 2005℄. A powerful
omputing system permitsthe study of several phenomena through the employment of simulations like statisti
al ones into whi
h thesystem under analysis is made to evolve from a
ertain initial
ondition, by modifying a few of its
hara
teristi
parameters and by evaluating the feasibility on the basis of a proper merit fun
tion. These operations areiterated thousands of times to bring the system in a new stable state.Several of these simulations perform double pre
ision �oating point operations sin
e they provide the a

u-ra
y required to appre
iate even the smallest �u
tuations in the typi
al variables of the simulated phenomena.On the other hand, this
ould represent a hard task even for the most powerful pro
essors whi
h take a lot of
lo
k
y
les to exe
ute a single �oating point operation.The la
k of
omputing power is generally over
ome by resorting to super
omputers or
lusters [Dongarra etal., 2005℄ but in the last years the use of a

elerators, i. e. dedi
ated hardware systems, is gradually establishingas a valid alternative, due to the feature of these devi
es whi
h allow to perform those operations in less timethan traditional pro
essors [Buell et al., 2007℄[Herbordt et al., 2007℄. Several resear
hers worked in these yearsnot only in this sense but also to improve �methodology, tools and pra
ti
es supporting the integration ofhardware and software
omponents during system design and development� [Hankel et al., 2003℄[Wolf, 2003℄.At present a similar proje
t
on
erning a Double Pre
ision Floating Point A

elerator (DPFPA) to pro
ess
omplex fun
tions has been
arried out in the Mi
ro
omputer laboratory at the University of Pavia (Italy).This a
tivity suites well with the mission of the laboratory whi
h aims to design and develop spe
ial purposear
hite
ture for
omputationally intensive appli
ations. The designed a

elerator is implemented onto a FPGAdevi
e lodged on a board inter
onne
ted with a Personal Computer and is able to exe
ute �oating point opera-tions faster than a traditional pro
essor [Danese et al, 2007℄. Moreover, a proper spe
i�
 programming languageand a suitable software development environment were realised allowing the user to write, translate and loadproper instru
tions sequen
es written in a spe
i�
 language.This paper des
ribes the implementation, onto the a

elerator, of a Monte
arlo-Metropolis simulation of adipolar system, a typi
al
omputational
hallenge for super
omputers.The Monte
arlo Metropolis algorithm is an ex
ellent ben
hmark to test performan
e of a spe
ial purpose
al
ulation system, sin
e its
omputational
ore
onsists of few �oating point operations (double pre
ision)repeated over and over: this represents the ideal
ondition to exploit an appli
ation spe
i�
 ar
hite
ture devotedto the a

eleration of only parti
ular instru
tions.Moreover, the algorithm features a SIMD fashion so it is suitable for a distributed implementation whi
h
an exploit more
al
ulation units so in
reasing the overall a
hieved speed up.Finally, typi
al Monte
arlo simulations involve hundreds thousands parti
le systems and
an run for weeksor months on the most performing
omputers with a single CPU: the availability of powerful a

eleratingunits, in
ase
onne
ted into a
luster
on�guration, makes possible simulations
urrently unfeasible or sim-ulations with more parti
les than now, a
hieving a better
omprehension of the physi
al phenomena underanalysis.
∗ Department of Informati
a and Sistemisti
a, Pavia University, Italy, E-mail: fran
es
o.leporati�unipv.it, Phone: +390382 985678 277

278 Gianni Danese, Fran
es
o Leporati et al.In the past other resear
h groups proposed a

elerators based on FPGA for Monte
arlo simulations:
• one of the �rst proposal is presented in [Postula et al., 1996℄ where is des
ribed a metallurgi
al sinteringsimulation implemented on a FPGA devi
e with a two orders of magnitude speed-up with respe
t to amid 90's workstation;
• in the same years, other authors
on
eived a FPGA implementation of a parti
ular Monte
arlo te
hnique(Swendsen-Wang
lustering) with a
onsiderable a

eleration with respe
t to a 15 MHz DSP or makinguse of
ellular automata [Cowen et al, 1994℄[Monaghan et al, 1992℄;
• more re
ently, a re
on�gurable
omputer was designed devoted to heat transfer simulations, workingon single pre
ision �oating point data and a
hieving an order of magnitude speed-up relative to a 3GHz P4 pro
essor [Gokhale et al, 2003℄; the pe
uliarity of this
ontribute is the idea of using widelyavailable �oating point libraries for implementing a
al
ulation fun
tion onto FPGA, thus shorteningdesign time;
• �nally, in [Zhang et al, 2005℄ it is presented a simulation of a �nan
ial model implemented on a FPGAdevi
e to a

elerate double pre
ision �oating point
al
ulations. The a
hieved speed-up is 26 relativeto a 1.5 GHz P4 pro
essor;
• with regard to FPGA based ar
hite
tures spe
i�
ally devoted to physi
s simulations, the re
ent lit-erature proposed the works of Cruz and Belletti [Cruz et al, 2001℄[Belletti et al, 2006℄; the �rst oneprovides interesting ar
hite
tural issues although using Altera Flex 10K30
omponents limits the work-ing frequen
y to 48 MHz; the se
ond is a proje
t subsequent to our one, employing Altera Stratix family
omponents and aims to build a
luster of a

elerators based on the most re
ent FPGA devi
es.For what
on
erns a more general use of SoC for
omputing intensive appli
ations there is a wide literature towhi
h the reader
ould refer. The most part of the O
tober 2007 issue of IEEE Computer was devoted to thattopi
 [Wolf, 2007℄.In the next se
tion the ar
hite
tural features of the a

elerator, of the spe
i�
 language designed and ofits software development environment will be des
ribed. Then, the basi
 physi
al prin
iples of the simulationand its needed modi�
ations for optimizing the use of the a

elerator will be highlighted. Finally, we will seethe implementation of the algorithm on the a

elerator, taking advantage from the use of a `dedi
ated stage'pipeline and the
omparison with a few
ommer
ial and popular pro
essors showing a
lear speed-up. Someremarks explaining the evolution of the proje
t will
on
lude the paper.2. The A

elerator. We realized a FPGA-based a

elerator
onne
ted to a host PC to a

elerate thehardest part of a
al
ulus. Our idea refers to a board with a FPGA devi
e (Altera Stratix family) and a Flashmemory storing the
on�guration
ode; a JTAG port is used to send the program to the Flash memory fromthe PC. Re
ently, Altera has made available some boards with these features. These boards
an
ommuni
atewith PC through the network requiring a proper network manager. In this
ase, both the a

elerators andthe network pro
essor
an be loaded on the same FPGA. The board we bought is equipped with a Stratix1S40 FPGA
omponent on whi
h a 32 bit RISC CPU,
alled Nios, is implemented; this pro
essor
an beprogrammed using C language and is supplied with basi
 libraries to easily handle the on board devi
es:2 MB Ram, 8 MB Flash Memory, 16 MB Compa
t Flash Memory, 100 Mb/s Ethernet Interfa
e, 2 Serialports.We designed an a

elerating unit that is able to implement di�erent fun
tions (also
omplex like sin,
os,log, . . . , through Taylor series). Thus, it
an be used for several appli
ations, also very diversi�ed. Moreover,the instru
tion set is fully re-programmable a

ording to the parti
ular
al
ulation to be performed.The designed unit (DPFPA)
an exploit the parallelism present in the operations sin
e double pre
isionFloating Point MAC operations
an be exe
uted at the same time in the sum and multiply pipelines presentonto it. The main part of DPFPA is DPFPP (double pre
ision �oating point pro
essor), whose ar
hite
ture
onsists of (�g. 2.1):
• 2 a

elerating units, independently working;
• a Ca
he Memory (4 banks), whi
h
an store input data and results for the two a

elerating units;A suitable bus devoted to
ommuni
ation between A

elerator and Nios pro
essor ("sub bus") has beenalso implemented. The Math Unit fun
tional
ore is a double-pre
ision �oating-point ALU, whi
h integratesboth an adder and a multiplier operating in a parallel fashion. Both devi
es are pipelined (9 stages for theadder and 15 for the multiplier) so that high
lo
k rates are a
hievable. Note that, in the expe
ted appli
ations,a

urate
oding
an minimize the negative e�e
ts of su
h laten
y.

High performan
e
omputing through SoC
opro
essors 279

� �Fig. 2.1. Ar
hite
ture of the
omputational unit implemented onto the FPGA devi
e.Together with the adder and the multiplier, the ALU also
ontains 3 register banks, ea
h able to store 4double-pre
ision �oating point numbers. The banks are ea
h tied to a parti
ular purpose (one is for input data,one for adder results and one for multiplier results).Like in many similar appli
ations, to make
omputing elements and storage spa
e independent, a FIFOmemory for both inputs and outputs is implemented (there are two FIFO queues on the output sin
e arithmeti
results are separated from logi
al ones).The ALU operations are en
oded in 37-bit words, able to simultaneously trigger either a sum or a
om-parison, a multipli
ation, a data fet
h, 3 write operations to the internal register banks and the output of aresult.To a
hieve better performan
e with our spe
i�
 task, the operands of the adder
an optionally be multipliedby [−2,−1, 2] for the �rst operand, and [−1,−0.5, 0.5] for the se
ond one. In a similar way, the multiplier result
an be doubled, halved or negated without extra
lo
k
y
les.Sin
e feeding the op-
odes would require a large and mostly wasted bandwidth (the
ode is essentially
y
li
,so that the same op-
odes are exe
uted over and over again) the
ode sequen
es are stored in a Mi
ro
odeSequen
er. This devi
e stores the program sequen
es in an internal RAM and asso
iates to them a 6-bits op-
ode (this is mu
h like having a CPU with a mi
ro-programmed
ontrol unit whose
ode
an be
hanged by theappli
ation to de�ne a
ustom instru
tion set).The Math Unit itself has no addressing
apabilities toward either input or output
hannels, so every memoryI/O operation must be managed by an external devi
e. A Memory Manager was deemed to that task and
on
eived for a spe
i�
 appli
ation
lass: those where most
omputations are performed on data logi
allyorganized in three-dimensional matri
es. De
oupling the allo
ation issues from the
omputing algorithm, theMemory Manager
omputes the memory addresses from semanti
-level inputs, su
h as addresses in the matrixdomain (X − Y − Z
oordinates) or o�sets between elements (the matrix is supposed to be
y
li
, so thate.g. the leftmost element in a row is adja
ent to the rightmost element in the same row). This is of extremeimportan
e, sin
e otherwise the same
ode would require at least a re
ompilation to be exe
uted on matri
eswith di�erent sizes.The internal Control Unit (CU) de
odes instru
tions
oming from the host
omputer and drives the
ontrolsignals implementing the requested fun
tion. It mainly
onsists of 3 units:
• Instru
tion De
ode: sele
ts between data and instru
tions from host to the DPFPA. Only in the last
ase it generates proper
ontrol signals;
• Jump Unit: sets the RAM address to the starting point of the next instru
tion sequen
e to be exe
uted;
• RAM: stores sequen
es
orresponding to the instru
tion set for the parti
ular fun
tion to implement.

280 Gianni Danese, Fran
es
o Leporati et al.Instru
tions are 64 bit wide exploiting part of the redundan
y present in the IEEE 754 standard of �oatingpoint representation, to distinguish them from double pre
ision numbers. Two kinds of instru
tions have beenimplemented:
• Programming instru
tions to store in the CU RAM exe
utive sequen
es.
• Exe
utive instru
tions to perform spe
i�

al
ulations, re
alling sequen
es already loaded.Programming instru
tions to store in the CU RAM exe
utive sequen
es. Exe
utive instru
tions to performspe
i�

al
ulations, re
alling sequen
es already loaded.A great advantage of our approa
h is that the sequen
es of an exe
utive instru
tion are performed in aniterative manner until a new exe
utive instru
tion will be re
eived by the CU. So, during the exe
ution of the
al
ulus, CU has to de
ode only few instru
tions and
an save a great amount of time.3. Programming DPFPP. As previously stated, DPFPP
an handle two types of instru
tions: pro-gramming instru
tions and exe
utive instru
tions. The former are used to store mi
ro
ode sequen
es into theCU RAM, making mi
ro
ode words to be loaded at the
orre
t address into the RAM of CU. The word ofmi
ro
ode, allows the assertion of needed
ontrol signals for ea
h
lo
k
y
le.Ea
h exe
utive instru
tion allows, on the other hand, the re
alling of sequen
es already stored.We realised soon, that the sequen
e development using binary mi
ro
ode was a very hard and ine�
ientwork. Thus, we
hose to design and develop a pseudo-assembly dedi
ated language that simpli�es the sequen
ewriting. The instru
tions of the language are mapped dire
tly on the hardware and re�e
t the operation thatDPFPP
an exe
ute. Table 3.1 shows the list of the instru
tions and their syntax.Table 3.1List and syntax of the language instru
tions.Instru
tion SyntaxMOV reg;SUM
1 op
2 op ; SUM
1 op ; SUM
1 op op SUM op
2 op; SUM op opMUL
 op op; MUL op op; MUL
 op;OUT xx;INT;A proper translator was also developed, using standard Unix tools su
h as Lex and Ya

.Furthermore, we developed an allo
ator for an easy generation of the �le with the programming instru
tionsthat must be sent to the DPFPP. Finally, we designed a simulator, reprodu
ing exa
tly the DPFPP workingand enabling pipeline and register inspe
tion. The simulator also allows the visualisation of the
lo
k
y
lesneeded by a spe
i�
 sequen
e or by a set of sequen
es. Thanks to this tool, we
an exe
ute mi
ro
ode sequen
eswithout loading them into the DPFPP; thus, we
an simplify the sequen
e debug, verify the results'
orre
tnessand
he
k the performan
e.All these tools are integrated in a unique development environment, realised in the Mi
ro
omputer labora-tory to ease the sequen
e development. There are four main steps: �rst, we write and
ompile sour
e
ode usingan internal editor, then we test the
ode using the simulator. Finally, we produ
e the programming �le thathas to be sent to the DPFPP by using the allo
ator. More details on the hardware and software for DPFPAare in [Danese et al., 2003℄.4. The Considered Problem. Liquid
rystals and
olloidal suspensions are two examples of systems forwhi
h the orientation order has been widely studied through simulations. In both
ases intera
tions amongparti
les play a dominant role. In previous works, we realized a
ubi
 latti
e model des
ribing the intera
tionse�e
ts in a dipolar system in presen
e of an external latti
e �eld [Bellini er al., 2001℄: simulations made withthis model identi�ed the presen
e of two phase transitions and the obtained results
ould in part explain thephenomenon known as �anomalous bi-refringen
e� as analyzed in [O' Konski et al., 1950℄[Radeva et al., 1996℄.On the other hand, simulations take una

eptably long times even on the most re
ent and powerful
om-puting systems ranging from a few days up to some weeks depending on the size of the simulated system. The
ore of the
omputation is, in fa
t, the evaluation of the energy sin
e, a

ording to the implemented algorithm(Monte
arlo-Metropolis), equilibrium in a system with N parti
les is rea
hed through a sequen
e of moves,
arried out by randomly sele
ting a spin,
hanging its orientation through a random angular displa
ement and

High performan
e
omputing through SoC
opro
essors 281evaluating the
orresponding
hange in energy. Ea
h move
an be a

epted or reje
ted depending on the vari-ation of the energy asso
iated with it [Metropolis et al., 1953℄. We simulated latti
e systems with parti
lesranging from a few hundreds up to 100.000
onsidering only �rst neighbor intera
tions, i. e. the intera
tionbetween ea
h spin and the six
losest ones in the X+, X−, Y+, Y−, Z+, Z− dire
tions. Periodi
 boundary
onditions were applied [Frenkel et al., 1996℄. The asso
iated energy of ea
h dipole due to the presen
e of anexternal �eld oriented toward z axis is: (1) Edip = momz(dip)The terms due to the intera
tions between the
onsidered dipole and ea
h of its �rst neighbours are:(2) EX+ = 2 ∗momx(dip) ∗momx(X+) +

−momy(dip) ∗momy(X+)−momz(dip) ∗momz(X+)(3) EX− = 2 ∗momx(dip) ∗momx(X−) +

−momy(dip) ∗momy(X−)−momz(dip) ∗momz(X−)(4) EY+ = −momx(dip) ∗momx(Y+) +

+2 ∗momy(dip) ∗momy(Y+)−momz(dip) ∗momz(Y+)(5) EY− = −momx(dip) ∗momx(Y−) +

+2 ∗momy(dip) ∗momy(Y−)−momz(dip) ∗momz(Y−)(6) EZ+ = −momx(dip) ∗momx(Z+) +

−momy(dip) ∗momy(Z+) + 2 ∗momz(dip) ∗momz(Z+)(7) EZ− = −momx(dip) ∗momx(Z−) +

−momy(dip) ∗momy(Z−) + 2 ∗momz(dip) ∗momz(Z−)where the
omponents of the moments for ea
h dipole are:(8) momx(dip) = cos(θ) ∗ sin(θ) ∗ cos(ϕ)(9) momy(dip) = cos(θ) ∗ sin(θ) ∗ sin(ϕ)(10) momz(dip) = cos′(θ)and θ, ϕ are the angular
o-ordinates of a generi
 dipole. The overall energy of the dipole is the sum of all these
ontributes: (11) ETOT [dip] = −0, 5 ∗ [Edip − k ∗ (EX+ + EX− + EY + + EY − + EZ+ + EZ−)]The global energy in the system is the sum extended on the whole dipolar set.The simulated system is
hara
terised by an initial random parti
le distribution not
orresponding to thata
hievable at the equilibrium. This means that the
hange in the orientation of a dipole will modify themoments and the energy in the others, mainly in the neighbours. These ones, in turn, will in�uen
e theirrespe
tive neighbours and so on, propagating those variations in the moments throughout the latti
e. Thisre�e
ts in energy �u
tuations that disappear only after a su�
ient number of
y
les into whi
h ETOT for ea
hdipole is
al
ulated (equilibration). Only at this point, the Metropolis test on energy variation
an be applied.This loop series
orresponds to nearly the 85% of the
al
ulation but it
onsists of only few instru
tions, sojustifying the idea of an a

elerator spe
ialized in pro
essing only those operations. To do this, we employedthe FPGA te
hnology, whi
h is
heaper and simpler than ASIC in terms of design and test.However, during the design phase, we
onsidered
onvenient to realise a more general
hip able to a

eleratethose double pre
ision �oating point instru
tions whi
h
an be often found in s
ienti�
 simulations. This extendsthe appli
ability of the DPFPA both to models di�erent to that used (i. e. hexagonal latti
es instead of
ubi
ones) or to
ompletely di�erent �elds where high performan
e
omputing is mandatory.5. Energy Evaluation and Implementation. To simplify the readability of the energy
al
ulation onthe DPFPA, as it will be des
ribed in the following, let's rewrite the expressions reported in se
tion 3. Theintera
tion energy of ea
h dipole
an be written as −
(CT∗CT)

2 and the sum on all the dipoles will return the

282 Gianni Danese, Fran
es
o Leporati et al.global energy in the system. CT is the lo
al �eld generated by the neighbors of the
onsidered dipole and
anbe expressed as: (12) CT = CTX ∗ SC ∗ k + CTY ∗ SS ∗ k + CTZ ∗ C ∗ k + Cwhere k is a
onstant depending on the system density and SC = sin(θ)cos(ϕ), SS = sin(θ)sin(ϕ), C = cos(θ),with θ, ϕ angular
o-ordinates of the dipole. CTX, CTY e CTZ are the lo
al
omponents of the �eld generatedby the neighbour dipoles. They are respe
tively equal to:(13) CTX = (MXX +MX ∗X +MYX +MY ∗X +MZX +MZ ∗X)(14) CTY = (MXY +MX ∗ Y +MY Y +MY ∗ Y +MZY +MZ ∗ Y)(15) CTZ = (MXZ +MX ∗ Z +MYZ +MY ∗ Z +MZZ +MZ ∗ Z)We identify with MXX , MXY , MXZ the lo
al �eld
omponents generated by the �rst neighbor dipole in thedire
tion X−, and with MX ∗X , MX ∗ Y , MX ∗Z the lo
al �eld
omponents generated by the �rst neighbordipole in the dire
tion X+. The other terms due to the e�e
t of dipoles in dire
tions Y +/Y− and Z+/Z− arede�ned a

ordingly to the same notation. Moreover the lo
al �eld, due to the neighbors,
hanges the
omponentsof the dipolar moment. These should be evaluated ea
h time a

ording to the following expressions:(16) momx(dip) = CT ∗ SC, momy(dip) = CT ∗ SS, momz(dip) = CT ∗ CWhile the SC, SS and C terms are evaluated at ea
h movement, the other terms should be re-
al
ulated for thenumber of
y
les ne
essary to equilibrate the energy in the system. All these operations, �nally, are repeated
M ∗ N times with M =
y
le number (i. e. 10.000) and N = number of dipoles in the system. This a

ountsfor the high
omputational weight of the elaboration.

Fig. 5.1. Diagonal s
anning.With 's
anning ' we mean the order through whi
h the dipoles are pro
essed during the simulation. Theidenti�
ation of a suitable order
an signi�
antly a�e
t the algorithm e�
ien
y in terms of memory a

ess andreuse of data. If we would not use any parti
ular s
anning order but if we only would
onsider dipoles in thesame order of memorization (1st, 2nd, 3rd, . . .), their elaboration would need 21 input data (SC, SS and C ofthe moved dipole plus the moments of its six �rst neighbors), returning the 3 new
omponents of the momentof the
onsidered dipole.However, if the sele
tion order
onsiders dipoles
lose to ea
h other toward a diagonal dire
tion, these lastones share two �rst neighbors whose parameters are no more needed for the elaboration of the new dipole. Fig.5.1 shows an example of this, sin
e passing from dipole 1 to 2, dipoles 3 and 4 are preserved as �rst neighbors.This redu
es to 15 the number of input data needed, and a
orrespondent saving in transfer time per ea
h dipoleis obtained. Another advantage yielded by the diagonal s
anning
onsists in avoiding
al
ulations. Considering

High performan
e
omputing through SoC
opro
essors 283again �g. 5.1 we note that dipoles 3 and 4 give the following
ontributes to ea
h
omponent of the lo
al �eld indipole 1: (17) MX ∗X +MY ∗ Y = 2 ∗momx(4)−momx(3)(18) MX ∗ Y +MY ∗ Y = −momy(4) + 2 ∗momy(3)(19) MX ∗ Z +MY ∗ Z = −momz(4)−momz(3)If we now
onsider the
ontribute of the same dipoles to dipole 2, the next rea
hed by the diagonal s
anning,we �nd: (20) MXX +MYX = 2 ∗momx(3)−momx(4)(21) MXY +MYX = −momy(3) + 2 ∗momy(4)(22) MXZ +MY Z = −momz(3)−momz(4)The values on the right are obtained by substituting at the terms on left, those values reported in equations inse
tion 3.Equations 19 and 22 are equal and
an be
al
ulated only on
e. The same
onsiderations are appli
able in
ase of movements toward Y Z or XZ dire
tion with a
onsistent sparing of operations.Finally, the moment
omponents involved in equations 17�19 for the dipole 1 are also present (with di�erent
oe�
ients) in equations 20�22 and, again, they
an be
al
ulated only on
e (i. e. for dipole 1, storing them inregisters from whi
h they
an be retrieved later for the next dipole) with a further saving of time.

Fig. 5.2. Diagonals for s
anning in XY fa
e.The diagonal s
anning basi
ally
onsists of XY movements as shown in �g. 5.2.The
ubi
 latti
e is
onsidered as made by `sli
es' and when the last dipole is rea
hed on an XY fa
e, alittle movement toward the Y Z or XZ dire
tion allows to skip to the next XY sli
e. In ea
h sli
e, di�erentstarting points
an be
hosen depending on the odd/even number of dipoles present on the edge of the latti
e,but for sake of simpli
ity we don't want to ex
essively detail these simulation aspe
ts.6. Implementation on DPFPA. As previously said, a sequen
e
onsists of a mi
roinstru
tion set and
ould be identi�ed as a Setup or a Loop sequen
e. The �rst problem to deal with is the de�nition of thoseoperations more frequently exe
uted whi
h should be inserted into the Loop sequen
e. In the diagonal s
anning,the most frequent operation regards the intera
tion between dipoles lo
ated on diagonals belonging to the XYside: thus, the Loop sequen
e should implement the energy
al
ulation of these dipoles, while the Setup shouldexe
ute the movements in the XZ or Y Z fa
es of the latti
e, through whi
h the algorithm
onsiders the �rstdipole of the next XY `sli
e' and another Loop sequen
e begins.A

ording to what said in the previous se
tion, the number of the needed sums is 14 for evaluating CTX ,
CTY e CTZ (one add is shared with the previous dipole), 3 for CT and 1 more to add these values to thepartial total energy obtained from the previous dipoles
onsidered. Thus the adder pipeline is used as its best,if 18
lo
k
y
les are taken. For what
on
erns multipli
ations, instead, 6 are needed to
al
ulate CT , 3 for thenew moment
omponents of the
onsidered dipole and 1 more for its global energy. Thus, 10 multipli
ationsare required. Let's see how these operations
ould be e�
iently implemented.

284 Gianni Danese, Fran
es
o Leporati et al.
� �

������������������

���������� � ����

���������	
 ����������

����������
����������

��������

��������

����������������

������������������

���� � ���

������ ����������	
���������������� �

����

�Fig. 6.1. Stage 2 in the adder pipeline during the Loop phase
� �

�

��������� �����

���������	
 ����������

�����������
����������

��������

��������

����������������

��� �����

��	������	� ������������������

����������������	

�
���
�����

����������������	

��
����
�����

Fig. 6.2. Stage 4 in the adder pipeline during the Loop phase

�
�

�

��������	
���
���

���������	
 ����������

����������
����������

���������

���������

��������
��������

�����������

��������
���
����

�����������

��������	
���
���

�����������

��������������
����

����

���������	
��

����

�������	
��

�����������

Fig. 6.3. Stage 6 in the adder pipeline during the Loop phase6.1. Adder Unit. Ea
h stage is
onsidered as an independent register
ontaining the partial result whi
h
an be stored every L
lo
k
y
les (L is the pipeline length). The Loop sequen
e evaluates the energy of dipoles
onsidered in the XY dire
tion: 4 stages of adder pipeline were devoted to
al
ulate CTX , CTY , CTZ and
CT . In �g. 6.1, the se
ond pipeline stage devoted to the
al
ulation of CTX is shown, with the parti
ular
al
ulation highlighted in bold in ea
h of the four sums needed. In the �rst step, the term in parentheses is`shared' with the previous dipole
onsidered and does not need to be re-
al
ulated (see previous se
tion). Ea
hpartial result is available only when it has run a
ross the whole pipeline i. e. after 9
lo
k
y
les and the
omplete value of CTX is available after 36
lo
k
y
les. Then the stage pro
eeds to evaluate the CTX for thenext dipole. The same
onsiderations
an be made for CTY and CTZ. The
al
ulation of CT is implementedin the stage 4, whi
h works again for 36
lo
k
y
les. The CTX , CTY , CTZ values used in this
ase are those
oming from the multiplier where they have been multiplied by SC, SS and C. Sin
e the
al
ulation of CT takesless than 36
y
les, the �rst stage is used to
al
ulate that value shared with the next dipole:

High performan
e
omputing through SoC
opro
essors 285

� �

����� ���� ���������	�
 ����������	��� ��������
�	�
� �������
��	���

 ��
 ���
����
���	��� ����������

���
���	��

������������ �����������������

�
���	��

� ���
 	
���	
�����

���������������	��

�
��	
��	
����
	
�����������	��

	
��	
��	
���
	
���	���

�������	��

�����������������

� ���
 	

�	

�	
�
��	
�
�������

��	��

	

�	

�	
��
	
�
�	�
�

�������	��

�����������

�������	��

	
�
�	

�	

��������

�����

� ����
���������������	��

����������� ����������� �����
���
���	�!�

! ���
 	

�	

�	
�
�
	
�
���������	��

	

�	

�	
�
�
	
�
�	�
��

�������	���

�����������
���������

	
�
�	

�	

�������
�����

" ��� ����������� ������������
����������	�"��

��������������	
� ��������������	
�

� ���� 	
���	
���	
��
	
��	������������	
�

��������������� 	
���	
���

���������������

	
���	
���	
��
	
������������

 ���� �������������������� 	
�
�	

�	

�
����������

	
�
�	
�
�	

�
	

����������

	
�
�	
�
�	

�
	

�	�
�

��������

� ���� ������������������� 	

�	

�	�
���

��������

	

�	

�	
�
�
	
�
����������

	

�	

�	
�
�
	
�
�	�
����������Fig. 6.4. Stage 6 in the adder pipeline during the Loop phase.Therefore the partial value of CT is saved in a register from whi
h it will be retrieved during stage 4B(�g. 6.2). To optimise the use of the pipeline the remaining stages are devoted to implement the same
al
ulationsfor a se
ond dipole, so as to pro
ess 2 dipoles in 36
lo
k
y
les. This
orresponds, as previously seen, to anoptimal use of the adder. Finally, stage 6 is devoted to add to the global energy value ETOT , those two energy
ontributes (ENEW)
al
ulated in the other stages of the pipeline up to this moment (�g. 6.3). Basi
ally itworks in the same way as stage 4, in
luding two sums shared with the su

essive elaborated dipoles (again tooptimise the pipeline use). Even though, during the 36
lo
k
y
les all the sums needed for the energy of twodipoles have been performed, the dipoles involved in the elaboration are more than 2. In fa
t, while the adderis evaluating CTX , CTY and CTZ for the two dipoles, it is not possible to determine at the same time the
orrespondent CT terms, sin
e the previous
al
ulations (CTX , CTY and CY Z) should be
ompleted and theyshould also be multiplied by SC1 ∗ k, SS1 ∗ k and C1 ∗ k (k is a suitable
onstant depending on the systemdensity). Therefore the CT term really
omputed refers to the previous Loop sequen
e. This means that while

CTX , CTY and CTZ for dipoles (n) and (n + 1) are evaluated, the CT terms refer to (n − 3) and (n − 4)dipoles and the ENEW
orresponds to the
ouple (n − 5) and (n − 6) previously started. Moreover, also the
ouple (n− 1, n− 2) is subje
ted to a partial elaboration making the pipeline always working.This
on�guration brings a
onsistent level of parallelisation in the exe
ution of the algorithm. Fig. 6.4shows the
omplete set of operations
al
ulated during the 36
lo
k
y
les of ea
h Loop sequen
e. Per ea
hstage and
lo
k
y
le, the e�e
tive sum performed is reported in bold.6.2. Multiplier Unit. This unit exe
utes the multipli
ations needed in the terms that must be added, i.e. 10 per ea
h of the two dipoles of the adder unit (globally 20) and in a sequential way. To syn
hronise theoperations in the multiplier pipeline with those of the adder, the length of the pipeline (15 stages) is extended to18 by adding three NOP (no operation)
y
les: this means that in 36
lo
k
y
les the multiplier works e�e
tivelyfor 30
y
les, a time su�
ient to exe
ute the required 20 produ
ts, without loosing the syn
hronisation with the
orrespondent terms in the adder unit. Fig. 6.5 des
ribes the operations performed together with the outputfrom the pipeline at that instant, per ea
h
lo
k
y
le. In parenthesis the order number is reported of the dipoleto whi
h the
al
ulation refers: n is the dipole for whi
h the
al
ulation of the energy is initiated in the
urrentsequen
e. At the end of ea
h Loop sequen
e the pipeline outputs new moments and energy of the dipole
ouplewhi
h started the evaluation 3 sequen
es before. Fi
titious produ
ts have been inserted when needed to for
ethe pipeline going one step beyond.7. Results. The whole system has been tested by exe
uting Monte
arlo simulations of di�erent size latti
es(4 < ND < 100, where ND is the number of dipoles on ea
h side of the
ubi
 latti
e).

286 Gianni Danese, Fran
es
o Leporati et al.

� �

������ �� �����	
�� ������ �
 �����	
��

��������	
� � �
��
�
����������� ��� �� ���������

�������	
� � �
��
�
����������� ��� �� ��������

��������	
� � ���������������	
� �������������	
� �� ���������

	��
�����
���	�� 	 ����������������	
� �������������	
� �� 	��
����

���	��

���
���
�����	�� � ��
�����	�� ��
�����	�� �� ���
����
������	��

�������	
� � ��� �������	
� �	 ���

�������	
�
 �������	
� �������	
� �� ��������

�������	�� � �
��
�
����������� ��� �� �������	
�

���
�����
�������	�� � ��
�����	�� ��
�����	�� �
 ���
����
������	��

���������	�� �� ��
���
���	�� ��
���
���	�� �� ���������	��

����������	�� �� ��
���
���	�� ��
���
����	�� �� ����������	��

����������	�� �� ��� ������������	
� �� ���

����������	�� �� ��������������	
� ������������	
� �� ����������	��

�
�����	�� �	 ��
��
���	�� ��
��
���	�� �� �
�����	��

��� �� 	��
���

���	�� 	��
���
�
���	�� �� �
��
�
�����������

�
�����	�� �� �
�����	�� �
�����	�� �	 �
�����	��

���
��
�����	�� �
 �
�����	�� �
�����	�� �� ���
���
������	��

��� �� ��� ��������� �� ���Fig. 6.5. Operations performed in the multipli
ation pipeline during 36
lo
k
y
les.Performan
e has been evaluated as speed-up respe
t to the exe
ution of the same simulation on an Intel P4pro
essor with 1GB Ram memory; also FPGA o

upation was used as a performan
e parameter. Simulation
ode was written in C language and optimized using Mi
rosoft Visual C++ environment. The A

eleratorelaboration times were measured by means of the
lo
k
ounters implemented in the interfa
e between Nios andthe
opro
essor previously des
ribed.In �g. 7.1 we show the performan
e as speed-up fa
tor respe
t to two Intel P4 pro
essors with 3 GHz and1.7 GHz frequen
y respe
tively,
al
ulating the dipolar energy of the simulated system. That
omputational
ore is repeatedly exe
uted k∗N ∗10000 times where k is the
oe�
ient responsible for the intera
tion settlement(equilibration) and N is the dipole number: this gives reason of the high
omputational load whi
h
an lead(for big parti
le systems, e. g. 100000 dipoles) to wait a lot for results, if the simulation should be performedon a PC. The speed-up fa
tor is in
reasing for the 1.7 GHz pro
essor due to
a
he e�e
t, while for the mostperforming Intel pro
essor (3 GHz) sets around 2.Considering the size of the FPGA we used, other 2 a

elerating units
ould be implemented, we
anreasonably state that a speed-up fa
tor equal to 4
an be a
hieved in
ase of a �full� implementation on theFPGA
omponent we
hose (Stratix EP1S40). Further speed-up
ould be obtained if other
omponents of theAltera's family (Stratix2 or Stratix3 now available) should be employed.The
ost of ea
h board we bought was nearly $1200: this represents an important indi
ation when predi
tingtrade-o� between a
luster of workstations versus a
luster of FPGA based a

elerators. In pra
ti
e, our workindi
ates that ea
h FPGA unit gives a
omputational power 4 times greater, only doubling
osts with respe
t

High performan
e
omputing through SoC
opro
essors 287

�
�

�

����

����

����

����

����

����

����

	���

���

�� ��
�
��
�

��
��

�
��

��

�
�

�	
��
�

��
��
�

��
��
�

�
�

�

��
��
��

��������	
���

�
�
�
�
�	
�

�
�����
��������������	����

�
�����
������������������

Fig. 7.1. Speed-up of the FPGA based a

elerator with respe
t the P4 Intel pro
essors.to a
omputational unit in a PC
luster, providing the s
ientist with a COTS desktop
omputing system onwhi
h he/she
an run simulations.8. Con
lusions. Simulations allow the analysis of a physi
al system, even
omplex, without experimentalmeasures or, sometimes, to
on�rm what was experimentally observed. In
ertain situations su
h as mi
ros
opi
systems, simulations represent the simplest if not the only way to qui
kly foresee the behaviour of a parti
lesystem in di�erent environmental
onditions. The high number of variables involved together with
omplexintera
tion laws often make simulation times una

eptably long. Finally, several of the requested
al
ulationsask for double pre
ision �oating point arithmeti
, further in
reasing the
omputational power needed.In this paper, we have shown how an appli
ation spe
i�
 ar
hite
ture (DPFPA) spe
i�
ally designed forthis kind of problems and based on FPGA te
hnology
ould represent a good
ompromise between pro
essing
apabilities and low
osts. DPFPA
an be programmed with a dedi
ated language to exe
ute
omplex �oatingpoint fun
tions and it is equipped with a suitable software development environment. We exe
uted the dipoleenergy
al
ulation through the simulator, a
hieving, thanks also to the new s
anning algorithm purposelydesigned and here des
ribed, a performan
e twi
e as that of a last generation Personal Computer but
an beeasily �extended� to 4.A further improvement
ould be a
hieved by a full
ustom ASIC implementation of the A

elerator whi
his not justi�ed at a prototyping level while it allows a large s
ale manufa
turing with redu
ed
osts. This wouldmake available several
omputing units
onne
ted in
luster fashion by means of a point to point network,providing the user with a great
omputing power.REFERENCES[BELLETTI F., et al.,℄ �An adaptive FPGA
omputer�, IEEE Computing in S
ien
e & Engineering, vol. 8(1), January-February2006, pp. 41-49.[BOGHOSIAN B., et al.℄ �S
ienti�
 appli
ations of grid
omputing�, IEEE Comp. in S
ien
e & Engin., vol. 7(5), Sept.-O
t. 2005,pp. 10-13.[BUELL D., et al℄ �High Performan
e Re
on�gurable Computing�, IEEE Computer. Mar
h 2007, pp. 23�26.[COWEN C. P. et al.℄ �A re
on�gurable Monte
arlo
lustering pro
essor (MCCP)�, FPGAs for Custom Computing Ma
hines,1994. Pro
eedings. IEEE Workshop on 10�13 April 1994, pp. 59 � 65.[CRUZ A., et al.℄ �A Spe
ial Purpose Computer for spin glass models�, Computer Physi
s Communi
ations, vol. 133, n° 2-3, 2001,pp. 165�176[DANESE G., et al.℄ �A development and simulation environment for a �oating point operations FPGA based a

elerator�, Pro
.of DSD '03 � 3rd Euromi
ro Symposium on Digital System Design, Belek (Turkey), September 2003, pp. 173-179.[DANESE G., et al.℄ �An appli
ation spe
i�
 pro
essor for Monte
arlo simulations�, IEEE
onferen
e on Parallel and DistributedPro
essing (PDP07), Naples, February 2007, pp. 262-269.[DANESE G., et al.℄ �Field indu
ed anti-nemati
 ordering in assemblies of anisotropi
ally polarizable spins�, Europhysi
s Letters55(3), pp. 362-368, 2001.[DONGARRA J., et al.℄ �High-Performan
e Computing: Clusters, Constellations, MPPs, and Future Dire
tions�, IEEE Comp. inS
ien
e & Engin., vol. 7(2), Mar�Apr 05, pp. 51�59.[FRENKEL D., et al.℄ �Understanding
omputer simulations�, A
ad. Press New York, pp. 28�30, 1996.

288 Gianni Danese, Fran
es
o Leporati et al.[GOKHALE M., et al.℄ �Monte Carlo radiative Heat Transfer Simulation on a re
on�gurable Computer�, Pro
. of FPL 2004, LNCS3203, pp. 95�104, Springer-Verlag ed.[HANKEL J., et al.℄ �Taking on the embedded system design
hallenge�, IEEE Computer, April 2003, 35�37.[HERBORDT M. C.℄ �A
hieving High Performan
e with FPGA-Based Computing�, IEEE Computer. Mar
h 2007, pp. 50-57.[MARSH P.℄ �High performan
e horizons�, Computing & Control Engineering Journal, vol. 15(6), De
ember�January 2004/2005,pp. 42�48.[METROPOLIS N., et al.℄ �Equation of State Cal
ulations by Fast Computing Ma
hines�, Journal of Chem. Physi
s, 21, (1953),pp. 1087�1092.[MONAGHAN S., et al.℄ �Re
on�gurable spe
ial purpose hardware for s
ienti�

omputation and simulation�, Computing & Con-trol Engineering Journal, Vol. 3, Issue 5, Sept. 1992, pp. 225�234.[O' KONSKI C. T., et al.℄ �New method for studying ele
tri
al orientation and relaxation e�e
ts in aqueous
olloids: preliminaryresults with toba

o mosai
 virus�, S
ien
e, 111, pp. 113�116 (1950).[POSTULA A., et al.℄ �The design of a spe
ialized pro
essor for the simulation of sintering�, EUROMICRO 96. 'Beyond 2000:Hardware and Software Design Strategies', Pro
. of the 22nd EUROMICRO Conferen
e, 2�5 September 1996, pp. 501 �508.[RADEVA T., et al.℄ �Ele
tri
 Light S
attering from Polytetra�uorethylene Suspensions�, Coll. And Surf. 119, 1 (1996).[WOLF W.℄ �A de
ade of hardware/software
odesign�, IEEE Computer, April 2003, 38�42[WOLF W.℄ �The embedded systems lands
ape�, IEEE Computer, O
tober 2007, 29�33.[ZHANG G. L., et al.℄ �Re
on�gurable A

eleration for Monte
arlo based �nan
ial simulation�, Pro
. of FPT05, IEEE Conferen
eon �eld programmable te
hnology, Singapore De
. 11�14 2005.Edited by: Pasqua D'Ambra, Daniela di Sera�no, Mario Rosario Guarra
ino, Fran
es
a PerlaRe
eived: June 2007A

epted: November 2008

