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LARGE-SCALE VISUALIZATION OF SPARSE MATRICES∗

D. LANGR†, I. ŠIMEČEK†, P. TVRDÍK†, AND T. DYTRYCH‡

Abstract.

An efficient algorithm for parallel acquisition of visualization data for large sparse matrices is presented and evaluated both
analytically and empirically. The algorithm was designed to be application-independent, i.e., it works with any matrix-processors
mapping and with any sparse storage format/scheme. The empirical scalability study of the algorithm was carried on using multiple
modern HPC systems. In our largest experiment, we utilized 262144 processors for 73 seconds to gather and store to a file the
visualization data for a matrix with 1.17 ·1013 nonzero elements. Using the proposed algorithm, one can thus visualize large sparse
matrices with a minimal runtime overhead imposed on executed HPC codes.
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1. Introduction. Within our previous work, we have addressed weaknesses of common solutions for the
problem of visualization of large sparse matrices emerging in HPC applications [9]. There are several reasons
that make such a problem difficult to solve. First, matrices exist in memory only for a short and unknown period
of time determined by the scheduler of a given HPC system. Second, it is generally impossible to integrate
the visualization process directly into the HPC code so that it will automatically produce a final matrix image
of a desired quality. Third, very large matrices, due to their sizes, cannot be processed locally on personal
computers. Moreover, their storage to a file on an HPC system and their transfer via network would take high
amount of time.

We therefore proposed a solution where a matrix is first partitioned into blocks. Then, for each block,
visualization information is calculated and stored into a file. Finally, this file is downloaded from the HPC
system into a personal computer and processed there, possibly interactively, into a final matrix image. We
introduced an algorithm that accomplishes a part of this procedure performed on the side of an HPC system, i.e.,
the acquisition of visualization data for a given sparse matrix. We also evaluated this algorithm experimentally
using up to 1024 processors of a small-scale HPC system.

This paper is an extended version of our previous results [9]. We present an updated version of the algorithm,
which uses more efficient approach to the calculation of visualization data. Namely, due to the utilization of an
ordered associative array, frequent lookup operations with logarithmic runtime complexity were substituted by a
single iteration over the ordered records. Each required record is thus available with constant runtime complexity.
We also provide more detailed analysis of the computational, space, and communication complexities of the
algorithm. The results of large-scale experiments using several modern HPC systems are presented for up to
266144 utilized processors.

Modern HPC systems are typically hybrid shared-distributed memory machines. They consist of shared-
memory multicore computational nodes connected by network subsystems. Parallel programming models and
corresponding runtime environments allow to use these machines as are, virtualize them as pure shared-memory,
or virtualize them as pure distributed-memory. In the context of this paper, we consider the latter case.
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Particularly, we assume the utilization of the MPI parallel programming library and its runtime environment [5,
11], which is motivated by its widespread adoption in the HPC community.

We further call MPI processes involved in algorithm runs simply processors. However, we always assume
that each MPI process is mapped at runtime to a single CPU core. Therefore, a processor may also refer to a
CPU core on which the algorithm runs.

2. Terminology and Notation. Let A = (ai,j) be an mA × nA real or complex matrix. Let B = (bi,j)
be an mB × nB real matrix, where mB ≤ mA and

nB =

⌊

mB ·
nA

mA
+

1

2

⌋

. (2.1)

We call B the visualization matrix.
Let us partition A into mB × nB blocks (submatrices) of same or nearly same sizes as follows:

A =







A1,1 · · · A1,nB

...
. . .

...
AmB ,1 · · · AmB ,nB






, Ak,l =







ark,cl · · · ark,c′l
...

. . .
...

ar′
k
,cl · · · ar′

k
,c′

l







where

rk =

⌈

(k − 1) · mA

mB
+

1

2

⌉

, r′k =

⌈

k · mA

mB
− 1

2

⌉

, (2.2a)

cl =

⌈

(l − 1) · nA

nB
+

1

2

⌉

, c′l =

⌈

l · nA

nB
− 1

2

⌉

. (2.2b)

We will further write simply ai,j ∈ Ak,l to indicate that the element ai,j belongs to the block Ak,l.
From Eq. (2.2) it follows that ai,j ∈ Ak,l if

k =

⌊(

i− 1

2

)

· mB

mA

⌋

+ 1 and l =

⌊(

j − 1

2

)

· nB

nA

⌋

+ 1. (2.3)

Let D = R or C if A is real or complex, respectively. Let V : D→ R be a function that satisfies

V(0) = 0. (2.4)

We call V the visualization function. Then, we define the elements of the visualization matrix B as follows:

bk,l =
1

Sk,l

∑

ai,j∈Ak,l

V(ai,j) =
1

Sk,l

∑

rk≤i≤r′k
cl≤j≤c′l

V(ai,j), (2.5)

where

Sk,l = (r′k − rk + 1)× (c′l − cl + 1) (2.6)

(Sk,l equals the number of elements of Ak,l).
In case of sparse A, condition Eq. (2.4) allows to calculate bk,l by performing the summation only over

nonzero elements of Ak,l. We can thus rewrite Eq. (2.5) as

bk,l =
1

Sk,l

∑

ai,j∈Ak,l

ai,j 6=0

V(ai,j). (2.7)
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Suppose now that we have an algorithm that calculates B for a sparse matrix A on a given HPC system.
Let P denote the number of processors involved in an algorithm run and let p1, . . . , pP denote these processors.
Then, we can consider A as

A = A(1) + · · ·+A(P ),

where A(q) contains nonzero elements of A stored in the local memory of processor pq. (We use the (q)
superscript frequently in this text to indicate that some entity belongs to processor pq.) We will further write
simply ai,j ∈ A(q) to indicate that the element ai,j is contained in A(q), therefore in the local memory of
processor pq. Let |A(q)| denote the number of nonzero elements of A(q).

The calculation of bk,l now becomes trickier, since the nonzero elements of Ak,l can be distributed among
multiple processors. Let Pk,l denote a set of processors each of which contains at least one nonzero element of
Ak,l. Thus,

Pk,l =
{

pq
∣

∣ there exists ai,j such that ai,j ∈ A(q) and ai,j ∈ Ak,l

}

. (2.8)

Conversely, let Aq denote a set of blocks from each of which processor pq contains in its memory at least one
nonzero element. Thus

Aq =
{

Ak,l

∣

∣ there exists ai,j such that ai,j ∈ A(q) and ai,j ∈ Ak,l

}

.

We can now rewrite Eq. (2.7) as

bk,l =
∑

q∈Pk,l

b
(q)
k,l , b

(q)
k,l =

1

Sk,l

∑

ai,j∈Ak,l

ai,j∈A(q)

ai,j 6=0

V(ai,j). (2.9)

We further say that any processor from Pk,l contributes to the calculation of bk,l.
Let bk,∗ denote the k-th row of B. Let Pk,∗ denote a set of processors that contribute to at least one element

of this row, thus:

Pk,∗ = Pk,1 ∪ · · · ∪ Pk,nB
.

We can now define the problem of acquisition of visualization data for a sparse matrix A as follows:
Problem 1. We are looking for an efficient parallel algorithm that calculates the visualization matrix B,

for a given sparse matrix A and a visualization function V, and saves it to a file F. The additional requirements
are:
Req. 1: The algorithm should not depend on the type of matrix-processors mapping (the type of distribution of

the nonzero elements of A among processors).
Req. 2: The algorithm should not depend either on the computer representation of A or on the order in which

its nonzero elements are accessible.

Sparse matrices are stored in computer memory in special data structures called sparse matrix storage
formats/schemes (see, for instance [10, 1, 12]). All these formats have one common feature—they allow to
iterate over the nonzero elements. Due to Req. 2, we thus further regard A(q), . . . , A(P ) as a sequence of their
nonzero elements with unspecified order. This allows us to work with A independently of the storage format
used within an actual HPC code, where the matrix appears. Moreover, this allows us to work with matrices
that are even not stored in memory at all (their elements are computed on-thy-fly).

The information we want to visualize is determined by V . For instance, if we want to visualize the structure
(pattern) of the nonzero elements of A, the visualization function might be defined simply as follows:

V1(ai,j) =
{

1 if ai,j 6= 0,

0 otherwise.
(2.10)
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Then, B would contain the density of the nonzero elements of blocks of A. Other visualization functions might
be defined, e.g., as follows:

V2(ai,j) =
{

|ai,j | if ai,j 6= 0,

0 otherwise,

V3(ai,j) =
{

∣

∣Re(ai,j)
∣

∣ if ai,j 6= 0,

0 otherwise,

V4(ai,j) =
{

∣

∣Im(ai,j)
∣

∣ if ai,j 6= 0,

0 otherwise.

Thus, the usage of V2, V3, and V4 results in the visualization of the average magnitude of the elements of
each block, the average magnitude of their real parts, and the average magnitude of their imaginary parts,
respectively.

The visualization matrix B represents the intermediate visualization data that will be saved into F and from
which the final matrix image will be constructed. We call F the visualization file. Recall that F is supposed to
be downloaded from a parallel system to a user’s personal computer. This, in effect, limits the size of F to some
extent (presumably, to hundreds of megabytes or gigabytes nowadays), which consequently limits the size of B.

Suppose that F is a binary file and that we save the elements of B into F using a b-byte floating-point
data type T (e.g., b = 4 for T being the IEEE 754 single-precision floating point data type [6]). The memory
requirements in bytes for saving B in F are then

S(B) = mB · nB · b. (2.12)

Let S(F) denote the file size of F . Actually, it might be slightly higher than S(B), since there might be some
space overhead given by the used file format as well as by any supplemental saved information. In practice,
such overhead should not exceed several kilobytes, therefore we consider it as negligible for further analysis and
set

S(F) = S(B). (2.13)

Since our goal is to acquire as much visualization data as possible, we are looking for the answer to the
following question: What is the maximum size of the visualization matrix B to be stored in F of size at most
S(F) bytes? Combining Eqs (2.1), (2.12), and (2.13), we can find the solution as

mB =

⌊

(

1

b
· mA

nA
· S(F)

)1/2

+
1

2

⌋

(2.14)

together with Eq. (2.1).

2.1. Example. Let A be a square matrix. Let us limit the size of the visualization file to 4 GB, which
implies S(B) = 232. Let us use the IEEE 754 single-precision floating-point data type for storing elements of
B into F, thus b = 4. Then, mB = nB = 32768. We can thus partition A into 32768× 32768 ≈ 109 blocks and
save the visualization data in a form of a single floating-point number for each block into a file of approximate
size 4 GB. From this file, we can then generate a matrix image up to the size of 1 gigapixel.

In the text below, the capitalized word “Algorithm” followed by a number always refers to a pseudocode
presented by a corresponding floating text environment (as are figures and tables). Within pseudocode, we
write references to corresponding equations in the end-of-line comments.

3. Methodology and Algorithm. To solve Problem 1, we need to develop an algorithm for the calcu-
lation of the visualization matrix B according to Eq. (2.9), and its storage into the visualization file F. First,
note that we can translate Eq. (2.9) into pseudocode as follows:
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Algorithm 9 Visualization data acquisition: computationally expensive solution

1: for k ← 1 to mB do
2: for l← 1 to nB do
3: construct Pk,l ⊲ (2.8)
4: for all processors in Pk,l do in parallel

5: b
(q)
k,l ← 0

6: for all local nonzero elements ai,j do

7: if ai,j ∈ Ak,l then b
(q)
k,l ← b

(q)
k,l + V(ai,j) ⊲ (2.9)

8: end for
9: b

(q)
k,l ← b

(q)
k,l/Sk,l ⊲ (2.9), (2.6), (2.2)

10: perform parallel reduction of b
(q)
k,l to bk,l using + operator ⊲ (2.9)

11: write bk,l into F

12: end for
13: end for
14: end for

for all processors pq in Pk,l do in parallel

b
(q)
k,l ← 0

for all local nonzero elements ai,j ∈ Ak,l do b
(q)
k,l ← b

(q)
k,l + V(ai,j)

b
(q)
k,l ← b

(q)
k,l/Sk,l

perform parallel reduction of b
(q)
k,l to bk,l using + operator

end for

Since this process needs to be performed for all possible combinations of k and l, a pseudocode that would solve
Problem 1 might look like Algorithm 9.

The drawback of this approach is its computational complexity O
(

|A(q)| ·mB · nB

)

for processor pq, where

|A(q)| might be very high in HPC applications. However, by rearranging Algorithm 9 as described below, we
can reduce the computational complexity to O

(

|A(q)| · log2 |Aq|+mB · nB

)

. Since |Aq| ≤ mB · nB,

|A(q)| · log2 |Aq|+mB · nB ≤ |A(q)| · log2(mB · nB) +mB · nB ≪ |A(q)| ·mB · nB,

when |A(q)|, mB , nB are not all extremely small numbers.
The idea of this rearrangement is to split the solution of Problem 1 into two phases:
1. Within Phase1, processor pq iterates over all its local nonzero elements ai,j ∈ A(q). In each iteration,

the contribution of ai,j to b
(q)
k,l is calculated, where k and l are given by Eq. (2.3). This process can be performed

by all processors in parallel with no communication costs.

2. Within Phase2, the local contributions b
(q)
k,l are reduced in parallel to bk,l, which is then written to the

visualization file F.
The price for such a solution is the additional need to temporarily store the local contributions b

(q)
k,l in

memory of processor pq. Usage of a plain two-dimensional array would imply the algorithm space complexity
O(mB · nB) for each processor. Consequently, it would limit the size of B by the minimum of the available
amounts of memory of all processors. An alternative is to store the contributions in an associative array
(commonly also known as a map or a dictionary) of type (k, l)→ R, where k and l are integers. The algorithm
space complexity then changes to O

(

|Aq|
)

for processor pq. In the worst case, processor pq contributes to all
elements of B, which turns this space complexity into O(mB · nB) as well (moreover, the hidden constants will
be higher here, since the memory overhead of an associative array is higher than of a plain array). However,
matrices are in practice mapped to processors typically according to some one- or two-dimensional partitioning
scheme. In the best case, nonzero elements are distributed in matrices evenly, which implies |Aq| ≈ mB · nB/P .
The space complexity of an associative array-based algorithm then becomes O(mB ·nB/P ). (We observed such
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Algorithm 10 Visualization data acquisition

Input: A = A(q), . . . , A(P ): A(q) is located on pq ⊲ input sparse matrix
Input: mA, nA ⊲ input matrix size
Input: P ⊲ number of processors
Input: q ⊲ actual processor number
Input: V ⊲ visualization function
Input: T ⊲ data type used for visualization data (elements of B)
Input: S(F) ⊲ required size of the visualization file in bytes
Output: F ⊲ visualization file
Data: ≎ap ⊲ ordered associative array
Data: mB, nB, b ⊲ auxiliary variables

1: for all processors p1, . . . , pP do in parallel
2: b← byte size of the element of type T

3: mB =
⌊

(

1/b ·mA/nA · S(F)
)1/2

+ 1/2
⌋

⊲ (2.14)

4: nB = ⌊mB · nA/mA + 1/2⌋ ⊲ (2.1)

5: execute Phase1 ⊲ calculate local contributions b
(q)
k,l

6: execute Phase2 ⊲ reduce them to bk,l and store into F

7: end for

a behaviour in experiments [9].)
In HPC applications, computational problems are often solved as big as the available resources allow.

Therefore, the minimum of available amounts of memory of processors can be a relatively small value. Since
we do not want it to limit the size of B, we further consider, for the algorithm design, the storage of local
contributions in associative arrays.

Moreover, we assume this associative array to be ordered lexicographically by the (k, l) key. This allows to

iterate over the contributions b
(q)
k,l of processor pq in Phase2 only once, which is much more efficient than calling

the lookup operation for each needed combination of k and l. We further denote an instance of the defined
ordered associative array by ≎ap and its record with the (k, l) key by ≎ap[k, l].

3.1. Algorithm Pseudocode. We present here an efficient algorithm that solves Problem 1. Its outline is
presented by a pseudocode as Algorithm 10. Let all variables introduced by Algorithm 10 have a global scope,
i.e., they are available within the pseudocode of phases as well. Moreover, let all auxiliary variables/arrays
defined in the “Data” section of each pseudocode be local to processors.

The pseudocode of Phase1 is shown as Algorithm 11. Within, each processor iterates over its nonzero
elements and for each one, its contribution to the corresponding element of B is calculated. These contributions

are stored in the ≎ap data structure such that at the end of Phase1, ≎ap[k, l] equals b
(q)
k,l on processor pq.

In Phase2, local contributions to the elements of B are reduced in parallel to their final values. These are
then written to the visualization file F. Performing the parallel reduction mB × nB times, each one for a single
element of B, would be inefficient due to the overhead of communication operations. We therefore designed
Phase2 such that the reductions are performed for whole rows of B at once, resulting in mB reductions, each
one for nB elements at once.

To calculate bk,∗, all the contributions b
(q)
k,l need to be reduced in parallel from processors pq ∈ Pk,∗. Due to

Req. 1 of Problem 1, each processor can generally contribute to any element of B. Consequently, the sets Pk,l

and Pk,∗ can consist of all processors p1, . . . , pP . To calculate bk,∗, all the contributions b
(q)
k,l need to be reduced

in parallel from processors pq ∈ Pk,∗. There are thus two options how to perform such a reduction:

1. from all processors p1, . . . , pP , while setting b
(q)
k,l = 0 for pq /∈ Pk,∗;

2. from Pk,∗ only, while this set need to be constructed first.
The second option provides no advantage over the first, since the construction of Pk,∗ would require collective
communication between all processors as well. (In terms of MPI, it would require to form a processors group
and a corresponding communicator. There has been, in fact, developed even a noncollective communicator
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Algorithm 11 Visualization data acquisition: Phase1

Data: k, l, r, r′, c, c′, S ⊲ auxiliary variables
1: for all local nonzero elements ai,j do
2: k ←

⌊

(i− 1/2) ·mB/mA

⌋

+ 1 ⊲ (2.3)

3: l←
⌊

(j − 1/2) · nB/nA

⌋

+ 1 ⊲ (2.3)
4: if record (k, l) does not exist in ≎ap then
5: insert a record into ≎ap with (k, l) key and value V(ai,j) ⊲ (2.9)
6: else
7: ≎ap[k, l]← ≎ap[k, l] + V(ai,j) ⊲ (2.9)
8: end if
9: end for

10: for all records (k, l) in ≎ap do
11: r←

⌈

(k − 1) ·mA/mB + 1/2
⌉

⊲ (2.2a)
12: r′ ← ⌈k ·mA/mB − 1/2⌉ ⊲ (2.2a)
13: c←

⌈

(l − 1) · nA/nB + 1/2
⌉

⊲ (2.2b)
14: c′ ← ⌈l · nA/nB − 1/2⌉ ⊲ (2.2b)
15: S ← (r′ − r + 1)× (c′ − c+ 1) ⊲ (2.6)
16: ≎ap[k, l]← ≎ap[k, l]/S ⊲ (2.9)
17: end for

Algorithm 12 Visualization data acquisition: Phase2

Data: r≫⋍[] ⊲ array of size nB

Data: j, k, l, l′ ⊲ auxiliary variables
1: j ← 1
2: for k ← 1 to mB do ⊲ for all rows of B

⊲ gather contributions b
(q)
k,l for kth row:

3: for l← 1 to nB do r≫⋍[l]← 0 ⊲ ensure that b
(q)
k,l = 0 if pq /∈ Pk,l

4: while j ≤ number of ≎ap records and k′ = k, where (k′, l′) is the key of the jth ≎ap record do

5: r≫⋍[l′]← value of the jth ≎ap record ⊲ b
(q)
k,l ← ≎ap[k, l]

6: j ← j + 1
7: end while

⊲ reduce to bk,l on p1 and write to F:
8: perform parallel reduction of all values of the r≫⋍ array using + operator to processor p1 ⊲ from all

processors
9: if q = 1 then ⊲ if run on processor p1

10: for l ← 1 to nB do append r≫⋍[l] into file F ⊲ write bk,∗ into F

11: end if
12: end for

creation technique, however, it does not perform well for our purposes [4]). We therefore further consider only
the first option for algorithm design.

The pseudocode of Phase2 is presented as Algorithm 12. Note that the order of processing the local
contribution matches the order of records in the ≎ap data structure. This allowed us to design the pseudocode
such that no ≎ap lookup operation is needed, which considerably reduced the overall algorithm complexity.
The auxiliary array r≫⋍ serves as a buffer for storing and reducing local contributions for a single row of

B. Before reduction of the kth row contributions, r≫⋍[l] = b
(q)
k,l on processor pq. After this reduction,

r≫⋍[l] = bk,l on processors p1. The reduction is performed by all processors (see line 1 in Algorithm 10).

3.2. Complexities. Let us analyze complexities of the presented algorithm. Generally, the complexities
highly depend on the matrix-processors mapping. We therefore restrict our analysis to the following two extreme
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cases: In the worst case, there is at least one processor that contributes to all mB × nB elements of B. On the
other hand, in the best case, all processors contribute to at most ⌈mB × nB/P ⌉ elements of B.

We define the complexity of the algorithm as its complexity for the most loaded processor (this value
determines both the algorithm running time as well as its per-processor memory requirements).

3.2.1. Computational Complexity. For processor pq, the computational complexity of Phase1 is given
by two iterative processes defined at lines 1–9 and 10–17 of Algorithm 11. The computational complexity of the
first process is given by iterating over |A(q)| nonzero elements, while in each iteration a record is either found or
inserted into ≎ap. Recall, that ≎ap is an ordered associative array. These are typically implemented as binary
search trees with logarithmic complexity of both search and insert operations (see, for instance [2, Chap. 12]).
The computational complexity of the second process is given by iterating over all |Aq| records of ≎ap. The
computational complexity of Phase1 on processor pq is thus

T
(q)
Phase1 = O

(

|A(q)| · log2 |Aq|+ |Aq|
)

.

In the worst case, |Aq′ | = mB · nB for some processor pq′ . Therefore, the computational complexity of Phase1
becomes

T
(worst)
Phase1 = O

(

max
1≤q≤P

|A(q)| · log2(mB · nB) +mB · nB

)

.

In the best case, |Aq| ≤ ⌈mB · nB/P ⌉ for all processors. The computational complexity of Phase1 then equals

T
(best)
Phase1 = O

(

max
1≤q≤P

|A(q)| · log2
(

⌈mB · nB/P ⌉
)

+ ⌈mB · nB/P ⌉
)

.

The computational complexity of Phase2 is, for processor p1 and thus for the whole algorithm,

TPhase2 = O(mB · nB)

in all cases.

3.2.2. Space Complexity. The space complexity of Phase1 is given by the number of records of the
associative array ≎ap, which equals |Aq| on processor pq. The space complexity of Phase2 is given by the
auxiliary array r≫⋍ of size nB. The overall space complexity of the algorithm is thus

S(worst) = O(mB · nB) and S(best) = O
(

⌈mB · nB/P ⌉+ nB

)

in the worst case and best case, respectively.

3.2.3. Communication Complexity. The communication complexity depends on the network topology
of a given HPC system as well as on the implementation of communication operations by the utilized version of
the MPI library. We can therefore only discuss the number of communication operations, instead of analyzing
their asymptotic behaviour in terms of running time. In Phase1, there is no communication at all. In Phase2,
mB parallel all-to-one reductions are performed by all processors, each over nB elements.

4. Experiments. We have performed a weak-scalability study (constant problem size per processor), since
it matches the real-world situations, where HPC problems are usually solved as large as available resources allow.
On modern hybrid shared-distributed memory HPC systems, the available amount of memory, which limits the
size of A, is thus proportional to the number of utilized processors P . In experiments, we always set the size of A
such that its number of nonzero elements was approximately P ·4.6 ·107 (this corresponded to the per-processor
memory requirements of A being around 1 GB using the coordinate storage scheme and the single-precision
floating point data type for matrix elements).

As a source of large sparse matrices, we used the parallel scalable generator of benchmark sparse matrices [8].
This generator produces matrices by scalable enlargement of a small fixed seed matrix. As the seed matrix, we
used the cage12 real square matrix obtained from the University of Florida Sparse Matrix Collection [3].
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Table 4.1
Configurations of HPC systems and their run-time environments used for experiments.

System: Anselm Edison Blue Waters

Provider: IT4Innovations NERSC NCSA

Type: Linux cluster Cray XC30 Cray XE6

Total CPU cores: 3344 124608 362240

Total memory [TB]: 15 332 1380

Interconnect: Infiniband Aries Gemini

Topology: Fat tree (nb) Dragonfly 3D torus

I/O bandwidth [GB/s]: 6 48 1000+

C++ compiler: Intel icpc 13.1 Intel icpc 14.0 GNU g++ 4.8.1

MPI library: Intel MPI 4.1 cray-mpich 6.2.0 cray-mpich 6.0.1

HDF5 library version: 1.8.11 Cray 1.8.11 Cray 1.8.11

We set the input algorithm parameters so to generate a matrix image according to Section 2.1. The size of
B was thus always set to mB = nB = 32768, which resulted in possibility of generation of a 1 gigapixel matrix
image. As a visualization function, we used V1 defined by Eq. (2.10).

We have implemented the presented algorithm with C++ and MPI to evaluate its performance and scal-
ability. As an ordered associative array, we used the std::map container from the C++ Standard Library [7,
Sect. 7.7], which is typically implemented as a red-black tree [2, Chap. 13]. We exploited the HDF5 library [13]
for creation of visualization files F.

We utilized several modern parallel systems that are listed in Table 4.1, where we show their parameters
together with the C++ compilers and the MPI libraries used for compilations of test programs and their runtime
execution. For the Blue Waters system, we present parameters of the XE cabinets only (the XK cabinets are
intended primarily for GPU-based computations).

In all experiments, we primarily measured algorithm running times. These are presented by Figure 4.1. The
results indicate that the majority of the running time is spent in Phase2, which is caused by the execution of
communication and I/O operations. However, the algorithm is generally fast and the overall algorithm running
time grows only slightly with the growing number of processors.

We also measured the estimated memory requirements of the ≎ap data structure for all processors. Their
maximal and average values are shown in Figure 4.2. Up to some small constant memory overhead, these
memory requirements clearly decrease inversely proportionally to the number of processors P . For higher P ,
the overall memory footprint of the algorithm is thus negligible in practice.

5. Conclusions. This paper extends the work of Langr et al. [9]. It presents an updated version of the
algorithm for the parallel acquisition of visualization data for large sparse matrices, along with its more detailed
analytical and empirical evaluation. The main characteristic of the algorithm, from a user’s point of view, is its
application independence. It can be used with any mapping of matrices to processors and any sparse storage
formats/schemes. Moreover, it can be used even when matrix nonzero elements are computed on-the-fly. It can
be also easily implemented using the MPI parallel programming library, from which it needs to execute only
the all-to-one parallel reduction operations.

Using this algorithm, one can visualize sparse matrices emerging in an HPC code with minimal runtime
and memory overhead. Namely, within the largest presented experiment, 266144 processors gathered and stored
visualization data for a sparse matrix with 1.17 · 1013 nonzero elements with a measured runtime of 73 seconds.

The majority of the algorithm running time takes the collective communication between all processors
together with serial I/O operations. Resulting visualization data are appended to output files, which allows,
among others, visualization files to be ASCII-based. Due to the application independence of the algorithm,
parallel I/O cannot be efficiently employed to increase the I/O performance. This does not seem to be of much
importance at the petascale performance level of today’s prime HPC systems, as demonstrated by the presented
experiments.

However, for emerging exascale and higher-level computing, even faster algorithms might appear to be
necessary. In our future work, we want to focus on two promising options how to achieve them. The first one is
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Fig. 4.1. Running times of both algorithm phases measured on different parallel systems.

to adapt the presented algorithm for the hybrid MPI+OpenMP parallel programming model, which naturally
represents the shared-distributed memory architecture of modern HPC systems. The second option is to give
up the application independence and to adapt the algorithm for certain types of matrix-processor mappings,
which should allow to reduce the burden of collective communication and to efficiently utilize parallel I/O.
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