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DEVELOPING DISTRIBUTED SYSTEMS WITH ACTIVE COMPONENTS AND JADEX

LARS BRAUBACH AND ALEXANDER POKAHR∗

Abstract. The importance of distributed applications is constantly rising due to technological trends such as the widespread
usage of smart phones and the increasing internetworking of all kinds of devices. In addition to classical application scenarios
with a rather static structure these trends push forward dynamic settings, in which service providers may continuously vanish
and newly appear. In this paper categories of distributed applications are identified and analyzed with respect to their most
important development challenges. In order to tackle these problems already on a conceptual level the active component paradigm is
proposed, bringing together ideas from agents, services and components using a common conceptual perspective. Besides conceptual
foundations of active components also a programming model and an implemented infrastructure are presented. It is highlighted
how active components help addressing the initially posed challenges by presenting several real world example applications.

1. Introduction. Technological trends like widespread usage of smart phones and increased internetwork-
ing of all kinds of devices lead to new application areas for distributed systems, thus reinforcing and increasing
the challenges for their design and implementation. On the one hand, developers can choose from a vast amount
of existing technologies, frameworks, patterns, etc. for tackling any challenge that they may face during the
development of a complex distributed application. Nonetheless most concrete solutions only address a small set
of challenges. Thus for most applications, combinations of different solutions are required, causing a laborious
and error-prone process of analyzing, selecting and interating different solution approaches.

On the other hand, a software paradigm represents a holistic solution approach for a more or less generic class
of software applications. A paradigm represents a specific worldview for software development and thus defines
conceptual entities and their interaction means. It supports developers by constraining their design choices to
the intended worldview. When a paradigm fits to the application problem, it allows addressing all challenges
using a common conceptual framework, thus effectively reducing the need for the expensive integration and
testing of isolated solutions.

The contributions of this paper are as follows. Recurring challenges for the development of todays complex
distributed systems are identified and existing paradigms, such as object or service orientation, are analyzed in
which way they support addressing these challenges. As a consequence of the analysis, the active components
paradigm is proposed as a unification of the strengths of objects, components, services, and agents. The proposed
paradigm is concretized on the one hand by a programming model, allowing to develop active components
systems using XML and Java, and on the other hand by a middleware infrastructure, that achieves distribution
transparency and provides useful development tools.

The next section presents classes of distributed applications and challenges for developing systems of these
classes. Thereafter, the new active components approach is introduced in Section 3. In Section 4 the program-
ming model for active components is introduced and in Section 5 the Jadex platform as active components
runtime infrastructure is described. To illustrate the practicality of the approach, several real world example
applications are presented in Section 6. Section 7 discusses related work and Section 8 concludes the paper.

2. Challenges of Distributed Applications. The purpose of this paper is conceiving a unified paradigm
for developing complex distributed systems. To investigate general advantages and limitations of existing
development paradigms for distributed systems, several different classes of distributed applications and their
main challenges are discussed in the following. Such challenges arise from different areas and can be broadly
categorized into typical software engineering challenges for standard applications and new aspects, summarized
in this paper as distribution, concurrency, and non-functional properties (cf. also [25]). In Fig. 2.1 theses
application classes as well as their relationship to the introduced criteria of software engineering, concurrency,
distribution and non-functional aspects are shown. The classes are not meant to be exhaustive, but help
illustrating the diversity of scenarios and their characteristics.

Software Engineering: In the past, one primary focus of software development was laid on single computer
systems in order to deliver typical desktop applications such as office or entertainment programs. Challenges
of these applications mainly concern the functional dimension, i.e. how the overall application requirements
can be decomposed into software entities in a way that good software engineering principles such as modular
design, extensibility, maintainability etc. are preserved.

∗Distributed Systems Group, University of Hamburg, {braubach, pokahr}@informatik.uni-hamburg.de
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Fig. 2.1: Applications and paradigms for distributed systems

Concurrency: In case of resource hungry applications with a need for extraordinary computational power,
concurrency is a promising solution path that is also pushed forward by hardware advances like multi-core proces-
sors and graphic cards with parallel processing capabilities. Corresponding multi-core and parallel computing
application classes include games and video manipulation tools. Challenges of concurrency mainly concern
preservation of state consistency, dead- and livelock avoidance as well as prevention of race condition dependent
behavior.

Distribution: Different classes of naturally distributed applications exist depending on whether data,
users or computation are distributed. Example application classes include client/server as well as peer-to-peer
computing applications. Challenges of distribution are manifold. One central theme always is distribution
transparency in order to hide complexities of the underlying dispersed system structure. Other topics are
openness for future extensions as well as interoperability that is often hindered by heterogeneous infrastructure
components. In addition, today’s application scenarios are getting more and more dynamic with a flexible set
of interacting components.

Non-functional Criteria: Application classes requiring especially non-functional characteristics are e.g.
centralized backend applications as well as autonomic computing systems. The first category typically has to
guarantee secure, robust and scalable business operation, while the latter is concerned with providing self-*
properties like self-configuration and self-healing. Non-functional characteristics are particularly demanding
challenges, because they are often cross-cutting concerns affecting various components of a system. Hence, they
cannot be built into one central place but abilities are needed to configure a system according to non-functional
criteria.

Combined Challenges: Today more and more new application classes arise that exhibit increased com-
plexity by concerning more than one fundamental challenge. Coordination scenarios like disaster management
or grid computing applications like scientific calculations are examples for categories related to concurrency and
distribution. Cloud computing subsumes a category of applications similar to grid computing but fostering a
more centralized approach for the user. Additionally, in cloud computing non-functional aspects like service
level agreements and accountability play an important role. Distributed information systems are an example
class containing e.g. workflow management software, concerned with distribution and non-functional aspects.
Finally, categories like ubiquitous computing are extraordinary difficult to realize due to substantial connections
to all three challenges.

In this paper object, component, service and agent orientation are further discussed as successful paradigms
for the construction of real world distributed applications. Fig. 2.2 highlights which challenges a paradigm
conceptually supports. Object orientation has been conceived for typical desktop applications to mimic real
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Fig. 2.2: Contributions of paradigms

world scenarios using objects (and interfaces) as primary concept and has been supplemented with remote
method invocation (RMI) to transfer the programming model to distributed systems. Component orientation
extends object oriented ideas by introducing self-contained business entities with clear-cut definitions of what
they offer and provide for increased modularity and reusability. Furthermore, component models often allow
non-functional aspects being configured from the outside of a component. The service oriented architecture
(SOA) attempts an integration of the business and technical perspectives. Here, workflows represent business
processes and invoke services for realizing activity behavior. In concert with SOA many web service standards
have emerged contributing to the interoperability of such systems. In contrast, agent orientation is a paradigm
that proposes agents as main conceptual abstractions for autonomously operating entities with full control about
state and execution. Using agents especially intelligent behavior control and coordination involving multiple
actors can be tackled.

Yet, none of the introduced paradigms is capable of supporting concurrency, distribution and non-functional
aspects at once, leading to difficulties when applications should be realized that stem from intersection categories
(cf. Fig. 2.1). In order to alleviate these problems already on a conceptual level, in the following section the
active component paradigm is proposed as a unification of the analyzed paradigms.

3. Active Components Paradigm. For addressing all challendes of distributed systems in a unified way,
the active component paradigm brings together agents, services and components in order to build a worldview
that is able to naturally map all existing distributed system classes to a unified conceptual representation
[24]. Recently, with the service component architecture (SCA) [20] a new software engineering approach has
been proposed by several major industry vendors including IBM, Oracle and TIBCO. SCA combines in a
natural way the service oriented architecture (SOA) with component orientation by introducing SCA components
communicating via services. Active components build on SCA and extend it in the direction of sofware agents.
The general idea is to transform passive SCA components into autonomously acting service providers and
consumers in order to better reflect real world scenarios which are composed of various active stakeholders.
In Fig. 3.1 an overview of the synthesis of SCA and agents to active components is shown. In the following
subsections the implications of this synthesis regarding structure, behavior and composition are explained.

3.1. Active Component Structure. In Fig. 3.1 (right hand side) the structure of an active component
is depicted. It yields from conceptually merging an agent with an SCA component (shown at the left hand side).
An agent is considered here as an autonomous entity that is perceiving its environment using sensors and can
influence it by its effectors. The behavior of the agent depends on its internal reasoning capabilities ranging from
rather simple reflex to intelligent goal-directed decision procedures. The underlying reasoning mechanism of an
agent is described as an agent architecture and determines also the way an agent is programmed. On the other
side an SCA component is a passive entity that has clearly defined dependencies with its environment. Similar
to other component models these dependencies are described using required and provided services, i.e. services
that a component needs to consume from other components for its functioning and services that it provides to
others. Furthermore, the SCA component model is hierarchical meaning that a component can be composed
of an arbitrary number of subcomponents. Connections between subcomponents and a parent component are
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Fig. 3.1: Active component structure

established by service relationships, i.e. connection their required and provided service ports. Configuration of
SCA components is done using so called properties, which allow values being provided at startup of components
for predefined component attributes. The synthesis of both conceptual approaches is done by keeping all of the
aforementioned key characteristics of agents and SCA components. On the one hand, from an agent-oriented
point of view the new SCA properties lead to enhanced software engineering capabilities as hierarchical agent
composition and service based interactions become possible. On the other hand, from an SCA perspective
internal agent architectures enhance the way how component functionality can be described and allow reactive
as well as proactive behavior.

3.2. Behavior. The behavior specification of an active component consists of two parts: service and
component functionalities. Services consist of a service interface and a service implementation. The service
implementation contains the business logic for realizing the semantics of the service interface specification. In
addition, a component may expose further reactive and proactive behavior in terms of its internal behavior
definition, e.g. it might want to react to specific messages or pursue some individual goals.

Due to these two kinds of behavior and their possible semantic interferences the service call semantics
have to be clearly defined. In contrast to normal SCA components or SOA services, which are purely service
providers, agents have an increased degree of autonomy and may want to postpone or completely refuse executing
a service call at a specific moment in time, e.g. if other calls of higher priority have arrived or all resources
are needed to execute the internal behavior. Thus, active components have to establish a balance between the
commonly used service provider model of SCA and SOA and the enhanced agent action model. This is achieved
by assuming that in default cases service invocations work as expected and the active component will serve
them in the same way as a normal component. If advanced reasoning about service calls is necessary these calls
can be intercepted before execution and the active component can trigger some internal architecture dependent
deliberation mechanism. For example a belief desire intention (BDI) agent could trigger a specific goal to decide
about the service execution.

To allow this kind service call reasoning service processing follows a completely asynchronous invocation
scheme based on futures. The service client accesses a method of the provided service interface and synchronously
gets back a future representing a placeholder for the asynchronous result. In addition, a service action is created
for the call at the receivers side and executed on the service’s component as soon as the interpreter selects that
action. The result of this computation is subsequently placed in the future and the client is notified that the
result is available via a callback.

In the business logic of an agent, i.e. in a service implementation or in its internal behavior, often required
services need to be invoked. The execution model assures that operations on required services are appropriately
routed to available service providers (i.e. other active components) according to a corresponding binding.
The mechanisms for specifying and managing such bindings are part of the active component composition as
described next.

3.3. Composition. One advantage of components compared to agents is the software engineering per-
spective of components with clear-cut interfaces and explicit usage dependencies. In purely message-based
agent systems, the supported interactions are usually not visible to the outside and thus have to be documented
separately. The active components model supports the declaration of provided and required services and advo-
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01: IFuture<String> fut = callee.method(arg1, arg2);
02: fut.addResultListener(new IResultListener<String>() {
03: public void resultAvailable(String res) {
04: System.out.println(“System.out.println(“Result: ”+res)”);
05: }
06: public void exceptionOccurred(Exception e) {
07: System.out.println(“System.out.println(“Exception: ”+e)”);
08: });

Fig. 4.1: Asynchronous method invocation with future return value

cates using this well-defined interaction model as it directly offers a descriptive representation of the intended
software architecture. Only for complex interactions, such as flexible negotiation protocols, which do not map
well to service-based interactions, a more complicated and error-prone message-based interaction needs to be
employed.

The composition model of active components thus augments the existing coupling techniques in agent
systems (e.g. using a yellow page service or a broker) and can make use of the explicit service definitions. For
each required service of a component, the developer needs to answer the question, how to obtain a matching
provided service of a possibly different component. This question can be answered at design or deployment
time using a hard-wiring of components in corresponding component or deployment descriptors. Yet, many
real world scenarios represent open systems, where service providers enter and leave the system dynamically
at runtime [15]. Therefore, the active components approach supports besides a static wiring (called instance
binding) also a creation and a search binding (cf. [24]). The search binding facilities simplified specification
and dynamic composition as the system will search at runtime for components that provide a service matching
the required service. The creation binding is useful as a fallback to increase system robustness, e.g. when some
important service becomes unavailable.

The active components paradigm introduced in the last sections allows a conceptual view of a distributed
system as a dynamic composition of autonomously executing entities with clearly defined interfaces. Yet, the
conceptual view leaves open many questions with regards to how the behavior of a component is realized or how
the interaction between components looks like. These questions are answered by a concrete active components
programming model introduced next.

4. Programming Model. In this section the general concepts of active components, as presented before,
will be further refined to a concrete programming approach. The approach itself is similar to the SCA pro-
gramming model with the following major exceptions. First, the programming model of active components is
inherently asynchronous, which is also directly reflected in the way service interfaces are specified and services
have to be implemented.1 Second, components may expose their own behavior in addition to providing external
services. For this reason the programming concepts for components heavily depend on their concrete internal ar-
chitectures. Third, as bindings between components can be configured to be dynamic, programming component
compositions introduces new means for declarative search specifications. In the following, a short introduction
to the underlying asynchronous programming model with future based return values is given. Thereafter, the
key aspects from the last section - structure, behavior and composition - will be revisited on the programming
level.

4.1. Asynchronous Programming with Futures. The widely used synchronous message based invo-
cation scheme well known from object-oriented programming is easy to understand and employ. It fits to the
fundamental idea of the imperative programming paradigm considering programs as a linear sequence of ac-
tions. Actions are processed one by one and the next action is begun only after completion of its predecessor.
In case of distributed applications this style of programming leads to severe problems as it means that an action
possibly has to wait for completion of a called remote action e.g.

1This does not mean that SCA does not support asynchronous invocations at all. In SCA the callback pattern is used to pass
callback objects as parameters from the caller to the callee. The callee can use the interface of the callback object to invoke its
remote methods. This approach leads to interface definitions that look synchronous but in fact are not.
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Fig. 4.2: Active component structure specification

via remote procedure call or remote method invocation. Hence, processing of the caller has to be blocked
until the result of the callee arrives. Besides being inefficient this invocation scheme is inherently deadlock prone
because invocation cycles between callers and callees can easily occur, e.g. if the callee needs a functionality
of the caller and invokes one of its methods it cannot be served as the caller is still blocked. Such technical
deadlocks can be avoided when an asynchronous invocation scheme is employed. In this case the caller is not
blocked after issuing a call and can continue processing other tasks. In practice, asynchronous programming
has become common with several important technologies like AJAX in the context of HTTP processing and
the GoogleAppEngine for realizing cloud applications.

Futures [29] have been developed as fundamental programming concept for asynchronous systems and
represents a holder for the future result of an initiated processing. In case of an asynchronous call with future
return value, the callee immediately returns the future object to the caller. The caller can use the future to
check if the result has been provided and read the real result value. Typically, futures provide some form of a
blocking get method that the caller can invoke to become suspended until the result has been made available. It
has to be noted that this wait-by-necessity mechanism again opens up the possibilities for deadlocks and should
be avoided. Instead, a result listener should be used that is notified in the moment the result value arrives.

In Figure 4.1 the concept of an asynchronous call with future result value is visualized and also the cor-
responding Java code is shown. It can be seen that the caller invokes a method on the callee, which starts
processing the call. In the example code (line 1) two arguments (called arg1, arg2) are passed to the callee. As
result type a future is defined (IFuture represents the interface for futures). Java generics are used to specify
the type of the real return value of the future (here String). The callee returns a future to the caller as soon
as possible and afterwards may continue processing the request. After the future object has been received by
the caller, it adds a result listener to it (line 2) and may or may not continue processing other tasks. The code
(lines 2-8) highlights the result listener (IResultListener) interface and methods. It contains two obligatory
methods named resultAvailable() and exceptionOccurred(), which are invoked exclusively. The first method is
invoked if the call could be processed normally, otherwise the latter one is used to signal the exception that
was thrown. Discriminating between both allows for keeping the normal Java method execution semantics, i.e.
asynchronous methods can use exceptions to inform the caller about execution problems. After the callee has
finished, it will provide the result to the future, which subsequently notifies all registered result listeners at the
caller side. In consequence, either the result value (line 4) or the exception (line 7) is printed out to the console
by the example listener.

4.2. Component Structure Specification. Active components exhibit a common black box view of
properties shown in Figure 4.2.2 Using these properties a specific component type can be specified from which
component instances can be created at runtime (similar to the relation of a Java class and its instances). To
foster a general understanding of the component specification first the meaning of these properties will be
sketched.

2It has to be noted that specification of active components can be done in different formats including XML (following the XML
scheme of Figure 4.2) and also Java annotations. The component type, e.g. BPMN workflow or BDI agent, determines the way in
which the properties need to be defined.
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Fig. 4.3: Service interceptors

• Imports can be used in the same way as in Java classes to include resources like Java classes and
packages that are used in context of the file.

• The Arguments section contains both, argument and result types. It can be stated which arguments can
be fed into the component at start up and which results are provided by component after termination.
For an argument and result, a name, implementation class and default value can be provided. The
explicit definition of arguments and result types as part of the public component structure allows for
treating components also in a functional way, i.e. one can consider them as a function performing
operations on input data and finally producing some output data. This fits well to e.g. workflow based
applications in which subworkflows are often invoked with functional semantics.

• In the Component types part the types of subcomponents can be defined with a local name and a
filename that points to the referenced model. Having local names for subcomponent types facilitates
the definition of component instances at other places in the same file.

• The Services section contains a definition of the provided and required service types of a component.
Details will be presented in the service specification section below.

• Properties represent optional settings of a component.
• Configurations allow for specifying different component setups that can be used at startup of a com-
ponent. A configuration is defined with a name and most importantly can be employed to provide
composition information about subcomponents and their bindings. At startup of a component the
configuration name is used to choose among its predefined configurations, e.g. a test configuration with
mock subcomponents vs. an operational setting.

4.3. Service Invocations. Service invocations between active components need to cope with the inherent
system concurrency. Each active component may potentially expose active behavior and thus executes proactive
behavior on its own thread of control. In order to avoid concurrent access to the state of a component by different
components that invoke services at the same time, a general protection mechanism between the caller and callee
component is established. This protection mechanism is in charge of decoupling incoming calls from the caller
thread and execute them on the callee thread. After the result has been produced the control is transferred
back to the caller thread. In this way each component is executed on its own thread only and all data access
is linearized. To further protect also data that is transmitted between components as parameter or return
values of method invocations it has to be ensured that components do not share those objects and modify them
concurrently. State corruption can be avoided by giving components exclusively owned objects and only sharing
immutable objects. To assure this property, parameter and return values are automatically cloned if they are
mutable. Otherwise direct object references can be provided in local method invocations. In this way active
components follow the fundamental principles of the actor model [11] considering each active component as
independent actor who’s behavior and state is independent of other actors [16].

At the implementation side thread and parameter protection are ensured by using an extended variant of
the interceptor design pattern [27]. Using interceptors renders the employed mechanisms transparent for service
users and providers. The basic invocation scheme is illustrated in Figure 4.3. Given that some behavior in active
component AC1 wants to invoke a service method on a known service with interface S1, the call will be catched
by the local required service proxy of AC1. This service proxy looks to the service user as if it were the original
service but in fact only implements the same service interface S1. The required service proxy owns a chain
of asynchronous interceptors (Required SI ) which are subsequently invoked. The last interceptor in this chain
performs a (possibly remote) method call to the active component AC2, which is hosting the original service
implementation of S1. Before the call is routed to the implementation, the interceptor chain of the provided
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Fig. 4.4: Provided and required service specification

service (Provided SI) is executed. Thread decoupling is done here at two points. First, on AC2 the incoming
request is decoupled by an interceptor and finally, at AC1 the returning invocation is decoupled and routed to
the thread of AC1. State encapsulation is handled exclusively at the side of the provided interceptor chain. In
case of a local call the interceptor clones arguments before the call and the result after the call, whereas in case
of a remote call no cloning needs to be performed as the remote method invocation itself has to marshal and
unmarshal parameter and return values.

4.4. Service Specification. In Figure 4.4 details of provided and required service specification are de-
picted. A provided service is defined by using its interface type as well as an obligatory implementation definition
and optional further publishing options. The service implementation is typically defined via an implementation
class that is used by the component to instantiate the service at component startup. Alternatively, a binding can
be used to delegate service calls to another subcomponent, i.e. the component does not host the implementation
itself but forwards calls to another component. Binding details are described in context of required services
below. In addition to the service implementation also custom interceptors can be defined. These interceptors
represent an extension point that can be used to insert new behavior in the sense of aspect-oriented program-
ming [17], before, after or around specific service calls. Publishing options can be used to provide a service
in other technologies facilitating the interoperability of external systems with the active components runtime.
Currently, support exists for publishing active component services as WSDL-based or RESTful web services.
The publication process can be done either fully automatically or by providing custom mapping information
that describe how the published service should look like. More details about service publication can be found
in [6].

Required services are specified using basic required service information and binding details. The first refers
to the general characteristics of a required service and includes aspects like the local name, the service interface,
as well as the multiplicity. The name is used to refer to the required service declaration from behavior code
and the interface describes the expected type of the service. Additionally, for a required service the multiplicity
property can be used to state if exactly one service or a set of services should be delivered. The second part
of the specification contains details about the search characteristics that are used to locate required services.
Most importantly the search space can be defined by using a search scope, which describes the components
that are included in the service search. Currently, several different default scopes are available that range
from local scope, considering only a component itself, over application scope including all components of one
specific application to platform and global scope. The latter options include all components on one platform
and components of all currently connected remote platforms. Many further options to adjust the search to the
concrete application demands are available. Examples include the search dynamics and service recovery. The
first aspect determines if the search should be executed on each service access or the results of a former search
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should be cached. The latter issues a new service search transparently for a service user if the currently used
service becomes unavailable for some reason.

4.5. Component Implementation. The implementation of components consists of two parts. The pro-
vided service implementations and the component behavior implementation. Both parts are optional to allow
defining components that only contain internal behavior and passive components in the sense of traditional
components with no own proactive behavior. The implementation of services is kept as simple as possible by
sticking to the Java POJO (plain old Java objects) model, i.e. developers create purely domain oriented classes
without having to extend or use framework specific classes or interfaces. Active component specifics are included
using Java annotations. Especially, annotations are provided to enable dependency injection [10] of the hosting
component itself, required services or component arguments to the service implementation.

The implementation of component behavior is dependent on the concrete type of component used. In the
following the implementation principles of two exemplary component types are roughly sketched. The first
component type is called micro agents, which represents a very simple Java based agent architecture and the
second type are BPMN (business process modeling notation) workflows. Micro agents are defined as annotated
Java classes. The architecture assumes a simple three-phased execution model of the internal agent behavior.
The three phases are initialization, execution and termination and the infrastructure guarantees that a specific
method of the micro agent pojo is called when entering each of the phases. Despite the three phases, a micro
agent can implement more complex behavior by scheduling actions at later points in time. Furthermore, reactive
behavior can be initiated by arriving service calls or incomings messages. BPMN workflows are modeled graph-
ically according to the corresponding standard [22] mainly with events, actions and gateways. The workflow
descriptions need to be enriched with implementation details that are added to the model elements. A Java
expression language is used to encode parameter values and constraint checks at gateways. Moreover, domain
dependent behavior is encoded in extra Java classes that can be bound to specific actions in the process model.

4.6. Example Implementation. To illustrate the implementation of components further, below a cutout
of the implementation of a simple chat micro agent is given. It is a peer-to-peer chat variant in which each
chat agent offers a chat service. In Figure 4.5, the chat agent (ChatAgent), the chat interface (IChatService)
as well as a cutout of the service implementation (ChatService) are shown. It can be seen that the component
file (lines 1-15) contains annotations to declare the active component characteristics and a small behavior part
contained in the body method. First of all, the @Agent annotation (line 1) is used to state the Java class is
an active component declaration. It also declares one provided service (line 2) with interface IChatService and
an implementation class ChartService. This means that the agent will automatically create an instance of the
implementation class at startup to provide the given service interface. In addition, a required service with name
“chatservices” is defined (line 3), which can be used to retrieve all chat services in a network of platforms. To
fetch all services instead of one, the multiplicity has been set to true. The binding of the required service is set
to dynamic and to global search scope. This ensures that each service request leads to a fresh search and that all
available platforms are included into the search. The behavior of the chat agent (lines 5-14) is annotated with
@AgentBody and very simple in this case. It creates a command (called component step) that is periodically
executed by the agent. Each time the command is invoked it searches the users currently online by using the
corresponding required services and refreshes the user list in the user interface.

The chat service interface (lines 17-22) contains methods to send a message (line 19), to actively announce
a new user state, e.g. user is typing a message (line 20) and to send a file to another user (line 21). Additionally,
the service is annotated with a security setting (line 17), which enables unrestricted access to the chat service, i.e.
other platforms can find chat service components even when the platform is password protected and normally
restricts search and service requests. The implementation of the service (line 24-35) is identified with the
@Service annotation. It implements the IChatService interface and additionally introduces a lifecycle method
named start() (lines 26-29) that is called on initialization of the service and creates the user interface. The
implementation of the message() method just forwards a received message to the user interface, which will show
it to the user. It can be seen that the sender of the message (more precisely the component identifier of the
caller) can be always obtained directly via a thread local variable that is provided by the framework (line 31)
so that no extra parameter is needed.

After this section has clarified the active components programming model using a concrete example, the
next section will introduce a runtime infrastructure and development tools for deploying active components
systems in distributed environments.
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01: @Agent
02: @ProvidedServices(@ProvidedService(type=IChatService.class,

implementation=@Implementation(ChatService.class)))
03: @RequiredServices(@RequiredService(name=chatservices, type=IChatService.class,

multiple=true, binding=@Binding(dynamic=true, scope=Binding.SCOPE GLOBAL)) )
04: public class ChatAgent {
05: @AgentBody
06: public void body() {
07: IComponentStep<Void> step = new IComponentStep<Void>() {
08: public IFuture<Void> execute(IInternalAccess agent) {
09: getChartPanel().refreshUserList(searchCurrentUsers());
10: agent.waitForDelay(delay, this);
11: }
12: };
13: scheduleStep(step);
14: }
15: }
16:

17: @Security(Security.UNRESTRICTED)
18: public interface IChatService {
19: public IFuture<Void> message(String text);
20: public IFuture<Void> status(String status);
21: public IFuture<Void> sendFile(String filename, long size, IInputConnection con);
22: }
23:

24: @Service
25: public class ChatService implements IChatService {
26: @ServiceStart
27: public IFuture<Void> start() {
28: // gui init, creates chat panel
29: }
30: public IFuture<Void> message(String text) {
31: chatpanel.addMessage(IComponentIdentifier.CALLER.get(), text);
32: return IFuture.DONE;
33: }
34: ...
35: }

Fig. 4.5: Chat service interface and implementation snippets

5. Platform Architecture and Implementation. The proposed active components paradigm and pro-
gramming model require a runtime infrastructure for loading and executing component models and for providing
discovery and communication facilities for their composition. Therefore, the active components concepts have
been realized in the open source Jadex platform.3 In the following, the basic architecture and its important
modules will be described. The component container represents the minimal requirement of being able to exe-
cute and manage local components and enable their interaction in terms of provided and required services. In a
distributed infrastructure, interaction between multiple component containers as well es other external systems
needs to be supported. Therefore, important middleware features need to be introduced for supporting and
simplifying the development of distributed applications using an active components infrastructure. Finally,
runtime tools are required to foster, e.g., debugging during systems development as well as administration and
monitoring of deployed systems.

5.1. Component Container. The main modules of the platform provide the execution context for any
active components running on the platform, i.e. they form the component container. Their interdependencies
are illustrated in Figure 5.1. All modules contribute to one or both of the component management and messaging
functionalities. Both of these functionalities are further explained in the following two sections, followed by some
details about the generic approach towards realizing these functionalities.

5.1.1. Component Management. The Component Management module is responsible for starting and
stopping components. Upon initialization of each component, its provided services are instantiated and made
available for searching and invocation. Additionally, the means for binding and invoking required services are

3http://jadex.sourcefourge.net/
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Fig. 5.1: Basic platform services

set up according to the component description or additional configuration options supplied as external start
parameters. The component management also serves as an entry point to the platform by providing information
about running components on request or in a publish-subscribe fashion.

Component management makes use of the Component Factory for loading and instantiating component
descriptions. The component factory in turn uses the Library module for handling the physical access to
component descriptions, e.g. on a local hard drive or in component repositories. Different component factories
exist that represent the different component types (cf. Section 4.5). For each component description, thus
a component type specific interpreter implementation is initialized. The component management passes the
interpreter to the Execution module, which is responsible for providing a thread from a Thread Pool to the
interpreter, whenever the corresponding component should be executed.

5.1.2. Messaging. Each component is assigned a unique id that enables addressing messages to specific
components. The Message module is responsible for the internal delivery of messages. It further enables
tracking of timeouts with the help of the Clock, which, in case of an active clock4, uses a thread from the thread
pool. The message module also deals with the marshalling and unmarshalling of message contents, and uses
the library module, e.g. for resolving classes for unmarshalling message content into appropriate Java objects.

5.1.3. Container Realization. All of the aforementioned modules are realized as component services. As
a result, the platform itself is considered an active component with the platform modules modeled as provided
services and their interdependencies being represented as required services. This approach provides a number
of technical advantages regarding their implementation. First, the mechanisms for initializing and managing as
well as searching and invoking component services are employed for platform services as well, thus reducing the
implementation effort for this recurring functionality. Further on, the platform configuration is specified as a
component description, such that existing specifications means can be reused and the developer may choose from
the available description means like Java or XML, if she wishes to provide a customized platform configuration.

Another advantage is that the execution mechanisms, e.g. for decoupling of asynchronous calls, apply
to platform services as well, such that concurrency issues can be avoided in the implementations. Also the
dynamic binding of services is of advantage here, as platform services can easily be exchanged in the platform
configuration or even at runtime. For example, Jadex supports seamless switching between different clock
implementations also when components are currently executing. Last but not least, this approach is easy to
realize. Only a simple bootstrapping script is required that loads and instantiates a platform configuration
through a predefined component factory and calls the obtained interpreter until the actual execution service is
available. As a result, the platform itself is highly configurable and can be adapted to the needs of an application
using the same concepts that are also used for application implementation. This is also illustrated in the next
section that introduces additional platform services for supporting distributed infrastructures.

4Jadex supports different clock types including active clocks for normally timed or dilated execution as well as passive clocks,
which are controlled by an additional simulation module, e.g. for as-fast-as-possible execution of simulation scenarios as described
in [26].
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Fig. 5.2: Jadex communication stack

5.2. Distributed Infrastructure. The active components approach as well as the Jadex platform im-
plementation aim at supporting the development of distributed applications. Therefore interactions between
application parts residing on different network nodes are of particular importance due to the inherent challenges
of distributed applications (cf. Section 2). The Jadex platform thus provides a number of features that facilitate
using the active components approach in a distributed infrastructure and at the same time hiding many of the
challenging details regarding concurrency, distribution and non-functional criteria. The general goal is that the
developer should be able to focus on implementing the application functionality, based on the active components
programming model. The model naturally deals with concurrency issues due to the asynchronous interaction
style and the single-threaded component approach. Dealing with distribution and non-functional aspects should
ideally be delayed until application deployment. In the following, first the important Jadex features with re-
gard to distribution transparency are described. Afterwards, with security and web service interoperability two
examples of supporting non-functional aspects are given.

5.2.1. Distribution Transparency. Distribution transparency is achieved by a set of different mecha-
nisms that shield communication and discovery issues from the application developer. The communication stack
is illustrated in Figure 5.2. To the left, the addressing schemes of the different layers are shown with exam-
ples. In the upper half, the high-level mechanisms for service-based communication are shown. The lower part
contains the infrastructure for message-based communication. From the viewpoint of a developer, a required
service is transparently bound to a local or remote reference. In case of a remote reference, the required service
resolves to a proxy implementing the desired service interface, e.g. IChatService for a chat application. When
the component behavior as programmed by the application developer invokes a method on this proxy, the call is
delegated to the remote management system (RMS). Remote operations such as method invocations, callback
results, as well as remote service searches are encapsulated as so called remote commands, which are exchanged
between RMS components on different platforms. E.g. to perform a remote method call, a service identifier is
stored in the proxy, to uniquely identify the service implementation and the corresponding remote component.
The RMS at the caller side (left) uses the platform part of the service identifier to build the identifier of the
remote RMS component. The remote method call command is sent as a message to the remote RMS, which
uses the included service identifier to locate the component and invokes the requested method on the provided
service (cf. Section 4.4). The result of the service invocation is sent back from the remote RMS using a remote
result command that includes a callback identifier to match the result to the original call for updating the
corresponding future (cf. Section 4.1).

The RMS requires a message-based communication infrastructure that allows direct exchange of asyn-
chronous messages between arbitrary platforms. Furthermore, the messages should be able to contain arbitrary
Java objects for capturing, e.g., complex method parameter values from an application domain. The man-
agement of message exchanges is implemented in the message service, which handles message contents using
codecs and transmits messages with the help of transports (cf. Figure 5.2, lower half). Two types of codecs are
supported. One codec type is required for (un)marshaling objects to or from a byte or character stream and the
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Fig. 5.3: Jadex platform awareness

other type is optional and operates on the stream for adding features such as compression or encryption. For
supporting development as well as production environments, (un)marshaling can be done to a compact binary
format or to a human readable XML format [14].

When sending a message, the message service collects the transport addresses stored in the component
identifiers. Each transport realizes a different means for transmitting a message, e.g. using a direct TCP
connection, mediation via an HTTP relay server, or forwarding in a Bluetooth scatter network. A transport
also acts as receiver for incoming messages, which are passed to the message service for decoding and delivery.
For each received and decoded message, the message service identifies the receiver components based on their
component identifier and places the message in their inbox.

The communication stack described above achieves distribution transparency as long as some communica-
tion participants are already acquainted. E.g. when a chat component holds a remote reference to the chat
service of a remote participant, communication happens transparently in response to method calls. Therefore,
the programming API does not distinguish between local and remote calls (access transparency). In addition,
the developer does not need to care about how the message transports reach the target platform hosting the
service (location transparency). To achieve access and location transparency also for initial acquaintances, the
binding of required services is transparently expanded to include remotely provided services using a so called
awareness approach (cf. Figure 5.3). For this purpose, proxy components can be started on a local platform,
that represent the remote platform. When a service is searched for on the local platform and the search scope
allows including remote platforms, all proxy components on the local platform pass a search request to the RMS
to issue a service search also on the corresponding remote platform. Therefore, from the viewpoint of the devel-
oper, global service searches (e.g. for binding a required service of a component) are transparently forwarded
to all platforms, for which a proxy component exists locally. To discover the available platforms in the network
automatically, different discovery mechanisms are available. The awareness management controls the descovery
mechanisms and receives announcements of newly discovered remote platforms. It takes care of instantiating
corresponding proxies for discovered platforms and also removes proxies for platforms that disappear or time
out, such that only live platforms are included in service searches.

Depending on the requirements of the network, different discovery mechanisms can be employed separately
or in combination. Common for all discovery mechanisms is that the same discovery mechanism needs to be
running on the local as well as the remote platform. Some mechanisms are based on direct communication,
such as the broadcast, multicast and scanner discovery implementations, which are well suited for local (e.g.
company) networks. E.g., broadcast discovery components send and receive UDP broadcast packets containing
the (remote) platform information, thus making the platforms known to each other. Unlike these direct mech-
anisms, other mechanisms require an intermediate, such as the relay and registry discovery approaches. They
allow discovery to expand beyond local network borders and enable an internet-scale awareness. E.g. the reg-
istry discovery employs a central registry component, where all platforms announce their existance and look up
other platforms. Regarding the technical implementation, the mechanisms differ whether they are based on an
existing transport. E.g. the broadcast, multicast, scanner and registry are independent of any transport. The
relay discovery is implemented as part of the relay transport, i.e. the relay discovery component sends a specific
message through the relay transport containing the platform information. The relay server collects all platform
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information and sends it to other platforms, registered at the relay server. Similarly, the Bluetooth transport
keeps track of the platforms participating in a Bluetooth scatter network and provides this information to the
Bluetooth discovery component. Therefore, the Bluetooth transport and discovery are well suited for platforms
running on mobile (e.g. android) devices connected in an ad-hoc network.

5.2.2. Non-functional Aspects. The active components approach inherits the intention from traditional
component approaches to separate the implementation of component functionality as much as possible from the
treatment of non-functional aspects. Ideally, non-functional aspects need be considered during implementation
not at all and can be handled later during application deployment by providing appropriate component config-
urations. In general, the active components approach supports at least two ways of configuring non-functional
aspects in a deployed application. The first way is to provide additional meta-information for specific com-
ponents, either in the component descriptions or in external composite configurations. One typical use case
is adapting a required service binding to the specific deployment, e.g. switching between a static wiring of
components inside a composite and a dynamic open system where bindings are resolved using a global service
search. The second way consists in providing different service implementations for different environments, such
that both can be transparently exchanged as needed without having to touch the components that use this
service. A common example would be a storage service that could be implemented as simple in-memory storage
for testing, database-backed storage for medium-sized production systems and cloud storage for highly scalable
applications. To support easy configuration of recurring non-functional aspects, many features of Jadex are
implemented using the first or second approach, such that the developer can always adapt them to the current
usage context. As an example, two features are presented in the following. The first is an extension to support
web service publication and invocation and thus serves the interoperability of Jadex-based and other applica-
tions. It is realized using the meta-information approach. The second example concerns security of remote
component interactions and employs annotations as well as a replaceable service.

For supporting seamless interaction between Jadex-based systems and external applications, a web service
extension was realized [6]. The goal was to transparently embed external WSDL and REST web services into the
active components service ecosystem and also support the publication of arbitrary active components services
using a WSDL or REST interface without having to change the service implementation. The publication of
services can be done using meta-information in the component description as part of the provided service
declaration. Considering web service publication as a deployment issue, the corresponding meta-information
can also be specified separately, e.g. when composing an application from existing components. In this case,
the existing component descriptions need not be changed, as the new information is only contained in the
application (deployment) descriptor. Similarly, for incorporating an external web service, a wrapper component
can be added to the application, that provides the external service as a Jadex service. Therefore application
components are now able to find and invoke the external service like any other service inside the application. The
wrapper component maps the web service operations to an asynchronous active components service interface.
In the simplest case, only this wrapper interface needs to be specified by the developer and an appropriate
wrapper component is automatically generated at runtime. More complex mappings can be achieved by adding
annotations to the interface or providing separate wrapper functionality (cf. [6] for more details).

Another important aspect of open distributed systems is security. When systems are technically enabled
to transparently perform arbitrary remote operations, the platform administrator has to make sure that only
authorized users are granted access to critical operations. In Jadex, security is handled on two levels. On the
first level, general security requirements are annotated to operations defined in service interfaces. Therefore, the
application programmer has to decide if a special treatment of security is necessary for a specific service or one
of its operations. As a default, a very strict security setting is applied to all services not annotated otherwise,
such that only local interactions are possible and any remote interactions are prohibited. On a second level,
the security service inside the platform is responsible for monitoring the compliance to security settings and
rejecting operations in case of security faults. The security service also processes outgoing service requests for
achieving compliance to current security settings. E.g. when authentication is required, the initiating security
service can sign the request before sending it, by using locally stored user credentials. The security service on
the receiving side verifies the signature and accepts or rejects the request accordingly.

5.3. Tools. Besides the adequate treatment of fundamental challenges like concurrency, distribution and
non-functional criteria, any practical development infrastructure also needs to take care of pragmatic aspects as
well. Among the most important pragmatic aspects (besides the availability of documentation) are tool-support
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Fig. 5.4: The Jadex control center

and integration with existing development infrastructure. The Jadex active components approach is based on
existing languages, such as Java and XML. As a result, most of the productivity features of existing development
environments like Eclipse, such as automatic code completion, can be used while developing active components
as well. Similarly, existing build tools like Maven or continuous integration servers like Hudson/Jenkins can
form integral parts of setups for developing active component applications. In addition, some extensions have
been developed, e.g. an Eclipse plugin that provides consistency checking of component descriptions as well as
a JUnit adapter for easy testing of active components during automated builds.

Extensive work was performed to provide adequate runtime tools that allow on the one hand the admin-
istration of deployed active component applications and on the other hand are also substantially helpful for
testing and debugging during development. These runtime tools are combined into the so called Jadex control
center (JCC) as shown in Figure 5.4. The JCC itself is realized as an active component, running as part of
a Jadex platform and is composed of a number of tools and plugins, which are available from the toolbar at
the top right. The screenshot shows the starter tool. It allows browsing component descriptions from included
repositories (left) and shows see the currently running local components (bottom, left), including also proxy
components, which have been started by the awareness component to represent discovered remote platforms.
The starter tool further allows creating new component instances from a selected component description, by
editing and starting a configuration (right). Besides the starter, a debugger tool allows inspecting the internal
state of a component and executing a component stepwise. As the internal state of a component differs with
respect to the component type, different debugger views are provided for, e.g. BPMN or micro components.
Several other tools are mainly required for administration purposes, as they provided configuration options for
basic platform functionality. E.g. the awareness tool allows to enable/disable the available discovery mecha-
nisms and to control the creation of platform proxies with blacklists and whitelists. In another tool, the security
settings can be edited, e.g. setting a local platform password or entering credentials for connecting to remote
platforms.

All functionality of the JCC supports interaction with local as well as remote platforms. When the user has
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enough rights to administer a remote platform, she can right-click on its platform proxy, as e.g. shown in the
bottom left of in the starter tool, and choose to open an additional JCC view for this platform. The currently
open JCC view are shown as tabs at the top left of the JCC. In the spirit of distribution transparency, the view
of a remote platform is exactly the same as that of the local platform and the user may interact with any tools,
provided that the security constraints hold. Therefore the Jadex platform provides distribution transparency
not only for programming, but also for testing, debugging and administration of active component applications.
The practicality of the Jadex concepts, middleware and tools are illustrated in the following section using real
world application examples.

6. Case Studies. The usefulness and practicality of the approach is illustrated with three case studies that
have been implemented using active components. All applications have been developed together with different
companies. The first application called tariff maxtrix belongs to the area of distributed calculations and is
used to precompute urban traffic prices. The second application called DiMaProFi (Distributed Management of
Processes and Files) is a distributed and process-driven ETL (extract-tranform-load) tool. As third application
a distributed and goal-oriented workflow management system in the context of the Go4Flex project is presented.
It has to be noted that due to secrecy reasons not all details of the commercial scenarios can be described.

6.1. Tariff Matrix. The company HBT5 is responsible for a journey planner called GEOFOX that com-
putes best routes using the local public transportation of Hamburg.6 GEOFOX is a client server based system
that allows users to use different frontends such as normal browsers as well as mobile devices such as smart
phones. Besides getting information about the connection itself, GEOFOX also provides price information to
the users. Tickets can then be bought via different channels including an online shop and ticket automatons.
In this respect the ticket automations have to be enabled to compute the same prices as GEOFOX which is
difficult due to their restricted computing power and the fact that they are not always connected to the Internet.
Hence, currently an offline mechanism is used to precompute ticket prices of all possible connection alterna-
tives. The results of this computation is expressed as a tariff matrix, i.e. a mostly undirected, fully connected
graph with multi edges.7 HBT has to recompute the matrix several times a year whenever tariff-structural or
environmental changes have occurred. As matrix computation is computationally expensive HBT already uses
a decentralized approach in which a divide and conquer strategy is applied to distribute work among normal
company workstations.

A process analysis of existing solution revealed that the following improvement areas are especially promis-
ing. First, the amount of manual activities should be reduced and the matrix computation process should
automated to a higher degree. Second, the state of processes and steps should be made more observable in
order to detect problems and failures earlier. Third, downtimes in the processes should be avoided. Following
these objectives a workflow driven solution based on Jadex active components has been developed and tested.
The architecture of the system consists of a server agent and multiple worker agents, whereby the server coor-
dinates work distribution and collection and the clients are responsible for computing predefined parts of the
tariff matrix. Jadex supported achievement of the mentioned goals in the following way. The overall process
could be modelled and implemented as BPMN workflow thus reducing many manual steps that originally ex-
isted to trigger next steps. Using active components allowed for using proactive notifications of worker agents
based on service invocations instead of relying on the produced files in a shared file system. Faster information
propagtion to the master gives users an up to date view of the system progress and reduces dectection times of
errors. Finally, downtimes within the process can now be observed by the master and adequate reactions, such
as automatically including new workers detected by Jadex awareness, can be performed.

6.2. DiMaProFI. DiMaProFi is a software product currently developed from Uniique AG8 together with
the University of Hamburg. The company is a database vendor that is specialized on data preprocessing in
context of data warehousing. Most of their workflows in the area of ETL are distributed, long lasting, and
interleaved with manual quality assurance tests. These properties make such workflows hard to automate and
control without considerable human involvement. Existing tool support is based on centralized architectures
with a designated node that controls the overall workflow. Such approach is problematic in environments
with dynamically changing network setups, because e.g. spontaneous occurring network partionings or node

5Hamburger Berater Team GmbH, http://www.hbt.de/
6Public transport in Hamburg is managed by the company Hamburger Hochbahn AG.
7Between source and target multiple routes with different prices may exist.
8http://www.uniique.de/
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breakdowns. Hence, the newly created DiMaProFi software solution will enable executing distributed ETL
workflows modelled in a simplified version of BPMN relying on hierarchical decomposition via subworkflows
and a palette of prebuilt ETL activies. Each ETL activity will be mapped to a service and can thus be executed
locally as well as remotely. In the workflow description, constraints can be specified to bind the execution
location to specific target nodes if this is deemed necessary, e.g. when subsequent steps of the process operate
with data that should not be copied to other nodes for efficiency or privacy reasons.

Using active components as foundation for DiMaProFi simplified the system development in the following
ways. One important aspect is the possibility to apply a component based design with clearly defined service
interfaces. This allows to build up a set of ready to use ETL functionalities available in a network of compo-
nents. In constrast to purely service oriented architecture, in which services are rather static, such services can
dynamically appear and disappear by starting and stopping active components at any network node. Using
the monitoring capabilities of DiMaProFi the infrastructure can react to environmental changes by dynamic
reconfiguration of service providers in the network. Another important advantage of using active components
consists in the automatically achieved distribution transparency. The processes and program code need not to
be changed if local or remote services are used. Finally, the development of DiMaProFi also benefits from the
active component property of different internal comopnent architectures. This allows using BPMN for complex
processes that should be readable by customers, e.g. template workflows and basic services, and Java based
micro agents for components and services with high demands regarding efficiency and compactness.

6.3. Go4Flex. The Go4Flex project is conducted together with Damiler AG and is targeted at business
process management [13]. At Daimler difficulties in realizing complex business processes have been observed,
especially if these processes are long running and contain a lot of different potential errors that might occur.
Traditional workflow languages like BPMN are useful if workflow semantics is rather procedural and can be
expressed as sequences of actions. In case of workflows with a more declarative semantics BPMN and similar
languages reach their limits, as exceptional cases have to be described explicitly. For this reason, in Go4Flex
a new goal-oriented modelling language called GPMN (goal-oriented process modeling notation) is developed
which can be used to describe workflows in a high-level requirement driven way. GPMN uses two modelling
levels. Higher-level workflows are modelled with goals, whereas lower-level workflows are modelled in standard
BPMN. In this way the goal-oriented workflows form an upper control level that is used to decide which concrete
BPMN workflows should be used according to the current context.

In Go4Flex active components and Jadex have been used for two purposes. First, the active component
metaphor naturally allowed to execute different kinds of workflows, GPMN and BPMN, in the same infrastruc-
ture, as both kinds of workflows can be seen as active components that differ only with respect to the internal
architecture used. The goal semantics of GPMN workflows has been directly mapped to the extensively studied
BDI goal semantics including different goal types and inhibition relationships between goals [7, 5]. Using a
model transformation approach, GPMN workflow model are converted to BDI agent representations so that at
runtime the BDI agent interpreter can be resused for executing GPMN workflows. Second, as part of Go4Flex a
workflow management system (WfMS) has been built relying on Jadex. In this way the workflow management
system can directly profit from the characteristics of the distributed middleware by exploiting service based
communications between clients and WfMS. In order to better validate the correctness of the GPMN workflows
a test case driven evaluation tool has been developed. It executes a GPMN workflow for each possible com-
bination of allowed input values and checks the results of the single runs according to predefined correctness
criteria. In order to execute the possibly large number of runs efficiently the Jadex simulation support is used,
leading to as-fast-as-possible execution semantics [12].

7. Related Work. As the objective of this paper is to motivate a new conceptual approach for developing
distributed systems, alternative integration approaches have been categorized according to the pardigms (ob-
jects, agents, SOA, and components) they aim to combine (cf. Fig. 7.1). Additionally, the approaches have to be
distinguished according to the level they address, i.e. are they rather conceptual proposals or do they combine
the concepts with a middleware that follows these ideas. The figure shows that many integration approaches
exist that belong to different combinations of paradigms, but none of them is targeted towards an integration
of ideas from all four main paradigms. Only the work of [1] shares the same goal, but proposes a meta-model
combination approach, in which the core entities of the main paradigms are brought together into a coherent
scheme. In contrast our approach strives at a simplication of development by introducing a new notion that
encompasses the paradigm key characteristics and also provides a middleware infrastructure that demonstrates
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Fig. 7.1: Paradigm integration approaches

its capabilities.
In the following specific combination areas and representatives from these areas will be considered in more

detail. We have chosen to discuss those combination areas in which the agent paradigm is involved. In the
area of agents and objects especially concurrency and distribution has been subject of research. One example is
the active object pattern, which represents an object that conceptually runs on its own thread and provides an
asynchronous execution of method invocations by using future return values [29]. It can thus be understood as a
higher-level concept for concurrency in OO systems. In addition, also language level extensions for concurrency
and distribution have been proposed. One influential proposal much ahead of its time was Eiffel [21], in which
as a new concept the virtual processor is introduced for capturing execution control.

Also in the area of agents and components some combination proposals can be found. CompAA [2],
SoSAA [8] and AgentComponents [18] try to extend agents with component ideas. In CompAA a component
model is extended with so called adaptation points for services. These adaptation points allow to choose services
at runtime according to the functional and non-functional service specifications in the model. The flexibility is
achieved by adding an agent for each component that is responsible for runtime service selection. The SoSAA
architecture consists of a base layer with some standard component system and a superordinated agent layer that
has control over the base layer, e.g. for performing reconfigurations. In AgentComponents, agents are slightly
componentified by wiring them together using slots with predefined communication partners. In addition, also
typical component frameworks like Fractal have been extended in the direction of agents e.g. in the ProActive [4]
project by incorporating active object ideas.

One active area, is the combination of agents with SOA [28] mostly driven by the need of dynamic service
composition, i.e. agents are used to dynamically search and select services at runtime according to given
requirements or service level agreements [19, 30]. These approaches mainly deal with aspects of semantic
service descriptions and search but do not aim at a paradigm integration by itself. Also other SOA related
integration approaches that deal with workflows and agents have been put forward. Examples are agent-based
service invocations from agents using WSIG (cf. JADE9), or model-driven code generation approaches like
PIM4Agents [32] and workflow approaches like WADE (cf. JADE) or JBees [9]. Agents are considered useful
for realizing flexible and adaptive workflows especially by using dynamic composition techniques based on
negotiations and planning mechanims, e.g. proposed in MASE [23].

Finally, also the combination of agent, component and object concepts have been investigated. With ProAc-
tive [3] and AmbientTalk [31] two recent approaches exist that provide sound conceptual foundations and also a
ready-to-use middleware framework. ProActive is targeted towards supporting Grid environments and concep-
tually relies on active objects that have been extended with distribution features. The framework adds further

9http://jade.tilab.com
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support for typical Grid requirements such as map-reduce support, security and reliability features. Ambi-
entTalk has been designed to support mobile ad-hoc networks with a dynamic number of clients. It introduces
a new programming language that is also based on the distinction of active and passive objects. Services of
active objects are dynamically discovered and invoked with a future based invocation scheme. AmbientTalk is
conceptually close to active components but does rely on a complete component model, especially provided and
required services cannot be declared.

The discussion of related works shows that the complementary advantages of the different paradigms have
led to a number of approaches that aim at combining ideas from different paradigms. From all areas involving
agents the most prominent approaches have been evaluated. The majority of those approaches are rather
technical integration attempts not targeted at devising new conceptual entities. Most relevant with respect to
our works are the approaches of ProActive and AmbientTalk that both share some underlying ideas with active
components. Active components extends those in the direction of agents (instead of active objects) and present
a new unified conceptual model that combines the characteristics of services, components and agents.

8. Conclusions and Outlook. In this paper it has been argued that different classes of distributed
systems exist that pose challenges with respect to distribution, concurrency, and non-functional properties
for software development paradigms. Although, it is always possible to build distributed systems using the
existing software paradigms, none of these offers a comprehensive worldview that fits for all these classes and
for each class some conceptual problems usually remain unsolved. Hence, developers are forced to choose among
different options with different trade-offs and cannot follow a common guiding metaphor. From a comparison
of existing paradigms the active component approach has been developed as an integrated worldview from
component, service and agent orientation. Based on this conceptual approach a concrete programming model
has been devised, which provides concurrency support following actor based concepts. It fosters distribution
transparency by not distinguishing between local and remote service as well as by hiding all aspects of service
registration and search from the user. Non-functional aspects are supported on basis of meta-information that
can be annotated to components as well as by adding or exchanging new infrastructure services. An example
for the first category are security annotations, an example for the latter category is web service publishing. The
active component approach has been realized in the Jadex platform, which includes modeling and runtime tools
for developing active component applications. The usefulness of active components has been further illustrated
by an application from the disaster management domain.

As one important part of future work the enhanced support of non-functional properties for active compo-
nents will be tackled. In this respect it will be analyzed if SCA concepts like wire properties (transactional,
persistent) can be reused for active components. Furthermore, currently a company project in the area of data
integration for business intelligence is set up, which will enable an evaluation of active components in a larger
real-world setting.

REFERENCES
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MSMAS: MODELLING SELF-MANAGING MULTI AGENT SYSTEMS

EMAD ELDEEN ELAKEHAL∗AND JULIAN PADGET†

Abstract. Although Multi Agent Systems (MAS) have attracted a great deal of attention in the field of software engineering,
with their promise of capturing complex systems, they remain far away from commercial popularity mainly due to the accessibility
of MAS methodologies for commercial developers. In this paper we present a practical method for developing self-managing MAS
that we believe enables not only software developers but also business people beyond the academic community to design and
develop MAS using familiar concepts. We present the main three phases of the proposed methodology, with details and examples
of all the visual models, followed by details of its supporting metamodel, in which we describes the MAS concepts used and their
relationships. In particular, the methodology features 1. a formal specification mechanism for system norms 2. offers organizational
support of MAS through institutions, and 3. supports self-management explicitly through dynamic planning.

Key words: Multiagent systems, institutions, MAS development methodology, self-management
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1. Introduction and Problem Statement. The main aim in multiagent systems is to provide principles
for the building of complex distributed systems that involve multiple agents and to take advantage of the mech-
anisms for cooperation and coordination in these agents’ behaviours. However, building multiagent applications
for complex and distributed systems is not an easy task [9]. Add to that the development of industrial-strength
applications, which requires the availability of appropriate software engineering methodologies. Although there
are several good MAS development methodologies such as those reviewed in section 2, we contend that none
of them stands out as both a comprehensive and a business-accessible methodology. MAS exhibit all the tradi-
tional problems of distributed and concurrent systems, and in addition bring difficulties arising from flexibility
in requirements and sophisticated interactions [23], all of which result in making it very challenging to define a
MAS development methodology. It was stated in 2008 in the Agentlink Roadmap that “One of the most funda-
mental obstacles to the take-up of agent technology is the lack of mature software development methodologies
for agent-based systems.” [17], and we believe this remains largely true still today.

It is unfortunately apparent that none of the existing MAS development methodologies has seen main
stream take-up. We put forward some reasons of our own for this lack of impact, as well as observations from
some analyses in the literature, to identify those we regard as the most crucial:

1. Lack of support for inexperienced developers; typically, a methodology will require a good knowledge
of agent concepts, because developers need to specify all the semantic components of their agents. This
presents a significant barrier for commercial applications and may explain why adoption of the MAS
paradigm is rarely encountered.

2. The absence of an holistic view of the system logic and its cognitive aspects; this has the potential to
lead to confusion and ambiguity in both analysis and design phases.

3. Incomplete coverage (within a single methodology) of the development life-cycle phases; some offer
design and analysis tools but no support for deployment, while others offer theory but supporting tools
may not (yet) exist.

4. The gap between design models and existing implementation languages [19]; this leads to great difficulty
for programmers, as they try to map the complex designs into executable code.

5. Support for implementation; many current methodologies do not include an implementation phase and
of the ones that do, such as Tropos [3], its implementation language does not explain how to implement
beliefs, goals and plans, nor how to reason about agent communication.

6. Lack of complete formal representation of MAS concepts; we note the of work by Wooldridge [25],
and Luck [16], but observe that neither of these can be considered complete. Even though a partial
approach may be effective, the question remains, which concepts to formalize? And what is the best
way to specify and describe them?

Our proposed methodology, Modelling Self-managing Multi Agent Systems (MSMAS) is intended to solve
most, if not all, of the above issues. It also aims at being more accessible to a wider range of academics and
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software engineers through the support of a formal representation and semi-formal visual modelling, specified
through the metamodel.

The purpose in defining a metamodel is to describe the concepts of MSMAS and to highlight their relation-
ships, as a first step in making any system modelled using MSMAS easily transferable to any MAS technology.

The metamodel represents organizational concepts explicitly and uses dynamic planning in order to support
self-management. In the following sections we highlight related work in section 2 then we present an overview
of the proposed methodology and give some details of its three phases with the inclusion of a sample diagram
of each model in section 3, followed by the details of the metamodel in section 4 and finally we conclude the
paper and discuss future work in section 5.

2. Related Work. In this section we begin with a short review of some of the most prominent MAS
methodologies: GAIA [24], MaSE – Multiagent Systems Engineering [6], Prometheus [18], and Tropos [3],
amongst others. Then we outline and evaluate two particular metamodels that we consider offer the most
complete efforts at defining a unified metamodel for MAS, namely the work of Hahn et al [13] and Beydoun et
al [2].

2.1. Selected MAS Development Methodologies.
GAIA Methodology: GAIA [24] is a general methodology that supports both micro (agent structure) and

macro (organisational structure) development of agent systems. It was proposed by Wooldridge et al
in 2000 and subsequently extended by Zambonelli et al. [26] to support open multi-agent systems. It
has two phases that covering analysis and design. GAIA is both lengthy and complex in these respects,
as well as lacking an implementation phase.

MaSE Methodology: Multiagent Systems Engineering (MaSE) [6] covers the full development life cycle from
an initial system specification to system implementation. It has two phases, comprising seven steps in
all and offers tool support in all phases. MaSE does not enforce the use of any particular implementation
platform, but it has a steep learning curve for inexperienced users.

Prometheus Methodology: Prometheus [18] aims to be suitable for non-expert users to design and develop
MAS. The methodology has three phases: 1. System Specification, 2. Architectural Design, and 3. De-
tailed Design. Prometheus has a tool that supports the design process, including both consistency
checking and documentation generation. Although Prometheus is more practical than many other
approaches it does not fully connect the system model to an execution platform.

TROPOS: Tropos [3] distinguishes itself from other methodologies by paying great attention to the require-
ments analysis, where all stake-holders requirements and intentions are identified then analysed. The
modelling process consists of five phases and uses JACK for the implementation, the developers would
need to map the concepts in their design into JACK’s five constructs. Tropos offer some guidelines to
help in this process, but it seems very lengthy and complex.

2.2. PIM4Agents: A Platform Independent Metamodel for Multiagent Systems. The principles
of the Model Driven Development (MDD) Framework of the Object Management Group (OMG)1 define how a
visual, model-based approach could be used to integrate a number of technologies used in software development.
Aiming to follow this approach, Hahn et al [13] examine various multiagent metamodels including Aalaadin,
ADELFE, Gaia and PASSI, then propose a unified MAS metamodel by merging the metamodels of ADELFE,
Gaia and PASSI to cover all of their aspects. The problem with this approach is that it does increase the
complexity of modelling MAS systems and although a unified metamodel can help in moving MAS towards a
standard form, it makes it difficult to satisfy some circumstances where a specifically focused structural view of
a MAS is needed.

Hahn et als’ unified metamodel for MAS adopts multiple points of view to cover all the features in the
different technologies. These views we now summarise:

1. Multiagent View: focusses on the main components of any MAS; this covers agents, their capabilities
and the primary concepts of any MAS such as cooperation, interaction and environment.

2. Agent View: describes each individual agent and the capabilities it uses to achieve its tasks, as well
as the roles it plays in the context of the MAS.

3. Behavioural View: focusses on plan composition, specification of how atomic tasks are done and how
data flows within system control constructs.

1Object Management Group: http://www.omg.org/
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4. Organisation View: defines the organisational structure and how cooperation is achieved between
the system’s individual autonomous entities.

5. Role View: identifies the functional states of the system’s autonomous entities and their social rela-
tionships.

6. Interaction View: describes how autonomous entities interact and the form of this interaction.
7. Environment View: describes the different kinds of resources that are created by the agents or shared

by the organisations.

Hahn et al propose a complete model, called PIM4Agents, that defines the abstract syntax of a domain-specific
modelling language for MAS (DSML4MAS), as well as a definition of the model transformations from Platform-
Independent Model (PIM) to Platform-Specific Models (PSM), which allows for the transformation of the
designed model into an implementation for a specific platform such as JADE or JACK.

2.3. FAML: A Generic Metamodel for MAS Development. Motivated by the advances in Model-
Driven Development [1] and with the mission of combining all different metamodels in the domain of MAS,
Beydoun et al [2] attempt to develop a unified metamodel to allow for interoperability, better understanding and
better communications between researchers. FAML was created following a four-step process: (i) Determination
of the full set of general concepts relevant to any MAS and its model, (ii) Short-listing the candidate definitions,
(iii) Reconciliation of definition differences to build a consistent set of metamodel terms, and (iv) Designation
of the chosen concepts into two sets: design-time and runtime, where the central design-time concept is the
system as an agent-oriented system while the central runtime concept is the environment wherein agents reside.
In FAML, an agent has internal and external concepts, and the classes that relate to the agent’s internals at
design-time are called agent definition level, while those that relate to the agents internal aspects at runtime
are called agent level. Classes that relate to the agents external aspects at design-time are called system level,
while classes that relate to agent external aspects at runtime are called environment level. In summary:

1. Design-time aspects: Views the system as an agent-oriented structure that satisfies both functional
and non-functional requirements. Roles are also used to describe the system. They are normally related
to tasks either as responsible for a task or as a collaborator in a task.The InitialState concept is used
to initialize the concept of AgentDefinition that is used only at runtime. An AgentDefinition consists
of an initial state and a number of plan specifications, and each is composed of a number of action
specifications. A system also has facet definitions: these are the aspects of the environment with which
the agents can interact.

2. Runtime aspects: The environment is an essential part of the system: it is where the agents reside
and it provides the facets they need to interact. In FAML, the environment has a history which is a
composition of all message events and facet events that occurred in the environment. Agent internals at
runtime comprise the collection of beliefs, desires, and intentions an agent can hold including support
for basic BDI concepts, but those are not compulsory. Finally the actions that make an agent plan can
be facet actions or message actions.

Both FAML and PIM4Agents offer a generic approach to the description of any MAS, and have a compre-
hensive metamodel that fits all views and approaches of developing MAS. As such, they are a great contribution
that have together helped us to verify that our concepts could be mapped to other metamodels. However,
we find that the inclusion of so many concepts in FAML has led to an increase in complexity and introduced
a steep learning curve to be faced by new user. To address this issue and make the modelling process more
straightforward, we have intentionally designed MSMAS to offer a carefully selected subset of MAS concepts
that are essential to the description of any MAS, but especially those concepts that are more aligned to, and
commonly used within, a business context.

3. MSMAS Methodology Overview. MSMAS consists of three phases that cover the full life cycle of
multiagent systems development. The elements of each phase and the connections between them are show in
Figure 3.1. We now outline each of the phases:

1. The first phase focusses on System Requirements gathering: this allows the system designer to
describe many possible use case scenarios as well as to specify a high-level system goals. It has two
diagram types; the System Goals Diagram and Use Cases Diagrams.

2. The second phase focusses on Detailed Analysis and Design; during this phase the system require-
ments can be transformed into a complete system model. Each diagram contributes to the building
of the system Metamodel, which is the basis for generating all the MAS code for one or more tar-
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Fig. 3.1: MSMAS Overview

get execution languages/platforms. The system designer can start this phase either from the business
process (BP) view or the system participant view. The BP view requires the completion of Specific
Business Process Models and Basic Business Process Models diagrams. Experienced users with
a good knowledge of the multiagent paradigm can alternatively start from the System Participants
Models and the definition of their entities (Agent–Actor–Service–Environment) as well as the
definition of communication components (Protocol–Message) alongside the usage or definition of
(Goals–Plans–Norms–Beliefs).

3. Finally, the third phase is the implementation and execution phase where the user can verify the system
design and export the Metamodel file as RDF or choose to generate code in one of the supported
execution languages/middlewares such as Jason, AgentScape etc.

In the following sections we describe each of these phases and their modelling diagrams/components in more
detail and give some examples. The examples are based on elements of the inventory system described in [10].
This system comprises service provider agents (SPA), administrator agents (AA) and a central database agent
(CDBA) whose task jointly is to meet the following requirements: (i) The SPA must be able to publish/update
its stock-level information in the central database (ii) The SPA must provide stock-level information about any
number of its catalogue items on request from another agent (iii) The SPA must report any errors in transaction
with other agents (iv) The SPA must report any suspected data transmission failure (v) The AA must log and
may take corrective action in response to an error reported by a SPA. The processes discussed later mostly
concern the handling of the Supplier Stock Level File (SSLF), from getting a new version from a supplier to its
publication in the central database.

3.1. System Requirements Phase. The purpose of this phase is to describe the system functions in
terms of use cases after identifying the main system goals. There are only two models to be created during this
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Fig. 3.2: System Goals Diagram

phase: System Goals Model and Use Cases Models.

3.1.1. System Goals Model. Every system should have a set of goals; these are simply the motivations
for building the system: the system designer does not need at this stage to specify the goals in great detail,
rather the goal hierarchy should be constructed until it reaches the level of detail whereby every goal can be
fulfilled by only one basic business process. Systems goals are the drivers for all the diagrams of the next phase.

The system goal is basically the system status it is wished to achieve. The system goals definition should
not to be confused with the common agent goals: in our model the system goals are procedural, in other words
the goal name is similar to a method in a traditional programming language. This is very useful to divide—if
we take a top to bottom approach—the system from one unit to a group of functions. At the same time, it helps
to show how a particular group of actions may lead to the fulfilment of a single big system function. Figure 3.2
shows an example System Goals Model.

The system goals model contains three types of goals (i) General System Goal: Any system should have
only one General System Goal. This should express the major reason for building the system. (ii) Specific
System Goals: These are more functional goals that can be achieved by one or more business processes; each
Specific System Goal can have a number of sub-goals. (iii) Basic System Goals: These are leaves of the goals
tree; they cannot have sub-goals.

3.1.2. Use Cases Models. Use cases function as a clarification of some or all the system functionalities,
in this step the system designer can create some models of the most important functions for future reference.
The use cases are used in our methodology to help the system designer to think through the different functions
of the system and possible issues to be considered. The use case diagram normally shows how different system
participants interact, or which steps they take to carry out a system function.

Figure 3.3 shows an example use case diagram, where there are two system participants: a software agent
(Supplier) and software service (Translator), and four functions. The arrows show the sequence of execution
and the connectors between the agent and the function define responsibilities.

3.2. Detailed System Design Phase. The aim of the Detailed System Design phase is to define all the
system components, their detailed structure and the ways they can interact with each other. There are three
different diagram types in this phase; Specific Business Process Models,Basic Business Process Models,
and System Participants Models. To complete these diagrams, the system designer needs to define/use
different types of supporting entities, which are held in the form of repositories or standard descriptors.

The system designer starts this phase either by: (i) modelling the system participants; this requires some
experience and familiarity with MAS concepts, or by (ii) modelling the Business Processes; this is the more
common approach for business users who may not be able to define system agents and their plans etc.
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3.2.1. Business Process Models (BPM). Generally, business process modelling is a way of representing
organizational processes so that these processes can be understood, analysed, improved and enacted. The
drawback to most BPM techniques is their procedural nature, which can lead to over-specification of the process,
and the need to introduce decision points into execution that are hard to know in advance and unsuited to MAS
modelling. We use declarative style modelling to describe our BPs using the Declarative Service Flow Language
(DecSerFlow) [20]. More details of this are given in section 3.2.2.

Business Process Models (BPMs) are derived directly from the system goals and they are used to describe
and identify the steps needed to achieve one or more of the system goals, these steps form the system plans. For
each Specific System Goal there is at least one BPM. Each Sub-Specific Goal is represented as an Activity
inside its Super Goal BPM. Business Process Models are either Specific Business Process—that is, derived
from a Specific System Goal—or Basic Business Process, that describes a Basic System Goal.

3.2.2. Modelling BPs and Specifying System Norms Using DecSerFlow. According to Jennings
[14] Commitments and Conventions Hypothesis: all coordination mechanisms can ultimately be reduced to (join)
commitments and their associated (social) conventions. Introducing conventions to the system participants’
interactions can be achieved through one of three approaches (i) reducing the set of possible options by restricting
and hard coding all these conventions in all agents, (ii) enforcing these conventions at the protocol level that all
system participants follow, so there is no way for the agent to violate the conventions even if it tries to – known
as regimentation, as in [11] – or (iii) using the norms only to influence the system participants’ behaviour as
suggested by Dignum et al [7] – known as regulation.

We adopt a declarative style for modelling our BPs, namely DecSerFlow as proposed by van der Aalst
and Pesic [20], which offers an effective way to describe loosely-coupled processes. Consequently, instead of
describing the process as a directed graph, where the process is a sequence of activities and the focus of the
design is on “how”, the designer is able to concentrate on “what”, by adding constraints in the activities model,
as well as rules to be observed at execution time. For constraint specification, DecSerFlow uses LTL (Linear
Temporal Logic) as the underlying formal language and these constraints are given as templates, that is as
relationships between two (or more) activities. Each constraint template is expressed as a LTL formula. We
use DecSerFlow notation and its underlying LTL formal representation.

The system designer can add convention norms in one of the following ways: (i) at the business process level,
where the designer may include any number of activities alongside the business process activities and enforce
any relation s/he might see necessary among the activities, or (ii) at the activity level, where the designer
may choose to add the convention norms as preconditions for any number of activities; in this way the system
participant would not be able to execute such activities in the absence of the satisfaction of that precondition.

3.2.3. Specific Business Process. Each system goal is realised through one specific BP, which is a
collection of sub-processes or activities that normally lead to the achievement of that specific goal.
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Fig. 3.4: Specific Business Process Diagram (Accept SSLF)

Figure 3.4 shows an example diagram of the “Accept SSLF” – where SSLF is the Supplier Stock Levels
File – Specific Business Process, which has two activities: (A) “Check for New SSLF” that is a sub-process
to achieve the “Check for New SSLF” Specific System Goal and (B) “Publish Supplier SSLF” Basic Business
Process to achieve “Publish Supplier SSLF” Basic System Goal. Both activities can run an arbitrary number of
times, however the Succession relationship requires that every execution of activity A should be followed by
the execution of activity B and each activity B should be preceded by activity A. That relationship is formally
expressed in LTL as: �(A ⇒ ♦(B)) ∧♦(B) ⇒ ((¬B) ⊔A)

3.2.4. Basic Business Process. A Basic Business Processes is the most detailed BP model; it can contain
any number of plans for the purpose of achieving just one Basic System Goal. The Basic Business Process
diagram comprises a set of activities. Figure 3.5 shows a diagram for the “Publish SSLF” Basic Business
Process, which has five possible activities; each activity is carried out by one or more system participants. Each
activity has its own pre-conditions and post-conditions. There is no need to specify the execution sequence,
because the activity whose pre-conditions are met should start automatically. “Get connection” has no pre-
conditions, which means it should start as soon as this “Publish SSLF” Business Process starts. There are two
activities named “Download SSLF”, each of which has the same post-conditions but a different pre-condition.
During execution, based on the available resources, the supplier agent can download the new SSLF from either
a FTP or an Email account. To avoid duplication of execution of this activity, there is the not co-exists
relationship that means only one of the two tasks “A” or “B” can be executed, but not both. The not co-exists
relation is expressed in LTL as: ♦(A) ⇐⇒ ¬(♦(B))

3.2.5. System Participants Models. System Participants Models are equivalent in context to Detailed
Business Process Models. They offer a different view of the process by describing the detailed activities from the
participants’ perspective. They define also how activity owners communicate with other participants. System
Participants Diagram includes one box for each system participant (Agent–Actor–Service) and one for the
Environment. This last allows for the definition of any external event caused by other system participants.

Figure 3.6 shows an example system participants diagram for the Publish SSLF Basic BP. There are two
Software Agents (Supplier Agent and Central Virtual Stock Agent) and one Software Service (Translation
Service) and the Environment. The Software Agent is a piece of automated software that has its own set
of goals expressed as states that it tries to achieve continuously. It holds its knowledge as a belief set and
it is able to define new goals dynamically and update its belief set as well as define the needed steps (plans)
to achieve its goals. The software agent is situated within an Environment that allows the agent to carry
out its dynamic actions (plans), the environment also facilitates the ways in which the agent might need to
communicate with other software entities sharing the same environment. We also adopt the concept of a human
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Fig. 3.5: Basic Business Process Diagram (Publish SSLF Business Process)

system participant (Actor), as proposed by [22] to allow for modelling a participatory team of software agents
and human actors. This view is found to be more practical to support real-life scenarios where some decisions
are necessarily assigned to humans to make. Finally, the system participant can be a Software Service, which
is a piece of software that has a set of related functionalities together with policies to control its usage and is
able to respond to any relevant requests from other software entities in a reactive manner.

System participants communicate using a Communication Protocol, which is a set of rules determining
the format and transmission of a sequence of data in the form of messages between two or more system partic-
ipants. MSMAS offers a number of pre-defined native protocols, as well as allowing the user to define custom
protocols.

During the detailed system design phase the user can define each entity from scratch or connect it with
a definition file. All entity definitions are stored in the system repositories that hold System and Agent

Plans, Environment and Agents beliefs, System and Agents goals, as well as all system processes,
communications protocols,and system declarative norms.

3.3. Implementation Phase. The third and final phase of MSMAS addresses verification and consistency
checking across all system models. The verified system model can be exported into one Metamodel (RDF) .
That metamodel is used to generate code for one of the supported execution languages, platforms or middlewares.

4. MSMAS Metamodel. MSMAS aims to allow the system designers to provide the absolute minimum
description of a MAS that satisfies the answers to the following questions:

1. What is the purpose of building the system and its individual components? This question is answered
by the definition of Systems Goals as the first core concept.

2. How can the system achieve its goals? The answer lies within the second core concept which is the
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Fig. 3.6: System Participants Diagram (Publish SSLF)

system Business Processes and their activities.
3. Who or what is responsible for the execution of each business process activity or each complete business

process of the system? The question is answered through the definition of the third core concept of
System Participants.

Besides these core concepts, one can argue that an important objective of a MAS is the ability of more than
one individual agent to interact and cooperate in favour of achieving common goal(s), or avoiding a conflict that
could turn into an inability to achieve their own individual goals. To design a MAS that is able to demonstrate
such behaviour, it must have an organization mechanism so its members can be regulated and so they can
follow specific interaction protocols, or sets of norms. Implementing the organization mechanism can be done
either by integrating it within the agents themselves or designing the organization externally to the agents, or a
combination of the two [4]. Designing the organization mechanism external to the agents is normally motivated
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Fig. 4.1: MSMAS Metamodel

by the desire for an explicit organizational model, normative system or institution, where agents are designed
to be regulated by a set or norms, which are used by the individual agents to decide how to behave or are
enforced through monitoring and punishment mechanisms. In our approach we have chosen to implement the
organization mechanism explicitly to allow for easier management and transformation of our metamodel into
any target programming language, whether that language provides programming constructs to implement the
social concepts or not. Another advantage of our approach is that it allows any agent to play any role, as long
as it does maintain the capabilities needed for such role and its individual goals are achieved through playing
such role [21].

In MSMAS we have chosen to support the concept of institution explicitly, so the system designer should
specify the different components of an institution during the design process. This concept is described in detail
in section 4.4.

Finally a true MAS needs to be an adaptive system, that is a system that can dynamically respond to the
changes in its observed environment states and can evolve and find new plans that utilise its resources, as well
as lead effectively to the satisfaction of its goals. The Dynamic Planning feature is the final main concept
and discussed in more detail in section 4.5.

Figure 4.1 shows the full MSMAS Metamodel, where these three core concepts are highlighted, and Fig-
ure 4.2 is a focused view of the core concepts with their immediate sub-concepts. In the following subsections
we define these core conceptual areas and their related concepts.

4.1. System Goals. The system goal is the type of the goal class, which is a state of the world that the
system or any of its participants wishes to achieve. The system goals in our model are procedural, in other
words the goal name is similar to a method in a traditional programming language. This is done deliberately to
allow the division of — taking a top to bottom approach — the system from one unit into a group of functions.
At the same time, this helps to see in a simple way how a particular group of sub-goals may lead to fulfilling one
greater system goal. Each system goal may be achieved by one or more plan. Table 4.1 collects the definitions
of all concepts supporting System Goal concept. As shown in Figure 4.3, the system goal is one of three types
(i) General System Goal (ii) Specific System Goal (iii) Basic System Goal
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4.2. Business Processes. Business Processes are derived directly from the system goals and they describe
and identify the steps needed to achieve one or more of the system goals, these steps forming the system plans.
For each Specific System Goal there is at least one Specific Business Process. And for each Basic System
Goal there is one Basic Business Process, that is a collection of a number of Activities. Each different sequence
of activities that lead to completion of one business process is forming a system plan. Each system plan could
be executed by one or more system participant. A collection of these activities into a system plan, to be
executed by a system participant, form one system participant plan. Figure 4.4 shows all different types of
Business Processes and their relations both the System Plans as well as the System Participants and Table 4.2
summarizes the definitions of all concepts supporting Business Process concept.

4.3. System Participants. System Participants are those system components that are responsible for
the execution of plans in order to achieve the system goals. As noted earlier, we expand the definition of MAS
to include not only software agents and services but also human actors. The system participants that take
the initiative for the achievement of the system goals are called proactive system participants, whereas software
services, that only respond when they receive a request are called reactive system participants. As shown in
Figure 4.5, each system participant normally has one or more system plans, and they execute their plans in form
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Concept Definition

Goal A desired state that the system or one or more of its participants aim individually
or collectively at reaching

System General Goal The most general reason for building the system, the achievement of all system goals
leads to the achievement of the general goal

System Specific Goal A functional goal that can be achieved by one or more business processes, it must
have one or more sub-goals either Specific or Basic

System Basic Goal A sub-goal of a system specific goal

Plan An ordered list of primitive actions, that if executed successfully, lead to the achieve-
ment of a goal. A plan normally has preconditions, and the successful execution leads
to change of the system state described as a post-condition

Table 4.1: System Goals Concepts

Concept Definition

Business Process A collection of sub-processes or activities that lead to the achievement of a system
goal

Specific Business Process A collection of sub-processes or activities such that a successful execution of part
or all of them leads to the achievement of a specific system goal

Basic Business Process A collection of activities such that a successful execution of part or all of them
leads to the achievement of a basic system goal

Business Activity A primitive course of actions that involves one or more system participants and
may have a precondition.

System Plan An ordered list of either sub-processes or activities or mix of both if executed
successfully, leads to the achievement of a system goal.

Table 4.2: Business Processes Concepts

of a series of actions to achieve one of more of their system participants goals. System participants actions do
affect the state of the system, the internal state of the system participant itself or both, and they are important
for the purpose of monitoring the overall state of the system and to discover any violation of the system norms
that are associated with the role this system participant is performing.

Proactive system participants have a belief base, which is a set of facts about themselves, their environment,
and other system participants. Each proactive system participant has a set of capabilities and typically it cannot
perform a specific role without having the capabilities required for this role. Proactive system participants
perform multiple roles during the course of system execution, however their actions need not violate the system
norms associated with such roles. System participants communicate using one or more Communication
Protocols, which are sets of rules determining the format and transmission of a sequence of data in the
form of messages between two or more system participants. MSMAS offers a number of pre-defined (Native
Protocols), as well as allowing the user to define (Custom Protocols). The communication protocol can
have any number of messages of either of two types: (Inform Message and Request Message), being the
basic performatives defined by FIPA [12].

4.4. Institution Structure. Institutions form integral part of the metamodel to support the e-organiza-
tion structure. Each institution comprises a set of norms that are used to classify agents’ actions as norm-
compliant or not, of which the latter may result in punishment, depending on what enforcement mechanisms
are deployed. An institution itself is a like class or template, which needs to be instantiated before use in order
to fill in the identities of the agents that it governs. In particular, and as shown in Figure 4.6 the connection
between the rules and the agents is established by the roles that agents play, while the rules themselves are
expressed in terms of roles. Some, but not necessarily all, of the actions of an agent will relate to an institution
in the sense that an agent’s observable action may count as [15] institutional actions, if that agent has the
requisite institutional power and if that agent has permission for that (institutional) action at the time it
occurs. The consequence of absence of institutional power is simply that the action has no institutional effect.
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The consequence of absence of permission is that a violation occurs – the action was not norm compliant – and
if the violation is observed by an agent with the power to carry out some enforcement action, then there may
be consequences for the offending agent. A more detailed discussion can be found in [8].

We observe that there may be: (i) many instances of the same institution, as explained above, for example,
each contract [5] can be thought of as being parameterized with the parties to the contract, and (ii) many
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Concept Definition

Reactive System Participant A software component that works in a stimulus-response manner: they can
only respond when triggered by receiving a request.

Proactive System Participant An autonomous software component that has knowledge of itself, environ-
ment and other components and actively uses this knowledge to reason and
form plans that lead to achievements of its goals

System Participants Goal An internal goal that motivates the system participant’s internal planning

Service A reactive system participant, that has predefined set of functions other
system participants can use on demand

Agent A software proactive system participant that actively assesses its internal
state and internally plans and acts to achieve its goals

Actor A human proactive system participant that actively assesses its internal state
and internally plans and acts to achieve its goals

Belief Base A store of all facts (beliefs) that system participant holds about itself, its
environment, or other system participants

Role A specification of a behaviour pattern that the system participants should
follow to carry out the function of such role

Capability The ability of a proactive system participant to perform set of functions
specified within a certain role

Protocol A set of rules determining the format and transmission of a sequence of data
in the form of messages between two or more system participants

Custom Protocol User defined communication protocol

Native Protocol Predefined communication protocol

Belief A fact in the form of element in the state of a system participant, environ-
ment, or both

Table 4.3: System Participants Concepts

different institutions, comprising different sets of norms, serving different purposes and that it is quite likely
that an agent will be subject to the governance of more than one institution at the same time. Thus, the
primary purpose of the institutional component of the metamodel is to provide a mechanism whereby different
sets of constraints may apply to agent behaviour at different times, so that the behaviour of active entities that
make the system work can be indirectly influenced without re-coding and re-starting.

4.5. Self-managing through Dynamic Planning. Planning in its simplest form is the process of finding
a sequence of actions that leads to the achievement of a goal. We use “dynamic planning” for the on-demand
process of finding all possible sequences of actions that lead to the achievement of a defined goal (state) based
on the current state of the system and resource availability. The purpose of dynamic planning is to enable the
system to overcome the failure of one or more of its components, thus realizing an aspect of self-management.
Such behaviour is essential for designing business systems that are able to progress flexibly with their functions
without the need to follow precisely a predefined course of actions. We are working on the definition of details
of the dynamic planning aspect and our current and future research activities include the answering of questions
such as: what is the best planning language to use? What is it realistic to expect dynamic planning to cover?
Are the system agents self-contained, with full internal reasoning capability or should the planning service be
offered for both global planning and system participants’ planning?

Although some questions are not fully resolved in this aspect of the system, we have chosen to support
self-management by making the following components – as shown in Figure 4.7 – an integral part of the
metamodel: an institution planner, that is one or more software agents that are responsible for re-planning
on demand for other system participants based on the available system resources. The current design of the
metamodel supports our dynamic planning view and is easily extensible to include more detailed concepts once
the remaining questions are answered.
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5. Discussion and Future Work. We have described briefly the key features of the MSMAS method-
ology, which aims to (i) overcome the issues we have found with other MAS development methodologies and
(ii) attract a wider range of users to adapt MAS concepts in business applications. MSMAS has clear and
well-defined steps that should enable developers to design any small scale MAS and makes MAS concepts ac-
cessible and easy to comprehend by business users as well as academics. The methodology is supported by a
metamodel, presented here, that covers most common MAS concepts and supports formal system description
for verification and implementation purposes. Our aim has not been to define a new MAS metamodel that fits
with all methodologies or unifies all other metamodels, but rather to support our methodology with a small,
well-defined set of concepts that could be easily understood and specified in a business context without com-
promise on the most common agreed-on MAS concepts and structure. Our metamodel can be mapped to other
metamodels, and could be used as a base for generating code.

The most important features supported by MSMAS are (i) formal specification using DecSerFlow notation,
(ii) support for organizational view through the explicit definition of e-institutions, and (iii) the technical support
of self-management through dynamic planning and usage of norms.

Two particular features of our methodology and its metamodel that stand out, are (i) the inclusion of an
institution structure to support the organizational view of a MAS, and (ii) the use of dynamic planning to allow
for self-management and thereby the opportunity for a higher degree of flexibility.

We are currently developing tools to support all the phases of MSMAS and a critical next step is a full
evaluation of MSMAS in practice. Other planned future work include the establishment of the most appropriate
means for specifying the system norms, describing system and agent plans to support dynamic planning, and
deployment methods for distributed MAS systems.
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A COGNITIVE MANAGEMENT FRAMEWORK TO SUPPORT EXPLOITATION OF THE
FUTURE INTERNET OF THINGS
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Abstract. In this article, a cognitive management framework is proposed for ensuring exploitation of the Future Internet of
Things (FIoT). Cognitive systems offer self-x and learning. A cognitive system has the ability to dynamically select its behavior
through self-management/awareness functionality, taking into account information and knowledge on the context of the operations
as well as policies and including the generation of the context itself. The framework is based on the principle that any real world
object and any digital object that is available, accessible, observable or controllable can have a virtual representation in the Future
Internet, which is called Virtual Object (VO). Basic VOs can be composed in a more sophisticated way by forming Composite VOs
(CVOs), which provide services to high-level applications and end-users. The described paradigm is applied to various applications
scenarios: smart home, smart office, smart city and smart business. This paper presents some background in IoT, identifies the
requirements and challenges, and sets the directions that should be followed.

Key words: Cognitive Systems, Internet of Things, Virtual Objects, Wireless Communications

1. Introduction. The ”7 trillion devices for 7 billion people” paradigm [1], yields that the handling of the
amount of objects that will be part of the Internet of Things (IoT) requires suitable architecture and technolog-
ical foundations. The Internet-connected sensors, actuators and other types of smart devices and objects need a
suitable communication infrastructure. While several research projects (e.g., IoT-A [2], CASAGRAS2 [3]) have
set out to define architectures or reference models to ensure interactions and facilitate information exchange,
there is a significant lack in terms of management functionality and means to overcome the technological het-
erogeneity and complexity of the pervasive networks in terms of exploitation effectiveness. This is essential for
the IoT, in order to enhance context-awareness (by being able to match continuously an evolutionary demands
of client applications against an unreliable connection and representation quality of real world objects), pro-
vide high reliability (through the ability to use heterogeneous objects in a complementary manner for reliable
service provision), energy-efficiency (through the selection of the most efficient and suitable objects from the
set of heterogeneous ones, and, in general, through the optimal management of a large population of resource
constrained devices) and security in these distributed networks of cooperating objects. The sheer numbers of
objects and devices that have to be handled and the variety of networking and communication technologies,
as well as administrative boundaries that have to be supported do require a different management approach.
The idea is to enable seamless and interoperable connectivity amongst heterogeneous number of devices and
systems, hide their complexity to the user while providing sophisticated services and applications [4].

In response to the requirement of overcoming technological heterogeneity this paper proposes a cognitive
management framework. The proposed framework aims to provide the means to realize the principle that any
real world object and any digital object, which is available, accessible, observable or controllable, can have a
virtual representation in the IoT. This means that the functionality or features offered by any kind of object
can become part of composite functionality/features, which will be reusable in the context of sophisticated
application/service provision in the IoT.

Moreover, the aim of the framework is to provide the foundations, architecture and functionality for a
cognitive support paradigm for the IoT, for continuous sensing of client applications, own environment and
real world variations. A cognitive system has the ability to dynamically select its behavior (managed sys-
tems configuration), through self-management/awareness functionality, taking into account information and
knowledge (obtained through machine learning) on the context of operation (e.g., internal status and status of
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environment), as well as policies (designating objectives, constraints, rules, etc.).

In the light of the above, cognitive technologies constitute an efficient approach for addressing the techno-
logical heterogeneity and obtaining context awareness, reliability and energy efficiency. Cognitive technologies
have been applied to the management of diverse heterogeneous technologies (e.g., wireless access, backhaul/core
segments). The proposed framework applies this successful paradigm for solving problems that are particular to
the IoT. Therefore, new IoT-oriented cognitive functionality will be provided, which will be part of the service
layer of the Future Internet. A cognitive system consists of the cognitive engine (offering intelligence and service
capabilities) and the reconfigurable/managed part, which is technology specific. The engine interacts with the
managed part and with other engines. Each managed part is directly controllable by one engine (i.e., other
engines have to interact with the managing cognitive engine in order to affect a specific managed resource).
Through this approach there is the accomplishment of the abstraction of the technological heterogeneity, which
leads to the removal of the sector specific boundaries. Of course, the realization of above described cognitive
capabilities relies intensively on the support of autonomic capabilities on both thing level and support plat-
form level. Context awareness is inherent in the model, while policies and decision-making (part of autonomic
features) can be oriented to address the targets of enhanced reliability and energy-efficiency.

Additionally, the proposed framework addresses security, resilience and user privacy issues, which are vital
for the Future Internet, though a policy management approach where access to data and resources is regulated
by policies and access levels (also common with current practices in autonomic computing and networking).

From the users/applications perspective, three concepts - IoT, ubiquitous computing, and ambient intel-
ligence - aim at delivering smart services (where smartness reflects the accuracy of context sensing, service
matching, platform use and time wise capability) to users [5]. A part of the smartness relies on context aware-
ness, e.g., service provision according to the needs that exist at the place, time and overall situation. This is
not all. At a societal level, smartness also requires that the needs of diverse users and stakeholders are taken
into account both design time (templates) and run-time (learning capability). Stakeholders can be the owners
of the objects and of the communication means. Different stakeholders that are part of the current Internet
milieu and they will be part of Future Internet, have interests that may be adverse to each other and their very
own criteria on how objects could be used and should be accessed. Clark et al. [6], calls this process the tussle
and any Future Internet framework should be able to accommodate such tussle to support a smooth evolution
of Future Internet of Things, as expected to be a world of competing and conflicting contexts and demands. So
a key challenge that needs to be tackled includes the handling of the diversity of information while respecting
the business integrity, the needs and rights of users and of the various stakeholders.

The approach presented in this paper aims to overcome the issues above by bringing further intelligence
in the Internet of Things. The remaining part of the paper is organized as follows: Section II describes the
proposed approach to address such challenges through a cognitive management framework based on the concept
of virtual object. Section III describes the Security and Privacy aspects. Section IV describes the application
of the cognitive management framework to two scenarios: smart home and smart office. Section V concludes
the paper and provides future directions in this research area.

2. Cognitive Management Framework for Future Internet of Things.

2.1. The framework. The proposed framework is targeted to concealing technological heterogeneity and
for satisfying the requirements of different users/stakeholders so as to meet the objectives for context awareness,
reliability, and energy efficiency. Additionally, security will be a primary concern and an important property at
all levels of the cognitive framework. The framework comprises three main levels of enablers, which are reusable
to various-diverse applications.

In each level there are scalable fabrics, which offer mechanisms for the registration, look-up and discovery
of entities, and the composition of services.

Cognitive entities at all levels provide the means for self-management (configuration, healing, optimization,
protection) and learning. In this respect, they are capable of perceiving and reasoning on their context (e.g.,
based on event filtering, pattern recognition, machine learning), and of conducting associated knowledge-based
decision-making (through associated optimization algorithms and machine learning).

Through such features the proposed framework constitutes an open networked architecture encompassing
highly intelligent (i.e., adaptive, knowledge based, eventually proactive, etc.) software.

The virtual objects (VOs) are primarily targeted to the abstraction of technological heterogeneity. VOs
accomplish their role through the cognitive management and handling of real-world or digital objects (e.g.,
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Fig. 2.1: Layers of the Cognitive Management framework

sensors, actuators, devices, etc.). VOs are cognitive virtual representations of real-world objects and/or digital
objects.

User/stakeholder related objects will convey the respective requirements. The entities will be capable of
detecting human intentions and behavior, inferring, and eventually acting on behalf of the users. In this respect,
there is seamless support to users, which is in full alignment with their requirements (the learning capabilities
of the cognitive entities of this layer will be applied for acquiring knowledge on user/stakeholder preferences,
etc.). Capabilities for governing the entities will also be included (through any type of interaction - multi-modal
interactions)

Composite virtual objects (CVOs) will be using the services of virtual objects. A CVO is a cognitive mash-
up of semantically interoperable VOs that renders services in accordance with the user/stakeholder perspectives
and the application requirements.

The concept of VOs is not new. Object-oriented (OO) approaches have been used in computer programming
for decades and distributed objects are used in Object-oriented middleware applications in the Web 7. The
intention is not to create new digital representations/objects, but to combine previous concepts with cognitive
management mechanisms to create and maintain dynamic, intelligent virtual representation of real world/digital
objects that can enhance the Future Internet.

As already introduced, the framework comprises three layers of cognitive components, which are depicted
in Figure 2.1.

The first cognitive management layer (VO level cognitive framework) is responsible for managing the VOs
and for the abstraction of the technological heterogeneity. Real-world or digital objects (e.g., sensors, actuators,
devices, etc.) are represented in the first layer through VOs. In current practice and standardization the most
prevalent solution is considered the use of RESTful services, based on experienced capabilities of things. The
management layer is responsible for the VO lifecycle (i.e., creation, update, destruction) and to address the
heterogeneity by defining the logical links among VOs. For example the container transported by a truck is a
VO as the truck itself. A tracking device on the truck (with GPS and communication terminal) is also a VO.

The second cognitive management layer (CVO level cognitive framework) is responsible for composing the
VOs in Composite VO (CVO). CVOs will be using the services of VO to compose more sophisticated objects.
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A CVO is a cognitive mash-up of semantically interoperable VOs that renders services in accordance with the
user/stakeholder perspectives and the application requirements. For example, the combination of the trucks,
the transported goods and the tracking device is represented in the cognitive framework as a CVO.

The third level (User level cognitive framework) is responsible for interaction with User/stakeholders. The
cognitive management frameworks will record the users needs and requirements (e.g., human intentions) by
collecting and analyzing the user profiles, stakeholders contracts (e.g., Service Level Agreements) and eventually
acting on behalf of the users. In this respect, there is seamless support to users, which is in full alignment with
their requirements (the learning capabilities of the cognitive entities of this layer will be applied for acquiring
knowledge on user/stakeholder preferences, etc.). Capabilities for governing the entities will also be included
(through any type of interaction - multi-modal interactions).

An alternative representation of the framework is described in Figure 2.2, where the lowest level is connec-
tivity level and it is composed of real world objects. These objects may or may not be communication enabled.
Then we define the VOs and CVOs as above. These virtual objects have cognitive functionalities depending on
their capability sets. The right composition of abstracted virtual objects is done at this level (i.e., VO level).
The topmost level is the service level (may also be called as User level since users could also influence the way
services are configured). Based on the required service the CVO are composed on the fly. The user require-
ments, the context and the analysis of the available resources contribute to the dynamic service composition
and orchestration to offer the right services at the right time to the user.

The next section describes more in detail the lifecycle of the VO/CVOs and the dynamic composition of
services and applications.

2.2. Virtual object lifecycle and dynamic composition of services. Since they have to represent
dynamically changing real world objects, VOs and CVOs should be dynamically created, updated and destruc-
ted. More importantly, the services provided by VO and CVO have to be dynamically composed to support the
users needs in function of space, time or context [9]. For example: provisioning of communication services and
data may be different for Healthcare services during an emergency crisis (i.e., the aftermath of an earthquake)
or during routine operations.

The proposed framework encapsulates the support for maintaining and exploitation of VOs and support for
transferring the incentives of stakeholders to CVOs. We can say that the framework (and support implemen-
tation platform) has to support four levels of cognition. First, the support platform has to keep the continuous
link to the real world. Secondly, it has to react to the service context changes of the VO and CVO. For example,
the consequences of an earthquake are that VOs representing base stations or routers may be destroyed or pro-
vide degraded services (i.e., lower data rates). Thirdly, it must be able to identify, understand, and learn from
changes in the context. For example, in normal situations public safety officers may not be allowed to access
sensitive information on civilians (i.e., medical conditions) but in emergency crisis, framework must provide the
access to these data. Fourthly, it must be able to resolve conflicts between different infrastructures (i.e., set of
CVOs) or the tussle described in the introduction. For example, enterprises are always looking for information
or resources to undermine the competition from other enterprises. Users would like to use connectivity resources
without paying for them (e.g., Skype), while telecom providers would like to maximize the revenues.

The cognitive management framework will also control the lifecycle of the VOs and CVOs: their creation,
destruction, and update. While (real world or digital) objects may be owned (controlled) by a particular
stakeholder, the VO can be owned (controlled) by particular service providers. And in turn, CVO may be
owned (controlled) by yet another provider who adds value by combining different virtual objects and providing
these combinations to users. This hierarchical structure leads to a rather complex eco-system, but it opens
new opportunities for all stakeholders. Furthermore, the cognitive management system will ensure that the
complexity of this eco-system will be well hidden from the different players and stakeholders. The proposed
life-cycle and the composition of services and applications are depicted in Figure 2.3.

With reference to Figure 2.3, the following steps describe the lifecycle:
1. A new entity is discovered in the area managed by a specific instance of implementation platform. For

example: a PC is switched-on, authenticated and connected to the network. The PC is registered in
the VO registry of instance with the related features.

2. In a similar way, CVOs are created by analysis of the VO registry or directly created by composite
objects in the real domain (e.g., a taxi).

3. At the user level, an instance authenticates a new user and his set of preferences like type of information
he is interested in, type of used terminal and so on. The instance periodically records the users context
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Fig. 2.2: Connect Physical objects, VO and Services

and location.
4. At the service level, the instance correlates the services with the CVO/VO present in the registry. For

example, the taxis with credit card payment systems (CVO) present in a specific urban areas, which
are available to provide transportation services.

5. Any application can use an instance to access services, information on CVO/VO and users data (see
section III for security aspects). For example: a taxi booking application can record the users needs
in an area (e.g., need for transportation with credit card) and their location. Then, the application
matches the needs with the available CVO (e.g., taxi with credit card services). Specific needs can also
be addressed through supported semantic modeling, reasoning or machine learning capabilities. For
example: a taxi with a large trunk for suitcases.
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Fig. 2.3: A platform instance life-cycle and services composition

6. An instance can also be used to support the deployment and activation of the application on the users
terminals, because records the capabilities of terminals in the CVO/VO registries. It can support a more
efficient deployment and tailoring for specific application, beyond the security requirements described
in the next section.

3. Security and Privacy Aspects. As described in the previous sections, the proposed framework has
to represent (through the VO concept) any type of real object, which may or may not already be connectable
to the internet. Real objects could provide privacy sensitive data. In addition, the combination of data from
multiple real objects into a new VO could be privacy sensitive. A real object could also provide access to control
a particular system (i.e., actuator) for which some kind of access control is required. So the framework has to
address the security and privacy issues to enable the dynamic creation of VOs and re-use of real objects and
VOs for providing reconfigurable services. The challenge with respect to security and privacy is to integrate
novel privacy and security techniques right from the start such that security and privacy would not become
an afterthought or add-on feature. Another challenge is to integrate existing legacy systems, which may have
proprietary security systems.

The framework is based on the concept that access to data, resources and services represented by VO/CVO
must be regulated through a sticky policy management approach [8]. The underlying notion behind Sticky
Policy is that the policy applicable to a piece of data travels with it and is enforceable at every point it is used.
Users will therefore be able to declare privacy statements defining when, how and to what extent their personal
information can be disclosed.



A Cognitive Management Framework to Support Exploitation of the Future Internet of Things 145

Each VO should contain the following information: 1) the available resources, 2) the access level rights and
3) associated policies valid for this object. This information will be added to the VO in the creation phase,
which also includes authentication. For example: a GSM terminal can become a VO, when it is authenticated
by the GSM network. In most cases, real-object will not have an authentication mechanism and a security
agent must be defined to implement the authentication. In other cases, specific proprietary security systems
are already present and a security mediation layer must be defined.

A policy can have multiple rules, which define what resources can be accessed and managed (i.e., used) by
a specific access level right. Policies can be defined independent by the existence of associated virtual objects.
Note that there are different levels and types of access rights: create, read, modify. Under specific rules, access
rights can be delegated: a virtual object can acquire for a specific time, or space or context the access rights of
another virtual object. This is particularly useful for the creation of automatic agents. The access level rights
can also be used in the ontology and lookup mechanism in the CVO/VO registries: if a virtual object has higher
access rights than the entity accessing the dictionary, the virtual object will not appear. Another interesting
approach that needs to be considered is claim based access control [10]. In claims based access control access
to a resource is provided based on one or more claims. Examples of claims are the proof that ”I am over 18
years old”, ”I am an employee of this company”, ”I am a guest at this hotel”. The enforcement of policies
will guarantee privacy of data because data cannot be accessed by entities with the insufficient access right.
Data can be protected by additional cryptography services: an entity may have the access rights to access a
specific data, but this may be encrypted. Then the entity may also need access to a cryptographic service as
well. Policies will also support the concept of Trust Management and reputation scheme. Access rights can be
removed or increased by a central authority. For example, an entity may have decreased access rights if there
was a security breach. Or, an entity may have increased access rights in occasion of a specific context: for
example, public safety officers may have access to sensitive information (e.g., building plans) in case of a crisis
management.

Figure 3.1 provides a pictorial view of the security framework and functions. When a VO is authenticated
and stored in the VO registry, its access levels and related policies are defined. Users data is also stored as
a VO with specific access levels to preserve the privacy of the user. The existing access policies are stored in
a distributed policies database, which also records relevant global and local regulations. For example: radio
frequency spectrum regulations to regulated use of spectrum in cognitive radio networks or privacy regulation
to regulate access to data. The security and policy management functions regulate the access to CVO/VO on
the basis of the user access levels and user context. In most cases, existing security frameworks are already in
place: for example the authentication functions of GSM/UMTS networks. In these cases, security gateways are
required to mediate the necessary information. The main challenge for the implementation of these concepts
in the proposed architecture is scalability. A security framework like PKI can handle a specific number of
objects/entities but the ICT call requires the management of thousands of objects. Functions like audit and
accountability are quite resources consuming if applied to very large networks. A hierarchical approach could
be proposed, with hierarchical domains based on geography or contexts. A specific organization can decide to
provide only an interface with a subset of VOs to the rest of the Future network.

4. Application Scenarios. This section describes some a set of application scenarios in order to highlight
the real life value of the envisioned technology. Cognition and CVOs are cross-domain, and aim to overcome
current interfacing efforts. Ranging from home and office domotics use up to industrial infrastructure, the
cross-domain aspect generates high volumes of specific developments, often erroneous or inflexible. In computer
industry the plug-and-play capabilities have been received as a relevant improvement in terms of functionality
and natural use. This fact was based on standardized interfaces and protocols. Now, the avalanche of pervasive
computing infrastructure pushes us to raise the level of plug-and-play to very heterogeneous devices and contexts.
These problems cannot be solved only with appropriate protocols. Our in-place service infrastructure needs to
understand what exactly the service needs to look like. Here is the place where Cognition and CVO are called
to help at virtual level.

In the following we present some very simple examples.
Our homes and offices are now intensively populated with devices: surveillance cameras, printers, phones,

computers, and a large variety of sensors such as the ones for light and temperature or humidity. We need to
or want to share these resources, attach security to them, use and link them (controlled or not) with needs,
intentions and processes. We need to give a meaning, real time effectiveness and for this fact we need to
implement cognition capabilities. That is the paradigm of smart home.
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Fig. 3.1: Security framework and functions

Lets imagine that Mary is living with her family, including her father who needs permanent care due to
a chronic health issue. Due to her daily duties Mary needs to travel in a neighboring city for some meetings.
Her father remains at home, monitored by a number of specialized devices and some control cameras over the
usual living space. Mary expects that in case of a possible critical situation, the problem is detected, relevant
information is gathered, and specialized medical team and herself alerted in a consistent and timely manner
(like a message on her smart phone with a short report attached). In a classical perspective, this kind of
particular scenario requires specialized services developed, including spatial understanding of the problem (like
the correlation of a body falling in a room with the variation of a body parameter).

Now lets have a look how the problem is tackled using VO/CVO and cognitive infrastructure. A person
who needs medical monitoring is equipped with sensors specialized in various measurements for continuous
supervision. All these sensors have their own virtual objects representations usable in order to trigger adequate
reaction. The same principles apply to an accelerometer or a video camera (see the example of a body falling).
Based on these primitive virtual objects, a cognition enabled infrastructure will be able to infer a CVO who
refer all relevant virtual objects and compose the relevant services used to solve the case: calling emergency
services, family being alerted, etc. The same can be expressed regarding the time dependence between all
observed variations. As a consequence, a custom problem is expressed in terms of a set of cognitive enabled
strategies and policies. Even more, the cognition doesnt remain fixed but ask for users/actors active feedback
and incorporate successful executed steps and experiences. This scenario is not restricted just to a sensing
approach, but can involve in the loop actuators. One benefit is the real time inclusion of correlated actuators
effects in the cognition correction.
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5. Conclusions. This paper described a new cognition based framework approach to manage the complex-
ity, huge amount of data, systems and services which the Future Internet of Things will be comprised of. The
approach is based on the concept of CVO and VO to simplify the management of heterogeneous systems and
data. Specific features of digital and physical objects can be represented as VO attributes. Security framework
and functions regulates the access to CVO/VO through a sticky management policy.

Future developments will investigate how to address scalability of the proposed approach: the proposed ar-
chitecture must be able to support millions of CVO/VOs, make them accessible from various instances deployed
in various domains and offer the necessary mix of autonomic and learning capabilties for optimal matching of
demands with offer in an un-reliable, resource access, energy and communication constrained environment.
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Abstract. In the paper we analyse results from the inversion of geophysical anomalies in high performance computing
platforms. We experiment the solution of this ill-posed problem, trying to bypass the complexity of the calculations using simple
algorithms that require huge calculation capacities offered by parallel systems. The gravity anomalies are considered because of
the simplicity of the gravity modeling in geophysics.
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1. Introduction. The inversion of geophysical anomalies is a typical ill-posed problem [1]. The inversion
process consists of extrapolating from a 2D surface distribution of a physical field to a 3d spatial distribution
of physical proprieties, which may led to alternate solutions with divergences in shape and spatial distribution
of anomalous bodies (see for example [2]).

Geophysical inversion is studied for a long time and a multitude of methods exist for different contexts.
Recently the attention is shifting towards the use of high performance computing (HPC), fueled by the increase
of popularity of computer clusters and graphic processing units (GPU) that make parallel data processing widely
available. As result a number of publications dealing with the use of parallel computing in geophysical inversion
appears scattered in the landscape of complexity of the problem.

Rickwood and Sambridge analyse MPI parallel implementations of the direct search inversion algorithm
using the neighbourhood method, replacing the concept of master node with that of iteration in order to achieve
the scalability, and evaluating the impact of Amdahl’s law for the speedup of software in parallel systems [5].

Loke and Wilkinson used parallel computing in GPU for the 2D smoothness-constrained least squares
optimization for the Compare R method of the inversion of resistivity data, and studied the related runtime for
models with profiles of only 35 electrode points [6].

Zuzhi et al. used the Simulated Annealing algorithm parallelized with MPI for the inversion of magne-
totelluric anomalies, starting with 1D models, using 2D conventional inversion for calculation of resistivity and
frequency parallel computation for 2D and 3D forward modeling [7].

Wilson and al. dealt with the massive 3D inversion of airborne gravity gradiometry anomalies based in the
single-point Gaussian integration, using a combination of MPI with OpenMP in order to reduce the interprocess
communication, and analyzed the scalability efficiency for field data case [8].

In order to bypass the complexity of the calculations [3] we used a simple algorithm [4] that exploits the huge
calculation capacities offered by parallel systems. In the present paper the gravity anomalies are investigated
because of the simplicity of the gravity problem [9] in geophysics. The focus of the study is the convergence
and the scalability of the algorithm and how the solution is approximated during the iterations. The results are
analyzed in terms of application runtime in parallel systems and in the character of the convergence process.

2. Methodology of the Work. The iterative inversion method analyzed in the paper is based on the
algorithm CLEAN proposed by Högbom in 1974 [4]. In order to obtain solutions within a reasonable time the
parallelization of the algorithm is used.

The initial results of the analysis of the algorithm using OpenMP are presented in [10]. In that paper the
scalability of the parallelized algorithm is reported with the analysis of the number of iterations, the error and
the runtime for different models running in serial and parallel modes in 16 nodes. In the present paper key
results for the scalability of application up to 1024 parallel cores are reported, along with the in-depth analysis
of the quality of the algorithm.

∗This work makes use of results of the High-Performance Computing Infrastructure for South East Europe’s Research Communi-
ties (HP-SEE), a project co-funded by the European Commission (under contract number 261499) through the Seventh Framework
Programme. HP-SEE deals with multi-disciplinary international scientific communities (computational physics, computational
chemistry, life sciences, etc.) stimulating the use regional HPC infrastructure and its services. Full information is available at
http://www.hp-see.eu
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Tests were undertaken with synthetic models, which permitted comparison of the approximation error in
both the anomalous body and the anomaly itself. The model consisted of the 3D array of nodes representing
the geosection situated under the 2D array of the ground surface points, where the field data were surveyed (in
the Fig. 2.1 the 3D geosection is shown represented by the 3D array of nodes, with the anomalous prismatic
body situated at its center under the 2D array of ground points where the anomaly of gravity is surveyed).

The geosection was divided in cuboid elements, each of them represented by the respective 3D node (the
center of the element). In each iteration the core of the algorithm selected the node which gravitational effect
(elementary anomaly) offered the best least squares approximation of the gravity anomaly at the surface, for a
calculated mass density of the respective cuboid element. The mass density of the selected node was updated
with a predefined quantity and its effect was subtracted from the anomaly. In order to parallelize the algorithm,
the geosection was divided in sub-sections, each of them processed in one core. Best selected nodes from each
sub-section were compared with each other to find the best node for the whole geosection.

The iterative process was designed as follows:
1. Start with a 3D geosection array of nodes with mass density initialized by zeros, and a 2D gravity

anomaly array surveyed in the field
2. Fork parallel threads for each sub-section
3. Start parallel threads
4. Search the best node in each sub-section 3D array
5. Stop parallel threads
6. Compare selected nodes for each sub-section
7. Increment the density of the best selected node by a fixed amount (density step)
8. Subtract the effect of the modification of the geosection from the surface gravity anomaly;
9. repeat the steps (2):(3):(4):(5):(6):(7):(8) until termination conditions fulfilled.

Fig. 2.1: The geosection model (thin line - 3D geosection array, dotted line - 2D surface profiles array, thick
line - anomalous body).

The calculation of least squares in the step (4) was reduced in a 2D sub-array window of points over the
node in question. The size of the window was correlated with the shape of the element anomaly depending
on the element depth in order to consider only the area where the elementary anomaly had significant values
greater than the floor 1/K, where K is a predefined number. A sample of normalized anomalies (anomalous
values divided by their maximum for each anomaly) for elements in different depths is presented in Fig. 2.2.

During each iteration the density of a single cuboid element of the geosection is updated with a predefined
density step. Two alternatives for the iteration termination criteria were investigated:

1. when the decrease in the global least squares error becomes less than a very small predefined value;
2. when the elementary density giving the best approximation within the window results in less than half

of the predefined density step.
The calculations for the effect of a single 3D node were considered as an elementary calculation block.

The number of elementary calculation blocks for one iteration is equal to Ncalc = (NxNyNz)× (NaNb), where
Nx, Ny, Nz are the number of nodes in linear edges of the 3D prismatic geosection array, and Na, Nb are the
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Fig. 2.2: Normalized elementary anomalies for unitary bodies in different depths 1:10 units; two horizontal lines
at the level 0.1 define the least squares windows for floors 1/10 and 1/11.

number of points in linear edges of the 2D rectangular anomaly array. N was considered as a representative
of the number of linear nodes / points, and the volume of calculations in one iteration resulted O(N5). The
update of the best 3D node in each iteration was done with a fixed density step, and each node was updated
until a limit mass density value was obtained. The quotient Nd of the mass density limit divided by the density
step is one factor that defines the number of iterations. The overall order of elementary calculations blocks for
the whole iterative process would be O(N5Nd), the same stands for the runtime as well. Such high order of
the volume of calculations made the parallelization obligatory in order to obtain inversion results for models of
relatively high resolution.

The walltime Tw (difference between the time-stop and time-start of the program) was obtained using the
OpenMP routine omp get wtime(). The linux time command was used to run the program in order to get the
accumulative percentage of CPU usage. The runtime Tr (walltime in case of 100% CPU) was calculated as
Tr = Tw × CPU%/cores .

Basic experiments were carried out for a geosection of 4000m × 4000m × 2000m digitized with 3D node
arrays of step 400m, 200m, 100m and 50m. The anomaly under consideration was calculated in a similar 2D
array of points for a vertical prismatic body with density 5 g/cm3 situated at the center of the geosection
(Fig. 2.1). More experiments with anomalies calculated for a geosection composed of two vertical prismatic
bodies were carried out, as well as with real data from field surveys. Results included inversion geosections with
distribution of densities and related anomalies, and the ”carrot” presentation in 3D of distribution of densities
in the central vertical section of the geosection for each iteration, showing the progress of the iterative process.

3. Evaluation of Iterative Inversion Process. Two alternatives mentioned before for the termination
criteria of the iterative process were compared for arrays with step 200m and 400m, for density steps 0.1 g/cm3,
0.5 g/cm3 and 1.0 g/cm3. Both alternatives gave similar number of iterations and of runtime, as shown in
Fig. 3.1 for the array with step 200m.

Fig. 3.1: Comparison of number of iterations (left) and runtime in seconds (right) for two termination criteria.

The global relative error achieved by each of termination criteria resulted dependent upon both the array
step and the density step, as shown in Fig. 3.2.

Experiments with the single body geosection showed that, for window floors greater than 1/11, the window
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Fig. 3.2: Relative error by density step for array of 400m (left) and of 200m (right); lines in black represent the
error obtained with the first criterion, in grey with the second criterion.

span of the anomaly of the surface element (depth 1 unit) was reduced to three nodes (Fig. 2.2) and the iterative
process diverged (Fig. 3.3).

Fig. 3.3: Number of iterations, runtime and error for different windows floor factor.

Further tests showed that the algorithm had a tendency to form bodies with the largest mass density.
Theoretically, a variation by a factor of k in the mass density of the body would be compensated for by a
reversed variation in linear size of the body by a factor of k(1/3). In our model we used a body with a density
of 5 g/cm3 and tested the algorithm for maximal accepted densities varying from 1 - 9 g/cm3. The variation
in the size of the body at the central vertical 2D section is presented in Fig. 3.4.

Fig. 3.4: Variation of anomalous bodies obtained by inversion for different maximal accepted mass density; the
white rectangle represents the original body layout.

Both the theory and the findings supported the idea that keeping a maximal accepted mass density in the
range of 2 - 3 g/cm3 would be optimal, while higher values would simply lead to a reduction in the size of the
body of at most 20%. At the same time the tendency to give larger mass densities is an indication how the
algorithm optimizes the solution locally.

To understand better optimization process during the iterations, we combined the central vertical 2D
geosection for each iteration in a single 3D image (Fig. 3.5).
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Fig. 3.5: Development of the anomalous body central section during inversion iterations (left) and the decrease
in the anomaly approximation error (right).

The decrease per iteration in the error of approximation of the anomaly was linear, curving to constant
in the final iterations (with a total of 1066 iterations), while delineation of the main section of the body was
approximated with half of the iterations.

Fig. 3.6: Two bodies model geosection X-Z (left) and related the anomaly (right).

The case of inversion of an anomaly created by a geosection composed of two bodies presented an ill-posed
problem. We used a geosection with two vertical prismatic bodies creating a bimodal anomaly (Fig. 3.6). The
result of inversion, with a relative least square error of 10%, is shown in Fig. 3.7.

Fig. 3.7: Two bodies inverted geosection X-Z (left) and the related anomaly (right: bottom the anomaly, top:
the error).

The error varied between -0.35 g/cm2 and +0.1 g/cm2 for the anomaly, which varied between 0.5 g/cm2

and 10 g/cm2. The inversion gave a three-body geosection, which intuitively may be deduced from the shape
of the anomaly itself (apparently a regional anomaly combined with two local anomalies). The progress of
delineation of bodies during iterations is given in Fig. 3.8.

The process begins with the approximation of the anomaly from a deep body (a) and only latter two shallow
bodies are shaped (b,c). The algorithm tended to give point-like bodies, requiring careful interpretation in the
case of anomalies from extended spatial structures (see e.g. Fig. 3.9, where the anomaly is created by extended
magmatic structures). The anomaly is created by a combined effect of two mases, one (sedimentary, in cyan)
with density less than the average and the other (magmatic, in red) with density greater than the average.



154 N. Frasheri and S. Bushati

Fig. 3.8: Development of the anomalous central section during inversion iterations.

Fig. 3.9: Real case of field anomaly (left bottom), the error (left top) and the inverted geosection (right).

4. Convergence of the Iterative Inversion Process. Parallelization was undertaken using OpenMP,
splitting in chunks the 3D array to search in parallel for the best node in each iteration. Parallel calculations
were tested in two systems:

1. the HPCG centre at the Institute of Information and Communication Technologies (IICT-BAS) in
Sofia, Bulgaria;

2. the NIIFI Supercomputing Centrr at University of Pécs, Hungary.

Tests in HPCG were done for the anomaly of a vertical prismatic body; with 1, 8 and 16 parallel cores; for
geosection arrays with step 400m, 200m and 100m (corresponding to 11, 21 and 41 linear nodes) and density
steps 0.1 g/cm3, 0.5 g/cm3 and 1.0 g/cm3. Tests were done using the variation of the global error as termination
criteria. The number of iterations as a function of the density of the 3D array is presented in Fig. 4.1. Increase
in iterations slows down with the increase in the size of the problem. For comparison the line represents the
order of O(N4).

The relative least square error as a function of the density of the 3D array is presented in Fig. 4.2. Differently
from the iterations, the mass density step had little impact on the error.

Further tests were done in the NIIFI centre using up to 1024 parallel cores. The number of cores permitted
a model to be run with a 3D array step of 50m, which was not possible in HPCG. Given the fact that the
resulting error was relatively independent of the mass density step, tests were done only for a density step of 1
g/cm3. The number of iterations and the error for 3D array steps of 400m, 200m, 100m and 50m (respectively
11, 21, 41, and 81 linear nodes) are presented in Fig. 4.3.

The factor line represents the order of O(N3). The results confirmed the slow down in the increase in the
number of iterations when the spatial density of geosection nodes is increased. The error apparently does not
depend strongly upon the density of the array.

The scalability was evaluated through comparing the runtime for different number of cores and model sizes,
with a maximum of 1024 cores and a model resolution of 50m (Fig 4.4). Due to limitations in the availability
of used HPC systems, it was not possible to test models with higher resolution.
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Fig. 4.1: Number of iterations per density of the 3D array; curves represent different mass density steps (the
top-down order as in the legend).

Fig. 4.2: Inversion error per density of nodes, curves represent different mass density steps (the top-down order
as in the legend).

The maximal processor runtime that was achieved in parallel systems was 3.3 hours in the NIIFI and 21.6
hours in the HPCG.

5. Conclusions. Results of the calculations show that parallel systems may be used successfully for the
inversion of geophysical anomalies, but at the same time the process of calculations remains tricky. Even simple
algorithms as CLEAN when applied for 3D models required considerable HPC resources (number of cores and
cpu runtime), while the results may be disputable in case of complex geosections, and the scalability of the
algorithm would decrease when it runs in parallel systems shared by many users.

Utilization of OpenMP resulted in simplification of the programming, but the parallel systems resources
available in southeastern Europe were unsuitable for this technology - only one site offered more that 16 parallel
cores for OpenMP. Switching towards MPI - based solutions is obligatory and would permit running of software
in HPC clusters and grid clusters that are more available than shared memory parallel systems.

Use of simple algorithms in parallel systems was, in terms of runtime and error obtained, successful for
geosections with massive bodies; for geosections with thin structures detailed 3D arrays have to be used, which
leads to an increase in the runtime to levels that may be difficult to be supported by existing parallel systems
available in the region.

In our models the minimal spatial differentiation achieved was 50m using 256 and 512 parallel cores (available
only in one site) for a runtime of order of hours. Tests with multiple bodies and real field data reconfirmed
the need of using initial solutions defined on the basis of other geological factors, and the need for careful
interpretations of results.

Acknowledgments. The authors thank the HPC-BG and NFII teams for all the help and support during
exploitation of respective parallel systems.
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Fig. 4.3: Number of iterations and inversion errors per density of 3D array (the top-down order of curves as in
the legend).

Fig. 4.4: Scalability of the algorithm and the runtime for number of cores and size of model (the top-down order
of curves as in the legend).
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NEW SPARSE MATRIX STORAGE FORMAT TO IMPROVE THE PERFORMANCE OF
TOTAL SPMV TIME
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Abstract. Graphics Processing Units (GPUs) are massive data parallel processors. High performance comes only at the
cost of identifying data parallelism in the applications while using data parallel processors like GPU. This is an easy effort for
applications that have regular memory access and high computation intensity. GPUs are equally attractive for sparse matrix vector
multiplications (SPMV for short) that have irregular memory access. SPMV is an important computation in most of the scientific
and engineering applications and scaling the performance, bandwidth utilization and compute intensity (ratio of computation to
the data access) of SPMV computation is a priority in both academia and industry. There are various data structures and access
patterns proposed for sparse matrix representation on GPUs and optimizations and improvements on these data structures is
a continuous effort. This paper proposes a new format for the sparse matrix representation that reduces the data organization
time and the memory transfer time from CPU to GPU for the memory bound SPMV computation. The BLSI (Bit Level Single
Indexing) sparse matrix representation is up to 204% faster than COO (Co-ordinate), 104% faster than CSR (Compressed Sparse
Row) and 217% faster than HYB (Hybrid) formats in memory transfer time from CPU to GPU. The proposed sparse matrix format
is implemented in CUDA-C on CUDA (Compute Unified Device Architecture) supported NVIDIA graphics cards.

Key words: Graphics Processing Unit (GPU), data parallelism, sparse matrix, SPMV computation, compute intensity,
memory transfer time, CUDA-C, NVIDIA Graphics Card.

1. Introduction. Graphics processors (GPUs) are proved to be good for data parallel applications. GPUs
have also been proved as a good choice for irregular memory access applications that have high data parallelism.
Example of such applications include sparse matrix vector multiplication, graph algorithms etc. Several scientific
computations use SPMV computation as a main kernel. Improving and optimizing SPMV computation is still
a research focus for the new hardware architectures. The sparse storage format used in SPMV determines the
performance of the application. The steps involved in SPMV computation on GPU are: data organization
(to make memory access efficient on GPU), memory transfer of input data from CPU to GPU and SPMV
computation on GPU. The result is very small in size, that need to be sent back to CPU from GPU and
this small value is not considered in this work. The sparse storage formats used for CPUs cannot deliver good
performance when used for SPMV computation on GPU. So, many GPU specific new formats and optimizations
are evolving. Most of the formats and optimization methods have taken only SPMV computation time on GPU
into consideration and tried to optimize GPU performance. As SPMV computation is performed on GPU, there
are common overheads in terms of data organization time by GPU or CPU, data transfer from CPU to GPU.
At the same time, the computation power available on GPU is not negligible and should be utilized for the
high performance applications. This paper proposes a new sparse storage format that can reduce the time of
data organization and memory transfer, reducing the overall computation time of SPMV. The new format is
called as Bit Level Single Indexing (BLSI). BLSI implementation is done on CUDA and proved good for GPU
architecture. This format reduces the number of bytes required per flop, reducing the compute intensity or ratio
of bytes to flops. It also saves on cache and/or register usage per thread on GPU. The total time comparison
shows that BLSI is 2x to 112.6x faster than HYB (HYBrid format) when total time is considered as the SPMV
time. The BLSI sparse matrix representation is upto 204% faster than COO, 104% faster than CSR and 217%
faster than HYB formats in memory transfer time from CPU to GPU

The paper is organized as follows. An overview of the GPU architecture and sparse formats are given in
Sect. 1 and 2 respectively. Section 4 highlights the importance of SPMV optimization on GPU by giving the
related work. Section 5 details the new format generation and uses. Section 6 gives the experimental set up.
Section 7 gives results and analysis and concludes with future work in Sect. 8.

2. GPU Architecture. Usage of GPUs for general purpose computations have accelerated when NVIDIA
introduced CUDA, a general purpose parallel computing architecture. A CUDA device or the GPU is connected
to CPU through host interface. CUDA device consists of a set of Streaming Multiprocessors (SMs), each consists
of an instruction unit and a shared memory along with a set of Streaming Processors (SPs). Each core can
preserve number of thread contexts, specific to the architecture. CUDA has zero-overhead scheduling, that is
Fmaintained by tolerating the data fetch latency by switching between threads [1].
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Fig. 3.1: Example sparse matrix A

Fig. 3.2: CSR representation sparse matrix and its thread access pattern on GPU

Parallel region of CUDA program is called as kernel. The CUDA API (Application Program Interface) is
used to create parallel threads to be executed on the hardware. The kernel is partitioned into a grid of thread
blocks that can execute in parallel. The programmer can define the dimensions of the grid and block. The SPs
are grouped in SIMD (Single Instruction Multiple Data) fashion and CUDA follows SIMD. Thread blocks are
distributed evenly on the multiprocessors. Threads are logically grouped into warps. A warp consists of 32
threads that can execute a single instruction. Each SM executes one warp at a time. Different warps within
SM are time shared on the hardware resources. Thread divergence is created with the usage of conditional
instructions that serializes the threads.

CUDA device has hierarchy of memories. The device memory is called as global memory. Memory request
of a half warp (16 threads) are served together, this is called as coalescing. The request from all the threads of
a warp is coalesced into one memory transaction if they are accessing the addresses in the same segment. Once
the addresses are accessed by the half warp in one segment, it is called as fully coalesced. This is one of the
optimization that is looked into for any CUDA computations. The shared memory is accessible by threads of
the same block. Along with this, set of registers are shared by the threads of a block. The constant and texture
memories are read only memories in global space with on-chip caches. The programmer can bind these regions
to read only data before launching a kernel [2].

3. Sparse Matrix Formats on GPU. The SPMV computation involves a sparse matrix A multiplied
by a dense vector x, represented as y=Ax. The standard formats like CO-Ordinate (COO), Compressed Sparse
Row (CSR), ELL (ELLPACK) and HYB (HYBrid) [10] formats are considered in this paper to compare with
the proposed format and explained briefly here. The other formats are built on these standard formats that
are given under related work section. Bell and Garland [10] gave a detailed study of sparse formats and their
access pattern on GPU.

3.1. Compressed Sparse Row (CSR) Format. A sample sparse matrix A is shown in Figure 3.1 and
Figure 3.2 shows the CSR representation and its thread assignment on GPU hardware. Here, one thread per
row is launched. In Figure 3.2, T0 through T3 reads the elements in each row, first iteration will give full
throughput, but in the next iteration only two threads read the elements. The column indices are not accessed
simultaneously even though they are stored contiguously, which causes poor performance of this format.
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Fig. 3.3: COO representation of sparse matrix and its thread access pattern on GPU

Fig. 3.4: ELL representation of sparse matrix

3.2. CO-Ordinate (COO) Format. In COO format, there are three one-dimensional arrays of same
size as that of the number of non-zeros in the matrix. It causes an overhead in terms of memory transfer from
CPU to GPU. The COO representation and thread access pattern is shown in Figure 3.3. It can be noted that
warp sized (here warp size is 2) number of threads work on the non-zeros in each iteration. Reduction or atomic
operations can be used across threads. Reduction operation is used to compute the sum of an array of numbers
in parallel. Atomic operations allow multiple threads to perform concurrent read-modify-write operations in
memory without conflicts. The syntax of atomic operation in CUDA is as follows: float atomicAdd(float*
address, float val).

3.3. ELL Format. ELL representation is shown in Figure 3.4 and thread assignment is given in Figure
3.5. This technique is suitable for vector architectures. Column major access is preferred as it offers better
coalescing, and shared memory can be used with ease since there wont be any bank conflicts. As shown in
Figure 3.5, the threads are launched in column major order. After each iteration, the threads advance to the
next column for execution.

3.4. Hybrid (HYB) Format. Hybrid format is combination of sparse matrix formats proposed by [10].
HYB uses combination of ELL and COO. The HYB structure is shown in Figure 3.6. ELL and COO is
faster for SPMV in many cases, but it has a CPU-GPU memory transfer overhead when compared with other
formats, since it requires five memory transfers; two for ELL and three for COO. The Thread access pattern is
a combination of the access pattern of ELL and COO.

ELL and COO combination as used in HYB format is preferred because ELL is proved to be good when the
difference in number of non-zeros in each row is negligible, and COO is proved to give a modest performance
when the number of non-zeros per row is variable. It can be seen that the portion of the row till size L (calculated
empirically) is considered to be the ELL portion of the row and if the size of the row exceeds L, it is considered
as the COO portion of the row and is stored in ELL format. Alternatively, the format can take entire row as
ELL if its size is less than or equal to L or as COO if its size is more than L.

4. Related Work. SPMV performance improvements and optimization based publications are on rise in
recent times. The importance of communication overhead in high performance application and the need of
optimizing this overhead were studied extensively in the literature as follows. Ravi et. al [3] have proposed
a heterogeneous BLAS library for SPMV computation considering communication bandwidth as one of the
parameters to tune the applications parameters according to the architecture in a heterogeneous system. Our
work optimizes this bandwidth limitation by using a new data structure for the sparse matrix representation for
a single GPU. Xingfu wu et. al [4] proposed hybrid optimization methods for scientific and compute intensive
applications for CMP clusters. They map processors per node optimally and similarly this work also maps
computation to the threads to increase the performance of the applications. Vuduc et.al [5] discussed three main
applications for which GPU has some limitations. One of the applications discussed is SPMV operation which
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Fig. 3.5: ELL thread access pattern on GPU

Fig. 3.6: HYB structure of sparse matrix

is bandwidth limited and mentioned that porting this application is beneficial if CPU to GPU communication
is reduced or removed by some methods. The method proposed in this paper considers the memory transfer
time and improves it.

Lee et.al [6] have analysed main kernels that appear in most of the applications and mentioned the require-
ment of optimizations on and off the device. SPMV is one kernel that can improve performance if bandwidth
limitations are overcome. BLSI method optimizes data organization time and memory transfer time that can
strengthen the usage and need of GPU for general purpose computation. Gregg and Kim [7] proposed that mov-
ing computation to data improves the application performance than always moving data so that data movement
overheads are reduced. They proposed to use system intelligence and develop an automated tool to control the
assignment of the computation. BLSI method also optimizes data movement by reducing the amount of data
to be given to the computation with easy and flexible implementation. Michael et. al [8] have also considered
bandwidth bound applications for GPU and proposed an API for creating DMA warps that exclusively handles
memory transfers from off chip memory to on chip memory. Our method of optimizing memory bandwidth
is external to the device. Thomas et.al [9] proposed an automatic tool that consists of runtime library and
compiler optimizations to optimize the number of communications from CPU to GPU. The tool proposed by
them combines all the memory copies to the GPU of multiple kernels. This method is beneficial if the kernels
use few common data. Our method is to optimize communication especially for SPMV, which is very commonly
used in most of the scientific and engineering applications.

Storage format of sparse matrix is very important in determining the performance of SPMV. Various
proposals of sparse matrix storage formats are discussed here. Bell and Garland [10] proposed a new GPU
suitable sparse matrix storage format namely HYB which is a combination of ELL and COO. The kernel time
of HYB is improved a lot at the cost of high data organization and memory transfer time. The data structure
proposed in this paper gives improvements in overall time of SPMV computation, of course at the cost of SPMV
kernel time. Blelloch et al. [11] studied SPMV on vector machines. Choi et al. [12] proposed the BELLPACK
representation that suits for matrices with dense blocks. Yang et al. [13] proposed optimizations using texture to
increase data locality that improves SPMV performance. Monakov et al. [14] [15] implemented blocked SPMV
and Sliced ELLPACK in which a slice of the matrix, a set of adjacent rows, are stored in ELL format.

Vazquez et al. [16] proposed ELLPACK-R format that uses ELL format with an array containing the length
of each row. They assigned multiple threads to a row to balance the computations of threads. Anirudh et
al. [17] and Kiran and Kishore [18] considered combination of CSR and ELL formats for storing the matrix.
Dziekonski et al. [19] have proposed sliced ELLR-T data structure. Most of the formats proposed increases the
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performance on chip and not considered other overheads like memory transfer and data organization time. The
communication optimized sparse data structure by name CSPR was proposed by Neelima and Prakash [20].
The method was not scalable and not tested with CUSP results.

Various optimizations to the existing formats can further improve the performance of SPMV computation
on GPU. The work by Yelicki et al. [21] and Vuduc et al. [22, 23, 24, 25] gave extensive optimizations and
auto-tuning for sequential machines. Low-level code optimizations and data structure optimizations for single
core and parallelized optimizations for multi-core architectures is given by Williams et al. [26], [27]. Brahme et
al. [28] proposed a greedy extraction of dense sub matrices that load balances and overlaps communication and
computation, so, reduces memory traffic and hides communication latencies. It is an on chip optimization, uses
greedy algorithm and has less scope for scalability. Zein and Rendell [29] proposed an analysis and selection tool
that selects the best performing implementation for SPMV. Wang et al. [30] proposed optimizations for SPMV
computation on CUDA by giving optimized CSR storage, thread mapping etc. Baskaran and Bordawekar [31]
also proposed optimizations to improve SPMV performance by using synchronization free parallelism, optimized
threads mapping, data fetch and data reuse. This work proposed a new storage format for the sparse matrix
that improves the performance of the application by optimizing the data organization and memory transfer
time from CPU to GPU. This work also optimizes the computation by optimizing the thread mapping.

5. New Format for Sparse Matrix Representation. The concept of single index representation is
implemented at the bit level and hence the name Bit-Level Single Indexing (BLSI) is given. This is also
implemented at the integer level by using division and modulus operations, but for the ease of programming
and optimal index generation, bit level implementation is chosen for observing the results. The results or the
total time is same in both bit level and integer level implementations.

5.1. Index Generation. Contrast to many standard sparse matrix formats like COO, CSR etc., which
use one array or one data structure for column index and another to keep information about the row, BLSI
method uses only single array or data structure to store the indices by embedding the column information in
the bits of row indices information. Hence, this method needs only one array of size equal to the number of
non-zero elements to represent the indices. If the column index is also big and could not fit into the remaining
bits that are available, then offset is used to keep track of column index while using small value to represent
the column index that fits into the array. Offset size will be much smaller compared to the size of the second
array in COO format (ITER<<<nnz) and smaller than CSR format pointer array (ITER<<ptr) to mention a
few. The size of the offset array, ITER, is computed as:

ITER = (numEle+ (THPB ∗BLOCKS)− 1)/(THPB ∗BLOCKS) (5.1)

Terminology used:
• ITER : Number of iterations required and size of offset array
• THPB : Threads per block
• BLOCKS : Number of blocks launched in the grid
• numEle : Number of non-zero-elements
• BIT SHIFT : The power of two taken (in the example given, it is 17)
• Offset[] : Array to store the offsets for different ITER
• newRow[] : Array that contains the value of row index of corresponding non-zero element
• newCol[] : Array that contains the value of column index of the corresponding non zero element
• index[] : Array that contains the row index and column index embedded into few bits
• value[] : Array that contains the non-zero-value
• REM AND : (2 power of BIT SHIFT)-1
• B[] : Dense vector array
• dotd : Contains result of multiplication of non-zero-value with the corresponding element in the vector

5.2. BLSI: Bit Level Single Indexing. BLSI is a new format proposed to represent sparse matrix in-
dices to reduce memory transfer overhead in the memory bound SPMV computations. The main operations
involved in SPMV computation on a GPU are organizing the data (for enabling global coalescing by changing
the data layout and other optimizations to get performance benefit from GPU), sending the data from CPU
to GPU and executing SPMV computation on GPU. The memory transfer time for the results from GPU to
CPU is very minimal and not considered here. The SPMV computation time is given as total time of all these
operations and through this new data structure improvements are seen in all these steps of SPMV computation.
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Through this new method, this work presents optimizations at three levels as follows:

• At the data format or data mapping level
• At the communication level between CPU and GPU
• At the computation level while assigning threads for computation

Algorithm 5.2.1 Index generation in BLSI format

for(j=0;j<ITER;j++)
{
offset[j]=newCol[j*THPB*BLOCKS];
for(i=j*THPB*BLOCKS;i<((j+1)*THPB*BLOCKS) && (i<numEle);i++)
{
index[i]=((newCol[i]-offset[j])<< BIT SHIFT)+newRow[i];
}
}

The number of bits required for the single index representation is the sum of BIT SHIFT size and the
offset [] data size. The size of BIT SHIFT is the immediate next power of 2 of the row size. For example, if
the number of rows are 86, 000, then 216 = 65,536 and 217 = 131,072. So BLSI considers BIT SHIFT size as
17. As mentioned earlier, BLSI needs offset array to reduce the number of bits to represent row and column
information into a single value. The column index is left shifted by BIT SHIFT size and then added with row
index. The index generation algorithm is given in Algorithm 1. The column index added with row index and
the row index is extracted on GPU in SPMV GPU kernel as given in Algorithm 2.

Algorithm 5.2.2 SPMV computation using BLSI format

unsigned int i =blockDim.x * blockIdx.x + threadIdx.x;
for( ;i<N; i+=BLOCKS * THPB )
{
row = index[i] & REM AND;
col = (( index[i] >> BIT SHIFT) + offset[i / (THPB*BLOCKS)]);
dotd = value[i] * B [col];
atomicAdd( result+row, dotd); }

The BLSI index can also be computed as row-index * n + col-index, which is equivalent to the index
calculated in Algorithm 1. The index of row and column computation from single index as shown in Algorithm
2 is equivalent to obtaining row by doing division and modulus operation on BLSI index with size of the matrix
to get row and column index respectively as shown in Figure 5.1.

5.2.1. Data Format Optimization. The proposed BLSI format optimizes the data organization time
and also the data storage requirement for the memory bound SPMV computation. The input data to SPMV
kernel on GPU needs reorganizing the data to enable the global coalescing and other optimizations to get the
actual performance improvements on the GPU. BLSI method requires pre-processing to restructure the matrix
into a single index based matrix from .mtx, Matrix Market Format, a standard file extension used in many
benchmark matrix data that uses COO format to represent the values in the matrix. But this pre-processing is
involved with any other sparse data representation other than COO, which needs to be generated from COO.
For example ELL, CSR etc. formats have to be generated form the Matrix Market Format i.e, COO. The
overhead involved in generating BLSI format is still very less compared to the other formats. Table 1 shows the
total time for BLSI and HYB format. Total time includes data reorganization time, Sending data from CPU
to GPU and the kernel computation on GPU. HYB format is highly optimized format on the GPU so far. The
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Fig. 5.1: Sample data format representation of sparse matrix A in BLSI method, single index calculation and
extraction of the row and column index calculations represented at the data type level. n is the size of the
square matrix.

Table 5.1: Total and kernel time executions for BLSI and HYB formats

Input BLSI − total HY Btotal Ratio : HYB −Kernel BLSI −Kernel
Matrix time in ms time in ms HYB/BLSI time in ms time in ms
web 21.307 581.689 27.301 0.847 4.637
ship 21.399 2191.501 102.411 1.426 3.396

scircuit 7.478 248.329 33.208 0.459 1.371
rma 10.098 741.014 73.379 0.617 2.207
rail 55.504 108.001 1.946 3.772 20.656
qcd 8.686 546.219 62.888 .227 2.287
pwtk 31.701 3344.274 105.493 1.502 3.607
pdb 12.674 1427.531 112.633 0.971 1.479

mc2depi 14.084 604.106 42.894 0.246 2.472
mac 11.134 420.245 37.744 0.639 2.178
dense 13.949 29.763 2.134 0.849 1.994
cop20k 9.851 796.334 80.838 1.047 2.412
consph 17.356 1951.671 112.452 0.889 2.427
cant 12.384 1361.669 109.959 0.765 1.693

total time comparison shows that BLSI is 2x to 112.6x faster than HYB when total time is considered as the
SPMV time. If we compare the total time (that includes the kernel time) with the kernel time of the respective
sparse formats then total time is almost 2.6x to 8x times the kernel time on GPU for BLSI and 28x to 2452x
times the kernel time for HYB format. The total time is observed by using the CUDA event recoder for the
CUSP library operations. The improvements in communication between CPU and GPU are shown in Sect. 7.
BLSI kind of new formats are desired for the GPUs that are massively data parallel architectures to show the
overall benefit of using the GPU for data parallel computations. The problem of CPU-GPU communication
scales up as the number of GPUs used increases in a system. If the matrix is very large and does not fit into
the chip storage, then SPMV performance still degrades and BLSI format gives better overall timing in this
case too. Hence the proposed new data representation is an optimized data format for the GPUs.

5.2.2. Communication Optimization. The Matrix Market format is the most used standard format
that uses COO data format. An optimized library like CUSP [32] etc., uses .mtx files and builds other formats
from COO. So, the communication time between CPU and GPU is the time taken to transfer two index arrays
for any format. The BLSI sparse matrix representation is up to 204% faster than COO, 104% faster than CSR
and 217% faster than HYB formats, in memory transfer time from CPU to GPU. The results of comparison for
the different matrices are given in Sect. 7.

5.2.3. Computation Optimization. BLSI uses atomicAdd() computation where all the threads need to
synchronize to add the row-wise product to single sum. To optimize even this computation time using atomic
operations, the thread assignment is modified as follows. In the pre-processing stage, BLSI does some changes
to the COO matrix (from Matrix Market file) [33], to change the data access pattern that in turn optimizes the
thread computations. The detailed explanation is as follows. For the matrix given in Figure 3.1, the thread
assignment for an SPMV kernel is shown in Table 5.2.

If the data access pattern is not changed, two consecutive threads take the computation of values a and
b of row 1. Assume that both finish the computation at the same time. These two values need to be added
to a single value that represents the sum of the products of that row. Only one thread can access the sum
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Table 5.2: Thread assignment: continuous threads are assigned for values with in a row

Old Thread Assignment
Thread ID 1 2 3 4 5 6

Val a b c d e f
Row 1 1 2 3 4 4

Table 5.3: Data representation of .mtx file after changed by BLSI method

Row Col Val
1 1 a
4 1 e
3 2 d
1 3 b
2 3 c
4 4 f

as it is an atomic operation. The problem here is two threads finished the work at the same time but sum
of products delays the overall result because of the atomic operation. To overcome this, BLSI uses a different
data access pattern that delays the single row product computations so that the conflict to write to the row
wise sum is delayed and in turn the row wise sum is available to all the products when they are completed with
the computation. This technique has boosted the performance to much higher values. The time of execution is
dominated by the row that has large non-zero-values.

To improve the performance using BLSI, BLSI changes the data representation of the .mtx file as follows.
The Matrix market file is sorted based on column indices rather than row indices. Hence the .mtx representation
will be changed as shown in Table 5.3 for the matrix given in Figure 3.1.

The thread assignment is done column wise here. Threads that belong to the same row need not wait for
atomic operation, reducing computation time. The atomic operation of multiple threads is delayed that in turn
improves overall performance of SPMV kernel. The thread assignment is shown in Table 5.4. By changing the
access pattern, it gives up to 92% improvement in SPMV kernel computation than the previous access pattern.

These optimizations used are external to the device. As shown in Sect. 7, the results are promising in-terms
of memory transfer time form CPU to GPU, overall GPU computation time that includes memory transfer and
kernel executions time, new format generation time and also overall program execution time. Hence BLSI can
be used as one of the sparse matrix formats that better utilizes the device.

6. Experimental Setup. This section describes the experimental setup used. The workload selected and
workload parameters used in the experiments are given. Monitors used for the observation of outputs are listed.
The specifications of hardware and software used for the experimentation are given in Table 6.1.

6.1. Workload. The input matrices used are the same workbench used by William et al. [26], [27]. These
are the real data observed form the experiments and posted in University of Florida Sparse Matrix Collection [33].
The input workload use and its characteristics are given in Table 6.2.

6.2. Workload Parameters. The input matrices are evaluated with the proposed methods. The workload
is characterized by performance observed in GFlops (109 Flops) and bandwidth in GBytes (109 Bytes). The
time is measured for the kernel execution and these values are derived with the details of the matrices used.

GFlops is computed as follows:
GFlops = ((2* nnz)/(kernel execution time in milliseconds * 1000000))

Bandwidth is computed as follows:
Bandwidth = ((3*nnz) + (2*# of rows)*4)/(kernel execution time in milliseconds * 1000000)

To compare the communication time between CPU and GPU, only the time of communication or time
for the memory transfer is taken into the consideration. The total time is observed as the time for the data
organization of the input, memory transfer time form CPU to GPU and the SPMV kernel execution time on
the GPU. For observations, CUDA event recorder is used for GPU related computations and CPU timer is used
for the computations on CPU.



New Sparse Matrix Storage Format to Improve The Performance of Total SPMV Time 167

Table 5.4: Thread assignment: thread 1 access first value of row1, thread 2 access first value of row 2 and goes
on

New Thread Assignment
Thread ID 1 2 3 4 5 6

Val a e d b c f
Row 1 4 3 1 2 4

Table 6.1: Specifications of hardware and software used in experiments

System/Hardware Specifications
Processor name and code name Intel Core i7 2600, Sandy Bridge

Processor specification Intel (R) Core(TM) i7-2600 CPU @ 3.40GHz
Graphics Interface PCI-Express

Graphics processor name and code name NVIDIA GeForce GTX 470-GF100
PCI-E link width X16
Memory type DDR3
Memory size 1280MB

Software Specifications
Windows Version Microsoft Windows 7(6.1) Service pack 1(Build 7601)
DirectX Version 11.0

Programming platform Visual Studio 2010
CUDA SDK version 3.2 and 4.0

6.3. Monitors. NVIDIA provides ParallelNSight to profile the CUDA programs. The Communication
time between CPU to GPU is taken from the profiler memory copy time from host to device. CUDA C also
provides an event recorder to observe the elapsed time. For the GFlops and Bandwidth computation that are
given as part of program, CUDA event record is being used to measure the kernel time. It is also been verified
that the time taken by the CUDA event and the profiler for the kernel execution are same. Hence the mode of
observation done is valid.

7. Analysis and Interpretation of Results. This section compares the proposed BLSI format against
the most commonly used formats like COO, CSR and HYB. The results are given for the following comparisons.

Communication time (or) Memory transfer time: The memory copy (memCopy for short) time between
CPU and GPU is compared for all the matrices given in the workload. They are compared by considering the
time of memCopy in milliseconds. Figure 7.1, shows that BLSI takes less time for memCopy in all the cases.
BLSI is up to 107% better than CSR, 204% better than COO and 217% better than HYB when compared
for memCopy time of sparse matrix data from CPU to GPU. The percentage of variations in memory transfer
time of COO, CSR and HYB with respect to BLSI is shown in Figure 7.2. In scircuit, the number of elements
per row is very small and hence CSR ptr and BLSI offset sizes become same and also the kernel time of CSR
is better for such matrices. In general, for a matrix with very few elements per row or few rows with large
elements, BLSI method will not perform well.

Performance Observation in time of execution by considering the kernel + memCopy time of SPMV Com-
putation: Figure 7.3 compares four formats with respect to SPMV computation that is, CPU to GPU com-
munication time plus the kernel time. The total time taken by BLSI format in matrices scircuit, rail is more
because, they have more nonzero elements distributed in very few rows. So the computation time taken by
BLSI is higher, because BLSI uses atomicAdd() for row wise sum. The BLSI (our method) outperforms than
all other methods for different structures of the matrices, when SPMV computation time and device memCopy
time are considered. As explained earlier, this format was proposed to reduce the CPU-GPU communication,
this optimization has resulted in overall better performance also. BLSI is 80% better than CSR, 164% better
than COO and 161% better than HYB (as shown in Figure 7.3) when both the memory transfer time and kernel
time are considered.

Figure 7.4 compares different sparse storage formats by considering total time as the data organization time,
memory transfer time and the kernel time. The HYB results are not shown in Figure 7.4, because it deviates
the graph. The values are given in Table 5.1. The total time in mac, scircuit, web and mc2depi of BLSI is little
more than total time of CSR because offset array used in BLSI and kernel time dominates by the longest row
reduction. As the number of elements per row is very small in these matrices, CSR kernel performance is better
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Table 6.2: Specifications of hardware and software used in experiments

Matrix Rows NNZ NNZ/Row Description
cant 62,451 4,007,383 64 FEM cantilever

consph 83,334 6,010,480 72.1 FEM concentric spheres
cop20k A 121,192 2,624,331 21.6 Accelerator cavity design
dense2 2000 4,000,000 2,000 dense matrix in sparse format

mac econ fwd500 206,500 2,100,225 3.9 Macroeconomic model
mc2depi 525,825 2,100,225 3.9 2D Markov model of epidemic
pdb1HYS 36,417 4,334,765 119.3 protein data bank 1HYS
pwtk 217,918 11,634,424 53.3 pressurized wind tunnel
qcd5 4 49,152 1,916,928 39 quark propagators (QCD/LGT)
rail4284 4,284 11,279,748 2,632.9 Railways set cover, constraint matrix
rma10 46,835 46,835 50.6 3D CFD of Charleston Harbor
scircuit 170,998 958,936 5.6 Motorola circuit simulation
shipsec1 140,874 7,813,404 55.4 FEM Ship section / detail

webbase-1M 1,000,005 3,105,536 3.1 Web connectivity matrix

Fig. 7.1: Comparison of memCopy time between CPU and GPU

Fig. 7.2: Percentage of variation in Memory Transfer Time between CPU and GPU
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Fig. 7.3: Performance comparison in time that includes memCopy time and kernel execution time

Fig. 7.4: Performance comparison of different formats by considering the total time as time that includes data
organization time, memCopy time and kernel execution time

than the BLSI format. These graphs show that how the memory bound computations affect the performances
of GPU.

Performance in terms of GFlops and GBytes by considering only kernel execution: The performance in
GFlops is computed using only the kernel time. As BLSI do not improve the kernel time of SPMV than the
HYB etc., the GFlops computed considering the kernel time is less for BLSI format. BLSI improves the overall
time of the SPMV computation at the cost of increased kernel execution time. GFlops graph is shown in Figure
7.5 and bandwidth measurement in GBytes is shown in Figure 7.6. These graphs show the performances of
various formats on the GPU.

8. Conclusions. Our experiments have shown that single indexed sparse matrix representation can give
substantial improvement in performance while considering the total time of SPMV computation. Total time
includes the time for the main operations involved in SPMV, i.e. time of data organization, time of memory
transfer and time of SPMV computation on the GPU. The improvement in performance is because of reducing
the complexity of data organization and reducing the data to be transferred at the cost of GPU execution time.
The improvements shown are not negligible and even for an iterative solution the improvement is beyond the
multiple of number of iterations.

The idea of reducing the memory transfer overhead and data organization overhead by using a new data
structure for the sparse matrix is novel and it can be improved further. The SPMV performance on the GPU
can further be improved by using various optimizations like parallel reduction for row wise sum calculation
to mention a few. BLSI or any other formats performance is determined with respect to the input matrix
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Fig. 7.5: Performance comparison in GFlops considering only kernel execution time of SPMV

Fig. 7.6: Comparison of bandwidth in GBytes for the different formats considered

sparseness. BLSI kernel performance on GPU is less compared to other formats when the matrix has few rows
with large number of elements. An automated tool that can suggest a best data structure from the existing
sparse formats based on the input matrix properties like number of elements per row is an on-going work. This
can be integrated at runtime so that on the fly data structure to be used can be decided based on the input
matrix and also architecture of the device to give the best performance for the SPMV computation.
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Abstract. The paper concerns designing distributed program execution control based on global application states monitoring
in the presence of a dynamic number of processes and threads. Global program execution control is based on application states
monitoring at the level of processes/threads in clusters of multi–core processors. A special control infrastructure is proposed based
on synchronizers, which collect state information from processes and threads, detect strongly consistent application global states,
evaluate control predicates and send respective control signals. An algorithm for detection of strongly consistent global states for
a variable number of processes/threads is presented.

1. Introduction. Writing distributed programs with complicated global control structures for execution
in clusters of processors is easier when some support for automatic monitoring and handling of global application
states is provided in the run time system. Commercial distributed systems do yet not support this idea. Hence,
the program execution control based on the monitoring of global application states has to be programmed by
programmers from scratch. It requires tedious programming of the collection of constituent local states and
designing out of them global states which had happened in parallel in distributed processes of an application.
Programming these aspects of program execution control is complicated and takes much of programmer’s time.
Besides it is error prone. This paper relates to an original distributed program design framework PEGASUS
(Program Execution Governed by Asynchronous SUpervision of States) [6, 24], which assumes a built in support
for handling the local and global application states and automated design of program execution control based
on global states monitoring.

Some introductory research results on the use of the global application states monitoring in the design of
execution control of distributed programs can be found in literature. Linda environment [1] provides a common
global tupple space for the exchange of global control information and supports primitives for writing and reading
in it. Some solutions leading to the design of global control for interactive software components can be found
in coordination languages. Manifold and Reo environments [2] have ben provided with primitives for inclusion
of communicating software components into coordinated structures. Nevertheless, no notion of a global state
has been used in these systems. Global application states were basic concepts in the Meta system [3], which
enabled designing distributed programs based on communicating components. In the Meta system, application
processes were able to send messages on their local states on which consistent global states were generated and
the respective global predicates were evaluated. In Meta, complicated formalism based on guards was used to
express control based on global states. An attempt to simplify this formalism was undertaken in the Lomita
language [3]. But it suffered of inefficiency due to very costly ordered state message broadcasts. Global control
constructs for the OCCAM language were proposed in [4] with an implementation based on replication of global
state variables. The first infrastructure for the run–time supported design of the asynchronous global execution
control of distributed programs in C language based on monitoring of global application states was implemented
in a graphical parallel program design system PS–GRADE [5].

The features of the PS–GRADE and other distributed program design frameworks [9] have been substan-
tially extended in PEGASUS. The main extension are the graphically supported global high level control flow
constructs in which the flow of control at the level of the distributed program components depends on the pred-
icates computed on global application states. In this respect, the PS–GRADE did not provide any mechanisms
for structural control flow steering by global application states while taking care of the asynchronous control of
the internal process behaviour. Another important extension is the global program execution control exercised
at the thread level, important for the evolved software design for multicore processors. One more extension
is the separation of the communication frameworks for maintaining the control data from the communication
environment for computational data. This separation is on one hand logical and on the other hand physical since
separate networks are assumed. Such logical and hardware support strongly improves control design efficiency
as has been already discovered by simulation experiments for PS–GRADE [21].

Current implementation of the PEGASUS framework assumes that the number of processes and threads
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whose local states contribute to the definition of the program global consistent states, is known at the application
program compile time. In the research reported in this paper, the number of threads and processes taken into
account is assumed to be variable and is set dynamically at program run time. The variable number of processes
has been considered in [7, 8, 9, 10, 11], however only for the group data communication control. With the new
assumptions, in the dynamic distributed programs designed under the PEGASUS framework, the automatically
constructed global states based on local states of a variable number of threads or processes define the control flow
and the functional features of programs. These features extend the functionality of the PEGASUS framework
towards more flexible control constructs, however at the price of new algorithms for the construction of strongly
consistent global states and more specific methods for state messages sending and signal reception in application
program components. Both these problems are presented and discussed in this paper.

A short presentation of this research has been published in [25]. The present paper adds many details and
includes the following relevant material:

• dynamic SCGS detection algorithm described in detail with a pseudo–code,
• an application example,
• a description of the PEGASUS system as an example of an environment where the dynamic SCGS
detection can be applied.

The paper consists of six parts. In the first part, the application program execution control based on
global states monitoring is explained. The second part, presents the related research on the dynamic process
membership in program control. The third part presents the algorithm for the detection of global application
states in the presence of a variable number of processes/threads. The fourth part shortly describes the graphical
design of application programs in the PEGASUS framework. The fifth part discusses global program execution
control based on dynamic process groups. The sixth part outlines a relevant example with a variable number
of processes.

2. Global states monitoring for application control. An analysis of existing parallel application
control methods e.g. [12, 13, 14], has motivated us to have a global view of a running distributed application
state used when defining distributed program execution control. Such control should be based on global program
execution control high–level primitives. To increase the program code clarity, the code sections responsible for
program execution control should be separated from the code sections responsible for computations. To increase
the distributed program performance, the synchronization and communication of the control data and steering
orders should be implemented without passive waiting.

Initial ideas on global distributed programs control [4, 15] have been rectified into program execution
control methods corresponding to current parallel and distributed program semantics, which intensively used a
precisely defined notion of the application global state [16]. The new program control model and its theoretical
background were implemented inside a parallel program graphical design environment P–GRADE giving an
extended version of it, called PS–GRADE [5]. In PS–GRADE, special control processes called synchronizers
were able to receive local state reports from processes of a running application. Based on the local state
information, the synchronizers were able to re–construct and monitor the global states of an application for
defined sets of relevant constituent processes. Among different kinds of global states, the most interesting were
such for which the synchronizers and the application program programmer were sure that the states occurred in
distributed processes for sure in parallel, with the occurrence not weakened by any knowledge based on partial
orders. Global application states discovered by synchronizers with such certainty are called Strongly Consistent
Global States (SCGS) [19]. A SCGS can require local states from all processes of a distributed application or
of a subset of them. Based on that, we speak about absolutely global or regional strongly consistent global
states. A programmer can also consider states which do not correspond to concurrent local states without any
concurrency requirements. They are called Observed States. For observed states no SCGS detection algorithms
are performed and local states are directly used for application control definition. The PS–GRADE system
run–time framework, working on–line in parallel with the application, was providing the infrastructure for
sending process local states, reception of the state messages by synchronizers, reconstruction of different kinds
of global application states including SCGSs and using them to define the execution control of the application.
The sequence of messages the synchronizers were receiving might not be the same as the sequence of events
in reality, because of delays in message construction, transfer and processing which could happen. Therefore,
the received local state messages were only used as input data for consistent state construction algorithms [18].
For our SCGS generation algorithms, the application processes were sending local state messages accompanied
by real–time event timestamps obtained with the use of partially synchronized local processor clocks globally
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Fig. 2.1: Code activation (left) and cancellation (right) by control signals

synchronized with a known accuracy [16]. The SCGSs based on such local state messages can be constructed
in O(E NlogN) time, where N is the number of processes and E is the number of events per process. The
complexity of the algorithm with real–time event timestamps is lower than that of the algorithms, which use
logical vector clocks since the later leads to SCGS detection with the exponential complexity. By using networks
of parallel synchronizers, a distributed hierarchical SCGS detection can be organized, which is speeding up the
SCGS detection for complicated state cases [17].

An SCGS is a state, which has occurred for sure in all involved processes, in difference to potential global
states obtained with the use of logical clocks. Timestamps defined with a known accuracy requires a processor
clocks synchronization facilities installed in the executive distributed system.

The clock synchronization needed here can be obtained in many ways, depending on the assumed accuracy
and budget. The least costly and the cheapest is the Network Time Protocol which can reduce the clock skew
to tens of µs. The more costly is the Precision Time Protocol, which supported by a dedicated time messages
transmission network can provide the clock skew below 1 µs.

Control predicates used for definition of process execution control represent control conditions, which are
checked when a given global state is reached. The predicates are encapsulated in synchronizers as specially
structured pieces of code, which are defined by a programmer as parts of the application. The predicates can
be defined based on SCGSs (global or regional) or observed states. For SCGSs, the predicates are checked
on each detected SCGS state. If a predicate is fulfilled, the Unix–type control signals are sent to selected
processes. The signals can activate designated code sections in target processes immediately upon their arrival,
suspending current computations. Alternatively, they can cancel current computations, making processes to
proceed immediately to further parts of their algorithms, see Fig. 2.1.

If the signals are sent between a synchronizer and processes located on different processors, the signals
are transformed into control messages when they leave the processor of the synchronizer. The messages are
sent by the use of a message passing library. The messages are asynchronously received at the target process
processor and then transformed into classic Unix signals which are delivered asynchronously. With the use
of asynchronous control signals, a process does not need to stop and wait passively for control orders sent by
synchronizers.

In PS–GRADE, the set of parallel application processes taken into account for the monitoring of global
application states was defined statically by a programmer. This limitation can be removed in the new enhanced
PEGASUS system. Under PEGASUS, each process usually contains many parallel threads which can be moni-
tored and controlled by synchronizers through global predicates, in a similar way as processes [17]. It is a quite
common programming practice to create and destroy the threads when necessary. Therefore, the global control
system should enable to deal with dynamically changing set of monitored entities (threads or processes). In
this paper, we examine methods for monitoring global states of dynamically changing sets of threads/processes
and methods for organizing the respective application control.

3. Related research. The problem of cooperation between processes in a group when the processes can
join and leave the group has been analyzed in the literature. Several authors studied such cooperation using
broadcast as the main communication primitive.

A good insight to the problem in presented in [7] and [8]. There, the notion of views was defined. A view
stands for an interval when the group membership is constant. In a single view classic (static) algorithms can
be used to implement broadcasts. The difficulty has been moved largely to view maintenance — creation of new
views and installation of new views in processes. A similar approach has been taken in the Totem system [9].
A dedicated service was created there to monitor and maintain the membership.

The idea, that processes see the same membership within a specific view (time period) and that they deliver
the same set of messages in each view in the same relative order got its name as “view synchrony” and has
been examined by other authors, e.g. [11]. View synchrony uses broadcast communication and orders events
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logically (before/after) ignoring actual (wall clock) time relations. The real time is used only to detect dormant
members, e.g. as in [20], where assumptions on maximal token transfer time exist.

Our case differs from the cases analyzed in the literature in a few important aspects.
• The communication we need is of many–to–one type (processes reporting to a synchronizer) and one–to–
many type (a synchronizer sending control signals to processes). It is not many–to–many communication
— processes do not need to know about each other.

• We use Strongly Consistent Global States and real–time timestamps. This makes the coordination
between processes much different than in the case of logical time.

• The control mechanism in our system is based on consistent global state monitoring — we must be able
to construct consistent global states with changing process membership.

• The emphasis in our system is not on communication (sending messages with data), but on control
(sending commands and states). The impact of membership changes should be analyzed from another
point of view.

4. SCGS detection. The Strongly Consistent Global States (SCGS) were introduced in [19]. They are
analogous to the Consistent Global States (CGS) as defined in e.g. [18]. A CGS is a set of local process states,
one state from each process, with the property that the states are pairwise concurrent. The concurrency is
defined with the happened–before relation and logical vector clocks can trace it. In SCGS the state concurrency
is defined with the help of real–time (wall clock) timestamps. To be able to use real time clock the processes
must have access to a global shared clock or their local clocks must be synchronized. It is assumed that the
clocks used by the processes are not ideally synchronous and that the upper bound of the clock skew is known.
In such a situation, an event can be depicted on a time axis as an interval rather than a point. An event
occurs momentarily of course, but we are able to pinpoint the time of its occurrence due to not perfect clock
synchronization. Instead, we determine an interval within which we know the event has occurred. Fig. 4.1
illustrates how the events are marked on the time axis and how SCGSs are constructed from concurrent local
states.

The SCGSs (unlike CGSs) occur sequentially, one at a time. The number of them is linearly proportional
to the number of events. What follows is that the algorithm which constructs SCGSs is much less complex than
algorithms for CGS lattice construction. To be able to explain the proposed extensions to the SCGS algorithm,
we will recall the idea of the standard SCGS algorithm first [16].

We will formulate the SCGS construction algorithm using the diagram from Fig. 4.1. The local process
states for each process are depicted as a sequence of segments (think solid lines), each segment stands for a local
process state duration. When the segments are projected onto the bottom line, then the rectangles with names
S1,S2,S3,S4 mark the areas where the projections have non–empty intersections. These are the SCGSs. The
algorithm has to find them. The segment positions in each sequence are sorted and the segments are disjoint
within a single sequence. For now we assume, that intervals between consecutive events at one process are
longer than 2ǫ, where ǫ is the clock synchronization accuracy. The notation is as follows:

SEQi — segment sequence for process i,
CS — the currently examined set of segments containing one segment from each sequence,
si — segment from SEQi in CS,
S(s) — segment s start position,
T (s) — segment s terminate position.
next(si) — the next segment after si in SEQi

The intersection is non–empty if i, j = 1..n : S(si) < T (sj), which can be simplified asmaxi = 1 . . .N(S(si))
< mini = 1 . . .N(T (si)) (condition C1)

Initially CS contains the first segment from each sequence. If the condition is not met, then there exist k
and l, such that S(sk) ≥ T (sl). Assuming that we have checked all segments lying before the ones currently in
CS (which is true initially) there is no point in an attempt to decrease S(sk), but we can take the next segment
in SEQl to increase T (sl). In such a way we proceed forward moving by one segment from one sequence at a
time, preserving the assumption. If a nonempty intersection is found, we have to start the search over. There
exists k, such that T (sk) = T (CS). It is enough to notice, that the next non–empty intersection cannot start
earlier than S(next(sk)). So we take the next segment from SEQk and run the procedure further, again with
the assumption valid. By induction, no non–empty intersection will be missed and all segments will be checked.

When we allow short intervals between events on a single process, we can have a situation as on the left–
hand side of Fig. 4.2. There is a “negative length” segment between events e1 and e2. It should be interpreted
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Fig. 4.1: SCGSs detection

that we do not know the exact start/end points of the segment, yet we know there is one here. For P1 in a state
between events e1 and e2 and P2 between f1 and f2 condition C1 is false. However, we do have a nonempty
intersection here. Only we cannot precisely point its position. The right–hand side of Fig. 4.2 shows a similar
situation, but this time the intersection is empty. We formulate the proper condition as follows:

(C1) ∨ (∃i : S(si) = max(S(sk)) ∧ T (si) = min(T (sk))∧
max2(S(sk)) < T (si) ∧min2(T (sk)) > S(si))

where k = 1 . . .N and min2() and max2() give the second minimal and maximal value, respectively. The
condition says, that if we have a “negative length” segment, then it must be fully contained in other segments.

To speed up the condition evaluation, tuples 〈S(si), i〉 and 〈T (si), i, ptri〉 should be kept in priority queues
with the first element as the key – element insertion cost is logN, accessing min/max is done at a constant
cost. Component ptri points to the corresponding tuple (start of segment i) in the first queue. If we notice,
that T (SC) = mini=1...N (T (si)), then the search for k : T (sk) = T (SC) can be accelerated by using one of the
introduced queues. Operations min2, max2 and removing an element pointed by ptri can be done at cost logN.
The total cost of the algorithm is O(E NlogN).

4.1. SCGS in dynamic groups. The described above SCGS detection algorithm assumes a constant
number of monitored processes. Each report coming to a synchronizer contains information about an event
in a known process. To allow a process to join and leave the monitored (and therefore controlled) group, a
synchronizer must be informed about the process group membership changes. We introduce two new message
types for that purpose. A join message is used by a new process to tell a synchronizer that it is joining the
controlled group, while the leave message terminates the process group membership. The assumption that
process clocks are synchronized within a known accuracy must stay true for the joining (and of course the
leaving) processes. With this assumption the new messages can be ordered on a time axis using the same rules
as standard event messages. As described above, the standard SCGS detection algorithm hops from one event
to the nearest one. With dynamic process membership, it is enough to verify if a join or leave message with a
timestamp positioned between the current event and the nearest one has been received. A join event should be
then processed as follows: increment the number of monitored process N := N + 1, rebuild all data structures
to reflect this change, set the new process state as reported within the join message. A leave message processing
should decrease the number of monitored processes N := N − 1 and all the involved data structures should be
rebuilt accordingly, removing the elements corresponding to the process that has left.

Fig. 4.3 shows a situation when the ideal scenario fails. A process join message ejoin from process C
contains a timestamp which should position this event within SCGS S1 and S1 should include three processes.
However, the message ejoin arrives with a delay, after S1 has been detected for two processes only. Without
additional assumptions the network delays cannot be anticipated and one should be aware that process joining

P1

P2

e1 e2

f1 f2

P1

P2

e1 e2

f1 f2

Fig. 4.2: Short–lasting local states can lead to an SCGS (left) or not (right)
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can be noticed by a synchronizer with a delay.

Fortunately, in environments where the network delays are bounded a better solution is possible. In [21] a
SCGS detection algorithm for bounded message transfer times is presented (the UT algorithm). The algorithm
postpones processing of the received event reports to make sure that all delayed reports arrive first. The
postponing time is computed according the bounded message transfer time. With this algorithm, the detection
of S1 in Fig. 4.3 would be postponed until ejoin arrives. Then, Process C would be added to S1 according
to the timestamp value in ejoin. The UT algorithm has an obvious drawback — all SCGS detections must be
delayed by the postponing time (proportional to the bound of the message transfer time).

Process leave scenario is shown in Fig. 4.4. The message eleave arrives just any normal event report with a
timestamp. When S2 is detected, eleave is treated as a normal event report and marks S2 termination. In the
next step, eleave is recognized as a leave message. Information about Process C is deleted from the algorithm
data structures, but prior to that eleave timestamp is copied to the remaining process to mark the beginning of
the next SCGS. The next SCGS S3 contains only processes A and B.

Below, we present the code of an SCGS detection algorithm able to deal with dynamic thread/process
membership. The algorithm is an enhanced version of the “T” algorithm from [21] — processing of “join” and
“leave” messages has been added. “T” is the simplest SCGS algorithm variant and its presented enhancement
permits that the states of joining processes can be taken into account with some delay, as has been explained
already. For simplicity, the presented code does not perform data structure compacting — the processes that
have left remain as empty entries. This has the advantage that the array indices used as process identifiers are
unique (new processes get new indices) and the algorithm presentation is as clear as possible. When necessary,
indirect indices can be introduced, i.e. instead if index i in Pi one should use indi and manage the ind array
appropriately. Such a solution is conceptually straightforward, therefore we will not delve into its technical
details.

ALGORITHM 1. SCGC detection using terminated local states
Symbols and data structures:

ǫi — quality of clock synchronization, for Pi’s clock ci and the master clock m : |ci −m| < ǫi
Pi — process number i, i = 1 . . .N

e.C — the timestamp attached to event e, a positive number. The value of ǫi is known by the monitor and it
is the monitor task to convert scalar timestamps into intervals: e.C → 〈e.C−ǫi, e.C+ǫi〉 = 〈e.C1, e.C2〉

si — currently processed local state of Pi
s.S — event that starts state s
s.T — event that terminates state s

Necessary data structures are as follows:

• FIFO queues Qi, i = 1 . . .N . Qi holds messages (events) from Pi. Qi.first() is the termination event of
the currently considered Pi state. The following operations are defined on queues, each with the cost
of O(1): Q.first() — the first element in the queue. If the queue is empty, then the method blocks until
an element is available; Q.append(s) — puts state s into the queue; Q.remove() — discards the first
element; Q.empty() — TRUE iff the queue is empty.

• Array S1...N (Starting) contains events. Si is the starting event of the currently considered Pi state:
Si = si.S. The algorithm checks if local states si : si.S = Si, si.T = Qi.first(), i = 1 . . .N , are pairwise
concurrent.

• Priority queue maxS holds pairs 〈Si.C + ǫi, i〉, the first pair component is used as the sort key.

thread/ 
process A

thread/ 
process B

e1 e2

e1 e2

joining 
thread/ 
process C 

ejoin

Fig. 4.3: A delayed join message
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Fig. 4.4: Processing of a process leave message

• Priority queue minT contains records 〈Qi.f irst().C − ǫi, i, ptr〉, the first component is used as the key.
A component ptr points to a corresponding record in maxS (record with the same i component). This
queue block the min() operation until the number of entries is equal N − L.

• The following operations are defined on priority queues:
– insert(t,i) : pointer — adds a new record in O(logN), returns a direct pointer to the new element
– max() — returns a record with the maximal key in O(1)
– min() — returns a record with the minimal key in O(1)
– max2() — returns a record with the second maximal key in O(1);
– min2() — returns a record with the second minimal key in O(1);
– removemin() — removes a record with the minimal key in O(logN);
– remove(ptr) — removes a record pointed by ptr in O(logN).

• Array maxSPtr1...N , maxSPtri points to record 〈t, i, ptr〉 in maxS. It is used by minT .insert() to get
a pointer to a corresponding record in maxS.

• Initially ∀i=1...N : Qi.empty() = TRUE; ∀i=1...N : Si = e0, where e0.C = 0; maxS contains 〈0, i, ptr〉,
i = 1 . . .N ; maxSPtri points to record 〈t, i, ptr〉 in maxS, i = 1 . . .N ; minT .empty() = TRUE.

The algorithm is as follows:

on reception of the message e (including a leave message) from Pi:
if Qi.empty() then {

Qi.append(e)
minT .insert(e.C − ǫi, i, maxSPtri)

} else
Qi.append(e)

if “monitor was suspended waiting for an event from Pi” then
“resume monitor”

on reception of a join message j from PN+1:
N = N + 1
SN = j
maxSPtrN = maxS.insert(〈j, j.C + ǫi, N〉)

main loop:
loop

〈t, i, ptr〉 = minT .min() //blocks until minT has N − L elements
min = t
〈max, j〉 = maxS.max()
if min > max then {

/* SCGS found, SCGS=〈s1, . . . , sN 〉, where si is a local state of Pi

between events Si and Qi.first() */
if “it is a termination SCGS” then

loopexit
} else if i == j then {

/* 2 events from the same process */



180 Borkowski J. and Tudruj M.

〈min2, i, ptr〉 = minT .min2()
〈max2, j〉 = maxS.max2()
if (max2 < min AND min2 > max) then {

/* SCGS found */
if “it is a termination SCGS” then

loopexit
}

}
if “Qi.first() is a leave event” then {

L = L+ 1
minT .removemin()
maxS.remove(ptr)
Qi.remove()

} else {
/* search further, the state which terminates first is blocking */
minT .removemin()
maxS.remove(ptr)
maxSPtri= maxS.insert(〈t+ 2ǫi, i〉)
Si=Qi.first()
Qi.remove()
t = Qi.first().C // blocks if Qi is empty
minT .insert(〈t− ǫi, i, maxSPtri〉)

}
endloop

5. Process/thread control in PEGASUS. The aim of the PEGASUS framework is to support graphical
design of application program execution control governed by global application states. The framework enables
a graphical design of the global execution control in distributed programs. In PEGASUS, the program global
control design is graphically supported at the program global control flow level and the process/thread level.
At both levels graph representation of programs is used.

The program global control flow level is developped using Control Flow Graphical Windows. They enable
designing a control flow graph of a distributed program, which shows all control flow dependencies between
program blocks, for which the control is governed by application global states. This level enables development
of a distributed program in terms of nested high level control constructs acting on program blocks. At the
program global control flow level a special kind of the window is additionally used Block Interactions Window,
which shows the flow of control data between the blocks specified in graphical representation of the program
using control flow graphical windows.

The process and thread level enables designing the structure of internal program code in C/C++ language
for terminal program blocks in the control flow graph, i.e. such blocks which will not be further developed to
contain nested global high level control constructs. Such terminal blocks correspond to structures of application
processes which will be directly assigned to processors. These structures are designed in a special kind of
graphical windows which is called Process Structure Window.

The terminal blocks will be converted into source program modules compiled into executable modules after
mapping of code blocks to resources using the third graphically supported level of windows which are the
Synchronizer Editing Windows and the Thread Block Editing Windows.

At the program global control level, an application program is represented as a control flow graph. It is
composed of program blocks (the graph nodes) interconnected by arcs representing the flow of control and the
flow of control information between blocks. In general, this graph shows how the flow of control between program
blocks depends on global states of the program. This dependence is exercised based on the use of predicates
computed on program global states. Nodes of a global control flow graph represent program code blocks, which
can contain processes or threads (rectangles annotated with block names), synchronizers (annotated with names)
containing predicate blocks (with general predicate specifications), control flow switch nodes which direct the
flow of control in the graph accordingly to signals generated on the basis of predicate evaluation and control
paths parallelization/synchronization primitives such as PAR, JOIN, BARRIERS, EUREKA, etc. The edges in
the graph represent the flow of control between nodes and flow of state messages or signals between predicate
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Fig. 5.1: PARALLEL WHILE DO construct with a control flow predicate GP1 and an asynchronous predicate
GP2, GP3

blocks, code blocks and switches.
Important elements of the global program control flow graph are synchronizers. The synchronizers are

special program blocks which contain control predicate blocks. The synchronizers and the predicates they
contain can be assigned to processors or processor cores. A predicate specification includes a predicate name
followed by two lists separated by a semicolon: a list of graph blocks (including predicates) whose states are
involved in predicate evaluation and a list of signal receiver blocks. We distinguish control flow and asynchronous
control predicates. Both can be placed in the same synchronizer. All blocks have communication ports, which
are used to draw control data communication paths. Port and port interconnections are automatically drawn
by the system if the blocks to connect are specified inside the predicate blocks. However, ports and port
connections have to be drawn by a programmer for the control flow which is not specified inside predicates
belonging to a program block. In order not to complicate program graph design, the communication concerning
computational data is not represented in the program global control flow graphs. The design of the program
graph is supported by the replication and nesting facilities. The replication facility enables simplification of the
program graph for control constructs, which are acting on the replicated program blocks. The nesting facility
enables automatic opening of graphical windows in which nested control constructs can be designed. At block
boundary communication ports are automatically generated to enable controlling the interface between the
program graph external to the block and the internal graph inside the nested block.

Fig. 5.1 presents an exemplary simple program control flow graph. The graph contains n program blocks
Pi governed by a replicated PARALLEL WHILE DO construct. The flow of control is supervised by a global
predicate GP3 evaluated on the basis of a global state built of local states of the blocks P1,. . . ,Pn. GP1 sends
signals to the switch SW1, which directs the flow of control. SW1 asynchronously receives and stores all signals
generated by GP1. When the execution control reaches SW1 it directs the flow of control accordingly to the
last signal value received.

Fig. 5.2 presents the control graph nested inside a block Pn. The replicated program blocks Z1,. . . ,Zp are
embedded in a PARALLEL DO–UNTIL construct. The flow of control is governed by a global predicate G2
evaluated on the basis of a global state built of local states of Z1,. . . ,Zp. Blocks Z1,. . . ,Zp are asynchronously
controlled by the predicate G1, which is evaluated based on the local states of Z1,. . . ,Zp, states of some blocks
D1,. . . ,Dv and also signals sent as a result of the predicate GP1 in the synchronizer S. The predicate G1 asyn-
chronously controls Z1,. . . ,Zp by sending signals to them. Z1,. . . ,Zp are additionally directly asynchronously
controlled by the predicate GP3 of S.

Before the code of process blocks is designed using the C/C++ language, the process graphs will be first
graphically composed of thread blocks and thread level synchronizers in the Process Structure Windows. Fig.
5.3 represents such a window for the replicated Z1,. . . ,Zp

blocks from Fig. 5.2. In this window, we can see the thread level synchronizer TS which asynchronously
controls thread blocks

T1 and T2 synchronized by PAR/JOIN constructs. TS contains two predicates TP1 and TP2. TP1
combines local states of T1 with control signals from the predicate G1 of the synchronizer Sn (Fig. 5.2). TP1
controls threads in T1 and sends state to the predicate G1 of Sn. TP2 combines states of T1 and T2 with
signals from the predicate GP2 in a common global state. Based on this state, TP2 controls T1 and T2 and
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Fig. 5.2: PARALLEL DO–UNTIL construct embedded inside Pn block
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Fig. 5.3: Process Zp structure in the process and threads graphical window
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Fig. 5.4: Interactions window of the synchronizer S.

sends states to the predicate G2 of Sn and the predicate GP2 of S.

The PEGASUS framework includes facilities for an easy and convenient representation of the global program
execution control. This idea is supported by the Block Interactions Window. It automatically provides a
representation of the global control structure in the program related to a selected block of the program control
flow graph. This window enables an easy verification of the structure of the global control based on tracing the
synchronizers (more exactly their predicates) and thread blocks interactions in the program graph.

The Block Interactions Window shows an interactions graph in respect to global control design for a selected
block of the control flow graph. The window is automatically generated as a result of a click on a selected control
flow graph block. Fig. 5.4 represents the interactions window of the synchronizer S for the control graphs shown
in Fig. 5.1, 5.2 and 5.3. In this window we can trace control links of a selected graph node (the highlighted block
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S) with other nodes which co–operate with the selected node. The co–operation is implemented by sending or
receiving state messages and signals. Inside synchronizer blocks all relevant predicate blocks are shown with
the connections to respective synchronizer ports. The window has special facilities to simplify representation of
interactions of the replicated blocks. Program blocks which belong to replicated control constructs are displayed
only once with notification (R) – replicated, in the names.

6. Process/threads control in dynamic groups. The processes controlled by a synchronizer do not
need to know about each other. Therefore they may not be aware of the changing group membership. However,
the actions initiated by a synchronizer can be affected by processes leaving/joining the group. A synchronizer
upon analyzing a SCGS can decide to send a control signal to a process. If the process decides to leave the
group before receiving the signal, the signal will not be delivered. The simplest option is to ignore such signal.
If ignoring could cause problems in an application control scheme, the following possibilities, enumerated below,
can be exercised.

• A process should confirm signal reception. Not confirmed signals should be “re–processed” e.g. a
predicate should be re–evaluated. This solution requires a timeout — the message transfer time must
be bounded — otherwise a synchronizer would not know how long to wait for a confirmation.

• A symmetric solution is a negative confirmation — a subsystem responsible for signal delivery can
generate an error message for a synchronizer when a target process does not exist. The message transfer
time should be bounded as well, if the synchronizer should be able to “re–process” failed signals — it
may need to keep some history information for this purpose for a time period dependant on the message
transfer time.

• A process should inform the synchronizer that it plans soon to leave the group. Such processes are
not eligible as signal targets. This option assumes that a process knows in advance that it will leave
the group (not suitable for dealing with process failures) and again the message transfer time must be
bounded, so it is known how early a process must send the information about its approaching group
leaving.

• Before sending a signal, a synchronizer should ask a target process if it is ready to receive the signal
(not suitable for dealing with process failures). This idea induces a large performance penalty, requiring
a round trip communication before each signal.

A control scheme can involve actions on more than a single process at a time. As a practical example of
such a situation, we can give various load balancing strategies. In the simplest case, a synchronizer selects
an over–loaded and an under–loaded process and signals both of them. The process pair should communicate
directly and level their load. If one of the selected processes leaves the group after it has been selected and
before a peer process contacts it, a communication problem arises. One process from the pair would stall trying
to contact a non-existent process. The following solutions, enumerated below, can be taken into account.

• Do not let processes to communicate directly.
• When communicating with a peer process, always use a timeout mechanism — message transfer time
must be bounded.

• A process should inform the synchronizer that it plans soon to leave the group. The details are the
same as in point c) in the previous subsection.

• Before sending a signal, a synchronizer should ask a target process if it is ready to receive the signal as
in point d) in the previous subsection.

A synchronizer must be able to address a proper process/thread to receive a signal. Some difficulties arise
here if we want to guarantee that any newly joined process is distinguished from all processes that have left the
group. Two situations impose problems in this area.

• Process A is selected as a signal target, but before the signal reaches it, process A leaves the group and
process B joins it. If B gets the same identifier as A, it will receive the signal targeted at A.

• If a predicate maintains historical data about process states, and if process A leaves the group and
process B joins it, then information about B should not be linked to historical records of A — it means
that A and B should have different identifiers.

7. A dynamic application example. In the past we have shown how the global control based on
consistent process states can be efficiently applied to control the behaviour of parallel irregular applications
[22]. An implementation of a parallel and distributed branch–and–bound algorithm included the observations
enumerated below.
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Fig. 7.1: A branch–and–bound search process with dynamic thread creation/deletion

• Each process maintained its local subproblem pool containing partial solutions to be further developed.
• A standard branch–and–bound algorithm was run locally in each process (get a subproblem from a
pool, check if it is perspective, branch it, bound each newly created subproblem and return it to the
pool).

• The processes reported their load in terms of the estimated size of the subproblems in their pools.
• The synchronizer built global states from those reports to detect load imbalance and dispatched control
signals to processes ordering them to communicate and level their loads

• Each new solution better than the currently known best solution was immediately reported to the
synchronizer. The synchronizer broadcasted it to all processes using control signals.

PEGASUS let us refine this implementation by introducing thread–level parallelism on each node with a
single process running on every node. A local synchronizer on every node can do the same job as the synchronizer
for processes in the original solution. To provide the global two–level hierarchical control for all application
nodes a global synchronizer which cooperates with the local ones can be introduced [17].

Now, let us assume that the computing system is not used exclusively to solve the branch–and–bound
problem. Other tasks can also be run there, possibly with higher priorities. The branch–and–bound application
should use all free CPU cores, but should limit itself if other applications are run. Local synchronizers can obtain
node load information from a PEGASUS runtime module for CPU load monitoring. It is shown in Fig. 7.1. A
single application process (Node) is depicted there. Upon application initialization the local synchronizer, the
built–in load monitor and a predefined number of worker threads start executing. The threads report their load
and the solutions they find to the synchronizer (to the predicates “WorkerLoadCheck” and “Best”, respectively)
and they can receive corresponding control signals (broadcasted new best solution and an order to perform load
leveling). They can send the “Join” and “Leave” message to the synchronizer as well. The Thread Control
subsystem within the synchronizer handles such messages. Finally, the synchronizer reads the node load from
the Load monitor (predicate NodeLoadCheck). This predicate can initiate a thread shutdown by sending control
signals to a thread: load balancing aimed to transfer the entire load, and a “Stop” signal telling the thread to
report “Leave” and then stop. Additionally NodeLoadCheck can trigger the Thread Control module to start a
new thread. Visible external ports Z1.4 and Z1.3 are used to connect local synchronizer to the global one.

When the local load exceeds a given threshold, then the local synchronizer may send control signals to some
threads ordering them to shut down. The existing load–balancing mechanism can be used to move the remaining
load (subproblem pool contents) from the threads signaled to be cancelled to some others. Normally, a thread is
told what portion of its load it should transfer. In this case it should just transfer the entire load. The signaled
threads will use the “Leave” message to detach from the synchronizer after the complete load transfer is done.
Because the detachment is expected by the synchronizer, the problems described in the previous section are
void in this case.

On the other hand, if the load is too low, the synchronizer can create a thread to add more computing power
for the branch–and–bound search. The new thread will connect to the synchronizer by the “Join” message.
Soon, it will be recognized as an underloaded thread and a standard load balancing action will proceed.

Let’s note, that changing the computing capacity of nodes due to varying number of running threads
is automatically taken into account by the existing load balancing mechanism. When the number of threads
diminishes, the subproblem pool is processed slower and it becomes more likely that this node will be considered
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as an overloaded one. Nodes becoming faster due to an increased number of working threads will process their
tasks faster and can be recognized as underloaded nodes.

8. Conclusions. The paper has concentrated on new aspects in designing distributed program execution
control based on monitoring of application global states. These aspects concern strongly consistent global
states monitoring when the number of processes and threads, whose states contribute to the global application
control is changing during programs execution. The proposed solutions are oriented towards the PEGASUS
distributed program execution framework, which provides a ready to use infrastructure for designing global
control in distributed programs governed by predicates evaluated on global application states. An algorithm
for detection of strongly consistent global application states has been proposed. It enhances the theoretical
background for the PEGASUS framework and contributes to the domain of the design of evolved control for
distributed programs.

The PEGASUS framework is currently under implementation based on many–core processors interconnected
by separate networks for control and computational data communication, working under the Linux operating
system. As the system implements new parallel program control methods, there are no existing libraries which
provide the type of high–level services we need. We use standard parallel libraries to implement the basic
functionalities like multi threading or message passing. These libraries are used in a standard way. Only some
technical details concerning Linux signals and pthreads interaction proved to be non–trivial and we described
that topic in [26].

Inter–process control communication is organized by the use of message passing over Infiniband network.
Data communication for computations is executed over an Ethernet network. User program code is written in
C/C++ language. MPI2 library is used to express data communication in user programs at the process level.
OpenMP and pthreads libraries are used to organize user program execution at thread level with inter–thread
communication. The code of the PEGASUS execution framework is written C/C++ language supported by the
MPI2, OpenMP and pthreads libraries This paper has been partially sponsored by the MNiSW research grant
No. NN 516 367 536.
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