
Salable Computing: Pratie and ExperieneVolume 11, Number 3, pp. 277�288. http://www.spe.org ISSN 1895-1767© 2010 SCPEHIGH PERFORMANCE COMPUTING THROUGH SOC COPROCESSORSGIANNI DANESE, FRANCESCO LEPORATI, MARCO BERA, MAURO GIACHERO, NELSON NAZZICARI, ANDALVARO SPELGATTI∗Abstrat. In this paper we desribe DPFPA (Double Preision Floating Point Aelerator), a FPGA-based oproessorinterfaed to the CPU through standard bus onnetions; it is oneived to aelerate double preision �oating point operations,featuring two double preision �oating point units, a pipelined adder and a pipelined multiplier with a suitable number of stages.We tested its performane by implementing a Montearlo-Metropolis simulation of a dipolar system, using a proper softwaredevelopment environment designed and realized in our laboratory. DPFPA an provide a speed-up equal to 4, with respet lastgeneration PC, showing also a good salability in terms of lok frequeny, memory apability and number of omputing units.Key words: FPGA; hardware aelerator; high performane embedded system; parallel proessing.1. Introdution. Sienti� researh owes a lot to omputer systems whih allowed the ahievement ofresults otherwise unthinkable [Marsh, 2005℄[Boghosian et al., 2005℄. A powerful omputing system permitsthe study of several phenomena through the employment of simulations like statistial ones into whih thesystem under analysis is made to evolve from a ertain initial ondition, by modifying a few of its harateristiparameters and by evaluating the feasibility on the basis of a proper merit funtion. These operations areiterated thousands of times to bring the system in a new stable state.Several of these simulations perform double preision �oating point operations sine they provide the au-ray required to appreiate even the smallest �utuations in the typial variables of the simulated phenomena.On the other hand, this ould represent a hard task even for the most powerful proessors whih take a lot oflok yles to exeute a single �oating point operation.The lak of omputing power is generally overome by resorting to superomputers or lusters [Dongarra etal., 2005℄ but in the last years the use of aelerators, i. e. dediated hardware systems, is gradually establishingas a valid alternative, due to the feature of these devies whih allow to perform those operations in less timethan traditional proessors [Buell et al., 2007℄[Herbordt et al., 2007℄. Several researhers worked in these yearsnot only in this sense but also to improve �methodology, tools and praties supporting the integration ofhardware and software omponents during system design and development� [Hankel et al., 2003℄[Wolf, 2003℄.At present a similar projet onerning a Double Preision Floating Point Aelerator (DPFPA) to proessomplex funtions has been arried out in the Miroomputer laboratory at the University of Pavia (Italy).This ativity suites well with the mission of the laboratory whih aims to design and develop speial purposearhiteture for omputationally intensive appliations. The designed aelerator is implemented onto a FPGAdevie lodged on a board interonneted with a Personal Computer and is able to exeute �oating point opera-tions faster than a traditional proessor [Danese et al, 2007℄. Moreover, a proper spei� programming languageand a suitable software development environment were realised allowing the user to write, translate and loadproper instrutions sequenes written in a spei� language.This paper desribes the implementation, onto the aelerator, of a Montearlo-Metropolis simulation of adipolar system, a typial omputational hallenge for superomputers.The Montearlo Metropolis algorithm is an exellent benhmark to test performane of a speial purposealulation system, sine its omputational ore onsists of few �oating point operations (double preision)repeated over and over: this represents the ideal ondition to exploit an appliation spei� arhiteture devotedto the aeleration of only partiular instrutions.Moreover, the algorithm features a SIMD fashion so it is suitable for a distributed implementation whihan exploit more alulation units so inreasing the overall ahieved speed up.Finally, typial Montearlo simulations involve hundreds thousands partile systems and an run for weeksor months on the most performing omputers with a single CPU: the availability of powerful aeleratingunits, in ase onneted into a luster on�guration, makes possible simulations urrently unfeasible or sim-ulations with more partiles than now, ahieving a better omprehension of the physial phenomena underanalysis.
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278 Gianni Danese, Franeso Leporati et al.In the past other researh groups proposed aelerators based on FPGA for Montearlo simulations:
• one of the �rst proposal is presented in [Postula et al., 1996℄ where is desribed a metallurgial sinteringsimulation implemented on a FPGA devie with a two orders of magnitude speed-up with respet to amid 90's workstation;
• in the same years, other authors oneived a FPGA implementation of a partiular Montearlo tehnique(Swendsen-Wang lustering) with a onsiderable aeleration with respet to a 15 MHz DSP or makinguse of ellular automata [Cowen et al, 1994℄[Monaghan et al, 1992℄;
• more reently, a reon�gurable omputer was designed devoted to heat transfer simulations, workingon single preision �oating point data and ahieving an order of magnitude speed-up relative to a 3GHz P4 proessor [Gokhale et al, 2003℄; the peuliarity of this ontribute is the idea of using widelyavailable �oating point libraries for implementing a alulation funtion onto FPGA, thus shorteningdesign time;
• �nally, in [Zhang et al, 2005℄ it is presented a simulation of a �nanial model implemented on a FPGAdevie to aelerate double preision �oating point alulations. The ahieved speed-up is 26 relativeto a 1.5 GHz P4 proessor;
• with regard to FPGA based arhitetures spei�ally devoted to physis simulations, the reent lit-erature proposed the works of Cruz and Belletti [Cruz et al, 2001℄[Belletti et al, 2006℄; the �rst oneprovides interesting arhitetural issues although using Altera Flex 10K30 omponents limits the work-ing frequeny to 48 MHz; the seond is a projet subsequent to our one, employing Altera Stratix familyomponents and aims to build a luster of aelerators based on the most reent FPGA devies.For what onerns a more general use of SoC for omputing intensive appliations there is a wide literature towhih the reader ould refer. The most part of the Otober 2007 issue of IEEE Computer was devoted to thattopi [Wolf, 2007℄.In the next setion the arhitetural features of the aelerator, of the spei� language designed and ofits software development environment will be desribed. Then, the basi physial priniples of the simulationand its needed modi�ations for optimizing the use of the aelerator will be highlighted. Finally, we will seethe implementation of the algorithm on the aelerator, taking advantage from the use of a `dediated stage'pipeline and the omparison with a few ommerial and popular proessors showing a lear speed-up. Someremarks explaining the evolution of the projet will onlude the paper.2. The Aelerator. We realized a FPGA-based aelerator onneted to a host PC to aelerate thehardest part of a alulus. Our idea refers to a board with a FPGA devie (Altera Stratix family) and a Flashmemory storing the on�guration ode; a JTAG port is used to send the program to the Flash memory fromthe PC. Reently, Altera has made available some boards with these features. These boards an ommuniatewith PC through the network requiring a proper network manager. In this ase, both the aelerators andthe network proessor an be loaded on the same FPGA. The board we bought is equipped with a Stratix1S40 FPGA omponent on whih a 32 bit RISC CPU, alled Nios, is implemented; this proessor an beprogrammed using C language and is supplied with basi libraries to easily handle the on board devies:2 MB Ram, 8 MB Flash Memory, 16 MB Compat Flash Memory, 100 Mb/s Ethernet Interfae, 2 Serialports.We designed an aelerating unit that is able to implement di�erent funtions (also omplex like sin, os,log, . . . , through Taylor series). Thus, it an be used for several appliations, also very diversi�ed. Moreover,the instrution set is fully re-programmable aording to the partiular alulation to be performed.The designed unit (DPFPA) an exploit the parallelism present in the operations sine double preisionFloating Point MAC operations an be exeuted at the same time in the sum and multiply pipelines presentonto it. The main part of DPFPA is DPFPP (double preision �oating point proessor), whose arhitetureonsists of (�g. 2.1):
• 2 aelerating units, independently working;
• a Cahe Memory (4 banks), whih an store input data and results for the two aelerating units;A suitable bus devoted to ommuniation between Aelerator and Nios proessor ("sub bus") has beenalso implemented. The Math Unit funtional ore is a double-preision �oating-point ALU, whih integratesboth an adder and a multiplier operating in a parallel fashion. Both devies are pipelined (9 stages for theadder and 15 for the multiplier) so that high lok rates are ahievable. Note that, in the expeted appliations,aurate oding an minimize the negative e�ets of suh lateny.
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� �Fig. 2.1. Arhiteture of the omputational unit implemented onto the FPGA devie.Together with the adder and the multiplier, the ALU also ontains 3 register banks, eah able to store 4double-preision �oating point numbers. The banks are eah tied to a partiular purpose (one is for input data,one for adder results and one for multiplier results).Like in many similar appliations, to make omputing elements and storage spae independent, a FIFOmemory for both inputs and outputs is implemented (there are two FIFO queues on the output sine arithmetiresults are separated from logial ones).The ALU operations are enoded in 37-bit words, able to simultaneously trigger either a sum or a om-parison, a multipliation, a data feth, 3 write operations to the internal register banks and the output of aresult.To ahieve better performane with our spei� task, the operands of the adder an optionally be multipliedby [−2,−1, 2] for the �rst operand, and [−1,−0.5, 0.5] for the seond one. In a similar way, the multiplier resultan be doubled, halved or negated without extra lok yles.Sine feeding the op-odes would require a large and mostly wasted bandwidth (the ode is essentially yli,so that the same op-odes are exeuted over and over again) the ode sequenes are stored in a MiroodeSequener. This devie stores the program sequenes in an internal RAM and assoiates to them a 6-bits op-ode (this is muh like having a CPU with a miro-programmed ontrol unit whose ode an be hanged by theappliation to de�ne a ustom instrution set).The Math Unit itself has no addressing apabilities toward either input or output hannels, so every memoryI/O operation must be managed by an external devie. A Memory Manager was deemed to that task andoneived for a spei� appliation lass: those where most omputations are performed on data logiallyorganized in three-dimensional matries. Deoupling the alloation issues from the omputing algorithm, theMemory Manager omputes the memory addresses from semanti-level inputs, suh as addresses in the matrixdomain (X − Y − Z oordinates) or o�sets between elements (the matrix is supposed to be yli, so thate.g. the leftmost element in a row is adjaent to the rightmost element in the same row). This is of extremeimportane, sine otherwise the same ode would require at least a reompilation to be exeuted on matrieswith di�erent sizes.The internal Control Unit (CU) deodes instrutions oming from the host omputer and drives the ontrolsignals implementing the requested funtion. It mainly onsists of 3 units:
• Instrution Deode: selets between data and instrutions from host to the DPFPA. Only in the lastase it generates proper ontrol signals;
• Jump Unit: sets the RAM address to the starting point of the next instrution sequene to be exeuted;
• RAM: stores sequenes orresponding to the instrution set for the partiular funtion to implement.



280 Gianni Danese, Franeso Leporati et al.Instrutions are 64 bit wide exploiting part of the redundany present in the IEEE 754 standard of �oatingpoint representation, to distinguish them from double preision numbers. Two kinds of instrutions have beenimplemented:
• Programming instrutions to store in the CU RAM exeutive sequenes.
• Exeutive instrutions to perform spei� alulations, realling sequenes already loaded.Programming instrutions to store in the CU RAM exeutive sequenes. Exeutive instrutions to performspei� alulations, realling sequenes already loaded.A great advantage of our approah is that the sequenes of an exeutive instrution are performed in aniterative manner until a new exeutive instrution will be reeived by the CU. So, during the exeution of thealulus, CU has to deode only few instrutions and an save a great amount of time.3. Programming DPFPP. As previously stated, DPFPP an handle two types of instrutions: pro-gramming instrutions and exeutive instrutions. The former are used to store miroode sequenes into theCU RAM, making miroode words to be loaded at the orret address into the RAM of CU. The word ofmiroode, allows the assertion of needed ontrol signals for eah lok yle.Eah exeutive instrution allows, on the other hand, the realling of sequenes already stored.We realised soon, that the sequene development using binary miroode was a very hard and ine�ientwork. Thus, we hose to design and develop a pseudo-assembly dediated language that simpli�es the sequenewriting. The instrutions of the language are mapped diretly on the hardware and re�et the operation thatDPFPP an exeute. Table 3.1 shows the list of the instrutions and their syntax.Table 3.1List and syntax of the language instrutions.Instrution SyntaxMOV reg;SUM 1 op 2 op ; SUM 1 op ; SUM 1 op op SUM op 2 op; SUM op opMUL  op op; MUL op op; MUL  op;OUT xx;INT;A proper translator was also developed, using standard Unix tools suh as Lex and Ya.Furthermore, we developed an alloator for an easy generation of the �le with the programming instrutionsthat must be sent to the DPFPP. Finally, we designed a simulator, reproduing exatly the DPFPP workingand enabling pipeline and register inspetion. The simulator also allows the visualisation of the lok ylesneeded by a spei� sequene or by a set of sequenes. Thanks to this tool, we an exeute miroode sequeneswithout loading them into the DPFPP; thus, we an simplify the sequene debug, verify the results' orretnessand hek the performane.All these tools are integrated in a unique development environment, realised in the Miroomputer labora-tory to ease the sequene development. There are four main steps: �rst, we write and ompile soure ode usingan internal editor, then we test the ode using the simulator. Finally, we produe the programming �le thathas to be sent to the DPFPP by using the alloator. More details on the hardware and software for DPFPAare in [Danese et al., 2003℄.4. The Considered Problem. Liquid rystals and olloidal suspensions are two examples of systems forwhih the orientation order has been widely studied through simulations. In both ases interations amongpartiles play a dominant role. In previous works, we realized a ubi lattie model desribing the interationse�ets in a dipolar system in presene of an external lattie �eld [Bellini er al., 2001℄: simulations made withthis model identi�ed the presene of two phase transitions and the obtained results ould in part explain thephenomenon known as �anomalous bi-refringene� as analyzed in [O' Konski et al., 1950℄[Radeva et al., 1996℄.On the other hand, simulations take unaeptably long times even on the most reent and powerful om-puting systems ranging from a few days up to some weeks depending on the size of the simulated system. Theore of the omputation is, in fat, the evaluation of the energy sine, aording to the implemented algorithm(Montearlo-Metropolis), equilibrium in a system with N partiles is reahed through a sequene of moves,arried out by randomly seleting a spin, hanging its orientation through a random angular displaement and



High performane omputing through SoC oproessors 281evaluating the orresponding hange in energy. Eah move an be aepted or rejeted depending on the vari-ation of the energy assoiated with it [Metropolis et al., 1953℄. We simulated lattie systems with partilesranging from a few hundreds up to 100.000 onsidering only �rst neighbor interations, i. e. the interationbetween eah spin and the six losest ones in the X+, X−, Y+, Y−, Z+, Z− diretions. Periodi boundaryonditions were applied [Frenkel et al., 1996℄. The assoiated energy of eah dipole due to the presene of anexternal �eld oriented toward z axis is: (1) Edip = momz(dip)The terms due to the interations between the onsidered dipole and eah of its �rst neighbours are:(2) EX+ = 2 ∗momx(dip) ∗momx(X+) +

−momy(dip) ∗momy(X+)−momz(dip) ∗momz(X+)(3) EX− = 2 ∗momx(dip) ∗momx(X−) +

−momy(dip) ∗momy(X−)−momz(dip) ∗momz(X−)(4) EY+ = −momx(dip) ∗momx(Y+) +

+2 ∗momy(dip) ∗momy(Y+)−momz(dip) ∗momz(Y+)(5) EY− = −momx(dip) ∗momx(Y−) +

+2 ∗momy(dip) ∗momy(Y−)−momz(dip) ∗momz(Y−)(6) EZ+ = −momx(dip) ∗momx(Z+) +

−momy(dip) ∗momy(Z+) + 2 ∗momz(dip) ∗momz(Z+)(7) EZ− = −momx(dip) ∗momx(Z−) +

−momy(dip) ∗momy(Z−) + 2 ∗momz(dip) ∗momz(Z−)where the omponents of the moments for eah dipole are:(8) momx(dip) = cos(θ) ∗ sin(θ) ∗ cos(ϕ)(9) momy(dip) = cos(θ) ∗ sin(θ) ∗ sin(ϕ)(10) momz(dip) = cos′(θ)and θ, ϕ are the angular o-ordinates of a generi dipole. The overall energy of the dipole is the sum of all theseontributes: (11) ETOT [dip] = −0, 5 ∗ [Edip − k ∗ (EX+ + EX− + EY + + EY − + EZ+ + EZ−)]The global energy in the system is the sum extended on the whole dipolar set.The simulated system is haraterised by an initial random partile distribution not orresponding to thatahievable at the equilibrium. This means that the hange in the orientation of a dipole will modify themoments and the energy in the others, mainly in the neighbours. These ones, in turn, will in�uene theirrespetive neighbours and so on, propagating those variations in the moments throughout the lattie. Thisre�ets in energy �utuations that disappear only after a su�ient number of yles into whih ETOT for eahdipole is alulated (equilibration). Only at this point, the Metropolis test on energy variation an be applied.This loop series orresponds to nearly the 85% of the alulation but it onsists of only few instrutions, sojustifying the idea of an aelerator speialized in proessing only those operations. To do this, we employedthe FPGA tehnology, whih is heaper and simpler than ASIC in terms of design and test.However, during the design phase, we onsidered onvenient to realise a more general hip able to aeleratethose double preision �oating point instrutions whih an be often found in sienti� simulations. This extendsthe appliability of the DPFPA both to models di�erent to that used (i. e. hexagonal latties instead of ubiones) or to ompletely di�erent �elds where high performane omputing is mandatory.5. Energy Evaluation and Implementation. To simplify the readability of the energy alulation onthe DPFPA, as it will be desribed in the following, let's rewrite the expressions reported in setion 3. Theinteration energy of eah dipole an be written as −
(CT∗CT )

2 and the sum on all the dipoles will return the



282 Gianni Danese, Franeso Leporati et al.global energy in the system. CT is the loal �eld generated by the neighbors of the onsidered dipole and anbe expressed as: (12) CT = CTX ∗ SC ∗ k + CTY ∗ SS ∗ k + CTZ ∗ C ∗ k + Cwhere k is a onstant depending on the system density and SC = sin(θ)cos(ϕ), SS = sin(θ)sin(ϕ), C = cos(θ),with θ, ϕ angular o-ordinates of the dipole. CTX, CTY e CTZ are the loal omponents of the �eld generatedby the neighbour dipoles. They are respetively equal to:(13) CTX = (MXX +MX ∗X +MYX +MY ∗X +MZX +MZ ∗X)(14) CTY = (MXY +MX ∗ Y +MY Y +MY ∗ Y +MZY +MZ ∗ Y )(15) CTZ = (MXZ +MX ∗ Z +MYZ +MY ∗ Z +MZZ +MZ ∗ Z)We identify with MXX , MXY , MXZ the loal �eld omponents generated by the �rst neighbor dipole in thediretion X−, and with MX ∗X , MX ∗ Y , MX ∗Z the loal �eld omponents generated by the �rst neighbordipole in the diretion X+. The other terms due to the e�et of dipoles in diretions Y +/Y− and Z+/Z− arede�ned aordingly to the same notation. Moreover the loal �eld, due to the neighbors, hanges the omponentsof the dipolar moment. These should be evaluated eah time aording to the following expressions:(16) momx(dip) = CT ∗ SC, momy(dip) = CT ∗ SS, momz(dip) = CT ∗ CWhile the SC, SS and C terms are evaluated at eah movement, the other terms should be re-alulated for thenumber of yles neessary to equilibrate the energy in the system. All these operations, �nally, are repeated
M ∗ N times with M =yle number (i. e. 10.000) and N = number of dipoles in the system. This aountsfor the high omputational weight of the elaboration.

Fig. 5.1. Diagonal sanning.With 'sanning ' we mean the order through whih the dipoles are proessed during the simulation. Theidenti�ation of a suitable order an signi�antly a�et the algorithm e�ieny in terms of memory aess andreuse of data. If we would not use any partiular sanning order but if we only would onsider dipoles in thesame order of memorization (1st, 2nd, 3rd, . . . ), their elaboration would need 21 input data (SC, SS and C ofthe moved dipole plus the moments of its six �rst neighbors), returning the 3 new omponents of the momentof the onsidered dipole.However, if the seletion order onsiders dipoles lose to eah other toward a diagonal diretion, these lastones share two �rst neighbors whose parameters are no more needed for the elaboration of the new dipole. Fig.5.1 shows an example of this, sine passing from dipole 1 to 2, dipoles 3 and 4 are preserved as �rst neighbors.This redues to 15 the number of input data needed, and a orrespondent saving in transfer time per eah dipoleis obtained. Another advantage yielded by the diagonal sanning onsists in avoiding alulations. Considering



High performane omputing through SoC oproessors 283again �g. 5.1 we note that dipoles 3 and 4 give the following ontributes to eah omponent of the loal �eld indipole 1: (17) MX ∗X +MY ∗ Y = 2 ∗momx(4)−momx(3)(18) MX ∗ Y +MY ∗ Y = −momy(4) + 2 ∗momy(3)(19) MX ∗ Z +MY ∗ Z = −momz(4)−momz(3)If we now onsider the ontribute of the same dipoles to dipole 2, the next reahed by the diagonal sanning,we �nd: (20) MXX +MYX = 2 ∗momx(3)−momx(4)(21) MXY +MYX = −momy(3) + 2 ∗momy(4)(22) MXZ +MY Z = −momz(3)−momz(4)The values on the right are obtained by substituting at the terms on left, those values reported in equations insetion 3.Equations 19 and 22 are equal and an be alulated only one. The same onsiderations are appliable inase of movements toward Y Z or XZ diretion with a onsistent sparing of operations.Finally, the moment omponents involved in equations 17�19 for the dipole 1 are also present (with di�erentoe�ients) in equations 20�22 and, again, they an be alulated only one (i. e. for dipole 1, storing them inregisters from whih they an be retrieved later for the next dipole) with a further saving of time.

Fig. 5.2. Diagonals for sanning in XY fae.The diagonal sanning basially onsists of XY movements as shown in �g. 5.2.The ubi lattie is onsidered as made by `slies' and when the last dipole is reahed on an XY fae, alittle movement toward the Y Z or XZ diretion allows to skip to the next XY slie. In eah slie, di�erentstarting points an be hosen depending on the odd/even number of dipoles present on the edge of the lattie,but for sake of simpliity we don't want to exessively detail these simulation aspets.6. Implementation on DPFPA. As previously said, a sequene onsists of a miroinstrution set andould be identi�ed as a Setup or a Loop sequene. The �rst problem to deal with is the de�nition of thoseoperations more frequently exeuted whih should be inserted into the Loop sequene. In the diagonal sanning,the most frequent operation regards the interation between dipoles loated on diagonals belonging to the XYside: thus, the Loop sequene should implement the energy alulation of these dipoles, while the Setup shouldexeute the movements in the XZ or Y Z faes of the lattie, through whih the algorithm onsiders the �rstdipole of the next XY `slie' and another Loop sequene begins.Aording to what said in the previous setion, the number of the needed sums is 14 for evaluating CTX ,
CTY e CTZ (one add is shared with the previous dipole), 3 for CT and 1 more to add these values to thepartial total energy obtained from the previous dipoles onsidered. Thus the adder pipeline is used as its best,if 18 lok yles are taken. For what onerns multipliations, instead, 6 are needed to alulate CT , 3 for thenew moment omponents of the onsidered dipole and 1 more for its global energy. Thus, 10 multipliationsare required. Let's see how these operations ould be e�iently implemented.
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�Fig. 6.1. Stage 2 in the adder pipeline during the Loop phase
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Fig. 6.2. Stage 4 in the adder pipeline during the Loop phase
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Fig. 6.3. Stage 6 in the adder pipeline during the Loop phase6.1. Adder Unit. Eah stage is onsidered as an independent register ontaining the partial result whihan be stored every L lok yles (L is the pipeline length). The Loop sequene evaluates the energy of dipolesonsidered in the XY diretion: 4 stages of adder pipeline were devoted to alulate CTX , CTY , CTZ and
CT . In �g. 6.1, the seond pipeline stage devoted to the alulation of CTX is shown, with the partiularalulation highlighted in bold in eah of the four sums needed. In the �rst step, the term in parentheses is`shared' with the previous dipole onsidered and does not need to be re-alulated (see previous setion). Eahpartial result is available only when it has run aross the whole pipeline i. e. after 9 lok yles and theomplete value of CTX is available after 36 lok yles. Then the stage proeeds to evaluate the CTX for thenext dipole. The same onsiderations an be made for CTY and CTZ. The alulation of CT is implementedin the stage 4, whih works again for 36 lok yles. The CTX , CTY , CTZ values used in this ase are thoseoming from the multiplier where they have been multiplied by SC, SS and C. Sine the alulation of CT takesless than 36 yles, the �rst stage is used to alulate that value shared with the next dipole:
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	��	�����������Fig. 6.4. Stage 6 in the adder pipeline during the Loop phase.Therefore the partial value of CT is saved in a register from whih it will be retrieved during stage 4B(�g. 6.2). To optimise the use of the pipeline the remaining stages are devoted to implement the same alulationsfor a seond dipole, so as to proess 2 dipoles in 36 lok yles. This orresponds, as previously seen, to anoptimal use of the adder. Finally, stage 6 is devoted to add to the global energy value ETOT , those two energyontributes (ENEW ) alulated in the other stages of the pipeline up to this moment (�g. 6.3). Basially itworks in the same way as stage 4, inluding two sums shared with the suessive elaborated dipoles (again tooptimise the pipeline use). Even though, during the 36 lok yles all the sums needed for the energy of twodipoles have been performed, the dipoles involved in the elaboration are more than 2. In fat, while the adderis evaluating CTX , CTY and CTZ for the two dipoles, it is not possible to determine at the same time theorrespondent CT terms, sine the previous alulations (CTX , CTY and CY Z) should be ompleted and theyshould also be multiplied by SC1 ∗ k, SS1 ∗ k and C1 ∗ k (k is a suitable onstant depending on the systemdensity). Therefore the CT term really omputed refers to the previous Loop sequene. This means that while

CTX , CTY and CTZ for dipoles (n) and (n + 1) are evaluated, the CT terms refer to (n − 3) and (n − 4)dipoles and the ENEW orresponds to the ouple (n − 5) and (n − 6) previously started. Moreover, also theouple (n− 1, n− 2) is subjeted to a partial elaboration making the pipeline always working.This on�guration brings a onsistent level of parallelisation in the exeution of the algorithm. Fig. 6.4shows the omplete set of operations alulated during the 36 lok yles of eah Loop sequene. Per eahstage and lok yle, the e�etive sum performed is reported in bold.6.2. Multiplier Unit. This unit exeutes the multipliations needed in the terms that must be added, i.e. 10 per eah of the two dipoles of the adder unit (globally 20) and in a sequential way. To synhronise theoperations in the multiplier pipeline with those of the adder, the length of the pipeline (15 stages) is extended to18 by adding three NOP (no operation) yles: this means that in 36 lok yles the multiplier works e�etivelyfor 30 yles, a time su�ient to exeute the required 20 produts, without loosing the synhronisation with theorrespondent terms in the adder unit. Fig. 6.5 desribes the operations performed together with the outputfrom the pipeline at that instant, per eah lok yle. In parenthesis the order number is reported of the dipoleto whih the alulation refers: n is the dipole for whih the alulation of the energy is initiated in the urrentsequene. At the end of eah Loop sequene the pipeline outputs new moments and energy of the dipole ouplewhih started the evaluation 3 sequenes before. Fititious produts have been inserted when needed to forethe pipeline going one step beyond.7. Results. The whole system has been tested by exeuting Montearlo simulations of di�erent size latties(4 < ND < 100, where ND is the number of dipoles on eah side of the ubi lattie).
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��� �� ��� ��������� �� ���Fig. 6.5. Operations performed in the multipliation pipeline during 36 lok yles.Performane has been evaluated as speed-up respet to the exeution of the same simulation on an Intel P4proessor with 1GB Ram memory; also FPGA oupation was used as a performane parameter. Simulationode was written in C language and optimized using Mirosoft Visual C++ environment. The Aeleratorelaboration times were measured by means of the lok ounters implemented in the interfae between Nios andthe oproessor previously desribed.In �g. 7.1 we show the performane as speed-up fator respet to two Intel P4 proessors with 3 GHz and1.7 GHz frequeny respetively, alulating the dipolar energy of the simulated system. That omputationalore is repeatedly exeuted k∗N ∗10000 times where k is the oe�ient responsible for the interation settlement(equilibration) and N is the dipole number: this gives reason of the high omputational load whih an lead(for big partile systems, e. g. 100000 dipoles) to wait a lot for results, if the simulation should be performedon a PC. The speed-up fator is inreasing for the 1.7 GHz proessor due to ahe e�et, while for the mostperforming Intel proessor (3 GHz) sets around 2.Considering the size of the FPGA we used, other 2 aelerating units ould be implemented, we anreasonably state that a speed-up fator equal to 4 an be ahieved in ase of a �full� implementation on theFPGA omponent we hose (Stratix EP1S40). Further speed-up ould be obtained if other omponents of theAltera's family (Stratix2 or Stratix3 now available) should be employed.The ost of eah board we bought was nearly $1200: this represents an important indiation when preditingtrade-o� between a luster of workstations versus a luster of FPGA based aelerators. In pratie, our workindiates that eah FPGA unit gives a omputational power 4 times greater, only doubling osts with respet
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Fig. 7.1. Speed-up of the FPGA based aelerator with respet the P4 Intel proessors.to a omputational unit in a PC luster, providing the sientist with a COTS desktop omputing system onwhih he/she an run simulations.8. Conlusions. Simulations allow the analysis of a physial system, even omplex, without experimentalmeasures or, sometimes, to on�rm what was experimentally observed. In ertain situations suh as mirosopisystems, simulations represent the simplest if not the only way to quikly foresee the behaviour of a partilesystem in di�erent environmental onditions. The high number of variables involved together with omplexinteration laws often make simulation times unaeptably long. Finally, several of the requested alulationsask for double preision �oating point arithmeti, further inreasing the omputational power needed.In this paper, we have shown how an appliation spei� arhiteture (DPFPA) spei�ally designed forthis kind of problems and based on FPGA tehnology ould represent a good ompromise between proessingapabilities and low osts. DPFPA an be programmed with a dediated language to exeute omplex �oatingpoint funtions and it is equipped with a suitable software development environment. We exeuted the dipoleenergy alulation through the simulator, ahieving, thanks also to the new sanning algorithm purposelydesigned and here desribed, a performane twie as that of a last generation Personal Computer but an beeasily �extended� to 4.A further improvement ould be ahieved by a full ustom ASIC implementation of the Aelerator whihis not justi�ed at a prototyping level while it allows a large sale manufaturing with redued osts. This wouldmake available several omputing units onneted in luster fashion by means of a point to point network,providing the user with a great omputing power.REFERENCES[BELLETTI F., et al.,℄ �An adaptive FPGA omputer�, IEEE Computing in Siene & Engineering, vol. 8(1), January-February2006, pp. 41-49.[BOGHOSIAN B., et al.℄ �Sienti� appliations of grid omputing�, IEEE Comp. in Siene & Engin., vol. 7(5), Sept.-Ot. 2005,pp. 10-13.[BUELL D., et al℄ �High Performane Reon�gurable Computing�, IEEE Computer. Marh 2007, pp. 23�26.[COWEN C. P. et al.℄ �A reon�gurable Montearlo lustering proessor (MCCP)�, FPGAs for Custom Computing Mahines,1994. Proeedings. IEEE Workshop on 10�13 April 1994, pp. 59 � 65.[CRUZ A., et al.℄ �A Speial Purpose Computer for spin glass models�, Computer Physis Communiations, vol. 133, n° 2-3, 2001,pp. 165�176[DANESE G., et al.℄ �A development and simulation environment for a �oating point operations FPGA based aelerator�, Pro.of DSD '03 � 3rd Euromiro Symposium on Digital System Design, Belek (Turkey), September 2003, pp. 173-179.[DANESE G., et al.℄ �An appliation spei� proessor for Montearlo simulations�, IEEE onferene on Parallel and DistributedProessing (PDP07), Naples, February 2007, pp. 262-269.[DANESE G., et al.℄ �Field indued anti-nemati ordering in assemblies of anisotropially polarizable spins�, Europhysis Letters55(3), pp. 362-368, 2001.[DONGARRA J., et al.℄ �High-Performane Computing: Clusters, Constellations, MPPs, and Future Diretions�, IEEE Comp. inSiene & Engin., vol. 7(2), Mar�Apr 05, pp. 51�59.[FRENKEL D., et al.℄ �Understanding omputer simulations�, Aad. Press New York, pp. 28�30, 1996.
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