
Scalable Computing: Practice and Experience

Volume 12, Number 1, pp. 79–92. http://www.scpe.org
ISSN 1895-1767

c© 2011 SCPE

FLEXIBLE ORGANIZATION IN THE ORCFS RELATIONAL FILE SYSTEM FOR
EFFICIENT FILE SEARCHING

ADRIAN COLEŞA∗, ALEXANDRA COLDEA†, AND IOSIF IGNAT‡

Abstract. The need for efficient organization of files grows with the computer storage capabilities. However, a classical
hierarchical file system offers little help in this matter, excepting maybe the case of links and shortcuts. OrcFS proposes a
solution to this problem. By redefining several file system concepts, it allows the user to set custom metadata, in the form of
“(property, value)” pairs, to express relationships between files. Using it, the system automatically creates a classified view of its
components, in which those having similar characteristics are grouped together. A virtual hierarchy is generated, which provides
multiple access paths to the same file. This assures that the data can be classified in a more flexible way and the navigation can be
done more intuitively. The traditional concept of directory is extended, to accommodate the user-defined properties. In OrcFS, both
classical navigation and query interrogation are possible. The enhanced system is compliant with the Linux’s VFS interface, thus
no changes need to be made to existing applications and they may be used in OrcFS. A prototype of the project was implemented
in user-space using the FUSE library to reimplement system calls. The performed tests proved that even if introducing new data
in the OrcFS implies some overhead, this is negligible compared with the gain obtained when searching for files in an immense file
tree structure.

Key words: file-system; file relationships; metadata; fast retrieval; compatibility

1. Introduction. In the last years notable enhancements have been obtained in the field of data storage.
The most modern computers are a collection of impressive numbers. The disk capacity increased up to the order
of terabytes, the data can now be stored more efficiently and retrieved faster. However, these improvements at
a low-level bring along with them the necessity of a higher-level data organization revolution.

The classical operating system offers only basic help for data organization at user level. Moreover, there is
almost no flexibility in expressing relationships between files.

A relational file system′s objective is to find a manner to overcome the fore mentioned limitations. Due
to the extensive research in this domain several directions have been outlined. All projects associate semantic
information with files [11] in order to describe their contents and interrelationships. Some solutions, like [15, 12,
3] store this metadata in databases, while others [10] use the already existent i-node and directory structures.
While in most implementations a file is presented to the user as an atomic element, there are some [14, 12, 3]
which split this concept and work with different parts of the file. The latter extract from file contents different
pieces of information, interpret and manage them to provide the user the possibility to see and interact with
the stored data at a more abstract and complex level. Regarding the user capabilities, the projects can be
classified in two categories: some, [11, 3], simply index the metadata extracted from different file formats while
others [15, 12, 10, 9, 8, 7] allow the definition of custom properties.

We propose a system compatible with the already existent applications, that provides a classification in
which files and file containers are treated similarly. From the point of view of the direction taken, our project
belongs to the path that treats the file as an indivisible item. The focus is not on analyzing the file content, but
on extending the organization and search methods. In this respect, the project does not head towards becoming
a data storage enhancer, like [12], but towards a relational file system that introduces new file container concepts
in order to obtain the desired flexibility. The two concepts are not mutually exclusive, the proof of which is [15],
and thus the analysis of the file content can be seen as a possible extension of OrcFS.

Our system allows the user to define metadata, in order to describe files and file containers on two levels.
Firstly, properties specify the criteria by which the files in the current location will be classified. Next, each
file may or may not assign values to these criteria. Using this information the system will dynamically create
virtual directories to reflect the classification. Moving further, the user will be able do define his own virtual
containers, which are the result of boolean queries on properties and values. Because this implementation needs
flexibility in manipulating relationships, we will be using a relational database to store the metadata, similar
to [15].

An important characteristic of our system is that it runs over the classical file system, respecting the VFS [5]
interface and maintaining an apparent hierarchical view.

∗Computer Science Department, Technical University of Cluj-Napoca, Romania (adrian.colesa@cs.utcluj.ro).
†Computer Science Department, Technical University of Cluj-Napoca, Romania (alexandra.coldea@student.utcluj.ro).
‡Computer Science Department, Technical University of Cluj-Napoca, Romania (iosif.ignat@cs.utcluj.ro).

79



80 A. Coleşa, A. Coldea and I. Ignat

The following sections describe in greater details the implementation and testing of the system. As such,
Section 2 and Section 3 present how several concepts of the classical file system have been redefined in order
to serve the needs of OrcFS. Section 4 analyzes the project architecture and individual modules. Section 5
presents an example of how the system can be used. Section 6 contains a description of the tests performed
and an examination of their outcomes. Section 7 summarizes the approach taken by other projects in this area.
Section 8 contains several conclusions.

2. Redefinition of File System Concepts. The integration of the proposed relational model in the
classical file system is done by redefining the old concepts and defining new ones. Due to the fact that the most
affected is the logical organization layer, the main concept which was extended is that of a file container, or
directory. The following sections describe how each concept has been altered.

2.1. Category. Categories are the only physical containers in the file system. Every other type of container
presented from here on is virtual. They are the true file holders in the sense that every file must belong to
a category. The notion remains from the hierarchical organization and its functionality is similar to that of a
directory. Therefore, a category and a directory both define a file container, specified by the user by certain
logical criteria. In the case of the traditional directory these logical criteria are the name and, indirectly, the
hierarchy created. However, for the category, the classification criteria will be more detailed. The next sections
will explain these criteria.

Similarly to directories, each category may contain several subcategories. However, the difference between
subcategories is not only based on their names, like for subdirectories, but also on specific properties each item
possesses.

Some examples are the category of books, papers, projects.

The notion of absolute and relative path maintain their meaning from the classical operating systems.
However, the difference is that a file is no longer uniquely identified by its absolute path, but by a combination
between it and properties. The following section will detail on this change.

2.2. Property and Value. In order to obtain more flexibility in organizing the categories, properties
(tags, attributes) are associated to each of them. Every subcategory or file has the properties of the category it
belongs to. Therefore, inside a category, the significance of properties is classification criteria. In order to classify
a file by a certain criteria the user must assign a value to the corresponding property. Hence, the elements of
a category are described using pairs “(property, value)”. An item may have several pairs “(property, value)”
associated with it and it may associate several values to the same property.

Thus, a property is associated to a category, while a value is associated to a file or a subcategory. Each
category contains several properties and each of its files or subcategories, may or may not assign one or more
values to any property associated with that category. In this organization a file is uniquely identified by its
absolute path — indicated by the sequence of categories from root to the file location concatenated with file
name— and a list of “(property, value)” pairs.

Let’s assume the example of the Articles category. Some properties (classification criteria) which may be
defined are: author, year, keyWord. Different files in this category may assign different values to the same
property — they may have different authors. At the same time, the same file may assign different values to
the same property — for example an article may be associated with several key words. The user may search
through the files of a category using different classification criteria. Thus, he is able to search for all the articles
written by a certain author, or all the articles written by several authors. Moreover he may ask for all the files
“having the authors X and Y and the year Z”. This leads to a very flexible and intuitive way of navigation
through the file system.

Both properties and values are seen by the user as directories. However, they are only virtual containers
because their content is not stored on disk, it is generated. In order to improve the performance and not be
compelled to create every time the content of these types of directories, indexing will be used.

The difference between these types of containers and a category is that in the latter the user groups together
files that, according to him, have a logical connection and a common set of properties. On the other hand, in
property and value containers, the system groups together files that have the same subset of metadata fields.

2.3. The Classification Directory. In order to link the categories with the property and value direc-
tories, the Classification directory was introduced. It represents an isolation of the classified view from the



Flexible Organization in the OrcFS Relational File System for Efficient File Searching 81

non-classified view. This distinction is introduced in order to make the system and part of its facilities accessible
through the interface of existing applications.

Each category contains a virtual directory called Classification which consists of the files in the current
location in a classified hierarchy. At the first level, this directory contains all properties associated with the
current category.

At the next level, each property will contain directories corresponding to the values each of them may take.
A value subdirectory contains all files with which it is associated but also, another Classification directory.
The latter contains a list of all the properties of the category that are not in the path of the current location
(all properties not visited yet). Therefore, this organization treats the navigation through the classified view
as a query composed of property and value constraints imposed on the files of the current category. By going
deeper in the tree, one permanently refines the search, by adding more constraints to the query.

With this organization it may seem that the same file is present in several places. In fact, what this
implementation of a relational file system does is provide several virtual paths to the same file.

Take for example a category Articles which contains the properties author and year. The file File1 gives
the values “Author1” and “Author2” to the property author and “Year1” to the property year. The generated
Classification directory contains two virtual directories author and year, corresponding to the two properties.
The directory author contains two subdirectories called Author1 and Author2, corresponding to the two values
the property author may take. The directory year contains one subdirectory called Year1. The directory Author1
contains the file called File1 and another Classification subdirectory. The latter contains the subdirectory
year, corresponding to the property on which no filtering has been done yet on this path. In this way, File1 can
be found by taking any of the following paths:

• /Articles/File1

• /Articles/Classification/Author/Author1/File1

• /Articles/Classification/Author/Author1/Classification/Year/Year1/File1

• /Articles/Classification/Author/Author2/File1

• /Articles/Classification/Author/Author2/Classification/Year/Year1/File1

• /Articles/Classification/Year/Year1/File1

• /Articles/Classification/Year/Year1/Classification/Author/Author1/File1

• /Articles/Classification/Year/Year1/Classification/Author/Author2/File1

The structure that is created is very useful for retrieving files on systems with large amount of data and
on which multiple users operate. Because this entire structure is generated, it does not take up additional disk
space.

2.4. Query. The notion of query represents a formula used for locating files that satisfy certain conditions.
A query places constraints on the files in the current location, and only those items which satisfy the

restrictions will be part of the result. A constraint has the form: ’p1 = v1’ and it is translated in natural
language as: “Find all files for which property p1 has value v1”. The individual constraints are connected using
boolean operators: & (and), | (or), ! (not).

In this way, the file system can be queried like a relational database. A concrete example of such a query
is: “(p1 = v1)&(p2 = v2)”, which will return all the items which give value ’v1’ to property ’p1’ and value ’v2’
to property ’p2’. This result can also be obtained by classical navigation and an example of such a location is
Classification/p1/v1/Classification/p2/v2. However, the result of the query “(p1 = v1)|(p2 = v2)” may
not be obtained by navigating through the file system because it corresponds to the reunion of two directories
(Classification/p1/v1 and Classification/p2/v2). The query “(p1 = v1)!(p2 = v2)” can be translated in
natural language as “Find all files which give value v1 to property p1 but which do not give value v2 to property
p2”. This is another example of query which may not be simulated by classical navigation.

The only difference between a query directory and a value directory is that the former represents a more
complex way of expressing constraints. In fact, a query directory must be seen and manipulated like any location
on the disk. This is why queries do not have to be implemented as new system calls, but can be integrated in
the operating system by using the existing ones and changing their in-kernel implementation. Therefore, the
chdir system call was used (its correspondent in shell terms is the cd command) and did not interpret anymore
its parameter as a simple path, but as a query.



82 A. Coleşa, A. Coldea and I. Ignat

Fig. 3.1. OrcFS user-space architecture

Therefore, one will be able to write “cd p1=v1” in a terminal and the system will display all files for which
this condition holds. Going further with the idea of increasing the navigability through the file system, the
result will also contain a Classification directory which will provide further options for search refinement.

The way our system integrates the queries into the operating system provides compatibility with the exiting
applications, allowing them to use our system as a normal one, but providing many different paths to the same
file.

2.5. File. The concept of file has not changed relative to its meaning from the classical file systems. All
the changes made are at a higher level, thus maintaining the file implementation unaltered. However, what has
changed is how files are being manipulated. A user is now able to associate with them properties and values
which convey meaning. This way, it is possible to treat files like entities of a database and use queries to group
them into virtual directories. The same are treated subcategories. From now on, the term file system element
will represent either a file or a subcategory.

3. System Architecture. The system is divided into three modules that communicate with each other
in order to perform an action on the file system, required by the user or an application.

At the highest level, there is the VFS interface module. This receives requests from the user space, delegates
them and then returns the result. At the lower level it is placed the module for storage device access. It can
use an exiting file system storage strategy like Ext2 for example, provided in Linux kernel by the e2fsprogs
library [1]. The metadata management module connects the other two modules. It manages the properties,
values and relationships between them. It is implemented using an in-kernel database engine like in [13]. We
used for that the SqLite [4] library. We chose SqLite because it is fast and not based on the client-server model
and small enough to be easily integrated in kernel. The metadata management module stores and loads the
database using the storage access module and answers metadata requests received from the VFS interface. All
the commands that do not involve metadata operations are forwarded directly to the storage interface, without
interference from the database module.

In a final implementation, all three modules will have been placed in the operating system’s kernel. However,
in order to ease the development process, a testing prototype using the FUSE [2] library was used. The latter
is an application that runs both in the kernel — as a module which implements the VFS interface — and in
the user space — as a daemon. It allows a developer to rewrite system calls in the user space and test them
without recompiling of the kernel.

Figure 3.1 illustrates the way the system is placed in user space and how different parts of it interact with
each other.

A user application issues a request which must me resolved by the VFS. The FUSE in-kernel module
captures the request and generates a FUSE event. The FUSE daemon in the user space listens for such events
and when one occurs, it delegates it to the OrcFS implementation. This application contains a database module
(i.e. the metadata management module) and a storage device access module, both of which communicate with



Flexible Organization in the OrcFS Relational File System for Efficient File Searching 83

the underlying file system using specific libraries.

4. Transparent Integration of OrcFS in an OS. Our file system can be integrated in an OS completely
transparent for the existent applications. This is because we do not change the traditional file-system interface
adding new system calls, but just extend the functionality of the system calls already belonging to it. This
way, an existing application can access our file system with no modification of its code. Nevertheless, if the
application is aware of the fact that our file system provides extended functionality, it can take advantage of
them. We see how this can be done in the following subsection.

4.1. Backward compatibility: Browsing a Category Using a Traditional File-System Explorer.
Assume the file system contains a category named Books, which we want to browse using a file-system explorer.
Table 4.1 describes its contents in terms of “(property, value)” pairs. There are six files, one subcategory and
two properties, i.e. Author and Year. Each file or subcategory is given zero or one values to each category’s
property. Based on these associations, the category’s contents will be classified and viewed in different ways.
The multiple ways a category’s element can be found can be easily seen in Figure 4.1, which illustrates the file
tree generated for the Book category. Still, there could be files given no value to any property. We call such
files unclassified files. Consequently, they belong only to the unclassified view of the analyzed category and can
be found in just a single way and place. We also note that files and subcategories are treated similarly.

Type Property Author Property Y ear

Book1 file Author1 2009
Book2 file Author1 2010
Book3 file Author1 2011
Book4 file Author2 2009
Book5 file Author2 2009
Book6 file Author2
Book7 file

Books2009 category 2009
Table 4.1

Books category description

Let us start the navigation through the Book category from its root directory. It corresponds to the
unclassified area. This is the place where all category’s elements are visible like in any other traditional di-
rectory. Yet, we can also find here the special virtual directory Classification, which gives us access to the
classified area. Entering the Classification directory, we can find two subdirectories Author and Y ear, corre-
sponding to the two properties of the category. They are also virtual directories, while they do not correspond
to physical containers. Their contents is generated when the user explicitly asks it or, like in our example,
he accesses them. The Y ear subdirectory gives the user the possibility to see all its books classified based
on the year when they were published. The Author subdirectory is where books are classified based on their
author. The two directories’ contents consists only in subdirectories, each one corresponding to a different
value given to those properties by different category’s elements. Entering one of it, the user can find cate-
gory elements having associated the corresponding “(property, value)” pair. For example, following the path
Books/Classification/Author/Author1, the user can find files Book1, Book2 and Book3. Besides the ele-
ments belonging to a value subdirectory, our system also generates a new Classification subdirectory, to be
used to further classify the current directory contents. This lower level Classification subdirectory contains
as subdirectories only the properties not considered on the path to it. Thus, we can find only the Y ear subdi-
rectory in the Books/Classification/Author/Author1/ Classification directory. The Y ear subdirectory
contains subdirectories corresponding to its possible values. Entering, for example, the 2009 subdirectory, the
user can find again the Book1 file. This will be in fact the only file found here, because it is the only one having
associated both “(Author, Author1)” and “(Y ear, 2009)” pairs. The other files can be found on different paths,
while they give different values to the Y ear property.

The Classification subdirectory also belonging to the Books/Classification/Author/Author1/Classi-

fication/Year/2009/ is empty, because there is no other property not yet considered on that path, i.e. there
is no further classification criterion.



84 A. Coleşa, A. Coldea and I. Ignat

Fig. 4.1. Generated structure of the Books category

A similar way of finding the Book1 file could be the one starting with the other property in the first
Classification directory, which is Books/Classification/Year/ 2009/Classification/Author/Author1/.
This is because the queries corresponding to the two different paths, i.e. “Which are all the books written by
Author1 in 2009?” and “Which are all the books written in 2009 by Author1?”, are logically equivalent and
must return the same answer. The logical equivalence of the two queries results from the fact that the two
conditions they include are linked by a logical AND operator, which is commutative. This gives the user the
possibility to find the same set of files following different paths in the file tree. Although, we must note that
these navigating alternatives correspond to queries containing only the AND operator. Still, the real queries
can also be expressed using some other different logical operators, like OR and NOT, and actually there are files
corresponding to such queries. For instance, the answer of the “Which are the books written by Author1 in 2009
or 2010?” query, would contain both Book1 and Book2 files. As we can easily observe, this file set cannot be
located in any directory in the file tree illustrated in Figure 4.1. We eliminated this limitation, giving the user
applications the possibility to directly jump to virtual directories containing the answers of questions formed by
different logical operators, directories which do not correspond to any node in the file tree, still being located
on a sort of a file path. This remaining limitation is that such directories cannot be touched navigating down
in the file tree level by level. The way we did this is described in the following subsections.

4.2. Reuse and reinterpret the existent file-system system calls. We have reimplemented the
system calls related to directory access, but left unchanged the ones providing access to files’ contents. This is
because we gave a new interpretation of the directory concept — related to data organization, but kept that of
the file concept — related to storing of data. Still, the traditional effect of the system calls we reinterpreted
is changed only in the classification area, not in the unclassified area. Thus, if a file is removed from the root
directory of a category, it is completely removed from that category, different from removing the same file from
one of the subdirectories in classification area, which has another effect. Let us see exactly how each change on
a directory is interpreted.

Creating a file in the classification has also the additional effect of classifying the new file based on the
“(property, value)” pairs included in the path specified at file creation. For example, creating a new file Book7 in
the directory Books/Classification/ Author/Author1/Year/2011 will create the file in the Books category,
but also associate to it the “(Author, Author2)” and “(Y ear, 2011)” pairs. We must note that the same effect is



Flexible Organization in the OrcFS Relational File System for Efficient File Searching 85

obtained using the similar path Books/Classification/Year/2011/ Author/Author1. If a file with the same
name already exists in the category, the file contents is truncated and its metadata is replaced with the one
specified in the creation path. If the file cannot be truncated, because of permission rights restrictions, the
user is reported an error. This can be confusing if the existent file is not visible in the path specified at file
creation. In order to avoid such situations, it is recommended to create new files only in the root directory of a
category, where all its files are visible. After that, the file can be associated explicitly “(property, value)” pairs,
by performing other operations on it, interpreted as file classification operations.

Removing a file from a directory located in the classification area will not result in the physical removal of
that file, but just in removing some of its associated metadata. More precisely, the “(property, value)” pairs
included in the path of the directory the file is removed from will be the one removed. For example, removing
Books/Classification/Author/Author1/Book3 results in removing the “(Author, Author1)” pair from those
associated to file Book3. A file remains in its category until it is removed from the root directory of that
category.

Creating a directory in the unclassified area just creates a new element, i.e. subcategory, in the corresponding
category. The result of creating a new subdirectory in the classification area depends on the exact directory
(i.e. parent directory) the operation is performed. There exist the following cases:

• If the parent directory is one of the Classification directories, then the new directory is interpreted as a
new property of the category. For example, creating the directory Books/Classification/Publisher/

creates a new property, named Publisher, in category Books.
• If the parent directory is property directory, then the new directory is taken as a new value of that

property. For example, creating the directory Books/ Classification/Year/2003 creates the new
value 2003 for the existent property Y ear. Obviously, there will be at that moment no file having
associated the “(Y ear, 2003)” pair, but this can be done later, using other file operations.

• If the parent directory is a value directory, the new directory is an element of the category, classified
based on the properties and values in the path used on its creation.

We must note that a problem similar with that from file creation can also occur in the case of directory
creation: using directories names already existent in a category. We already described the reason they are not
visible on any level of the category file tree. So, in order to avoid confusion, it is recommended for the user to
create properties or values on the highest levels of the category. Thus, new properties should be created in the
top level Classification directory, where all category’s properties are visible.

Removing a directory is very similar with the directory creation operation, in the way its parameters are
interpreted. There are more cases:

• If the removed directory is a Classification one, an error is reported, since it does not correspond to
any data in the file system, but it is used just to provide specialized access to files.

• If the removed directory is a property one, then the files that could be found on the subtree having as
root that directory are removed their associations with the removed property. Although, the property
itself is not removed unless it is removed from the Classification directory on the top level.

• Removing a value directory is similar with removing its corresponding property directory, but its effect
is reduced only to that value, not to all the values of that property, like in the previous case.

Creating a hard link to a file in the same category classifies that file, i.e associates to it new (property, value)
pairs extracted from the path of the new hard link. There are two restrictions when a new hard link is created:
the same name must be used for the new link and it cannot be created in a property directory, where only value
directories are allowed.

Creating a symbolic link is identical to creating a new file, since a symbolic link is actually a new file,
different by the referred one.

Another system call we reinterpreted is chdir. It is not really a file operation. Yet, we used it in order to
give the user access to sets of files that cannot necessarily be found just navigating in a category’s file tree. It
also allows the user “jumps” in physically non-locatable directories, corresponding to queries including logical
operators like “OR” and “NOT”.

4.3. The Query Language. We have seen that both the navigation through the file tree going down level
by level and the direct “jump” to a virtual directory are made using the chdir system call. We interpreted the
path specified for it as a request (query) addressed to our system to generate the contents of a directory, being it
an immediate subdirectory in the file tree, relative to the current directory, or even one having no corresponding



86 A. Coleşa, A. Coldea and I. Ignat

node in the file tree. The difference between the two cases is that in the former, the query contains only the
“AND” logical operator, while in the latter, any logical operator could be used. We illustrate in the following
examples, executed in the Books directory, the possible forms of such queries.

Navigation through the category’s file tree can be done in the classical way, by moving up or down the tree,
searching for some files. Moving down a new level means refining the result of the previous query, by classifying
the files in the current directory by the remaining properties. This is very useful in cases the user does not
remember from the beginning all (or many of) the properties and values associated to a file.

> cd Books/Classification

> cd Author

> ls

Author1 Author2

> cd Author1

> ls

Book1 Book2 Book3 Classification

> cd Classification

> ls

Book6 Year

> cd Year

> ls

2007 2008 2009

> cd 2007

> ls

Book1 Classification

> cd Classification

> ls

> # no file

In case the user remembers from the beginning more information about the needed files, he can specify
directly more complex queries corresponding to paths in the category’s file tree. The advantage provided by our
system is that the user must not specify the “(property, value)” pairs in a fixed order, having more alternatives
to do that, as illustrated below.

> cd Books/Classification/

> cd Author/Author1/Year/2009

> ls

> Book1

> cd - # change to the previous location

> cd Year/2009/Author/Author1

> ls

> Book1

Although, a more complex way to search files is by using the specialized query syntax supported in the path
specified to chdir system call or cd command in the command line. The following examples illustrate several
possible queries together with their outcome.

> cd Books

> cd ’Author=Author1&Year=2009’

> ls

Book1 Classification

> cd ’Author=Author1&Year=2009|Year=2010’

> ls

Book1 Book2 Classification

> cd ’Author=Author1!Year=2009’



Flexible Organization in the OrcFS Relational File System for Efficient File Searching 87

> ls

Book2 Book3 Classification

The examples described has proven that in our enhanced file system, both files and categories can be
manipulated easier and located faster.

5. Tests and Results. The previous sections have proven the utility of having a metadata improved file
system that automatically constructs a classified organization of files and categories. However, in order to prove
that such a system can be used without introducing significant overhead, several usage tests were performed.
They measured the time of completing different tasks in a classical file system, i.e. Linux Ext2, compared to
the same operations in our enhanced file system.

We run each test using the Linux time command. This command takes as parameter the name of the
testing application, runs it and returns at the end of that test’s execution the following time information: (1)
the real time, which is the wall-clock time elapsed from the start of the testing application until its termination,
(2) the user time, which is the time the testing application spent using the processor in user mode to execute its
own code, and (3) the system time, which is the time the processor was used in kernel mode executing system
code on behalf of the testing application. We named the sum of the user and system times effective time and
the difference between the real time and the effective time waiting time. The waiting time is the time spent
by the testing application waiting for processors to become available and is highly dependent on the system’s
scheduler and load. Because the OrcFS testing prototype was implemented in user space using Fuse, most of
what should have otherwise been run as system code in kernel mode, was actually run in user mode in an
user application, whose execution could have been interleaved with the execution of other running applications.
Consequently, the execution of our file system’s code could have been suspended many times by the operation
system’s scheduler in order to also let other applications run. That is why we observed, especially for long
running tests, that their waiting time accounts for a large percentage from their real time. We did not consider
however the waiting time to be either important or relevant for our tests, as long as our system is ultimately
intended for the kernel space implementation. Thus, the overhead introduced by our system is mainly indicated
by the comparison of effective times of the tests. Although, we also illustrated in the result tables the overhead
at the real time level, just to see the disadvantage of having a user space implementation of our system.

The tests performed can be divided into several categories which are presented next.

5.1. Creation Tests. The first two tests performed concern the creation of files and directories.
In Test1 we created N subcategories in the same category of OrcFS, opposed to creating N subdirectories

in the same directory in the classical file system.
The results are depicted in Table 5.1. The last column contains the mean percentage the OrcFS time

represents from the Ext2 time, for different types of times we illustrated.
It must be emphasized that when N is rather small (100 or 1000 directories) the difference between the

real creation times is not very big. The only overhead here is the one introduced by the FUSE indirection and
by the extra logic. However, as N increases and reaches the values of 10.000 or 50.000, another factor must be
taken into consideration, which is, as we already mentioned, the Linux scheduler. The problem that occurs is
that, by using FUSE the system calls are redirected in user space. Therefore, they are now run in user processes
that have a smaller priority. Even more, the Linux scheduler decreases the priority of a process if that process
uses intensively the processor. It can be seen from the Table 5.1 that while creating 50.000 directories, the
process spends the majority of time waiting for processor. In fact, while performing the test in the classical file
system there was a noticeable decrease of the speed of the other processes during the execution of system calls
in kernel, while in OrcFS no such event was observed, because most of the code was executed in user space. On
the other hand, taking into account only the effective time, we can observe that the overhead is rather small,
i.e. up to about 31% for 50.000 directories.

This is why, after a certain number of directories created, the real times obtained are no longer relevant.
As a consequence, the following tests will no longer use very large values. We must also take into account that
in practice new elements are very rarely introduced simultaneously in the system in such a huge number.

In Test2 we created N files in the same category in OrcFS, compared to creating N files in the same
directory in the classical file system. The result is depicted in Table 5.2.

In the case of file creation the situation is similar to that of directory creation. It is expected that once the
project is introduced inside the kernel, the difference will decrease.



88 A. Coleşa, A. Coldea and I. Ignat

No. of Time Ext2 OrcFS Mean
directories type time time percentage

100 real 0m0.408s 0m0.499s 122%
user 0m0.156s 0m0.176s
sys 0m0.144s 0m0.152s

effective 0m0.300s 0m0.328s 109%
1000 real 0m3.194s 0m6.315s 197%

user 0m1.116s 0m1.212s
sys 0m1.168s 0m1.388s

effective 0m2.284s 0m2.600s 113%
10000 real 0m38.723s 3m4.346s 485%

user 0m10.969s 0m12.545s
sys 0m10.817s 0m14.121s

effective 0m21.786s 0m26.666s 122%
50000 real 3m11.378s 68m4.267s 2136%

user 0m50.863s 1m03.220s
sys 0m52.711s 1m13.473s

effective 1m43.574s 2m16.693s 131%
Table 5.1

Test1 results

No. of Time Ext2 OrcFS Mean
files type time time percentage

100 real 0m0.355s 0m0.631s 177%
user 0m0.132s 0m0.148s
sys 0m0.112s 0m0.116s

effective 0m0.244s 0m0.264s 108%
1000 real 0m3.144s 0m7.048s 224%

user 0m1.048s 0m1.312s
sys 0m1.164s 0m1.364s

effective 0m2.212s 0m2.676s 121%
5000 real 0m16.202s 0m57.611s 356%

user 0m05.120s 0m06.228s
sys 0m05.192s 0m06.656s

effective 0m10.312s 0m12.884s 125%
Table 5.2

Test2 results

5.2. Directory Opening Tests. Test3 opens a category containing N subcategories, opposed to opening
a directory containing N subdirectories. Table 5.3 presents the result of these tests.

Test4 opens a category containing N files, opposed to opening a directory containing N files. Table 5.4
presents the result of these tests.

Test5 opens a Classification directory containing N properties, compared to opening a directory with N
subdirectories. Table 5.5 presents the result of these tests.

Test6 opens a property directory with N values, versus opening a directory with N subdirectories. Table 5.6
presents the result of these tests.

5.3. System Simulation Test. In Test7 we created a category with N properties and M values associ-
ated with each property, compared to creating in the classical file system (Ext2) the entire structure generated
by OrcFS in the Classification directory in the same situation. We measure only the real time, as it was fully
relevant. Table 5.7 illustrates the results.

For the first part of Test 7 there was created a category with 3 properties each of which contain 3 values. In



Flexible Organization in the OrcFS Relational File System for Efficient File Searching 89

No. of Time Ext2 OrcFS Mean
directories type time time percentage

100 real 0m0.008s 0m0.025s 315%
user 0m0.000s 0m0.000s
sys 0m0.008s 0m0.008s

effective 0m0.008s 0m0.008s 100%
1000 real 0m0.032s 0m0.164s 512%

user 0m0.004s 0m0.004s
sys 0m0.012s 0m0.016s

effective 0m0.016s 0m0.020s 125%
Table 5.3

Test3 results

No. of Time Ext2 OrcFS Mean
files type time time percentage

100 real 0m0.008s 0m0.014s 175%
user 0m0.008s 0m0.006s
sys 0m0.004s 0m0.008s

effective 0m0.012s 0m0.014s 117%
1000 real 0m0.020s 0m0.081s 202%

user 0m0.012s 0m0.008s
sys 0m0.008s 0m0.016s

effective 0m0.020s 0m0.024s 120%
Table 5.4

Test4 results

No. of Time Ext2 OrcFS Mean
directories type time time percentage

100 real 0m0.008s 0m0.060s 750%
user 0m0.000s 0m0.004s
sys 0m0.008s 0m0.008s

effective 0m0.008s 0m0.012s 150%
1000 real 0m0.022s 0m0.107s 486%

user 0m0.004s 0m0.010s
sys 0m0.012s 0m0.018s

effective 0m0.016s 0m0.028s 175%
Table 5.5

Test5 results

No. of Time Ext2 OrcFS Mean
directories type time time percentage

100 real 0m0.008s 0m0.055s 687%
user 0m0.000s 0m0.000s
sys 0m0.008s 0m0.004s

effective 0m0.008s 0m0.004s 150%
1000 real 0m0.022s 0m0.107s 486%

user 0m0.004s 0m0.006s
sys 0m0.012s 0m0.020s

effective 0m0.016s 0m0.026s 163%
Table 5.6

Test6 results



90 A. Coleşa, A. Coldea and I. Ignat

No. of No. of Ext2 OrcFS Mean
properties values time time percentage

N = 3 M = 3 0m2.502s 0m0.079s 2.65%
(526dirs) (10dirs)

N = 4 M = 4 1m18.218s 0m0.176s 0.22%
(17.749dirs) (17dirs)

Table 5.7

Test7 results

the OrcFS, this means creating 10 directories. However, simulating the classified structure that is automatically
created means generating 526 directories in the classical file system. Therefore, the resulting time difference
between these two operations is great. The second part emphasizes even more this difference, since in the case
of 4 properties and 4 values for each of them means creating 17 directories in OrcFS and 17,749 directories in
the classical file system. This is the test that shows the full power of the OrcFS. A single file may be found by
taking several paths and thus, the risk of taking a wrong path while knowing a few characteristics of the desired
file is significantly reduced.

In conclusion, while operations of introducing new data in the file system are delayed in the OrcFS, these
time differences are not as important as the gain for creating an immense structure with only a few number of
operations.

6. Related Work. The first project that approached this issue is the Semantic File System [11]. It was
designed to provide associative attribute-based access to the contents of an information storage system. The
attributes are automatically extracted from the files stored on disk with the help of transducers. A transducer
is a filter that takes as an input the contents of a file and outputs the files entities and their corresponding
attributes. A user does not have the capability to define attributes, he may only write queries, whose result
are virtual directories. The solutions implemented in [11] represent the starting point of OrcFS. Some of the
concepts proposed by the Semantic File System, such as virtual directories or automatic classification were
adapted by OrcFS as the base of the entire project. However, what was not implemented is the automatic
attribute extraction, which was left as a future improvement.

An improvement of the Semantic File System is Nebula [6], in which the user is able to perform CRUD
(create, read, update, delete) operations on attributes. Nebula implements files as sets of attributes. Each
attribute describes some property, such as owner, protection or file type. The content of a file is represented by
a special text attribute. The traditional directories are replaced with database views. When a file is created, it
is placed in an index, not a directory. When the file system is refreshed, the file will appear in the appropriate
views. This is how views dynamically classify files. As opposed to this approach, OrcFS treats the file as an
indivisible item.

A further improvement was made by Be File System (BFS) [10]. It stores the list of attributes associated
with a file as a directory, the address of which is stored in the attributes field of the BFS i-node structure.
The attribute directory of a file is similar to a regular directory. Programs can open it and iterate through it
to enumerate all the attributes of a file. The attribute directory solution is rather slow in the case of having
several small attributes. This it why, the spare area of the i-node disk block is used to store small attributes.
Because the focus of OrcFS is to increase the flexibility of expressing relationships, it does not employ the i-node
structure, but a database to store the file attributes.

A notable approach to the relational organization of the file system is LisFS (Logical File System) [15]. In
this approach the storage structure, called formal context, holds objects that are described by logical formulas.
These objects represent files or parts of files. Both paths and queries are seen as formulas. LisFS allows boolean
querying. There are two types of proprieties: intrinsic, which are computed from the content of the object
and extrinsic, which are assigned by the user. A key feature is the fact that LisFS runs over the Linux kernel,
respecting the VFS (Virtual File System) interface. This assures compatibility with the current applications.
This project is the one that has the most elements in common with OrcFS. They both use a database to store
metadata, work in user space and enable query navigation. The main difference is that in OrcFS treats both
files and directories in the same way.

WinFS (Windows Future Storage) [12] was first presented in 2003 as an advanced storage subsystem for



Flexible Organization in the OrcFS Relational File System for Efficient File Searching 91

the Microsoft Windows operating system. It breaks down the concept of files into subdivisions, extending the
possibility of data processing at a lower level. Furthermore, it treats all data as objects. The user can create
relationships or sets of objects through an application and reuse them in other applications and define functions
on objects.

Although it is not a file system, Google Desktop [3] is worth mentioning. It is a desktop search application
that uses indexes to manage the information on the computer. Once installed, it starts indexing the email,
files and Web history stored. This operation runs only once, when the computer is first idle for 30 seconds.
Google Desktop also ensures that the index stays up to date, adding new e-mail as it is received, files as they
are updated them and web pages as they are accessed.

The most similar projects with OrcFS are those in [9] and [8] on whose architecture the OrcFS is based
on, but which we extended to homogeneously treat files and subcategories in a category as generic file system
elements. We also developed the query command line syntax to support complex interrogation and navigation
in the OrcFS file system using existing shells and file browsers.

7. Conclusions. An architecture of the file system enhancing the organizing and searching capabilities has
been developed. It is based on allowing the user to associate descriptive metadata in the form of property-value
pairs to both files and directories. The system creates virtual file containers forming a classified organization,
in order to provide multiple access paths to the same file. Navigation down this tree structure represents a
permanent query refinement, in which the set of results is diminished until the user either finds the desired file
or an empty directory is obtained.

The usability of OrcFS has been proven at a subjective level, by creating a specific system and navigating
through the classification. It was also proven at an objective level, by measuring and comparing the times of
performing different tasks both in the classical file system and this enhanced system.

Several steps that will be taken in the future for improving even further the navigation, search and overall
accessibility are:

• Automatically extract property-value pairs from different file formats.
• Allow the user to define category templates with specific properties. This would shorten the initial job

of environment creation. Therefore, the user will be able to use the same set of properties in different
locations of the system, without having to specify them every time.

• Maintaining a record of the paths where a template has been applied, so that the user is able to
formulate queries such as “Find all locations for the template where certain restraining conditions are
valid”.

• Develop a specialized file browser which takes advantage of the enhancements of OrcFS, in order to
present a richer file system. This application must clearly differentiate between property, value and
category directory types. It must allow the user to specify property-value pairs using a form and not
through file operations like in the classical browser.

• Integrate OrcFS in the Linux kernel, in order to decrease the overhead introduced by FUSE redirection.
• Develop a distributed relational file system. A client should be able to make queries and navigate like

in OrcFS but the answer will come from different servers, transparently to the user. The individual
responses of each server will be merged, in order to present the user with a uniform view of the entire
system.

REFERENCES

[1] Ext2 file system utilities. Internet page last accesed on July 2010.
[2] Fuse. Internet page last accesed on July 2010.
[3] Google desktop. Internet page last accesed on July 2010.
[4] Sqlite. Internet page last accesed on July 2010.
[5] Daniel Bovet and Cesati Marco. Understanding the Linux Kernel. O’Reilly Media, 3 edition, November 2005.
[6] Mic Bowman, A. Dharap, Mrinal Baruah, Bill Camargo, and Sunil Potti. A file system for information management.

Technical report, The Pennsylvania State University, 1994.
[7] Alexandra Coldea, Adrian Coleşa, and Iosif Ignat. Orcfs: Organized relationships between components of the file system

for efficient file retrieval. In Proceedings of The 12th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC ’10), pages 434–441. IEEE Computer Society, 2010. (DBPL, IEEExplore).

[8] Adrian Coleşa, Victor Cionca, Alexandru Ţaţa, and Iosif Ignat. A meta-data enhanced file system. In IEEE
International Conference on Intelligent Computer Communication and Processing (ICCP’07), 2009.



92 A. Coleşa, A. Coldea and I. Ignat

[9] Adrian Coleşa, Iosif Ignat, Zoltán Majó, and Victor Cionca. A meta-data enhanced file system using the classi-
cal interface. In Proceedings of The Tenth International Conference on Applied Mathematics, Computer Science and
Mechanics, Cluj-Napoca/Băişoara, Romania, June 2006.

[10] Dominic Giampaolo. Practical File System Design with the Be File System. Morgan Kaufmann Publishers, Inc.
[11] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James W. O’Toole Jr. Semantic file systems. In Proceedings

of 13th ACM Symposium on Operating Systems Principles, pages 16–25, October 1991.
[12] Richard Grimes. Revolutionary file storage system lets users search and manage files based on content. MSDN Magazine,

January 2004.
[13] Aditya Kashyap. File system extensibility and reliability using an in-kernel database. Technical Report FSL-04-06, Stony

Brook University, December 2004.
[14] Yoann Padioleau and Olivier Ridoux. A parts-of-file file system. In Proceedings of the annual conference on USENIX

Annual Technical Conference (ATEC ’05), page 17. USENIX Association, 2005.
[15] Yoann Padioleau, Benjamin Sigonneau, and Olivier Ridoux. Lisfs: a logical information system as a file system. In

Proceedings of the 28th International Conference on Software Engineering (ICSE ’06), pages 803–806. ACM, 2006.

Edited by: Dana Petcu and Alex Galis
Received: March 1, 2011
Accepted: March 31, 2011


