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A RING-BASED PARALLEL OIL RESERVOIR SIMULATOR*

LEILA ISMAILT

Abstract. We develop and implement a ring-based parallel 3-D oil-phase homogeneous isotropic reservoir simulator and
study its performance in terms of speedup as a function of problem size. The ring-based approach is shown to result in significant
improvement in speedup as the problem size increases. This improvement stems from the reduction in communication costs inherent
in a ring-based approach. The simulator employs a parallel conjugate gradient (CG) algorithm that we develop for solving the
associated system of linear equations. The parallelization uses an MPI programming model. Previously proposed parallel oil
reservoir simulators focus on data parallelism and load balancing and gives less attention to the communication cost. Performance
analysis is given showing that the parallel algorithm results in a speedup of more than 42 times compared to a sequential simulator
for a large simulation problem. This major improvement occurs for larger problem sizes, since the communication savings become
significant. We compare our results to the implementation of the parallel oil reservoir simulator using the Portable Extensible
Toolkit for Scientific Computation (PETSc). Oil reservoir simulators are used for forecasting reservoir potential before costly
drilling, and are essential for improving oil recovery from existing fields, helping to maximize oil production. The speedup gained
through the technique presented here can result in major savings of engineering time and more accurate reservoir management, and
in turn higher oil production. Existing simulators suffer from limited performance due to the huge numerical operations involved.
To cope with the issue, engineers usually reduce the size of the simulation model to get results in an acceptable timeframe, sacrificing
accuracy of the predictions. This article describes the proposed ring-based algorithm for parallelization and development of a 3-D
oil phase reservoir simulator. The work is a prelude to further planned research to develop an extended simulator that applies to
three phases (oil, gas, and water) and to a heterogeneous and non-isotropic.
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1. Introduction. Oil reservoir simulators ( [1]- [2]) are important tools in the petroleum industry. They
help decision makers in oil reservoir forecasting, analysis, history matching, and recovery. To correctly make
decisions regarding recovery of hydrocarbons, an accurate numerical model of the reservoir must be established
to predict outcomes and performance under various operating conditions. These include location and rate of
injection in wells, and the recovery techniques, the selection of which has a great impact on oil field operation
from a financial perspective. It is well known that the accuracy of a simulation depends upon the resolution
used. Finer resolutions of discretization grids improve the accuracy of the simulation [3], but are accompanied by
an increase in problem size. Therefore, the CPU time required for the simulator to run increases considerably
with granularity due to the huge number of equations that must be included in the model. The conjugate
gradient method (CG) (initiated in [4]; see also [5]) is one of the best known and most powerful iterative linear
system solvers used in many simulation problems.

There is a great interest in parallelizing oil reservoir simulators to increase simulators’ precision and con-
sequently oil production. On one hand, existing parallel oil reservoir simulators focus on data parallelism and
load balancing and gives less attention to the resulting communication cost. They often use domain decompo-
sition techniques and parallel solvers which in turn use matrix decomposition techniques and give less attention
to the resulting communication overhead. On the other hand, the parallelization may involve the numerical
representation of the field, resulting in a change in the numerical equations.

In this work, we develop a parallel oil reservoir simulator which uses a parallel CG method to solve its
associated system of linear equations. Our parallel oil reservoir simulator has the following advantages:

e Preserving the oil reservoir simulator numerical equations. Our parallel simulator focus on reducing
communication overhead generated from data parallelization of the reservoir without any change in
the numerical representation of the oil reservoir simulator. This allows the portability of our parallel
solution to many of the existing oil reservoir simulators, as opposed to a parallelization approach which
introduces a change in the numerical representation ( [6], [7], [8], [9])-

e Scalability. Our parallel implementation scales well with increasing problem size and increasing number
of computing resources. For instance, [10] used a parallel CG (using row-wise distribution of the
coefficient simulation matrix) for a 3-D, 3-phase oil reservoir simulator and obtained a speedup of
nearly 4.5 using 32 processors for a medium size problem (19,584 equations) using CS-2 with 100 MHz
HyperSPARC architecture (see Figure 3 in [10]). Our parallel implementation in our experimental
environment leads to a similar speedup for a Class A problem size (14,000 equations) and to a speedup
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of 23.63 for Class C problem (150,000 equations), indicating that our parallel approach becomes more
effective as the problem size increases.

e Reducing communication overhead. Our scheme uses the ring-based technique to reduce communication
overhead generated from parallelization. Parallel oil reservoir simulator needs to exchange data between
its parallel computational elements.

e Load balancing. To maximize the parallel computing efficiency of the simulator and the use of the
parallel computing environment, i.e., the processors involved in the computation, it is important to have
a load balanced distribution of the computational load. We implement a load-balanced distribution of
the CG computation among the processors involved in the parallel computation. This is obtained by
using the greedy approach in distributing the reservoir coefficients among the available processors.

For an efficient parallel oil reservoir simulator, it is essential to have a scalable approach with increasing
problem size and increasing number of processors. In this work, we propose a parallel algorithm that is optimized
by a ring-based approach to reduce communication cost. The ring-based approach is a known technique to
reduce communication cost [11]. Combing this technique with the data decomposition approach has led to a
speedup of 42 times in our experimental environment using 128 computing processors for large problem size
(Class C). However, to our knowledge, the technique has not been brought to bear on oil applications. This
result is promising in the oil industry as it can save significant engineering time and facilitate more accurate
reservoir management. We apply the ring-based approach to achieve parallelism and communication in multiple
steps. We use a distributed memory environment consisting of 128 cores of Intel Xeon 5355 to evaluate the
performance of the parallel 3-D oil-phase reservoir simulator. To maximize the parallel computing efficiency of
the simulator and the use of the parallel computing environment, i.e., the processors involved in the computation,
it is important to have a load balanced distribution of the computational load. We implement a load-balanced
distribution of the CG computation among the involved processors. Our parallelization technique is evaluated
by measuring the speedup gain of our parallel simulator compared to the scalar sequential, the former being
demanding in terms of design efforts. We compare our results to a parallel implementation using the Portable
Extensible Toolkit for Scientific Computation (PETSc) [12]. PETSc is a suite of data structures and routines for
the parallel solution of scientific applications modeled by partial differential equations. It is widely used in many
scientific simulations including oil reservoir simulator ( [13], [14]). PETSc implements row-wise distribution of
matrices and does not consider a load-balanced approach. It uses a one-step overlapping mechanism, in which
a matrix is divided into submmatrices; processors send data asynchronously and start computing with diagonal
submatrices in parallel, hoping that global data is collected meanwhile the local computation is taking place to
continue with the remaining submatrices [15].

The rest of the paper is organized as follows. Section 2 overviews related works. In section 3, we describe the
oil reservoir model’s partial differential equations. In section 4, a numerical model for the reservoir is presented.
The programming model including the parallel approach and its implementation are described in section 5. Our
experiments and the associated results are presented in section 6. Concluding remarks are given in section 7.

2. Related Works. Several works developed parallel oil reservoir simulators on a distributed memory
environment. Many of the existing parallel oil reservoir simulators rely on parallel library routines for parallel
distribution of their linear solvers. For instance, in [10], the parallel oil reservoir simulator implements a
parallel Conjugate Gradient method which uses the Sparse Distributed Data Library (DDL), for a 3-D, 3-phase
oil reservoir simulator. The DDL implements a row-wise distribution of the coefficient simulation matrix. The
implementation r for the implementation of a parallel CG linear solver uses all-to-all communications technique.
By using this technique, the size and the number of messages exchanged between the different computing
processors increase with increasing problem size and number of processors, inducing scalability issues. Figure 3
in [10] shows a speedup of nearly 4.5 using 32 processors for a medium size problem (19,584 equations) using CS-2
with 100 MHz HyperSPARC architecture. Reference [14] relies on PETSc library [12] which implements parallel
linear solvers based on the library parallel routines. Reference [16] developed a parallel oil reservoir simulator
based on the overlapping domain decomposition, in particular Additive Schwarz with Overlap linear solver,
and the parallel Singular Value Decomposition linear solver, using multi-core multi-processor shared-memory
(SMP) desktops, and obtained a speedup of 1.6 on 2 CPUs and of 1.7 on 4 CPUs. Reference [17] developed a
parallel oil reservoir simulator based on domain decomposition and parallelized its underlying linear solver; i.e.,
the strongly implicity procedure (SIP). The simulator is implemented using MPI on CRAY T3E system and
IBM SP2 systems. The speedup obtained was 14 using 80 processors on CRAY T3E system, and 30.6 using
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80 processors on IBM SP2 system. However, on IBM SP2 system, the performance did not scale beyond 62
processors with increasing number of processors.

Other works involves a change in the numerical solution to incorporate more parallelism. For instance,
reference [8] is based on the constrained pressure residual (CPR) a multi-stage parallel linear solver [9], and
the ILUOQ parallel iterative solver. Figure 4 in reference [8] indicates a speedup of 28 using the CPR solver and
a speedup of 12 using the ILUO on 64 processors for a 3-D, an incompressible water oil 2-phase for 1,094,721
grid blocks; a very large problem size. Reference [18] tested combination of multiscale (in time and in space)
simulation and compared them to single-spatial dual-temporal simulations and concluded that the best combi-
nation is the dual-spatial dual-temporal. References [6] and [7] rewrite the Conjugate Gradient method linear
solver algorithm into blocks of algorithms to reduce synchronization between among its iterations and therefore
communication cost, and consequently incorporate more parallelism.

Several algorithms have been published for parallelizing CG as a standalone application [19], [20], [21], [22].
They are developed for general-purpose engineering applications and are not tailored to oil reservoir modeling.
In [19] and [20], algorithms have been implemented on a specialized event-driven multi-threaded platform. In [21]
and [22], algorithms have been implemented on a distributed shared memory cluster. Field [23] optimizes CG
for regular sparse matrices and studies the impact of mesh partitioning on the performance. In references S [24]
and [25], the authors introduce data decomposition strategies for CG on hypercubes and mesh networks for
unstructured sparse matrices. Blocks of matrices are assigned to processors to achieve a partial result of the
matrix-vector multiplication in the CG algorithm. In reference [24], a ring-based overlap mechanism is used
for global summation within the CG method, a speedup of of 2.5 was obtained on 128 cores compared to
the original National Aeronautics and Space (NAS) benchmark [26] on Intel iPSC/860 hypercube architecture.
Reference [11] presents communication-avoiding algorithms to decrease communication costs of applications.
Reference [20] used also the ring-based algorithm for the CG method as a standalone application and obtained
a speedup of 41 on 65 processors of type ChibaCity. We obtained almost the same speedup [20] for big problem
size (Class C matrix size), though [20] performed measurements on unstructured matrices with more non-zeros
than our heptadiagonal matrices, thus more computations are involved to overlap communication cost.

3. 3-D Oil-Phase Reservoir Partial Differential Equation Model. Development of a parallel reser-
voir simulator includes the following steps:

e Develop the partial differential equations of the model based on the oil reservoir characteristics. For
the 3-D oil-phase reservoir model, the equations have one unknown variable, namely pressure.

e Divide the oil reservoir into grids and discretize the partial differential equations in space and time. In
the case of a homogeneous and isotropic reservoir, the discretization of the equations produces a linear
system of equations.

e Determine an ordering scheme from stencils to obtain an order of the coefficients of the linear system
of equations and choose a linear solver which will be used to find the solution; i.e., the pressure per
grid element of the oil reservoir. In case of a homogeneous isotropic oil reservoir, all the coefficients are
constants in space and time.

e Parallelize the model and code it.

e Test the simulator by comparing results it gives to known results obtained from another proven simu-
lator.

The partial differential equations reflect the reservoir characteristics, such as the reservoir boundaries,
rock properties including porosity and permeability, and well production and injection data input [1], [27]. In
this study, we consider a simulator for a 3-D homogeneous and isotropic oil-phase reservoir. The differential
equations of the reservoir model are derived from Equations 3.1, 3.2, and 3.3. Equation 3.1 is Darcy’s law. It
represents a relationship between the field velocity w and the field pressure p. Equation 3.2 is a statement of
mass balance. Equation 3.3 represents the formation volume factor per bulk volume of the reservoir:

w= —ﬁcg (Vp—V2) (3.1)
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Here (. is a unit conversion factor for the permeability coefficient, k is the rock permeability, u is the
dynamic viscosity of the fluid, Z is the elevation (positive in downward vertical direction), and ~ is the fluid
gravity, which is the fluid density in terms of pressure per distance. (m) denotes the mass flow rate per unit of
time and per unit area, ¢, is the mass density source or sink (mass per unit of time), m, represents the mass
of fluid contained in a unit of volume of the reservoir. B, is a formation volume factor which is the ratio of the
density of the oil at standard conditions (p,sc) to the density of the oil at reservoir pressure and temperature
Po- Standard conditions are usually 60°F and 14.7psia in oil fields [27].

Mass flow rate is expressed as the product of the oil density (p) and Darcy’s velocity (u). The mass per unit
volume (vy,,) is represented by the product of oil density and porosity (¢). The mass flow rate ¢, is formulated
as the product of the fluid density and volumetric flow rate g. Then we have the following formulas [1]:

My = QePliy (3.4)
My = QePlly (3.5)
M, = Qepus (3.6)
my = po (3.7)

s = aepq (3.8)

Based on Equations 3.4, 3.5, 3.6, 3.7, 3.8 and 3.3, Equation 3.2 becomes
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The equation 3.9 involves two unknowns: the velocity field and the porosity. The closure model used to complete
the model is the Darcy’s law (Equation 3.1). For simplicity, we assume negligeable gravital forces. Equation
3.9 becomes:
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where B, is the formation volume factor of the oil phase, a. is the volume conversion factor, ¢ is the porosity.
We consider a slightly compressible flow, then the formation volume factor B, is defined as:

___ B
1+ c(p—p°)
where c¢ is the compressibility factor, BY is a reference formation volume factor and p° is a reference pressure.

For a slightly compressible flow, we assume 1+c¢(p—p°) ~ 1, and that the porosity is constant [1]. Consequently,
Equation 3.10 becomes:

(3.11)
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In the homogeneous isotropic case, we have:

ky=ky =k, (3.13)
Based on Equation 3.13, and by dividing both sides of the Equation 3.12 by .k, Equation 3.12 becomes:
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As mentioned previously, an oil reservoir simulator uses division into a grid. Equation 3.12 is then discretized
in space and time expressed over this grid to produce a linear system of equations. We use the CG method
which is one of the popular iterative solvers widely used in oil reservoir simulation to solve the equations and
find the unknown values which are the pressure for each element of the oil reservoir grid.
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4. 3-D Oil-Phase Reservoir Numerical Model. Time discretization of Equation 3.12 gives
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Equation 4.1 can be represented as a linear system of equations of the form

Arx =1»

where A is a matrix which reflects the coefficients in Equation 4.1. The vector variable x represents the unknown
pressures (one unknown per grid cell) and b is a constant which is computed based on the pressures calculated
at the previous time step. Equation 4.2 provides the solution to a pressure per grid cell. Figure 4.1 shows a
numerical stencil for a 3-D block:

xijk :pijk i:1...,NI,j:1,...,Ny,k:1,...,NZ (42)

where IV, is the number of cells of the oil reservoir in the x direction, N, is the number of cells of the reservoir
in the y direction and N, is the number of cells of the reservoir in the z direction. From a programming model
point of view, and for the rest of the paper we will use A, x, and b as notations to represent the linear system
of equations generated in a time step.

Figure 4.2 shows a computational mesh for a discretized 3-D oil reservoir of size N (N = NyN,N,),
which is the size of the generated matrix A. The mesh reveals the way the unknown vector is composed. By
numbering the unknowns, the resulting linear system of equations following a discretization is represented by a
heptadiagonal structured sparse matrix as shown in Figure 4.3.

Pijk+1

Fig. 4.1: A numerical stencil for a 3-D oil reservoir block.

5. Programming Model.

5.1. Sequential CG Algorithm. As shown in Figure 5.1, the CG method starts with a random initial
guess of the solution z( (step 1). Then, it proceeds by generating vector sequences of iterates (i.e., successive
approximations to the solution (step 10)), residuals corresponding to the iterates (step 11), and search directions
used in updating the iterates and residuals (step 14). Although the length of these sequences can become large,
only a small number of vectors need to be kept in memory. In every iteration of the method, two inner products
(in steps 9 and 13) are performed in order to compute update scalars (steps 9 and 13) that are defined to make
the sequences satisfy certain orthogonality conditions. On a symmetric positive definite linear system these
conditions imply that the distance to the true solution is minimized in some norm (step 12).
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Fig. 4.3: Heptadiagonal coefficient matrix formed from a discretized 3-D oil reservoir.

5.2. Parallel Computation Approach. An oil reservoir simulator along with its CG method solver can
be parallelized in different ways. Time parallelism, data parallelism and functional parallelism are common
approaches for parallelizing applications. In this work, we choose a mix of functional and data parallelism to
parallelize the simulator. The simulator is intuitively divided into 2 functional parts: the simulator itself which
includes the numerical discretized part and the CG method iterative solver for solving the numerical system of
equations. The CG method is used at every time step. Every time step of the oil reservoir simulator produces
a linear system of equations.

We chose the master-worker model [28] as an underlying mechanism of parallelization. The simulator
itself is executed sequentially by the master processor. The master processor computes various coefficients
and parameters and distributes the matrix relative to the resultant linear system of equations to the available
processors who will start the parallel processing of finding a solution. The master processor gathers the output
from the different processors involved in the computation which forms the global solution. In each iteration of
the CG method, each computational component can be parallelized to compute part of the output values: ay,
Tk+1, Thk+1, Bk, and pr+1. To achieve the load balancing the number of non-zero values is distributed equally
over the number of processors in a greedy-based approach.

5.3. Parallel Implementation. The main goal here is to divide the number of operations of the CG
method by the number of available processors to increase its performance vis-a-vis its sequential execution. The
flow chart presented in Figure 5.1 presents 2 types of divisible loads: 1) the sparse matrix-vector multiplication
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1. o = 0

2. rg :=b— Axg

3. Po :=To

4. k=0

5. Kmax := maximum number of itera-

tions to be done
6. if k < kmax then perform 8 to 16
7. if k = kmax then exit
8. calculate v = Apy,
pLv
10. zp41 == 2K + QKDE
11. rg41 =1 — agv
12. if rg41 is sufficiently small then go to
16 end if

T
e Te1TE41
13. /Bk - W

14. pry1 = rrq1 + Brpr
15. k:=k+1
16. result = xy41

9. A 1=

Fig. 5.1: CG method sequential algorithm.

(SpMV) presented in step 8 of the flowchart, and 2) the scalar-vector and/or vector-vector operations presented
in steps 9, 10, 11, 13, and 14 of the flowchart. However, CG method presents interdependency between its com-
putational elements. In previous work [29], we defined a dependency graph among the different computational
parts of the CG as shown in Figure 5.2. This dependency graph gives directions of data flow within one iteration
within a processor and among the processors of the system. The graph shows values which are dependent on
other values which are connected to and which are higher in the graph representation. For example, ay is
dependent on r; and py.

Fig. 5.2: Dependency graph among the different computational elements of the CG method.

For storing the matrix, we use our indexing approach, where the matrix is stored in 2 arrays: a first array
which holds the non-zero values and a second array which holds the coordinates of the value in the matrix.

Load balancing is done using a greedy approach by the master processor. The master processor first divides
the number of nonzero values in the matrix A by the number of parallel processors to compute the average
load per processor. Then the master processor allocates the first n number of rows to the first processor where
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total number of non-zeros in those n rows are exactly equal to or just more than the calculated average load
value. Once the load for a processor in terms of the non-zeros allocated to the processor is calculated, the
master processor recalculates the new remaining non-zeros in the matrix by subtracting the number of non-
zeros allocated to the processor from the existing value of the remaining non-zeros. Initially all the non-zeros
in the matrix A are the remaining non-zeros. Then, the master processor calculates a new average load value
(in terms of non-zeros) from the number of remaining non-zeros and the number of remaining processors. The
master processor allocates the average number of non-zero elements to the next processor and repeats the same
steps till all the non-zero values of the matrix A are allocated to the processors. Since we are using greedy
approach for the load distribution purpose and the rows are considered as a unit (fraction of the rows are not
given to any process), the method is semi-optimized. Appendix A shows the load balancing algorithm.

Given the interdependency nature of the CG method among its computational steps at each each iteration,
the SpMV in step 8 should be distributed in a way to decrease communication cost [30]. We rely on a ring-based
approach which allows communications and computations to overlap [11] for the SpMV part in each iteration of
the CG. The algorithm works as follows. For the entire local SpMV, every processor needs the whole p vector.
Every processor divides its local SpMV into N steps, where IV is the number of processors involved in the
computation. Initially, every processor has its own part of the vector p. In each step, before starting the local
SpMYV, a processor sends its own part of the vector p, in a non-blocking communication, to the left neighbor
and simultaneously receive part of the vector p from right neighbor forming a ring of communication. The
communication takes place in the form of a ring. Figure 5.3 illustrates the starting computational part in each
processor. The local SpMV starts on the block number for which the processor has its own chunk of p. The
local SpMV is performed using the non-zero elements of the respective blocks. Figure 5.4 shows an example of
the computational steps of the processor of rank 0. Appendix B shows the algorithm of the ring-based approach
applied to the matrix-vector multiplication step of the CG method.

Fig. 5.3: Initialization of Computing at every processor.

6. Evaluation of the Parallel Algorithm. In this section, we evaluate the performance of the ring-
based parallel oil-phase reservoir simulator in our experimental environment. We compare the performance of
our approach to PETSc-based parallel oil reservoir simulator.

6.1. Experimental Environment. The experiments are conducted on a grid of Xeon Intel Quad Core
5355 machines with 2.66 GHz of CPU. Each machine has a dual CPU. Each core has 4MB of cache, 1GB of
memory, 2.66 x 4GFLOPS of peak performance. The machines are connected using InfiniBand (IB) standard.
The operating system used on the machines is Red Hat Enterprise Linux Server release 5.2. Message Passing
Interface [31] (Open MPI version 1.3.2) library is used for implementing the parallel oil reservoir simulator. We
used the mpicc compiler along with gecc version 4.1.2. We used the O3 optimization flag option when compiling
the parallel oil reservoir simulator code.
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Fig. 5.4: The different computational steps for computing the local SpMV in each processor.

Table 6.1: Experimental Runs

Run Workload
BenchmarKEMatrix
Name Size(A)

1 S 1400

2 W 7000

3 A 14000

4 B 75000

5 C 150000

6.2. Experiments. The experiments use matrices of different dimensions to assess the performance of
the parallel oil reservoir simulator within one step on a single Intel parallel machine and on a grid of Intel
parallel machines. The matrix sizes used are as per NAS CG parallel benchmark [26], as shown in Table 6.1.
The parallel oil reservoir simulator is measured by horizontally scaling the number of cores up to 128 cores,
and vertically scaling the simulation size. The speedup of the parallel parallel oil reservoir versus its sequential
execution is measured. We implemented 2 versions of the parallel oil reservoir simulator, one which uses our
ring-based approach, and one which uses the PETSc approach in parallelization.

In our experiments, one core acts as a master which distributes the tasks to the other cores that we call
workers. The master core runs the simulation, updates and distributes the coefficients; i.e. the matrix, to
the workers cores. The gettimeofday function is used to compute the elapsed time of the parallel oil reservoir
simulator on the master in a single time step. In the sequential execution case, the gettimeofday function is
used as well to compute the overall run time. In all our experiments, each experiment was run 100 times and
the average was computed. The speedup is then measured.

6.3. Performance Evaluation. As discussed previously, our proposed parallel algorithm follows the
functional along with data distribution strategy to distribute the oil reservoir simulator computation load
among the processors. The simulator itself is run by a master processor, while the parallel CG method is run
by a number of parallel processors. In that way, every processor can perform the operations on the data chunk
available to it from the master processor. The master processor participates in the computation as well. In
devising our parallel algorithm, the numerical representation of the oil reservoir simulator and its CG linear
solver were preserved. We worked on functional parallelism, data parallelism and communication strategies to
decrease the simulation total execution time. Figure 6.1 shows the speedup performance of the proposed parallel
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algorithm, which is 42 times faster than the sequential execution of the simulation using 128 processors . It also
shows that our parallel implementation scales well with increasing number of processors and large matrix sizes.
For instance class C matrix size scales well with increasing number of processors. This is explained by a good
overlap between computation and communication for large matrix sizes thanks to a higher number of non-zeros
which is allocated to each processor compared to smaller matrix sizes. While our PETSc-based implementation
indicates a good speedup of 42.7, as shown in Figure 6.2 for class B matrix size, the speedup performance does
not scale with increasing number of processors. The PETSc-based approach has lower scalability compared
to our approach with increasing matrix size and increasing number of processors. This is due to the PETSc
using asynchronous all-to-all broadcast of the vector p while a local matrix-vector multiplication is taking place.
Consequently, the size and the number of vectors exchanged between the processors increase with increasing
matrix size and increasing number of processors.

For smaller matrix sizes (classes S and W), our parallelization approach does not scale beyond 8 cores. This
is because some processors receive little or no data and therefore the actual computing time can be much shorter
than the time spent in communicating the vector p to other processors; i.e., the processors spend the time waiting
for the vector p to arrive than computing. Therefore, more time is spent in communicating than computing
and consequently the overall execution time of the application will become longer in case the computation is
divided further over a larger number of processors. The PETSc-based approach has better performance than
our approach for small matrix sizes and small number of processors, where the communication time spent
communicating the vector p between the processors is overlapped with the local computing on each processor.

Implementing a ring-based required more design efforts for the code for communicating the vector p than
implementing using PETSc approach. Using PETSc, the code calls high level methods and the parallel im-
plementation is done by the underlying library, while in a ring-based approach, the dispatch of the vector p
to the next neighbor and the reception of the vector p from the previous neighbor have to be done before the
matrix-vector multiplication within each processor as shown in Appendix B.

The greedy approach we use for distributing data ensures load balancing as shown in Figure 6.3. However,
Figure 6.3 shows slight discrepancies in load among the processors. This is due to the fact that we do not allow
for a partial distribution of a matrix row to the processors. Consequently, some processors may be allocated
more non-zero values than others.

Overall Speedup: Parallel Execution vis-a-vis Sequential Execution
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Fig. 6.1: Overall speedup of a parallel 3-D oil-phase reservoir simulator using our approach vis-a-vis its sequential
execution.

7. Concluding Remarks. Parallel oil reservoir simulators provide an important computational tool for
the oil industry. An oil reservoir simulator involves numerically solving systems of linear equations. The
conjugate gradient (CG) method is one of the most popular iterative methods in flow simulation problems. We
implemented a parallel oil reservoir simulator using parallel CG. Existing oil reservoir simulators concentrate
on data parallelism and load balancing issues and pay less attention to the generated communication cost from
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Fig. 6.3: Distribution of execution time taken across the parallel cores.

parallel implementations. In this work, we implemented a ring-based parallel reservoir simulator to reduce
communication cost. Our implementation scales well with problem size and with number of processors. A
speedup of 42 times was achieved for large problem size vs. a 3-D oil-phase reservoir simulation with sequential
execution. We compared our results to the performance of a parallel implementation of the oil reservoir simulator
using the Portable Extensible Toolkit for Scientific Computation (PETSc). Our parallel approach scales well
with increasing problem size and increasing number of processors compared to our PETSc-based implementation.
Our result should be valuable for the oil industry as it should facilitate major savings in engineering effort
and result in better oil reservoir management. This work is part of an ongoing project aimed at developing
a parallel 3-D multi-phase (o0il, gas, and water) reservoir simulator, that applies to heterogeneous and non-
isotropic models. The project will develop a model of dynamic distribution of the parallel oil reservoir simulator
on a heterogeneous Grid infrastructure of Intel Xeon and IBM Cell processors. Performance evaluations will
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then be conducted similar to the one performed for our work published in IEEE Transactions on parallel and
distributed systems [32].
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Appendix A. Load Balancing Algorithm.

loadBalance( ){
//nnz is the number of non-zero values in the matrix
//nnzLeft is the number of non-zeros left out of the cumulative distributions
int i=0,j=0,k=0;
//The starting row index of the matrix part and the number of rows to be allocated to a process
int *procStartRow, *procCalcRowCount;
//stores number of non zeroes in each row
int *rowDataCount;
//The number of non-zeros allocated to a processor
int *nnzProc;
//Average load (number of non-zeros) to be distributed to each worker
avgLoad = nnz/size;
//Loop over the number of available processors
for(i=0; i < numberOfProcessors-1; i++) {
//The beginning row index of the next process is equal to the previous process row index
// added to the load allocated to the previous processes
processStartRow[i] = processStartRow([i-1] + procCalcRowCount[i-1]
//Compute the actual load to be allocated to the process
for (j=0; j < N-1, j++) {

k=1;
nnzProc[i]= nnzProc[i]+rowDataCount[k];
k = k+1;

procCalcRowCount[i]=k;
nnzProc[i]= nnzProc[i]+rowDataCount[k];
if (nnzProc[i] > avgLoad)
break;
}
nnzLeft=nnzLeft-nnzProcl[i];
int remainingProcessors = numberOfProcessors-1;
avgLoad = nnzLeft/remainingProcessors;
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