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INTRODUCTION TO THE SPECIAL ISSUE DEVOTED TO PROFESSOR IAN GLADWELL

Dear SCPE readers,

This issue is devoted to Professor Ian Gladwell on the occasion of his retirement from the Mathematics
Department of Southern Methodist University (SMU) in Dallas, Texas, USA. In his long career, Ian Gladwell
was a member of the faculty of the University of Manchester (England) from 1967 to 1987 and a member of the
faculty of SMU from 1987 to date. Whilst at SMU he was Chair of the Mathematics Department for two terms
and served multiple terms as Director of Undergraduate Studies and as Director of Graduate Studies. Between
1975 and 2006 he supervised more than 20 Ph.D. students (see [1]) who are now working in the USA, Europe,
and Asia.

Professor Gladwell has been very influential as an editor. This activity includes serving as Editor-in-Chief
of the ACM Transactions on Mathematical Software from 2005 to date. He was also Associate Editor of the
IMA Journal on Numerical Analysis ; Scalable Computing: Practice and Experience; and the SIAM Journal on
Numerical Analysis. He has served as editor for several books and special issues of journals. At present he
serves as editor for the chapter in Scholarpedia devoted to Boundary Value Problems [2].

The many publications listed in [3] show that his research activity has focussed on the numerical integration
of ordinary differential equations, quadrature, parallel computing, and mathematical software. His recent re-
search has been concerned with the numerical solution of almost block diagonal (ABD) systems and applications.
His most recent book is Solving ODEs with MATLAB, which he wrote with L.F. Shampine and S. Thompson.
It was published by Cambridge University Press in 2003 [4].

Professor Gladwell was a pioneer in the development of mathematical software, especially software for the
numerical solution of ordinary differential equations. Three software packages were published by the ACM and
several of his programs were included in the NAG Fortran 77 library [5]. His association with NAG began in
1975 with his numerical ODE programs for the first NAG Library. He is a founder member of both the NAG
Ltd. Technical Policy Committee and the NAG Inc. Advisory Panel. He has also been a long-term consultant
for Texas Instruments.

The Special Issue contains five papers dealing with subjects related to the research activity of Ian Gladwell.
Most of the authors had a fruitful collaboration with Ian in the past. We thank all of them to have agreed to
our call.

The first paper Vectorized Solution of ODEs in Matlab is by L. F. Shampine, from the Southern Methodist
University (USA). The author investigates a class of Runge-Kutta methods, able to efficiently exploit vectoriza-
tion in the popular problem-solving environment Matlab. Local error estimates and continuous extensions that
require no additional function evaluations are also derived. As a result, a (7,8) pair is derived and implemented
in the program BV78 that well compares with the well-known Matlab ODE solver ode45, based on a (4,5) pair.

The second paper Conditioning and Hybrid Mesh Selection Algorithms for Two-Point Boundary Value
Problems is by J. R. Cash, from the Imperial College, London (England), and F. Mazzia, from the University
of Bari (Italy). The authors deal with the use of conditioning of the problem in the stepsize variation strategy.
This allows to obtain very reliable algorithms, which are implemented in “state of the art” numerical codes for
boundary value problems for ordinary differential equations. In particular, they speak about different choices
of monitor functions that are used in the BVP codes and analyze the setting of the parameters in order to
optimize the stepsize variation strategy.

The third paper Preconditioning of Implicit Runge-Kutta Methods is by L. O. Jay, from the University
of Iowa, Iowa City (USA). A major problem in obtaining an efficient implementation of fully implicit Runge-
Kutta (IRK) methods applied to systems of differential equations is to solve the underlying systems of nonlinear
equations, usually obtained by application of modified Newton iterations with an approximate Jacobian matrix.
In this article the author presents a cheap, and parallelizable, preconditioner for solving the linear systems with
the approximate Jacobian matrix.

The fourth paper Parallel Numerical Solution of ABD and BABD Linear Systems Arising from BVPs is by
P. Amodio, from the University of Bari (Italy), and G. Romanazzi, from the University of Coimbra (Portugal).
The authors describe a parallel algorithm (based on the cyclic reduction) for the solution of linear systems with
coefficient matrices having the ABD or the Bordered ABD (BABD) structures. They also report numerical
tests involving parallel OpenMP versions of the Fortran 90 codes BABDCR and GBABDCR and compare them
with COLROW. Finally, they discuss about the use of GBABDCR inside paralell version of BVP codes.

i
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The fifth paper Parallel Factorizations in Numerical Analysis is by P. Amodio, from the University of Bari
(Italy), and L. Brugnano, from the University of Florence (Italy). The authors review a number of parallel
solvers for large, sparse, and structured linear systems through the use of the so called parallel factorizations,
which provide parallel extensions of usual matrix factorizations. In particular, the paper is focused on the use
of parallel factorizations for solving linear systems deriving from the numerical solution of ODEs. Moreover,
the so called Parareal algorithm is derived within the framework of parallel factorizations.

Pierluigi Amodio,
Dipartimento di Matematica,
Università di Bari,
Bari, Italy

Luigi Brugnano,
Dipartimento di Matematica,
Università di Firenze,
Firenze, Italy
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VECTORIZED SOLUTION OF ODES IN MATLAB

L. F. SHAMPINE∗

Abstract. Vectorization is very important to the efficiency of computation in the popular problem-solving environment
Matlab. It is shown that a class of Runge-Kutta methods investigated by Milne and Rosser that compute a block of new values
at each step are well-suited to vectorization. Local error estimates and continuous extensions that require no additional function
evaluations are derived. A (7,8) pair is derived and implemented in a program BV78 that is shown to perform quite well when
compared to the well-known Matlab ODE solver ode45 which is based on a (4,5) pair.

Key words: Matlab, vectorization, ordinary differential equations, initial value problems

1. Introduction. Matlab is a problem-solving environment (PSE) that is in very wide use. A suite of
programs for solving the initial value problem (IVP) for ordinary differential equations (ODEs) in this PSE is
developed in [11]. As illustrated there, both algorithms and coding practices must take into account that the
costs of certain computations in Matlab are quite different from the costs in general scientific computation.

Indeed, all the programs in Matlab for approximating
∫ b

a
f(x) dx require that evaluation of the integrand be

coded to accept a vector [x1, x2, . . . , xk] and return a vector [f(x1), f(x2), . . . , f(xk)]. That is because the cost
of evaluating the integrand for all these arguments in one call with an array argument is generally not much
greater than the cost of a call with a single argument. There are two reasons for this. One is that the overhead
of a call is relatively expensive and the other is that skillful use of array operations and vectorized built-in
functions generally allows an integrand to be evaluated very efficiently for k arguments simultaneously. When
evaluation of the integrand is coded in this way, the function is said to be “vectorized”. In this paper we consider
how vectorization might be exploited when solving numerically a system of n first-order ODEs

y′ = f(t, y) (1.1)

on an interval [t0, tf ] with initial value y0 = y(t0). There are already some examples of this in Matlab.
When solving stiff IVPs, it is necessary to form Jacobian matrices J(t, y) from time to time. By default these
Jacobians are approximated by finite differences. If the Jacobian is dense, J(t0, y0) is approximated using
values of f(t0, ym) for n vectors {y1, y2, . . . , yn} that are “close” to y0. Users are encouraged to vectorize the
computation so that when t0 and a matrix with columns {y1, . . . , yn} are input, the function will compute and
return the corresponding {f(t0, y1), . . . , f(t0, yn)} as columns in a matrix. If full advantage is taken of array
operations, the Jacobian can often be approximated at a cost not much greater than the cost of evaluating f for
a single ym. Kierzenka [5, 10] recognized that when solving boundary value problems (BVPs) with collocation
methods, the cost of solving the associated nonlinear algebraic equations could be reduced very substantially if
evaluation of f(t, y) was vectorized so that for {t1, t2, . . . , tk} given as entries in a vector and {y1, y2, . . . , yk}
given as columns in a matrix, the function returns {f(t1, y1), . . . , f(tk, yk)} as columns in a matrix. Because the
argument y is generally a vector when solving ODEs, we use in this paper the term “array evaluation” of f to
distinguish the evaluation of f(t, y) with vector t and matrix y from an evaluation with a scalar t and vector y.

To compute starting values for multistep methods, Milne [8] suggested a scheme that is described nowadays
as a block Runge-Kutta (RK) method. The scheme starts with an approximation y0 to y(t0) and then computes
simultaneously a block of approximations y1, y2, . . . , yr at points t0 + h, t0 + 2h, . . . , t0 + rh. Later Rosser [9]
proposed an explicit variant of these formulas. He uses simple (functional) iteration to evaluate the implicit
formulas, but does a fixed number of iterations so as to obtain an explicit RK method. Rosser argues that these
explicit block RK methods require many evaluations of f at each step, but when it is appreciated that r new
values are formed, the cost per new value is lower than for conventional schemes of moderate to high order. The
methods never caught on, but we observe here that they are quite attractive in Matlab because they are so
well suited to vectorization. The key observation is that each iteration requires only one array evaluation of the
function. With this a high order can be obtained with a remarkably small number of (array) function evaluations.
In this paper we show that it is easy to estimate the local error without additional function evaluations. Using
this result, we implemented the scheme studied in detail by Rosser as a (5,6) pair in a program R56. We also

∗Mathematics Department, Southern Methodist University, Dallas, TX 75275. E-mail: shampine@smu.edu
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show that a continuous extension is available without additonal function evaluations. Appreciating that the
advantages of vectorization are greater at higher order, we derived formulas analogous to R(5,6) for a (7,8) pair
and a corresponding continuous extension. The BV78 program that implements these formulas was substantially
more efficient than R56, so we give our attention primarily to the (7,8) pair. We compare BV78 to the Matlab

ode45 solver because the documentation of the PSE recommends ode45 for non-stiff problems that are to be
solved for moderate to stringent accuracies. In §4 we see that the (7,8) pair has stability comparable to that of
the (4,5) pair implemented in ode45. In §5 we find that BV78 solves a wide range of standard test problems for
a wide range of tolerances in about one third the time required by ode45.

2. Explicit RK Pairs in Matlab. When the ODE Suite [11] was originally conceived, the authors were
very interested in implementing one of the effective (7,8) pairs derived by Fehlberg, Dormand and Prince, and
Verner. The main reason this was not done is the cost of a continuous extension for the pair. To be concrete,
we discuss in this article a particularly efficient pair of 13 stages due to Verner [13]. He derived continuous
extensions of orders 7 and 8 that require 3 and 4 extra stages, respectively. In Matlab it is typical that a
user plot the solution. The (7,8) pairs take rather long steps, long in the sense that a solution can change
substantially over the span of the step. The same is true of the (4,5) pair derived by Dormand and Prince [3]
that is implemented in ode45, though to a lesser degree. This pair, which is known as DOPRI5, is a 7 stage
pair, but it is FSAL, meaning that if the step is a success, the last stage of the step can be used as the first
stage of the next step. Most steps are successful, so this pair generally costs little more than 6 stages per step.
Because solution values at mesh points alone often do not provide a satisfactory plot, the ode45 solver evaluates
a continuous extension to obtain approximate solutions at some additional points equally spaced in the span of
each step. Although we might have preferred a continuous extension of order 5, it would require extra function
evaluations. These function evaluations are made at every step in typical use of the solver, which increases the
cost of the pair by a relatively large amount. An interpolant of order 4 is implemented in ode45 because it is
an adequate approximation that costs no extra function evaluations. The extra stages for interpolation with
the popular (7,8) pairs increase the cost so much at every step in typical use of a Matlab ODE solver that
we decided not to provide an ode78. The fact that the typical problem is solved to only moderate accuracy in
Matlab also influenced this decision. For the sake of completeness, we note that for the relatively low order
BS(2,3) pair [1] implemented in ode23, values at mesh points alone generally do provide a satisfactory plot.
Accordingly, this solver does not evaluate the continuous extension to obtain additional approximations in the
span of each step. Even if it did, this would be inexpensive because the continuous extension requires no extra
function evaluations.

3. Block RK Methods. A difficulty with multistep methods is to compute somehow starting values.
Milne [8] suggested a scheme that is described nowadays as a block Runge-Kutta (RK) method. The method
starts with an approximation y0 to the solution at t0 and then computes simultaneously a block of approxima-
tions y1, y2, . . . , yr at points t0 + h, t0 + 2h, . . . , t0 + rh. We prefer to rescale so as to view the method as an
implicit RK formula that steps from t0 to t0+h and in the course of the step forms accurate approximations at
points equally spaced in the span of the step, namely t0+h/r, t0+2h/r, . . . , t0+h. The formulas are commonly
derived by using an integrated form of the ODEs and replacing the integrals with quadrature formulas. With
equally spaced points the quadrature schemes are of Newton-Cotes type, so the block RK method is also said
to be of Newton-Cotes type. For our purposes it will be more convenient to derive the formulas by collocation.
In this approach a polynomial P (t) with P (t0) = y0 is to collocate at equally spaced points tj = t0 + jh/r for
j = 0, 1, . . . , r. With the notation yj = P (tj) and fj = f(tj , yj), the resulting formulas have the form

y1 = (y0 + hA1,0 f0) + h [A1,1 f1 + . . .+A1,r fr]

y2 = (y0 + hA2,0 f0) + h [A2,1 f1 + . . .+A2,r fr]

... =
...

yr = (y0 + hAr,0 f0) + h [Ar,1 f1 + . . .+Ar,r fr]

We remark that if we denote these equations as Eq1, Eq2, . . . , Eqr, then combining and replacing them with
Eq1, (Eq2 −Eq1), . . . , (Eqr −Eqr−1) results in a block GAM with r steps and minimum block size r as studied
by Brugnano and Trigiante [2]. A theorem in [14] says that for a method of this kind, all the yj are of local
order r + 2, that is, they agree with y(tj) to O(hr+2). Correspondingly, the implicit RK method is of global
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order r + 1. A familiar example is the trapezoidal rule which has r = 1 and global order 2. It is also shown
in [14] that if r is even, the value at the end of the step has a higher local order than at intermediate points,
namely r + 3, hence the method is of global order r + 2. Clippinger and Dimsdale developed the formulas for
the case r = 2, see [12] for details. When written in the form of an implicit RK method, it is found that this is
a familiar method known as the three point Lobatto or Simpson method. An important reason for choosing it
as the basic formula of the BVP solver bvp4c [5] is that it has global order 4, the one intermediate value is also
of order 4, and a natural continuous extension is uniformly of order 4. Milne [8] provides an example known
as Method IV which has r = 4. For that example the intermediate values are all of local order 6 and the RK
method is of global order 6.

Implicit RK methods have not been widely used to solve non-stiff IVPs because of the cost of evaluating the
formulas. Rosser [9] takes a different approach. He starts an iteration for evaluating the implicit formulas, but
does a fixed number of iterations so as to obtain an explicit RK method. The case r = 1 is a familiar example.
If Euler’s method is used to form the first approximation to y1 and a single iteration of simple (functional)
iteration is done, the resulting formula is an explicit RK formula of global order two known as Heun’s method.

In the same way Rosser proposes starting with the locally second order approximations y
[1]
j = y0 + (jh/r) f0

for j = 1, . . . , r. Simple iteration consists of first forming the f
[m]
j = f(tj , y

[m]
j ) and then computing the y

[m+1]
j

from

y
[m+1]
1 = (y0 + hA1,0 f0) + h

[
A1,1 f

[m]
1 + . . .+A1,r f

[m]
r

]

y
[m+1]
2 = (y0 + hA2,0 f0) + h

[
A2,1 f

[m]
1 + . . .+A2,r f

[m]
r

]

... =
...

y[m+1]
r = (y0 + hAr,0 f0) + h

[
Ar,1 f

[m]
1 + . . .+Ar,r f

[m]
r

]

In connection with Milne’s Method IV, Rosser points out that each iteration raises the local order of the

approximations y
[m]
j by one (up to a maximum order determined by the order of the underlying implicit formula),

so that after 5 iterations, they all have local order 6. When another iteration is done, the local order remains
6 at all the interior points, but the local error at the end of the step is increased to 7, resulting in a formula of
global order 6. It is easily seen that this observation about the order of accuracy of the iterates is general—each
iteration raises the local order of the approximations by one.

Rosser argues that these explicit block methods require many evaluations of f at each step, but when it
is appreciated that r new values are formed, the cost per new value is lower than for conventional schemes
of moderate to high order. Vectorization changes completely our view of the cost of these explicit block RK

methods. The key observation is that when the evaluation of f is vectorized, we can form f
[m]
j for j = 1, 2, . . . , r

in a single call. Because of this a high order can be obtained with a remarkably small number of (array) function
evaluations. Although Rosser did not take up any general ways of estimating the error, we noticed that this is
easily done for block methods. Because each iterate raises the order by one, we not only have a result of global
order 6 at the end of a step with Rosser’s method, we also have a result of global order 5. With it we have a
(5,6) pair with a conventional local error estimate.

We wrote a research code called R56 that implements Rosser’s explicit variation of Milne’s Method IV. This
code differs from Rosser’s in that the formula is implemented as a (5,6) pair to control the local error at each
step and vectorization of f is used to reduce the run time dramatically. As mentioned earlier, we originally
considered a (7,8) pair for the ODE Suite. That was one reason we decided to investigate a block, vectorized
(7,8) pair. Another was that the higher order scheme takes more advantage of vectorization. Accordingly, we
used Maple [7] to derive the formulas for a block of size r = 6 and implemented them in a modification of R56
that we called BV78. The coefficients of the formulas and the continuous extension are rational, but there are a
good many coefficients, so rather than list them here, we refer the reader to BV78 itself. In our experiments this
code proved to be more effective than R56, so in what follows we discuss only this BV(7,8) pair. At each step
the differential equations are evaluated with a single argument to obtain f0 and then each iteration requires an
evaluation of f with 6 arguments. Seven iterations are needed to reach the maximum order, so each step costs
8 (array) evaluations. This is much better than the 13 evaluations of the conventional (7,8) pairs. Moreover,
as we explain shortly, a continuous extension of order 7 costs no extra evaluations, whereas Verner’s (7,8) pair
requires 3 extra evaluations for a continuous extension of this order.
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The block, vectorized Newton-Cotes formulas are very attractive as regards a continuous extension because

the method is defined in terms of interpolating polynomials. Specifically, the values y
[m+1]
j are just P [m](tj)

for the polynomial P [m](t) that interpolates the value y0 and the slopes f
[m]
j for j = 0, 1 . . . , r. This means

that when we reach the m that provides the desired order, we already have available a continuous extension.
We might remark that Rosser [9] does not consider this natural continuous extension, preferring instead to
do Hermite interpolation on a subset of the new values. The BV78 solver we implemented shares the basic
design of the ODE Suite. In particular, the default mode is for a user to supply the interval of integration.
The solver then returns approximate solutions on a mesh that spans the interval. The BV(7,8) pair forms six
new approximations equally spaced within each step. They are all returned by the solver. In our experiments
these values have always provided a smooth graph, so this matter is handled rather more easily than in ode45.
Another mode is for a user to supply not only the interval, but also specific points where output is desired.
The solvers then return approximate solutions at these points only. For efficiency the solvers choose the same
step sizes for both modes of output and compute approximations at specific points in the span of a step by
evaluating the continuous extension. Evaluation of the continuous extension to get output at specific points is
coded as a nested function that is vectorized with respect to output points in the span of a step.

4. Stability. It is shown in [14] that the implicit block one-step methods defined by interpolatory formulas
of Newton-Cotes type are A-stable for block sizes r = 1, 2, . . . , 8. Of course, the stability regions of the explicit
Runge-Kutta methods defined by evaluating such a formula with Euler’s method followed by a fixed number of
simple iterations are all finite, but we might hope that the methods will at least have good stability. The lowest
order case is the trapezoidal rule with r = 1. A single iteration leads to Heun’s method, which is a familiar
two-stage, second-order explicit RK method. All such methods have the same region of absolute stability which
is displayed as Figure 7.2 in Dormand [3]. It is reasonably large, which gives us hope that the BV(7,8) pair
will inherit good stability from the underlying A-stable implicit RK formula. Figure 4.1 shows the stability
regions of the two formulas of the BV(7,8) pair. Both regions are quite satisfactory as regards both size and
shape. And, as these things go, the stability regions of the pair match pretty well. Figure 7.4 of [3] shows the
stability regions of the DOPRI5 pair used in ode45. The stability regions of the two pairs are comparable, but
those of the BV(7,8) pair are uniformly somewhat bigger, especially in the direction of increasing imaginary
part. On the other hand, the (7,8) pair costs 8 evaluations per step and the (4,5) pair only 6 for a successful
step. However, this somewhat overstates the efficiency of the DOPRI5 pair because it is FSAL. This is less
advantageous when stability is an issue because there are then many step failures in which case the pair costs
7 evaluations. All things considered, the stability of the BV(7,8) pair and the DOPRI5 pair may be fairly
described as comparable.

Both formulas of Verner’s (7,8) pair have excellent stability and their regions are almost perfectly matched.
Verner states that the average radius of the eighth order formula is 5.69. The typical solution of an IVP in
Matlab displays the solution graphically and for high order formulas it is necessary to produce some additional
solution values in the span of each step so as to get a smooth graph. When used in this way, Verner’s pair
costs 16 or 17 stages per step. The BV(7,8) pair costs 8 (array) evaluations per step and the interpolant
costs no extra evaluations. Even if we assume that no interpolation is done, scaling the radius of the stability
regions of Verner’s pair to the same number of evaluations as the BV(7,8) pair results in an equivalent radius
of 5.69 × 8/13 = 3.50. This is quite a bit smaller than the average radius 4.66 of the eighth order formula of
BV(7,8). It appears, then, that the BV(7,8) pair is rather more stable than Verner’s (7,8) pair provided that
the cost of evaluating f is a weak function of the number of arguments.

In §5 we describe some numerical experiments with BV78 and ode45 applied to a test set of Krogh [6].
Details of the computations are provided in that section, but the problem K7 is pertinent here. The IVP

y′ = t(1− y) + (1− t)e−t, y(0) = 1

is to be solved on [0, 50] with a pure absolute error control. The eigenvalue −t of the local Jacobian increases
in magnitude as the integration proceeds, making the problem increasingly stiff. Figure 4.2 shows how much
accuracy is achieved for a given number of function evaluations. In this no distinction is made between calling
the function with one or six arguments. As we might have expected from the stability regions and costs per
step, the two codes perform much the same. Table 5.1 shows that the same is true with respect to run times.

5. Illustrative Computations. Krogh [6] proposed a small set of test problems carefully chosen to
illuminate the behavior of programs for solving non-stiff IVPs for ODEs. We have used them to compare
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Fig. 4.2. K7 tests stability along the negative real axis.

numerically BV78 and ode45. The test programs and BV78 itself are available at http://faculty.smu.edu/

shampine/current.html. Problem 5 is a single second order ODE and problem 4 is the same equation written
as a first order system. The solvers we consider require the ODEs to be written as first order systems, so we
had to exclude problem 5 from the comparison. Each problem in the test set is to be solved with either a
pure relative or pure absolute error tolerance. The design of the Matlab ODE Suite [11] permits neither kind
of control. Its mixed error control requires that the relative error tolerance be at least 100 units of roundoff.
Problems that are to be solved with a pure absolute error control were solved in these tests with the specified
absolute error tolerance and this minimum relative error. The design also requires that the absolute error
tolerance be greater than zero, though there is no minimum value. Problems that are to be solved with a pure
relative error control were solved with the specified relative error tolerance and an absolute error tolerance of
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10−100. Analytical solutions are available for all the problems except K9 and K10. Reference values for the two
body problem K9 were obtained by solving accurately Kepler’s (algebraic) equation. Reference values for the
restricted three body problem K10 were computed using ode113 with the minimum relative error tolerance of
2.2× 10−16 and absolute error tolerance of 10−100. This should provide a solution accurate enough to compare
the solvers for tolerances 10−2, 10−3, . . . , 10−12. For some problems one or more of these tolerances was excluded
from the comparison because one of the solvers had an error bigger than 1.

An important issue in comparing solvers is where they are to be compared. An approach that is typical
of methods without continuous extensions is to measure the accuracy only at mesh points. Krogh specifies the
points where the accuracy is to be measured. However, he specifies only a few points and as a consequence,
quality solvers without continuous extensions are not much affected by output at these points. Our approach
is more revealing and closer to the way solvers are used in Matlab. We compared the accuracy at 200
points equally spaced in the interval of integration. More precisely, we measured the maximum over the 200
points of the maximum relative or absolute error, as the case may be, in the components of the solution at
each point. This tests not just the accuracy of the solver, but also the accuracy of the continuous extension.
Furthermore, it tests the overhead of evaluating the continuous extension along with the overhead of the solver
itself.

It is difficult to obtain consistent run times in Matlab. This is especially true when the run times are small
in absolute terms, as they are for these test problems. We summed the run times over the range of tolerances
and report only the leading digits. The total times reported in Table 5.1 were obtained in a single run of
each program preceded by a “clear all” command. We have done this repeatedly and found the times to be
consistent, though the last digit displayed might vary slightly. Still, the run times displayed in the table should
be considered only a rough guide as to relative costs. The results might be summarized by adding up the run
times over the nine problems and dividing to find that BV78 solves a wide range of problems over a wide range
of tolerances in about one third the time taken by ode45. Each program also plots efficiency in terms of the
accuracy achieved versus the number of array evaluations. Details vary from problem to problem, but Figure 5.1
shows what might be described as a typical plot that was produced when solving K6. By virtue of vectorization
BV78 is competitive even at modest tolerances and at the more stringent tolerances its higher order gives it a
substantial advantage.

Table 5.1

Run times for test set of Krogh [6].

Problem K1 K2 K3 K4 5 K6 K7 K8 K9 K10
BV78 0.2 0.6 0.6 0.7 0.7 1.2 1.0 1.2 0.5
ode45 0.6 2.3 2.2 2.7 2.5 1.6 2.7 3.7 2.0

A larger test set of Hull et alia [4] has five categories, each having five problems. We have compared BV78

to ode45 on all these problems exactly as we did with Krogh’s test set. All the problems of this set are to be
solved with pure absolute error control. It is worth remark that group D consists of a two body problem with
initial conditions that lead to orbits of different eccentricity. A pure absolute error tolerance does not provide a
good control of the error over the whole interval for the more eccentric orbits, so more tolerances were excluded
in the comparison for this group than others. To make the data easier to assimilate, we report in Table 5.2 the
sum of the run times for each category. When the run times are summed over the categories, we find just as
with Krogh’s test set that BV78 is faster than ode45 by about a factor of three over a wide range of problems
and a wide range of tolerances.

Table 5.2

Run times for test set of Hull et alia [4].

Category A B C D E
BV78 0.7 2.1 4.4 5.2 1.6
ode45 2.9 6.9 10.2 17.2 6.7

The C5 problem is a reduced model of the solar system that we use to make some points about vectorization.
It is tedious to program the 30 first order ODEs of this model, though the array functions of Matlab not only
make this easier, but also speed up evaluation of the ODEs. This is important when solving IVPs with any
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Fig. 5.1. K6 is Euler’s equations of motion of a rigid body.

of the Matlab ODE solvers. Indeed, we found that different ways of coding the ODEs might affect the run
time with ode45 by as much as an order of magnitude! In this paper we further assume that the ODEs are
evaluated efficiently for an array of arguments. When coded in this way, BV78 solved the problem for a wide
range of tolerances in 2.2s and ode45 did this in 6.1s. Figure 5.2 shows the efficiency in terms of the number
of array evaluations. There seem to be too few data points for BV78 in this figure. That is because for absolute
error tolerances 10−2, . . . , 10−6, the results are all the same—the default maximum step size of one tenth of
the length of the interval of integration already provides an error of about 5 × 10−8. For testing purposes we
provide an option in BV78 of integrating with only one argument in each call to evaluate the ODEs. The run
time of 10.2s when this is done shows the importance of vectorizing. Nonetheless, Figure 5.3 shows that even
without vectorization, BV78 is reasonably efficient at all tolerances and at stringent tolerances is comparable to
ode45 because the higher order compensates for more expensive steps.

6. Conclusions. Our analysis and numerical experiments support the conclusion that if it is convenient
to vectorize the function that evaluates the differential equations, BV78 will be comparable to ode45 at all
tolerances and considerably more efficient at stringent tolerances. In fact, for a wide range of standard test
problems solved for a wide range of tolerances, BV78 required only one third the run time of ode45. This
conclusion assumes that the cost of evaluating the vectorized function is not much greater than the cost of
evaluating it with a single argument. If that is not the case, BV78 will solve the problem with acceptable
efficiency, but it will be slower than ode45 at all but stringent tolerances.

Though the scheme we have implemented seems to be a good one, it suggests other possibilities that merit
future investigation: The scheme described for evaluating the BV(7,8) pair forms approximate solutions of all
local orders from 2 to 8. Clearly it would be possible to develop a variable order code. We have discussed block
methods of Newton-Cotes type, but there are other kinds of block methods that might have advantages. For
example, a family of implicit block methods with superior stability is studied in [14].

7. Acknowledgement. This paper was improved as a result of valuable comments from W. Enright of
the University of Toronto and P. Muir of Saint Mary’s University.
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CONDITIONING AND HYBRID MESH SELECTION ALGORITHMS FOR TWO-POINT

BOUNDARY VALUE PROBLEMS∗

JEFF R. CASH†AND FRANCESCA MAZZIA‡

Abstract. Boundary value problems for ordinary differential equations (BVODES) occur in a great many practical situations
and they are generally much harder to solve than initial value problems. Traditionally codes for BVODES did not take into account
the conditioning of the problem and it was generally assumed that the problem being solved was well conditioned so that small
local errors gave rise to correspondingly small global errors. Recently a new generation of codes which take account of conditioning
has been developed. However most of these codes are based on a rather ad hoc approach with the need to choose several heuristics
without any real guidance on how these choices can be made. In this paper we identify clearly which heuristics need to be chosen
and we discuss different choices of monitor functions that are used in our codes. This has the important effect of unifying the
various approaches that have recently been proposed. This in turn allows us, in the present paper, to introduce a new technique
for computing the conditioning which is ideally suited to BVODES.

1. Introduction. The task of solving systems of nonlinear two-point boundary value problems numerically
has, for a long time, received a great deal of attention. Boundary value problems for ordinary differential
equations (BVODES) occur in a great many practical situations and they are generally much harder to solve
than initial value problems. In particular the numerical solution of singular perturbation problems can be
especially difficult because such equations can have solutions with very narrow regions of rapid variation typified
by boundary layers, shocks and interior layers.

Traditionally codes for BVODES did not take into account the conditioning of the problem and it was
generally assumed that the problem being solved was well conditioned so that small local errors gave rise to
correspondingly small global errors. However, in an important paper by Shampine and Muir [28], the need
to consider the conditioning of the problem being solved was clearly demonstrated by means of a numerical
example and this brought into focus some important earlier work by Brugnano and Trigiante [5, 6] and by
Mazzia and Trigiante [27] who derived codes with a monitor function depending on both conditioning and
error. Subsequently a new generation of codes which take account of conditioning has been developed. However
most of these codes are based on a rather ad hoc approach with the need to choose several heuristics without
any real guidance on how these choices can be made. In this paper we identify clearly which heuristics need
to be chosen and we discuss different choices of monitor functions that are used in our codes. This has the
important effect of unifying the various approaches that have recently been proposed. This in turn allows
us, in the present paper, to introduce a new technique for computing the conditioning parameters which is
ideally suited to BVODES. Finally we describe some codes which implement these new ideas and we give some
numerical results obtained from using these codes.

We will only consider in this paper singular perturbation boundary value problems, although the algorithms
developed are designed for general first order boundary value problems. We will not be concerned in this paper
with shooting methods but will instead confine our attention to so called finite difference or boundary value
methods. However a lot has been done on estimating the conditioning of shooting methods and the interested
reader is referred to [1, 20, 21, 19, 13].

In section 2 we give a review of the algorithms based on conditioning for singularly perturbed boundary
value problems. In section 3 we present the conditioning parameters for the continuous problem and in section 4
the corresponding parameters for the discrete one. In section 5 we analyze the hybrid mesh selection strategies
based on conditioning and the way they have been unified and updated. In section 6 we present the results of
some numerical experiments to analyze the behavior of the codes with the new condition estimator.

2. Singular Perturbation Problems.

2.1. Second Order Scalar Problems. The first attempt to use conditioning in algorithms for the solu-
tion of singularly perturbed BVODES was made in [24, 8] by Mazzia and Trigiante. The algorithm presented
in [24, 8] was designed for the following general class of scalar linear problems:

∗Work developed within the project “Numerical methods and software for differential equations”
†Department of Mathematics, Imperial College, South Kensington, London SW7, England
‡Dipartimento di Matematica, Università di Bari, Via Orabona 4, I-70125 Bari, Italy
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ǫy′′ + p(x)y′ + q(x)y = f(x)
y(a) = ya, y(b) = yb, a ≤ x ≤ b,

(2.1)

where ǫ is a positive parameter which is small compared with b− a, q(x) and f(x) are continuous functions and
p(x) is differentiable.

If we discretize (2.1) using simple three point finite difference formulae, the discrete problem is a tri-diagonal
system of algebraic equations that can be solved to give an approximation to the solution of (2.1). In matrix
form this system is

Ty = f (2.2)

where y0, y1, . . . , yn is the numerical solution computed on the mesh π = {x0, x1, . . . , xn}, y = (y1, y2, . . . , yn)
T

and

T =




1 τ1
σ1 1 τ2

σ2 1
. . .

. . .
. . . τn−1

σn−1 1




. (2.3)

The matrix T depends on π and the algorithm presented in [24, 8] uses sufficient conditions for the well
conditioning of tridiagonal matrices derived in [3] to compute the mesh. This allows us to derive, for example,
the conditions that a constant stepsize, h, should satisfy in order to have T well conditioned. In general we
require h ≈ O(

√
ǫ). However in the much more important case where we solve (2.1) using a variable meshsize

the mesh must be choosen in order to have the n× n system (2.2) such that n≪ 1

ǫ
.

In [24, 8] Mazzia and Trigiante, using only information related to the well conditioning of the tridiagonal
matrix T , derive second order methods for the solution of (2.1) where the grid is chosen so that

1. The user requested accuracy is achieved.
2. The inverse coefficient matrix T−1 exists and its condition number is either independent of n (well

conditioned) or grows as n or n2 (weakly well conditioned).
The way that these two conditions are satisfied is to choose hi in order to have (σi, τi) that satisfy the conditions
for the (weakly) well-conditioning of T . The algorithm simplifies considerably if σi and τi have constant sign.
We note that in a classical approach, where ǫ is not small, it would be normal to choose σi and τi so that
the matrix T is diagonally dominant. However in this case h is of the order ǫ and n is of order 1

ǫ
and this

is unacceptable when ǫ is very small. An algorithm that chooses τi and σi so that 1) and 2) are satisfied is
described in [8] and some numerical results presented for singular perturbation problems show the power of the
method.

2.2. First Order Systems of Singular Perturbation Problems. Although the algorithm described
in the previous section represented a major step forward in the solution of singular perturbation problems it
has the disadvantage that it is only applicable for linear, scalar, second order systems, it is of low order and
it is not very easy to apply for variable stepsizes. However the strategy of using conditioning in choosing the
mesh size is an important one and in the following sections we will discuss how to deal with nonlinear systems
of BVODES.

In what follows we will be concerned with the nonlinear system of singular perturbation problems

D(ǫ)y′(x) = f(x, y), a ≤ x ≤ b, g(y(a), y(b)) = 0, (2.4)

where D(ǫ) is a diagonal matrix whose elements depend linearly on ǫ. Usually D(ǫ) = diag(1, . . . , 1, ǫ), and
y,f , g ∈ Rm. As in the previous section we will be particularly interested in the case where 0 < ǫ ≪ 1. An
efficient numerical method for the solution of (2.4) needs to be able to use non-uniform grids so that many
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grid points are clustered in regions of rapid variation of the solution and relatively few grid points are placed
in regions where the solution is smooth. Most codes attempt to control the error in the solution either by
estimating the discrete error at the mesh points [7] or else by controlling a residual [28]. The important point
to realise is that in both cases the codes attempt to control the local error on the assumption that the problem
is well conditioned so that if the local error is small then the global error will also be small. However in the
case where the problem is ill-conditioned a standard backward error analysis shows that it is possible for an
accepted solution to have a small local error but to have an unacceptably large global error. There is the
additional problem that if a monitor function ( [1], p. 363) takes no account of conditioning of a problem then
the grid choosing algorithm may become very inefficient. This is manifested by a sort of cycling where points
are added into the grid on conditioning considerations and are then removed in the next remeshing due to
accuracy considerations. To illustrate these ideas we present a test problem which we solve by using the code
TWPBVPC [11] both with the standard mesh selection strategy based on the estimation of the local error and
with a mesh selection strategy which considers both conditioning and local error estimation. We note that to
change from the code TWPBVPC, which takes account of conditioning, to TWPBVP, which uses a conventional
mesh choosing strategy, we need to change just one input parameter of the code TWPBVPC.

Example 1. We examine the following problem [11] :

ǫy′′ + xy′ = −ǫπ2 cos(πx) − πx sin(πx),
y(−1) = −2, y(1) = 0,

(2.5)

whose exact solution is cos(πx) + erf(x/
√
2ǫ)/erf(1/

√
2ǫ), solved using the code TWPBVP when conditioning

is not taken into account. The problem is rewritten as a first order system with two components (y, y′)T and
the input parameters are ǫ = 10−7 and tol(y) = 10−8. This means that we are seeking an approximation to the
solution with an error 0.5 ·10−8 or less in the y component. The code gives a solution using a final mesh of 4192
points with a maximum error of 0.17 · 10−8. The mesh sizes used in the intermediate steps of the computation
are: 16, 31, 61, 121, 241, 481, 530, 1059, 1108, 2215, 2242, 4483, 8965, 19912, 4192. It seems that the code finds
the problem very difficult to solve and it needs 19912 mesh points to get some worthwhile information about
the solution. This is mainly due to the fact that the mesh selection algorithm adds extra points in the wrong
place. If we use the same code with the mesh selection based on conditioning, and we call this TWPBVPC, the
solution is obtained using 368 mesh points with maximum error of 0.85 · 10−8. The meshes used are of sizes:
16, 31, 58, 85, 169, 368. The information given by the conditioning parameters allows the code to put the mesh
points in the correct place and makes it considerably more efficient for the solution of this problem.

The first papers to consider this problem of estimating the conditioning constants in a serious way were by
Brugnano and Trigiante [4, 5] and by Mazzia and Trigiante [27]. Their basic approach is to identify two con-
stants which characterise the conditioning of the continuous problem. Having done this the monitor function
used in the mesh choosing algorithm is based on the relative size of these two parameters as well as on a local
error estimate. The basic aim of the algorithm described in [27] is to choose the mesh so that the discrete and
continuous problems have conditioning parameters which have the same order of magnitude. Perhaps the first
really powerful code that used a monitor function based on accuracy and conditioning was the code TOM [27].
Numerical results presented in [27] show the excellent performance of this code compared with the case where
conditioning is not considered. Using ideas explained in [27] the two deferred correction codes TWPBVP and
TWPBVPL were modified to include conditioning in their monitor function and the much improved perfor-
mance of the modified codes TWPBVPC and TWPBVPLC can be seen from the results on the authors’ web
page [11].

3. Conditioning parameters. To introduce the conditioning parameters which will be used in the mesh
selection strategy of our codes, let us consider for simplicity the following linear boundary value problem:

dy

dx
= A(x)y(x) + q(x), a ≤ x ≤ b, Bay(a) +Bby(b) = β, β ∈ Rm (3.1)

whose solution is given by

y(x) = Y (x)Q−1β +

∫ b

a

G(x, t)q(t)dt. (3.2)
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Here Y (x) is a fundamental solution, Q = BaY (a)+BbY (b) is non singular and G(x, t) is the Greens’ function.
Using the ∞-norm we can compute the conditioning parameter by considering a perturbed equation:

du

dx
= A(x)u + q(x) + δ(x), a ≤ x ≤ b, Bau(a) +Bbu(b) = β + δβ.

Here δ(x) and δβ are small perturbations of the data. The difference between the two solutions satisfies:

||u(x)− y(x)|| ≤ ||Y (x)Q−1δβ||+ ||
∫ b

a

G(x, t)δ(t)dt||. (3.3)

After some algebraic manipulation we obtain:

max
a≤x≤b

||u(x) − y(x)|| ≤ κ1‖δβ‖+ κ2 max
a≤x≤b

||δ(x)||,

and

max
a≤x≤b

||u(x)− y(x)|| ≤ κmax(‖δβ‖, max
a≤x≤b

||δ(x)||),

where

κ1 = max
a≤x≤b

||Y (x)Q−1||, κ2 = sup
x

∫ b

a

||G(x, t)||dt,

and

κ = max
a≤x≤b

(||Y (x)Q−1||+
∫ b

a

||G(x, t)||dt).

Following the same procedure as above and using the 1-norm we obtain

1

b− a

∫ b

a

||u(x)− y(x)||dx ≤ γ1‖δβ‖+ γ2 max
a≤x≤b

||δ(x)||,

and

1

b− a

∫ b

a

||u(x)− y(x)||dx ≤ γmax(‖δβ‖, max
a≤x≤b

||δ(x)||),

where

γ1 =
1

b − a

∫ b

a

||Y (x)Q−1||dx, γ2 =
1

b− a

∫ b

a

∫ b

a

||G(x, t)||dtdx,

and

γ =
1

b− a

∫ b

a

(||Y (x)Q−1||+
∫ b

a

||G(x, t)||dt)dx.

For many problems of interest the relative sizes of the two parameters κ and γ tell us about the conditioning
of the continuous problem. However in the discrete case the parameter γ is very difficult to compute. In general,
in a problem where the correct dichotomy is present only κ1 and γ1 are of interest. In [4] a problem with κ1

large and γ1 small was called stiff, the stiffness ratio being
κ1
γ1

. This definition, although very often giving the

correct information about the stiffness, may fail for non scalar problems, as pointed out in [6]. In [18] Iavernaro,
Mazzia and Trigiante give a slightly different definition of stiffness. The conditioning parameters presented
in [18], called κ1,c([a, b]) and γ1,c([a, b]), only depend on the perturbations of the boundary conditions, and are
defined by supposing that δ(x) ≡ 0 in (3.3). The way in which these parameters are defined is as follows:
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κ1,c([a, b], δβ) =
maxa≤x≤b ‖u(x)− y(x)‖

‖δβ‖ , κ1,c([a, b]) = max
δβ

κ1,c([a, b], δβ),

γ1,c([a, b], δβ) =

∫ b

a
‖u(x)− y(x)‖dx
(b − a)‖δβ‖ , γ1,c([a, b]) = max

δβ
γ1,c([a, b], δβ).

(3.4)

Upper bounds on κ1,c([a, b] and γ1,c([a, b]) can be obtained in terms of the parameters previously introduced,
and it can be shown that

κ1,c([a, b]) ≤ κ1, γ1,c([a, b]) ≤ γ1. (3.5)

This definition of κ1,c([a, b], δβ) and γ1,c([a, b], δβ) allows us to define the stiffness ratio which is defined as

σc([a, b]) = max
δβ

κ1,c([a, b], δβ)

γ1,c([a, b], δβ)
.

With these parameters it is possible to give the definitions of well conditioned, stiff and ill conditioned problems,
see [18, 23] for details:

Well conditioned: κ, κ1, γ1 and σc([a, b]) are of moderate size;
Stiff: σc([a, b]) ≫ 1;
Ill conditioned: κ≫ 1 and γ ≫ 1.

If σc([a, b]) is large we are dealing with problems possessing different time scales for which the growth or
decay rates of some fundamental solution modes are very rapid compared to others. Many singularly perturbed
BVODES have σc([a, b]) large. Our aim is to choose the mesh so that the continuous and discrete problems
have similar conditioning parameters. This leads us to investigate the conditioning of the discrete problem and
this we do in the next section.

4. Conditioning parameters for the discrete problems. In order to use the conditioning parameters
in a mesh selection strategy we first need to compute a discrete approximation to them which can be used in
our numerical method. If in our algorithm we use a Newton iteration scheme to solve the nonlinear algebraic
equations we need to solve a linear system of algebraic equations of the form My = b for each iteration. The
matrix M depends on the numerical scheme and on the stepsize used. We use a grid π = {x0, x1, . . . , xn}
with grid spacing hi = xi − xi−1, i = 1, . . . , n on which to solve the problem. The block matrix M , of size
(n+ 1)m× (n+ 1)m, is set up so that the boundary conditions appear only in the first row block of b. Ascher,
Mattheij and Russell [1] prove that for one-step schemes ‖M−1‖∞ ≈ κ and this is a fundamentally important
result. For the computation of ‖M−1‖ we have used up to now the algorithm presented by Higham in [15],
which computes an approximation to the 1-norm of a matrix. This algorithm has now been optimized in order
to use the information that we already know to compute the estimation of κ1 and γ1. Using the definition given
in (3.4) it is possible to define the values of κ1,d(π, δβ), γ1,d(π, δβ) as:

κ1,d(π, δβ) = 1
‖δβ‖ max0≤i≤n ‖yi‖, κ1,d(π) = max

δβ
κ1,d(π, δβ),

γ1,d(π, δβ) = 1
(b−a)‖δβ‖

∑n
i=1 himax(‖yi‖, ‖yi−1‖), γ1,d(π) = max

δβ
γd(π, δβ),

(4.1)

where yi, i = 0, 1, . . . , n is the solution of the discrete problem having δη as boundary conditions and κ1,d(π)
and γ1,d(π) are the discrete approximations of κ1 and γ1 respectively. The discrete stiffness ratio is:

σd(π) = max
δβ

κ1,d(π, δβ)

γ1,d(π, δβ)
.

Since in the numerical codes we need to use easy to compute parameters, we define upper and lower bounds
for them using the information given by the matrix M−1. We define the matrices G = M−1 and Ω having
elements Ωij = ||Gij ||∞ of size (n+ 1)× (n+ 1). Here Gij is the i, jth block element of size m appearing in G.
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The discrete approximations to κ1 and γ1 satisfy the following upper bounds that correspond to the discrete
parameters computed in [27, 5, 6, 8, 9]:

κ1,d(π) ≤ max
i

Ωi0, γ1,d(π) ≤ (
N∑

i=1

hi max(Ωi−1,0,Ωi0))/(b− a). (4.2)

In the following we approximate the discrete conditioning parameters by their upper bounds. Moreover,
taking into account the relation between the matrix G and the Green’s function, a discrete approximation of κ2
is given by ‖grm+1,(n+1)m‖1 (we consider only the components fromm+1 to (n+1)m ), where gr is the row of the

matrix G such that ‖gr‖1 = ‖G‖∞. Since the first block column of the matrix G∗0 is a discrete approximation
of Y (t)Q−1 we have that the i-th column of G∗0 is an approximation of the solution of the continuous problem
(3.3) when δ(x) = 0 and δβ = ei, with ei being the column i of the identity matrix of size m. We are able now

to define, denoting by g(i) the i-th column of G∗0, and by g
(i)
j , 0 ≤ j ≤ N its blocks of size m,

κ1,d(π, ei) = ‖g(i)‖∞,

and

γ1,d(π, ei) =
1

b− a

n∑

j=1

(xj − xj−1)max(‖g(i)j−1‖∞, ‖g
(i)
j ‖∞).

A lower bound for σd(π) is computed as

σd(π) ≥ max
ei,1≤i≤m

κ1,d(π, ei)

γ1,d(π, ei)
. (4.3)

We note that the new value of σd(π) differs from the one computed in [6] because, instead of considering the

ratio
κ1,d(π)
γ1,d(π)

involving the norm of Gi0, we consider the columns of G∗0 separately. This allows us to retain

information that would be lost by using directly the norm of each block.
By construction σd(π) is a discrete approximation of the following continuous lower bound of σc([a, b]):

σc([a, b]) ≥ max
ei,1≤i≤m

κ1,c([a, b], ei)

γ1,c([a, b], ei)
.

In the following we approximate the discrete value of σd(π) by the lower bound given in (4.3). One of the
important advantages of computing this approximation of the discrete conditioning parameters is that it is very
inexpensive to implement since it requires only one block column of G to be computed. In what follows we
describe how to use this information to compute an estimate of ‖G‖∞ which allows us to obtain a discrete
approximation of κ. In this paper we describe the algorithm only for the one step formulae (implemented in
TWPBVPLC and TWPBVPC). In what follows we give in detail the algorithm implemented by Higham in [15]
for the estimation of the one norm of a matrix. This algorithm is a variant of the original algorithm derived by
Hager in [14]. We apply it to the transpose matrix, to compute an approximation of the infinity norm. This
algorithm, given G ∈ IRN×N , computes κd(π)) ≤ ‖G‖∞ and ‖Gx‖∞ = κd(π)‖x‖∞

The flow chart (matlab-like) for doing this is given below (see [16]):

function κd(π) = KappaHigham(G,N)
ζ = N−1ones(N, 1)
gr = GT ζ
κd = ‖gr‖1
ξ = sign(gr)
z = Gξ
nstep = 2
while nstep <= 5

ζ = ej , where |zj| = ‖z‖∞ (smallest j)
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gr = GT ζ
κnd = ‖gr‖1
if sign(gr) = ξ or κnd (π) < κd(π), goto (*), end
κd = κnd
ξ = sign(gr)
z = Gξ
nstep = nstep+ 1
if |zj| = ‖z‖∞, break, end

end
(*) zi = (−1)i+1(1 + (i − 1)/(N − 1)), i = 1 : N

z = GT z
if 2‖z‖1/(3N) > κd(π) then

gr = z
κd(π) = 2‖z‖1/(3N)

end

In the following we present a variant of the Higham algorithm that uses the information given by the
conditioning parameters. Since to compute κ1,d(π) we need the infinity norm of the vector Ω∗0, which depends
on the first m columns of G, we could easily compute the index jk in which Ω∗0 reaches its maximum, that
is Ωjk0 = κ1,d(π) = maxi Ωi0, and the index k such that ‖(Gjk,0)k∗‖∞ = Ωjk0. We call gr the row of index
ik = (jk − 1)m + k of the matrix M−1, (gr = GT eik). In the case of separated boundary conditions, and
it is these boundary conditions that are allowed in the codes, if the problem has an exponential dichotomy
and it is well conditioned, we have that κ1 gives all the required information about the conditioning, and the
Green’s function in (3.2) decays exponentially with |x − t| (see [1] p.126). Since for stiff problems Ω∗0 reaches
its maximum in one isolated element we conclude that the 1-norm of gr is a good approximation to ‖G‖∞. In
this case κ1,d(π) = ‖gr1:m‖1 by construction and κ2,d(π) = ‖gr

m+1:(n+1)m‖1 is an approximation to κ2. However

for non stiff problems Ω∗0 could have many elements equal to the maximum, and if κ2,d(π) is of the same order
as κ1,d its contribution to κd(π) is important. We have modified the Higham algorithm in order to use this
information given by the stiffness parameters. The new algorithm is:

function [κd(π), κ2,d(π)] = KappaStiffBvp(G,N ,m,ik,κ1,d(π), σd(π))
nstep = 1
if σd(π) < 10

ζ = eik
else

ζ = ones(N, 1)/(N + 11), ζik = 11/(N + 11)
end
gr = GT ζ
κd(π) = ‖gr‖1
κ2,d(π) = ‖grm+1:N‖1
while (σd(π) < 10 | κ2,d(π) > κ1,d/10) & nstep ≤ 3

ξ = sign(gr)
z = Gξ
if ‖z‖∞ ≤ zT ζ

break
end
ζ = ej, where |zj | = ‖z‖∞ (smallest j)
gr = GT ζ
κnd (π) = ‖gr‖1
if κnd (π) < κd(π), break, end
κd(π) = κnd (π)
κ2,d(π) = ‖grm+1:N‖1
nstep = nstep+ 1

end
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We note that a similar modification could be applied to the block algorithm to estimate the one norm
presented in [17], we have however explained only the algorithm which is used in the current version of the
codes.

Since the matrix that has already been factorized in the codes is of the form M̃ = DM , where D is a
diagonal matrix with blocks D0 = I, Di = hiI, i = 1, . . . , N , where hi are the gridsizes used (for simplicity
we suppose that the boundary conditions are in the first block row), we need to compute an approximation
of ‖M−1‖∞, knowing the factorization of M̃ . To do this we apply the algorithm previously described for the
computation of ‖(M̃−1D)‖∞.

We have updated the codes TWPBVPC and TWPBVPLC in order to compute σd(π) using the approxi-
mation in (4.3), and κd(π) and κ2,d(π) using the new algorithm KappaStiffBvp and these are available on the
authors’ web page.

5. Hybrid mesh selection strategies based on conditioning. At present there exist just a few codes
that implement hybrid mesh selection strategies, and these include TOM, TWPBVPC and TWPBVPLC. We
have structured our approach to mesh selection so that the strategies described in this paper are common to all
three codes being considered with the only things changing being the values of several variables which need to
be chosen heuristically. The common approach is to choose the mesh in order to have a discrete problem with
conditioning parameters similar to those of the continuous problem. That is, we need to choose the mesh so
that the discrete monitor function used by all three codes, when only the conditioning is taken into account, is:

ψ(xi) = |Ωi0 − Ωi−1,0|+ α (5.1)

where α = p
(1−p)(b−a)

∑N
i=1 |Ωi0 − Ωi−1,0|.

5.1. Mesh selection for Deferred Correction Formulae. The code TWPBVPL is a deferred correc-
tion code based on Lobatto IIIa formulae of order 4,6 and 8 [12]. This code is an extension of the one presented
in [2], and this is considerably more robust than TWPBVPC, especially for singularly perturbed boundary
value problems. For this reason these Lobatto deferred correction algorithms have also been implemented in
the code ACDC [10] in a continuation framework, in order to deal with extremely stiff problems. The deferred
correction scheme implemented in TWPBVPL has many similarities with that used in TWPBVPC, and as a
result the hybrid mesh selection strategy derived in TWPBVPC has been implemented for TWPBVPLC using
a similar procedure. The two hybrid strategies have been described in detail in [8, 12]. However since the
underlying numerical schemes used in TWPBVPC and TWPBVPLC are very different it is important to set
up some empirical parameters in order to have an efficient mesh selection for each code. In what follows we will
describe some of these parameters which have been chosen as a result of extensive numerical experimentation.
In particular, we report the empirical parameters that have been set up when the codes have been updated using
σd(π) in (4.3) for the definition of stiffness and computing κd(π) using the algorithm KappaStiffBvp presented
in the previous section.

In particular the monitor function is as defined by (5.1), but the parameter p/(1 − p) = 10−5 is used for
Lobatto and p/(1 − p) = 0.08 is used for TWPBVPC. The three parameters κd(π) κ1,d(π) and γ1,d(π) are
considered as having become stabilised using the same criterion as was defined in [8] that is if they change by
less than 5 % from one mesh to another. A problem is considered stiff if

σd(π) > 10. (5.2)

This criterion is different from the one presented in the previous version of the code TWPBVPLC, where a
problem was considered stiff if κ1(π)/γ1(π) > 100. However the new definition of the stiffness parameter σd(π)
in (4.3) allows us to use the same criterion (5.2) for both the codes.

The algorithm for adding and removing points, for stiff problems, is based on the following two quantities
associated with the monitor function ψ:

r1 = max
i=1,...,n

(ψ(xi)hi),

and

r2 =

n∑

i=1

(ψ(xi)hi)/N.
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Here hi refers to the mesh spacing on the current mesh and n refers to the number of points in the mesh.
We decided to add additional mesh points when ψ(xi)hi is sufficiently large and in our Lobatto code we have
taken this as being when it is greater than max(0.65r1, r2). For TWPBVPC we add additional mesh points
when ψ(xi)hi is greater than max(0.5r1, r2). Note that these two parameters differ because usually the Lobatto
schemes give us more reliable information concerning the regions where it is appropriate for points to be added.
The number of mesh points to be added depends on the number of intervals in which this relation is satisfied. If
the problem is stiff and the conditioning parameters are not stabilized the mesh control procedure puts points
in the region of rapid variation of the monitor function and also makes sure that not too many points are added
at any stage. If the conditioning parameters are stabilized, we are usually working with a good mesh and, if the
error is small, we add points using the estimated local error. The technique for removing points also takes into
account the monitor function and we remove points only when ψ(xi)hi is less than 10−5r2. This parameter has
been changed for TWPBVPLC in order to make it more robust for non linear problems.

For nonlinear problems the strategy used in TWPBVPLC and in TWPBVPC remain the same that is, if
the Newton iteration scheme does not converge, the partially converged solution is considered stiff if σd(π) > 10
in TWPBVPLC whereas in TWPBVPC 10 is replaced by 5.

5.2. Mesh selection for boundary value methods. The code TOM, based on boundary value methods
of even order from 2 to 10, is different from the deferred correction codes in two main respects. The first is
in the solution of non linear problems, where it uses a quasi linearization procedure that allows the use of the
conditioning parameters for each linear problem arising during the quasi linearization. The second is the use of
the monitor function that allows us to both move the mesh points and add and remove them. Nevertheless, we
tried to keep most of the empirical parameters similar to the codes based on deferred corrections. In particular,
the three parameters κd(π) κ1,d(π) and γ1,d(π) are considered as having become stabilised using the same
criterion as for the deferred correction codes, that is if they change by less than 5% from one mesh to another.
A problem is considered stiff when σd(π) > 100 and this is different from the criterion (5.2) used in the deferred
correction codes and is mainly due to the different numerical schemes used. We set p/(1 − p) = 0.08 which
is exactly the same as was used for TWPBVPC. We decided to add additional mesh points when ψ(xi)hi
is sufficiently large and in TOM we take this as being when it is greater than max(0.65r1, r2), which again
is exactly the same as in the Lobatto code. In TOM we remove points, in the first quasilinearization step,
when ψ(xi)hi is less than 10−3r2 or 10−8r2, depending on the order of the method used and on the estimated
error in the boundary points. For the subsequent quasilinearization steps we use 10−3r2. We note that the
quasilinearization algorithm implemented in TOM makes the behavior of this code different from the codes
using a damped Newton technique. The reader is referred to [23] for more details concerning the solution of
nonlinear problems.

5.3. Estimation of the error. We note that the hybrid mesh selection strategy asks for the conditioning
parameters to be stabilized before we are able to use the error or the defect in the mesh selection. This is
equivalent to asking that the fundamental matrix Y (x) in (3.2) is well approximated by the numerical method
before selecting the mesh. In this case the error estimate would be of interest and the size of the stability
constant κd(π) gives us information about the reliability of this estimate. In codes based on deferred correction
the error for the order 4 method is estimated using the local truncation error, while for the order 6, and the
order 8 methods, the error is estimated using the difference between the computed solution of order 4 and 6,
or 6 and 8, respectively. Since the error is usually computed using the relative difference between the solution
computed by methods of different orders, it is a good estimate of the global error. The same is true for the
code TOM, where the error is estimated by computing an approximate solution of a higher order method using
one step of a deferred correction procedure. However, the conditioning parameters give us more information
about the error estimation. In fact, if the codes do not give a solution because the input error tolerances are
too stringent, the user could change the input parameters accordingly. The codes only give a warning about
this, because the input error tolerances are usually different for each component of the solution and cannot be
changed automatically.

Additional important information related to the conditioning parameters is whether they are stabilized or
not. In particular if κd(π) is not stabilized the exit flag of the codes is -1 and not 0, because we can not assume
that the numerical solution is reliable and we may be basing our strategy on non-converged solutions.

6. Numerical Results. In this section we present some numerical results to justify the changes made
in the codes TWPBVPLC and TWPBVPC. We do not report on numerical experience with the code TOM
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because the Fortran version is not yet available. Numerical results using TOM can be found in the following
papers [23, 22, 25, 26]. In the following, to simplify the notation, we denote the discrete conditioning parameters
by κ(π), κ2(π), κ1(π), γ1(π), σ(π). We have run the codes on a set of 33 singular perturbation boundary value
problems (see [11] for a description of the test problems), the first set of numerical results is intended to show
the reliability of the infinity norm estimator used in the codes. In Figure 6.1 we report, for each test problem,
the mean value of the ratio κ(π)/κH(π) where κH(π) is the value computed using the Higham algorithm in [15].
The mean value has been computed running the problems for different values of ǫ and for different values of the
input tolerances. A value smaller than unity means that the Higham algorithm is on average more accurate; a
value higher than unity means that the new estimator is better. The number of computed matrices is 19195,
having size ranging from 9 to 34976. The mean value over all the experiments for both codes is 1.139. This
value means that the new estimator gives, on average, better results. In Figure 6.1 we give a diagram showing
the mean value of the ratio κ(π)/κH(π) for the 33 problems and for the two codes. We note that for problems
9 and 16 the new estimator computes a better lower bound. For the other problems the results are similar.
However it is interesting to see that the minimum value of the mean ratio is 0.8 (computed when solving
problem 27 with ǫ = 10−5 and tol = 10−6 using TWPBVPC), the maximum value of the mean ratio is 84.3
(computed when solving problem 9 with ǫ = 10−6 and tol = 10−4 using TWPBVPC).

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
TWPBVPC

Test problem

κ
(π

)/
κ

H
(π

)

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
TWPBVPLC

Test problem

κ
(π

)/
κ

H
(π

)

Fig. 6.1. Mean value of the ratio κ(π)/κh(π) for each test problem solved with different values of ǫ and different values of tol.

In Figure 6.2 we report, for the problems 1 and 15, the ratio κ1(π)/γ1(π) compared with the new value
of σ(π). We note that for these problems σ(π) is a more reliable estimate of the stiffness of the problem. In
general, however, the difference between the two stiffness estimators is minimal.
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Fig. 6.2. Circle (TWPBVPC) and diamond (TWPBVPLC) are the values of σ(π) computed with different values of the input
tolerances, asterisks (TWPBVPC) and plus (TWPBVPLC) are the corresponding values of κ1(π)/γ1(π).

The behavior of the codes using the conditioning parameters is more or less the same as for the previous
versions. We refer to [8, 12], where many experiments are reported, for a comparison to the standard mesh
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selection strategy with the one using conditioning. Nevertheless there are some improvements on certain difficult
problems that are explained below.

We note that when κ2(π) is very small the standard mesh selection strategy and the one based on condi-
tioning gives very similar results, and in many cases the standard mesh selection works better. This is explained
by the fact that, since κ2(π) is small, the local truncation error is a good approximation of the global error. In
the following we report only the results for three problems, the first two are problems for which κ2(π) is of the
same size as κ1(π), the third problem is one that has 2, 1 or 0 solutions depending on the value of a certain
parameter appearing in the differential equation. For all the problems we set tol(ncomp1) = tol(ncomp2) = tol
as input. The number of the problem is the same as reported in [11].
Problem 6

ǫy′′ + xy′ = −ǫπ2 cos(πx) − πx sin(πx), y(−1) = −2, y(1) = 0.

This problem is a linear singularly perturbed problem. It has been chosen because, for 0 < ǫ≪ 1, the solution
has a turning point at x = 0. The exact solution is y(x) = cos(πx) + exp((x − 1)/

√
ǫ) + exp(−(x+ 1)/

√
ǫ).

Problem 19

ǫy′′ + exp(y)y′ − π

2
sin(

πx

2
) exp(2y) = 0, y(0) = 0, y(1) = 0.

This problem has a boundary layer at x = 0. We use as initial guess 0 for y and y′.
Problem 34

y′′ + λexp(y) = 0, y(0) = y(1) = 0.

This example is Bratu’s problem, which is considered by Shampine and Muir [28]. Setting λ∗ = 3.51383. . . it is
known that if 0 ≤ λ < λ∗ the problem has two solutions, for λ = λ∗ it has one solution and for λ > λ∗ there is
no solution. We use as initial guess 0 for y and y′.

6.1. Description of the results. In Figure 6.3 we report, for problems 6 and 19, the maximum mesh
used by the two codes with and without using the conditioning parameters in the mesh selection. For simplicity
we add in brackets to the name of the code the term ON or OFF that indicates if the conditioning parameters
have been used or not in the mesh selection (TWPBVPC(ON) means that the conditioning has been used)
. The problems were solved for different values of ǫ and tol = 10−4, 10−6, 10−8. In the diagrams, circles and
diamonds are related to TWPBVPC(ON) and TWPBVPLC(ON) respectively, asterisks and plus are related
to TWPBVPC(OFF) and TWPBVPLC(OFF) respectively (if the code was not able to find a solution the
corresponding symbol is not reported). We note that for these problems the conditioning parameters usually
allow us to obtain the solution with a smaller number of mesh points than when conditioning is not used. For
both problems TWPBVPC is able to obtain the solution when the other algorithm fails; TWPBVPLC has no
problem with the linear example, but for the nonlinear example the use of the conditioning allows us to compute
the solution for smaller values of ǫ.

Figure 6.4 plots the condition numbers κ(π) and κ1(π) for a range of values of ǫ, and Figure 6.5 plots
the value of σ(π) and the ratio κ1(π)/γ1(π). For these problems we note that κ1(π)/γ1(π) ≈ σ(π), and the
condition number κ(π) ≈ 2κ1(π) grows like

√
(1/ǫ) for problem 6 and like 1/ǫ for problem 19. The stiffness

ratio σ(π) has the same behavior (see 6.5).
The third example is taken from [28] where the authors solved the problem by using the MATLAB code

BVP4C with λ = 3.45 for which there are two solutions. For this problem a solution was computed in a per-
fectly satisfactory way and the condition number was estimated to be 3400. The same procedure was carried
out again with λ = 3.55 (for which there is no solution) and the MATLAB code produced what looked like
a perfectly satisfactory solution with a conditioning constant estimated to be 106. This very big conditioning
constant warns that the ‘solution’ may have no correct digits and this is indeed the case. Further experiments
are reported in [28] where it is emphasised that we need to look at the conditioning of a problem before accepting
a solution. The approach taken by Shampine and Muir is to warn the user of a very large condition number if
it exists. We note that the condition number computed in [28] is the infinity norm of a scaled matrix W1GW2

where the diagonal scaling matrices are related to the scaling factors used in the code to compute the residual.
We compute, instead, a condition number related to the problem and some important information computed
by the code is whether the estimates of the conditioning parameters stabilised or not. In Table 6.1 we report
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Fig. 6.4. Circle (TWPBVPC) and diamond (TWPBVPLC) are the values of κ1(π), asterisks (TWPBVPC) and plus (TW-
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the results obtained by the codes TWPBVPC and TWPBVPLC solving the problem with different values of λ
and tol = 10−3, tol = 10−6 and tol = 10−9, using an initial mesh with NS + 1 mesh points. To be sure that
the conditioning parameters obtained are stabilized we checked the value by running the code using a mesh
doubled with respect to the final one and where we do not perform any grid refinement (the final mesh has
NF + 1 points). In Table 6.1 we set the value of STABC equal to T if for the doubled mesh the value of κ(π)
differs by less than 5 % from the value computed with the mesh NF + 1, STABC is set to F otherwise.

Only for λ = 3.5, 3.51, 3.513 do the codes give an output flag with a value of 0 and STABC= T, for all the
other values we have that the flag is −1. But in no cases do we accept a computed ‘solution’ when none exist.
If we start the code with a starting mesh with a larger value of NS , we see that for both the codes the value of
STABC is T when λ <= 3.51383. For λ > 3.51383, however, the number of mesh points in the final mesh can
be very high compared with the one used for λ ≤ 3.51383. In particular TWPBVPC fails to give a solution for
λ ≥ 3.513832, TWPBVPLC fails for λ ≥ 3.513833, and for the solution given with λ = 3.513832 the STABC

flag is always F.

7. Conclusion. In this paper we have been concerned with the numerical solution of singularly perturbed
boundary value problems using variable grid integration methods. We have established a fundamental approach
to choosing our meshes, defining sequences of meshes so that the continuous and discrete problems have the
same conditioning. We do this by developing a monitor function which depends both on local accuracy and
conditioning. We have presented new techniques to compute the conditioning parameters and we have empha-
sised that the approach adopted is very similar for all three codes: TOM, TWPBVPC and TWPBVPLC. The
main difference is in how we choose the different values of a few heuristic parameters and we have explained in
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Fig. 6.5. Circle (TWPBVPC) and diamond (TWPBVPLC) are the values of σ(π), asterisks (TWPBVPC) and plus (TWP-

BVPLC) are the corresponding values of κ1(π)/γ1(π).

some detail how this is done. Our codes can be considerably more efficient than other codes, due to the fact
that we pay attention to the conditioning of the problem, and we have never accepted a ‘solution’ when none
exists. However, for some problems, our conditioning parameters may converge rather slowly and we intend to
examine this in detail in a future paper.
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Table 6.1

Conditioning parameters, flags, number of mesh points in the initial constant mesh and number of mesh points in the final
mesh for Problem 34

TWPBVPC(ON)
λ tol κ(π) κ1(π) γ1(π) σ(π) FL NS + 1 STABC N+1
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10−9 0.538E+02 0.368E+02 0.275E+02 0.137E+01 0 10 T 21

3.51 10−3 0.102E+03 0.701E+02 0.556E+02 0.128E+01 0 10 T 10
10−6 0.104E+03 0.712E+02 0.539E+02 0.134E+01 0 10 T 17
10−9 0.104E+03 0.712E+02 0.535E+02 0.135E+01 0 10 T 21

3.513 10−3 0.209E+03 0.144E+03 0.114E+03 0.126E+01 0 10 F 10
10−6 0.224E+03 0.154E+03 0.117E+03 0.132E+01 -1 10 T 19
10−9 0.224E+03 0.154E+03 0.115E+03 0.134E+01 -1 10 T 24

3.5138 10−3 0.105E+04 0.720E+03 0.549E+03 0.131E+01 -1 10 F 19
10−6 0.105E+04 0.720E+03 0.549E+03 0.131E+01 -1 10 F 19
10−9 0.105E+04 0.720E+03 0.549E+03 0.131E+01 -1 10 F 19
10−9 0.117E+04 0.801E+03 0.593E+03 0.135E+01 0 40 T 40

3.51383 10−3 0.214E+04 0.147E+04 0.112E+04 0.131E+01 -1 10 F 19
10−6 0.537E+04 0.369E+04 0.274E+04 0.135E+01 -1 10 F 37
10−9 0.537E+04 0.369E+04 0.274E+04 0.135E+01 -1 10 F 37
10−9 0.721E+04 0.495E+04 0.363E+04 0.136E+01 0 80 T 80

3.513831 10−3 0.225E+04 0.155E+04 0.118E+04 0.131E+01 -1 10 F 19
10−6 0.120E+05 0.823E+04 0.612E+04 0.135E+01 -1 10 F 37
10−9 0.120E+05 0.823E+04 0.612E+04 0.135E+01 -1 10 F 37
10−9 0.773E+04 0.531E+04 0.385E+04 0.138E+01 -1 80 T 10113

3.513832 10−3 *
10−6 *
10−9 *

TWPBVPLC(ON)
3.5 10−3 0.534D+02 0.366D+02 0.289D+02 0.130D+01 0 10 T 10

10−6 0.534D+02 0.366D+02 0.289D+02 0.130D+01 0 10 T 10
10−9 0.538D+02 0.368D+02 0.276D+02 0.137D+01 0 10 T 21

3.51 10−3 0.102D+03 0.701D+02 0.556D+02 0.128D+01 0 10 T 10
10−6 0.102D+03 0.701D+02 0.556D+02 0.128D+01 0 10 T 10
10−9 0.104D+03 0.712D+02 0.535D+02 0.135D+01 0 10 T 22

3.513 10−3 0.209D+03 0.144D+03 0.114D+03 0.126D+01 0 10 F 10
10−6 0.209D+03 0.144D+03 0.114D+03 0.126D+01 0 10 F 10
10−9 0.154D+03 0.116D+03 0.224D+03 0.133D+01 -1 10 T 21

3.5138 10−3 0.102D+04 0.700D+03 0.533D+03 0.131D+01 -1 10 F 19
10−6 0.102D+04 0.700D+03 0.533D+03 0.131D+01 -1 10 F 19
10−9 0.102D+04 0.700D+03 0.533D+03 0.131D+01 -1 10 F 19
10−9 0.117E+04 0.801E+03 0.593E+03 0.135E+01 0 40 T 40

3.51383 10−3 0.214D+04 0.147D+04 0.112D+04 0.131D+01 -1 10 F 19
10−6 0.537D+04 0.369D+04 0.274D+04 0.135D+01 -1 10 T 37
10−9 0.537D+04 0.369D+04 0.274D+04 0.135D+01 -1 10 T 37

3.513831 10−3 0.225D+04 0.155D+04 0.118D+04 0.131D+01 -1 10 F 19
10−6 0.354D+04 0.244D+04 0.176D+04 0.138D+01 -1 10 T 9217
10−9 0.354D+04 0.244D+04 0.176D+04 0.138D+01 -1 10 T 9217
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10−6 0.146D+05 0.101D+05 0.729D+04 0.138D+01 -1 10 F 9217
10−9 0.146D+05 0.101D+05 0.729D+04 0.138D+01 -1 10 F 9217
10−9 0.146D+05 0.101D+05 0.729D+04 0.138D+01 -1 20 F 9729
10−9 * * * * -1 40 * *

3.513833 10−3 *
10−6 *
10−9 *
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PRECONDITIONING OF IMPLICIT RUNGE-KUTTA METHODS∗
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Abstract. A major problem in obtaining an efficient implementation of fully implicit Runge-Kutta (IRK) methods applied
to systems of differential equations is to solve the underlying systems of nonlinear equations. Their solution is usually obtained by
application of modified Newton iterations with an approximate Jacobian matrix. The systems of linear equations of the modified
Newton method can actually be solved approximately with a preconditioned linear iterative method. In this article we present a truly
parallelizable preconditioner to the approximate Jacobian matrix. Its decomposition cost for a sequential or parallel implementation
can be made equivalent to the cost corresponding to the implicit Euler method. The application of the preconditioner to a vector
consists of three steps: two steps involve the solution of a linear system with the same block-diagonal matrix and one step involves
a matrix-vector product. The preconditioner is asymptotically correct for the Dahlquist test equation. Some free parameters of the
preconditioner can be determined in order to optimize certain properties of the preconditioned approximate Jacobian matrix.

Key words: GMRES, implicit Runge-Kutta methods, inexact modified Newton iterations, linear iterative methods, nonlinear
equations, ordinary differential equations, parallelism, preconditioning, stiffness

1. Introduction. We consider the numerical solution of implicit systems of differential equations by fully
implicit Runge-Kutta (IRK) methods. A major problem in obtaining an efficient implementation of IRK
methods lies in the numerical solution of the underlying systems of nonlinear equations. These nonlinear
equations are usually solved by modified Newton iterations. This requires at each iteration the solution of a
system of linear equations with an approximate Jacobian matrix. Instead of being solved exactly, these systems
of linear equations can actually be solved approximately and iteratively with the help of a preconditioner to
the approximate Jacobian matrix. In this paper we present a new preconditioner whose decomposition cost for
a sequential or parallel implementation can be made equivalent to the cost corresponding to the implicit Euler
method. Therefore, this preconditioner is of interest for both sequential and parallel computers. The application
of the preconditioner to a vector consists of three steps: two involving the solution of a linear system with the
same block-diagonal matrix and one involving a matrix-vector product. Each of these steps can be executed
in parallel with some communication in-between. Not only the decomposition of the block-diagonal matrix
can be executed in parallel, but of course also the solution of the linear systems corresponding to each block.
This makes this preconditioner truly parallel compared to the one proposed in [23, 25]. The preconditioner is
asymptotically correct for the Dahlquist test equation. Moreover, some free parameters of the preconditioner
can be determined in order to optimize certain properties of the preconditioned approximate Jacobian matrix
in relation, for example, with the convergence properties of the preconditioned linear iterative method. In
this paper we consider exclusively initial value problems for ordinary differential equations (ODEs). Parallel
algorithms for boundary value problems of ODEs can be found for example in [13, 27].

In section 2, the class of implicit systems of ODEs considered in this article is presented together with a
definition of the application of IRK methods to these equations. In section 3, we motivate the use of inexact
modified Newton iterations to solve the systems of nonlinear equations of IRK methods. A detailed presentation
of the new preconditioner is given in section 4. In section 5, the free parameters of the preconditioned Jacobian
matrix corresponding to the Dahlquist test equation are optimized with respect to various criteria. In section 6,
we present a numerical experiment for a reaction-diffusion problem, showing that the new preconditioner is
effective. A short conclusion is given in section 7.

2. The implicit system of ODEs and IRK methods. We consider an implicit system of ordinary
differential equations (ODEs)

d

dt
a(t, y) = f(t, y), (2.1)

∗This material is based upon work supported by the National Science Foundation under Grant No. 0654044.
†Department of Mathematics, 14 MacLean Hall, The University of Iowa, Iowa City, IA 52242-1419, USA. E-mail:

ljay@math.uiowa.edu and na.ljay@na-net.ornl.gov.
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where y = (y1, . . . , yn)T ∈ R
n. When a(t, y) ≡ y we obtain a standard system of ODEs d

dt
y = f(t, y). We

suppose that an initial value y0 at t0 is given and we assume that

ay(t, y) :=
∂

∂y
a(t, y) is invertible (2.2)

in a neighborhood of the solution of the initial value problem. Applying the chain rule to the left-hand side of
(2.1) and then inverting ay(t, y), we obtain an explicit system of ODEs

d

dt
y = a−1

y (t, y) (f(t, y)− at(t, y)) , (2.3)

where at(t, y) :=
∂
∂t
a(t, y). In this paper we consider IRK methods applied directly to (2.1), not to (2.3). This

has the advantage of not requiring the exact computation of at(t, y) and a
−1
y (t, y). It is assumed that the system

of ODEs presents some stiffness, thus justifying the application of implicit methods.
The direct application of IRK methods to the implicit system of ODEs (2.1) can be defined as follows [23]:
Definition 2.1. One step y0 7→ y1 from t0 to t0 + h of an s-stage implicit Runge-Kutta (IRK) method

applied to (2.1) with initial value y0 at t0 and stepsize h is defined implicitly by

a(t0 + cih, Yi)−
(
a(t0, y0) + h

s∑

j=1

aijf(t0 + cjh, Yj)
)
= 0 for i = 1, . . . , s, (2.4a)

a(t0 + h, y1)−
(
a(t0, y0) + h

s∑

j=1

bjf(t0 + cjh, Yj)
)
= 0. (2.4b)

The RK coefficients are given by (bj)j=1,...,s, (cj)j=1,...,s, and A := (aij)i,j=1,...,s. The equations (2.4a) define
a nonlinear system of dimension s · n to be solved for the s internal stages Yi for i = 1, . . . , s. The numerical
approximation y1 at t0 + h is then given by the solution of the n-dimensional implicit system (2.4b). In this
paper we concentrate the discussion on the solution of the system of nonlinear equations (2.4a). The value y1
can then be obtained by standard application of modified Newton iterations to (2.4b) when a(t, y) is nonlinear.
It can also be obtained explicitly in certain situations. For example when the IRK method is stiffly accurate,
i. e., when asj = bj for j = 1, . . . , s, this value is directly given by y1 = Ys.

3. Modified Newton iterations for the internal stages. The system of nonlinear equations (2.4a)
for the s internal stages is usually solved by modified Newton iterations with approximate/modified Jacobian
matrix

L := Is ⊗M − hA⊗ J where M ≈ ay(t0, y0), J ≈ fy(t0, y0). (3.1)

Here, the symbol ⊗ denotes the matrix tensor product and Is is the identity matrix in R
s. Modified Newton

iterations read

L∆Y k = −F (Y k), Y k+1 = Y k +∆Y k, k = 0, 1, 2, . . . , (3.2)

where Y := (Y T
1 , . . . , Y

T
s )T is a vector collecting the s internal stages and F (Y ) corresponds to the left-hand

side of (2.4a). Hence, each modified Newton iteration requires the solution of an (s · n)-dimensional system of
linear equations. A direct decomposition of the approximate Jacobian matrix L is generally inefficient when
s ≥ 2. However, the computational cost of its decomposition can be greatly reduced by exploiting its special
structure. For example by diagonalizing the RK coefficient matrix A

SAS−1 = Λ = diag(λ1, . . . , λs),

the approximate Jacobian matrix L can be transformed into a block-diagonal matrix

(S ⊗ In)L(S
−1 ⊗ In) = Is ⊗M − hΛ⊗ J =




M − hλ1J O
. . .

O M − hλsJ


 . (3.3)
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This kind of transformation can dramatically reduce the number of arithmetic operations when decomposing
L and it allows for parallelism. Unfortunately, all eigenvalues (except one when s is odd) of most standard
IRK methods, such as Radau IIA, Gauss, and Lobatto IIIC methods, arise as conjugate complex eigenpairs
with nonzero imaginary parts. This impairs parallelism and significantly increases the decomposition cost
of the transformed approximate Jacobian matrix (3.3) compared to the situation where all eigenvalues are
real [20, Section IV.8]. Moreover, if several distinct IRK methods are used in a partitioned/additive way, such
as for SPARK methods [22, 24, 32], this diagonalization technique cannot be applied since distinct RK matrices
have in general distinct eigenvectors. Ideally, the decomposition cost of the approximate Jacobian matrix for
s-stage IRK methods should be reduced to at most s independent decompositions of matrices of dimension n.

Various iteration schemes to solve the nonlinear equations of IRK methods have been suggested [9, 10, 15,
16, 17, 18, 21, 33]. The schemes of [9, 21, 33] can be interpreted as the direct application of modified Newton
iterations with a modified Jacobian. Actually it could certainly be valuable to use such modified Jacobians
as preconditioners to the system of linear equations of the modified Newton method (3.2) with approximate
Jacobian matrix (3.1). The schemes of [10, 15, 16, 17, 18] do not have the same interpretation. They have an
inherent sequential structure and can be interpreted as nonlinear Gauss-Seidel iterations. All aforementioned
schemes require the solution of a sequence of s linear systems of dimension n and are therefore not truly fully
parallelizable compared to the iterations developed in this paper. The various coefficients introduced in these
ad hoc iterations are generally tuned for the numerical IRK solution y1 (2.4) of the Dahlquist test equation

y′ = λy, Re(λ) ≤ 0. (3.4)

Unfortunately, when Re(λ) → −∞, none of the aforementioned methods is asymptotically correct for the internal
stages Yi. In contrast, the preconditioner introduced in this paper is asymptotically correct by construction, as
is the one presented in [23, 25].

To reduce the amount of computations, instead of solving at each modified Newton iteration (3.2) the
linear system exactly, we can solve it approximately by application of a preconditioned linear iterative method,
as was already proposed in [23, 25]. Hence, we obtain a sequence of iterates Ỹ k with a residual error rk :=

L∆Ỹ k +F (Ỹ k) after each iteration. Theoretical and practical conditions to ensure convergence of such inexact
modified Newton iterations to the solution of the nonlinear system of equations (2.4a) are given in [23] in a
general framework. The use of linear iterative methods for the solution of implicit integration methods was also
considered in [2, 8, 12], with an emphasis on preconditioning in [3]. Inexact Newton-type methods are generally
considered to be amongst the most efficient ways to solve nonlinear system of equations [11, 29].

In this paper we present a preconditioner to the approximate Jacobian matrix (3.1) requiring s independent
decompositions of matrices of dimension n. Each matrix to be decomposed depends on a free and distinct
parameter. If these parameters are all chosen to be equal, only one matrix of dimension n needs to be decom-
posed. This is of high interest when using serial computers since the decomposition cost is thus really minimal
and equivalent to the decomposition cost corresponding to the implicit Euler method. In fact a major interest
of this new preconditioner is that not only matrix decompositions can be executed in parallel, but also the
solution of the systems of linear equations. This makes this preconditioner truly parallel compared to the one
developed in [23, 25] which entails the sequential solution of systems of linear equations and which is based on
the W-transformation of the RK coefficients and an approximate block-LU decomposition.

4. Preconditioning the linear systems. For the sake of generality we consider a linear transformation
T ⊗ I of the approximate Jacobian matrix L in (3.1). At each modified Newton iteration we obtain a system of
linear equations

Kx = b (4.1a)

with matrix

K = (T ⊗ I)L(T−1 ⊗ I) = I ⊗M − hTAT−1 ⊗ J. (4.1b)

The matrix T adds some potential additional freedom. To solve the linear system (4.1) we consider the appli-
cation of linear iterative methods, such as GMRES [14, 19, 26, 30, 31], with a preconditioner Q ≈ K−1. We
take Q of the form

Q := H−1GH−1,
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where

H := Is ⊗M − hΓ⊗ J, G := Is ⊗M − hΩ⊗ J, (4.2)

with coefficients matrices Γ and Ω still to be determined. We choose the coefficients matrix Γ to be diagonal

Γ := diag (γ1, γ2, . . . , γs)

so that H is block-diagonal

H =




H1 O
H2

. . .

O Hs


 (4.3)

with blocks given by

Hi :=M − hγiJ for i = 1, . . . , s.

The matricesHi are independent, hence they can be decomposed in parallel. Solving a linear system with matrix
H can also be done in parallel since it is block-diagonal. This is the main advantage of this preconditioner
compared to the one presented in [23, 25]. Assuming at least s processors on a parallel computer, the local cost
on the ith processor of computing the matrix-vector product QKv consists essentially of:

• one decomposition of matrix Hi;
• solving two linear systems with the decomposed matrix Hi;
• two matrix-vector products with matrix M ;
• two matrix-vector products with matrix J ;
• some communication with other processors according to the nonzero coefficients of the ith row of
matrices TAT−1 and Ω.

The coefficients of matrices Γ and Ω remain to be fixed to some values. Assuming the coefficients γi
for i = 1, . . . , s to be given, it is natural to determine the coefficients Ωij for i, j = 1, . . . , s such that the
preconditioner Q is asymptotically correct when considering the Dahlquist test equation (3.4). Denoting z := hλ
we obtain

Q(z) = H−1(z)G(z)H−1(z), K(z) = T (Is − zA)T−1 (4.4a)

where

H(z) = Is − zΓ, G(z) = Is − zΩ. (4.4b)

Defining B(z) := Q(z)K(z) we have

B(z) = H−1(z)G(z)H−1(z)T (Is − zA)T−1 (4.5)

At z = 0 we have B(0) = Is. We determine Ω such that

B(z) −→ Is for |z| −→ ∞ (4.6)

to obtain an asymptotically correct result in one iteration in this case. From (4.5) we easily obtain the following
result.

Theorem 4.1. If the RK matrix A is invertible and the coefficients γi for i = 1, . . . , s satisfy γi > 0 then
condition (4.6) holds if and only if

Ω = ΓTA−1T−1Γ. (4.7)

When the RK matrix A is not invertible, an expression similar to (4.7) can be obtained for certain classes of
IRK methods such as the Lobatto IIIA and Lobatto IIIB methods.
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From now on we assume for simplicity that the matrix A of RK coefficients is invertible. The coefficients
γi for i = 1, . . . , s remain free, they are only required to satisfy γi > 0 which is a natural assumption to ensure
the invertibility of the matrices Hi. When all these coefficients are equal, only one matrix decomposition of
dimension n is needed. This is quite advantageous on a serial computer compared to some other implementations
of implicit Runge-Kutta methods [20, 21]. This new approach can also be extended to SPARK methods [22, 32]
applied to differential-algebraic equations [24].

Example 4.2. Consider the 2-stage Radau IIA method whose RK matrix is given by

A =

(
5/12 −1/12
3/4 1/4

)
. (4.8)

Assuming T = I and Γ = γI, we obtain Ω = γ2A−1 and

B(z) =
1

(1− γz)2

(
1− (5/12 + 3γ2/2)z + γ2z2 (1/12− γ2/2)z

(9γ2/2− 3/4)z 1− (1/4 + 5γ2/2)z + γ2z2

)
.

Ideally we would like B(z) to be as close as possible to the identity matrix. By taking γ := 1/
√
6 ≈ 0.408 the

matrix B(z) becomes diagonal with double eigenvalue

λ(z) = 1 + z

√
2/3− 2/3

(1− z/
√
6)2

.

Hence, the condition number of B(z) satisfies κ(B(z)) = 1 and is therefore minimal. This choice of γ is not
only natural, but also optimal in other ways which will be stated precisely in the next section. Interestingly the
value 1/

√
6 also appears in [28] for the same 2-stage Radau IIA method, but for a different type of iterations.

5. Optimal choices of coefficients γi. For simplicity we assume the matrix A of RK coefficients to be
invertible. The coefficients Ωij for i, j = 1, . . . , s are given by (4.7). The coefficients γi > 0 for i = 1, . . . , s
remain to be determined. We consider the preconditioned matrix B(z) := Q(z)K(z) given in (4.5) corresponding
to the Dahlquist test equation (3.4). This matrix B(z) depends on the coefficients γi of Γ. Ideally we would
like to have B(z) = Is and this is of course generally not possible. Hence, we must define some criterion to
determine the remaining coefficients γi. Here we present a few criteria based on the solution of optimization
problems

min
γ1>0,...,γs>0

φ(γ1, . . . , γs) (5.1)

for diverse functions φ in relation with the convergence properties of preconditioned linear iterative methods.
A first choice for φ is given by

φ∞(γ1, . . . , γs) := max
Re(z)≤0

(
max

i=1,...,s
|λi(B(z))− 1|

)
(5.2)

where λi(B(z)) for i = 1, . . . , s are the eigenvalues of matrix B(z). The goal is to obtain a good clusterization of
the eigenvalues of the preconditioned approximate Jacobian to the value 1 to ensure a rapid convergence of the
preconditioned linear iterative method. This is justified since the convergence of most linear iterative methods,
such as GMRES [30, 31], is dictated by the eigenspectrum of the preconditioned matrix [7, 19, 26, 30]. We have

φ∞(γ1, . . . , γs) = max
i=1,...,s

(
max

Re(z)≤0
|λi(B(z))− 1|

)
= max

i=1,...,s

(
max

Re(z)=0
|λi(B(z))− 1|

)

from the maximum principle. Even for T fixed, finding a solution to the global optimization problem (5.1)-(5.2)
is certainly difficult and remains an open question. Nevertheless, for example for the 2-stage Radau IIA (4.8)
and T = I we have obtained numerically γ1,min ≈ 0.25, γ2,min ≈ 0.66 and φ∞,min ≈ 0.04 in (5.2). In the
situation where we assume that all parameters γi are equal to a unique value γ, i. e., Γ = γ · Is, the eigenvalues
λi(B(z)) are independent of T since, see again (4.7),

B(z) =
γ2

(1− γz)2
T (Is − zA−1)(Is − zA)T−1,
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and we obtain

|λi(B(z))− 1| =
∣∣∣∣

γz

(1 − γz)2

∣∣∣∣

∣∣∣∣∣
µi

γ

(
1− γ

µi

)2
∣∣∣∣∣

where µi for i = 1, . . . , s are the eigenvalues of A. The maximum value of the term
∣∣γz/(1− γz)2

∣∣ for Re(z) ≤ 0
is independent of γ and is equal to 1/2 (value taken at z = ±i/γ). Hence, we need to determine γ as the optimal
solution of

min
γ>0

(
max

i=1,...,s
fi(γ)

)
(5.3a)

where

fi(γ) :=

∣∣∣∣∣
µi

γ

(
1− γ

µi

)2
∣∣∣∣∣ =

|µi|
γ

+
γ

|µi|
− 2 cos(θi) (5.3b)

with θi := arg(µi). The minimum value of fi(γ) holds at γ = |µi|. Interestingly a similar derivation was made
in the context of blended implicit methods [4, 5, 6].

Theorem 5.1. The solution γmin of the optimization problem (5.3) satisfies either γmin ∈ {|µ1|, . . . , |µs|}
or lies at the intersection of two curves fi, i. e., fj(γmin) = fk(γmin) for two distinct indices j and k.

Proof. The functions fi(γ) are convex and satisfy

lim
γ→0+

fi(γ) = +∞, lim
γ→+∞

fi(γ) = +∞.

Hence, the result follows.
For s = 2 and µ1 = µ2 we obtain γmin = |µ1|. For example, for the 2-stage Radau IIA method (4.8) we have
γmin = 1/

√
6 and φ∞,min = 1−

√
6/3 ≈ 0.184 in (5.2).

A second choice for φ similar to (5.2) is given by

φ1(γ1, . . . , γs) := max
Re(z)≤0

(
s∑

i=1

|λi(B(z))− 1|
)
. (5.4)

Finding a solution to the global optimization problem (5.1)-(5.4) is also an open question. If we assume in
addition that all parameters γi are equal to a unique value γ, we obtain

φ1(γ, . . . , γ) = max
Re(z)≤0

∣∣∣∣
γz

(1− γz)2

∣∣∣∣
s∑

i=1

( |µi|
γ

+
γ

|µi|
− 2 cos(θi)

)
.

Hence, we need to determine γ as the optimal solution of

min
γ>0

f(γ) (5.5a)

where

f(γ) :=
1

γ

s∑

i=1

|µi|+ γ

s∑

i=1

1

|µi|
− 2

s∑

i=1

cos(θi). (5.5b)

The minimum value of this optimization problem holds at

γmin =

√ ∑s
i=1 |µi|∑s

i=1 1/|µi|
.

For s = 2 and µ1 = µ2 we obtain again γmin = |µ1|. For example, for the 2-stage Radau IIA method (4.8) we
obtain again γmin = 1/

√
6.
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A third natural choice for φ in (5.1) is given by

φF (γ1, . . . , γs) := max
Re(z)≤0

‖B(z)− Is‖F (5.6)

where ‖ · ‖F denotes the Frobenius norm. The goal here is to have the preconditioned approximate Jacobian as
close to the identity matrix as possible. From the maximum principle we have

max
Re(z)≤0

‖B(z)− Is‖F = max
Re(z)=0

‖B(z)− Is‖F .

Finding a solution to the global optimization problem (5.1)-(5.6) is also an open question. Nevertheless, for
example for the 2-stage Radau IIA (4.8) and T = I we have obtained numerically γ1,min ≈ 0.32, γ2,min ≈ 0.60
and φF,min ≈ 0.16 in (5.6). Assuming Γ = γ · Is, we have

‖B(z)− Is‖F =

∣∣∣∣
γz

(1 − γz)2

∣∣∣∣ ‖γA
−1 + γ−1A+ 2Is‖F .

Hence, we need to determine γ as the optimal solution of

min
γ>0

g(γ) (5.7a)

where

g(γ) := ‖γA−1 + γ−1A+ 2Is‖2F . (5.7b)

The solution γmin of the optimization problem (5.7) must be one of the roots of g′(γ). For example, for the
2-stage Radau IIA method (4.8) we obtain

g(γ) = 29γ2 + 16γ +
11

2
+

8

3γ
+

29

36γ2
.

We have

g′(γ) =
58

γ3

(
γ − 1√

6

)(
γ +

1√
6

)(
γ2 +

8

29
γ +

1

6

)
and g′′(γ) = 58 +

16

3γ3
+

29

6γ4
.

Therefore, the minimum of g(γ) is once again attained at γmin = 1/
√
6.

6. A numerical experiment. We consider a reaction-diffusion problem, the Brusselator system in one
spatial variable, see [20],

∂u

∂t
= A+ u2v − (B + 1)u+ α

∂2u

∂x2
,

∂v

∂t
= Bu− u2v + α

∂2v

∂x2

where x ∈ [0, 1] and α ≥ 0, A, and B are constant parameters. The boundary conditions for u and v are
u(0, t) = 1 = u(1, t), v(0, t) = 3 = v(1, t), u(x, 0) = 1 + sin(2πx), v(x, 0) = 3. We apply the method of lines by
discretizing the diffusion terms using finite differences on a grid of N points xi = i/(N + 1) for i = 1, . . . , N ,
∆x = 1/(N + 1). We consider the value N = 500 and parameters A = 1, B = 3, α = 0.02. We obtain a system
of 2N = 1000 differential equations

dui
dt

= 1 + u2i vi − 4ui +
0.02

(∆x)2
(ui−1 − 2ui + ui+1) , (6.1a)

∂vi
∂t

= 3ui − u2i vi +
0.02

(∆x)2
(vi−1 − 2vi + vi+1) (6.1b)

where u0(t) = 1 = uN+1(t), v0(t) = 3 = vN+1(t), ui(0) = 1 + sin(2πxi), and vi(0) = 3 for i = 1, . . . , N . We
consider the time interval [t0, tend] = [0, 10] and the s = 3-stage Radau IIA method. The eigenvalues of the
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Jacobian matrix J have a wide spectrum. The largest negative eigenvalue of J is close to −20000, so the system
is stiff. By ordering the variables as y = (u1, v1, u2, v2, u3, v3, . . .), matrices I−γhJ have a bandwidth of 5. They
are decomposed using the routine DGBTRF of LAPACK for banded matrices [1]. We have taken the absolute and
relative error tolerances for each component equal to a certain error tolerance TOL. We give some statistics
obtained with the code SPARK3 on this problem in Table 6.1. The TOL-norm ‖ · ‖tol is a scaled 2-norm which
depends on absolute and relative error tolerances for each component, ATOLi and RTOLi respectively, to be
specified by the user

‖y‖tol :=

√√√√ 1

n

n∑

i=1

(
yi
Di

)2

, Di := ATOLi +RTOLi|yi|. (6.2)

We consider the preconditioner with T = I and γi = γ for i = 1, . . . , s where γ = |µ1| ≈ 0.246232757526440536
both for the sequential and parallel versions in order to obtain identical results but different timings in order
to compare these versions. In the parallel version we decompose the matrix M − γhJ on each processor. For
the results in Table 6.1, the preconditioner is applied to the system of linear equations only once per modified
Newton iteration and we have set ATOLi = RTOLi := TOL.

Table 6.1

Results for the 3-stage Radau IIA method on the Brusselator equations (6.1) with 1 preconditioner solve per modified Newton
iteration, ATOLi = RTOLi := TOL, T = I, γ = |µ1| ≈ 0.246232757526440536

Error tolerance TOL 10−3 10−6 10−9

Measured error in TOL-norm ‖ · ‖tol 0.59 0.39 0.19
CPU-time [s] - sequential 1.19 2.38 6.35
CPU-time [s] - parallel 0.70 2.02 4.12
number of steps 24 49 190
number of rejected steps 0 5 1
number of function evaluations 243 531 1524
number of modified Newton iterations 75 176 508
number of J evaluations 6 1 1
number of P decompositions 21 29 28
number of P solves 81 177 508
number of matrix-vector products 0 0 0

Table 6.2

Results for the 3-stage Radau IIA method on the Brusselator equations (6.1) with 2 preconditioner solves per modified Newton
iteration, ATOLi = RTOLi := TOL, T = I, γ = |µ1| ≈ 0.246232757526440536.

Error tolerance TOL 10−3 10−6 10−9

Measured error in TOL-norm ‖ · ‖tol 0.11 0.81 0.11
CPU-time [s] - sequential 1.44 4.50 11.01
CPU-time [s] - parallel 0.82 2.60 6.61
number of steps 18 50 187
number of rejected steps 0 3 1
number of function evaluations 183 606 1533
number of modified Newton iterations 58 202 511
number of J evaluations 3 1 1
number of P decompositions 18 32 24
number of P solves 117 401 1019
number of matrix-vector products 56 199 508

For the results in Table 6.2 we consider the application of one preconditioned Richardson iteration as
preconditioned linear iterative solver, corresponding to two applications of the preconditioner per modified
Newton iteration. We do not observe a significant gain compared to Table 6.1. This demonstrates numerically
the quality of the preconditioner.
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The numerical experiments discussed in this section were made on a SGI Power Challenge using 3 processors
for the parallel version.

7. Conclusion. We have considered the application of IRK methods to implicit systems of ODEs. The
major difficulty and computational bottleneck for an efficient implementation of these numerical integration
methods is to solve the resulting nonlinear systems of equations. Linear systems of the modified Newton method
can be solved approximately with a preconditioned linear iterative method. In this paper we have developed
a preconditioner which is asymptotically exact for stiff systems. The preconditioner requires m independent
matrices of the typeM−γihJ (γi > 0, i = 1, . . . ,m) to be decomposed. The integer parameterm of the number
of decompositions satisfies 1 ≤ m ≤ s and is free, m = 1 being particularly advantageous for serial computers.
Not only the decompositions parts of the preconditioner are parallelizable, but the solution parts involved when
applying the preconditioner are also parallelizable, making the preconditioner truly parallel. This preconditioner
has been implemented in the code SPARK3 and is shown to be effective on a problem with diffusion.
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PARALLEL NUMERICAL SOLUTION OF ABD AND BABD LINEAR SYSTEMS ARISING

FROM BVPS∗

PIERLUIGI AMODIO†AND GIUSEPPE ROMANAZZI‡

Abstract. We consider linear systems with coefficient matrices having the ABD or the Bordered ABD (BABD) structures.
These systems arise in the discretization of BVPs for ordinary and partial differential equations with separated and non-separated
boundary conditions, respectively. We describe the cyclic reduction algorithm for the solution of BABD linear systems which allowed
us to write the codes BABDCR and GBABDCR (the latter code is suitable for matrices with a more generic BABD structure).
A comparison of the GBABDCR code with respect to the well-known sequential code COLROW on ABD linear systems is then
analysed. We report some tests on an OpenMP Fortran 90 parallel version of the GBABDCR code and finally we discuss about
the use of GBABDCR inside the BVP code BVP SOLVER.

Key words: boundary value problems, ABD and BABD linear systems, parallel solution

1. Introduction. The discretization of Boundary Vale Problems for ordinary and partial differential equa-
tions leads often to linear systems with Almost Block Diagonal (ABD) structure in case of separated boundary
conditions, and Bordered ABD structure (BABD) in case of non-separated conditions (see [3, 18, 24]).

BABD linear systems

Ax = f (1.1)

have the coefficient matrix A with the following sparsity structure

A =




Ba Bb

V1

V2

V3

V4

. . .

. . .

VN




. (1.2)

We recognize the boundary blocks Ba and Bb on the first row, and the block rows Vi which have some columns
that overlap the blocks on the adjacent rows. For this reason, each block Vi can be represented as

Vi =
(
Si−1 Ti Ri

)
, (1.3)

where the columns of Si−1 and Ri overlap columns of Vi−1 and Vi+1, respectively. Also V1 and VN have the
same structure in (1.3): the first columns of V1 (i. e., S0) are overlapped with those of Ba while the last
columns of VN (i. e., RN ) are overlapped with those of Bb, see (1.2). We set the size of each block Vi equal to
ni × (mi−1 + ki +mi), where mi is the number of overlapped columns between the blocks Vi and Vi+1, and ki

∗Work developed within the project “Numerical methods and software for differential equations”
†Dipartimento di Matematica, Università di Bari, Bari, Italy (amodio@dm.uniba.it)
‡Departamento de Matemática, Universidade de Coimbra, Coimbra, Portugal (roman@mat.uc.pt)
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is the number of the non-overlapped columns of Vi; the size of the boundary blocks Ba and Bb is n0 ×m0 and
n0 ×mN , respectively. Since A is a square matrix we have

N∑

i=0

ni = m0 +

N∑

i=1

(mi + ki); (1.4)

it is also supposed that N is much larger with respect to each ni, mi and ki.
The ABD structure differs from the BABD structure for the presence of boundary blocks that have some

null rows (the non-null rows of Ba correspond to null rows of Bb and viceversa). In this case it is preferable
to refer to Ba and Bb as blocks of size na ×m0 and nb ×mN , respectively. We impose then that no rows are
overlapped between Ba and Bb and we set n0 = na + nb in (1.4). Moreover, Bb is located after VN as the last
block row so that the coefficient matrix can be represented as

A =




Ba

V1

V2

V3

V4

. . .

. . .

VN

Bb




. (1.5)

We note that ABD linear systems can be also solved by BABD solvers; this implies an higher computational
cost and fill-in, see [24]. Conversely, a doubling of the size of each block is required for solving a BABD linear
system using an ABD solver.

Since ABD linear systems are easier to solve than BABD systems, historically the former problem has
received much more attention and several codes have been proposed. We quote the package SOLVEBLOK [14]
that uses Gaussian elimination with partial pivoting to ensure stability and requires fill-in. On the contrary,
the packages COLROW and ARCECO in [15] are based on a modified version of Varah’s alternate row and
column stable elimination [27] which exploits the structure of the ABD matrices to avoid fill-in. In particular,
COLROW solves ABD linear systems with blocks Vi of constant size n× (2m+ k), so that we have n = m+ k
and ni = n, mi = m and ki = k for each i = 1, . . . , N .

Most nonlinear BVP packages employ ABD packages. The BVP code COLSYS [9] uses SOLVEBLOK to
solve ABD linear systems arising from the use of orthogonal spline collocation (OSC) at Gauss points with
B-spline bases. COLNEW [11] uses a modified version of SOLVEBLOK to solve ABD linear systems arising
from the application of OSC at Gauss points with monomial spline bases. Both the Mono Implicit Runge Kutta
(MIRK) code with defect control MIRKDC [17] and its new implementation BVP SOLVER [28] (the latter
solves a wider class of BVPs with respect the former) use COLROW as solver for the obtained ABD systems.
Modified versions of COLROW are used in the deferred correction code TWPBVP [13]. Other versions of
COLROW are used in COLMOD [26], a modified version of COLNEW, and in ACDC [12], that uses automatic
continuation and OSC at Lobatto points to solve singularly perturbed BVODEs.

For what concerns the numerical solution of BABD systems (1.1)-(1.2), a common idea is to double the
size of the system (that is the number of unknowns) in order to obtain an equivalent ABD system that can be
solved with ABD solvers. Of course, this involves a high computational cost. In fact, since the computational
cost of a general ABD solver is cubic with the dimension of the blocks, then its cost for solving a BABD linear
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system is eight times larger with respect to the solution of an ABD linear system with blocks of the same size
as the given BABD system.

The first available package for solving BABD systems is RSCALE ; it is a shared memory parallel code
used inside PMIRKDC [21], a parallel version of MIRKDC. In [7, 8] the cyclic reduction algorithm is applied
to the BABD matrix (1.2) with a simplified structure: the blocks Si and Ri are square of dimension m and
the blocks Ti are null. This structure is also used by RSCALE. The coefficient matrix considered is then block
lower bidiagonal with an additional block in the right-upper corner. The sequential code BABDCR, introduced
in [8] and available at the url

http://www.netlib.org/toms/859.
solves this kind of linear systems. Moreover, in [4] we have generalized the code BABDCR to solve BABD
linear systems with the general structure (1.1)-(1.2) where each block Vi have size n× (2m+ k), with k > 0 and
n = m+ k. This latter code is called GBABDCR and is available on the net at the url

http://www.pitagora.dm.uniba.it/∼romanazzi/babdcr.html.
In [4, 5, 8, 24] BABDCR and GBABDCR have been compared to RSCALE and COLROW for solving

BABD systems. The theoretical and numerical results show that COLROW has a computational cost which is
till 3 times larger than GBABDCR. This means that each code for BVPs with separated boundary conditions
(for example, BVP SOLVER) using COLROW to solve the associated ABD linear systems, may be generalized
to the solution of BVPs with non-separated boundary conditions by just replacing (the calls to) the linear
solver COLROW with GBABDCR. Moreover, BABDCR performs better (resulting faster and more precise)
and has the same degree of parallelism with respect to RSCALE. Therefore, the efficiency of PMIRKDC can
be improved by replacing RSCALE with a parallel version of BABDCR.

This work originates from the observation that nowadays personal computers have motherboards with more
CPUs (or core-processors), and this permits to overcome the physical limitations (such as speed and memory)
of a single core-processor. Moreover these multi-core processors are easily accessible, and we can use them to
speed-up the execution of each numerical code if the underlying algorithm is parallelizable. In our case, since
cyclic reduction has an obvious parallel implementation, we can speed up the solution of ABD linear systems
by implementing GBABDCR on such parallel architectures.

We propose, in fact, a shared memory implementation of GBABDCR and compare it with COLROW (that
is not parallelizable) on multi-core computers. We believe that the replacement of COLROW in the existing
(previously cited) BVODE packages with the parallel implementation of GBABDCR, can lead to a twofold
advantage: the reduction of the computational cost when the code is run on multi-core processors, and the
solution with no extra cost of BVODEs with non-separated boundary conditions.

The paper is organized as follows: in the next section we briefly sketch the cyclic reduction algorithm applied
to general BABD linear systems, in Section 3 we explain the strategy used to parallelize the code on shared
and distributed memory computers, and finally in the last section we compare the shared memory parallel
implementation of GBABDCR with COLROW in the solution of ABD systems and we discuss the performance
of BVP SOLVER when GBABDCR replaces COLROW.

2. The cyclic reduction algorithm. Let us rewrite the coefficient matrix (1.2)-(1.3) as

A =




Ba Bb

S0 T1 R1

S1 T2 R2

S2 T3 R3

. . .

SN−1 TN RN




. (2.1)

In accordance with the structure of (2.1) we define the right hand side f of the linear system (1.1) as f =(
fT
0 fT

1 . . . fT
N

)T
where each fi is of length ni, and the solution vector

x =
(
zT0 wT

1 zT1 . . . wT
N−1 zTN

)T
,

where zi and wi are of length mi and ki, respectively.
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We solve the system (1.1) using a block cyclic reduction algorithm, that is, a recursive approach that reduces
the original linear system to subsystems with a smaller number of unknowns. In this process the first and the
last unknowns, z0 and zN , are always among the unknowns of the successive reduced systems; moreover, the
first row containing the boundary blocks is unchanged in the reduction process. The boundary blocks Ba and
Bb are then maintained in the first row of each reduction step.

Following [4], we consider a reduction step to eliminate, locally in each block Vi, the odd unknowns wi of
the solution vector x. We observe that, since A is a non-singular matrix, the blocks Ti of size ni × ki, have full
rank ki because they are not overlapped by adjacent Vi blocks. We may then compute the factorization:

P̃iTi =

(
L̃i

G̃i

)
Ũi =

(
I

F̃i I

)(
L̃iŨi

O

)
(2.2)

where P̃i is a suitable permutation matrix, L̃i and Ũi are square matrices, and F̃i = G̃iL̃
−1
i .

Multiplying Vi on the left by P̃i and the inverse of the lower triangular matrix in the last term of (2.2) we
obtain

(
I

−F̃i I

)
P̃i

(
Si−1 Ti Ri

)
=

(
S̃i−1 L̃iŨi R̃i

Ŝi−1 R̂i

)
. (2.3)

Analogously, we perform the same operations on the right-hand side fi, thus obtaining corresponding vectors
f̃i and f̂i for the right side. The row with the boundary blocks and the second row of (2.3) (for each i = 1, . . . , N)
give the linear system




Ba Bb

Ŝ0 R̂1

Ŝ1 R̂2

. . .
. . .

ŜN−1 R̂N







z0
z1
z2
...
zN




=




f0
f̂1
f̂2
...

f̂N



. (2.4)

which has dimension equal to
N∑

i=0

mi = n0 +
N∑

i=1

(ni − ki) and no longer depends on the unknowns wi. These

unknowns will be computed in the last step of the back-substitution phase (when all the zi will be known), by
using the first row of (2.3):

L̃iŨiwi = f̃i − S̃i−1zi−1 − R̃izi.

Factorization (2.3) does not require additional memory since F̃i may be saved together with Li and Ui in place
of Ti. Therefore, this first reduction should be considered as a (completely parallelizable) initial step to be
applied to ABD or BABD matrices in order to simplify their structure.

Returning to the solution of (1.1), system (2.4) may be further on reduced by considering the cyclic reduction

algorithm in [7, 8] (even if blocks Ŝi and R̂i are not square). At first we compute the LU factorization of the
(ni − ki + ni+1 − ki+1)×mi matrix (of rank mi)

Pi

(
R̂i

Ŝi

)
=

(
Li

Gi

)
Ui =

(
I
Fi I

)(
LiUi

O

)

that, applied to the block rows of index i and i+ 1 in (2.4), gives

(
I

−Fi I

)
Pi

(
Ŝi−1 R̂i

Ŝi R̂i+1

)
=

(
S̄i−1 LiUi R̄i

S′
i−1 R′

i

)
. (2.5)

The second row of the right hand-side of (2.5) is independent of zi and allows to obtain, for i = 1, 3, 5, . . . , a
reduced system similar to (2.4) but with ⌈N/2⌉+1 block rows and unknowns zi with even indices. Conversely,
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the first row in (2.5) may be used to compute zi from zi−1 and zi+1. Factorization (2.5) requires additional
memory for the fill-in blocks Fi.

Iterating this last step on the successively reduced systems we obtain, after ⌈log2N⌉ steps, a 2 × 2 block
(full) linear system

(
Ba Bb

S∗
0 R∗

N

)(
z0
zN

)
=

(
f∗
0

f∗
N

)
. (2.6)

The factorization and the solution of (2.6) gives the first and the last unknowns of the vector x. Successively,
a back substitution phase allows us to compute, in reverse order, all the other unknowns.

If m and k are constant (with n = m+ k), the computational cost of this algorithm is

(143 m
3 + 4m2k + 2mk2 + 2

3k
3)N. (2.7)

If k = 0 (all columns are overlapped), we have from (2.7) that the cost is 14
3 m

3N as for the BABDCR algo-
rithm, see [8]. The additional memory requirement (fill-in) is always m2N (it does not depend on k) since the
factorization of the blocks Ti in (2.2) does not require fill-in.

The typical dimensions of the BABD linear system arising from BVPs consists of small dimensions k,m of
each row block, with respect to a large number of row blocks N .

In order to make a fair comparison, the computational cost of COLROW is

(53m
3 + 4m2k + 3mk2 + 2

3k
3 +mnanb − (2m+ k)kna)N, (2.8)

where na and nb, with na + nb = m, denote the number of rows of the initial and of the final boundary block,
respectively; remember that COLROW solves only ABD linear systems. Supposing na = nb = m/2, we have
that GBABDCR costs at most 2.4 times more than COLROW and this ratio decreases when k increases (if
k = m the ratio is 1.4).

3. Parallel implementation. In this section we analyze and compare the main properties of parallel
cyclic reduction algorithms written for shared and distributed memory architectures.

The cyclic reduction algorithm has a straightforward parallel implementation which has been described in
several papers. See, for example, [1, 2, 6] where parallel cyclic reduction is used to solve tridiagonal systems
and [5, 7, 24] where it is applied to BABD systems.

Let p the number of processors used1, the first phase of parallel reduction requires that each processor
reduces a contiguous set of block rows,




Si−1 Ti Ri

Si Ti+1 Ri+1

. . .

Sj−1 Tj Rj


 , (3.1)

to a single row

(
S∗
i−1 R∗

j

)
. (3.2)

In particular, q = N − ⌈N/p⌉p processors reduce ⌊N/p⌋ block rows and the remaining p− q processors reduce
⌈N/p⌉ block rows each. Note that, when q is non-zero, a different workload per processor is required.

At the end of this phase, each processor stores the block row (3.2) in the first and last m2 locations of the
assigned contiguous block rows (3.1) in place of Si−1 and Rj . The fill-in of these reductions is stored locally
in a private array of each processor, when a distributed memory architecture is used, or consists of contiguous
blocks generated by each single processor, in case of a shared memory architecture.

1We use the generic term “processor” to refer to each core per physical processor used in the parallel architecture considered.



378 P. Amodio and G. Romanazzi

Therefore, the first phase of reduction produces a reduced BABD system with coefficient matrix




Ba Bb

V (1)

V (2)

. . .

V (p)




, (3.3)

where V (i) is computed by the i-th processor; this phase is then completely parallelizable.
Let us now analyze the parallel solution of the system with the coefficient matrix (3.3). Supposing, for sake

of simplicity, that p is a power of 2, the parallel MPI algorithm (as in [7, 24, 5]), for a distributed memory
architecture, requires log2 p synchronizations, communications between processors, and reduction steps. On
shared memory architectures, clearly we do not require communications between processors because both the
coefficient matrix and the right-hand side of the original system (1.1) are shared among processors. However,
log2 p synchronizations between processors are necessary.

This part of the algorithm determines, in both the architectures, the 2× 2 block system (2.6). The solution
of (2.6) is the only sequential part of the algorithm and is followed by the back-substitution phase which still
has much parallelism inside.

On a distributed memory architecture it is made possible that all the back-substitution phase requires
no more synchronization or communication among the processors by considering bidirectional communications
in the reduction phase (see Figure 3.1 and [6] for more details). This means that a copy of (2.6) is solved
(concurrently) on all the processors.

On the other hand, on shared memory architectures, the number of processors is halved at each of the last
log2 p reduction steps and (2.6) is solved on a single processor. Then the number of processors is doubled for
the first log2 p steps of back-substitution with a synchronization after each step.

In conclusion, if p ≪ N the total operation count for each processor is essentially 1/p times the cost of
(2.7). On shared memory architectures, the number of synchronizations is 2 log2 p. The parallel code does not
require additional memory with respect to the sequential code and only a few local variables are needed on
each processor. On distributed memory architectures, the number of synchronizations is only log2 p but each
processor needs to maintain log2 p blocks of size m× 2m to avoid synchronization in the back-substitution and,
moreover, log2 p communications of m×2m arrays and vectors of length m are necessary in the reduction phase.

Since distributed parallel architectures can have even hundreds processors, the main advantage of the
parallel algorithm for these architectures is the possibility to strongly reduce the cost of the reduction and
back-substitution phases by increasing the number of processors used. In such a case, however, a moderate
overhead (of order log2N) appears due to the presence of synchronizations and communications.

As already mentioned, shared memory architectures are nowadays much easier to access. They have a
limited number of processors (up to 4 in our tests), but the parallel algorithms for these architectures have a
double advantage: there is no need to send the initial data to the local memory of each processor and there is
no large communication step after each synchronization. This means that, for a given number of processors,
these algorithms can lead to a better speed-up than that observed on distributed memory architectures.

4. Numerical results. In this section we report some numerical tests to compare COLROW with the
shared memory (OpenMP) parallel version of GBABDCR (here called GBABDCR OMP) in the solution of
ABD systems on multi-core computers. Our aim is to stress that GBABDCR OMP may be efficiently employed
in each BVP solver that requires the solution of ABD/BABD systems on the new multi-core personal computers.

For this reason we analyze the execution times of sequential runs performed on an alpha EV6.7 (21264A,
667 MHz) and of parallel runs performed on an Intel Core 2, Quad CPU Q9550, (2.83 GHz) multi-processor
with 4 cores. We consider ABD linear systems with blocks of the same size and with the same overlap (mi = m,
ki = k and ni = n = k +m). Moreover, we set the number of initial and final conditions equal to m/2.
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Fig. 3.1. Communications among processors on a distributed memory architecture with p = 4.

In Tables 4.1 and 4.2 we compare the elapsed time of some GBABDCR and COLROW runs using the
sequential computer to estimate the theoretical operation counts. We observe that, for k = 0 the ratio between
the elapsed time of GBABDCR and COLROW decreases from 3.26 to 2.32 (the expected value is 2.4) as we
increase n while for k = m the ratio decreases from 4.75 to 1.64 (the expected value is 1.4). A reason of this
strange behaviour is due to the large use in GBABDCR of BLAS3 routines [16] (such as DGEMM, DTRSM)
which have poor performance for small matrices (see tests in [22, 23]) and make this algorithm more efficient
for large k and m only.

Table 4.1

Elapsed times (in seconds) of GBABDCR and COLROW for solving ABD linear systems with N = 10000 and variable n = m
(k = 0)

n GBABDCR COLROW GBABDCR/COLROW
4 0.0795 0.0244 3.2600
8 0.2525 0.0947 2.6675
12 0.5768 0.2294 2.5149
16 1.0753 0.4377 2.4565
20 1.6946 0.7291 2.3243

These results show therefore that, for small size n of each block, it is quite difficult that GBABDCR
overcomes the performance of COLROW on parallel machines. Effectively for n < 8 we were not able to lower
COLROW timings by using GBABDCR OMP on 4 cores.

In Tables 4.3-4.6 we show the performance of GBABDCR OMP running on shared memory architectures
for N = 10000, 20000, 40000 and n = 8, 16.

We note that, when N ≫ p, the computational cost of the parallel algorithm scales with the number of
processors and in all the considered cases GBABDCR OMP on 4 cores is faster than COLROW. Therefore, on
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Table 4.2

Elapsed times of GBABDCR and COLROW for solving ABD linear systems with N = 10000 and variable n = 2m (k = m)

n GBABDCR COLROW GBABDCR/COLROW
4 0.0986 0.0207 4.7529
8 0.1840 0.0712 2.5822
12 0.3582 0.1940 1.8465
16 0.5558 0.3235 1.7179
20 0.9118 0.5546 1.6441

Table 4.3

Elapsed times of GBABDCR OMP and COLROW on a quad-core machine for ABD linear systems with n = m = 8 (k = 0)
and variable N . Speed-up is computed as the ratio between the elapsed time of COLROW and GBABDCR OMP

GBABDCR OMP speed-up
N COLROW 1 core 2 cores 4 cores 2 cores 4 cores

10000 0.091 0.199 0.102 0.062 0.892 1.468
20000 0.186 0.398 0.204 0.132 0.912 1.409
40000 0.360 0.797 0.410 0.224 0.878 1.607

a multicore architecture, we can effectively speed-up the performance of any BVP solver when the size of the
problem is sufficiently large, just replacing COLROW with GBABDCR OMP. Since a code for BABD systems
may be directly applied to ABD systems, the modifications in the code are limited to a few instructions.

In particular, in BVP SOLVER we have inserted a subroutine that creates the non-separated boundary
blocks of the linear system starting from the given separated boundary conditions and we have added a fill-in
vector which is only required by GBABDCR OMP. We point out that in BVP SOLVER the resulting linear
systems have a BABD structure with k = 0 and m = n.

As an example, we have considered the solution of a 8 × 8 nonlinear system of equations describing fluid
injection through one side of a long vertical channel (see [10, Example 1.4]). We have taken into account this
problem with the following parameters

R = 1000, P = 0.7 ∗R, METH = 2

and fixed equal to 1 both the initial guess for the solution and the unknown parameter A.
Table 4.7 shows the results obtained by setting the exit tolerance equal to 10−6, 10−7 and 10−8. A few

comments need to be done on this example. The number of requested linear system solutions (SOLV) is about
8 times the number of factorizations (FACT). Since this size of the ODE is just n = 8 and in any ABD/BABD
code the computational cost of the factorization phase (FACT) is about n times that of the solution phase
(SOLV), then we expect the execution time of the two phases to be approximately equivalent.

From Table 4.7 we observe that the percentage of time required by SOLV using GBABDCR is higher than
that requested by FACT (the opposite happens when we use COLROW ) and it is therefore difficult to obtain
a large speed-up with the replacement of the linear algebra solver. By considering only the linear algebra part
(see % LIN ALG in the table) of BVP SOLVER, GBABDCR reduces its elapsed time of a factor in the range
[1.5, 1.7] when we use 4 cores instead of 1. This is anyway sufficient to obtain on 4 cores an execution faster
than COLROW.

We have to specify that on BVPs of size smaller than 8 we were not able to improve timings obtained with
COLROW. The size of the considered problem is anyway small, and this implies two negative aspects: linear
algebra is not the most time consuming part of the algorithm and, for such small dimensions, COLROW is
much better than GBABDCR. Nevertheless, it is clear that parallelism is really more useful to reduce timing
in presence of very large nonlinear BVPs.

A better speed-up is, in fact, obtained when we solve BVODE of larger size. Table 4.8 shows, for example,
some results of the application of the BVP SOLVER to a kidney problem of size 21×21 that describes the mass
and the energy balance of a renal counter-flow system, see [10]. We note that the Linear Algebra part requires
a larger portion of computation (between 60% and 70%) with respect to the previous example and, therefore,
the use of GBABDCR sensibly improves the performance of BVP SOLVER, when a multi-core computer is
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Table 4.4

Elapsed times of GBABDCR OMP and COLROW on a quad-core machine for ABD linear systems with n = m = 16 (k = 0)
and variable N . Speed-up is computed as the ratio between the elapsed time of COLROW and GBABDCR OMP

GBABDCR OMP speed-up
N COLROW 1 core 2 cores 4 cores 2 cores 4 cores

10000 0.584 1.038 0.525 0.299 1.112 1.953
20000 1.174 2.054 1.049 0.552 1.119 2.127
40000 2.332 4.131 2.098 1.092 1.112 2.136

Table 4.5

Elapsed times of GBABDCR OMP and COLROW on a quad-core machine for ABD linear systems with n = 2m = 8 (k = m)
and variable N . Speed-up is computed as the ratio between the elapsed time of COLROW and GBABDCR OMP

GBABDCR OMP speed-up
N COLROW 1 core 2 cores 4 cores 2 cores 4 cores

10000 0.060 0.122 0.066 0.041 0.909 1.463
20000 0.120 0.249 0.137 0.078 0.876 1.539
40000 0.240 0.500 0.271 0.175 0.886 1.371

used. Finally, we emphasize that the performance of BVP SOLVER can be further improved with GBABDCR,
by considering that the original problem has three nonseparated boundary conditions and, therefore, it can be
recast so that a 18× 18 BABD linear system is obtained.
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Table 4.6

Elapsed times of GBABDCR OMP and COLROW on a quad-core machine for ABD linear systems with n = 2m = 16
(k = m) and variable N . Speed-up is computed as the ratio between the elapsed time of COLROW and GBABDCR OMP

GBABDCR OMP speed-up
N COLROW 1 core 2 cores 4 cores 2 cores 4 cores

10000 0.370 0.468 0.253 0.145 1.463 2.552
20000 0.742 0.938 0.506 0.278 1.466 2.669
40000 1.485 1.875 0.977 0.552 1.520 2.690

Table 4.7

Total elapsed times of BVP SOLVER using COLROW and GBABDCR OMP as linear algebra solver on a nonlinear 8 × 8
BVP. # FACT and # SOLV denote, respectively, the number of linear system factorizations and solutions performed by the code.
% FACT and % SOLV denote, respectively, the percentage of the total elapsed time required by linear system factorizations and
solutions in BVP SOLVER. % LIN ALG = % FACT + % SOLV denotes the percentage of the total elapsed time required by the
linear algebra part.

TOL 1e-8 1e-7 1e-6

Nmax 63357 19281 6466
# FACT 21 20 20
# SOLV 170 161 151
COLROW 30.886 3.409 0.895
% FACT 5.83% 14.66% 21.16%
% SOLV 2.73% 9.20% 17.19%
% LIN ALG 8.56% 23.86% 38.35%
GBABDCR (1 core) 31.831 3.737 1.067
% FACT 6.86% 14.84% 21.60%
% SOLV 5.42% 16.80% 29.56%
% LIN ALG 12.28% 31.64% 51.16%
GBABDCR (2 cores) 30.881 3.435 0.917
GBABDCR (4 cores) 30.484 3.260 0.846

Table 4.8

Total elapsed times of BVP SOLVER using COLROW and GBABDCR OMP as linear algebra solver on a nonlinear 21× 21
BVP. # FACT and # SOLV denote, respectively, the number of linear system factorizations and solutions performed by the code.
% FACT and % SOLV denote, respectively, the percentage of the total elapsed time required by linear system factorizations and
solutions in BVP SOLVER. % LIN ALG = % FACT + % SOLV denotes the percentage of the total elapsed time required by the
linear algebra part.

TOL 1e-6 1e-4

Nmax 36128 3016
# FACT 285 177
# SOLV 738 481
COLROW 366.78 25.15
% FACT 56.7% 60.2%
% SOLV 13.7% 13.1%
% LIN ALG 70.4% 73.3%
GBABDCR (1 core) 415.95 21.88
% FACT 39.5% 40.5%
% SOLV 21.7% 25.2%
% LIN ALG 61.2% 65.7%
GBABDCR (2 cores) 246.51 14.42
GBABDCR (4 cores) 126.95 13.52
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PARALLEL FACTORIZATIONS IN NUMERICAL ANALYSIS∗

PIERLUIGI AMODIO†AND LUIGI BRUGNANO‡

Abstract. In this paper we review the parallel solution of sparse linear systems, usually deriving by the discretization of ODE-
IVPs or ODE-BVPs. The approach is based on the concept of parallel factorization of a (block) tridiagonal matrix. This allows
to obtain efficient parallel extensions of many known matrix factorizations, and to derive, as a by-product, a unifying approach to
the parallel solution of ODEs.

Key words: ordinay differential equations (ODEs), initial value problems (IVPs), boundary value problems (BVPs), parallel
factorizations, linear systems, sparse matrices, parallel solution, “parareal” algorithm.

1. Introduction. The numerical solution of ODEs requires the solution of sparse and structured linear
systems. The parallel solution of these problems may be obtained in two ways: for BVPs, since the size of the
associated linear system is large, we need to develop parallel solvers for the obtained linear systems; for IVPs
we need to define appropriate numerical methods that allow to obtain “parallelizzable” linear systems.

In both cases, the main problem can then be taken back to the solution of special sparse linear systems,
whose solution is here approached through the use of parallel factorizations, originally introduced for deriving
efficient parallel tridiagonal solvers [2, 9], and subsequently generalized to block tridiagonal, Almost Block
Diagonal (ABD), and Bordered Almost Block Diagonal (BABD) systems [10, 11, 15, 16, 17, 19].

With this premise, the structure of the paper is the following: in Section 2 the main facts about parallel
factorizations and their extensions are briefly recalled; then, in Section 3 their application for solving ODE
problems is sketched; finally, in Section 4 we show that this approach also encompasses the so called “Parareal”
algorithm, recently introduced in [23, 24].

2. Parallel factorizations. In this section we consider several parallel algorithms in the class of partition
methods for the solution of linear systems,

Ax = f, (2.1)

where A is a n× n sparse and structured matrix, and x and f are vectors of length n. We will investigate the
parallel solution of (2.1) on p processors, supposing p ≪ n in order for the number of sequential operations to
be much smaller than that of parallel ones.

The coefficient matrices A here considered are (block) banded, tridiagonal, bidiagonal, or even Almost Block
Diagonal (ABD). All these structures may be rearranged in the form

A =




A(1) c
(1)
1

b
(1)T

1 a(1) c
(2)T

0

b
(2)
0 A(2) c

(2)
1

b
(2)T

1 a(2)

. . .

a(p−1) c
(p)T

0

b
(p)
0 A(p)




(2.2)

where the diagonal blocks are square and the superscript (i) indicates that this block is handled only by

processor i. The size of the blocks a(i), A(i), b
(i)
j , and c

(i)
j is in general independent of both i and j, and only

depends on the sparsity structure of the coefficient matrix A. In particular, the size of the blocks a(i) is quite
important, since the sequential section of the algorithm is proportional to it. Therefore, the blocks a(i) should
be as small as possible. As an example, if A is (block) tridiagonal, a(i) reduces to a single (block) entry. Vice
versa, in case of banded (block) matrices, the (block) size of a(i) equals to max(s, r), where s and r denote

∗Work developed within the project “Numerical methods and software for differential equations”
†Dipartimento di Matematica, Università di Bari, Bari, Italy (amodio@dm.uniba.it)
‡Dipartimento di Matematica, Università di Firenze, Firenze, Italy (luigi.brugnano@unifi.it)
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Fig. 2.1. Partitioning of a banded matrix. Each point represents a (block) entry of the matrix.

Fig. 2.2. Partitioning of an ABD matrix. Each point represents an entry of the matrix.

the number of lower and upper off (block) diagonals (see Figure 2.1), respectively. In case of ABD matrices,
a(i) is a block of size equal to the number of rows in each block row of the coefficient matrix (see Figure 2.2).
Since row and column permutations inside each block do not destroy the sparsity structure of the coefficient
matrix, in ABD matrices we may permute the elements inside a(i) to improve stability properties. Blocks A(i)

have the same sparsity structure as the original matrix, and are locally handled by using any suitable sequential
algorithm.

In order to keep track of any parallel algorithm, we consider the following factorization [2, 9]

A = F T G, (2.3)
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where

F =




N (1) o

v(1)T I w(2)T

o N (2) o

v(2)T I w(3)T

o N (3) o

v(3)T I
. . .

I w(p)T

o N (p)




, (2.4)

T =




Î o

oT α(1) oT γ(2)

o Î o

β(2) oT α(2) oT γ(3)

o Î o

β(3) oT α(3)

. . .

α(p−1) oT

o Î




, (2.5)

G =




S(1) y(1)

oT I oT

z(2) S(2) y(2)

oT I oT

z(3) S(3) y(3)

oT I
. . .

I oT

z(p) S(p)




, (2.6)

I, Î and o are identity and null matrices of appropriate sizes, and N (i)S(i) is any suitable factorization of the
block A(i). The remaining entries of F , T , and G can be derived from (2.3) by direct identification.

Factorization (2.3) may be computed in parallel on the p processors. For simplicity, we analyze the factor-
ization of the sub-matrix identified by the superscript (i) (with obvious differences for i = 1 and i = p)

M (i) =




0 c
(i)T

0

b
(i)
0 A(i) c

(i)
1

b
(i)T

1 a(i)


 . (2.7)

Following (2.2)–(2.6) we have

M (i) =




I w(i)T

o N (i) o

v(i)T I







α
(i)
1 oT γ(i)

o I o

β(i) oT α
(i)
2







I oT

z(i) S(i) y(i)

oT I


 , (2.8)

where α
(i)
2 + α

(i+1)
1 = α(i), and the other entries are the same as defined in (2.4)–(2.6).

Consequently, by considering any given factorization for A(i), it is possible to derive corresponding parallel
extensions of such factorizations, which cover most of the parallel algorithms in the class of partition methods.
In particular, the following ones easily derive for matrices with well conditioned sub-blocks A(i) (this means,
for example, that pivoting is unnecessary or does not destroy the sparsity structure):
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• LU factorization, by setting in (2.8) N (i) = L(i) and S(i) = U (i), where L(i)U (i) is the LU factorization
of the matrix A(i). In this case, the (block) vectors y(i) and v(i) maintain the same sparsity structure

as that of c
(i)
1 and b

(i)
1 , respectively, while the vectors z(i) and w(i) are non-null fill-in (block) vectors,

obtained by solving two triangular systems.

• LUD factorization (which derives from the Gauss-Jordan elimination algorithm), by setting in (2.8)
S(i) = D(i), a diagonal matrix, and




I w(i)T

o N (i) o

v(i)T I


 =




I oT

o L(i) o

v(i)T I






I w(i)T

o U (i) o

oT I


 ,

where L(i) and U (i) are lower and upper triangular matrices, respectively, with unit diagonal. Therefore,

v(i) and w(i) maintain the same sparsity structure as that of b
(i)
1 and c

(i)
0 , respectively, while z(i) and

y(i) are non-null fill-in (block) vectors.

• cyclic reduction algorithm [2, 9] (see also [1, 12, 15, 16]), which is one of the best known parallel
algorithms but that, in its original form, requires a synchronization at each step of reduction. In fact,
the idea of this algorithm is to perform several reductions that, at each step, halve the size of the
system. On the other hand, to obtain a factorization in the form (2.8), it is possible to consider cyclic
reduction as a sequential algorithm to be applied locally,

M (i) = (P̂
(i)
1 L̂

(i)
1 P̂

(i)
2 L̂

(i)
2 · · · )D̂(i)(· · · Û (i)

2 P̂
(i)T

2 Û
(i)
1 P̂

(i)T

1 ),

where P̂
(i)
i are suitable permutation matrices that maintain the first and last row in the reduced matrix.

The computational cost, which is much higher if the algorithm is applied to A on a sequential computer,
becomes comparable to the previous local factorizations since this algorithm does not compute fill-in
block vectors. As a consequence, the corresponding parallel factorization algorithm turns out to be one
of the most effective.

• Alternate row and column elimination [25] which is an algorithm suitable for ABD matrices. In fact,
for such matrices alternate row and column permutations always guarantee stability without fill-in.
This feature extends to the parallel algorithm, by taking into account that row permutations between

the first block row of A(i) and the block containing c
(i)
0 (see (2.7)), still make the parallel algorithm

stable without introducing fill-in. Such parallel factorization is defined by setting N (i) = P (i)L(i) and
S(i) = U (i)Q(i), where P (i) and Q(i) are permutation matrices and L(i) and U (i), after a suitable
reordering of the rows and of the columns, are 2× 2 block triangular matrices (see [10] for full details).

Finally, the (block) vectors y(i) and z(i) maintain the same sparsity structure as that of b
(i)
1 and c

(i)
0 ,

respectively, whereas w(i) and v(i) are fill-in (block) vectors.

For what concerns the solution of the systems associated to the previous parallel factorizations, there is
much parallelism inside. The solution of the systems with the matrices F and G may proceed in parallel on
the different processors. Conversely, the solution of the system with the matrix T requires a sequential part,
consisting in the solution of a reduced system with the (block) tridiagonal reduced matrix

Tp =




α(1) γ(2)

β(2) α(2) . . .

. . .
. . . γ(p−1)

β(p−1) α(p−1)



. (2.9)

We observe that the (block) size of Tp only depends on p and is independent of n.

For a matrix A with singular or ill-conditioned sub-blocks A(i), the local factorizations may be unstable or
even undefined. Consequently, it is necessary to slightly modify the factorization (2.8), in order to obtain stable
parallel algorithms. The basic idea is that factorization (2.8) may produce more than two entries in the reduced
system. In other words, the factorization of A(i) is stopped when the considered sub-block is ill-conditioned (or
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the local factorization with a singular factor). As a consequence, the size of the reduced system is increased as
sketched below. Let then

M (i) = L̂
(i)
1 D̂

(i)
1 Û

(i)
1 ,

where

L̂
(i)
1 =




I w
(i)T

1

o N
(i)
1 o

v
(i)T

1 I oT

o Î o

oT I



, Û

(i)
1 =




I oT

z
(i)
1 S

(i)
1 y

(i)
1

oT I oT

o Î o

oT I



,

D̂
(i)
1 =




α
(i)
1 oT γ

(i)
1

o I o

β
(i)
1 oT α

(i)
2 c

(i)T

2

b
(i)
2 A

(i)
2 c

(i)
3

b
(i)T

3 α
(i)
3



,

when the sub-block A
(i)
1 of A(i),

A
(i)
1 =

(
N

(i)
1

v
(i)T

1 α
(i)
2

)(
S
(i)
1 y

(i)
1

I

)
,

is singular, because the block α
(i)
2 is singular (i. e., α

(i)
2 = 0, in the scalar case). Then, α

(i)
2 is introduced in

the reduced system. By iterating this procedure on D̂
(i)
1 , we obtain again the factorization (2.3), with the only

difference that now the reduced matrix in Tp may be of (block) size larger than p − 1 (compare with (2.9)).
However, it may be shown that it still depends only on p, whereas it is independent of n [3, 4]. Consequently,
the scalar section of the whole algorithm is still negligible, when n≫ p.

The parallel algorithms that fall in this class are [3, 4]:

• LU factorization with partial pivoting, defined by setting N
(i)
1 = (P

(i)
1 )TL

(i)
1 and S

(i)
1 = U

(i)
1 where P

(i)
1

is a permutation matrix such that L
(i)
1 U

(i)
1 is the LU factorization of P

(i)
1 A

(i)
1 . The remaining (block)

vectors are defined similarly as in the case of the LU factorization previously described.

• QR factorization, defined by setting N
(i)
1 = Q

(i)
1 and S

(i)
1 = R

(i)
1 . In this case both w

(i)
1 and z

(i)
1 are fill-

in (block) vectors while v
(i)
1 and y

(i)
1 maintain the same sparsity structure as that of the corresponding

(block) vectors in M (i).

Factorization (2.3)–(2.6), and the corresponding parallel algorithms mentioned above, are easily generalized
to matrices with additional non-null elements in the right-lower and/or left-upper corners. This is the case, for
example, of Bordered ABD (BABD) matrices (see Figure 2.3) and matrices with a circulant-like structure (see
Figure 2.4). Supposing the non-null elements are located in the right-upper corner (this is always possible by
means of suitable permutation), then the coefficient matrix is partitioned in the form

A =




a(0) c
(1)T

0 b

b
(1)
0 A(1) c

(1)
1

b
(1)T

1 a(1) c
(2)T

0

b
(2)
0 A(2) c

(2)
1

b
(2)T

1 a(2)

. . .

a(p−1) c
(p)T

0

b
(p)
0 A(p) c

(p)
1

b
(p)T

1 a(p)




, (2.10)
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Fig. 2.3. Partitioning of a BABD matrix. Each point represents an entry of the matrix.

Fig. 2.4. Partitioning of a matrix with a circulant-like structure. Each point represents a (block) entry of the matrix.

where b is the smallest rectangular block containing all the corner elements.
A factorization similar to that in (2.3)–(2.6) (the obvious differences are related to the first and last (block)

rows) produces a corresponding reduced system with the reduced matrix

Tp =




α(0) γ(1) β(0)

β(1) α(1) γ(2)

β(2) α(2) . . .

. . .
. . . γ(p)

β(p) α(p)



. (2.11)

We observe that, for the very important classes of BABD and circulant-like matrices (the latter, after a
suitable row permutation, see Figure 2.5), both the matrix (2.10) and the reduced matrix (2.11) have the form

of a lower block bidiagonal matrix (i. e., c
(i)
j = 0 and γ(i) = 0 for all i and j) with an additional right-upper
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Fig. 2.5. Partitioning of the matrix in Fig. 2.4 after row permutation. Each point represents a (block) entry of the matrix.

corner block:

A =




a(0) b

b
(1)
0 A(1)

b
(1)T

1 a(1)

b
(2)
0

. . .

. . . a(p−1)

b
(p)
0 A(p)

b
(p)T

1 a(p)




,

and

Tp =




α(0) β(0)

β(1) α(1)

. . .
. . .

β(p) α(p)


 .

We have also to note that, for this kind of matrices, the overall computational cost of a parallel factorization
algorithm has a very small increase. On a sequential machine, supposing to maintain the same partitioning
of the matrix on p > 1 processors, we have a computational cost which is similar to that of any efficient
sequential algorithm (the corner block b implies the construction of a fill-in (block) vector) but with better
stability properties (see [26]). For this reason, a method that is widely and efficiently applied to matrices in the
form (2.10), also on a sequential computer, is cyclic reduction (see [11, 17, 19] where cyclic reduction is applied
to BABD matrices).

3. Parallel solution of differential equations. The numerical solution of ODE-BVPs leads to the
solution of large and sparse linear systems of equations that represent the most expensive part of a BVP
code. The sparsity structure of the obtained problem depends on the methods implemented. In general,
one-step methods lead to ABD or BABD matrices, depending on the boundary conditions (separated or not,
respectively), while multistep methods lead to block banded systems (with additional corner blocks in case of
non-separated boundary conditions) [5, 6, 22]. The parallel algorithms previously described perfectly cope with
this kind of systems. For this reason we do not investigate further on ODE-BVPs.
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Conversely, we shall now consider the application of parallel factorizations for deriving parallel algorithms
for numerically solving ODE-IVPs, which we assume, for sake of simplicity, to be linear and in the form

y′ = Ly + g(t), t ∈ [t0, T ], y(t0) = y0 ∈ R
m, (3.1)

which is, however, sufficient to grasp the main features of the approach [5, 6, 7, 8, 20, 21, 22].
Let us consider a suitable coarse mesh, defined by the following partition of the integration interval in (3.1):

t0 ≡ τ0 < τ1 < · · · < τp ≡ T. (3.2)

Suppose, for simplicity, that inside each sub-interval we apply a given method with a constant stepsize

hi =
τi − τi−1

N
, i = 1, . . . , p, (3.3)

to approximate the problem

y′ = Ly + g(t), t ∈ [τi−1, τi], y(τi−1) = y0i, i = 1, . . . , p. (3.4)

If y(t) denotes the solution of problem (3.1), and we denote by

yni ≈ y(τi−1 + nhi), n = 0, . . . , N, i = 1, . . . , p, (3.5)

the entries of the discrete approximation, then, in order for the numerical solutions of (3.1) and (3.4) to be
equivalent, we require that (see (3.2) and (3.5))

y01 = y0, y0i ≡ yN,i−1, i = 2, . . . , p. (3.6)

For convention, we also set

y01 ≡ yN0. (3.7)

Let now suppose that the numerical approximations to the solutions of (3.4) are obtained by solving discrete
problems in the form

Miyi = viy0i + gi, yi =
(
y1i, . . . , yNi

)T
, i = 1, . . . , p, (3.8)

where the matrices Mi ∈ R
mN×mN and vi ∈ R

mN×m, and the vector gi ∈ R
mN , do depend on the chosen

method (see, e.g., [5, 6], for the case of block BVMs) and on the problems (3.4). Clearly, this is a quite general
framework, which encompasses most of the currently available methods for solving ODE-IVPs. By taking into
account all the above facts, one obtains that the global approximation to the solution of (3.1) is obtained by
solving a discrete problem in the form (hereafter, Ir will denote the identity matrix of dimension r):

My ≡




Im
−v1 M1

−V2 M2

. . .
. . .

−Vp Mp







yN0

y1

y2
...
yp




=




y0
g1

g2
...
gp



,

(3.9)

Vi = [O |vi] ∈ R
mN×mN , i = 2, . . . , p.
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Obviously, this problem may be solved in a sequential fashion, by means of the iteration (see (3.6)-(3.7)):

yN0 = y0, Miyi = gi + viyN,i−1, i = 1, . . . , p.

Nevertheless, by following arguments similar to those in the previous section, we consider the factorization:

M =




Im
M1

M2

. . .

Mp







Im
−w1 ImN

−W2 ImN

. . .
. . .

−Wp ImN



,

where (see (3.9))

Wi = [O |wi] ∈ R
mN×mN , wi =M−1

i vi ∈ R
mN×m. (3.10)

Consequently, at first we solve, in parallel, the systems

Mizi = gi, zi =
(
z1i, . . . , zNi

)T
, i = 1, . . . , p, (3.11)

and, then, (see (3.10) and (3.6)) recursively update the local solutions,

y1 = z1 +w1y01,

(3.12)

yi = zi +Wiyi−1 ≡ zi +wiy0i, i = 2, . . . , p.

The latter recursion, however, has still much parallelism. Indeed, if we consider the partitionings (see (3.8),
(3.11), and (3.10))

yi =

(
ŷi

yNi

)
, zi =

(
ẑi

zNi

)
, wi =

(
ŵi

wNi

)
, wNi ∈ R

m×m, (3.13)

then (3.12) is equivalent to solve, at first, the reduced system




Im
−wN1 Im

. . .
. . .

−wN,p−1 Im







y01
y02
...
y0p


 =




y0
zN1

...
zN,p−1


 , (3.14)

i. e.,

y01 = y0, y0,i+1 = zNi + wNiy0i, i = 1, . . . , p− 1, (3.15)

after which performing the p parallel updates

ŷi = ẑi + ŵiy0i, i = 1, . . . , p− 1, yp = zp +wpy0p. (3.16)

We observe that:
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• the parallel solution of the p systems in (3.11) is equivalent to compute the approximate solution of the
following p ODE-IVPs,

z′ = Lz + g(t), t ∈ [τi−1, τi], z(τi−1) = 0, i = 1, . . . , p, (3.17)

in place of the corresponding ones in (3.4);

• the solution of the reduced system (3.14)-(3.15) consists in computing the proper initial values {y0i} for
the previous ODE-IVPs;

• the parallel updates (3.16) update the approximate solutions of the ODE-IVPs (3.17) to those of the
corresponding ODE-IVPs in (3.4).

Remark 1. Clearly, the solution of the first (parallel) system in (3.11) and the first (parallel) update in
(3.12) (see also (3.16)) can be executed together, by solving the linear system (see (3.6))

M1y1 = g1 + v1y0, (3.18)

thus directly providing the final discrete approximation on the first processor; indeed, this is possible, since the
initial condition y0 is given.

We end this section by emphasizing that one obtains an almost perfect parallel speed-up, if p processors are
used, provided that the cost for the solution of the reduced system (3.14) and of the parallel updates (3.16) is
small, with respect to that of (3.11) (see [5, 6] for more details). This is, indeed, the case when the parameter
N in (3.3) is large enough and the coarse partition (3.2) can be supposed to be a priori given.

4. Connections with the “Parareal” algorithm. We now briefly describe the “Parareal” algorithm
introduced in [23, 24], showing the existing connections with the parallel method previously described. This
method, originally defined for solving PDE problems, for example linear or quasi-linear parabolic problems, can
be directly cast into the ODE setting via the semi-discretization of the space variables; that is, by using the
method of lines. In more detail, let us consider the problem

∂

∂t
y = L y, t ∈ [t0, T ], y(t0) = y0, (4.1)

where L is an operator from a Hilbert space V into V ′. Let us consider again the partition (3.2) of the time
interval, and consider the problems

∂

∂t
y = L y, t ∈ [τi−1, τi], y(τi−1) = y0i, i = 1, . . . , p. (4.2)

Clearly, in order for (4.1) and (4.2) to be equivalent, one must require that

y0i = y(τi−1), i = 1, . . . , p. (4.3)

The initial data (4.3) are then formally related by means of suitable propagators Fi such that

y0,i+1 = Fiy0i, i = 1, . . . , p− 1. (4.4)

The previous relations can be cast in matrix form as (I now denotes the identity operator)

Fy ≡




I
−F1 I

. . .
. . .

−Fp−1 I







y01
y02
...
y0p


 =




y0
0
...
0


 ≡ η. (4.5)
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For solving (4.5), the authors essentially define the splitting

F = (F −G) +G, G =




I
−G1 I

. . .
. . .

−Gp−1 I


 ,

with coarse propagators

Gi ≈ Fi, i = 1, . . . , p,

and consider the iterative procedure

Gy(k+1) = (G− F )y(k) + η, k = 0, 1, . . . ,

with an obvious meaning of the upper index. This is equivalent to solve the problems

y
(k+1)
01 = y0,

y
(k+1)
0,i+1 = Giy

(k+1)
0i + (Fi − Gi)y

(k)
0i , i = 1, . . . , p− 1, (4.6)

thus providing good parallel features, if we can assume that the coarse operators Gi are “cheap” enough. The
iteration (4.6) defines the “Parareal” algorithm, which is iterated until

‖y(k+1)
0i − y

(k)
0i ‖, i = 2, . . . , p,

are suitably small. In the practice, in case of linear operators, problem (4.1) becomes, via the method of lines, an
ODE in the form (3.1), with L a huge and very sparse matrix. Consequently, problems (4.2) become in the form
(3.4). Similarly, the propagator Fi consists in the application of a suitable discrete method for approximating
the solution of the corresponding ith problem in (3.4), and the coarse propagator Gi describes the application of
a much cheaper method for solving the same problem. As a consequence, if the discrete problems corresponding
to the propagators {Fi} are in the form (3.8), then the discrete version of the recurrence (4.4) becomes exactly
(3.15), as well as the discrete counterpart of the matrix form (4.5) becomes (3.14).

We can then conclude that the “Parareal” algorithm in [23, 24] exactly coincides with the iterative solution
of the reduced system (3.14), induced by a suitable splitting.

We observe that the previous iterative procedure may be very appropriate, when the matrix L is large and
sparse since, in this case, the computations of the block vectors {wi} in (3.10), and then of the matrices {wNi}
(see (3.13)) would be clearly impractical. Moreover, it can be considerably improved by observing that

wNiy0i ≈ e(τi−τi−1)Ly0i.

Consequently, by considering a suitable approximation to the matrix exponential, the corresponding parallel
algorithm turns out to become semi-iterative and potentially very effective, as recently shown in [8].
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MIRRORING INFORMATION WITHIN AN AGENT-TEAM-BASED INTELLIGENT GRID

MIDDLEWARE; AN OVERVIEW AND DIRECTIONS FOR SYSTEM DEVELOPMENT

MARIA GANZHA, MARCIN PAPRZYCKI, MICHAL DROZDOWICZ∗, MEHRDAD SENOBARI†, IVAN LIRKOV,

SOFIYA IVANOVSKA‡, RICHARD OLEJNIK§, AND PAVEL TELEGIN¶

Abstract. This work concerns part of our project, devoted to the development of an agent-team-based Grid resource brokering
and management system. Here, open issues that have to be addressed in the process, concern agent team preservation. In our
earlier work it was suggested that this can be achieved through mirroring of key information. Here, we discuss in detail sources of
useful information generated in the system (an agent team in particular) and consider which information should be mirrored, when
and where, to increase long-term sustainability of an agent team.

1. Introduction. Our work is devoted to the development of an agent-team-based high-level intelligent
Grid middleware. In our earlier work we have conceptualized a number of scenarios which require access to
information that was generated within the team. For instance, it is assumed that when a team leader (the
LMaster agent) receives (from an agent representing a User ; the LAgent) a Call for Proposals (CFP) asking
about conditions of executing a specific job, its response (an offer, or a rejection) should be based on its
knowledge of the potential client (User that the LAgent represents), as well as of current market conditions
(see, [20, 13]). Such knowledge is to be grounded in historical data collected during past interactions with
potential client(s). For instance a series of unsuccessful bids for jobs may indicate that the suggested price is
too high. Since we assume ( [25]) that a global Grid is a highly dynamic structure, in which nodes can disappear
practically without any notice, it is important to assure that the team knowledge will not be lost when its leader
crashes. Therefore, in [14, 26] we have suggested that support for long-term existence of agent teams may be
achieved through utilization of information mirroring. Specifically, we have proposed that in each team an
LMirror agent should be created, and its role should be to store a copy of all information necessary to prevent
team disintegration in the case of crash of the LMaster. However, thus far we have not delved into any details
as to what needs to be mirrored, when and how.

The aim of this paper is to describe sources of information that can be useful for an agent team in the
context of its survival. Furthermore, we discuss when such information should be mirrored and how. To this
effect we proceed as follows. In the next section we present a brief overview of the proposed system, as well as
arguments for the need of information mirroring. We follow with presentation of sources of information that
is to be collected. In each case we discuss when and where this information has to be persisted. Finally, we
discuss what consequences does utilization of an outsourced data warehouse (to mirror team data) on procedures
involved in recovering crashed LMaster and LMirror agents. Discussion includes a proposal for the structure
of such data warehouse. Material presented here extends results introduced in [19].

2. System overview. To present a high-level overview of the system as well as to discuss two of its main
functionalities: (i) Worker joining a team, and (ii) team accepting a job to be executed; we will utilize an AML
Social Diagram ( [11]) in figure 2.1.

In the approach utilized in our system, agents work in teams. Each team is managed by its “leader,” the
LMaster agent. Agent teams utilize services of the Client Information Center (represented by the CIC agent),
to advertise work they are ready to do and, possibly, Workers they are seeking. In addition to the LMaster
and Workers, each team consists of an LMirror agent. This agent stores a copy of information necessary for
the team to persist in case when the LMaster crashes.

When the User is seeking a team to execute its job, it specifies job constraints to its representative, the
LAgent. The LAgent contacts the CIC to obtain the list of teams that can execute its job and utilizes trust
information and the FIPA Contract Net protocol ( [5]) to either find a team that can do the job, or establish
that such team cannot be found (within the specified constraints).
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Fig. 2.1. AML social diagram of the proposed system

When the User would like to earn money by offering services of its computer(s), by becoming a Worker
in a team, it specifies its conditions of joining (working for the team, e.g. the minimal “salary”). The LAgent
interacts with the CIC to obtain a list of teams that are seeking Workers (satisfying characteristics of hardware
and software it represents). Next, it utilizes trust information and the FIPA Contract Net protocol to establish
if a team to join can be found. In both cases, trust information is a part of LAgent ’s knowledge. At the
same time, when responding to the CFP from LAgents, the LMaster utilizes the Team knowledge (more about
LMaster responses can be found in [26, 20]).

3. Need for information mirroring. While issues involved in collecting knowledge by the LAgent, and
utilizing it in decision making supporting the User are interesting, we focus our attention on processes taking
place within the agent-team. This is especially so, since persisting information stored by the LAgent can be
done by regularly backing-up the data (the same way as any User data should be backed-up).

Now, let us recall, that one of our key assumptions is that in the case of a global Grid any node can disappear
practically without warning, and for an unspecified time (in the global Grid nodes are assumed to belong to
individuals and thus, for all practical purposes, there are no guarantees of service). Obviously, this assumption
has to be applied also to the LMaster agent (specifically, the node that it resides on). Let us now see what
happens when the LMaster becomes unavailable and there is no mirroring in the team.

First, let us consider the case of a short-term disappearance of the LMaster. Since it is the “gateway agent”
for the team, problems arising in this case involve, among others, contract negotiations (sending CFP to the
LMaster or awaiting its response). Here, a short-term disappearance of the LMaster could result in loss of some
potential contract (there would be no agent to send the CFP to, receive a response from, or confirm a contract
with). Furthermore, since the LMaster is the gateway through which contracted jobs are sent to the team, and
results sent back to Users, its short-term crash would result in some Users starting to believe that the team
disintegrated. As a result, the reputation of the team would be damaged and some Users would not work with
it again (these Users that were not able to contact the team during the LMaster crash). Recall that after the
CIC delivers to the User the list of teams that potentially can complete its task, this list is pruned out of all
teams that are not considered trustworthy.

Second, let us consider the fact that the LMaster is the only agent in the team that Workers know about
(we assume that Workers do not know each other; at least such knowledge does not originate from the setup
of our system). Thus, disappearance of the LMaster that lasts more than a few minutes, is likely to result in
Workers not being able to send results of completed tasks and/or receive new tasks to work on (the only reprieve
for the LMaster would be if all workers would execute long-lasting jobs and the LMaster would be back before
any of them was completed). As a result Workers would consider their team (leadership) not trustworthy, leave
it and not come back (see, [20]).

Finally, there is a scenario in which the LMaster crashes and “does not recover” (long-term disappearance,
possibly with a serious data loss). Let us say that there was a fatal hard drive crash and there was no backup (or
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the last backup was done long time before the crash). In this case the above mentioned problems are seriously
magnified:

• since the LMaster is the only gateway between Users and the team, all jobs will be lost and thus the
“User-reputation” of the team will be damaged very seriously; it is doubtful that Users would be willing
to work with this LMaster, as a team leader, again

• the team will disintegrate, as Workers will have no LMaster to lead them; it is doubtful that any
Worker affected by the crash would be willing to work with this LMaster again; furthermore, the
LMaster after recovery will have no up-to-date knowledge about make-up of its team

• substantial part of other collected knowledge will be gone and thus the LMaster, even if it returns and
tries to form a new team, will have to start from the scratch; but this would be very cumbersome indeed
(while the team knowledge is gone, the competition / other teams will capture the “market share”).

Thus, even a temporary disappearance of the LMaster would have serious consequences because of both
Users and Workers considering it not worthy of trust. As a result, the team would lose Workers and stream of
revenue (Users would not contract jobs with it) and would very likely disintegrate.

In response to these challenges we have decided to use a well-known strategy of data mirroring [1, 4, 23,
22, 33]. In [12, 25, 27] we have proposed that an LMirror agent should be created, with the role of keeping
a copy of information needed to keep the team alive and competitive. Furthermore, in [28] we have specified
procedures of restoring the LMaster and the LMirror in the case when either one of them crashes.

Obviously, we are well aware of the fact that instantaneous (or, even, almost instantaneous) crash of both
the LMaster and the LMirror would have exactly the same consequences as crash of the LMaster that did
not have an LMirror and data backup (would result in destruction of the team). However, our approach is
not focused on developing a completely bullet-proof system, but our goal is to create a reasonably resilient
infrastructure. In this context observe that, as the time passes, it can be assumed that, in best teams, roles
of the LMaster and the LMirror will be played by more-and-more reliable machines. Specifically, when the
LMaster selects the LMirror, it will pick for this job the “best possible” Worker. It will do so by utilizing the
reliability information it has accumulated thus far (see, [20]). When this LMirror becomes the next LMaster
it will also select the best LMirror available at this time. In this way the overall strength and reliability of
“team leaders” should continue to increase. Obviously, from what we described here follows that as the time
passes weakest teams may be naturally eliminated. Specifically, teams with unreliable LMasters and LMirrors
will either fall apart when both these agents crash at almost the same time, or due to repeated temporary
disabilities, lose chances of winning new contracts or fulfilling existing ones. As a consequence such teams will
lose Users ’ trust, while their Workers will not come back (to work for a “bad team”); and this will result in
diminishing funding and, finally, team disappearance.

In our earlier work we have focused our attention on the structure of the team, and on the way that lost
leader agents are replaced (and the structure of the team restored). Now, we will consider three key issues:
(1) what information should be mirrored, (2) when should it be mirrored, and (3) where should it be mirrored.

4. What should be mirrored, when and where.

4.1. Team member data. For any team, the most crucial is information about its members. Each time
a new member joins the team, the LMaster obtains the following information (note that all information is
“managed” utilizing an extended Grid ontology; see [17]):

1. ID of the LAgent that is joining the team (Worker name). Since we have assumed that each agent
utilizing our system has to be registered within it (this function is one of the roles of the CIC infrastruc-
ture), it is possible to check the registration of the potential Worker, before accepting it into the team
(see, [15] for more details). This can be treated as a mini-security measure; one that can be extended
as the system develops.

2. Available resources. While in [13] we have proposed a very minimalistic ontology of resources, we
have known all along that a more detailed one is needed. More recently, in [30] we have presented an
overview of Grid and agent-Grid ontologies and came to the conclusion that an extended (and somewhat
modified) CoreGrid ontology [37] will be the base ontology for our system. Thus, this ontology will
be also used to formulate an offer to join the team. Specifically, in the CFP the LAgent will include
information about resources offered to the team. At this point, as we are considering resources in terms
of computing nodes (consisting of hardware and software), the top entity of the resource description
will be the ComputingComponent class and its subclasses—ComputingElement and WorkerNode. This
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will enable Worker agents to represent either a single computing resource (WorkerNode) or a set of
computing nodes, managed by some low level resource broker (ComputingElement, containing a set of
WorkerNodes). Instances of both of these classes can have their hardware and software capabilities
described by properties such as (this list is not exhaustive):

• hasCPU—related to the CPU class and describing the processor in terms such as: platform, vendor,
model, clockSpeed, coreCount, l1CacheSize, l2CacheSize, etc.

• hasMemory—linking to the Memory concept described by the Size property.
• hasStorage—related to the StorageSpace class described further by the StorageInterface and the
FileSystem concepts.

• installedSoftware—describing any software components of the node (the Software class) such as
the operating system, application environment and installed libraries.

• runningService—any services running on the resource (e.g. OpenPBS broker running on the
ComputingElement node).

This information about the new Worker will be then stored by the LMaster and used, among others,
for (1) contract negotiations, and (2) job scheduling (see also [31]).

3. Details of the contract. As can be found in [28], we have suggested that the contract proposal should
contain: (a) specification of the time of availability (e.g. every night from 1AM till 6AM), (b) length of
contract (e.g. 2 weeks). However, results obtained by the MiG project (see, for instance papers available
at [3]) illustrate that more complex sets of informations can be involved in both contract negotiations
as well as in the contract (e.g. a contract with max payment value). Obviously, in the response the
proposed payment for the Worker (and its structure) is to be provided. These details (regardless of
their final complexity, resulting from extended analysis of possible economical models) constitute the
description of the contract between the LMaster representing the team and the Worker.
The exact way of modeling these concepts in our Grid ontology is in progress, however currently, they
are described using the WorkerContract class along with the following properties:

• revenuePerHour—numerical value describing the price the Worker is paid for each hour of its
readiness to work.

• availability—a multivalued property containing times of days during a week during which the
Worker is available for job processing. The domain of this property is a list of AvailabilityPer-
iod class instances, described by properties: startDayOfWeek, startTimeOfDay, endDayOfWeek,
endTimeOfDay.

• contractStartTime—date and time when the contract came into effect.
• contractLength—the length of the contract in days.

Out of these three items, one has to be mirrored immediately—the ID of the Worker. Without it it will be
impossible to contact it in the future. The remaining two could be recovered from the Worker.

As far as the resources of the Worker are concerned, we have also to take into account the fact that in the
system under consideration it is expected to that the LAgent will “remain the same” (its ID does not change)
for a long time, while the resources it represent may change. Let us consider two scenarios. First, the LAgent
represents one or more “home PC’s.” Here, machines can be added to the pool, removed from the pool, and/or
upgraded. Obviously, such changes are not likely to happen each time the LAgent interacts with the team.
However, it is even possible that one of home machines will be relatively regularly added to, and removed
from, the pool of available resources. Second, the LAgent represents a Grid (e.g. an ADAJ based desktop Grid;
see [15] for more details). This case can be expected to be even more dynamic as it is possible that each time the
LAgent joins the team it will represent a Grid that is configured out of a different set of machines. Therefore,
information about resources represented by a given LAgent is not static and needs to be stored each time it joins
the team. Furthermore, it should now be obvious that in the case of long-term contracts it may be necessary
to regularly update information about available resources (particularly in the case of an LAgent representing a
Grid or a Cloud). Therefore, as a result of possibility of such changes a different type of a contract may need
to be negotiated. This latter issue we will, however, omit as being out of scope of this paper.

Let us now consider the question of preservation of details of the contract. When designing our system
we have assumed that participating agents will not only be benevolent, but also their behaviors will be “team-
supporting” (pro-social). In other words, all participating agents will try, to the best of their abilities, to
cooperate with others. However, such assumption is rather unrealistic when real-world situations are to be
considered. Moreover, in the agent literature it is quite often the case that non-collaborating, anti-social
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agent behaviors are considered (see, among others, work of D. Grosu, for instance [21]; or H. Hexmoore, for
instance [36]). Taking this into account one can envision a malevolent Worker who tries to take advantage of
crashing of the LMaster by providing the LMirror with details of the contract that have been modified to its
advantage. Therefore, one of the easy ways of preventing such misbehavior of the Worker, is to mirror details of
all contracts. In other words, information about the contract of the new/returning Worker should be mirrored
as soon as the contract is signed (the FIPA Contract Net Protocol is completed).

Summarizing, information about ID of the worker (item (1), above) has to be mirrored immediately; in-
formation about details of the contract (item (3), above) should be mirrored immediately to prevent potential
fraud; while information of resources represented by a given Worker (item (2), above) does not need to be
mirrored. However, since information about items (1) and (3) is to be mirrored, it seems reasonable to mirror
also information describing available resources (item (2)). In this way crashing of the LMaster will not disturb
Workers with unnecessary exchanges of messages with the new LMaster ; preserving resources of both sides.
Note that the total amount of information mirrored here is proportional to the number of Workers in the
team (modulo the number of machines that each one of them represent) and thus should not be very large.
Furthermore, change in the total size of mirrored data can be estimated in the case of planned team expansion
or reduction (e.g. it is easy to establish how much disk space will be required if another Worker representing
N machines is to join or leave the team).

4.2. Job contracts and their execution. In [14, 13, 12] we have specified a very limited set of parameters
describing job contracts. In the CFP, the potential User could specify the following parameters: (a) job start
time, (b) job end time, and (c) resource requirements (where resources have been limited to available hardware—
matching resource information obtained from each Worker ; see the previous section). In the response, the price
for executing that job was proposed by the LMaster. As noted above, when introducing to our system a full-
blown ontology of the Grid, additional job constraints are going to be added. However, this does not affect
considerations presented here. Obviously, as soon as the contract is signed (FIPA Contract Net Protocol is
completed), all data concerning it has to be mirrored. Information about signed contracts is crucial to the
continued existence of the team, as each signed contract means income for the team. Furthermore, losing
information about a contract would mean that it would either not be completed, or results would have no User
to be sent to (the latter would happen in the case, when information was lost while the task was already being
executed by one of the Workers). In both cases, the team would rapidly lose its reputation and potential future
contracts ( [20]). Furthermore, as noted above, as soon as the assumption about pro-social, benevolent attitude
of all agents in the system is relaxed, one of the ways to protect interest of all parties is to mirror all contract
information.

Signing a contract leads to an issue that is interesting in its own right: what should happen with job-related
files? As it is obvious for anyone working with Grids (and illustrated in [35]), a typical job description involves
a file (or multiple files, when job orchestration is concerned) that contains the code, and one or more data files.
The first possibility would be to request files from the LAgent at the time when the job is “about to start.”
This approach would reduce the burden on the team. When the job was to start (either because of contract
stipulation—the job start time condition—or because time to execute a given job has come) the LMaster would
contact the LAgent with a request to send all necessary files. The disadvantage of this solution is that there is
no guarantee (and in this case there should be none) that the LAgent is going to be available at the time when
the files are to be requested. From the point of view of the LAgent its job is to negotiate the contract, deliver the
files to the team that is to complete the task, and receive the results. In the meantime the LAgent can be off-line
(computer it resides on can even be switched off). This is particularly the case when the job end time condition
is a part of the contract (it will come back to life when it is time to pick up the results). This brief analysis
points out to the fact that we have to assume that completing the contract is primarily the responsibility of
the agent team. As soon as the LMaster signs the contract, the team takes responsibility for completing the
task (note that the payment for completing the task can be assured using appropriate proxy mechanisms; [20]).
Therefore, solution that expects files defining the task to be transferred when the job is about to start is not
acceptable. Such files have to be transferred to the LMaster immediately after the contract is signed.

With this in mind, let us consider possible actions of the LMaster that has received all files pertinent to
a newly contracted job. Naturally, the LMaster could immediately establish which Worker is to execute the
job and initiate job staging, by sending all files to that Worker. Unfortunately this is the situation when, our
fundamental assumption—about highly dynamic nature of nodes in the global Grid comes to play. Determining,
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well ahead of job start time, whichWorker is going to execute it, seems to be against the very nature of utilization
of agent systems. Here, the robustness and efficiency of such systems comes from their flexibility (e.g. ability
to negotiate and re-negotiate “job contracts;” as described, for instance, in [32, 8, 7]). Therefore, it seems that
it would be much better to stage jobs according to the actual state of the system at the the time of job start
(rather than on the basis of the predicted state of the system). This approach should allow to avoid influence
of unexpected factors, such as, for instance failure of some Workers. This means that data files should not be
immediately transfered from the LMaster to the Worker. Combining these two observations we realize that all
files necessary to complete the job have to be held by the LMaster until the start of job execution. This means,
in turn, that these files have to be mirrored.

As soon as the job is completed, its results have to be sent back to the User. Now, let us recall that the
only agent that knows the User is the LMaster and thus the LMaster has to send them back. Here, there exist
two possible mirroring options. First, while the LMaster keeps a copy of results, the second copy is kept by the
Worker ; until it receives a confirmation from the LMaster that they were successfully delivered to the User. In
this way we, again, have two copies of sensitive material available in the system. Furthermore, note that the
overall reliability of the Worker is assumed to be smaller than that of the LMaster and the LMirror (the latter
two agents have been selected on the basis of much more stringent criteria, and their overall capabilities and
their reliability should improve as the team continues to exist). Therefore, the situation in which important
data is not “properly” mirrored should not be sustained for an extended time. However, note that the Worker
can end its contract and not come back to the team. In this case, if the LMaster crashes, results could be lost
before they are delivered to the User. To deal with such situation, if data cannot be delivered immediately to
the User (e.g. an appropriate LAgent is not available), results have to be mirrored as any other sensitive data
and the Worker should be released from the duty of keeping a copy.

Information about job completion and successful delivery of results has to be stored. It is going to be
useful, first, for utilization in job scheduling (see, for instance, [31] and references collected there). Second, for
contract disputes, and third, for considerations concerning trust. Interestingly, only the fact that the job has
been completed and its results successfully delivered to the customer, has to be mirrored immediately (this
information describes the current status of the team, which has to be kept up to date). Information needed for
future job scheduling does not have to be mirrored immediately. Losing some data about execution times of
some jobs (due to the crash of LMaster) does not pose a threat to the existence of the team. Similarly, some
information related to trust assessment of a Worker may be lost without damaging the team. Therefore, these
two item-sets can be mirrored in a digested form in pre-specified time intervals (see subsequent sections).

4.3. Trust information. Thus far we have dealt primarily with information that has to be mirrored
immediately, now we devote our attention to the remaining data generated in the system. In [20] we have
considered issues related to trust in relationships between Users and LMasters (teams) and between LMasters
and their Workers. We have shown that, utilizing a proxy environment (similar, for instance, to PayPal [2])
it is possible to assure that payment for a completed job is always delivered. Therefore, for the purpose of
this paper, we are interested only in relationships between the LMaster and its Workers. Obviously, since we
are interested in information mirroring within agent teams, the way that trust information is to be stored by
Workers is not considered.

Following the discussion presented in [20] we assume that, for the time being at least, contract between
Worker and the team (the LMaster) is based on paying the Worker for availability (not for actual work done);
i. e. Worker contracted for 6 hours every night will be paid for this many hours and will be expected to be
available within that time-frame to do work, if called. It was also stipulated that, at least for some contracts,
Worker will have a right to not to be available for a limited number of times during the contracted time.
Here, we can use the “pinging-mechanism” described in [12] to monitor Worker availability. Under these
assumptions, in [20] we have proposed that for each Worker we will collect information how many times (a) it
fulfilled the contract (#fc)—was available all the time when it was expected to be available (if in the contract
it was stated that it can be missing for a certain number of times, this is exactly the number of times it was
missing); (b) violated the contract (#vc)—was not available when it was supposed to be; and (c) did more than
contract required (#ac)—could have been unavailable for a specific number of times during a contract, while was
available all the time. This combined data will be stored, for each Worker, as a quadruple (n,#fc,#vc,#ac),
where n is the total number of contracts. While this information is collected in a cumulative form (and thus
is of size proportional to the number of Workers in the team), we have also access to additional information
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that can be used for assessment of trust / reliability of a Worker. First, detailed information about results
of each “pinging-procedure,” and second, detailed information about completion (or not) of each assigned job
(e.g. how much time a given job took, was it completed on time, before time, or delayed, etc.). Note that the
results of the “pinging-procedure” can be used also to adjust time within which response from a given agent is
expected (in this way system will be able to adapt its behavior to the network conditions of each Worker ; see,
also [28]). Since the latter data is not proportional to the number of Workers in the team, but to the number
of “pinging-procedures” and processed jobs, we consider it separately in section 4.4.

Obviously, the trust-related information has to be mirrored. However, it is easy to realize that loss of
some of this information is not catastrophic for the team; e.g. not updating immediately number of fulfilled
contracts for a specific Worker will result in proceeding with the old trust assessment (note that the basic
data is cumulative). Therefore, it is enough to update information about trust related issues in a digested
format at predefined time-intervals. Frequency of updates depends on the nature of jobs that a given team is
executing and on the nature of Worker contracts. If a team is contracting long-lasting jobs and its members
have long-term contracts, then update of trust information can occur much less frequently than in the case
when large numbers of short jobs are completed by a team consisting of Workers with short-term contracts.
We believe that a good approximation of the right time to send an update of trust information to the LMirror
is when, in average, each Worker has completed one contract. Note that updates of information can be sent
at any time, which allows the LMaster to adaptively adjust time between updates depending on the nature of
jobs and contracts currently existing in its team.

4.4. High volume data collection and storage. Most information considered thus far within the system
was relatively small in volume—on order of the size of the team, or of the number of currently contracted jobs
(note that in the latter case files related to some jobs may be large, but this is unavoidable). There are, however,
important data sets that grow over time and can become very large. First, data generated during negotiations
between the LMaster and Users who would like either to contract job execution, or join the team. This data is to
be used to establish market conditions and introduce team behavior adaptivity to the system (see, also [12, 20]).
Second, information about execution of completed jobs (e.g. hardware used, software required, execution time,
Worker completing the job, etc.). This data can be used to apply advanced scheduling techniques (for more
details, see [31], and references collected there). Third, detailed information about behavior of each worker
(e.g. detailed history of execution of each job, results of “pinging-procedures,” etc.). This information is crucial
to build a realistic and comprehensive economy-based job scheduling model (which includes also trust and
reliability related considerations).

Let us first consider contract negotiations. In [34, 6, 9, 10] a large variety of negotiation mechanisms that
can be applied in a Grid have been described. However, in the initial implementation of our system, for both
types of contract negotiations (job execution, or joining a team), we have decided to utilize the FIPA Contract
Net Protocol ( [5]). The primary reason was that while allowing for “calls for proposals” with practically
unlimited variety of constraints, it generates the contract (or establishes impossibility of an agreement) within
a single round of negotiations. This also reduces the total amount of information that needs to be stored for
further use (compare, for instance, with the amount of data generated during any of the multi-round auction
mechanisms; see [16]). Therefore, in our system, information about a single job contract negotiation would
consists of:

• Content of the CFP—containing, among others, information what hardware and/or software was
sought; job start time (if specified); how much time was to be contracted / or was it an open-ended
contract?

• Content of the response—what was the price proposed by the LMaster, as well as other details of the
proposed contract; e.g. the proposed hardware (when the CFP specifies the minimum requirements,
while the response proposes the actual configuration that the task will be executed on), etc.

• Result of the negotiation—was it a success, or not?

Note that, with a rich vocabulary provided by the extended Grid ontology, it will be possible to reconsider
the utility of multi-round Service Level Agreement negotiations.

In the case of negotiation concerning a Worker joining the team, at least the following information becomes
available (introduction of a full-blown Grid ontology will allow utilization of more complex negotiation scenarios):

• Content of the CFP—including information about available hardware and software, length of contract
and conditions of availability,
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• Content of the response—the proposed price
• Result of the negotiation—did the Worker join the team, or not

Note that, regardless of the particular form of negotiation used, amount of available data will be large.
Specifically, it will be proportional to the total number of contract negotiations that a given team participated
in. Furthermore, this dataset will be constantly increasing in volume.

Interestingly, in all cases, data collection is resilient to loss of some information. In other words, losing some
of the data may decrease competitiveness of the team (e.g. when performing data mining to find the current
“value” of various resources that the team currently consists off, the result may be somewhat incorrect due to
the fact that some data was lost), but the process is characterized by graceful degradation. Therefore, it is
possible to perform updates in a digested fashion at times of reduced utilization of the system, while risking
that some data will be lost if the LMaster crashes in the meantime.

It should be now obvious that constantly increasing volume of data makes mirroring very costly. We can
point to at least three important issues that need to be taken into account.

1. The total amount of data that has to be regularly passed from the LMaster to the LMirror is not small.
This is the case even when digested information is transferred in a compressed form. Here, we deal
with a constant stream of data, size of which depends on the size of the team and the level of activity
within it.

2. Constantly increasing volume of data has to be stored by both the LMaster and the LMirror. Even
assuming that over time capabilities of both managerial agents improve, and taking into account that
storage is cheap and plentiful, collecting data generated during management of a large and active team
that exists for an extended period of time, may be prohibitive for most home PC’s. This will, in turn,
introduce a new stratification into the Grid. Its Users will be divided into those who can and those
who cannot manage the team due to the storage restrictions of their computers.

3. The time of recovery of a crashed LMirror, and of the second step of replacing a crashed LMaster (in
the first step the new LMAster replaces the LMirror on the same machine, and thus no data transfer is
needed) is going to grow with the data size. It is important to realize that (re)creation of a new LMirror
involves copying an entire set of mirrored data to the new location. For large, active teams that exist
for a long time, such data set can be very large. As a result transfer involving ACL messages is not
feasible. The only reasonable solution seems to be a direct data transfer between computers that host
both agents. However, even this process can take considerable amount of time, if it is performed over
the Internet. Now, let us take into account that, as suggested in [27], recovery of a crashed managerial
agent stops the other managerial agent from doing anything else (to re-establish security of existence
of the team; brought about by data mirroring). This means that as the time passes each crash of the
managerial agent takes longer to recover from (more data to be mirrored) and, for all practical purposes,
stops the team operation for an ever increasing time. Therefore, such approach seems infeasible in a
long run.

In this context note that, to reduce potential impact of increasing volume of collected data, it would be
possible to store only the newest information (e.g. a “sliding window” consisting of K most current data items).
However, the primary reason to collect a “complete set of historical data” is to be able to apply data mining
techniques to extract useful information out of it. Decreasing the amount of collected data, by including only
the most current items, could reduce effectiveness of data mining and thus contradict the reason to collect this
data in the first place. Therefore, it seems to be in the best interest of the team to preserve as much of historical
data as possible.

Considering this, on the basis of the current trend of IT infrastructure—outsourcing and specialization,
we propose that an outsourced data warehouse will be utilized for team data storage. Specifically, within our
system, data warehousing could be outsourced to a team that specializes in data storage. This is similar to, for
instance, a popular e-commerce scenario, where merchants contract software companies to design, implement
and run infrastructure of multi-front e-stores, while software companies contract storage companies to actually
store the data. Note that while we use the name team; it is quite possible that actually this will be a single entity
(as in the case of e-commerce solutions) that will be interfaced with our teams through the agent infrastructure.
In other words, the front end of the data warehouse could be one or more agents, but there could be no actual
agent team working “behind it.”

Obviously, it would be also possible to hire Workers with the right infrastructure to facilitate data ware-
housing within the team itself. However, this solution has a number of potential problems. First, recall the
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assumption that each node (Worker) can disappear without advanced warning. This assumption would apply
also to the Worker(s) responsible for team data storage. As a result, potential problems that lead us to propose
data mirroring in the first place, would remain unsolved. Second, idea of internal data warehousing goes against
the current trend in IT, which is to outsource anything that is not the core functionality (as long as it can be
outsourced, e.g. currently it is unfeasible that a bank would outsource its IT operations). The reasons are the
same, as data warehousing is not expected to be the core business of most teams. Data warehousing requires a
specific infrastructure (e.g. a server farm) and procedures to assure data persistence and security. Therefore,
on the one hand, it is better to create a facility that specializes in this type of operation and sells its services
to others; on the other it is better to buy service that assures quality of data preservation.

Finally, let us observe one more benefit of utilization of an external storage facility for system data. One of
the important features of the system (see, also Figure 2.1) is that all collected data will be used for knowledge
extraction. The question thus arises, how will this be done? For instance, assuming that data is stored by the
LMaster and the LMirror, which dataset will be used for data mining? Since the LMaster is the gateway and
responsible for all contacts with Users, it seems that this is not the right node to stage the second agent, running
data mining algorithms. At the same time, the LMirror may not have the most current set of data. However,
since it has “much less to do,” this node is the one that could be easily used for data mining (possibly, performed
by a separate data mining agent). However, the situation is much simpler in the case of an outsourced data
storage. Here the data mining agent can be instantiated within this (external) infrastructure, or run as one of
Workers within the team (if running it within the storage facility is prohibited). In this way we can clearly
separate the knowledge management function of the system and devote appropriate resources to it.

4.5. Structure of the data warehouse. Let us now discuss how a data warehouse that could be used
in our system to store the above indicated data, may look like. What we present below is a draft design of a
data warehouse that could be used for storing historical data for efficient analyzing and reporting. Obviously,
additional storage would be needed for preserving short term / dynamic data described in sections 4.1, 4.2.
However, in this case it sill remains an open question if such data should be stored only in the warehouse, or if
it should be mirrored also by the two managerial agents (see, section 4.6. Data warehouse design presented here
is based on principles laid out in [24], and is built around the star table schema. Note that some details of the
proposed design may change as the system evolves (e.g. when new types of complex negotiations are added).
However, the general schema, which is based on the extended Grid ontology, should remain unchanged.

4.5.1. Worker negotiation. Let us start from storage of information about negotiations between the
LMaster and the Worker wanting to join the team. This data is going to be stored in the Worker Negotiation
Fact table (see Figure 4.1.

Each row of the table will correspond to a single negotiation and is going to be identified by the following
dimensions:

• User. Identifies the User of the system. In this preliminary draft it contains only the Name of the
User.

• Worker. Describes the identity (i. e. the ID of the LAgent), configuration and proposed contract
conditions of the Worker requesting to join the team.

• Software Group. A multivalued dimension that describes the software configuration that is going to
be contributed by the Worker. Each Software Group can be composed of many rows of the Software
Dimension table, where each of them describes a single software component.

• Team. The dimension identifying the team. So far it does not contain any additional meaningful
information.

• Date. This is a typical date dimension, as described in [24], which enables easy analysis and reporting
of aggregated time series data.

Measures of the Worker Negotiation Fact table consist of data about money offered as compensation for the
Worker and the information whether the Worker was accepted. These can be used, for example, to estimate
the market value of capabilities offered by the Worker (e.g. repeated rejections could mean that the offered
compensation is too low).

4.5.2. Job negotiation. The Job Negotiation Fact table gathers information about the job submission
negotiations. The diagram of this fact table along with its dimensions can be found in Figure 4.2.

Similarly to the case of the Worker Negotiation Fact table, each row corresponds to a single negotiation,
and is identified using the following dimensions:
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Fig. 4.1. Worker Negotiation Fact Table

Fig. 4.2. Job Negotiation Fact Table
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• User. Identifies User who would like to have a job executed.
• Hardware Requirements. This dimension describes the hardware requirements as specified by the User.
Properties of this dimension are specified using a subset of concepts from the ontology, but flattened
out and used as constraints.

• Required Software. Links to the Software Group dimension that describes software required to execute
the job.

• Task. Describes the task (job) that the User would like to have executed. Details of how a task can be
described or categorized have not yet been fully conceptualized; therefore, this dimension is currently
empty.

Measures currently stored in the table are: the price proposed by the LMaster for executing the job and
a boolean value specifying whether the User accepted the proposed conditions. Similarly as above, these
dimensions may be extended in case of more complex negotiations. Furthermore, they are to be used, among
others, to evaluate market conditions and will play key role in the economic model that the system is based on.

4.5.3. Task execution. Information about every task executed by the team is stored in the Task Execution
Fact table (see Figure 4.3).

Fig. 4.3. Task Execution Fact Table

The table is described using the following dimensions:
• Worker. The worker that performed the task.
• Customer. The User that submitted the job.
• Hardware Requirements. Hardware that was required to perform the task.
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• Software Requirements. Software necessary to complete the task.
• Task. The description of the executed task.
• Start Date. Link to the Date dimension, specifying the start of the task execution.
• Deadline End Date. Link to the Date dimension, specifying the deadline, as it was negotiated with the
customer.

• End Date. The actual end of task execution.
For all of the Date dimensions (start, deadline, and actual end) there are also separate Date and Time

properties to facilitate precise measurements. These measurements can be used, among others for task scheduling
(based on historical data, see [31]).

4.5.4. Worker responsiveness. The information about the “responsiveness” ofWorkers within the team
is stored in theWorker Responsiveness Fact table. It contains all data necessary to analyze the actual availability
of the Worker, and conformance to the Service Level Agreement between the Worker and the LMaster. Recall,
that in the current design of our system it is assumed that Workers are paid for being available at specific
times. The design of this table is rather simple and is presented in Figure 4.4.

Fig. 4.4. Worker Responsiveness Fact Table

The table is identified by two dimensions:
• Worker. Identifies the Worker that the ‘responsiveness” data concerns.
• Date. Specifies dates for which the measures apply.

Collected measures that can be used to analyze Worker “responsiveness” are:
• Number of pings. The number of messages checking the availability of the Worker sent by the LMaster.
• Number of pongs. The number of responses confirming the availability of the Worker.

It is likely that the collected measures are going to be extended, but they will remain stored in the same
table.

4.6. Consequences of utilization of outsourced data storage. Let us now observe that utilization
of a data warehouse allows us to redefine “roles” of and interactions between the LMaster and the LMirror.
Thus far the LMaster and the LMirror were assumed to store and regularly synchronize all data pertinent to
the long-term existence and success of the team. In the new design, the LMaster stores all such information
in the contracted storage facility and thus the LMirror does not store any data at all. However, it should be
clear that this does not mean that the LMaster does not store any data. It would be highly inefficient to query
the external data warehouse every time some information is needed (for instance, to send a message to any/all
team member(s)). Therefore we have to divide available information into three categories. (a) Information copy
of which is definitely stored by the LMaster, (b) kept a copy if possible (depending on its capabilities), and
(c) information stored in the warehouse only.

In category (a) we include current information concerning: list of team members, their resource specification,
contract details (both job contracts and Worker contracts). In category (c) we include all high volume data
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discussed in section 4.4. The remaining information discussed here, such as, for example, cumulative trust
information, market value of specific hardware, etc., may be stored by the LMaster, but can be also accessed
from the data warehouse.

Let us now come back to the LMirror. It does not store any data, but has procedures for: (a) checking
existence of the LMaster, and (b) becoming an LMaster in the case when it crashes. Note that this simplifies
the overall situation of the LMirror. Thus far one of the important issues was, should the LMirror work in a
similar way as any other Worker agent. It was assumed that the LMaster will not work as a Worker, but will
be 100% involved in team management. It will also be paid for its efforts from the overhead imposed on all
contracts (see, [29] for more details). However, in the case of the LMirror the situation was not this obvious.
On the one hand, it had to store team data and regularly check that the LMaster is still alive. On the other
hand, since these actions require much less effort that these of the LMaster, it could perform some tasks as
other Workers do. However, as a Worker it would not be as efficient as the others. Recall, for instance, that
it was to process digested and compressed packages containing information about negotiations that took place
recently. This being the case the LMirror would have to stop processing the User request and immediately take
care of mirroring-related operations (since, assumptions behind our system setup specify that these operations
have precedence over regular work). Let us also recall the suggestion made above, that one of the functions of
the LMirror could be mining the team data; as an add-on function that could be performed instead of being a
regular Worker. Regardless of the final solution used, this lack of clarity as to functionalities and payment (how
much should the LMirror be paid for its services in each of the above described approaches?) would make the
design of the system unclear and maintenance more difficult. This particularly concerns the economic model
behind the system that would become more / unnecessarily complicated.

Situation becomes much clearer when the outsourced data warehouse-based solution is used. Since the
LMirror does not have to store data it can work as all other Workers (the only mirroring-related procedure
will be checking existence of the LMaster—using the pinging-procedure, see [28]). Obviously, if the LMaster
crashes, the LMirror will have to undertake emergency procedures and become the LMaster and re-create the
LMirror. However, this being an emergency situation requires special measures (e.g. involving dealing with the
job it was processing). As suggested above, mining data stored in the warehouse can be delegated to a special
data mining agent. In the case that this agent cannot move to the node where the data is stored, this could be
a natural work for the LMirror, as in this case the data mining task it is executing can be stopped at any time.
Furthermore, the economic aspect of the system can be simplified, as the LMirror can be paid as any Worker.

4.6.1. Restoration of managerial agents. Let us now briefly summarize steps that take place when a
crashed managerial agent is going to be re-created in the scenario when team data is persisted in the external
data warehouse. First, let us consider re-creation of a crashed LMirror. In this situation the LMaster selects
the Worker that is to become the next LMirror. For this it utilizes information about Worker resources, as well
as contract and trust information (selected agent should not only be one of the best computers in the team, but
have a contract with no expiration date and a very good performance track record). Next, the task that this
Worker was working on is transferred to another Worker, while the selected Worker is upgraded by uploading
appropriate modules (see, [18]. Among these modules the new LMirror obtains information where the team
data is stored and details how to access this information. As soon as the new LMirror is fully operational, the
LMaster undertakes the following steps: (a) informs the CIC about the fact that its team has the new LMirror,
(b) informs all remaining Workers about the identity of the new LMirror, and (c) if necessary, informs the data
storage facility that the new LMirror has access rights to the team data.

As noted above, the replacement of the crashed LMaster consists of two phases. First phase proceeds exactly
as described in [28], and takes place within the node that hosts the LMirror. The only differences involve (i)
access rights to the team information being established / confirmed with the data warehousing infrastructure,
and (ii) copying necessary managerial data to the new LMaster (see, Section 4.6). The result of this phase is
replacement of the LMirror (which at the end of the process self-destructs) by th new LMaster. This means
that the team has now an LMaster and no LMirror. Therefore the, above described, procedure of re-creating
an LMirror follows immediately, in the second phase.

5. Concluding remarks. The aim of this paper was to discuss issues involved in information mirroring
in an agent-based Grid resource management system. We have focused our attention on information generated
within the agent team and considered four important cases: (1) team data, (2) job contracts and their execution,
(3) trust-related information, and (4) other sources of large volume information. We have established that we
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have to deal with two main situations: (a) small-volume data that has to be mirrored immediately, and (b) large
volume data that may be mirrored infrequently. Further analysis indicated that large volume data collection
may be best achieved through utilization of a contracted data storage facility. This latter solution is our solution
of choice and we plan to utilize it in our system.
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MULTI-APPLICATION BAG OF JOBS FOR INTERACTIVE AND ON-DEMAND

COMPUTING

BRANKO MAROVIĆ, MILAN POTOČNIK, AND BRANISLAV ČUKANOVIĆ∗

Abstract. A generic infrastructural grid service for submission, management, and access to computing resource is described.
It is suitable for interactive applications and on-demand computing with frequent usage of short jobs. The improved access to
computing resources is achieved through allocation and maintenance of a pool of ready jobs, the size of which is dynamically adjusted
to demand produced by applications. A set of APIs facilitates communication between the clients and worker jobs through a simple
programming model.

Key words: cluster and grid computing, distributed computing, pilot job infrastructures, interactive applications, program-
ming API

1. Introduction. The grid infrastructures provides access to enormous computing resources to its users.
There are many grid sites dispersed throughout the world and they are grouped into several more or less
independent infrastructures. Obtaining these resources can be difficult, especially for users that are not experts
in the usage of grid, but are rather scientists or users of specific applications running on the grid. Various grid
middlewares employ different operational schemes, authorisation policies and access interfaces. Aside from the
complexity of the grid infrastructures, certain limitations are also present, notably the need for users to wait,
sometimes for a significant time, until their requests for computing resources (also called job submissions) are
processed and the lack of good support for interactive applications.

The use of pilot jobs [1] is gaining increasing popularity among various groups of grid users. With pilot-
based infrastructures, users submit their jobs to a centralized queue or repository. These jobs are handled by
grid computing resources executing asynchronously started pilot jobs. Pilot jobs communicate with a pilot
aggregator, which allocates user jobs from the repository. Once started, the jobs get the actual work to
be performed from the aggregator. This late binding of user jobs and resources greatly improves the user
experience, as it hides broken grid resources and provides more accurate information about available resources.

On the other hand, there are many implementations of user interaction with jobs running on the grid, most
of which provide communication between the user and job through text terminal-like user interface. However,
none of them addresses one of key problems related to the interactive jobs—the startup time for grid jobs that
is often unacceptably long for interactive use.

Work Binder is a generic service developed in Java programming language whose main purpose is to quickly
allocate new jobs for grid users. Through its simple API, it also has support for interactivity between the end
user and the job being run on the remote server located on the grid. With gLite middleware [2], this server
is called a worker node (WN) and it is one computing node belonging to the computing element (CE), which
is usually a cluster administered by some grid site. However, this service can be easily adapted to any other
infrastructure that allow applications to submit code to computing resources.

Work Binder [3] is aimed to be used with three specific types of grid jobs:

• Interactive jobs—jobs executing on a remote worker node that require communication (interaction)
with the user that started them (in gLite support for these types of jobs is very poor).

• Jobs with relatively short execution time that have a good chance of being resubmitted or participate
in a workflow.

• Jobs with critical demand for startup time.

All of these job types have one thing in common, the need for short startup time. Work Binder is designed
in such a way that it enables almost instant allocation of jobs to the users. In effect, Work Binder acts as a
mediator between client and server components of an arbitrary application in the grid environment.

2. Design of work binder. Work Binder consists of software components distributed in three tiers, at
the client, worker, and central service, as shown in Figure 2.1:

• Various application-specific client programs interact with end user and invoke remote processing. They
request jobs from the Work Binder service and communicates with obtained worker processes.
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Fig. 2.1. Components of Work Binder environment

• Application-specific programs perform computation on grid worker nodes. Each program execution is
called worker, and is being run within a grid job. It starts the actual application code (as a class or
separate external program) after pairing with some client.

• Work Binder service is a mediator that maintains the pool of free workers and matchmakes them with
clients. It is capable of simultaneous handling of several applications.

Key features that distinguish Work Binder, giving it a significant advantage over other related pilot infras-
tructure solutions [4] [5], include:

• Java API which allows quick & simple way to integrate new applications into the Binder & grid envi-
ronment;

• Almost instant allocation of new jobs for users.
• Support for any number of different applications which will share the same pool of jobs;
• Adaptive dynamic allocation of new jobs;
• Work Binder hides the complexity of grid infrastructure from the user;
• Possibility to incorporate application-specific intercepting handlers into the mediator.

2.1. Submission of New Jobs. Work Binder submits worker jobs to the grid, maintains a pool of ready
jobs, and mediates between clients and workers. It pairs clients and worker jobs from which it has received
connections. A small dispatcher program started by the Worker Job then starts an application-dependent Java
class or executable file installed on the targeted grid site. Further communication (what kind of communication
will be used is specified by the client) between the client and the worker is continued using one of three possible
methods:

• Via binder—All communication will go through the binder with the option to have a specific code on
the binder for processing the data transferred between the client and the worker.

• Built-in direct communication—The worker connects directly to the client after the client has been
matched to the worker and they continue their communication without going through the binder;
network performance will probably be better, however not all clients are capable of accepting incoming
connections.

• Custom communication—Defined using arbitrary application-specific mechanism; it is up to the client
and the worker to implement it, the service only provides exchange of communication descriptors.
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2.2. Management of the Job Pool. A pool of ready worker jobs is maintained using sophisticated
algorithms with the goal of always having enough worker jobs in the pool for incoming clients as well as
minimizing the stress on the grid infrastructure (the pool changes its size according to user demand). Having
one pool of jobs for many different applications is an efficient way of conserving precious grid resources. When
client connects to Work Binder and asks for a worker job, it will acquire a job almost instantly, providing there
is one available. If not, all jobs in the pool are used up, and the client has an option to try again later.

The suitable size of the pool of jobs may vary significantly, depending on the current load and dynamics
of user and job arrivals. For example, in order to handle interaction with individual end users, the interactive
applications often need many processes for short periods of time. Such pattern of job allocation may be also
attractive to some non-interactive applications that repeatedly run short jobs. However, such a behavior is
extremely unsuitable for the current grid infrastructure. With Work Binder, a near-optimal usage of grid
resources and high availability of ready jobs are archived by implementing an adaptive job submission and pool
management policy. The policy shares jobs among several applications, reuses finished jobs, and adapts to the
characteristics of grid sites and present workload.

Two modes of mediator operation, called idle and active, determine different job pool sizes:

• Idle mode of operation is used when there are no active clients. In this mode, pool of ready jobs is kept
at a predefined minimum.

• Active mode of operation is used when the number of active clients is above zero. The desired pool size
in this operation mode is determined using a number of estimation functions.

In order to calculate the desired pool size, it is necessary to take a few things into account. The first one
is previously mentioned minimum pool size. The second is the amount of busy jobs in the pool—the more the
pool is used, the more it is expected that it will be used in the near future. The third is the arrival frequency
of new clients—if a lot of clients come in a short period of time, pool of jobs may be quickly used up.

In order to keep the pool of ready jobs at a desired size two job creation (job refill) strategies are used:
regular and full throttle.

2.3. Regular Refill Strategy. Regular strategy is used for each CE individually and works over longer
periods of time that are proportional to the response time of each particular CE. Response time in this case
means the time in which the submitted job on the CE will become available to Work Binder.

The sum of available (ready) jobs for each CE used by Work Binder is the total number of ready jobs in
the binder’s pool. The goal of the regular refill strategy is to keep the number of ready jobs on each CE at the
appropriate level by analyzing its current status.

The target pool size for each CE depends on the minimal and maximum pool size for the CE agreed between
Work Binder administrator and the administrators of the particular CE and its load. The load preference is
the measure of how heavily some CE is currently used by the binder.

The amount of jobs that will submitted on some CE is calculated from the target pool size for the CE and
the current amount of ready jobs, but it also takes into account already submitted jobs that are expected to
become ready (since it takes time for a submitted job to become available in the grid environment) and busy
jobs that will finish soon and possibly become reusable (this is one of Work Binder’s advantages, not available in
the regular grid environment). It is important to note that the calculated number of jobs will not be submitted
instantly, but rather gradually over time to compensate for the non-instant responsiveness of the computing
elements.

2.4. Full Throttle Refill Strategy. Full throttle (panic) strategy is used to allocate jobs globally on
Work Binder. Unlike the regular strategy which works slowly over periods of time, full throttle strategy submits
jobs instantly as soon as it detects that the desired total amount of jobs is greater than the actual amount of
ready jobs (and the jobs that are expected to become ready in a relatively short time). This can happen if
the clients’ arrival frequency becomes too high or if there are many busy jobs that saturate some of computing
elements.

If panic refill strategy decides that some new jobs need to be submitted, it is necessary to make these jobs
available as soon as possible. Work Binder keeps track of each CE’s response time, and in order to provide
new ready jobs quickly, it picks the group of computing elements with lowest response times and proportionally
submits jobs to them. However, Work Binder will not submit and maintain more than the maximum of jobs
agreed between the binder administrator and a CE administrator.
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If fastest computing elements have reached their maximum pool sizes and there is a further need for panic
refill, the amount of remaining refill jobs will be submitted to the rest of computing elements, by submitting as
much as possible of new jobs on the fastest CEs first.

2.5. Work Binder Java API. The Work Binder Java API allows application users to easily integrate
Work Binder with their existing applications. This integration can be achieved by using the appropriate API
wrapper interfaces. Wrapper interfaces exist in all three tiers, and their purpose is to hide the complex internal
communication from application users and provide them with simple interfaces and methods, so that they can
focus on their own application specific problems and not bother with grid and binder infrastructure related
issues. The API is designed in such a way, that the applications that already have some sort of client-server
design can be easily adapted to use it (even if they were not gridified previously).

2.6. Client Interface. At the client side, ClientConnector is the wrapper interface through which users
can connect to the Binder and obtain a Worker Job. Wrapper interface can be initiated with many options,
some of them being:

• Binder Address—IP address of the Work Binder instance
• Binder Port—port on which the Work Binder instance is listening for incoming workers instances
• Application ID—unique name identifying which application supported by the binder will the client use
• Required Wall Clock Time—how long will the client use the Worker Job
• Access String—string describing the connection that will be used between the client and the worker
• Client’s Certificate—user’s grid certificate needed for authentication & authorization (every grid user
has its own certificate that can be used to access various grid services)

Once a Worker Job has been obtained, the user can communicate to the Worker Job through ClientCon-
nector interface methods or get the reference to the actual socket being used to communicate to the Worker job
(this feature is not a preferred way of communication, but is provided in order to make life easier for applications
that already have some sort of client-server communication implemented).

2.7. Binder Interface. Work Binder intercepts communication between the client and worker. One of the
purposes of this intermediate level of communication, among other reasons, is to provide a way for clients and
workers to connect to each other in environments that would not allow them to establish direct communication
due to firewall or other network issues (Binder acts as a proxy server in this case). Another possible use is to
add some application logic to the binder level where some processing can be performed on the Binder instead
of on the remote worker job. The client chooses whether it wants to connect to the worker job via binder or
directly (the details of direct connection can be exchanged via binder). If direct communication is chosen, this
entire level of communication is skipped.

If communication via binder is used, the users have an option to implement application specific handlers
that run at the binder by implementing the provided BinderHandler interface. If there is no application-specific
implementation on Work Binder, a simple built-in proxy implementation is used where Work Binder acts as a
proxy between the client and the Worker Job.

From within BinderHandler users are given access to an instance of the BinderConnector interface. This
instance represents the wrapper interface at the binder. Similarly to the wrapper interface on the client, this
class gives access to the communication primitives to the client on one and the worker on the other side, as well
as direct access to the actual sockets used to communicate to the client and the worker.

2.8. Worker Interface. Worker level interface provides communication from within a worker job. Ap-
plication users must implement their custom handlers by implementing the provided WorkerHandler interface.
Users then get access to an instance of the WorkerConnector interface, which is also a wrapper interface. With
this interface, as with the other two wrappers, users get access to communication primitives as well as low level
access to the actual socket used for communication.

Application-specific WorkerHandler implementations are executed on remote grid sites, so they must be
preinstalled and available to Work Binder in order to be executed successfully. Binder will detect the installed
applications on each supporting site and keep track of them allowing application users to transparently add new
applications to the Binder.

If an application user just wants to execute some external program located on the WN, instead of writing
her own WorkerHandler implementation, there is an option to use one of built-in implementations. This way,
an easy integration of programs written in various programming languages is possible, by providing execution
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of application-defined programs or scripts, as well as assistance in establishing communication with the client.
Two built-in implementations for two distinct use cases scenarios are available:

• ExternalExecutor is a WorkerHandler implementation that is intended for applications that want to
establish direct communication between the worker and the client, where the worker is an external
program located on the remote worker node. This implementation simply closes the connection to the
binder and towards client, and executes a command line string on the worker with arguments provided
by the client. It is up to the external program and the client to reestablish communication, if needed.
For example, the client may inform the worker (using the program invocation parameters) about the
address the worker should connect to.

• ExternalListener is the other WorkerHandler implementation intended for applications that want to
use communication via binder, but the worker is an external program located on the remote WN. This
implementation preserves the connection to the binder and towards client, starts listening on a local
socket, and executes the external program to which it provides an address and the port on which it
is listening as addition to command line arguments. The worker program is expected to connect to
this socket (instead of connecting to the client) and communicate with the client normally using its
own application-defined protocol as if there are no mediators between the worker and client. The client
therefore does not notice any interruption of the communication and can start using the application-
defined protocol after successful execution of ClientConnector.connect() method. Another benefit of
this approach is that all communication will go through the binder. This scenario is useful in cases
when the worker and the client cannot establish direct communication or when there is a need to have
a specific code on the binder itself through which all the data transferred between the client and the
worker will go.

An interesting feature is the ability of users to allocate several worker jobs by using the ClientConnector, not
only from client machines, but also from workers. This way complex dynamic graph of jobs can be implemented,
as shown in Figure 2.2. It is up to the application to orchestrate obtained workers that run in parallel.

3. Conclusion. The described approach will allow applications to use the grid in a new way, with a minimal
additional load on the infrastructure. Users will have improved experience by having immediate availability to
new jobs and the ability to uniformly access jobs from several grid sites using a simple programming model.

Three applications are currently being adapted to use this service, which will help its further evaluation
and improvement. Also, a simplified interface for communication between the processes that use the described
architecture is being implemented.

This research was supported by SEE-GRID-SCI project funded by the European Commission under the
FP7 Research Infrastructures contract no. 211338.
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Abstract. The paper describes system and program metrics used for load balancing algorithms for Java program execution in
the SOAJA (Service Oriented Adaptative Java Applications) executive environment. This environment aims in maintaining design
and execution of large scale computing tasks in complex networked Grid environments. SOAJA services provide means for static
and dynamic load balancing with the use of special metrics obtained by Java object observation. SOAJA comprises mechanisms
and algorithms for automatic placement and adaptation of application objects, in response to evolution of resource availability.
Under control of SOAJA, parallel Java objects can be optimally allocated to Grid nodes before execution and next migrated at
runtime to less loaded nodes to maintain the balance of loads of constituent JVMs. SOAJA mechanisms employ computation power
metrics based on measurements of the idle time of processor nodes and communication bandwidth metrics for network resources
based on statistical assessment of the existing traffic. Due to these mechanisms the granularity of computing and distribution of
the application elements on the Grid platform can be optimally controlled.

Key words: service-oriented architecture, adaptive software, load balancing, grid computing, distributed computing

1. Introduction. The execution of an irregular distributed application usually generates a load imbalance,
which brings down the overall effectiveness of the execution platform. Additionally, in a multi-user Grid context,
the availability of computing resources can notably vary over time. Thus, an optimization subsystem, embedded
in the execution environment (or in the distributed application) is essential.

Load balancing is one of important procedures applied to heuristically optimize execution time of parallel
programs. A general classification and an overview of load balancing methods are presented in [4, 3]. The paper
deals with an asynchronous approach to load balancing, in which the load balancing activities are performed
in parallel with computations. Load balancing can be further divided into static load balancing where an
computational load is partitioned among executive units by an algorithm executed before program execution
and dynamic load balancing, where the load decomposition is adaptively changed during computations, following
the system resources availability.

This paper is concerned equally with static and dynamic load balancing. In Java-based computing on Grid
static load balancing has received relatively small attention. In this paper we present a two phase approach to
load balancing of Java programs execution in Grid. The first phase consists of a static load balancing, which
determines an initial deployment of application Java objects over the network of Java Virtual Machines. This
static load balancing algorithm scenario includes execution of the application for a representative set of data
to be able to detect some static properties concerning computational and communication aspects and to be
able to use this properties for an initial deployment of program elements before execution. This phase of load
balancing is based on tracing of the load of virtual machines and method invocations.

The second phase of the load balancing process is dynamically organized during program execution. It is
based on three basic operations: JVM load observation, detection of the load imbalance and load migration if
the imbalance exists. A dynamic agent approach is used to implement these operations. An observation system
of the execution environment and the distributed application is an important part of dynamic load balancing.
The system observes two areas:

a) the load of different nodes within the platform and the network,
b) the evolution of the applications.

Using the information provided by these observations, several metrics to detect and compute the load imbalance
of processors have been proposed in the paper. They differ from standard measures known in the literature [2].

This paper describes SOAJA overall architecture and then deals with its internal concepts. The rest of the
paper is composed of 5 parts. In the first part the general assumptions for the SOAJA framework are presented.
Part 2 explains the use of web services in SOAJA. Part 3 discusses the relations between web services and
functions of DG-ADAJ. Part 4 describes the load imbalance detection mechanisms in SOAJA. Part 5 describes
the load imbalance correction mechanisms.

∗Computer Science Laboratory of Lille (UMR CNRS 8022), University of Sciences and Technologies of Lille, France
({Richard.Olejnik, Iyad.Alshabani, Bernard.Toursel}@lifl.fr)

†Institute of Computer Science Polish Academy of Sciences, Warsaw, Poland ({laskowsk, tudruj}@ipipan.waw.pl)
‡Polish-Japanese Institute of Information Technology, Warsaw, Poland

419



420 Richard Olejnik et al.

2. SOAJA and ADAJ Frameworks. The SOAJA (Service Oriented Adaptative Java Applications) is
a Java framework, which provides the infrastructure, components and services enabling a platform-independent
execution of complex distributed data mining workflows [7]. It manages data access and resources sharing,
including databases, information systems and hardware resources access. It supports resource discovery and
provides context-aware recommendations for the dynamic composition of data mining operations and workflows.
The underlying agent-based layer of the SOAJA infrastructure provides means to orchestrate very large, het-
erogeneous and dynamic workflows hardware with optimized load balancing across multiple nodes, constituting
the Grid. The main services of the framework are observation, measuring of the JVM load, measuring of the
physical processor load, load balancing service, and parallel data services.

The SOAJA environment is deployed in a Grid infrastructure, provided that an JVM is installed on each
processor node. The SOAJA is the extension of the ADAJ environment to make it scalable on the Grid and to
support service oriented architecture [5].

2.1. General Architecture of ADAJ. The design of distributed programs and optimization of their
performance is not a simple task. Indeed, a programmer must consider construction of its application in the
most effective way, while taking account of heterogeneity of the executive environment. To overcome these
encumbrances, the ADAJ framework has been proposed [1].

ADAJ (Adaptative Distributed Application in Java) is a programming and execution environment for par-
allel and distributed Java applications. Design objectives of ADAJ are as follows: simplifying the programmer’s
work by hiding problems related to the management of parallelism, facilitating the development of applications
and allowing their automatic or quasi-automatic deployment in heterogeneous environments, ensuring effective
implementation of parallelism, by mechanisms of inter- and intra-applications load balancing.

The ADAJ provides mechanisms at middleware level that enable dynamic and automatic adaptation of
computations to the structure of the executive platform and changes in resource availability. ADAJ includes
four major features: a library containing the necessary tools to facilitate parallel programming, an observation
system which scans the environment during its execution and retrieves the information necessary to optimize the
program, a system that calculates the load of JVM and physical processors using the information gathered by the
observation system, a system that allows correcting load imbalance by objects migration based on information
from the observation and the calculation of loads.

Fig. 2.1. ADAJ layered architecture

The ADAJ architecture is based on the multi-layered design pattern. The internal structure of the ADAJ
consists of the following layers (Fig 2.1):

1. distributed programming layer (DPL) — JavaParty
(a) provides a notion of global object (remotely accessible),
(b) provides migration facility (used to move global objects between JVMs),
(c) deploys an application on computing nodes.

2. load balancing layer — ADAJ core
(a) constructs and maintains dynamic relationship graph, based on global objects’ placement and

observation data,
(b) detects load imbalance and instructs local agents to equilibrate the load,
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(c) depends on global objects, migration and deployment infrastructure provided by JavaParty.
3. application layer — Distributed Collections (Fragments)

(a) provides an application construction framework, which supports programmers and eases dis-
tributed application development.

The current implementation of the ADAJ is based on JavaParty [14], which facilitates the usage of RMI
protocol by application programmers. The JavaParty allows execution of distributed Java applications on
workstations connected via a network. JavaParty has introduced the concept of remote objects that can be
distributed in a transparent manner. It compensates for the drawbacks of the RMI protocol because it conceals
the addressing and communication mechanisms. Using JavaParty, it is sufficient to annotate Java classes with
the word remote that will give access to remote objects from any part of an application without publishing
them explicitly in service names space as RMI.

DG-ADAJ is a version of the ADAJ environment implemented for Desktop Grids. Initially, DG-ADAJ was
conceived as an extension of the ADAJ system (see [10]), built for cluster computing. It has been re-engineered
to extend its for larger scale distributed computing and to introduce some special security mechanisms, which
provide reliable application execution in Desktop Grids [12].

2.2. Web Services in SOAJA. SOAJA uses WSRF [9] standard and allows instantiation of statefull
services for applications. The statefullness of services is exploited by the application clients that allows asyn-
chronous communication among software components instantiated for the client on different platforms.

The Fig. 2.2 illustrates the main web services that constitutes the SOAJA environment.

Fig. 2.2. SOAJA environment

Various architectural styles and middleware components can be used for the implementation of a SOA-
based environment. The Enterprise Service Bus (ESB) is a middleware technology which provides the necessary
features with which it is possible to implement SOA. In a typical ESB usage scenario, the ESB layer itself
is deployed over the existing infrastructure. Based on this infrastructure, the ESB layer offers the necessary
support for transport interconnections while it exposes the existing subsystems through a specific set of adapters.
With the help of the ESB as a SOAJA implementation technology, services are exposed in a uniform manner,
using open standards, so that any client, who is able to consume web services over a generic or specific transport,
is able to access them. For example, the SOAJA has been used to implement data mining application in the
WODKA project [11].

SOAJA is a platform developed on top of DG-ADAJ, by adding the web services layer and gaining SOA-
specific properties, Fig 2.3. With computing grid as a main target, the SOAJA platform provides a uniform
and transparent interface to the infrastructure of the DG-ADAJ platform. The SOAJA platform, through its
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Fig. 2.3. SOAJA layered architecture

orchestration layer, provides also a possibility to execute single-cluster applications in the DG-ADAJ environ-
ment [1, 13]. With DG-ADAJ executions controlled via an ESB, the orchestration layer is able to offer both the
support for execution of complex compositions, as well as elementary execution of applications in the underlying
DG-ADAJ environment. This way, the SOAJA environment hides implementation details of different Grid envi-
ronments behind the set of various web services, offering the necessary support for integration, interoperability
and reliable messaging. As a side effect, by employing the orchestration layer, we enable a programming-in-the-
large paradigm necessary to assure the development and support of long living, asynchronous processes.

The SOAJA platform is going to help efficient execution of heterogeneous applications enabled by DG-
ADAJ by offering basic support for workflow deployment and enactment. The DG-ADAJ environment could
thus be freed from some of the placement, distribution and execution tasks, by moving significant parts of these
to the higher layer of the ESB and the enactment environment. With SOAJA, the ability to design component-
based and service oriented applications, developed over the DG-ADAJ platform is extended with the help of
web services open standards, by offering the possibility to access both local and remote components, eventually
deployed on different DG-ADAJ environments.

3. Program execution optimization in SOAJA. Load balancing is the fundamental procedure ap-
plied in order to optimize execution time of parallel programs. In the case of the architecture of the SAOJA
environment, the load balancing is achieved by such a distribution of the application components (objects)
among active Grid nodes that guarantee a possibly high efficiency of the overall application execution. To make
the load balancing effective during the whole run-time of an application, the SOAJA employs equally both
static and dynamic load balancing. This is accomplished by the optimization of the following two aspects of
application execution: initial objects deployment and dynamic load balancing.

3.1. Initial object deployment optimization. An optimization feature of SOAJA is an initial ap-
plication objects deployment on JVMs, which results in a shorter execution time. The initial placement of
application objects to JVMs is the service of the orchestrator shown in Fig. 2.2. The initial object deployment
optimization algorithm follows the pattern of static parallelization method in multithreaded Java program. It
defines decomposition of Java code into parallel threads distributed on a set of JVMs, so as to reduce program
execution time [13]. The control decisions are taken to determine which of the classes should be distributed
and what the mapping of objects and data components (fragments) should be to JVM nodes, to reduce direct
inter-object communication and to balance loads of the JVMs. When applied to an application run under
DG-ADAJ control, it will determine an initial distribution of its objects among Java Virtual Machines (JVMs)
assigned to Grid active nodes, thus leading to a reduction of the total execution time.

The proposed optimization algorithm employs an image of application program, based on an analysis of
the byte code generated by Java compiler. This analysis identifies control dependencies between byte code
instructions. They are represented in adequate MDG (Method Dependence Graph) and MCG (Method Call
Graph) graphs of the program [6, 13]. The number of mutual method calls and the number of thread spawns
during program execution for representative input data are measured using observation mechanisms described
later in the paper. Program behavior, including all created objects in each class, all called methods, as well as
all spawned threads, are registered in trace files.
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begin

↓

(1) Program method and thread dependence graphs are
created. Application is executed using a sample data
set. The number of method calls and thread spawns is
registered.

↓

(2) JVM reservation requests are sent to the Grid. The
number and features of JVMs available for execution of
the application is obtained.

↓

(3) The placement optimization algorithm is performed.

↓

(4) The program is deployed among the reserved Grid
nodes. ”Logical” JVMs are mapped onto physical JVMs
in the Grid. Application objects are placed on Grid re-
served active nodes.

↓

(5) The application is started. In parallel with the ap-
plication, the observation and dynamic object redistri-
bution tool (DG-ADAJ) is run.

↓

end

Fig. 3.1. The control flow of an application execution.

The flow of actions during application execution is shown in the diagram in Fig. 3.1. The first three blocks in
the diagram determine an initial optimized placement of application objects and perform the respective objects
distribution over Grid on JVMs nodes. This part of the algorithm starts with execution of the application using
some representative sample data. For that, the number of available JVMs nodes on the Grid must be known.
The number of method calls and spawned threads that have appeared during execution is recorded. Next, the
program method and thread dependence graphs are annotated with the recorded data.

At the beginning of the object deployment optimization algorithm we treat all objects as remote objects
(respectively all classes are distributed classes). Based on the recorded control data, the algorithm decides which
classes should remain distributed and how the involved objects should be placed on a set of JVMs assigned
to active nodes on the Grid. We use the heuristics based on the following principles: the strong locality of
method calls has to be preserved inside each parallel thread and the number of inter-thread calls, which cross
the boundaries of JVMs has to be reduced. To fulfill such object requirements we designate all calls inside a
single thread to the same JVM and optimize distribution of threads across available sets of JVMs by applying
load balancing methods.

The algorithm consists of two phases (see [6] for details). In the first phase the MCG graph is traversed
in the DFS (Deep-First-Search) manner to agglomerate method calls executed in single thread. In this step,
the algorithm finds the MCG subgraphs, which are constructed of vertices connected by edges connecting calls
inside threads. We assume that each subgraph is executed on a dedicated JVM. Subgraphs are built at the level
of single objects. In case when an object belongs to different subgraphs, the new subgraph is constructed and
a unique JVM number is assigned to it. We expect that, in most cases, at the end of this phase, the number of
found subgraphs is far bigger than the number of available JVMs in the system.

In the second phase of the algorithm, we clusterize the subgraphs obtained in the previous phase un-
til the number of clusters is equal to the number of JVMs. The general outline of this phase is similar
to Sarkar’s [15] edge-zeroing clustering heuristics. At each clustering step, the algorithm finds the sub-
graphs, which are connected by edges with the biggest weight value and which connect nodes placed on
different JVMs. All nodes of those subgraphs are assigned to the same JVM while the total number of re-
mote calls decreases. The algorithm stops when the number of clusters is equal to the assumed number of
JVMs.
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The first phase of the algorithm makes that method calls inside programmer-declared threads are local to
the JVM. This allows exploiting thread level parallelism without introducing large inter-JVM communication
overheads. The gain of the second step of the heuristics comes from reduction of RMI calls to remote objects.

3.2. Load balancing strategy. The workstations used in the network are heterogeneous, but they have
different and variable computing capabilities over time. The load imbalance occurs when the differences in
workload between the workstations become too big. An application execution may not be optimal because
some workstations have too much work and the others have not enough. Let’s consider that the network works
correctly and that the DG-ADAJ environment is running. We distinguish two main steps in load balancing:
detection of imbalance and its correction, if necessary. The first step uses measurement tools to know the
functional state of workstations. The second consists in migrating of the load from overloaded workstations to
underloaded workstations in order to balance the workload.

The observation mechanism of applications in the DG-ADAJ environment aims at providing knowledge of
the applications behavior during their execution. This knowledge is gathered by observing activity of constituent
objects.

There are two types of objects in DG-ADAJ (Fig. 3.2):

global objects These are global objects that can be created remotely in any JVM. They are remote accessible.
There is only one copy of a global object in all environment. The global objects are also migratable,
i. e. they can be moved from one JVM to another.

local objects These objects are traditional Java objects. They can be used in only one JVM at the place where
they reside. If another JVM needs such object, it will create of a new copy of the object concerned.
Obviously, local objects cannot be migrated.

We observe only global objects as the observation and migration of all objects would generate a considerable
work overhead compared to the profits brought by load balancing.

Fig. 3.2. Relations between objects

4. Detection of load imbalance. In this first phase, the purpose is to obtain knowledge about of the
functional state of workstations composing the cluster. As the environment is heterogeneous, it is necessary to
know not only the load of workstations but also their working capabilities. Such capability is directly related
to the workstation computing power, so we have to estimate it. This measurement needs to be made only once
when the workstation joins the system. We call it the calibration in this paper.

We then need the workstations workload measurement at a given time. For this purpose, we observe this
part of the CPU time that is used by DG-ADAJ applications. However, such measurement is not normalized
and cannot serve for comparisons between different workstations. It is thus necessary to balance it against
different computing power of the workstations. After a series of measures, we compare the values found on
different machines and we determine if there is a load imbalance.

The heterogeneity disallows us to compare measurements taken on workstations whose computing powers
are different. Before we are able to compare the workstations load, we have to normalize the measurements.
The normalization of the workloads is made by means of the power indications. After experiments to determine
the workstation power, we found that the formula, which allows us to compare the workstations load is the
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product of the power index and the CPU time use rate by a thread, which gives the availability index of a CPU:

Indavailability = Indpower ∗%T imeCPU

At this point, we have availability indices of all workstations. By comparing these indices, we will be able
to detect the load imbalance. An imbalance is characterized by too big dispersion of the availability indices of
workstations composing the network. It is difficult to fix a threshold not to be overpassed to characterize a load
imbalance. But we can define an interval in which the dispersion of the availability indices remains acceptable
at a given moment. We are going to be interested in the gap between the minimal and maximal availability
indices found during a series of measures. If the distance between these values is too big, we conclude that there
is a load imbalance, which can to be considered using the following condition:

Stability = (max(Indavailability) ≤ α ∗min(Indavailability))

If this inequality is verified, the availability indices are close enough not to present a too big imbalance.
Otherwise, the range of the values is too big and an imbalance of workload between workstations is detected.
The central point of this inequality is the value taken by the coefficient α. We tried to clarify it first by using
statistical tools then by using an experimental way. We cannot finally give a unique value for this coefficient.
Nevertheless, we can restrict its value to the interval [1.5 . . . 2.5]. These experimental values give good results
because they are neither too restrictive nor too tolerant for the load imbalance.

The tolerance for the load imbalance among all workstations depends directly on the value of the coeffi-
cient α. The smaller this coefficient is, the more we are demanding as to the load balance between workstations.
Indeed, a low coefficient allows only a small difference between loads of workstations. This can be seen as a
guarantee of the quality of the balancing results. However, a low tolerance of the imbalance leads to much
more frequent detection of the imbalance. The consequence is to activate the mechanism of load balancing
more frequently and therefore make it more expensive in time. Not only the migrated objects can not do their
computing, but they can also block the execution of others objects, which are awaiting results. In addition, the
coefficient α is to be chosen according to the number of machines in the network. When this number is big, the
coefficient must be increased and vise versa.

5. Correction of load imbalance. In this phase, we are in the state in which a load imbalance has been
detected. To correct this imbalance, we have to classify the workstations into three categories according to their
availability index:

1. Overloaded workstations: availability indices are low,
2. Normally loaded workstations: availability indices are medium,
3. Underloaded workstations: availability indices are high.

The purpose of the load balancing is to transform the workstations categories: overloaded and underloaded
into the category normally loaded. To do it, we need to migrate the workstations load from the first category
to the third one.

5.1. Classification of workstations. We use the K-Means algorithm [8] to build the categories of work-
stations based on the computed availability indices. The K-Means algorithm allows to classify a distribution of
n values into k categories by choosing k centers for categories. We want to classify workstations into the cate-
gories: overloaded, normally loaded and underloaded. For this, we use this algorithm by taking the computed
availability indices and k = 3, to obtain 3 categories finally.

The three centers that we choose are the minimum, average and maximum availability indices. The average
index is simply the average of indices measured during the last series of measures over the whole network.
By comparing the distances of workstations availability indices from the three centers, the three categories of
workstations will be identified. The center represented by the minimum index builds the category of overloaded
workstations, the center using the average one builds the category of normally loaded workstations and finally the
center based on the maximum index is used to build the category of underloaded workstations. The important
thing is therefore to have the overloaded and underloaded categories in order to be able to move the load from
the overloaded workstations to the underloaded workstations.

5.2. Choice of candidates for migration. To correct load imbalance, we have to migrate the load
from overloaded workstations to underloaded workstations. Firstly, we must identify the load that we want to
migrate. The loads are represented by the activities of the objects which are running on the JVMs. We need
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to select an object on each JVM in the overloaded nodes. Let’s see how to choose such an object, so that its
migration changes the load balance in the network.

The migrated entity is necessarily a global object because it is not intrinsically linked to the JVM on which
it currently runs. Among the global objects in a JVM, some of them have more suitable characteristics to be
migrated. These characteristics are related with the other computer objects and the load quantity carried out.
Two relations are involved:
a) the attraction of a global object to the JVM,
b) the weight of the global object.

The attraction of a global object to a JVM is expressed in terms of communication links, which it shares
with other global objects inside the same JVM on the computing node. A strong attraction involves frequent
communication, which will be realized as remote communication after object migration. This communication
will then have a higher cost than the current cost. A small attraction will permit to leave a global object the
current computing node and to run it on another one, without introducing significant amount of additional
remote communication. So, the less the object is attracted by the current JVM, the more interesting it is to be
selected as a migration candidate.

The computational weight of migrated global object gives the quantity of load to be removed from the
current machine. An object, whose quantity of work is big i. e. shows a continuous activity, should not be
migrated. In addition, by migrating a too big quantity of work (load), we could reverse the role of the involved
machines (the source will become target and vice-versa). In contrast, the migration of an object with small
quantity of a work does not bring significant load variation improvements. Furthermore, the migration cost will
not be compensated with the new generated load distribution. In conclusion, the decision should be to move an
object whose quantity of work is neither too big, nor too small. Thus, the smaller the distance is to the average
object loads, the more the object is interesting for migration.

The observation of the objects activity is done by counting the activation methods. These activations can
be done by global or local objects. The observation of a global object (only these objects are observable),
includes (see Fig. 3.2):

1. observation of object invocations to each global object, including him: OGI (OutputGlobalInvocation),
2. the observation of object invocations to all local objects: OLI (OutputLocalInvocation),
3. the observation of others objects invocations to the considered object: II (InputInvocation).

The attraction of the global object obj to the actual JVM:

attr(obj) =
∑

o∈JVM

(OGI(obj, o) +OGI(o, obj))

Distance compared to the average quantity of work of the obj:

distmWP
(obj) = |WPobj −mWP |

Where mWP =
∑

o∈JV M
WPobj

n
(n is the number of global objects on the JVM) and

WPobj = OGI(obj, obj) + II(obj) +OLI(obj)

These formulas allow to compute the attraction of an object to the local JVM in order to compare it with
the attractions of other objects of this JVM. The comparison formulas are:

1. Global attraction measure:

%attr(obj) =
attr(obj)∑

o∈JVM attr(o)

2. Migration distance, compared to the average quantity of work of the object:

%distmWP
(obj) =

distmWP
(obj)∑

o∈JVM distmWP
(o)

The most interesting object to migrate is selected based on the weighted sum of these relations:

Classification(obj) =

αattr ∗%attr(obj) + (1− αattr) ∗%distmWP
(obj)

αattr is a real between 0 and 1. Its choice remains experimental. Let us notice however that the bigger
αattr is, the bigger is the weight of the object attraction.
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5.3. Selection of the target for migration. The migration of global objects reduces the load of a JVM
running on an overloaded workstation and therefore the global load cost of this workstation. The question now
is: where migrate these objects? Naturally, the potential destinations are one or more underloaded workstations.
However, the choice of one of these computing nodes can be more or less convenient from the point of view of
work and communication quantity of the object to migrate. For an object selected for migration, we must find
the best target according to these criteria.

The first criterion to quality as a target is the attraction of the selected object to this workstation. We say
that the attraction of an object—candidate for migration, is big when it communicates a lot with the global
objects in the target JVM. A relationship of attraction of the global object obj to JVMi is defined as follows:

attrexti =
∑

objext∈JVM i

(OGI(objext, obj) +OGI(obj, objext))

The more the object is externally attracted by an underloaded machine, the more it is interesting that this
machine is chosen as a migration destination for it. This criterion should not be the only one during selection of
target for migration. In fact, it is possible that two underloaded workstations have the same amount of commu-
nication with the candidate for migration. In this case, the second criterion will be the workstations’ availability
indices. We naturally prefer the one whose availability index is the highest, because it is actually the least loaded.

To complete discussion of the criteria for choosing a target for migration, we should take into account the
number of (waiting) threads in the JVM of the potential targets. We consider them, however, as potential load,
which must be taken under consideration with the related load currently done on the machine.

These three points are obvious constraints to be met by the target machine:
1. the external attraction of the object is maximal to the target machine,
2. the quantity of work on the target machine is minimal,
3. the number of waiting Java threads is minimal.

These three conditions are gathered in a formula in order to designate the underloaded workstation, which
is the most favorable for the selected object migration. Firstly, we have to normalize all the values related in
the interval [0 . . . 1]. We then obtain:

%attrexti =
attrexti∑
j attrextj

%Ind∗availabilityi
=

Ind∗availabilityi∑
j Ind

∗
availabilityj

where

Ind∗availability =

Indavailability − Indavailability ∗ NbThreadwait

NbThreadtotal
.

The availability index was corrected by the potential work of the workstation, represented by the waiting
threads. We have not considered this index during the classification of workstations into three categories,
because we want to classify workstations according to their measured quantity of work and not a potential one.
Indeed, threads waiting must be seen as supplementary work about which we know nothing. They may start
executing in one second quite well as in one hour. Their consideration is thus justified only when we want to
examine our measurements in perspective as it is the case here. We thus chose to decrease the raw indication
of availability by means of the relationship between the number of waiting threads and the total number of
threads staying in the machine.

The aggregation function should account for the two described components by giving them different weights.
The balanced sum of them is:

Qualityi = αq ∗%attrexti + βq ∗%Ind∗availabilityi

with αq and βq ∈ [0 . . . 1].
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For an object which is a candidate for migration, this formula is applied to all JVM potential node targets.
The workstation which maximizes this sum will be chosen as new location for the object. The choice of
coefficients αq and βq is experimental but the sum of the two must be equal to 1 (it was therefore αq = 1− βq).
The weight of one or the other value can be increased by changing these coefficients. The migration of the object
allows to eliminate communication on the network and to reduce considerably the waiting time for replies. For
that purpose, the coefficient αq must be the most important to promote the machines for which the attraction
of the object is maximal. For example, we can use the coefficients αq = 0.6 and βq = 0.4.

6. Conclusions. The paper has described a run-time environment SOAJA for Java program execution
optimization to provide load balancing of JVMs implemented on the Grid platform. The SOAJA mechanisms
first adjust the initial parallelization granularity and placement of the application program elements on JVMs.
Then, the objects distribution is adjusted to the evolution of the availability of system resources at run time
by object migration. To optimize the initial object deployment and JVMs load balancing the SOAJA infras-
tructure applies system and program metrics obtained by its special observation mechanisms. They are used
by components and services to enable static and dynamic load balancing of the nodes of a Grid. The system is
currently under implementation inside the GRID 5000 project.
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PERFORMANCE STUDY OF THE FIRST THREE INTEL MULTICORE PROCESSORS

AMI MAROWKA∗

Abstract. The transition from sequential computing to parallel computing represents the next turning point in the way
software engineers design and write software. This paradigm shift leads the integration of parallel programming standards for
high-end shared-memory machine architectures into desktop programming environments. In this paper we present a performance
study of these new systems. We evaluate the performance of an OpenMP shared-memory programming model that is integrated
into Microsoft Visual Studio C++ 2005 and Intel C++ compilers on a multicore processor. We benchmarked using the NAS
OpenMP high-level applications benchmarks and the EPCC OpenMP low-level benchmarks. We report the basic timings and
runtime profiles of each benchmark and analyze the running results.

Key words: multicore, openMP, NPB, micro-benchmarks

1. Introduction. For many years parallel computers have been used only by an exclusive scientific niche.
Only universities and research institutions backed by government budgets or funded by multi-billion-dollar com-
panies could afford to purchase state-of-the-art parallel machines. Multiprocessor machines are very expensive
and demand expertise in system administration and programming skills. Parallel computing therefore remains
a specialized field of an exclusive community.

Now, two complementary technologies bring parallel computing to the desktop. On the hardware side is the
multicore processor for desktop computers, and on the software side is the integration of the OpenMP parallel
programming model into Microsoft Visual C++ 2005. These technologies promise massive exposure to parallel
computing that nobody can ignore, thus making a technology shift unavoidable.

The dual-core processors first appeared on the market six years ago [1]. The chip makers Sun and IBM were
the first: Sun introduced the Microprocessor Architecture for Java Computing and IBM launched the Power 4
dual-core processor. These processors, like their predecessors, were expensive and optimized for special-purpose
computing with intensive tasks running on high-end servers. The greatest change came with the dual-core
processors that AMD and Intel launched in 2005. Designed for desktop computers, these processors caused
prices to drop; thus, a desktop computer with a dual-core processor can now be bought for less than $500. This
price is affordable for students and computer science departments alike. But dual-core processors are only the
beginning. The chip makers are now working on the next generation of multicore processors that will contain
4, 8, and 16 cores on a single die. Unfortunately, writing a parallel code is more complex than writing a serial
code [2]. Parallel programming is extremely difficult. This is where the OpenMP programming model comes
into the picture [3]. OpenMP helps developers to create multithreaded applications more easily while retaining
the look and feel of serial programming.

The extra development effort and code complexity of parallel programming give rise to an obvious question–
Is it worthwhile? The best way to answer this question is by benchmarking. This paper presents a performance
study of OpenMP shared-memory programming model [3] that was integrated into Microsoft Visual Studio
C++ 2005 and Intel C++ compilers on multicore processors. The benchmarking was conducted using the NAS
OpenMP parallel benchmark suite [4] with different sizes of input classes, and the EPCC OpenMP directives
benchmarks [7, 12]. We report the basic timings and runtime profiles of each benchmark and analyze the
running results. A preliminary conference version paper of the study presented in this paper is [14]. This paper
presents a completed study and includes details and materials that have been studied since the first version,
such as related-works section; more tables and figures; more detailed tables and figures; benchmarking of Intel
Quad-core machine; and clearer presentation of comparison between different architectures by clock cycles.

The rest of this paper is organized as follows. Section 2 presents related work. In Sections 3, 4, and 5 we
provide brief overviews of the OpenMP, NPB benchmarks, and EPCC micro-benchmarks respectively. Section
6 is an in-depth analysis of the benchmarks results and Section 7 presents our conclusions.

2. Related Work. Multicore processors are ubiquitous and therefore they are studied intensively from
many aspects. Many chipmakers offer today multicore processors with different architectures. The work pre-
sented in this paper covers the first generations of multicore processors from Intel. The performances of these
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processors are compared by using OpenMP NPB benchmarks and the EPCCmicro-benchmarks on MSWindows
operating system.

Chunhua Liao et al [15] reported on experiments of OpenMP on Sun Fire V490 with Chip Multiprocessing
(Solaris 10 operating system) and a Dell Precision 450 workstation with Simultaneous MultiThreading(SMT)
technology (Linux kernel 2.6.3 SMP(Symmetric Multi-Processor) operating system). For this study they used
EPCCMicrobenchmark suite, subsets of the benchmarks in SPEC OMPM2001 and the NAS parallel benchmark
3.0 suites. The main conclusions of this study are that a straightforward OpenMP implementation for traditional
SMP architecture may not achieve good scalability on the Xeon system because of memory bandwidth bottleneck
and competition for the shared computing resources. They found that a HyperThreading-aware OS is important
for maintaining load balance and efficiently utilizing the resources of an SMT system and that the EPCC micro-
benchmarks results also indicated that the overhead of OpenMP synchronization implementation in a SMT
system is higher than that in an SMP system.

Kent Milfeld et al [16] studied the performance of two dual-core processors, Intel dual-core Woodcrest
(RedHat OS) and AMD dual-core Opteron (SuSE OS). In this work the costs of creating Pthreads and OpenMP
thread were investigated and the performance of thread/process scheduling and affinity in multi-cache systems
and the thread synchronization methods and costs were evaluated. Also, the L2 Cache Characteristics (latency)
and the impact of a large-page memory on the performance of four NPB-MPI benchmarks were studied. The
main conclusions of the authors are that applications need to be optimized for CLP, but it is still uncertain
which cache system, independent or shared, will be best. Moreover, shared L2 cache suffers from contention and
low level synchronization methods for multiple cores and thus will need to be implemented in thread control at
the user-program level to assure locality of the data. Nevertheless, independent cache systems are contention
free at the L2 cache level, and are probably more ideal for MPI codes, which employ non-shared paradigms.

Furlinger Karl et al [17] studied the scalability characteristics of medium and large variants of the SPEC
OpenMP benchmarks on large-scale shared memory multiprocessor machines using their own OpenMP profiling
tool, ompP. The experiments were conducted on 2 to 32 processors on a 32 processor SGI Alitx 3700 with
the medium variant while the large variant were tested on 32 to 128 processors, with increments of 16, of
a larger Altix 4700 machine. Four overheads categories used to evaluate the scalability: (S) corresponds to
synchronization overhead, (I) represents overhead due to imbalance, (L) denotes limited parallelism overhead
and (M) signals thread management overhead. The results show that 4 of 7 medium applications and 3 of 5
large applications achieved poor scalability due to load imbalance, thread management overhead, and small
parallel loops.

Grant and Afsahi [18] studied the optimal operating configuration of Hybrid chip multithreaded SMPs
for scientific applications and to identify the shared resources that might become a bottleneck to performance
under the different hardware configurations. The authors investigated a two-way dual-core Hyper-Threaded
(HT) Intel Xeon SMP server under single program and multi-program multithreaded workloads using the NAS
OpenMP benchmark suite. The experiments were conducted on a Dell PowerEdge 2850 SMP server with Red
Hat Linux Enterprise WS 4.1 distribution with Kernel 2.6.9-11 while LMbench tool used for measuring the L1,
L2, and main memory latencies of the processor. The performance results indicate that in the single-program
case, the CMP-based SMP and CMT-based SMP configurations have the highest average speedup across all
of the applications. The most efficient architecture is a single HT-enabled dual-core processor that is almost
comparable to the performance of a 2-way dual-core HT disabled system.

Curtis-Maury et al [19] evaluated the performance of OpenMP applications on simulated CMP and SMT
architectures using Simics simulation platform. The simulations evaluated the performance of NAS Parallel
Benchmarks suite. The authors found that the high level of resource sharing in SMTs results in performance
complications, should more than 1 thread be assigned on a single physical processor. CMPs, on the other hand,
are an attractive alternative. Their results show that the exploitation of the multiple processor cores on each
chip results in significant performance benefits. Moreover, the execution of multiple threads on each processor is
more efficient and predictable on CMPs than it is on SMTs due to the higher degree of resource isolation, which
results in fewer conflicts between threads co-executing on the same processor. Although adaptive run-time
techniques can improve the performance of OpenMP applications on SMTs, inherent architectural bottlenecks
hinder the efficient exploitation of these processors.

3. OpenMP Programming Model. OpenMP is a tool for writing multi-threaded applications in a
shared memory environment [3]. It consists of a set of compiler directives and library routines. The compiler
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generates a multi-threaded code based on the specified directives. OpenMP is essentially a comparatively recent
standardization SMP (Symmetric Multi-Processor) development and practice. By using OpenMP, it is relatively
easy to create parallel applications in FORTRAN, C, and C++. Compiler and third party applications support
is becoming more common.

An OpenMP program begins with a single thread of execution called the master thread. The master thread
spawns teams of threads in response to OpenMP directives, which perform work in parallel. Parallelism is thus
added incrementally: the serial program evolves into a parallel one. OpenMP directives are inserted at key
locations in the source code. These directives take the form of comments in FORTRAN and pragmas in C
and C++. The compiler interprets the directives and creates the necessary code to parallelize the indicated
tasks/regions. The parallel region is the basic construct that creates a team of threads and initiates parallel
execution. Most OpenMP directives apply to structured blocks, which are blocks of code with one entry point
at the top and one exit point at the bottom. The number of threads created when entering parallel regions is
controlled by the value of the environment variable OMP NUM THREADS. The number of threads can also
be set by a function call from within the program, which takes precedence over the environment variable. It is
possible to vary the number of threads created in subsequent parallel regions. Each thread executes the block
of code enclosed by the parallel region.

In general, there is no synchronization between threads. Different threads may reach the end of the parallel
region at different times. OpenMP does provide constructs for synchronization, but the code should not be
written in such a way that its output depends upon different threads executing statements at particular times.
OpenMP provides a number of constructs for thread synchronization and coordination, among them critical,
atomic, barrier, and master. These are sufficient for many needs, but OpenMP also provides a set of runtime
thread-locking functions that can be used for fine control. When all threads reach the end of the parallel region,
all but the master thread go out of existence and the master continues alone. The OpenMP directive clauses—
Private, Shared, and Default—control whether the listed variables are shared among different threads or are
private (local) to each thread.

OpenMP provides several constructs for sharing work among threads in a team. These are: Parallel for/do,
Parallel Sections, Workshare, and Single directive. These constructs are placed inside an existing parallel
region. The result is to distribute execution of associated statements among the existing threads. A number
of environmental variables may be set to control aspects of OpenMP execution; for example, the number of
threads, loop scheduling, and the enabling of nested parallelism and dynamic adjustment of the number of
threads.

OpenMP also provides a number of routines that may be called from within one’s code. These may be used
to get and set the number of threads, enable or disable dynamic thread allocation, check whether the code is
executing in parallel, etc. Changes in the runtime environment made by these routines take precedence over
the corresponding environment variables.

4. NAS Parallel Benchmark. We used the NPB OpenMP-C benchmark suite, based on NPB 2.3-serial
version, to evaluate the OpenMP performance on our multicore machines. Since the official OpenMP version
of the NBP benchmarks from NASA is written only in FORTRAN we used the NPB OpenMP-C version that
was developed as part of the Omni project [6]. The NAS Parallel Benchmarks (NPB) [4, 5] was devised by the
Numerical Aerodynamic Simulation Program of NASA for the performance analysis of highly parallel computers.
The NPB are valuable since they are rigorous and close to real-life needed applications. The NPB consist of five
kernels and three simulated applications. They all compute or simulate different algorithmic and computational
aspects of aerodynamic applications. For most of the kernels it is possible to select the problem size. Sometimes
the problem sizes are called: Class S or T (12x12x12), Class W (24x24x24), and Class A 64x64x64).

The following is a brief description of the five kernels we used in our work.

Kernel EP. In the embarrassing parallel benchmark, two-dimensional statistics are accumulated from a
large number of Gaussian pseudo-random numbers, which are generated according to a particular scheme that
is well suited for parallel computation.

Kernel MG. The MG (Multi-grid) benchmark is a simplified multi-grid kernel, which solves a 3-D Poisson
PDE. The Class W problem uses the same size grid as Class S but has a greater number of inner loop iterations.

Kernel CG. In the CG (Conjugate Gradient) benchmark, a conjugate gradient method is used to compute
an approximation to the smallest eigen value of a large, sparse, symmetric positive definite matrix. This kernel
is typical of unstructured grid computations applications.
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Table 5.1

The Tested Multicore Machines

Platform No. of Cores Clock(GHz) L1 Cache L2 Cache Memory

Intel Pentium D 820 2 2.8 2x16KB 2x1MB 512MB
Intel Core 2 Duo E6300 2 1.86 2x32KB 1x2MB 1GB
Intel Core 2 Quad Q6600 4 2.4 4x32KB 2x2MB 512MB

Kernel FT. In the FT (3-D FFT PDE) benchmark, a 3-D partial differential equation is solved using
FFTs. This kernel performs the essence of many spectral methods. This benchmark is somewhat unique in
that computational library routines may be legally employed.

Kernel IS. The IS (Integer Sort) benchmark tests a sorting operation that is important in particle method
codes. This type of application is similar to particle-in-cell applications of physics, wherein particles are assigned
to cells and may drift out. The sorting operation is used to reassign particles to the appropriate cells.

The three simulated applications we used are as follows.

BT is a simulated CFD application that uses an implicit algorithm to solve 3-dimensional (3-D) compressible
Navier-Stokes equations. The finite differences solution to the problem is based on an Alternating Direction
Implicit (ADI) approximate factorization that decouples the x, y, and z dimensions. The resulting systems are
Block-Tridiagonal of 5x5 blocks and are solved sequentially along each dimension.

SP is a simulated CFD application that has a similar structure to BT. The finite differences solution to
the problem is based on a Beam-Warming approximate factorization that decouples the x, y, and z dimensions.
The resulting system has Scalar Pentadiagonal bands of linear equations that are solved sequentially along each
dimension.

LU is a simulated CFD application that uses the symmetric successive over-relaxation (SSOR) method to
solve a seven-block-diagonal system resulting from finite-difference discretization of the Navier-Stokes equations
in 3-D by splitting it into block Lower and Upper triangular systems.

5. EPCC Microbenchmarks. The EPCC micro-benchmark suite is a set of benchmarks that measure
the overhead incurred by OpenMP compiler directives of a specific OpenMP implementation [7, 12]. Three
classes of overhead can be measured by the EPCC micro-benchmark suite: synchronization, loop scheduling,
and array operations. The current release supports the OpenMP 2.0 standard. The overhead cost incurred by a
specific compiler directive is measured by comparing the sequential execution time of a section code containing
the compiler directive, and the parallel execution time of the same code. The measurements are repeated a few
times for statistical stability. By using the EPCCmicro-benchmark, the developer is able to compare the relative
efficiency of different implementations of OpenMP running on the same platform; choose the more efficient
construct of two semantically equivalent; and predict the overall performance of an application. Although there
are other tools in the market that were developed for similar purposes as EPCC, such as ompP [10] that performs
overhead analysis, and Sphinx [13], EPCC software is considered the de-facto standard of its kind.

6. Experimental Results. We tested the performance of the EPCC micro-benchmarks and the NAS
OpenMP kernels and applications on multicore machines. The list of the tested platforms is shown in Table
1. On the software side we used the OpenMP version 2.0 of Intel C++ OpenMP compiler 11.0 under the XP
operating system. All the benchmarks were also compiled by Microsoft Visual Studio C++ 2005 and evaluated
on the above multicore machines. However, the differences between the results obtained by using the Microsoft
and Intel compilers are negligible, so they are not shown here. Only the results obtained by Intel compiler
are shown here. All the measurements shown are in units of Kilo-Clock-Cycles (KCC) and Giga-Clock-Cycles
(GCC) for better comparison between different machine architectures. KCC is thousands of clock-cycles per
second and GCC is billions of clock-cycles per second.

First, we measured the overhead cost of the OpenMP directives by using the EPCC micro-benchmarks. In
general, it is an important practice to start parallel application benchmarks by examining the overhead incurred
by the primitive parallelism functions used by the parallel programming model on the testbed machine. This
way the programmer has a priori knowledge of the effects of various possible overhead sources on the total
performance of the applications. Tables 2-6 and figures 1-5 show results measured on the Intel Pentium D, Intel
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Table 6.1

Synchronization overheads(in KCC) of 1, 2 and 4 threads on Pentium D, Core 2 Duo and Core 2 Quad machines

Pentium D Core 2 Duo Core 2 Quad
Num of Threads 1 2 4 1 2 4 1 2 4

Parallel 2.8 37.3 234 1.3 16.1 65 1.2 46.6 45.2
for 0.2 14.5 292 0.1 6.2 65 0.1 11.1 12.2

Parallel-for 2.9 39.4 221 1.3 15.1 64 1.3 48 45.5
Barrier 0.2 14.0 288 0.01 6.2 63 0.02 10.9 11.7
Single 0.1 9.6 266 0.09 5.3 2.0 0.07 11.9 11.4
Critical 0.2 1.0 2.0 0.13 0.93 0.5 1.2 1.0 14.4

Lock-Unlock 0.2 1.4 2.5 0.16 0.93 0.8 1.3 1.8 10.6
Ordered 0.5 27.1 27.1 0.24 10.7 15.0 0.25 23.5 20.3
Atomic 0.1 0.3 0.4 0.07 0.22 0.20 0.07 0.3 1.0

Reduction 3.0 40.2 260 0.13 16.1 17.0 1.2 50 52

Core 2 Duo and Intel Core 2 Quad machines while running EPCC micro-benchmarks compiled by Intel C++
compiler 9.1.

Table 2 shows the OpenMP synchronization overheads measured by running the EPCC micro-benchmarks
with 1, 2 and 4 threads. Figure 1 is a bar chart of the OpenMP synchronization overheads measured by running
the EPCC micro-benchmarks with two threads. First, it can be observed from figure 1 that the overhead cost
is less than 50K cycles in all the cases. This low overhead has a negligible effect on the NAS applications
performance that will be discussed later. Second, the OpenMP directive overheads on the Intel Core 2 Duo
are up to 50% less than the overheads incurred by the directives on the Intel Pentium D and the Intel Core 2
Quad. This improvement is mainly due to the shared L2 cache memory architecture of the Intel Core 2 Duo
processor compared to the distributed L2 cache memory of the Intel Pentium D. The Intel Core 2 Quad processor
contains two separate pairs of dual-core with shared L2 cache each. However, when two threads are spawned,
the operating system maps each one of them to a different pair of dual-core. The physical separation of four
cores to two pair of dual-core is the cause of the increase in the synchronization costs as shown in figure 1 and
Table 2. On the other hand, when four threads are invoked on a quad-core processor, the operating system
maps each one of the four threads to a different core and thus there is no competition between the threads
on the available cores. The result is less overhead due to better scheduling as can be shown in Table 2. For
example, the barrier synchronization overheads on the Intel Pentium D and the Intel Core 2 Duo (which are
dual-core processors) with four threads are 288 KCC and 63 KCC respectively, while the barrier synchronization
overhead on the Intel Core 2 Quad with four threads is only 11.7 KCC. We will elaborate on these architectures
later. Third, the overhead of a single core is relatively high. Thus, it is better for single threaded applications
to be compiled with the OpenMP option set to off.

Further analysis of the results leads to the following conclusions: the combined directive Parallel-For is
more efficiently used than the Parallel and the For directives, which are used separately; it costs less to use
the Critical directive than to use the Lock-Unlock pair directives; the Barrier and the Single directives have a
relatively low overhead; the Order and the Reduction clauses have relatively high costs, as can be expected; and,
finally, the overhead of the Atomic directive is negligible and thus is recommended for use, where it is possible,
instead of the Critical or the Lock-Unlock directives. We omit the discussion on scalability with respect to the
number of cores because it is useless to do such an analysis when the machines have only two and four cores.

Table 3 shows the Array (or privatization) overheads of four clauses: Private, Firstprivate, CopyPrivate,
and Copyin for 1, 2 and 4 threads on the tested machines and figure 2 is a bar chart of the results for the case of
two threads. First, it can be observed again that the Intel Core 2 Duo processor presents lower overheads than
the Pentium D and the Core 2 Quad processors when using two threads. However, when using four threads the
Intel Core 2 Quad processor is more efficient. For example, to access a private array on the Intel Pentium D and
the Intel Core 2 Duo with four threads costs 160 KCC and 98 KCC respectively, while it costs only 36.2 KCC on
the Intel Core 2 Quad with four threads. Moreover, the results show that the Private, Firstprivate, and Copyin
clauses are incurred acceptable overhead costs for the array allocation process. The CopyPrivate demonstrates
excellent performance and a negligible overhead cost that enables super-efficient inter-threads communication.
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Table 6.2

Array privatization overheads(in KCC) of 1, 2 and 4 threads on Pentium D, Core 2 Duo and Core 2 Quad machines.

Pentium D Core 2 Duo Core 2 Quad
Num of Threads 1 2 4 1 2 4 1 2 4

Private 2.85 37.9 160 2.0 22.8 98 1.4 52 36.2
FirstPrivate 2.8 44.4 274 2.0 22.4 100 1.4 53.9 35.7
CopyPrivate 0.2 0.28 0.28 0.05 0.08 0.05 0.05 0.08 0.05

CopyIn 2.8 51.1 211 2.0 24.0 102 1.5 52.9 100

Table 6.3

OpenMP Loop Scheduling overheads (in KCC) of 1, 2 and 4 threads on Intel Pentium D machine.

Threads Pentium D
Chunk size 1 2 4 8 16 32 64 128

Static 1 0.8 0.2 0.05 0.2 0.03 0.06 0.05 0.05
2 16.8 15.3 18.6 20.5 15.6 21 15.2 15
4 294 290 296 294 292 292 292 292

Dynamic 1 25 12 8.6 6.3 3.7 3.1 2.6 1.8
2 92 50 40 30 25 23 20 19
4 425 352 327 308 300 294 288 282

Guided 1 0.22 2.5 2.4 2.2 2.3 1.8 2.3 2.4
2 27 25 24 23 22 23 19 18
4 305 302 300 300 297 296 295 294

Table 6.4

OpenMP Loop Scheduling overheads (in KCC) of 1, 2 and 4 threads on Intel Core 2 Duo machine.

Threads Core 2 Duo
Chunk size 1 2 4 8 16 32 64 128

Static 1 0.07 1.54 1.8 1.9 2.0 2.5 3.0 4.0
2 7.4 6.2 6.2 6.4 7.5 7.5 6.0 6.2
4 74 74 74 74 74 74 74 74

Dynamic 1 16.0 8.0 4.0 2.0 1.2 2.7 0.65 0.55
2 39 21 15 12 10 8.7 8.2 8.7
4 138 104 87 81 79 74 72 72

Guided 1 0.5 0.5 0.5 1.3 0.5 0.5 0.5 0.94
2 10 8.7 9.6 9.3 8.2 7.5 7.5 7.5
4 80 80 80 79 80 80 80 80

Table 6.5

OpenMP Loop Scheduling overheads (in KCC) of 1, 2 and 4 threads on Intel Core 2 Quad machine.

Threads Core 2 Quad
Chunk size 1 2 4 8 16 32 64 128

Static 1 0.2 0.3 0.4 0.5 0.5 0.6 0.6 2.4
2 10.3 10.0 9.8 7.8 7.0 10.1 9.9 9.8
4 12.8 11.6 11.7 11.0 10.8 11.0 11.0 26.4

Dynamic 1 15.7 9.5 6.3 4.7 1.4 3.4 3.2 0.6
2 89 25 13.3 17.4 15.8 10.5 11.4 13.6
4 391 182 88 28.4 20.2 18.5 17.1 16.6

Guided 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
2 16.4 10.5 12.5 14.3 15.7 8.8 13.5 12.0
4 24.6 23.0 21.5 19.3 18.4 16.6 15.8 15.2



Performance Study of the First Three Intel Multicore Processors 435

Table 6.6

Performance (in GCC) of EP, FT, MG, CG, BT, SP, and LU benchmarks for 1, 2 and 4 threads, and problem class W on
Pentium D, Core 2 Duo and Core 2 Quad machines.

Pentium D
Threads EP FT MG CG BT SP LU

1 33.68 2.57 2.54 2.35 33.76 99.96 66.05
2 16.66 2.52 1.7 2.18 29.7 146.46 37.12
4 46.64 2.04 2.85 3.19 37.91 1304 3967

Core 2 Duo

1 15.14 1.24 1.48 1.45 14.32 47.69 35.4
2 7.75 1.19 0.98 1.39 13.24 64.43 20.68
4 7.7 0.98 1.17 1.56 14.48 292 1266

Core 2 Quad

1 15.12 1.22 1.41 1.46 22.03 47.54 33.93
2 7.53 1.15 0.79 1.0 19.96 56.61 19.89
4 3.96 0.81 0.64 0.6 19.96 76.34 12.14
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Fig. 6.1. OpenMP Synchronization overheads of two threads on Intel Pentium D, Intel Core 2 Duo and Intel Core 2 Quad
machines.

Tables 4, 5 and 6 show the OpenMP loop scheduling overheads of the Static, Dynamic, and Guided clauses
for chunk sizes of 1 to 128 when running 1, 2 and 4 threads, for Intel Pentium D, Intel Core 2 Duo and Intel
Core 2 Quad machines respectively. Figures 3-5 are bar charts of the results for the case of two threads.

It can be observed that each clause has a different pattern. In the case of Intel Pentium D and two threads
(Figure 3), the block cyclic scheduling (Static) presents similar overhead for all chunk sizes (∼ 15K cycles). The
Dynamic scheduling overhead decreases rapidly from the maximum point at a chunk size of one (92K cycles) to
the minimum point at a chunk size of 128 (19K cycles). The Guided scheduling overhead has a similar pattern
but with a more moderate decreasing curve. The maximum point is at a chunk size of one (92K cycles) and the
minimum point is at a chunk size of 128 (14K cycles). The conclusion is that by increasing the chunk size the
loop scheduling overhead is minimized.
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Fig. 6.2. OpenMP Array Scheduling (privatization) overheads of two threads on Intel Pentium D, Intel Core 2 Duo and Intel
Core 2 Quad machines.

In the case of Intel Core 2 Duo and two threads (Figure 4), the loop scheduling overheads present similar
pattern compared to the Intel Pentium D, but the overheads are up to 50% lower than those of the Intel Pentium
D. The block cyclic scheduling (Static) is reach its optimal overhead at a chunk size of 64 (6K cycles). The
Dynamic scheduling overhead decreases rapidly from the maximum point at a chunk size of one (48K cycles) to
the minimum point at a chunk size of 64 (8K cycles). The Guided scheduling overhead has a similar pattern
but with a more moderate decreasing curve. The maximum point is at a chunk size of one (10K cycles) and the
minimum point is at a chunk size of 128(7K cycles).

In the case of the Intel Core 2 Quad and two threads (Figure 5), the loop scheduling overheads present
similar pattern compared to the Intel Pentium D, but the overheads are more fluctuated. The block cyclic
scheduling (Static) is reach its optimal overhead at a chunk size of 16 (7K cycles). The Dynamic schedul-
ing overhead decreases rapidly from the maximum point at a chunk size of one (88K cycles) to the minimum
point at a chunk size of 16 (10K cycles). The Guided scheduling overhead has a similar pattern but with a
more moderate decreasing curve. The maximum point is at a chunk size of one (17K cycles) and the mini-
mum point is at a chunk size of 32(8K cycles). It can be observed again that in the case of the Intel Core
2 Quad and four threads (Table 6), the scheduling overhead is up to twice compared to the case of two
threads but still reasonably, in contrast to the scheduling overhead associate with four threads on the Intel
Pentium D and the Intel 2 Core Duo where the overhead costs, due to less cores, are unacceptable (Table 4
and 5).

The bottom line of the EPCC micro-benchmarks results is that the overhead incurred by the OpenMP
directives and the clauses are low and will not harm the performance of the NBP application benchmarks.

The NPB benchmarks were conducted with three different input sizes: S, W, and A for 1, 2 and 4 threads.
The total running time of each benchmark was measured by wall-clock time. The speedup, efficiency, and the
overhead of each run were calculated as follows:

Speedup = T1/Tp,k where T1 is the time measured for running with a single core and Tp,k the time measured
with p cores and k threads.

Efficiency = T1/(p · Tp) where T1 is the time measured for running with a single core and Tp the time
measured with p cores.
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Fig. 6.3. OpenMP Loop Scheduling overheads of two threads on Intel Pentium D machine.
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Fig. 6.4. OpenMP Loop Scheduling overheads of two threads on Intel Core 2 Duo machine.

Overhead = Tp,k − T1/p where T1 is the time measured for running with a single core and Tp,k the time
measured with p cores and k threads.

We ran the original benchmarks that appear in [6] without any modification. Table 7 presents the perfor-
mance (in Giga clock cycles) of class W (24x24x24) of seven different benchmarks in the NAS OpenMP suite
for 1, 2 and 4 threads on the tested machines. Figure 6 is a bar chart of the calculated speedup of the NPB
benchmarks, for the case of two threads, on the Intel Pentium D, the Intel Core 2 Duo and the Intel Core 2
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Fig. 6.5. OpenMP Loop Scheduling overheads of two threads on Intel Core 2 Quad machine.

Quad machines. However, the behavior of the benchmarks results for input classes S and A are similar to
the input class W. The results of the IS kernel are omitted due to a problem known to the developers of the
benchmarks suite , which they will fix in the next release. Figure 7 is a bar graph that depicts the percentage
of the computation time and the overhead time as part of the total execution time, in the case of the Intel
Pentium D machine.

Analysis of these results leads to the following findings.

The EP Kernel falls into the category of applications termed “embarrassingly parallel” based on the trivial
partition ability of the problem, while incurring no data or functional dependencies, and requiring little or no
communication between processors. It is included in the NPB suite to establish the reference point for peak
performance on a given platform. Therefore, it is not surprising that the EP kernel achieved perfect speedup
(∼ 2.0) for two threads.

As can be observed from Figure 6, the speedups of the Intel Pentium D and the Intel Core 2 Duo processors
are similar, with slight improvement in the case of Intel Core 2 Quad processor. The LU decomposition appli-
cation, in case of Intel Pentium D, shows good speedup and efficiency for two cores, 1.77 and 0.88 respectively,
but in the case of four threads the speedup drops drastically to 0.01 due to fewer cores than threads. The Intel
Core 2 Duo processor achieves speedup of 1.71 and efficiency of 0.85 for two threads but drops to speedup of
0.02 for the case of four threads. On the other hand, the Intel Core 2 Quad achieves speedup 1.7 (0.85 efficiency)
and 2.73 (0.68 efficiency) for two and four threads respectively (Table 7). The MG kernel shows more modest
speedups (1.49 and 1.51) and efficiency (0.74 and 0.75) for two threads while for four threads the speedups drop
to 0.89 and 0.79 on the Intel Pentium D and the Intel Core 2 Duo respectively. In the case of Intel Core 2 Quad
the speedups are 1.78 (0.89 efficiency) and 2.20 (0.55 efficiency) for two and four threads respectively.

The rest of the benchmarks (FT, CG, BT, and SP) show poor speedups and efficiencies. These results can
be explained by the logical structure of the applications, which do not match the underlying architectures of
the multicore processors. For example, the FT kernel uses FFT on a complex array to solve a three-dimensional
partial differential equation. Communication patterns in this kernel are structured and long distance in nature.
This benchmark represents the essence of many “spectral” codes or eddy turbulence simulations. The CG kernel
is used in conjugate gradient methods to approximate the smallest eigen-value of a symmetric, positive definite,
sparse matrix with a random pattern of non-zeros. The communication patterns in this kernel are long- distance
and unstructured.
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Fig. 6.6. NPB speedup results of EP, FT, MG, CG, BT, SP, and LU benchmarks for 2 threads; problem class W; on
Pentium D, Core 2 Duo and Core 2 Quad machines.

These observations reveal the following conclusions. First, all the benchmarks, except EP, achieve very poor
efficiency when the number of threads (4) is greater than the number of cores (2) which occurs in the cases of
Intel Pentium D and Intel Core 2 Duo processors. In the case of Intel Core 2 Quad processor and four threads
there is improvement in the speedups when changing the number of threads from two to four threads, except
to the SP benchmark that exhibits poor performance in all the cases. It happens because the overhead caused
by context-switch operations of the competing threads on the CPU resources is high. Moreover, two threads
sharing a single core lead to cache conflicts that decrease the hit rate and thus degrade the performance.

The above poor performance of the NPB applications brought us, on the one hand, to extend our study
further and to look for possible solutions to improve the performance but without restructuring the application
programs, and on the other hand, to extend our understanding of how the underlying hardware works.

The Intel Pentium D processor has a different cache-memory architecture than Intel Core 2 Duo and Intel
Core 2 Quad processors [8, 9]. The Pentium D 820 processor is a “distributed” cache-memory with two separately
L1 caches of 16KB each and two separately L2 caches of 1MB each. On the other side, the Intel Core 2 Duo
E6300 is a “shared” cache-memory with two separate L1 caches of 32KB each and a shared L2 cache of 4MB
and the Intel Core 2 Quad Q6600 has two separate pairs of dual-core with 4MB shared L2 cache, and 2x32KB
L1 caches. To understand the implications of these three different architectures on the performance, lets look
at the following example.

Let A[100] be a shared array used by two threads running on two different cores. The threads are writing
the array at the same time. One thread accesses the first part of the array, A[0-49], and the second one accesses
the second half of the array, A[50-99]. In the case of the Intel Pentium D, array A will be copied into the L1
and the L2 caches of each core. Now, each time one of the threads completes a write operation, there is a need
to update the copy of the array A in the neighboring core in order to maintain the caches consistency. This
update is costly in terms of CPU cycles, as can be seen in Table 8. However, we expected to an improvement in
the case of Intel Core 2 Duo processor because the L2 cache is shared, but we were disappointed to discover that
the speedups of NBP benchmarks showed only ∼ 4% improvment (in the case of FT, MG and SP) compared
to the Intel Pentium D, and ∼ 4% worsening (in the case of CG, BT and LU) when running with two threads.

So, we continued to explore further and we found another obstacle that we were not aware of: the shared
L2 cache of the Intel Core 2 Duo is not banked. The L2 cache serves only one core at any given clock cycle, so
a banked organization will not help. A round robin scheme is used to allocate L2 cache services to the cores for



440 Ami Marowka

0%

20%

40%

60%

80%

100%

 

EP FT MG CG BT SP LU

Benchmarks

Computation Overhead

 

Fig. 6.7. NPB computation time vs. overhead time of EP, FT, MG, CG, BT, SP, and LU benchmarks for 2 threads and
class W on Pentium D machine.

Table 6.7

False sharing penalties.

Case Data Location Latency(cycles/nsec)

L1 to L1 Cache L1 14 core + 5.5 bus

Through L2 L2 14 core

Through Main 14 core + 5.5 bus
Memory Memory + 40-80 nsec

scenarios when both cores request L2 service. The false sharing penalty of the Intel Core 2 Duo is depicted in
Table 8 and was taken from [9].

We looked further for optimization possibilities for improving the performance of the applications but
without need to rewritten the programs.

First, we used a thread affinity option to tie a thread to its data to improve data locality [11]. Since OpenMP
does not support thread affinity capabilities we used the Windows operating systems SetThreadAffinityMask
option. Monitoring the threads scheduling by the Intel VTune performance analyzer confirmed that each thread
was tied to one core during the program execution. Unfortunately, we did not observe any improvement in the
performance of the applications. Second, we changed the loop iterations scheduling by using the OpenMP
schedule clause. The fact that most of the parallelism of the NPB applications is done by for work-sharing,
encouraged us to find the optimal scheduling. We tried the Static, Dynamic, and Guided options with 1, 4, 8,
16, 32, 64, and 128 chunk sizes. Unfortunately, we cannot report any significant improvement in the applications
performance.

To summarize this section we list the key observations of our study.
• The impact of the parallel overheads of the OpenMP parallel mechanisms on the performance of NPB
benchmarks is negligible.

• The new Intel multicore processors reduce the parallel overheads incurred by the OpenMP mechanisms
compared to their predecessors.

• It is recommended to turn off the OpenMP compiler option when running single threaded applications
because the relatively high overhead incurred by OpenMP.
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• It is recommended to use one thread per processor-core to prevent the competition of two threads on
a single core.

• Using the OpenMP directives Parallel and For together rather than separately incur less overhead.
• It is recommended to use the low-overhead OpenMP Atomic directive, where it is possible, instead of
other locking mechanisms.

• OpenMP Loop scheduling incurs less overhead when the chunk size increases.
• The poor performance of five NPB benchmarks (FT, MG, CG, BT, and SP) is due to lack of matching
between the logical structures of the applications and the underlying architecture of the multicore
processors.

7. Conclusions. Multicore processors will dominate scientific computing, and commercial computing as
well, in the near future. Understanding their performance characteristics is essential for design scalable and
efficient applications. In this paper, we presented the efficiency of applications from NPB OpenMP-C suite and
the overhead measurements of OpenMP directives and clauses running on Intel Pentium D, Intel Core 2 Duo
and Intel Core 2 Quad machines using MS Visual studio C++ 2005 and Intel C++ compilers.

The benchmarking results show that most of the applications achieved poor performance, not because
of the overhead incurred by the OpenMP directives, but because the NPB applications induced computation
and communication patterns which are not cache friendly and result in a lot of false sharing situations. The
diversified cache architectures of multicore processors call for new parallel programming languages and compilers
that can use the hierarchy of cache memory systems in an efficient manner.
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Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies

by D. Floreano and C. Mattiussi

This is a book that bridges biological systems and computer science. For digital-based researchers, having
this book which details the biological components of natural life and seamlessly integrates that knowledge into
our digital realm is an essential asset. Each chapter is systematically introduces the reader to a biological system
while easing them into the its computational counterpart. There are seven chapters covering evolution, cellular,
neural, developmental, immune, behavioral, and collective systems.

Chapter 1 introduces the fundamental concept of computational evolution as related to biological systems.
This chapter starts with the basic concepts of evolutionary theory and progresses, covering everything from
fitness functions to analog circuits. The following chapter presents the next logical step upwards in biology,
cellular structures and systems. Again introducing the basics of life and progressing towards cellular automata.
Chapter 3 covers Neural Networks by introducing the Biological Nervous System, then the Artificial Neural
Network. The core concepts to Neural Networks are detailed in a systematic and common-sense manner,
introducing unsupervised learning, supervised learning, and reinforce learning, then progressing onto neural
hardware and hybrid systems. In Chapter 4, the authors detail developmental systems, explaining how nature
utilizes the cellular structures to how engineers can mimic nature. This theme of progression from biological
introduction to digital computation is reproduced as a single voice through out each chapter. The fundamentals
of Bio-Inspired Artificial Intelligence are well demonstrated, allowing for a novice researcher in this area to
develop the necessary skills and have a firm grasp on this topic.

Once the reader has a solid grasp of the building blocks of life, the authors present chapters related to
larger systems. Of particular interest to my research is the chapter on Immune Systems. This chapter provides
a fundamental understanding of the Human Immune System, detailing the finer points of immunological cellular
structures, while introducing a slightly more than generalized immune response concept. After a lengthy
introduction of human immunology, we are introduced to the core of Artificial Immune Systems, the Negative
Selection Algorithm and Clonal Selection Algorithm. Each one of these algorithms is covered enough so that the
reader is capable of understanding each respective algorithms strengths and limitations. For new researchers
to Artificial Immune Systems, days of reading journal articles is summarized in these sections, allowing for
intelligent and efficient decision making in choosing your next step of research.

Chapter 6 and 7 provides the audience with behavior systems and collective systems, respectively. The
behavioral systems covered in this book relate to aspects of AI, robots, and some machine learning. Once
behavior is understood, collective and cooperative systems are covered. Optimization techniques of particle
swarms, ant colonies, and topics derived for robotics are detailed and well explained.

While this is not a textbook, is does cover the fundamental concepts required to research Bio-Inspired
Artificial Intelligence. For myself, the quality of this book can simply be noted by the publishers, MIT Press.
Many of the best books I have encountered in my studies have been published by MIT, and here is another.
Floreano and Mattiussi have not let me down in their quality, albeit I do have some complaints.

First, while the topics cover a solid breadth, the depth on detailing the computation side is limited. I
would like to have seen either more depth in each chapter or a broader look at each chapters algorithms, but
the book falls somewhere in the middle. My current research involves Danger Signals and their relationship to
preventing Epidemic Attacks, so I would have like to seen more detail about Polly Matzinger’s Danger Theory
rather than one short paragraph saying that it is not universally accepted. While Immunologists may debate
Danger Theory, novel algorithms have been developed off of the concept of Danger Theory and deserve a place
in this book. Yet to counter my own argument, the authors do finish off each chapter with a Suggested Readings
section outlining a series of excellent supplement papers to the chapters topics that would eventually lead the
reader to these novel topics.
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Overall, if you are interested in this field, buy this book. You can find it online at MIT Press for a discounted
price. This book will make an excellent addition to any computer researchers library.

Anthony Kulis,
Department of Computer Science,
Southern Illinois University
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