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A NEW DECENTRALIZED PERIODIC REPLICATION STRATEGY FOR DYNAMIC
DATA GRIDS∗

HANÈNE CHETTAOUI†AND FAOUZI BEN CHARRADA‡

Abstract. Data grids provide scalable infrastructure for storage resource and data files management, which support data-
intensive applications that need to access to huge amount of data stored at distributed locations around the world. The size of these
data can reach the scale of terabytes or even petabytes in many applications. These applications require reaching several main goals,
namely efficient accessing, storing, transferring and analyzing a large amount of data in geographically distributed locations. In this
situation, replication is a general and simple technique used in data grids to achieve these goals. Indeed, it has as main purposes
improving data access efficiency, providing high availability, decreasing bandwidth consumption, improving fault tolerance and
enhancing scalability. In this paper, we propose a new classification of replication strategies through two complementary criteria as
well as a survey of the induced categories of strategies. In addition, we introduce a new decentralized periodic replication strategy
for dynamic data grids assuming limited storage for replicas, called DPRSKP, which stands for Decentralized Periodic Replication
Strategy based on Knapsack Problem. This strategy takes into consideration the changing availability of sites. DPRSKP is based
on two polynomial-time complexity algorithms. The first one starts by selecting the best candidate files for replication while the
second places them in the best locations. The replication problem in DPRSKP is formulated according to the Knapsack problem. In
addition, DPRSKP extends the well known LRU and LFU strategies. The simulation experiments were carried out using OptorSim
and a dynamic period rather than a static one. The obtained results show that DPRSKP can effectively improve response time,
bandwidth consumption, remote file accesses number and local file accesses number as compared with other replication strategies.
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1. Introduction and motivations. Nowadays, a huge amount of data is generated in many fields of
science and engineering, some of which are geographic information science [43], astrometry [45], medical [32],
and remote instrumentation [47]. These produced data need to be distributed around the world for the sake of
data sharing and collaboration. Hence, ensuring an efficient and fast access to such massive data is a challenge
that must be addressed. The data grid, which represents a type of grid computing [15], is a solution for this
problem. A data grid connects a collection of hundreds of geographically distributed computers and storage
resources located in different parts of the world to facilitate sharing of data and resources [23]. Biomedical
Informatics Research Network (BIRN)1, Large Hadron Collider (LHC)2 and, the European DataGrid Project
(EDG)3 are some examples of existing data grids.

In this paper, we focus on data grids. Since the data represent the most important resource in data grids,
how to decrease access time, reduce the bandwidth consumption and improve the data availability and system
reliability have become challenging tasks. Replication is a key technique often used to achieve these tasks. The
general idea of replication is to create multiple copies of the same data in several storage resources to improve
response time, reduce the bandwidth consumption, increase data availability, and to improve system reliability.
Currently, data replication in grids mostly deals with file replication [20]. Several replication strategies have
been proposed in the literature. A replication strategy must answer the following questions [9, 21, 38]:
1- Which files must be replicated?
2- Where to place the candidate files for replication (i.e., the new replicas)?
3- How to select the best replica of a file among many replicas available in the grid?

In the literature, replication strategies are categorized according to several criteria. Indeed, replication
strategies can be classified according to the adopted grid model. We then distinguish between strategies ded-
icated for hierarchical grids and other dedicated for Peer-To-Peer or hybrid grids. In addition, replication
strategies can be classified according to the taking decision type. Hence, two strategy types appeared which
are centralized and decentralized strategies. On the one hand, a centralized replication strategy is based on
a central site that collects all information about files and grid sites. The central site makes the replica and
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101



102 H. Chettaoui and F. Ben Charrada

placement decisions. On the other hand, in a decentralized approach, all grid sites keep files track in order to
decide which files to replicate or to remove locally. We also find static or dynamic replication strategies. A
static replication way decides the distribution files initially and retains files location during the grid running.
However, in a dynamic replication type, replicas are automatically created and deleted according to changes in
the grid users’ behavior.

The majority of strategies on data replication have considered only static grids (having invariable number
of sites). For several types of grids, this assumption does not reflect reality. Indeed, new sites can join the grid
and others can leave, to join it possibly again. For this reason, the dynamicity becomes a fundamental criterion
to establish an effective replication strategy.

In this paper, we propose a new decentralized periodic replication strategy, called DPRSKP (Decentralized
Periodic Replication Strategy based on Knapsack Problem) for dynamic data grids. In fact, DPRSKP has two
main features:

• the storage space of each site is supposed to be limited, contrary to several approaches of the literature
which suppose it unlimited.
• the number of grid sites is variable in the sense that sites can leave or join the grid at any time.

In our strategy, we will address these issues characterizing the grid dynamicity. For each site, the DPRSKP
strategy selects files to be replicated or deleted based on an adaptation of the well known Knapsack problem
[22, 30]. We then evaluate the benefit of our strategy through simulations. The obtained experiment results,
using OptorSim, show that our strategy outperforms other replication strategies in terms of several parameters.
It is important to note that, as this will be shown hereafter, the proposed strategy is periodic-fee in the sense
that it can also be used as a non periodic strategy.

The remainder of the paper is organized as follows. Section 2 gives an overview of previous work on data
grid replication. Section 3 presents our replication strategy DPRSKP as well as an illustrative example of its
different components. Section 4 describes a study of the complexity of our proposed strategy. Section 5 provides
the simulation framework and the obtained experimental results. The last section summarizes our contributions
and depicts future work.

2. Related work. Replication in data grids is a technique used to reduce the response time and the
bandwidth consumption. Replication also increases data availability thereby enhancing system reliability. In
this section, we classify and survey the main replication strategies of the literature.

We propose in this paper another type of classification according to the following two complementary
criteria:

• Periodicity: this criterion specifies when the replication strategy is triggered, at each demand of a file
or after a given period of time.
• Taking decision type: this criterion distinguishes between centralized and decentralized replication
strategies.

As a consequence, replication strategies in the literature can be categorized as follows:
• A non periodic replication strategy is triggered by the requesting site when the needed file is not found
locally and assumes limited storage for replicas. In that case, each strategy offers a replacement strategy
when there is not enough space to replicate a new file. For this type of strategy, the decision about
replicating or deleting files is taken by each requesting site in the grid. The associated strategies are
then called non periodic decentralized strategies.
• A periodic replication strategy is triggered at each period. In general, these strategies assume unlimited
replica storage. For this type of strategies, the selection of files to replicate and of sites to place them is
done either by a central site or by the requesting site. We then distinguish between centralized periodic
and decentralized periodic replication strategies.

The proposed classification of replication strategies is depicted in Fig. 2.1.
The following two subsections describe the main centralized and decentralized periodic and decentralized

non periodic strategies of the literature.

2.1. Periodic strategies.
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Fig. 2.1. Classification of replication strategies

2.1.1. Centralized strategies. This part exposes according to the chronological order the centralized
periodic replication strategies where the replication algorithm is triggered by a central site.

In [37, 38], Ranganathan and Foster propose six different replication strategies (periodic and non periodic)
for hierarchical data grids. They distinguish between replication and caching. Indeed, the authors consider
replication as a server-side phenomenon and caching is assumed to be a client-side phenomenon. The proposed
periodic centralized strategies are:

• No Replication: the entire data set is available at the root of the hierarchy. During the grid execution,
the number of replicas and their locations remain the same.
• Cascading Replication: once the requests number of a file exceeds a given threshold, a replica is created
at the next level which is on the path to the best client.

All these strategies take into account the requests number of each file to identify files to replicate and sites
where to place them. In addition, a replacement strategy is triggered in the case there is a shortage of storage
space at the selected site to replicate a new file. The least popular file is expunged. If more than one file are
equally unpopular, the oldest file is removed.

In [34], Rahman et al. propose four replication algorithms based on utility and risk. The utility and risk
are calculated using the current network load and the user requests. All these algorithms select one site to host
the new replica. An improvement is proposed in [35, 36] by selecting p sites to place the new file using three
models, namely p-median, p-center and multi-objective. Note that the number p is a parameter specified by the
grid administrator.

In [18, 19], the authors propose a replication strategy by organizing the data into several data categories
that it belongs to. They consider the requests number of each file to decide which one needs to be replicated.
In addition, they take into account the file size and the bandwidth width to choose the best place for the new
replica.

To trigger replica creation, Al Mistarihi and Yong [21] present a replication strategy for data grids that
uses the requests number of each file as well as the time starting from the creation date of a replica until the
current date. In addition, the candidate file for replication is identified based on the copies number 4 and the
requests number of each file. Finally, the new replica is placed at the best site based on the number of requests
and the response time.

Rasool et al. introduce a replication strategy, called Fair Share Replication (FSR) [40], for hierarchical data
grids. The proposed strategy takes into account the requests number of each file to select the candidate file for
replication. On the other hand, the replica placement is based on the server workload and the requests number
of each client.

Chang et al. propose a replication strategy called Least Access Largest Weight (LALW) [13]. The infor-
mation received at different time intervals has different weights. The concept of half-time is used to set the
information weights. LALW works in three steps. The first step finds the candidate file for replication. The
second computes how many replicas are required. The last step identifies clusters to host new replicas. These
three steps are based on the requests number and the weight of each file.

4The copies number of a file is equal to the number of its replicas in the grid.
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In [8, 9], Ben Charrada et al. propose a replication strategy called Periodic Optimiser for data grids. The
first step of Periodic Optimiser identifies the candidate files for replication based on the requests number and
the copies number associated to each file. The second step selects the best sites to host new replicas based on
the requests number of each file and the availability of each site. The selection of the best replica depends on
the availability of sites and the bandwidth.

Lee et al. propose a replication strategy called Popular File Replicate First (PFRF) [25] for hierarchical
data grids containing a global replica controller (GRC) and several clusters connected to the GRC. After
each period, the GRC selects the candidate files for replication based on the popularity weight for each file.
The popularity weight is calculated according to the requests number of each file. For each candidate file for
replication, the GRC selects the candidate clusters to place it. The candidate file is replicated in a site belonging
to the candidate cluster when there is sufficient storage space to accommodate it. Otherwise, PFRF deletes
some files which are less popular than the candidate file to be replicated.

2.1.2. Decentralized strategies. This part surveys, w.r.t. the chronological order, the decentralized
periodic replication strategies where the replication algorithm is triggered by a requesting site.

As mentioned above (see page 102), Ranganathan and Foster propose in [37, 38] six, periodic and non
periodic, replication strategies for hierarchical data grids. The authors design a decentralized periodic replication
strategy called Best Client. In this strategy, each node maintains a detailed history describing each file that it
contains (more precisely the requests number of each file and its requesting nodes). At each period, each node
selects the popular files (having a requests number exceeding a given threshold) and a replica is created at the
best client that has the largest number of requests for the file.

Ranganathan et al. introduce a replication strategy for a decentralized P2P environment [39]. The proposed
strategy computes first the number of replicas needed per file based on the file availability and the accuracy
of the RLS (Replica Location Service). Then, the best location of each new replica is chosen. The best site is
then that maximizing the difference between replication benefits and replication costs.

Suri and Singh present a replication strategy, called DR2 (Two-Stage Dynamic Replication), for data
grids [44]. DR2 works in two stages. Indeed, each site starts by selecting the files to replicate and then
determines the best sites to transfer these files. The selection of the candidate file for replication takes into
account the requests number, the size and the copies number associated to each file. The best replica is
determined according to the bandwidth and the number of hops between the grid sites. In addition, LRU [3] is
adopted as a replacement strategy.

Cui et al. propose a replication strategy called BSCA (Based on Support, Confidence and Access numbers)
for hierarchical data grids [17]. After each period, each site selects the candidate files for replication whose
the requests number exceeds a given threshold. Each candidate file and those files strongly correlated to it are
replicated if there is enough space to accommodate them. Otherwise, the weakly correlated files are removed.
If the storage space is still insufficient to replicate these files, BSCA deletes files having a requests number lower
than a threshold. It is important to mention that no indication on the threshold choice is made.

2.2. Non periodic strategies. This section provides an overview in the chronological order of decentral-
ized non periodic replication strategies. These strategies often replicate files at the request of any site and for
any file. Therefore, a replacement strategy is used when there is not enough space to replicate a new file.

As mentioned above (see page 102), Ranganathan and Foster [37, 38] propose non periodic replication
strategies for hierarchical grids. These strategies are:

• Plain Caching: the client that requests a file stores a copy locally.
• Caching plus Cascading Replication: this strategy combines Cascading Replication (cf. page 103) and
Plain Caching strategies. Each client stores the requested files locally. In addition, at each period, each
server identifies the popular files and replicates them down the hierarchy.
• Fast Spread: this strategy replicates files at each node along its path to the client.

All these strategies take into account the requests number of each file to identify files to replicate and sites
where to place them. In addition, a replacement strategy is triggered in the case there is a shortage of storage
space at the selected site to replicate a new file. The least popular file is expunged. If more than one file are
equally unpopular, the oldest file is removed.
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In [4], a replication strategy called LFU (Least Frequently Used) is introduced. LFU always replicates
the requested file in the site where the job needing the replica is running. If there is not enough space to
accommodate the replication, the least accessed file in the local storage is deleted. The strategy LRU (Least
Recently Used) [3] proceeds in the same way as the LFU strategy, except that the oldest replica is removed.

Park et al. [33] introduce a replication strategy, called BHR (Bandwidth Hierarchy based Replication),
which is based on bandwidth hierarchy of Internet. Nearest sites are located in the same network region. BHR
tries to replicate files that will be used within the same region in the near future. If there is not enough space to
accommodate the new replica, the least accessed files that are replicated in other sites within the same region
will be deleted. If the available space is still insufficient to host the new replica, those files having a lower
number of requests than the new replica are expunged.

In [26, 27], the authors propose a replication strategy called MinDmr (Minimize Missing Data Rate) which
performs as follows. If the required file is not present locally, a new replica is created if the available free storage
space is large enough. Otherwise, the candidate files for deletion are selected depending upon their weights.
The file weight is computed according to the availability, the requests number, the size, and the copies number
of the file.

Bsoul et al. [10] present a replication strategy named MFS (Modified Fast Spread) that is based on the Fast
Spread strategy [37, 38]. MFS considers a network topology in which there is one server node and a number of
client nodes. If there is enough storage space to replicate the required file, a new replica is created. Otherwise,
a group of replicas needs to be removed if it is less important than the new replica. The file importance depends
on the available storage space, the size, and the requests number of the file.

Zhao et al. [48] propose a replication strategy called VBRS (Value-Based Replication Strategy) that first
calculates a threshold deciding whether the requested file should be replicated or not. The computed threshold
depends on the requests number of each file. If the available storage space is insufficient to place the new replica,
some files will be removed based on access time, bandwidth and file size.

Sashi and Thanamani [42] propose a strategy, called Modified BHR, to overcome the limitations of the BHR
strategy (cf. page 105). According to Modified BHR, sites that are located in the same network region are
grouped together. The main idea of Modified BHR is to replicate files within a region and to store replica in a
site where the file has been accessed frequently. If there is not enough space to replicate the new replica in a
site and the replica is duplicated in other sites within the region, no action is done. If there is no duplication,
a replacement strategy is executed. It sorts files using the LFU strategy [4]. Then, it deletes files that are
duplicated in other sites within the same region. If the available space is still insufficient to hold the new file,
unpopular files having a requests number smaller than the new file requests number are deleted.

Ben Charrada et al. propose a replication strategy called LWF (Least Weight File) [5] which performs as
follows. The required file is replicated in the requesting site if there is enough space to host the new replica.
Otherwise, the candidate files for deletion are selected according to their weights. If the weight of the new
replica is greater than the sum of the candidate files weights, they will be replaced by the new replica. Note
that the file weight takes into account file-related parameters, i.e., its size and requests number, as well as
topology-related parameters, namely bandwidth and site availability.

Mehraban et al. propose a replication strategy called Prediction Replica Replacement Strategy (noted
PRA) [31]. PRA is started when a site requests a file and does not have sufficient space to accommodate it. In
this case, the requesting site computes the value of each file stored locally based on the requests number and
the copies number of each file. Then, the requesting site determines the candidate files for deletion according to
their sizes. Once the candidate files for deletion are selected, they will be sorted in ascending order according
to their values. The files having the least values will be removed and the requested file will then be replicated.

In [2], Beigrezaei et al. propose a replication strategy called fuzzy rep improving the modified BHR
method [42]. According to the fuzzy rep strategy, when there is not enough storage space to replicate the new
requested file, the potential candidates for replacement will be chosen according to their weight. The weight
computation is based on a fuzzy inference system and takes into account two factors, namely the number of
replica access and the difference between the current time and the last access time of replica. The candidate
replicas for replacement are sorted according to their respective weights in ascending order and, then, minimum
weight replicas will be deleted. If the available storage space is still insufficient to place the new one, fuzzy rep
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tries to delete the replicas that were not stored in the other grid sites of the current region.

In [46] Vashisht et al. propose a replication strategy called EDRA (Efficient Dynamic Replication Algo-
rithm) adapting agents for data grid. In EDRA, a data grid contains several regions connected with a master
node. A number of grid nodes collectively form one sub-region. EDRA tries to place a requested replica in
each sub-region. The head node located in regions is responsible for scheduling the jobs to the nodes where the
replica is placed. An agent is placed on each head node of the region, which keeps information of the nodes
located in the sub-regions. The new replica is placed on the nodes based on two factors, namely high data access
frequency and sufficient storage capacity. If there is enough space to accommodate the new file, the replica is
placed on the node. If the node has insufficient space, EDRA checks free space in the nearby node within the
sub-region and replicates the new file. If there is insufficient space in the sub-region, old files are deleted from
the node. The file having less access frequency is thus deleted and is replaced by the new replica.

Mansouri and Dastghaibyfard propose in [29] a replication strategy called Modified Dynamic Hierarchical
Replication (MDHR) which is an enhanced version of Dynamic Hierarchical Replication (DHR) [28]. In MDHR,
a data grid contains several regions. Each region contains several LAN. When a requested file is not available
in the local storage, MDHR selects the best site to replicate the new file. The best site has the highest number
of requests of the new file. If there is enough space in the selected site, the new file is replicated. Otherwise,
if the new file is available within the LAN of the requested site, the file is accessed remotely. If the file is not
available in the same LAN and there is not enough space to replicate it, files existing in the best site as well
in the local LAN are deleted using the LRU strategy. Moreover, if the available storage is still insufficient to
accommodate the new file, files existing in the best site as well in the local region are deleted using the LRU
strategy. If the required space is still insufficient, remaining files in the best site are deleted also using the LRU
strategy.

In the next section, we introduce our new strategy for dynamic data grids, called Decentralized Periodic
Replication Strategy based on Knapsack Problem (DPRSKP). A dynamic data grid has a variable number of
sites i.e. new sites can join the grid and others can leave, to join it possibly again.

3. DPRSKP strategy. As mentioned above, the majority of strategies on data replication have considered
only static grids i.e. those having an invariable number of sites. For several types of grids, this assumption does
not reflect the reality. Indeed, new sites can join the grid and others can leave it, to join it possibly again after.
For this reason, the dynamicity becomes a fundamental criterion to design an effective replication strategy. In
other words, by “dynamicity” we mean that the availability of a given site, i.e. the fact that it can be joined
or not at given moment, will be taken into consideration in our approach.

In this context, we proposed in [8, 9] a centralized periodic replication strategy called Periodic Optimiser.
Centralized replication is based on a central site that collects all information about files and grid sites. The
central site makes the replica and placement decisions. However, in a decentralized strategy, all grid sites keep
files track in order to decide which files to replicate or to remove locally. The benefit of a decentralized decision
is that there is no single point of failure [1]. This motivates our choice of a decentralized way for replicating
files. Moreover, in [5], we proposed a decentralized non period replication strategy called Least Weight File
(LWF). LWF computes the weight of each file in a site Si requesting a file Fnew. In the first step of LWF,
these files of Si are sorted in an ascending order according to their weight. In the second step, LWF searches
for the smallest index p of the files list as the sum of their sizes is greater than or equal to the missing space
allowing to store Fnew . Finally, Fnew will be replicated if the sum of the weights of these p files is less than the
weight of Fnew . However, the choice of p is not performed optimally as shown in the following counter example.
Let SizeF1 = 2, SizeF2 = 3, SizeF3 = 5 and SizeF4 = 6 where SizeFk

denotes the size of a file Fk locally
stored in the site Si. Also, let FileWeightF1 = 4, FileWeightF2 = 5, FileWeightF3 = 6, FileWeightF4 = 10
and FileWeightFnew

= 7 where FileWeightFk
denotes the weight of a file of Si (for F1, F2, F3 and F4) and

that to be replicated (Fnew). Suppose the missing space is 5, i.e., SizeFnew
- Si.F reeSpace = 5. LWF chooses

F1 and F2 whose total weight is 9 (> 7). Therefore, Fnew will not be replicated. On the other side, if F3 is
chosen (FileWeightF3 = 6), then Fnew is replicated and F3 is deleted from Si since (i) FileWeightF3 = 6 <
7, (ii) SizeF3 = 5.This counter-example can be avoided through making the replication problem as a Knapsack
problem with bivalent variables [22, 30, 41].
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3.1. Proposed strategy. In this subsection, we present our decentralized periodic replication strategy
DPRSKP for dynamic P2P data grids assuming limited replica storage. DPRSKP aims at increasing files
availability, improving response time and reducing bandwidth consumption.

DPRSKP performs as follows. After each period, each site Si identifies the candidate files for replication.
These files are replicated if there is enough storage space. However, if the available storage space is insufficient
to hold these files, the site Si should place the files with the highest priority among the candidate files and local
ones of Si by using the Knapsack problem. Thus, our strategy mainly deals with the following steps:

1. Selection of candidate files for replication;
2. Placement of a set of files in the site.

It is worth mentioning that, for answering the third question required by a replication strategy (cf. page 101),
we rely on the formula proposed in [9].

3.1.1. Selection of the candidate files for replication. At each period, each site Si identifies the
candidate files for replication based on the following parameters:

• #RequestSi,Fk
: the number of times that a file Fk has been requested by the site Si.

• #ReplicaFk
: the number of available copies of a file Fk on the whole grid.

We consider that a file Fk needs to be replicated in Si if it has been requested many times by Si and there
are not enough copies of Fk in the grid. For that purpose, a metric is introduced, called average value of a file
Fk for a site Si, noted AV G V ALUESi,Fk

, and defined as follows:

AV G V ALUESi,Fk
=

#RequestSi,Fk

#ReplicaFk

The average value of a file Fk for a site Si represents the average number of requests for a replica of Fk by Si.

Similarly to the previous metric, we introduce a metric called average value of a site Si, denoted
AV G V ALUESi

, and defined by the following expression:

AV G V ALUESi
=

n
∑

k=1

#RequestSi,Fk

n
∑

k=1

#ReplicaFk

where n is the total number of requested files by the site Si.

These two metrics are used in Algorithm 3.1.1 for choosing the best candidate files for replication in a site
Si. Algorithm 3.1.1 takes as entry the requests number and the copies number of each file requested by Si as a
list of triplets SF= {(Fk,#RequestSi,Fk

,#ReplicaFk
) | k = 1..n}, where n is the total number of requested

files by the site Si.

In the first loop (cf. Lines 5 - 8), we calculate the average value of each requested file by the site Si. In
the second loop (cf. Lines 10 - 12), we select the candidate files for replication. A file Fk is considered as a
candidate file for replication if its average value exceeds the average value of the site Si.

3.1.2. Replica placement. After selecting the candidate files for replication in a site Si, it is necessary
to check the available storage space of Si that contains locally a set of files noted F . If the free storage space
is sufficient to hold the set of all candidate files for replication, noted FToReplicate, then the replication of these
files will be conducted without any constraint. If there is not enough storage space, the potential candidate
files for replacement will be chosen to place all or part of FToReplicate in Si. As our strategy aims to reduce
the response time and the bandwidth consumption, the choice of the potential replacement candidate files is
important because they can be requested in the future by the same site Si.

To achieve these objectives by choosing the best potential candidate files for replacement in a site Si, we
introduce the average number of requests of each file Fk ∈ F ∪ FToReplicate by Si, noted #AV G RequestSi,Fk

,
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and defined as follows:

#AV G RequestSi,Fk
=

#RequestSi,Fk

TCurrent − TFirstRequestSi,Fk
+ 1

where:
• #RequestSi,Fk

: the total number of requests of Fk by Si;
• TCurrent: the number of the current period;
• TFirstRequestSi,Fk

: the period number of the first request of Fk by Si.

Then, we associate to each file Fk ∈ F ∪ FToReplicate a file weight (denoted FileWeightFk
) defined by the

following expression:

FileWeightFk
=

SizeFk
·#AV G RequestSi,Fk

BW(Si,Sj)Fk
· PSj

where:

• SizeFk
: the size of Fk;

• #AV G RequestSi,Fk
: the average number of requests of Fk by Si;

• BW(Si,Sj)Fk
: the bandwidth between the requesting site Si and the site Sj (j 6= i) containing the

best replica of Fk. The choice of the best replica is done using the formula proposed in [8, 9] and is
determined as follows:

|ΞFk
|

Max
j=1

(BW(Si,Sj)Fk
· PSj

)

where ΞFk
is the set of sites containing a replica of Fk.

• PSj
: the availability of the site Sj defined by the following expression [8, 9]:

PSj
= 1− #FailureSj

#SiteRequestSj

where #FailureSj
is the number of times the site Sj is failing (i.e., the number of requests to Sj which

are not satisfied) and #SiteRequestSj
is the total number of times the site Sj has been requested.

For the site Si, according to the expression (3.1.2), the most popular files situated in unstable sites having
a low bandwidth with Si are the most preferred to be placed in it. Indeed, it is preferred to have such files in
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Si since it requests them several times. On the other side, if they are not locally stored in Si, each time they
will be of need in a job executed by Si, their use will be high costly due to the low quality of bandwidth with
Si for the best site where they are contained as well as the low availability of these latter.

For each site Si, the goal of our strategy DPRSKP is to find a set of files Ω ⊂ F ∪FToReplicate that can be
stored in Si and having a maximum total files weights.

To achieve this goal, our strategy is formulated according to the Knapsack problem to select files to be
replicated and those to be deleted. The replication problem is then formulated as follows.

We associate to each file Fk ∈ F ∪ FToReplicate the value Xk ∈ {0, 1} defined by:

Xk =

{

1: Fk should be placed in Si

0: Fk should not be placed in Si

(K)























N
∑

k=1

(SizeFk
·Xk) ≤ SESi

such that Xk ∈ {0, 1}

N
∑

k=1

(FileWeightFk
·Xk) = Z(Max)

where:
N is the cardinality of the set F ∪ FToReplicate;
Z(Max) is the objective function to maximize;
SESi

is the storage space of Si.

3.1.3. Resolution algorithm. The resolution of our replication problem formulated through to the Knap-
sack problem by exact algorithms using the Branch and Bound method, the polyhedral techniques or the Dy-
namic Programming can be costly in terms of response time. In such a situation, it would be better to use
approximation methods with a reasonable compromise between response time and approximation quality. In
general, the approximation algorithms are effective. This is the case of greedy algorithms having generally a
low complexity. The idea often used in such algorithms is to keep the option of the local optimum according to
some criteria in order to have a global optimal solution [16, 22, 30].
Our proposed algorithm gives an approximate solution that is acceptable given response time constraints. The
greedy algorithm 3.1.3 presents the placement of a set of files in a site Si.

In Algorithm 3.1.3, we use the following terminology. We introduce the file efficiency for a file Fk, noted
EfficiencyFk

, as the ratio of the weight to the size of Fk (cf. Line 7 of Algorithm 3.1.3). The more the weight
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of Fk is large relative to the storage capacity consumption, the more Fk is interesting. To summarize:

• For each file Fk such as Xk = 1: Fk will be placed in Si.
• For each file Fk such as Xk = 0:

{

Fk is deleted from Si if Fk ∈ F
Fk is not replicated in Si if Fk ∈ FToReplicate

3.2. Illustrative example. Let us consider the data grid, shown in Fig. 3.1, which contains four sites.
The arcs sketch the available bandwidth between sites in Mb/s. The availability of each site is given into
brackets. For instance, the availability of S2 is 0.5. The master files5 are placed in the site S0. All the other
sites have a storage capacity of 5 Gb. We will apply DPRSKP strategy to the site S1.

S2

Fig. 3.1. Topology of the grid

Step 1: Determination of the candidate files for replication in S1

Table 3.1 sketches the requested files by the site S1. The execution of Algorithm 3.1.1 provides:

• The average value of S1 is AV G V ALUES1 = 300.
• F1 and F3 as candidate files for replication in S1 since the associated average values are greater than
or equal to 300.

Table 3.1
The values of #RequestS1,Fk

, #ReplicaFk
and AV G V ALUES1,Fk

for the three files requested by S1

Fj #RequestS1,Fk
#ReplicaFk

AV G V ALUES1,Fk

F1 1 000 2 500.00
F2 500 3 166.66
F3 300 1 300.00

Step 2: Files placement in S1

Table 3.2 describes the candidate files for replication (F1 and F3) and those stored locally (F4, F5 and F6) for
the site S1. We note that the number of the current period (TCurrent) is 10.

We remark that the free space at the site S1 is not enough to replicate F1 and F3. Indeed, the size of the
files stored in S1 is 4 Gb. Therefore, the available free space in S1 is 1 Gb which is insufficient to replicate F1

and F3 because the total size of F1 and F3 is 3 Gb. Thus, we need to calculate the weight and the efficiency of
these files and those local ones. Table 3.3 sketches the obtained results.

The execution of Algorithm 3.1.3 provides the following result: the selected files to be placed in S1 are F1,
F3, F4 and F6. Consequently, the file F5 will be deleted from S1 while F1 and F3 will be replicated in S1.

5A master file contains the original copy of some data sample and cannot be deleted [4].
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Table 3.2
Characteristics of the files set F ∪ FToReplicate

Fk #RequestS1,Fk
SizeFk

in Gb Sj TFirstRequestS1 ,Fk

F1 1 000 2 S2 10
F3 300 1 S3 10
F4 800 1 S2 7
F5 300 2 S2 6
F6 700 1 S3 5

Table 3.3
Weight and efficiency of F ∪ FToReplicate

Fk SizeFk
in Gb FileWeightFk

EfficiencyFk

F1 2 20.00 10.00
F3 1 4.00 4.00
F4 1 2.00 2.00
F5 2 1.20 0.60
F6 1 1.55 1.55

3.3. DPRSKP extends the LFU and LRU strategies. A main feature of our strategy DPRSKP is
that it allows subsuming the LFU and LRU strategies. To explain this, it is necessary to prove that each file
retained by either the LRU or the LFU strategy is also retained by DPRSKP strategy. Recall that:

• The file weight of a file Fk is defined as follows:

FileWeightFk
=

SizeFk
·#AV G RequestSi,Fk

BW(Si,Sj)Fk
· PSj

• the file efficiency for a file Fk is defined as follows:

EfficiencyFk
=

FileWeightFk

SizeFk

=
#AV G RequestSi,Fk

BW(Si,Sj)Fk
· PSj

=
#RequestSi,Fk

(TCurrent − TFirstRequestSi,Fk
+ 1) · BW(Si,Sj)Fk

· PSj

Thus, it is clear that the ratio defined in the expression 3.3 has a low value when the value of #RequestSi,Fk
is

low and the value of (TCurrent − TFirstRequestSi,Fk
+ 1) is high.

In addition, we have:
• In the LFU strategy, the least accessed file in the local storage is deleted. In our proposal, this is also
the case for each file Fk having a low value of #RequestSi,Fk

.
• In the LRU strategy, the oldest replica in the local storage is removed. In our case, this is done for each
the file Fk having a high value of (TCurrent − TFirstRequestSi,Fk

+ 1).

4. Computational complexity of DPRSKP. In this section, we evaluate the theoretical computational
complexity in the worst case of the two algorithms described in Sect. 3.

4.1. Complexity of the algorithm determining the candidate files for replication. Let m be the
number of requested files by the site Si. The complexity in the worst case of Algorithm 3.1.1 (cf. page 107) is
function of this parameter.

• The lines 2, 3 and 4 are simple initializations and thus their complexity is in O(1).
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• The loop, between line 5 and line 8, has a complexity of O(m).
• The line 9 has a complexity of O(1).
• The loop, between line 10 and line 12, has a complexity of O(m).

Thus, the complexity in the worst case of Algorithm 3.1.1 is O(1) + O(m) + O(1) + O(m) = O(m).

4.2. Complexity of the files replication algorithm. Let n be the cardinality of the set F∪FToReplicate.
The complexity in the worst case of Algorithm 3.1.3 is function of this parameter.

• The block of instructions, between line 2 and line 4, has a complexity of O(n).
• The loop, between line 6 and line 7, has a complexity of O(n).
• The instruction of line 8 has a complexity of O(n · log(n)).
• The instruction of line 9 has a complexity of O(1).
• The loop, between line 10 and line 15, has a complexity of O(n).
• The block of instructions, between line 5 and line 15, has thus a complexity of O(n) + O(n · log(n)) +
O(1) + O(n) = O(n · log(n)).

Therefore, the complexity in the worst case of Algorithm 3.1.3 is Max(O(n) , O(n·log(n))) = O(n·log(n)).

It is however important to note that the majority of replication strategies have a polynomial-time complexity
as shown in [1]. The experiments presented in the next section prove the effectiveness of our strategy DPRSKP.

5. Experiment setup and results. We use the OptorSim simulator [11] to evaluate and compare our
strategy DPRSKP with the DR2 [44] and Best Client [37, 38] strategies. We compare our strategy with Best
Client and DR2 since these strategies can be applied in P2P grids and are periodic strategies. In addition,
Best Client and DR2 are two decentralized replication strategies that are based on the requests number of each
file to choose the files needed to be replicated. Moreover and in order to show that our replacement strategy
is better than LRU and LFU strategies, we compare DPRSKP to Best Client and DR2 which use LRU and
LFU as replacement strategies. We note that we have made extensions to the OptorSim simulator in order to
model dynamic grids. Indeed, we have added new classes and methods in the simulator to satisfy our needs.
Moreover, we have made some changes to the configuration files to support the grid dynamicity.

5.1. Simulation environment. OptorSim is a simulator written in Java to evaluate the performance of
replication strategies in data grids. It adopts the model of EU DataGrid Project6 for the grid structure [12].

In OptorSim, a grid is composed of a User, a Resource Broker (RB) and several sites. A site contains
a Computing Element (CE), a Replica Manager (RM) and a Storage Element (SE). These components are
described as follows:

• User: the user submits jobs to the RB according to a pattern.
• Resource Broker: the RB handles the scheduling of the jobs to sites.
• Storage Element: each SE has a size in Mb and contains some files.
• Computing Element: each CE contains a given number of “worker nodes” with a given processing power
and having for task to run jobs.
• Replica Manager: the RM performs the movement of data associated with jobs between sites. Moreover,
the RM contains a Replica Optimiser (RO) responsible for both replica selection and the creation and
deletion of replicas.

In OptorSim, the execution of a simulation is given as below:
1- Initially, the master files are placed in the SEs of the sites as specified in the configuration file. In our

strategy, we assume the existence in the grid of a specific site called “Master Site” containing the
master files. The Master Site is always connected to the grid.

2- The SEs register these master files in the Replica Catalog (RC).
3- The RB schedules each job to the appropriate site according to a scheduling strategy.
4- The CE of the chosen site in the previous step runs the job and selects the best replicas if the requested file

is not present in the SE of the site.
5- The CE saves the transfer history of replicas.

6The European DataGrid Project. http://www.edg.org
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Fig. 5.1. Testbed grid topology

6- After a period (number of jobs), each site determines and replicates the candidate files for replication.
7- Each site updates the RC.

5.2. Grid topology. We base all simulation studies on the testbed used during a large scale production
effort for the high energy physics experiment CMS [12]. The grid topology (see Fig. 5.1) consists of 20 sites
in Europe and the USA. CERN and FNAL have a storage capacity of 100 Gb. Every other site has a CE and
initially an empty storage element of a capacity of 50 Gb. CERN stores a master copy of each file. Table 5.1
describes the parameters used in the simulation experiments.

Table 5.1
Grid and jobs configurations

Parameter Value

Size of a single file 1 Gb

Number of files 97

Access pattern Sequential

Scheduling access cost for current job + all queued jobs

5.3. Experimental results.

5.3.1. Performance evaluation metrics. In OptorSim, the experiments consist in submitting a variable
number of jobs to the RB. At the end of each simulation, we get the response time, the number of remote file
accesses, the number of local accesses and the ENU (the Effective Network Usage). This latter parameter [11, 21]
is measured as follows:

ENU =
Nremote file accesses +Nfile replications

Nremote file accesses +Nlocal file accesses

ENU defines the ratio of files transferred to files requested. The parameter ENU is an important parameter in
quantifying the effectiveness of any replication strategy in data grids. A low value indicates the efficiency of
the adopted replication strategy [11, 24]. In addition, the response time is a good measure for evaluating the
effectiveness of a replication strategy. Indeed, each job requests a set of files. If a file is present in the requesting
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site, file transfer time is assumed to be zero, otherwise the file must be transferred from the best site containing
it. Thus, the response time incorporates the time required to transfer files in addition to the time needed to
process jobs. The best replication strategy will have the lowest response time. On the other hand, the number
of remote file accesses and the number of local file accesses are two measures to evaluate the effectiveness of a
replication strategy. Indeed, the number of remote file accesses represents the number of times where the sites
read the necessary files from another one. Thus, the best replication strategy will have the lowest number of
remote file accesses. However, the number of local accesses represents the number of times where the sites read
the necessary files locally. Thus, the best replication strategy will have the greatest number of local file accesses.

5.3.2. Choice of the period. As mentioned above, DPRSKP is a decentralized periodic replication
strategy, i.e., DPRSKP is triggered at each period. The choice of this period is important as proven in [6, 7].
Indeed, the period greatly affects the efficiency of any periodic replication strategy. In this respect, a dynamic
period, i.e. whose value changes according to the grid behavior, is shown to be much better than a static period,
i.e. of constant value, whatever the adopted replication strategy. Thus, in our experiments, we use the model
of dynamic period.

Now, we briefly sketch the formula used for computing the period (for more details, interested readers are
referred to [6, 7]) . To take into account the replicas placement, the (n+1)th period Tn+1 is defined based on
the replications number (denoted #ReplicaTn

) made during the previous period Tn.
The period Tn+1 is indeed given by the following formula:

Tn+1 =
Tn

(#ReplicaTn
/Tn)+ 1

The next subsection depicts the obtained results which will be discussed in subsection 5.3.4.

5.3.3. Simulation results. This part presents the obtained results for the different metrics.

• Evaluation of response time: Table 5.2 shows the response time in milliseconds of each strategy and for
different numbers of jobs. The last column indicates the percentage gain of our strategy compared to the other
ones and is calculated as follows:

Gain in % =
Min(V alueBest Client, V alueDR2) − V alueDPRSKP

Min(V alueBest Client, V alueDR2)
· 100

The same experiments of Table 5.2 are represented by histograms in Fig. 5.2.

• Evaluation of the ENU parameter: Table 5.3 and Fig. 5.3 give the ENU evaluation for the three strategies
under the same conditions. The last column of Table 5.3 represents the percentage gain of DPRSKP compared
to the other strategies and is calculated according to expression 5.3.3.

• Evaluation of the number of remote file accesses: Table 5.4 sketches the number of remote file accesses for
each strategy and for different numbers of jobs. The last column computes the gain percentage of DPRSKP
compared to Best Client and DR2 according to expression 5.3.3. The results of Table 5.4 are also represented
through histograms in Fig. 5.4.

• Evaluation of the number of local file accesses: Table 5.5 and Fig. 5.5 show the number of local file accesses
of each strategy and for different numbers of jobs. The last column in Table 5.5 indicates the percentage gain
of DPRSKP compared to Best Client and DR2. This percentage is computed as follows:

Gain in % =
V alueDPRSKP − Max(V alueBest Client, V alueDR2)

Max(V alueBest Client, V alueDR2)
· 100

5.3.4. Discussion. It is clear from the obtained experimental results that the proposed DPRSKP strategy
aims at increasing files availability, improving response time and reducing bandwidth consumption. Indeed, we
notice, from Table 5.2 and Fig. 5.2, that the response time of our strategy is always better than that of the
other strategies. In addition, our strategy offers an ENU much better than Best Client and DR2 whatever the
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Table 5.2
Response time in milliseconds and associated percentage gain of DPRSKP compared to Best Client and DR2

Number of jobs Best Client DR2 DPRSKP Gain (%)

100 3 580 3 070 2 989 2.64

500 8 790 8 623 6 417 25.58

1 000 18 067 16 847 14 897 11.57

1 500 25 922 23 663 19 138 19.12

2 000 41 650 49 504 32 653 21.60

2 500 54 396 76 713 50 203 7.71

3 000 69 500 72 406 56 687 18.44

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100 500 1000 1500 2000 2500 3000

R
e

sp
o

n
se

 t
im

e
 i

n
 m

il
li

se
co

n
d

s

Number of jobs

Best Client

DR2

DPRSKP

Fig. 5.2. Response time for the different replication strategies
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Fig. 5.3. ENU for the different replication strategies

number of jobs. Indeed, the obtained average gain of our strategy compared to both others is about 20.74% (cf.
Table 5.3). On the other hand, we remark from Table 5.4 that the number of remote file accesses of DPRSKP
is always lower than Best Client and DR2 strategies. We notice, also from Table 5.5 and Fig. 5.3, that the
number of local file accesses of our strategy is always higher than the other strategies. All these obtained results
are explained by the fact that the files deletion in the case of a shortage space is not automatic in our approach.
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Table 5.3
ENU and associated percentage gain of DPRSKP compared to Best Client and DR2

Number of jobs Best Client DR2 DPRSKP Gain (%)

100 0.61 0.58 0.44 24.17

500 0.48 0.43 0.30 30.68

1 000 0.41 0.43 0.27 35.02

1 500 0.24 0.25 0.25 -1.38

2 000 0.28 0.27 0.23 15.20

2 500 0.26 0.27 0.25 6.60

3 000 0.27 0.30 0.25 6.22

Table 5.4
Number of remote file accesses and associated percentage gain of DPRSKP compared to Best Client and DR2

Number of jobs Best Client DR2 DPRSKP Gain (%)

100 801 599 502 16.19

500 3 057 2 437 1 710 29.83

1 000 4 973 5 048 3 291 1.26

1 500 4 509 4 656 4 452 18.33

2 000 6 776 6 281 5 534 11.89

2 500 8 042 8 103 7 328 8.88

3 000 10 041 9 681 9 233 4.63

Indeed, contrary to DR2 and Best Client strategies which always removes files in the case there is a shortage in
the storage space at the selected site to replicate a new file, DPRSKP cannot replicate candidate files if their
added values are less than those existing in a site and then it preserves those existing files in the site. In other
words, DPRSKP deletes files from a given site only if they are qualified as not beneficial in the future and
replaces them with more beneficial files. All these results confirm the efficiency of our strategy.

6. Conclusions and future work. Data grids are large scale systems that connect a collection of several
machines and storage resources distributed around the world. In such systems, an optimized management and
access of distributed resources is the primary purpose. Data grids aggregate a collection of distributed resources
placed around the world to enable data intensive applications to share data and resources. As the data is
the most important resource in data grids, their quick access time and efficient management have become
challenging tasks. Replication is a technique used to ensure these tasks. In this paper, we proposed a new
decentralized periodic replication strategy, called DPRSKP, formulated according to the Knapsack problem
with storage constraints. Our strategy takes into account the dynamicity of grid sites. Indeed, the dynamicity
of sites is an important challenge in grids. We designed first an algorithm which selects the best candidate files
for replication based on the requests number and the copies number of each file. We then proposed an algorithm
which chooses the candidate files for deletion when there is not enough space to accommodate new files. This

algorithm introduces the file efficiency of a file Fk, EfficiencyFk
, which is equal to

#AVG RequestSi,Fk

BW(Si,Sj )Fk
·PSj

. As

a result, the file efficiency does not depend on the file size. Thus, contrary to the majority of work in the
literature, all large and small files have the same chance to be placed in the site. We believe that this notion of
file efficiency is at the root of the good performances of our strategy.

In future work, we plan to validate our strategy by deploying the replication algorithm in a real grid
environment. In addition, in practice, the files are required simultaneously with others, i.e., there exists a
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Fig. 5.4. Number of remote file accesses for the different replication strategies

Table 5.5
Number of local file accesses and associated percentage gain of DPRSKP compared to Best Client and DR2

Number of jobs Best Client DR2 DPRSKP Gain (%)

100 596 564 823 38.09

500 3 467 3 374 4 387 26.54

1 000 7 501 6 846 9 721 29.60

1 500 14 964 14 801 15 527 3.76

2 000 18 361 18 636 19 431 4.27

2 500 23 864 23 886 23 957 0.30

3 000 28 641 28 309 28 808 0.58

strong correlation between requested files. Thus, it is possible to investigate replication strategies which consider
as granularity a set of correlated files instead of a single file. Moreover, the grid files can be modified by
some applications. Since these data files are replicated in grid sites, it is necessary to update them to ensure
maintaining coherent copies. It is then important to look for an efficient way for extending the replication
strategies proposed in the literature in order to be able to take into consideration file consistency.
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