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A DISTRIBUTED PROGRAM GLOBAL EXECUTION CONTROL ENVIRONMENT
APPLIED TO LOAD BALANCING

JANUSZ BORKOWSKI∗, DAMIAN KOPAŃSKI∗, ERYK LASKOWSKI†, RICHARD OLEJNIK‡, AND MAREK TUDRUJ†∗

Abstract. The paper is concerned with a new distributed program design environment based on the global application states
monitoring. The environment called PEGASUS (from Program Execution Governed by Asynchronous SUpervision of States)
supplies to a programmer a ready to use control primitives to design distributed program execution control in which decisions
for synchronous and asynchronous control actions are based on predicates evaluated on global application states. Such strongly
consistent global application states are automatically constructed by the run-time system which additionally provides mechanisms
for their analysis and organizing the respective program execution control in processes and threads of user programs executed in
multicore processors. The PEGASUS control mechanisms are graphically supported in the respective program design framework.
The paper first presents main general features of the PEGASUS environment. Next, it presents a method for load balancing inside
distributed programs based on a set of parameters which are dynamically measured during program execution. Then, the paper
presents how the described load balancing method can be implemented inside the PEGASUS environment taking as an example
distributed programs for solving the Traveling Salesman Problem (TSP).
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1. Introduction. Distributed programs execution control based on the monitoring of global application
states is an important problem in designing many distributed application programs. In recent years, many mod-
ern distributed program frameworks were published, which propose new paradigms in the design of distributed
programs and systems. As their number is too big to enumerate them all in this paper, we will point out only
some of them: active objects as in the ProActive framework [1], message-driven objects as in Charm++ frame-
work [2], new virtualization approach to provide software for chipset services in systems of multicore processors
as in vSMP framework of ScaleMP [3], a task based data flow programming model as in StarSS [4], which
hides much of internal parallelism from programmers. The proposed solutions put also emphasis on different
aspects of the distributed program and system design like FELI support for CMP-based systems [5], which
automatically allocate application data to on-chip memories without user programming. All the cited solutions
contribute to the development of the design methods for systems based on multicore processors, however, they
do not contain any support for the distributed program execution control based on the global application states
monitoring.

In the history of programs execution management there were initial tries to include global states monitoring
in the execution control but not developed into programming environments meeting common standards. Linda
environment [6] was based on a common global tuple space for the exchange of globally available control
information. The user processes could write and read in the tuple space. Initial primitives for the design of
global control for interactive software components were included in coordination languages. In Manifold and
Reo frameworks [7] primitives for inclusion of communicating software components into coordinated structures
were embedded. This was done without any notion of a global state introduced in these systems. In the Meta
system [8] distributed programs could be designed based on communicating components with the use of a notion
of a global application state. In this system, application processes could send messages to a global monitor on
their local states. Consistent global states were constructed on these states and some forms of global predicates
could be evaluated. In Meta, a complicated formal framework based on guards could construct program control
based on global states. Some simplification of the Meta formalism was attempted in the Lomita language [8].
However, it was not successfully efficient due to very costly message broadcasts of ordered states. Global
control constructs for the OCCAM language were proposed in [9] with an implementation based on replication
of global state variables. The first legacy usable framework for the asynchronous global execution control in
distributed programs based on monitoring of global application states was implemented in a graphical parallel
program design system PS–GRADE [10] for construction of distributed programs in the C language and standard
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communication libraries: PVM and MPI.

The features of the PS–GRADE and other distributed program design frameworks based on global applica-
tion states monitoring have been conceptually and practically extended in PEGASUS (from Program Execution
Governed by Asynchronous SUpervision of States) which is a basis for this paper. The main extension is the
graphically supported distributed program control flow design framework in which the flow of control depends
on the predicates computed on distributed application global states.

This paper discusses the use of the facilities of global state monitoring and program execution global control
available in the PEGASUS environment to organize load balancing in distributed applications [11]. The features
of the PEGASUS framework are original in this sense since, to our knowledge, no operational contemporary
environment provides similar ones.

The PEGASUS environment provides global program execution control constructs for distributed programs.
They assume a modular structure of parallel programs based on the notions of processes and threads. The PE-
GASUS global control constructs enable global control of the synchronous and asynchronous character. For
synchronous program execution control the constructs logically bind program modules and define the involved
global control flow which depends on the application global states. For the asynchronous program execution
control, the PEGASUS control constructs enable asynchronous change of process and threads behaviour based
on global application states. The monitoring and the management of the global application states in PEGASUS
is implemented by the use of special control processes called the synchronizers which automatize the implemen-
tation of the program execution control based on global application states. The synchronizers collect local state
information from processes and threads, automatically construct global strongly consistent application states,
evaluate relevant control predicates on global states and provide a distributed support for sending control Unix-
type signals to distributed processes and threads to stimulate the desired control reactions. The repertoire of
considered local and global states, the control predicates and the reactions to them are user programmed using
a special API provided in the system. It is the run-time system, which provides the necessary implementation
of this control model. The design of the global control flow is graphically supported and the provided GUI
is decoupled from the API for data processing inside modules. The proposed global control constructs enable
better verification and are less error prone.

The PEGASUS framework aims at both hardware and software features to prevent global control overheads.
The hosting system for PEGASUS has a triple communication network, built of three separate parallel networks
which are serviced by three separate communication libraries whose implementation is not conflicting. One
network is used for interprocessor computational data communication (Ethernet). Another network (Infiniband)
is used for control data communication including transfers of state information and program execution control
signals. The third network (Fast Ethernet) is used for communication involved in processor clock synchronization
necessary for detection of strongly consistent application global states.

The contribution of this paper is to show how the necessary control for dynamic load balancing can be
implemented under the PEGASUS framework. The PEGASUS framework seems to be especially convenient
to design dynamic load balancing algorithms in user programs. For the load balancing under PEGASUS for
programs in the C/C++ language, we have adapted the iterative method which has been earlier designed
by us for load balancing of object-oriented programs in the Java language [12]. However, the global control
infrastructure of PEGASUS enables designing load balancing support for practically any of load balancing
methods. A good overview of the known load balancing methods and principal load balancing systems is given
in [13].

Under PEGASUS, all load balancing control (except for sending load states reports and receiving work
control signals by worker threads) is done by synchronizers in the background of the primary computations (in
parallel with them). The synchronizers (organized in a hierarchical distributed structure) receive load reports,
judge the load imbalance, take decisions upon balancing operations and instruct the worker processes and
threads how to continue computations, including the migration of the computational load. The direct contacts
of worker threads with the infrastructure of synchronizers is by shared memory inside processors, so it is fast
and scarcely disturbing the thread’s computational work since the load balancing control is done asynchronously
not causing any busy waiting. Only transfers of control data at higher levels of the synchronizer tree is done
by message passing. But this is done after strong reduction of control data at lower levels of the synchronizer
tree and it is done only when the load balancing decisions can not be taken at these lower levels. In fact,
such transfers for global decisions are unavoidable in any load balancing distributed infrastructure, so, in this
respect, the performance of load balancing under PEGASUS is not worse than in other systems. However,
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in PEGASUS, a programmer has a ready to use convenient global control infrastructure based on automatic
construction of global consistent load state to design and master load balancing for distributed computations.
The presented approach partially leverages also our earlier works, reported in [14, 15].

The paper consists of three parts. In the first part the features of the assumed PEGASUS program design
and execution environment are described. In the second part, the principles of the proposed load balancing
strategy, implemented using global application states monitoring are presented. The third part describes the
design of an exemplary application which is the algorithm for load balancing in solving the Traveling Salesman
Problem by the Branch & Bound method.

Fig. 2.1: Processes (threads) co-operating with a synchronizer.

2. Distributed program execution control based on global application states . The PEGASUS
environment enables designing distributed programs written in the C/C++ languages built of processes and
threads in which program execution control is governed by the global states of the entire distributed application.
The environment works under control of the Linux operating system and provides the run-time framework for
the designed programs. The PEGASUS environment includes a built-in programming infrastructure which
supports designing program global execution control based on predicates computed on global application states.
Program execution control under PEGASUS framework has features of the asynchronous and synchronous
control. The asynchronous control enables constructing internal process and threads behavior which depends
on the global application states. It corresponds to a local process/thread control by global states. It is organized
by process/thread reporting reporting of local states to special monitors of global states which reconstruct global
application states and organize reactions to control signals issued after an analysis of global states.

The synchronous control enables constructing program execution control in which the flow of control between
program modules depends on the global application states, discovered by the mentioned above global state
monitors. The synchronous control paradigm includes gathering local states responsible for decisions on global
control flow inside programs, computing control predicates on global states and issuing signals to the flow of
control switching blocks in programs. in response to the signals the switches direct the flow of control in the
program in desired way.

The design of the program execution control in PEGASUS is graphically supported. The system enables
Graphical User Interface for designing distributed program control flow graphs using global high level control
flow primitives which are global application states sensitive. The graphical phase of design is further supported
by the Application Program Interface to define the attributes of the global control flow. The system provides
also the API to design asynchronous control of design the process and thread programs whose behavior is
depending in the asynchronous way on the global application states.

The executive distributed systems are assumed to be built of multicore processors interconnected by a
message passing network. The network is used for interprocessor computational data communication at the
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process/thread levels with the use of standard message passing MPI library. For computational data communi-
cation between threads inside multicore processors communication by shared memory is used, supported by the
OpenMP and Pthreads libraries. The implementation of global program execution control requires control data
communication between processors and processor cores. This communication is decoupled from the computa-
tional data communication and is implemented using separate software and hardware means. The programmer
specifies the variables which are to be used as attributes of this control using special API. It is the system which
assures the necessary software/hardware communication environment for respective control data transfers and
automatically generates the necessary fragments of program code. His code uses additional dedicated networks
for control data transfers necessary for implementation of global control mechanisms. A programmer is able to
control assignments of processes to processor nodes and threads to processor cores.

2.1. Asynchronous model of program execution control based on global states.. The asyn-
chronous program execution control is based on special control processes called the synchronizers introduced
to the API and GUI of distributed programs. The general scheme for organizing the asynchronous program
execution control is shown in Fig. 2.1.

Application program processes (threads) send messages on their states to special globally accessible pro-
cesses (threads) called synchronizers. A synchronizer collects local state messages, determines the application’s
strongly consistent global state, evaluates control predicates and stimulates desired reactions to the signals in
application components.

A strongly consistent global state (SCGS) means a set of fully concurrent local states detected unambigu-
ously by a synchronizer [16]. Processor node clocks are synchronized with a known accuracy to enable the
construction of strongly consistent global states by projecting the local states of all processes or threads on a
common time axis and finding time intervals which are covered by recognized local states in all participating
processes or threads [17].

Fig. 2.2: Detection of strongly consistent global states.

The way of reconstructing strongly consistent global states from messages on local process/thread states
is shown in Fig. 2.2. The synchronizers receive messages on local states by means of messages on starting and
ending events of the states accompanied by time stamps which are given with the accuracy of the local clocks
synchronization in processors. The time stamps are treated by the SCGS detection algorithms as time intervals
with the event appearance time points expressed with the accuracy equal to the clock synchronization skew.
For multicore processors, the threads issue state messages with the time stamps based on the processor clock
shared by all existing threads. The strongly consistent states are those which are not covered by the uncertainty
interval of events. A strongly consistent state for a group of processes/threads appears between time points not
covered by any uncertainty intervals of the appearance of constituent local state events.

The way a synchronizer operates is shown in Fig. 2.3. The SCGS detecting program is present in every
synchronizer. The algorithm works permanently and on each received local state message automatically it
tries to detect a next SCGS. For each detected SCGS, one or more control conditions (control predicates) are
computed. Predicates are specified as blocks of code in C. If a predicate value is true, then a number of control
signals are sent by the synchronizer to selected application processes (threads). Inside programs allocated to
the same processor signals are sent as Unix signals, which work asynchronously in the way which resembles
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Fig. 2.3: Synchronizer control flow diagram.

interrupts. For signals sent to a remote processor, Unix signals are converted into messages sent by message
passing with the use of the MPI communication library. When a message reaches a distant processor it is again
converted — this time into a Unix signal, which is asynchronously received by the code of a target process or
thread. Together with a signal some data can be transferred.

Two types of reaction to control signals in target processes or threads are possible. The first type of the
reaction is a signal-driven activation (interrupt), which breaks current computation and activates a reaction
code associated with the region. After completion of the reaction code the broken computing resumes. The
second type of reaction to a signal is a signal-driven cancellation. It stops current computation and activates a
cancellation handling procedure associated with the region. Program execution resumes just after the abandoned
region. The described mechanism of distant Unix signals resembles the paradigm of distributed interrupts.

Since the messages representing Unix signals have to be transmitted over an external message passing
network. The transfer time can be here very long. An important problem is the control of the validity of
reactions for the signals which travel with a long delay. Sometimes the signaled program, which is not suspended
but continues execution after sending the local state message, is advancing execution too far in respect to the
acceptable time distance between the local signal and the reaction cased by it. In the code of a process (thread),
regions sensitive to incoming control signals can be marked by special delimiters. If the process (thread) control
is inside a region sensitive to a signal and the signal arrives, then a reaction is triggered. Otherwise, the reaction
is neglected.

2.2. Synchronous model of program execution control based on global states. The second dis-
tributed program execution control mechanism in the PEGASUS environment involving the global state mon-
itoring concerns defining the flow of control in distributed programs based on the global application state
monitoring. PEGASUS framework provides global parallel control structures which are on PARALLEL DO
(PAR) and JOIN constructs, embedded (if needed) into standard control statements of high level languages (IF,
WHILE...DO, DO...UNTIL, CASE) but governed by predicates on application global states, for some of them
see Fig. 2.4. Such global control constructs are graphically supported in PEGASUS. The programmer design
its flow of control in the distributed program by drawing a flow of control graph using specially prepared GUI.

The predicate GP3 in the synchronizer S assigned to the N0 logical processor is evaluated based on a
global state generated from local state messages received from the program blocks P1, ..., Pn, assigned to
logical processors N1,...,Nn (for the simplicity of the graph representation we do not draw the respective state
message transfer edges). Logical processors are further assigned to physical processors by the program mapping
facility provided in the PEGASUS run-time. Based on the value of GP3 a binary control signal is sent to the
switch SW, which governs the flow of execution control in the PARALLEL DO–UNTIL construct. Usually the
program blocks which participate in global control constructs are additionally asynchronously controlled based
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Fig. 2.4: PARALLEL DO-UNTIL construct with an asynchronous control predicates GP1, GP2 and a control
flow predicate GP2.

Fig. 2.5: Structure of a terminal program block

on global application states. It is done by the predicates GP1 and GP2. They receive local state messages from
P1, ..., Pn, program blocks evaluate a predicate condition and send control signals to P1, ..., Pn.

The control construct shown in Fig. 2.4 is a replicated control construct which means that the program
blocks P1, ..., Pn have the same internal configuration and the same program code. The program blocks
P1, ..., Pn can contain nested other high level control constructs on program blocks. The nesting can be
repeated by special clicking on the block with the highest index. If the nesting is not to be introduced since the
block does not have any high level conditional control construct nested inside, another special click on the block
opens a terminal block design window. The internal structure of a program terminal block is shown in Fig. 2.5.
Since the PARALLEL-DO-UNTIL construct from Fig. 2.4 was replicated, Fig. 2.5 represents the control flow
of the block Pn with the highest index in the replication. The terminal block structure is designed of a number
of thread blocks (T1n, T2n) placed under a PAR construct and a thread level synchronizer (TSn). The thread
blocks composed of a number of threads with the same code but working on separate data. The thread level
synchronizer implements an asynchronous control model in respect to the thread blocks T1n, T2n. Threads in
the thread blocks can send local state messages to TSn. TSn reconstructs the strongly consistent global states
of threads belonging to the process Pn. Upon reaching an SCGS, TSn activates control predicates evaluation
on the global states. As a result TSn can send control signals to threads in T1n, T2n thread blocks to modify
their behaviour asychronously. The exit from the thread blocks is synchronized by the JOIN2 block which works
as a barrier for all threads in the blocks T1n, T2n. TSn can also send some discovered global states together
with some data to the higher level synchronizer S beyond the Pn process. The synchronizer S can collect such
partial states of the synchronizers TSi to construct some more global program states to evaluate some global
predicate on the reconstructed more global states. Depending on the values of the predicates the synchronizer S
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can send control signals back to the thread level synchronizers TSi. TSi can send control signals to the threads
working inside their processes Pi.

Fig. 2.6 shows a graphical representation of the global PARALLEL IF control construct. In this construct
the Switch SW control block supervises parallel execution (PAR construct) of a set of replicated program blocks
P1, ..., Pn. The blocks are assigned to P1, ..., Pn parallel processors. The Switch is controlled by the control
signal generated by the global predicate GP1 embedded in the synchronizer. The predicate is evaluated based
on the global state composed of local states provided by program blocks B1, ..., Bn existing somewhere in the
program. For the simplicity of the graph representation we do not draw the respective state message transfer
edges. Program blocks P1, ..., Pn are additionally asynchronously controlled by the predicates GP2 and GP3.
The predicates are evaluated based on the local states provided by the blocks P1, ..., Pn. The exit from the PAR
construct is synchronized by the JOIN lock working as a barrier. More details on the PEGASUS framework
can be found in [11] and [18].

Fig. 2.6: PARALLEL IF construct with a control flow predicate GP1 and an asynchronous control predicate
GP2, GP3.

3. Load balancing algorithm. The efficient execution of parallel programs requires balancing of compu-
tational loads among available nodes of parallel system. The problem of load balancing is NP–hard [19], thus
it is necessary to apply different kinds of heuristics from various fields, such as prefix sum, recursive bisection,
space filling curves, work stealing and graph partitioning.

In the static case of the load balancing problem, i.e. when the computational tasks co-exist for the entire
duration of the parallel program and their workload is known, it is possible to solve it using the graph partitioning
algorithm. That’s why METIS [20], a well known graph partitioning framework, is widely used for mapping
and static load balancing of parallel applications.

When we encounter changes of a workload and the varying availability of resources, the problem of load
balancing becomes a much more hard to solve. In such a case, the only feasible approach is to apply dynamic,
on–line load balancing. Also for irregular problems, i.e. when the workload depends on the processed data, the
only solution is the dynamic approach.

There exist several dynamic load balancing strategies [21]. The simplest ones are based on the greedy
heuristics, where the largest workloads are moved to the least loaded processors until the load of all processors
is close to the average load. The more sophisticated algorithms use some refinement strategies, where the
number of objects migrated is reduced or the communication between different objects is also considered.

Depending on the execution model of parallel application, dynamic load balancing is implemented by a
migration of the application components (processes or threads) or by a data redistribution among computing
nodes. In both cases, the goal is to achieve such a distribution of workloads that guarantees the highest possible
efficiency of the overall application execution. In the strategy presented in the paper we focus at data migration
as a basic load balancing mechanism.

3.1. Load balancing based on global states. In the approach presented in the paper, we use the
global state monitoring infrastructure provided by the PEGASUS environment, as a tool to achieve dynamic
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load balancing of parallel applications. The motivation for this approach is as follows: global state monitoring
provides very efficient, low-latency way to detect and distribute load balancing informations, while asynchronous
global control enables for instant response and load balancing accomplishment.

In the proposed implementation of the load balancing control, the complete load balancing algorithm is
placed in sychronizers which are fully programmable. This way we are able to use many existing load balancing
methods like those based on graph partitioning (METIS [20], Zoltan [22], etc.). However, it would require an
extensive load redistribution by many time-consuming distant thread-to-thread load transfers, to follow the
global optimal work partition. Thus, we propose a new strategy to avoid such flaws and to allow for real load
migration only if unavoidable by other methods.

The overall scheme of load balancing, presented here, is an extended version of our former algorithm for
Java-based distributed applications, see [12] for more details. Besides improvements inside balancing heuristics,
the main difference, compared to the algorithm from [12], consits in the adoption of general parallel application
model, applicable for wider range of computational problems.

The load balancing approach, proposed in the paper, consists of two main steps: detection of imbalance
and its correction. The first step uses some measurement infrastructure to detect the functional state of
the computing system and executed application. In the second step, we migrate some load from overloaded
computing nodes to underloaded computing nodes to balance the workloads.

The goal of the algorithms is to balance the load of computing nodes of the parallel system. As it will
be explained later, during detection of imbalance and its correction, the algorithm takes into account both
computational demands of the application and its inter-process communication pattern.

3.2. System and application observations. The on–line detection of the state of the system is necessary
since the computing nodes (workstations) can be heterogeneous, moreover they can have different and variable
computing capabilities over time. A load imbalance occurs when the differences of loads between the computing
nodes become too big.

Applications’ observation is necessary since they can be irregular in general, thus their workloads can change
in an unpredictable way. The application observation mechanism provides knowledge of the application behavior
during its execution. This knowledge is necessary to undertake adequate and optimal load balancing decisions.

There are two types of measurements in the proposed load balancing method for the PEGASUS environment:

System level observations – they provide general functional indicators, e.g. CPU load, which are universal
for all kinds of applications. The parameters are measured using software sensors, for that the load
balancing mechanism of the PEGASUS environment installs observation kernels on computing nodes.

Application specific observations – they include measurements which have to be done in each application
since they furnish data on application–dependent behavior. An example of this kind of data is the
workload of a process (or thread). It must be bound to the application since such data can depend for
example on the amount of data to be processed in the future which is known only to the application
logic.

The PEGASUS global states monitoring infrastructure is a convenient tool to organize both the system
and the application level observations. In our implementation, application program processes and system
observation agents send messages on local state changes to load balancing synchronizer, where they are processed
and appropriate reactions are computed using the method described in next sections. Similarly, reactions are
organized as asynchronous program execution control. Load balancing logic is implemented as control predicates
inside a load balancing synchronizer. Figure Alg. 3.1 presents a general scheme of the proposed algorithm. The
rest of this section describes functions and symbols used in the flowchart in Alg. 3.1.

3.3. Detection of load imbalance. Computing nodes composing the parallel system can be heteroge-
neous, therefore to detect the load imbalance, we need to known both the processors availability and their
computing power. The heterogeneity of nodes disallows us to directly compare measurements taken on com-
puting nodes whose computing powers are different. Thus, to compare the computing nodes’ load, we propose
to use the availability index of a CPU computing power on the node n:

Indavail(n) = Indpower(n) ∗ Time%CPU(n)

where:
Indpower(n) — computing power of a node n, which is the sum of computing powers of all cores on the node,



A Distributed Program Global Execution Control Environment Applied to Load balancing 277

Fig. 3.1: General scheme of load balancing algorithm

Time%CPU(n) — the percentage of the CPU power available for computing threads on the node n, periodically
estimated by observation agents on computing nodes.

The way the availability index of a CPU computing power is computed is not obvious, so some explanation
follows. The computing power of the node is determined by the calibration process [23]. For each node, the
calibration should be performed in a consistent way to enable comparisons of calibration results (they can be
expressed in MIPS, MFLOPS or similar). The calibration needs to be done only once when the nodes join the
system. The percentage of the CPU power available for a single computing thread is computed as a quotient of
the time during which the CPU was allocated to the probe thread against the time span of the measurement
(see [23] for more details and the description of the implementation technique). Time%CPU(n) value is the sum
of the percentage of CPU power available for the number of probe threads equal to the number of CPU cores
on the node.

A load imbalance LI is defined as the difference of the availability indexes between the most heavily and
the least heavily loaded computing nodes composing the cluster, which can be determined as:

LI = max
n∈N

(Indavail(n)) ≤ α ∗ min
n∈N

(Indavail(n))

where:
N — the set of all computing nodes, α — a positive constant number.

Power indications Indpower and CPU time use rate TimeCPU are collected and sent to load balance synchro-
nizer by local system agents as state messages.
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The proper value of the α coefficient can be determined using both statistical and experimental approaches.
Following our previous research [12] on load balancing algorithms for Java-based distributed computing environ-
ment, we can restrict the value to the interval [1.5 . . . 2.5]. These experimental values give good results because
they are neither too restrictive nor too tolerant for the load imbalance.

3.4. Correction of load imbalance. At the beginning of this step, we know the state of computing
nodes (i.e. their availability indexes), which is an outcome of the detection of load imbalance. Now, we detect
overloaded computing nodes and then we’ll re-balance them (i.e. transform into the normally loaded by the
migration of the load).

3.4.1. Classification of computing nodes. We classify n computing nodes into three categories, based
on the computed availability indexes: overloaded, normally loaded and underloaded. To build categories, we
use the K-Means algorithm [24] with K = 3. The three centers that we choose are the minimum, average and
maximum availability indexes, where the average index is simply the average of indexes measured during the
last series of measures over the whole cluster.

3.4.2. Selection of candidates for migration. To correct load imbalance, we migrate the load from
overloaded computing nodes to underloaded ones. The load for migration has to be selected carefully, so that
the migration does not cause the deterioration of overall computing conditions.

The loads are represented by the data processing activities of the threads which are running on computing
nodes. Two parameters are used to characterize the load that we want to migrate:

a) the attraction of a load to a computing node,
b) the weight of the load.

The attraction of a load to a computing node is expressed in terms of communication, i.e. it indicates how
much a particular thread communicates with others allocated to the same node. A strong attraction means
frequent communication, so, the less the load is attracted by the current computing node, the more interesting
it is to be selected as a migration candidate. The computational weight of the load gives the quantity of load
which could be removed from the current node and placed on another.

Both the attraction and weight are application-specific metrics, which should be provided by an application
programmer in the form of state messages sent to load balance synchronizer :

1. COM(ts, td) is the communication metrics between threads ts and td,
2. WP(t) is the load weight metrics of a thread t.

In our load balancing algorithm we prefer to move an entity whose quantity of work is neither too big, nor
too small. Thus, the smaller the distance is to the average thread loads, the more the load is interesting for
migration.

The attraction of the load j to the actual computing node:

attr(j) =
∑

o∈L∗(j)

(COM(j, o) + COM(o, j))

where:
L∗(j) — the set of threads, placed on the same node as a thread j (excluding j).

The load deviation compared to the average quantity of work of the node j:

ldev(j) = |WP(j)−mWP | (3.1)

where:
mWP =

∑
o∈L(j) WP(o)

|L(j)| ,

L(j) — the set of threads, placed on the same node as the thread j (including j).

The formula above allow to compute the attraction of an entity to the local node in order to compare it
with the attractions of other loads of this node. The comparison formula are:
(1) global attraction measure:

attr%(j) =
attr(j)

maxo∈L(j)(attr(o))
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(2) load deviation compared to the average quantity of work:

ldev%(j) =
ldev(j)

maxo∈L(j)(ldev(o))

The element to migrate is the one for which a weighted sum of last two parameters has the minimal value:

Rank(j) = β ∗ attr%(j) + (1 − β) ∗ ldev%(j) (3.2)

where:
β — a real between 0 and 1. Its choice remains experimental. Let us notice however that the bigger β is, the
bigger is the weight of the object attraction.

3.4.3. Selection of the target computing node for migration. The target computing node for mi-
gration should be both underloaded and strongly attracted by migrated load. In order to select the target, we
use the formula which is based on weighted sum of two selection criteria.

The first criterion to qualify a computing node as a migration target is the computing node power availability
indexes. We prefer the one whose availability index is the highest, because it is actually the least loaded. We also
take into account the number of waiting threads in the potential targets (Twait(n) – the set of waiting threads
on a node n). We consider them, however, only as potential load, which must be taken under consideration
together with the related load currently processed on the computing node.

The second criterion is based on the attraction of a selected load entity to this node. A relationship of
attraction of the load j to node n is defined as follows:

attrext(j, n) =
∑

e∈T (n)

(COM(e, j) + COM(j, e))

where:
T (n) — the set of threads, placed on a node n.

The formula to select the target for migration is as follows (we normalize all the values related in the interval
[0 . . . 1]):

Quality(j, n) = γ ∗ attrext%(j, n) + (1− γ) ∗ Ind%
avail(n) (3.3)

with γ ∈ [0 . . . 1] and

attrext%(j, n) =
attrext(j, n)

maxe∈N (attrext(j, e))

Ind%avail(n) =
Ind∗avail(n)

maxe∈N (Ind∗avail(e))

Ind∗avail(n) = Indavail(n)− Indavail(n) ∗
|Twait(n)|

|T (n)|
(3.4)

We evaluate the above equations for all potential computing node targets for a load which is a candidate
for migration. As the new location for the load we choose the computing node which maximizes equation 3.3.
The value of the coefficient γ has to be determined using experimental verification.
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(a)

(b)

Fig. 3.2: (a) Control flow graph for the TSP program. (b) Control flow graph for worker process of TSP.

4. Example of load balancing based on global state monitoring.

4.1. General assumptions on the solution search. We will present now how the described load
balancing method can be applied to a Traveling Salesman Problem (TSP) solved by a parallel Branch and
Bound (B&B) method. The global control in the algorithm supports both organizing a reduced search of
the TSP problem solution space due to the B&B method and load balancing of the search computations in
distributed processes. A parallel solution space search is done following a ”master-slave” method implemented
using a number of worker search processes assigned to multicore processors. Each worker process is composed
of a number of worker threads and a thread level synchronizer. The solution space is organized as a tree of
salesman trajectories which are gradually being developed and searched by worker threads under control of
synchronizers. The solution space is divided into search subproblems (subtasks) which correspond to subtrees
of the total solution tree. To reduce the search in the solution space, the global state monitoring with a bounding
function is organized in all executive processes and threads.

Synchronizers are organized in a hierarchical structure and play the role of masters in the solution search
algorithm. A central global synchronizer at the highest hierarchy level divides the set of all search subproblems
into subtask pools meant for execution by worker processes. The subtasks are directed for execution to worker
threads by the thread level synchronizer placed in each worker process. The thread synchronizer evaluates an
estimate of the search work to be done (the current process load), based on state messages sent to it by worker
threads. Then, the thread synchronizer sends the estimate to a global load balancing synchronizer. Based on
it, the global synchronizer computes the deviation of the load of worker processes. This deviation is used to
work out the load balancing decisions for the processes (i.e. the rate and amount of subtask delivery).

The global synchronizer maintains also the value of the best known solution found so far in worker processes.
The global synchronizer updates this value if a thread synchronizer in a worker process informs it about a still
better solution it has found. The global synchronizer distributes the updated globally best min dist solution
to all thread synchronizers of all worker processes. The thread synchronizers distribute this value to all their
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threads. The threads use this min dist value to bound further development of every partial trajectory solution
(containing a partial set of towns) they consider. They also compare to min dist every full trajectory solution
(containing the full set of towns) found in the search process and inform the thread synchronizer on each
better new solution (the trajectory and its distance value). The thread synchronizers compare the new received
min dist values to those they know and send them to the global synchronizer and back to worker threads if it
is smaller than the currently known min dist.

4.2. General load balancing strategy and its global implementation. The control flow graph of
the TSP by the B&B method in PEGASUS is shown in Fig. 3.2(a). We have a replicated PAR construct in
this graph with 3 parallel worker processes Pi, controlled by the predicates of the global synchronizer GSync.
Worker processes are composed of worker thread blocks and the thread synchronizers TSynch, Fig. 3.2(b). Each
worker thread block contains replicated worker threads which are assigned to the same processor core. TSyncs
periodically report their current loads to the global synchronizer GSync. Based on these reports GSync works
out load balancing decisions which direct pools of search subtasks to TSyncs in the way to balance loads in
worker processes. TSyncs also report to GSync the best solutions with the trajectory lengths smaller than the
min dist values known to their threads. TSyncs send to GSync asynchronous requests for new subtasks if the
pool of the subtasks they have for worker threads is close to exhaustion.

There are 3 predicates evaluated in the GSync synchronizer. The NewSubtask predicate computes the
global mean load in the system and compares it to the loads reported by TSyncs. Inside this predicate the
ldev(j) parameter (see equation 3.1 in the previous section) is computed for each process. Based on ldev(j) load
balancing decisions are taken. The decisions are different for different search stages for the entire TSP problem.
In the non-terminal search stages in which not all search subtasks have yet been distributed by GSync to search
worker processes (more exactly the TSync synchronizers), the decision determines the number of new search
subtasks which are to be sent to the processes which are soon to be idle. In the terminal stage of the solution
search when all subtasks have already been distributed, the decision determines the subtask migration from the
most loaded worker process to the least loaded one. In this case, the NewSubtask predicate of GSync selects
the process which is too heavily loaded and which should migrate part of its subtasks to another less loaded
process. We avoid direct communication of subtasks between threads of different worker processes located on
different processors, so the migration is executed at the level of the TSync synchronizers. The selection for
migration decision is done using the equation 3.2 given in the previous section. However, in our TSP problem,
communication between worker threads does not appear since worker threads are independent, so the migration
decision is taken only based on the ldev(j) parameter. The decision upon the target process to receive load
migration is taken in general based on the Quality(j, n) parameter (see equation 3.3 in the previous section).
In our example, due to the independent tasks, this parameter is reduced to Ind∗avail(n) (equation 3.4). The
selection of the target for migration is done by GSync based on the information on partial processor power
available in particular computing nodes (Indavail(n) parameter), supplied periodically by TSyncs.

The NewBest predicate in GSync maintains the best known solution min dist based on the local best
solutions found so far. This value is determined based on the min dist state messages sent from the TSync
synchronizers in worker processes. The globally best solution is distributed back to all TSyncs by sending to
them the appropriate control signal with the new best solution sent in the MPI message. TSyncs distribute
the signals to all the threads they cooperate with, together with the placement of the new best solution in the
memory shared by TSyncs and their threads, available on the processor node. The StopIteration predicate in
GSync takes care of the quality of the TSP solution found so far. The TSP solution search can be stopped if
a sufficiently good solution has been found in worker processes even if not entire search tree has been scanned.
In this case, the StopIteration predicate of GSync distributes the StopIteration signal to all TSyncs.

4.3. Load balancing implementation at the level of threads. The TSP program execution control
inside a worker thread is shown in Fig. 4.1. When a thread is activated and all its programs are initiated the
thread sends a ”thread started” report to the TSync synchronizer. Then the tread waits for the first subtask
pool to be received from TSync. When the new subtask pool arrives, the thread starts working on a subtask
from it. A subtask consists of a vector of towns with a length smaller than the total number of towns which
forms a trajectory with a known length. The thread gradually develops the trajectory by adding new towns and
computing the length of each formed trajectory. The length of each new trajectory is compared to the current
min dist known to the thread. If the length of a new partial trajectory is bigger than or equal to min dist,
the trajectory is considered non perspective and it is not further developed (the B&B bounding). A new full
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Fig. 4.1: TSP worker thread internal control.

trajectory with the length not smaller than min dist is rejected. Only partial or full trajectories which have the
lengths smaller than min dist are maintained and registered. A full trajectory shorter than min dist is reported
to the TSync synchronizer as a ”new best result”. Its length is set as a new min dist for a thread. Then the
search is continued for the subtask by backtracking in its search tree to the highest partial trajectory which
can be further developed. If the entire solution tree of the current subtask for a thread has been inspected, the
thread sends a state message ”subtask completed” to TSync and starts executing a next subtask from its pool.
When a new subtask arrives to a thread, the number of search steps to be done S = (N − t)! is computed as the
current load of the subtask for the thread, where N is the total number of towns and t is the number of towns
in the trajectory given in the subtask specification. During a subtask execution S is decreased by 1 for each
step which creates a partial perspective trajectory or a full trajectory. S is decreased by p! after each step which
creates a partial non perspective trajectory where p is the difference between N and the number of towns in the
created trajectory. The sums of S values for all subtasks present in a thread are periodically sent by threads
to TSyncs as ”current load” reports. On detection of each load SCGS a TSync computes the current load PS
of its worker process as a sum of load values concurrently sent by all threads it controls. TSyncs periodically
send PS to GSync which, on detection of respective SCGS computes the mean load of the system and the load
deviations ldev(j) for particular processes. Based on the load deviations, load balancing decisions are taken
followed by control signals sent to TSyncs.

In Fig. 4.1 we can see three control signals which can come to the thread from the TSync synchronizer.
The first signal (Stop Iteration) is generated by SI predicate of TSync. It corresponds to the situation when
the search activity in a thread is to be canceled. Next signal (New Best) is sent by the NB predicate of TSync.
It informs the thread that the new best solution has been found and makes it available to the thread code. The
last signal (New Subtask) comes from the NS predicate of the TSync. It brings new subtasks to be executed
by the thread. The arrival of each of these signals breaks the basic search loop of the thread and activates a
special signal handling function. For signal from NS and NB the handling function sets a new subtask or the
new best solution in the thread. Then, the execution control returns to the interrupted activity. In the case of
the signal from NS which comes while the thread is idle, the control is passed to the execution of a new subtask.
The signals from SI cancel the interrupted basic search activity and the execution of the thread is finished.

5. Conclusions. Monitoring of global application states creates an efficient and flexible basis for dis-
tributed program execution control including the load balancing support. Global control constructs for the
control flow design and the design of asynchronous control based on global application states monitoring with
control signal dispatching provide flexible infrastructure for distributed applications implementation and system-
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level optimizations. This was the motivation for the research on a new distributed program design framework
PEGASUS which has been used in this paper as a basic program design and execution infrastructure. In the
PEGASUS framework the semantics of control constructs at the process and thread levels takes into account
global application states involved in synchronous and asynchronous program execution control. The proposed
methods include new program execution paradigms and the corresponding software architectural solutions. The
infrastructure enables an easy and convenient design of the load balancing logic in applications.

Dynamic load balancing based on distributed application global states monitoring in the PEGASUS en-
vironment has been illustrated by an example of a distributed program for solving the Traveling Salesman
Problem by a Branch and Bound method. For this problem, we have designed a load balancing method in
which the troublesome load migration between distributed threads mapped to different processors (by transfers
of tasks between distributed threads) can be avoided in the initial program execution stages and replaced by
controlling the initial computational tasks distribution by synchronizers. Only when all task pools have been
distributed, the real task migration is used when it is unavoidable at this stage.

The described PEGASUS framework is in final implementation stage based on a cluster of contemporary
multicore processors. The processors in the cluster are interconnected by three dedicated different networks
used for control and computational data communication. Interprocess control communication including Unix
signal propagation between processors is organized by the use of message passing over Infiniband network.
Computational data communication and data exchange for processor clock synchronizatin purposes is performed
by dedicated Ethernet networks. C/C++ language with the MPI2, OpenMP and Pthreads libraries are used
for writing application programs and the framework control code.

This paper has been partially sponsored by the MNiSW research grant No. NN 516 367 536.
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