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NEW PERFORMANCE ESTIMATION FORMULA FOR EVOLUTIONARY TESTING OF
SWITCH-CASE CONSTRUCTS

GENTIANA IOANA LATIU, OCTAVIAN AUGUSTIN CRET, AND LUCIA VACARIU*

Abstract. Evolutionary structural testing is a technique that uses specific approaches based on guided searches algorithms.
It involves evaluating fitness functions to determine whether test data satisfy or not various structural testing criteria. For testing
multi-way decision constructs the nested If-Then-Else structure and Alternative Critical Branches (ACBs) approaches are generally
used. In this paper a new evolutionary structural approach based on Compact and Minimized Control Flow Graph (CMCFGQG)
which uses two different formulas for evaluating the performance of test data, is presented. The CMCFG approach is derived
from the concept of Control Flow Graph (CFG). Experiments on different Switch-Case constructs with different nesting levels
have demonstrated that CMCFG yields significantly better results in finding test data which cover a particular target branch in
comparison with the previous approaches.
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1. Introduction. The main idea behind the evolutionary testing process is to automatically generate
test data through the use of optimizing search techniques [1]. The search space which corresponds to the
evolutionary process is represented by the specific domains of the input variables of the software program under
test. Evolutionary structural testing has been intensively used for automatically generating test data by many
researchers. M. Harman and P. McMinn present in [9] a vast theoretical exploration of global search techniques
embodied by Genetic Algorithms. Other approaches related to evolutionary testing with flag conditions are
presented in [5], [16], and [4]. Different transformations techniques were applied and reported in the literature
for Evolutionary Testing (ET) in order to improve the fitness function calculation, because a well-defined fitness
function is essential for the efficiency of the evolutionary search process ([12], [8], and [13]).

The main constructs (sequence structures, selection structures and repetition structures) of a software
program were studied and tested in the literature using evolutionary search techniques, but less work has been
done on the switch-case constructs which are used to express multiple branch selection statements. This type
of construct was studied in [15], where it was tested using the concept of Alternative Critical Branches (ACBs).
ACBs consist of all case branches that can prevent the execution of the target branch. The ACBs consist of
one element that is the alternative branch of the target branch if it is leaving a two-way decision node. Each
control-dependent node has only one ACB assigned to it. All the ACBs with respect to the target branch
constitute a set. It forms the Critical Branches Set (CBS) which is extended from the single critical branch
concept. This concept refers to the branch which prevents the target branch to be reached when the current
test data is executed. If any element from CBS corresponding to the target branch is taken, then there is no
chance to generate test data which cover the target branch.

The focus in this approach is on the structural testing of multi-way decision statements, in particular
on branch coverage. The ACBs are used for determining the approximation level, which is used by the fitness
function formula that evaluates the performance of each individual. The approximation level has been calculated
by subtracting one from the number of ACBs which are in the CBS and which are lying between the node from
which the test data diverge away and the target node.

The rest of this paper is organized as follows: Section II describes the evolutionary testing methodology
and the switch-case constructs. Section III describes different fitness function calculation approaches used for
structural testing in case of switch-case constructs. Section IV presents the experimental results obtained for
different level of imbrications and Section V presents the final conclusions and future work.

2. Evolutionary testing methodology and switch case construct. Evolutionary testing (ET) is a
meta-heuristic approach by which test data can be generated automatically through the use of optimization
search techniques. It is usually used for testing complex systems which may involve many components with
correlated activity between them. The ET process tries to improve the effectiveness of the traditional testing
process by transforming the testing objectives in search problems which will be solved using evolutionary
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algorithms. In the ET process the search space is represented by the variation domain of the input variables

of the software under test, in which test data fulfill the specific test objectives. The ET process’ phases are
presented in Fig. 2.1:

Generate random
‘ test data

Recombination

Fitness evaluation

Test results

FIGURE 2.1. Ewolutionary testing process

ET is used in many search problems in software testing, because it has a very good capacity of adapting
itself to the system under test. The ET process is an iterative procedure which combines good test data in
order to achieve better test data. ET was successfully reported in the literature and applied for different forms
of testing, called: specification testing [14], unit testing [7], and extreme execution time testing [17].

During the ET process the initial test data are randomly generated. Each individual from the population
represents the test data using which the test is executed. Test data take values from the domains of the
software under test’s input variables. The performance of each individual is evaluated and the fitness value
corresponding to the current individual is determined. Next, the population members are selected with respect
to their performance. The chosen individuals are subject to crossover and mutation processes to generate new
individuals, called offsprings. Crossover is used to combines two parents to produce a new offspring, while
mutation is used for randomly altering a gene value (for instance, switching from 1 to 0 in case of binary
individuals) from the individual. By reuniting the new created offsprings with their parents a new population
is formed. The evolutionary process repeats all the above described steps until the established testing criteria
are met. Then the process stops and the best solution found will be the testing solution.

The goal of this research was to study the switch-case construct in the context of structural path oriented
testing, aiming to find test data which executes a particular branch in a program that contains switch-case
constructs. In order to automatically generate test data which trigger the execution of a particular branch of
the program, every possible solution is evaluated with respect to the test objective. The switch-case construct
is a multi-way selection control mechanism which is used as a substitute for the nested if-then-else structure.
It is extensively used in software programs because it improves the readability of the source code and reduces
repetitive coding. The general structure of a switch-case construct is presented in Fig. 2.2:

Switch (expression) {
Case expression: /some code

Jump, return or break statement
Default: //some code

Jump, return or break statement
§

FIGURE 2.2. General switch-case conditional construct

The switch-case construct, as presented in 2.2, gives the developer the possibility of choosing between many
statements, by passing the flow control to one of the case statements within its body. The switch statement
evaluates the expression and executes the case branch that corresponds to the expression’s value. A switch-case
construct can include any number of case statements. Each case statement is followed by an optional break,
return or goto statement (called breaking statements). The breaking statements are used either to return a
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value and exit the switch body, or to break out of the switch construct when a match is found, or go to a specific
location in the code.

If break, return and goto options are not present after a case statement then the control flow is transferred
to the next case statement until it will meet one of the breaking statements. If an expression transmitted to
the switch-case construct does not match any case statement, the control will go to the default statement. If
no default statement exists, the control will go outside the switch body. A simple example of a switch-case
construct is presented in Fig. 2.3.

Switch (x) {
Case ‘b’: y = ‘B’; break;
Case ‘f’: y="F’; break;
Case ‘c’: y="C’; break;
Case ‘a’: y="A’; break; //Target branch
Default: y="7’;
!
s

FIGURE 2.3. Simple switch-case conditional construct

A previous work [15] has argued that for a particular case branch, the CBS should be constructed. This set
is composed of all the case branches that cause the target to be missed. For instance, the CBS that corresponds
to the target branch from the source code listed in Fig. 2.3 is composed by case b’ case 'f’, case ’c, and default.
The target branch is definitely missed when the execution of test data diverges away at any branch within the
CBS.

The fitness function used for evaluating each test data is calculated using the sum between two metrics:

1. The approximation level. This is calculated by subtracting 1 from the number of ACBs located between
the node from which the test data diverge away and the target branch itself (in the example from
Fig. 2.3, the branch that corresponds to case ’a’).

2. The branch distance. This is calculated using the following expression: |expr — C| + 1, where expr is
the value of the expression which appears after the switch keyword, and C is the constant value for
the desired case statement. For both operands (ezpr and C') the corresponding ASCII code for each
character is used. The value 1 which appears at the end of the formula is the positive failure constant
[14]. For instance, if = ’f’, then the branch distance which corresponds to the target branch specified
in Fig. 2.3 is [102 — 97| + 1.

The fitness value indicates how close the test data are to trigger the execution of the target branch located
inside the switch statement.

3. Different fitness function calculation approaches for switch-case constructs.

3.1. Fitness calculation based on nested if-then-else statements. Switch-case constructs are con-
sidered to be equivalent to nested if-then-else statements with respect to the CFG. The switch-case construct
presented in Fig. 2.3 is equivalent to the nested if-then-else construct shown in Fig. 3.1:

if (=) (y=B’;}

else if (x="1") {y="F’;}

else if (x=="¢’) {y="C";}

else if (x=="a") {y="A’;} // Target branch which should be tested
else {y="2’;}

FIGURE 3.1. Transformation of switch-case conditional construct in nested if-then-else statements

The target branch for which test data should be generated is the case branch x==’a’. Each test data
automatically generated by the ET process must be evaluated using the fitness function. The purpose of this
function is to guide the evolutionary search process to find the test data that trigger the execution of the target
branch. The fitness function evaluation represents the calculation of distances to the target branch.

In structural testing, previous work [2] has demonstrated that the fitness function having the expression
illustrated in 3.1 correctly evaluates how close the test data are to cover the target branch:
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F(test_data) = Approx_level + Normalized_-branch_distance (3.1)

The normalized branch distance is computed using formula 3.2 and indicates how close the test data are
to take the alternative branch:

Normalized_branch_distance = 1 — 1,001~ 4istance (3.2)

The approximation level represents the number of decision nodes lying between the decision nodes where
the actual test data diverge away from the target branch itself. In Fig. 3.2, given x = ’b’ the control flow takes
the Yes branch at node 1. The approzimation level is 3. The branch distance is computed according to (2)
using the values of the variables or constants involved in the conditions of the branching statement [2]. For the
branching condition 2 =’b’ the branch distance is |z — 98|.

FIGURE 3.2. CFG for a simple switch-case construct

As shown in Fig. 3.2 each decision node is control-dependent on the previous decision nodes. For switch-case
constructs represented as nested if-then-else statements, each case branch is dependent on the case branching
node it leaves and all the case branching nodes located before it. For instance in Fig. 2.3 the branch corre-
sponding to x=="a’ is control dependent on z==’c’, x=="f" and x=="b’ branches. Considering that the target
branch is the branch corresponding to case ’a’, then the approximation level will be computed as follows:

e its value will be 0 if test data diverge away at condition node x=="a’;
e its value will be 1 if test data diverge away at condition node x=="c’;
e its value will be 2 if test data diverge away at condition node x=="1;
e its value will be 3 if test data diverge away at condition node x=="b’.

If the fitness function is computed for two specific values of the = variable, ’c’ and ’b’, the corresponding
branch distances are 2, respectively 1 if we consider the traditional approach for computing the branch distance
based on relational predicates [11]. So for these two values (’c’ and 'b’) the approxzimation level equals 1 and
3 respectively. Considering that the fitness value is the sum between the approzximation level and the branch
distance, the fitness value for z=="c’ equals 3 and the fitness value for t=="b’ equals 4.

Taking into consideration that better test data have smaller fitness values, the value ’c’ is considered to be
better than the value 'b’ because it is closer to ’a’ (which constitutes the target branch). This choice is contrary
to the traditional approach, because ’'b’ is closer to ’a’.

In conclusion the approach with nested if-then-else statements is not a perfect one because in the switch-
case constructs the order in which the clauses are written is not important for the evaluation of the fitness
function, while the nested if-then-else statements can induce significantly different fitness values depending on
the order in which they are written. For instance, the fitness value for x = ’c’ is smaller than the fitness value
for x = ’b’ even though ’b’ is closer to 'a’ than ’c’ is. This approach is not guiding the evolutionary search
algorithm in the correct direction, because the dependencies between case branches result in an inappropriate
approximation level value.

3.2. ACBs-based fitness function calculation. The ACBs-based approach for fitness calculation as-
sumes that all case branches in the switch-case construct are mutually exclusive in semantics [2]. A special CFG
called Flattened Control Flow Graph (FCFG) is described in [2]. This graph is extended from the traditional
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CFG, with the only difference that the switch node can have more than two successors, all of them being on
the same level. In this graph each case branch is control-dependent only on the branching switch node. Fig. 3.3
shows the FCFG corresponding to the simple switch-case construct presented in Fig. 2.3:

Case’a’
(Target)

FIGURE 3.3. Flattened Control Flow Graph for simple switch-case construct

Based on the FCFG definition ([2]) each node has a set of control nodes on which it depends. This set
constitutes the CBS. The target branch execution is definitely not triggered by the test data when the execution
diverges away in any node from the CBS. When any node in the CBS is taken by the test data, then there is
no chance that the target branch is covered. In the example from 3.3 the CBS attached to the target branch
is composed by the following branch cases: ’'b’, ’f’, ’c’ and default. If the actual test data object executes one
of the case statements from the CBS, it has no chance to execute the target branch.

With this concept of CBS and FCFG the approximation level metric (which is part of the fitness function
expression) is calculated by subtracting 1 from the number of critical branches located between the node from
which the test data diverge away and the target itself. The branch distance metric used for evaluating the test
data uses the switch expression’s value and the constant for the target branch.

Using this approach for the case when x equals b’ or ’¢’, the approzimation level will be 0 and the branch
distance will be |98 — 97| + 1 = 2 and |99 — 97| + 1 = 3, respectively. The fitness calculated based on 3.1 will
be 2 when == 'b’ and 3 when z == "c’.

For this simple case it is obvious that the ACBs-based fitness value is guiding the evolutionary search in a
correct direction compared to the nested if-then-else approach: the fitness value for z==’b’ is smaller than the
one for x=="c’. If the simple switch-case construct becomes a more complex one, containing case statements
without break options and one level of nesting, then it can look like in Fig. 3.4:

Switch (x) {Case ‘b’: value= ‘B’;

break;
Case ‘k’: value="K’;
break;
Case ‘¢c’: value="C’;
break;
Case ‘a’: Switch (y) {Case ‘h’: valuec = ‘H’;
break;
Case ‘i’
Case ’n’: value = ‘N’; //Target
break;

Default: value = ‘Z’;}

Default: value="W’;}

FIGURE 3.4. Complex switch-case conditional construct

The corresponding FCFG for the switch-case construct with one nesting level presented in 3.4 is shown in
Fig. 3.5:

For the complex switch-case construct illustrated in Fig. 3.4, if x = ’b’ and y = ’h’ the approximation level
is 1 and the branch distance is |1 — 0| + 1 = 2. The total fitness function value is 3. If 2 = ’a’ and y = ’h’,
then the approxzimation level is 0 and the branch distance is |7 — 13| + 1 = 7. The total fitness is 7. So the
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(Case a’)

Switch y

FIGURE 3.5. FCFG for complex switch-case construct

pair of values (z =’b’, y = ’h’) has a smaller fitness value than (z = ’a’, y = ’h’), even though the second pair
of values is closer to the solution values (z = ’a’, y = 'n’). So it is obvious that the fitness value calculation
approach proposed in [15], which is based on ACB approach, misleads the evolutionary search process.

3.3. Fitness calculation based on the CMCFG approach and Korel’s distance formula. To
correctly guide the evolutionary search algorithm in the right direction we propose a new approach based
on Compact and Minimized Control Flow Graph (CMCFG). As shown in Fig. 3.5 every switch node has as
descendants several case branches. For the target branch, one or more case branches can lead to the target
branch being not executed by the test data.

In the CMCFG approach each switch statement is represented on a different level. The approximation
level is calculated based on the number of switch nodes from which we subtract 1. The numbering of the
approximation level starts in the CMCFG in a top-down manner. As shown in Fig. 3.5, if test data diverge
away from target branch at the first switch node, it will have an approximation level of 1, while if they diverge
away from the target branch at the second switch node, it will have an approximation level of 0.

All the case branches which prevent the target branch from being executed are the case branches which have
one of the following breaking options: break, return or goto statement. All these branches stop the execution
of the switch-case structure and force the exit from this multi-way decision construct. All the case branches
which don’t have a jump or a break option are considered as not preventing the target branch to be missed and
they are merged in the CMCFG graph with the next case branches which have a break option.

The CMCFG that corresponds to the complex switch-case construct presented in Fig. 3.4 is shown in
Fig. 3.6. The node which corresponds to the case ’i’ branch has no break or return statements and therefore it
is merged with the node which corresponds to the case 'n’ branch. In Fig. 3.6 the case 'n’ node has resulted by
merging case i’ and case 'n’ nodes. So it doesnt matter whether the test data is 'i’ or 'n’, because the target
is prevented to be executed only when the break statement is encountered.

In CMCFG the case branches having no breaking options are not represented. Instead of these cases, the
next case branch which has a break or a return statement is displayed. Compared to the approach based on
critical branches, this one is more compact because it can be successfully used for modeling different type of
switch constructs and the decision nodes which don’t prevent the target to be covered are not present in the
graph. The processing time of this new graph is smaller compared to the processing time for the FCFG, because
the graph has fewer nodes.

The new proposed fitness function used for evaluating each test data is:

F(test_data) = Approx_level + Z Normalized_branch_distance (3.3)

The sum that appears in 3.3 refers to the sum of the normalized branch distances computed for each gene
of the individuals using 3.4:
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Case ’a’

Switch y

FIGURE 3.6. CMCFG for complex switch-case construct

B h_dist
Normalized_branch_distance = rane , Lotanee (3.4)
Branch_distance + 1

When computing the fitness function, the normalized branch distance is chosen because the approrimation
level is more important than the branch distance. We use equation 3.4 for normalizing the branch distance
according to the study presented in [3].

The branch distance is calculated using the functions based on relational predicates introduced by Korel in
[10], for which the switch expression value and the target case value are used: |switch_expr — target_case)|.

The test data values z = ’b’ and y = ’h’ will diverge away at the level of the node case 'b’; therefore the
approximation level will be 1. The fitness function will be (|98 —97| / |98 — 97| 4+ 1) + (|]104 —110] / |104 — 110|
+1)+1=2.35.

The second test data values x = ’a’ and y = "h’ will diverge away at the level of the node case ’h’; therefore
the approximation level will be 0. The fitness function will be (|104 — 110| / |104 — 110| + 1) = 0.85.

Taking into consideration that better test data always attain smaller fitness values, by comparing the
previous pairs of test data, it is easy to find out that the second one is closer to the desired test data values (x
="’a’ and y = 'n’). This means that the approach based on CMCFG and branch distance, introduced by Korel
in [10], gives a better guidance to the evolutionary search process than the evolutionary approaches based on
nested if-then-else and ACBs.

3.4. Fitness calculation based on the CMCFG approach and Euclidian distance. In the previous
section the formula proposed by Korel [10] was used for calculating the branch distance. The fitness function
used for evaluating each test data was composed of the approximation level and the normalized branch distance.

Another new fitness calculation approach based on CMCFG representation of the switch-case construct
and the Fuclidian distance is proposed hereinafter. It uses for evaluating each test data the CMCFG model for
representing the entire switch-case construct in combination with the fitness function formula presented in 3.5:

F(test_data) = Approx_level + Z Euclidian_distance (3.5)

The Euclidian distance formula is the most commonly used formula for calculating distances. It examines
the square root differences between coordinates of a pair of objects. Considering two points in an n-dimensional
search space, the Euclidian distance formula is shown in 3.6:

Euclidian_distance = \/(x1 — y1)? + (22 — y2)2 + .. + (Tn — yn)? (3.6)

Formula 3.6 is adapted for calculating distance in evolutionary testing by making the following changes:
1. Each z variable is the value of the node which is located along the target path in CMCFG. For instance,
for the simple switch-case construct presented in Fig. 2.3 the x variable from the Euclidian distance
formula has the value 5.
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2. Each y variable form Euclidian distance formula represents the actual test data values. In case of the
complex switch-case construct presented in Fig. 3.4 for a set of test data equal to ("b’, 'h’), the y values
for 3.6 will be replaced with 98 and 104 (the ASCII codes for b’ and 'h’).

For the simple switch-case construct presented in Fig. 2.3, in case yl == '¢’ the Euclidian distance will be:
/(97 —99)2 . The fitness value according with 3.5 for test data equal to 'c’is: 0 + 2 = 2.
For the most complex switch-case construct presented in Fig. 3.4, in case of pair values (yl =="b’, y2 ==

'h’) the Euclidian distance will be: /(97 — 98)2 + (110 — 104)2. The fitness function value according to 3.5 for
the test values x == "b’ and y == "h’ is: 1 + 6.08 = 7.08.

The performance for the new fitness calculation approach based on approximation level and Euclidian dis-
tance will be compared with the other three approaches (nested if-then-else, ACBs and CMCFG with normalized
branch distance) in order to be able to find out easy which one is the best for generating test data.

4. Experimental Results. The experiments using the two new estimation performance formulas in con-
junction with the CMCFG model were executed on eight different switch-case constructs having different nested
levels - from 0 to 7. All these switch-case constructs were also tested using the nested if-then-else approach and
the Alternative Critical Branches approach.

The software program used for testing the switch-case constructs was written in C# and all the experiments
were performed using a system equipped with an Intel I3 processor running at 2.2 GHz, and Windows 7
Operating System.

For all the four approaches, ten runs were performed for testing each switch-case construct and the results
were compared. For testing the switch-case constructs an evolutionary framework was designed and implemented
in C#. The high level architecture of the software program used for generating test data which cover the target
is presented in Fig. 4.1. It has a separate component which implements each evolutionary method described in
Section IIT and three layers which together form an application able to automatically generate test data for a
particular path from the software under test. The software program is a desktop application which has a very
easy to use interface.

Program Analyzer Component

Construct Control CMCFG CMCFG

nested if- dependency using using

then-else graph normalized Euclidian

structure branch distance
distance

Code Code Code Code

instrumented instrumented instrumented instrumented

Evolutionary module
Run evolutionary search process

Display module
Display evolutionary process results in graphical user interface

FIGURE 4.1. High-level architecture of the evolutionary framework

The software program used for experiments is composed of three parts: a static analyzer module, a module
for running the evolutionary process and a module for displaying the graphical results.

The module that performs the static analysis consists of four sub-modules which build the nested if-then-else
structures, or build the dependency graph flow and the CBS, or build the two CMCFG approaches (depending
on which approach is to be executed). The static analyzer component instruments the code with the information
needed for calculating the fitness function.
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The module that executes the evolutionary process uses the data provided by the program analyzer module
and runs the genetic algorithm which represents the evolutionary search method in the ET process. This module
runs the evolutionary process for 100 generations and uses an initial population composed of 40 randomly
generated individuals. Each individual from the population represents a different test data which are applied
for testing the switch-case constructs.

The graphical module takes the results provided by the evolutionary module and displays them in a user
interface. The best individual from each generation is displayed in a data grid. For the current generation,
the software application displayed the individual genes values, the fitness function value and the computational
time needed for each generation.

Table 4.1 presents the best run for each of the four evolutionary approaches out of ten runs for each. It
shows that the iteration number at which the evolutionary algorithm is able to find test data which covers
the target branch is smaller for the two CMCFG approaches compared to the ACB and nested if-then-else
approaches.

TABLE 4.1
Ezperimental results - the iteration number at which the solution is found

Nested Evolutionary process
level IF-THEN-ELSE ACB CMCFG+ | CMCFG+
(nested (Alternative Critical | Normalized | Euclidian
if-then-else Branches Approach) branch distance
structure) distance
0 27 18 7 12
1 90 56 30 36
2 98 65 40 46
3 100 79 52 59
4 >100 83 60 72
5 >100 91 68 76
6 >100 96 80 88
7 >100 100 89 95

The test data were generated for unstructured switch-case constructs having case branches with no break
or return options. The processing time for the CMCFG-based methods was smaller compared to the processing
time needed for the CBS-based and the nested if-then-else structures approaches.

The processing time strongly depends on the number of nodes in the control flow graph. If the CMCFG
has one branch node less than the normal control flow graph, then from our experiments the processing time
resulted to be significantly smaller compared to the processing time for a normal control flow graph. From the
experiments that were run, it came out that for each nested level our proposed methods are faster with about
1 millisecond per iteration in comparison with other two approaches.

Fig. 4.2 shows the results obtained for each nested level of the tested switch-case construct. All four
approaches are displayed on the same graphic in order to facilitate their comparison.

As shown in Fig. 4.2, the proposed CMCFG-based approaches which are using the normalized distance and
the Euclidian distance for calculating fitness function converge faster than the two other approaches. In the
previous figures one can notice that for each switch-case construct the CMCFG based approaches converge to
0 in a smaller number of generations in comparison with the other two evolutionary approaches.

The nested if-then-else approach is not able to generate test data for the target branch in 100 generations
for a switch-case construct with 4 nested levels. The CBA-based approach converges much slower in comparison
with our CMCFG approach that is using the two different fitness function formulas that we proposed. This
means that the fitness function formulas used in CMCFG and introduced in this paper improve the guidance of
the testing process based on evolutionary searches, compared to the two other approaches that were also tested.
The process improvement has been illustrated in Table I, which indicates the iteration at which each approach
is able to find test data for the target branch.

5. Conclusions and Future Work. In this paper, the approach based on nested if-then-else constructs
and the one based on ACBs have been pointed out to be problematic because of a poor guidance of the search
algorithm. The new performance estimation formulas introduced in this paper are used in conjunction with a
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new representation model of switch-case constructs, which is the CMCFG.

Our proposed approaches using CMCFG representation in conjunction with normalized branch distance
and Euclidian branch distance are able to find test data for a given target path in a smaller number of iterations
in comparison with the other evolutionary approaches. From the practical experiments it came out that the
fastest is CMCFG with normalized branch distance.

Table I illustrates that our proposed formulas for calculating fitness function are 40 iterations faster in
finding test data than the if-then-else approach and 20 iterations faster than the ACB approach. Since the best
evolutionary approach finds test data in a smallest number of iterations, Table 1 clearly shows that the best
method is the CMCFG-based one with normalized branch distance. The two new fitness function formulas used
in conjunction with the CMCFG approach are two original approach proposed, implemented and tested here.

Future work will involve using evolutionary algorithms for generating test data that cover a particular
target branch in larger projects from the applicative area. In order to be able to completely automate test data
generation process, a complete software framework should be implemented. This software framework should
offer the human tester the possibility of choosing between different approaches and evolutionary algorithms,
make suggestions concerning the best strategy to adopt for different classes of software programs etc.
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