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INTRODUCTION TO THE SPECIAL ISSUE ON
SCALABLE AND DISTRIBUTED APPLICATIONS

Dear SCPE readers,

The special issue of SCPE covers issues of Scalable and Distributed Applications that cope with increased
demand for data-intensive computations, deployed on GPUs, Grids, Clusters, supercomputers, cloud-based or
other virtualized resources. Speeding up the computations and increasing the bandwidth require many tech-
niques like algorithm optimizations, load balancing, parallelization, resource brokering, reducing communication,
etc.

This special issue provides a selection of articles that concern large scale computations and scalable comput-
ing in distributed systems. The idea was born at the 2014 Fedcsis conference, particularly at the 7th workshop
on Large Scale Computations on Grids (LaSCoG) and 2nd workshop on Scalable Computing in Distributed
Systems, but the call was open to any submission.

Two papers were selected out of seven for our current special issue. The first paper deals with GPU
implementation of a multiple string matching. This paper evaluates the speedup of the basic parallel strategy
and the different optimization strategies for parallelization of Aho-Corasick, Set Horspool, Set Backward Oracle
Matching, Wu-Manber and SOG algorithms on a GPU. The authors obtain speed up between 2.5 and 10.9
over the equivalent sequential version of the algorithms, and a variety of speedup factors between 11 and 34 for
parallel implementations of the analyzed algorithms.

The second paper presents a scalable and distributed solution version of a Broker As A Service for the
SLA-based brokering of Cloud resources and for Multi-Cloud brokering. It describes the design of a service
that takes as input a set of service requirements and a set of resource providers, and finds the best (or at
least a good) combination of providers. The authors discuss how their architecture of a distributed broker
overcomes the problems of the centralized broker allowing a Multi-User and a Multi-Cloud utilization. Their
prototype implementation is a scalable solution, by distributing smaller tasks among independent agents, whose
population dynamically scale together with the computing infrastructure.

We would like to thank the editorial board of SCPE for the chance of arranging this special issue, and all
the reviewers for their hard work.

David Anderson, University of California, Berkeley, USA
Marjan Gusev, University Sts Cyril and Methodius, Skopje, Macedonia
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MULTIPLE STRING MATCHING ON A GPU USING CUDA

CHARALAMPOS S. KOUZINOPOULOS∗, PANAGIOTIS D. MICHAILIDIS†, AND KONSTANTINOS G. MARGARITIS‡

Abstract. Multiple pattern matching algorithms are used to locate the occurrences of patterns from a finite pattern set in
a large input string. Aho-Corasick, Set Horspool, Set Backward Oracle Matching, Wu-Manber and SOG, five of the most well
known algorithms for multiple matching require an increased computing power, particularly in cases where large-size datasets must
be processed, as is common in computational biology applications. Over the past years, Graphics Processing Units (GPUs) have
evolved to powerful parallel processors outperforming CPUs in scientific applications. This paper evaluates the speedup of the basic
parallel strategy and the different optimization strategies for parallelization of Aho-Corasick, Set Horspool, Set Backward Oracle
Matching, Wu-Manber and SOG algorithms on a GPU.

Key words: multiple pattern matching, parallel computing, many-core computing, GPU, CUDA

AMS subject classifications. 68W32, 68W10, 68N19

1. Introduction. Multiple pattern matching is an important kernel in computer science and it occurs
in many security and network applications including information retrieval, web filtering, intrusion detection
systems, virus scanners and spam filters [3, 30]. More specifically, many well known tools utilize multiple
pattern matching such as: Snort [36] to perform intrusion detection and GNU grep, fgrep and egrep programs
support multi-pattern matching through the -f option [12, 8, 43, 44]. Moreover, in recent years there is an
interest in string matching problems as a powerful tool to locate nucleotide or Amino Acid sequence patterns in
biological sequence databases. The multiple pattern matching problem can be defined as [30]: Given an input
string T = t0t1 . . . tn−1 of size n and a finite set of d patterns P = p0, p1, . . . , pd−1, where each pr is a string
pr = pr0p

r
1 . . . p

r
m−1 of size m over a finite character set Σ and the total size of all patterns is denoted as |P |, the

task is to find all occurrences of any of the patterns in the input string. More formally, for each pr find all i
where 0 ≤ i < n−m+ 1 such that for all j where 0 ≤ j < m it holds that ti = prj .

Numerous sequential algorithms to this problem have been proposed [30]. In general, most of the multiple
string matching algorithms consist of two phases. The first phase is a preprocessing of the set of patterns and
the second phase is searching of multiple patterns in the input string. During the preprocessing phase a data
structure X is constructed, X is usually proportional to the length of the pattern set and its details vary in
different algorithms. The search phase uses the data structure X and it tries to quickly determine if any pattern
occurs in the input string. A naive solution to the multiple string matching problem is to perform d separate
searches in the input string with a single string matching algorithm [30] leading to a worst-case complexity of
O(|P |) for the preprocessing phase and O(n|P |) for the search phase. While frequently used in the past, this
technique is not efficient, especially when a large pattern set is involved. There are some efficient and practical
algorithms have been presented for multiple string matching in terms of preprocessing and searching time for
different types of data, such as: Aho-Corasick [1], Set Horspool [30], Set Backward Oracle Matching [30],
Wu-Manber [44] and SOG [34].

As multiple pattern matching algorithms are often used to process huge amounts of data with a size that is
increasing almost exponentially in time, their sequential execution on conventional computer systems is often
impractical. Multiple pattern matching algorithms have nearly all the characteristics that make them suitable
for parallel execution on graphics processing units (GPUs); they involve sequential accesses to the memory,
parallelism can easily be exposed through data partitioning while the device on-chip shared memory and caches
can be utilized to further decrease their execution time. The use of GPUs to accelerate the performance of
multiple pattern matching algorithms has been studied in the past [15, 14, 23, 24, 32, 38, 39, 40, 42, 45]. Similar
parallelization efforts for multiple string matching have been presented for multi-core and cluster platforms
using different programming frameworks (i.e. POSIX threads, OpenMP and MPI) [4, 21, 33, 37]. Most of these
research studies have focused on parallelization of the Aho-Corasick and Wu-Manber algorithms.

∗CERN, (charalampos.kouzinopoulos@cern.ch).
†Department of Balkan, Slavic and Oriental Studies, University of Macedonia, (pmichailidis@uom.gr).
‡Department of Applied Informatics, University of Macedonia (kmarg@uom.gr).
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This paper focuses on the parallelization of the Aho-Corasick [1], Set Horspool [30], Set Backward Oracle
Matching [30], Wu-Manber [44] and SOG [34] multiple pattern matching algorithms through their implementa-
tion on a GPU using the Compute Unified Device Architecture (CUDA) programming model. These multiple
string matching algorithms were chosen since they are practical and are frequently encountered in other research
papers. The performance of the parallel implementations is evaluated after applying different optimization tech-
niques and their execution time is compared to the time of the sequential implementations. This paper differ
from previous research studies in that the Set Horspool, Set Backward Oracle Matching and SOG algorithms
have never been implemented before on a GPU using the CUDA API (Application Programming Interface).

The rest of the paper is organized as follows: in Section 2, we give an overview of the most significant
sequential algorithms for multiple pattern matching, the GPU architecture and the CUDA programming model
and the state-of-the-art multiple pattern matching algorithms on GPU. In Section 3, we present the basic parallel
implementation and optimization techniques of multiple pattern matching algorithms on the GPU architecture.
In Section 4 we show the performance results of the proposed implementations. Finally, in Section 5, we draw
conclusions.

2. Literature review.

2.1. Sequential multiple pattern matching algorithms. The aim of all multiple pattern matching
algorithms is scan the input string in a single pass to locate all occurrences of the patterns. These algorithms
are often based on single string matching algorithms with some of their functions generalized to process multiple
patterns simultaneously during the preprocessing phase. Based on the way the multiple patterns are represented
and the search is performed, the algorithms can generally be classified in to one of the four following approaches.

• Prefix algorithms The prefix searching algorithms use a trie to store the patterns, a data structure
where each node represents a prefix u of one of the patterns. For a given position i of the input string, the
algorithms traverse the trie looking for the longest possible suffix u of t0...ti that is a prefix of one of the
patterns. One of the most well known prefix multiple pattern matching algorithms is Aho-Corasick [1],
an efficient algorithm based on Knuth-Morris-Pratt algorithm [19] that preprocesses the pattern in time
linear in |P | and searches the input string in time linear in n in the worst case. Multiple Shift-And,
a bit-parallel algorithm generalization of the Shift-And algorithm for multiple pattern matching was
introduced in [30] but is only useful for a small size of |P | since the pattern set must fit in a few
computer words.

• Suffix algorithms The suffix algorithms store the patterns backwards in a suffix trie, a rooted directed
tree that represents the suffixes of all patterns. At each position i of the input string the algorithms
compute the longest suffix u of the input string that is a suffix of one of the patterns. Commentz-
Walter [8] combines a suffix trie with the good suffix and bad character shift functions of the Boyer-
Moore algorithm [6]. A simpler variant of Commentz-Walter is Set Horspool [30], an extension of the
Horspool algorithm [13] that uses only the bad character shift function. Suffix searching is generally
considered to be more efficient than prefix searching since on average more input string positions are
skipped following each mismatch.

• Factor algorithms The factor searching algorithms build a factor oracle, a trie with additional transi-
tions that can recognize any substring (or factor) of the patterns. Dawg-Match [10] and MultiBDM [11]
were the first two factor algorithms, algorithms complicated and with a poor performance in prac-
tice [30]. The Set Backward Oracle Matching and the Set Backward Dawg Matching algorithms [30]
are natural extensions of the Backward Oracle Matching [2] and the Backward Dawg Matching [9]
algorithms respectively for multiple pattern matching.

• Hashing algorithms The algorithms following this approach use hashing to reduce their memory
footprint, usually in conjunction with other techniques. Wu-Manber [44] is one such algorithm that
is based on the Horspool algorithm. It reads the input string in blocks to effectively increase the size
of the alphabet and then applies a hashing technique to reduce the necessary memory space. Zhou
et al. [46] proposed an algorithm called MDH, a variant of Wu-Manber for large-scale pattern sets.
Kim and Kim introduced in [18] a multiple pattern matching algorithm that also takes the hashing
approach. The Salmela-Tarhio-Kytöjoki [34] variants of the Horspool, Shift-Or [5] and BNDM [29]
algorithms can locate candidate matches by excluding positions of the input string that do not match
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any of the patterns. They combine hashing and a technique called q-grams to increase the alphabet
size, similar to the method used by Wu-Manber.

2.1.1. Aho-Corasick algorithm. Aho-Corasick is an extension of the Knuth-Morris-Pratt algorithm [19]
for a set of patterns P . It uses a deterministic finite state pattern matching machine; a rooted directed tree
or trie of P with a goto function g and an additional supply function Supply. The goto function maps a pair
consisting of an existing state q and a symbol character into the next state. It is a generalization of the next
table or the success link of the Knuth-Morris-Pratt algorithm [19] for a set of patterns where a parent state
can lead to its child states by σ where σ is a matching character. The supply function of Aho-Corasick is
based on the supply function of the Knuth-Morris-Pratt algorithm [19]. It is used to visit a previous state of
the automaton when there is no transition from the current state to a child state via the goto function. The
goto function and the supply function are constructed during the preprocessing phase. In the searching phase
of algorithm, each character in the input string is scanned from left to right with the trie that tracks partial
matched patterns through state transitions. If one of terminal states is visited indicates that an occurrence of
one of the pattern strings was found. The trie of P can then be built for all m patterns in O(|Σ|m2) time, with
a total size of O(|Σ|m2). The time to pass through a transition of the goto function is O(1) in the worst and
average case, while the search phase has a cost of O(n) in the worst and average case.

2.1.2. Set Horspool algorithm. The Set Horspool algorithm combines a deterministic finite state pat-
tern matching machine with the shift function of the Horspool algorithm [13] to search for the occurrence of
multiple patterns in the input string in sublinear time on average. The pattern matching machine used is a
trie with a goto function g, created from each pattern pr ∈ P in reverse. The goto function and the shift
function are computed during the preprocessing phase. The search for the occurrences of the patterns is then
performed backwards similar to Horspool. When a mismatch or a complete match occurs, a number of input
string positions can be safely skipped based on the bad character shift of the Horspool algorithm generalized
for a set of patterns. The construction of the trie and the shift function requires O(|Σ||P |) time and space while
the search phase of the algorithm is O(nm) worst case time or sublinear on average.

2.1.3. Set Backward Oracle Matching algorithm. The Set Backward Oracle Matching algorithm [2]
extends the Backward Oracle Matching string matching algorithm to search for the occurrence of multiple
patterns in the input string in sublinear time on average. It uses a factor oracle, a deterministic acyclic
automaton created from each pattern pr ∈ P in reverse that is based on the notion of weak factor recognition.
The automaton consists of a goto function g and at most m2 additional external transitions such that at least
any factor of a pattern can be recognized, similar to the factor oracle of Backward Oracle Matching. The goto
function is constructed during the preprocessing phase from the set of the reversed patterns, similar to the
automaton of the Set Horspool algorithm. During the search phase, the algorithm reads backwards with the
factor oracle. If the oracle fails to recognize a factor at a given position, we can shift the pattern beyond that
position. The oracle is created during the preprocessing phase in O(|Σ||P |) for all d patterns of the pattern set
using a size of O(|Σ||P |). The search phase complexity of the algorithm is O(n|P |) worst case time or sublinear
in average time.

2.1.4. Wu-Manber algorithm. Wu-Manber is a generalization of the Horspool algorithm [13] for mul-
tiple pattern matching. To improve the efficiency of the algorithm, Wu-Manber considers the characters of the
patterns and the input string as blocks of size B instead of single characters. As recommended in [44], a good
value for B is logΣ2|P | although usually B could be equal to 2 for a small pattern set size or to 3 for a large
pattern set size. During the preprocessing phase, three tables are built from the patterns, the SHIFT, HASH
and PREFIX tables. SHIFT is the equivalent of the bad character shift of the Horspool algorithm and is used
to determine the number of characters that can be safely skipped based on the previous B characters on each
text position. The PREFIX table stores a hashed value of the B-characters prefix of each pattern while the
HASH table contains a list of all patterns with the same prefix. During the searching phase, the algorithm is
searching for the occurrences of all patterns in the input text with the assistant of the three tables that have
been created by the previous state. Firstly, a hash value (h) for the block of B characters is calculated into the
current search window and the shift value for that is checked (SHIFT [h]). If the shift value is greater than zero,
then the current search window is shifted by SHIFT [h] positions or else there is a candidate match and the
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hashed value of the previous B characters of the input string is then compared with the hashed values stored at
the PREFIX table to determine if an exact match exists. For the experiments of this paper, the algorithm was
implemented with a block size of B = 2 and B = 3. To calculate the values of the SHIFT, HASH and PREFIX
tables during the preprocessing phase, the algorithm requires an O(|P |) time. The worst case searching time
of Wu-Manber is given in [7] as O(n|P | log|Σ| |P |). In [28] the lower bound for the average time complexity of
exact multiple pattern matching algorithms is given as Ω(n/m · log|Σ|(|P |)) and according to [7] the searching
phase of the Wu-Manber algorithm is optimal in the average case for a time complexity of O(n/m · log|Σ|(|P |)).
In [25] the average time complexity of Wu-Manber was also estimated as O

(
n/

[
(m−B+1) · (1− (m−B+1)·d

2|Σ|B )
])
.

2.1.5. SOG algorithm. SOG extends the Shift-Or string matching algorithm [5] to perform multiple
pattern matching in linear time on average. Similar to Shift-Or, SOG is a bit-parallel algorithm that simulates
a nondeterministic automaton. Moreover, it acts as a character class filter; it constructs a generalized pattern
that can simultaneously match all patterns from a finite set. The generalized pattern accepts classes of characters
based on the actual position of the characters in the patterns. The searching phase of the algorithm consists
of a filtering phase and a verification phase. To improve the efficiency of the verification, a two-level hashing
technique is used as detailed in [27]. When a candidate match is found at a given position of the input
string during the filtering phase, the patterns are verified using a combination of hashing and binary search
to determine if a complete match of a pattern occurs. When the pattern set has a relatively large size, every
position of the generalized pattern will accept most characters of the alphabet. In that case, false candidate
matches will occur in most positions of the input string. To overcome this problem, SOG increases the alphabet
size to |Σ|B by processing the characters of the input string and the patterns in blocks of size B, similar to
the methodology used by the Wu-Manber algorithm. For the experiments of this paper, SOG was implemented
using a block size of B = 3. The preprocessing time of the SOG algorithm is O(|P |) with an O(|Σ|B + |P |)
space. The combined filtering and verification phase is then O(n|P |) when all pattern rows have the same hash
value and O(nm) otherwise in the worst case and linear in n in the average case.

For further details and pseudocode about the preprocessing and searching phase of the above sequential
algorithms are presented in [20].

2.2. GPU architecture and CUDA programming model. Nvidia developed an unified GPU archi-
tecture that supports both graphics and general purpose computing. In general purpose computing, the GPU is
viewed as a massively parallel processor array contains many processor cores. The GPU consists of an array of
streaming multiprocessors (SMs). Each SM consists of a number of streaming processors (SPs) cores. Each SP
core is a highly multithreaded, managing a number of concurrent threads and their state in hardware. Further,
each SM has a SIMD (Single-Instruction Multiple-Data) architecture: at any given clock cycle, each streaming
processor core performs the same instruction on different data. Each SM consist of four different types of on-chip
memory, such as registers, shared memory, constant cache and texture cache. Constant and texture caches are
both read-only memories shared by all SPs. On the other hand, the GPU has a off-chip memory, namely global
memory (to which Nvidia refers as the device memory) in which has long access latency. More details for these
different types of memory and GPU architecture can be found in [31].

For our numerical experimets, we take NVIDIA GTX 280 which is a compute capability 1.3 GPU from the
GT200 series of NVIDIA’s Tesla hardware. It has 1GB of GDDR3 global memory, 602MHz Graphics clock
rate, 1.3GHz Processor clock tester rate and 1.1GHz memory clock rate. The GPU consists of 30 SMs. Each
SM has 8 SPs for a total of 240 SPs, 16KB of on-chip shared memory, and a 16KB 32-bit register file. Each
thread block can have a maximum of 512 threads while each SM supports up to 1024 active threads and up
to 8 active blocks. Some of the related issues that affect the GPU performance such as non-coalesced memory
accesses, shared memory bank conflicts, control flow divergence and occupancy are described in [20].

Nvidia’s CUDA is one of the most widely adopted programming model that enables developing GPU-based
applications using C programming language. A unified program C for CUDA in which consists of host code
running on CPU and kernel code running on a device or GPU. The host code is a simple code C that implements
some parts of an application that exhibit little or no data parallelism. The kernel code is a code using CUDA
keywords that implements some parts of an application exhibit high amount of data parallelism. The kernel
code implements the computation for a single thread and is usually executed on GPU by a set of parallel
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threads. All parallel threads execute the same code of the kernel with different data. Threads are organized
in a hierarchy of grids of thread blocks. A thread block is a set of concurrent threads that can cooperate via
barrier synchronization and access to a shared memory which is only visible to the thread block. Each thread
in a thread block has a unique thread ID number threadIdx. Thread ID can 1, 2, or 3 dimensional. Usually
there can be 512 or 1024 threads per block, depending on the compute capability of the device. Thread blocks
are grouped into a grid and are executed independently. Each block in a grid has a unique block ID number
blockIdx. Block ID can be 1 or 2 dimensional. Usually there are 65535 blocks in a GPU. The programmer
invokes the kernel, specifying the number of threads per block and the number of blocks per grid. We must
note that prior the invoking the kernel, all the data required for the computations on GPU must be transferred
from the CPU memory to GPU (global) memory using CUDA library functions. Invoking a kernel will hand
over the control to the GPU and the specified kernel code will be executed on this data [26].

2.3. Existing approaches on GPU. Several implementations of multiple pattern matching algorithms
running on GPUs have been introduced during the last years, offering a substantial performance increase
compared to their sequential versions.

The Aho-Corasick algorithm was implemented in [40] using the CUDA API to perform network intrusion
detection. The Aho-Corasick trie was represented by a two-dimensional state transition array; each row of the
array corresponded to a state of the trie, each column to a different character of the alphabet Σ while the
cells of the array represented the next state. The array was precomputed by the CPU and was then stored
to the texture memory of the GPU. The input string (in the form of network packets) was stored in buffers
allocated using pinned host memory using a double buffering scheme and was copied to the global memory of
the GPU as soon as each buffer was full. Since the input string was in the form of network packets, two different
parallelization approaches were considered; with the first, each packet was processed by a different warp of
threads while with the second, each packet was processed by a different thread. A speedup of 3.2 comparing
to the respective sequential implementation was reported of the parallel implementation of Aho-Corasick when
executed using an NVIDIA GeForce G80 GPU. A similar implementation of the Aho-Corasick algorithm was
used in [41] to perform heavy-duty anti-malware operations.

The Parallel Failureless Aho-Corasick algorithm (PFAC), an interesting variant of the Aho-Corasick algo-
rithm on a GPU was presented in [24]. It is significantly different than the rest of the parallel implementations
of the same algorithm in the sense that each character of the input stream was assigned to a different thread of
the GPU. Since each thread needs only to examine if a pattern exists starting at the specific character and no
back-tracking takes place, the supply function of Aho-Corasick was removed. The goto function was mapped
into a two-dimensional state transition array. The state transition array was then stored in shared memory by
grouping the patterns based on their prefixes and distributing these groups into different multiprocessors. The
original paper claimed a 4000 speedup of the PFAC algorithm when executed using an NVIDIA GeForce GTX
295 GPU comparing to the sequential implementation of Aho-Corasick.

In [39], the Aho-Corasick algorithm was implemented using the CUDA API. The Aho-Corasick trie was
represented using a two-dimensional state transition array that was precomputed on the CPU and stored to
the texture memory of the GPU. Instead of storing a map of the final states in another array, the final states
that corresponded to a complete pattern were flagged directly in the goto array by reserving 1 bit. Bitwise
operations were then used to check its value. The parallelization of the algorithm was achieved by assigning
different characters of the input string to different threads of the GPU and letting them perform the matching
by accessing the shared state transition array.

The work presented in [45] focused on the implementation of the Aho-Corasick algorithm on a GPU. The
Aho-Corasick trie was precomputed on the CPU and was stored in the texture memory of the GPU but it is not
clear the way it was represented. The input string was stored in the global memory of the GPU, partitioned to
blocks and assigned to different threads in order to achieve parallelization. The threads were then responsible
to process the input string and create an output array of the states of the Aho-Corasick trie that corresponded
to each character position. The paper utilized a number of optimizations in order to further improve the
performance of the algorithm implementation; casting the input string from unsigned char to uint4 to ensure
that each thread will read 16 input string characters from the global memory instead of 1. To further improve
the bandwidth utilization, the accesses of multiple threads inside the same half-warp were coalesced by reading
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the required data to process an input string block to the shared memory of the device. Finally, to avoid
shared memory bank conflicts, the threads of a half-warp were accessing memory from different banks. The
experimental results for the parallel implementation of the Aho-Corasick algorithm on an NVIDIA Tesla GT200
GPU reported a speedup of up to 9.5 relatively to the sequential implementation of the same algorithm.

An implementation of the Aho-Corasick algorithm was also presented in [14] using the CUDA API. Similar
to the methodology used in previously published research papers, the trie of the algorithm was represented
using a two-dimensional state transition array and was stored compressed in the texture memory of the GPU
while the input string was stored in global memory. Kargus was introduced in [16], a software that utilizes
the Aho-Corasick algorithm to perform intrusion detection on a hybrid system consisting of multi-core CPUs
and heterogeneous GPUs. The trie of Aho-Corasick was represented in the GPU using a two-dimensional state
transition array. The state transition array was created in the CPU and was stored in the GPU. The network
packets that comprise the input string were stored in texture memory. To increase the utilization of the memory
bandwidth of the GPU, the input string was cast to uint4 using a technique similar to [45].

In [32], the Aho-Corasick and Commentz-Walter algorithms were used to perform virus scanning accelerated
through a GPU. The Aho-Corasick and Commentz-Walter tries were represented in the GPU using stacks. The
goto and supply functions were substituted with offsets, essentially serializing the trie in a continuous memory
block. The stacks were precomputed in the CPU and were then transferred to the GPU. Parallelization was
achieved using a data-parallel approach.

Simplified Wu-Manber (SWM), a variant of the Wu-Manber algorithm was implemented in [42] using the
OpenCL API for network intrusion detection. The algorithm was modified by using smaller values of B as
well as avoiding hashing and direct comparison of the patterns to the input string. With these changes, the
shift tables became smaller and thus they were able to fit in the shared memory of the GPU cores. Moreover,
multiple pattern comparisons didn’t occur and thus thread divergence between cores was avoided. Finally, the
hash calculations were entirely removed, further improving the performance of the algorithm implementation.
The shift tables of the Wu-Manber variant were calculated by the CPU and were then transferred to the shared
memory of the GPU. The input string in the form of network packets was stored in pinned host memory and
was mapped to the global memory of the GPU. To achieve parallelization, different threads were assigned to
non-adjacent sections of the network packets.

A group of researchers proposed a GPU version of the Wu-Manber multiple pattern matching algorithm [15].
The algorithm was to be used in network intrusion detection, and was implemented under OpenGL in order to
take the advantage of an NVIDIA GeForce 7600 GT card. The experiments proved to be two times faster than
the existing optimized version that was used in Snort [36].

An optimized version of the agrep algorithm was presented [23], which is based on Wu-Manber algorithm
using the CUDA API and taking advantage of a GeForce GTX285, for approximate nucleotide sequence match-
ing. The performance of the implementation was evaluated for sequences of genomes, comparing an OpenMP
implementation to the CUDA implementation of the algorithm, and proved to exhibit 70-fold and 36-fold
performance speedups, for pattern sizes of 30 and 60 respectively.

Moreover, a modified version of the Wu-Manber algorithm for approximate matching was presented in [38].
The implementation was simplified to run on a NVIDIA GeForce 480 using the OpenCL API, and managed to
achieve 62-fold speedups.

3. Parallel implementations using CUDA. In this section, we present a basic data-parallel imple-
mentation strategy for the Aho-Corasick, Set Horspool, Set Backward Oracle Matching, Wu-Manber and SOG
multiple pattern matching algorithms, analyzes the characteristics of the algorithm implementations that lever-
age the capabilities of the device, discusses the flaws that affect their performance and addresses them using
different optimization techniques.

3.1. Basic parallelization strategy. Table 3.1 lists the notation for the parallel implementation of the
algorithms with the CUDA API that is used for the rest of this paper.

To expose the parallelism of the multiple pattern matching algorithms, the following basic data-parallel
implementation strategy was used. The preprocessing phase of the algorithms was performed sequentially
on the host CPU. The input string and all preprocessing arrays, including the arrays that represent the trie
of the Aho-Corasick, Set Horspool and Set Backward Oracle Matching algorithms as discussed later in this
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Table 3.1
GPGPU implementation notation

numBlocks The number of thread blocks
blockDim The size in threads of each block
threadId The unique ID of each thread of a block
blockId The unique ID of each block
Schunk The size in characters of each chunk
Sthread The number of characters that each thread processes
Smemsize The size in bytes of the shared memory per thread block

paper, were copied to the global memory of the device. The input string was subsequently partitioned into
numBlocks character chunks, each with a size Schunk of n

numBlocks characters. The chunks were then assigned
to numBlocks thread blocks. Each chunk was further partitioned into blockDim sub-chunks, that in turn were
assigned to each of the blockDim threads of a thread block. Each thread uses two auxiliary variables, start and
stop were used to indicate the input string positions where the search phase begins and ends respectively. More
specifically, the variable start is (blockId×n)/numBlocks+(n× threadId)/(numBlocks× blockDim) and the
variable stop is start+n/(numBlocks× blockDim). To ensure the correctness of the results, m−1 overlapping
characters were used per thread. These characters were added to the stop variable of Aho-Corasick and SOG,
algorithms that perform forward searching and to the start variable of Set Horspool, Set Backward Oracle
Matching and Wu-Manber, algorithms that scan the input string backwards. Therefore, each thread processed
Sthread = n

numBlocks×blockDim +m− 1 characters for a total of (m− 1)(numBlocks× blockDim− 1) additional
characters. In other words, each thread executes the corresponding search phase of the multiple string matching
algorithms on the device as a CUDA kernel. Furthermore, an array out with a size of numBlocks× blockDim
integers was used to store the number of matches per thread. To avoid extra coding complexity it is assumed
that n is divisible by both numBlocks and blockDim. Since the character chunks have to overlap, the fewer
possible thread blocks should be used to reduce the redundant characters as long as the maximum possible
occupancy level is maintained per SM. A pseudocode of the host function for the parallel implementation of the
algorithms is given in Figure 3.1.

Main procedure
main ( )
{

1 . Execute the p r ep roc e s s i ng phase o f the a lgor i thms ;
2 . Where r e l e van t r ep r e s en t t r i e s us ing ar rays ;
3 . A l l o ca t e one−dimens iona l and two−dimens iona l a r rays in the g l oba l memory

o f the dev i ce us ing the cudaMalloc ( ) and cudaMallocPitch ( ) f unc t i on s r e s p e c t i v e l y ;
4 . Copy the data from the host ar rays to the dev i ce ar rays us ing

the cudaMemcpy ( ) and cudaMemcpy2D( ) f unc t i on s ;
5 . Launch CUDA kerne l ;
6 . Copy the r e s u l t s array back to host memory ;
7 . Ca l cu la te the r e s u l t s ;

}

Fig. 3.1. Pseudocode of the host function

Three tables were constructed during the preprocessing phase of the Aho-Corasick algorithm implemen-
tation. State transition that corresponds to the goto function is a two-dimensional array where each row
corresponds to a state of the trie, each column to a different character of the alphabet Σ and the cells of the
array represent the next state. To ensure that alignment requirements are met on each row, state transition was
allocated as pitched linear device memory using the cudaMallocPitch() function. State supply that corresponds
to the supply function is one-dimensional array, allocated using the cudaMalloc() function. Each column of the
array corresponds to a different state of the trie while the cells represent the supply state of a given state and
the information whether that state is final or not respectively. Since the Aho-Corasick trie can have a maximum
of m× d+ 1 trie states, a value that for the experiments of this paper was typically equal to more than 65536,
each state was represented using a 4-byte integer. In this implementation, there can be divergence among the
execution paths of the threads when previous states are visited using the supply function of the algorithm.
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The Set Horspool implementation used identical version to the state transition table of the Aho-Corasick
implementation to locate all the occurrences of any pattern in the input string during the search phase in reverse.
Moreover, state shift was used, a one-dimensional array allocated using the cudaMalloc() function with a size
of |Σ| that represents the bad character shift of the Horspool algorithm. Each row of the array corresponds to
a different state of the trie, each column to a different character of the alphabet Σ while each cell holds the
number of input string character positions that can be safely skipped during the search phase. There can be
divergence in the execution path of the threads in the basic implementation of Set Horspool when the next
states are visited using the goto function of the algorithm.

To represent the factor oracle of the Set Backward Oracle Matching algorithm, a modified version of the
state transition array was used with an equal size to the versions used by the Aho-Corasick and Set Horspool
implementations. The cells of state transition correspond not only to the next state for each character of the
alphabet Σ but also contain information for the external transitions of the trie. The state transition array
was allocated as pitched linear device memory using the cudaMallocPitch() function to ensure that alignment
requirements are met in the global memory of the device. There is the possibility for the threads of every half-
warp to diverge from their execution path, causing individual threads to branch out and execute independently.
This can happen when there are potential matches of some patterns from the pattern set since they have to be
verified directly to the input string.

The Wu-Manber algorithm uses the one-dimensional SHIFT table, allocated using the cudaMalloc() func-
tion and the two-dimensional HASH and PREFIX tables allocated as pitched linear memory using cudaMal-
locPitch(). Each row of the HASH and PREFIX represents a different pattern from the pattern set while
the columns represent different hash values. The relevant data structures were copied to the global memory
of the device with no modifications. As with the implementation of the Aho-Corasick, Set Horspool and Set
Backward Oracle Matching algorithms, there can be divergence among the threads of the same-half warp during
the verification of potential matches. The value of the out array is set during the verification phase.

Finally, SOG computes the V , hs array and hs’ array one-dimensional tables during the preprocessing
phase, allocated as linear memory using the cudaMalloc() function. V is a bit vector that can store the hash
value h for each different B-character block, hs array holds the hash value hs for each pattern from the pattern
set while hs’ array stores the two-level hs′ hash values. The implementation of the SOG algorithm exhibits a
significant level of thread divergence that is expected to affect its performance. As with Wu-Manber, the value
of the out array is also set during the verification phase.

3.2. Implementation Limitations and Optimization Techniques. We know that accesses to global
memory for compute capability 1.3 GPUs by all threads of a half-warp are coalesced into a single memory
transaction when all the requested words are within the same memory segment. The segment size is 32 bytes
when 1-byte words are accessed, 64 bytes for 2-byte words and 128 bytes for words of 4, 8 and 16 bytes. With
the basic implementation strategy, each thread reads a single 1-byte character on each iteration of the search
loop; in this case the memory segment has a size of 32 bytes. When Sthread > 32, each thread accesses a word
from a different memory segment of the global memory. This results to uncoalesced memory transactions, with
one memory transaction for every access of a thread. Since the maximum memory throughput of the global
memory is 128 bytes per transaction, the access pattern of the threads results in the utilization of only the 1

128
of the available bandwidth.

3.2.1. Coalescing Memory Accesses. To work around the coalescing requirements of the global memory
and increase the utilization of the memory bandwidth, it is important to change the memory access pattern
by reading words from the same memory segment and subsequently store them in the shared memory of the
device. This involves the partition of the input string into n

Smemsize
chunks and the collective read of Smemsize

characters from the global into the shared memory by all blockDim threads of a thread block. For each 16
successive characters from the same segment then, only a single memory transaction will be used. This technique
results in the utilization of the 1

8 of the global memory bandwidth, improved by a factor of 16. The threads can
subsequently access the characters stored in shared memory in any order with a very low latency.

Using the shared memory to increase the utilization of the memory bandwidth has two disadvantages. First,
a total of n

Smemsize
× (blockDim− 1)× (m− 1) redundant characters are used that introduce significantly more

work overhead when compared to the basic data-parallel implementation strategy. Second, using the shared



Multiple String Matching on a GPU using CUDA 129

memory effectively reduces the occupancy of the SMs. As the size of the shared memory for each SM of the
GTX 280 GPU is 16KB, using the whole shared memory would reduce the occupancy to one thread block per
SM. Partitioning the shared memory is not an efficient option since it was determined experimentally that it
further increases the total work overhead.

3.2.2. Packing Input String Characters. The utilization of the global memory bandwidth can also
increase when the threads read 16-byte words instead of single characters on every memory transaction. For
that, the built-in uint4 vector can be used, a C structure with members x, y, z, and w that is derived from the
basic integer type. This way, each thread accesses an 128-bit uint4 word that corresponds to 16 characters of
the input string with a single memory transaction while at the same time the memory segment size increases
from 32 to 128 bytes. By having each thread read 128-bit uint4 words from different memory segments results
in the utilization of the 1

8 of the global memory bandwidth similar to the coalescing technique above. The input
string array stored in global memory can be casted to uint4 as follows:

uint4 ∗ u in t 4 t e x t = r e i n t e r p r e t c a s t < uint4 ∗ > ( d tex t ) ;

The two previous techniques can be combined; reading 16 successive 128-bit words or 256 bytes in the
form of 16 uint4 vectors from global to shared memory can be done with just two memory transactions, fully
utilizing the global memory bandwidth. The input string characters are then extracted from the uint4 vectors
as retrieved from the global memory and are subsequently stored in shared memory on a character-by-character
basis. To access the characters inside a uint4 vector, the vector can be recasted to uchar4:

uint4 u in t4 var = u in t 4 t e x t [ i ] ;

uchar4 uchar4 var0 = ∗ r e i n t e r p r e t c a s t < uchar4 ∗ > ( &u in t4 var . x ) ;
uchar4 uchar4 var1 = ∗ r e i n t e r p r e t c a s t < uchar4 ∗ > ( &u in t4 var . y ) ;
uchar4 uchar4 var2 = ∗ r e i n t e r p r e t c a s t < uchar4 ∗ > ( &u in t4 var . z ) ;
uchar4 uchar4 var3 = ∗ r e i n t e r p r e t c a s t < uchar4 ∗ > ( &u in t4 var .w ) ;

The drawback of casting input string characters to uint4 vectors and recasting them to uchar4 vectors is
that it can be expensive in terms of processing power.

3.2.3. Texture Binding. The preprocessing arrays of the algorithms are relatively small in size while at
the same time they are frequently accessed by the threads. In the case of the Set Backward Oracle Matching,
Wu-Manber and SOG algorithms where a character-by-character verification of the patterns to the input string
is required, the pattern set array is also accessed often. The performance of the parallel implementation of the
algorithms should then benefit from the binding of the relevant arrays to the texture memory of the device.
The linear memory region was bound to the texture reference using cudaBindTexture() for one-dimensional
arrays and cudaBindTexture2D() for two-dimensional arrays. The textures were then accessed in-kernel using
the tex1Dfetch() and tex2D() functions. Arrays accessed via textures not only take advantage of the texture
caches to minimize the memory latency when cache hits occur but also bypass the coalescing requirements of
the global memory.

3.2.4. Avoiding Bank Conflicts. The shared memory of the GTX 280 GPU consists of 16 memory
banks numbered 0− 15. The banks are organized in such a way that successive 32-bit words are mapped into
successive banks with word i being stored in bank i mod 16. Bank conflicts occur when two or more threads of
the same half-warp try to simultaneously access words i, j, . . . z when i mod 16 = j mod 16 = . . . = z mod 16.
When the memory coalescence optimizations described above are used, it is challenging to avoid bank conflicts
when the 16 characters of a uint4 vector are successively stored to the shared memory and when are retrieved
from shared memory by the threads of the same half-warp during the search phase. Storing the input string
characters in shared memory results in a 4-way bank conflict. An alternative would be to cast each uint4 vector
to 4 uchar4 vectors and store them in shared memory in a round-robin fashion:

int t id16 = threadIdx . x % 16 ;

i f ( t id16 < 4 ) {

uchar4 s a r ray [ threadIdx . x ∗ 4 + 0 ] = uchar4 var0 ;
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uchar4 s a r ray [ threadIdx . x ∗ 4 + 1 ] = uchar4 var1 ;
ucha r4 s a r ray [ threadIdx . x ∗ 4 + 2 ] = uchar4 var2 ;
ucha r4 s a r ray [ threadIdx . x ∗ 4 + 3 ] = uchar4 var3 ;

} else i f ( t id16 < 8 ) {

uchar4 s a r ray [ threadIdx . x ∗ 4 + 1 ] = uchar4 var1 ;
ucha r4 s a r ray [ threadIdx . x ∗ 4 + 2 ] = uchar4 var2 ;
ucha r4 s a r ray [ threadIdx . x ∗ 4 + 3 ] = uchar4 var3 ;
ucha r4 s a r ray [ threadIdx . x ∗ 4 + 0 ] = uchar4 var0 ;

} else i f ( t id16 < 12 ) {

uchar4 s a r ray [ threadIdx . x ∗ 4 + 2 ] = uchar4 var2 ;
ucha r4 s a r ray [ threadIdx . x ∗ 4 + 3 ] = uchar4 var3 ;
ucha r4 s a r ray [ threadIdx . x ∗ 4 + 0 ] = uchar4 var0 ;
ucha r4 s a r ray [ threadIdx . x ∗ 4 + 1 ] = uchar4 var1 ;

} else {

uchar4 s a r ray [ threadIdx . x ∗ 4 + 3 ] = uchar4 var3 ;
ucha r4 s a r ray [ threadIdx . x ∗ 4 + 0 ] = uchar4 var0 ;
ucha r4 s a r ray [ threadIdx . x ∗ 4 + 1 ] = uchar4 var1 ;
ucha r4 s a r ray [ threadIdx . x ∗ 4 + 2 ] = uchar4 var2 ;

}

s array represents an array stored in the shared memory of the device with a size of Smemsize. This
technique was not used since in practice the performance of the implementations did not improve. Although it
was conflict-free when storing the vectors, it resulted in a 4-way thread divergence that caused the serialization
of accesses to shared memory, the same effect that the example code was trying to avoid. The modulo operator
is very expensive when used inside CUDA kernels and had a significant impact therefore in the implementations’
performance.

For further details and pseudocode about the basic and optimized parallel implementations of the Aho-
Corasick, Set Horspool, Set Backward Oracle Matching, Wu-Manber and SOG algorithms are presented in [20].

4. Experimental results. The performance of the parallel implementations of the algorithms was eval-
uated by comparing the running time of the GPU implementations to that of the sequential version. The
computing platform in which the experiments of these implementations were executed is composed by an Intel
Xeon CPU with a 2.40GHz clock speed and 2GB of memory which was used as a host and a GTX 280 GPU
which was used as the device. The sequential algorithms were implemented using the ANSI C programming
language and were compiled using the GCC compiler with the “-O2” and “-funroll-loops” optimization flags.
The parallel GPU implementations of the algorithms were compiled using the NVCC 5.0 compiler of the CUDA
API with the “-O2” optimization flag.

For the comparison of the parallel implementations we used the running time and speedup as measures.
Running time is the total execution time of an implementation including the preprocessing time and the searching
time. Preprocessing time is the time in seconds an algorithm uses to preprocess the pattern / pattern set while
searching time is the total time in seconds an algorithm uses to locate all occurrences of any pattern in the
input string. The running time of the CUDA implementations was measured using the CUDA event API. To
decrease random variation, all time results were averages of 100 runs. Speedup is defined as (Sequential running
time on a specific CPU) / (Parallel running time on a specific GPU).

The parameters that affect the performance of parallel multiple pattern matching algorithms are the size
of the input string n, the size of the pattern set d, the size of the patterns m and the size |Σ| of the alphabet
used.

The data set used for the experiments was similar to the sets used in [17, 22, 35]. It consisted of randomly
generated input strings of a binary alphabet, the genome of Escherichia coli from the Large Canterbury Corpus,
the Swiss Prot. Amino Acid sequence database, the FASTA Amino Acid (FAA) and FASTA Nucleic Acid
(FNA) sequences of the A-thaliana genome and natural language input strings of the English alphabet:

• Randomly generated input strings of size n = 4, 000, 000 with a binary alphabet. The alphabet used
was Σ = {0, 1}.

• The genome of Escherichia coli from the Large Canterbury Corpus with a size of n = 4, 638, 690
characters and the FASTA Nucleic Acid (FNA) of the A-thaliana genome with a size of n = 116, 237, 486
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characters. The alphabet Σ = {a, c, g, t} of both genomes consisted of the four nucleobases of the
Deoxyribonucleic Acid (DNA).

• The FASTA Amino Acid (FAA) of the A-thaliana genome with a size of n = 10, 830, 882 characters
and the Swiss Prot. Amino Acid sequence database with a size of n = 177, 660, 096 characters. The
alphabet Σ = {a, c, d, e, f, g, h,
i, k, l,m, n, p, q, r, s, t, v, w, y} used by the databases consisted of 20 different characters.

• The CIA World Fact Book from the Large Canterbury Corpus. The input string had a size of n =
1, 914, 500 characters and an alphabet of size |Σ| = 128 characters.

The pattern set for each execution was created from subsequences of the corresponding input string, con-
sisting of 1, 000 and 8, 000 patterns with each pattern having a size of m = 8 and m = 32 characters.

The performance of the algorithm implementations is evaluated when a number of optimizations are ap-
plied for different sets of data and is compared to the performance of the sequential implementations. Each
implementation stage also incorporates the optimizations of the previous stages.

1. The first stage of the implementation was unoptimized. The input string, the pattern set, the prepro-
cessing arrays of the algorithms and the out array that holds the number of matches per thread, were
stored in the global memory of the device. Each thread accessed input string characters directly from
the global memory as needed and stored the number of matches directly to out. At the end of the
algorithms’ search phase, the results array was transferred to the host memory and the total number
of matches was calculated by the CPU.

2. The second stage of the implementation involved the binding of the preprocessing arrays and the pattern
set array in the case of the Set Backward Oracle Matching, Wu-Manber and SOG algorithms to the
texture memory of the device.

3. In the third stage, the threads worked around the coalescing requirements of the global memory by
collectively reading input string characters and storing them to the shared memory of the device.

4. The fourth stage of the implementation was similar to the third but in addition, each thread read
simultaneously 16 input string characters from the global memory by using a uint4 vector. The charac-
ters were extracted from the vectors using uchar4 vectors and were subsequently stored to the shared
memory.

For the experiments of this paper, 30 thread blocks were used, one per each SM, with 256 threads per
block. As discussed in section 3, the shared memory was utilized to work around the coalescing requirements
of the global memory during the third implementation stage and it was determined experimentally that further
partitioning the shared memory was not an efficient option as the total work overhead increases.

Figures 4.1 to 4.5 depict the speedup of different implementations of the Aho-Corasick, Set Horspool, Set
Backward Oracle Matching, Wu-Manber and SOG algorithms for randomly generated input strings, biological
sequence databases and English alphabet data on a GTX280 GPU. As can generally be seen, the performance of
the algorithms increased significantly when implemented in parallel on a GPU using the CUDA API, even before
applying any optimization. When the presented optimization techniques were used though, the implementations
had a significantly higher speedup over the sequential versions, although different algorithms were affected in
different ways.

When the preprocessing arrays and the pattern set in the case of some algorithms were bound to the texture
memory of the device, the performance of the implementations increased considerably. Also in most cases, the
implementations exhibited a faster running time when the accesses to the input string for the threads of the
same half-warp were coalesced with the use of the shared memory. On the other hand, it can be observed that
the performance of the algorithm implementations did not improve significantly in the fourth implementation
stage due to the high cost involved in casting the input string characters to uint4 vectors and recasting them
to uchar4 vectors as discussed in section 3.

For the Aho-Corasick algorithm, the experimentally measured speedup for the basic parallel implementation
of the Aho-Corasick algorithm over the sequential implementation ranged from 3.2 to 10.9. For the second and
third implementation stages, the overhead that was caused by the frequent accesses of the threads to the global
memory of the device was partially reduced with an additional performance increase of up to 3.5 times. The
speedup of the final, optimized kernel ranged between 10 and 18.5 comparing to the sequential implementation,
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Fig. 4.1. Speedup of different Aho-Corasick implementations for randomly generated input strings, biological sequence
databases and English alphabet data
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Fig. 4.2. Speedup of different Set Horspool implementations for randomly generated input strings, biological sequence databases
and English alphabet data

slightly faster than the reported speedup in [40, 45]. This was expected since for the experiments of this paper a
more recent GPU was used to evaluate the performance of the algorithm implementations. The highest speedup
was generally observed when the E.coli genome and the FASTA Nucleic Acid (FNA) of the A-thaliana genome
were used, together with sets of 1, 000 patterns.

The unoptimized implementation of the Set Horspool algorithm had a speedup between 2.5 and 7.5 over
the sequential version. As with the implementation of the Aho-Corasick algorithm, the parallel searching time
of Set Horspool also benefited when the preprocessing arrays were bound to the texture memory of the device
in the second stage of the implementation, although to a lesser degree; the speedup increased between 1.2 and
1.9 times comparing to the basic parallel implementation for sets of 1, 000 patterns and between 1.1 and 1.4
times for sets of 8, 000 patterns. The performance of the implementation increased to a much greater extent
during the third implementation stage, with a speedup increase over the second implementation stage of up to
8.7. The speedup of the optimized kernel was between 22.1 and 33.7, significantly higher than the corresponding
speedup of the Aho-Corasick algorithm. Again, the highest speedup was achieved when the E.coli genome and
the FASTA Nucleic Acid of the A-thaliana genome were used, together with sets of 1, 000 patterns.

As can be seen in Figure 4.3, the performance of the Set Backward Oracle Matching algorithm had similar
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Fig. 4.3. Speedup of different Set Backward Oracle Matching implementations for randomly generated input strings, biological
sequence databases and English alphabet data
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Fig. 4.4. Speedup of different Wu-Manber implementations for randomly generated input strings, biological sequence databases
and English alphabet data

characteristics to that of Set Horspool. The speedup of the implementation ranged between 2.6 and 6.3 over the
sequential version of the algorithm and further improved by up to 1.6 times when the preprocessing arrays and
the pattern set were bound to the texture memory of the device. When the accesses for the threads of the same
half-warp were coalesced, the performance of the algorithm implementation improved by up to an additional
8.2 times. The speedup of the optimized kernel of the algorithm ranged between 16.1 and 33.7. The highest
speed was achieved when the Swiss Prot. Amino Acid sequence database and the FASTA Amino Acid (FAA)
of the A-thaliana genome were used, for sets of either 1, 000 or 8, 000 patterns.

The unoptimized implementation of Wu-Manber was up to 5.9 times faster than its sequential implemen-
tation. When the pattern set as well as the SHIFT, HASH and PREFIX tables that were created during
the preprocessing phase of the algorithm, were bound to the texture memory of the device and the shared
memory was used to bypass the coalescing requirements of the global memory during the second and third
implementation stages, the speedup of the implementation increased by up to an additional 6.1 times. The per-
formance of the final, optimized implementation of Wu-Manber was up to 11.8 times faster than the sequential
implementation and was not significantly affected by the type of the dataset used.

The parallel implementation of SOG exhibited the lowest speedup comparing to the rest of the presented
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Fig. 4.5. Speedup of different SOG implementations for randomly generated input strings, biological sequence databases and
English alphabet data

multiple pattern matching algorithms. The performance of the unoptimized kernel increased by up to 5.7 times,
comparing to the sequential implementation. As can be seen in Figure 4.5, the algorithm implementation had
a significant speedup increase when the preprocessing arrays were bound to the texture memory and the input
string was copied to the shared memory of the device. The increase was more evident for the Swiss Prot.
Amino Acid sequence database, the FASTA Amino Acid of the A-thaliana genome and for the English language
datasets, all of them data with a large alphabet size. The optimized algorithm implementation had a speedup
of up to 8.9 that was observed when the Swiss Prot. Amino Acid sequence database was used together with
sets of 1, 000 patterns.

From the results, we can also see that there are two trends in the performance of the CUDA implementations
when the number of patterns is scaled. The speedup of the Aho-Corasick, Set Backward Oracle Matching, Wu-
Manber and SOG algorithms had a rising tendency as the patterns increased for Random, FAA, FNA/Swiss
Prot and FNA/FAA/English databases respectively, in contrast with the other cases where the speedup of
the algorithms had a decreasing tendency. This decreasing tendency for large pattern sets is due to the fact
that the preprocessing phase of the algorithms was performed sequentially on the CPU. More specifically, the
preprocessing phase of the algorithms imposes a relatively high cost in terms of time to setup the necessary
data structures and the time to preprocess the pattern set increases linearly with the number of patterns d.
Furthermore, the searching phase on the GPU becomes slower for large pattern sets because of the unfavorable
GPU memory hierarchy access times. This fact has been alleviated in more recent versions of GPU devices.

Although the performance of the CUDA implementations increased significantly when different optimization
techniques applied, the speedup of the implementations is not proportional to the number of cores in GPU. This
fact is due to three reasons: One reason is that the implementations of the algorithms require the frequent access
of the threads to the GPU memory hierarchy of the device. Another limiting factor is the significant overhead of
the thread divergence, the serial execution of threads within the same warp that execute different instructions
as a result of if-else and while statements in the kernel. Furthermore, the optimized implementations of each
algorithm require increased register usage per thread to execute out of the 16KB registers per block that the GTX
280 provides. More specifically, the algorithms Aho-Corasick, Set Horspool, Set Backward Oracle Matching,
Wu-Manber and SOG require 18, 19, 22, 22 and 21 registers per thread, respectively. The number of registers
per thread is a limiting factor on the number of concurrent threads the hardware is capable of executing. The
proposed implementations could be scaled up by using a large number of GPUs by means of cuda-aware MPI
infrastructure and by applying suitable modifications of the data structures used in preprocessing phase of the
algorithms so that pattern set can be partitioned and the GPU memory hierarchy is better utilized.
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5. Conclusions. In this paper, we presented details on the design and the implementation of the Aho-
Corasick, Set Horspool, Set Backward Oracle Matching, Wu-Manber and SOG multiple pattern matching
algorithms in parallel on a GPU using the CUDA API. Different optimizations were used to further increase
the performance of the parallel implementations. Based on the experimental results, it was concluded that the
speedup of the basic implementation of the algorithms ranged between 2.5 and 10.9 over the equivalent sequential
version of the algorithms. It was also shown that by applying the optimizations discussed in this paper, the
parallel implementation of the Aho-Corasick algorithm was up to 18.5 times faster than the corresponding
sequential implementations, the implementations of the Set Horspool and the Set Backward Oracle Matching
algorithms were up to 33.7 times faster, the parallel implementation of the Wu-Manber algorithm was up to
11.8 times faster while the implementation of SOG was up to 8.9 times faster.

It was concluded that the parallel implementations of the Set Horspool and the Set Backward Oracle Match-
ing algorithms exhibited higher speedup than other three parallel implementations. Note that the experimental
results presented herein for Aho-Corasick algorithm achieve a high speedup of 18.5, which compares favorably
with the results presented in the previous research studies [40, 45]. Further, the speedup presented herein for
parallel version of the Wu-Manber (WM) algorithm is relatively better than the parallel version of the WM
algorithm that has been implemented using OpenGL and – achieved twice the performance of the corresponding
WM algorithm used in Snort [15]. The speedups reported in those articles are comparable to the speedups of
this paper because the aforementioned research proceed in a fashion similar to our work, i.e. they parallelize
the same original Aho-Corasick and WM algorithms. On the other hand, two approximate string matching im-
plementations, based on a modified Wu-Manber algorithm [23] and the bit-parallel BPR algorithm [38] achieve
better results than those presented herein. The speedups reported are 76 and 30, in the former reference and
62, in the latter. Furthermore, some other GPU implementations [24, 39, 14, 42] seem to perform better than
those presented herein. These studies have incorporated significant modifications of the original Aho-Corasick
and Wu-Manber algorithms, such that the resulting GPU implementations avoid important problems such as
memory accesses of threads, thread divergence between cores and hashing comparisons/calculations. Therefore,
the resulting speedups are not directly comparable to the reported speedups of ours or other approaches, since
the sequential algorithm, i.e. the basis of comparison has been modified significantly. Furthermore, in all the
previous cases, the direct comparison of absolute speedups is not possible, since the experimental setups used
in different experiments, that is host machines and GPU devices, are not directly comparable.
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Abstract. Cloud computing can be considered the key of the development of ICT systems business. It allows to work with the
basic tools, but in a dynamic, mobile and technologically advanced way. Taking a good choice of Cloud provider, is the key to safely
embracing the Cloud and the benefits that it provides. To do that is necessary to identify the Cloud service needs based on the
application requirements. Some applications will be more critical than others. Moreover it is necessary to select the provider which
best fits those requirements. In fact, as happens to a more traditional delivery model in which organizations use different product
packages from different providers because no single supplier can meet all of their needs, there are different Cloud providers that
offer different features and perks, and many of them are not directly comparable. In this paper a scalable distributed multi-users
version of a Broker As A Service solution is proposed, mainly suitable for exploiting the capability of a distributed environment
and for addressing the related issues. The idea is to decompose global broker into a set of distributed brokers that cooperate and
dynamically scale, together with the computing infrastructure, to support unforeseeable workloads produced by the interactions
with large groups of users. The brokering problem is divided into simpler tasks, which are distributed among independent agents,
whose population dynamically scales together with the computing infrastructure, to support unforeseeable workloads produced by
the interactions with large groups of users. This solution is also suitable in case of Multi-Cloud brokering. Several experimental
results have been performed to verify the effectiveness of the proposed system.
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1. Introduction. In the IT world as we know it today computers become exponentially more powerful
and cost per unit of resources is rapidly decreasing, so that IT can be considered a commodity. On the other
hand IT becomes more and more pervasive in organizations and the increasing complexity in managing the
entire infrastructure, made up of different software architectures within which the information is distributed,
has led companies to spend a growing amount in IT. The diffusion of the phenomenon of Cloud Computing
has generated a strong interest in the companies, in fact Cloud computing can be considered the key to the
development of ICT systems business. It is a fundamental revolution in the way Information Technology (IT)
services are created, developed, deployed, updated, maintained and paid for.

In particular, among the benefits of adopting Cloud models, elasticity plays a relevant role. In fact it allows
for providing the required resources to the deployed applications according to the current workload and paying
just for their usage.

Especially in a service oriented context the exploitation of such a facility is desired. A service must support
access to multiple users simultaneously ensuring always the required level of availability and performance. The
application workload can vary during the day, with regular or unforeseeable bursts on special periods. Moreover
the service can be invoked also by applications and robots and not only by human users.

However scalability of a service with its changing workload is not enough to guarantee the exploitation
of Cloud elasticity. Providing a service with self-adaptivity to scale dynamically with a changing computing
infrastructure is not trivial for any new developed applications or legacy ones when they are ported in the
Cloud.

This paper discusses this issues presenting a scalable distributed Broker As A Service solution that has been
designed for exploiting the elasticity of a Cloud computing infrastructure. Such a broker service supports the
users to take a good choice among the many alternatives of Cloud services offered by the increasing number of
different providers [19].

The idea is to decompose a global broker into a set distributed brokers, which cooperate and dynamically
scale, together with the computing infrastructure, to support unforeseeable workloads produced by the inter-
actions with large groups of users. This solution is suitable also in case of Multi-Cloud brokering, where the
optimal choice is a collection of services provided by heterogeneous providers. The remainder of this paper
is structured as follows. Some related approaches are introduced in 2. Section 3 motivates, introduces, and
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Table 2.1
Brokering Solutions

Reference Properties Limitations
RightScale select, migrate and monitor different Clouds missing negotiation and optimization fea-

tures
CloudSwitch make simpler the process of migrating an ap-

plication or workload to the Cloud
missing proper brokerage service

JamCracker aggregates and distributes on-demand ser-
vices through a global ecosystem of Service
Providers

missing a proper brokerage service

[9] based on a Cloud service register catalog
where it performs a search of the desired pro-
posal

missing a proper brokerage service

[12] focused on the scheduler only cost optimization
OPTIMIS under development only cost optimization
[14] optimize placement of VMs across multiple

cloud providers
dynamic cloud scheduling not supported

analyzes the problem, whose solution’s requirements, approach and implementation are then investigated in
Sections 4, 5 and 6. Sections 7 and 8 concludes with an overview and interpretation of the results.

2. Related Work.

2.1. Background. In recent years, Gartner has analyzed in great detail the role of the Cloud Service
Brokers [6]. In the first place, Gartner defines Cloud Services Brokers (CSB) it as an IT role and a business
model where a company or other entity adds value to one or more Cloud services (public or private) on behalf of
one or more consumers of this service through three roles primary: aggregation, integration and customization.
The activity of the CSB has become necessary in recent years for the diffusion of solutions of hybrid Cloud
involving multiple Cloud services. Furthermore, the role of the CSB has a positive impact both for business
and IT operations. In fact organizations are increasingly adopting Cloud solutions, so the supply of services is
increasing more and more. Companies must therefore address issues of greater complexity in the adoption and
must be able to handle a large number of providers.

2.2. Brokering Solutions. For those reasons several companies offers brokering solutions which are sum-
marized in Table 2.1. RightScale [17] Self-Service is a solution that enables IT users to deliver self-service access
to a curated catalog of commonly used components, stacks, and applications and an easy-to-use interface for
developers and other Cloud users to request, provision, and manage these services across public Cloud, private
Cloud, and virtualised environments. RightScale Self-Service includes a Cloud service catalog that enables users
to design a set of Cloud applications that can be configured with the application versions, security patches, and
software configurations that match company standards. It also includes built-in cost management features that
enable users to set usage quotas in order to stay within set project budgets. Nevertheless it is focused on select,
migrate and monitor different Clouds from a single management environment and does not provide negotiation
and optimization features.

CloudSwitch [18] is a Cloud broker software vendor that helps enterprises to move Cloud data more easily. It
advertises itself as a the enterprise gateway to the Cloud and provides the ability to integrate public application
program interfaces (APIs) with Cloud providers to make the process of migrating an application or workload
to the Cloud as simple as a drag-and-drop action in a web browser. Nevertheless it does not really provide a
proper brokerage service but it gives customers an interface to port applications to several different providers.

The JamCracker system, available in [7], provides a platform where it aggregates and distributes on-demand
services through a global ecosystem of Service Providers, Resellers, System Integrators, and ISVs but it does
not provide a proper brokerage service whereby an entity looks at the actual QoS requirements of the service
under question, the various IPs that could potentially meet them, rank them against parameters like cost, trust,
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eco-efficiency, risk etc. and provide functionality to on board these applications in to the various IPs finally
selected as stated in [15]. The brokering problem is also investigated in several scientific communities and
European Project.

The Cloud-service broker, presented in [9] as an emerging technology, intermediates heterogeneous multiple
Cloud services for both providers and consumers. The Cloud-service-broker portal enables the Cloud service
providers to specify that their services are available. In addition, the Cloud-service-consumers may find the
most suitable services by negotiating the agreements on the services. It is based on a Cloud service register
catalog where it performs a search of the desired proposal. Nevertheless it does not assist users with decision
making to evaluate and select a Cloud vendor or solution based on specific requirements.

A Cloud broker architecture for deploying virtualised servers across available Clouds is presented in [12].
The paper is focused specially on the scheduler, that is one of the three components. Other components are
the VM manager and the Cloud manager. In particular the paper addresses the placement challenge by using
different algorithms developed for optimizing the cost of the required infrastructure. Specifically, it utilizes a
prediction model which takes into account the historical prices of available Cloud providers in order to calculate,
for the next hour deployment, the best Cloud provider to move the VMs to. Nevertheless it is focused on cost
optimization and does not consider the other different criteria.

In the scope of the EU FP7 project OPTIMIS, an architectural design of a framework capable of powering
the brokerage of Cloud services is proposed and is under development. It is described in [13] that introduces the
problem and the architectural design, but it does not provide an implementation or algorithms to achieve the
brokering. The main features are to ensure data confidentiality and integrity to service customers, to match the
requirements of Cloud consumer with the service provided by the provider, to negotiate with service consumers
over Service Level Agreements (SLAs), to maintain performance check on these SLA’s and take actions against
SLA violation. Moreover it aims to effectively deploy services provided by the Cloud provider to the customer,
to manage the API so that provider does not learn anything about the identity of the service consumer, and to
manage security problems.

The paper [14] proposes an architecture for cloud brokering and multi-cloud VM management, describes
algorithms for optimized placement of applications in multi-cloud environments. The proposed model incorpo-
rates price and performance, as well as constraints in terms of hardware configuration, load balancing, etc. An
evaluation against commercial clouds demonstrates that compared to single-cloud deployment, a multi-cloud
placement algorithms improve performance, lower costs, or provide a combination thereof. It becomes evident
that capabilities of optimization and decision making to evaluate and select a Cloud vendor or solution based
on specific requirements, which is the focus of the proposed approach have little or no support in Cloud service
brokerage available today.

In preliminary work [3, 4], the authors present the architecture of the Broker Agent and its implementation
within the EU FP7 mOSAIC project for provisioning of brokering service at Cloud platform level. The proposed
Cloud broker provides several facilities in order to optimize different variables like overall infrastructure cost,
service performance, or others, depending on the strategies selected by the user. Moreover it gives the possibil-
ities to set different optimization criteria and several restrictions to support user in the choice of the provider
that is more adapt to their applications. According to [16], the agility and flexibility are the main elements
that encourage people to adopt the Cloud, so the Cloud broker will assume a key role in the future deployment
of solutions as a service. But this kind of multi-criteria optimization problems are hard to compute, so it is
necessary a scalable, multi-user, distributed solution. In this paper is described a new scalable and distributed
approach that overcomes the performance limitations of paradigm as a service. Some experimental results are
also presented.

3. Problem Statement. Deployment of Cloud services makes it necessary to select the provider that
best fits the application requirements. Usually it is not a trivial task because there are different Cloud providers
that offer different features and perks, and many of them are not directly comparable. Besides it could be
necessary to consider composition of services from different providers, as it happens when organizations use
different product packages because no single supplier can meet all of their needs.

The broker realized in the mOSAIC FP7 project [1] is designed and developed to support decision making
by a Cloud deployer. It is centralized on a single brokering process, which takes care of evaluating all available
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Fig. 3.1. mOSAIC Broker

alternatives limited to a single user’s preferences. Moreover in this project the brokering of service composition
has not been addressed.

The mOSAIC Broker is shown in Figure 3.1. For each received call for proposal (CFP), cloud agency creates
a broker that searches for vendors that can offer resources with the required QoS (Quality of Services). As shown
in Figure 3.1, the broker collects a number of proposals described in a vendor agnostic way and chooses the
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best one(s) according to the brokering rules.

To provide such an application as a service, with the aim to overcome the single-user delivery and the
atomic service brokering, new requirements and challenges will be introduced. The former limitation deals with
the need of handling increasing and dynamically changing workloads. The latter constraint affects the response
time and the complexity of a single brokering problem.

With this premise a centralized approach is not feasible anymore. But Cloud allows to scale the computing
resources according to the measured workload, so improving also their utilization. The idea is to exploit such
elastic computing model for building a distributed Cloud broker over a Cloud infrastructure. But the application
must be able to reconfigure itself autonomically to keep the QoS level above the desired threshold. Due to lack
of control both of the network and of the compute utility, not only performance issues should be addressed, but
also reliability and availability when the service execute over such kind of distributed platform.

At a glance it is possible to identify three different scenarios for our brokering solution with improving
capabilities.

1. A mOSAIC Broker is a single-user application that gets one CFP and returns many atomic proposals.
2. A brokering As A Service is a multi-user application that gets many CFP and returns many atomic

proposals.
3. A multi-Cloud brokering As A Service is a multi-user application that gets many CFP and returns

many compositions of proposals.

Moving from the first scenario to the second ones implies the handling of parallel requests from multiple users.
The service must be capable to distribute the workload among many worker nodes. A trivial solution would be
the execution of brokering processes shown in Figure 3.1 across the nodes according to a task parallel approach.
This solution would limit a fine grain balancing of the workload among working nodes because different brokering
problems could have different completion time. In addition it prevents the utilization of the distributed resources
to solve a single brokering problem, that can become computationally hard when we move from the second to
the third scenario.

4. Requirements for an elastic brokering and design guidelines. Addressing the design of a Cloud
service two different requirements have to be taken into account: the interaction with the service requestor at
front-end and the processing of service requests at back-end. Service levels at front-end are measured by the
availability and responsiveness. The first one regards the capability to accept service requests from requestors.
It could be independent from the processing capability at back-end, above all if the results must not be provided
in real time. The second one is about as much interactive should be the service. It affects in advance the quality
perceived by the requestor beyond the time within the response is expected to be available. In the presented
case the idea is to accept the brokering requests and to provide information to the requestor about the status of
the job, or about intermediate results with a certain level of responsiveness. Design solutions for exploitation of
elasticity at front-end are quite common. Availability is the first service level that every Cloud provider grants
into the SLA. Moreover most of Cloud services are conceived to provide web interface and interactive interfaces.

The design guidelines suggest to implement a synchronous front-end that is deployed on multiple virtual
machines. The Cloud infrastructure will monitor the resource utilization of each virtual machine and will
start/stop new instances. A load balancer will distribute the requests between the running replicas. The
development of a stateless pool of web services is a mandatory choice to allows for a simple automatic scaling
of the front-end. Besides the status of the web session is shared by Cloud data services. Distributed cache will
provide reliability, allow transparency between service instances and load balancer, improving responsiveness.

Service levels at back-end are throughput and the completion time of each job. Here it is important that
the utilization of the computing resources is maximized. The effective scheduling for load balancing of jobs and
their fair allocation is the most relevant issue for scalability. A stateless solution is again desired for allowing
any new idle worker to get any waiting job and to execute it using available resources. The usage of NOSQL
solutions is quite common to partition the data providing availability, and facilitating the scheduling. Key value
stores, queues or big tables [10] are example of services that store the application data. Queue services are used
for synchronization and to route the message among workers. Asynchronous solutions improve utilization and
facilitate the scheduling. The routing algorithm of the queue can be used to add intelligence to the scheduling
by distributing the workload.
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In the presented case it is important to scale the system to collect as many brokering requests (call for
proposals) as they come. The only limitation will be the number of virtual machine instances to use and pay
for, both to run the service front-end and the service back-end. Although many load balancing schemes have
been presented in Cloud computing, there is no scheme providing the elasticity and adaptive adjustment in
Cloud computing. This allows us to address fine-grained load balancing and scalability at design time and at
component level. It is possible to model the brokering as a data parallel problem. The pool of stateless worker
will be composed of vendors, brokers and SLA managers. Vendors will run on behalf of providers. They receive
CFPs and are in charge to generate correspondent proposals. Brokers will evaluate the score of a proposal
comparing it with the correspondent CFP, without caring about the specific transaction and about who is
the requestor or the vendor, producing a new SLA candidate. SLA manager compare the score of each new
produced SLA candidate with the ones belonging to the same transaction, filtering only the best ones.

In this scenario the data flow generates events which trigger asynchronous workers. A new CFP trigger idle
vendors. New proposals triggers idle brokers and new SLA candidates activate SLA managers.

To conclude this section it is necessary to discuss about real time requirements, which can become relevant
for such a kind of service. Let us suppose that we must integrate services form different providers, when
constraints and preferences are not satisfied by only one. In this case it is necessary to consider all the possible
compositions of services, being aware about how the Service Levels and cost of the composite service change.
The brokering problem can become computationally hard as it is shown in [2] because of the exploration of a wide
solution space. In fact the number of solutions to be evaluated grows exponentially and an exhaustive evaluation
of all combination can become unfeasible. Heuristic approaches such as multi-objective genetic algorithms can
reduce the computational requirements and the execution time, but introduce a loss of optimality. In this case
it is possible to provide a sub-optimal solution within time constraints that can be acceptable for the user.

To integrate such approach within our Cloud service it is necessary to add an expiration time to the
proposals and the capability for the SLA manager to trigger a new CFP that allows the vendors to produce the
next generation of proposals.

This solution have been described in [5] and [11] where also experimental results have been shown. Exper-
imental results show that Multi-Cloud brokering service can reduce the computational requirements and the
execution time, but introduce a loss of optimality. The optimality is affected by the specific genetic algorithm,
by its parameters such as the crossover, by the number of individuals evaluated (that means the execution time),
the number of objectives to be minimized/maximized, the kind of problem. Performance evaluations showed
the feasibility of the approach and that solutions approximated well the true Pareto front in all the cases at
least in some condition. In any case the generality of the discussion about the scalability of the Cloud brokering
service is not affected by the typology of solution.

5. System Overview. The front-end architecture is composed of a web service that allows for
• Registration: Users can create a profile and have a unique personal account having the possibility to
choose his credentials (username and password).

• CFP submission: the logged users can insert one or more Call For Proposal. Users that have inserted
a CFP can run a new request, in a completely asynchronous way.

• Proposals upload: Cloud Providers can insert proposal and update the portfolio of their offer.
• Brokering results: Users can consult their requests, the status of the requests and the available results.

Figure 5.1 shows the front end section with several service instances that receive requests from end users and
access in-memory shared information. The in-memory session manager will allow for the exploitation of elastic
capability of the Cloud infrastructure. The warm copy of the session manager allows for improving reliability.

The back-end architecture is composed of stateless and asynchronous agents whose tasks are scheduled by
service queues. Those agents have to be able to run on every available computing resources and perform the
brokering. Nevertheless the front-end must be implemented by a service interface that accepts synchronous
requests and forward them to an asynchronous back end. Those new pending tasks are stored in order to be
handled by pools of asynchronous working agents that will return the current status of service elaboration.

As it is shown in Figure 5.1 agents will implement the back-end of the new agency, that is completely
free from management of the interactions with clients. Cloud storages (database ad queues) keep persistent
information of the distributed applications and implement communication channel between synchronous front-
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Fig. 5.1. Distributed architecture

end handlers and back-end workers. This design choice has been done in order to obtain an easy distribution
of the workload using a task parallel programming model.

Stateless agents get new problems by a common Bag-of-Tasks in a concurrent and parallel way, executing
wherever there are available computing resources, and updating the computing results if they complete success-
fully. If there are unsolved problems which remain in the Bag-of-Tasks because of any failures or delay, they
are re-scheduled, so ensuring reliability.

The vendors agent sign up to the CFP QUEUE to receive the CFPs received from users. Each of them
submits its proposal to the PROPOSALS QUEUE. Idle brokers are waiting for proposals. A single proposal is
dispatched to one broker that executes its matching with the correspondent CFP for evaluation purpose. The
matching results is stored into the SLA QUEUE if it belongs to the Pareto front of optimal solutions. ActiveMQ
has been used as queue services for communication and synchronization. Brokering results are stored also into
an in-memory session, together with information of each related user’s request.

6. Prototype Implementation. The implementation of a prototype shows the utilization of open-source
tools which results in a rapid implementation with minimal or no software input cost.

Users are provided with the web interface shown in Figure 6.1. It allows for composing the CFP and listing,
for each session, the best SLAs according to different brokering objectives. Users log into a web page, the web
page makes a request to a REST service and submits the call for proposals.

The Call for Proposals are included, along with information of the session and the user, in CFP queue.
The characteristic of the CFP queue is that all consumers that join the queue, receive all the submitted CFPs.
Apache Tomcat has been used as web and application server to run the web service at front-end. It has been
specifically configured for working with the Terracotta Framework for the transparent distribution and sharing
of web sessions. Jersey API have been used to implement the RESTFull service that provide methods for
authentication, CFP submission and SLA retrieval.

Meanwhile their requests are pending, users can wait for the result of brokering or may poll periodically to
get the status of their request. When one of the brokers has found a feasible proposal for a certain request, the
current results are updated so that user can get it. The brokering terminates when there are no more proposal
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Fig. 6.1. Web GUI

suitable for optimizing the user’s query to be evaluated. Then the termination is notified to the user.

CFPs and SLAs are stored in the RDBMS Mysql databases, that is used as persistent storage.

The Web and Application Server chosen to run the web service at front-end is Apache Tomcat that is the
most popular open-source Java Web application server [20]. Tomcat, typifying object-based servers, has some
unique runtime properties including intensive threading, high read/write ratios, extensive object sharing via
collections framework and fine-grained irregular object access patterns [8].

Terracotta [21] is a JVM-level clustering product. It works within an aspect-oriented programming (AOP)
framework and has to instrument product-specific classes. Users need to manually specify shared classes as
distributed shared objects (DSOs) and their cluster-aware concurrency semantics.

Tomcat has been specifically configured for working with the Terracotta Framework for the transparent
distribution of web sessions.

Jersey API, that allow the creation of Asynchronous RESTFul web service, have been used by the service
requestor and by vendor agents to handle HTTP service requests and responses. The relational database
management system (RDMS) is implemented by Apache Derby. Finally Apache ActiveMQ provided us a
distributed open source queue service. The queue service is very important because the scalability of the
proposed architecture is inherently tied to the assumption that the message queue can scale perfectly. Figure
6.2 shows the sequence diagram of the system. The first action that is performed is the login phase. As one can
see, the client sends an http request (post) to the server, which creates an instance of access for managing users
and their profiles. After the authentication phase, users can enter their CFPs. In particular, the client sends a
request for insert a CFP to the server, which creates an instance of Services class that uses the Producer class to
access a Queue. Similarly, the client sends a request for insert a CFP to the server, which creates an instance of
VendorServices class that uses the Producer class to access a Queue. A generic client sends a request for insert a
proposal to the server, which creates an instance of VendorServices class that uses the Producer class to access
a Queue. Indexing agents and broker agents are created to get elements respectively from the PROPOSAL
QUEUE and from the CFP QUEUE as they have been populated by vendors and broker clients. In particular,
a consumer process (which runs in the background) withdraws proposals from the proposals queue and inserts
them from time to time in a database. The Consumer send a getProposal() message to Queue and obtains a
proposal to be sent to the DB for store it. Brokers operate in background and send requests to the class queue
to get a CFP and class DB to get the proposals inserted. After that, they start the brokering and send the
result to the Session class that, using a database, returns the result to the user with the corresponding ID.

7. Experimental Results. In order to evaluate performances of the proposed approach the following
testbed were set up.
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7.1. Description of Testing Environment and Test Cases. A Linux physical machine hosts the
ActiveMQ 5.6 service, with a Topic, named CFP QUEUE, that receives CFPs from concurrent clients, which
run on a different physical machine in the same 1GB Ethernet local network. The server is 64bit Intel CoreTM2
Quad Processor Q9300 (6M Cache, 2.50 GHz, 1333 MHz FSB) with 4GB RAM. Oracle Java7 is the runtime
environment. Concurrent clients send 10 CFPs, each one, according to a Poisson process with different mean
time of arrivals. Vendors run on the server and wait for incoming CFPs. All vendors get the same CFP and
generate their proposal, which is sent to the PROPOSALS QUEUE. A Poisson distribution has been used to
generate a synthetic workload. The average queue time has been measured by configuring the native trace
log facility of Active MQ and analyzing the output. The measurements run on at least three machines. The
database is only used at the start-up to load the current offers by the vendors and to save request and response
(CFPs and SLAs). All the brokering computation does not use the RDBMS Mysql databases but information
is stored in memory and in the queues.

7.2. Scenarios and Test Data. In a first scenario all brokers run on the server itself. They receive a
different proposal from the QUEUE and evaluate the compliance with the correspondent CFP. The result is
sent to an SLA QUEUE from which only the best ones are notified to the clients. The performance of such
configuration have been evaluated changing the number of clients, the number of vendors and the number of
brokers. All the measures are taken at server side. In the following the most significant figures are explained.
Figure 7.1 presents the number of evaluated proposals per millisecond for each experiment.

The first series of Figure 7.1 shows the case of 2 clients that send CFPs with a mean time of arrivals of 2
seconds to the server that hosts 4 vendors and only one broker. It is possible to see that to evaluate 80 proposals
the server takes about 24 seconds in this case.

7.3. Results. It is possible to conclude that the application scales well in all the cases where the workload
does not exceed the server capability.

The second series represents the same scenario, but with an mean time of arrivals that is 1 second. In this
case it is straightforward to observe that only one broker is able to process all the requests in about 13 seconds.
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Fig. 7.1. Proposals processing

The slope of the line shows that the proposals are processed faster as they arrive with greater frequency and
the workload is below the capability of the server. The same happens in about 5 seconds when the mean time
of arrivals is 0.5 seconds (third series).

In the fourth series the number of clients and the number of brokers have been doubled. So there are 160
CFPs, which arrive with a doubled rate, but the throughput of the server does not change as the number of
broker threads have been doubled. Just in the end it is possible to observe a slightly shift of the line because
the clients stopped and the queue are going to be empty.

In the fifth series the number of brokers have been doubled resulting in a faster throughput at the beginning,
if compared with the previous case, but after that the slope of the line follows again the trend of the previous
case.

Finally, in the case of 8 clients with 2 and 4 brokers (sixth and seventh series) it is possible to observe that
the slope of the line depends on the number of brokers again and it is constant till when the queue has proposals
ready to be dispatched or the overhead makes the machine slow.

A loss of performance is observed either when the number brokers is greater than 4, as they exceed the
number of cores of our server, and when the number of clients double, as the workload overcome the capability
of our machine. Figure 7.2 shows the maximum throughput in the case of 8 clients and 4 brokers.

The effect of the overhead, due both to the need of handling the high rate of incoming CFPs and to the
schedule of a number of broker greater than the number of cores can be observed. In particular 2 clients never
overload the system. The workload increases both because the high number of concurrent clients and because
of the scheduling overhead. For this reasons there is a random delay for both the traced events starting from
when the server reaches the overload condition.

A noticeable effect of this behavior is the average waiting time of a proposal into the queue, that affects
directly the response time of the system and service level perceived by the client.

Moreover it is possible to notice that, with the same mean time of arrivals, configuration with 8 clients
and 4 brokers performs better than configuration with 8 clients and 8 brokers, and similar combinations. It
happens because CPU exceeds the number of cores because of the overhead due to the process scheduling and
to the context switch. In fact the Intel Q9300 quad processor has a single quad core CPU that does not support
hyper threading. When the number of threads becomes 8 two of them share the same cache and the same core,
affecting the performance.

In Figure 7.3 the occurrence of the overload condition can be observed, with 8 clients and 4 vendors varying
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Fig. 7.2. Broker throughput

(a) c8-v4-b4-T500 (b) c8-v4-b8-T500

Fig. 7.3. Mean time of arrivals vs service time of proposals

the number of brokers. The x-axis shows the different proposals in order of arrival. The blue series shows the
elapsed time between the arrival of a proposals into the queue and its withdrawal by an idle broker. The red
series shows the time between receiving of a proposal by the broker and the next arrival into the SLA QUEUE. In
Figure 7.3 (a) 4 brokers pull proposals from the queue, keeping the processing time comparable with the enqueued
time. At the end of the time series the rate of incoming proposals, which is slightly higher that the brokers’
throughput, is going to introduce an overhead that affects the performance. However the overhead rapidly
decreases because brokers have processed almost all proposals when clients finished to send their requests. In
Figure 7.3 (b) the number of brokers exceeds the number of supported threads. Their scheduling, over a limited
amount of resources, causes a waiting time of proposals greater than their processing time. The processing time
is not affected till when the high rate of incoming proposals overloads the system. Experimental results show
that the time elapsed from the beginning of the experiments and the overload condition is almost the same,
as it depends on arrival rate of incoming requests. However in the first case almost all the requests have been
processed, but in the second experiment many requests still need to be consumed and their processing time is
much affected by the overload condition. These results demonstrate that when the rate of incoming requests
grows it is necessary to look for a distributed solution that scales well when new computing resources are added.

Table 7.1 shows the average enqueued time of a proposals in the case of the server. It is much more than
the mean time needed by a broker to process the proposal that is about 55 ms. It is possible to observe that
before the performance degradation the speedup is 2.38 with two brokers and 2.52 with 3 brokers.

In order to improve this parameter, and to address the problems related to the overload caused by a too
high arrival rate of requests, the possibility to offload part of the workload using a Cloud Infrastructure have
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Table 7.1
Average enqueued time on server

configuration 8c-8v-1b 8c-8v-2b 8c-8v-4b 8c-8v-8b
average time 428ms 180ms 170ms 171ms

been investigated. An OpenStack installation in the same local network have been used. This private Cloud
provided a Linux virtual machines. The Linux OS sees just one processor with a 64bit virtual Intel Core 2 Duo
P9xxx (Penryn Class Core 2) 2.5GHz with 2K L1 cache and 2GB RAM. In order to estimate the processing
capability of such computing resource tests have been performed on the scenario defined above with no brokers
running on the server and some brokers executing only on the virtual machine. The estimated processing
time for a proposal evaluation is equals to 100ms when only one broker is running. Table 7.2 shows that the
average enqueued time for a proposals improves when two brokers are used and goes worse when 4 threads run
concurrently. Also in this case the reason of the performance degradation is a number of thread greater than
the number of cores, as the virtual processor does not support hyper threading. The speedup is 1.55 in the case
of two brokers.

Table 7.2
Average enqueued time on VM

configuration 8c-8v-1b 8c-8v-2b 8c-8v-4b
average time 1430ms 920ms 11296ms

Cloud support have been tested to evaluate the improvement of the best working configuration presented
before, that has 8 clients, 4 vendors and 4 brokers on the server. Table 7.3 shows that it is possible to improve
the performances when 2 broker threads run on the VM. About the distribution of workload between machines,
it has been delegated to the ActiveMQ service that distributes the messages to the consumers according to their
capability to consume. It has not been studied further. Using heterogeneous machines it is not relevant the
speedup as scalability measure. Moreover the benefits of using only one less powerful machine provide a not
relevant improvement. The availability of many nodes, even if with reduced computational resource could be
useful.

Table 7.3
Average enqueued time on hybrid computing infrastructure

configuration 8c-8v-4b 8c-8v-4b-1b 8c-8v-4b-2b 8c-8v-4b-4b
average time 170ms 165.578ms 160ms 167ms

8. Conclusion. Cloud Computing is an emerging trend that will become even more widespread especially
in companies and enterprises but some changes are needed to allow users to take advantage of these innovations.
When moving to the Cloud it is important that the requirements for the move are understood and that the
Cloud services are selected to meet these needs.

8.1. Background. The paper presents a scalable and distributed solution for the SLA-based brokering
of Cloud resources from different Cloud vendors and for Multi-Cloud brokering. It also describes the system
architecture and implementation details of a prototype of this distributed broker that overcomes the problems
of the centralized broker so allowing a Multi-User and a Multi-Cloud utilization.

8.2. Main Findings and Future Works. The great advantages of the proposed approach is the scal-
ability, obtained dividing the brokering problem into simpler tasks, which are distributed among independent
agents, whose population dynamically scale together with the computing infrastructure, to support unforesee-
able workloads produced by the interactions with large groups of users. Besides it allows the concurrency, is
open and available to enable easy extensions of existing components and to add new components. A study of
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the scalability of the system and of the behavior of its components is described. In future work, we plan to
perform a more extensive performance study in a wider range of scenarios.
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Abstract. This paper describes the challenges and scalability results of running a large finite element model of variably
saturated flow in a three-dimensional (3-D) levee on a large high performance, parallel computer using a mesh with more than a
billion nodes and two billion elements. MPI (Message Passing Interface) was used for the parallelization. The original finite element
model consisted of 3,017,367 nodes and 5,836,072 3-D prism elements. The model exhibited three characteristics which made the
problem difficult to solve. First, the different soil layers had soil properties that differed by several orders of magnitude. Secondly,
there existed a 5 ft × 6 ft × 6 ft region at the toe of the levee where the mesh was refined using 1 in × 1 in × 1 in 3-D prism
elements having randomly generated soil properties. Thirdly, variably saturated flow in levees is governed by the highly nonlinear
Richards’ equation.

A utility program was written to increase the size of the original problem by an arbitrarily large factor by replicating the original
mesh in the y direction. A factor of two, for instance, would exactly double the number of elements and double the number of nodes
less the interface nodes connecting the two pieces. The original data set was run using 32, 64, 96, and 256 MPI processes (one core
per process was used throughout this study) with time to solution taken for each of these process counts. The data set was then
magnified by 2 and runs for 64, 128, 192, and 512 processes were made with time to solution again recorded. This procedure was
repeated for different numbers of processes and magnification values. The largest data set was generated from a magnification of
350 yielding a mesh of 1,044,246,303 nodes and 2,042,625,200 3-D prism elements. The Cray XE6 and Cray XC30 computers were
used in this study. A tabulation of results is presented and analyzed, as well as the significant challenges that occurred in scaling
up the problem size. Weak and strong scalability results are also presented in this paper.

Key words: high performance computing, finite element method, variably saturated seepage flow modeling
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1. Introduction. The maturing of large parallel supercomputers makes it possible to solve problems never
before attempted. It is a trivial matter to ask for 100,000 or more cores in a batch submission script, but doing so
without experimenting with gradually scaled-up problem sizes often leads to unexpected parallel inefficiencies,
waste of resources, or even outright failure. This paper describes the challenges presented and the efforts made
to run ever larger finite element groundwater models using up to a billion nodes and two billion 3-D prism
elements. Weak and strong scaling were used to measure the success of the effort.

The problem chosen is a finite element simulation of variably saturated flow in porous media [1] where there
are significant heterogeneities in the soil and difficult nonlinearities in the governing partial differential equation
of Richards’ equation [2]. Large systems of linear, simultaneous equations must also be solved hundreds of times
using solvers such as the conjugate gradient method [3]. The matrices are often stored in a sparse matrix format
leading to matrix-vector operations that involve irregular data patterns and indirect addressing. Clearly, the
chosen problem is a difficult real-world problem to tackle.

2. Description of the problem. The problem consists of steady-state flow through a levee as shown in
Fig. 2.1 and idealized in Fig. 2.2 where there are several soil layers with soil properties differing by 5 to 6 orders
of magnitude (e.g., from clay with a low hydraulic conductivity to sand with a high hydraulic conductivity).
Fig. 2.3 shows a portion of the 3-D mesh of the levee system before a tree with its root system was added
at the toe. More details are given in [4]. To model the tree root at the toe of the levee, a 5 ft × 6 ft × 6
ft heterogeneous zone was added (see Fig. 2.4) in which the mesh was refined using 1 in × 1 in × 1 in 3-D
prism elements. To simulate heterogeneities, a randomly generated hydraulic conductivity was assigned to each
element in this zone. The resulting mesh consisted of 3,017,367 nodes and 5,836,072 3-D prism elements.
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Fig. 2.1. River side of a levee with trees.
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Fig. 2.2. Cross section of a levee with material types and elevation of the river.

3. Computational challenges. The many computational challenges inherent in this application were as
follows:

• Complicated geometry. The geometry of the levee system contained several regions having different soil
properties.

• Wide-ranging material property values. The soils in the levee ranged from sand to silt to clay, and the
associated material properties such as hydraulic conductivity spanned several orders of magnitude [5].

• Nonlinear system of equations to solve. The system of equations resulting from the finite element dis-
cretization of the levee seepage flow problem was nonlinear because the flow was partially saturated and
partially unsaturated. This required the repeated solution of a simultaneous, linear system of equations
resulting from either a Picard or Newton linearization in conjunction with line search algorithms [6], [7],
and [8]. As the number of nodes and elements increased, this computation became increasingly difficult.

• Ill-conditioned system of linear equations. When the soil is partially saturated, material properties such
as relative hydraulic conductivity and moisture content become several orders of magnitude smaller as
the soil becomes less and less moist. This adds additional stress to solving the linear system of equations
at each nonlinear step. A study of preconditioners and solvers for the variably saturated problem is
given in [9].

• Sparse matrix format. The coefficients of the matrices used in solving the linear system of equations at
each nonlinear iteration were stored in sparse matrix format with indirect addressing. This irregular
pattern of data decreased the efficiency of the computer for such things as vectorization of the matrix-
vector calculations.
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Fig. 2.3. Portion of the 3-D mesh before the root zone was added.

4. High performance parallel computing. A 3-D seepage/ground-water finite element program was
parallelized using MPI [10] on Garnet, the Cray XE6 at ERDC [11], and on Lightning, the Cray XC30 at the
Air Force Research Laboratory, Aberdeen, MD, USA [12]. Garnet consists of 4,716 dual-socket compute nodes
with each socket populated with a 2.5 GHz 16-core AMD 6200 Opteron (Interlagos) processor. Each node has
64 GB memory (60 GB user-accessible) or an average of 1.875 GB memory per core. The interconnect type is
Cray Gemini in a 3-D torus topology. Garnet is rated at 1.5 peak PFLOPS or 10 GFLOPS per core. Garnet
has a large Lustre file system that is tuned for parallel I/O. Lightning consists of 2,360 dual-socket compute
nodes with each socket populated with a 2.7 GHz 12-core Intel Xeon E5-2697v2 (Ivy Bridge) processor. Each
node has 64 GB memory (63 GB user-accessible) or an average of 2.625 GB memory per core. The interconnect
type is Cray Aries in a Dragonfly topology. Lightning is rated at 1.2 peak PFLOPS or 21.6 GFLOPS per core.
Lightning has a large Lustre file system that is tuned for parallel I/O.

The parallelization of the 3-D seepage/groundwater program was broken into four separate parts, and each
part was a stand-alone FORTRAN or C computer program. One MPI process was placed on each core of a
compute node. The four programs will now be described.

• Partitioner. The mesh is partitioned using the Parallel Graph Partitioning and Fill-reducing Matrix
Ordering program, ParMETIS [13], to divide the mesh into approximately equal pieces among the
processes. This is illustrated in Fig. 4.1 where three parallel processes have the nodes of the mesh
divided among them. The output of the first version of ParMETIS used was a single file containing a
line for each finite element node stating to which process the given node belongs. As the problem size
grew, the version of ParMETIS that distributes the output file over the processes in a block partition
style was used. As seen in Fig. 4.1, some elements contained nodes belonging to different processes.
Each element is assigned to that process that owns the first node of the element. Nodes of an element
belonging to a particular process that are not owned by that process are called ghost nodes. Also some
elements have nodes belonging to a particular process but that element does not belong to that process.
These are called ghost elements, and they create even more ghost nodes.

• Preparer. The next piece of the solution creates a file for each process that contains the owned and ghost
nodes and elements for that process using local numbers (see Sect. 5.2.2), a subset of the boundary
condition file and initial condition file belonging to that process, a list of nodes where data are to be
sent to every other process, a list of nodes where data are to be received from every other process, and
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Fig. 2.4. Heterogeneous zone representing the roots of a tree.

global node and element numbers for the owned and ghost nodes and elements on that process.
• Finite element program. This part does the finite element computations with resulting output files
containing results for each owned node of that process. This is the primary focus of the time-to-solution
results presented later in this paper.

• Postprocessor. This final part is a postprocessor program that combines all data from each process into
the final output files.

5. Challenges.

5.1. Partitioner. This original version of this program (written in C) simply reads in the geometry data
file and calls one of the ParMETIS programs to produce a single file with a line of data for each node that gives
the process that owns the node. That technique was adequate for the original problem with 3,017,367 nodes
and smaller versions of the bigger meshes. For example, when the original data set is doubled (m = 2), the
mesh has 6,000,831 nodes, and the partitioner program took only 6.3 seconds to run. At this size of problem, it
was possible to use global arrays to store the mesh. However, as the problem size grew, the geometry files also
continued to grow, and the time for reading this file into the program continued to grow as well.

5.1.1. No global arrays. The finite element mesh data needed for the partitioner took 710 Mbytes of
memory for the original problem. However, magnifying the problem to m = 100, for instance, required 68
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Fig. 4.1. An example of dividing a finite element mesh into several partitions.

Gbytes of memory to store this same data. This clearly illustrated why no global arrays can be allowed in
any part of this application. To completely avoid this use of global arrays makes the process of parallelization
much more difficult. It was decided to first read the mesh data and store it in the block partition format. Then
the adjacency table routine [14] had to be modified to use this partitioned data. Finally, a different version of
ParMETIS was called and the output file written to all the processes in block partition format.

5.1.2. No ASCII data file containing the entire mesh. The original version of this application had
as one of its ASCII input files a file containing the nodes and elements. A node line began with the characters,
GN, and an element line began with GE. Further, these type lines could be mixed in any order, requiring the
reading and processing of one line at a time. As the problem size grew, the time to process the large geometry
data files became prohibitive. For example, at m = 2, the entire partitioner took 6.3 sec on Garnet and for
m = 4, the time was 11.8 sec on Garnet. However, at m = 100, the time to read this input file exceeded two
hours.

Different solutions were suggested including rewriting the ASCII file as a binary fire. A better solution
was to modify the serial program that generated the geometry file in the first place. Instead of writing one
huge file, the new version of the serial program wrote node and element data for each process. Further, one
file for nodes and one file for elements were written in a simpler format. In this new way, to create the data
files for each process for m = 100 took 2544.6 sec on Garnet. However, since 3,200 processes were used for the
seepage/groundwater program run, this is still less than one second per process. In the case of m = 100 in
which the grid data could not be read into the partitioner program in two hours using the previous approach,
the new approach required only 1.9 seconds on Garnet for the same task.

5.2. Preparation program. When this research project began, it was thought that the parallelization
of the actual finite element program would present the greatest challenge. However, because of the restriction
of no global arrays, the preparation program was by far the most troublesome and could be improved further
from the modifications that were made. Given below is a summary of the challenges faced for the preparation
program.

5.2.1. No ASCII data file containing the entire mesh. The same problem existed with the prepara-
tion program as with the partitioner in that the time reading the very large geometry file became overwhelming.
The same technique of reading the individual node and element files for each process worked well here, too.

5.2.2. Global, local, and ghost nodes and elements. Each node has an original global node number
assigned to it, and it is the same everywhere. When the nodes are first and temporarily distributed evenly in
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the block partition style to the different processes, each node then has a local node number stating where it is
placed on its process. Now ParMETIS dictates that a given node actually belongs to a different process than,
in general, it now resides, giving rise to a second local node number. Also, elements are done exactly like the
nodes; read in block partition format and then moved to their proper final process. As with the nodes, each
element has two different local node numbers. As can be seen, managing all this data is very tedious.

5.2.3. Output files. The finite element program needs various files such that there is one for each process
and all data use the final local node and element numbers. These files will now be briefly described.

• Mesh file. The list of local (owned plus ghost) nodes and elements are placed in this file. Before writing,
the ghost nodes are sorted by increasing process number where the given node resides. For example,
suppose for a small problem, process 0 has 10 owned nodes and 2 ghost nodes from process 1, 3 ghost
nodes from process 4, and 1 ghost node from process 14. The ghost node numbers are assigned local
node numbers 11 and 12 for the process 1 ghost nodes, 13, 14, and 15 for the process 4 ghost nodes,
and 16 for the process 14 ghost node. Getting all these data properly numbered and sorted without
any arrays containing the entire mesh is remarkably challenging.

• Initial condition file. The original initial condition file contains a value of total head for each node to
give the finite element program a place to start for iterating to a solution. A value for all the local
nodes and elements is now needed for each process.

• Boundary condition file. The original file contains parameter data that is simply reproduced for the file
for each process. However, boundary conditions are also applied to individual nodes with one example
being the total head resulting from the elevation of a river. The original data has for this type of
boundary condition the global node number and the total head associated with it. An initial way of
handling such a boundary condition was to send the global node number to all the processes and then
have each process search through the global node numbers associated with each local node to see if the
node is on that process. If the node is on that process, that boundary condition line is written to that
process’ boundary condition file with the global node number being replaced with its local node number.
As the problem size increased, so did the number of such boundary condition nodes to consider. This
simple search had to be replaced with a hash formulation [15]. For m = 100, the search time using the
hash table was 7.5 sec on Garnet.

• Combination of global node numbers, global element numbers, and ghost node data. A file for each
process containing (1) the global node number for each local node, (2) the global element number for
each local element, (3) the number of values and starting memory location for data received from the
other processes, and (4) the number and values of the local node numbers where data are to be sent to
all the other processes.

5.3. Finite element program. This is the major piece of the seepage/ground-water suite of programs
that was tested and timed as it is the primary computational engine. It was initially thought that this would
cause the greatest difficulty in running huge problems with large numbers of processes. However, there was
only one place where global arrays were being used, so only this algorithm had to be revised. This was the
ghost node update portion of the conjugate gradient solver where the data created by the preparer program
was stored more efficiently.

6. Results and Analysis.

6.1. Results. Tables 6.1–6.12 give the time to solution for the finite element program on the Cray XE6
and XC30 for different problem sizes (m values) and process counts. The PGI [16] compiler with the compiler
option “-fastsse” was used in the computer runs. The original problem was run with 32 MPI processes. The
“weak” scaling or speedup in the tables refers to increasing the number of MPI processes the same amount as
the problem size is increased. Thus, in Table 6.2,

Tm=1,p=32

Tm=2,p=64
means divide the time obtained from running the

m = 1 problem with 32 MPI processes by the time it took to run the m = 2 problem with 64 MPI processes.
As another example, when m = 100, the number of processes used was 3200 for the weak scaling. The ideal
result of the weak scaling ratios is always 1.

“Strong” scaling in the paper refers to keeping the problem size the same while increasing the number of
MPI processes and computing the ratio of the original and new running times. For example,

Tm=1,p=32

Tm=1,p=256
in Table
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Table 6.1
Time (sec) for the Cray XE6 and XC30 for m = 1, nodes = 3017367, and elements = 5836072.

Processes (p) Cray Time (T) Strong Scaling Ideal Weak Scaling Ideal
XE6 2195.9

32 XC30 902.1
XE6 2195.8

.. XC30 899.6
XE6 2199.7

.. XC30 905.8
XE6 Avg: 2197.1

.. XC30 Avg: 902.7 NA NA
XE6 1082.7

64 XC30 458.0
XE6 1083.9

.. XC30 461.3
XE6 1079.1

.. XC30 458.7
XE6 Avg: 1081.9 = 2.03

.. XC30 Avg: 459.3
Tm=1,p=32

Tm=1,p=64
= 1.97 2

XE6 742.9
96 XC30 320.5

XE6 739.1
.. XC30 318.9

XE6 737.2
.. XC30 313.7

XE6 Avg: 739.7 = 2.98

.. XC30 Avg: 317.7
Tm=1,p=32

Tm=1,p=96
= 2.84 3

XE6 353.1
256 XC30 128.9

XE6 332.1
.. XC30 122.8

XE6 330.1
.. XC30 127.9

XE6 Avg: 338.4 = 6.49

.. XC30 Avg: 126.5
Tm=1,p=32

Tm=1,p=256
= 7.14 8

6.1 refers to dividing the time it took to run the problem when m = 1 using 32 MPI processes by the time it
took to run the same problem with 256 MPI processes. The ideal scaling or speedup value is always the ratio of
the new number of MPI processes and the original number of MPI processes. In the above example, the ideal
speedup is 8.

To test strong scaling, the process count was made 2, 3, and sometimes 8 times that of the original process
count for given values of m. Values of m = 2, 3, 4, 5, 10, 20, 30, 100, 200, 300, and 350 were evaluated. The
largest data set where m = 350 contains 1,044,246,303 nodes and 2,042,625,200 elements.

Fig. 6.1 shows the results of the weak scaling. It is important to note that between m = 1 and m = 2,
the number of elements exactly doubles, but the number of nodes less than doubles (slightly) due to interface
nodes. Thus the amount of computation per process may be slightly less in the m = 2 case for double the
number of processes. Thus, weak scaling ratios may be slightly higher than they would be if a perfect doubling
of the nodes was also done. Nevertheless, the ideal weak scaling is approximately 1. Figs. 6.2, 6.3, and 6.4
show plots of the strong scaling results. Table 6.13 shows a ratio of the running times for the XE6 and XC30
for different values of m. For multiple runs on the same machine using the same value of m, the elapsed times
were averaged.

6.1.1. Analysis. The weak scaling was excellent throughout all the problem sizes and both computers
with the XC30 results being better at the larger problem sizes. The strong speedup results were good on the
XE6 until m = 200 and the process count was increased 3 times such that the process count was 19,200. Also,
the XE6 did poorly at m = 300 when the process count was doubled. The XC30 consistently outperformed the
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Table 6.2
Time (sec) for the Cray XE6 and XC30 for m = 2, nodes = 6000831, and elements = 11672144.

Processes (p) Cray Time (T) Strong Scaling Ideal Weak Scaling Ideal
XE6 2259.2

64 XC30 897.9
XE6 2196.8

.. XC30 908.3
XE6 2202.5

.. XC30 904.1
XE6 Avg: 2219.5 = 0.99

.. XC30 Avg: 901.8
Tm=1,p=32

Tm=2,p=64
= 1.00 1

XE6 1097.4
128 XC30 468.4

XE6 1093.5
.. XC30 460.5

XE6 1103.1
.. XC30 460.1

XE6 Avg: 1098.0 = 2.02

.. XC30 Avg: 463.0
Tm=2,p=64

Tm=2,p=128
= 1.95 2

XE6 743.1
192 XC30 312.9

XE6 748.5
.. XC30 316.4

XE6 756.2
.. XC30 314.7

XE6 Avg: 749.3 = 2.96

.. XC30 Avg: 314.7
Tm=2,p=64

Tm=2,p=192
= 2.85 3

XE6 360.8
512 XC30 130.4

XE6 348.5
.. XC30 130.2

XE6 349.7
.. XC30 130.5

XE6 Avg: 353.0 = 6.29

.. XC30 Avg: 133.7
Tm=2,p=64

Tm=2,p=512
= 6.72 8

XE6 by a factor of approximately 2.5.

7. Consistency check. A system of simultaneous, linear equations is solved each time one of 300 nonlinear
iterations is done with the number of unknowns equal to the number of node points. Some parallel programs
struggle with getting the same answers when the number of processes is increased. This test is much more
difficult in that the size of the problem and the number of processes are increased as m is increased. Table 7.1
gives pressure head results for the first few nodes and the last few nodes of the respective meshes for m = 1
and m = 350. Because of symmetry, these results should match. These numbers, in fact, match very well.

8. Conclusions. The following conclusions are made from this study:

• It is remarkable that even at over a billion nodes and two billion 3-D elements, the Cray XE6 and Cray
XC30 can still be productively used as indicated by the speedup computations when comparing the
times to solution of the original problem with data sets up to 350 times larger.

• The weak speedup values were excellent and about the same on both computers.
• The strong speedup capability began to fail for the XE6 at higher values of m. The XC30 values
remained good for all problems that were run.

• The XC30 performed approximately 2.5 times better than the XE6.
• It is well known that reading ASCII files can be inefficient. For very large data sets, the problem
becomes acute.

• For large problems, the use of global arrays in the source code becomes infeasible.
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Table 6.3
Time (sec) for the Cray XE6 and XC30 for m = 3, nodes = 8984295, and elements = 17508216.

Processes (p) Cray Time (T) Strong Scaling Ideal Weak Scaling Ideal
XE6 2215.1

96 XC30 906.1
XE6 2200.4

.. XC30 898.0
XE6 2195.3

.. XC30 901.8
XE6 Avg: 2203.6 = 1.00

.. XC30 Avg: 902.0
Tm=1,p=32

Tm=3,p=96
= 1.00 1

XE6 1097.3
192 XC30 462.0

XE6 1126.4
.. XC30 462.6

XE6 1117.2
.. XC30 460.6

XE6 Avg: 1113.6 = 1.98

.. XC30 Avg: 461.7
Tm=3,p=96

Tm=3,p=192
= 1.95 2

XE6 751.0
288 XC30 312.6

XE6 747.4
.. XC30 313.7

XE6 750.2
.. XC30 314.8

XE6 Avg: 749.5 = 2.94

.. XC30 Avg: 313.7
Tm=3,p=96

Tm=3,p=288
= 2.89 3

XE6 313.7
768 XC30 141.6

XE6 313.0
.. XC30 132.5

XE6 310.5
.. XC30 130.2

XE6 Avg: 312.2 = 7.06

.. XC30 Avg: 134.8
Tm=3,p=96

Tm=3,p=768
= 6.69 8

• Preparing the different data files for the finite element program requires very tedious bookkeeping when
using the traditional MPI paradigm of accumulating large amounts of data before sending them.

• Large nonlinear implicit algorithms for 3-D finite element variably saturated flow calculations can be
performed with excellent scalability when increasing the problem size to ever larger numbers of elements.
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Table 6.4
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Table 6.5
Time (sec) for the Cray XE6 and XC30 for m = 5, nodes = 14951223, and elements = 29180360.

Processes (p) Cray Time (T) Strong Scaling Ideal Weak Scaling Ideal
XE6 2230.5

160 XC30 910.6
XE6 2222.8

.. XC30 911.34
XE6 2222.8

.. XC30 911.2
XE6 Avg: 2225.4 = 0.99

.. XC30 Avg: 911.0
Tm=1,p=32

Tm=5,p=160
= 1.00 1

XE6 1105.6
320 XC30 463.7

XE6 1105.4
.. XC30 464.6

XE6 1105.3
.. XC30 463.7

XE6 Avg: 1105.4 = 2.01

.. XC30 Avg: 464.0
Tm=5,p=160

Tm=5,p=320
= 1.96 2

XE6 762.5
480 XC30 314.9

XE6 770.9
.. XC30 317.4

XE6 761.8
.. XC30 317.4

XE6 Avg: 765.1 = 2.94

.. XC30 Avg: 316.6
Tm=5,p=160

Tm=5,p=480
= 2.88 3

XE6 333.2
1280 XC30 130.4

XE6 335.6
.. XC30 133.5

XE6 354.5
.. XC30 132.9

XE6 Avg: 341.1 = 6.52

.. XC30 Avg: 132.3
Tm=5,p=160

Tm=5,p=1280
= 6.89 8
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Table 6.6
Time (sec) for the Cray XE6 and XC30 for m = 10, nodes = 29868543, and elements = 58360720.

Processes (p) Cray Time (T) Strong Scaling Ideal Weak Scaling Ideal
XE6 2260.8

320 XC30 916.4
XE6 2264.3

.. XC30 922.1
XE6 2268.6

.. XC30 914.8
XE6 Avg: 2264.6 = 0.97

.. XC30 Avg: 917.8
Tm=1,p=32

Tm=10,p=320
= 0.98 1

XE6 1138.8
640 XC30 468.9

XE6 1143.4
.. XC30 467.2

XE6 1137.2
.. XC30 468.7

XE6 Avg: 1139.8 = 1.99

.. XC30 Avg: 468.3
Tm=10,p=320

Tm=10,p=640
= 1.96 2

XE6 787.0
960 XC30 331.1

XE6 774.6
.. XC30 335.9

XE6 801.0
.. XC30 347.1

XE6 Avg: 787.5 = 2.88

.. XC30 Avg: 338.0
Tm=10,p=320

Tm=10,p=960
= 2.72 3

XE6 447.3
2560 XC30 173.4

XE6 404.7
.. XC30 156.2

XE6 350.3
.. XC30 171.6

XE6 Avg: 400.8 = 5.65

.. XC30 Avg: 167.1
Tm=10,p=320

Tm=10,p=2560
= 5.47 8
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Fig. 6.2. Strong speedup for twice the original number of processes for different m values.
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Table 6.7
Time (sec) for the Cray XE6 and XC30 for m = 20, nodes = 59703183, and elements = 116721440.

Processes (p) Cray Time (T) Strong Scaling Ideal Weak Scaling Ideal
XE6 2276.2

640 XC30 918.5
XE6 2287.2

.. XC30 968.4
XE6 2277.4

.. XC30 920.0
XE6 Avg: 2280.3 = 0.96

.. XC30 Avg: 902.7
Tm=1,p=32

Tm=20,p=640
= 0.96 1

XE6 1152.4
1280 XC30 477.4

XE6 1171.7
.. XC30 476.5

XE6 1153.0
.. XC30 472.6

XE6 Avg: 1159.0 = 1.97

.. XC30 Avg: 475.5
Tm=20,p=640

Tm=20,p=1280
= 1.97 2

XE6 805.5
1920 XC30 323.2

XE6 812.3
.. XC30 329.3

XE6 805.8
.. XC30 324.1

XE6 Avg: 807.9 = 2.82

.. XC30 Avg: 325.5
Tm=20,p=640

Tm=20,p=1920
= 2.87 3

XE6 410.8
5120 XC30 141.1

XE6 402.2
.. XC30 140.1

XE6 408.7
.. XC30 140.9

XE6 Avg: 407.2 = 5.59

.. XC30 Avg: 140.7
Tm=20,p=640

Tm=20,p=5120
= 6.65 8
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Fig. 6.3. Strong speedup for three times the original number of processes for different m values.
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Table 6.8
Time (sec) for the Cray XE6 and XC30 for m = 30, nodes = 89537823, and elements = 175082160.

Processes (p) Cray Time (T) Strong Scaling Ideal Weak Scaling Ideal
XE6 2276.5

960 XC30 924.1
XE6 2278.5

.. XC30 922.7
XE6 2277.9

.. XC30 923.7
XE6 Avg: 2277.6 = 0.96

.. XC30 Avg: 923.5
Tm=1,p=32

Tm=30,p=960
= 0.98 1

XE6 1172.5
1920 XC30 473.0

XE6 1165.8
.. XC30 473.4

XE6 1159.7
.. XC30 514.6

XE6 Avg: 1166.0 = 1.95

.. XC30 Avg: 487.0
Tm=30,p=960

Tm=30,p=1920
= 1.90 2

XE6 889.7
2880 XC30 348.8

XE6 895.0
.. XC30 364.8

XE6 872.4
.. XC30 370.0

XE6 Avg: 885.7 = 2.57

.. XC30 Avg: 361.2
Tm=30,p=960

Tm=30,p=2880
= 2.56 3

XE6 398.7
7680 XC30 139.9

XE6 429.1
.. XC30 139.4

XE6 447.1
.. XC30 138.2

XE6 Avg: 425.0 = 5.36

.. XC30 Avg: 139.2
Tm=30,p=960

Tm=30,p=7680
= 6.72 8
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Fig. 6.4. Strong speedup for eight times the original number of processes for different m values.
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Table 6.9
Time (sec) for the Cray XE6 and XC30 for m = 100, nodes = 298380303, and elements = 583607200.

Processes (p) Cray Time (T) Strong Scaling Ideal Weak Scaling Ideal
XE6 2369.4

3200 XC30 969.6
XE6 2358.4

.. XC30 934.2
XE6 2359.9

.. XC30 961.3
XE6 Avg: 2362.6 = 0.93

.. XC30 Avg: 955.0
Tm=1,p=32

Tm=100,p=3200
= 0.95 1

XE6 1228.4
6400 XC30 479.2

XE6 1357.0
.. XC30 499.5

XE6 1250.3
.. XC30 498.7

XE6 Avg: 1278.6 = 1.85

.. XC30 Avg: 492.5
Tm=100,p=3200

Tm=100,p=6400
= 1.94 2

XE6 899.8
9600 XC30 339.2

XE6 897.4
.. XC30 352.4

XE6 952.1
.. XC30 354.1

XE6 Avg: 916.4 = 2.58

.. XC30 Avg: 348.6
Tm=100,p=3200

Tm=100,p=9600
= 2.78 3

Table 6.10
Time (sec) for the Cray XE6 and XC30 for m = 200, nodes = 596726703, and elements = 1167214400.

Processes (p) Cray Time (T) Strong Scaling Ideal Weak Scaling Ideal
XE6 2394.4

6400 XC30 947.3
XE6 2391.1

.. XC30 943.6
XE6 2392.4

.. XC30 945.3
XE6 Avg: 2392.6 = 0.92

.. XC30 Avg: 945.4
Tm=1,p=32

Tm=200,p=6400
= 0.95 1

XE6 1300.0
12800 XC30 494.8

XE6 1292.8
.. XC30 493.0

XE6 1340.4
.. XC30 488.3

XE6 Avg: 1311.1 = 1.82

.. XC30 Avg: 492.0
Tm=200,p=6400

Tm=200,p=12800
= 1.92 2

XE6 1783.5
19200 XC30 351.2

XE6 1782.0
.. XC30 350.3

XE6 1839.1
.. XC30 352.6

XE6 Avg: 1801.5 = 1.33

.. XC30 Avg: 351.4
Tm=200,p=6400

Tm=200,p=19200
= 2.69 3
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Table 6.11
Time (sec) for the Cray XE6 and XC30 for m = 300, nodes = 895073103, and elements = 1750821600.

Processes (p) Cray Time (T) Strong Scaling Ideal Weak Scaling Ideal
XE6 2671.7

9600 XC30 1039.2
XE6 2442.3

.. XC30 1041.0
XE6 2566.9

.. XC30 1034.9
XE6 Avg: 2560.3 = 0.86

.. XC30 Avg: 1038.4
Tm=1,p=32

Tm=300,p=9600
= 0.87 1

XE6 2351.4
19200 XC30 512.3

XE6 2390.8
.. XC30 517.1

XE6 2392.9
.. XC30 527.2

XE6 Avg: 2378.4 = 1.08

.. XC30 Avg: 522.2
Tm=300,p=9600

Tm=300,p=19200
= 1.99 2

Table 6.12
Time (sec) for the Cray XE6 and XC30 for m = 350, nodes = 1044246303, and elements = 2042625200.

Processes (p) Cray Time (T) Strong Scaling Ideal Weak Scaling Ideal
XE6 2464.6

11200 XC30 1041.9
XE6 2510.2

.. XC30 1048.6
XE6 2424.8

.. XC30 1043.1
XE6 Avg: 2466.5 = 0.89

.. XC30 Avg: 1044.5
Tm=1,p=32

Tm=350,p=11200
= 0.86 1

Table 6.13
Ratio of running times for the XE6 and XC30 for values of m.

m 1 2 3 4 5 10
Ratio 2.45 2.46 2.39 2.34 2.45 2.41

m 20 30 100 200 300 350
Ratio 2.58 2.59 2.57 3.44 3.51 2.36

Table 7.1
Consistency check comparing values of pressure head from the original mesh and the mesh for m = 350 for the first few nodes

and last few nodes of each mesh.

Node m = 1 Node m = 350
1 129.00000 1 129.00000
2 128.99678 2 128.99678
3 128.99345 3 128.99345
4 119.00000 4 119.00000
5 118.99735 5 118.99735
6 124.23808 6 124.23808
7 118.99464 7 118.99464
8 123.54520 8 123.54520
9 128.98993 9 128.98993
10 110.50000 10 110.50000

6000826 0.00000 1044246298 0.00000
6000827 0.041718481 1044246299 0.041718484
6000828 3.0365778 1044246300 3.0365778
6000829 0.036494874 1044246301 0.036494874
6000830 0.00000 1044246302 0.00000
6000831 0.00000 1044246303 0.00000
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FAULT TOLERANCE SCHEMES FOR GLOBAL LOAD BALANCING IN X10
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Abstract. Scalability postulates fault tolerance to be efficient. One approach handles permanent node failures at user level.
It is supported by Resilient X10, a Partitioned Global Address Space language that throws an exception when a place fails.

We consider task pools, which are a widely used pattern for load balancing of irregular applications, and refer to the variant
that is implemented in the Global Load Balancing framework GLB of X10. Here, each worker maintains a private pool and supports
cooperative work stealing. Victim selection and termination detection follow the lifeline scheme. Tasks may generate new tasks
dynamically, are free of side-effects, and their results are combined by reduction. We consider a single worker per node, and assume
that failures are rare and uncorrelated.

The paper introduces two fault tolerance schemes. Both are based on regular backups of the local task pool contents, which are
written to the main memory of another worker and updated in the event of stealing. The first scheme mainly relies on synchronous
communication. The second scheme deploys asynchronous communication, and significantly improves on the first scheme’s efficiency
and robustness.

Both schemes have been implemented by extending the GLB source code. Experiments were run with the Unbalanced Tree
Search (UTS) and Betweenness Centrality benchmarks. For UTS on 128 nodes, for instance, we observed an overhead of about
81% with the synchronous scheme and about 7% with the asynchronous scheme. The protocol overhead for a place failure was
negligible.

Key words: Resilient X10, task pool, GLB, algorithmic resilience, lifeline scheme

AMS subject classifications. 68M15, 68W10, 68Q10

1. Introduction. Large-scale applications are likely to encounter hardware failures during their execution.
Consequently, fault tolerance is of crucial importance. Checkpoint/restart is an established approach, but
application-specific techniques may induce less overhead.

Resilient X10 [4] provides an interesting platform to experiment with user-level fault tolerance. This exten-
sion of the language X10 raises an exception in the event of a permanent place failure. Moreover, Resilient X10
provides an inquiry function to check a particular place’s liveness. Failure notification to programs is quite a
unique feature in current parallel programming systems [5].

The base language X10 [3] follows the Partitioned Global Address Space (PGAS) model, and provides a
shared memory abstraction on top of distributed hardware. Nodes of a compute cluster are modeled as places,
which comprise a set of processors and a memory partition. Access to local memory is faster than access to
remote memory, and the difference is visible to the programmer.

On the algorithm side, we consider task pools, which are a widely used pattern for load balancing of irregular
applications. Moreover, tasks are deployed by several modern parallel programming systems, where they replace
or complement threads/ processes as a central construct for specifying parallelism. Examples include Cilk [6],
OpenMP [25], Chapel [7], and X10 [3].

The use of tasks is promoted for reasons such as ease of programming and load balancing support. Beyond
that, tasks provide the additional benefit of easy migration. Since tasks do not refer to a thread / process
number in their code, they may be moved away from a faulty place, without having arranged for that in the
application code.

Despite their importance, fault-tolerant task pools have received little attention in previous research. In
contrast, much work has been conducted on fault tolerance for the related master/worker and parallel divide-
and-conquer patterns. The former was chiefly considered in MapReduce systems such as Hadoop [8]. Unlike
task pools, Hadoop considers the set of tasks to be fixed from the beginning, and a central master has an
overview of all tasks. In divide-and-conquer algorithms, the overall result is computed along the call tree, which
is traversed bottom-up after the computation of leaves. Consequently, children must preserve a link to their
parents, and parents can recompute their children by need. Fault-tolerant divide-and-conquer algorithms also

∗Research Group Programming Languages / Methodologies, University of Kassel, Kassel, Germany contact: {fohry@ |
marco.bungart@ | jonas.posner@student.}uni-kassel.de
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handle the case that subtasks are stolen away recursively [9, 10, 11]. The schemes perform well for divide-and-
conquer, but would induce too much overhead in our setting. A third group of related work specifically deals
with idempotence when recomputing tasks with side effects (e.g. [20]).

Unlike related work, we assume that tasks may generate other tasks dynamically, are free of side effects, and
produce results that are combined by reduction. This task model is used by various search and optimization
algorithms, as represented by the Unbalanced Tree Search [12] and Betweenness Centrality [13] benchmarks. It
also underlies the Global Load Balancing framework GLB, which is part of the X10 standard library.

In this paper, we consider the particular type of task pool that is implemented in GLB. It stores tasks in a
collection of private pools, each of which belongs to a single worker. A worker operates on its own pool most of
the time. Only when this pool is empty, it asks a coworker for tasks. Victim selection and termination detection
follow an efficient state-of-the-art scheme, called the lifeline algorithm [1].

We introduce two different fault tolerance schemes that extend GLB. Both regularly save the local task
pool contents of one worker in the main memory of another. When a place fails, its backup partner takes over
the lost tasks. In case of unfavourably correlated failures, such as simultaneous loss of a place and its backup
partner, the program aborts with an error message. Successful completion, on the other hand, guarantees that
the final result is correct, despite possible failures.

In both schemes, particular attention was paid to stealing, to avoid inconsistencies between victim and thief
after a place failure. The first scheme, which has been introduced in [2], defines a conservative steal protocol.
It mainly adopts synchronous communication and cautiously aborts the program in any potentially critical
situation.

The second scheme improves on the first one wrt. efficiency and robustness, where robustness characterizes
the number of situations that lead to program abort. The improvements have been achieved by a major
redesign. Most importantly, the second scheme relies on asynchronous communication consistently. Thus, a
worker may continue processing tasks while waiting for an outstanding communication reply. To keep complexity
manageable, an actor-like communication structure has been devised. Moreover, the second scheme exploits
the redundancy that is immanent in stealing. As compared to the first scheme, the second scheme furthermore
reduces handshaking in the steal protocol, combines multiple steal requests in a transaction, and adopts several
more minor changes.

In addition to the two schemes presented in this paper, we are currently working at a third scheme. That
scheme may be even more efficient, but at the price of reduced flexibility. In particular, it can only be applied
to task pools that are organized as a collection of stacks. The UTS benchmark considered in this paper, for
instance, can not be handled with the third scheme. The second and third schemes share the idea of an actor-like
communication structure. The third scheme has been outlined in [15], with focus on X10 language support, but
its implementation is still ongoing.

The schemes described in this paper have been implemented in X10, by extending the GLB source code.
Our own code which can be obtained for free from the second author’s homepage.

Apart from the unfavourably correlated failures mentioned above, the two schemes can cope with any
number of permanent place failures. To avoid unfavourable correlations, we allow only one worker per cluster
node. This assumption partly stems from GLB, which permits one worker per PGAS place, but goes farther
by requiring that only one place is mapped to each node.

Experiments have been run with the UTS and BC benchmarks. While we observed significant overheads
with the first fault tolerance scheme, the second scheme was about as fast as the original GLB. The overhead
for restore was low in all cases.

The paper starts with background on X10, task pools, and the GLB library in Sect. 2. Then, Sect. 3
introduces some basic concepts that are common to both fault tolerance schemes, and gives an overview of
their respective approaches. Details of the synchronous scheme are presented in Sect. 4, and details of the
asynchronous scheme in Sect. 5, respectively. Sect. 6 describes our experimental setting, reports performance
numbers, and discusses results. Finally, Sects. 7 and 8 are devoted to related work and conclusions, respectively.

2. Background.

2.1. X10 and Resilient X10. X10 is a novel parallel language from IBM [3], which supports object
orientation and exception handling in a similar way as Java. Following the Asynchronous PGAS (APGAS)
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programming model, gives the programmer the view of a shared address space that is divided into disjoint
partitions. The notion of place captures a memory partition and a set of processors, which have faster access
to the local memory partition than to remote data.

The placement of data and computations is controlled by the programmer. Access to remote data requires
to move the computation to the remote place. This is accomplished with the at keyword. In a place change,
part of the data from the original place is transparently copied along. Parallelism is specified orthogonally.
Using the async keyword, a programmer starts an asynchronous task on the current place. Tasks are called
activities, and can be moved to a remote place by combining async and at.

Later in this paper, we will refer to remote computations launched via at or at async as messages. This
notion reflects that, in both cases, a computation request, possibly accompanied by data, is sent to the remote
place. There, it is queued until a remote thread is available for its execution. Messages sent with at are called
synchronous, since the activity at the origin place is suspended until the remote activity returns, possibly with a
result. Messages sent with at async are called asynchronous, since the activity at the origin place immediately
continues with its sequential flow of control.

In asynchronous communication, the origin activity is not notified on completion. Spawning of activities
can, however, be enclosed in a finish block. At the end of the block, the parent activity waits until all spawned
activities and their descendants have terminated.

For place-internal load balancing, a work-stealing scheduler is built into the X10 runtime system. It assigns
the activities to the available threads. This scheduler can not be used for global load balancing, since the
assignment of tasks to places is under programmer control. Therefore, it is complemented by GLB, which
belongs to the X10 library since version 2.4.2. GLB tasks are more heavy-weight than X10 activities. For their
deployment, a GLB user must implement interfaces in a custom class.

Since version 2.4.1 of end-2013, X10 supports resilience in its runtime system. It is switched on by setting
some environment variables. We deployed resilience mode 1, which has the limitation that place 0 must not
fail, or otherwise the program aborts with an error message.

Resilient X10 provides two mechanisms for failure notification. First, a DeadPlaceException (DPE) is
raised in the event of a failure. When a place fails before or during synchronous communication, the DPE
is delivered to all parent activities instead of the regular reply. In asynchronous communication, the DPE is
delivered to parent activities, as well, but usually they catch the exception only at the end of a surrounding
finish block. Second, X10 provides an inquiry function isDead(...), which may be called by any place to
check any other particular place’s liveness.

2.2. Task Pools and GLB. The paper refers to the particular type of task pool that is used by GLB.
Tasks are assumed to be free of side effects, and may generate other tasks dynamically. The overall result is
computed by reduction from individual results of each task.

The GLB task pool comprises a distributed data structure and a set of workers. The data structure is a
collection of private pools, each of which belongs to a single worker and is stored at the worker’s place. Initially,
one or several workers may have tasks in their pool, which is referred to as dynamic or static initialization,
respectively.

Workers are realized by activities. Each worker runs a loop, in which it repeatedly takes a task out of the
local pool, processes it, and possibly inserts new tasks generated. When the local pool is empty, the worker
contacts one or several coworkers, called victims, and asks them for tasks.

Victim selection and termination detection follow the lifeline scheme [1]. According to this scheme, a
worker successively contacts up to w random coworkers and z lifeline buddies. The latter in their entirety form
an appropriate graph. If a victim has no tasks to share, it rejects the request and, if it is a lifeline buddy,
additionally stores it. If a lifeline buddy obtains tasks later, it shares them with the stored worker.

When all w + z steal attempts failed, the worker activity ends. If a lifeline buddy sends tasks later, it
restarts the worker by spawning a new activity at the corresponding place. Note that multiple lifeline buddies
may have stored steal requests from our worker simultaneously, and may, thus, send tasks at the same time
later. While only the first message arriving leads to restart, the worker may consequently receive tasks when
its pool is non-empty. Similarly, it may receive tasks from a lifeline buddy while waiting for the answer to an
outstanding steal request.
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The computation terminates when all workers have ended. Then, the final result is computed by reduction
from partial results, which are collected and combined by each worker during task processing. Termination is
detected by an outer finish block, which surrounds all starts and restarts of worker activities.

GLB assumes that there is only one worker per place. Additionally, it precludes any parallel activities at
this place. This is enforced by setting environment variables. The assumption is quite restrictive, but eliminates
any need for place-internal synchronization. Thus, a worker may, without distruption, alternatingly process up
to n tasks, receive incoming messages, and invoke local functions to answer the received steal requests. Recall
that messages correspond to remote activities. In GLB, these activities are queued, but are not allowed to run
until the worker calls Runtime.probe() to receive the messages. This call releases the worker’s thread, and all
pending activities are scheduled sequentially in any order. GLB uses the following types of messages:

• give: The worker receives tasks from a victim. This message may be the response to an outstanding
steal request, or originate from an older request stored by a lifeline buddy. In either case, the corre-
sponding activity integrates the tasks into the worker’s pool by calling a merge function. If the worker
has ended, it is additionally restarted.

• trySteal: The worker is the victim of a steal request. If its pool is empty, the corresponding activity
immediately replies with a noTasks message. Otherwise, it records the request at the worker’s place.

• noTasks: This is the rejection of a former steal request.
When all messages have been received, the worker activity resumes and sends out tasks to the thiefs recorded.
The first thief gets half of the tasks, the second a quarter, and so on. Any remaining thieves are sent a noTasks

message. Since the requests are taken from a data structure, the worker is able to prefer random thieves over
lifeline thieves.

Steal requests are sent asynchronously with at async, i.e., the thief spawns a remote activity and continues.
So it remains responsive to requests from others. The victim sends its reply asynchronously, as well. Request
and reply are related by a volatile variable, which is located at the thief place. The thief sets this variable when
sending out the request, and the victim resets it later.

From a user’s perspective, GLB defines a class and two interfaces that must be implemented. In particular,
a GLB user must define a data structure and the following access functions for the private pools:

• merge and split integrate tasks and split the pool, respectively.
• process(n) takes n tasks out, processes them, and inserts any newly generated tasks. If less than n
tasks were available, the function returns false.

Note that GLB does not restrict the data structure, except that the functions must be provided. While the
fault tolerance scheme in [15] only allows stacks, the schemes introduced in the present paper do not restrict
GLB’s flexibility. As a minor restriction, we forbid use of the yield() function, which may be invoked by GLB
user code to interrupt long-running tasks. A workaround is explained in Sect. 6.

3. General Structure of the Fault Tolerance Schemes. Our schemes handle the following issues:
• writing regular backups and maintaining a ring structure of backup places,
• recognizing node failure,
• keeping backups consistent during stealing, and
• returning to a consistent state after failures.

The first and second issues are handled in a similar way by the two schemes, and are discussed in this
section. The third and forth issues are handled differently with quite complex protocols. Sect. 4 provides the
details for the synchronous scheme, and Sect. 5 for the asynchronous one.

Scope of Fault Tolerance. Fault tolerance begins with writing the first backup right after task pool
initialization. If a failure occurs earlier, the program can be restarted without notable loss of time.

The number of cases that lead to program abort is lower for the asynchronous than for the synchronous
scheme, as captured by the term robustness. Both schemes guarantee that the program either outputs a correct
result, or crashes.

Any fault tolerance scheme must find a compromise between overhead and robustness. Our schemes strive
to hold each relevant data element at exactly two locations at any time. If the two locations fail simultaneously,
the program is aborted. While the redundancy level could in principle be changed from two to some other
value, a fair balance of redundancy among data elements is desirable to minimize the backup overhead for a
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given level of robustness. The asynchronous scheme gets closer to a fair balance than the synchronous scheme,
as explained in Sect. 5.1.

Our algorithms suppose a reliable communication layer, i.e., if both sender and receiver of a message
are alive, the message must eventually be delivered. A timing guarantee is not needed, though. In particu-
lar, different messages from the same sender to the same receiver may overtake. This may happen since, at
Runtime.probe(), pending activities are scheduled in any order.

Ring Structure. Let P denote the number of places. In both schemes, each worker regularly writes a
backup to the main memory of another place. For that, workers are arranged in a ring, and numbered 0 . . . P − 1.
Outside failures, worker i regularly writes its backup to the main memory of worker (i + 1) mod P , which is
called its backup partner Back(i). Vice versa, if Back(i)= j, we denote the predecessor as i =Forth(j).

In case of failures, the gap is bridged, i.e., the next node alive along the ring takes the role of Back(i).
Re-establishing the ring structure is accomplished by a restore protocol. These protocols differ between the
synchronous and asynchronous schemes and are explained in Sects. 4 and 5.

Logs. In both fault tolerance schemes, each worker keeps a log of the places that it has taken over due to
restore. The relation of taking over is transitive, i.e., if worker i − 2 restored i − 1, and later i restored i − 1,
then we say that worker i has taken over both workers i− 2 and i− 1.

Logs are inspected when a worker receives a restore request and must decide whether the program can
recover. Consider, for instance, the sequence of workers i− 2, i− 1, i. If i− 1 fails first, and i− 2 later, then i
can perform i− 2’s restore if and only if it has i− 1 in its log and Forth(i) = i− 2.

The synchronous scheme stores logs as a list of all workers restored. The asynchronous scheme, instead,
only stores Forth as its log, relying on the invariant that each worker i must have taken over all workers
[Forth + 1 . . . i − 1] (cyclically), or otherwise Forth is invalid. There must not be gaps between Forth and i,
since any missing worker’s data would be lost. In both schemes, the log is part of a worker’s backup data.

Backup Writing. Regular backups are written every kn processing steps, called a backup interval. Here,
n denotes the GLB parameter, and k ≥ 1 is an additional parameter. To determine the length of a backup
interval, each worker counts steps independently and, at the end, autonomously sends its backup. The backup
comprises the current contents of the local task pool, the current value of the partial result, as well as the
worker’s log. These data are copied to a val variable and transparently sent by X10’s at construct.

Our algorithm writes backups only right before a process(n) call. At these moments, the task pool
contents, supplemented by the current value of the partial result, defines a worker’s state in full.

Shadowing Results of partially finished Tasks. Sometimes, the execution of a single task takes too
long to keep a worker responsive. Therefore, GLB defines a yield() method. A user can invoke this method
inside process(n) to interrupt task execution and call Runtime.probe(). Our fault tolerance schemes do not
support yield() for two reasons: First, yield() would complicate the program structure, especially for the
asynchronous scheme, by introducing an additional Runtime.probe() call. Second, at a yield() call, a worker’s
state is not fully represented by the task pool contents.

One of our benchmarks (Betweenness Centrality) deploys long-running tasks, so we still had to find a
workaround. Within the execution of a single task, BC performs a breadth-first search on a graph to find all
shortest paths from one specific node to all others. Since the number of nodes is typically large, yield() should
be called in-between. An alternative is provided by one of the BC sample codes that are supplied with GLB.
This code does not use yield(), but instead decomposes each process(n) into several step calls.

After each step call, the worker may suspend to answer steal requests. To continue thereafter, it needs to
save its internal state. This state is larger than the backup state, we denote it as shadow. The shadow is only
visible to the particular worker, not to others. During each process(n), the worker operates on the shadow,
and at the end of process(n), the shadow’s result is combined into the partial result. When a backup is written
during process(n), it covers the state at the beginning of process(n), but not the shadow. Maintenance of
shadows induces additional overhead for copying after each step.

Communication Structure. As noted before, the major difference between our two fault tolerance
schemes concerns communication. While the synchronous scheme uses X10’s at construct in most cases, the
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asynchronous scheme uses at async everywhere.
Asynchronous communication improves efficiency, since a worker may continue processing tasks while com-

municating with others. Moreover, it remains responsive this way.
On the backside, asynchrony complicates the program structure, since a worker may have to manage

multiple outstanding requests at the same time. To reduce complexity, we designed an actor-like communication
structure, in which a worker alternatingly processes tasks, receives messages, and carries out the actions required
by these messages. The structure is inspired by GLB, but goes farther by consistently applying this three-phase
structure to all types of communication. This allows us to process messages in a well-defined order, and to
prioritize messages. The scheme resembles the actor model [16] insofar as a worker, except for processing tasks,
is a passive entity, and only becomes active upon message receipt.

Failure Notification. As noted in Sect. 2.1, X10 supports failure notification by DPEs and by the
isDead(...) function. DPEs are well-suited for the synchronous scheme. Throughout the corresponding
program, for timely failure notification, all place changes are enclosed in try-catch blocks. When a place fails
during a regular backup, its predecessor is informed immediately and can initiate the restore protocol (see
Sect. 4.2). When a place fails during stealing, the DPE is received by a different worker, which broadcasts it
to all other workers. The broadcast is an expensive, but timely way to reach all workers that are currently
involved in a communication with the failed worker and whose identities may not be known to the sender.

Unfortunately, DPEs are not suited for the asynchronous scheme, since they are only caught by the outer
finish, which comes too late. Therefore, we do not use DPEs in the asynchronous scheme, but instead rely on
isDead(...). This X10 issue is further discussed in [15].

We implemented a monitoring scheme, in which each place regularly inquires its backup place’s liveness by
calling isDead(...). Monitoring is disturbed if a worker has ended and thus can not take the initiative for the
regular calls. Here, monitoring deploys so-called ghost activities, which are temporal re-activations of an ended
worker.

To state it in more detail, a worker regularly calls isDead(...), as noted. If the successor is dead, the
restore protocol is invoked. If it is alive, the worker sends a monitormessage. The corresponding remote activity
checks whether the successor has ended and, if so, starts a ghost activity. The ghost activity is responsible for
1) invoking isDead(...) on the successor’s successor, and 2) calling monitor recursively, if needed. It can be
easily verified, that any failure is recognized this way.

The scheme is speeded up by a second failure notification mechanism, called timeouts. Timeouts are
deployed in the asynchronous protocols: When a worker has sent a message, it typically expects a reply, even
though it does not explicitly wait for it in the actor scheme. These replies are stored in a list, together with
some time limit. Occasionally, the worker runs through the list. For all replies that have exceeded their time
limit, it invokes a synchronous communication to the respective communication partner. If it is dead, it takes
appropriate action according to the respective protocol. In addition, it informs the place’s Forth who will
initiate the restore protocol.

4. Synchronous Fault Tolerance Scheme. While the basic approach of our fault tolerance schemes has
been discussed in Sect. 3, steal and restore are more complex. Since the approaches in the synchronous and
asynchronous schemes are fundamentally different, we handle the synchronous approach in this section, and the
asynchronous approach in Sect. 5.

4.1. Steal Protocol. Stealing requires special arrangements to avoid inconsistencies between thief place
F, victim place V, as well as their backups at Back(F) and Back(V). Otherwise tasks may be computed twice
or not at all. The protocol is conservative in that the program is cautiously killed in any possibly inconsistent
situation, to guarantee that a computed result is always correct.

Figure 4.1 depicts the steal protocol, which was introduced in [2], with time advancing from top to bottom.
In the figure, a wavy line indicates that the place is processing tasks (if available), and a solid line marks actions
that are part of the protocol. At the backup places, wavy lines are omitted for clarity before and after their
involvement. A thick dotted line represents the queueing of a request, i.e., the request has to wait until the
worker calls Runtime.probe(). An asterisk denotes an asynchronous message sent via at async, whereas the
other arrows correspond to synchronous communication via at. To state it in more detail, V invokes three ats:
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Fig. 4.1. Steal Protocol of the Synchronous Scheme

from ¬ to ®, from ° to ², and from about ² to about ´. During the second at’s operation at F, another at
to Back(F) is launched.

The protocol starts with a trySteal request. If V has no work, it responds as explained in Sect. 2.2, and
no further action is taken. Otherwise, V registers at place F. From ­ to ³, F is not allowed to accept other
register requests.

After registration, V splits the pool by calling the user-provided split function. Then, it saves the tasks to
be stolen and writes a backup without them. While tmpBackup ̸= null, there may be an inconsistency, since
Back(V) does not know whether F and Back(F) have already taken over the tasks.

After the backup, V sends the tasks to F, called give in the figure. On arrival, F merges the tasks into its
own pool. The pool is not necessarily empty, since section ­ to ³ of the protocol may be repeated if different
lifeline buddies send work at about the same time.

Analogously to V, thereafter F writes a backup and starts processing the tasks just received. The remain-
ing arrows display some handshaking to let all places know when the protocol has finished. Then, variables
tmpBackup and stolen may be reset, and F and V may accept other requests.

Looking back, there are two situations in which backups are written: regularly every kn steps, and during
stealing. To reduce overheads, we restart the kn period after each steal-related backup. Moreover, a place first
checks for steal requests before writing a regular backup.

The protocol in Fig. 4.1 considers the base case of a single steal request. Other cases are reduced to this
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one as follows:
• If V receives other steal requests between ¬ and ´, they are rejected or delayed until ´.
• If V receives a register from F between ¬ and ®, a place number-based ordering guarantees that
only one of the crossing registers between F and V passes. The other is delayed until ´. Crossing
registers may occur when F is V’s lifeline partner and wants to answer a steal request from V that it
has recorded long ago.

• If V receives other register requests between ¬ and ´, they are delayed until ´
• If F receives trySteals or registers between ­ and ³, they are rejected or delayed until ³.
• If F receives other registers before ­, section ­ to ³ is run for the first request arriving, and the
others are delayed until ³. Hence, for “our” request, the protocol corresponds to the base case, except
for a larger delay between ¬ and ® in this rare case.

• At F and V, backup requests from Forth(F) and Forth(V) are processed as usual, concurrently to the
steal protocol.

• During the protocol, regular backups of F and V are skipped and replaced by the steal backups.
• If places F and Back(V), or places V and Back(F) coincide, the respective roles are pursued concurrently.

4.2. Restore Protocol. The restore protocol is depicted in Fig. 4.2. After Forth(P) has been notified of
the failure, as explained in Sect. 3, it locates Back(P) as being the next place alive in the ring. Then, Forth(P)
sends a restore(P) message to Back(P). Upon receipt, Back(P) inspects its log, as further explained below.
If recovery is possible, Back(P) merges the tasks from the backup into its own local pool, combines the partial
results, and inserts P into its log. Thereafter, it sends a backup of its new state to Back(Back(P)). This backup
is called a taken-over backup, or shortly TO-backup.

After the TO-backup, Back(P) reports completion to Forth(P), which is denoted by RSTack in the figure.
Thereupon, Forth(P) sends a backup to Back(P). It is called an inauguration backup, or shortly IA-backup,
since Back(P) is Forth(P)’s new backup place. Note that the protocol uses synchronous communication,
therefore the arrows labelled RSTack and IAack correspond to implicit returns from at calls.

To explain the usage of the log, consider the case that Back(P) fails at R3⃝. Although Forth(P) recognizes
Back(P)’s failure, it has no clue when the failure occured. Therefore, Forth(P) looks up Back(Back(P)) and
requests P(!)’s backup, as it would do if Back(P) died long ago. In our setting, Back(Back(P)) has received
Back(P)’s backup, including P’s data, as indicated by the log. Therefore, Back(Back(P)) transforms the request
to restore P into a request to restore Back(P), and, on completion, reports success to Forth(P). Because of the
ring structure, the scheme extends to any number of failed places.

If Back(P) fails before R2⃝, P is not contained in the log, and therefore Back(Back(P)) aborts the program.
Between C1⃝ and C2⃝, Forth(P)’s data are unsecured. Thus, if Forth(P) dies during this time, Forth(Forth(P))
will neither find Forth(P)’s backup place, nor a place that has Forth(P) in its log. This is recognized by the
first place alive, which aborts the program.

4.3. Recovery and Correctness. The following items show that, during the steal protocol, a failure of
F and/or V can either be recovered successfully, or halts the program:

• Failure of F before sending the ­ → ® message: Because of the register call, V is notified of the failure.
Since the stealing has not yet begun, recovery corresponds to the base case.

• Failure of F after ­ but before sending the message into ²: V re-merges the stolen tasks into its queue
and directs Back(V) to reset tmpBackup. Depending on the state of F’s backup, Back(F) either restores
the old backup of F, or kills the program. When the program goes on, all places consistently see the
tasks in question at V.

• Failure of F right before or during V’s unregister call: V continues with the protocol, finalizing its
backup at Back(V). If Back(F) has a temporary backup from F, it kills the program. Otherwise it
restores the new backup, which includes the stolen tasks.

• Failure of V: Depending on time, Back(V) restores the old state, restores the new state, or kills the
program.

Killing the program when tmpBackup ̸= null can be avoided by some additional handshaking between
Back(V) and F, or between Back(F) and V, in the event of a failure. This is done in our asynchronous fault
tolerance scheme, which is described in Sect. 5. In the synchronous scheme, we stayed with the simpler protocol.
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Depending on context (e.g. overall running time), the lower robustness of this scheme may be sufficient since
typical steal rates are low [17], and place failures are rare, such that their coincidence is unlikely.

Remark on Implementation. In a few cases, the synchronous scheme uses asynchronous messages,
similar to the original GLB. The original GLB marks these messages with @Uncounted, such that finish ignores
these activities in its bookkeeping to save time. Unfortunately, @Uncounted async discards exceptions [18].
Since we need exceptions for fault tolerance, we had to eliminate some of the @Uncounted annotations.

5. Asynchronous Fault Tolerance Scheme. As noted in Sect. 3, each worker has a three-phase struc-
ture, which we have implemented by the following loop:
while (nTasks > 0 || stealFailed) {

processUpToNTasks();

Runtime.probe();

processRecorded();

}

Here, stealFailed is true iff all w + z steal attempts failed. At the call to Runtime.probe(), all pending
remote activities are run. They may record requests, e.g. steal requests, in the worker’s data structures.
Recorded requests are carried out by the worker in processRecorded.

5.1. Steal Protocol. The asynchronous steal protocol is depicted in Fig. 5.1. A victim V may have more
than one thief, but for clarity, only one thief F is depicted here. As compared to the protocol in Sect. 4, this
protocol has been designed to strictly minimize communication. This manifests in minimalist handshaking and
handling multiple steal requests together. These aspects will be elaborated later.

First, let us look at a positive side effect of stealing: redundancy. When tasks are sent from V to F, they
are copied, and thus exist twice. Inspired by resilient divide-and-conquer algorithms [9, 10], we exploit the
redundancy for fault tolerance. Thus, the backups are not updated to account for task movement, or at least
not immediately. Instead, the stolen tasks are kept at V, and only a link to V is sent to Back(F). If F dies,
Back(F) obtains the tasks from V. This way, the backup volume is reduced.

Nevertheless, excessive scattering of a worker’s data must be avoided, since it would increase the probability
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Fig. 5.1. Steal Protocol of the Asynchronous Scheme

of coincident failures. Therefore, as shown at the bottom of Fig. 5.1, the links are replaced by real tasks at any
next backup. The backup, which may be scheduled at F for whatever reason, incorporates the tasks behind the
links (if not finished yet). It is called an afterMerge-backup. After this backup, a delOpen message is sent to
V, to release the tasks.

Because of the algorithm’s three-phase structure, it is well possible that multiple steal requests are received
at V at the same time. Thus, in Fig. 5.1, a victim V may have more than one thief, but for clarity only one
of them is depicted. To reduce the number of messages, multiple steal requests are handled together in a
so-called transaction. Transactions are numbered by tans, which are assigned consecutively by each worker i.
Consequently, a pair (i, tan) is system-wide unique.

First, V runs through the thieves in some particular order, which is defined later. For each thief F, it
determines the tasks to be sent. According to the lifeline scheme, the first thief gets about half of the tasks,
the second a quarter, and so on. Any remaining requests are rejected. The transaction is formed from those
thieves that get tasks. Their identities are kept in a list at V during the transaction.

The tasks destined for the different thieves are removed from the local pool, and inserted into a local data
structure at V, called Open. It is a P -size array of lists, where each entry Open(F) holds the tasks to be sent
from V to F. Additionally, references to the task groups of the current transaction are saved in another list, to
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speed up access.
Before giving the tasks to thieves, V informs its backup partner. In Fig. 5.1, this is called steal-backup.

Note that a single backup is sufficient for all steal requests of a transaction. A steal-backup differs from other
types of backup in that the tan and a list of thieves are included.

Note that the stolen tasks are omitted from the steal-backup, which reflects our approach of relying on the
redundancy of stealing. Since at least half of the tasks are stolen, the backup volume is significantly reduced
this way.

A steal-backup may be an afterMerge backup. After the steal-backup, V and its backup are synchronized.
Thus, the counter for the kn time period may be reset, which relativizes the steal backup’s expense.

During the steal-backup, V goes on processing tasks, to avoid loosing time while waiting. When the backup
is finished, as signalled by the receipt of the STLack message, V gives the task groups to the respective thieves.
This operation runs fast, since the task groups have already been recorded before. Then, V returns to work,
again, to not loose time waiting.

At this point, V can safely give away the tasks, since Back(V) is able to and will take care of consistency.
Briefly stated, if V dies, Back(V) will contact all thieves of the current transaction (whose identities have been
stored), and make sure they have received their tasks. Usually they have, or will after some short waiting
(except if there is a second failure). Nevertheless, the time between receiving the steal backup and the BVend

message is somewhat critical for Back(V), since it does not hold V’s state completely. Therefore, we denote this
time period as queasy and mark it by valid=false.

Note the asymmetry between the victim and thief sides: F is involved in a single give of the transaction,
whereas V may give tasks to multiple thieves. As stated before, F sends the steal requests consecutively, but
can nevertheless receive multiple give messages at about the same time. They are handled in any order. It is
not necessary to wait for the final Fend message of the first give before processing the next. Thus, there may
be multiple outstanding Fend messages. F keeps them in a list, called OpenFend. Only when this list is empty,
a backup may be sent from F to Back(F). The resulting delay is limited, since F may receive tasks from at most
z workers.

Bookkeeping of all participants makes use of the tans. They are included in all messages of the steal
protocol, and saved wherever appropriate. For instance, at V, they are added to each task group. Unlike the
other participants, F saves the tans of merged task groups permanently. It needs the information since, in
case V dies after V4⃝, it must be able to answer Back(V)’s inquiry. Fortunately, there is an efficient scheme for
permanent storage: Since F’s at most w+ z steal requests go to different victims, subsequent transactions with
the same victim are processed in the order of their tans. Therefore, it is sufficient to keep each V’s most recent
received tan.

For each give, F first sends the respective link to Back(F), and then inserts the tasks. Right afterwards,
F starts processing the tasks. There is no problem about returning to work since, if F dies before F4⃝, Back(F)
resets to a previous state anyway, and if F reaches F4⃝, the results of work are correctly reflected in the new
backup.

As noted above, the handshaking in Fig. 5.1 has been designed to be minimalistic. In particular, Back(F)
only reports to V, but not to F. When V receives a BFack message, it immediately sends Fend to the respective
thief. Moreover, it removes F from the thieves-list of this transaction. It easily recognizes when all F’s have sent
their BFack. Then, the transaction is over, and V signals that to Back(V) via a single BVend message.

5.2. Restore Protocol. Restore presupposes timely failure notification, which has been explained in
Sect. 3. In the following, we assume that Forth(P) has recognized P ’s failure. The restore protocol is depicted
in Fig. 5.2. Note that Forth(P), P , etc. need not have successive numbers, but workers in-between may have
been restored.

The protocol is time-critical between C1⃝ and R4⃝, since Forth(P)’s data are unsecured. Therefore, Forth(P)
and Back(P) run the protocol in so-called emergency mode. In this mode, processing of tasks pauses, for higher
reactivity. Moreover, only urgent and short messages are handled. The other messages must be received, but
they are only stored and handled later. The loss in efficiency due to emergency mode can be neglected, since
we assume that failures are rare.

As shown in Fig. 5.2, the protocol resembles the restore protocol of the synchronous fault tolerance scheme,
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but accounts for the fact that tasks referenced by links must be collected. Also, to improve robustness, failure
of V in queasy state does not automatically lead to program abort. Instead, Back(V) checks whether the tasks
have been taken over by the thief side. Only if the tasks are lost, the program is killed.

The protocol begins with a restore message from Forth(P) to Back(P). Upon receipt, as explained at the
end of Sect. 3, Back(P) makes sure that P = Forth, and that the source equals Forth(Forth(P)). Since failures
may happen at any time, three particular situations must be taken care of:

1. P fails between V1⃝ and V4⃝ in the steal protocol, i.e., Back(P) is in queasy state.
2. P fails between F2⃝ and F5⃝, and Back(P) has saved links.
3. P fails when Forth(P) and/or Back(P) are already involved in another restore protocol.

Situations 1 and 2 may appear together, since a worker is allowed to receive tasks between V2⃝ and V3⃝. In
situation 1, Back(P) contacts all thieves of the current transaction, called GOTcheck in Fig. 5.2. They check
whether they have received tasks for the corresponding tan, otherwise wait for a moment in case the message is
late, and then respond (called GOTok/GOTfalse in the figure). The restore can only be performed if all answers
are GOTok. Otherwise, Back(P) aborts the program.

In situation 2, Back(P) sends a linkResolve message to each former victim. Usually, the victim finds the
respective tasks in Open(P) and sends them back in a linkTasks message. Occasionally, though, the victim has
recognized P ’s failure before Forth(P) did (from a timeout on an outstanding BFack). In this case, the victim
has already taken back the tasks, i.e., it re-inserted them into its own pool and removed them from Open(P).
Consequently, the tasks are not available anymore. Interestingly, such orphaned links are no problem: The
victim just sends back null instead of a task group, and therewith informs Back(P) that it has taken care of
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the tasks. One may ask why the victim takes back the tasks when observing timeout. The reason is that F may
have failed before F2⃝, and, thus, there is no link.

Situation 3 stands for several sub-cases, which will be discussed below. Now, let us look at a normal protocol
run. After having sent the linkResolve and GOTcheck messages, Back(P) waits for answers. During that time,
in fact, it performs the Forth checks discussed earlier. Moreover, it inserts the tasks from the saved backup
into its own pool, as it does with the tasks arriving via linkResolve in course of time.

Sending out the messages before deciding whether to perform the restore at all may appear counter-intuitive.
This order is more economical, though, since it avoids loosing the waiting time, and time-critical messages are
sent earlier this way. Changing the order does not compromise correctness: If Back(P) remains alive, the
order does not matter. If Back(P) dies before performing the Forth checks, two successive workers are gone,
and Back(Back(P)) kills the program anyway. While details are omitted for brevity, considerations like that
determine the ordering of actions throughout our algorithm.

When all outstanding linkTasks and GOTok messages have been received and the tasks have been inserted
(denoted R2a⃝ in the figure), Back(P) has successfully restored P . This corresponds to R2⃝ in Fig. 4.2. Like there,
the protocol finishes with TO- and IA-backups.

The most important sub-cases for situation 3 are handled as follows:

• Back(P) dies during the protocol:After recognizing the failure,Forth(P) figures out that Back(Back(P))
is the next place alive along the ring, and sends a restore message. If Back(Back(P)) has already
received Back(P)’s TO-backup, it performs the restore, otherwise it aborts the program.

• Forth(P) receives a restore between C1⃝ and C2⃝: Forth(P) kills the program.
• Back(P) recognizes failure of Back(Back(P)): Back(P) kills the program.

In the second and third cases, the program could in principle be continued by nesting protocol execution. This
would, however, complicate the program. Since we have assumed unfavourably correlated failures to be unlikely,
we instead abort the program.

5.3. Communication Structure. As noted before, the actor scheme allows us to handle incoming mes-
sages in a predefined order. Moreover, messages can be easily prioritized or delayed until the next iteration
of the main loop. The order is accurately defined for all message types of our algorithm but, for brevity, the
following list is restricted to a few typical representatives:

• Handshaking and link management messages are handled immediately (e.g. noTasks, BFack, receipt of
a link, linkResolve and GOTcheck)

• Arrival of a TO-backup or IA-backup has the highest priority of recorded requests.
• Arrival of restore comes thereafter, since a TO-backup may increase the chances for successful restore.
• Upon arrival of give, the link is sent immediately, but the (more time-consuming) merge action is
recorded.

• Steal requests come after merge, so that the steal backup replaces the links, and the received tasks can
be distributed.

• Regular backups have lowest priority.

6. Experiments. Experiments were conducted on an Infiniband-connected cluster, where each node com-
prises two 8-core Intel Xeon E5-2760 CPUs as well as 32 GB main memory. All experiments used one place per
node on up to 128 nodes. We deployed X10 version 2.5.2 (SVN, revision 29421) and GCC 4.8.4 to compile the
programs. Resiliency was only switched on for the fault-tolerant program versions.

We used two benchmarks: Unbalanced Tree Search (UTS) and Betweenness Centrality (BC). Both are
included as samples in the X10/GLB distribution. UTS is a well-known benchmark that counts the number
of nodes in a highly irregular tree, which is constructed on the fly from node descriptors [12]. Each descriptor
encodes a subtree and naturally corresponds to a task. We used geometric distribution for the tree shape. BC
considers the set of all shortest paths in a graph, and for each node computes the number of shortest paths
running through it [13]. GLB uses UTS as an example for dynamic task pool initialization, and BC for static
initialization.

For the fault-tolerant frameworks, the sample codes of UTS and GLB were slightly adapted. In particular,
the BC example was extended by shadows, as explained in Sect. 3.
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Table 6.1
Experimental results for the Parameter n and k

Benchmark Configuration Framework determined n and k

UTS

small
GLB n = 512

FTGLB n = 4096, k = 65536
FTGLB-Actor n = 8192, k = 65536

large
GLB n = 16384

FTGLB n = 32768, k = 65536
FTGLB-Actor n = 65536, k = 65536

BC

small
GLB n = 512

FTGLB n = 65536, k = 512
FTGLB-Actor n = 32768, k = 1024

large
GLB n = 16384

FTGLB n = 65536, k = 512
FTGLB-Actor n = 65536, k = 512

Both UTS and BC were run with a small and a large configuration, to account for different computation-
to-communication ratios. In the following, b denotes the branching factor, d the tree depth, s a random seed,
and N the number of graph nodes:

• small UTS: d = 13, b = 4, s = 19
• large UTS: d = 17, b = 4, s = 19
• small BC: N = 214, s = 2
• large BC: N = 216, s = 2

We compared three program versions:

• the original GLB code from the X10 distribution (GLB),
• our synchronous GLB version from Sect. 4 (FT-GLB), and
• our asynchronous GLB version from Sect. 5 (FTGLB-Actor).

Experiments were grouped into two stages. In the first stage, we determined the optimal n and k values
for the process(n) calls and the kn backup intervals. In the second stage, we measured performance with the
best n and k values obtained before. All experiments were repeated three times, and the average was taken.

In the first stage, we started the small UTS and BC configurations on 8 nodes, and the large configurations on
32 nodes, varying n. These place numbers have been observed before to lead to good performance. Although [1]
reports on scalability to many more places, we were not able to achieve such speedups with our configurations
and hardware.

The best n and k values are depicted in Table 6.1. The fault-tolerant program versions prefer higher n, due
to their increased overhead. Although steal rates are similar for all programs, these versions need to perform
additional actions to, e.g., write backups. The k values are not important for UTS, since steals, and therefore
steal backups, are frequent. Therefore, any sufficiently large k value performs well. For BC, we chose k such
that a regular backup is written roughly every 10 seconds.

Results of stage 2 are depicted in Figs. 6.1 and 6.2 for the small configurations, and in Figs. 6.3 and 6.4 for
the large configurations.

For a deeper analysis, we divided a typical run into three phases:

• Setup and initial work distribution: Each place writes its initial backup. Dynamic work distribution
requires stealing.

• Steady state: The nodes work mostly independently, the steal rate is low.
• Final stage: More and more places run out of work and steal from each other, increasing communication.

For the small configurations, the frameworks spent a high portion of time in the final stage, which led to a
high communication-to-computation ratio. The huge overhead of up to 655% for FTGLB as compared to GLB
in Figs. 6.1, 6.2 and 6.4 indicates that the synchronous scheme has deficiencies. They have been largely resolved
with the FTGLB-Actor framework, which exhibits almost the same performance as GLB in the UTS runs. In
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Fig. 6.1. Experimental results for the small UTS configuration.
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Fig. 6.2. Experimental results for the small BC configuration.
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Fig. 6.3. Experimental results for the large UTS configuration.
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Fig. 6.4. Experimental results for the large BC configuration.

the BC runs, there is a notable difference of up to 62.5% between GLB and FTGLB-Actor in Figs 6.2 and 6.4.
It can be explained by the need to manage shadows.

To measure the overhead of our restore protocols, we started three runs on 5 and 9 nodes for each con-
figuration and benchmark, crashed one place shortly after the start of the task execution, and compared the
execution time with that on 4 and 8 places, respectively. The overhead was about 6% in all cases.

7. Related Work. As already stated in the introduction, related work differs from ours in the task model
used. First, MapReduce systems such as Hadoop [8] assume the set of tasks to be fixed. Ciel [19] extends
MapReduce by permitting tasks to generate new tasks, but still task management is centralized at a master
process. Second, divide-and-conquer algorithms exploit references between stolen children and their parents for
fault tolerance [9, 10], whereas we discard parents and maintain only one partial result per worker. Third, side
effects in tasks can be tackled by tracking operations [20].

Outside fault tolerance, load balancing and task pools are a long-standing area of intensive research, e.g. [1,
6, 14, 21]. In [22], an X10 keyword for mobile activities is suggested that brings activities and global load
balancing together.

Resilient X10 has been deployed in other applications [4]. For instance, a fault-tolerant DistArray data
structure [23] bases recovery on regular backups, similar as we do. Less closely related to our work, transient
faults in task pools can be detected and handled by replication and voting [24].

8. Conclusions. This paper has introduced two different task pool algorithms that can tolerate any
number of permanent place failures, except failure of the first place. The algorithms are based on backups of
the local task pool contents, which are regularly written to the main memory of a neighboured place. Important
aspects have been failure notification, as well as steal and restore protocols. Especially the protocols differ
significantly between the algorithms. Most importantly, the first algorithm uses synchronous, and the second
asynchronous communication. To reduce complexity, the second algorithm deploys an actor-like communication
structure. Moreover, it exploits stealing-inherent redundancy, and requires less handshaking. Both algorithms
are conservative in that a computed result is guaranteed to be correct, at the price of halting the program in a
few rare cases. There are more such cases for the first than for the second algorithm.

The algorithms have been implemented in the GLB framework of X10. In experiments with UTS and BC,
we observed significant overheads for the first algorithm, but the second algorithm’s performance was close to
that of non-fault-tolerant GLB.

There are several directions for future research. First, we will finish the implementation of the third scheme,
which was mentioned in Sect. 1. Beyond that, it would be interesting to apply our approach to other task pool
algorithms, especially to algorithms that allow multiple workers per place and deploy concurrent data structures.
Also, it would be interesting to implement the fault tolerance schemes in other programming systems, e.g. in
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MPI with user level failure mitigation [26].
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OPEN SOURCE SOLUTIONS FOR BUILDING IAAS CLOUDS
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Abstract. Cloud Computing is not only a pool of resources and services offered through the internet, but also a technology
solution that allows optimization of resources use, costs minimization and energy consumption reduction. Enterprises moving
towards cloud technologies have to choose between public cloud services, such as: Amazon Web Services, Microsoft Cloud and
Google Cloud services, or private self built clouds. While the firsts are offered with affordable fees, the others provide more privacy
and control. In this context, many open source softwares approach the buiding of private, public or hybrid clouds depending on
the users need and on the available capabilities. To choose among the different open source solutions, an analysis is necessary in
order to select the most suitable according with the enterprise’s goals and requirements. In this paper, we present a depth study
and comparison of five open source frameworks that are gaining more attention recently and growing fast: CloudStack, OpenStack,
Eucalyptus, OpenNebula and Nimbus. We present their architectures and discuss different properties, features, useful information
and our own insights on these frameworks.
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1. Introduction. Open source cloud platforms were born as a response to the necessity of Infrastructure
as a Service (IaaS) solutions to provide privacy and control over virtualized environments. Therefore the open
source cloud platforms were primely used to build private clouds. Eventually, these open source solutions can
be used to set up public clouds, private clouds or a mix of them, i.e., hybrid clouds. With the emergence of
different open source cloud solutions, the decision to choose the most suitable one becomes a confusing task,
given the specific characteristics of each platform [18]. Moreover, since hybrid clouds are the most widely used
nowadays, surveying open source middlewares that simplify cluster management is an important matter. In
this context, several papers analyzed and compared different platform, trying to establish a starting point to
look when deciding which open source cloud technology should be adopted.

Diverse researches detail comparison among cloud solution platforms. Table 1.1 shows related studies that
compare cloud solutions, highlighting the analyzed solutions and their main focus/limitation.

Some studies are generalists on the approach and intend to provide a wide view on cloud solutions. Therefore
they briefly present a higher number of solutions, with no comparison - the case in [33, 34] - or with a simple
general feature comparison, as in [35].

More specific studies tend to deeper detail the analyzed solutions, considering a specific point of view. [11]
focus on appearance design and novel features, while [32] focus on the scalability comparison of the platforms
and [37] on placement policies, platform architecture and networking of the analyzed solutions. [13] details
OpenStack and CloudStack solutions, but with deeper details only for OpenStack.

[28] provide a comparison of Eucalyptus, OpenNebula and Nimbus systems. The authors describe the
different features and design, accurately highlighting tendencies in the focus of each of these products. Never-
theless, the study is outdated and missing two important open source solutions that gained importance since
the publication of the paper, OpenStack and CloudStack.

In this context, this work is focused in IaaS open source cloud solutions. It presents in deep details the
newest versions of OpenStack, CloudStack, OpenNebula, Eucalyptus and Nimbus and compare their general
features and important properties, trying to provide useful information for users that need to choose an open
source cloud software. This work is a continuation of the work done before [12], which compared only CloudStack
and Openstack.

The paper is organized as follows: Sections 2, 3, 4, 5 and 6 describe respectively the architecture of Open-
Stack, CloudStack, Eucalyptus, OpenNebula and Nimbus and their important properties; Section 7 performs
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Table 1.1
Cloud solutions comparison studies

Study Analyzed platforms Main restriction

Voras et. al. (2011) [33] OpenNebula, Eucalyptus,
Ubuntu Enterprise Cloud,
openQRM, Abiquo, Red Hat
Cloud Foundations, Open-
Stack, Nimbus and mOSAIC

Brief introduction on any solu-
tion, no comparison provided

Zeng et. al. (2012) [34] Amazon EC2, IBM smart
cloud, Google App Engine,
Windows Azure, Hadoop,
Eucalyptus, OpenNebula and
Nimbus

Brief introduction on any solu-
tion, no comparison provided

Endo et. al. (2010) [35] XCP, Nimbus, OpenNebula,
Eucalyptus, TPlatform, ECP
(Enomalys Elastic Computing
Platform) and Apaches VCL

Brief introduction on any so-
lution, brief comparison pro-
vided

Amrani et. al. (2012) [11] Eucalyptus, OpenNebula and
Nimbus

Restricted to appearance de-
sign and new features descrip-
tion

Von Laszewski et. al. (2012)
[32]

Eucalyptus, OpenNebula,
Nimbus and OpenStack

Focus on scalability

Cordeiro et. al. (2010) [37] XCP, Eucalyptus and Open-
Nebula

Focus on placement policies,
platform architecture and net-
working

Baset (2012) [13] OpenStack and CloudStack Further details only on Open-
Stack

Sempolinsky and Thain (2010)
[28]

Eucalyptus, OpenNebula and
Nimbus

Outdated, missing OpenStack
and CloudStack

comparisons between the platforms in terms of generalities, functionalities and proprieties. Conclusions are
detailed on Section 8.

2. OpenStack. OpenStack is a cloud software that offers capability to control large pools of compute,
storage and networking resources. It also empowers users providing on-demand resources [29]. Starting from
2010, OpenStack was developed by Rackspace Hosting and NASA [6] aimed to provide open source cloud solution
to build public or private clouds. The mission of OpenStack is to enable any organization to create and offer
cloud computing services running on standard hardwares. Provisioned as open source solution, OpenStack is
built keeping these core principles in mind: (i) open source: all code will be released under the Apache 2.0 license
allowing the community to use it freely; (ii) open design: every 6 months the development community hold a
design summit to gather requirements and write specifications for the upcoming releases; (iii) open development:
maintains a publicly available source code repository through the entire development process; and (iv) open
community: produces a engaged development and user community through an open and transparent process.

The first version of OpenStack was entitled Austin and was released in October of 2010. Since then
OpenStack adopts a policy of two major releases per year, totalizing 11 releases so far (the next one, entitled
Liberty, expected to October of 2015). The Austin release of OpenStack had only the object storage (Swift)
and compute (Nova) components, and presented important restrictions, like the support of objects limited to
5GB. The support to large files was introduced in the second release, entitled Bexar, together with the image
registry and delivery service (Glance). New modules were introduced only on the fifth release, entitled Essex,
with the graphical user interface (Horizon) and the security component (Keystone). The sixth release, Folsom,
introduced the network as a core OpenStack project (then code-named Quantum, actually Neutron) and the
block storage component (Cinder). Folsom was then, the first release to embody the OpenStack three more
important modules, Swift, Nova and Neutron. Since this version, all the existent modules were fixed and
improved and new shared services were added, such as: metering (Ceilometer) and orchestration (Heat) on the
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eighth release, Havana; the database service (Trove) on the ninth release, Icehouse; the data processing (Sahara)
on the tenth release, Juno; and the bare metal service (Ironic) on the newest version, Kilo. The following Section
2.1 details the components that compound the general architecture of OpenStack.

2.1. General Architecture. As in any cloud platform, the infrastructure underneath OpenStack is stan-
dard hardware, which can contain any pieces of physical devices such as servers, disks or network devices.
In order to provide cloud services, OpenStack develops virtualization layers, promoting the abstract view of
physical infrastructure to end users. These virtualization layers are built up in a multicomponent architecture.

The OpenStack architecture consists of three main components: Compute (Nova), Network (Neutron) and
Storage (Swift). Beside these three pillars, OpenStack has been developing many other services, each of those
designed to work together to provide a complete IaaS solution. The integration of these services is facilitated
through public application programming interfaces (APIs) offered by each service [6].

In the following, the detailed description of each component is provided.

2.1.1. Compute (Nova). The Compute component, codenamed Nova and written in Python, is the
computing fabric controller responsible for managing large networks of virtual machines (VMs), and eventually
to properly schedule VMs among available physical machines (PMs) [6]. Compute is a distributed application
that consists of six components: Nova-api, Message Queue, Nova-Compute, Nova-Network, Nova-Volume and
Nova-Scheduler. Nova supports the complete life-cycles of an instance in the cloud, starting from the request
to initialize a VM until its termination. It follows this architecture:

• Nova-api: accepts and responds to end user compute API calls. Beside providing its own OpenStack
Compute API, Nova-api is compatible with Amazon EC2 API, offering the potential to integrate with
Amazon cloud services. It has another special Admin API reserved for privileged users to perform
administrative actions. This component also handles the orchestration activities, such as: running an
instance and the enforcing policies (e.g. quota checks).

• Nova-compute: is primarily a worker daemon that creates and terminates VM instances via hypervisor
APIs. In order to do so, it accepts actions from the queue and performs system commands to fulfill
them, while updating the database state accordingly. OpenStack supports several standard hypervisors
(listed in Section 7) while keeping the openness that allows to interface other hypervisors through its
standard library.

• Nova-volume: manages the creation, attachment and detachment of persistent volumes to compute
instances. There are two types of block devices supported by a VM instance: (1) Ephemeral storage,
which is associated to a single unique instance. One ephemerally stored block device life-cycle is
coupled with the instance life-cycle, i.e., when the instance is terminated, data on this storage will also
be deleted; (2) Volume storage is persistent and independent from any particular instance. This storage
can be used as external disk device where the data stored on it still remains even when the instance is
terminated.

• Nova-network: is a worker daemon that handles network-related tasks. It accepts and performs net-
working tasks from the queue. Task examples include setting up bridging interfaces or changing iptable
rules.

• Nova-schedule: handles the scheduling of VMs among PMs. While the scheduling algorithms can be
defined by users, Nova-schedule supports by default three algorithms: (1) Simple: attempts to find least
loaded host, (2) Chance: chooses random available host from service table, (3) Zone: picks random
host from within an available zone. By allowing users to define their own scheduling algorithms, this
component is important for building fault tolerant and load-balanced systems.

• Queue: provides a central hub for passing messages between daemons. This is usually implemented
with RabbitMQ, but can support any AMPQ message queue.

• Database: stores most of the build-time and run-time state of a cloud infrastructure. For example, it
provides information of the instances that are available for use or in use, networks availability or storage
information. Theoretically, OpenStack Nova can support any SQL-based database but the most widely
used databases currently are sqlite3, MySQL and PostgreSQL.

All the components of the OpenStack architecture follow a shared-nothing and messaging-based policy.
Shared-nothing means that each component or each group of components can be installed on any server, in a
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distributed manner; while the messaging-based policy ensures that the communication among all components
is performed via Queue Server.

2.1.2. Network (Neutron). The Network component of any cloud platform has important attributions:
(i) to offer accessibility to resources and services; (ii) to provide address binding between different services
(essential to support multi-tier applications) and (iii) to automatically configure the network (fundamental in
auto-scaling scenarios).

The OpenStack Networking component gives operators the ability to leverage different network technologies
to power their cloud networking. It does so through a rich set of APIs, multiple networking models (e.g., flat or
private network) and flexible plug-in architecture. Especially, the plug-in architecture - with the plug-in agent
- enables, not only the usage of various network technologies, but also the ability to handle user workloads. In
OpenStack, at network level, developers can implement their own load balancing algorithms and plug it in the
platform to achieve better workload control.

The Network architecture consists of four distinct physical data center networks:
• Management network: used for internal communication between OpenStack components. The IP ad-
dresses on this network should be reachable only within the data center.

• Data network: used for VM data communication within the cloud deployment. The IP addressing
requirements of this network depend on the OpenStack Networking plug-in in use.

• External network: used to provide VMs with Internet access in the deployment scenarios. The IP
addresses on this network should be reachable by anyone on the Internet.

• API network: exposes all OpenStack APIs, including the OpenStack Networking API, to tenants. The
IP addresses on this network should be reachable by anyone on the Internet.

2.1.3. Storage. The Storage component, one of three main pillars of OpenStack architecture, is used
to manage stored resources. OpenStack has support for both Object Storage and Block Storage, with many
deployment options for each, depending on the use case.

Object Storage (codename Swift) is a scalable object storage system. It provides a fully distributed, API-
accessible storage platform that can be integrated directly into applications or used for backup, archiving,
and data retention [6]. In Object Storage, data are written to multiple hardware devices, with the OpenStack
software responsible for ensuring data replication and integrity across clusters. Object storage clusters are scaled
horizontally while adding new nodes. If a node fails, OpenStack replicates its content from other active nodes.
Because OpenStack uses software logic to ensure data replication and distribution, inexpensive commodity hard
drives and servers can be used instead of expensive equipments. Therefore, Object Storage is ideal for cost
effective, scale-out storage [6].

Block Storage (codename Cinder) allows block devices to be exposed and connected to compute instances
for expanded storage, better performance and integration with enterprise storage platforms, such as NetApp,
Nexenta and SolidFire [6]. By managing the storage resources in blocks, Block Storage is appropriate for
performance sensitive scenarios, such as: database storage, expandable file systems, or the provision of a server
with access to raw block level storage.

2.1.4. User interface - Dashboard. The OpenStack dashboard is a graphical user interface, to both
administrators and users, that controls compute, storage and networking resources. Through the dashboard,
administrators can also manage users and set limits on resources access for each user.

2.1.5. Shared Services. OpenStack Shared services are a set of several services that span across three
pillars of compute, storage and networking, facilitating the cloud management operations. These services include
the identity, image, telemetry, orchestration and database services [6]:

Identity Service (code-named Keystone) is the security service to protect resources access and usage. This
service provides a central directory management, mapping users to OpenStack accessible services. It acts
as a common authentication system across the cloud operating system. It also supports multiple forms of
authentication including standard username and password credentials, token-based systems and AWS-style
logins.

Image Service (code-named Glance) is the repository for virtual disk and server images used by the VMs.
In OpenStack, user can copy or snapshot a server image and immediately store it away. Stored images can be
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used as a template to get new servers up and running quickly and consistently.
Telemetry Service (code-named Ceilometer) aggregates resources usage and performance data of the services

deployed in OpenStack cloud. This capability provides visibility into the usage of the cloud infrastructure and
allows cloud operators to view metrics globally or individually.

Orchestration Service (code-named Heat) is a template-driven engine that allows application developers to
describe and automate the deployment of the cloud infrastructure. It also enables detailed post-deployment
activities of infrastructure, services and applications.

Database Service (code-named Trove) allows users to utilize the features of a relational database. Cloud
users and database administrators can create and manage multiple database instances as needed.

2.2. Properties. Provisioned as IaaS, OpenStack is built following an open philosophy: to avoid tech-
nology lock-ins by not requiring specific technologies and to provide user freedom to choose the best slot that
matches its needs [6]. In this section, we will analyze some important properties of OpenStack.

• Live migration: OpenStack supports two types of live migration: shared storage based and block live
migration. The former supports live migration scenarios where the source and destination hypervisors
have access to the shared storage, while the latter does not require shared storage.

• Load balancing: OpenStack supports load balancing at different scales. First of all, the supporting
feature of live migration has enabled system administrators to distribute application workloads among
physical servers by means of adjusting VM placement. Moreover, it is possible to control application
workloads at VM level, service provided by OpenStack Network layer, controlled by Neutron compo-
nent. This component, with a flexible plug-in architecture allows the development of run-time custom
algorithms to distribute workloads among VMs. Indeed, OpenStack has an on-going project called
Load Balancing as a Service (LBaaS) that is aimed to provide load balancing service to end users. This
service has monitoring feature to determine whether the VMs are available to handle user requests and
take routing decisions accordingly. Several routing policies are supported, such as: round robin (i.e.,
rotates requests evenly between multiple instances), source IP (i.e., requests from a unique source IP
address are consistently directed to the same instance) and least connections (i.e., allocate requests to
the instance with the least number of active connections).

• Fault tolerance: Fault tolerance can also be handled at different levels, depending on the way the IaaS
system is configured and deployed. At the VMs level, in order to prevent failures, users can develop
scheduling algorithms (besides the three already supported algorithms by OpenStack) for placing the
VMs that best fits to his use cases. Some scheduling algorithms have been designed at the present
time, such as: group scheduling (i.e., VMs that provide the same functionalities are grouped and
placed to separate PMs) and rescheduling (i.e., rescheduling of VMs from failed host to surviving hosts
using live-migration). At storage or database level, fault tolerance is achieved by using replication and
synchronization to ensure that a failure occurred at one device will not break the whole system.

• Availability: In OpenStack, high availability can be achieved through different setups depending on
services types, stateless or stateful services. Stateless services can provide answer to a request without
requiring further information of other services or historical data. OpenStack stateless services include
nova-api and nova-scheduler. For these services, high availability is achieved by providing redundant
instances and load balancing them. In the opposite, stateful services are ones that require other in-
formation to answer a request, which difficult the high availability achievement. These services, e.g.,
database or storage, can be highly available by using replication, with the adequate synchronization
between the main version and replicated versions in order to keep the system consistency [23].

• Security: OpenStack has a separated service (Identity service) which provides a central authentication
management across the cloud operating system and users. The possibility to set up VPNs and firewalls
is available.

• Compatibility: OpenStack is compatible with Amazon EC2 and Amazon S3 and thus client applications
written for Amazon Web Services can be used with OpenStack with minimal porting effort [6]. In
terms of hypervisors, OpenStack supports multiple hypervisors, e.g., Xen, KVM, HyperV, VMWare,
etc. Other hypervisors with existing standard drivers can also be interfaced with OpenStack through
standard library, e.g, libvirt library.
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3. CloudStack. CloudStack [4] is an open source software platform, written in Java, designed for devel-
opment and management of cloud Infrastructure as a Service. It aggregates computing resources for building
private, public or hybrid clouds. CloudStack brings together the ”Stack” of features requested by companies
and users, like data centers orchestration, management and administration of users and NaaS (Network as a
Service).

The start of CloudStack was with Cloud.com in 2008. In May 2010, it was open source under GNU General
Public License. Citrix bought CloudStack in July 2011, then in April 2012, Citrix donated CloudStack to
Apache Software Foundation (ASF) where it was relicensed under Apache 2.0 and accepted as an incubation
project. Since March 2013, CloudStack became a Top Level Project of Apache. Many companies are basing on
CloudStack for building and managing their cloud infrastructures. Among these companies, there are: Nokia,
Orange, Apple, Disney and many others.

The first major release of CloudStack since its graduation from the Apache Incubator is 4.1.0, major changes
were realized on the platform with modifications in the codebase to make its development easier, Maven was
used as a build tool, and for creating RPM/Debian packages a new structure was used. The second major
release was 4.2, many features were born due to cooperations with different industries, including an integrated
support of Cisco UCS compute chassis, SolidFire storage arrays, and the S3 storage protocol. Next CloudStack
releases until the last one 4.5.1, mainly include new features, bug fixes and improvement of the interaction with
different hypervisors.

3.1. General Architecture. In CloudStack, physical resources are organized and managed in a hierar-
chical structure. The lowest level contains the computational devices, i.e. hosts and primary storage. Different
hosts accessing a shared storage form a cluster. Clusters combined by a layer 2 switch form a pod. Pods are
grouped together with secondary storage by a layer 3 switch to form a zone. At the highest level, zones are
grouped to create a region. All these resources are managed by a Management Server. In the following, we
describe in details each component that forms the whole architecture.

3.1.1. The architectural levels. The architectural levels are the core of the CloudStack architecture.
These levels are: the lowest level, clusters, pods, zones and regions.

A host represents a physical computational machine that contains local storage. The physical hosts are
virtualized by hypervisors. CloudStack supports many hypervisors for VMs management such as Xen, KVM,
vSphere, Hyper-V, VMWare, etc. as well as bare metal provisioning. All hosts within a cluster must be
homogeneous in terms of the hypervisor, with the possibility of having heterogeneous hypervisors in different
clusters.

Within a cluster, hosts are tied together into the same computational pool with the primary storage. In a
cluster all hosts share the same IP subnet. The primary storage can be any kind of storage supported by the
hypervisor and one cluster can have multiple primary storage devices.

A pod is a collection of different clusters linked with a layer 2 switch. Hosts in the same pod are in the
same subnet. A pod is not visible to the end user.

A zone contains pods that are attached to the secondary storage using a layer 3 switch. Zones are visible to
the end user and they can be private or public. Public zones are visible to all users in the cloud, while private
zones are visible only to users from a particular domain. Zones main benefits are isolation and redundancy.
Often, a zone corresponds to a data center; although if a data center is large enough, it can have multiple zones.

A region is the largest organizational unit in CloudStack. A region contains multiple zones distributed in
geographic locations close to each other.

3.1.2. Management Server. A Management Server is used to manage all resources in cloud infrastruc-
ture through APIs or UI. One management server can support around 10K hosts and can be deployed either
on a physical server or on a VM. In case of the existence of more than one management server, user interaction
to either of them will return the same result. This ensures high availability of CloudStack.

A database is required for management servers to be persistent. In order to prevent single point of failure,
we can have one primary database and several database replicas always synchronized with the primary copy.

3.1.3. Storage. In addition to the host local storage, CloudStack manages two main types of storage:
primary storage and secondary storage.
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• Primary storage: is a storage associated with a cluster or a zone, with the possibility of a single cluster
to deploy multiple primary storages. This kind of storage is basically used to run VMs and to store
application data. Since this storage interacts directly with applications deployed in VMs, it can be
expensive in terms of I/O operations, reason why it is placed physically near to the hosts.

• Secondary storage: supports two different types, NFS and Object Storage. It is used to store ISO
images, templates and snapshots.

– ISO image: is used when user wants to create a VM.
– Template: is the base operating system image that the user can choose when creating new instance.

It may also include additional configuration information such as installed applications.
– Snapshot: is used as backup for data recovery service. CloudStack supports two types of snapshot:

individual snapshot and recurring snapshot. The former is one-time full snapshot, while the latter
is either one-time full snapshot or incremental snapshot.

3.1.4. Networking. CloudStack supports the use of different physical networking devices (e.g. NetScaler,
F5 BIG-IP, Juniper SRX, etc). In CloudStack, users have the ability to choose between two types of network
scenarios: basic and advanced. The basic scenario is for an AWS-style networking. It provides a single network
where guest isolation is done through the layer 3 switch. The advanced scenario is more flexible in defining
guest networks [4]. For example, the administrator can create multiple networks to be used by the guests.
CloudStack provides many networking services. Examples include:

• Isolation: CloudStack assures the isolation of networks, by allowing the access to the isolated network
only by virtual machines of a single account.

• Load Balancing: to balance the traffic in the cloud, the user can create a rule to control and distribute
the traffic and apply it to a group of VMs. Within the defined rule, user can choose a load balancing
algorithm among the supported ones.

• VPN: to access a VM using a CloudStack account, users can create and configure VPNs. Each network
has its own virtual router, so VPNs are not shared across different networks. Using VPN tunnels, hosts
in different zones are allowed to access each other.

• Firewall: one host can access others in the same zone without passing through the firewall. Users can
use external firewalls.

3.2. Properties. The main properties of CloudStack are [4]:
• Live migration: A live migration of running VMs between hosts is allowed in CloudStack through the
Dashboard. Depending on the VMs hypervisor, migration conditions can be different. For example,
live migration using KVM hypervisor will not support the use of local disk storage, and source and
destination hosts have to be in the same cluster; while Xen and VMWare support local disk storage
and allow to migrate between different clusters [3].

• Load balancing: a load balancer is an optional component of CloudStack that allows traffic distribu-
tion among different management servers [5]. In addition to creating rules and using load balancing
algorithms, CloudStack offers the possibility to integrate with external load balancers such as Citrix
NetScaler [27].

• Fault tolerance: in CloudStack, fault tolerance is achieved at different scales, e.g. management, database
and host levels. In order to prevent failures of management server, the server can be deployed in
multi-node configuration. If one management node fail, other nodes can be used without affecting
the functioning cloud. Failures at database level are handled by using one or more replication of the
database linked to the management server. For host’s fail-over, CloudStack recovers the VM instances
by taking the images from secondary storage and using application data in primary storage.

• Availability: CloudStack ensures high availability of the system by using multiple management server
nodes which may be deployed with load balancers.

• Security: in addition to isolation using different accounts, VPNs and firewalls, CloudStack offers the
isolation of traffic using the strategy of security groups. These are sets of VMs that filter the traffic
on the basis of configuration rules. CloudStack provides a default security group with predefined rules,
that can be modified if necessary.

• Compatibility: the pluggable architecture of CloudStack allows one cloud to support different hypervisor
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implementations, including: Hyper-V, KVM, LXC, vSphere, Xenserver , Xen Project and also bare
metal provisioning. Moreover, CloudStack is compatible with Amazon API and enables the integration
of these two platforms.

• Scalability: CloudStack can manage thousands of servers distributed in different data centers and
different locations, thanks to the management server capability (one management server node can
manage a big pool of physical resources), and the possibility of using multiple management servers for
reducing VMs downtime.

• API extensibility: The CloudStack APIs are very powerful and allow developers to create new command
line tools and UIs, and to plug them into CloudStack architecture. If the developer wants to use a new
hypervisor, new storage system or new networking service, he just needs to write a new plug-in in Java
and integrate it.

4. Eucalyptus. Eucalyptus is a popular open source IaaS product, provided by Eucalyptus Systems [7].
It is used to implement, manage, and maintain private and hybrid clouds (but cannot build public clouds)
with a main key design feature, which is Amazon Web Services (AWS) API compatibility. Many programming
languages can be used to code Eucalyptus including: Java, C, Groovy, Shell, Perl, Python [7].

Originally it was designed at the University of California, Santa Barbara, as set of services that could emulate
AWS on a different site apart from Amazon servers, with the aim of linking together AWS, supercomputer centers
at National Science Foundation and several university sites [20]. It became a for-profit organization in 2009. In
2012, Eucalyptus started a partnership with AWS that allowed to develop more AWS-compatible environments,
and to create hybrid clouds by facilitating movements of instances -created from stored Operating System
Images- between an Eucalyptus private cloud and Amazon Elastic Compute Cloud (EC2). In September 2014
HP acquired Eucalyptus and lunch it under the Helion Eucalyptus name.

Beside its high AWS compatibility that allows running an application on AWS and Eucalyptus without any
modifications, Eucalyptus is characterized by its high availability configuration, easy installation and simple
user interface. Its main clients include: AppDynamics, Nokia, NASA, Puma and others [7].

Eucalyptus since its first releases contains its main feature which is compatibility with AmazonWeb Services.
Many announced releases were just maintenance releases and do not contain new features. Eucalyptus Cloud
User Console was included in the release 3.2.0 which enabled self-service provisioning of different resources
for cloud users. Eucalyptus 3.3.0 introduced many important features such as auto-Scaling, Load Balancing,
CloudWatch and new VM Types, and this make it one of the most important releases of Eucalyptus. Many
things were changed in release 4.0.0, including changes in the whole architecture and how components are
installed and registered, changes in storage architecture, changes in networking mode and a new administrator
roles were set. The current release 4.1.1 (11/5/2015) is a maintenance release for 4.1.0 in which a support for
CloudFormation was add with new Management Console features and new instance status checks.

4.1. General Architecture. Eucalyptus has a highly modular, hierarchical and distributed architec-
ture [22]. Users familiar with AWS do not find any difficulties with Eucalyptus because it replicates the same
interaction tools and interfaces used in AWS, such as: euca2ools - the command-line tool - or the Eucalyptus
User Console - a GUI based tool. Eucalyptus architecture is characterized by five main components: Cloud
Controller, Cluster Controller, Storage Controller, Node Controller and Scalable Object Storage, and one op-
tional component: VMware Broker. These components are grouped in three different logical levels: Cloud Level,
Cluster Level and Node Level [7]. In the following sections we describe each logical level and the associated
components.

4.1.1. Cloud Level. Contains two components: The Cloud Controller and the Scalable Object Storage.
The Cloud Controller (CLC) is a Java program that provides the interface to the cloud, and each cloud

contains only one. CLC contains query interfaces and a EC2-compatible SOAP. It handles users requests and
provides high level authentication, quota management, accounting and reporting. CLC does also meta-schedule
and manages different cloud resources after collecting information provided by the Cluster Controller.

The Scalable Object Storage (SOS) is an Eucalyptus service that allows the use of external (open source
or commercial) storage solutions. SOS is equivalent to AWS Simple Storage Service (S3). In case of small
deployments Eucalyptus has a basic storage implementation called Walrus that has two main functionalities:
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(i) storage of system files that could be accessible from different nodes (it may contain: VM images, volumes,
snapshots, Linux kernel images, Root filesystem), and (ii) be used as Storage as a Service to store users data
and applications.

4.1.2. Cluster Level. Each cluster is formed by a group of nodes linked with a LAN network. This level
contains two main components: Cluster Controller and Storage Controller, and one optional: VMware Broker.
Clusters are under subnets with a specific range of IP addresses, what compromises the flexibility and is a
disadvantage of Eucalyptus.

The Cluster Controller (CC) is a C program that collects information, manages the execution of the virtual
instances and virtual network and verifies the respect of Service Level Agreement. Multiple Cluster Controller
could exist within one cloud. It works as an intermediate between the Cloud Controller, the Storage Controller
and the Node Controller. CC is equivalent to AWS availability zone.

The Storage Controller (SC) is a Java program developed to have the same features as AWS Elastic Block
Store (EBS). It manages the snapshots and volumes of a specific Cluster and controls the block-access network
storage. The SC also communicates with different storage systems (NFS, iSCSI, SAN,...), with the Node
Controller and the Cluster Controller.

The VMware Broker (VB) is an optional component available only in Eucalyptus version with VMware
support. It provides an AWS compatible interface for VMware environments that allows the deployment of
VMs on VMware infrastructure elements. VB directly manages the communication between the CC and the
VMware hypervisors (ESX/ESXi), or it is possible that it passes through VMware vCenter.

4.1.3. Node Level. This level is composed by a single component, the Node Controller (NC), a C program
that hosts VMs and their associated services, and manages the endpoint of the virtual network. NC interacts
with the hypervisor and the hosted operating system to control VMs life-cycle, their creation and termination.
It collects and sends information about VMs and their associated physical resources to the Cluster Controller
to make high level decisions, like when to proceed with the load balancing.

4.2. Properties.
• Compatibility: it is the main feature of Eucalyptus. AWS APIs are built on top of Eucalyptus tools
which simplifies intercommunication between both [25]. AWS APIs supported by Eucalyptus are:
Elastic Compute Cloud (EC2), Elastic Block Storage (EBS), Amazon Machine Image (AMI), Simple
Storage Service (S3), Identity and Access Management (IAM), Auto Scaling, Elastic Load Balancing,
CloudWatch and CloudFormation.

• Live migration: one of the weak points of Eucalyptus is the absence of a live migration feature. Nev-
ertheless many external approaches was proposed to add this feature, like the one described in [19].

• Load balancing and Fault tolerance: Eucalyptus does not contains an implicit load balancing mechanism
for the low level of VMs, nor for the high level of user requests, but it could be achieved using Elastic
Load Balancing of AWS. Elastic Load Balancing is a service that provides fault tolerance by distributing
the incoming service requests and users traffic among different Eucalyptus instances. It automatically
detects overloaded instances, and redirects the traffic to more available ones. Load balancers are the
core of Elastic Load Balancing, they are special Eucalyptus instances created from specific Eucalyptus
VMs images. If there is a problem in one of the instances or if it is removed due an internal error, the
system stops rerouting traffic to that instance until it is restored or a new one is created. Load balancing
could be managed within the same or among different clusters depending on the users need. Elastic
Load Balancing contains also a health check system that routinely sends check requests to instances.
It uses latency, RequestCount and HTTP response code counts to verify if the instance is responding
in time to users requests.

• Scalability: as mentioned before, Eucalyptus is by nature distributed, what makes it highly scalable.
There is also an auto scaling feature that allows to add and remove instances and VMs depending
on traffic increase, the available resources and with respect to the Service Level Agreement. Using
this feature developers can scale resources up or down depending on the need. There are three main
component in Auto Scaling which are:

– Auto Scaling group: is the main component of Auto Scaling, it defines for each user the minimum
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and the maximum number of scaling instances, and the related parameters. In case the user did
not select any specifications, it chooses the default parameters, which are equal to the minimum
number of instances to use.

– Launch configuration: it contains the information needed to make the scaling, including instance
type, VM image ID, security groups, and many others.

– Scaling plan (policy): it defines the manner of doing the auto scaling. It could be manually or
automatically, responding to CloudWatch alarms.

• Cloud Watch: is an Eucalyptus service that collects raw data from different cloud resources (instances,
elastic block store volumes, auto scaling instances and load balancers) and generates and records per-
formance metrics. This allows users to make operational business decisions based on the historical
records. Cloud Watch also configures alarms based on data from user filled metrics.

• Availability: Eucalyptus contains high availability as a feature since version 3. If an individual node or
even a rack fails, Eucalyptus put other nodes into use immediately or moves to another rack in case of
rack failure. This is achieved through a service that is running concurrently on physical machines which
is ”hot spare”. The information failure is quickly diffused internally, without any signs to the users,
and the failure is recovered with respect to SLA (service level agreement). In [30] an evaluation tool
was proposed for testing availability in IaaS platforms. This tool was tested on Eucalyptus by faults
injections in an Eucalyptus cloud testbed. This paper shows that software repairs were more often than
hardware repairs.

• Security: Eucalyptus manages the access to the cloud using policies related to users, groups and ac-
counts. A group is a set of users within an account, which have the authorization to access to a specified
pool of resources. A user can belong to different groups. Security groups are also used by defining fire-
walls that should be applied to the set of VMs within a group. The security policies could be managed
by users using the command line Euca2ools.

5. OpenNebula. OpenNebula [2] is an open source cloud platform developed by Universidad Complutense
of Madrid UCM (Under the Apache 2.0 License) that delivers a simple, but feature rich, solution to build
enterprise clouds and virtualized data centers. OpenNebula provides a complete toolkit to centrally manage
heterogeneous virtual infrastructure, which is compatible with conventional hypervisors: VMware, Xen, KVM.
It operates as a scheduler of storage layers, network, supervision and security. It is an appropriate solution for
the conversion of a virtual infrastructure to IaaS platform. The centralized orchestration of hybrid environments
is the heart of the tool. OpenNebula also utilizes Cloud Computing Interface (OCCI) and support to Amazon
Elastic Cloud Compute (EC2) in order to expand the resources connected to it in order to form a hybrid
cloud [2].

OpenNebula project started in 2005, has delivered its first version in 2008 and remains active since. Many
releases have achieved today significant functional changes on the support of the storage nodes, high avail-
ability environments and ergonomics of the administrative interfaces. OpenNebula has also a wide user base
that includes leading companies in banking, technology, telecommunications, and research and supercomputing
centers. At present, it has more than 4000 downloads per month and many research institutes and enterprises
use it to build their own cloud.

One major release of OpenNebula is launched approximately every year, with two or three minor releases
to each version. The first major release was in July 2008; it supported Xen and KVM virtualization platforms
to provide efficient resource management and fault tolerant design. OpenNebula 2.0 (25/10/2010) brought a
significant amount of changes and new features, including: the image repository, MySQL support, authorization
and authentication drivers. The next major release of OpenNebula was 3.0 (3/10/2011) and introduced many
new components and features for the core and libraries, providing support to: groups users management, flexible
access control list system, DB versioning and schema. Currently, the stable version of OpenNebula is 4.12.1
(8/04/2015) and presents several improvements in resource management with virtual data-centers and the
exclusion of the term resource provider. Networking has been vastly improved in 4.12 (03/11/2015), with the
addition of security groups, allowing administrators to define the firewall rules and apply them to the Virtual
Machines.
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5.1. General Architecture. A key feature of OpenNebula architecture is its highly modular design and
flexibility, which facilitates integration with any virtualization platform and third-party component in the cloud
ecosystem. The main components of OpenNebula architecture are: the Driver, the Core and the Tools.

The Driver is responsible for direct communication with the underlying operating system and for the
encapsulation of the underlying infrastructure as an abstract service (e.g. virtualization hypervisor, transfer
mechanisms or information services). It is designed to plug-in different virtualization, storage and monitoring
technologies and cloud services into the core. These pluggable drivers are responsible for the creation, startup
and shutdown of virtual machines, allocating storage for VMs and monitoring the operational status of physical
machines and VMs. The roles of each service are:

• The transfer driver manages the VMs disk images on different kind of storage systems, a shared one:
Network File System (NSF) or Internet Small Computer System Interface (iSCSI), or a non-shared one,
such as a simple copy over Secure Shell (SSH).

• The VM driver is considered a set of hypervisor-specific drivers used to manage VMs instances on
different hosts.

• The information driver is also considered a set of hypervisor-specific drivers used to monitor and retrieve
the current status hosts and VMs instances through SSH.

The Core reflects a centralized layer that controls and monitors VM full life cycles, virtual networks (VN),
storage and hosts. These components are implemented in this layer by invoking a suitable driver. The features
of such component are: (i) VM manager allocates resources required by VMs to operate, implementing VMs
deployment policies; (ii) VN manager interconnects VMs, and generates MAC and IP address for a VM; (iii)
host manager manages a VM storage and allocates a VM disk; (iv) SQL Pool is a database (SQLite or MySQL)
that stores configuration data and current status of hosts and VMs instances; and (v) request manager (XML-
RPC) accesses the application programming interface directly.

The Tools contains tools distributed with OpenNebula. First, it includes Scheduler that manages the
functionality provided by the core layer. Scheduler component makes VM placement decisions. These VMs
are deployed on host nodes following specific user requirements and resource-aware policies, such as packing,
striping, or load-aware. Secondly, Command line interface-CLI and Libvirt API [1], an open interface for VM
management and communicating with users. Additionally, third party tools that can be easily created using the
XML-RPC interface or the OpenNebula Client API. External users are capable of sharing these functionalities
through a cloud interface which is provided by the Tools layer.

5.2. Properties.

• Live migration: is one of the advantages of OpenNebula. It is supported through shared storage, but
it could demand a high-performance SAN (Storage Area Network) [18]. OpenNebula uses the libvirt
TCP protocol to provide migration capabilities.

• Load balancing: is provided across NGINX [34], which is an open-source, high-performance web server.
It is capable of handling large numbers of concurrent connections and represents a centralized manager
to balance the workload. In order to distribute efficiently the I/O of the VMs across different disks,
LUNs or several storage back-ends, OpenNebula is able to define multiple system datastores per cluster.
Scheduling algorithms (used by load balancers) take into account disk requirements of a particular VM,
so OpenNebula is able to pick the best execution host based on capacity and storage metrics [9].

• Fault tolerance: OpenNebula provides VM migration for those not running VMs. However, OpenNebula
can only detect problems on VM level. If a service or an application corrupts unexpectedly, simply
rebooting the VM on another node may break the continuity of the service and result in loss. This service
is maintained by database back-end (registers VM information) to store host and VM information.

• High availability: OpenNebula delivers the availability required by most applications running in VMs.
OpenNebula ensures high availability of the system by using multiple persistent databases back-end in
a pools cluster of hosts that share datastores and VNs. It provides information in order to prepare
for failures in the VMs or physical nodes, and recover from them. These failures are categorized
depending on whether they come from the physical infrastructure (Host failures) or from the virtualized
infrastructure (VM crashes). In both scenarios, OpenNebula provides a cost-effective fail-over solution
to minimize downtime from server and OS failures, and supports high availability configurations [15].
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• Security: OpenNebula takes many measures to ensure the security. The infrastructure administrator
manages a secure and efficient Users and Groups Subsystem for pluggable authentication and autho-
rization based on passwords, SSH and RSA key pairs, X.509 certificates or LDAP. OpenNebula also uses
Firewall to configure the VMs, in order to shutdown TCP and UDP ports, filter some unwanted packets
and defines a policy for ICMP connections. In addition, OpenNebula uses ACL (Access Control List)
which is a collection of permit and deny conditions (ACL rules), allowing different role management
with fine grain permission granting over any resource managed by OpenNebula, support for isolation
at different levels. Since version 4.4 OpenNebula has special authentication mechanisms for SunStone
(OpenNebula GUI) and the Cloud Services (EC2 and OCCI).

• Compatibility: OpenNebula can be deployed to existing infrastructures and integrated with various
cloud services and multi-platform. OpenNebula currently includes an EC2 driver, which can submit
requests to Amazon EC2 and Eucalyptus, as well as an ElasticHosts driver. OpenNebula supports
different access interfaces including REST-based interfaces (e.g., EC2-Query API), OGF OCCI service
interfaces, the OpenNebula Cloud API (OCA), and APIs for native drivers, for example, to connect
with AWS.

• Scalability: OpenNebula has been tested in the management of medium scale infrastructures with hun-
dreds of servers and VMs [15]. By a cloud federation, OpenNebula provides scalability, isolation, and
multiple-site support to interface with external clouds. This allows complementing the local infrastruc-
ture with computing capacity from public clouds to meet peak demands. Thus, a single access point
and centralized management system can be used to control multiple deployment on OpenNebula. In
OpenNebula highly scalability can be achieved through database back-end with support for MySQL
and SQLite, and virtualization drivers can be adjusted to achieve maximum scalability.

• Flexibility and extensibility: OpenNebula provides extension and integration to fit into any existing
data center, and flexible architecture, interfaces and components, allowing its integration with any
product or tool. OpenNebula offers different means to easily extend and adjust behavior of the cloud
management instance to the requirements of the environment and use cases, e.g. new drivers can be
easily written in any language for the main subsystems to easily leverage existing IT infrastructure and
system management product [9].

6. Nimbus. Nimbus is an open source solution (licensed under the terms of the Apache License) for using
cloud computing in the context of scientific applications. Although the focus on the scientific community,
Nimbus approaches three goals targeting three different communities: (1) Enable resource owners to provide
their resources as an infrastructure cloud; (2) Enable cloud users to access infrastructure cloud resources more
easily, and (3) Enable scientists and developers to extend and experiment with both sets of capabilities. These
goals are related with the architecture of Nimbus. Its main architecture can be divided in two components, each
one responsible for attending one of the goals. The first goal is realized by the Nimbus Infrastructure and the
second by the Nimbus Platform. The third goal is realized by the strong support of open source development
practices via modular, extensible code and engagement with open source developers [8].

Released in 2005, to solution is kept on GitHub since 2009 and its updates are revised by an international
researchers committee. Nevertheless, recently, Nimbus is missing regular updates. The last release is 2.10.1
(release date: 27/02/2013) and the last github update is the cloud client version 022 (release date: 27/10/2013).
Although some new features have been introduced, like the multi-cloud VM image generator for FutureGrid
users (release date: 04/06/2014) and some additions on the Phantom component (release date: 15/07/2014), the
focus of the Nimbus team seems to be more on collaborating with another research groups than on developing
the Nimbus.

6.1. General Architecture. This section presents further details on the components Nimbus Platform
and Nimbus Infrastructure.

6.1.1. Nimbus Platform. This is an integrated set of open source tools that allows users to easily
leverage Infrastructure-as-a-Service (IaaS) cloud computing systems. This includes application instantiation,
configuration, monitoring, and repair [8]. The Nimbus platform is divided in three modules: the context broker,
the elastic scaling tools and the deployment coordination.
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The context broker is a service that allows clients to coordinate large virtual cluster launches automatically
and repeatably. The context broker requires that each VM runs a lightweight script at boot time called the
context agent. This context agent depends only on Python and on the ubiquitous curl program, that securely
contacts the context broker using a secret key. To enforce security the context broker uses contextualization, e.g.,
the key is created on the fly and seeded inside the instance. This agent gets information concerning the cluster
from the context broker and then causes last minute changes inside the image to adapt to the environment [8].

The elastic scaling tools on Nimbus are called EPU. The EPU system is used with IaaS systems to control
highly available services. On these kind of services any failures are compensated with replacements. EPU is
also useful with services that can be configured to be elastic; it responds to monitoring signals with adjustments
of the amount of instances that composes a service. If the service cannot handle instances being added and
dropped on the fly (many services have static node-number configurations), EPU still provides automatic launch,
monitoring, and failure replacement capabilities [8].

6.1.2. Nimbus Infrastructure. This is a set of tools that provides the IaaS at the Nimbus cloud com-
puting solution. The Nimbus infrastructure is divided in Workspace service and Cumulus.

The Nimbus workspace service is a standalone site VM manager that can be invoked by different remote
protocol front-ends [8]. The workspace service is web services based and provides security with the GSI authenti-
cation and authorization. Currently, Nimbus supports two front-ends: Amazon EC2 and WSRF. The structure
of the workspace service is composed by three modules: workspace control, workspace resource manager and
workspace pilot.

• Workspace control: controls VM instances, manages and reconstructs images, integrates a VM to
the network and assigns IP and MAC addresses. The workspace control tools operate with the Xen
hypervisor and can also operate with KVM. Implemented in Python in order to be portable and easy
to install [35, 8].

• Workspace resource manager: is an open source solution to manage different VMs, but can be replaced
by other technologies such as OpenNebula [35, 8].

• Workspace pilot: is responsible for providing virtualization with few changes in cluster operation. This
component handles signals and integrates administration tools [35, 8].

The Nimbus Cumulus is an open source implementation of the Amazon S3 REST API. It provides an
implementation of a quota-based storage cloud. In order to boot an image on a given Nimbus cloud, that
image must first be put into that same clouds Cumulus repository, although advanced use cases can by pass
this restriction. In practice, it is used as the Nimbus repository solution but can also be installed standalone.
Cumulus is designed for scalability and allows providers to configure multiple storage cloud implementations [8].

6.2. Properties.
• Live migration: Nimbus has no in built support to live migration. It is possible to migrate virtual
machines only at hypervisor interface level [26]. The Nimbus team recently participated in a research
that addresses network contention between the migration traffic and the Virtual Machine application
traffic for the live migration of co-located Virtual Machines, and the live migration support is on the
map of next improvements of the solution [16].

• Load balancing: At VM level, Nimbus features a system of Nagios plugins that can give information on
the status and availability of the Nimbus head node and worker nodes, including changes of the virtual
machines running on the worker node [24]. Specifically from the cloud provider’s point of view Nimbus
does the back-filling of partially used physical nodes, allowing also preemptable virtual machines. On
the platform level, the cloudInit.d tool provides management to virtual machines deployed and allows
compensation of stressed workloads based on policies and sensor information. Nimbus also provides
tools to handle capacity allocation and capacity overflow. For example, the attribution of variable
lease limits to different users - as a means of scheduling - is standard within Nimbus. In addition, the
idea of allowing EC2 or another cloud the ability to pick up excess demand is heavily researched with
Nimbus [28].

• Fault tolerance: Nimbus presents fault tolerance only at storage level, through the integration of Nimbus
Storage Service with Globus GridFTP [10]. GridFTP - an extension of the standard File Transfer
Protocol (FTP) for use with Grid computing - provides a fault tolerant implementation of FTP, to
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handle network unavailability and server problems. Moreover, transfers can be automatically restarted
if a problem occurs [31].

• Availability: On the platform point of view, the EPU provides high accessible services to the user. On
the infrastructure point of view, Nimbus provides high-available services through the hosted service
Phantom. The Nimbus Phantom leverages on-demand resources provided by infrastructure clouds and
allows users to scale VMs that are running on the many clouds of FutureSystem as well as Amazon EC2.
The Phantom can be extended through decision engines, components that determine the behavior of
the service. Phantom is freely available on the FutureSystem infrastucture and is provided as a highly
available service itself.

• Security: Nimbus provide GSI authentication and authorization - through PKI credentials, grid proxies,
VOMS, Shibboleth (via GridShib) and custom PDPs. It also guarantees secure access to VMs via EC2
key generation. In addition, Nimbus allows images and image data validation.

• Compatibility: Nimbus can be integrated with various cloud services and multi-platform mainly through
web services. Nimbus Infrastructure is EC2/S3-compatible, with SOAP and Query front-ends. It is
possible to upload VM images to Cumulus with the Python library Boto, or with s3cmd. It is also
possible to use EC2 spot instances.

7. Cloud Solution Comparisons. This section provides a comparison between the analyzed cloud solu-
tions, aiming at three different levels: (i) general comparison aimed at providing high level analysis in terms of
model, policy and architecture, (ii) functional comparison, whose goal is to compare supported functionalities,
and (iii) property comparison, which considers cloud properties implemented in these platforms.

7.1. General Comparison. The general comparison is provided in Table 7.1, considering general aspects:
licensing, commercial model, cloud model compatibility, easiness of installation, architecture and adopters.

Table 7.1
General comparison

Property OpenStack CloudStack OpenNebula Eucalyptus Nimbus

Open Source
License

Apache 2.0 Apache 2.0 Apache 2.0 Linux Open-
Source

Apache 2.0

Commercial
model

Free Free Free Free, GPLv3
(only), with
proprietary
relicensing

Free

Compatibility
with

Private, pub-
lic and hybrid
clouds

Private, pub-
lic and hybrid
clouds

Private, pub-
lic and hybrid
clouds

Private and
hybrid clouds

Private, pub-
lic and hy-
brid clouds

Installation
Effort

Difficult
(many
choices,
not enough
automation)

Medium (Few
parts to in-
stall)

Easy (process
based pack-
age installers)

Difficult (dif-
ferent config-
uration possi-
bilities)

Easy (no
root account
required)

Architecture Fragmented
into many
pieces

Monolithic
controller

Modular
(third-party
component)

Five part
controller
and AWS

Lightweight
components
(IaaS service
and VMM
node)

Large or-
ganizations
adopters

Yahoo, IBM,
VMWare,
Rackspace,
Redhat, Intel,
HP, etc.

Nokia, Or-
ange, Ap-
ple, Citrix,
Huawei,
TomTom,
Tata, etc.

CERN,
Cloud-
Weavers,
IBM, Hex-
afrid

UEC, NASA,
Sony, HP,
Cloud-
era, Puma,
USDA, FDA

Brookhaven
National
Labs, Cumu-
lus project

As it can be seen, the five frameworks are generally equal with respect to commercial model, licensing
policy and cloud models. Each of them has been adopted by large organizations. Nevertheless, a big difference
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is spotted from the architecture viewpoint. While OpenStack is fragmented into modules, CloudStack has a
monolithic central controller, OpenNebula has three main components, Eucalyptus has five parts controllers
with AWS, and Nimbus have lightweight based components. This difference is explained by the open philosophy
of Open Stack and OpenNebula which tries to avoid technology lock-ins and provides high degree of flexibility,
extension and availability. Nimbus is also relatively easy to install and deploy comparing to others solutions.
The decentralized design and different configuration possibilities of Eucalyptus make it difficult to configure
and install. Like Eucalyptus, OpenStack are also characterized by increasing complexity of installation and
configuration.

7.2. Functional Comparison. The functional comparison looks at the offered functionalities or technical
aspects of the five presented solutions, as described in Table 7.2. Most popular hypervisors such as: Xen and
KVM are supported by all the platforms, but for example VMware is not available on Nimbus. We mention
here that OpenStack and CloudStack have the largest number of supported hypervisors, even though there are
ways to interface with non-supported ones. Administration feature is the interface available to interact with
these platforms. All solutions present Web interfaces (Web UI) and command line interfaces (CLI). Also user
management is provided in all this five platforms.

Table 7.2
Functional comparison between the open source Cloud solutions

Functionality OpenStack CloudStack Eucalyptus OpenNebula Nimbus

Supported hy-
pervisors

Xen, KVM,
HyperV,
VMWare,
LXC,
vSphere

Xen, KVM,
HyperV,
VMWare,
LXC,
vSphere

Xen, KVM,
VMware

Xen, KVM,
VMware,
vCenter

Xen, KVM

Administration Web UI, CLI Web UI, CLI Web UI, CLI Web UI, CLI Web UI, CLI

User manage-
ment

yes yes yes yes yes

Other important functional aspect of open source cloud solutions is the activeness of its community. A
solution that is always seeing new releases is constantly evolving. An active community, with well documented
wiki, good bug reporting and fixing system and active users support are fundamental features for the success of an
open source solution. At this topic OpenStack remains the largest and most active open source cloud computing
project [21]. Nevertheless, CloudStack and Eucalyptus are growing and have an important participation in the
market, while OpenNebula and Nimbus are less active. In this point, OpenStack has a bigger and more active
community, followed by CloudStack, Eucalyptus, OpenNebula and finally Nimbus.

The number of releases of a platform also indicates the constant evolution of a tool. OpenStack has a
strict policy of regular updates, with two big releases per year and some minor releases in each version. For
Eucalyptus the last major release is Version 4.1.1 (release date: 11-05-2015) and the one before was Version
4.0.2 (release date: 20-10-2014). On CloudStack the last major release was 4.5.1 (release date 03/06/2015). For
OpenNebula the last major release is old, the 4.4 Beta (release date: 07-11-2013), but 13 minor releases were
announced since that time, the last one is 4.12.1 (release date: 08-04-2015). The Nimbus last major release
was 2.10.1 (release date: 27/02/2013) and a minor update on cloud client (release date: 2/10/2013). From this
we can conclude that OpenStack, Eucalyptus and CloudStack are the most active and evolving technologies.
OpenNebula also evolves, but in a slower pace, meanwhile Nimbus gives signs of possible discontinuity.

Regarding benchmark tests, as far as we know, there is no study that have made performance tests to
compare this five platforms, but there are several papers comparing two or three of them. In [39] the authors
performed the performance evaluation of CloudStack and OpenStack using a mutual hypervisor and under a set
of defined criteria. This study showed the effect of varying resources performances (processor and RAM, hard
disk size) on deployment and deletion time. The results showed that performance of OpenStack supersedes
that of CloudStack. The authors in [40] compared performances of VMs for CloudStack and Eucalyptus in
terms of CPU utilization, memory bandwidth, disk I/O access speed, and network performance using different
benchmarks. Mainly the results shown that CloudStack performed better than Eucalyptus in most of tests.
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Other benchmarks could be found in [41] where the authors evaluated performances of Nimbus, OpenNebula
and OpenStack, for High Performance Computing according to HPC Challenge (HPCC) benchmark suite. The
results showed that OpenStack had the best performance for HPC.

7.3. Properties Comparison. Properties comparison gives deeper insights into the five platforms, con-
sidering some important properties that an IaaS has to provide. The comparison is given in Table 7.3.

Table 7.3
Properties comparison between the open source cloud solutions.

Property OpenStack CloudStack Nimbus Eucalyptus OpenNebula

Live migra-
tion

Yes Yes No No Yes

Load balanc-
ing

Yes Yes Yes Yes Yes

Fault toler-
ance

VM schedul-
ing, replica-
tion

VM schedul-
ing, replica-
tion

Through
Globus
GridFTP

Through
AWS Elas-
tic Load
Balancing

VM schedul-
ing, replica-
tion

High Avail-
ability

Yes Yes Yes Yes Yes

Security VPNs, fire-
wall, user
authentica-
tion, others

VPNs, fire-
wall, user
management,
others

user authenti-
cation

group and
users policies

user authen-
tication

Compatibility Amazon EC2,
Amazon S3

Amazon EC2,
Amazon S3

Amazon EC2,
Amazon S3,
WSRF

Amazon EC2,
Amazon S3

All Amazon
Interfaces

Live Migration may be approached in two ways: shared storage based live migration, and block live mi-
gration. OpenNebula and OpenStack offer both possibilities. CloudStack also offers both possibilities, but
the conditions change according with the user hypervisor. Eucalyptus and Nimbus offers no integrated live
migration system. This way, if the live migration is sensitive to the application, OpenNebula and OpenStack
are more adequate solutions.

Load balancing can be considered on the VM level or on the host level. Load balancing at host level is
implemented in OpenStack through live migration, which is the same in CloudStack; Nimbus does the back-
filling of partially used physical nodes, allowing also preemptable virtual machines. All the solutions approach
VM level load balancing through the establishment of a plug-in architecture. OpenNebula can be coupled
with NGINX, Eucalyptus with the ELB of AWS and Nimbus with Nagios plugins. Similarly OpenStack and
Cloudstack present flexible plug-in architecture on network component. In resume, at host level, live migration
is used to provide load balancing. At VM level, the cloud solutions trust on plugins to provide load balancing.
Also, the automatic leasing of resources seems to be a tendency. For example, allowing EC2 or another cloud
the ability to pick up excess demand is heavily researched with Nimbus [28].

Fault tolerance mechanisms exists on VM or on storage/database levels. At VM level, fault tolerance is
approached under the policies to schedule VM placement or services replication. OpenNebula comes with a
match making scheduler - that implements the Rank Scheduling Policy - and the quote management system,
that ensure that any user gets a adequate quantity of resources. OpenStack has in-built scheduling algorithms
(group scheduling and rescheduling) and newer ones can be implemented by the user. Nimbus has no already
implemented fault tolerance system, but it can provide through Globus GridFTP. At storage or database level,
fault tolerance is achieved by using replication and synchronization to ensure that a failure occurred at one
device will not break the whole system. Eucalyptus has no in-built mechanism for fault tolerance, but can
provide it at storage level, through the AWS Elastic Load Balancing.

High availability is approached in all platforms by means of using redundant service instances and load
balancing to distribute workloads among those instances. In the case of the replication of service instances,
some synchronization technique has to be considered.
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Security is provided on different levels by each cloud solution. Centralized in-built user authentication is
provided on Nimbus, OpenStack and OpenNebula. The establishment of security policies for users, groups and
accounts is possible on CloudStack, Eucalyptus and OpenNebula. On OpenStack is also possible to extend the
security of the cloud through the addition of plugins.

Compatibility refers to the capability of the cloud solution to integrate with other tools and cloud solution.
In this topic, the Amazon Web Services are a common place on the solutions, thanks to its dominance on
commercial public clouds. All open source analyzed solutions, in different levels, present some integration with
AWS services, being Amazon EC2 and S3 the most popular.

7.4. Resume. In general lines, Eucalyptus offers a flexible solution for users that want privacy in specific
modules while keep managing their clouds with AWS. OpenNebula is for someone interested in the internal
technical details of the cloud, but also seems to be a good solution for someone that wants to build up a cloud
quickly using just a few machines. OpenStack and CloudStack have the largest developing community, but
have opposite approaches, since OpenStack has as modularized architecture, while CloudStack has a monolithic
centralized one. Nimbus is easy to deploy and is suitable for inexperienced users willing to have a first contact
with cloud platforms or to scientific investigations, although the lack of recent releases and an active community.

8. Conclusions. We have presented the up-to-date architecture of five prominent open source cloud plat-
forms, looking into details of the provided functionalities and their properties. The analyzed platforms are
under continuous development. Therefore their documentation and technical reviews are often updated and
have to be regularly checked. We argue that there is no best solution to any general case, but there are tools
more adapted to specific audiences. The comparison was carried out from the user perspective, considering the
properties that a user needs to know when choosing a IaaS cloud solution.
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Abstract. While the internet has made it possible for the consumer to easily obtain images, audio, video, etc. in digital
form, it has also made it easier to illegally obtain copyrighted material. Digital watermarking is a partial solution to this problem.
Embedding a watermark in a legal version of material can help the copyright owner to identify who has an illegal copy. Because
of the ever increasing enormity of the flow of information, it becomes necessary to watermark files in the least amount of time
possible. For this reason it is natural to turn to parallel computing. In this work we compare the performance of three different
implementations on a cluster of SMPs, in OpenMP, MPI, and CUDA, of a simple algorithm for watermarking digital images. Our
experiments show that CUDA with one gpu is almost 300 times faster than the sequential version and many times faster than
OpenMP and MPI using 1 up to 8 nodes.
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1. Introduction. Watermarking is the process of embedding data into multimedia, including text, still
images, video, or audio, that is typically used in order to show ownership. A watermark can be either percep-
tionally visible or invisible to the human eye. Visible watermarks are used to protect copyright or to simply
identify a source of material such as a library or organization. A visible watermark identifies the owner of
material, but does not necessarily prevent other uses. On the other hand, invisible watermarks are usually used
in order to detect fraudulent use of material. For example, a seller might want to identify a person who has
used his/her material without paying royalties or the government might want to detect the identity of a person
who released classified material.

In order for a watermark to be useful, it must be either detectable or extractable by the owner. It must also
be “robust” or resistant to attacks, either intentional or non-intentional. That is, the watermark must remain
intact after attacks.

Although many different techniques for embedding watermarks in digital images have appeared in the liter-
ature for at least the last twenty years, only a few have considered the possibility of applying parallel computing
and those that do consider only the use of GPUs. In this paper we give an embarrassingly parallel algorithm for
a certain family of watermarking algorithms in the frequency domain and we compare performance of sequential,
OpenMP, MPI, and CUDA implementations of a simple representative of this family, with particular emphasis
on OpenMP and MPI.

In the following section, we briefly review several digital image watermarking algorithms that have been
considered in the literature. In Sect. 3. we define the discrete cosine transform (”DCT”) and describe the
symmetries that we take advantage of in our implementations. In Sect. 4. we describe and compare our
implementations of a watermarking procedure in OpenMP, MPI, and CUDA. In Sect. 5. we discuss experimental
results of the three implementations. In Sect. 6. we make some concluding remarks.

2. Digital Image Watermarking. Digital image watermarking can be done either in the spatial domain
or the frequency domain (or perhaps, as in [5], in both). Spatial domain techniques involve direct manipulation
of the pixel values. For example, colors of certain pixels could be changed. Another very simple spatial domain
technique is the ”least significant bit” method in which a given number of least significant bits of the host
image are replaced by the most significant bits of the watermark image. A frequency domain method consists
of embedding the watermark in the ”frequency domain”, i.e., in the functional image of a discrete transform
such as a Fourier, cosine, or wavelet transform.

Here we are interested in frequency domain methods and we briefly mention only a representative sampling
of some of the work that has been done in this area. Although there are several works in which grid (GPU)
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computing has been applied to image watermarking, we know of no previous work involving the application of
OpenMP and MPI.

A frequency domain method typically consists of three stages: (1) convert the host image I from the spatial
domain to the frequency domain, i.e., compute the discrete transform T , such as the Fourier, cosine, or wavelet
transform, of I; (2) apply an embedding algorithm E to T (I) and S(W ), where S is some function defined
on the watermark W , to obtain a new image array E = E(T (I),S(W )); (3) Convert E back to the spatial
domain to obtain the watermarked image E′. An extraction process consists of a procedure X which takes the
watermarked image E′ and possibly the original image I and produces the original watermark W = X(E′, I).

The DCT and IDCT (inverse DCT) of images used in frequency domain methods are applied either to
blocks of the image or to the complete image. Shieh et al [10] develop a method in which a genetic algorithm
is used to insert 8×8 blocks of the binary watermark into corresponding blocks of the DCT of the host image.
The watermarked image then consists of the concatenation of the IDCT of each resulting block. Using this
algorithm, the watermark can be extracted without the need for the original host image.

Garcia-Cano et al [2] implement the Shieh algorithm on a GPU and compare performance results with those
of a sequential version. Other works in which GPUs have been used in watermarking are, for example, those
of Lin, Zhoa, and Yang [6] and Vihari and Mishra [16]. Lin et al extract features from the low and middle
frequency domain of the DCT and embed them in the high frequency domain. Vihari and Mishra use Huffman
coding to encode copyright data that is then embedded using the ”Modified Auxiliary Carry Watermarking”
method.

Cox et al [1] develop an invisible watermark consisting of real numbers x1, x2, · · · , xn that are chosen
according to a normal distribution with mean 0 and variance 1. The DCT of the host image, as a single block,
is computed and the most perceptually significant components, determined by the largest DCT coefficients, are
replaced by vi(1 + αxi) where vi is a frequency component of the host image and α is a scalar factor. The
watermarked image then consists of the inverse DCT applied to this result.

A typical frequency domain procedure uses the DCT and partitions the image I and a logo watermark
image W into 8×8 blocks of pixels The DCT of each block Iij of the host image I is replaced αijIij + βijWij

where Wij(n) is the DCT of the corresponding block of the watermark image and where αij and βij are values
that are chosen in accordance with properties of block Iij . The watermarked image I(W ) then results from
applying the inverse DCT to each of the resulting blocks and concatenating the resulting blocks. In symbols

I(W ) =
∪
ij

IDCT (αijDCT (Iij) + βijDCT (Wij))

Kankanhali et al [4] choose αij and βij according to perceptual methods developed by Tao and Dickinson [15].
Mohanty et al [8] claim to improve this latter procedure by taking texture into consideration. We call this type
of watermarking procedure, an “α − β” method. In an α − β method each pair of blocks (Iij ,Wij) can be
processed independently, i.e., such a method is ”embarrassingly parallel”.

Frequency domain watermarking is generally regarded as being more robust than spatial domain methods,
mainly because of its resistance to lossy compression attacks. Indeed, the steps involved in frequency domain
watermarking are very similar to those of image compression such as JPEG compression. Typically, these steps
consist of the following: (1) partition the image into 8×8 blocks of pixels; (2) apply the two dimensional DCT to
each such block; (3) apply ”quantization” to each block of resulting DCT coefficients; (4) apply the inverse DCT
to each of the blocks; (5) apply entropy coding to the quantized data. Quantization is a process of reducing the
number of possible values of a quantity and entropy coding is a method for representing the quantized data in
a compact form.

3. The Discrete Cosine Transform. The one-dimensional discrete cosine transform is a linear function
F : RN → RN defined by

C(u) = α(u)

N−1∑
x=0

f(x) cos

(
π(2x+ 1)u

2N

)
, u = 0, . . . , N − 1 (3.1)
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The inverse transform exists and is defined by

f(x) =
N−1∑
x=0

α(u)C(u) cos

(
π(2x+ 1)u

2N

)
, x = 0, . . . , N − 1 (3.2)

where

α(u) =


√

1
N x = 0√
2
N x ̸= 0

(3.3)

The one-dimensional DCT is a linear function and can thus be represented as a matrix, i.e.,

[Cij ] =
[
α(i) cos

(
(2j + 1)πi

2N

)]
i, j = 0, 1, · · · , N − 1

and similarly for the DCT inverse. The two-dimensional DCT is a function F : RN2 → RN2

which when applied
to a matrix can be computed by first computing the one-dimensional DCT of the rows and then using the result
to compute the one-dimensional DCT of the columns.

Since an α−β method applies the DCT to 8×8 blocks of images multiple times, it is of interest to minimize
the number of operations in its computation. For this we use an idea of Obukhov and Kharlamov [9] which is
described in the following.

The matrix form of the one-dimensional DCT exhibits various symmetries that can be taken advantage of.
For N = 8 the representation is as follows:

F = 1√
8



1 1 1 1
... 1 1 1 1

a c d f
... −f −d −c −a

b e −e −b
... −b −e e b

c −f −a −a
... d a f −c

· · · · · · · · · · · ·
... · · · · · · · · · · · ·

1 −1 −1 1
... 1 −1 −1 1

d −a f c
... −c −f a −d

e −b b −e
... −e b −b e

f −d c −a
... a −c d −f



a =
√
2 cos

( π

16

)

b =
√
2 cos

(π
8

)

c =
√
2 cos

(
3π

16

)

d =
√
2 cos

(
5π

16

)

e =
√
2 cos

(
3π

8

)

f =
√
2 cos

(
7π

16

)
Separating even and odd numbered rows we have


Y (0)
Y (2)
Y (4)
Y (6)

 =
1√
8


1 1 1 1
b e −e −b
1 −1 −1 1
e −b b −e



X(0) +X(7)
X(1) +X(6)
X(2) +X(5)
X(3) +X(4)


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Fig. 4.1. (a) Image (Lena), (b) Watermark (Barbara), (c) Watermarked image


Y (1)
Y (3)
Y (5)
Y (7)

 =
1√
8


a −c d −f
c f −a d
d a f −c
f d c a



X(0)−X(7)
X(2)−X(1)
X(4)−X(5)
X(5)−X(3)


Thus, the one-dimensional DCT applied to a vector of length 8 can be computed using only 28 multiplications

and 56 additions. The usual product of an 8×8 matrix times a vector of length 8 requires 64 multiplications
and 56 additions.

4. Parallel Implementations of an α − β Frequency Domain Watermarking Algorithm. Given
grayscale images of a host I and a watermark W , each of the same size, which we assume to be a power of 2, an
α− β algorithm embeds W in I by (1) partitioning both I and W into blocks of 8×8 pixels and computing the
DCT of each of the corresponding blocks, Iij and Wij ; (2) computing αij = α(Iij ,Wij) and βij = β(Iij ,Wij);
(3) replacing each value DCT (Iij) in the host image by αijDCT (Iij)+βijDCT (Wij); (4) computing the inverse
DCT of each of the blocks αijDCT (Iij) + βijDCT (Wij) and concatenating the results.

Following is an example where α = αij = 0.9 and β = βij = 0.14 for all i, j. The degree of visibility of the
watermark is determined by the values of α and β.

Let us begin with a sequential version of this algorithm for an image of size dim× dim (Algorithm 1).

Algorithm 1 Sequential

1: procedure WATERMARKING(I,W, dim, α, β)
2: m = dim

8
3: for i = 0 : m− 1 do
4: for j = 0 : m− 1 do
5: Xij = DCT (Iij)
6: Yij = DCT (Wij)
7: Compute α = α(Iij ,Wij) and β = β(Iij ,Wij)
8: Zij = αXij + βYij

9: Zij = IDCT (Zij)
return Z

Each pair (Iij ,Wij) of image blocks in the above algorithm can be processed independently of the others
and hence in parallel and an efficient implementation consists of determining how the available resources can
be used to most effectively achieve this. We shall see how this can be done in OpenMP, MPI, and CUDA.
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4.1. OpenMP. OpenMP (”Open Multi-Processing”) is a shared memory programming model in which
the programmer can insert compiler directives or ”pragmas” into ordinary sequential C, C++, or FORTRAN
programs in order to partition tasks into parallel threads, the smallest unit of processing that can be scheduled
by an operating system. The most common and easiest way to parallelize code in OpenMP is by parallelizing
for loops.

In the above procedure WATERMARKING, each of the (i, j) iterations is independent of the others and so
ideally, it would be convenient to use just one parallel for loop. However, because of the double indexing, we must
use two nested for loops and in OpenMP it is possible to parallelize only the exterior for loop. However, recent
versions of OpenMP allow one to parallelize multiple loops in a nest without introducing nested parallelism by
making use of the collapse pragma. Thus, we have Algorithm 2.

The number of threads used is specified at run time.

Algorithm 2 OpenMP-Version

1: procedure WATERMARKING(I,W, dim, α, β)
2: m = dim

8
3: #pragma omp parallel for collapse(2)
4: for i = 0 : m− 1 do
5: for j = 0 : m− 1 do
6: Xij = DCT (Iij)
7: Yij = DCT (Wij)
8: Compute α = α(Iij ,Wij) and β = β(Iij ,Wij)
9: Zij = αXij + βYij

10: Zij = IDCT (Zij)
return Z

4.2. MPI. MPI (”Message Passing Interface”), originally designed for distributed memory architectures, is
a library of functions that can be used in conjunction with C, C++, or FORTRAN, as well as other languages, in
order to effect communications between processors. In the MPI implementation of our watermarking algorithm
we partition the grid of 8×8 blocks of both the host image as well as the watermark into n equal size strips
of rows of blocks, where n is the number of processors. The processor, say p0, that initially contains both
images, I and W , sends to each of the n processors a pair of strips (one from the host image and one from the
watermark). Each processor then processes its share of the two images as in the sequential version and then
sends its result to p0 which assembles the result into the complete watermarked image (Algorithm 3).

4.3. CUDA. CUDA (”Compute Unified Device Architecture”), created by Nvidia, is a parallel computing
platform and programming model in which GPUs (Graphics Programming Units) can be accessed by program-
mers for general purpose computing through the use of CUDA-accelerated libraries, compiler directives, and
extensions of C, C++, and FORTRAN, as well as other languages. A CUDA application can involve hundreds
of cores and thousands of parallel threads. Parallel portions of an application can be defined as functions that
are executed on the GPU. Such functions are called kernels. Threads are grouped into blocks of up to 512
threads, which in turn are organized into grids. All threads in a grid execute the same kernel. A grid can be
one-, two-, or three-dimensional.

With CUDA we achieve our original goal of assigning a thread to each iteration of the nested for loop of the
sequential version of our algorithm presented in Sect. 4. For this we make use of dct8×8 kernel2 of the Nvidia
code [9] for computing the DCT and IDCT in 8×8 blocks, in which the grid constructed is 3-dimensional with
64 threads per block (Algorithm 4).
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Algorithm 3 MPI-Version

1: procedure WATERMARKING(I,W, dim, α, β)
2: n = number of processors
3: m1 = dim

8
4: m2 = m1

n

5: send a section I(p) of m2 rows of 8×8 blocks of I to each processor p
6: send a section W (p) of m2 rows of 8×8 blocks of W to each processor p
7: for i = 0 : m2− 1 do
8: for j = 0 : m1− 1 do

9: X
(p)
ij = DCT (I

(p)
ij )

10: Y
(p)
ij = DCT (W

(p)
ij )

11: Compute α = α(Iij ,Wij) and β = β(Iij ,Wij)

12: Z
(p)
ij = αX

(p)
ij + βY

(p)
ij

13: Z
(p)
ij = IDCT (Z

(p)
ij )

14: receive each Z(p) in Z

Algorithm 4 CUDA-Version

1: procedure WATERMARKING(I,W )
2: for each thread-block in block-grid do in parallel
3: X = kernel DCT (Ithread)
4: Y = kernelDCT (Wthread)
5: α = kernel α(Iij ,Wij)
6: β = kernel β(Iij ,Wij)
7: Zthread = kernel linearcomb(α,X, β, Y )
8: Zthread = kernel IDCT (Zthread)

return Z

5. Experimental Results. For our actual implementations we chose a simple representative from the
α − β family of algorithms in which the values of α and β are the same for all blocks (as for example in cf.
Fig. 4.1), thus replacing the computation step for α and β in the above algorithms by inputs. Experiments
were conducted on the Stampede supercomputer [11], located at the Texas Advanced Computer Center (TACC)
and sponsored by the Extreme Science and Engineering Environment (XSEDE) with funding by the National
Science Foundation. The Stampede system is a 10 PFLOPS (PF) Dell Linux Cluster consisting of 6,400 + Dell
PowerEdge server nodes, each one of which has 2 Intel Xeon E5 (Sandy Bridge) processors and an Intel Xeon
Phi Coprocessor (MICZ Architecture). For the OpenMP and MPI programs the authors used the 16 compute
node ”development queue”, each node of which consists of 16 cores with 32 GB of shared memory. For the
CUDA experiments, the authors used the ”gpudev queue” consisting of 4 compute nodes each one of which is
equipped with a NVIDIA K20GPU with 8GB of GDDR5 memory.

We tested our OpenMP, MPI and CUDA programs with greyscale images of 512, 1024, 2048, 4096, and
8192 square pixels. For OpenMP and MPI we used a maximum of all 16 cores per node. For CUDA we used
one compute node with a GPU.

It will be noted that the behavior for 16 cores can sometimes be erratic, especially for small images. This
is because some of a node’s resources are necessarily dedicated to other instrinsic processes of the system.

5.1. OpenMP Results. The times for OpenMP are depicted in Fig. 5.1. Speedups for OpenMP are given
in cf. Fig. 5.2.

As can be seen from Table 5.1 the OpenMP implementation has almost linear speedup for 2 up to 12
threads.
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Fig. 5.1. OpenMP times
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Fig. 5.2. OpenMP Speedup

Table 5.1
Speedup

Speedup
threads 512×512 1024×1024 2048×2048 4096×4096 8192×8192

2 1.884852 1.843737 1.893246 1.708771 1.885878
4 3.699033 3.747434 3.790393 3.357762 3.7578
8 7.372234 7.338334 7.427529 6.668273 7.44652
12 11.18421 11.10579 11.34707 10.14434 11.25846
16 0.674747 2.642157 5.317085 6.853785 14.08695

5.2. MPI Results. Times and speedups with respect to MPI tasks on 1, 2, 4, and 8 nodes are given in
cf. Fig. 5.3 through 5.10.

Using all 16 cores on each node, speedups with respect to the number of nodes are given in cf. Fig. 5.11
and 5.12.
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Fig. 5.3. MPI 1 Node
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Fig. 5.5. MPI 2 Nodes
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Fig. 5.6. Speedup 2 Nodes
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Fig. 5.7. MPI 4 Nodes
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Fig. 5.8. Speedup 4 Nodes

0 20 40 60 80 100 120 140
Number of processes

10-4

10-3

10-2

10-1

100

Ti
m
e 
(s
ec

)

Time Vs Number of processes (MPI - 8 Nodes)

512*512
1024*1024
2048*2048
4096*4096
8192*8192

Fig. 5.9. MPI 8 Nodes
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Fig. 5.10. Speedup 8 Nodes
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Fig. 5.11. MPI times
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As can be seen, the MPI implementation exhibits poor scalability with respect to the number of nodes (i.e.,
sequential time divided by the time for n nodes using all 16 cores), even when using all 16 cores. However, it
is not true that the best time for a given number of nodes used corresponds to 16 processes (cores). But even
using the best times, speedups with respect to the number of nodes is almost flat, as shown in Table 5.2 for an
image of size 1024× 1024.

Table 5.2
Speedup (1024×1024)

Speedup (1024×1024)
1 node/ 16 processes 14.1429884
2 nodes/ 32 processes 18.7097302
4 nodes/ 64 processes 19.9331964
8 nodes/ 128 processes 17.5811589

On the other hand, when we compute speedups with respect to the number of processes (i.e., for a fixed
number of nodes, the sequential time divided by the time for the number of processes), the best scalability
occurs when we use just one node. In fact in this case as shown in the Table 5.3 we have superlinear speedup
for 2 and 4 processes, except for size 4096×4096.

Table 5.3
Speedup (1 Node)

Speedup
processes 512×512 1024×1024 2048×2048 4096×4096 8192×8192

2 2.18684251 2.155103 2.110129 1.835898 2.037115
4 4.16952721 4.189678 4.1226 3.545565 4.100949
8 7.41785612 7.7622 7.600967 6.62734 7.605353
16 13.0625843 14.14299 12.80332 11.70284 13.42

5.3. OpenMP vs MPI. In cf. Fig. 5.13 through 5.17 we compare the performance of OpenMP for 2, 4, 8
and 16 threads with MPI on one node for 2, 4, 8, and 16 tasks, respectively and we see that the performance of
the two are nearly the same up to 8 threads/tasks. For 16 threads/tasks, MPI wins for sizes up to 4096×4096,
but the gap narrows for increasing image size and OpenMP wins by a very narrow margin for image size
8192×8192.
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Fig. 5.13. MPI vs. OpenMP (512×512)

2 4 8 12 16 17
Number of processes

10-3

10-2

10-1

Ti
m
e 
(s
ec
)

OpenMp Vs. MPI (1 Node) 1024x1024

OpenMP
MPI

Fig. 5.14. MPI vs. OpenMP (1024×1024)

5.4. Hybrid. We developed a hybrid OpenMPMPI program in the standard way, by starting with the MPI
version and distributing strips of 8×8 blocks of pixels among the nodes just as we did in the MPI version except
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Fig. 5.15. MPI vs. OpenMP (2048×2048)
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Fig. 5.16. MPI vs. OpenMP (4096×4096)
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Fig. 5.17. MPI vs. OpenMP (8192×8192)

.

that now each node does its work in parallel using OpenMP as in the OpenMP-only version. Unfortunately, this
version under performed both the OpenMP and MPI versions. This is really not surprising. Indeed, there are
well known cases (see e.g., [3]) where hybrid is slower than OpenMP and MPI. Hybrid improves performance
by reducing communications between nodes and increasing opportunites for parallelism and neither of these
opportunities exist in the MPI version of our algorithm. Furthermore, it turns out that the scatter and gather
operations are many times slower in the hybrid version than in the MPI version when applied to the same sets
of data.

5.5. CUDA Results. For the CUDA code, we used the optimized code of kernel2 described in [9] for
computing the 8×8 DCT on a NVIDIA GeForce 6800. We added kernels for embedding the watermark. Further
experiments are needed in order to determine if performance on the NVDIA K20 can be improved even further
by manipulating block sizes. Comparisons between the four implementations are depicted in cf. Fig. 5.18. Our
CUDA implementation on just one GPU was many times faster than both OpenMP and MPI on any number
of nodes up to 8.

Table 5.4 gives the times for 4096×4096 images for the four different versions on just one node, where
OpenMP uses 16 threads and MPI uses 16 processes.

Thus, on just one node, CUDA is 287 times faster than the sequential version, 42 times faster than OpenMP,
and 24 times faster than MPI. The fastest time, .0448525 sec, for MPI occurred on 8 nodes using 128 processes.
Thus CUDA on just one node is 14 times faster than MPI on 8 nodes.

5.6. Watermark Quality. There are several metrics that are commonly used to measure the the quality of
watermark algorithms. The Peak Signal to Noise Ratio (PSNR) evaluates image degradation or reconstruction
fidelity. It is defined for two images I and Z of size M ×N as:
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Table 5.4
Times for 4096×4096 images for the four different versions on one node (OpenMP uses 16 threads, MPI uses 16 processes)

Version Time (Seconds)
Sequential 0.903651
OpenMP 0.131847
MPI 0.0772164
CUDA 0.0031519

PSNR(I, Z) = 20 log10
max(I)√
MSE(I, Z)

(5.1)

where I is the original image and Z is the reconstructed image, max(I) is the maximum pixel value in I, and
MSE is the mean square error between I and Z.

MSE(I, Z) =
1

M

1

N

M−1∑
i=0

N−1∑
j=0

∥I(i, j)− Z(i, j)∥2 (5.2)

In image reconstruction the PSNR values vary between [30, 50]. A PSNR value of 50 or more indicates
that the images are almost identical.

Robustness represents the resistance of a watermark against attacks, such as compression, scaling, cropping,
rotation, smoothing, etc. The Normalized Correlation (NC) measures the correlation between the original
watermark and the extracted watermark after attack. It is defined by

NC =

∑N−1
i=0

∑N−1
j=0 [W (i, j)W ′(i, j)]∑N−1

i=0

∑N−1
j=0 [W (i, j)]2

(5.3)

A value of NC equal to 1 indicates that the original and extracted watermark are exactly the same.
The quality of an α − β algorithm depends on the method for computing α and β. Our interest in this

work has been focused on the computational aspects of α− β algorithms and we chose for our experiments the
simplest representative, in which α and β are constant over all DCT blocks. Although we would not expect
the quality for this representative to compare the most favorably with other members of the α− β family, it is
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nevertheless of interest to determine values of PSNR and NC for this case. To this end, we used the software
StirMark to determine the robustness for our algorithm using the values α = 0.9 and β = 0.2.

Table 5.5 shows the results of applying the software StirMark [12] [13] to the watermarked image in Fig.
4.1 (c) of size 1024×1024 produced by our algorithm and subjected to the indicated attacks.

Table 5.5
The results of applying the software StirMark to the watermarked image

Image PSNR NC
Watermarked

image
36.72 0.97

Compressed image 34.20 1.45
Smooth image 33.86 1.44

Rotated+scaling image 33.53 1.04
Randomly distorted

image
30.21 1.09

The values of PSNR compare well with other watermarked image (e.g., [14]), in spite of the simplicity of
our algorithm. On the other hand, we would expect values of NC closer to one for other more specialized α− β
algorithms

5.7. Conclusions. We have shown how a commonly used family of watermarking algorithms in the fre-
quency domain can be implemented in parallel and we compared the OpenMP, MPI, CUDA implementations of
a simple representative of the α−β family of algorithms. We found that the CUDA implementation on just one
GPU runs many times faster than the OpenMP version and the MPI version even when executed on 8 nodes.
Thus the fastest implementation runs on just one node equipped with one GPU. For one node without a GPU,
there are only slight differences between OpenMP and MPI, with OpenMP winning only for large images and
MPI exhibiting a more regular speedup.

We observed that in spite of its simplicity, the chosen representative is resistant to attacks such as com-
pression, distortion, rotation plus scaling, and smoothing.

The same method developed here for implementing this simple case could be applied to any α−β algorithm.
Of course, the running times of all implementations will vary depending on the complexity of the calculations
of the αij and βij .
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