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TRUSTED BELIEFS FOR HELPFUL BEHAVIOR WHEN BUILDING WEB SERVICES ∗

IOAN ALFRED LEŢIA, RADU RĂZVAN SLĂVESCU †

Abstract. Composite software services often present uncertainty over their non-functional properties. To tackle this, one could
model them as shared goals of an agent team which aims at maximizing the likelihood of success of the joint task. An architect is
in charge with picking services and providers, while a consultant helps him, when possible, by suggesting alternative approaches.
The multinomial version of the ”Belief Recipe Tree” structure relies on beliefs built based upon prior mutual experiences of the
consultant with various providers and/or abstract plans and revised after each interaction, exhibiting a higher flexibility in several
web service building scenarios.
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1. Introduction. In the last decade, the development of web applications which employ e-services as
basic blocks for deploying a complex functionality gained much momentum. Within this context, the paradigm
of web services (WS) makes generous promises regarding the development of flexible and highly customized
applications. Some particular tasks do find their solution in an existing web service, but this is the exception
rather than the rule, as it is highly unlikely that one can find an already built WS able to solve her specific
problem in each and every detail. In the vast majority of cases, matching the user’s specific requirements
demands designing a composite web service. Most of the time, this is made of simpler web services offered by
a bunch of different providers. Building such a WS (i.e. a composite web service), demands solving at least
two issues. On one hand, the developer must decompose the complex goal task into simpler ones, up to the
basic level, where each of them can be solved by an existing WS. On the other hand, every basic task must
be assigned to a concrete WS provider which must be selected among more providers of this type. Both issues
requires considering functional as well as non-functional criteria. Hence, the system requires producing the
intended output, but also guaranteeing some quality parameters like response time, reliability or cost.

A possible approach for this problem has been proposed, for example, in [3]. The cited paper describes a
workflow based solution which takes into account the Quality of Service (QoS) of each component. A composite
web service is shown to be reducible to a sequential flow whose QoS parameters are easy to analyze and predict.
To achieve this, the system designer will need accurate data about the non-functional aspects of web services
we mentioned above. The intrinsic volatility of such information makes it potentially unreliable though, as the
values might change rapidly and alter the subsequent decisions. In the same time, the available information
is inherently incomplete. This, combined with the possibility of having inconsistencies in the knowledge about
the decomposition recipes lead to the conclusion that uncertainty must be accommodated when assembling web
services.

Withing this context, developing a composite WS with appropriate reliability becomes a challenging task.
To deal with it, one might regard this problem as the process of a joint goal being solved by a set of cooperative
agents, and among them, WS architects and consultants. Typically, a consultant is employed by a WS architect
in order to provide him/her with guidelines about designing a composite WS. This involves delivering both an
abstract plan and a concrete list of WS providers for each plan step in order to maximize the likelihood of the
whole WS to become up and running. Both agents above are interested in having this goal achieved, but the
type of decisions they can make are quite different. The architect will be focused on choosing each service and
its provider. The consultant will have to decide whether to adopt a helpful behavior towards her peer or to
refrain from it. This behavior consists of suggesting his partner an alternative. The consultant must do this
such that the global likelihood of success is maximized, whilst not providing its partner with more information
than he/she paid for.

We argue the aforementioned issues can be solved by taking trust into consideration when an agent starts
building composite web services. In order to prove this, we presented in [15] a possible extension of the
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Probabilistic Recipe Tree (PRT) to a structure we called Belief Recipe Tree (BRT) able to accommodate trust
concerning web services and to allow making decisions based on this. Trust integrates a historical sequence of
experiences into a single value and measures the confidence one should have in a service to meet its advertised
non-functional parameters (e.g. the likelihood of success). We show how to develop and employ the BRT
structure, which is actually a belief-based extension of the ”Probabilistic Recipe Tree” in [14], for making the
above type of decisions. Then, we suggest a way for building the beliefs an agent needs for cooperation over
the WS design, based on the set of experiences the consultant has had with different providers and/or design
plans. Since the beliefs are revised after each experience, it follows that the flexibility offered is higher due to
the fact the providers which are not always truthful can be punished and the system can adjust its beliefs, as
well as its subsequent decisions, accordingly.

The present paper elaborates on the idea by extending the BRT to multinomial opinions. This aims allowing
agent to deal with a finer grained set of mutually exclusive sentences describing an agent’s performance, like ”The
level of success is poor/average/good as opposite to a mere failure/success, in order to allow a more realistic
model of the domain. The main contribution made is to extend the operations on BRT to the multinomial
case. First, we revisit the structure of PRT and BRT and present some examples in more details. Then, we
introduce the multinomial versions of the BRT operations. Finally, we present an example to illustrate the type
of decisions which are allowed by the enriched BRT.

The rest of this paper is organized in the following way. Section 2 introduces the basic blocks of the
Subjective Logic which are further needed for building and manipulating the BRT. Section 3 details the structure,
components and operations on BRT, starting from a brief presentation of its purely probabilistic counterpart
PRT. Section 4 illustrates in detail the ideas in a scenario of building a composite web service which generates
car routes. The resulting web service ought to take into consideration both map details as well as traffic
information and weather forcast when generating an autoroute. The ideas are then extended to multinomial
opinions. Section 5 positions the approach among some other works in the field, while Section 6 concludes and
sketches future lines of investigation.

2. Subjective Logic based Trust. Since uncertainty of sentences describing the world is inherent, several
formalisms were developed in order to deal wit it. One such formalism is the Subjective Logic (SL) theory,
introduced in [9] and extensively updated in [10]. This logic could be seen as a superset of the classical
probability theory because, as its parameters approach some limit values, the theory is reduced to the classical
one. SL deals with beliefs and includes operations on sentences similar to those in the Dempster-Shafer theory
of beliefs [5, 22]. In the same time, it is compatible with Nilsson’s probabilistic logic [18]. The present section
briefly presents the ideas of SL we used for trust estimation and web service selection. For further details on
the topic of SL, we refer to [10].

2.1. Subjective Logic Opinions. SL argues that a perfectly accurate assessment of probability is beyond
the scope of human nature. Therefore, uncertainty involved in estimating the values of probabilities must be
considered and assessed. The theory’s basic block is the concept of opinion over a sentence. Given a proposition
x, the opinion ωx regarding the truth value of x is defined as a quadruple ωx = (bx, dx, ux, ax). Its components
represent the degree of belief (evidence supporting x), disbelief (evidence supporting ¬x) and uncertainty about
the truth of x. By definition, they must sum up to 1. The atomicity ax is a measure of the prior probability of
the truth value of x. Within this subsection, we will focus on a universe of discourse comprising only binomial,
mutually exclusive sentences (x and ¬x respectively), thus ax defaults to 0.5. In the next subsection, we will
briefly describe the multinomial case, where there are more than 2 possible, mutually exclusive values for a
sentence.

For example, one can assign a value of 0.7 to the belief corresponding to the sentence ”WS will succeed”, 0.2
to the disbelief corresponding to the sentence ”WS will succeed” (i.e. the belief corresponding to the sentence
”WS will fail”) and the remaining 0.1 to the uncertainty about the behavior of the WS. This one is due to
the lack of perfect knowledge over the behavior of the given WS and can be seen as second order probability
(modeling uncertainty over a first-order probabilities).

Given ωx = (bx, dx, ux, ax), the corresponding probability expectation value (a generalization of a classical
probability expectation), is defined by the formula below:

E(ωx) = bx + axux (2.1)

This definition corresponds to that of pignistic probability in [23] and is consistent with the principle
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Fig. 2.1. A Subjective Logic opinion inside the opinion triangle

of equally dividing frame belief among its singletons. The interpretation of ax is the relative proportion of
singletons of x.

As shown in [10], an opinion coresponds to a point inside a triangle. Figure 2.1 illustrates this, displaying
an opinion ω(b, d, u, a), the base rate a, the vertexes of maximum belief, disbelief and uncertainty and the
probability expectation value E(ω).

We regard such an opinion over a sentence as the subjective trust hold by the issuing agent towards the
object of that sentence. As an example, we may consider x to be the sentence above, assumed to be believed by
the architect agent: ”Web service WS1 offered by provider P1 will perform according to its parameters”. In this
case, ωx = (0.7, 0.2, 0.1, 0.5) means the agent issuing sentence x (i.e. the system architect) beliefs the sentence
to a degree of 0.7; its negation ¬x to a degree of 0.2 and has an uncertainty degree of 0.1 about it, possibly
because of the lack of complete evidence. The value of a is 0.5 as, so far, we have considered only a binary
universe of discourse for each sentence. In this example, ωx models the trust of the entity issuing sentence x
towards WS1. Trust could also be concerned with sentences describing generic solutions like ”In order to obtain
a WS of type T , one should combine a WS of type Ta and one of type Tb”, or ”Solution S1 for the problem P
is preferred by 55% of the developers”.

2.2. Mapping Experiences into Opinions. Let us suppose one has already had a number of experiences
with a binary event, e.g. a WS behaving with the advertised latency or not. Let us assume there were r positive
(i.e. expected behavior from the WS side) and s negative (i.e. poor) experiences. Posterior probabilities of
binary events can be represented by a family of probability density functions, namely the Beta distribution:

Beta(p|α, β) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1 − p)β−1 (2.2)

α = r + 2a

β = s + 2(1 − a)

Γ(z) =

∫ ∞

0

tz−1e−tdt

with the restrictions 0 < a < 1, p 6= 0 if α < 1 and p 6= 0 if β < 1.
One possible interpretation for this is how likely the outcome of a future experience will have a given value

(e.g. positive) and how much uncertainty exists within this prediction, given that r positive and s negative
experiences have been recorded so far.

As showed in [10], there exists a function mapping the evidence space for a sentence (i.e. prior observations
over its truth) into opinion space. Based on this correspondence, sentence opinions can be synthesized out of
sequences of observations over those sentences. Opinions are further combined according to specific operators
to be defined later. The resulting algebra of opinions is equivalent, both from the point of view of semantics
and expressiveness, with the distributions, but it has the advantage of being much more efficient from the
computational perspective.

If for the sentence x, we have r experiences supporting x and s supporting ¬x, then the opinion’s compents
b, d and u are computed in the following way:
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b =
r

r + s + 2
(2.3)

d =
s

r + s + 2
(2.4)

u =
2

r + s + 2
(2.5)

Some limit cases can be considered: b = 1 means logical TRUE (probability 1), d = 1 means logical FALSE
(probability 0), u = 1 means vacuous opinion (total uncertainty, absolute lack of experiences) and b + d = 1
gives the classical probability (no uncertainty). One should notice the latter case happens if the number of
experiences is infinite. This property will be uses further in this paper, when our extended formalism reduces
to the original one when the number of experiences approaches ∞.

One should notice that, from this perspective, a set of 3 positive and 1 negative outcomes for an experience is
different from a set of 30 positive and 10 negative experiences. Though in both cases the probability of a positive
experience is 75%, the opinions are (0.500, 0.166, 0.334, 0.5) and (0.714, 0.238, 0.05, 0.5), so the uncertainty over
the expected experiment value decreases.

2.3. Subjective Logic Operators. In order to combine opinions on propositions, SL introduces a set
of operators over opinions, whose semantics relies on probability distributions as well. The following two SL
operators are used in this work:

1. conjunction ∧: given ωx = (bx, dx, ux, ax) and ωy = (by, dy, uy, ay), their conjunction ωx∧y, written
ωx ⊓ ωy, has the following components:

bx∧y = bxby +
(1 − ax)aybxuy + ax(1 − ay)uxby

1 − axay

(2.6)

dx∧y = dx + dy − dxdy (2.7)

ux∧y = uxuy +
(1 − ay)bxuy + (1 − ax)uxby

1 − axay

(2.8)

ax∧y = axay (2.9)

E.g. if the solution for designing a composite WS is expressed in BPEL4WS as sequence(RG, WF ), and we
have opinions concerning reliability ωRG = (0.7, 0.2, 0.1, 0.5) and ωWF = (0.6, 0.3, 0.1, 0.5) respectively, then the
sentence describing the success likelihood of the composite WS would be ωRGWF = (0.4, 0.51, 0.09, 0.25).

2. disjunction ∨: given ωx = (bx, dx, ux, ax) and ωy = (by, dy, uy, ay), their disjunction ωx ∨ ωy, written
ωx ⊔ ωy, has the following components:

bx∨y = bx + by − bxby (2.10)

dx∨y = dxdy +
ax(1 − ay)dxuy + (1 − ax)ayuxdy

ax + ay − axay

(2.11)

ux∨y = uxuy +
aydxuy + axuxdy

ax + ay − axay

(2.12)

ax∨y = ax + ay − axay (2.13)

E.g. if the solution for designing a WS called RG requires choosing either service RG1 or service RG2, with
reliability ωRG1 = (0.7, 0.2, 0.1, 0.5) and ωRG2 = (0.8, 0.1, 0.1, 0.5) respectively, then the sentence describing the
success likelihood of WS would be ωRG = (0.92, 0.043, 0.037, 0.75).
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The definitions of the conjunction and disjunction operators we have just presented were first introduced in
the paper [11]. Here, they are called normal binomial multiplication and comultiplication and denoted by the
operators · and ⊔ respectively. The two operations are shown to be very good approximations of the analytically
correct operators applied to the Beta probability density functions. Whilst the exact operations quickly become
unmanageable, their SL counterparts preserve the simplicity thus allowing analyzing complex models [10]. The
outcome, albeit approximate, will approach the exact results as the uncertainty decreases.

2.4. Multinomial Opinions. If we consider k possible, mutually exclusive values for a sentence, e.g. the
reliability level could be X = poor, average, good (k = 3), we need to shift to multinomial opinions. Such an

opinion would be ωX = ( ~bX , uX , ~aX), with u +
∑k

i=1
~bxi

= 1 and
∑k

i=1 ~axi
= 1. The vector contains k values

for the belief levels corresponding to each possible value of the sentence, one value for the level of uncertainty
and k values for atomicity. We will write b(xi) to denote ~bxi

.
The components of the corresponding probability expectation vector are defined by:

E(xi) = b(xi) + a(xi)u (2.14)

To illustrate, let us suppose we have the sentences ”Performance of WS1 is bad”, ”Performance of WS1 is
average”, ”Performance of WS1 is good”, the opinion might be, for example, ωx = (0.2, 0.2, 0.5, 0.1, 0.3, 0.4.0.3)
meaning the the system architect beliefs the performance to be bad to a degree of 0.2, average to a degree of
0.2, good to a degree 0.5 and has an uncertainty degree of 0.1 The probability expectation vector would then
be (0.23, 0.24, 0.53).

Posterior probabilities of this type of events can be represented by another family of probability density
functions, namely the Dirichlet distribution instead of the Beta distribution, but the approach is similar. For
the sentence x, if we have the experience vector (~r,~a), mapping to opinions can be made by:

b(xi) =
r(xi)

2 +
∑k

i=1 r(xi)
(2.15)

u =
2

2 +
∑k

i=1 r(xi)
(2.16)

Next, we introduce the definition of multinomial multiplication, which extends the conjunction operation
to the multinomial case. This definition is introduced in [12] as the Assumed Uncertainty Mass method. Given
two sets of multinomial opinions X and Y , the method for computing their conjunction relies on generating
all the elements of the Cartesian product X × Y and redistributing some of the belief mass on the rows and
columns to singleton elements and to the global set X × Y . This is performed such that the expected value of
each singleton in the Cartesian product will be equal to the product of the expected values of its components.

Let us assume we have two multinomial opinions ωX( ~bX , uX , ~aX) having possible values x1, . . . , xk and

ωY = (~by, u, ~ay) with possible values y1, . . . , yl. Computing the conjunction ωx ⊓ ωy is based on the formulas
below.

First, we compute the expected utilities of the singletons in X × Y :

E((xi, yj)) = (b(xi) + a(xi)uX)(b(yj) + a(yj)uY ) (2.17)

Then we estimate an intermediate uncertainty:

uI
X×Y = uRows

X×Y + uColumns
X×Y + uFrame

X×Y (2.18)

uRows
X×Y = 1 −

∑

bRows
X×Y (2.19)

bRows
X×Y =

(

uXb(y1) . . . uXb(yl)
)

(2.20)
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Table 2.1

Multinomial opinion multiplication

belief atomicity Expected value
poor avg good poor avg good poor avg good

success 0.026 0.038 0.099 0.060 0.150 0.090 0.059 0.119 0.147
failure 0.046 0.058 0.192 0.140 0.350 0.210 0.122 0.248 0.306

uColumns
X×Y = 1 −

∑

bColumns
X×Y (2.21)

bColumns
X×Y =

(

b(x1)uY . . . b(xk)uY

)

(2.22)

uFrame
X×Y = uXuY (2.23)

Based on this, we find the product uncertainty:

uX×Y = min
{

u
(i,j)
X×Y , (xi, yj) ∈ X × Y

}

(2.24)

u
(i,j)
X×Y =

uI
X×Y E((xi, yj))

bI
X×Y ((xi, yj)) + a(xi)a(yj)uI

X×Y

(2.25)

Beliefs and atomicity levels are then computed:

bX×Y ((xi, yj)) = E((xi, yj)) − aX(xi)aY (yj)uX×Y (2.26)

aX×Y ((xi, yj)) =
E((xi, yj)) − b((xi, yj))

uX×Y ((xi, yj))
(2.27)

Given the multinomial opinion multiplication, its disjunctive counterpart is computed in a similar way,
taking into consideration that:

E((xi, yj)) = E(xi) + E(yj) − E(xi)E(yj) (2.28)

As an example, we might consider the following situation. The consultant considers using a WS of type T
for a complex WS. There were 4 prior experiences labeled as success and 2 labeled as failure for this design
solution. For the moment, the a priori probabilities are assumed known; section 6 discusses how they can be
obtained. Thus, for this type of WS, we may have the opinion ωX = (0.250, 0.500, 0.250, 0.300, 0.700). On the
other hand, we have one WS provider which, in the past, has offered a latency considered poor in 5, average
in 10 and good in 13 cases, hence the opinion ωY = (0.167, 0.333, 0.433, 0.067, 0.200, 0.500, 0.300). We would
like to know the belief level for the sentence ”The design solution based on a WS of type T is success and the
latency is good”. Table 2.1 summarizes the belief and atomicity levels for this situations. As we can see, the
belief and atomicity for the sentence above are 0.192 and 0.210 respectively, for an uncertainty level of 0.541
and an expected value of 0.306.

3. Belief Recipe Trees. This section presents the Belief Recipe Tree (BRT), an extension of the Prob-
abilistic Recipe Trees (PRT) introduced in [14]. Most of this section, as well as the next one, are borrowed
from [15]. Some examples have been added and the multinomial case has been investigated and compared with
the previous solution.

The central idea we advocate is that building a complex web service could be regarded as building up a
plan, so we may use this structure for web service architecture elaboration. As a general approach, an architect
is in charge with picking services and providers, while a consultant helps him, when possible, by suggesting
alternative approaches, provided such a decision is rational from the point of view of the total utility.
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3.1. Probabilistic Recipe Trees. This subsection briefly describes the PRT for self-containment pur-
poses. For details and formal definitions, we refer to [14].

A PRT for an action α is basically a tree which incorporates a probability distribution over the recipes
for accomplishing α. A node in a PRT represents an action together with some associated properties: a leaf
node represents a basic (i.e. atomic) action, while an intermediate node represents a complex one. Intermediate
nodes are either AND or OR nodes. Each child of an AND node represents an action component of a recipe for
completing the AND node action. Each child of an OR node represents a non-deterministic choice of a recipe
for competing the OR node action. Each branch which descends from an OR node has associated a probability
(which is assumed known a priori) for the corresponding child node to be selected as a recipe for completing
the OR node action.

The context of an action, denoted Cα, is the complex of information an agent bases her decision on at a
specific moment of time. The predicate Context(Cα, G1, α, T ) is used to express the idea that Cα is the context in
which agent G1 believes, at time T , that action α is done. Function cba.basic(G1, β, Cβ) returns the probability
that agent G1 can bring about the basic level action β within context Cβ . Similarly, cba.cost(G1, G2, β, Cβ)
returns the cost paid by agent G1 when the basic level action β is done by agent G2 in context Cβ . Function
V (G1, α, Cα) returns the utility for G1 if action α is performed in context Cα and includes, for complex actions,
both the gain for the action itself and for its sub-actions. All cba, cost and V are considered intrinsic properties
of actions, known by all agents, although obtaining good estimations of them is not trivial for systems comprising
more agents and little prior interactions.

Function p CBA(PRTα, Cα) returns the probability of action α to succeed, given context Cα and the tree
PRTα. For leaf nodes, the returned value is cba.basic, for AND nodes, a product of children probabilities, while
for an OR node, weighted average of children probabilities. Finally, function Cost(Gi, PRTα, Cα) returns the
expected cost to be paid by agent Gi when the group carries out the recipes in PRTα in context Cα. The
returned value are as follows: cost.basic in case of leaf nodes, the sum of children costs for AND-type nodes
and a weighted average of children costs for OR nodes.

An agent is assumed to be able to perform helpfully, conveying and asking actions. A helpful action requires
the agent to be committed (believes PRTα is the best way and all other agents intend to carry out PRTα) and
to consider that performing γ would increase the group utility. Conveying information action requires the agent
to be committed and to believe that the conveyed information would increase the group utility, provided that
there is some agent which may perform an action based on the received information. The asking information
action can be done if there is another agent committed and he believes that he possesses information which
would increase the group utility.

3.2. Opinion based PRT: Belief Recipe Trees. A BRT deals with opinions instead of mere probabil-
ities. The rationale behind extending the PRT structure into BRT is the necessity of endowing the user with a
mechanism of generating and adjusting the probability values needed by the tree. In the same time, the BRT
”converges” towards the PRT when the number of experiences increases.

The BRT structure basically serves for representing in a compact manner the alternative recipes which
might be used for achieving a goal (e.g. for building a composite web service). The size of such a structure is
showed to be O(nm)d, where n is the number of potential recipes for every action, m is the average number of
steps in one such action and d is the number of levels of decomposition required to reach the atomic level of

WS. This makes it exponentially smaller than the trivial O(nmd

) [14].

A BRT comprises terminal nodes, which model atomic tasks, and non-terminal nodes which represents
composed tasks. Each node has attached the following information:

(i) an opinion describing the trust level the evaluator has in the success of the task represented by that
node

(ii) a cost, which estimates how much the plan effector must pay in order to have the task corresponding
to the node completed

(iii) an income modeling the benefit obtained if the task is accomplished.

The opinions attached to a terminal node estimate the success likelihood of that task, based on its own prior
accomplishments; the opinions in the non-terminal nodes are computed based on those of their descendants.
The costs for a non-terminal node are computed based on those of descendants and on the likelihood of a branch
of being selected, while the income incorporates the benefits for achieving the tasks both in the descendants
and in the node itself.
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We consider a recipe as a sequence of steps to be performed in order to accomplish a goal. There exists a
set of basic tasks which are the atomic constituents of every such recipe. They are described by the properties
costN and incomeN , representing the cost and the reward respectively for completing the recipe step at the level
of the node N . These are assumed common and known across the community. Unlike the original approach,
the property ”can bring about” (cba, the success likelihood for a specific service) is modeled as an SL opinion
owned by the evaluator.

The BRT contains the following types of nodes:
1. leaf nodes: they are atomic tasks. For our case, such an task is selecting a specific atomic web service.
2. AND nodes: each child of an AND node must contain a constituent of the join task in the node. It

is used to model the situation of a complex recipe consisting of two or more goals which must be achieved to
fullfill the whole goal; for our case, it models a composed web service.

3. OR nodes represent possible alternatives for achieving a specific goal, e.g. making a nondeterministic
choice of one alternative over the other in case one need a web service of type T and two concrete web services
of that type, Tws1 and Tws2 are available but just one needs to be chosen.

Opinion-based BRT functions are introduced and serve for modeling helpful behavior in the very same way
their PRT counterpart do; each of these functions works on the goal in the BRT’s root and evaluates the most
appropriate recipe for achieving it.

Each node in the BRT has associated a specific opinion (as opposite to a mere probability), which represents
its likelihood of being successful. For leaf nodes (corresponding to atomic WS) the cba property is estimated
based on r and s. Each time an agent, either architect or consultant, employs a specific WS, it logs the
performance of that WS, labeling it as either positive or negative, thus increasing r or s respectively. We
assume the existence of an underpinning WS taxonomy, which classifies each WS given by its URI into a
class according to its functionality. The performance of a specific WS will be recorded in conjunction with its
corresponding functionality class. For example, the http://www.webservicex.net/globalweather.asmx?wsdl web
service will have its performances logged as a WeatherForcastWS class member. Later on, if a WS in the
WeatherForcastWS class is needed, http://www.webservicex.net/ globalweather.asmx?wsdl will be considered
for selection. The opinion for a node at this tree level is then updated based on r and s:

ωN = (
r

r + s + 2
,

s

r + s + 2
,

2

r + s + 2
, a) (3.1)

For a non-terminal node N , the opinion ωN is computed based on those of the node descendants:
1. AND node: if DN is the subset of all direct descendants of an AND node N , ωs is the opinion in a

direct descendant s of N (where s ∈ DN ), then the opinion ωN in the node N is:

ωN =
l

s ∈ DN

ωs (3.2)

It gives the likelihood of N being successful based on the success of every subtree of it.
2. OR node: if DN is the subset of all direct descendants of an OR node N , ωs is the opinion in a direct

descendant s of N (where s ∈ DN ), ωb(s) is the opinion associated to the tree branch going from N to s, then
the opinion ωN is:

ωN =
⊔

s ∈ DN

ωb(s) ⊓ ωs (3.3)

This opinion describes the likelihood of N being successful taking into consideration the potential of success
of each subtree alone. One should note that, for an OR node, each descending branch (not just the nodes)
is endowed with an opinion. These branch opinions are aimed to model information of the type ”for the job
X , 70% of the specialists would recommend solution Y ”, thus expressing knowledge about recipes rather than
about particular executors. They are manipulated like any other BRT opinion.

Costs of each node are computed as below:
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1. leaf node N : costN is assumed known and given
2. AND node: if DN is the subset of all direct descendants of an AND node N :

costN =
∑

s ∈ DN

costs (3.4)

3. OR node: if DN is the subset of all direct descendants of an OR node N , ωb(s) is the opinion associated
to the tree branch going from N to s and EV (ωb(s)) its expected value:

costN =
∑

s ∈ DN

costs ∗ EV (ωb(s)) (3.5)

Expected utilities of each node describe its profit (income− cost), weighted by the likelihood of this being
achieved. They and are computed as follows:

1. leaf node N : if income(N) is the price the customer agreed to pay for the delivery of N (this is assumed
to be known by agents), then the profit will be:

eval(N) = income(N) − cost(N) (3.6)

2. AND node: if DN is the subset of all direct descendants of an AND node N , income(N) is the price
the customer agreed to pay for the delivery of N , ωN is the opinion associated to node N and EV (ωN ) its
expected value:

eval(N) = EV (N) ∗ income(N) +
∑

s ∈ DN

eval(s) (3.7)

3. OR node: if DN is the subset of all direct descendants of an OR node N , income(N) is the price
the customer agreed to pay for the delivery of N , ωN is the opinion associated to node N and EV (ωN ) its
corresponding expected value, ωb(s) is the opinion associated to the tree branch going from N to s and EV (ωb(s))
its expected value:

eval(N) = EV (N) ∗ income(N) +
∑

s ∈ DN

eval(s) ∗ EV (ωb(s)) (3.8)

3.3. BRT for helpful behavior. We used the BRT structure for making decisions in case of a cooperative
activity where only partial team member involving is needed, though without risking to compromise the global
team goal.

The kind of decision to be made is as follows: if a team comprising A and C aim at building a composite
WS and C has just gained some knowledge about new possible recipes for building a part of the system, is it
rational, in team profit terms, for C to inform A about this or not? The following algorithm, similar to that
in [14], is proposed for making such a decision.

The predicate Committed(G1, GR, α) uses the belief recipe tree BRTα, which has α in its root, in order
to select the design solution α over any other similar solution β and commit to it. As an example, α might be
a design goal like ”Build a route generator WS”. Formally, G1 is committed to α iff G1 believes that BRTα

maximizes the group’s GR utility:

∃BRTα BEL(G1, ∀BRTβ BRTβ 6= BRTα ⇒ (3.9)

Eval(BRTβ) ≤ Eval(BRTα)) ∧ Int.Th(G1, SelectedBRT (BRTα))

If an agent is committed to α and believes that sending information o to his/her partner will increase the
group utility, he/she will do so (see Algorithm 3.3.1).

The next section presents an trace excerpt of this algorithm in order to decide over helpful behavior.
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Algorithm 3.3.1 Commitment decision

if Committed(G1, GR, α) then
BRTα = PredictBRT (G1, GR, α, CGR)
Cβ = ContextUpdate(Cβ , o)
BRTβ = PredictBRT (G1, G2, β, Cβ)
BRT o

α = BRTReplace(BRTα, BRTβ)
utility = Eval(BRT o

α) − Eval(BRTα)
end if
if utility ≥ CommunicationCost(G2) then

Int.T o(G1, Communicate(G1, G2, o))
end if

4. Running model. The example in this section describes a simple scenario in which a team of agents
make cooperative decisions about sharing knowledge using BRT for assessing the benefits of this.

Let us suppose we have two agents: a system architect A and a consultant C who intend to build a web
service called Navigator. This web service should build routes between pairs of addresses for car drivers. When
building such a route, the system takes into consideration information about the existing ways between start
and destination points, as well as information concerning the traffic on various routes and about the weather
forcast in that area. We will assume there exist simple web services offering each type of information above;
they are respectively called Mws1, Mws2, Mws3 (map web services), Tws1, Tws2 (traffic info web services) and
Wfws1, Wfws2 (weather forcast services).

The whole system can be built as a combination of two web services: Route Generator and Weather Forcast.
The former prepares routes taking into consideration both map and traffic information (thus having two service
components: Mapws and Trafficws); the latter returns information concerning the weather in the region which
will be visited. The customer agreed to pay money both for the partial components (e.g for the Route Generator
part) as well as for the final delivery. Building the whole system will bring an income of $40K; developing the
Route Generator alone will bring $30K, while the Weather Forcast part will get $2K.

We assume both A and C know general recipes for building such a system, so their BRTs are similar;
however, their knowledge about specific web services capable of carrying each atomic task might be different.
We consider this assumption reasonable for software developers. A depiction of the common BRT is given in
Figure 4.1. A square nodes represents an individual WS, while a circle corresponds to either an AND or an OR
node.

Building the system can be seen as a collaborative task involving agents A and C. Generating the solution
recipe is equivalent to building a shared plan describing how each step is performed. Agent A must therefore
come up with a list specifying either a recipe or an atomic web service for each needed task (e.g. the Route
Generator will be done by combining Mws2 and Tws1 into a Simple Route Generator, while Wfws1 will do
the job of Weather Forcast).

Consultant C has just learned there might also exist a web service called Complex Route Generator which
does the jobs of Mapws and Trafficws in one step; however, architect A is not aware of this yet.

The problem consultant C tries to solve is whether he/she should get involved into conveying this new piece
of knowledge to A or not. In order to achieve this, C makes an assessment of the chances/costs for A building
the system, based on his own knowledge.

The agent which builds the plan has information about each atomic service above; this information is kept
in form of the number of positive (success) and negative (failure) experiences the agent has recorded when
exploring a specific service. Please note that, for the time being, every experience can have only 2 outputs:
success or failure. E.g. for the service Mws1, the number of prior successes is 1 and of prior failures is also 1.
Thus, according to Section 3, the opinion concerning Mws1 is (0.25, 0.25, 0.50, 0.50).

4.1. Running sample. This subsection traces step-by-step the above scenario; it presents the opinions
at each level and also the decision to be made by the consulting agent C.

Table 4.1 summarizes the opinions of C concerning different individual web services. For example, in the first
line, one can see the information concerning Mws1. The number of positive prior experiences r was 1, the number
of prior negative experiences s was also 1, thus the opinion concerning Mws1 is (0.250, 0.250, 0.500, 0.500).
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Fig. 4.1. Web Service selection example

Table 4.1

Atomic WS evidence and opinions

WS r s b d u a
Mws1 1 1 0.250 0.250 0.500 0.500
Mws2 3 1 0.500 0.167 0.333 0.500
Mws3 1 2 0.200 0.400 0.400 0.500
Tws1 5 1 0.625 0.125 0.250 0.500
Tws2 3 2 0.428 0.286 0.286 0.500
Wfws1 78 22 0.765 0.216 0.019 0.500
Wfws2 67 33 0.657 0.222 0.111 0.500

C should also take into consideration the opinions for each branch. As presented in Section 3 the opinions
concerning these options are used to model knowledge of the type ”for the job X , 70% of the specialists would
recommend solution Y ”, without specifying who should actually perform Y .

Considering the OR-type node Mapws, let us assume that the opinions for its descending branches Mws1,
Mws2 and Mws3 have the values (0.200, 0.400, 0.400, 0.50), (0.250, 0.250, 0.500, 0.50) and (0.400, 0.200, 0.400,
0.50) respectively. Then, the opinion in the Mapws node is obtained by performing a logical OR among the
logical ANDs from each branch, which leads to the result (0.433, 0.288, 0.279, 0.578).

For the (AND-type) node Simplerg, the opinion in the node is computed as a simple logical AND between
its descendants; the result would be (0.345, 0.465, 0.190, 0.253).

Following the algorithm described above we get that the opinion for the Navigator task is (0.227, 0.635, 0.138,
0.553).

Table 4.2 presents the opinions assumed for each branch and the opinions computed on this ground for
every node in the BRT.

For the given costs and profits, we get Eval(Navigator ) = $5,202.40. Excerpts of this computation process
are presented in Table 4.3, which contains the probability expectation E, cost, income and expected value Eval
for the nodes in the example tree.

Now agent C might take into consideration the fact that he/she has just discovered another way of building
the Route Generator part: there exists a new service called Complex Route Generator which does this job, having
cost $10,000. For the individual and branch opinions of (0.666, 0.167, 0.167, 0.500) and (0.333, 0.0, 0.667, 0.500)
respectively, the new value for Eval(Navigator ) will be $7,919.38, thus it worth telling A about this, as long as
the cost of communication is lower than the additional benefit. Figure 4.2 presents the new situation.

Let us suppose that the web service fails because the selected CRG1 has failed twice. Then, the evidence
and beliefs are adjusted to reflect this experience; their new values are those in Table 4.4.

In this case, the corresponding evaluations are $5,202.40 (no composite web service disclosure) and $4,180.70
respectively. In this case, the rational choice for C would be not to suggest an alternative for the route generator
part. One should notice this is not feasible in the classical approach when the values of probabilities remain the
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Table 4.2

Plan alternatives opinions

WS b d u a
Mapws to Mws1 0.200 0.400 0.400 0.500
Mapws to Mws2 0.250 0.250 0.500 0.500
Mapws to Mws3 0.400 0.200 0.400 0.500
Node Mapws 0.433 0.288 0.279 0.578
TRAFFICWS to Tws1 0.600 0.200 0.200 0.500
TRAFFICWS to Tws2 0.375 0.375 0.250 0.500
Node TRAFFICWS 0.590 0.249 0.161 0.437
Node Simplerg 0.345 0.465 0.190 0.253
RG to Simplerg 0.666 0.167 0.167 0.500
Node RG 0.272 0.555 0.173 0.126
Wfws1 0.714 0.143 0.143 0.500
Wfws2 0.667 0.222 0.111 0.500
Node Wf 0.780 0.181 0.390 0.437
Node NAV 0.227 0.635 0.138 0.553

Table 4.3

Costs and profits

WS E Cost Income Eval
Mws1 0.500 1,000.00 0.00
Mws2 0.666 2,000.00 0.00
Mws3 0.400 3,000.00 0.00
Mapws 0.594 3,033 0.00
Tws1 0.500 4,000.00 0.00
Tws2 0.666 5,000.00 0.00
Route 0.523 0.00 30,000.00 2,170.80
Weather 0.608 0.00 2,000.00 950.86
Navigator 0.545 0.00 40,000.00 5,202.40

same and the selection could change due to Selected PRT behavior only.
This example illustrates the advantages of a BRT over a PRT. A BRT allows building trust from prior mutual

experiences and also updating it when further evidence becomes available, rather than keeping it unchanged. It
also provides more flexibility as it takes knowledge uncertainty, due to the lack of enough evidence, into account
when making decisions.

4.2. PRT versus BRT and multinomial BRT. In a scenario similar with the above one, we take
into consideration 2 situations: in the first one, the first weather forcast WS has a performance record of
r = 3000, s = 1000; in the second situation, the same WS has a performance record of r = 3, s = 1. The values
for all other WS are unchanged. Since the ratio r/s is the same, the corresponding PRT would be identical in
the two situations. The BRT version would led to the results in Table 4.5.

If an uncertainty threshold is taken into consideration, e.g. 0.01, the BRT will lead to different decisions:
in situation 1, the best is to commit to the weather forcast service, while in situation 2, this decision will be
blocked and probably more evidence will be required. Considering uncertainty in a BRT offers the opportunity
of making this type of decisions.

Table 4.6 shows the results in case more than 2 levels of quality are considered for the QoS. Here, we have a
simple situation where only the Route and Weather, together with Navigator, are considered. The possible val-
ues for the Weather WS performance are good and bad; Route can be blue, silver and gold. Let us consider the
vector values: (0.780, 0.181, 0.039, 0.500, 0.500) for Weather and (0.272, 0.025, 0.530, 0.173, 0.500, 0.400, 0.300)
for Route. In this case, the expected value for the system to offer a good weather forcast AND a gold level
route generator is 0.110. This offers the designer the opportunity to assess the system performance in a more
meaningful manner, as opposite to a mere ”does/does not work” in the previous version of the BRT.
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Fig. 4.2. Adding an alternative plan

Table 4.4

Alternative atomic WS evidence and opinions

WS r s b d u a
Mws1 1 1 0.250 0.250 0.500 0.500
Mws2 3 1 0.500 0.167 0.333 0.500
Mws3 1 2 0.200 0.400 0.400 0.500
Tws1 5 1 0.625 0.125 0.250 0.500
Tws2 3 8 0.428 0.286 0.286 0.500
Wfws1 78 22 0.765 0.216 0.019 0.500
Wfws2 67 33 0.657 0.222 0.111 0.500
CRG1 1 2 0.200 0.400 0.400 0.500

5. Related work. Within the context of knowledge potential uncertainty, combined with differences in
goals and/or commitments, an agent can employ trust, seen as a ”reduction of complexity” mechanism [17],
inside the decision making process. Pressure for building realistic trust models comes from the area of delegation
in multi-agent systems (selecting appropriate partners for tasks which require cooperation), as well as from the
problem of security and quality of the knowledge available in large scale open environments (e.g. in the field
of Semantic Web [1]). Thus, trust as an estimation of the likelihood of success of a specific task, was included
among the ingredients involved in decision making and is present in many papers and research lines. Among
them, we count the multi-agent systems and service-oriented architectures. Our work borrows ideas from both
fields in order to tackle the problem of building web services.

In the area of multi-agent systems, the approach presented in [19, 20] aims to incorporate the well known
Repage reputation model [21] into a BDI architecture and to model beliefs, desires and intentions as contexts
connected by bridge rules, like in [6]. A Repage context is added, whose mission is to aggregate the information
obtained from third party sources into sentence credibility level. A particular probabilistic logic is further
employed in order to allow context manipulation; intentions are generated by an inference process conducted
within this logic. However, the mechanism focuses on the perspective of a specific agent rather than committing
to a shared goal as a part of a team.

The improved SharedPlan formalism in [8, 7] introduces a model for the dynamics of agent intentions
in collaborative activity which integrates group decision making and group intentions updating. Agents can
commit to joint activities and also can have only partial knowledge about how to perform an action, but
the formalism does not address uncertainty aspects. In order to solve this issue, paper [14] introduced the
Probabilistic Recipe Tree, which defined a probability distribution over the potential recipes which can solve
the goal in its root node. The PRT structure is arguably more compact and works faster than the prior solutions
(e.g. the mechanism described in [24]). However, the way the probabilities involved in reasoning are estimated
and adjusted is not given. The solution our paper proposes for this is to use subjective probabilities. This
will offer the opportunity of both estimating the probabilities those and modeling the uncertainty about these
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Table 4.5

BRT versus PRT decisions

Sit. r s b d u
1 3000 1000 0.749 0.250 0.001
2 3 1 0.5 0.167 0.333

Table 4.6

Multinomial Navigator WS expected values and opinions

Navigator belief Expected value
blue silver gold blue silver gold

bad 0.263 0.057 0.433 0.287 0.075 0.438
good 0.049 0.001 0.105 0.072 0.019 0.110

estimations as no large number of mutual prior interactions is usually available. Extending the PRT into the
Belief Recipe Tree structure and adjusting all operations accordingly represent the main contributions of this
paper.

Trust has also gained attention to the researchers in the service-oriented field. For example, paper [25]
employs a novel trust model in order to solve the service collaboration problem. The model enjoys a set of
desirable properties, such as temporal dynamics, context-awareness and the possibility of exchanging opinions
concerning trustees. The service providers make simple decisions like granting and revoking resource access
based on the trust level computed this way. The approach we presented allows reasoning about complex actins,
i.e. actions whose completion involves more than one actions and one goal. Trust is involved at least at two
levels: at the atomic level, by measuring one entity’s own capability, and at the composed level, by assessing the
global likelihood of success for the combined goal. The model fullfills the requirements of context-awareness,
rule-orientation, non-symmetry, and temporal dynamics.

The paper [16] proposes a method for finding a possible reconfiguration region containing replaceable services
which allow the system to meet the original QoS specification if a service fails and affects a complex of processes.
However, the need of reasoning in advance over the likelihood of such an event lead to a more general approach
including trust as a measure of service reliability. We took this latter path in this paper.

Paper [26] deals with incremental trust evaluation of WS providers, based on the feedback from the WS
clients side. A fuzzy logic based method for connecting service period length and reputation is introduces.
Our solution is based on incorporating knowledge on particular WS provider and on generic solutions into
opinions along tree branches and leaves. The operations defined on BRT allow one to accommodate both types
of knowledge.

A similar, but slightly different approach is introduced in [4]. Experiences are recorded objectively, based
on a shared ontology aimed to allow describing past interactions in detail, filter the unreliable ones and then
integrate them into global opinions. This offers the trustors a standard common language for recording their
experiences, but makes no steps for supporting decisions which involves complex goals. We advocate the idea of
grounding trust for complex actions on trust levels for basic actions because we consider rather unlikely to have
a reasonable amount of experiences of each type of complex tasks in order to make a similarity-based judgment,
so trustors will have to rely to a large extent on their own experiences, but being able to decide when to ask
for more information.

The work presented in [27] addresses the problem of automatically composing web services within the
context of uncertainty about their successfull invocations. Their solution is based on combining probabilistic
situation calculus and hierarchical, symbolic planning and can deal with uncertainty and scale efficiently to large
compositions. Our solution assumes a number of prior known recipes for hierarchically decomposing a task into
subtasks up to the level of basic actions; this might be a weak point when compared to [27] as one cannot
guarantee the completeness of such a collection of recipes. On the other hand, our approach offers flexibility on
assessing the uncertainty involved in decisions and also on deciding whether the trustor does or does not know
enough about a specific trustor in order to start reasoning over the interaction.

6. Conclusions and future work. Many times, the process of developing a complex WS implies col-
laborative design, hence the importance of deciding to which extent one should assist her peer. This paper
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has presented a solution to this problem based on the novel BRT structure. A BRT is an extention of a PRT,
endowed with trust values in form of subjective opinions describing both service providers and design recipes.
Operations on the tree nodes are extended accordingly. The key advantage of it is that it permits estimating
the likelihood of success and make rational decisions even if a small number of prior interactions are at hand,
adjusting beliefs when further evidence is available, and deciding whether to seek for more information versus
to rely on the available one. Agents are offered the possibility to deal with multinomial instead of binomial
opinions, for an even richer (i.e. finer grained) set of labels for performance description. Belief Recipe Trees, to-
gether with the corresponding versions of algorithms, offer a more realistic approach for the uncertainty present
in designing complex SOA, as well as an improved flexibility in making sound decisions.

The first goal for future work is to conduct extensive experiments in scenarios involving an increased number
of team members, tasks and resources needed for accomplishing the tasks, in order to investigate the performance
and scalability of the approach. This should be combined with different methods for distributing uncertainty
(here, we used only the Assumed Uncertainty Mass for the conjunction and a De Morgan based difference for
disjunction, but some other solutions should also be explored).

Addressing the problem of accurate estimation of the base rates also deserves attention. Following the
line in [13], the base rate can be estimated by the general frequency. The main shortcoming would be that
a great amount of observations is still required for high quality estimation. Another line to pursue originates
in [2]. Machine learning algorithms can be used for clustering, then learning stereotypes about classes of agents.
The learned stereotypes can be further used to estimate the base rates, alone or after aggregating them into
stereotypical reputations. This line is more appropriate in agent groups whose life-span is much shorter than
that of the whole system and the agent pool is large enough to render the frequency estimation unfeasible.
Hopefully these improvements will lead to a more realistic world representation and better agent decisions.
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