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GENERATION OF CATALOGUES OF PL N-MANIFOLDS: COMPUTATIONAL ASPECTS

ON HPC SYSTEMS

ALESSANDRO MARANI∗, MARZIA RIVI∗, AND PAOLA CRISTOFORI†

Abstract. Within mathematical research, Geometric Topology deals with the study of piecewise-linear n-manifolds, i.e.
triangulable spaces which appear locally as the n-dimensional Euclidean space. This paper reports on the computational aspects of
an algorithm for generating triangulations of PL 3- and 4-manifolds represented by edge-coloured graphs. As the number of graph
vertices is increased the algorithm becomes computationally expensive very quickly, making it a natural candidate for the usage of
HPC resources. We present an optimized, parallel version of the algorithm that is suitable for deployment of multi-core systems.
Scalability results are discussed on two different platforms, namely an IBM iDataPlex Linux cluster and the IBM supercomputer
BlueGene/Q.
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1. Introduction. Geometric Topology deals with piecewise-linear (PL) n-manifolds [2], i.e. compact
topological manifolds for which there is a triangulation such that each point has a neighbourhood which is
piecewise-linearly isomorphic (PL-homeomorphic) to an affine n-simplex. Catalogues of triangulations of PL
n-manifolds are valuable sources of data: they yield examples to test conjectures, calculate invariants and make
comparisons; they can offer insight into the structural properties of the represented manifolds and may suggest
ideas for further theoretical investigation.

In particular, since each compact (topological) 3-manifold admits a PL structure and any two PL structures
on the same topological 3-manifold are equivalent (i.e. PL-homeomorphic, see [2]), the study of triangulations
of PL 3-manifolds is naturally related to the problem of classification, which is still one of the main topics of
3-dimensional topology. The possibility of representing manifolds by combinatorial structures, together with
recent advances in computing power, enabled topologists to construct exhaustive tables of small (i.e. obtained
by a small number of simplices) 3-manifolds based on different representation methods. In the closed case
(i.e. compact and without boundary), catalogues have already been produced and analysed by many authors
[8, 19, 20], with a particular focus on combinatorial properties of minimal triangulations.

On the other hand, the problem of classification in dimension four must take into account that a topological
4-manifold not always admits PL structures or may admit non-equivalent ones. For example, although there
exists a classification of simply-connected topological 4-manifolds, long established by Freedman [7], the study
of (PL) equivalence classes of such structures, especially with regard to their minimal representatives, is an
interesting and still open subject of research. Several examples of different PL 4-manifolds triangulating the
same topological 4-manifold have recently been presented and the subject is being continuously updated (see
for example [9]), but no exhaustive catalogue is available, yet.

Crystallization theory is a representation method for PL n-manifolds by means of a particular class of
edge-coloured graphs (gems, i.e. Graphs Encoding Manifolds), which are dual 1-skeletons of vertex-coloured
(pseudo)triangulations. Topological properties of a manifold are thus encoded in the combinatorial structure
of its crystallizations, which are particularly suitable for computer manipulation. Furthermore, crystallization
theory allows to develop an algorithmic approach to the generation of censuses of triangulations of compact
PL n-manifolds represented by edge-coloured graphs. Unfortunately, the scope of tables of triangulations of
n-manifolds is limited by the significant amounts of time required to generate them: in general, a census of
triangulations (coloured triangulations are no exception) formed by t n-simplices requires computing time at
least exponential in t.

The problem of reducing the generation time can be faced from a topological point of view by excluding
some typical graph configurations, which can be removed without affecting the list of represented manifolds (as
it happens with dipoles and ρ-pairs, see Sect. 2) or which forbid the graph to represent a manifold, such as those
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Figure 2.1. Representation of a 2-dimensional torus by a triangulation and its corresponding edge-coloured graph.

not satisfying Eqs. 3.2 and 3.3 in Sect. 3. As a consequence, positive effects on the generating algorithm come
from a sort of “branch and bound” technique. Another direction of improvement relies on the parallelization of
the algorithm in order to exploit high performance computing (HPC) infrastructures, which is the focus of the
work presented in this paper.

The usage of supercomputing resources has allowed the generation of catalogues of 3-manifold crystal-
lizations with up to 32 vertices, which have already been completely classified up to 30 vertices (both for
orientable [13] and non-orientable [14] cases), and the generation of catalogues of 4-manifold crystallizations up
to 20 vertices, for which some classification results have already been obtained from their analysis, as reported
in [16].

This paper discusses the strategy adopted to optimize and parallelize the generation algorithm and shows
performance results on different architectures for the 3- and 4-dimensional cases. In Sect. 2 we introduce the
concepts and summarise results from crystallization theory which are required in the development of algorithmic
procedures for the generation of PL n-manifolds censuses. A sketch of the generation algorithm is provided in
Sect. 3, where specific conditions are detailed for dimensions 3 and 4. Section 4 contains a description of the
parallelization strategy implemented, while Sect. 5 shows scalability results on two specific HPC platforms.

2. Representation of PL-manifolds by edge-coloured graphs. For basic PL-topology, topology of 3-
and 4-manifolds and elementary notions about graphs, we refer to [1, 3, 4, 6]. For surveys about crystallization
theory see [10, 11, 12]. All manifolds are assumed to be closed and connected, unless explicitly mentioned.

A coloured triangulation of a PL n-manifold M is a triangulation of M by means of a pseudo-complex whose
vertices are labelled by the integers {0, . . . , n}, so that vertices of the same simplex have different labels. The
dual 1-skeleton of a coloured triangulation K of M is a (multi)graph Γ = (V (Γ), E(Γ)) whose edges inherit
a coloration from K: an edge e of Γ is coloured c if and only if c is the missing colour in the vertices of the
(n−1)-simplex of K dual to e. In this case, we say that Γ represents M or is a gem (Graph Encoding Manifold)
of M . It is easy to see that M is orientable if and only if Γ is bipartite.

Note that, as a result of the above construction, the coloration of the elements of E(Γ) is injective on each
pair of adjacent edges. Any regular graph of degree n + 1 equipped with such an edge-coloration is called an
(n + 1)-coloured graph (without boundary). The elements of the set ∆n = {0, 1, . . . , n} are called colours ;
moreover, for each i ∈ ∆n, we denote by Γî the n-coloured graph obtained from Γ by deleting all edges coloured
by i. Given an (n + 1)-coloured graph we can always construct a coloured pseudo-complex K(Γ) by taking
an n-simplex for each vertex of Γ, by colouring its vertices by ∆n and, for each i ∈ ∆n, by identifying the
(n − 1)-faces of two n-simplices σ and σ′ opposite to their i-coloured vertices if and only if the corresponding
vertices of Γ are i-adjacent (see Fig. 2.1 for an example).

The above constructions can be generalised in order to take into account coloured triangulations of manifolds
with non-empty boundary. In this case the dual 1-skeletons with the inherited edge-coloration miss some n-
coloured edges and are called (n + 1)-coloured graphs with boundary. If Γ is such a graph, its boundary graph
∂Γ is an n-coloured graph (without boundary) whose associated pseudo-complex is the boundary of K(Γ).

Most of the following definitions and results can be easily generalised to the boundary case but, for sake
of simplicity, we will restrict them to the closed one and, except when explicitly pointed out, we will consider
only graphs without boundary. We say that a (n + 1)-coloured graph Γ is contracted when its associated
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Figure 2.2. A crystallization of the orientable S2-bundle over S1 together with its code and the vertex-labelling and coloration
associated to it.

triangulation K(Γ) has the minimal number of vertices, i.e. n + 1. A contracted gem of a PL n-manifold M

is called a crystallization of M . Contractedness can be checked directly on the coloured graph. In fact duality
establishes a bijective correspondence between the connected components of Γî and the i-coloured vertices of
the associated triangulation for each i ∈ ∆n. As a consequence, a gem Γ of a n-manifold M is a crystallization
of M if and only if the graph Γî is connected for each i ∈ ∆n.

Characterising gems of PL n-manifolds among (n+1)-coloured graphs is a problem which, by the following
result, is strictly related to the recognition of gems of (n− 1)-spheres.

Proposition 2.1. [10] An (n + 1)-coloured graph Γ represents a PL n-manifold iff, for each i ∈ ∆n, all
connected components of Γî represent (n− 1)-spheres.

Classical results presented in [10] guarantee that each n-manifold admits a crystallization; obviously, it generally
admits many of them and it is a basic problem how to recognise crystallizations (or, more generally, gems) of
the same manifold. The easiest case is when two gems are colour-isomorphic, i.e. there exists an isomorphism
between the graphs, which preserves colours up to a permutation of ∆n. It is quite trivial to check that two
colour-isomorphic gems produce the same polyhedron. The following result assures that colour-isomorphic
graphs can be effectively detected by means of a suitably defined numerical code [5], which can be directly
computed for each of them (see [5, 17] for the related rooted numbering algorithm and the example shown in
Fig. 2.2).

Proposition 2.2. [17] Two gems are colour-isomorphic iff their codes coincide.

Furthermore the code can be used to represent numerically the coloured triangulations in order to manipulate
them by computers. Actually it is the most efficient way to represent a coloured graph not only from the
point of view of avoiding duplicates of the same triangulation, but also because it contains only the essential
information which allow to reconstruct the graph (other kind of representations such as the incidence matrix,
in fact, are mainly redundant). Figure 2.2 shows an example of code for the orientable case: the string of the
code displays the i-adjacencies of the vertices labelled by small letters for i ∈ {1, . . . , n}. In the non-orientable
case the string would be longer since it ought to contain also the n-adjacencies of the capital letters.

The problem of recognising non-colour-isomorphic gems representing the same manifold has been solved
too, but not algorithmically. A finite set of moves - the so called dipole moves - has been defined such that two
gems represent the same manifold if and only if they can be related by a finite sequence of such moves [18].

Definition 2.3. An h-dipole θ = (x, y) in a (n+1)-coloured graph Γ is a subgraph consisting of two vertices
x and y connected by h edges coloured by c1, . . . , ch, such that x and y belong to different connected components
of the graph Γĉ1...ĉh obtained by deleting all edges of Γ coloured by c1, . . . , ch.

By deleting the vertices of a h-dipole θ from a (n+1)-coloured graph Γ and pasting together the hanging edges
according to their colours (see Fig. 2.3), we obtain a new (n+ 1)-coloured graph Γ′. The transformation from
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Figure 2.3. Dipole move

       e f
ρ-pair switching

Figure 2.4. Switching of a ρ-pair.

Γ to Γ′ is called the cancellation of θ, its inverse the addition of θ. Both are called dipole moves. Neither
cancellations nor additions of a dipole change the represented manifold [18], so dipole moves are an easy tool
for manipulating gems without changing the PL-homeomorphism type of the underlying manifold.

Another useful kind of moves relies on the concept of ρh-pairs [5, 15]:

Definition 2.4. A pair (e, f) of distinct i-coloured edges in a (n + 1)-coloured graph Γ is said to form a
ρh-pair iff e and f belong both to exactly h common bi-coloured cycles of Γ.

ρ-pairs can be eliminated by switching (see Fig. 2.4). The following proposition shows the effect of switching
on the represented manifold:

Proposition 2.5. [15] Let Γ be a crystallization of a (connected) n-manifold M , n > 3 and let Γ′ be
obtained by switching a ρh-pair in Γ.

(a) If h = n− 1 then Γ′ is a crystallization of M .
(b) If h = n then Γ′ is a crystallization of an n-manifold M ′ such that M ∼= M ′#(Sn−1 ⊗ S

1)1.

A (n + 1)-coloured graph without ρn−1- and ρn-pairs is called rigid. The restriction to the class of rigid
crystallizations does not affect the set of represented PL-manifolds, as the following result proves.

Proposition 2.6. [15] Each closed connected PL n-manifold M admits a rigid crystallization. Moreover,
if M is handle-free (i.e. there is no M ′ such that M ∼= M ′#(Sn−1 ⊗ S

1)), it admits a rigid crystallization of
minimal order.

3. Generation algorithms. By Proposition 2.1, generation of catalogues of all PL n-manifolds repre-
sented by edge-coloured graphs with a fixed number of vertices requires:

• to proceed inductively on dimension n;
• to perform sphere recognition at each step.

In fact, the input data of the generation algorithm in dimension n are the codes of all gems (not necessarily
crystallizations) representing (n − 1)-spheres, which have to be generated previously. To each of these graphs,
n-coloured edges are added in all possible ways so as to obtain a crystallization of a closed n-manifold (possible
attachments are therefore limited by topological constraints). This algorithm becomes computationally very
intensive as the number of vertices of the graphs grows, so it has been necessary to improve its efficiency. The

1Sn−1 ⊗ S1 denotes the orientable or the non-orientable (according to the orientability of M and M ′) Sn−1-bundle over S1.
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theoretical results presented in Sect. 2 allow to exclude ”a priori” a large number of possible configurations. In
particular, by Proposition 2.6 and the cited results about dipole moves, we can restrict the catalogues to rigid
crystallizations with no dipoles2.

Let p be a positive integer, we will denote by C
(2p)
n (resp. C̃

(2p)
n ) the catalogue of all non-isomorphic rigid

bipartite (resp. non-bipartite) crystallizations of PL n-manifolds with 2p vertices and lacking in dipoles. Because
of contractedness and rigidity, the starting set of the generation algorithm will take into account only connected

n-coloured graphs representing the (n − 1)-sphere with no ρn−1-pairs. We will denote this set by S
(2p)
n . Let Γ̄

be an (n+1)-coloured graph with boundary obtained from an element of S
(2p)
n by addition of n-coloured edges,

then Γ̄ will be kept for further additions if and only if:
(i) it contains no n − 1 edges with the same endpoints (otherwise there will be ρ-pairs in the resulting

completed graph);
(ii) for each i ∈ {0, . . . , n− 1}, Γ̄î represents an (n− 1)-sphere with holes.

The above described restrictions allow to prune the generation tree and succeed in reducing considerably both
the computation time and the size of the resulting catalogues, by keeping only essential triangulations. The
outline of the algorithm is presented below.

Input: S
(2p)
n

new C
(2p)
n , C̃

(2p)
n = ∅;

for each Σ ∈ S
(2p)
n do

new pair (Γ, ∂Γ) = (Σ,Σ);
set queue = ∅ ;
(Γ, ∂Γ) → queue;
while queue 6= ∅ do

get queue.firstElement(Γ̄, ∂Γ̄);
if ∂Γ̄ = ∅ then

if Γ̄ is rigid and contracted then

if Γ̄ is bipartite then Γ̄ → C
(2p)
n ;

else Γ̄ → C̃
(2p)
n ;

end if

end if

else v = random vertex of Γ̄;
new ver = (w0, w1, . . . , wk) array of vertices which can be joined to v;
for each wi ∈ ver do

if v, wi have not n− 1 common edges then
new edge e = n-coloured edge joining v and wi;
new pair (Γ′, ∂Γ′) = (Γ̄ ∪ {e}, ∂Γ̄ \ {v, wi});
if Γ′ satisfies condition (ii) then
(Γ′, ∂Γ′) → queue;

end if

end if

end for

end if

end while

end for

Output: C
(2p)
n , C̃

(2p)
n

The algorithms for generation of catalogues of triangulations in dimension 3 and 4 have been sufficiently
developed from the theoretical point of view and have been implemented in C++ programs. Although they
share the approach described above, different combinatorial conditions have to be implemented in order to
realise the conditions on Γ′ and Γ̄.

2In dimension three, contractedness and rigidity assure that dipoles do not appear. In higher dimensions the absence of dipoles
must be checked.
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3.1. Dimension three. Dimension three has great advantages from the computational point of view,
because:

• the generation of the set S
(2p)
3 can be performed by a very efficient recursive algorithm based on a result

by Lins [5]: all elements of S
(2p)
3 are obtained from those of S

(2p−2)
3 by means of the antifusion of an

edge3 except for the 1-skeleton of a prism, which appears only when p is even;
• 2-spheres with and without holes can be easily and efficiently recognised by computing their Euler
characteristic directly on the representing graphs;

• the zero Euler characteristic identifies closed 3-manifolds.
In particular, the conditions to be checked in the generation algorithm become as follows: a 4-coloured graph
Γ without boundary is a rigid crystallization of a closed 3-manifold if and only if it has no ρ-pairs and

∑

i,j∈∆3

gij − 2p− 4 = 0, (3.1)

where gij is the number of {i, j}-coloured cycles of Γ; while a 4-coloured graph Γ′ with boundary satisfies
condition (ii) if and only if for each r ∈ {0, 1, 2}, we have

2gr̂ −
∂gr̂ =

∑

i,j∈∆3−{r}

ġij −m, (3.2)

where 2gr̂ (resp. ∂gr̂) is the number of connected components (resp. not regular connected components) of Γ′
r̂,

m is the number of 3-coloured edges of Γ′ and ġij is the number of closed {i, j}-coloured paths of Γ′.

3.2. Dimension four. The recognition of the 3-sphere, which is involved both in the generation of the

set S
(2p)
4 and in Proposition 2.1, cannot be performed through easy computations. Nevertheless it can be

solved for graphs with a low number of vertices by dipole eliminations since, by the 3-dimensional classification
results [13], it is known that no rigid crystallization of S3 exists (different from the “trivial” one of order two)
with less than 24 vertices. Furthermore condition (ii) would be very heavy to check, since it implies recognition
of 3-spheres with holes. Instead, we use a weaker condition, which is equivalent to require Γî to be a manifold
(with boundary), i.e. each connected component of Γîĵ must represent S2 possibly with holes for each pair of
colours i, j ∈ ∆3. This is equivalent to require the following equality to hold:

∑

k,t∈∆4\{i,j}

gkt −
p̄

2
= 2gîĵ − ḡîĵ (3.3)

where gkt is the number of {k, t}-coloured cycles of Γ, p̄ is the number of vertices of Γ lacking in 4-coloured
edges, gîĵ (resp. ḡîĵ) is the number of connected components of Γîĵ (resp. ∂Γîĵ).

4. Parallelization strategy. Although theoretical optimizations have been introduced in order to reduce
the computational cost for generating a catalogue of crystallizations with a fixed number of vertices, the com-
putation becomes more and more intensive as the number of vertices increases, because of the combinatorial
procedure on which the algorithm relies and the large number of input spheres that are processed. There-
fore, a parallel version of both the 3- and the 4-manifold generation algorithms described in Sect. 3 have been
implemented by exploiting the Message Passing Interface (MPI) paradigm [21].

Parallelization is quite straightforward, as the data can be distributed among several tasks that can work
independently from each other. Since the number and the computation time of each crystallization generated by
a single sphere can vary significantly depending on the sphere processed, the workload may not be well balanced
if each task processes the same number of input spheres. For this reason the work has been distributed among
tasks according to a master-slave structure, where the master reads all the sphere codes from the input file
and distributes a sphere at a time to slaves. Those slave processes will generate all the possible crystallizations
associated to the sphere they received; when a slave has ended the processing of a sphere, it saves the results on
its own memory and asks the master for a new one. Master process either provides a new sphere, if some of them
have not been processed yet, or collects all the crystallizations produced by the slave task. Note that starting

3This operation is the inverse of the cancellation of an edge, which occurs in the same way as for a 1-dipole.
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Figure 4.1. Computing times on a Linux cluster to generate 3-dimensional PL manifolds represented by crystallizations with
32 vertices: balanced distribution of spheres by the master versus a RMA approach. The RMA version is less performant than
MPI because of the poor implementation of remote memory access on this platform.

from different spheres we can obtain colour-isomorphic crystallizations, i.e. with the same code, therefore each
slave stores crystallization codes in two set containers (for orientable and non-orientable manifolds respectively)
of the STL library [23] so that results are not replicated.

This strategy implies that the master process does not contribute to the computation, because it must be
ready to provide new data as soon as it is required by a slave. We also investigated an MPI-2 Remote Memory
Access (RMA) approach which allows the master to process some spheres after having read and stored the
input data in a memory window. In fact, each process can get from that window its input data by itself (one-
sided communication, where memory windows access is regulated by a synchronisation command). In this case
another window is required to store a counter keeping track of the already distributed spheres. Such a solution,
tested for dimension 3, turned out to be not very efficient, because its performance depends on the system used.
In particular its efficiency is guaranteed only on systems with hardware support for remote-memory access, such
as SGI Altix or Sun Fire [25]. Whereas it shows poor performance on IBM SMP systems like the one we used
for our tests, because the MPI-2 implementation is not optimized for RMA operations.

See Fig. 4.1 for a comparison of the computing times between the original, referred to as MPI, and the
RMA approach for generating 3-manifold crystallizations with 32 vertices. Moreover, the contribution of the
master to the computation has a negligible impact on the performance as the number of processors increases.
Therefore we decided to keep the original strategy and implement it also for the 4-dimensional case.

At the end of the overall computation, the master will have collected all the results produced by each slave
process. It will then write the results in two output files: one containing a list of triangulations of orientable
manifolds (i.e. bipartite crystallizations), the other for non-orientable ones (as of now, this is true only for the
case of the 3-dimensional manifold generation program: in dimension four, because of the very small number of
non-orientable manifolds discovered, all the manifolds are still written in a single catalogue). Output produced
by each slave is collected only at the end of the overall computation, in order to reduce communications with the
master. However, when the number of crystallizations produced by each slave is very large (e.g. in dimension
4), the collection of results by the master can become a serious bottleneck. This can be avoided by letting
each slave process write its own output and eventually post-processing all the files in a second step in order to
merge them into only two. Moreover, as the number of input spheres increases, each slave may have to deal
with a total number of output crystallizations that is too large for its local memory. Notice also that some
processes can store isomorphic, and therefore redundant, codes on their local memory, but they cannot find
it out since they do not communicate. This translates into a troublesome waste of memory space. Therefore
a further small change, required for generating crystallizations of PL 4-manifolds with more than 18 vertices,
has been implemented: allow the generation program to process a subset of the input data, so that the list of
input spheres can be split in several chunks and each of them can be processed one at a time. The last two
modifications discussed (removing the final communication bottleneck and splitting the input processing) have
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2p 2 8 12 14 16 18 20 22 24 26 28 30 32

S
(2p)
3 1 1 1 1 2 2 8 8 32 57 185 466 1543

C
(2p)
3 1 1 1 1 3 4 23 44 262 1252 7760 56912 444102

C̃
(2p)
3 0 0 0 1 1 1 9 12 88 480 2790 21804 170367

Table 5.1

Number of input gems and corresponding crystallizations generated in dimension 3 up to 32 vertices. Some values, i.e.
2p = 4, 6, 10, are missing, since in these cases there are no input 2-spheres and consequently no crystallizations.

Figure 5.1. Scaling of the computing time with the number of slaves on PLX for the generation of 3-manifold crystallizations
with 30 vertices.

been implemented only on the 4-dimensional generation algorithm: as for dimension three, the number of input
and output codes is still small enough to be handled without such changes.

5. Performance results. Some benchmark tests have been made in order to evaluate, for both programs,
the scalability with the number of processors on two different systems. The first one is a 3288 cores Linux
Infiniband cluster IBM iDataPlex DX360M3 (referred to as PLX), made of 274 IBM X360M2 12-way computing
nodes with 2 Intel Xeon Westmere 6-core E5645 2.4GHz processors and a memory of 48GB per node. The second
one is an IBM BlueGene/Q system (referred to as FERMI) made of 10240 computing nodes with a chip of 16
IBM PowerA2 1.6 GHz cores and 16GB of memory each.

Performance of the code implementing the generation of triangulations of 3-dimensional PL manifolds has
been tested using as an input the catalogue of gems with 30 vertices representing the 2-sphere. In this case
we have 466 input 3-coloured graphs producing 78716 crystallizations (see Table 5.1 for a list of the number
of input gems representing the 2-sphere and crystallizations produced for increasing numbers 2p of vertices).
The computation for our test is intensive enough to allow us to complete a scalability test on the PLX system,
exploring the range between 1 and 256 slave processes. Computing times plotted in Fig. 5.1 show a linear
scalability until the number of slaves becomes greater than 128, because of the increasing communication
overhead with the master.

In dimension 4, as the number of input spheres and crystallizations generated is very large even for a low
number of vertices (see Table 5.2), the code is suitable to run on massively parallel architectures such as the
BlueGene/Q. We considered the case of the 16 vertices catalogue in order to compare performances observed on
this platform with the ones on PLX. Figure 5.2 shows scalability with the number of slaves ranging from 64 to
512, both on the PLX and the FERMI systems. As we expected, FERMI computing times are worst than PLX
ones because the BlueGene cores are less powerful. For the same reason scalability on FERMI is better than
on PLX because slaves’ requests for new input data should be more distributed over the time as the processing
time of each input sphere is longer, thus avoiding the communication bottleneck.

In order to explore scalability on FERMI over a very large range of processors (from 1024 to 16384), we
considered the generation of the 18 vertices catalogue and measured the computing time with respect to the
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2p 2 8 10 12 14 16 18 20

S
(2p)
4 1 9 39 400 5255 95870 1994952 45654630

C
(2p)
4 1 1 0 0 1109 4512 44803 47623129

Table 5.2

Number of input gems and corresponding crystallizations generated in dimension 4 up to 20 vertices. Some values, i.e.
2p = 4, 6, are missing, since in these cases there are no input 3-spheres and consequently no crystallizations.

Figure 5.2. Scaling of the computing time with the number of slaves for the generation of 4-manifold crystallizations with 16
vertices. Comparison between FERMI and PLX timings.

number of total MPI tasks, instead of slave processes. This has been decided due to the peculiar configuration
of the system [24], where access to the compute nodes is mediated by the access to specific nodes with the
task of dealing with I/O operations (”I/O nodes”). More specifically, in order to let your simulation run on
FERMI’s compute nodes, an I/O node needs also to be allocated, and since there is one of such nodes every 64
or 128 compute nodes, each resource allocation needs to require (a multiple of) such number of compute nodes.
FERMI system is made of 10 racks (each containing 16K cores): 2 of them have 16 I/O nodes each, implying a
minimum job allocation of 64 nodes (1024 cores); the other racks have 8 I/O nodes each, implying a minimum job
allocation of 128 nodes (2048 cores). PowerA2 cores can schedule for execution two or four threads in the same
clock cycle, therefore it is possible to use a single core as two (resp. four) virtual CPUs. This technique is called
Simultaneous Multi-Threading (SMT), to distinguish it from the standard Single Thread (ST). Figure 5.3 shows
a linear scalability both for the ST and the SMT modes. Deploying SMT improves the performance by reducing
the computing time about 42% and 60% by using two and four virtual CPUs respectively. Communication does
not affect scalability even for a large number of cores, not only because processors are less powerful and the
processing of each input sphere is more intensive, but also because in dimension 4 the output results are not
collected by the master. On the other hand, I/O performance may degrade (see Fig. 5.4 as an example) since
the I/O nodes are the only ones able to interact with the file systems and each slave writes its own file.

As the number N of input data will increase (with the number of vertices) or scalability will start to degrade
(for an increasing number of slaves), a further improvement for the program will be letting the master distribute
chunks of a fixed number of input spheres, instead of only one at a time: this should reduce communications
with the master and avoid a possible bottleneck. This solution will preserve the workload balance by taking
the chunk size very low with respect to N .

6. Conclusions and future developments. In this paper we have described an algorithm for generating
3- and 4-dimensional PL manifolds represented by edge-coloured graphs with a fixed number of vertices. The
combinatorial nature of the algorithm has allowed to parallelize it according to a simple master-slave procedure
by using the MPI paradigm. However, since the computing time of each slave is dependent on the input data,
a suitable data distribution strategy has been adopted in order to have a balanced workload and let the code
be able to scale over a very large number of processors. We have discussed scalability results on different high
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Figure 5.3. Scaling of the computing time with the number of cores on FERMI for the generation of 4-manifold crystallizations
with 18 vertices.

Figure 5.4. Output times on FERMI for writing all the 4-manifold crystallizations generated with 18 vertices. All MPI
tasks write concurrently their own results on separate files. The data size may increase with the number of tasks because some
crystallizations may be replicated (in this case we reached a maximum size of 1.1GBytes). There is one I/O node available every
128 compute nodes. The first test with 64 compute nodes has been executed in a special rack where an I/O node is available every
64 compute nodes.

performance computing architectures: iDataPlex Linux Cluster and BlueGene/Q.
Our future work will investigate further improvements of the code performance, both from a theoretical

point of view by searching for other topological results that simplify the computation and from a HPC point
of view by introducing a second level of parallelization based on a shared memory paradigm. In the latter case
we can accelerate time-consuming parts, such as the computation of the crystallization code, by exploiting the
OpenMP [22] Application Program Interface where each slave (MPI task) can run either on a single core in a
SMT mode or in a single node if a large number of OpenMP threads is required. Finally we will further explore
I/O behaviour when large sized output data is produced concurrently by a large number of processors in order
to understand its impact on the total wallclock time, in particular on BlueGene like systems.

We envisage that improvements of the code performances will enable us to extend the existing crystallization
catalogues of 3- and 4-manifolds to a higher number of vertices of the representing graphs. In dimension three,
we could thus make comparisons with other censuses generated by means of different combinatorial methods.
With regard to PL 4-manifolds, we expect that our catalogues would be useful to investigate minimal combi-
natorial structures and test conjectures about known invariants, as well as giving examples of non-equivalent
triangulations of some “interesting” topological manifolds.
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