
Scalable Computing: Practice and Experience
Volume 15, Number 1, pp. 79–87. http://www.scpe.org

DOI 10.12694/scpe.v15i1.967
ISSN 1895-1767
c© 2014 SCPE

IMAGE SCRAMBLING ON A ”MESH-OF-TORI” ARCHITECTURE∗

MARIA GANZHA†, MARCIN PAPRZYCKI‡, AND STANISLAV G. SEDUKHIN§

Abstract.

Recently, a novel method for image scrambling (and unscrambling) has been proposed. This method is based on a linear
transformation involving the Kroneker-delta function. However, while quite interesting, the way it was introduced, leaves some
open issues concerning its actual usability for information hiding. Therefore, in this paper, we extend the original proposal and
show how it can be used to securely pass image-like information between the users.

87

1. Introduction. Recently we observe a constantly growing interest in processing multimedia content.
Here, the multimedia content is understood broadly and encompasses “still images” of all types, as well as video
streams. Since a video stream can be viewed (with all understandable caution) as a sequence of still images
(video frames), let us focus our attention on images, while keeping in mind that data processing may involve
their sequences.

Observe that, there are two main sources of large images. First, sensor arrays of various types. For instance,
one of the largest of them is the 2D pixel matrix detector installed in the Large Hadron Collider in CERN [14],
which has approximately 109 sensor cells. Similar number of sensors would be required in a CT scanner array
of size approximately 1m2, with about 50K pixels per 1cm2. Second, large data streams start to materialize in
“consumer electronics.” For instance, currently existing digital cameras capture images consisting of 22.3× 106

pixels (Cannon EOS 5D Mark II [3], as well as its successor Cannon EOS 6) or even 36.3 × 106 pixels (Nikon
D800 [4]). What is even more amazing, recently introduced Nokia phones (Nokia 808 PureView [5], and Nokia
Lumia 1020 [6]) have cameras capturing 41× 106 pixels.

What has to be noted, from the point of view of computing (here, image processing), is that most of the
existing sensor systems do not consider the natural arrangement of data. Specifically, the input image, which is
square or rectangular, is “serialized” to be processed. Specifically, input data from multiple sensors is read out
serially, pixel-by-pixel, and send to the CPU for processing 1. Next, after processing is completed, results are
sent (serially) to a “display device,” where they are reassembled into a rectangular format. This means that
the transfer of pixels destroys the 2D integrity of data (in computer memory, an image or a frame, exists not in
their natural layout). As a result, the need to transfer large amount of data, from “multiple data input streams”
to the processor, may prohibit development of applications, which require (near) real-time response [10].

Observe that, for the (near) real-time image / video processing, as well as a 3D reconstruction, it could be
advantageous to process them using a device that has multiple processing units arranged rectangularly, and that
allows to load data directly from the sensors to these units (for immediate processing). This would be possible,
for instance, when a focal-plane I/O, which maps the pixels of an image (or a video frame) directly into the
stacked “array of processors,” was to be used. Here, the computational elements could store the sensor generated
information (e.g. a single pixel, or a block of pixels of a specific size) directly in their registers (or their local
memory). Such an architecture would have three potential advantages. First, cost could be reduced, because
there would be no need for the memory buses or a complicated layout of the communication network. Second,
speed could be improved as the integrity of the input data would not destroyed by the serial communication.
Third, speed could be considerably improved by skipping the step of serialization of the rectangular image and,
later, its reassembling in order to be displayed. As a result, data processing could start as soon as the data
is available (i.e. in the registers / memory). Note that proposals for similar hardware architectures have been
outlined, among others, in [9, 16, 26]. However, such approaches have not been tried in real-life. Furthermore,
previously proposed focal-plane array processors were envisioned with a mesh-based interconnect between the

∗Work of Marcin Paprzycki was completed while visiting the University of Aizu.
†Systems Research Institute Polish Academy of Sciences, Warsaw, Poland, email: maria.ganzha@ibspan.waw.pl
‡Systems Research Institute Polish Academy of Sciences, Warsaw, Poland, email: marcin.paprzycki@ibspan.waw.pl
§University of Aizu, Aizu Wakamatsu, Japan, email: sedukhin@u-aizu.ac.jp
1Here, the term CPU is used broadly and encompasses standard processors, GPU’s, Digital Signal Processing units, etc.

79

80 M. Ganzha, M. Paprzycki and S. G. Sedukhin

processing elements. This arrangement is good for the local data reuse (convolution-like simple algorithms),
but is not the best to support global data reuse (matrix-multiplication-based complex algorithms).

2. Mesh-of-tori interconnection topology. This discussion leads us to the following question. As-
suming that the focal plane I/O like approach is used to provide an effective data transfer to a rectangularly
arranged group of processing units, what network topology should be used to connect them. Here, the experi-
ences from development of parallel supercomputers could be useful. Historically, a number of topologies have
been proposed, and the more interesting of them were: (1) hypercube – scaled up to 64000+ processor in the
Connection Machine CM-1, (2) mesh – scaled up to 4000 processors in the Intel Paragon, (3) processor array –
scaled up to 16000+ processor in the MassPar computer, (4) rings of rings – scaled up to 1000+ processors in
the Kendall Square KSR-1 machines, and (5) torus – scaled up to 2048 units in the Cray T3D.

However, all of these topologies suffered from the fact that at least some of the elements were reachable with
a different latency than the others. This means, that algorithms implemented on such machines would have to
be asynchronous, which works well, for instance, for ising-model algorithms similar to these discussed in [8], but
is not acceptable for most computational problems, that require synchronous data access. Therefore, an extra
latency had to be introduced, for the processing units to wait for the information to be propagated across the
system. Obviously, this effect became more visible with the increase of the number of processing units. At the
same time, miniaturization counteracted this process only to some extent. Interestingly, supercomputers with
some of the most efficient network connectivity, the IBM Blue Gene machines, combine the toroidal network
with an extra networking provided for operations involving global communication (primarily, reduction and
broadcast). To overcome this problem, recently, a new (mesh-of-tori ; MoTor) parallel computer architecture
(and topology) has been proposed. Let us now summarize this proposal. What follows is based on [20] and this
source should be consulted for further information.

The fundamental (indivisible) unit of the MoTor system is a µ-Cell. The µ-Cell consists four computational
units connected into a 2× 2 doubly-folded torus (see, Figure 2.1). Logically, an individual µ-Cell is surrounded
by so-called membranes that allow it to be combined into larger elements through the process of cell-fusion.
Obviously, collections of µ-Cells can be split into smaller structures through cell division. For instance, in Figure
2.1, we see a total of 9 µ-Cells logically fused into a single macro-µ-Cell consisting of 4 µ-Cells (combined into a
4× 4 doubly folded torus), and 5 individual (separate) µ-Cells. Furthermore, in Figure 2.2 we observe all nine
µ-Cells combined into a single system (a 6×6 doubly folded torus; with a total of 36 processing units). Observe
that, when the 2 × 2 (or 3 × 3) µ-Cells are logically fused (or divided), the newly formed structure remains a
doubly folded torus. In this way, it can be postulated that the single µ-Cell represents a “holographic image”
of the whole system.

Let us note that the proposed MoTor topology has similar restriction as the array processors from the early
1990’s. Specifically, the MoTor system must be square. While this was considered an important negative factor
in the past, this is no longer the case. When the first array processors were built and used, arithmetical opera-
tions and computer memory were “expensive.” Therefore, it was necessary to avoid performing “unnecessary”
operations (and maximally reduce the memory usage). Today (December 2013), when GFlops costs about 16
cents (see, [25]) and its price is systematically dropping; and when laptops come with 8 Gbytes of RAM (while
some cell phones include as much as 64 Gbytes of flash memory on a card), it is the data movement / access
/ copying that is “expensive” (see, also [13]). Therefore, when images (matrices) are rectangular (rather than
square), it is reasonable to assume that one could just pad them up, and treat them as square. Obviously, since
the µ-Cell is a single indivisible element of the MoTor system, if the matrix is of size N ×N then N has to be
even (or padded to be such).

Note that in earlier publications (e.g. [20, 19, 18, 21] the computational units, as well as the whole concept
of the MoTor system, were purely “theoretical entities.” However, in [11] we have considered such system more
closely, from the perspective of its potential realization. This line of reasoning resulted in the following proposal
of the computational unit to be realized in the MoTor system. (1) It accepts input from the sensor(s) and
transfers it directly to the operational registers / local memory. (2) Is capable of generalized fused multiply-add
(gfma) operations, originating from various algebraic semirings (see, also [22, 1] for more details). The latter
requirement means that, (3) the gfma unit considered here should store (in its registers) all constants needed
to efficiently perform fma operations originating from various semirings. Finally, analysis of cell connectivity

Image scrambling on a ”mesh-of-tori” architecture 81

0300

3330

1310

2320

0100

1110

0201

3231

1211

2221

0100

1110

0100

1110

0100

1110

0100

1110

Fig. 2.1. 9 µ-Cells fused into a single 2× 2 “system,” and 5 separate µ-Cells

in Figure 2.1 shows that (4) the gfma unit should include four interconnects that allow assembly of the MoTor
system. Let us name such computational unit the extended generalized fma: egfma. Furthermore, let us keep
in mind that the MoTor architecture is build from indivisible µ-Cells, each consisting of four, interconnected
into a doubly folded torus egfma units.

Let us now observe that there are two sources of inspiration for the MoTor system: (i) processing data
from, broadly understood, sensor arrays (e.g. images), and (ii) matrix computations. Furthermore, we have
stated that the egfma should contain data registers to store (a) the needed scalar elements originating from
various semirings, (b) data that the fma is to operate on and, as stipulated in [11], (c) elements constituting
special matrices needed for matrix operations / transformations. Here, we have to take into account that each
egfma should have a “local memory” to allow it to process “blocks of data.” This idea is based on the following
insights. First, if we define a pixel as “the smallest single component of a digital image” (see, [7]), then the data
related to a single RGBX-pixel is very likely to be not larger than a single 32 bit number. Second, in early 2013
the (Tianhe-2) has 23,040,000 fma units 2 (see, [2]). This means that, if there was a one-to-one correspondence
between the number of egfma units and the number of “pixels streams,” then the system could process stream
of data from 23 Megapixel input devices (or could process a matrix / image of size N ≃ 4800). This is clearly
not enough. Finally, let us note that to keep an fma / gefma unit operating at 100% it is necessary to form a
pipeline that is (minimally) 4-6 elements deep. Therefore, from here on, we will assume (and in this follow [19])

2Here, we count only the Intel Xeon Phi nodes. There are 48000 such nodes, each with 60, 8-way, cores, giving us a total of
23,040,000 double precision fma units

82 M. Ganzha, M. Paprzycki and S. G. Sedukhin

0500

5550

1510

4540

2520

3530

0401

5451

1411

4441

2421

3431

0302

5352

1312

4342

2322

3332

Fig. 2.2. 9 µ-Cells fused into a single 6× 6 EG FMA system

that each computational unit in the MoTor system has local memory and thus be capable of processing blocks
of data. For instance, a natural way of augmenting the egfma to achieve this goal would be to use 3D stacked
memory [15].

Let us now consider the development of the MoTor -based system. In the initial works, e.g. in [20], links
between cells have been conceptualized as purely abstract links (µ-Cells were surrounded by logical membranes
that could be fused or divided as needed, to match the size of the problem). Obviously, in an actual system, the
abstract links and membranes could be realized logically, while the whole system would have to be hard-wired to
form an actual MoTor system (of a specific size). Therefore to build a large system with M2 µ-Cells (recall the
assumption that the MoTor system will have the form of a square array), it can be expected that such system
will consist of silicon etched groups of µ-Cells residing on separate chips (µ-processors), combined into the
MoTor system of a given size (similarly to multicore / multi-FMA processors combined into supercomputers).

As what concerns cell fusion and division, it will be possible to assemble sub-system(s) of a needed size, by
logically splitting and/or fusing an appropriate number of cells within the MoTor system. However, it should be
stressed that while the theoretical communication latency across the MoTor system is uniform, this is not likely
going to be the case when the system will be assembled from µ-processors constituting physical macro-µ-Cells.
In this case it may be possible that the communication within the µ-processor (physical macro-µ-Cell) will be
relatively faster than between the µ-processors. Therefore, the most natural µ-Cell split should involve complete
µ-processors. However, let us stress that the design of the mesh-of-tori topology does not distinguish between
the connections that are “within the µ-processor” and “between µ-processors.” Therefore, the communication
model used in the algorithms described in [20, 19, 11], and applied in subsequent sections, is independent of the

Image scrambling on a ”mesh-of-tori” architecture 83

hardware configuration.

3. Fundamental operation. To proceed, let us note that, in what follows, we use the generalized matrix
multiply-and-update operation (MMU) in the form elaborated in [23, 12, 11]:

C← MMU[⊗,⊕](A, B, C) : C← C⊕ AN/T ⊗ BN/T.

Here, A, B and C are square matrices of (even) size N ; while the ⊗,⊕ operations originate from a matrix
semiring; and N/T specify if a given matrix is to be treated as being in a standard (N) or in a transposed (T)
form, respectively.

3.1. Reordering for the mesh-of-tori processing. Before discussing image processing, which is the
main contribution of this paper, we have to consider the data input (e.g. from the sensor array, a medical
scanner, or a cell phone photo camera) into the MoTor system. As shown in [20] (and followed in [11]), any
input that is in the canonical (standard image / square matrix) arrangement, is not organized in a way that
is needed for the matrix processing in a (doubly folded) torus. However, as shown in [19], the needed format
can be obtained by an appropriate linear transform, through two matrix-matrix multiplications. Specifically,
matrix product in the form M ← R × A × RT , where A is the original / input (N × N) matrix that is to be
transformed, M is the matrix in the format necessary for further processing on the MoTor system, and R is the
format rearranging matrix (for the details of the structure of the R matrix, consult [19]). Taking into account
the implementation of the generalized MMU operation (see, equation 3), the needed transformation has the
form:

M = R×A×RT .

Note that, according to [20, 19], on the MoTor system: (a) operation Z = R×A is performed in place and
requires N time steps, (b) operation M = Z × RT is performed in place, and also requires N time steps and
is implemented as a parallel matrix multiplication with a different data movement pattern than the standard
multiplication. In other words, the matrix arrangement within the system remains unchanged for the transposed
matrix operations, and the well-known problems related to row vs. column matrix storage (see, for instance, [17])
do not materialize (for more details, see [24]).

Observe that, when instantiating the MoTor system, it is assumed that an appropriate matrix R will be
preloaded into the macro-µ-Cell, upon its creation (see, [11] for more details). Specifically, in addition to the
operand registers dedicated to special elements (0̄, 1̄) originating from selected semirings, appropriate elements
of a transformation matrix, needed to perform operations summarized in [11] will be preloaded in separate
operand registers. These operations include the transformation from the canonical to the “MoTor format” and
back. Therefore, matrix R (of an appropriate size) will be preloaded into the MoToR system.

4. Image scrambling and unscrambling. Taking into account the background material presented thus
far, let us focus on the main contribution of this paper. An interesting application of the matrix multiplication
has been proposed in [18]. There, a linear transform, based on the Kronecker-delta function, was introduced.
This transformation was then used to create a scrambling matrix C that could be used to scramble and un-
scramble images (via matrix-matrix multiplication). Since matrix denoted as “C” is very often used in different
contexts (e.g. see, the above equation 3), for the purpose of this paper, let us re-name it as SCRAM . The
complete description of the linear transform, as well as the specific structure of the SCRAM matrix can be
found in [18]. Let us recall that, while the discussion below considers “single element per gefma” model, the
real assumption is that a “data block per gefma” format is used (for more details, see [18, 19]). Therefore, all
claims should be seen as actually concerning a blocked data format. Finally, we assume that image / matrix A
is of size N ×N (with N even).

Similarly to the processing needed to transform the matrix / image from the canonical to the MoTor
format (and back), image (represented as a matrix A) scrambling consists of a triple-matrix product (forward
transform): S ← SCRAM ×A× SCRAMT ; where S is the resulting scrambled image/matrix. Unscrambling

84 M. Ganzha, M. Paprzycki and S. G. Sedukhin

of the same image (S) is a result of the following triple-matrix product (inverse transform): A← SCRAMT ×
S × SCRAM .

In [18], two ways to apply this approach to scramble images have been proposed. First, scrambling was to
be applied 1 ≤ J ≤ N times to the whole image (matrix). The second approach was a “progressive” one. Here,
one had to pick a key (parameter) 1 ≤ KP ≤ N . Next, scrambling was applied to the left top corner of the
image, of size KP ×KP , 2KP × 2KP , and proceeded until the whole matrix was scrambled (in the case when
N was not divisible by KP then the complete matrix / image was scrambled in the last step).

In both cases, the scrambling operation could be realized by a Scramble(A, nb) function. This function was
to perform the tripe-matrix product involving the left top corner of size nb×nb, where 1 ≤ nb ≤ N . In the first
approach, scrambling was achieved by calling the Scramble(A,N) function J times. Observe that, on theMoTor
system, each scrambling step would be performed in place, and would take 2N time steps. Therefore, the total
cost of scrambling would be 2N ≤ 2NJ ≤ 2N2 time steps. Here, to unscramble the image without knowledge of
the key K, would require knowledge of the matrix SCRAM , and applying the unscrambling operation J times
(using function ScrambleInv(A,N)) until the original image was to be revealed (to the human observer).

In the second case, the Scramble(A, nb) function would be called N/KP times (and possibly one more time
if N was not divisible by KP). On the MoTor system, each scrambling step would cost 2KP time steps (plus
the cost of cell fusion, and of re-instantiating the SCRAM matrix (for the next image / matrix size); however,
these costs would be negligible in comparison with the cost of matrix multiplication). Therefore, the total cost
would be between 2N (for KP = N) and 4N − 2 for (for KP = 1) time steps. Here, recovering the original
image would require knowledge of the matrix SCRAM , and searching space of all possible values of KP , by
applying the unscrambling function ScrambleInv(A, nb).

Let us stress that the material presented in [18], while conceptually originating from the same roots (dense
matrix multiplication), was not directly related to the MoTor architecture. Furthermore, it did not consider
practicalities of use of the proposed transformation for secure image (multimedia) transfer / communication.
Earlier, we have already made some comments about possible implementation of the scrambling (and unscram-
bling) procedures on the MoTor system, conceptualized as above (and approached as in [11]). Let us continue
this line of reasoning.

First, let us make an obvious observation. The goal of image scrambling is to be able to hide the in-
formation (make the image unrecognizable to unauthorized persons), pass it to the authorized recipient, and
reveal it by unscrambling. In this context, let us consider in some detail the implementation of the proposed
image scrambling on a MoTor system. Here, the first approach involves initialization of the SCRAM matrix
(similarly to the R matrix mentioned above, and to other transformation matrices summarized in [11]). Note
that, only a single SCRAM matrix is going to be needed, as the scrambling procedure consists of applica-
tion of the Scramble(A,N) function J times to the whole image (matrix). As stated above, this approach is
not safe at all. As soon as the potential attacker knows the SCRAM matrix, (s)he can repeatedly apply the
ScrambleInv(A,N) function and after J steps the original image will be revealed. Furthermore, the computa-
tional cost of unscrambling will be the same as that of scrambling (assuming that the attacker also has a MoTor
system at her/his disposal).

The situation is different in the second approach. Here, even the knowledge of the SCRAM matrix, and the
possession of the MoTor system, do not help the potential attacker sufficiently. Without the knowledge of the
KP parameter, the search space to uncover the information is much larger (though, obviously, the unscrambling
is not impossible). However, this approach would be somewhat difficult to efficiently implement on a MoTor
system (as described above, and in [11]). Observe that the recursive approach would require cell fusion. For
instance, if KP = 64 then the first scrambling would be performed on a block of size 64× 64 (on a macro-µ-Cell
consisting of 32 × 32 µ-Cells). Next, cell fusion would have to be applied (to create a macro-µ-Cell consisting
of 64× 64 µ-Cells, and matrix SCRAM would have to be re-initialized, to apply scrambling to a block of size
128 × 128). In other words, let us assume that image of size 1024 × 1024 is to be scrambled, with the key
KP = 16. This means that the macro-µ-Cells of size 8, 16, 32, 64, 128, 256 and 512 would have to be used, and
the SCRAM matrices of sizes N = 16, 32, 64, 128, 256, 512, 1024 would have to be instantiated after each cell
fusion. Note that the SCRAM matrices cannot be preloaded, among others because the user can pick any value
for KP (even values that are not the most effective from the perspective of the MoTor system; including odd

Image scrambling on a ”mesh-of-tori” architecture 85

values ofKP). Here, it should be stressed that, while use of odd values ofKP is possible, this does not match the
concept of the MoTor system, where the µ-Cell is the fundamental computational unit. Furthermore, this also
means that there is no natural way of utilizing the cell fusion and splitting that could allow dynamic creation
of the MoToR systems that match the size of the scrambled block. Finally, note that padding, proposed above
for the full-matrix operations, is not an option in an “internal step” of image scrambling, as the scrambling
operation has to be performed on a block of data within an image (matrix).

Summarizing, while very interesting conceptually, ideas for image scrambling presented in [18] are not best
suited for the MoTor architecture. Therefore, we propose a slightly different approach to image scrambling (and
unscrambling), seen as a mechanism for information hiding (and safe transmission) on aMoTor architecture. Let
us assume that two users would like to communicate multimedia content using the scrambling / unscrambling
method discussed above. Observe that, for any matrix A, as long as the SCRAM matrix is known, the
ScrambleInv(A, nb) reverses the effect of application of the Scramble(A, nb) function. This being the case,
it is easy to see that all that is needed is that the sender applies the Scramble(A, nb) function a specific
number of times (e.g. L times) for the selected values of nb. Next, it communicates to the receiver a tuple
(nb1, nb2, . . . , nbL) that defines what were the values of nbi used in each of the scrambling steps, and what was
their order. Here, we assume that the SCRAM matrix is known to both the sender and the receiver. Next,
the receiver applies the ScrambleInv(A, nb) function in an appropriate order (based on the known sequence of
nbi values) to recover the original image. A small “restriction” on this approach is such that at least one of the
scrambling operations should involve the whole matrix A (as application of only blocked scrambling, without
scrambling the whole image, leaves an unscrambled image strip; see [18, 19]). However, this approach makes it
very difficult to unscramble the original image even if the attacker knows the form of the matrix SCRAM . The
problem is in the fact that the sequence (nb1, nb2, . . . , nbL) can be completely “random,” while being known
only to the sender and the receiver.

The interesting part of this approach is in the fact that the number different blocks used in scrambling does
not have to be large (as they can be repeated in the scrambling sequence) and that they can be defined in such
a way to match the structure of the MoTor system. Here, let us recall that the size of the macro-µ-Cell can
be dynamically adjusted through cell division and fusion. However, the image (matrix) A is stored across the
whole MoTor system and this fact is not going to change. Let us now assume that the following scrambling
sequence is to be applied nb = 1024, 256, 512, 1024 to a matrix (image) of size 1024× 1024. Here, it is possible
(assuming that this is known in advance) to instantiate three SCRAM matrices in the MoTor system. Each
element of these SCRAM matrices would be stored in a separate register. Now, the first scrambling would
involve triple-matrix multiplication performed on the whole system. Next, the cell division would be applied
to create a subsystem of size 256 × 256 (macro-µ-Cell consisting of 128 × 128 µ-Cells). Here, let us note that
this subsystem would have preloaded SCRAM matrix of the correct size. In the following step, cell fusion
would be used to create a subsystem of size 512 × 512 (macro-µ-Cell consisting of 256 × 256 µ-Cells); where
an appropriate SCRAM matrix would be already preloaded. After the scrambling operation, cell fusion would
be applied, again, to restore the original system, where the initial SCRAM matrix would still be available.
Another triple-matrix multiplication would end the process. The unscrambling will proceed in exactly the
opposite order, dynamically splitting and fusing the meta-µ-Cells and using the preloaded SCRAM matrices.

4.1. Object oriented implementation. In our earlier work (see, [23, 12, 11]), one of our goals was
to develop a library of functions that will simplify writing codes for scientific computing applications (through
application of matrix operations, represented in the style similar to that found in MATLAB /MATHEMATICA).
In [11] we have introduced such a library, for a collection of operations involved in matrix / image manipulations,
and supporting global reduction and broadcast operations. Obviously, there are multiple ways of implementing
the proposed routines, and it is likely that such implementations are going to be vendor / hardware specific.
Nevertheless, currently, object oriented (OO) programming is one of the more popular ways of writing codes
in scientific computing and image processing. This being the case, we have conceptualized the top-level object
oriented representation of the routines proposed in [11]. Since different OO languages have slightly different
syntax (and semantics), we have used a generic notation, focusing on distinguishing information that needs
to be made available in the interface and that to be placed in the main class. Here, we extend our proposal
to include also scrambling and unscrambling operations. We start from the interface (see, also [11] for the

86 M. Ganzha, M. Paprzycki and S. G. Sedukhin

remaining matrices and operations that have been omitted in the snippets below).

/∗ T − type o f matrix e lement ∗/

i n t e r f a c e Ma t r i x i n t e r f a c e {
pub l i c Matrix 0(i n t n) {/∗ g e n e r a l i z e d ze ro matrix ∗/}
pub l i c Matrix I (i n t n) {/∗ g e n e r a l i z e d i d e n t i t y matrix ∗/}
pub l i c Matrix operator + /∗ g e n e r a l i z ed A+B∗/
pub l i c Matrix operator ∗ /∗ g e n e r a l i z ed A∗B∗/
pub l i c Matrix Canon ica l to Motor (Matrix A) ;
/∗ r e o rd e r i ng f o r the mesh−of−t o r i p roc e s s i ng ∗/
pub l i c Matrix Motor to Canon ica l (Matrix A) ; /∗ i n v e r s e o f
the r e o rd e r i ng f o r the mesh−of−t o r i p roc e s s i ng ∗/
pub l i c Matrix Scramble (Matrix A, i n t nb) ;
/∗Matrix (Image) Scrambl ing∗/
pub l i c Matrix ScrambleInv (Matrix A, i n t nb) ;
/∗Matrix (Image) Unscrambling∗/

}

This interface is to be used with the following class Matrix that summarizes the proposals outlined above.

c l a s s Matrix i n h e r i t s ca l a r Sem i r i ng
implement Mat r i x i n t e r f a c e {

T: type o f element ; /∗ double , s i ng l e , . . . ∗ /
p r i va t e Matrix SCRAM (in t n) /∗ scrambl ing matrix
p r i va t e Matrix R (i n t n) ; /∗ matrix f o r MoTor

trans f ormat i on ∗/
p r i va t e Matrix ONES (i n t n) /∗ matrix o f ones ∗/
p r i va t e Matrix PERMUT(i n t i , j , n)/∗ i d e n t i t y matrix

with inter changed columns i and j ∗/
// anti−diagona l matrix o f ones
p r i va t e Matrix SWAP (i n t n)

// Methods
pub l i c Matrix 0(i n t n) {/∗0 matrix ∗/}
publ i c Matrix I (i n t n) {/∗ i d e n t i t y matrix ∗/}
publ i c Matrix t ranspose (Matrix A){

/∗MMU −based t r an s p o s i t i o n o f A∗/}
publ i c Matrix operator + (Matrix A,B)

{ r e turn MMU(A, I (n) ,B, a , b)}
publ i c Matrix operator ∗ (A,B: Matrix)

{ r e turn MMU(A,B, matrix 0 , a , b)}
. . .
/∗ image scrambl ing ∗/
pub l i c Matrix Scramble (Matrix A, i n t nb){

r e turn SCRAM ∗ A ∗ SCRAMˆT} ;
pub l i c Matrix ScrambleInv (Matrix A, i n t nb){

r e turn SCRAMˆT ∗ A ∗ SCRAM} ;
. . .

p r i va t e MMU(A,B,C: Matrix (n)){
r e turn ”vendor / implementer s p e c i f i c

r e a l i z a t i o n o f MMU = C + A∗B where
+ / ∗ are from c l a s s s ca l a r Sem i r i ng ”}

. . .
}

Obviously, this class and the interface would allow writing codes in the suggested manner. Here, the matrix
operations (image scrambling and unscrambling) would be performed by calling simple functions, and hiding
all implementation details (including the existence of the matrix SCRAM) from the user.

5. Concluding remarks. The aim of this paper was to extend and modify a recently proposed novel
method of image scrambling. The proposed improvements were made from the perspectives of (1) practical use
of image scrambling for secure transmission of multimedia content, and (2) realization of the proposed method
on the MoTor architecture. We have started from the rationale behind the need for efficient processing of large
scale multimedia content and used this to outline the fundamental properties of the MoTor architecture. Next,
we have introduced the image scrambling and unscrambling method proposed in [18]. This method was then
analyzed from the perspective of its practical applicability, which resulted in the proposed modifications. Finally,

Image scrambling on a ”mesh-of-tori” architecture 87

we have illustrated how the proposed approach fits into the object oriented realization of matrix operations
proposed in [11]. In the future we plan to implement the proposed approach on the virtual MoTor system and
study its efficiency.

Acknowledgment. Work of Marcin Paprzycki was completed while visiting the University of Aizu.

REFERENCES

[1] Kalray multi-core processors. http://www.kalray.eu/.
[2] Top500 list. http://www.top500.org.
[3] Canon EOS 5D. http://www.usa.canon.com/cusa/consumer/products/cameras/slr_cameras/eos_5d_mark_iii, 2013.
[4] Nikon D800. http://www.nikonusa.com/en/Nikon-Products/Product/Digital-SLR-Cameras/25480/D800.html, 2013.
[5] Nokia 808 Pureview. http://reviews.cnet.com/smartphones/nokia-808-pureview-unlocked/4505-6452_7-35151907.html,

2013.
[6] Nokia Lumia 1020. http://www.nokia.com/global/products/phone/lumia1020/, 2013.
[7] Wikipedia pixel. http://en.wikipedia.org/wiki/Pixel, March 2013.
[8] P. Altevogt and A. Linke, Parallelization of the two-dimensional ising model on a cluster of ibm risc system/6000 work-

stations, Parallel Computing, 19 (1993), pp. 1041–1052.
[9] S. Chai and D. Wills, Systolic opportunities for multidimensional data streams, Parallel and Distributed Systems, IEEE

Transactions on, 13 (2002), pp. 388–398.
[10] D. Fey and D. Schmidt, Marching-pixels: a new organic computing paradigm for smart sensor processor arrays, in CF

’05: Proceedings of the 2nd conference on Computing frontiers, New York, NY, USA, 2005, ACM, pp. 1–9. doi:http:

//doi.acm.org/10.1145/1062261.1062264.
[11] M. Ganzha, M. Paprzycki, and S. Sedukhin, Library for matrix multiplication-based data manipulation on a “mesh-of-tori”

architecture, in Proceedings of the 2013 Federated Conference on Computer Science and Information Systems, M. Ganzha,
L. Maciaszek, and M. Paprzycki, eds., IEEE, 2013, pp. pages 455–462.

[12] M. Ganzha, S. Sedukhin, and M. Paprzycki, Object oriented model of generalized matrix multiplication, in FedCSIS, IEEE,
2011, pp. 439–442.

[13] J. L. Gustafson, Algorithm leadership, HPCwire, Tabor Communications (April 06, 2007).
[14] E. H. M. Heijne, Gigasensors for an attoscope: Catching quanta in CMOS, IEEE Solid State Circuits Newsletter, 13 (2008),

pp. 28–34.
[15] P. Jacob, A. Zia, O. Erdogan, P. M. Belemjian, J.-W. Kim, M. Chu, R. P. Kraft, J. F. McDonald, and K. Bernstein,

3D memory stacking; mitigating memory wall effects in high-clock-rate and multicore CMOS 3-D processor memory
stacks, Proceedings of the IEEE, 97 (2009).

[16] S. Kyo, S. Okazaki, and T. Arai, An integrated memory array processor architecture for embedded image recognition
systems, in Computer Architecture, 2005. ISCA ’05. Proceedings. 32nd International Symposium on, June 2005, pp. 134–
145.

[17] M. Paprzycki, Parallel Gaussian elimination algorithms on a Cray Y-MP, Informatica, 19 (1995), pp. 235–240.
[18] A. Ravankar and S. Sedukhin, Image scrambling based on a new linear transform, in Multimedia Technology (ICMT), 2011

International Conference on, 2011, pp. 3105–3108.
[19] A. A. Ravankar, A new “mesh-of-tori” interconnection network and matrix based algorithms, master’s thesis, University of

Aizu, September 2011.
[20] A. A. Ravankar and S. G. Sedukhin, Mesh-of-tori: A novel interconnection network for frontal plane cellular processors,

2013 International Conference on Computing, Networking and Communications (ICNC), (2010), pp. 281–284.
[21] , An O(n) time-complexity matrix transpose on torus array processor, in ICNC, 2011, pp. 242–247.
[22] S. G. Sedukhin and T. Miyazaki, Rapid*closure: Algebraic extensions of a scalar multiply-add operation, in CATA, 2010,

pp. 19–24.
[23] S. G. Sedukhin and M. Paprzycki, Generalizing matrix multiplication for efficient computations on modern computers, in

Parallel Processing and Applied Mathematics, R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Waśniewski, eds.,
vol. 7203 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2012, pp. 225–234.

[24] S. G. Sedukhin, A. S. Zekri, and T. Myiazaki, Orbital algorithms and unified array processor for computing 2D sepa-
rable transforms, in Parallel Processing Workshops, International Conference on, Los Alamitos, CA, USA, 2010, IEEE
Computer Society, pp. 127–134.

[25] Wikipedia, Flops. http://en.wikipedia.org/wiki/FLOPS.

[26] Á. Zarándy, Focal-Plane Sensor-Processor Chips, Springer, 2011.

Edited by: Dana Petcu
Received: Dec 1, 2013
Accepted: Jan 15, 2014

