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TOWARDS AN AUTOMATED BPEL-BASED SAAS PROVISIONING SUPPORT FOR
OPENSTACK IAAS
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Abstract. Software as a Service (SaaS) applications fully exploit the potential of elastic Cloud computing Infrastructure
as a Service (IaaS) platforms by enabling new highly dynamic Cloud provisioning scenarios where application providers could
decide to change the placement of IT service components at runtime, such as moving computational resources close to storage
so to improve SaaS responsiveness. Moreover, emergent Internet of Things (IoT) scenarios enable novel computing applications
involving several heterogeneous smart objects interacting with each other. These highly dynamic scenarios call for novel Cloud
support infrastructures able to automate the whole SaaS provisioning cycle spanning from resource management to dynamic IT
service components placement, including software deployment, components re-activation, and rebinding operations. However,
notwithstanding the core importance of these functions to truly enable the deployment of complex SaaS over IaaS environments, at
the current stage only partial and ad-hoc solutions are available. This paper presents a support infrastructure aimed to facilitate
the composition of heterogeneous resources, such as single Virtual Machines (VMs), DB services and storage, and stand-alone
services, by automating the provisioning of complex SaaS applications over the widely diffused real-world open-source OpenStack
IaaS. Collected experimental results show the effectiveness of parallel execution of deployment steps introduced by our solution and
demonstrate its applicability and advantages in a real SaaS production testbed.
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1. Introduction. Novel Cloud computing infrastructures consisting of worldwide fully interconnected data
centers offering their computational resources as IaaS on a pay-per-use basis are opening brand new challenges
and opportunities to develop novel SaaS-based applications. Moreover, during the last decade, we experienced
the emergency of IoT application scenarios, where heterogeneous and ubiquitous devices, spanning from fully-
fledged smartphones to wired and wireless sensors, can interact with each other and cooperate to achieve
common goals of enabling new smart scenarios. The unique requirements of IoT environments (such as fast
deployability, high scalability, and large-scale provisioning), together with their highly dynamic nature, call for
the development of a large number of new SaaS applications exploiting the elasticity offered by novel Cloud
systems. These systems are typically characterized by both agile and continuous developments and deployments
as well as ever-changing service loads, and call for highly novel automatic solutions able to dynamically and
continuously supervise and facilitate the whole application management lifecycle.

In recent years, the advent of new Platform as a Service (PaaS) environments, such as CloudBees, Cloud-
Foundry, and OpenShift has simplified the provisioning of new SaaS applications over physical and IaaS-based
Cloud systems [1, 2, 3]; at the same time, PaaS technologies tend to impose to the final developer fixed and
well-defined software stacks (including languages and usable services), often difficult to modify and to tailor to
the specific service needs. In addition, from a more technological perspective, while SaaS and IaaS solutions have
been widely used and employed in the last decade even before the advent of the Cloud wave, PaaS represents
a younger technology that still deserves much work to improve flexibility and interoperability between different
PaaS environments, as well as in enhancing integration opportunities with other existing IaaS and SaaS ones.
Focusing only on SaaS-over-IaaS solutions, enabling the management and especially the provisioning of complex
SaaS applications over highly dynamic and large-scale Cloud-based IoT environments is still a difficult task that
requires to solve several open management issues spanning from virtualization issues, such as Virtual Machine
(VM), storage, and network virtualization, to large-scale Cloud monitoring, from optimal resource placement
computation to standardization and interoperability of the different deployment frameworks and Application
Programming Interfaces (APIs) adopted by various Cloud providers, and so forth.

Among all these challenging issues, the purpose of this paper is to present an architecture that offers a
support for the orchestration of all the steps needed to publish a SaaS application within a Cloud IaaS. A
SaaS application inside a Cloud environment can be viewed as a collection of opportunely configured service
components deployed into a set of dynamically created IaaS resources. In modern datacenters, there is a high
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availability of computational, storage, and network resources, but it is still missing a mechanism to automatically
orchestrate all the involved entities to allocate resources, to deploy and configure various software components,
and to manage their interactions in order to provide the requested application. Indeed, before application
providers can provide an application, they need to manually perform a set of operations (i.e., request new
VMs, install and configure software) that, especially for large-scale deployments, like the ones we could obtain
in IoT scenarios, could be really time consuming thus reducing the advantages of having flexible compute
infrastructures.

This specific problem has already been partially addressed by some contributions in the literature; however,
most of the existing efforts focus on single aspects. For instance, some proposal addressed deployment and life-
cycle management of service components [4, 5, 6], while the integration of software lifecycle management as a
core function of IaaS environment management supports, instead, apart a few specific seminal studies [7, 8, 10],
is still widely unexplored. In this context, we claim the necessity of new fully-integrated automated SaaS
provisioning facilities that start from the management of virtual resources, pass through the installation, con-
figuration and management of software components, and end with the coordination of these components. That
would be highly beneficial both for SaaS application providers, especially in highly dynamic IoT environments,
to ease the realization of new SaaS applications through the composition of existing single service components
in a mash-up like fashion, and for IaaS Cloud providers, by taking over all the error-prone and time-consuming
deployment and configuration operations at the IaaS level.

To address all these open issues, this paper proposes a novel automated SaaS-over-IaaS provisioning support
that adopts three main original guidelines. First, it provides to both IaaS Cloud providers and to SaaS appli-
cation providers a tool that transparently takes over the execution of software deployments and updates with
almost no need for human intervention. Second, it proposes a general automated application provision support
that integrates with state-of-the-art technologies, such as the highly interoperable OpenStack IaaS and the
standard Business Process Execution Language (BPEL), to ease the definition of all main deployment, config-
uration, and deployment monitoring steps. Third, our prototype has been implemented as an open-source tool
based on the open-source OpenStack Cloud platform and is made available to the Cloud community. Finally,
in order to better underline the benefits and original aspects of the proposed solution and to demonstrate the
effectiveness of our solution, the paper presents an experimental evaluation based on a realistic SaaS application
provisioning scenario on top of an open-source testbed based on OpenStack.

The remainder of this paper is organized as follows. In Sect. 2, we give an overview of related work
in the literature. In Sect. 3, we introduce needed background material about all main involved standards,
technologies, and support tools; in Sect. 4, we present our framework and outline its main components; in
Sect. 5, we provide some implementation details about our presented architecture. Finally, in Sect. 6 we show
collected experimental results. Conclusions and directions of future work end the paper.

2. Related works. The on-demand provisioning of services and resources in distributed architectures has
been deeply investigated in recent years. For the sake of space limitations, we will focus on two research directions
only: we start with works that provide solutions for the deployment and lifecycle management of software
components; then we move towards solutions that, closer to our proposal, enable automated provisioning of
applications by integrating software lifecycle as part of the wider Cloud IaaS management operations.

Focusing on the first research direction, the design, deployment, and management of software components
can be challenging in systems distributed on a large scale, and several different systems provide solutions to
automate these processes. The work depicted in [4] presents a system management framework that, given
a model of configuration and lifecycle, automatically builds a distributed system. Similarly, authors of [5]
introduce a model-based solution to automatically configure system specifications and provide this system on-
demand to the user. Finally, in [6], authors presented a solution to face change management issues; this solution
aims to automate all the steps required to handle software or hardware changes to existing IT infrastructures,
with the goal of an high degree of parallelism. All these solutions provide the automation of the deployment and
management of software components, so relieving administrator of the burden of manually configure distributed
systems; however, they only focus on the deployment of software components and do not consider virtual
infrastructure management, that instead assumes a central role in Cloud environments.

Along the second research directions, some seminal works have started to analyze the automated provisioning
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of applications in Cloud systems. The solution presented in [7] describes a multi-layer architecture that enables
the automated provisioning and management of cloud services; with this solution users can select a service from a
catalog of service templates, then the service can be configured by the user and deployed automatically. Authors
of [8] present a solution for on-demand resource provisioning based on BPEL [9]. This solution extends BPEL
implementations with the possibility to schedule workflow steps to VMs having a low load and the possibility to
add new VMs on-demand in peak-load situations. Both solutions focus on one of the most challenging aspects
of Cloud computing, i.e., the capability to request and use computational resources in a small lapse of time,
resulting in a fast performance increment and in a decrease of management costs. The works depicted in [10]
and [11] propose similar architectures for a generic provisioning infrastructure based on BPEL. These solutions
allow SaaS application providers to define generic provisioning workflows independent from the underlying
provisioning engines by enabling the possibility to automate the component-to-workflow matching process; they
also supports dynamic provisioning flows in order to face peak-load situations by allocating additional resources
at runtime. At the same time, these approaches focus more on the theoretical part of the management process
and leave out of the scope of the work possible implementation issues and analysis of additional overhead
introduced by the proposed solutions. Finally, another very interesting effort, also because complementary to
ours, is the one presented in [12] that aims to standardize both topology and orchestration specifications for
Cloud applications with a goal to make SaaS applications and their management portable across different IaaS
Cloud providers.

3. Background. This section introduces some background knowledge to provide a better understanding
of the area. Section 3.1 presents Cloud IaaS environments and provides needed details about the standard-de-
facto OpenStack IaaS [13]. Section 3.2 presents Juju, a scripting-based tool to ease the deployment of service
components [14]. Finally, Section 3.3 gives some needed background material about the BPEL standard that
we use to orchestrate the whole application provisioning process through the definition of proper workflows [9].

Before starting, let us introduce some terminology about the three main types of actors in Cloud systems:
Application users, Application providers, and Cloud providers. Application users are the final clients that require
access to particular online SaaS application and use its resources. Application providers build and expose SaaS
applications, typically composed by several service components, to the end users, and tend to externalize the
execution of their own services to avoid the deployment of costly private IT infrastructure. Finally, Cloud
providers supply application providers with resources on a pay-per-use fashion, in order to let them execute
their applications over their IaaS-based environment. In this paper, we will focus mainly on the application
providers and on how they interact with Cloud providers to enable, declare, and monitor the provisioning of
complex applications consisting of multiple service components.

3.1. OpenStack. OpenStack is an open-source project for building and managing private and public
Cloud infrastructures [13], proposed and promoted by NASA and Rackspace in 2010. OpenStack belongs to
the category of Infrastructure as a Service (IaaS) systems, whose goal is to provide resources, such as virtual
machines, virtual storage blocks, etc., on-demand from large pools installed in datacenters. OpenStack is based
on a very flexible architecture supporting a very large set of hardware devices and hypervisors (i.e. Hyper-V,
KVM, ESX, etc.) and even small businesses are allowed to deploy their own private Cloud because of the
open-source nature of this solution. However, OpenStack still lacks a monitoring and dynamic reconfiguration
mechanism to favor a dynamic deployment of applications on a large scale, thus requiring a manual management
to tailor specific scenarios and deployments.

OpenStack manages computation, storage and networking resources on the Cloud in order to provide
dynamic allocation of VMs [13]. OpenStack is based on five main services: the first one, called Nova, to manage
both computational and networking resources; the second one, named Glance, to manage and provide VMs
images; the third one, Neutron to manage network resources, and, finally, Swift and Cinder to manage storage
resources. To better understand our work, we provide a more detailed description of Nova service.

Nova manages the creation and the configuration of VMs, starting from images stored in Glance catalog.
Nova does not implement any virtualization software, rather it defines some standard interfaces to control the
underlying virtualization mechanisms. All the requests made to Nova components are sent through RESTful
APIs to nova-api that acts as a front-end to export all OpenStack IaaS functionalities, such as VM creation and
termination, through Web Services. To maintain compatibility towards multiple vendors and to facilitate the
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migration toward different Cloud providers, OpenStack also supports Amazon EC2 APIs to deploy applications
written for Amazon Web Services with a minimal porting effort [15]. In the following, we report several other
details about the main Nova services.

Nova-compute service, running on every node in the Cloud, launches and configures VMs within a certain
physical host. It communicates with the underlying hypervisor to instantiate and terminate VMs and to obtain
load statistics as well as performance metrics of VMs. OpenStack supports a wide range of hypervisors, but
the most commonly used hypervisor is KVM, due to its good performance and its full support toward the
virtualization of x86 architectures.

Nova-network service manages all the aspects related to network management. This service makes it
possible to create virtual networks that allow communications between different instances of VMs. A private IP
is assigned to every VM during boot, but it is also possible to assign it a public IP in order to make it accessible
over the Internet. All networking functionalities are moving towards the OpenStack service Neutron. This
service offers the possibility to create networks that can be associated to different tenants; it is also possible
to create virtual routers to enable communication between two or more VMs belonging to different tenant
networks. Thus, networks can be seen as resources available in the Cloud and Neutron can be considered as a
Network as a Service (NaaS).

Finally, nova-scheduler service determines on which node a VM should be booted. Actually this service
offers only a small set of simple scheduling policies, such as selecting the least loaded host or randomly selecting
a host. Even if OpenStack offers a scheduler mechanism to choose where a VM should be booted, it does not
provide any dynamic mechanism to migrate running VMs based on the current host load.

To show the interactions between OpenStack services, we introduce a simple VM instantiation use case (see
Fig. 3.1). The current state of the entire Cloud is maintained in a SQL server; periodically each nova-compute
service running on a certain node updates the SQL server with load information about that node (step 0). When
a user requests the instantiation of a new VM through the RESTful APIs (step 1), the nova-api service sends
a request to the nova-scheduler service (step 2) to determine on which host the new VM should be launched.
In this step, the scheduler queries the database in order to obtain a list of available hosts along with their
load information (step 3), and then selects one of them (step 4) according to the chosen policy. Finally, the
scheduler sends a VM instantiation request to the nova-compute service running on the selected node (step 5)
that requests network configuration parameters to the network service (step 6).

Fig. 3.1. VM instantiation in OpenStack

3.2. Juju. Juju is a tool for the deployment and the orchestration of services that grants the same ease of
use we can see in some widely used packet management systems such as Advanced Packaging Tool (APT) or
Red Hat Package Manager (RPM) [14].
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Juju focuses on the management and deployment of various service units and components needed to provide
a single application, by taking over the configuration and installation of required software on the VMs where
these service components will be deployed. Juju allows independent service components to communicate through
a simple configuration protocol. End-users can deploy these service components inside the Cloud, in a similar
way they can install a set of packets with a single command. As a result, it is possible to obtain an environment
consisting of multiple machines whose service components cooperate to provide the requested application.

Juju is independent from the underlying Cloud Infrastructure Layer and supports several Cloud providers
such as OpenStack, Amazon Web Services, HP Cloud, Rackspace, etc. Thus, it is possible to migrate a service
component between different Clouds with minimal re-deploy effort.

A service component represents an application or a group of applications integrated as a single component
inside a Juju environment that can be used by other components in order to build an higher level application.
In this paper we consider the use case where we provide WordPress, an open-source platform to create, manage,
and create dynamic Web site [16], by configuring and orchestrating two distinct service components: a service
component exposing the MySQL database needed by WordPress, and another service component running the
WordPress engine. A service component instance is called Service Unit and it is possible to add more of these
Service Units to the environment in order to scale the whole system, thus reducing the load on each VM.

Three main concepts are at the basis of services publication: charms, hooks and relations.
A charm encapsulates the logic required to publish and manage a service component inside a Juju environ-

ment. A charm provides the definition of a service component, including its metadata, its dependences on other
service components, the software packets we need to install in a VM, along with the logic needed to manage
the service component. Through the definition of a charm, it is possible to define the functionalities exposed
by the service component and, if we are dealing with a composed service, all the sub-services required.

Hooks are executable files used by Juju to notify a service component about changes related to its lifecycle or
about other events happened inside the environment. When a hook is executed, it can modify the underlying VM
(i.e. it could install new software packets) or it can change relations between two or more service components.

Finally, relations allow the communication between different service components. Relations are defined
inside a charm to declare the interfaces needed/exposed by a service component, that are offered/used by
another service component. Low level communications between service components are based on TCP sockets.

The environment is a fundamental concept at the basis of Juju: it can be seen as a container where service
components can be published; environments are managed through a configuration file where it is possible to
define some configuration parameters such as used Cloud provider, IP address of the Cloud provider, authenti-
cation credentials, etc.

It is possible to execute an environment through the bootstrap operation exposed by Jujus API. The
bootstrap operation initialize the system, instantiating a VM that will act as the controller node of the envi-
ronment. Zookeeper and Provisioning Agent are two of the main software components executed on controller
node. Zookeeper can be viewed as a file systems that stores all the information about the environment, while
Provisioning Agent interacts with the underlying Cloud provider in order to instantiate and terminate VMs
where service components are going to be deployed.

3.3. BPEL. BPEL is the de facto standard to define business processes and business interaction protocols
[9]. The BPEL language, based on XML, allows to express the orchestration of multiple Web Services by
defining business interactions modeled after a sequence of message exchanges between involved entities. A
BPEL document contains the control logic required to coordinate all the Web Services involved in a workflow.

BPEL provides many language constructs and mechanisms to define a sequence of activities like invoke,
receive and reply, parallel and sequential execution, transactional execution of a group of activities, and exception
handling. A partnerLink is an important construct defined by BPEL to represent an external service that is
invoked by a process or that invokes the process itself.

A BPEL engine elaborates a BPEL document, by defining an orchestration logic, and consequently executes
all the activities according to the order defined by the logic. Typically, a BPEL engine exposes the business
process through a Web Service interface that can be either accessed by Web Service clients or used in other
business process. One of the main advantages of BPEL is that the several activities of a business process can
be executed simultaneously, instead of imposing a sequential execution.
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4. Architecture. This section presents our architecture proposal to face all the main service orchestration
challenges described in the previous sections: the proposed architecture provides the support to orchestrate all
the steps involved in the publication of an application inside a Cloud platform, starting from the instantiation
of required VMs to the deployment of required software components, together with the definition of their
relationships. First, we briefly introduce this architecture and then we give a more in deep description of its
components.

The proposed architecture is easily extensible, due to its multi-layer nature; it allows to arbitrarily manage
the software components that form an application, and to use several Cloud providers. Starting from requests
asking for application provisioning sent from application providers, it is possible to automatically satisfy their
requests by monitoring all the steps involved in the application publication and notifying application providers
about the progress of their request.

The proposed architecture (see Fig. 4.1) consists of a Cloud Infrastructure Layer and a Service Orchestrator
Layer that, in its turn, we logically divided in two sub-layers: an Abstraction Layer and an Orchestration Layer.

Fig. 4.1. Proposed architecture

The Cloud Infrastructure Layer represents the virtual resources provided by the Cloud infrastructure
through the IaaS API: it contains VMs instances and defines the APIs required to create, configure and destroy
VMs used by upper layers; it also offers a connection mechanism in order to grant access to VMs. In our im-
plementation, we choose to use OpenStack as Cloud Infrastructure Layer, as it is a widely adopted open-source
solution; at the same time, thanks to the highly flexible nature of our architecture, it is possible to use any
other Cloud provider.

The Orchestration Layer and the Abstraction Layer compose together the Service Orchestrator Layer. It
is the composition of these two layers that makes it possible to create an orchestration support. Once the
application provider has sent a request, this layer will coordinate and execute all the activities to satisfy that
request, by opportunely configuring and communicating with the VMs provided by the Cloud Infrastructure
Layer.

Abstraction Layers goal is hiding the complexity of the underlying Cloud Infrastructure Layer by providing
a high level interface to the Orchestration Layer which encapsulates the functionalities offered by the Cloud
Infrastructure Layer. This abstraction mechanism obtains a highly flexible architecture working with several
Cloud providers. The functionalities exposed by this layer are useful to manage the entire VM lifecycle, in
addition to the services offered by that VM. This makes it possible to create a VM with a chosen operating
system and install on it all the software components required to build a service. Moreover, it is also possible to
add relationships between different services in order to allow them to cooperate. Let us introduce an example
to better understand the functionalities. If we want to build a service exposing a dynamic web site, we need
to instantiate and deploy two sub-services: a web server and a database to store all objects and data required
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by the web server. To deploy this scenario, the Abstraction Layer will create two VMs (one for the web server
and the other one for the database), install all the required software packages, and configure and start the two
services. However, in order to publish a working web server, these services need to communicate to each other.
This can be done by defining a relationship between the two services and specifying the functionalities exposed
by each service along with the required functionalities. It is essential that the Abstraction Layer could access
the VMs where the two services are deployed in order to monitor and, possibly, reconfigure the services; this is
achieved by establishing SSH tunnels to VMs.

The Orchestration Layer represents the orchestration engine inside our architecture. When an application
provider submits a request to this layer, it coordinates and orchestrates all the steps required to automatically
provide the application provider with the requested application. Every request received by the Orchestration
Layer contains a description of the required application, that can be seen as a model defining the service
components that compose the application, along with the description of their relationships to determine how
they must mutually interact. Typically, many activities are involved in exposing an application, so this layer
needs to manage transitions between these activities, by taking into account the dependencies between service
components as shown in Fig. 4.2. These dependencies represent the synchronization points between operation
sequences executed inside a workflow.

Fig. 4.2. Typical Orchestration Layer workflow

Going back to our previous example, it is impossible to publish a web server before the database is ready,
because it would lack the required support to manage data. When the database is ready and the web server has
been deployed, we can specify the relationship between these two software components. The Service Orchestrator
Layer deploys those service components in parallel, monitoring the involved steps; that allows to simultaneously
deploy several service components. In our solution, we implement this layer by using a BPEL engine.

5. Implementation Details. This section provides some implementation insights about our solution,
based on both proprietary and ad-hoc software. Our presentation will follow a bottom-up approach, starting
from the physical layer up to the Orchestration Layer. For the Cloud Infrastructure Layer, we have chosen
OpenStack due to its highly flexible and open-source nature; in particular, we used the latest Havana release.
Atop OpenStack, we use Juju to implement our Abstraction Layer: functionalities exposed by Juju encapsulate
APIs provided by OpenStack, so we opportunely configured Juju environment in order to work with OpenStack,
hiding these configuration details to the application provider. Other open-source service management tools,
such as Puppet [17] or Chef [18], could be used to implement the Abstraction Layer; we chose to use Juju
because it is a very recent solution, continuously evolving with the introduction of new useful features. The
Orchestration Layer, using Juju charms, enables the composition of complex applications and offers monitoring
facilities through the monitoring events forwarded by Zookeeper. The Orchestration layer represents the engine
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of our support towards services orchestration: this layer makes it possible to coordinate the publication of SaaS
applications, defining reusable and modular workflows.

Fig. 5.1 shows how the architecture layers interact with each others in order to provide a generic application
composed by two different service components. Starting from a BPEL workflow defined by a Cloud provider,
the BPEL engine will send two simultaneous requests to Juju so as to deploy these service components (step 1
in Fig. 5.1). Juju will then ask OpenStack to create two VMs, and, after the VMs have been booted, it will
download and install software packets on them (steps 2 and 3). Once the two service components have been
configured, the BPEL engine will ask Juju to add a relation between them (step 4); finally, Juju will opportunely
configure these components in order to let them cooperate.

Fig. 5.1. Interactions among architecture layers

In particular, we used our Cloud support to implement the case study of a WordPress platform composed
by two service components: a MySQL database and a WordPress engine running on a web server, each one
deployed on a separate VM. Let us stress that simple services, such as this one and the Wiki service considered
in the experimental results, are becoming more and more relevant in IoT scenarios to ease the publication of
collected smart data by using Web-enabled and widely accessible data portals and front-ends.

In order to deploy a working WordPress platform, first we need to deploy the database service component
and the WordPress engine, and then to add a relation between them to let them cooperate. We mapped all
these steps into the BPEL workflow shown in Fig. 5.2.

The BPEL process, defined as an XML document, contains all the references to the external Web Services
employed in the workflow; this can be done by populating the <partnerLinks> section. In our case study, we
inserted references to DeployWS and AddRelationWS, to let the BPEL engine invoke them. These two Web
Services represents respectively the Web Service used to deploy a service component, and the Web Service used
to add a relation between two already deployed service components. The BPEL engine will also fill the request
sent to DeployWS with the name of the service component that need to be deployed. BPEL constructs allow to
execute the deployment of MySQL and WordPress service components (namely, two different instances of the
DeployWS, see Fig. 5.2) in parallel on different VMs, and, through the definition of synchronization points, it
is possible to orchestrate them. In particular, we use BPEL <flow> construct to achieve parallelism. A <flow>

terminates its execution only when all activities included inside this tag have completed: in our case study, the
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Fig. 5.2. BPEL workflow

completion of <flow> activity will occur only after both WordPress and MySQL have been deployed. Only at
this time, we can invoke AddRelationWS to add a relation between these two service components.

We encapsulated the functionalities exposed by Juju, to deploy and monitor a service component inside
the Web Services published on Apache Axis2. The name of the service component that needs to be published
is specified inside the request sent to the Web Service. DeployWS is realized by two Java classes: Executor,
that invokes juju deploy command in order to deploy the service component, and DataMonitor, that manages
ZooKeeper events in order to monitor the progress of the request. The following figure shows an excerpt of the
WSDL file relative to DeployWS (see Fig. 5.3). AddRelationWS invokes juju add-relation command and
communicates the result of this operation to the BPEL Engine.

<wsdl :message name=”deployWSRequest”>
<wsd l :pa r t name=”parameters” element=”ns:deployWS ”/>

</wsdl :message>
<wsdl :message name=”deployWSResponse”>

<wsd l :pa r t name=”parameters” element=”ns:deployWSResponse”/>
</wsdl :message>
<wsdl :portType name=”DeployWSPortType”>

<wsd l : ope ra t i on name=”deployWS”>
<wsd l : i nput message=”ns:deployWSRequest ” wsaw:Action=”urn:deployWS”/>
<wsdl :output message=”ns:deployWSResponse ” wsaw:Action=”urn:deployWSResponse

”/>
</ wsd l : ope ra t i on>

</wsdl :portType>

Fig. 5.3. DeployWS WSDL code

In order to publish WordPress and MySQL services, it is necessary to write the corresponding charm to be
memorized inside the bootstrap node and sent, during the creation of a VM, to the node where that service
component will be deployed. When deploying a MySQL service component, the hook install will be executed to
download and configure MySQL related packets, and finally to start the service component. In the same way,
all these steps will be repeated when deploying a WordPress service. After deploying MySQL and WordPress
service components, the BPEL workflow adds a relation between these service components, by executing the
respective relation-joined hooks. The relation-joined script relative to WordPress will write, in the WordPress
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configuration file, a reference to the host where MySQL database is running, together with the credentials to
access the database. Fig. 5.4 shows an excerpt of the WordPress relation-joined hook used in our tests.

database=‘ r e l a t i o n−get database ‘
user=‘ r e l a t i o n−get user ‘
password=‘ r e l a t i o n−get password ‘
host=‘ r e l a t i o n−get pr ivate−address ‘
juju−l o g ”Writing wordpress c on f i g f i l e $ c o n f i g f i l e p a t h ”
# Write the wordpress c on f i g
cat > $ c o n f i g i n f o p a t h << EOF
<?php
de f i n e ( ’DBNAME’ , ’ $ database ’ ) ;
d e f i n e ( ’DB USER ’ , ’ $ user ’ ) ;
d e f i n e ( ’DBPASSWORD’ , ’ $password ’ ) ;
d e f i n e ( ’DB HOST ’ , ’ $ host ’ ) ;
d e f i n e ( ’SECRET KEY’ , ’ $ s e c r e t k ey ’ ) ;
d e f i n e ( ’WPCACHE’ , t rue ) ;

Fig. 5.4. Juju hook script

6. Experimental Results. We tested our solution on a Cloud testbed environment at our campus, by
considering two different use cases. The first one is more simple and realizes the implementation use case
detailed in the previous section, while the second one is more complex and represents a more realistic IoT SaaS
application with higher performance requirements.

Starting with the first WordPress use case, the physical Cloud testbed consists of 3 physical Linux boxes
with Intel Core 2 Duo E7600 at 3.06 GHz and 4 GB RAM, connected through two 1 Gbps LANs, and running
Linux Ubuntu 13.04. Fig. 6.1 shows the Cloud infrastructure and the software components deployed on it:
this virtual infrastructure consists of 3 VMs running Linux Ubuntu 12.04; Juju bootstrapping node has been
deployed on the first VM, while the remaining VMs, were used, respectively, to deploy a MySQL database and
a web server running a WordPress engine.

Fig. 6.1. Testbed deployment - first scenario

To demonstrate the efficiency of our solution, we ran two series of tests to measure the time needed to
deploy a working WordPress platform. In the first series, we sequentially executed Juju commands in order to
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deploy MySQL and WordPress, and, then, we added a relation between them. Instead, in the second series,
we used the Orchestration Layer, in order to achieve a parallel deployment of MySQL and WordPress. All the
measures were taken in a stable system, after the deployment of Juju bootstrapping node; we have repeated 30
runs for each test and we report both estimated average and standard deviation.

Fig. 6.2. Deployment time - first scenario

As we can see in Fig. 6.2, thanks to the parallel deployment of MySQL and WordPress, the overall time
needed to deploy a working WordPress platform halves the time measured when deploying it sequentially. The
average runtime of our tested BPEL process, including the time needed to instantiate a new VM, was about
578.4 seconds, with a standard deviation of 55.3 seconds. Instead, when using sequential Juju commands to
deploy the service components, we measured an average runtime of 1138.6 seconds with a standard deviation
of 115.8 seconds.

To challenge our support with a more realistic use case, we repeated all the tests described above with a
more complex deployment of a multi-tier SaaS application consisting of four different service components: a
service component providing a MySQL database; a service component running MediaWiki [19], an open source
platform used to create wiki websites such as Wikipedia; a service component running Memcached [20], used
to provide MediaWiki with a caching service, and finally a service component running HAProxy [21], an high
performance load balancer for TCP/HTTP-based application. Fig. 6.3 shows the Cloud infrastructure and the
software components deployed on it: this virtual infrastructure consists of 5 VMs running Linux Ubuntu 12.04;
Juju bootstrapping node has been deployed on the first VM, while the remaining VMs, were used, respectively, to
deploy a MySQL database, a web server running MediaWiki, a Memcached distributed memory object caching
system, and a HAProxy loadbalancer. After deploying these services, three relations are added, respectively
between MediaWiki and MySQL, between MediaWiki and Memcached, and between MediaWiki an HAProxy.

As shown in Fig. 6.4, the average runtime of our tested BPEL process, including the time needed to
instantiate a new VM, was about 832.8 seconds (standard deviation 56.22 seconds) that significantly lowers the
average runtime of 1780.8 seconds (standard deviation 119.88 seconds) needed for the sequential deployment.

So, we can conclude that the parallel execution of many processes can balance the overhead introduced by the
invocation of Web Services, by the BPEL engine execution, and by execution of multiple deployment operations
(potentially concurrent over the same physical host), with the enhanced performance due to parallelism; these
advantages are more and more sensible as the complexity of the SaaS application to deploy increases.

7. Conclusion and Future Works. In this paper, we presented and experimentally validated a man-
agement support to automate the provisioning of complex SaaS applications over Cloud based infrastructures.
Due to BPEL-based orchestration, our solution can achieve high expressivity in the definition of the application
provisioning logic, including not only deployment issues, but also advanced monitoring of service component
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Fig. 6.3. Testbed deployment - second scenario

Fig. 6.4. Deployment time - second scenario

status. Moreover, it enables concurrent execution of parallelizable service component deployment steps, thus
significantly reducing the time needed to activate complex SaaS applications in large-scale Cloud environments,
particularly in IoT scenarios, where the highly dynamic nature of these environments often requires fast ap-
plications provisioning. Experimental results showed the effectiveness of the realized support that introduces
a limited overhead by granting a drastic reduction of the provisioning time when deployment steps can be
executed in parallel. Moreover, the use of BPEL and workflow processes enables a higher degree of flexibility
and reusability of our framework; indeed, already existing provisioning workflows can be reused to provide new
SaaS applications. Encouraged by these results, we are considering several future directions: on the one hand,
we are currently integrating our new application provisioning facilities with our IaaS runtime monitoring and
management support [22]; on the other hand, we are developing an automatic application live-migration support
to move the whole application, including all needed service components and relations, from local private Cloud
IaaS to public ones, by dynamically re-binding all needed virtual resources therein; finally, we are implement-
ing a mechanism to define multi-tenant network infrastructures and to provide isolation for multi-tenant SaaS
applications deployed atop them.
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