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Abstract. Mendel’s Accountant (hereafter referred to as “Mendel”) is a user-friendly biologically realistic simulation program for investigating the

processes of mutation and selection in sexually reproducing diploid populations. Mendel represents an advance over previous forward-time programs

in that it incorporates several new features that enhance biological realism including: (a) variable mutation effect and (b) environmental variance that

affects phenotype. In Mendel, as in nature, mutations have a continuous range of effect from lethal to beneficial, and may vary in expression from

fully dominant to fully recessive. Mendel allows mutational effects to be combined in either a multiplicative or additive manner to determine overall

genotypic fitness and provides the option of either truncation or probability selection. Environmental variance is specified via a heritability parameter and

a non-scaling noise standard deviation. Mendel is computationally efficient, so many problems of interest can be run on ordinary personal computers.

Parallelized using MPI, Mendel readily handles large population size and population substructure on cluster computers. We report a series of validation

experiments which show consistently that Mendel results conform to theoretical predictions. Its graphical user interface is designed to make problem

specification intuitive and simple, and it provides a variety of visual representations in the program output. The program is a versatile research tool and

is useful also as an interactive teaching resource.
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1. Introduction. Population geneticists have used mathematical modeling for over 75 years to understand better how

mutation and selection affect population dynamics. Recent advances in numerical simulation and the wide availability

of low cost computational resources now make possible an alternative way to understand how populations change over

time. Numerical simulation offers the ability to treat complex biological situations where an analytical solution would be

cumbersome, if not impossible. Numerical simulation allows the study of the complex interactions of many biological

factors simultaneously. This is generally not practical using traditional methods. The numerical approach provides great

flexibility and allows a researcher or student to explore parameter space quite rapidly, without detailed knowledge of the

mathematical techniques that underlie the classical theoretical approach.

At its most basic level, the task of modeling mutation and selection in a population over many generations can

be viewed as a bookkeeping problem in which random events play a major role. Mutations are continuously entering

and leaving any population. When a new mutation arises, it may or may not be transmitted to an individual’s progeny,

depending on whether or not the chromosome segment carrying the mutation segregates into the gamete from which

the progeny is derived. Generally speaking, mutations that occur near one another on the same chromosome are likely

to be inherited together. Therefore, tracking mutation location in the genome is important if one desires to account for

mutational linkage. In addition, during meiosis there are about two crossovers per chromosome pair in most higher

organisms [1]. This random phenomenon of crossover also must be part of the simulation in order to treat linkage in a

realistic manner.

Random mutations tend to differ greatly from one another in their effects on genotypic fitness. The fitness effect of

a given mutation can be positive or negative, can range from lethal to beneficial, and can vary from fully dominant to

fully recessive. How the effects of multiple mutations (at different loci within the same individual) combine with one

another (additively or multiplicatively) also influences the overall genetic fitness of an individual. The effectiveness of

selection (that is, its power to alter individual mutation frequencies) is limited by the surplus population available, which

in turn depends on the population’s average fertility level. Selection efficiency is further limited by factors such as random

fluctuations in environmental conditions. Generally speaking, reproduction in nature has a significant random component

and is only partially correlated with the fitness of the genotype. All these variables influence actual genetic change over

time and must be modeled accurately if a simulation is to be biologically relevant.

2. Background. Although there are many programs for genetic data analysis, comparatively little effort has been

devoted to software development for detailed simulation of the processes of mutation and selection [2]. Numerical strate-

gies for population genetics modeling have been under discussion for several decades [3, 4], yet it is only recently that

computing resources have become widely available to allow large realistic forward-time simulations.
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One type of genetic simulation, known as coalescent simulation, begins with a set of nucleotide sequences sampled in

the present, and operates backwards in time to reconstruct a common ancestral sequence [5]. Some coalescent programs

can handle recombination and natural selection to a limited extent; however, they become unwieldy if they incorporate

natural selection for multiple loci. Coalescent-based methods have little relevance to modeling genetic change forward in

time.

Forward-time simulations, although conceptually simpler, are computationally more difficult, and have been used

primarily for teaching purposes [6]. Only recently, due to the rapidly decreasing cost of computing resources, has a

widespread use of serious forward-time simulation programs become practical. The modeling of random mutations and

the operation of natural selection under complex mating/recombination schemes are distinctive advantages of forward-

time simulations.

Forward-time simulations provide the opportunity to study evolutionary processes in a genetically explicit and re-

alistic manner. Such programs are increasingly being applied to a large variety of questions in evolutionary biology,

conservation biology, and human genetics [7]. However, the availability of a biologically realistic yet efficient and easy

to use software package has been lacking. Guillaume and Rougemont [7] point out that most studies in these areas rely

on homemade code which is rarely published. This has tended to force researchers to build their models from scratch,

models which may or may not have been properly validated.

In addition to the complexities of such things as recombination and recessivity, forward-time simulations of large

population sizes and high mutation rates are very demanding on memory and computer time and require software to be

specially designed for speed-efficiency.

Below is a summary of the previously available forward-time simulations:

1. PopG and Simul8 [8] are for teaching basic concepts limited to one or two loci.

2. FreGene [9] simulates sequence-like data in large genomic regions under the influence of crossovers, gene con-

versions, and hot spots. It investigates the sequence patterns produced by these processes, and does not appear

to address selection and population fitness.

3. EASYPOP [2] is specifically designed to study neutral evolution without selection.

4. FPG [10] is a simulation that provides many of the same features as Mendel. Both aim at biological realism and

can be run on ordinary PCs. However, Mendel allows the user to choose between equal mutation effects (with

the magnitude of effect specified separately for beneficial and deleterious mutations) or a natural, continuous dis-

tribution of mutation effects. By contrast, FPG’s modeling of mutation is restricted to one selection coefficient

for all deleterious mutations and applies an equal and opposite effect for all beneficial mutations. In addition,

Mendel provides explicitly for user-specified environmental noise, whereas in FPG environmental noise can only

be obliquely approximated by reducing the selection coefficient. Moreover, Mendel provides for complete in-

dependence of all linkage blocks (useful for comparing with theoretical calculations), whereas FPG does not.

Mendel’s interactive specification of inputs through its graphical user interface is much more user-friendly than

the command-line parameter entry in FPG. Several input parameters are more intuitive to a user in Mendel than

they are in FPG. Whereas population size in Mendel is a simple input parameter, the population size in FPG can

be changed from its default value of 500 diploid individuals only by modifying and recompiling the program.

Some advantages of FPG over Mendel are that the interval of diagnostic outputs is currently fixed in Mendel

but can be user specified in FPG, linkage disequilibrium can be analyzed in FPG but not in Mendel, and FPG

can output pseudo-DNA sequences for polymorphisms for subsequent molecular-level analysis (such as with the

same author’s SITES program).

5. SimuPOP [6] is a simulation environment that operates under Python, a widely known object-oriented scripting

language.

6. Nemo [7] is a simulation framework, provided through a library of C++ routines.

SimuPOP and Nemo are sophisticated software packages that strive for a high degree of flexibility, but that flexibility

imposes a steep learning curve for the user. These general-purpose software packages do not expose their deeper imple-

mentation details in a manner that users can easily access or optimize apart from modifying the software. The increased

complexity arising from the flexibility of these programs also tends to make these packages computationally less efficient.

Mendel represents an advance in forward-time simulations, compared to those just described, by incorporating several

improvements:

1. Mendel adds the ability to model mutations as having a continuous, natural distribution of mutation effects.

(“Mutation effects” are often equated with “selection coefficients” in population genetics literature. The effect

of a mutation on phenotypic fitness is equal to the selection coefficient of that mutation only with strict proba-

bility selection and no environmental variance, but not otherwise. Since Mendel also offers truncation selection
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FIG. 2.1. Web user interface of Mendel’s Accountant showing a portion of the input window.

and provides for environmental variance, we distinguish between the terms “mutation effect” and “selection

coefficient” and use the term “mutation effect” in the context of Mendel.)

2. Mendel allows a user-specified ratio of dominant to recessive mutations.

3. Mendel uses an infinite sites model, where segregating mutations are distinct and their number is unlimited (or

limited only slightly by computer capacities). This is unlike the commonly used k-allele or stepwise models,

which impose highly restrictive limits on mutational variation.

4. Mendel incorporates the concept of heritability and accounts for environmental variance.

5. Mendel uses realistic chromosome structure with realistic stochastic crossover and recombination, and a high

number of linkage blocks (up to order 105). Users can specify the number of chromosome pairs.

6. Mendel is tuned for speed-efficiency and memory usage to handle large populations and high mutation rates.

7. Mendel allows control of genetic parameters via a graphical user interface (Figure 2.1), thereby allowing non-

programmers to construct sophisticated simulations.

8. Mendel provides several forms of graphical output, allowing the user to see the results as the simulation proceeds

(Figures 2.2-2.4).

Like many current simulations, Mendel also provides a variety of options for mating, bottleneck events, and pop-

ulation substructure. It is computationally efficient, allowing many problems of interest to be run on ordinary personal

computers. In addition, because Mendel is parallelized with MPI (Message Passing Interface), it can exploit multiple pro-

cessors to run: (1) multiple interacting heterogeneous tribes (2) multiple replications of a single case, or (3) a very large

population comprised of sub-populations but with sufficient migration to maintain a high degree of genetic homogeneity.

3. Numerical Approach. A basic overview of the software implementation of Mendel is shown in Algorithm 1,

where NG is the number of generations and NP is the population size. In each generation, Mendel first performs
migration between tribes, then mating, then creation of offspring, with new mutations potentially introduced in each

offspring’s genome. Selection is applied as a final step to reduce the number of offspring that survive to reproduce

in the succeeding generation. Although the overall structure is relatively straightforward, much care has been taken in

representing and tracking the individual mutations, as we shall now discuss.

3.1. Representing and Tracking Mutations. In designing this numerical model, we endeavored to combine a high

degree of biological realism with a high level of flexibility for investigating diverse population scenarios. To achieve this

realism and flexibility, we choose to track, when desired, each germ line mutation in every individual in each generation.
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FIG. 2.2. Web user interface of Mendel’s Accountant showing a portion of the output window.

Algorithm 1 PSEUDOCODE OF NUMERICAL APPROACH.

1: for i = 1 to NG do
2: migration {randomly select individuals and send their genetic information to the appropriate neighboring tribes}
3: for j = 1 to NP/2 do
4: mating {randomly mate half of the population with members from other half}
5: offspring {offspring receives half its genetic makeup from each of its two parents; add new randommutations to

offspring genome}
6: end for

7: selection {impose selection based on phenotypic fitness to reduce the population size}
8: end for

We recognized that to track millions of individual mutations in a sizeable population over many generations, efficient use

of memory would be a critical issue—even with the large amount of memory commonly available on current generation

computers. We therefore selected an approach that uses a single 32-bit (four-byte) integer to encode a mutation’s fitness

effect, its location in the genome, and whether it is dominant or recessive. Using this approach, given 1.6 gigabytes of

memory on a single microprocessor, we can accommodate at any one time some 400 million mutations. If our maximum

population size is, for example, 10,000, then the maximal number of mutations in any individual is 40,000. This indicates

that, at least in terms of memory, we can treat reasonably large cases using a single processor of the type found in many

desktop computers today. In fact, typical laptop computers have sufficient memory to run many problems of interest with

Mendel, especially in instructional contexts.

In terms of implementation, we use separate four-byte integer arrays to store favorable and deleterious mutations for

all current members of the population. The sign of the integer is utilized to mark whether the mutation is dominant or

recessive. The less significant part of the integer is used to encode the mutation’s fitness effect, while the more significant

part is used to encode the mutation’s location in the genome. The modulo function is employed to extract an integer from

which the mutation’s fitness effect can readily be computed, while a single multiplication yields the mutation’s location

in the genome in terms of the linkage subunit on which the mutation resides.

The mutations carried by each individual occur in two haplotype sets, one inherited from each of that individual’s

parents. Each haplotype is divided into a user-specified number of linkage subunits. In meiosis, one member of each

linkage subunit pair is randomly selected, with all its associated mutations, and is inherited by the gamete. If linkage
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FIG. 2.3. Web user interface of Mendel’s Accountant showing plot of allele frequencies.

is specified to be static, all linkage subunits are inherited independently of one another. However, if the user specifies

dynamic linkage, many subunits that reside on the same portion of a chromosome are jointly transferred. In dynamic

linkage, we assume that exactly two crossovers occur for each chromosome pair, with the random crossover locations

constrained to lie at linkage subunit boundaries. Because crossover positions are random, they almost always occur at

different points along each chromosome from one generation to the next. It is during gamete formation that new mutations

are introduced. After mating and reproduction, the memory used to store the mutation information for the reproducing

generation is overwritten with the mutation information of the offspring.

From this brief description it should be clear that a basic aspect of the numerical code is the bookkeeping which

tracks each individual mutation within each of the members of a population from one generation to the next. Mendel has

been designed to make efficient use of available memory to be able to track extreme numbers of mutations. Mendel was

also designed to limit the amount of computation required so as to enhance execution speed.

3.2. Prescribing Fitness Effects of Mutations. Because of the nature of genomic information and the many ways

mutations can alter it, mutations vary in their influence on the organism from occasionally beneficial to almost neutral to

lethal. The realism of any population genetics model depends critically on how mutations are assumed to alter fitness. In

particular, selecting a distribution of mutational effect that matches biological reality is a crucially important issue. The

ability to represent effects that vary over a wide range of amplitude is especially important to be able to treat nearly neutral

mutations in a proper manner. This generally requires the range to span many orders of magnitude. Since nearly neutral

mutations occur at vastly higher frequencies than do mutations that have large impacts on fitness, previous investigators

have employed exponential distributions [11] that yield large numbers of small effect mutations and small numbers of

mutations with large effect.

To provide users of Mendel even more flexibility in specifying the fitness effect distribution, we have chosen to use a

form of the Weibull function [12] that is a generalization of the more usual exponential function. Our function, expressed

by eq. (3.1), maps a random number x, drawn from a set of uniformly distributed random numbers, to a fitness effect d(x)
for a given random mutation.

d(x) = dsf exp(−axγ), 0 ≤ x ≤ 1.(3.1)

Here dsf is the scale factor which is equal to the extreme value which d(x) assumes when x = 0. We allow this scale
factor to have two separate values, one for deleterious mutations and the other for favorable ones. These scale factors
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FIG. 2.4. Web user interface of Mendel’s Accountant showing distribution of mutations with respect to fitness effect. Red bars represent mutation

distribution in the absence of selection. Blue and green bars represent actual accumulated recessive and dominant mutations, respectively, in the presence

of selection. The two bars representing mutation classes with effects nearest zero extend beyond the vertical scale of the plot.

are meaningful relative to the initial fitness value assumed for the population before we introduce new mutations. In

Mendel we assume this initial fitness value to be 1.0. For deleterious mutations, since lethal mutations exist, we choose

dsf del = −1. For favorable mutations, we allow the user to specify the (positive) scale factor dsf fav . Normally, this

would be a small value (e.g., 0.01 to 0.1), since it is only in very special situations that a single beneficial mutation would

have a very large effect.

The parameters a and γ, both positive real numbers, determine the shape of the fitness effect distribution. We apply
the same values of a and γ to both favorable and deleteriousmutations. The parameter a determines the minimum absolute
values for d(x), realized when x = 1. We choose to make the minimum absolute value of d(x) the inverse of the haploid
genome size G (measured in number of nucleotides) by choosing a = loge(G). For example, for the human genome,
G = 3 × 109, which means that for the case of deleterious mutations, d(1) = −1/G = −3 × 10−10. For large genomes,

this minimum value is essentially 0. For organisms with smaller genomes such as yeast, which has a value for G on
the order of 107, the minimum absolute effect is larger. This is consistent with the expectation that each nucleotide in a

smaller genome on average plays a greater relative role in the organism’s fitness.

The second parameter γ can be viewed as controlling the fraction of mutations that have a large absolute fitness
effect. Instead of specifying γ directly, we select two quantities that are more intuitive and together define γ. The first
is θ, a threshold value that defines a “high-impact mutation”. The second is q, the fraction of mutations that exceed this
threshold in their effect. For example, a user can first define a high-impact mutation as one that results in 10% or more

change in fitness (θ = 0.1) relative to the scale factor and then specify that 0.001 of all mutations (q = 0.001) be in this
category. Inside the code the value of γ is computed that satisfies these requirements. We reiterate that Mendel uses the
same value for γ, and thus the same values for θ and q, for both favorable and deleterious mutations. Figure 3.1 shows
the effect of the parameter q on the shape of the distribution of fitness effect. Note that for each of the cases displayed the
large majority of mutations are nearly neutral, that is, they have very small effects. Since a mutation’s effect on fitness can

be measured experimentally only if it is sufficiently large, our strategy for parameterizing the fitness effect distribution in

terms of high-impact mutations provides a means for the Mendel user to relate the numerical model input more directly

to available data regarding the actual measurable frequencies of mutations in a given biological context.

3.3. Details of encoding the genomic location and fitness effect of a mutation. In the preceding section we

mentioned that a single four-byte integer is used to encode a mutation’s type, its fitness effect, and its location in the
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FIG. 3.1. (a.) Response of the fitness-effect distribution function to changes in the fraction of “high impact” mutations (0.0001 to 0.1). (b.)

Response of the fitness-effect distribution function to changes in the specified haploid genome size (number of nucleotides =1 × 10
4 to 1 × 10

9). The

graphs display only a small portion of these distributions, excluding the larger effect mutations (that extend off the scale to the left) as well as most

mutations that have nearly zero effect (whose distributions plot beyond the top of the vertical scale). The vertical scale is the number of mutations per

unit fitness effect, normalized to the maximum value.

genome. Some readers might like to know how we do this. First, as we have already mentioned, whether the mutation is

dominant or recessive is encoded in the sign of the integer. Next, we choose an integer modulus µ given by 231 − 1 =
2, 147, 483, 647 (which is the largest value a four-byte integer can assume) divided by λ, the number of linkage subunits.
For example, if λ is 2000, then we choose µ = 1, 073, 741. If we let the symbol σ be either 1 or −1 to denote whether
the mutation is dominant or recessive and let m be the integer mutational index used to represent the mutation, then our
encoding formula for m is given by m = σ[(l − 1)µ + µx], where l is the index of the linkage subunit on which the
mutation occurs and x is the real value of the random number between zero and one that specifies the mutation’s fitness
effect. We apply the modulo function with modulus µ to the absolute value ofm to recover x. We dividem by µ and use
the int function to recover l.

The mutation indices just described are stored in ascending numerical order for each haplotype in each individual.

This allows us to be able to readily test whether a given mutation is homozygous, that is, whether or not the mutation
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occurs on both copies of the individual’s chromosome set. When a new mutation is introduced, the existing mutation

indices are shifted within memory so that the index of the new mutation can be inserted in the appropriate location.

Identifying homozygous mutations in a given individual involves scanning the two haplotypes in numerical order and

searching for matches. The user specifies both the proportion of mutations that are recessive and, for both recessive and

dominant mutations, the fraction of the homozygous effect to be expressed when the mutation is heterozygous. Mutations

are assumed to be heterozygous unless found to be homozygous. In the latter case, the appropriate additional effect is

applied as a multiplier of the particular mutation effect. Since a mutation that is exactly co-dominant has a heterozygous

effect of 0.5 of the homozygous effect, the added effect from homozygosity will be > 0.5 for a recessive mutant, and
≤ 0.5 for a dominant mutant.
To calculate total fitness, Mendel offers three options for combining the effects of all the mutations within an indi-

vidual. One, referred to as multiplicative fitness, multiplies together individual fitness effects of the form (1 − di) for
all mutations, where di is the fitness effect associated with mutation i. A second option, referred to as additive fitness,
simply sums the fitness effects di from all the mutations and subtracts this total from one. The third option is specifying

the proportion of multiplicative effect, the remainder being additive.

To reduce the number of times the fitness effect function needs to be computed from the stored mutation index m,
Mendel allocates an array to contain the cumulative heterozygous fitness effects from all the mutations associated with

each linkage subunit for each of the two haplotypes in each individual. When a new mutation is added in a zygote, its

heterozygous fitness effect is incorporated into the composite fitness effect of the linkage subunit on which it occurs. Apart

from certain diagnostic analyses, performed infrequently, this is the only time the fitness function needs to be evaluated,

except in the infrequent cases of homozygosity, where the added homozygous effect must be applied. Because linkage

subunits are assumed to pass intact from parents to zygote, all the fitness information needed to describe the heterozygous

fitness effects of all the mutations in a given linkage subunit is carried in a single number from this array. This number,

along with the list of mutation indices for the linkage subunit, is transferred from parent to zygote. Homozygous effects are

computed and added once the zygote is formed. In addition to reducing the number of times the fitness function needs to

be computed, another benefit of this array is that, if desired, the mutation indices for very low impact mutations need not be

stored and tracked at all. The user may specify a fitness effect threshold, below which mutation indices themselves are not

stored or tracked. Mendel accounts for the fitness effects of these very low impact mutations by incorporating their effect

into the cumulative fitness value stored in the linkage subunit fitness array. Choosing a fitness effect tracking threshold

of 0.000001, for example, typically results in about 70% reduction in storage and 30% less computation compared with

tracking all the mutations (using a tracking threshold of zero). The drawback of this feature is that it does not account

for the rare instances of homozygosity among these extremely low impact mutations. However, this error is negligible in

most circumstances.

3.4. Mating and Tribes. Mendel is presently limited to sexually reproducing diploid organisms. The default mode

for mating is random pairing of selected individuals and monogamy. Alternatively, for certain organisms such as plants,

the user can specify a fraction of self-mating (self-fertilization). In addition, Mendel offers the option of partitioning

a population into a specified number of sub-populations (either homogenous or heterogeneous), which represent mat-

ing sub-groups. Mating occurs only among individuals within these sub-populations, or tribes, except that tribes can

exchange, via migration, a specified number of individuals with neighboring tribes at specified generation intervals. Ran-

dom monogamous mating is performed within each tribe following exchanges with the neighboring tribes.

Currently, Mendel offers three options for modeling the migration of individuals between tribes: (1) a one-way

stepping stone model, (2) a two-way stepping stone model, and (3) an island model. These three migration models are

illustrated in Figure 3.2 for the case of four tribes. The one-way stepping-stone model passes a user-specified number

of individuals to only one neighboring tribe (in this case, the next process in the process list). The two-way stepping-

stone model passes individuals to the two neighbors located on either side of the sending tribe. The island model passes

individuals to every other tribe. In the case of the two-way stepping stone model, if the user specifies one individual, one

individual will be sent to each neighboring process, such that a total of two individuals are sent from each tribe. Similarly,

in the case of the island model, if the user specifies the number of migrating individuals to be one, each tribe will pass one

individual to every other tribe, meaning that NP-1 individuals are sent out from each tribe, where NP is the total number

of processes or tribes. It can be noted that for the case of two tribes, all three models perform migration identically.

Similarly, for the case of three tribes, the two-way stepping stone and island migration models are equivalent.

3.5. Selection. Specifying how selection operates within a population whose members vary in their overall fitness

is a critical aspect of any population genetics model. The intensity of selection in Mendel is specified primarily through

fertility, that is, the mean number of offspring per female. Normally, the size of the reproducing population is held con-
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FIG. 3.2. Migration models available in Mendel.

stant. Selection eliminates surplus offspring beyond the number needed to match the target population size. Selection

distinguishes those individuals that will mate and reproduce from those that will not. Generally speaking, the best phe-

notypes reproduce and the worst usually do not reproduce. However, in nature whether or not a given individual survives

to reproduce does not depend exclusively on its genetic makeup. Random circumstances, including random variations in

environment, usually play a significant role. Therefore, Mendel offers two options for adding “environmental noise” to

genetic fitness prior to applying selection. The first option is by means of a heritability parameter. Heritability is specified

in the standard way—as the ratio of the genetic fitness variance to the total variance of fitness (= sum of the genetic fitness

variance and the environmental variance). In addition to this type of noise (which is present except when heritability

equals 1), Mendel also allows a user to specify the standard deviation of normally-distributed fitness-independent noise

(“non-scaling noise”). The square root of the sum of the variances of these two types of noise yields a total noise standard

deviation. This is the scale factor for a normally-distributed random noise term that is added to the genotypic fitness of

each individual to obtain its phenotypic fitness, which is then used in the selection process.

Mendel offers two primary selection methods, truncation selection and probability selection. Truncation selection

eliminates those individuals in the new generation whose phenotypic fitness falls below an appropriate cutoff value.

The cutoff is computed such that the prescribed population size, after selection, is exactly achieved. Mendel currently

includes two versions of probability selection. Both versions apply a scaling factor to the phenotypic fitness and use this

scaled phenotypic fitness as the criterion (probability) for reproductive success. One version, referred to as “classical”

probability selection, limits the amplitude of the scaling factor such that the probability values never exceed one. With

certain combinations of mean fitness and number of offspring/female, however, this can reduce the number of reproducing

individuals below that required to maintain population size, even when fertility is high enough to maintain it. The other

version, referred to here as “unrestricted” probability selection, does not impose this limitation on the scaling factor and

therefore allows a sufficient number of offspring to reproduce to maintain population size. Under this method, offspring

with scaled fitness exceeding one are automatically selected to reproduce. The second method is a consistent extension of

the more traditional “classical” method to situations of low selection intensity (i. e., few offspring/female). For moderate

and high selection intensity the two methods are identical.

3.6. Parallel Implementation. Mendel can utilize multiple processors to simulate three possible scenarios: (1)

multiple replications of the same scenario, (2) a large homogenous population (to exploit the larger amount of distributed

memory), or (3) multiple interacting heterogeneous or homogenous tribes.

3.6.1. Multiple replications of the same scenario. If one wishes simultaneously to replicate a given scenario many

times, the task can be performed in parallel on multiple processors. Each replicate can be dealt with as if it was a fully

isolated tribe (zero migration), with each replicate initialized with a different seed for the random number generator.

3.6.2. Large homogeneous populations. Cases involving large population sizes can frequently exceed the memory

capacity of a single processor. Mendel is able treat such cases by utilizing the larger amount of distributed memory

available across multiple processors. This approach sub-divides the global population into tribes, and each tribe is assigned

to a different processor (as below). Both genetic theory and numerical simulation show that as long as the rate of migration

is at least 10%, the outcome is essentially identical to that of random mating within the global population.



156 Sanford, Baumgardner, Brewer, Gibson and Remine

3.6.3. Multiple interacting tribes. Migration of a individual from one tribe to another is modeled by transferring

that individual’s genetic information from one Message Passing Interface (MPI) process to another. In general, each tribe

is assigned to a separate processor (although with MPI it is possible to assign multiple tribes/processes to each processor).

Communication of the genetic information of a migrating individual is performed asynchronously via standard non-

blocking MPI Isend and Irecv calls. For each migrating individual, four types of information are communicated to the

destination process: (1) the list of integers encoding the tracked deleterious mutations, (2) the list of integers encoding the

tracked favorable mutations, (3) the list of fitnesses for each linkage block, and (4) the list of the total number of mutations

in each linkage block. Before communication is performed, the four lists are gathered together from each of the randomly

selected migrating individuals and packed into communication buffers. Data in the buffers are then transmitted to the

appropriate destination. Algorithm 2 represents the subroutine that is called every M generations, where M is specified by

the user, NP is the total number of tribes, NRT is the number of receiving tribes, and NI is the number of individuals sent

to each receiving tribe.

Algorithm 2 PSEUDOCODE FOR TRIBAL MIGRATION.

select {randomly select all individuals to migrate from the local tribe and find the required buffer size based on
maximum mutation count}

2: form = 1 to NRT do
compute destination process {destination process (island model) = mod(myid + m, NP )}

4: for i = 1 to NI do
pack buffers

6: call MPI Isend

call MPI Irecv

8: call MPI Waitany

call MPI Waitall

10: unpack buffers

end for

12: end for

3.7. Miscellaneous Features. Mendel provides the flexibility to treat bottleneck events beginning with a specified

generation, persisting for a specified number of generations, andmaintaining the reproducing population size at a specified

small value during the bottleneck. Population size is immediately reduced to this small value at the beginning of the

bottleneck, and the offspring number/female is maintained at 2 during the bottleneck interval (i. e., no selection occurs

during the bottleneck). After the bottleneck interval, the offspring number/female is restored to its original value, but

selection is maintained at half its normal intensity until the population recovers to its original size.

Mendel also allows restart dumps to be written at a specified generational interval, from which a new run can be

initiated, either retaining the original input parameters or specifying new ones. For independent replication of experiments,

a user can run multiple instances of the same problem by specifying different random number generator seeds.

Mendel can be easily accessed via its web user interface, shown in Figure 2.1, which enables a novice user simply

to select default values but allows any user to gain access to Mendel’s many complex features. After entering the desired

biological parameters and starting a run, the user can monitor that run as well as other previously submitted runs, viewing

the output plots at the click of a button.

4. Validation. Extensive validation is under way for each input parameter and for many of their combinations.

Evidence that the program correctly responds to the most important input parameters is presented below.

4.1. Validating mutation creation and the resulting fitness values. Mutation numbers per individual (beneficial

and detrimental) are generated as a random Poisson function. The number of mutations generated by the simulation

matches the number of mutations specified in the input. The comparison was evaluated for a wide range of detrimental

mutation rates (u = 0.001 to 1000) in simulations of 1000 generations each. Variances of mutation number among indi-
viduals very closely correspond to the mean, as is expected with a Poisson distribution. In early generations, discrepancies

from the input values were well within the limits of random error. As accumulation progressed, these discrepancies were

consistently less than 1% of the total expected numbers.

When mutational effects were specified as equal, the fitness means and variances corresponded exactly to the number

of mutations (assuming all loci co-dominant, i. e., heterozygous expression = 0.5). With unequal mutation effects, the

distribution of effects created by Mendel for these test runs corresponded very well with those calculated from the input
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FIG. 4.1. Comparison showing excellent agreement between simulations (dark blue or green) and theoretical calculations (red) for numbers of

accumulated mutations with truncation selection. The number of new mutations per generation (u) and number of offspring/female (o) vary. Number

of offspring/female may also be expressed as selection intensity (i). Input parameters for the five cases were: (a) u=100, o=20, i = 0.9; (b) u = 25,

o=6, i = 0.67; (c) u =1, o=2.2, i = 0.1; (d) u =10, o = 4, i = 0.5; and (e) u = 25, o=20, i =0.9. Note that the graph presents the actual number of

accumulated mutations divided by u in order to accommodate a wide range of input values for mutation rate and selection intensity. Other input values

were constant, including equal effects of mutations, 2000 fixed linkage blocks, population size = 1000, and heterozygous effect = 0.5.

parameters. Evaluations included the default input set (genome size: 3 × 109, high-impact effect threshold: 0.1, high-

impact mutation frequency: 0.001) and input sets which varied each of the three parameters that define the mutation-effect

distribution. Simulation outputs from the three options for combining effects (additive, multiplicative, and combinations

of the two) agreed precisely for the joint effect of equal-effect mutations. The agreement was also excellent for unequal

mutation effects. Individual fitness values output by the simulation matched the proportions of recessive and dominant

mutations and their respective fitness expression in the heterozygote state. The latter was evaluated by comparing het-

erozygote effect = 0 with heterozygote effects between 0 and 1, while keeping all other input parameters the same.

4.2. Validating selection. Truncation selection is the most powerful form of selection, and is used extensively by

plant and animal breeders. In this type of selection, reproduction by an individual depends exclusively on whether its

phenotypic fitness is greater than the truncation value. However, truncation selection probably never occurs in nature.

Rather, some form of probability selection occurs, in which individuals with higher phenotypic fitness have a higher

probability of reproduction. The exact relationship between phenotypic fitness and reproductive success in nature is

not known, but certainly it varies, depending on the organism and its environmental context. Mendel currently offers

two versions of probability selection as described in section 3.5, but except for circumstances of low fertility (i. e., few

offspring/female), the two versions are identical.

4.2.1. Validating selection with equal mutational effects. Selection effects were extensively validated using: 1)

equal mutational effects (all mutations have an effect of identical magnitude, specified by the user); 2) complete co-

dominance (heterozygous expression = 0.5); 3) truncation selection; and 4) no environmental noise. The resulting
simulated means and variances for mutation numbers and fitness corresponded almost perfectly with theoretical values.

As illustrated in Figure 4.1, this was true: i) through hundreds or thousands of generations; ii) for mutation rates from 0.01

to 1000; and iii) for selection intensities from 10% to 90% (2.22 to 20 offspring/female). As expected, lower mutation rates

showed greater proportional fluctuations over generations than did higher mutation rates (case c in Figure 4.1). In a few

cases, the accumulation of mutations exceeded somewhat the predictions from theoretical calculations (case a in Figure

4.1). These cases involved either substantial numbers of accumulated mutations per linkage block (> 3) or very large
numbers of accumulated mutations. The theoretical calculation assumed infinite population size (no sampling error, no

inbreeding), no linkage, and no fixation of alleles. Thus, greater mutation accumulation in the simulation compared with

predicted numbersmight plausibly result from several factors: 1) co-segregation of alleles within linkage blocks; 2) effects

of Muller’s ratchet [13]; 3) accelerated allele fixation due to small population size (especially <= 1000); 4) inbreeding
associated with recurrent selection in small populations. Further study of the effect of these factors is under way.

Theoretical calculations for each generation were based on the standardized selection differential (k) corresponding
to a given selection intensity, and on before-truncation genetic variance predicted from the previous generation. The
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expected average number of accumulated mutations per individual in generation g after selection,Mg is expressed by

Mg = Mg−1 + u − kσg(4.1)

where u is the number of new mutations added and σg is the post-selection genetic standard deviation of generation g.
This post-selection genetic standard deviation in turn is given by

σ2

g = σ2

g−1
/2 + Mg−1/2 + u.(4.2)

The divisor, 2, of σ2

g−1
results from a gamete receiving an average of half as many mutations as its parent (thus dividing

σ2
g−1by 4), then being combined with another unrelated gamete (thus doubling

1

4
σ2

g−1). This divisor of 2 can also properly

be thought of as resulting from the reduction in variance from averaging of the mutation numbers in the two parents. For

convenience, we assume the mutation numbers of the parents to be normally distributed, since the skewing produced by

selection results in only small departures from normality. Mg−1 is also divided by 2 to reflect the binomial variance of
1

4
Ng−1 for gamete mutation number, given a specified parental mutation number, which is then doubled because of the

summing of two gametes in the zygote. This binomial variance of 1

4
Ng−1 equals p(1 − p)Ng−1, where Ng−1 is the

number of mutations in the parent and p = 0.5 is the probability of transmission of a specific mutant allele from parent to
offspring. The two variances on the right in equation (4.2) are essentially uncorrelated due to random mating and random

recombination of gametic mutation numbers from mating pairs. The addition of u reflects the Poisson variance of the new
mutations entering the population each generation.

Initial evaluation of effects of the level of dominance on selection gave the predicted results, confirming our expec-

tation from both theory and the programming approach that there should be excellent congruence between simulated and

theoretical results with regard to level of dominance.

In probability selection, the likelihood of reproductive success of an individual is proportional to its fitness, but

the correlation is imperfect, so reproduction is dependent in part on chance. Therefore, the mean and variance of a the

reproducing individuals are more variable than they are in truncation selection. Also, the standardized selection differential

is lower than in truncation selection. In truncation selection, only the relative fitness of individuals influences reproductive

success. However, in probability selection, the actual fitness value itself, resulting from the absolute magnitude of each

mutational effect, influences the probability of successful reproduction of a specific individual. These factors complicate

the prediction equations and so they are not presented here. The simulation results for each type of probability selection

corresponded very well with the theoretical expectations (Figure 4.2). Here, unrestricted and strict probability selection

are presented as one, since they are identical except when there are few offspring/female (i. e., mild selection intensity).

4.2.2. Validating selection with unequal mutational effects. Mendel’s default mode creates a natural and continu-

ous distribution of unequal mutation effects. This results in an essentially exponential distribution where most mutational

effects are extremely small. Such small mutation effects will be almost uniformly distributed in all individuals. Thus

individual fitness, both before and after selection, will vary largely based upon the magnitude of the effects of a few

large-effect and medium-large effect mutations. For example, with a population of 1000, a mutation rate of 10, and 0.1%

high-impact mutations (|d| > 0.1), roughly 10 individuals will have a deleterious mutation ranging in absolute effect from
0.1 to 1. With truncation selection, these 10 individuals will almost always be selected away (unless fewer than 1% of the

individuals are being eliminated). In contrast, how often individuals with these high-impact mutations are retained with

probability selection depends on numerous variables including the specific type of probability selection and the variability

in fitness among individuals. In addition, mutations with somewhat smaller effects than the high-impact category will very

rarely be retained with truncation selection but will often be retained under probability selection, at least for a number of

generations.

With unequal mutation effects, it is difficult to produce precise theoretical predictions of means and variances because

significant mutations are continuously and randomly occurring that are not consistently being eliminated. In the absence

of precise predictions, the validity of Mendel was supported by the fact that different numbers of mutations/generation (u)

resulted in the expected pattern of fitness decline, as did comparison of different selection intensities (truncation selection

with u = 20 is shown in Figure 4.3). The pattern of elimination of mutations followed very closely the selection intensity
(Figure 4.4), and the magnitude of mutation effect for which selection was no longer effective corresponded very closely

for each selection intensity with that predicted by Kimura (s = 1/(2N)), where s is the selection coefficient, and N
is the effective population size [14]. The selection coefficient associated with a specific magnitude of mutation effect d
was calculated as s = kd/σp (data not shown), where k is the standardized selection differential for a given selection
intensity, and σp is the phenotypic standard deviation of fitness across individuals [15]. In addition, we verified that the

effect of selection from one generation to the next was approximately what we expected for both truncation selection and
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FIG. 4.2. Simulation results (dark blue) vs. theoretical calculations (red) for fitness over time with probability selection for differing numbers

of new mutations(u) added to each zygote each generation. Mutations were of equal effect, of magnitude d. Input combinations shown are: (a) u=10,

d=0.0001; (b) u=5, d=0.0001; (c) u=5, d=0.0005, and (d) u=1, d=0.001. Other key input parameters were: fixed linkage blocks=2000, population size

= 1000, offspring/female = 6, heterozygous effect = 0.5.

FIG. 4.3. Fitness decline becomes less severe as numbers of offspring increase. Offspring/female of 2.5, 3, 3.33, 4, and 6 correspond to selective

elimination fractions of 0.2, 0.3, 0.4, 0.5, and 0.67, respectively. The simulations used unequal mutational effect (default distribution, see text) combined

with truncation selection. Other key input parameters were: u=20, population size=1000, fixed linkage blocks=2000, heterozygous effect = 0.5.

probability selection. This conclusion was based on several input values of u and offspring/female where simulated mean
fitness in specific generations with and without selection in the final generation were compared with the expected effect

of selection, given the array of individual fitness values without selection. All reported runs used the default mutation

distribution (genome size of 3 × 109, high-impact mutation effect |d| >= 0.1, and high-impact mutation fraction of
0.001), which yields a mean degradation/mutation of 0.000506 and a median degradation/mutation = 2.7 × 10−8.

4.3. Validating the effect of noise on selection. Mendel allows the user to specify two types of environmental

effects that cause phenotypic fitness to be more variable than genotypic fitness. The first type of environmental variability

is expressed via a heritability parameter, defined as the ratio of genetic variance to total variance. In the absence of

environmental noise, heritability is 1.0. In nature, the heritability of fitness may be 10% or less [16]. For each generation,

Mendel calculates the genetic variance and adds a random noise factor scaled to yield the heritability value the user

has specified. In addition to this, the program can add fixed magnitude noise (called non-scaling noise). Non-scaling
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FIG. 4.4. Diminishing effectiveness of selection with diminishing magnitude of mutation effect (x-axis). Adjacent bars represent the fraction of

mutations of each class eliminated by different selection intensities (offspring/female). Mutations were grouped into 10 classes of magnitude of effect

(x-axis, large effects on left), with the median effect shown as the x-axis label for each class. Numbers of offspring/female of 2.5, 3, 4 and 6 correspond

to selective elimination fractions of 0.2, 0.3, 0.4, 0.5, and 0.67 of the population, respectively. Note the absence of the bar (zero elimination, complete

retention) for mutations of small effect (10−6) combined with weak selection (2.5 offspring/female). Other key input parameters were: u=20, population

size=1000, fixed linkage blocks=2000, heterozygous effect = 0.5)

noise is added after the noise specified by the heritability, and makes actual “realized” heritability less than the input

heritability. Mutation accumulation under truncation selection corresponded well with expected values when noise was

added to mutations of equal effects. As expected, selection efficiency was greatly reduced with heritability values less than

0.5. Noticeable reductions in selection efficiency were also seen even with heritability values of 1 when non-scaling noise

was added. A range of input values of heritability and/or non-scaling noise reduced selection efficiency in the manner

expected.

4.4. Validating the effect of linkage on selection. The default number of linkage blocks per haploid genome is

purposely set lower than the actual number in humans (approximately 100,000 [17]) because the computer memory

and run time requirements increase greatly with increases in the number of linkage blocks. The default value for fixed

linkage is 1000 independent blocks. For dynamic linkage the default is 23 equal-length chromosomes, with two random

crossovers per chromosome per generation, and 1000 total blocks (actually 989 blocks are used as the default, since 989

is the nearest exact multiple of 23). These default parameters are adequate up to the point where the number of mutations

exceeds three per haploid block, in which case the effectiveness of selection is reduced, presumably because of Muller’s

ratchet. Consistent with this explanation is the fact that with large numbers of accumulated mutations, reductions in

block number increased mutation accumulation rates with both fixed and dynamic linkage. Also as expected, in many

parameter combinations with a specific number of linkage blocks, mutation accumulation was slightly to moderately

greater with dynamic linkage than with fixed linkage. With dynamic linkage in nature and in Mendel, segments about

1/3 of a chromosome in length are transmitted intact to the progeny, allowing less opportunity for selection to act freely

on each of the blocks of the transmitted unit. With dynamic linkage, neighboring blocks are co-transmitted for several

generations until recombination occurs between them.

4.5. Summary of validation efforts. Simulation results compared very well with the theoretical expectations when-

ever we were able to make mathematical predictions. In cases where we could not make specific mathematical predic-

tions, results still matched what general population genetic theory and logic would predict. Altering input parameters

consistently resulted in expected effects. Although further validations are under way, current results indicate that Mendel

produces reliable results for a wide range of parameter values.

5. Code Performance and Scaling. Most of the computational work in Mendel is associated with the segregation

and recombination of mutations when a new offspring is formed. Mutations are transmitted from parent to offspring in
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linkage subunit chunks, one chunk from each parent’s duplicate set of chromosomes. The amount of work per offspring

is nearly proportional to the number of linkage subunits into which the haplotype genome is divided. Timing tests on

a 2.0 GHz AMD Opteron processor yield a scaling of about 100 nanoseconds per offspring per linkage subunit. For a

reproducing population size of 1000 individuals, three offspring per female, and 1000 linkage subunits in the haploid

genome, this scaling translates to a run time of 0.6 seconds per generation. This scaling assumes the choices of dynamic

linkage and probability selection and a mean number of trackedmutations per individual of about 1000. It also includes the

time required for output diagnostics. Static linkage increases the run time slightly, while truncation selection decreases it

slightly. The time requirement increases only modestly as the number of mutations increases beyond this reference value.

Approximately an eighth of the total time is required by the selection process. Forming the offspring takes most of the

rest of the time, with a few percent for the output diagnostics. For larger populations and/or large numbers of generations,

Mendel can be run in a mode in which no tracking of individual mutations is performed but their fitness effects nonetheless

still contribute fully to the linkage subunit composite value. In this mode Mendel runs about twice as fast as it does when

a usual number of mutations are tracked. In this mode all mutations are taken to be co-dominant, with a heterozygous

expression of 50% of the homozygous value. This is an adequate approximation in many cases of interest. For most

scenarios involving multiple tribes, parallel performance is close to single processor performance in terms of clock time

per offspring per linkage subunit because in most cases only a few individuals are exchanged between processors and the

amount of data per individual is small.

6. Application Examples. Understanding the accumulation of mutations is of great importance to society [18]. In

man, mutation accumulation is at the heart of many important health problems. Cancer is largely the result of mutation

accumulation within our somatic cells, and accumulated mutations in our germline cells are clearly implicated in our

predisposition to various cancers [19]. The aging process itself is clearly associated with accumulation of mutations in

our somatic cells. This appears to be especially true of the aging effects of mitochondrial mutations, particularly in the

heart and brain [20]. The high rate of birth defects (3-4% in the US) is largely due to accumulated mutations. There

is considerable concern about the growing “genetic load” within modern populations [18, 21, 22, 23]. Mendel can help

us understand more about human mutation accumulation, which might help us to understand the importance of possible

mutation mitigation measures.

In addition to mutations within the human genome, we are also affected by the accumulation of mutations in the

pathogens that affect us. Mutations within a pathogen’s genome can change the pathogen’s antigenic character, resulting

in resistance to immune responses and antibiotics. In some cases certain strains of pathogens may undergo genetic

degeneration and error catastrophe, changing the dynamic balance between strains. This aspect of epidemiology might be

better understood using Mendel in the near future, once haploid clonal reproduction is added as an option.

It is also now realized that minimizing mutation accumulation is a critical factor for preserving endangered species

and avoiding mutational meltdown. Likewise, in agriculture all our efforts to collect and preserve germplasm for future

plant and animal breeding might be nullified unless drift and mutation accumulation are not kept in check. The breeding

value of otherwise desirable genes and linkage blocks could be largely negated by these effects. Mendel is clearly a tool

that can provide greater understanding in all these areas. Below are three specific applications for which Mendel can

inform us about real world genetic situations.

6.1. Decreased Exposure to Mutagens. We can generate a realistic simulation of what would happen to the human

population if mutation rates could be decreased ten-fold. To do this we can start from a previous Mendel case which has

reached a near-equilibrium fitness after 2000 generations. Suppose this population has been experiencing a mutation rate

of 10 new mutations per individual per generation. We can restart this old case where it left off—but now with only one

new mutation per individual per generation. What we see in Figure 6.1a is an immediate and dramatic reduction in the

rate of accumulation of new mutations. In addition, fitness begins to increase markedly (Figure 6.1b). This indicates that

the deleterious mutations that had previously accumulated are now being removed from the population faster than new

mutations are being added—so “genetic load” is actually being reduced. This indicates that if the human mutation rate

could be reduced significantly, in time it would have a major impact on human fitness and health.

6.2. A Population Bottleneck. Many previously endangered species have recovered from genetic bottlenecks (which

result from a temporary reduction in population size). The American Bison is an example of this. Many currently endan-

gered species, such as the panda, are still in the bottleneck phase, and hopefully will recover and expand. Using Mendel,

we can generate a realistic simulation of a genetic bottleneck. We can again re-start from an equilibrated population. The

population size is reduced from 1000 to 100, for 500 generations, and then the original population size is restored.

What we see when this prolonged bottleneck begins is that the rate of mutation accumulation does not change sig-

nificantly (Figure 6.2a). However, Figure 6.2b makes it clear that if the bottleneck had continued, extinction would have
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FIG. 6.1. Effect of decreased exposure to mutagens following generation 2000. Top: (a) deleterious mutation count per individual. Bottom: (b)

historical mean fitness. This case employed probability selection and the multiplicative model for combining gene effects, with 80% of the mutations

recessive. Parameters prescribing the mutation effect distribution were: genome size = 3 billion, high impact mutation fraction = 0.001, high impact

threshold = 0.1, maximum favorable fitness effect = 0.01.

occurred. This is because higher-impact mutations that would otherwise have been selected away were then accumulating

due to stronger genetic drift. When the bottleneck ended, the population had a very strong re-bound in fitness. Restored

to its larger population size, selection was able to override drift, and the higher-impact deleterious mutations that had

been accumulating began to be eliminated. However, the recovery in fitness was only partial because of the deleterious

mutations that reached fixation during the bottleneck.

This experiment reveals three interesting things. First, bottlenecks cause rapid genetic degeneration and will lead to

extinction if not halted. Secondly, when a bottleneck ends, there is a strong rebound in fitness as effective selection is

restored. Thirdly, long bottlenecks cause irreversible genomic damage. Fortunately, other experiments (not shown) clearly

indicate that bottlenecks lasting only a few generations do not cause permanent genomic damage. This indicates that it is

imperative that species bottlenecks be ended as soon as possible. Mendel can help predict the minimum population size

required to allow maximum population recovery.

6.3. Population Substructure. Totally isolated small populations, such as populations on small ocean islands, are

potentially subject an irreversible bottleneck phenomenon. However, if there is a modest amount of migration, the prob-

lem of local inbreeding and drift can be largely relieved. Mendel allows us to model large “global populations” which

are subdivided into many smaller sub-populations. To allow for bigger runs, Mendel has been parallelized so that each

sub-population can be run on its own computer processor, allowingN sub-populations to be run onN parallel processors
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FIG. 6.2. Example of a population bottleneck starting at generation 2000 and lasting 500 generations. Top: (a) deleterious mutation count per

individual. Bottom: (b) historical mean fitness. This case employed probability selection and the multiplicative model for combining gene effects, with

80% of the mutations recessive. Parameters prescribing the mutation effect distribution were: genome size = 3 billion, high impact mutation fraction =

0.001, high impact threshold = 0.1, maximum favorable fitness effect = 0.01.

(whereN is the number of available processors). Mendel can be used to determine empirically howmuchmigration/cross-
breeding is needed to prevent the island inbreeding effect. When a population of 1000 is divided into 10 sub-populations

of 100 individuals each, and where there is zero migration, we see rapid degeneration for each sub-population, and the

first sub-population goes extinct in just 591 generations (Figure 6.3a). However, if there is just one inter-tribal migra-

tion per tribe every ten generations, the island inbreeding effect is largely relieved, resulting in population stabilization

(Figure 6.3b).

7. Conclusions. Mendel’s Accountant is a biologically realistic numerical simulation that models forward-time ge-

netic change within a population, as affected by mutation and selection. It is highly flexible, computationally efficient,

allows large scale simulations, and is user-friendly. Mendel is freely available to users and can be downloaded from

http://mendelsaccountant.infoor from http://sourceforge.net/projects/mendelsaccount
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