
Scalable Computing: Practice and Experience

Volume 12, Number 1, pp. 137–150. http://www.scpe.org
ISSN 1895-1767

c© 2011 SCPE

ANT-INSPIRED FRAMEWORK FOR AUTOMATIC WEB SERVICE COMPOSITION

CRISTINA BIANCA POP, VIORICA ROZINA CHIFU, IOAN SALOMIE, MIHAELA DINSOREANU, TUDOR DAVID,

VLAD ACRETOAIE∗

Abstract. This paper presents a framework for automatic service composition which combines a composition graph model
with an Ant Colony Optimization metaheuristic to find the optimal composition solution. The composition graph model encodes all
the possible composition solutions that satisfy a user request. The graph will be further used as the search space for the ant-inspired
selection method targeting the identification of the optimal composition solution. To identify the optimal composition solution we
define a fitness function which uses the QoS attributes and the semantic quality as selection criteria. The proposed composition
framework has been tested and evaluated on an extended version of the SAWSDL-TC benchmark.

Key words: Web service composition, semantic Web services, graph model, ant colony optimization

AMS subject classifications. 15A15, 15A09, 15A23

1. Introduction. The growing number of Web services available in public and private repositories requires
fast, precise and scalable algorithms that can process them so as to present users with the most suitable
functionality. Such algorithms include the automatic Web service discovery and composition as well as the
selection of the optimal composition solution.

Automatic Web service discovery algorithms approach the problem of providing users with the Web services
that most closely match their request, usually expressed as a list of inputs and a list of desired outputs.

Automatic Web service composition algorithms address the scenario in which the above mentioned discovery
algorithms fail to return a Web service relevant to the user request because such a service is not registered in
the available repositories. By Web service composition, a set of services are combined into a more complex
service which satisfies the user request.

Automatic Web service discovery and composition can be achieved by combining the Web service technology
with Semantic Web, thus enhancing the representation of data and processes available on the Internet with
machine-interpretable information. In semantic Web service composition it is important to ensure that the
results satisfy both the functional and non-functional requirements specified by the user. However, because
the total number of possible composition solutions is often extremely high, an exhaustive evaluation of all
the solutions is unpractical. Consequently, techniques that identify the optimal or a near-optimal composition
solution without processing the entire search space are required.

In this context, our paper proposes a framework for automatic service composition which combines a com-
position graph model with an ant-inspired method to find the optimal composition solution. The composition
graph model stores all the composition solutions that satisfy a user request. In our approach, a user request is
described in terms of: functional requirements - ontological concepts that semantically describe the inputs and
outputs of the requested composed service and non-functional requirements - weights associated to user prefer-
ences regarding the relevance of a composition solution’s semantic quality and its QoS attributes. The proposed
ant-inspired method, previously introduced in [3], adapts the Ant Colony Optimization (ACO) metaheuristic [1]
to identify the optimal composition solution encoded in the composition graph model. We employ the following
methodology for adapting the ACO metaheuristic: first, we study and analyze the biological source of inspi-
ration of the meta-heuristic; second, we model the biological entities, relationships and processes so that they
fit into our problem of selecting the optimal service composition; finally we adapt the algorithm proposed by
the metaheuristic to the problem of service selection. To identify the optimal solution a fitness function which
uses the QoS attributes and the semantic quality as selection criteria is defined. The ant-inspired composition
framework has been tested and evaluated on an extended version of the SAWSDL-TC benchmark [12].

The rest of the paper is structured as follows. In Section 2 we introduce related work. The proposed
framework architecture is presented in Section 3, while the associated workflows are presented in Sections 4
and 5. Section 6 discusses the adjustable parameters of the Ant-inspired composition framework and evaluates
experimental results. The paper ends with our conclusions and future work proposals.

∗Department of Computer Science, Technical University of Cluj-Napoca, 26-28 Baritiu str., Cluj-Napoca, Romania,
({Cristina.Pop, Viorica.Chifu, Ioan.Salomie}@cs.utcluj.ro).

137

138 C. B. Pop, V. R. Chifu, I. Salomie, M. Dinsoreanu, T. David and V. Acretoaie

2. Related Work. This section reviews some related works in the field of Web service composition.

A broker-based framework for composing Web services is described in [5]. The framework starts from a
composition plan which contains a set of abstract activities. Each abstract activity is further mapped to a set of
concrete services providing the same functionality but having different QoS attributes values. The framework
identifies the optimal composition solution which provides the best global QoS score by using an adapted
version of the HEU heuristic introduced in [11]. The main idea behind the HEU heuristic is to start from an
initial feasible solution and to replace the solution elements which negatively affect the quality of the solution
with other better elements. For efficiency reasons, the concept of dominance is introduced to skip the solution
elements which have been previously replaced by other better elements.

In [4] an autonomous semantic Web service composition and management system inspired by the neuroendo-
acrine-immune network is presented. The framework functionality relies on the cooperation of a set of entities
to compose Web services rather than on a central coordinator. Each Web service is associated to a biological
entity defined by a set of attributes, a body containing functional information and a biological behavior such as
create, sleep, mutate and execute. A composed Web service satisfying a user request is represented as a network
of biological entities obtained through negotiation. The negotiation between biological entities is performed
using partial deduction and Linear Logic theorem proving.

An integer programming-based framework for Web service composition is proposed in [6]. The composition
method used in this framework takes into consideration functional and non-functional QoS parameters. The
framework first generates the integer-linear programming (ILP) description of the services available in a repos-
itory and then based on the user request it processes these descriptions using an ILP solver. The Web service
composition solutions returned by the solver are encoded in WSBPEL.

In [8] and [9] an event calculus-based framework has been proposed as a solution for the Web service
composition problem. The authors demonstrate that when a goal situation is given, the event calculus can
find suitable service compositions by using the abductive planning technique. The main contributions of these
works are a translation algorithm from OWL-S semantic descriptions of Web services into the event calculus
and a formal framework that shows how generic composition procedures are described in the event calculus.
The event calculus-based framework is presented as an alternative approach to the agent-based composition.

In the Meteor-S project [10], a Web Service Composition framework for dynamic composition of Web services
has been developed which takes into consideration business constraints. The idea behind this framework is to
describe the composed service as an abstract process in BPEL, and then to discover the services whose Profile
matches with the defined abstract process. Once the requested service is discovered, the candidate services are
selected based on the business and process constraints. The disadvantage of this approach is that the proposed
technique is not totally automated.

3. Framework Architecture. This section presents the proposed Ant-inspired framework for automatic
Web service composition. The aim of the framework is to: (i) publish semantic Web services, (ii) discover
semantic Web services, (iii) compose semantic Web services, and (iv) select the optimal or a near-optimal
composition solution according to user constraints. The conceptual architecture of the Ant-inspired framework
is organized on the following layers (see Figure 3.1): the Web Service Publication layer, the Web Service
Composition layer and the Composition Selection layer. Each layer supports user interaction and has an
associated workflow.

Service Publication Layer. Service providers interact with the Service Publication layer through an asso-
ciated graphical user interface to publish their semantic Web services in the Semantic UDDI registry. Based
on the functional and non-functional information provided by the service provider, the Publication Module (i)
generates the XML structure containing the semantic descriptions of a Web service, (ii) generates a tModel
containing a reference to the XML file, (iii) generates the standard structures (for example BusinessEntity and
BusinessService) required for storing the information about a Web service in a UDDI repository and (iv) groups
services into clusters according to their semantic similarity. To evaluate the semantic similarity between two
services, the Publication module interacts with the Service Matching module. The Publication module stores
the generated structures in a Semantic UDDI registry. We chose to group services into clusters to make the
discovery process more efficient.

Service Discovery Layer. Service requestors interact with the Service Discovery layer to find semantic Web
services that satisfy some functional and non-functional requirements expressed using ontological concepts. In
the Service Discovery layer, an important role is played by the Service Matching Module which is responsible

Ant-inspired Framework for Automatic Web Service Composition 139

Fig. 3.1. Framework architecture

for evaluating the semantic similarity between two services. This module interacts directly with the ontology
repository.

Service Composition Layer. The Service Composition Module interacts with the Service Discovery Module
to build the composition graph which stores all the possible solutions for a specified user request. To find the
optimal composition solution according to QoS attributes and semantic quality, the Selection Module interacts
with the Service Composition Module. The Selection Module returns a ranked set of composition solutions, the
first one being the optimal solution. The user is allowed to choose the solution he prefers.

4. The Web Service Composition Workflow. The main objective of the composition workflow is to
obtain a graph-based representation of all the possible compositions that satisfy a user request. The composition
graph will be further used as the search space in the selection process targeting the identification of the optimal
composition solution according to the constraints specified in the user request.

4.1. The Composition Graph. The composition graph (see the UML representation in Figure 4.1) is
automatically built for each user request.

In our approach, a graph node represents a cluster of similar services. A cluster contains a set of semantic
similar services. We consider that two services are semantically similar if there is a degree of semantic matching
(DoM), higher than a specified threshold, between them. The method for evaluating the degree of match
between two services has been presented in a previous work [2]. Besides the graph nodes containing clusters
of similar services we also define the input and output nodes as two special types of nodes. The input node
contains a cluster with a single service which only has outputs representing a set of ontology concepts describing
the user provided inputs. The output node on the other hand, contains a cluster with a single service having
just inputs representing the concepts describing the user requested outputs.

A directed edge links a pair of cluster nodes if there is a degree of semantic match between the outputs of
one of the clusters and the inputs of the other cluster.

140 C. B. Pop, V. R. Chifu, I. Salomie, M. Dinsoreanu, T. David and V. Acretoaie

Fig. 4.1. UML representation of the composition graph model

The construction of the composition graph starts with a single node representing the user provided inputs.
Then, the graph is expanded with new clusters of services which have a degree of match with the clusters already
added in the graph. The clusters are obtained by applying a clustering method we have introduced in [2]. This
way, the expansion of the graph is performed until all the inputs of the output node are satisfied. A service
cluster should be added only if the clusters already present in the graph provide all the outputs required for its
execution.

A composition solution is a directed acyclic sub-graph which contains the service of the input node, a set
of services (one from each considered cluster node) and the service of the output node.

4.2. The Composition Algorithm. The composition algorithm (see Algorithm 4.2.1) takes as inputs (i)
the user request, (ii) the set of services available in a repository and (iii) two threshold values. The threshold
values are required for evaluating the semantic matching between two clusters and between two concepts.

First the composition graph is initialized (see Initialize Graph in Algorithm 4.2.1) based on the user request
so that it contains only the input node. Then, the algorithm iteratively performs the following two operations:
(1) a set CL of service clusters are discovered (see Discovery in Algorithm 4.2.1) [2] based on the semantic
matching between the concepts describing the inputs of these services and the ones describing the outputs of
the services that are already in the graph, (2) for each discovered cluster c a corresponding node is created
and added to the composition graph and as a result the set of graph edges is updated (see Update Edges in
Algorithm 4.2.1). A new edge is added between two nodes if there is a semantic matching between the clusters
associated to these nodes.

The algorithm ends either when the user requested output parameters are provided by the services added
to the composition graph or when the graph reaches a fixed point. Reaching the fixed point means that no
new service clusters have been added to the composition graph for a predefined number of iterations. If the
graph does not reach a fixed point means that there is at least one composition solution. In this former case,
we employ a pruning process (see Prune in Algorithm 4.2.1), detailed in Algorithm 4.2.2, that starts from the
output node and eliminates the service clusters which do not provide either (i) an output parameter to other
services in the graph or (ii) an output parameter requested by the user.

The pruning algorithm (see Algorithm 4.2.2) takes a composition graph as input. The algorithm performs a
breadth-first search starting from the output node in order to remove all nodes that are not on a path connecting
the output node with the input node.

Regarding performance, out of the operations used in Algorithm 4.2.1, the Discovery procedure has the

Ant-inspired Framework for Automatic Web Service Composition 141

Algorithm 4.2.1 Build Composition Graph

Input:
req = (in, out) - the user request containing concepts that describe the provided inputs (in) and requested
outputs (out);
S - set of available services;
clTh - threshold for clusters matching;
cTh - threshold for concepts matching;
Output: G = (V, E) - the composition graph containing a set of vertices V and a set of edges E;
begin

vin = Generate Input Node(req.in)
vout = Generate Output Node(req.out)
G = Initialize Graph(vin)
while ((vout /∈ G.V) or (!Fixed Point(G))) do

CL = Discovery(G.V, cTh)
foreach c ∈ CL do

G.V = G.V ∪ {c}
G.E = Update Edges(G.V, clTh)

end for
end while
if (vout /∈ G.V) then return null
G = Prune(G)
return G

end

Algorithm 4.2.2 Prune

Input: G = (V, E) - the composition graph containing a set of vertices V and a set of edges E;
Output: G - the pruned composition graph;
Comments: O - the output node;
begin

E′ = ∅
V ′ = ∅
L = {O}
while(L 6= ∅)do

v = Remove First(L)
V ′ = V ′ ∪ {v}
foreach w /∈ V ′, (wv) ∈ E do Append(L, w)
foreach(wv) ∈ E, w ∈ V ′, v ∈ V ′ do E′ = E′ ∪ (wv)

end while
return (V ′, E′)

end

highest running time: O(N2), where N is the number of clusters. In our algorithm, we call this procedure at
most N times. The code in the while statements has O(N) complexity in the worst case. The complexity of the
pruning algorithm is O(|V | + |E|). Taking all this into consideration, the complexity of Algorithm 1 is O(N3).

4.3. An Example of Building a Composition Graph. The step-by-step construction of a composition
graph is illustrated in Figure 4.2. In step 1, only the input node is present; in step 2, the service clusters
discovered based on the user inputs have been added; in step 3 the service clusters whose inputs are satisfied
by the previously discovered clusters are added to the graph; by step 4, the entire composition graph has been
built; in step 5, pruning is applied in order to remove the unnecessary parts (notice that the services S4 and S7

are elliminated from the composition graph). Finally, the set of possible solutions encoded in the composition
graph consists of {S1, S2, S5}, {S1, S2, S6}, {S1, S3, S5} and {S1, S3, S6}.

142 C. B. Pop, V. R. Chifu, I. Salomie, M. Dinsoreanu, T. David and V. Acretoaie

Fig. 4.2. Composition Graph Construction

5. The Ant-inspired Selection Workflow. For finding the optimal composition we adapted the Ant
Colony Optimization (ACO) metaheuristic [1] which was proposed for solving combinatorial optimization prob-
lems. Our Ant-inspired selection workflow uses the previously described composition graph and a multi-criteria
function to identify the optimal composition solution according to QoS user preferences and semantic quality.

5.1. Problem Formalization. The ACO metaheuristic relies on a set of artificial ants which communi-
cate with each other to solve combinatorial optimization problems. The behavior of artificial ants is modeled
according to the behavior of real ants in nature, which search for the shortest route to a food source and
communicate indirectly with each other by means of the pheromone they lay on their route. In this section we
present how we adapted the ACO metaheuristic to the problem of Web service composition and selection.

Just as real ants search the shortest route to a food source in a natural environment, we define a set of
artificial ants that traverse the composition graph in order to find the optimal composition solution. In its
search, an artificial ant can explore the composition graph and for each step it has to choose an edge that links
the service where the ant is currently positioned with a new service. The choice is stochastically determined
with the probability p taking into account the level of pheromone τij (see Formula 5.2) on the edge leading
to a candidate service and some other heuristic information. The heuristic information refers to the QoS of
the candidate service at the end of the edge and the degree of semantic matching between the two services
connected by the edge. The probability [1] to choose an edge (i, j) from the current service and leading to a
candidate service is defined as follows:

Ant-inspired Framework for Automatic Web Service Composition 143

pk
i,j =

τα
ij×η

β
ij

P

cpq∈N(sp) τα
pq×η

β
pq

if cpq ∈ N(sp),

0 otherwise.
(5.1)

where N(sp) is the set of candidate edges (which may be added to the partial solution), and ηij is the heuristic
information associated with an edge. The heuristic information is evaluated with the following formula:

ηij =
wQoS × QoS(S2) + wMatch × DoM(S1, S2)

wQoS + wMatch

(5.2)

where S1 is the current service where the ant is positioned, S2 is the candidate service, QoS represents the
QoS score of S2, DoM is the degree of semantic matching between S1 and S2. The heuristic information also
considers the weights wQoS and wMatch which represent the relevance of the QoS score and of the degree of
semantic matching, respectively. The QoS score of a service is computed as:

QoS(s) =

∑n
i=1 wi × Attri(s)

∑

wi

(5.3)

where Attri(s) represents the value of the i-th quality of service attribute, wi represents the associated weight
of the quality of service attribute and n is the number of QoS attributes considered. We use a QoS model
defined in a previous work [7]. The current model considers the running time, availability, reliability, throughput
and cost but it may be extended with other QoS attributes. Each of these QoS attributes needs a separate
calculation method, because they have different interpretations: for some of them a higher value is better,
meanwhile for others smaller values are better.

The quality of a composition solution built by an artificial ant is evaluated with the following formula:

Score(sol) =
wQoS × QoS(sol) + wMatch × Sem(sol)

(wQoS + wMatch) ∗ |sol|
(5.4)

In Formula 5.4, QoS(sol) represents the overall QoS of the composition solution sol and Sem(sol) represents
the semantic quality score of sol.

QoS(sol) is computed as:

QoS(sol) =

∑|sol|
i=1 QoS(si)

|sol|
(5.5)

where |sol| represents the number of services involved in the composition solution sol and QoS(s) is the QoS
score of a service s (see formula 5.3).

The semantic quality of the composition solution sol is determined as:

Sem(sol) =

∑m
i=1 DoM(sj , sk)

m
(5.6)

where m is the number of edges contained in the composition solution sol and DoM evaluates the degree of
semantic matching [2] between two services.

There are two types of pheromone updates, performed as suggested by the ACO metaheuristic: local update
and offline update. The local update is performed by each ant at each step it makes on the composition graph
according to the following formula [1]:

τij = (1 − ϕ) × τij + ϕ × τ0 (5.7)

144 C. B. Pop, V. R. Chifu, I. Salomie, M. Dinsoreanu, T. David and V. Acretoaie

where τij is the current pheromone level, ϕ is the pheromone decay coefficient, and τ0 is the initial value of the
pheromone.

The offline pheromone update is applied at the end of an ant’s solution construction process as follows [1]:

τi,j = (1 − ρ) × τi,j + ρ × ∆τij (5.8)

where ∆τij = 1/Sbest, Sbest is the best score of a composition solution found so far and ρ is the pheromone
evaporation rate.

5.2. The Selection Algorithm. The selection algorithm (see Algorithm 5.2.1) takes as input a compo-
sition graph, the number of artificial ants used in the search process, the number of algorithm iterations and
returns a ranked set containing the best composition solutions identified in each iteration. The algorithm adapts
the Ant Colony Optimization (ACO) metaheuristic [1]. Like most ACO algorithms, the selection algorithm it-
eratively searches for the best composition solutions.

Algorithm 5.2.1 Ant-based Selection

Input:
noIt - the number of iterations;
noAnts - the number of artificial ants;
G = (V, E) - the composition graph;
Output:
SOL - the set of the best composition solutions;
begin

SOL = ∅
noItModif = 0
Ants = Initialize Ants(noAnts)
while (noItModif < noIt) do

noItModif = noItModif + 1
max = 0
foreach a ∈ Ants do

result = Find Solution(G, a)
minScore = Find Min Score(SOL)
maxScore = Find Max Score(SOL)
if (minScore < Score(result)) then

SOL = Remove Worse(SOL)
SOL = Add(SOL, result)
noItModif = 0

end if
if (maxScore < Score(result)) then

max = Score(result)
maxSol = result

end if
end for
G = Apply Offline Pheromone(G, maxSol)

end while
return SOL

end

Within an iteration, a set of artificial ants traverse the composition graph searching for composition solu-
tions. In the first step, an ant is randomly placed on a graph node. Then, the ant will try to find input concepts
for the node it is currently on. To do this, it will go backwards on an edge. When positioned on another node,
the ant will try again to find appropriate inputs for that node. This operation will be performed until there
are no more services whose inputs have no correspondents to outputs of other services. Once this is done, the
ant will pick an edge in a forward direction from its current position node trying to move towards the output

Ant-inspired Framework for Automatic Web Service Composition 145

node. From then on, the ant will pick edges outgoing from nodes that are not providing inputs to any node
which is already present in the partial solution. Once a new node is picked, the ant will again go on back edges
searching to provide all its inputs. This process is repeated until the ant reaches the output node and all the
inputs of all the nodes are satisfied. The algorithm avoids adding a new edge if a cycle is about to be created
in the composition graph. After all the ants manage to obtain a composition solution, the offline pheromone
update is applied (see Apply Offline Pheromone Update in Algorithm 5.2.1) on the edges of the best solution
found so far. The best solution is identified based on Formula 5.4 (see Score in Algorithm 5.2.1). Finally, the
algorithm returns the list of the best composition solutions found in each iteration.

Algorithm 5.2.2 illustrates how an artificial ant builds a solution. First, an empty solution is initialized.
Then a random node is chosen followed by choosing an appropriate service from the corresponding cluster. The
selected service is added to the partial solution. Then, all the services providing the required inputs for the
partial solution are backward searched (see Find Inputs in Algorithm 5.2.2). If the output node is not yet present
in the partial solution, the algorithm performs a forward search to find another service (see Find Next Service
in Algorithm 5.2.2) for which the current partial solution can provide inputs. The algorithm finally returns the
found solution.

Algorithm 5.2.2 Find Solution

Input: G - the composition graph
Output: sol - the found solution
Comments:
Choose Random Node - picks a random graph node
Pick Service - chooses a service from a cluster
Is Solution - evaluates the partial solution
begin

sol = ∅
N = Choose Random Node(G)
N.chosenService = Pick Service(N)
sol = Add Node(sol, N)
while (Is Solution(sol) == false) do

sol = Find Inputs(sol, N)
if (Contains(sol, O) == false) then

N = Find Next Service(sol)
end if

end while
return sol

end

Algorithm 5.2.3 finds the services that provide inputs for the services that are contained in a partial solution.
The algorithm is used recursively until all the inputs are provided. For a service in the partial solution, the
algorithm first iterates through all the inputs which are not yet provided. It then finds a providing service,
such that by adding the corresponding edge the graph remains acyclic. This service is chosen stochastically
(see Formula 5.1), with the probabilities given by the pheromone level and heuristic information of the edges
connecting the current service and the considered one. Then, the algorithm adds the service and the edge to the
partial solution if they are not already present. These steps are repeated recursively until a partial composition
solution is found.

The Find Next Service procedure in Algorithm 5.2.2 which is detailed in Algorithm 5.2.4 picks a new service
to add to a partial solution with all the inputs provided. First, it determines the services which should provide
inputs for the newly added one (see Get Nodes in Algorithm 5.2.4). Since we want to go towards the output
node, we will pick those services in the partial solution which are not already providing inputs for other services
in it. We then determine the set of edges to consider: all the outgoing edges with the start service in the set
previously determined, and the end service not in our partial solution (see Get Edges in Algorithm 5.2.4). We
then call a procedure that will choose an edge stochastically based on the pheromone levels and the heuristic
information (see Pick Edge Stochastically in Algorithm 5.2.4). Next we add the edge and the end service to our
solution and apply the local update procedure (see Local Update in Algorithm 5.2.4).

146 C. B. Pop, V. R. Chifu, I. Salomie, M. Dinsoreanu, T. David and V. Acretoaie

Algorithm 5.2.3 Find Inputs

Input:
solpart - a partial composition solution
s - the service where the ant is currently positioned
Output: solpart - the updated partial composition solution
begin

foreach a ∈ Ants do
repeat

s′ = Find Providing Service(s.in)
until(Edge(s, s′) /∈ Edges(solpart)or

Acyclic(solpart ∪ Edge(s, s′)) == true))
if (Edge(s, s′) /∈ Edges(solpart)) then

solpart = Add Service(solpart, s
′)

a = Pick Service(s′)
end if
Local Update(Edge(s, s′))

end for
if (Unprovided Inputs(s′) 6= ∅) then

solpart = Find Inputs(solpart, s
′)

end if
return solpart

end

Algorithm 5.2.4 Find Next Service

Input: solpart - the partial solution; G - the composition graph;
Output: solpart - the updated partial solution;
begin

candidateNodes = Get Nodes(G, solpart)
candidateEdges = Get Edges(G, CandidateNodes, solpart)
edge = Pick Edge Stochastically(candidateEdges)
solpart = solpart ∪ {Get End Node(edge), edge}
edge = Local Update(edge)
return edge

end

In the worst case scenario, when constructing a solution the entire composition graph is traversed, so the
complexity of Algorithm 5.2.2 is O(V +E). Based on this, the complexity of Algorihtm 5.2.1 may be estimated.
Its complexity is O(N ×A× (V + E)), where N is the number of iterations and A is the number of ants. A will
generally be a small constant. However, in the worst case scenario, N can be as high as the number of possible
solutions. In practice, as it will be shown in Section 6, this number is much lower, and N × A is often about
5% of the number of possible solutions. An alternative to this implementation (should the worst-case scenario
be unacceptable) is to run for a fixed number of iterations. The algorithm is expected to perform well in such a
case too, but care should be taken when fixing the number of iterations, as too few may result in bad solutions
and too many will result in extra work. While in theory this will lead to a better complexity, in practice the
currently chosen method works better.

5.3. An Example of Selecting a Composition Solution. Figure 5.1 presents the way in which an ant
selects a composition solution. For simplicity, we suppose that there is only one service in each cluster and that
at the beginning of the iteration the pheromone levels are the same on all the edges. The composition graph
can be seen in subfigure 5.1-(a). In the first step, the initial random node is chosen - suppose it is S3 (subfigure
5.1 - (b)). S3 needs providers for its inputs, so it calls one of its providers in the composition graph. Such a
node is S2, which can actually provide all of the required inputs (see subfigure 5.1 - (c)).

The ant selects it and searches for a provider for the newly added node. The node I is the only possibility
because it provides all the inputs for S2, so it is added to the solution (subfigure 5.1 - (d)). The ant can now go

Ant-inspired Framework for Automatic Web Service Composition 147

Fig. 5.1. Example of Selecting a Composition Solution

148 C. B. Pop, V. R. Chifu, I. Salomie, M. Dinsoreanu, T. David and V. Acretoaie

further, by looking for a node which requires the inputs that the current partial solution can provide. One such
node is S6 (subfigure 5.1 - (e)). Another possible choice would have been S7, but the ant notices that S6 has
a better semantic matching. Also, the ant prefers S6 to S5 because its providers are not already supplying for
nodes currently in the partial solution. The ant notices that S4 can provide all the required inputs and therefore
the ant adds the service to the partial solution (subfigure 5.1 - (f)). The ant looks again for nodes which can
provide inputs for S4, and it picks S1 (subfigure 5.1 - (g)). The ant searches for inputs for S1 and finds I, which
is already in the partial solution. Then the ant goes forward again, and it can choose from S8 and O. Suppose
it picks O (subfigure 5.1 - (h)) - because only part of its inputs are provided, the ant needs to search for nodes
which can provide the others. S8 is such a node, so the ant picks it (sub-figure 5.1 - (i)). Now the ant needs to
search for inputs for S8, and S6 already provides them. S6 can provide all the inputs necessary and is already
in the solution, so no providers for its inputs need to be searched. Therefore, since both I and O are in the
sub-graph and there are no free inputs, the ant can consider this to be a solution and stops searching (subfigure
5.1 - (j)). The score of the identified solution is computed, and, if necessary, the pheromones are updated.

6. Evaluation and Testing. This section describes the evaluation and testing methodology applied on
the Ant-inspired composition framework as well as the way some adjustable parameters have been tuned.

6.1. Evaluation Methods. The main criteria according to which the Ant-inspired composition frame-
work has been evaluated are its correctness and its efficiency. These framework properties will be expressed
numerically in order to have an accurate estimation. To evaluate how well the framework works, we have used
the following criteria: the quality of the provided composition solutions and the framework efficiency.

The quality of the provided composition solution is measured by counting how many solutions in the list
of k best found solutions should actually be there, i.e. how many of the best k possible composition solutions
were found by the selection algorithm. The ratio between the number of such solutions found and k will show
how correct the selection algorithm is.

To evaluate the efficiency of the composition framework, we counted the number of composition solutions
encoded in the composition graph and compared this number to the total number of solutions returned by the
selection algorithm for a given user request. The number of iterations has been set so that at least 50% of the
best possibile k solutions were found by the selection algorithm. The smaller the ratio between the selected
number of solutions and the total number of solutions, the more performant our approach is.

6.2. Test Service Collection. We have tested our ant-based service composition technique on SAWSDL-
TC [12], a benchmark containing 894 services, proposed for evaluating the performances of service matchmaking
algorithms. This benchmark contains 894 Web services which are semantically annotated using concepts from
several domain ontologies according to the SAWSDL specification. The services belong to the following domains:
education, medical care, food, travel, communication, economy and weapon. In order to obtain a more complex
composition scenario, a few extra services were added to the original set. Also, some services in the initial set
were removed, as they referenced ontologies that were no longer available on the Web. In total, the set we
worked with had around 700 services in it.

Because the semantic Web services from the SAWSDL-TC benchmark lack QoS attributes, we associated
to each service a QoS description. When choosing the range (see Table 6.1) of the QoS values we were inspired
by [13]. In computing the final score of a composition solution, each QoS parameter was normalized and received
a score between 0 and 1, so that none of them would be given more importance than others by default.

Table 6.1

QoS Value Ranges

QoS Parameter Range Evaluation
Response Time 50 - 2000 (2000 - value)/2000
Availability 50 - 98 value/100
Throughput 1 - 12 value/12
Reliability 60 - 75 value/100
Cost 0 - 100 value/100

6.3. Test Scenario. To evaluate our Ant-inspired service composition framework we have chosen a sce-
nario from the medical domain. This scenario refers to a typical request from a person (identified by name,

Ant-inspired Framework for Automatic Web Service Composition 149

address, country), which has certain symptoms and wants to go to a particular doctor. As a result, the person
will be assigned to a hospital room (indicated by city, hospital name and room number) at a certain date. For
the considered scenario the user request is presented in Table 6.2.

Table 6.2

User Provided Parameters

Inputs Outputs
PatientOntology.owl#PersonName PatientOntology.owl#City

PatientOntology.owl#Address PatientOntology.owl#Hospital
PatientOntology.owl#Country PatientOntology.owl#Room
PatientOntology.owl#Symptom PatientOntology.owl#TransportNumber
PatientOntology.owl#Physician PatientOntology.owl#DateTime

6.4. Parameter Tuning. By analyzing the experimental results we noticed that there are two adjustable
parameters which strongly influence the composition method, namely the cluster threshold and the concept
threshold. Based on our experimental results, the most appropriate value for the cluster threshold clTh proved
to be 0.4. If this threshold value is lower, there will be too many edges, and if it is too high, there will be too
few edges in the graph. The concept threshold cTh is used to determine if two concepts are similar enough to
consider them as representing the same thing. This threshold is used both in the discovery method and in the
edge generation procedure. Taking into account the values returned by the matching module, 0.25 was chosen
as an appropriate value for the concept threshold parameter.

In the case of the selection method, the most important are the parameters related to pheromone evolution.
A first parameter, the initial evaporation, is used to initialize the pheromone levels on the edges of the graph. It
is currently set to 1, but as long as its value is strictly positive it does not influence the outcome in a significant
way. Another parameter is the pheromone evaporation rate. This is the parameter used in the offline update,
and determines the evolution of the pheromone from one iteration to the next one. We found that a value
which allows the pheromones to vary in a satisfactory manner is 0.15. A third parameter is the pheromone
decay coefficient used in the local pheromone update, which is applied by each ant as its constructs a solution
on each edge it traverses. Therefore, its values must be smaller than that of the previous parameter, otherwise
it would have a too large weight in pheromone evolution. We found that 0.05 is an appropriate value. Besides
the parameters related to pheromone evolution, the number of ants and the number of iterations in which the
global optimal solution has not changed should be tuned. Based on our experimental results we have set the
number of ants to 4 and the number of iterations to 3.

6.5. Results Analysis. An example of services involved in the composition and selection processes for
the considered scenario (see Table 6.2) is provided in Tables 6.3 and 6.4. All the concepts describing these
services are part of a patient ontology from the SAWSDL-TC benchmark.

Table 6.3

Example of Web service 1

Diagnosis TaxedPriceCostAndHealingPlan Service.wsdl
Service ID: 3 Inputs Outputs
Cluster ID: 2 Diagnosis TaxedPrice

CostAndHealingPlan
QoS Parameters
Running Time: 1367 Availability: 74 Throughput: 6
Cost: 93 Reliability: 69

In our experiments, we have set all the weights (see Formula 5.4) used to calculate the score of a solution
to 1. This way, we give the same importance to the QoS score and the semantic matching score. Also, within
the QoS score computation, all the attributes count the same. For these parameters, the calculated optimal
composition solution has a score of 0.8459. The algorithm returned four (see Table 6.5) of the possible five best
results. That means that we had a success rate of 0.8. Also, out of the 1200 possible compositions, only about

150 C. B. Pop, V. R. Chifu, I. Salomie, M. Dinsoreanu, T. David and V. Acretoaie

Table 6.4

Example of Web service 2

Patient HealthInsuranceNumberCommercialOrganisation Service.wsdl
Service ID: 13 Inputs Outputs
Cluster ID: 3 Patient HealthInsuranceNumber

Commercial Organization
QoS Parameters
Running Time: 1169 Availability: 65 Throughput: 6
Cost: 73 Reliability: 68

90 were generated. In order to have a success rate of 0.5, 60 generated solutions would have been enough. That
means that only a fraction 0.05 of the total number of solutions need to be generated to have relevant results.
For about 100 iterations, we had the best solution among the list of retrieved solutions in more than 80% of
the time. This leads us to the conclusion that the method achieves its purposes: provides the user with good
composition solutions with a small computational cost.

7. Conclusion. In this paper, we propose an Ant-inspired Web service composition framework which uses
a composition graph model combined with an Ant-inspired method to find the optimal service composition
solution. The composition graph model stores all the composition solutions that satisfy a user request. The
Ant-inspired method identifies the optimal or a near-optimal composition solution encoded in the composition
graph model. The composition solutions are evaluated with a fitness function which considers the QoS attributes
and the semantic quality as selection criteria. The ant-inspired composition framework has been tested and
evaluated on an extended version of the SAWSDL-TC benchmark [12].

As future work, we intend to speed-up the selection algorithm by parallelizing the ants’ searching process.

REFERENCES

[1] M. Dorigo, M. Birattari, and T. Sttzle, Ant Colony Optimization, Artificial Ants as a Computational Intelligence
Technique, The IEEE Computational Intelligence Magazine, (2006).

[2] C. B. Pop, V. R. Chifu, I. Salomie, M. Dinsoreanu, T. David, and V. Acretoaie, An Ant-inspired Approach for Semantic
Web Service Clustering, Proceedings of the 9th Roedunet IEEE International Conference, (2010), pp. 145-150.

[3] C. B. Pop, V. R. Chifu, I. Salomie, M. Dinsoreanu, T. David, and V. Acretoaie, Ant-Inspired Technique for Automatic
Web Service Composition and Selection, Proceedings of the 12th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, (2010), pp. 449-455.

[4] Y. Ding, H. Sun, and K. Hao, A bio-inspired emergent system for intelligent Web service composition and management,
Knowledge-Based Systems Journal, Volume 20, Issue 5, (2007)

[5] L. Yuan-sheng, et al., An Improved Heuristic for QoS-aware Service Composition Framework, Proceedings of the 10th
IEEE International Conference on High Performance Computing and Communications, (2008), pp. 360 - 367.

[6] J. Jung-Woon Yoo, S. Kumara, and D. Lee. A Web Service Composition Framework Using Integer Programming with
Non-Functional Objectives and Constraints, Proceedings of the 10th Conference on E-Commerce Technology and the
Fifth Conference on Enterprise Computing, E-Commerce and E-Services, (2008), pp. 347 - 350,

[7] V. R. Chifu, C. B. Pop, I. Salomie, M. Dinsoreanu, A. E. Kover, and R. Vachter, Web Service Composition Technique
Based on a Service Graph and Particle Swarm Optimization, Proceedings of the 2010 IEEE International Conference on
Intelligent Computer, Communication and Processing, Cluj-Napoca (Romania), (2010), pp. 265-272.

[8] O. Aydin, N.K. Cicekli, and I. Cicekli, Towards Automated Web Service Composition with the Abductive Event Calculus,
Applications of Logic Programming in the Semantic Web and Semantic Web Services, Seattle, (2006).

[9] O. Aydin, N. K. Cicekli, I. Cicekli, Automated Web Services Composition with the Event Calculus, International Workshop
in Engineering Societies in the Agents World, Athens, (2007).

[10] Z. Wu, et. al., Automatic Composition of Semantic Web Services using Process and Data Mediation - Technical Report,
(2007).

[11] M.M.Akbar, E.G.Manning, G.C. Shoja and S.Khan, Heuristic Solutions for the Multiple-Choice Multi-Dimension Knap-
sack Problem, International Conference on Computational Science, (2001) LNCS 2074.

[12] SAWSDL-TC, http://projects.semwebcentral.org/projects/sawsdl-tc/
[13] The QWS Dataset, http://www.uoguelph.ca/ qmahmoud/qws/index.html

Edited by: Dana Petcu and Alex Galis
Received: March 1, 2011
Accepted: March 31, 2011

Ant-inspired Framework for Automatic Web Service Composition 151

Table 6.5

Top 4 composition solutions for the considered scenario

Solution The services in the solution Solution
number score
1 PersonNameAddressCountry Patient Service;

SymptomPhysician Diagnosis Service;
Patient HealthInsuranceNumberOrganisation Service;
PatientDiagnosis HealthInsuranceNumberInsuranceCompany
TaxFreePriceCostAndHealingPlan Service; 0.8459
Diagnosis TaxedPriceCostAndHealingPlan Service;
TaxedPriceCostAndHealingPlanHealthInsuranceNumber
InsuranceCompany CityHospitalRoomDateTime;
CityHospitalRoomDateTime TransportNumber Service

2 PersonNameAddressCountry Patient Service;
SymptomPhysician Diagnosis Service;
PatientDiagnosis HealthInsuranceNumber
CommercialOrganization
TaxFreePriceCostAndHealingPlan Service;
Patient HealthInsuranceNumberInsuranceCompany Service; 0.8433
Diagnosis TaxedPriceCostAndHealingPlan Service;
TaxedPriceCostAndHealingPlanHealthInsuranceNumber
InsuranceCompany CityHospitalRoomDateTime;
CityHospitalRoomDateTime TransportNumber Service

3 PersonNameAddressCountry Patient Service;
SymptomPhysician Diagnosis Service;
Diagnosis TaxedPriceCostAndHealingPlan Service;
PatientDiagnosis HealthInsuranceNumber
CommercialOrganization 0.8422
TaxFreePriceCostAndHealingPlan Service;
TaxedPriceCostAndHealingPlanHealthInsuranceNumber
InsuranceCompany CityHospitalRoomDateTime;
CityHospitalRoomDateTime TransportNumber Service

4 PersonNameAddressCountry Patient Service;
SymptomPhysician Diagnosis Service;
Patient HealthInsuranceNumberOrganisation Service;
Diagnosis TaxedPriceCostAndHealingPlan Service;
PatientDiagnosis HealthInsuranceNumber 0.8422
CommercialOrganization
TaxFreePriceCostAndHealingPlan Service;
TaxedPriceCostAndHealingPlanHealthInsuranceNumber
InsuranceCompany CityHospitalRoomDateTime;
CityHospitalRoomDateTime TransportNumber Service

