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LOAD-BALANCING METRIC FOR SERVICE DEPENDABILITY IN LARGE SCALE

DISTRIBUTED ENVIRONMENTS

FLORIN POP∗, MARIUS-VIOREL GRIGORAS†, CIPRIAN DOBRE‡, OVIDIU ACHIM§, AND VALENTIN CRISTEA¶

Abstract. Today we live in a World-as-a-Service society, where electronic services are used everywhere, to support from
large collaborations to ever more scalable business applications. In this era, specific service capabilities such as dependability and
availability are more than ever needed to sustain ever more critical business- and service-oriented quality metrics. For example,
today businesses need to know they can rely on a banking service called from used inside a complex client-oriented application.
Service composition could not work unless services can reliably expect results from one another. In this context, we present
a load-balancing metric designed to provide increased levels of availability for a wide-range of services running inside globally-
scale distributed environments. We propose the use of ”‘service containers”’, special mechanisms designed to encapsulate sets of
replicated and distributed services. These mechanisms make faults transparent for the end-user based on smart decisions based on
monitored information and specific metrics. We propose a set of service-oriented metrics designed to increase the use of resources in
such a distributed approach. The proposed container-based approach is part of an architecture designed to increase dependability
(resilience, fault tolerance, security) of a wide-range of distributed systems. We present evaluation experiments over real-world
scenarios. We show how the proposed container-based mechanism can not only deliver increased tolerance to failures, but also it
leads to improvements in the time-of-response, scalability or load-balancing. The solution is able to cope with various scenarios
involving different failure-injection patterns in the system. The novelty of proposed solution is represented by the new metric for
multi-criteria load-balancing within a fault tolerant distributed environment based on replication.
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1. Introduction. Distributed systems play an important role as a background support in many areas
such as trade, communication, science, government and even entertainment. The Web service architecture for
large distributed environments is preferred today by businesses to support the interaction with users, because
of advantages such as ergonomic behavior, portability, availability and transparent access from different plat-
forms. All Web Service elements and corresponding designs are ever more important for current distributed
systems [6]: standard structure of messages sent between clients and services, description method, discovery
method, invocation method and development.

With the increasing interest for distributed systems, also customers’ requirements become complex and are
today addressed by specific SLAs (Service Level Agreements). For example, users can be interested in invoking a
specific service which answers correctly at their requests in a reasonable time with a specific degree of accuracy.
Also, time availability of service is very important: as the service is available to customers over time, the service
will be more used. Services that fill these requirements are part of the dependable services category [13].

The concept of dependability [1] for large scale distributed systems (LSDS) is very complex and has been
refined over many years of research. Dependability addresses concepts such as availability, reliability, safety,
confidentiality, integrity and maintainability. Availability is the property of a system to offer correct service on
demand. Reliability is the property of a system to offer correct service continuously. Safety is the absence of
catastrophic effects on the environment, even in case of incorrect service. Confidentiality is the absence of unau-
thorized disclosure of information. Integrity is the absence of improper system state alteration. Maintainability
is the property of a system to be easily repaired and modified. Security is the concurrent existence of availability
to authorized users only, confidentiality, and integrity. Availability and reliability are essential in distributed
systems, especially systems considered at large scale because customers expect system be operational despite
technical problems and work as its specification even though some components were damaged.
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In this context, the QoS could be considered as a quantitative measure of service dependability. There are
many ways to increase the QoS [13], such as: bug fixing before deployment, mechanisms for fault tolerance,
mechanisms for recovering from error, etc. In the development process, most developers choose the solution
less expensive and faster in detriment of quality for service device. By contrast, service providers want to offer
reliable services to customers, to ensure a certain level of QoS.

In this paper we present a solution to satisfy the service dependability in LSDS. We propose a balancing
metric to increase availability and a reputation model designed to satisfy QoS requirements. The proposed
solution is part of an architecture designed to optimize the access to services with respect to availability and
scalability. The solution stands out by the support given to services providers, by implementing a system as a
service container.

The paper is structured as follows. Related works are described in Section 2. Section 3 considers the
service based architecture and highlights the technology solution chosen in order to implement the proposed
architecture. Implementation details are explained in Section 4. We present in Section 5 the load-balancing
metric used for replicated services. In Section 6 are presented the performance tests, scenarios used and
performance results. The paper ends with conclusions and some possible future works.

2. Related Work. The research topics in distributed systems address the problem of building a reliable
and highly-available distributed service by replicating the service on two or more hosts using the primary-backup
approach. Three implementations are possible: one that makes heavy use of the notification interface defined
in OGSI, one that uses standard grid service requests instead of notification, and one that uses low-level socket
primitives [17]. The solution presented in [18] consider the problem of supporting fault tolerance for adaptive and
time-critical applications in heterogeneous and unreliable grid computing environments. This is supported by
techniques for implementing k-resilient objects, distributed objects that remain available, and whose operations
are guaranteed to progress to completion, despite up to k site failures [3]. There is a commercial solution for
enterprise-grade system that provide fault-tolerant virtual machines, based on the approach of replicating the
execution of a primary virtual machine (VM) via a backup virtual machine on another server [12, 16].

There are some approaches to fault tolerance assuring at TCP level [10] considering a splicing mechanism.
There are three enhancements to the TCP splicing mechanism: (1) Enable a TCP connection to be simultane-
ously spliced through multiple machines for higher scalability; (2) Make a spliced connection fault-tolerant to
proxy failures; and (3) Provide flexibility of splitting a TCP splice between a proxy and a back-end server for
further increasing the scalability of a web server system.

In [11] the authors present a system that ensure services dependability oriented on highly available and
scalable Grid services. The services are classified in three separate categories: (i) services to store/query
structured data in a scalable fashion; (ii) services to communicate in a scalable fashion; (iii) services to (partially)
hide the effects of scale. The solution for availability ensuring for Grid Services is used in XtreemOS project.

Accurate failure prediction in Grids is critical for reasoning about QoS guarantees such as job completion
time and availability. Statistical methods can be used but they suffer from the fact that they are based on
assumptions, such as time-homogeneity, that are often not true. In particular, periodic failures are not modeled
well by statistical methods. In [7] is presented an alternative mechanism for failure prediction in which periodic
failures are first determined and then filtered from the failure list. The remaining failures are then used in a
traditional statistical method.

Another project that consider load-balancing and fault tolerance is presented in [2]. It is based on compar-
ison between Checkpoint-recovery and balancing using Intra-cluster load-balancing, Intra-grid load-balancing
solutions. The project propose a fault detector that detects the occurrence of resource failures and a fault
manager that guarantees that the tasks submitted are completely executed using the available resources. Model
used in implementation of this fault tolerance technique is existing Intra-cluster and Intra-grid load-balancing
model [15].

A project that aims to define and to implement a framework at the application level for development of grid
dependable services is DIGS [4, 5]. In this project is described the structure of a Proxy that must combining
several identical services from functionality view in another “better” service. A better service means a service
with a higher level of dependability. The starting point objective was to design a mechanism to intercept
transparent SOAP messages exchanged between client and server. A client sends messages to proxy like this
would be a real service. Proxy intercepts the message and processes it based on a fault tolerance model and it
then sends to a real service. Messages from the server to the client are transmitted also via proxy, which can
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process the response, if any, depending on the fault tolerance implemented model.

3. System Architecture. The main improvement of our solution is a new metric for load-balancing and
fault tolerance. The proposed load-balancing metric considers a wide range of monitored parameters to compute
the state of the services container. The proposed system architecture is presented in Figure 3.1. For example,
the Monitor Service will respond with a “better” replica because will be capable to take real time decisions
based on specific information from each container of a replica.

Fig. 3.1: System Architecture

The proposed architecture implements the ProxyPattern design pattern [8]. The main objective of this
pattern is to define a proxy object, what is positioned between the client and the real service for controlling
the access at the real service and for realizing certain processing each time a service is accessed. The service
container functions similarly to a proxy for replicated services. All messages delivered to the real services are
intercepted by the container (with the help of a SOAP listener) and are forwarded to one of the replicas service
via the Proxy Service. All actions performed by the container are transparent to clients and services. Each
client will consider during communication that it is connected to the real service, although in fact replicas are
the one responding at requests like they came from the client-side, not from another service side.

The SOAP Listener is a system component responsible with monitoring all SOAP messages received
by the services container. This component monitors SOAP messages and verifies if these messages are to
be redirected to another proxy service or to the real invoked service. Specific situations when a message is
transmitted to the real invoked service are:

• Messages that have been forwarded by proxy to a replica of the invoked service implemented in the
same container with Proxy, must not be sent to the proxy anymore, to exclude an infinite loop. These
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messages are marked by Proxy with a specific attribute in the SOAP message header.
• SOAP Messages that have as target some specific special services like Admin Service (because this
service is used local by providers for services deployment and monitoring) and Load-Balancing Service.

The Monitoring and Load-Balancing Service centralizes all information about replica services and
chooses the best replica of a service to be invoking by Proxy Service. The best replica for a specific service is
chosen according to the rules described in Section 4, in order to realize a better Load-Balancing for replicas. The
proposed solution is based on monitoring information from each services container. The monitoring information
is collected from container and sent to a Proxy Monitor. The Proxy Monitor will further calculate a balancing
metric which is then used to choose the best replica to which to route the message.

When the Proxy Service receives the response submitted to a replica, it invokes a method from the
monitoring service for new information about this replica. The monitoring service has information about the
total number of requests received from the clients for a specified service, the total number of processing errors
transmitted to clients, as well as the total number of denied requests because of the replicas load. Concurrent
access of each function to monitoring information is synchronized, to ensure exclusive access.

The Proxy service receives SOAP messages from Listener and invokes replicas of the service for sending
a response to client and hiding eventually errors. When receiving a SOAP message from Listener, the Proxy
Service makes a request to the Monitoring and Load-Balancing Service to find the best replica of the service for
which is intended the message and to signal the receiving of a new request from the client side. The received
replica from this request is used for redirecting of SOAP message. If the selected replica generates an exception,
then the monitoring service is again interrogated to find another replica, which can be used for the actual
request. This algorithm is repeated a number equal of steps, if all requests generate an exception or it stops
then when a request return an invalid answer. According to the final response of the request (valid response
or exception), Proxy Service invokes the monitoring service to update local information and to send the final
result to the client.

4. Load-Balancing Metric. To achieve the goal proposed in this paper, making services more reliable
, we implemented in each container a method to calculate a metric which helps to assure load-balancing and
fault tolerance. The load-balancing functionality of replicas optimizes resources utilization and minimizes the
response time of a request.

4.1. Balancing Metric. Each replica of a service has a balancing level calculated according to the infor-
mation gathered by monitoring tool. The balancing metric is a value between 0 and 100. The balancing metric
is calculated using the following formula:

BalancingMetric =

6∑

i=1

Pi ∗Bi

In this formula we consider some criteria for load-balancing, each criterion having a weight in the
BalancingMetric formula.

B1 represents the measure of system usage. It considers the number of threads in the system. Live threads
represents the number of threads which are alive (it runs on the processor or fallows to be scheduled by the
operating system waiting at a blocking condition); the term where this parameter is located is calculated versus
the total threads supported by that container (default in Apache Tomcat total threads is equal with 200). The
B1 term is:

B1 = 1−
LiveThreads

TotalThreads

B2 represents a measure of system quality. Number of errors represents total number of errors reported
by services container. It grows when a request for a replica in that container is finished with error; the term
where this parameter is located is calculated versus the total number of requests. Number of requests represents
total number of requests and help to calculate the second term. We increment this number when receive a new
request. The B2 term is:
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B2 = 1−
ErrorsNo + 1

RequestsNo+ 1

B3 shows the proccessors usage in the system, considering the Java Virtual Machine. Number of processors
represents total number of processors exited in system that has the services container; the term that contained
this parameter is calculated dividing this number at maximum number of processors, that is a generic number,
it represents the maximum number of processors that a system can have (if we chose this number 8, so a system
can be maxim an opteron system); this parameter tells us how much we can parallel services from container a
better throughput. JVM CPU Usage represents as percent how much JVM usage occupies from all processors.
Maximum value for this parameter is ProcsNo*100%; when this sixth term tends to 1 means that all processors
are almost in sleep mode, so JVM has no process in running mode and when tends to 0.5 means that from all
processors, only one is “half” free, mean that OS can schedule and other processes and the throughput has still
an acceptable value. The B3 term is:

B3 = 1−
1

ProcsNo

JVMCPUUsage(%)

100

B4 represents a way to measure how total free space we have from total memory. When this report will
tend to 0, Garbage Collector (GC) will try to delete all unreferenced objects or memory scheduler will try to
allocate extra memory for total memory or max memory. Both operations have a high overhead. Free memory
represents total number of mega bytes free from JVM. Total Memory represents total number of mega bytes
allocated from Max Memory. Operating system allocates a total number of bytes from JVM. This memory is
named Commited JVM Memory, is a fix number throughout runtime. From this Commited JVM Memory, the
memory scheduler from java allocates a fix percent for Max memory. Usual, this percent is 60% 70%. All
resources are allocated at runtime in total memory, which at first tends to zero and then go to max memory
value. When max memory value is equal with total memory value, GC will “clean” the system, removing all
allocated resources which are unreferenced. If GC will remove anything, memory scheduler will allocate extra
memory for Max memory and this parameter will increase (see Figure 4.1). We have the following:

Fig. 4.1: JVM Memory

1. Usage memory value from total memory = Usage percent * Max memory
2. Total memory usage percent * Max memory = Free memory
3. Total memory Usage memory value from total memory = Free memory

So, the B4 term is:

B4 =
FreeMemory

TotalMemory
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B5 represents the proportion of CPU utilization. The B5 term is:

B5 =
ProcsNo

MaxProcsNo

B6 represents the measure of overhead introduced by swap memory. Free Swap represents total number of
free mega bytes located on the swap partition. Is important to consider and this parameter because swap-in
and swap-out operations have a high overhead also. The B6 term is:

B6 =
FreeSwap(%)

100

The values for weights were considered as follows:

P1 P2 P3 P4 P5 P6

28 27 25 10 5 5

In the BalancingMetric formula the importance of weights decrease from P1 to P6. P1, P2 and P3 are the
most important weights because found formula for balancing metric wanted to represent and a trust level (P1

and P2), but also because operations of GC and memory scheduler have not a very height overhead in a services
container context. The greater is number of requests and the smaller is number of errors, the second term of
the sum will approach to P2 value and will keep this value a period of time as long as possible. This value will
decrease very low, because in the worst case at a request that finished unsuccessfully increases both the number
of requests and number of errors. P3 is also a very important weight because even if we have very few requests
is enough to have just one request which lead our processors on maxim load and already the system will have
a higher response time. P4 has a smaller weight because operation of allocation memory has not a very high
overhead and also P5 and P6 have smaller weights because term of P5 is always a constant in that container
and at swap-in and swap-out operations system rarely reach.

4.2. Reputation Function for Service Replica. Reputation-based function addresses one of the most
critical issue in Grid Environment: QoS for grid-based services. Simulation and, in the future, implementation
of Reputation solution over Proxy in Service Environments, will constantly follow to ensure QoS in term
of execution times and performance. Solution will permanently monitor the “quality” of the grid and how
it’s responding to consumers’ requests and will propose ways to choose either for “best (shortest) execution
time” or for”most determinist execution time”. In the first approach, solution will try, based on execution
history, to provide with the best service endpoint in term of execution performance. Second scenario will
cover those consumers that care more about a deterministic execution time rather than the shortest execution
time. Allocation of Services is limited due to little information available for the Monitor. The replica selection
algorithm doesn’t know whether a particular service is running a job or if has or not multiple jobs queued.
Moreover, it doesn’t have a history of the completion times of the jobs. This makes difficult the prediction of
the performance of Web Services. Allocation of services in grid can be improved with a help of a reputation
system.

For replica selection we proposed a dedicated service to compute reputations. The service is a centralized
one, which receives information with the completion times of the jobs or information about services failures and
provides a degree of reputation, based on a metric for the QoS offered. When choosing an evaluation function
for reputation calculation, a few issues there must be taken into consideration. Firstly, trust decays with time,
according with the history of the quality of service provided. If, over time, the quality decreases (job execution
times increase or job success rate decrease) then the function must be able to penalize it by a drop in reputation.
Also, in the case of performance improvements, the reputation will grow.

This proposed solution based on reputation improves the service selection in the case of the same values for
balancing metric for different replicas.

5. Test Scenarios and Experimental Results. We have realized experimental tests to highlight each
term behavior of the proposed metric for balancing. The test conditions consider Lambda probe [9] integrated
module write in log files every 30 seconds, balancing metric calculated every approximate 30 seconds (30 s some
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sync times), an event takes place every 15 seconds (an event can be a request/error, event of GC or of memory
scheduler, increasing/decreasing free memory etc). In all test we have used the same Tomcat container that
mean that we consider the same resources. The experiments consider the following scenarious:

• Empty container
• Threads Alive
• Successful Requests
• Error requests
• Best Replica
• Many Requests

5.1. Empty container. The first scenario intends to measure the balancing metric evolving in time into
an empty container. No service is running on this container, only default services from Apache Tomcat and
services from monitoring tool Lambda Probe. Time of measuring is 30 minutes.

Fig. 5.1: Time evolution of balancing metric empty container

As is illustrated in Figure 5.1 the balancing metric varies between 75 and 81 with a periodic behavior at
approximately 10 minutes. This period is due to the actions of GC which cleans references to unused objects.
These actions determine the increasing of the free memory value and therefore the value of fourth parameter.

5.2. Threads Alive. The second scenario intends to measure the balancing metric evolving in time when
increasing number of threads alive. Time of measuring is approximately 15 minutes. For testing we have used
services with a longer uptime than the period of testing because we wanted to avoid altering the requests
parameter which consequently would have increased the balancing metric.

Fig. 5.2: Time evolution of balancing metric live thread variation
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As is illustrated in Figure 5.2 the balancing metric varies between 70 and 80 before the moment of busy
threads increasing. After this moment, we have increased the number of busy threads and the balancing metric
decrease down to 55. After 10 minutes (600 seconds) the value of balancing metric has slowly increased but
the busy threads remained the same number. The balancing metric increased because the GC has cleaned the
unused references objects and possibly memory provider has allocated extra memory for total memory (value
of balancing metric reached 90).

5.3. Successful Requests. This test scenario intends to measure the balancing metric evolving in time
when increasing number of successful requests. Time of measuring is approximately 11 minutes. For testing we
have used services with an empty method named nothing because we wanted to avoid altering the busy threads
parameter which consequently would have decreased the balancing metric.

Fig. 5.3: Time evolution of balancing metric Increasing successful requests

As is illustrated in Figure 5.3 the balancing metric starts at 70 and increasing to 90, where is established.
The second term of balancing metric represents also a trust parameter. The higher of this parameter is, the
higher is trust level represented by P2 value. Default in our implementation number of requests is 1. We have
made this initiation because we wanted to give half of trust to every replica. If we will have error requests (like
in the next scenario) and default number of requests is 0, the second term of sum will be always 0 and the
monitor service will choose at every moment first replica that has generated errors because it will not have a
smaller value.

We can reach at a moment to every replica having the same value and this value cant decrease because the
errors number is much higher than requests number. This means that B2 term tends to 0. In this case we can
choose the first replica, for example, even if we still send requests to it, the value of its balancing metric will not
decrease, but this “problem” does not make us to choose another replica, because all other replicas are second
term tended to 0, so these arent more confidence.

5.4. Error requests. This test scenario intends to measure the balancing metric evolving in time when
increasing number of error requests. Time of measuring is approximately 12 minutes. For testing we have used
services with a method that not exists on the container because we wanted to avoid altering the busy threads
parameter which consequently would have decreased the balancing metric or other parameters like JVM CPU
Usage.

As is illustrated in Figure 5.4 the balancing metric starts at 70 and increasing to 80 because JVM cpu usage
begins to decrease. After about 100 seconds we begin to increase the request number that finished with errors.
The balancing metric starts to decrease down to 62 where begins to established because the value of second
term (P2) cant decrease more and the rest of terms are constantly (only GC alters sometimes the free memory
percents and balancing metric varies by 3 or 4 percents.

This parameter is part of the trusted component (P2). As we can see in Figure 5.5, number of errors
represents an important role in value of trust level. If a container begins to have errors it immediately decreases
the value of trust (second parameter P2) and then even if it receives a high number of request that successfully
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Fig. 5.4: Time evolution of balancing metric Increasing error requests

resolve them, the value of trust level increases very hard. In conclusion, it is recommended for a container to
have the smallest number of errors from the first moments of activity.

Fig. 5.5: Evolution of trust level

5.5. Best Replica. This test scenario intends to measure the balancing metric evolving in time in a proxy
system that forwarded the received request to the best replica of the moment, with the highest value of the
balancing metric.

At the beginning moment replica with the best value of balancing metric is blue replica. Proxy monitor will
forward to it the received request. Because blue replica finish with success all requests, it still receive requests
from monitor Service. From 300 moment, blue replica finish with errors all requests and in this manner its
balancing metric value decrease down to 79. In this moment replica with best value of balancing metric is green
replica. It will receive all requests from monitor service and from the same reason, its value of balancing metric
will increase up to 85, when at 450 (seconds) moment this value will decrease because received requests finished
with errors. But the green replica still receive requests from monitor service, because it has the highest value
of balancing metric (see Figure 5.6).

5.6. Many Requests. This test scenario intends to measure the balancing metric evolving in time when
services container receives very many requests and its resources are tested to the fullest. As is illustrated in
Figure 5.7 the balancing metric starts at 77 and increasing to 79 because JVM cpu usage begins to decrease.
After about 60 seconds we begin to increase the request number that finished with errors and the requests that
requires extra resources like cpu usage and are IO intensive. After this all requests finish. This scenario repeats
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Fig. 5.6: Evolution of trust level

for two times between 250 and 350 and respectively 350 and 420 periods.

Fig. 5.7: Balancing metric - stress tests

6. Conclusions. Many of today’s applications follow the distributed computing paradigm in which parts
of the application are executed on different network-interconnected computers. Examples include Web brows-
ing and searching, Internet banking, enterprise applications (for accounting, production scheduling, customer
information management), and grid applications (for data intensive or compute intensive processing). The
last classes of applications are in the area of Scientific Computing. In this paper we presented a service-based
architecture that uses a proxy and services replicas and we present the load-balancing metric used by proxy in
order to select a service replica. Dependability remains a key element in the context of application development
based on services and is by far one of the most important issues still not solved by recent research efforts.

The work presented in this paper is concerned by increasing reliability and availability, particularly in Grids
and Web-based distributed systems. The presented solution presented is based on encapsulation of replicated
distributed services in a container for masking the possible defects that may occur. Thus, for a client, a failure
occurred is imperceptible, presented service being designed for masking possible errors and in transparent mode
to redirect any received requests to another functional service/replica. Our solution uses a load-balancing system
that ensures the use of resources more efficiently and reduces the time response.

Using a service by clients assume to know only the service address implemented in the same container with
proxy service. This address remains unchanged even if other replicas of the service join in the system or leave
from the system. Using transparent replication makes the system more scalable.

In the future we consider the possibility of extending the service implemented in several ways. First we
will consider implementing a mechanism for Proxy service replication to eliminate the possibility of becoming
a service insertion mechanism defects, that is to replicate and proxy service. Also, we want to integrate two
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services: one to calculate the administrative distance between nodes where there are services (this is a maximum
flow problem) and another for detecting a fall service/container. First service can help Monitor Service to take
better decisions because the balancing metric will have a more realistic value and the second service will find
possible failures in the system architecture and after proxy service will be capable to replicate dynamically
the invoked request. Another important aspect will be focused on reputation function. We will consider a
quantitative approach of this model and we will combine the balancing metric with reputation in the process
of replica selection.
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