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NEW SPARSE MATRIX STORAGE FORMAT TO IMPROVE THE PERFORMANCE OF
TOTAL SPMV TIME

NEELIMA B.∗, PRAKASH S. R.∗ AND G. RAM MOHANA REDDY∗

Abstract. Graphics Processing Units (GPUs) are massive data parallel processors. High performance comes only at the
cost of identifying data parallelism in the applications while using data parallel processors like GPU. This is an easy effort for
applications that have regular memory access and high computation intensity. GPUs are equally attractive for sparse matrix vector
multiplications (SPMV for short) that have irregular memory access. SPMV is an important computation in most of the scientific
and engineering applications and scaling the performance, bandwidth utilization and compute intensity (ratio of computation to
the data access) of SPMV computation is a priority in both academia and industry. There are various data structures and access
patterns proposed for sparse matrix representation on GPUs and optimizations and improvements on these data structures is
a continuous effort. This paper proposes a new format for the sparse matrix representation that reduces the data organization
time and the memory transfer time from CPU to GPU for the memory bound SPMV computation. The BLSI (Bit Level Single
Indexing) sparse matrix representation is up to 204% faster than COO (Co-ordinate), 104% faster than CSR (Compressed Sparse
Row) and 217% faster than HYB (Hybrid) formats in memory transfer time from CPU to GPU. The proposed sparse matrix format
is implemented in CUDA-C on CUDA (Compute Unified Device Architecture) supported NVIDIA graphics cards.

Key words: Graphics Processing Unit (GPU), data parallelism, sparse matrix, SPMV computation, compute intensity,
memory transfer time, CUDA-C, NVIDIA Graphics Card.

1. Introduction. Graphics processors (GPUs) are proved to be good for data parallel applications. GPUs
have also been proved as a good choice for irregular memory access applications that have high data parallelism.
Example of such applications include sparse matrix vector multiplication, graph algorithms etc. Several scientific
computations use SPMV computation as a main kernel. Improving and optimizing SPMV computation is still
a research focus for the new hardware architectures. The sparse storage format used in SPMV determines the
performance of the application. The steps involved in SPMV computation on GPU are: data organization
(to make memory access efficient on GPU), memory transfer of input data from CPU to GPU and SPMV
computation on GPU. The result is very small in size, that need to be sent back to CPU from GPU and
this small value is not considered in this work. The sparse storage formats used for CPUs cannot deliver good
performance when used for SPMV computation on GPU. So, many GPU specific new formats and optimizations
are evolving. Most of the formats and optimization methods have taken only SPMV computation time on GPU
into consideration and tried to optimize GPU performance. As SPMV computation is performed on GPU, there
are common overheads in terms of data organization time by GPU or CPU, data transfer from CPU to GPU.
At the same time, the computation power available on GPU is not negligible and should be utilized for the
high performance applications. This paper proposes a new sparse storage format that can reduce the time of
data organization and memory transfer, reducing the overall computation time of SPMV. The new format is
called as Bit Level Single Indexing (BLSI). BLSI implementation is done on CUDA and proved good for GPU
architecture. This format reduces the number of bytes required per flop, reducing the compute intensity or ratio
of bytes to flops. It also saves on cache and/or register usage per thread on GPU. The total time comparison
shows that BLSI is 2x to 112.6x faster than HYB (HYBrid format) when total time is considered as the SPMV
time. The BLSI sparse matrix representation is upto 204% faster than COO, 104% faster than CSR and 217%
faster than HYB formats in memory transfer time from CPU to GPU

The paper is organized as follows. An overview of the GPU architecture and sparse formats are given in
Sect. 1 and 2 respectively. Section 4 highlights the importance of SPMV optimization on GPU by giving the
related work. Section 5 details the new format generation and uses. Section 6 gives the experimental set up.
Section 7 gives results and analysis and concludes with future work in Sect. 8.

2. GPU Architecture. Usage of GPUs for general purpose computations have accelerated when NVIDIA
introduced CUDA, a general purpose parallel computing architecture. A CUDA device or the GPU is connected
to CPU through host interface. CUDA device consists of a set of Streaming Multiprocessors (SMs), each consists
of an instruction unit and a shared memory along with a set of Streaming Processors (SPs). Each core can
preserve number of thread contexts, specific to the architecture. CUDA has zero-overhead scheduling, that is
Fmaintained by tolerating the data fetch latency by switching between threads [1].
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Fig. 3.1: Example sparse matrix A

Fig. 3.2: CSR representation sparse matrix and its thread access pattern on GPU

Parallel region of CUDA program is called as kernel. The CUDA API (Application Program Interface) is
used to create parallel threads to be executed on the hardware. The kernel is partitioned into a grid of thread
blocks that can execute in parallel. The programmer can define the dimensions of the grid and block. The SPs
are grouped in SIMD (Single Instruction Multiple Data) fashion and CUDA follows SIMD. Thread blocks are
distributed evenly on the multiprocessors. Threads are logically grouped into warps. A warp consists of 32
threads that can execute a single instruction. Each SM executes one warp at a time. Different warps within
SM are time shared on the hardware resources. Thread divergence is created with the usage of conditional
instructions that serializes the threads.

CUDA device has hierarchy of memories. The device memory is called as global memory. Memory request
of a half warp (16 threads) are served together, this is called as coalescing. The request from all the threads of
a warp is coalesced into one memory transaction if they are accessing the addresses in the same segment. Once
the addresses are accessed by the half warp in one segment, it is called as fully coalesced. This is one of the
optimization that is looked into for any CUDA computations. The shared memory is accessible by threads of
the same block. Along with this, set of registers are shared by the threads of a block. The constant and texture
memories are read only memories in global space with on-chip caches. The programmer can bind these regions
to read only data before launching a kernel [2].

3. Sparse Matrix Formats on GPU. The SPMV computation involves a sparse matrix A multiplied
by a dense vector x, represented as y=Ax. The standard formats like CO-Ordinate (COO), Compressed Sparse
Row (CSR), ELL (ELLPACK) and HYB (HYBrid) [10] formats are considered in this paper to compare with
the proposed format and explained briefly here. The other formats are built on these standard formats that
are given under related work section. Bell and Garland [10] gave a detailed study of sparse formats and their
access pattern on GPU.

3.1. Compressed Sparse Row (CSR) Format. A sample sparse matrix A is shown in Figure 3.1 and
Figure 3.2 shows the CSR representation and its thread assignment on GPU hardware. Here, one thread per
row is launched. In Figure 3.2, T0 through T3 reads the elements in each row, first iteration will give full
throughput, but in the next iteration only two threads read the elements. The column indices are not accessed
simultaneously even though they are stored contiguously, which causes poor performance of this format.
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Fig. 3.3: COO representation of sparse matrix and its thread access pattern on GPU

Fig. 3.4: ELL representation of sparse matrix

3.2. CO-Ordinate (COO) Format. In COO format, there are three one-dimensional arrays of same
size as that of the number of non-zeros in the matrix. It causes an overhead in terms of memory transfer from
CPU to GPU. The COO representation and thread access pattern is shown in Figure 3.3. It can be noted that
warp sized (here warp size is 2) number of threads work on the non-zeros in each iteration. Reduction or atomic
operations can be used across threads. Reduction operation is used to compute the sum of an array of numbers
in parallel. Atomic operations allow multiple threads to perform concurrent read-modify-write operations in
memory without conflicts. The syntax of atomic operation in CUDA is as follows: float atomicAdd(float*
address, float val).

3.3. ELL Format. ELL representation is shown in Figure 3.4 and thread assignment is given in Figure
3.5. This technique is suitable for vector architectures. Column major access is preferred as it offers better
coalescing, and shared memory can be used with ease since there wont be any bank conflicts. As shown in
Figure 3.5, the threads are launched in column major order. After each iteration, the threads advance to the
next column for execution.

3.4. Hybrid (HYB) Format. Hybrid format is combination of sparse matrix formats proposed by [10].
HYB uses combination of ELL and COO. The HYB structure is shown in Figure 3.6. ELL and COO is
faster for SPMV in many cases, but it has a CPU-GPU memory transfer overhead when compared with other
formats, since it requires five memory transfers; two for ELL and three for COO. The Thread access pattern is
a combination of the access pattern of ELL and COO.

ELL and COO combination as used in HYB format is preferred because ELL is proved to be good when the
difference in number of non-zeros in each row is negligible, and COO is proved to give a modest performance
when the number of non-zeros per row is variable. It can be seen that the portion of the row till size L (calculated
empirically) is considered to be the ELL portion of the row and if the size of the row exceeds L, it is considered
as the COO portion of the row and is stored in ELL format. Alternatively, the format can take entire row as
ELL if its size is less than or equal to L or as COO if its size is more than L.

4. Related Work. SPMV performance improvements and optimization based publications are on rise in
recent times. The importance of communication overhead in high performance application and the need of
optimizing this overhead were studied extensively in the literature as follows. Ravi et. al [3] have proposed
a heterogeneous BLAS library for SPMV computation considering communication bandwidth as one of the
parameters to tune the applications parameters according to the architecture in a heterogeneous system. Our
work optimizes this bandwidth limitation by using a new data structure for the sparse matrix representation for
a single GPU. Xingfu wu et. al [4] proposed hybrid optimization methods for scientific and compute intensive
applications for CMP clusters. They map processors per node optimally and similarly this work also maps
computation to the threads to increase the performance of the applications. Vuduc et.al [5] discussed three main
applications for which GPU has some limitations. One of the applications discussed is SPMV operation which
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Fig. 3.5: ELL thread access pattern on GPU

Fig. 3.6: HYB structure of sparse matrix

is bandwidth limited and mentioned that porting this application is beneficial if CPU to GPU communication
is reduced or removed by some methods. The method proposed in this paper considers the memory transfer
time and improves it.

Lee et.al [6] have analysed main kernels that appear in most of the applications and mentioned the require-
ment of optimizations on and off the device. SPMV is one kernel that can improve performance if bandwidth
limitations are overcome. BLSI method optimizes data organization time and memory transfer time that can
strengthen the usage and need of GPU for general purpose computation. Gregg and Kim [7] proposed that mov-
ing computation to data improves the application performance than always moving data so that data movement
overheads are reduced. They proposed to use system intelligence and develop an automated tool to control the
assignment of the computation. BLSI method also optimizes data movement by reducing the amount of data
to be given to the computation with easy and flexible implementation. Michael et. al [8] have also considered
bandwidth bound applications for GPU and proposed an API for creating DMA warps that exclusively handles
memory transfers from off chip memory to on chip memory. Our method of optimizing memory bandwidth
is external to the device. Thomas et.al [9] proposed an automatic tool that consists of runtime library and
compiler optimizations to optimize the number of communications from CPU to GPU. The tool proposed by
them combines all the memory copies to the GPU of multiple kernels. This method is beneficial if the kernels
use few common data. Our method is to optimize communication especially for SPMV, which is very commonly
used in most of the scientific and engineering applications.

Storage format of sparse matrix is very important in determining the performance of SPMV. Various
proposals of sparse matrix storage formats are discussed here. Bell and Garland [10] proposed a new GPU
suitable sparse matrix storage format namely HYB which is a combination of ELL and COO. The kernel time
of HYB is improved a lot at the cost of high data organization and memory transfer time. The data structure
proposed in this paper gives improvements in overall time of SPMV computation, of course at the cost of SPMV
kernel time. Blelloch et al. [11] studied SPMV on vector machines. Choi et al. [12] proposed the BELLPACK
representation that suits for matrices with dense blocks. Yang et al. [13] proposed optimizations using texture to
increase data locality that improves SPMV performance. Monakov et al. [14] [15] implemented blocked SPMV
and Sliced ELLPACK in which a slice of the matrix, a set of adjacent rows, are stored in ELL format.

Vazquez et al. [16] proposed ELLPACK-R format that uses ELL format with an array containing the length
of each row. They assigned multiple threads to a row to balance the computations of threads. Anirudh et
al. [17] and Kiran and Kishore [18] considered combination of CSR and ELL formats for storing the matrix.
Dziekonski et al. [19] have proposed sliced ELLR-T data structure. Most of the formats proposed increases the
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performance on chip and not considered other overheads like memory transfer and data organization time. The
communication optimized sparse data structure by name CSPR was proposed by Neelima and Prakash [20].
The method was not scalable and not tested with CUSP results.

Various optimizations to the existing formats can further improve the performance of SPMV computation
on GPU. The work by Yelicki et al. [21] and Vuduc et al. [22, 23, 24, 25] gave extensive optimizations and
auto-tuning for sequential machines. Low-level code optimizations and data structure optimizations for single
core and parallelized optimizations for multi-core architectures is given by Williams et al. [26], [27]. Brahme et
al. [28] proposed a greedy extraction of dense sub matrices that load balances and overlaps communication and
computation, so, reduces memory traffic and hides communication latencies. It is an on chip optimization, uses
greedy algorithm and has less scope for scalability. Zein and Rendell [29] proposed an analysis and selection tool
that selects the best performing implementation for SPMV. Wang et al. [30] proposed optimizations for SPMV
computation on CUDA by giving optimized CSR storage, thread mapping etc. Baskaran and Bordawekar [31]
also proposed optimizations to improve SPMV performance by using synchronization free parallelism, optimized
threads mapping, data fetch and data reuse. This work proposed a new storage format for the sparse matrix
that improves the performance of the application by optimizing the data organization and memory transfer
time from CPU to GPU. This work also optimizes the computation by optimizing the thread mapping.

5. New Format for Sparse Matrix Representation. The concept of single index representation is
implemented at the bit level and hence the name Bit-Level Single Indexing (BLSI) is given. This is also
implemented at the integer level by using division and modulus operations, but for the ease of programming
and optimal index generation, bit level implementation is chosen for observing the results. The results or the
total time is same in both bit level and integer level implementations.

5.1. Index Generation. Contrast to many standard sparse matrix formats like COO, CSR etc., which
use one array or one data structure for column index and another to keep information about the row, BLSI
method uses only single array or data structure to store the indices by embedding the column information in
the bits of row indices information. Hence, this method needs only one array of size equal to the number of
non-zero elements to represent the indices. If the column index is also big and could not fit into the remaining
bits that are available, then offset is used to keep track of column index while using small value to represent
the column index that fits into the array. Offset size will be much smaller compared to the size of the second
array in COO format (ITER<<<nnz) and smaller than CSR format pointer array (ITER<<ptr) to mention a
few. The size of the offset array, ITER, is computed as:

ITER = (numEle+ (THPB ∗BLOCKS)− 1)/(THPB ∗BLOCKS) (5.1)

Terminology used:
• ITER : Number of iterations required and size of offset array
• THPB : Threads per block
• BLOCKS : Number of blocks launched in the grid
• numEle : Number of non-zero-elements
• BIT SHIFT : The power of two taken (in the example given, it is 17)
• Offset[] : Array to store the offsets for different ITER
• newRow[] : Array that contains the value of row index of corresponding non-zero element
• newCol[] : Array that contains the value of column index of the corresponding non zero element
• index[] : Array that contains the row index and column index embedded into few bits
• value[] : Array that contains the non-zero-value
• REM AND : (2 power of BIT SHIFT)-1
• B[] : Dense vector array
• dotd : Contains result of multiplication of non-zero-value with the corresponding element in the vector

5.2. BLSI: Bit Level Single Indexing. BLSI is a new format proposed to represent sparse matrix in-
dices to reduce memory transfer overhead in the memory bound SPMV computations. The main operations
involved in SPMV computation on a GPU are organizing the data (for enabling global coalescing by changing
the data layout and other optimizations to get performance benefit from GPU), sending the data from CPU
to GPU and executing SPMV computation on GPU. The memory transfer time for the results from GPU to
CPU is very minimal and not considered here. The SPMV computation time is given as total time of all these
operations and through this new data structure improvements are seen in all these steps of SPMV computation.
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Through this new method, this work presents optimizations at three levels as follows:

• At the data format or data mapping level
• At the communication level between CPU and GPU
• At the computation level while assigning threads for computation

Algorithm 5.2.1 Index generation in BLSI format

for(j=0;j<ITER;j++)
{
offset[j]=newCol[j*THPB*BLOCKS];
for(i=j*THPB*BLOCKS;i<((j+1)*THPB*BLOCKS) && (i<numEle);i++)
{
index[i]=((newCol[i]-offset[j])<< BIT SHIFT)+newRow[i];
}
}

The number of bits required for the single index representation is the sum of BIT SHIFT size and the
offset [] data size. The size of BIT SHIFT is the immediate next power of 2 of the row size. For example, if
the number of rows are 86, 000, then 216 = 65,536 and 217 = 131,072. So BLSI considers BIT SHIFT size as
17. As mentioned earlier, BLSI needs offset array to reduce the number of bits to represent row and column
information into a single value. The column index is left shifted by BIT SHIFT size and then added with row
index. The index generation algorithm is given in Algorithm 1. The column index added with row index and
the row index is extracted on GPU in SPMV GPU kernel as given in Algorithm 2.

Algorithm 5.2.2 SPMV computation using BLSI format

unsigned int i =blockDim.x * blockIdx.x + threadIdx.x;
for( ;i<N; i+=BLOCKS * THPB )
{
row = index[i] & REM AND;
col = (( index[i] >> BIT SHIFT) + offset[i / (THPB*BLOCKS)]);
dotd = value[i] * B [col];
atomicAdd( result+row, dotd); }

The BLSI index can also be computed as row-index * n + col-index, which is equivalent to the index
calculated in Algorithm 1. The index of row and column computation from single index as shown in Algorithm
2 is equivalent to obtaining row by doing division and modulus operation on BLSI index with size of the matrix
to get row and column index respectively as shown in Figure 5.1.

5.2.1. Data Format Optimization. The proposed BLSI format optimizes the data organization time
and also the data storage requirement for the memory bound SPMV computation. The input data to SPMV
kernel on GPU needs reorganizing the data to enable the global coalescing and other optimizations to get the
actual performance improvements on the GPU. BLSI method requires pre-processing to restructure the matrix
into a single index based matrix from .mtx, Matrix Market Format, a standard file extension used in many
benchmark matrix data that uses COO format to represent the values in the matrix. But this pre-processing is
involved with any other sparse data representation other than COO, which needs to be generated from COO.
For example ELL, CSR etc. formats have to be generated form the Matrix Market Format i.e, COO. The
overhead involved in generating BLSI format is still very less compared to the other formats. Table 1 shows the
total time for BLSI and HYB format. Total time includes data reorganization time, Sending data from CPU
to GPU and the kernel computation on GPU. HYB format is highly optimized format on the GPU so far. The
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Fig. 5.1: Sample data format representation of sparse matrix A in BLSI method, single index calculation and
extraction of the row and column index calculations represented at the data type level. n is the size of the
square matrix.

Table 5.1: Total and kernel time executions for BLSI and HYB formats

Input BLSI − total HY Btotal Ratio : HYB −Kernel BLSI −Kernel
Matrix time in ms time in ms HYB/BLSI time in ms time in ms
web 21.307 581.689 27.301 0.847 4.637
ship 21.399 2191.501 102.411 1.426 3.396

scircuit 7.478 248.329 33.208 0.459 1.371
rma 10.098 741.014 73.379 0.617 2.207
rail 55.504 108.001 1.946 3.772 20.656
qcd 8.686 546.219 62.888 .227 2.287
pwtk 31.701 3344.274 105.493 1.502 3.607
pdb 12.674 1427.531 112.633 0.971 1.479

mc2depi 14.084 604.106 42.894 0.246 2.472
mac 11.134 420.245 37.744 0.639 2.178
dense 13.949 29.763 2.134 0.849 1.994
cop20k 9.851 796.334 80.838 1.047 2.412
consph 17.356 1951.671 112.452 0.889 2.427
cant 12.384 1361.669 109.959 0.765 1.693

total time comparison shows that BLSI is 2x to 112.6x faster than HYB when total time is considered as the
SPMV time. If we compare the total time (that includes the kernel time) with the kernel time of the respective
sparse formats then total time is almost 2.6x to 8x times the kernel time on GPU for BLSI and 28x to 2452x
times the kernel time for HYB format. The total time is observed by using the CUDA event recoder for the
CUSP library operations. The improvements in communication between CPU and GPU are shown in Sect. 7.
BLSI kind of new formats are desired for the GPUs that are massively data parallel architectures to show the
overall benefit of using the GPU for data parallel computations. The problem of CPU-GPU communication
scales up as the number of GPUs used increases in a system. If the matrix is very large and does not fit into
the chip storage, then SPMV performance still degrades and BLSI format gives better overall timing in this
case too. Hence the proposed new data representation is an optimized data format for the GPUs.

5.2.2. Communication Optimization. The Matrix Market format is the most used standard format
that uses COO data format. An optimized library like CUSP [32] etc., uses .mtx files and builds other formats
from COO. So, the communication time between CPU and GPU is the time taken to transfer two index arrays
for any format. The BLSI sparse matrix representation is up to 204% faster than COO, 104% faster than CSR
and 217% faster than HYB formats, in memory transfer time from CPU to GPU. The results of comparison for
the different matrices are given in Sect. 7.

5.2.3. Computation Optimization. BLSI uses atomicAdd() computation where all the threads need to
synchronize to add the row-wise product to single sum. To optimize even this computation time using atomic
operations, the thread assignment is modified as follows. In the pre-processing stage, BLSI does some changes
to the COO matrix (from Matrix Market file) [33], to change the data access pattern that in turn optimizes the
thread computations. The detailed explanation is as follows. For the matrix given in Figure 3.1, the thread
assignment for an SPMV kernel is shown in Table 5.2.

If the data access pattern is not changed, two consecutive threads take the computation of values a and
b of row 1. Assume that both finish the computation at the same time. These two values need to be added
to a single value that represents the sum of the products of that row. Only one thread can access the sum
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Table 5.2: Thread assignment: continuous threads are assigned for values with in a row

Old Thread Assignment
Thread ID 1 2 3 4 5 6

Val a b c d e f
Row 1 1 2 3 4 4

Table 5.3: Data representation of .mtx file after changed by BLSI method

Row Col Val
1 1 a
4 1 e
3 2 d
1 3 b
2 3 c
4 4 f

as it is an atomic operation. The problem here is two threads finished the work at the same time but sum
of products delays the overall result because of the atomic operation. To overcome this, BLSI uses a different
data access pattern that delays the single row product computations so that the conflict to write to the row
wise sum is delayed and in turn the row wise sum is available to all the products when they are completed with
the computation. This technique has boosted the performance to much higher values. The time of execution is
dominated by the row that has large non-zero-values.

To improve the performance using BLSI, BLSI changes the data representation of the .mtx file as follows.
The Matrix market file is sorted based on column indices rather than row indices. Hence the .mtx representation
will be changed as shown in Table 5.3 for the matrix given in Figure 3.1.

The thread assignment is done column wise here. Threads that belong to the same row need not wait for
atomic operation, reducing computation time. The atomic operation of multiple threads is delayed that in turn
improves overall performance of SPMV kernel. The thread assignment is shown in Table 5.4. By changing the
access pattern, it gives up to 92% improvement in SPMV kernel computation than the previous access pattern.

These optimizations used are external to the device. As shown in Sect. 7, the results are promising in-terms
of memory transfer time form CPU to GPU, overall GPU computation time that includes memory transfer and
kernel executions time, new format generation time and also overall program execution time. Hence BLSI can
be used as one of the sparse matrix formats that better utilizes the device.

6. Experimental Setup. This section describes the experimental setup used. The workload selected and
workload parameters used in the experiments are given. Monitors used for the observation of outputs are listed.
The specifications of hardware and software used for the experimentation are given in Table 6.1.

6.1. Workload. The input matrices used are the same workbench used by William et al. [26], [27]. These
are the real data observed form the experiments and posted in University of Florida Sparse Matrix Collection [33].
The input workload use and its characteristics are given in Table 6.2.

6.2. Workload Parameters. The input matrices are evaluated with the proposed methods. The workload
is characterized by performance observed in GFlops (109 Flops) and bandwidth in GBytes (109 Bytes). The
time is measured for the kernel execution and these values are derived with the details of the matrices used.

GFlops is computed as follows:
GFlops = ((2* nnz)/(kernel execution time in milliseconds * 1000000))

Bandwidth is computed as follows:
Bandwidth = ((3*nnz) + (2*# of rows)*4)/(kernel execution time in milliseconds * 1000000)

To compare the communication time between CPU and GPU, only the time of communication or time
for the memory transfer is taken into the consideration. The total time is observed as the time for the data
organization of the input, memory transfer time form CPU to GPU and the SPMV kernel execution time on
the GPU. For observations, CUDA event recorder is used for GPU related computations and CPU timer is used
for the computations on CPU.
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Table 5.4: Thread assignment: thread 1 access first value of row1, thread 2 access first value of row 2 and goes
on

New Thread Assignment
Thread ID 1 2 3 4 5 6

Val a e d b c f
Row 1 4 3 1 2 4

Table 6.1: Specifications of hardware and software used in experiments

System/Hardware Specifications
Processor name and code name Intel Core i7 2600, Sandy Bridge

Processor specification Intel (R) Core(TM) i7-2600 CPU @ 3.40GHz
Graphics Interface PCI-Express

Graphics processor name and code name NVIDIA GeForce GTX 470-GF100
PCI-E link width X16
Memory type DDR3
Memory size 1280MB

Software Specifications
Windows Version Microsoft Windows 7(6.1) Service pack 1(Build 7601)
DirectX Version 11.0

Programming platform Visual Studio 2010
CUDA SDK version 3.2 and 4.0

6.3. Monitors. NVIDIA provides ParallelNSight to profile the CUDA programs. The Communication
time between CPU to GPU is taken from the profiler memory copy time from host to device. CUDA C also
provides an event recorder to observe the elapsed time. For the GFlops and Bandwidth computation that are
given as part of program, CUDA event record is being used to measure the kernel time. It is also been verified
that the time taken by the CUDA event and the profiler for the kernel execution are same. Hence the mode of
observation done is valid.

7. Analysis and Interpretation of Results. This section compares the proposed BLSI format against
the most commonly used formats like COO, CSR and HYB. The results are given for the following comparisons.

Communication time (or) Memory transfer time: The memory copy (memCopy for short) time between
CPU and GPU is compared for all the matrices given in the workload. They are compared by considering the
time of memCopy in milliseconds. Figure 7.1, shows that BLSI takes less time for memCopy in all the cases.
BLSI is up to 107% better than CSR, 204% better than COO and 217% better than HYB when compared
for memCopy time of sparse matrix data from CPU to GPU. The percentage of variations in memory transfer
time of COO, CSR and HYB with respect to BLSI is shown in Figure 7.2. In scircuit, the number of elements
per row is very small and hence CSR ptr and BLSI offset sizes become same and also the kernel time of CSR
is better for such matrices. In general, for a matrix with very few elements per row or few rows with large
elements, BLSI method will not perform well.

Performance Observation in time of execution by considering the kernel + memCopy time of SPMV Com-
putation: Figure 7.3 compares four formats with respect to SPMV computation that is, CPU to GPU com-
munication time plus the kernel time. The total time taken by BLSI format in matrices scircuit, rail is more
because, they have more nonzero elements distributed in very few rows. So the computation time taken by
BLSI is higher, because BLSI uses atomicAdd() for row wise sum. The BLSI (our method) outperforms than
all other methods for different structures of the matrices, when SPMV computation time and device memCopy
time are considered. As explained earlier, this format was proposed to reduce the CPU-GPU communication,
this optimization has resulted in overall better performance also. BLSI is 80% better than CSR, 164% better
than COO and 161% better than HYB (as shown in Figure 7.3) when both the memory transfer time and kernel
time are considered.

Figure 7.4 compares different sparse storage formats by considering total time as the data organization time,
memory transfer time and the kernel time. The HYB results are not shown in Figure 7.4, because it deviates
the graph. The values are given in Table 5.1. The total time in mac, scircuit, web and mc2depi of BLSI is little
more than total time of CSR because offset array used in BLSI and kernel time dominates by the longest row
reduction. As the number of elements per row is very small in these matrices, CSR kernel performance is better
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Table 6.2: Specifications of hardware and software used in experiments

Matrix Rows NNZ NNZ/Row Description
cant 62,451 4,007,383 64 FEM cantilever

consph 83,334 6,010,480 72.1 FEM concentric spheres
cop20k A 121,192 2,624,331 21.6 Accelerator cavity design
dense2 2000 4,000,000 2,000 dense matrix in sparse format

mac econ fwd500 206,500 2,100,225 3.9 Macroeconomic model
mc2depi 525,825 2,100,225 3.9 2D Markov model of epidemic
pdb1HYS 36,417 4,334,765 119.3 protein data bank 1HYS
pwtk 217,918 11,634,424 53.3 pressurized wind tunnel
qcd5 4 49,152 1,916,928 39 quark propagators (QCD/LGT)
rail4284 4,284 11,279,748 2,632.9 Railways set cover, constraint matrix
rma10 46,835 46,835 50.6 3D CFD of Charleston Harbor
scircuit 170,998 958,936 5.6 Motorola circuit simulation
shipsec1 140,874 7,813,404 55.4 FEM Ship section / detail

webbase-1M 1,000,005 3,105,536 3.1 Web connectivity matrix

Fig. 7.1: Comparison of memCopy time between CPU and GPU

Fig. 7.2: Percentage of variation in Memory Transfer Time between CPU and GPU
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Fig. 7.3: Performance comparison in time that includes memCopy time and kernel execution time

Fig. 7.4: Performance comparison of different formats by considering the total time as time that includes data
organization time, memCopy time and kernel execution time

than the BLSI format. These graphs show that how the memory bound computations affect the performances
of GPU.

Performance in terms of GFlops and GBytes by considering only kernel execution: The performance in
GFlops is computed using only the kernel time. As BLSI do not improve the kernel time of SPMV than the
HYB etc., the GFlops computed considering the kernel time is less for BLSI format. BLSI improves the overall
time of the SPMV computation at the cost of increased kernel execution time. GFlops graph is shown in Figure
7.5 and bandwidth measurement in GBytes is shown in Figure 7.6. These graphs show the performances of
various formats on the GPU.

8. Conclusions. Our experiments have shown that single indexed sparse matrix representation can give
substantial improvement in performance while considering the total time of SPMV computation. Total time
includes the time for the main operations involved in SPMV, i.e. time of data organization, time of memory
transfer and time of SPMV computation on the GPU. The improvement in performance is because of reducing
the complexity of data organization and reducing the data to be transferred at the cost of GPU execution time.
The improvements shown are not negligible and even for an iterative solution the improvement is beyond the
multiple of number of iterations.

The idea of reducing the memory transfer overhead and data organization overhead by using a new data
structure for the sparse matrix is novel and it can be improved further. The SPMV performance on the GPU
can further be improved by using various optimizations like parallel reduction for row wise sum calculation
to mention a few. BLSI or any other formats performance is determined with respect to the input matrix
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Fig. 7.5: Performance comparison in GFlops considering only kernel execution time of SPMV

Fig. 7.6: Comparison of bandwidth in GBytes for the different formats considered

sparseness. BLSI kernel performance on GPU is less compared to other formats when the matrix has few rows
with large number of elements. An automated tool that can suggest a best data structure from the existing
sparse formats based on the input matrix properties like number of elements per row is an on-going work. This
can be integrated at runtime so that on the fly data structure to be used can be decided based on the input
matrix and also architecture of the device to give the best performance for the SPMV computation.
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