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DYNAMIC DISTRIBUTED PROGRAMS CONTROL BASED ON GLOBAL PROGRAM
STATES MONITORING

J. BORKOWSKI†AND M. TUDRUJ†‡

Abstract. The paper concerns designing distributed program execution control based on global application states monitoring
in the presence of a dynamic number of processes and threads. Global program execution control is based on application states
monitoring at the level of processes/threads in clusters of multi–core processors. A special control infrastructure is proposed based
on synchronizers, which collect state information from processes and threads, detect strongly consistent application global states,
evaluate control predicates and send respective control signals. An algorithm for detection of strongly consistent global states for
a variable number of processes/threads is presented.

1. Introduction. Writing distributed programs with complicated global control structures for execution
in clusters of processors is easier when some support for automatic monitoring and handling of global application
states is provided in the run time system. Commercial distributed systems do yet not support this idea. Hence,
the program execution control based on the monitoring of global application states has to be programmed by
programmers from scratch. It requires tedious programming of the collection of constituent local states and
designing out of them global states which had happened in parallel in distributed processes of an application.
Programming these aspects of program execution control is complicated and takes much of programmer’s time.
Besides it is error prone. This paper relates to an original distributed program design framework PEGASUS
(Program Execution Governed by Asynchronous SUpervision of States) [6, 24], which assumes a built in support
for handling the local and global application states and automated design of program execution control based
on global states monitoring.

Some introductory research results on the use of the global application states monitoring in the design of
execution control of distributed programs can be found in literature. Linda environment [1] provides a common
global tupple space for the exchange of global control information and supports primitives for writing and reading
in it. Some solutions leading to the design of global control for interactive software components can be found
in coordination languages. Manifold and Reo environments [2] have ben provided with primitives for inclusion
of communicating software components into coordinated structures. Nevertheless, no notion of a global state
has been used in these systems. Global application states were basic concepts in the Meta system [3], which
enabled designing distributed programs based on communicating components. In the Meta system, application
processes were able to send messages on their local states on which consistent global states were generated and
the respective global predicates were evaluated. In Meta, complicated formalism based on guards was used to
express control based on global states. An attempt to simplify this formalism was undertaken in the Lomita
language [3]. But it suffered of inefficiency due to very costly ordered state message broadcasts. Global control
constructs for the OCCAM language were proposed in [4] with an implementation based on replication of global
state variables. The first infrastructure for the run–time supported design of the asynchronous global execution
control of distributed programs in C language based on monitoring of global application states was implemented
in a graphical parallel program design system PS–GRADE [5].

The features of the PS–GRADE and other distributed program design frameworks [9] have been substan-
tially extended in PEGASUS. The main extension are the graphically supported global high level control flow
constructs in which the flow of control at the level of the distributed program components depends on the pred-
icates computed on global application states. In this respect, the PS–GRADE did not provide any mechanisms
for structural control flow steering by global application states while taking care of the asynchronous control of
the internal process behaviour. Another important extension is the global program execution control exercised
at the thread level, important for the evolved software design for multicore processors. One more extension
is the separation of the communication frameworks for maintaining the control data from the communication
environment for computational data. This separation is on one hand logical and on the other hand physical since
separate networks are assumed. Such logical and hardware support strongly improves control design efficiency
as has been already discovered by simulation experiments for PS–GRADE [21].

Current implementation of the PEGASUS framework assumes that the number of processes and threads
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whose local states contribute to the definition of the program global consistent states, is known at the application
program compile time. In the research reported in this paper, the number of threads and processes taken into
account is assumed to be variable and is set dynamically at program run time. The variable number of processes
has been considered in [7, 8, 9, 10, 11], however only for the group data communication control. With the new
assumptions, in the dynamic distributed programs designed under the PEGASUS framework, the automatically
constructed global states based on local states of a variable number of threads or processes define the control flow
and the functional features of programs. These features extend the functionality of the PEGASUS framework
towards more flexible control constructs, however at the price of new algorithms for the construction of strongly
consistent global states and more specific methods for state messages sending and signal reception in application
program components. Both these problems are presented and discussed in this paper.

A short presentation of this research has been published in [25]. The present paper adds many details and
includes the following relevant material:

• dynamic SCGS detection algorithm described in detail with a pseudo–code,
• an application example,
• a description of the PEGASUS system as an example of an environment where the dynamic SCGS
detection can be applied.

The paper consists of six parts. In the first part, the application program execution control based on
global states monitoring is explained. The second part, presents the related research on the dynamic process
membership in program control. The third part presents the algorithm for the detection of global application
states in the presence of a variable number of processes/threads. The fourth part shortly describes the graphical
design of application programs in the PEGASUS framework. The fifth part discusses global program execution
control based on dynamic process groups. The sixth part outlines a relevant example with a variable number
of processes.

2. Global states monitoring for application control. An analysis of existing parallel application
control methods e.g. [12, 13, 14], has motivated us to have a global view of a running distributed application
state used when defining distributed program execution control. Such control should be based on global program
execution control high–level primitives. To increase the program code clarity, the code sections responsible for
program execution control should be separated from the code sections responsible for computations. To increase
the distributed program performance, the synchronization and communication of the control data and steering
orders should be implemented without passive waiting.

Initial ideas on global distributed programs control [4, 15] have been rectified into program execution
control methods corresponding to current parallel and distributed program semantics, which intensively used a
precisely defined notion of the application global state [16]. The new program control model and its theoretical
background were implemented inside a parallel program graphical design environment P–GRADE giving an
extended version of it, called PS–GRADE [5]. In PS–GRADE, special control processes called synchronizers
were able to receive local state reports from processes of a running application. Based on the local state
information, the synchronizers were able to re–construct and monitor the global states of an application for
defined sets of relevant constituent processes. Among different kinds of global states, the most interesting were
such for which the synchronizers and the application program programmer were sure that the states occurred in
distributed processes for sure in parallel, with the occurrence not weakened by any knowledge based on partial
orders. Global application states discovered by synchronizers with such certainty are called Strongly Consistent
Global States (SCGS) [19]. A SCGS can require local states from all processes of a distributed application or
of a subset of them. Based on that, we speak about absolutely global or regional strongly consistent global
states. A programmer can also consider states which do not correspond to concurrent local states without any
concurrency requirements. They are called Observed States. For observed states no SCGS detection algorithms
are performed and local states are directly used for application control definition. The PS–GRADE system
run–time framework, working on–line in parallel with the application, was providing the infrastructure for
sending process local states, reception of the state messages by synchronizers, reconstruction of different kinds
of global application states including SCGSs and using them to define the execution control of the application.
The sequence of messages the synchronizers were receiving might not be the same as the sequence of events
in reality, because of delays in message construction, transfer and processing which could happen. Therefore,
the received local state messages were only used as input data for consistent state construction algorithms [18].
For our SCGS generation algorithms, the application processes were sending local state messages accompanied
by real–time event timestamps obtained with the use of partially synchronized local processor clocks globally
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Fig. 2.1: Code activation (left) and cancellation (right) by control signals

synchronized with a known accuracy [16]. The SCGSs based on such local state messages can be constructed
in O(E NlogN) time, where N is the number of processes and E is the number of events per process. The
complexity of the algorithm with real–time event timestamps is lower than that of the algorithms, which use
logical vector clocks since the later leads to SCGS detection with the exponential complexity. By using networks
of parallel synchronizers, a distributed hierarchical SCGS detection can be organized, which is speeding up the
SCGS detection for complicated state cases [17].

An SCGS is a state, which has occurred for sure in all involved processes, in difference to potential global
states obtained with the use of logical clocks. Timestamps defined with a known accuracy requires a processor
clocks synchronization facilities installed in the executive distributed system.

The clock synchronization needed here can be obtained in many ways, depending on the assumed accuracy
and budget. The least costly and the cheapest is the Network Time Protocol which can reduce the clock skew
to tens of µs. The more costly is the Precision Time Protocol, which supported by a dedicated time messages
transmission network can provide the clock skew below 1 µs.

Control predicates used for definition of process execution control represent control conditions, which are
checked when a given global state is reached. The predicates are encapsulated in synchronizers as specially
structured pieces of code, which are defined by a programmer as parts of the application. The predicates can
be defined based on SCGSs (global or regional) or observed states. For SCGSs, the predicates are checked
on each detected SCGS state. If a predicate is fulfilled, the Unix–type control signals are sent to selected
processes. The signals can activate designated code sections in target processes immediately upon their arrival,
suspending current computations. Alternatively, they can cancel current computations, making processes to
proceed immediately to further parts of their algorithms, see Fig. 2.1.

If the signals are sent between a synchronizer and processes located on different processors, the signals
are transformed into control messages when they leave the processor of the synchronizer. The messages are
sent by the use of a message passing library. The messages are asynchronously received at the target process
processor and then transformed into classic Unix signals which are delivered asynchronously. With the use
of asynchronous control signals, a process does not need to stop and wait passively for control orders sent by
synchronizers.

In PS–GRADE, the set of parallel application processes taken into account for the monitoring of global
application states was defined statically by a programmer. This limitation can be removed in the new enhanced
PEGASUS system. Under PEGASUS, each process usually contains many parallel threads which can be moni-
tored and controlled by synchronizers through global predicates, in a similar way as processes [17]. It is a quite
common programming practice to create and destroy the threads when necessary. Therefore, the global control
system should enable to deal with dynamically changing set of monitored entities (threads or processes). In
this paper, we examine methods for monitoring global states of dynamically changing sets of threads/processes
and methods for organizing the respective application control.

3. Related research. The problem of cooperation between processes in a group when the processes can
join and leave the group has been analyzed in the literature. Several authors studied such cooperation using
broadcast as the main communication primitive.

A good insight to the problem in presented in [7] and [8]. There, the notion of views was defined. A view
stands for an interval when the group membership is constant. In a single view classic (static) algorithms can
be used to implement broadcasts. The difficulty has been moved largely to view maintenance — creation of new
views and installation of new views in processes. A similar approach has been taken in the Totem system [9].
A dedicated service was created there to monitor and maintain the membership.

The idea, that processes see the same membership within a specific view (time period) and that they deliver
the same set of messages in each view in the same relative order got its name as “view synchrony” and has
been examined by other authors, e.g. [11]. View synchrony uses broadcast communication and orders events
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logically (before/after) ignoring actual (wall clock) time relations. The real time is used only to detect dormant
members, e.g. as in [20], where assumptions on maximal token transfer time exist.

Our case differs from the cases analyzed in the literature in a few important aspects.
• The communication we need is of many–to–one type (processes reporting to a synchronizer) and one–to–
many type (a synchronizer sending control signals to processes). It is not many–to–many communication
— processes do not need to know about each other.

• We use Strongly Consistent Global States and real–time timestamps. This makes the coordination
between processes much different than in the case of logical time.

• The control mechanism in our system is based on consistent global state monitoring — we must be able
to construct consistent global states with changing process membership.

• The emphasis in our system is not on communication (sending messages with data), but on control
(sending commands and states). The impact of membership changes should be analyzed from another
point of view.

4. SCGS detection. The Strongly Consistent Global States (SCGS) were introduced in [19]. They are
analogous to the Consistent Global States (CGS) as defined in e.g. [18]. A CGS is a set of local process states,
one state from each process, with the property that the states are pairwise concurrent. The concurrency is
defined with the happened–before relation and logical vector clocks can trace it. In SCGS the state concurrency
is defined with the help of real–time (wall clock) timestamps. To be able to use real time clock the processes
must have access to a global shared clock or their local clocks must be synchronized. It is assumed that the
clocks used by the processes are not ideally synchronous and that the upper bound of the clock skew is known.
In such a situation, an event can be depicted on a time axis as an interval rather than a point. An event
occurs momentarily of course, but we are able to pinpoint the time of its occurrence due to not perfect clock
synchronization. Instead, we determine an interval within which we know the event has occurred. Fig. 4.1
illustrates how the events are marked on the time axis and how SCGSs are constructed from concurrent local
states.

The SCGSs (unlike CGSs) occur sequentially, one at a time. The number of them is linearly proportional
to the number of events. What follows is that the algorithm which constructs SCGSs is much less complex than
algorithms for CGS lattice construction. To be able to explain the proposed extensions to the SCGS algorithm,
we will recall the idea of the standard SCGS algorithm first [16].

We will formulate the SCGS construction algorithm using the diagram from Fig. 4.1. The local process
states for each process are depicted as a sequence of segments (think solid lines), each segment stands for a local
process state duration. When the segments are projected onto the bottom line, then the rectangles with names
S1,S2,S3,S4 mark the areas where the projections have non–empty intersections. These are the SCGSs. The
algorithm has to find them. The segment positions in each sequence are sorted and the segments are disjoint
within a single sequence. For now we assume, that intervals between consecutive events at one process are
longer than 2ǫ, where ǫ is the clock synchronization accuracy. The notation is as follows:

SEQi — segment sequence for process i,
CS — the currently examined set of segments containing one segment from each sequence,
si — segment from SEQi in CS,
S(s) — segment s start position,
T (s) — segment s terminate position.
next(si) — the next segment after si in SEQi

The intersection is non–empty if i, j = 1..n : S(si) < T (sj), which can be simplified asmaxi = 1 . . .N(S(si))
< mini = 1 . . .N(T (si)) (condition C1)

Initially CS contains the first segment from each sequence. If the condition is not met, then there exist k
and l, such that S(sk) ≥ T (sl). Assuming that we have checked all segments lying before the ones currently in
CS (which is true initially) there is no point in an attempt to decrease S(sk), but we can take the next segment
in SEQl to increase T (sl). In such a way we proceed forward moving by one segment from one sequence at a
time, preserving the assumption. If a nonempty intersection is found, we have to start the search over. There
exists k, such that T (sk) = T (CS). It is enough to notice, that the next non–empty intersection cannot start
earlier than S(next(sk)). So we take the next segment from SEQk and run the procedure further, again with
the assumption valid. By induction, no non–empty intersection will be missed and all segments will be checked.

When we allow short intervals between events on a single process, we can have a situation as on the left–
hand side of Fig. 4.2. There is a “negative length” segment between events e1 and e2. It should be interpreted
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Fig. 4.1: SCGSs detection

that we do not know the exact start/end points of the segment, yet we know there is one here. For P1 in a state
between events e1 and e2 and P2 between f1 and f2 condition C1 is false. However, we do have a nonempty
intersection here. Only we cannot precisely point its position. The right–hand side of Fig. 4.2 shows a similar
situation, but this time the intersection is empty. We formulate the proper condition as follows:

(C1) ∨ (∃i : S(si) = max(S(sk)) ∧ T (si) = min(T (sk))∧
max2(S(sk)) < T (si) ∧min2(T (sk)) > S(si))

where k = 1 . . .N and min2() and max2() give the second minimal and maximal value, respectively. The
condition says, that if we have a “negative length” segment, then it must be fully contained in other segments.

To speed up the condition evaluation, tuples 〈S(si), i〉 and 〈T (si), i, ptri〉 should be kept in priority queues
with the first element as the key – element insertion cost is logN, accessing min/max is done at a constant
cost. Component ptri points to the corresponding tuple (start of segment i) in the first queue. If we notice,
that T (SC) = mini=1...N (T (si)), then the search for k : T (sk) = T (SC) can be accelerated by using one of the
introduced queues. Operations min2, max2 and removing an element pointed by ptri can be done at cost logN.
The total cost of the algorithm is O(E NlogN).

4.1. SCGS in dynamic groups. The described above SCGS detection algorithm assumes a constant
number of monitored processes. Each report coming to a synchronizer contains information about an event
in a known process. To allow a process to join and leave the monitored (and therefore controlled) group, a
synchronizer must be informed about the process group membership changes. We introduce two new message
types for that purpose. A join message is used by a new process to tell a synchronizer that it is joining the
controlled group, while the leave message terminates the process group membership. The assumption that
process clocks are synchronized within a known accuracy must stay true for the joining (and of course the
leaving) processes. With this assumption the new messages can be ordered on a time axis using the same rules
as standard event messages. As described above, the standard SCGS detection algorithm hops from one event
to the nearest one. With dynamic process membership, it is enough to verify if a join or leave message with a
timestamp positioned between the current event and the nearest one has been received. A join event should be
then processed as follows: increment the number of monitored process N := N + 1, rebuild all data structures
to reflect this change, set the new process state as reported within the join message. A leave message processing
should decrease the number of monitored processes N := N − 1 and all the involved data structures should be
rebuilt accordingly, removing the elements corresponding to the process that has left.

Fig. 4.3 shows a situation when the ideal scenario fails. A process join message ejoin from process C
contains a timestamp which should position this event within SCGS S1 and S1 should include three processes.
However, the message ejoin arrives with a delay, after S1 has been detected for two processes only. Without
additional assumptions the network delays cannot be anticipated and one should be aware that process joining

P1

P2

e1 e2

f1 f2

P1

P2

e1 e2

f1 f2

Fig. 4.2: Short–lasting local states can lead to an SCGS (left) or not (right)
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can be noticed by a synchronizer with a delay.

Fortunately, in environments where the network delays are bounded a better solution is possible. In [21] a
SCGS detection algorithm for bounded message transfer times is presented (the UT algorithm). The algorithm
postpones processing of the received event reports to make sure that all delayed reports arrive first. The
postponing time is computed according the bounded message transfer time. With this algorithm, the detection
of S1 in Fig. 4.3 would be postponed until ejoin arrives. Then, Process C would be added to S1 according
to the timestamp value in ejoin. The UT algorithm has an obvious drawback — all SCGS detections must be
delayed by the postponing time (proportional to the bound of the message transfer time).

Process leave scenario is shown in Fig. 4.4. The message eleave arrives just any normal event report with a
timestamp. When S2 is detected, eleave is treated as a normal event report and marks S2 termination. In the
next step, eleave is recognized as a leave message. Information about Process C is deleted from the algorithm
data structures, but prior to that eleave timestamp is copied to the remaining process to mark the beginning of
the next SCGS. The next SCGS S3 contains only processes A and B.

Below, we present the code of an SCGS detection algorithm able to deal with dynamic thread/process
membership. The algorithm is an enhanced version of the “T” algorithm from [21] — processing of “join” and
“leave” messages has been added. “T” is the simplest SCGS algorithm variant and its presented enhancement
permits that the states of joining processes can be taken into account with some delay, as has been explained
already. For simplicity, the presented code does not perform data structure compacting — the processes that
have left remain as empty entries. This has the advantage that the array indices used as process identifiers are
unique (new processes get new indices) and the algorithm presentation is as clear as possible. When necessary,
indirect indices can be introduced, i.e. instead if index i in Pi one should use indi and manage the ind array
appropriately. Such a solution is conceptually straightforward, therefore we will not delve into its technical
details.

ALGORITHM 1. SCGC detection using terminated local states
Symbols and data structures:

ǫi — quality of clock synchronization, for Pi’s clock ci and the master clock m : |ci −m| < ǫi
Pi — process number i, i = 1 . . .N

e.C — the timestamp attached to event e, a positive number. The value of ǫi is known by the monitor and it
is the monitor task to convert scalar timestamps into intervals: e.C → 〈e.C−ǫi, e.C+ǫi〉 = 〈e.C1, e.C2〉

si — currently processed local state of Pi
s.S — event that starts state s
s.T — event that terminates state s

Necessary data structures are as follows:

• FIFO queues Qi, i = 1 . . .N . Qi holds messages (events) from Pi. Qi.first() is the termination event of
the currently considered Pi state. The following operations are defined on queues, each with the cost
of O(1): Q.first() — the first element in the queue. If the queue is empty, then the method blocks until
an element is available; Q.append(s) — puts state s into the queue; Q.remove() — discards the first
element; Q.empty() — TRUE iff the queue is empty.

• Array S1...N (Starting) contains events. Si is the starting event of the currently considered Pi state:
Si = si.S. The algorithm checks if local states si : si.S = Si, si.T = Qi.first(), i = 1 . . .N , are pairwise
concurrent.

• Priority queue maxS holds pairs 〈Si.C + ǫi, i〉, the first pair component is used as the sort key.

thread/ 
process A

thread/ 
process B

e1 e2

e1 e2

joining 
thread/ 
process C 

ejoin

Fig. 4.3: A delayed join message
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Fig. 4.4: Processing of a process leave message

• Priority queue minT contains records 〈Qi.f irst().C − ǫi, i, ptr〉, the first component is used as the key.
A component ptr points to a corresponding record in maxS (record with the same i component). This
queue block the min() operation until the number of entries is equal N − L.

• The following operations are defined on priority queues:
– insert(t,i) : pointer — adds a new record in O(logN), returns a direct pointer to the new element
– max() — returns a record with the maximal key in O(1)
– min() — returns a record with the minimal key in O(1)
– max2() — returns a record with the second maximal key in O(1);
– min2() — returns a record with the second minimal key in O(1);
– removemin() — removes a record with the minimal key in O(logN);
– remove(ptr) — removes a record pointed by ptr in O(logN).

• Array maxSPtr1...N , maxSPtri points to record 〈t, i, ptr〉 in maxS. It is used by minT .insert() to get
a pointer to a corresponding record in maxS.

• Initially ∀i=1...N : Qi.empty() = TRUE; ∀i=1...N : Si = e0, where e0.C = 0; maxS contains 〈0, i, ptr〉,
i = 1 . . .N ; maxSPtri points to record 〈t, i, ptr〉 in maxS, i = 1 . . .N ; minT .empty() = TRUE.

The algorithm is as follows:

on reception of the message e (including a leave message) from Pi:
if Qi.empty() then {

Qi.append(e)
minT .insert(e.C − ǫi, i, maxSPtri)

} else
Qi.append(e)

if “monitor was suspended waiting for an event from Pi” then
“resume monitor”

on reception of a join message j from PN+1:
N = N + 1
SN = j
maxSPtrN = maxS.insert(〈j, j.C + ǫi, N〉)

main loop:
loop

〈t, i, ptr〉 = minT .min() //blocks until minT has N − L elements
min = t
〈max, j〉 = maxS.max()
if min > max then {

/* SCGS found, SCGS=〈s1, . . . , sN 〉, where si is a local state of Pi

between events Si and Qi.first() */
if “it is a termination SCGS” then

loopexit
} else if i == j then {

/* 2 events from the same process */
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〈min2, i, ptr〉 = minT .min2()
〈max2, j〉 = maxS.max2()
if (max2 < min AND min2 > max) then {

/* SCGS found */
if “it is a termination SCGS” then

loopexit
}

}
if “Qi.first() is a leave event” then {

L = L+ 1
minT .removemin()
maxS.remove(ptr)
Qi.remove()

} else {
/* search further, the state which terminates first is blocking */
minT .removemin()
maxS.remove(ptr)
maxSPtri= maxS.insert(〈t+ 2ǫi, i〉)
Si=Qi.first()
Qi.remove()
t = Qi.first().C // blocks if Qi is empty
minT .insert(〈t− ǫi, i, maxSPtri〉)

}
endloop

5. Process/thread control in PEGASUS. The aim of the PEGASUS framework is to support graphical
design of application program execution control governed by global application states. The framework enables
a graphical design of the global execution control in distributed programs. In PEGASUS, the program global
control design is graphically supported at the program global control flow level and the process/thread level.
At both levels graph representation of programs is used.

The program global control flow level is developped using Control Flow Graphical Windows. They enable
designing a control flow graph of a distributed program, which shows all control flow dependencies between
program blocks, for which the control is governed by application global states. This level enables development
of a distributed program in terms of nested high level control constructs acting on program blocks. At the
program global control flow level a special kind of the window is additionally used Block Interactions Window,
which shows the flow of control data between the blocks specified in graphical representation of the program
using control flow graphical windows.

The process and thread level enables designing the structure of internal program code in C/C++ language
for terminal program blocks in the control flow graph, i.e. such blocks which will not be further developed to
contain nested global high level control constructs. Such terminal blocks correspond to structures of application
processes which will be directly assigned to processors. These structures are designed in a special kind of
graphical windows which is called Process Structure Window.

The terminal blocks will be converted into source program modules compiled into executable modules after
mapping of code blocks to resources using the third graphically supported level of windows which are the
Synchronizer Editing Windows and the Thread Block Editing Windows.

At the program global control level, an application program is represented as a control flow graph. It is
composed of program blocks (the graph nodes) interconnected by arcs representing the flow of control and the
flow of control information between blocks. In general, this graph shows how the flow of control between program
blocks depends on global states of the program. This dependence is exercised based on the use of predicates
computed on program global states. Nodes of a global control flow graph represent program code blocks, which
can contain processes or threads (rectangles annotated with block names), synchronizers (annotated with names)
containing predicate blocks (with general predicate specifications), control flow switch nodes which direct the
flow of control in the graph accordingly to signals generated on the basis of predicate evaluation and control
paths parallelization/synchronization primitives such as PAR, JOIN, BARRIERS, EUREKA, etc. The edges in
the graph represent the flow of control between nodes and flow of state messages or signals between predicate
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Fig. 5.1: PARALLEL WHILE DO construct with a control flow predicate GP1 and an asynchronous predicate
GP2, GP3

blocks, code blocks and switches.
Important elements of the global program control flow graph are synchronizers. The synchronizers are

special program blocks which contain control predicate blocks. The synchronizers and the predicates they
contain can be assigned to processors or processor cores. A predicate specification includes a predicate name
followed by two lists separated by a semicolon: a list of graph blocks (including predicates) whose states are
involved in predicate evaluation and a list of signal receiver blocks. We distinguish control flow and asynchronous
control predicates. Both can be placed in the same synchronizer. All blocks have communication ports, which
are used to draw control data communication paths. Port and port interconnections are automatically drawn
by the system if the blocks to connect are specified inside the predicate blocks. However, ports and port
connections have to be drawn by a programmer for the control flow which is not specified inside predicates
belonging to a program block. In order not to complicate program graph design, the communication concerning
computational data is not represented in the program global control flow graphs. The design of the program
graph is supported by the replication and nesting facilities. The replication facility enables simplification of the
program graph for control constructs, which are acting on the replicated program blocks. The nesting facility
enables automatic opening of graphical windows in which nested control constructs can be designed. At block
boundary communication ports are automatically generated to enable controlling the interface between the
program graph external to the block and the internal graph inside the nested block.

Fig. 5.1 presents an exemplary simple program control flow graph. The graph contains n program blocks
Pi governed by a replicated PARALLEL WHILE DO construct. The flow of control is supervised by a global
predicate GP3 evaluated on the basis of a global state built of local states of the blocks P1,. . . ,Pn. GP1 sends
signals to the switch SW1, which directs the flow of control. SW1 asynchronously receives and stores all signals
generated by GP1. When the execution control reaches SW1 it directs the flow of control accordingly to the
last signal value received.

Fig. 5.2 presents the control graph nested inside a block Pn. The replicated program blocks Z1,. . . ,Zp are
embedded in a PARALLEL DO–UNTIL construct. The flow of control is governed by a global predicate G2
evaluated on the basis of a global state built of local states of Z1,. . . ,Zp. Blocks Z1,. . . ,Zp are asynchronously
controlled by the predicate G1, which is evaluated based on the local states of Z1,. . . ,Zp, states of some blocks
D1,. . . ,Dv and also signals sent as a result of the predicate GP1 in the synchronizer S. The predicate G1 asyn-
chronously controls Z1,. . . ,Zp by sending signals to them. Z1,. . . ,Zp are additionally directly asynchronously
controlled by the predicate GP3 of S.

Before the code of process blocks is designed using the C/C++ language, the process graphs will be first
graphically composed of thread blocks and thread level synchronizers in the Process Structure Windows. Fig.
5.3 represents such a window for the replicated Z1,. . . ,Zp

blocks from Fig. 5.2. In this window, we can see the thread level synchronizer TS which asynchronously
controls thread blocks

T1 and T2 synchronized by PAR/JOIN constructs. TS contains two predicates TP1 and TP2. TP1
combines local states of T1 with control signals from the predicate G1 of the synchronizer Sn (Fig. 5.2). TP1
controls threads in T1 and sends state to the predicate G1 of Sn. TP2 combines states of T1 and T2 with
signals from the predicate GP2 in a common global state. Based on this state, TP2 controls T1 and T2 and
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Fig. 5.4: Interactions window of the synchronizer S.

sends states to the predicate G2 of Sn and the predicate GP2 of S.

The PEGASUS framework includes facilities for an easy and convenient representation of the global program
execution control. This idea is supported by the Block Interactions Window. It automatically provides a
representation of the global control structure in the program related to a selected block of the program control
flow graph. This window enables an easy verification of the structure of the global control based on tracing the
synchronizers (more exactly their predicates) and thread blocks interactions in the program graph.

The Block Interactions Window shows an interactions graph in respect to global control design for a selected
block of the control flow graph. The window is automatically generated as a result of a click on a selected control
flow graph block. Fig. 5.4 represents the interactions window of the synchronizer S for the control graphs shown
in Fig. 5.1, 5.2 and 5.3. In this window we can trace control links of a selected graph node (the highlighted block
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S) with other nodes which co–operate with the selected node. The co–operation is implemented by sending or
receiving state messages and signals. Inside synchronizer blocks all relevant predicate blocks are shown with
the connections to respective synchronizer ports. The window has special facilities to simplify representation of
interactions of the replicated blocks. Program blocks which belong to replicated control constructs are displayed
only once with notification (R) – replicated, in the names.

6. Process/threads control in dynamic groups. The processes controlled by a synchronizer do not
need to know about each other. Therefore they may not be aware of the changing group membership. However,
the actions initiated by a synchronizer can be affected by processes leaving/joining the group. A synchronizer
upon analyzing a SCGS can decide to send a control signal to a process. If the process decides to leave the
group before receiving the signal, the signal will not be delivered. The simplest option is to ignore such signal.
If ignoring could cause problems in an application control scheme, the following possibilities, enumerated below,
can be exercised.

• A process should confirm signal reception. Not confirmed signals should be “re–processed” e.g. a
predicate should be re–evaluated. This solution requires a timeout — the message transfer time must
be bounded — otherwise a synchronizer would not know how long to wait for a confirmation.

• A symmetric solution is a negative confirmation — a subsystem responsible for signal delivery can
generate an error message for a synchronizer when a target process does not exist. The message transfer
time should be bounded as well, if the synchronizer should be able to “re–process” failed signals — it
may need to keep some history information for this purpose for a time period dependant on the message
transfer time.

• A process should inform the synchronizer that it plans soon to leave the group. Such processes are
not eligible as signal targets. This option assumes that a process knows in advance that it will leave
the group (not suitable for dealing with process failures) and again the message transfer time must be
bounded, so it is known how early a process must send the information about its approaching group
leaving.

• Before sending a signal, a synchronizer should ask a target process if it is ready to receive the signal
(not suitable for dealing with process failures). This idea induces a large performance penalty, requiring
a round trip communication before each signal.

A control scheme can involve actions on more than a single process at a time. As a practical example of
such a situation, we can give various load balancing strategies. In the simplest case, a synchronizer selects
an over–loaded and an under–loaded process and signals both of them. The process pair should communicate
directly and level their load. If one of the selected processes leaves the group after it has been selected and
before a peer process contacts it, a communication problem arises. One process from the pair would stall trying
to contact a non-existent process. The following solutions, enumerated below, can be taken into account.

• Do not let processes to communicate directly.
• When communicating with a peer process, always use a timeout mechanism — message transfer time
must be bounded.

• A process should inform the synchronizer that it plans soon to leave the group. The details are the
same as in point c) in the previous subsection.

• Before sending a signal, a synchronizer should ask a target process if it is ready to receive the signal as
in point d) in the previous subsection.

A synchronizer must be able to address a proper process/thread to receive a signal. Some difficulties arise
here if we want to guarantee that any newly joined process is distinguished from all processes that have left the
group. Two situations impose problems in this area.

• Process A is selected as a signal target, but before the signal reaches it, process A leaves the group and
process B joins it. If B gets the same identifier as A, it will receive the signal targeted at A.

• If a predicate maintains historical data about process states, and if process A leaves the group and
process B joins it, then information about B should not be linked to historical records of A — it means
that A and B should have different identifiers.

7. A dynamic application example. In the past we have shown how the global control based on
consistent process states can be efficiently applied to control the behaviour of parallel irregular applications
[22]. An implementation of a parallel and distributed branch–and–bound algorithm included the observations
enumerated below.
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Fig. 7.1: A branch–and–bound search process with dynamic thread creation/deletion

• Each process maintained its local subproblem pool containing partial solutions to be further developed.
• A standard branch–and–bound algorithm was run locally in each process (get a subproblem from a
pool, check if it is perspective, branch it, bound each newly created subproblem and return it to the
pool).

• The processes reported their load in terms of the estimated size of the subproblems in their pools.
• The synchronizer built global states from those reports to detect load imbalance and dispatched control
signals to processes ordering them to communicate and level their loads

• Each new solution better than the currently known best solution was immediately reported to the
synchronizer. The synchronizer broadcasted it to all processes using control signals.

PEGASUS let us refine this implementation by introducing thread–level parallelism on each node with a
single process running on every node. A local synchronizer on every node can do the same job as the synchronizer
for processes in the original solution. To provide the global two–level hierarchical control for all application
nodes a global synchronizer which cooperates with the local ones can be introduced [17].

Now, let us assume that the computing system is not used exclusively to solve the branch–and–bound
problem. Other tasks can also be run there, possibly with higher priorities. The branch–and–bound application
should use all free CPU cores, but should limit itself if other applications are run. Local synchronizers can obtain
node load information from a PEGASUS runtime module for CPU load monitoring. It is shown in Fig. 7.1. A
single application process (Node) is depicted there. Upon application initialization the local synchronizer, the
built–in load monitor and a predefined number of worker threads start executing. The threads report their load
and the solutions they find to the synchronizer (to the predicates “WorkerLoadCheck” and “Best”, respectively)
and they can receive corresponding control signals (broadcasted new best solution and an order to perform load
leveling). They can send the “Join” and “Leave” message to the synchronizer as well. The Thread Control
subsystem within the synchronizer handles such messages. Finally, the synchronizer reads the node load from
the Load monitor (predicate NodeLoadCheck). This predicate can initiate a thread shutdown by sending control
signals to a thread: load balancing aimed to transfer the entire load, and a “Stop” signal telling the thread to
report “Leave” and then stop. Additionally NodeLoadCheck can trigger the Thread Control module to start a
new thread. Visible external ports Z1.4 and Z1.3 are used to connect local synchronizer to the global one.

When the local load exceeds a given threshold, then the local synchronizer may send control signals to some
threads ordering them to shut down. The existing load–balancing mechanism can be used to move the remaining
load (subproblem pool contents) from the threads signaled to be cancelled to some others. Normally, a thread is
told what portion of its load it should transfer. In this case it should just transfer the entire load. The signaled
threads will use the “Leave” message to detach from the synchronizer after the complete load transfer is done.
Because the detachment is expected by the synchronizer, the problems described in the previous section are
void in this case.

On the other hand, if the load is too low, the synchronizer can create a thread to add more computing power
for the branch–and–bound search. The new thread will connect to the synchronizer by the “Join” message.
Soon, it will be recognized as an underloaded thread and a standard load balancing action will proceed.

Let’s note, that changing the computing capacity of nodes due to varying number of running threads
is automatically taken into account by the existing load balancing mechanism. When the number of threads
diminishes, the subproblem pool is processed slower and it becomes more likely that this node will be considered
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as an overloaded one. Nodes becoming faster due to an increased number of working threads will process their
tasks faster and can be recognized as underloaded nodes.

8. Conclusions. The paper has concentrated on new aspects in designing distributed program execution
control based on monitoring of application global states. These aspects concern strongly consistent global
states monitoring when the number of processes and threads, whose states contribute to the global application
control is changing during programs execution. The proposed solutions are oriented towards the PEGASUS
distributed program execution framework, which provides a ready to use infrastructure for designing global
control in distributed programs governed by predicates evaluated on global application states. An algorithm
for detection of strongly consistent global application states has been proposed. It enhances the theoretical
background for the PEGASUS framework and contributes to the domain of the design of evolved control for
distributed programs.

The PEGASUS framework is currently under implementation based on many–core processors interconnected
by separate networks for control and computational data communication, working under the Linux operating
system. As the system implements new parallel program control methods, there are no existing libraries which
provide the type of high–level services we need. We use standard parallel libraries to implement the basic
functionalities like multi threading or message passing. These libraries are used in a standard way. Only some
technical details concerning Linux signals and pthreads interaction proved to be non–trivial and we described
that topic in [26].

Inter–process control communication is organized by the use of message passing over Infiniband network.
Data communication for computations is executed over an Ethernet network. User program code is written in
C/C++ language. MPI2 library is used to express data communication in user programs at the process level.
OpenMP and pthreads libraries are used to organize user program execution at thread level with inter–thread
communication. The code of the PEGASUS execution framework is written C/C++ language supported by the
MPI2, OpenMP and pthreads libraries This paper has been partially sponsored by the MNiSW research grant
No. NN 516 367 536.
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