
Scalable Computing: Practice and Experience

Volume 12, Number 2, pp. 275–282. http://www.scpe.org
ISSN 1895-1767

c© 2011 SCPE

SOME GEOMETRIC PROBLEMS ON OMTSE OPTOELECTRONIC COMPUTER

SATISH CH. PANIGRAHI∗AND ASISH MUKHOPADHYAY†

Abstract. Optical Multi-Trees with Shuffle Exchange (OMTSE) architecture is an efficient model of an optoelectronic com-
puter. The network has a total of 3n3/2 nodes. The diameter and bisection width of the network are 6 log n − 1 and n3/4
respectively. In this note, we present synchronous SIMD algorithms on an OMTSE optoelectronic computer for the following prob-
lems in computational geometry: Convex Hull, Smallest Enclosing Rectangle, All-Farthest/All-Nearest Neighbors, Closest/Farthest
pair, Maximal Points. The strength of the proposed algorithms over the existing algorithms on OMULT has also been discussed.

Key words: Parallel Algorithms, Optoelectronic Computer, Computational Geometry, OTIS Mesh, OMULT

1. Introduction. Optical interconnections are superior in power, speed with less crosstalk properties as
compared to electronic interconnections when the interconnection distance is more than a few millimeters [1, 6].
Motivated by these observations, some new hybrid optoelectronic computer architectures utilizing both optical
and electronic technologies have been proposed and investigated by several researchers [8, 10, 13, 15]. In these
architectures, both the electronic link and the optical link are done where the former is being considered within
the same physical package (e.g. chip) where as the latter is for the pair of processors that are kept in different
packages.

A number of parallel algorithms on these optoelectronic computers have been addressed and studied exten-
sively [3, 4, 5, 7, 8, 9, 10, 14]. In this paper we present some computational geometry algorithms such as Convex
Hull, Smallest Enclosing Rectangle, All-Farthest/All-Nearest Neighbor, Closest/Farthest pair, Maximal Points,
on OMTSE optoelectronic computer [8, 10]. Irrespective of different factor network of OMTSE than OMULT,
here in this paper we show that Convex hull and Smallest Enclosing Rectangle problem for n points can be
solved on OMTSE in O(log n) time with the same time complexity as on OMULT [2]. Here it is worth noting
that the total number of processors of OMULT and OMTSE respectively be δ1 = n2(2n− 1) and δ2 = n2(3n

2)
(we have δ1 < δ2, as because of their topological nature we can assume that n ≥ 4). Islam et al. in [2] stated
that algorithm for empirical cumulative distribution, all nearest neighbor can be implemented on OMULT in
O(log n) time for n number of points. In this paper we explore this line of work farther and implement the
algorithms such as All-Farthest/All-Nearest Neighbor, Closest/Farthest pair among n2 points in O(n log n) time
and also provide an algorithm for maximal points among n3 data points in O(log n) time.

The rest of the paper is organized as follows. In section 2 we briefly present the topological property of the
OMTSE System. In section 3, we describe our propose algorithms and finally we conclude in section 4.

2. Topology of OMTSE. The factor network used in OMTSE topology constitutes two layer Trees with
Shuffle Exchange (TSE) network. The TSE is nothing but an interconnection network containing a group of
2k, k ≥ 1, complete binary trees of height one and the roots of these binary trees are connected with Shuffle-
Exchange fashion. The OMTSE interconnection system consists of n2 TSE networks, which are organized in
the form of an n×n grid in matrix form. We denote the TSE network placed at ith row and jth column of this
matrix by Gij , 1 ≤ i, j ≤ n. Each TSE network has n nodes at layer 2 and n/2 nodes at layer 1 which results in
N = 3n3/2 processors in total. The nodes within each TSE network are interconnected by usual electronic links,
while the nodes at layer 2 (i.e. the layer having leaf processors) of different TSE networks are interconnected by
optical links according to the rules defined below. Let us label the nodes in each TSE network Gij , 1 ≤ i, j ≤ n,
by distinct integers from 1 to 3n/2 in reverse order, i.e., the nodes at both layer 2 and 1 of TSE network are
numbered from 1 to 3n/2 in order from left to right. The node, k, in a TSE network Gij will be referred as the
processor P (i, j, k), 1 ≤ i, j ≤ n, 1 ≤ k ≤ 3n/2. We can now define the optical links interconnecting only leaf
nodes in different TSE networks in the following way.

∗School of Computer Science, University of Windsor, Canada(panigra@uwindsor.ca).
†School of Computer Science, University of Windsor, Canada(asishm@cs.uwindsor.ca)

275

276 S. Ch. Panigrahi and A. Mukhopadhyay

Fig. 2.1: An example of OMTSE topology with n = 4

(1) Processor P (i, j, k), 1 ≤ i, j, k ≤ n, j 6= k, is connected to the processor P (i, k, j) by bi-directional optical
link called horizontal inter-TSE link.

(2) Processor P (i, j, k), 1 ≤ i, j ≤ n, i 6= k, is connected to the processor P (k, j, i) by bi-directional optical
link called vertical inter-TSE link.

The diameter of a network is defined as the maximum distance between any two processing nodes in
the network. If we start from a node P (i, j, k), 1 ≤ i, j ≤ n, 1 ≤ k ≤ 3n/2, we can reach another node
P (i′, j′, k′), 1 ≤ i′, j′ ≤ n, 1 ≤ k′ ≤ 3n/2, of the OMTSE interconnection system by traversing the path

P (i, j, k)→ P (i, j, j′)→ P (i, j′, j)→ P (i, j′, i′)→ P (i′, j′, i)→ P (i′, j′, k′)

It can easily be seen that the diameter of OMTSE topology is 6 log n − 1 which is O(log n) comprising of
6 logn−3 electronic links and 2 optical links. Similarly we can find out the bisection width of OMTSE topology
is equal to n3/4. An Example of OMTSE topology for n = 4 with partial links is shown in FIG. 2.1.

3. Proposed Algorithms.

3.1. Convex Hull. The convex hull [11] of a set of points S in the plane is smallest convex polygon P
that encloses S, smallest in the sense that there is no other polygon P ′ such that P ⊃ P ′ ⊇ S. To find the
convex hull for a given set of points S on a plane we need to identify the extreme points, in particular, what
constitutes constructing the boundary. Suppose |S| = n and assume that no three points in S are collinear then
our algorithm employs the result of the following theorem discussed in [14].

Theorem 3.1. For any point pi ∈ S, let pj0, pj1, ..., pjn−2 be the points in S − pi (i.e. pjk 6= pi, 0 ≤ k ≤

n− 2), sorted by the polar angle made by the vector
→

pipjk, 0 ≤ k ≤ n− 2. The point pi is an extreme point of
S iff there is a k, 0 ≤ k ≤ n−2, such that counterclockwise angle between pik and pi(k+1)mod(n−1) is more than π.

Some Geometric Problems on OMTSE Optoelectronic Computer 277

a b

c d

e

(a)

a b

c d

e

(b)

a b

c d

e

(c)

Fig. 3.1: Example for Theorem 3.1:(a) Original Layout, (b) pi = e, (c) pi = c

We assume that each leaf processor P (i, j, k)(1 ≤ i, j, k ≤ n) has three registers, represent by A(i, j, k),
B(i, j, k) and C(i, j, k). We have a set of points S = p1, p2, ..., pn in which no three points are collinear. The
coordinates of all n points are initially stored in the A-register of the leaf nodes G11.

Algorithm: ConvexHull()

Input: ∀k, 1 ≤ k ≤ n
A(1, 1, k)← pk

Output: ∀k, 1 ≤ k ≤ n
Extreme points ← B(1, 1, k)

Step 1: ∀i, j; 1 ≤ i, j ≤ n, do in parallel
Broadcast all these n points to the A-register of the respective leaf nodes
of Gij [9].

Step 2: ∀i, j, k; 1 ≤ i, j, k ≤ n, do in parallel
Broadcast the point in the A-register of P (i, j, i) to all the B(i, j, k)
of Gij .

Step 3: ∀i, j, k; 1 ≤ i, j, k ≤ n, do in parallel

Compute the polar angle of the vector
→

pipik at P (i, j, k) of Gij and store
in C(i, j, k) along with the zero vector.

Step 4: ∀i, j, k; 1 ≤ i, j, k ≤ n, do in parallel

Sort the n vectors
→

pipik stored in the C-register of the leaf nodes of each
Gij . After this step we assume the sorted order list given by each Gij is

pipi1, pipi2, ..., pipin (i.e. in each Gij the vector
→

pipi1 always represent the
zero vector.)

Step 5: ∀i, j, k; 1 ≤ i, k ≤ n, and 2 ≤ j ≤ n, do in parallel
Broadcast the content of C(i, j, j) to A(i, j, k).

Step 6: ∀i; 1 ≤ i ≤ n, do in parallel
i) ∀j, 2 ≤ j ≤ n− 1,

Calculate the counter clockwise angle between
→

pipij and
→

pipi(j+1) at each
Gij and store the result in C(i, j, j + 1)
ii) ∀j, j = n,

Calculate the counter clockwise angle between
→

pipin and
→

pipi2 at each Gin

and store it in C(i, n, 2).
Step 7: ∀i; 1 ≤ i ≤ n, do in parallel

i) ∀j; j = 1
C(i, j, 1)← 0.

278 S. Ch. Panigrahi and A. Mukhopadhyay

ii) ∀j; 2 ≤ j ≤ n− 1
if ((C(i, j, j + 1) > π))
C(i, j, 1)← 1.
else
C(i, j, 1)← 0.
iii) ∀j; j = n
if ((C(i, n, 2) > π))
C(i, n, 1)← 1.
else
C(i, n, 1)← 0.

Step 8: ∀i, j; 1 ≤ i, j ≤ n, do in parallel
C(i, 1, j)← C(i, j, 1). /∗ through the horizontal optical link content of
C(i, j, 1) is moved to C(i, j, 1) ∗ /

Step 9: ∀i, k; 1 ≤ i, k ≤ n, do in parallel
if (C(i, 1, k) == 0)
B(i, 1, 1)← NULL. /∗ if the content of C-register of all leaf nodes of Gi1

is 0 then reset B(i, 1, 1) to NULL value ∗/
Step 10: ∀i, 1 ≤ i ≤ n, do in parallel

B(1, 1, i)← B(i, 1, 1). /∗ through the vertical optical link content of
B(i, 1, 1) is moved to B(1, 1, i) ∗ /

Hence the extreme points of the convex hull can be taken from the B-register of all leaf nodes of G11

excluding the NULL entries. In order to analyze the time complexity of the above algorithm we also consider
the data movements along the both electronic link and optical link. For the complete group broadcast [9] the
step 1 needs 4 logn−2 electronic moves and 3 optical moves. For the required intra-group group broadcast [8] the
step 2 and 5 need 2 log n− 1 electronic move. For the basic assignment and geometry operations we can assume
that the steps 3, 6, 7 and 9 need O(1) time. The required sorting (see appendix) of n points at corresponding
Gij , 1 ≤ i, j ≤ n the step 4 needs 7 log n− 1 electronic move and 5 optical move. In addition, for the required
inter-group data movement the step 8 and 10 need one optical move. Thus overall, we need O(log n) to compute
the convex hull.

Theorem 3.2. Algorithm PCH requires O(log n) time to compute the convex hull of n points.

The above algorithm can be extended for the smallest enclosing rectangle of n points within O(log n) time as
discussed in [2]. But it would be interesting to devise algorithm for convex hull and smallest enclosing rectangle
among n2 data points on both OMULT and OMTSE optoelectronic computer.

3.2. All-Nearest/All-Farthest Neighbor. All-Nearest(All-Farthest) Neighbor problem can be stated
as follows: given a set S = {p1, p2, ..., pq} of q points, for each point pi ∈ S we wish to determine a point
pj ∈ {S − pi} such that the Euclidean distance ‖pi − pj‖ is minimum(maximum).

In order to implement All-Nearest Neighbor (All-Farthest Neighbor can be dealt analogously) problem for
n2 points, we assume that each leaf processor P (i, j, k), 1 ≤ i, j, k ≤ n, has four registers A, B, C and D; where
as each non-leaf processor P (i, j, k), 1 ≤ i, j ≤ n, n+1 ≤ k ≤ 3n

2 , has two registers A and B. Initially, the points
p(i−1)+k is stored in the A(i, i, k)of all the diagonal leaf nodes of Gii, 1 ≤ i ≤ n, where as all the D-registers
of OMTSE system are set to zero. Set a counter variable c to zero at B-register of each non leaf processor of
OMTSE optoelectronic system. Here we describe the algorithm in the following steps

Algorithm AllNearestNeighbor()

Input: ∀i, k, 1 ≤ i, k ≤ n
A(i, i, k)← p(i−1)+k

Output: ∀i, k, 1 ≤ i, k ≤ n
Nearest Neighbor of p(i−1)+k ← C(i, i, k)

Step 1: Perform a column group broadcast [8].
Step 2: While (c < n) do

Some Geometric Problems on OMTSE Optoelectronic Computer 279

Step 2.1: ∀i, j, 1 ≤ i, j ≤ n, do in parallel
if (c == 0)
Broadcast the content of A(i, j, i) to B-registers of all leaf nodes of Gij .
else
Broadcast the content of B(i, j, 1 + (j%n)) to B-register of all leaf
nodes of Gij .

Step 2.2: ∀i, j, k, 1 ≤ i, j, k ≤ n, do in parallel
D(i, j, k)← ‖A(i, j, k)−B(i, j, k)‖
if (D(i, j, k) == 0)
D(i, j, k)←∞

Step 2.3: ∀i, j, k, 1 ≤ i, j, k ≤ n, do in parallel
Compute the minimum of values stored in each D-register of Gij

and store the result in C(i, j, 1 + ((j + c− 1)%n)).
Step 2.4: ∀i, j, k, 1 ≤ i, j, k ≤ n,do in parallel

Perform horizontal optical move on the content of B-registers so that
the data from each side move to the corresponding leaf nodes.

Step 2.5: ∀i, j, k, 1 ≤ i, j ≤ n, n + 1 ≤ k ≤ 3n
2 , do in parallel

c = c + 1.

Step 3: ∀i, j, k, 1 ≤ i, j, k ≤ n and j 6= k, do in parallel
Perform horizontal optical move on the content of C-registers so that the
data from each side move to the corresponding leaf nodes.

Step 4: ∀i, k, 1 ≤ i, k ≤ n, do in parallel
Compute the minimum of values stored in each C-register of Gki and store
the result in C(k, i, i).

Step 5: ∀i, k, 1 ≤ i, k ≤ n and i 6= k, do in parallel
C(i, i, k)← C(k, i, i)/∗ Vertical Optical Move ∗/

For the required column group broadcast the step 1 requires 2 logn − 1 electronic moves and 3 optical
moves. The Step 2.1 requires 2 logn − 1 electronic moves for intergroup broadcast. To find the minimum in
each group Gij , the step 2.3 and step 4 require O(log n) time. Again the Step 2.4, Step 3 and Step 5 require one
optical move each. For the basic increment and distance measure we can assume that the Step 2.2 and Step 2.5
require O(1) time. Since we have n iterations of while loop in Step 2, the overall complexity of the algorithm is
O(n log n) for n2 points.

3.3. Closest-Pair/Farthest-Pair of Points. This problem can be defined as follows: given a set S =
{p1, p2, ..., pq} of q points, ∃{pi, pj} ∈ S such that euclidean distance ‖pi − pj‖ is minimum(maximum). The
closest pair of points can be found by first solving the All-Nearest neighbor problem and then determining the
closest pair among the nearest problem of each point. Here we describe the basic algorithm for n2 points in
following steps

Algorithm: ClosestPairPoints()

Input: ∀i, k, 1 ≤ i, k ≤ n
A(i, i, k)← p(i−1)+k

Output: Closest-pair ← C(1, 1, 1)

Step 1: AllNearestNeighbor()
Step 2: ∀i, 1 ≤ i ≤ n

Compute the minimum at each Gii and store the result in C(i, i, 1)
Step 3: ∀i, 1 ≤ i ≤ n

C(1, i, i)← C(i, i, 1)
Step 4: ∀i, 1 ≤ i ≤ n

C(1, i, 1)← C(1, i, i)
Step 5: Compute the minimum at G11 and store the result in C(1, 1, 1)

280 S. Ch. Panigrahi and A. Mukhopadhyay

The algorithm ClosestPairPoints require additional 3 logn−1 electronic moves and 2 optical moves which
will be subsumed by the O(n log n) of AllNearestNeighbor algorithm.

3.4. ECDF. In ECDF (empirical cumulative distribution function) problem [14], we are given a set S =
{p1, p2, ..., pq} of q distinct points. For {pi(xi, yi), pj(xj , yj)} ∈ S, we will say pi dominates pj iff xi ≥ xj and
yi ≥ yj . For all pi ∈ S, we are going to determine the number points it dominates in set S. In the FIG 3.2
we have illustrated a dominating relationship between three points p1, p2, and p3. In this case, the number of
points dominated by p1, p2 and p3, respectively are 1, 1, and 0.

X

Y

Fig. 3.2: Example of dominating relation

The algorithm to implement ECDF for n2 is quite similar to the AllNearestNeighbor algorithm. Here in
order to get dominating value of point p(i−1)+k at corresponding C(i, i, k), in step 2.2 of AllNearestNeighbor
algorithm the D-register value is set to 1 if B-register point dominates its A-register point. Then in Step
2.3, we need to compute the summation of all D-register value with in that group and store the result in
C(i, j, 1 + ((j + c− 1)%n)). After this the D-register is reset to zero and contiue the loop while c < n. Further,
in Step 4 we need to compute the summation of values stored in each C-register of Gki and store the result in
C(k, i, i). Finally in Step 5 we get the dominating value of point p(i−1)+k at corressponding C(i, i, k).

To compute the summation in shuffle exchange network [12] takes the same complexity as to compute the
minimum. Thus the time taken to implement ECDF for n2 points is same as that of AllNearestNeighbor
algorithm i. e. O(n log n).

3.5. Two-Set Dominance. The two set dominance problem can stated in this way: We have given two
sets S1 = {p1, p2, ..., pp} and S2 = {q1, q2, ..., qq}, for each point pi ∈ S1(or qj ∈ S2) we wish to determine the
number points in S2(or S1) is dominated by pi(or qj). This is quite similar to the ECDF and can be achieved
with O(n log n) for ‖S1 + S2‖ = n2 points.

3.6. Maximal Points. A point p ∈ S is maximal iff it dominates all the points in S. This is quite simple
and can be achieved by O(log n) time for ‖S‖ = n3 points as follows.

Algorithm: MaximalPoint
Input: Arbitrarily assign the n3 points to n3 leaf processors of OMTSE

optoelectronic computer.
Output: Maximal point ← A(1, 1, 1)
Step 1: ∀i, j, 1 ≤ i, j ≤ n,

Each group Gij determine the maximal point with in that group and store
the result in A(i, j, 1)

Step 2: ∀i, j, 1 ≤ i, j ≤ n,

Some Geometric Problems on OMTSE Optoelectronic Computer 281

A(i, 1, j)← A(i, j, 1)
Step 3: ∀i, 1 ≤ i ≤ n,

Each group Gi1 determine the maximal point with in that group and store
the result in A(i, 1, 1)

Step 4: ∀i, 1 ≤ i ≤ n,
A(1, 1, i)← A(i, 1, 1)

Step 5: The group G11 determine the maximal point with in that group and store
the result in A(1, 1, 1)

For finding the local maximal points with in a group, the Step 1, 3 and 4 requires O(log n) electronic moves
each. Further, for the inter group communication we require one optical move each for the Step 2 and 4. Thus
overall we have O(log n) algorithm with exactly 3 logn electronic moves and 2 optical moves. Now if we define
minimal points analogous to maximal points, the above algorithm can be improved slightly to get both the
maximal and minimal points out of n(n − 1)2 points with 4 logn + 4 electronic moves and 3 optical moves as
discussed in [10].

4. Conclusion. We have shown that several computational geometry problems can be solved on OMTSE
optoelectronic computer efficiently. It would be interesting to devise the discussed algorithms for n3 number of
points on OMTSE and OMULT system.

Acknowledgments. This research is supported by an NSERC Individual Discovery Grant to second au-
thor.

REFERENCES

[1] M. R. Feldman, S. C. Esener, C. C. Guest, and S. H. Lee, Comparison between optical and electrical interconnects based
on power and speed considerations, Appl. Opt., 27 (1988), pp. 1742–1751.

[2] R. Islam, N. Afroz, S. Bandyopadhyay, and B. P. Sinha, Computational geometry on optical multi-trees (OMULT)
computer system, in CCCG, 2005, pp. 150–154.

[3] P. K. Jana, Improved parallel prefix computation on optical multi-trees, in India Annual Conference, 2004. Proceedings of
the IEEE INDICON 2004. First, 20-22 2004, pp. 414 – 418.

[4] P. K. Jana, Polynomial interpolation and polynomial root finding on otis-mesh, Parallel Computing, 32 (2006), pp. 301–312.

[5] P. K. Jana and K. Sinha, Permutation algorithms on optical multi-trees, Comput. Math. Appl., 56 (2008), pp. 2656–2665.

[6] A. V. Krishnamoorthy, P. J. Marchand, F. E. Kiamilev, and S. C. Esener, Grain-size considerations for optoelectronic
multistage interconnection networks, Appl. Opt., 31 (1992), pp. 5480–5507.

[7] D. K. Mallick and P. K. Jana, Parallel prefix on mesh of trees and otis mesh of trees, in PDPTA, H. R. Arabnia and
Y. Mun, eds., CSREA Press, 2008, pp. 359–.

[8] S. C. Panigrahi, S. Paul, and G. Sahoo, OMTSE - an optical interconnection system for parallel computing, in Advanced
Computing and Communications, 2006. ADCOM 2006. International Conference on, 20-23 Dec 2006, pp. 626 –627.

[9] , Parallel prefix computation, sorting and reduction operation on OMTSE architecture, in ICACC 2007 International
Conference, 9-10 Feb 2007, pp. 616 –622.

[10] S. C. Panigrahi and G. Sahoo, An MIMD algorithm for finding maximum and minimum on OMTSE architecture, Scalable
Computing: Practice and Experience, 9 (2008), pp. 69–75.

[11] F. P. Preparata and M. I. Shamos, Computational geometry: an introduction, Springer-Verlag, New York, 1985.

[12] M. J. Quinn, Parallel computing (2nd ed.): theory and practice, McGraw-Hill, Inc., New York, NY, USA, 1994.

[13] B. P. Sinha and S. Bandyopadhyay, OMULT: An optical interconnection system for parallel computing, in Euro-Par,
M. Danelutto, M. Vanneschi, and D. Laforenza, eds., vol. 3149 of Lecture Notes in Computer Science, Springer, 2004,
pp. 856–863.

[14] C.-F. Wang and S. Sahni, Computational geometry on the OTIS-mesh optoelectronic computer, in ICPP, IEEE Computer
Society, 2002, pp. 501–.

[15] F. Zane, P. Marchand, R. Paturi, and S. Esener, Scalable network architectures using the optical transpose interconnection
system (OTIS), J. Parallel Distrib. Comput., 60 (2000), pp. 521–538.

Appendix

For the sake of explaining the basic idea, in this appendix we discuss how the sorting of n distinct elements can
be performed in OMTSE optoelectronic computer. Let’s assume that each processor P (i, j, k), 1 ≤ i, j, k ≤ n, has two
registers R1(i, j, k) and R2(i, j, k). Initially we have n distinct elements {a1, a2, a3, ..., an} stored in R1-register of n leaf
nodes of G11. We can sort these elements by finding rank of each element in the list. Thus the objective of the algorithm
is to place the element of rank r, 1 ≤ r ≤ n in the processor P (1, 1, r).

282 S. Ch. Panigrahi and A. Mukhopadhyay

Algorithm Sort()

Step 1: Perform a column broadcast [8] so that the list of elements stored in the leaf
nodes of G11 broad casted to the corresponding leaf nodes all Gi1, 1 ≤ n.

Step 2: ∀i, 1 ≤ i ≤ n, do in parallel
Broadcast the element ai to R2-register of all leaf nodes of Gi1. Set a Flag as 1
if ai greater than other element in R1-register of same leaf node. Otherwise set
Flag as zero. The value of the Flag variable can be kept in R2-register which may
overwrite previous entries.

Step 3: ∀i, 1 ≤ i ≤ n, do in parallel
Compute the summation of all Flag values stored on each leaf nodes of Gi1, which
is the rank(r) of the element ai in the given list.
Remark: As a result of summation in the shuffle exchange network [12] the
rank value will reflect in all nodes of shuffle exchange layer of Gi1.

Step 4: ∀i, 1 ≤ n, do in parallel
if the rank of ai is r then the element ai is moved to R1(i, 1, r).

Step 5: ∀i, 1 ≤ n, do in parallel
R1(r, 1, i)← R1(i, 1, r) /∗ Vertical optical link ∗/

Step 6: ∀i, 1 ≤ n, do in parallel
R1(r, 1, 1)← R1(r, 1, i)

Step 7: ∀r, 1 ≤ r ≤ n, do in parallel
R1(1, 1, r)← R1(1, 1, r) /∗ Vertical optical link ∗/

For the complexity analysis of the above algorithm we also consider the data movement along the electronic and
optical link. The above algorithm needs (7 log n − 1) communication steps along electronic links and 5 communication
steps along optical links [8] giving overall O(log n) time algorithm. The idea can be extended to sort n2 data values in
O(n log n) time but this is beyond the scope of this paper.

Edited by: Dana Petcu and Marcin Paprzycki
Received: May 1, 2011
Accepted: May 31, 2011

