
Scalable Computing:
Practice and Experience

Scientific International Journal
for Parallel and Distributed Computing

ISSN: 1895-1767

~~
~
~

~
~

t

Volume 14(4) December 2013

Editor-in-Chief

Dana Petcu
Computer Science Department
West University of Timisoara
and Institute e-Austria Timisoara
B-dul Vasile Parvan 4, 300223
Timisoara, Romania
petcu@info.uvt.ro

Managinig and

TEXnical Editor

Marc Eduard Fr̂ıncu
Electrical Engineering Department
University of Southern California
3740 McClintock Avenue, EEB 300A
Los Angeles, California 90089-2562,
USA
frincu@usc.edu

Book Review Editor

Shahram Rahimi
Department of Computer Science
Southern Illinois University
Mailcode 4511, Carbondale
Illinois 62901-4511
rahimi@cs.siu.edu

Software Review Editor

Hong Shen
School of Computer Science
The University of Adelaide
Adelaide, SA 5005
Australia
hong@cs.adelaide.edu.au

Domenico Talia
DEIS
University of Calabria
Via P. Bucci 41c
87036 Rende, Italy
talia@deis.unical.it

Editorial Board

Peter Arbenz, Swiss Federal Institute of Technology, Zürich,
arbenz@inf.ethz.ch

Dorothy Bollman, University of Puerto Rico,
bollman@cs.uprm.edu

Luigi Brugnano, Università di Firenze,
brugnano@math.unifi.it

Bogdan Czejdo, Fayetteville State University,
bczejdo@uncfsu.edu

Frederic Desprez, LIP ENS Lyon, frederic.desprez@inria.fr

Yakov Fet, Novosibirsk Computing Center, fet@ssd.sscc.ru

Andrzej Goscinski, Deakin University, ang@deakin.edu.au

Janusz S. Kowalik, Gdańsk University, j.kowalik@comcast.net

Thomas Ludwig, Ruprecht-Karls-Universität Heidelberg,
t.ludwig@computer.org

Svetozar D. Margenov, IPP BAS, Sofia,
margenov@parallel.bas.bg

Marcin Paprzycki, Systems Research Institute of the Polish
Academy of Sciences, marcin.paprzycki@ibspan.waw.pl

Lalit Patnaik, Indian Institute of Science, lalit@diat.ac.in

Boleslaw Karl Szymanski, Rensselaer Polytechnic Institute,
szymansk@cs.rpi.edu

Roman Trobec, Jozef Stefan Institute, roman.trobec@ijs.si

Marian Vajtersic, University of Salzburg,
marian@cosy.sbg.ac.at

Lonnie R. Welch, Ohio University, welch@ohio.edu

Janusz Zalewski, Florida Gulf Coast University,
zalewski@fgcu.edu

SUBSCRIPTION INFORMATION: please visit http://www.scpe.org

Scalable Computing: Practice and Experience

Volume 14, Number 4, December 2013

TABLE OF CONTENTS

Special Issue on Cloud for Internet of Things:

Introduction to the Special Issue iii

An OSGi Middleware to Enable the Sensor as a Service Paradigm 188
Giuseppe Di Modica, Francesco Pantano and Orazio Tomarchio

A Message Oriented Middleware for Cloud Computing To Improve
Efficiency in Risk Management Systems 201

Maria Fazio, Antonio Celesti, Antonio Puliafito and Massimo Villari

Mobiles for Sensing Clouds: the SAaaS4Mobile Experience 215
Salvatore Distefano, Giovanni Merlino and Antonio Puliafito

Towards an Automated BPEL-based SaaS Provisioning Support for
OpenStack IaaS 235

Paolo Bellavista, Antonio Corradi, Luca Foschini, Alessandro Pernafini

A Session Initiation Protocol for the Internet of Things 249
Simone Cirani, Marco Picone and Luca Veltri

Evaluating a File Fragmentation System for Multi-Provider Cloud
Storage 265

Massimo Villari, Antonio Celesti, Maria Fazio and Antonio Puliafito

Analytical Investigation of Availability in a Vision Cloud Storage
Cluster 279

Dario Bruneo, Francesco Longo, David Hadas and Elliot K. Kolodner

Delegation Across Storage Clouds: On-boarding Federation as a Case
Study 291

Ciro Formisano, Elliot K. Kolodner, Alexandra Shulman-Peleg,
Ermanno Travaglino, Gil Vernik and Massimo Villari

c© SCPE, Timişoara 2013

Scalable Computing: Practice and Experience

Volume 14, Number 4, pp. iii–iv. http://www.scpe.org

DOI 10.12694/scpe.v14i4.926
ISSN 1895-1767
c© 2013 SCPE

INTRODUCTION TO THE SPECIAL ISSUE ON CLOUD FOR INTERNET OF THINGS

Dear SCPE readers,

The Internet of Things (IoT) changes the way we interact with the world around us. It aims to represent
the physical world through uniquely identifiable and interconnected objects (things). Things have the capacity
for sensing, processing or actuating information about entities available from within the real world. Thus, infor-
mation travels along heterogeneous systems, such as routers, databases, information systems and the Internet,
leading in the generation and movement of enormous amounts of data which have to be stored, processed and
presented in a seamless, efficient and easily interpretable form.

Cloud computing represents a very flexible technology, able to offer theoretically unlimited computing and
storage capabilities, and efficient communication services for transferring terabyte flows between data centres.
Both the IoT and Cloud technologies address two important goals for distributed system: high scalability and
high availability. All these features make the Cloud Computing a promising choice for supporting IoT services.
IoT can appear as a natural extension of Cloud Computing implementations, where the Cloud provides IoT
based resources and capabilities, process IoT data, manage IoT environments and deliver on-demand utility for
IoT services, such as sensing/actuation as a service.

This special issue aims to gather innovative works on Cloud solutions for integrating monitors and sensors,
storage devices, analytics, tools and virtualization platforms, in order to support IoT purposes. It includes
extended, thoroughly revised papers presented at the Workshop on CLoud for IoT (CLIoT 2013) and Workshop
on CLOUd Storage Optimization (CLOUSO 2013), which have been organized in conjunction with the European
Conference on Service-Oriented and Cloud Computing (ESOCC 2013), in Malaga, Spain, on September 11th,
2013.

The papers included in this special issue deal with several issues, which aim to support efficient IoT applica-
tions and services. Tomarchio et al. [1] present an OSGi-based middleware, called Sensor Node Plug-in System
(SNPS), able to abstract sensors from their proprietary interfaces and to offer their capabilities to third party
applications according to an as-a-Service approach. Thus, sensors are no longer low-level devices producing
raw measurement data, but can be seen as services to be used and composed over the Internet in a simple and
standardized way.

Fazio et al. [2] discuss the design of a Message Oriented Middleware for Cloud, called MOM4C, able to
arrange customizable Cloud facilities by means of a flexible federation-enabled communication system. They
focus their discussion on the Dangerous Good Transportation (DGT) use case in order to show the applicability
of the proposed middleware in IoT scenarios. To this aim, specific MOM4C utilities are combined in order to
compose a PaaS for sensed data drawing, storage and processing.

Destefano et al. [3] present the Sensing and Actuation as a Service (SAaaS) architecture for enrolling
and aggregating sensing resources into the Cloud. Specifically, they investigate a sensing resource abstraction
solution designed for mobile devices, called SAaaS4Mobile. The implementation of SAaaS4Mobile abstraction
modules has been tackled for Android mobiles and are based on well-known standards, as the Open Geospatial
Consortium (OGC) Sensor Web Enablement (SWE).

Bellavista et al. [4] provide to both IaaS Cloud providers and to SaaS application providers an open source
tool that facilitates the composition of heterogeneous resources, such as single Virtual Machines (VMs), DB
services and storage, and stand-alone services, in order to make smart objects for the IoT. The tool automates
the provisioning of complex SaaS applications over the widely diffused real-world open-source OpenStack IaaS,
integrating well-known technologies, such as the standard Business Process Execution Language (BPEL), which
simplifies the definition of the deployment, configuration, and monitoring steps.

Veltri et al. [5] propose a constrained version of the Session Initiation Protocol (SIP), named CoSIP, which
allows constrained devices to instantiate communication sessions in a lightweight and standard fashion and can
be adopted in M2M application scenarios. The proposed CoSIP is a binary protocol which maps to SIP, similarly
to CoAP doesto HTTP. CoSIP can be adopted in several application scenarios, such as service discovery and
publish/subscribe applications.

To support storage services for IoT, Villari et al. [6] introduce an abstraction layer that works above
heterogeneous Cloud storage platforms, able to split data in many chunks spread over different storage providers.

iii

iv Internet of Things

Users do not need to take care about a specific provider for data upload /download and experience a seamless
storage service, where storage space is almost the sum of the storage spaces offered by the involved Cloud
providers. At the same time, Data Obfuscation is guaranteed. In fact, Cloud providers can not have full access
to the stored files, since they store few chunks.

In the context of the VISION Cloud EU-funded project, which aims to design a new scalable and flexible
storage Cloud architecture, Buneo et al. [7] investigate a storage Cloud environment, where a distributed file
system is built on top of a set of storage nodes composing a cluster, and several clusters constitute a Cloud data
center. The authors provide an analytic model based on Stochastic Reward Nets (SRNs) to analyze the reached
availability level of a VISION Cloud storage cluster varying both structural and timing system parameters.

With reference to the VISION Cloud project, Villari et al. [8] describe a delegation architecture for on-
boarding federation, which allows an enterprise to efficiently migrate data from one storage Cloud provider
to another, while providing continuous access and a unified view over the data during the migration. They
provide implementation details based on Security Assertion Markup Language (SAML), a protocol designed for
delegation issues with strong security features.

REFERENCES

[1] Orazio Tomarchio, Giuseppe Di Modica, Francesco Pantano, An OSGi Middleware to Enable the Sensor as a Service
Paradigm.

[2] Maria Fazio, Antonio Celesti, Antonio Puliafito, Massimo Villari, A message oriented middleware for Cloud com-
puting to improve efficiency in risk management systems.

[3] Salvatore Distefano, Giovanni Merlino, Antonio Puliafito, Mobiles for Sensing Clouds: the SAaaS4Mobile experience.
[4] Paolo Bellavista, Antonio Corradi, Luca Foschini, Alessandro Pernafini, Towards an Automated BPEL-based SaaS

Provisioning Support for OpenStack IaaS.
[5] Luca Veltri, Simone Cirani, Marco Picone, A Session Initiation Protocol for the Internet of Things.
[6] Massimo Villari, Antonio Celesti, Maria Fazio, Antonio Puliafito, Evaluating a File Fragmentation System for Multi-

cloud Storage Services.
[7] Dario Bruneo, Francesco Longo, David Hadas, Hillel Kolodner, Analytical Investigation of Availability in a Vision

Cloud Storage Cluster.
[8] Ciro Formisano, Elliot K. Kolodner, Alexandra Shulman-Peleg, Ermanno Travaglino, Gil Vernik and Massimo Villari, Dele-

gation Across Storage Clouds: On-boarding Federation as a Case Study.

Maria Fazio, DICIEAMA Department, University of Messina, Italy (mfazio@unime.it)
Nik Bessis, School of Computing and Mathematics, University of Derby, UK (N.Bessis@derby.ac.uk)

Scalable Computing: Practice and Experience

Volume 14, Number 4, pp. 188–200. http://www.scpe.org

DOI 10.12694/scpe.v14i4.927
ISSN 1895-1767
c© 2013 SCPE

AN OSGI MIDDLEWARE TO ENABLE THE SENSOR AS A SERVICE PARADIGM

GIUSEPPE DI MODICA, FRANCESCO PANTANO, ORAZIO TOMARCHIO ∗

Abstract. The Internet of Things vision has recently stimulated many research efforts in different communities. The collection
of diverse information produced by the proliferation of inter-connected sensing entities is one of the biggest challenge that should be
adequately addressed. The huge amounts of raw data produced by IoT devices need to be structured, stored, analysed, correlated
and mined in a reliable and scalable way. The size of the produced data, and the high rate at which data are being produced, suggest
that we need new solutions that combine tools for data management and services capable of promptly structuring, aggregating and
mining data even just at the time they are produced. In this paper we propose a middleware, to be deployed on top of physical
sensors and sensor networks, capable of abstracting sensor devices from their proprietary interfaces, and offering them to third
party applications in an as-a-Service fashion for prompt and universal use. The middleware also offers tool to elaborate real-time
measurements produced by sensors. A prototype of the middleware has been implemented. In the paper a real use case scenario is
also discussed.

1. Introduction. The current role of the Internet of Thing (IoT) is no more limited only to electronic
identification of objects but it is perceived as a way to act, measure, or provide services based on real-world
entities [20]. Advancements in networking technologies and sensor/actuator capabilities provide a large number
of physical world objects with communication and computation capabilities to interact with their surrounding
environment.

However, the emerging IoT platforms are currently hard to deploy and operate, requiring except in the most
trivial cases the intervention of domain experts to interpret the sensor data and, eventually, to come up with
actuation commands. This approach is clearly too expensive and time-consuming, and simply does not scale
with the increasing number of IoT devices. In addition, the development of IoT application is highly scenario
and technology dependent, due to the heterogeneity of devices. That is why powerful middleware solutions are
required to integrate heterogeneous devices and dynamic services for building complex systems for the IoT.

We believe that the service-oriented approach [14, 24] provides adequate abstractions for application devel-
opers, and that it is a good approach to integrate heterogeneous sensors and different sensor network technologies
with Cloud platforms through the Internet, by paving the way for new IoT applications.

In this paper, extending the work presented in [8] we propose an OSGi-based middleware, called Sensor
Node Plug-in System (SNPS), where sensors are no longer low-level devices producing raw measurement data,
but can be seen as “services” to be used and composed over the Internet in a simple and standardized way in
order to build even complex and sophisticated applications.

The remainder of the paper is structured in the following way. Section 2 presents a review of the literature.
Sect. 3 introduces the architecture of the proposed solution. In Sect. 4 we discuss and motivate the choice
of the data model implemented in the middleware. Section 5 provides some details on the sensor composition
process. In Sect. 6 a use case scenario is discussed. We conclude our work in Sect. 7.

2. Related work. The most notably effort in providing standard definition of Web service interfaces and
data encodings to make sensors discoverable and accessible on the Web is the work done by the Open Geospatial
Consortium (OGC) within the Sensor Web Enablement (SWE) initiative [4, 23]. The role of the SWE group
is to develop common standards to determine sensors capabilities, to discover sensor systems, and to access
sensors’ observations. The principal services offered by SWE include:

• Sensor Model Language (SensorML): provides a high level description of sensors and observation pro-
cesses using an XML schema methodology

• Sensor Observation Service (SOS): used to retrieve sensors data.
• Sensor Planning Service (SPS): used to determine if an observation request can be achieved, determine
the status of an existing request, cancel a previous request, and obtain information about other OGC
web services

• Web Processing Service (WPS): used to perform a calculation on sensor data.

∗Department of Electrical, Electronic and Computer Engineering, University of Catania, Catania, Italy
(firstname.lastname@dieei.unict.it).

188

An OSGi middleware to enable the Sensor as a Service paradigm 189

A common misconception of the adoption of SWE standards is that, rather than encapsulating sensor
information at the application level, they were originally designed to operate directly at the hardware level. Of
course, supporting interoperable access at the hardware level has some advantages as it copes well with the
“plug and play” concept. Currently, some sensor systems such as weather stations and observation cameras
already offer access to data resources through integrated web servers. However, besides contradicting the view
of OGC’s SWE of uncoupling sensor information from sensor systems, the downside of this approach becomes
clearer when dealing with a high number of specialized and heterogeneous sensor systems, and in particular in
resource-limited scenario where communication and data transportation operations must be highly optimized.
Even a relatively powerful sensor gateway has not the basic requirement to act as a web server in many cases,
it is networked via a low-bandwidth network and is powered by a battery, so it has neither the energy nor
bandwidth resources required to run a web service interface.

The need for an intermediate software layer (middleware) derives from the gap between the high-level re-
quirements of pervasive computing applications and the complexity of the operations involved in the underlying
Wireless Sensor Networks (WSNs). A WSN is characterized by constrained resources, a dynamic network topol-
ogy, and low level embedded OS APIs, while the application requirements include high flexibility, re-usability,
and reliability to cite a few. In general, WSN middlewares help the programmer develop applications by pro-
viding appropriate system abstractions, reusable code services and data services, flexible network infrastructure
management and efficient resource management services.

Some research efforts have surveyed the different approaches of middleware and programming paradigms
for WSN: in [11] middleware challenges and approaches for WSN were analysed, while [26] and [22] analysed
programming models for sensor networks. In the following we focus on two programming models which in the
past years have been taken in great consideration by researchers: the message-oriented and the service-oriented
approach.

Message oriented middlewares. Message oriented middlewares (MOMs) provide distributed communication
among participants on the basis of the asynchronous interaction model. Basically, in a MOM a participant
(sender) who need to communicate to another participant (receiver) produces a message which is managed by
a software queue which, in its turn, takes care of routing that message to the final destination. Two types of
interaction models can be implemented in a MOM: point-to-point, by which a single message produced by a
sender is delivered only once to only one receiver, and publish/subscribe, which allows a single producer to send
a message to or potentially hundreds of thousands of receivers.

Many sensor frameworks calls on MOM as asynchronous communication can guarantee very high energy
saving in event-drivenWSN applications. Most of them opted for the publish/subscribe mechanism to implement
message exchange between sensors and nodes. Mate [17] uses a Virtual Machine approach as level of abstraction.
It deals with several issues such as limited bandwidth and energy consumption for large networks. Claimed
features are fault tolerance, dynamism, flexibility and reconfigurability components. The weak point of this
middleware is, however, energy expenditure, mainly due to generated communication overhead; therefore is not
suitable for complex applications. Magnet [3] is a Virtual Machine based middleware as well. It works as an
abstraction layer built on top of MagneOS, an adaptive operative system sensor oriented that allows to detect and
report any moving object. The weak point is that the entire network is based on a single Java Virtual Machine
running static components, so the performance is acceptable only under very stringent constraints. Impala [19]
is an event-driven middleware which manages requests and responses in a completely asynchronous mode. It
adapt itself to many application scenarios and can automatically set parameters according to the presented
scenarios. It introduces a small overhead in transmission phase. Milan [12] allows to integrate applications on
different networks. It lets applications specify QoS requirements and adjust network characteristics to improve
the life cycle management. These goals are achieved by collection data from sensors aggregated on the network,
with particular care for energy consumption and bandwidth usage. Cougar [7] is a database oriented middleware
that stores sensor and data in a relational fashion. The management operations of WSNs are implemented in
the form of SQL queries. Sina [25] presents an architecture which adapts to the physical environment. In fact,
the network is modelled as a distributed system of objects, queried according the SQL language. Through
the hierarchical clustering mechanism, Sina caters for scalability, as the routing of requests takes place in a
hierarchical manner as a function of the root node. DsWare [18] is a middleware that uses a database approach

190 G. Di Modica, F. Pantano, O. Tomarchio

and is also network event-driven. Its architecture is based on modules that deal with the management of data,
group management, detection of events. The publish/subscribe mechanism is used for asynchronous, topic-based
communication. As Cougar, DsWare uses SQL for the registration and cancellation of events.

Service oriented middlewares. In a service oriented approach participants of a distributed system commu-
nicate through the synchronous interaction model. Service, rather than message, is the focus of service oriented
middlewares (SOMs). This approach greatly facilitates the design task (service-centric): adding advanced fea-
tures simply means implementing new services. If compared to the MOM, SOMs propose a more straightforward
approach to messaging, but suffer from inflexibility and tight coupling (potential geometric growth of interfaces)
between the communicating participants.

Recently, the service-oriented approach has been applied to sensor environments [14, 21]. The common idea
of these approaches is that, in a sensor application, there are several common functionalities that are generally ir-
relevant to the main application. For example, most services will have to support service registries and discovery
mechanisms and they will also need to provide some level of abstraction to hide the underlying environments and
implementation details. Furthermore, all applications need to support some levels of reliability, performance,
security, and QoS. All of these can be supported and made available through a common middleware platform
instead of having to incorporate them into each and every service and application developed.

The SStreaMWare [10] middleware exploits a query-based system in order to access the data collected. Its
service oriented nature solves the problem of software heterogeneity, facilitating the integration and guaranteeing
compatibility on the one end, and allowing a weak coupling between the user application and the sensors on the
other end. Useme [5] provides a high-level programming language to develop applications for wireless sensor
network. The service oriented approach ensures scalability, interoperability and efficiency. Oasis [16] is an
ambient-aware, service oriented programming model. The object-oriented paradigm provides an abstraction that
focuses on the monitored physical phenomenon, bypassing the complexity of the network topology. MiSense [15]
is a service-oriented middleware that provides a publish-subscribe mechanism based on well-defined contents. It
is able to reduce the complexity through a structure above the component layers by imposing restrictions on the
modularity and offering a well defined and specific interface to the rest of the system. UbiSOAP [6] is designed
on the SOAP protocol. Its aim is to provide services on a pervasive sensors network. It’s composed two layers,
a multi-radio network layer and a communication-oriented Web Services layer. A SOAP Transport service is
used by the client and the service: the Transport service interacts with the multi-radio network, sending and
receiving messages over the network. TinySOA [2] is a service-oriented architecture that provides developers
with simple API to implement applications on sensor networks, using the same programming language in which
they were originally written. The main advantage of TinySOA is to abstract away the developer from details
of the WSN hardware and the communication layer.

The service oriented approach is the one we adopt in the work being presented. In particular, we leverage on
OSGi [1] as the key paradigm enabling the service technology in the context of sensor networks. Furthermore,
the choice of the service oriented paradigm allows for a more smooth integration with Cloud platforms and
for advanced discovery mechanisms also employing semantic technologies [9]. The work we propose aims at
reaching a worthy compromise between WSN heterogeneity, system scalability and interoperability.

The middleware we propose on the one hand embeds service oriented features in that functionalities are
provided end exposed through services; on the other one the message oriented paradigm is used to manage
events produced by sensors. This way advantages of both approaches are then caught. Further, the sensor
aggregation feature offered by the middleware contributes to enhances the flexibility of the sensor programming
model. By means of this novel service, third party applications are exposed a new way to design and implement
data manipulation schemes which relieves them from the burden of gathering, putting together and elaborate
on all data coming from their sensing campaigns.

3. The SNPS middleware. This section presents the proposal for a middleware devised to lay on the
physical layer of wireless sensors, abstract away the sensors’ specific features, and turn sensors into smart and
composable services accessible through the Internet in an easy and standardized way. The middleware was
designed to follow the basic principles of the IoT paradigm [20]. Sensors are not just sources of raw data, but
are seen like smart objects capable of providing services like filtering, combining, manipulating and delivering
information that can be readily consumed by any other entity over the Internet according to well-known and

An OSGi middleware to enable the Sensor as a Service paradigm 191

standardized techniques.
Primary goal of the middleware, which we called Sensor Node Plug-in System (SNPS), is to bring any

physical sensor/actuator on an abstraction level that allows for easier and standardized management tasks
(switch on/off, sampling), in a way that is independent of the proprietary sensor’s specification. By the time a
sensor is “plugged” into the middleware, it will constitute a resource/service capable of interacting with other
resources (be them other sensors plugged into the middleware or third party services) in order to compose
high-value services to be accessed in SOA-fashion. The middleware also offers a set of complimentary services
and tools to support the management of the entire life cycle of sensors and to sustain the overall QoS provided
by them.

Basically, the SNPS can be said to belong to the category of the service-oriented middlewares [24]. In fact,
the provided functionality are exposed through a service-oriented interface which grants for universal access
and high interoperability. Yet, all data and information gathered by sensors are stored in a database that
is made publicly accessible and can be queried by third party applications. Further, the SNPS also support
asynchronous communication by implementing the exchange of messages among entities (sensors, components,
triggers, external services). All these features makes the middleware flexible to any application’s need in any
execution environment.

At design time it was decided not to implement the entire middleware from scratch. A scouting was carried
out in order to identify the software framework that best supported, in a native way, all the characteristics
of flexibility and modularity required by the project. Eventually, the OSGi framework [1] was chosen. The
OSGi framework natively supports the component’s life cycle management, the distribution of components over
remote locations, the seamless management of components’ inter-dependencies, and an asynchronous (event-
based) communication paradigm.

The SNPS middleware is then organized into several components, each of which is implemented as a software
module (or “bundle”) within the OSGi framework. Figure 3.1 shows the architecture of the middleware and its
main components.

Fig. 3.1. SNPS architecture

The overall architecture can be broken down into three macro-blocks:
• Sensor Layer Integration
• Core and related Components
• Web Service Integration

In the following we provide a description of each macro-block.

3.1. Core and related Components. The components we are about to discuss are charged the responsi-
bility of providing most of the middleware’s functionality. In Figure 3.2 the connections among the components

192 G. Di Modica, F. Pantano, O. Tomarchio

are shown.

Fig. 3.2. Core and related Components

Core. It is where the business logic of the Middleware resides. The Core acts as an orchestrator that
coordinates the middleware’s activities. Data and commands flowing forth and back from the web service layer
to the sensor layer are dispatched by the Core to the appropriate component. This component is responsible for
the virtualization of physical sensors, i.e., conforming the features and capabilities of physical sensors under a
common representation. In addition, the core is able to define the working policies of the middleware, identifying
points of failure and performing action in order to recover components.

Registry. It is the component where all information about sensors, middleware’s components and provided
services are stored and indexed for search purpose. As for the sensors, data regarding the geographic position and
the topology of the managed wireless sensor networks are stored in the Registry. Also, each working component
needs to signal its presence and functionality to the Registry, which will have to make this information public
and available so that it can be discovered by any other component/service in the middleware.

Composer. It represents the component which implements the sensors’ composition service. Virtualized
sensors have a uniform representation which allows for “aggregating” multiple sensors into just one sensor that
will eventually be exposed to applications. An insight and practical examples about the aggregation service is
provided in Section 5.

Processor. It is the component responsible for the manipulation of the data coming from the sensors.
It enforces the sensors’ aggregation schemes defined through the Composer. In particular, when data come
from multiple sensors composing an aggregate, this component applies the directives of the related aggregation
mechanism.

Event Manager. It is one of the most important components of the middleware. It provides a publish/-
subscribe mechanism which can be exploited by every middleware’s component to implement asynchronous
communication. Components can either be producers (publishers) or consumers (subscribers) of every kind
of information that is managed by the middleware. This way, data flows, alerts, commands are wrapped into
“events” that are organized into topics and are dispatched to any entity which has expressed interest in them.

DAO. It represents the persistence layer of the middleware. It exposes APIs that allow service requests to
be easily mapped onto storage or search calls to the database.

3.2. Sensor Layer Integration. The Sensor Layer Integration (SLI) represents the gateway connecting
the middleware to the physical sensors. It implements a bidirectional communication channel supporting com-
mands to flow both from the middleware to the sensors and from the sensors to the middleware as well and a
data channel (for data that are sampled by sensors and need to go up to the middleware).

An OSGi middleware to enable the Sensor as a Service paradigm 193

The addressed scenario is that of wireless sensor networks implemented through so called Base Stations
(BS) to which multiple sensors are “attached”. A BS implements the logic for locally managing its attached
sensors. Sensors can be wiredly or wirelessly attached to a BS, forming a network which is managed according
to specific communication protocols, which are out of our scope. The SLI will then interact just with the BS,
which will only expose its attached sensors hiding away the issues related to the networking.

The integration is realized by means of two symmetrical bundles, which are named respectively Middleware
Gateway bundle (iMdmBundle) and WSN Gateway Bundle (iWsnBundle). The former lives in the middleware’s
runtime context, and was thought to behave as a gateway for both commands and data coming from the BSs
and directed to the middleware; the latter lives (runs) in the BS’s runtime context, and forwards commands
generated by the middleware to the BSs. Since the middleware and the BSs may be attached to different
physical networks, the communication between the two bundles is implemented through R-OSGi, which is a
specific OSGi’s bundle offering a remote communication service which other bundles living in different runtime
contexts can use to communicate to each other. In Figure 3.3 the two bundles and their respective runtime
contexts are shown.

Fig. 3.3. OSGi bundles implementing the Sensor Layer Integration

The SLI was designed to work with any kind of BS, independently of the peculiarity of the sensors it
manages, with the aim of abstracting and making uniform the access to sensors’ functionality. Making uniform
the management of the sensors’ life cycle does not mean giving up the specific capabilities of sensors. Physical
sensors will maintain the way they work and their peculiar features (in terms, for instance, of maximum sampling
rate, sampling precision, etc.). But, in order for sensors (read base stations) to be pluggable into the middleware
and be compliant to its management logic, a minimal set of requirements must be satisfied: the iWsnBundle
to be deployed on the specific BS will have to interface to the local BS’ logic and implement the functionality
imposed by the SNPS middleware (switch on/off sensors, sample data, run sampling plan) by invoking the
proprietary base station’s API.

3.3. Web Service Integration. As it is shown in Fig. 3.4, the OSGi bundle Wrapper exports the
functionality of the SNPS middleware to a Web Service context.

A modular system bundle-based enables applications that run on different platforms to communicate with
each other.

This result has been achieved by exploiting the OSGi communication model; different can communicate not
only importing and exporting services, but using SOA strategies Web services based.

In this case, Web services have been built using Apache CXF, which is an open source services framework
that helps you build and develop services using front-end programming APIs, like JAX-WS and JAX-RS.

194 G. Di Modica, F. Pantano, O. Tomarchio

Fig. 3.4. Wrapping and exposing SPNS as a Web Service

These services can speak a variety of protocols such as SOAP, XML/HTTP, RESTful HTTP or CORBA,
and in this case we select the SOAP protocol, exporting to clients a range of services to access middleware
resources. By doing so, you can execute query for a specific sensor and its associated data, according to certain
search criteria. In this way clients are able to communicate directly with sensors virtual images by sending
commands, including:

• sensor activation
• sensor deactivation
• sending sampling plans
• request for sensor detection
• sensor composition

In particular, the deactivation command does not perform a proper device shutdown, but allows to change
it in a power-saving state, in order to save resources that can be used at a later date.

4. SNPS data model. The SNPS data model is one of the most interesting features of the middleware.
Goals like integration, scalability, interoperability are the keys that drove the definition of the model at design
time. The objective was then to devise a data model to structure both sensors’ features (or capabilities) and
data produced by sensors. The model had to be rich enough to satisfy the multiple needs of the middleware’s
business logic, but at the same time had to be light and flexible to serve the objectives of performance and
scalability. We surveyed the literature in order to look for any proposal that might fit the middleware’s require-
ment. Specification like SensorML and O&M [4] seam to be broadly accepted and widely employed in many
international projects and initiatives. SensorML is an XML-based language which can be used to describe, in
a relatively simple manner, sensors capabilities in terms of phenomena they are able to offer and other features
of the specific observation they are able to implement. O&M is a specification for describing data produced by
sensors, and is XML-based as well. XML-based languages are known to be hard to treat, and in many cases the
burden for the management of XML-based data overcomes the advantage of using rigorous and well-structured
languages. We therefore opted for a solution that calls on a reduced set of terms of the SensorML specification
to describe the sensor capabilities, and makes use of a much lighter JSON [13] format to structure the data
produced by sensors. An excerpt of what a description of sensor capabilities look like is shown in Fig. 4.1.

This is the basic information that must be attached to any sensor before it is plugged into the middleware.
Among others, it carries data regarding the phenomena being observed, the sampling capabilities, and the
absolute geographic position. When the sensor wakes up, it sends this information to the middleware, which
will register the sensor to the Registry bundle, and produce its virtualized image, i.e., a software alter-ego of the
physical sensor which lives inside the middleware run-time. The virtual sensor has a direct connection with the
physical sensor. Each interaction involving the virtual sensor will produce effects on the physical sensor too. It

An OSGi middleware to enable the Sensor as a Service paradigm 195

Fig. 4.1. Description of sensor capabilities in SensorML

is important to point out that all virtual sensors are treated uniformly by the middleware’s business logic.
Furthermore, SensorML is by its nature a process-oriented language. Starting from the atomic process, it

is possible to build the so-called process chain. We exploited this feature to implement one of the main service
provided by the SNPS, i.e., the sensors’ composition service (see Sect. 5 for more details). This service, in fact,
makes use of this feature to elaborate on measurements gathered by multiple sensors.

As regards the definition of the structure for sensor data, JSON was chosen because it ensures easier
and lighter management tasks. The middleware is designed to handle (sample, transfer, store, retrieve) huge
amounts of data, with the ambitious goal to also satisfy the requirements of real-time applications. XML-based
structures are known to cause overhead in communication, storage and processing tasks, and therefore they do
not absolutely fit our purpose. Another strong point of JSON is the ease of writing and analyzing data, which
greatly facilitates the developer’s task. A data sampled by a sensor will then be put in the following form:

Sensor Measure :
{

‘ ‘ SensorId ’ ’ : ‘ ‘ value ’ ’ ,
‘ ‘ data ’ ’ : ‘ ‘ value ’ ’ ,
‘ ‘ type ’ ’ : ‘ ‘ value ’ ’ ,
‘ ‘ timestamp ’ ’ : ‘ ‘ value ’ ’

}

5. Building and composing Virtual Sensors. Sensor Composition is the most important feature of the
SNPS middleware. Simply said, it allows to get complex measurements starting from the samples of individual
sensors. This composition service is provided by the Composer bundle (cf. Fig 3.1).

An important prerequisite of the composition is the sensor “virtualization”, which is a procedure performed
by the Core component when a sensor is plugged into the SNPS middleware (see Sect. 3.2). Aggregates of
sensors can be built starting from their software images (virtual sensors) that live inside the SNPS middleware.
Therefore, in order to create a new composition (or aggregate) of sensors, the individual virtual sensors to be
combined need to be first identified. Secondly, the operation that is to be applied to sensor’s measurements

196 G. Di Modica, F. Pantano, O. Tomarchio

must be specified. This is done by defining the so-called Operator, which is a function that defines the expected
input and output formats of the operation being performed. The final composition is obtained by just applying
the Operator to the earlier chosen virtual sensors.

The operator for aggregating sensors can be defined using MathML [27]. In the operator schema, each
sensor input is bound to an item of the formula to be executed. A check is then performed in order to verify the
compatibility of the unit of measures of the data that are being aggregated by the operator. This feature is very
useful in the case of heterogeneous sensors’ composition, while in the case of homogeneous sensors pre-defined
patterns are offered.

Once the operator has been created, a new virtual sensor (the aggregate) is available in the system and
exposed for use by third party applications. Figure 5.1 shows the structure of an aggregate of sensors.

Fig. 5.1. Sensors composition

Let us figure out a practical use case of sensor composition. Imagine that there are four temperature sensors
available in four different rooms of an apartment. An application would like to know about the instant average
temperature of the apartment. A new sensor can be built starting from the four temperature sensors by just
applying an average operator, as shown in Fig. 5.2.

Fig. 5.2. Average operator

In this specific case, the input sensors are homogeneous. As stressed earlier, the middleware also provides
for the composition of heterogeneous sensors (e.g., temperature, humidity, pressure, proximity), provided that
the operator’s I/O scheme is adequately designed to be compatible with the sensors’ measurement types.

6. Use case scenario. A prototype of the middleware has been implemented and its functionality have
been tested. In this section we provide some insight on a real use case that we set up in order to prove the

An OSGi middleware to enable the Sensor as a Service paradigm 197

effectiveness of the implemented mechanisms. In particular, here we focus on what we believe is the most
important middleware’s provided service, which is the sensors composition service.

The sensors composition process puts emphasis on the semantics of the operation, rather than relying on
the simple measure. In this regard, it has been developed a use case, in order to emphasize the power and
importance of the aggregation of sensors. Let us recall the average temperature example, and try to describe
which are the execution steps triggered in that specific use case.

Fig. 6.1. Apartment scenario

Fig. 6.2. Sequence diagram for the sensor composition phase

We will consider the use case as divided into two distinct phases: 1)sensors’ composition and 2)aggregate
sensor inquiry.

198 G. Di Modica, F. Pantano, O. Tomarchio

Phase 1: Sensors’ composition.. In the first stage, we are going to consider the following actors:

• Web Integration Interface (Wii) Component. It represents the entity generating the composition re-
quest;

• Composer. It generates the new virtual sensor from simple temperature sensors;
• Registry. It registers the sensor;
• Core. It orchestrates the composition task among the middleware components.

The operations carried out in the scenario, shown in Fig. 6.2, are the following:

1. The Wii propagates the request to the Core of the platform.
2. The Core retrieves the images of the selected sensors and perform a two-steps validation:

– Verification of the existence of the sensor images in memory;
– Validation of the operator to be applied to the sensors;

3. The Core invokes the composition service provided by the Composer;
4. The Composer generates the new (virtual) aggregate sensor;
5. The Registry registers the new sensor;
6. The Core generates a ”registration” event for the new sensor, according to the Publish/Subscribe

paradigm;

Fig. 6.3. Sequence diagram for the aggregate sensor inquiry

Aggregate sensor inquiry.. The steps made in this phase, described in Fig. 6.3, are the following ones:

1. The Wii propagates the request to the Core;
2. The Core, after selecting the aggregate sensor, invokes the get-data operation;
3. The virtual sensor image invokes, for each composing sensor, a service provided by the Sensor Layer

Integration (SLI);
4. The SLI propagates the request to the gateway (at WSN Level), which is able to interact directly with

the Base Station, which maps the command into a direct command to each physical sensor;
5. After getting the data, the SLI generates a Data response event, which the aggregate sensor is able to

collect;
6. The aggregate sensor, finally, applies the operator to the previously collected data, and generates an

event on the topic of interest;
8. The Processor records the measurement.

An OSGi middleware to enable the Sensor as a Service paradigm 199

7. Conclusion and future work. The size of data produced by sensors and sensor networks deployed
worldwide is growing at a rate that current data analysis tools are not able to follow. Sources of data are
multiplying on the Internet (think about smart devices equipped with photo/video cameras). There is a plethora
of sensor devices producing information of any kind, at very high rates and according to proprietary specification.
This complicates a lot the task of data analysis and manipulation. In this paper we have proposed a solution
that aims to ease these tasks. What we propose is not just an early-stage idea but a concrete middleware that
implements a mechanism useful to abstract sensors away from their proprietary interfaces and structure, which
also offers tool to aggregate and expose sensors and sensor data in the form of services to be accessed in SOA
fashion. A prototype of the middleware has been implemented and tested in a small testbed. In the future we
are going to conduct extensive experiments to test the scalability and the performance of the middleware in
distributed (even geographic) contexts.

Acknowledgment. This work has been partially funded by the Italian project “Sensori” (Industria 2015
- Bando Nuove Tecnologie per il Made in Italy) - Grant agreement n. 00029MI01/2011.

REFERENCES

[1] O. Alliance, Open Service Gateway initiative (OSGi), 2013. Available at http://www.osgi.org/.
[2] E. Aviles-Lopez, and J. Antonio, Garcia-Macias, J. Antonio, Tinysoa: a service-oriented architecture for wireless sensor

networks, Service Oriented Computing and Applications, (2009).
[3] R. Barr, J. C. Bicket, D. S. Dantas, B. Du, T. W. D. Kim, B. Zhou, and E. G. Sirer, On the need for system-level

support for ad hoc and sensor networks, SIGOPS Oper. Syst. Rev., (2002), pp. 1–5.
[4] M. Botts, G. Percivall, C. Reed, and J. Davidson, Ogc sensor web enablement: Overview and high level architecture, in

GeoSensor Networks, S. Nittel, A. Labrinidis, and A. Stefanidis, eds., vol. 4540 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2008, pp. 175–190.

[5] E. Caete, J. Chen, M. Diaz, L. Llopis, and B. Rubio, Useme: A service-oriented framework for wireless sensor and actor
networks, in Applications and Services in Wireless Networks, 2008. ASWN ’08. Eighth International Workshop on, 2008.

[6] M. Caporuscio, P.-G. Raverdy, and V. Issarny, ubisoap: A service-oriented middleware for ubiquitous networking, Services
Computing, IEEE Transactions on, (2012).

[7] A. Demers, J. Gehrke, R. Rajaraman, N. Trigoni, and Y. Yao, The cougar project: a work-in-progress report, SIGMOD
Rec., (2003).

[8] G. Di Modica, F. Pantano, and O. Tomarchio, SNPS: an OSGi-based middleware for Wireless Sensor Networks, in
Advances in Service-Oriented and Cloud Computing, Communications in Computer and Information Science, 393 (2013),
pp. 1–12.

[9] G. Di Modica, O. Tomarchio, and L. Vita, A P2P based architecture for Semantic Web Service discovery, International
Journal of Software Engineering and Knowledge Engineering, 21 (2011), pp. 1013–1035.

[10] L. Gurgen, C. Roncancio, C. Labbé, A. Bottaro, and V. Olive, Sstreamware: a service oriented middleware for het-
erogeneous sensor data management, in Proceedings of the 5th international conference on Pervasive services, ACM,
2008.

[11] S. Hadim and N. Mohamed, Middleware: Middleware challenges and approaches for wireless sensor networks, IEEE Dis-
tributed Systems Online, 7 (2006), pp. 1–.

[12] W. Heinzelman, A. Murphy, H. Carvalho, and M. Perillo, Middleware to support sensor network applications, Network,
IEEE, (2004).

[13] IEEE Network Working Group, JavaScript Object Notation (JSON), 2006.
[14] V. Issarny, N. Georgantas, S. Hachem, A. Zarras, P. Vassiliadist, M. Autili, M. A. Gerosa, and A. B. Hamida,

Service-oriented middleware for the Future Internet: state of the art and research directions, Journal of Internet Services
and Applications, 2 (2011), pp. 23–45.

[15] K. Khedo and R. K. Subramanian, Meeca: Misense energy efficient clustering algorithm, in Wireless Communication and
Sensor Networks, 2007. WCSN ’07. Third International Conference on, 2007.

[16] X. Koutsoukos, M. Kushwaha, I. Amundson, S. Neema, and J. Sztipanovits, Oasis: A service-oriented architecture for
ambient-aware sensor networks, in Composition of Embedded Systems. Scientific and Industrial Issues, F. Kordon and
O. Sokolsky, eds., Springer Berlin Heidelberg, 2007.

[17] P. Levis and D. Culler, Mate: a tiny virtual machine for sensor networks, in Proceedings of the 10th international
conference on Architectural support for programming languages and operating systems, ACM, 2002, pp. 85–95.

[18] S. Li, S. Son, and J. Stankovic, Event detection services using data service middleware in distributed sensor networks, in
Information Processing in Sensor Networks, F. Zhao and L. Guibas, eds., Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2003.

[19] T. Liu and M. Martonosi, Impala: a middleware system for managing autonomic, parallel sensor systems, SIGPLAN Not.,
(2003).

[20] D. Miorandi, S. Sicari, F. D. Pellegrini, and I. Chlamtac, Internet of things: Vision, applications and research chal-
lenges, Ad Hoc Networks, 10 (2012), pp. 1497 – 1516.

200 G. Di Modica, F. Pantano, O. Tomarchio

[21] N. Mohamed and J. Al-Jaroodi, A survey on service-oriented middleware for wireless sensor networks, Service Oriented
Computing and Applications, 5 (2011), pp. 71–85.

[22] L. Mottola and G. P. Picco, Programming wireless sensor networks: Fundamental concepts and state of the art, ACM
Comput. Surv., 43 (2011), pp. 19:1–19:51.

[23] OGC, Sensor Web Enablement (SWE), 2013. Available at http://www.opengeospatial.org/ogc/markets-technologies/swe/.
[24] M. P. Papazoglou and W.-J. van den Heuvel, Service Oriented Architectures: approaches, technologies and research

issues, VLDB Journal, 16 (2007), pp. 389–415.
[25] C. Srisathapornphat, C. Jaikaeo, and C.-C. Shen, Sensor information networking architecture, in Parallel Processing,

2000. Proceedings. 2000 International Workshops on, 2000, pp. 23–30.
[26] R. Sugihara and R. K. Gupta, Programming models for sensor networks: A survey, ACM Trans. Sen. Netw., 4 (2008),

pp. 8:1–8:29.
[27] MathML, MathML(W3C), 2013. Available at http://www.w3.org/Math/.

Edited by: Maria Fazio and Nik Bessis
Received: Nov 2, 2013
Accepted: Jan 10, 2014

Scalable Computing: Practice and Experience

Volume 14, Number 4, pp. 201–213. http://www.scpe.org

DOI 10.12694/scpe.v14i4.928
ISSN 1895-1767
c© 2013 SCPE

A MESSAGE ORIENTED MIDDLEWARE FOR CLOUD COMPUTING TO IMPROVE
EFFICIENCY IN RISK MANAGEMENT SYSTEMS∗

MARIA FAZIO, ANTONIO CELESTI, ANTONIO PULIAFITO, AND MASSIMO VILLARI †

Abstract. Transportation of Dangerous Goods represents a sensitive problem due its congenital high potential risk of causing
disaster if an accident occurs. Transportation of Dangerous Goods Risk Management systems reduce the possibility of both
accidental disasters and terrorist attacks detecting unusual events and blocking possible threats. Cloud computing can facilitate
the development of such kinds of systems thanks to new emerging paradigms and technologies. In this paper, we discuss the design
of a new Message-Oriented Cloud Middleware for Cloud, that can be used to develop a Cloud-based Transportation of Dangerous
Goods Risk Management system. More specifically, we investigate issues on Transportation of Dangerous Goods, in order to focus
the attention on the requirements of the Risk Management system. Then, we describe how to use the Message-Oriented Cloud
Middleware for Cloud architecture and the necessary utilities in particular here for supporting Transportation of Dangerous Goods.

Key words: message oriented middleware, cloud computing, federation, service provisioning, planetary system model.

AMS subject classifications. 15A15, 15A09, 15A23

1. Introduction. Risk Management Systems are very complex distributed systems in which different
heterogeneous infrastructures and resources need to be properly integrated and managed. In particular, the
risks involved in the Transportation of Dangerous Goods (TDGs) over multi-modal ways (e.g., freeways, railways,
air and sea routes) have been attracting great interest in the recent years. In fact, dangerous goods can cause
terrible disaster if an accident occurs, producing uncontrollable effects in highly populated areas or during
popular events. Moreover, the risk becomes more concrete if we consider that dangerous goods can potentially
be an objective of terrorist attacks. TDGs is a very complex problem, involving economical, legislative and
technological aspects. The complexity raises due to the fact that for reducing as much as possible all risks, the
previous aspects need to be addressed all together.

Nowadays, advanced technologies in the field of ICT (Information and communications technology) promise
a way to track in real time the entity of such transportations and efficiently manage the exposure to related
risks. Innovative technologies can actively support goods tracking and provide valuable added value services to
provide legally requested information and also to minimize risk in case of failures and accidents. Nevertheless,
the development of a TDG Risk Management System is not easy at all due to the number of utilities that need
to be integrated and coordinated (e.g., sensing, high performance computing, storage, security, etc).

Cloud computing has reached a high level of complexity embracing many application fields. Indeed, the
Cloud-like technologies allow the development of next generation versatile systems in which different types of
technologies and hardware/software solutions can be integrated.

In this paper, we present a novel Message-Oriented Middleware (MOM4C), that can be usefully adopted
for the development of a TDG Risk Management System. MOM4C allows to set up Cloud facilities aggregat-
ing different Cloud utilities coming from different enterprises, organizations, and governments in a federated
environment. According to the MOM4C terminology, a “Cloud Facility” is a mash-up Cloud service composed
integrating one or more Cloud utilities, instead, a “Cloud utility” is a specific Cloud service (e.g., virtualiza-
tion, storage, network, computation, security, sensing, data analytics, etc). In simple words, the aim of the
middleware is to acts as a liaison among utilities in order to support the deployment of advanced, flexible,
and differentiated Cloud facilities [17]. In such a versatile scenario enterprises, organizations, and governments
become, at the same time, customers and providers. MOM4C provides flexibility, efficiency, and elasticity
for the setup of Cloud facility to Cloud providers, seamlessly integrating the utilities belonging to different
heterogeneous environments or administrative domains. It allows to expand existing Cloud systems and to
integrate several virtual and physical resources. Its ability of collecting heterogeneous utilities and abstracting
their functionalities to high level Cloud facilitates is very useful for the development of advanced applications

∗This work was partially supported by Projects SIMONE and SIGMA, Italian National Operative Program (PON) 2007-2013.
†DICIEAMA, University of Messina, Contrada Di Dio, 98166 Sant’Agata - Messina

(mfazio(acelesti,apuliafito,mvillari).unime.it).

201

202 M. Fazio, A. Celesti, A. Puliafito, M. Villari

for Internet of Things (IoTs). MOM4C has been designed according to the Message-Oriented model. This
model has already been used for the designing of Cloud middleware such as IBM WebSphere MQ (MQSeries),
TIBCO Rendezvous, and RabbitMQ. In comparison with them, MOM4C allows to develop services fitting the
requirements of Cloud computing.

Due to its features, MOM4C can offer a solid support to TDG scenarios. A TDG Risk Management System
mainly requires: i) a monitoring system able to localize and track dangerous goods even analyzing their states
according to different types of information (e.g, temperature, pressure, gas detection, etc); ii) a data collection
and elaboration system able to correlate the different pieces of information coming from the monitoring system;
iii) an intelligence transportation system able to provide: transport mode optimization and traffic management
through a “smarter” use of transport networks; iv) an informative system able to disseminate alerts to the
population in case of disaster providing pieces of information that potentially can save lives.

In order to satisfy such requirements, we analyze the possibility of arranging Cloud facilities for TDG Risk
Management Systems (TDG Cloud Facilities) combining several Cloud utilities, in particular we gathered the
utilities we develop next, in four main branches: sensing, virtualization, big data management, and trusted
computing.

The rest of the paper is organized as follows. In Sect. 2, we discuss the main concerns regarding the TDG.
In Sect., 3, we present the MOM4C computing model, discussing a few architectural aspects in Sect. 4. An
example of TDG Cloud facility arranged be means of MOM4C is discussed in Sect. 5. A possible combination of
both hardware/software solutions and technologies for the implementation of TDG Cloud facilities is discussed
in Sect. 6. In Sect. 7, we provide an overview regarding other available Cloud middleware, highlighting how
they differ from MOM4C. Conclusions and remarks are summarized in Sect. 8.

2. TDG Concerns. TDG risk management systems able to reduce the risk of both accidental disasters
and terrorist attacks make extensive use of sensing infrastructures to assess the risk itself and to detect unusual
events. TDG risk management systems asks for a continuous monitoring of activities related to transportation.
It is necessary not only to track the position of the vehicle and the status of the cargo, but it is also important
to understand how the environment interacts during the transportation of dangerous goods. Automatic vehi-
cle identification techniques relying on Radio Frequency Identification (RFID) permit to electronically gather
shipment information. Route planning can reduce the probability of disaster. It can be time-independent or
reactive. In particular, route planning is reactive if real-time pieces of information about the conditions of the
transport network are periodically updated in the management system. Such pieces of information are gathered
by sensor networks and made available in real-time databases. In addition, Geographic information System
(GIS) will permit geospatial data management for decision making processes.

2.1. The State of the Art on TDG. The TDG problem has been gathering great attention from both
research community and business companies. The main goal is to develop a TDG risk management systems
able to prevent disasters. In ICT fields, several initiatives appeared, each one addressing specific requirements.

MITRA [2] is a research project funded by the European Commission with the objective to prototype a new
operational system based on regional responsibilities for the monitoring of dangerous goods transportation in
Europe. It provides a real-time knowledge of position and contents of dangerous goods through the European
Geostationary Navigation Overlay Service (EGNOS), that is a satellite based augmentation system developed by
the European Space Agency, the European Commission and EUROCONTROL. In case of dangerous situations,
GSM communications allow to alert the Security Control Centre, which is responsible to prevent accidents,
manage crisis and enable quick intervention.

SMARTFREIGHT [3] is a European research project, partly funded by the European Commission un-
der the 7th Framework Program (7FP). The overall objective of SMARTFREIGHT is to address new traffic
management measures towards individual freight vehicles by using open ICT services, with an emphasis on
the interoperability between traffic management and freight distribution systems, and an integrated heteroge-
neous wireless communication infrastructure within the framework of CALM (Communication Access for Land
Mobiles)

In [18], the authors propose a complete monitoring and tracking solution for truck fleets. The system
exploits battery-powered environmental sensors (temperature, humidity, pressure, gas concentration and ionizing
radiation levels), connected by a ZigBee-based Wireless Sensor Network. Collected data is then sent from the

MOM4C Middleware 203

vehicle to a remote server via a GPRS link. The GPS positioning system is integrated by the use of an Inertial
Navigation System, which guarantees a precise estimate of the position also when the GPS signal is weak or
temporarily lost.

The solution proposed in [20] aims to improve the security of maritime container transport of dangerous
goods by the real-time monitoring of container state. This system uses micro-sensor technologies and radio
frequency communication technology to obtain the dangerous goods condition inside containers, as well as
automatic positioning in the cargo hold. Information on the state of dangerous goods are transmitted to the
shore monitoring center on land through INMARSAT stations.

By comparing the different solutions for dangerous goods transportation, we have identified the following
common goals: 1) localization and tracking means of freight transportation, 2) monitoring of goods according
to several types of information (temperature, pressure, gas detection,...), 3) data collection and elaboration,
4) definition of policies for disaster prevention, 5) definition of policies for emergency management. However,
the existing solutions exploit heterogeneous systems, hardly to be integrated. Indeed, they differ a lot in terms
of sensor technologies, communication infrastructures, design of the system organization and software support.
Here, our idea is to setup an environment able to harmonize these heterogeneous systems.

2.2. Open Issues. Companies operating in the monitoring of dangerous goods have to use specific tech-
nologies that depend on several factors: the type of dangerous goods that are tracked, their geographical position
and route, means of transport, legislation of the country and so on. International Regulations define standard
procedures for the treatment of dangerous goods. However, from a technological point of view, they do not
provide any specification with reference to the monitoring infrastructure installation. The result is that actually
there is no compatibility between different monitoring systems managed by organizations or companies, both
in terms of hardware and software.

Another important issue is related to the transportation of the adopted solution. Each solution focuses on
a specific method of transportation (such as ship, truck, airplane or railways) and the concept of multi-modal
service is not faced at all. However, the aggregation of information from multi-modal ways can be extremely
useful to predict terrorist attacks. Furthermore, in case of attacks, the management of different types of way
out from the disaster area can save human lives.

A world wide standardized solution is still missing. Recent events have shown the importance of collabora-
tion among different countries to fight against terrorism. So, we imagine a future transportation system where
efforts will integrate activities along the roads, highways, railways, harbors and airports at once. The integra-
tion will also include activities provided by different operators inside the same country and among different
countries.

3. The MOM4C Computing Model. Currently, many pieces of Cloud middleware have been appearing
on the market. As highlight on the state of the art analysis discussed in Sect. 7, the available solutions are related
to specific scenarios. On the contrary, the TDG risk management system requires to address a versatile scenario
in which different utilities have to be integrated (e.g., sensing, virtualization, big data management, trusted
computing, etc). For such a reason, in this paper we present a solution based on the MOM4C, a solution that in
our opinion, well fits the requirements of TDG risk management systems. Differently from other available pieces
of middleware, analyzed in Sect. 7, MOM4C abstracts the type of offered services, providing a framework able
to integrate both the current and future Cloud solutions, offering to the customers the possibility to customize
their Cloud facilities.

3.1. The Need of a Middleware for Emerging Cloud-Based Systems. Analyzing the trend of the
Cloud computing market, we can highlight, on one hand, a growing number of providers that are investing
in Cloud-based services and infrastructures and, on the other hand, the interest of companies in long-term,
customizable and complex business solutions, which must be easy to be set up, reliable, and accessible through
the Internet. MOM4C has been design to fill up this gap, integrating existing infrastructures and resources
in form of Cloud utilities into one efficient, scalable, reactive and secure distributed system. Its deployment
can be strategic for many different stakeholders, as shown in Fig. 3.1. MOM4C enables third-party enterprises
and developers to implement Cloud facilities in an easy way, integrating different Cloud utilities (e.g., storage,
network, computation, security, sensing, data analytics, etc) according to a mash-up development model. In

204 M. Fazio, A. Celesti, A. Puliafito, M. Villari

Fig. 3.1. All stakeholders and cloud layers involved in MOM4C reference scenarios.

this way, enterprises, organizations, and governments can quickly Cloud facilities integrating different Cloud
utilities.

MOM4C enables Cloud providers to abstract the service level. Typically, Cloud providers can deliver three
main service levels, i.e., Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a
Service (SaaS). According to such a classification, MOM4C allows to develop Cloud facilities in form of IaaS,
PaaS, and SaaS instances. It is important to notice that also Cloud utilities themselves can be hardware/software
functionality delivered in form of IaaS, PaaS, and SaaS.

IaaS Providers deliver computers and devices (i.e., physical and/or virtual) and other resources. Typically,
a Virtual Infrastructure Manager (VIM) controls one or more hypervisors each one running several Virtual
Machines (VMs) as guests. A VIM allows to manage a large numbers of VMs (e.g., preparing disk images, setting
up networking, starting, suspending, stopping VM, etc) and to scale services up/down according to customers’
requirements. An example is represented by a provider that offers to end-users on-demand VMs execution. PaaS
providers deliver a computing platform, typically including operating system, programming language execution
environment, database, and web server. Software developers can implement and run their solutions on a Cloud
platform without the cost of buying and managing the underlying hardware and software layers. Typically, the
underlying computer and storage resources automatically scale up/down to match application demand. Another
example is represented by a provider that offers a platform that collects data coming from one or more sensor
networks and that offer Application Program Interfaces (APIs) for data processing, hence enabling developers
to implement intelligent sensing applications. SaaS providers, typically deliver on-demand pieces of software
via Web 2.0 that are usually priced on a pay-per-use basis. Providers install and manage applications in the
Cloud and users access these ones from software clients, generally web browsers. A case in which a provider
that offers via Web 2.0 interface an office automation software suite such as Google Drive to manage documents.
Furthermore, a Cloud facilities built through MOM4C will be able to integrate Cloud utilities even belonging to
different administrative domains in a federated system. In a federation, each entity is independent and can not
be conditioned by a “central government” in its activities. The components of a federation are in some sense
“sovereign” with a certain degree of autonomy from the “central government”: this is why a federation can
be intended more than a mere loose alliance of independent entities. Moreover, the treatment of all the data
and information transferred through MOM4C is performed according to secure policies able to assure: data
confidentiality, data integrity, data authenticity, non-repudiation of the sender, non-repudiation of the receiver.

3.2. MOM4C: a Planetary System Model. The MOM4C computing model was inspired by a plane-
tary system model. Due to its native ability in integrating heterogeneous infrastructures and resources in form
of Cloud utilities, MOM4C can potentially offer a wide plethora of Cloud Facilities able to provide complex,
customizable and differentiated mash-up services.

A monolithic design of the proposed system is inconceivable, since it implies a heavy effort in management

MOM4C Middleware 205

of all the available components, low scalability and useless service availability for clients. On the contrary, to
guarantee the maximum flexibility, we have conceived MOM4C as a very modular architecture, in which every
client can customize Cloud facilities according to their business requirements. From the client point of view, we
can schematize MOM4C as well as a planetary system, as shown in Fig. 3.2. The planetary system is composed

Fig. 3.2. Planetary system model for service provisioning through MOM4C.

by one or more planets that orbit around a central star. According to our abstraction, Planets identify available
utilities. For example, utilities can be: i) VIM, for on-demand VM provisioning; ii) Sensing PaaS, collecting data
by different sensing environments; iii) Distributed Processing PaaS, providing high computational power; iv) Big
Data Storage PaaS, providing distribute storage for huge amount of data, and so on. The core of MOM4C is the
star of the planetary system. It provides all the basic functionalities necessary for the life of planets. Specifically,
it includes a scalable messaging and presence system, security mechanisms for data integrity, confidentiality and
non-repudiation, federation management and other specific communication features for the management and
integration of heterogeneous utilities.

All the possible combinations of planets specialize the behavior of the planetary system. According to our
similitude, a specific planetary system configuration, including target planets defines the Cloud facility. In fact,
according to our definition, the Cloud facility has to be customizable from clients in order to fit specific business
scenarios.

4. MOM4C Architecture. MOM4C is designed according to the message-oriented paradigm, in order to
provide an efficient communication system among different distributed components. From the message-oriented
paradigm, MOM4C inherits a primary benefit, that is loosing coupling between participants in a system due to
their asynchronous interaction. It results in a highly cohesive, decoupled system deployment. It also decouples
the performance of the subsystems from each other. Subsystems can be independently scaled, with little or
no disruption of performance into the other subsystems. With reference to the management of unpredictable
activity overloads in a subsystem, the message-oriented model allows to accept a message when it is ready, rather
than being forced to accept it. MOM4C adds important features, that are strategic for business in Cloud. Its
major benefits includes:

• Modularity: the middleware can be quickly extended using different modules characterizing different
available utilities. It can be easily customized in order to suit a specific Cloud scenario.

• Polymorphism: each distributed entity in the system can play different roles according to the system
requirements. Different rules includes both the core management tasks and the utility-related tasks.

206 M. Fazio, A. Celesti, A. Puliafito, M. Villari

• Security: an indispensable requirement for the large-scale adoption Cloud computing is security, es-
pecially in business scenarios. Security has to be natively addressed at any level of communication
(intra-module, inter-module, and inter-domain), providing guarantees in terms of data confidentiality
and data integrity.

• Federation: it is a strategic approach to promote collaboration among cooperating Cloud providers.

4.1. Cluster and Execution Layers. As depicted in Fig. 4.1, MOM4C is based on a distributed archi-
tecture, organized in two layers, that are the Cluster Layer (CL) and the Execution Layer (EL). The Cluster

Fig. 4.1. MOM4C basic scheme.

Layer represent the “core” of MOM4C. It consists of an overlay network of decentralized Cluster Manager (CM)
nodes. Each CM is responsible for the working activities of the Task Executor (TE) nodes belonging to the
cluster. The EL is composed of TEs, which are intended to perform operative tasks. TEs can be trained to
perform a specific task. It means that they do not instantiate all the services and utilities available in MOM4C,
but they download code, initialize and configure services, launch software agents whenever they receives instruc-
tions from the CM. An appropriate utility module configuration into TEs allows to specialize MOM4C services.
According to the specific code in execution at TEs, we have different characterizations of the EL.

To perform different types of tasks (e.g., VM execution and sensing data gathering), we set up specialized
ELs, which independently works according to the CL specifications. Such an organization of roles and activities
carries out high modularity to the MOM4C system. Building around the Cluster Layer many TE layers at the
same time characterizes the MOM4C behavior. Thus, an ad-hoc layers configuration is designed to support a
specific scenario. With reference to the planetary system model, the star includes all the functionalities of the
Cluster Layer, which sustains the whole system. Any orbit represents a specific Execution Layer and the planet
is the utility offered by TEs belonging to the related Execution Layer.

Another important feature of MOM4C is the polymorphic nature of nodes. At different times, each physical
node can serve as CM or TE. However, only a node in a cluster is elected as CM and actively works for managing
the whole cluster. Some other node are elected as “passive CMs”, which are redundant CMs that can quickly
replace the active CM if it fails. This approach improves the fault tolerance of the CL. The size of the cluster
depends on the system workload and it can dynamically change according to the specific elasticity requirements
of the system. About TEs, they can belong to one or more ELs, hence they work at different Cloud utilities.
Such a concept is better explained in Fig. 4.2. For example, TE 1, 2, 3, 4, 5, 6 are hypervisor servers working

MOM4C Middleware 207

Fig. 4.2. Hybrid Executor Node Layer composition.

to provide a VIM IaaS. At the same time, TE 2, TE 3, and TE 4 work also to provide a Distributed Processing
PaaS, since software agents running on TEs are independent active processes. Following the example in Fig. 4.2,
TE 7, 8, 9, and 10 work as embedded devices for Sensing IaaS provisioning, whereas TE 6, 9, and 10 works
for a Sensing PaaS, for example collecting sensing data from TE 9 and 10 and providing services through the
AJAX Web APIs of Web application deployed in TE 6.

4.2. All Turn Around the Communication System. The strong point of MOM4C is represented by
its communication system. In fact, the middleware supports three types of communications:

• IntraModule Communication: it characterizes information exchange inside each node of the archi-
tecture, both CMs and TEs. It guarantees a seamless way for allowing their internal software modules
to communicate each other.

• InterModule Communication: it governs communications between CMs and TEs and vice-versa.
• InterDomain Communication: is specific for communications among CMs belonging to different
administrative domains, hence enabling InterCloud or Cloud federation scenarios.

In order to ensure as much as possible the middleware modularity, the tasks running on each node are mapped
on different processes within the Operating System, which communicate each other by means of an Inter Process
Communication (IPC) or InterModule communication. According to the message-oriented design of MOM4C,
InterModule communications are based on an Instant Messaging and Presence (IMP) protocol. A presence
system allows participants to subscribe to each other and to be notified about changes in their state. On
the other hand, Instant messaging is defined as the exchange of content between a set of participants in near
real time. InterDomain communications among different administrative domains are managed considering the
federation agreements among the domains. Federation allows Cloud providers to “lend” and “borrow” resources.
Thus, a CM of a domain is able to control one or more TEs belonging to other domains.

5. A Cloud Facility for TDG Risk Management Systems. In this Sect., we firstly discuss what the
requirements are for a TDG Risk Management System, and than, we present and example of Cloud facility for
TDG Risk Management System (TDG Cloud facility) combining four Cloud utilities, i.e., sensing, virtualization,
big data management, and trusted computing.

208 M. Fazio, A. Celesti, A. Puliafito, M. Villari

5.1. Functional and Non-Functional Requirements. By comparing the different available initiatives
in the field of TDG, analyzed in Sect. 2.1, we have identified the following functional requirements:

1. monitoring, localizing and tracking of dangerous goods even analyzing their states according to different
types of information (e.g, temperature, pressure, gas detection, etc);

2. collect, analyze, and correlate the different pieces of information coming from different monitoring
activities

3. transport mode optimization and traffic management through a “smarter” use of transport networks
4. disseminate alerts to the population in case of disaster providing pieces of informations that potentially

can save lives.

Cloud computing can offers several benefits in carrying out all these activities and we are going to explain how
by means of MOM4C.

Considering the monitoring related to the transportation of dangerous goods, existing solutions differ a lot
in terms of sensor technologies, communication infrastructures, design of the system organization and software
support. Companies operating in the monitoring of dangerous goods have to use specific technologies that
depend on several factors: the type of dangerous goods that are tracked, their geographical position and route,
mode of transport, legislation of the country and so on. International Regulations define standard procedures
for the treatment of dangerous goods. However, from a technological point of view, they do not provide any
specification with reference to the monitoring infrastructure installation. The result is that, usually, there is
not compatibility between different monitoring systems managed by different organizations or companies, both
in terms of hardware and software. Another important point is related to the adopted transportation solution.
Each solution focuses on a specific method of transportation (such as ship, truck, airplane, or railways) and
the concept of concurrent service is not faced at all. However, the aggregation of pieces of information from
concurrent ways can be extremely useful to predict terrorist attacks. Furthermore, in case of attack, the
management of different types of way out from the disaster area can save human lives.

Regarding non-Functional requirements, the TDG Cloud facility has to abstract the underlying infrastruc-
tures and resources through Cloud utilities. In fact, the MOM4C, represents the GLUE to integrate and homog-
enize such heterogeneous infrastructures and resources. By using the concept of virtualization, the MOM4C can
abstract hardware and software resources and, thus, guarantee an high level of interoperability among different
physical infrastructures involved in the intelligent transportation activities.

The monitoring activity causes a massive collection of data, which need to be organized and processed in a
transparent way, in order to provide an integrated knowledge of the context. The context knowledge is the base
to build up strategies at the National Security level. High amount of data means more efficient services, but
implies high requirements in terms of processing power and storage space. However, the demands of resources
significantly vary depending on several parameters, such as the geographical area, traffic, and so on. The
distributed nature of Cloud computing guarantees high availability of computational and storage resources as
services, which can be dynamically adapted to specific needs of the system. Concurrent transport of dangerous
goods is characterized by specific constrains, which need guarantees on the quality of the informative services
(e.g., reaction time to an event occurrence, synchronization of activities, trust in using third party support,
etc). The high flexibility of the Cloud in dynamic configuration, management and optimization of resources
and services allows to effectively respond to the quality of service requirements of the system.

Smart services supporting the transport requires to correlate pieces of information regarding the environ-
ment, goods, carriers and freight operators, and determine the best routes for goods transfer. MOM4C offers a
very innovative approach to develop TDG risk management system through a distributed system where resources
and context information are accessible through well-defined interfaces. This approach allows to implement new
services without any knowledge of physical infrastructures and software architecture, making the TDG easier
and flexible. Another important feature offered by MOM4C is its ability to manage a federation of several
cloud providers (i.e., enterprises, organizations, and governments). Thus, we consider the Cloud environment as
a constellation of hundreds of independent, heterogeneous, private/hybrid Clouds able to interact each other,
maintaining separated their own administration domains accomplishing inter-cloud scenarios. This requirement
is particularly important in the transport management, because actors that interact to improve their services do
not intend to disclose their informative systems. Another important requirement in case of terroristic attack, is

MOM4C Middleware 209

the security of the TDG risk management system. In fact, in order to avoid “man in the middle” attacks, caus-
ing potential data corruption or unauthorized information disclosure, both communications among the different
components and the access to these latter have to be trusted.

5.2. MOM4C Utility Composition. Thanks to its modularity, MOM4C allows to instantiate different
types Cloud facilities. As previously discussed, as well as a planetary system is composed by a star with several
planets that turn around it along their orbits, in MOM4C, a Cloud facility is built around the MOM4C core
(i.e., the central star) and several Cloud utilities (i.e., planets). From an architectural point of view, we remark
that the MOM4C core consist of an overlay network of decentralized CM nodes, whereas a each Cloud utility
consists of an overlay network of TE nodes that offer a particular service.

In order to better explain the planetary system model at the basis of the MOM4C design, let us consider the
possible utility composition to support the TDG risk management scenario. Considering both the functional
and non-functional requirements discussed in Sect. 5.1, in our opinion a possible TDG Cloud facilities arranged
with the MOM4C should four main Cloud utilities: sensing, virtualization, big data management, and trusted
computing.

The sensing utility allows to virtualize different types of sensing infrastructures, adding new capabilities in
data abstraction. It gathers sensing information from a peripheral decision-maker, called Virtual Pervasive El-
ement (VPE), able to interact with smart sensing devices or sensing environments [10]. The VIM utility allows
to aggregate heterogeneous computing infrastructures, providing suitable interfaces at the high-level manage-
ment layer for enabling the integration of high-level features, such as public Cloud interfaces, contextualization,
security [6] [12] and dynamic resources provisioning [8]. The big data management utility allows to storage
a huge amount of data an to perform an efficient retrieval of them adopting, for example, the map/reduce
approach. The Trusted Computing utility allows interact with the Trusted Platform Module (TPM) on the
physical host [7] by means of a software agent. The TPM is a hardware micro-controller that allows to combine
hardware and software components by building a chains of trust. In addition by means of the remote and deep
attestation protocols, the utility is able to verify the configuration of physical hosts and VMs.

Figure 5.1 depicts an example of TDG Cloud facility combining seven Cloud utilities. The utilities are
orchestrated by the MOM4C core with which communicate in a secure way through the MOM4C communication
system. Utility 1 collects sensing data coming from several sensor networks monitoring different transport ways
(i.e., freeways, railways, air and sea routes). Utility 2, add to the Cloud facility the ability to virtualize the
physical datacenter, by means of a VIM, in order to arrange different scalable virtual environments. In addition,
this utility allows the Cloud facility to scale up/down the virtual infrastructure asking external resources when
it is required (e.g., when the physical resources are run out the Cloud facility can ask for resources to external
providers). Utility 3 enables big data management through a system able to store huge amount of pieces of data
and to efficiently retrieve and process them using map-reduce mechanisms. The utility is built into a virtual
infrastructure that can be scaled up/down when required thanks to utility 2. Finally, utility 4 adds to the
Cloud facility trusted computing capabilities enforcing remote attestation in both physical and virtual servers
respectively considering physical and virtual TPMs. In this way, if a physical or virtual machine is corrupted
the utility will be able to immediately detect the attempt of attack and block it.

Regarding the secure communication between the MOM4C core and the various utilities, the middleware
natively involve secure communication by means of digital signing and message encryption mechanisms. From
an architectural point of view, this means that both CM and TE nodes communicate each other through secure
channels. Such a feature is enforce by MOM4C independently from any specific type of Cloud facility.

6. Solutions and Technologies for the TDG Cloud Facility.

6.1. Communication System. According to the design specifications of MOM4C, the InterModule and
InterDomain communication systems have been implemented using a well known MIPO, that is XMPP. The
XMPP (RFC 3920 and RFC 3921), also called Jabber, is becoming more and more popular due to its flexibility
to suit different scenarios where a high level of re-activeness is strongly required. Despite it was born for
human interaction via chat room it can be used to develop the communication of whatever distributed system
well fitting the requirements of Cloud computing. XMPP is an XML-based protocol used for near-real-time,
extensible instant messaging and presence information. XMPP remains the core protocol of the Jabber Instant

210 M. Fazio, A. Celesti, A. Puliafito, M. Villari

Fig. 5.1. Example of TDG Cloud facility with MOM4C.

Messaging and Presence technology. The “Jabber” technology leverages open standards to provide a highly
scalable architecture that supports the aggregation of presence information across different devices, users and
applications. As the client uses HTTP, most firewalls allow users to fetch and post messages without hindrance.
Thus, if the TCP port used by XMPP is blocked, a server can listen on the normal HTTP port and the traffic
should pass without problems. Custom functionality can be built on top of XMPP, and common extensions are
managed by the XMPP Software Foundation. This make the protocol flexible to be extended with QoS and
security features.

6.2. Cluster Manager Node. The CM Coordinator is the core of a CM.In order to communicate with
other nodes of the system, the CM Coordinator exploits three different interfaces: IntraModule Interface, used
to interact with specific modules, InterDomain Interface, used for interconnecting the CMs belonging to different
administrative domain, TE Interface, for communicating with all the TE nodes. Apart from the IntraModule
Interface that works by means of the DBUS communication system, the InterModule and InterDomain interfaces
are connected to different XMPP rooms, in order to separate different communications. It performs high level
operations assigning tasks to different TEs, taking into account the system workload and features of each node.
Moreover, through InterDomain Interface, the CM Coordinator provides information about the Cluster state,
collected through its Interfaces.

6.3. Task Executor Node. The TE Coordinator is the main component of the TE node. It is responsible
to execute the command sent by a CM. In addition, it monitors resources and the Operating System in order
to optimize their usage. For example, a real time information on CPU, RAM, storage and network utilization
can be acquired. The main activities of a TE Coordinator are: 1) Streaming the collected information; 2)
providing the collected information on demand; 3) sending a specific notification (alert) when a pre-determined
condition is verified. All the TE Coordinators have to interact exploiting the persistent XMPP connection made
available through the CM Coordinator Interfaces. The other nodes, in order to perform temporary peer-to-peer
communications, can attend an ephemeral XMPP session connecting themselves to an “utility room”.

MOM4C Middleware 211

6.4. Possible Solutions for Utility Implementation. In Sect. 1, for arranging Cloud facilities useful
for TDG Risk Management Systems, we recognized four types of utility: sensing, virtualization, big data
management, and trusted computing. The implementation of these Cloud utilities can be achieved using
different software tools and frameworks. Here below we describe what we selected for accomplishing our cloud
environment.

The sensing utility, has to be developed considering the Sensor Web Enablement (SWE) standard which
enables developers to make all types of sensors, transducers and sensor data repositories discoverable, accessible
and useable via the Web. Further standards that have to be considered includes

• Observations & Measurements (O&M). Standard models and XML Schema for encoding obser-
vations and measurements from a sensor, both archived and real-time.

• Sensor Model Language (SensorML). Standard models and XML Schema for describing sensors
systems and processes associated with sensor observations; provides information needed for discovery
of sensors, location of sensor observations, processing of low-level sensor observations, and listing of
task-able properties, as well as supports on-demand processing of sensor observations.

• Transducer Model Language (TransducerML or TML). The conceptual model and XML Schema
for describing transducers and supporting real-time streaming of data to and from sensor systems.

• Sensor Observations Service (SOS). Standard web service interface for requesting, filtering, and
retrieving observations and sensor system information. This is the intermediary between a client and
an observation repository or near real-time sensor channel.

• Sensor Planning Service (SPS). Standard web service interface for requesting user-driven acquisi-
tions and observations. This is the intermediary between a client and a sensor collection management
environment.

• Sensor Alert Service (SAS). Standard web service interface for publishing and subscribing to alerts
from sensors.

• Web Notification Services (WNS). Standard web service interface for asynchronous delivery of
messages or alerts from SAS and SPS web services and other elements of service workflows.

There are several Open Source, Free-Ware, and Commercial Off-the-Shelf (COTS) activities committed to the
development of Sensor Web Enablement (SWE) oriented software. This includes software to support servers,
middleware, and clients, as well as tools for creating and validating SWE encodings. Interesting tools include 52
North, MapServer, OOSTethys, Space Time Toolkit, SWE Common Library, Process Execution Engine Library,

The virtualization utility can be developed using different hypevisors and frameworks (e.g., KVM/QEMU,
XEM, VMware, VirtualBox, libvirt, etc). Regarding the VIM, developers have to consider the possibility either
to develop a customize solution or using existing solution including, for example, OpenStack, Open Nebula,
Clever, Nimbus, Eucalyptus, etc. In addition the Open Virtualization Format (OVF) standard has to be
considered.

The big data management utility can be developed considering both a distributed file system and a parallel
processing system able to fast retrieve and process pieces of data. To this regard, a possible solution is rep-
resented by Apache Hadoop. It is a popular framework providing both a distributed file system (HDFS), and
a processing environment adopting the map-reduce paradigm. Further valuable alternative solutions include
Nutch, Cloudera, Hypertable, HBase, Apache Mahout, and Apache Cassandra.

Regarding the trusted computing utility, the Institute for Applied Information Processing and Communi-
cation (IAIK) of the Graz University of Technology (AT) have been developing many software libraries and
tools. The Trusted Computing Group (TCG) has defined a Trusted Software Stack (TSS) to simplify the access
from software modules to TPM. In particular TSS defines an Application Programming Interface to operating
systems and applications. Furthermore for supporting the development of trusted applications, the TGG has
defined TCG Device Driver Library (TDDL). Further details are available in [1]

7. Related Works. Some works in literature deal with the need of Cloud middleware, addressing specific
issues and exploiting different technologies. To support application execution in the Cloud, in [13], authors
present CloudScale. It is a piece of middleware for building Cloud applications like regular Java programs
and easily deploy them into IaaS Clouds. It implements a declarative deployment model, in which application
developers specify the scaling requirements and policies of their applications using the Aspect-Oriented Pro-

212 M. Fazio, A. Celesti, A. Puliafito, M. Villari

gramming (AOP) model. A different approach is proposed in [19]. The authors present a low latency fault
tolerance middleware to support distributed applications deployment within a Cloud environment. It is based on
the leader/follower replication approach for maintaining strong replica consistency of the replica states. If a fault
occurs, the reconfiguration/recovery mechanisms implemented in the middleware ensure that a backup replica
obtains all the information it needs to reproduce the actions of the application. The middleware presented
in [5] has been designed aiming mission assurance for critical Cloud applications across hybrid Clouds. It is
centered on policy-based event monitoring and dynamic reactions to guarantee the accomplishment of “end-to-
end” and “cross-layer” security, dependability, and timeliness. In [9], the authors present a piece of middleware
for enabling media-centered cooperation among home networks. It allows users to join their home equipments
through a Cloud, providing a new content distribution model that simplifies the discovery, classification, and
access to commercial contents within a home network. In [14], the authors focus their work on the integration of
different types of computational environments. In fact, they propose a lightweight component-based middleware
intended to simplify the transition from clusters, to Grids and Clouds and/or a mixture of them. The key points
of this middleware are a modular infrastructure, that can adapt its behavior to the running environment, and
application connectivity requirements. The problem of integrating multi-tenancy into the Cloud is addressed
in [4]. The authors propose a Cloud architecture for achieving multi-tenancy at the SOA level by virtualizing
the middleware servers running the Service Oriented Architecture (SOA) artifacts and allowing a single instance
to be securely shared between tenants or different customers. The key idea of the work is that the combination
between virtualization, elasticity and multi-tenancy makes it possible an optimal usage of data center resources
(i.e., CPU, memory, and network). A piece of middleware designed for monitoring Cloud resources is proposed
in [16]. The presented architecture is based on a scalable data-centric publish/subscribe paradigm to disseminate
data in multi-tenant Cloud scenarios. Furthermore, it allows to customize both granularity and frequency of
received monitored data according to specific service and tenant requirements. The work proposed in [11] aims
to support mobile applications with processing power and storage space, moving resource-intensive activities
into the Cloud. It abstracts the API of multiple Cloud vendors, thus providing a unique JSON-based interface
that responds according to the REST-based Cloud services. The current framework considers the APIs from
Amazon EC2, S3, Google and some open source Cloud projects like Eucalyptus. In [15], the authors present a
piece of middleware to support fast system implementation and ICT cost reduction by making use of private
Clouds. The system includes application servers that run a Java Runtime Environment (JRE) and additional
modules for service management and information integration, designed according to a SOA.

8. Conclusion and Remarks. In this paper, we have discussed the design of a Cloud-based Risk Man-
agement System for the Transportation of Dangerous Goods (TDG). A TDG Risk Management System requires
the integration of different heterogeneous sensing infrastructures and different ICT assets regarding for example
monitoring, processing, storage, etc.

MOM4C enables software architects to seamlessly design such a kind of distributed system thanks to a
message oriented approach. In fact, MOM4C, according to a planetary system model, allows software architects
to arrange distributed systems as Cloud facilities combining different utilities. In addition, the middleware
allows to different enterprises, organizations, and governments to cooperate in a federated Cloud environments
in a transparent way.

More specifically, an example of TDG Cloud facility has been described combining four main Cloud utilities,
i.e., sensing, virtualization, big data management, and trusted computing. An interesting aspect of MOM4C is
its ability to adapt the Cloud facilities to the system requirements even in a heterogeneous environment. As
we have demostrated, such a feature makes the middleware, a valuable solution for the development of next
generation versatile systems in the field of TDG.

REFERENCES

[1] Trusted Computing Grouop (TCG):
http://www.trustedcomputinggroup.org/.

[2] 2004-2006. MITRA: Monitoring and intervention for the transportation of dangerous goods. http://www.mitraproject.info/.
[3] 2009. SMARTFREIGHT project, FP7-216353. http://www.smartfreight.info//.

MOM4C Middleware 213

[4] A. Azeez, S. Perera, D. Gamage, R. Linton, P. Siriwardana, D. Leelaratne, S. Weerawarana, and P. Fremantle,
Multi-tenant SOA Middleware for Cloud Computing, in IEEE CLOUD’10), 2010, pp. 458–465.

[5] R. Campbell, M. Montanari, and R. Farivar, A middleware for assured clouds, Journal of Internet Services and Applica-
tions, 3 (2012), pp. 87–94.

[6] A. Celesti, M. Fazio, M. Villari, and A. Puliafito, Se clever: A secure message oriented middleware for cloud federation.,
in IEEE Symposium on Computers and Communications (ISCC’13), ISCC ’12, 2013.

[7] A. Celesti, M. Fazio, M. Villari, A. Puliafito, and D. Mulfari, Remote and deep attestations to mitigate threats in
cloud mash-up services, in World Congress on Computer and Information Technologies (WCCIT’13), Sousse, Tunisia,
2013.

[8] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, Integration of clever clouds with third party software systems through a
rest web service interface, in IEEE Symposium on Computers and Communications (ISCC’12), ISCC ’12, 2012, pp. 827–
832.

[9] D. Diaz-Sanchez, F. Almenarez, A. Marin, D. Proserpio, and P. Arias Cabarcos, Media Cloud: an open cloud
computing middleware for content management, IEEE Transactions on Consumer Electronics, 57 (2011), pp. 970–978.

[10] M. Fazio, M. Paone, A. Puliafito, and M. Villari, Huge amount of heterogeneous sensed data needs the cloud, in SSD’12,
2012.

[11] H. Flores and S. N. Srirama, Dynamic Re-configuration of Mobile Cloud Middleware based on Traffic, in IEEE MASS’12),
October 8-1 2012.

[12] A. Juels and A. Oprea, New approaches to security and availability for cloud data, Communication of the ACM, 56 (2013),
pp. 64–73.

[13] P. Leitner, B. Satzger, W. Hummer, C. Inzinger, and S. Dustdar, Cloudscale: a novel middleware for building trans-
parently scaling cloud applications, in SAC’12, 2012, pp. 434–440.

[14] E. Manias and F. Baude, A component-based middleware for hybrid grid/cloud computing platforms, Concurrency and
Computation: Practice and Experience, 24 (2012), pp. 1461–1477.

[15] H. Nagakura and A. Sakurai, Middleware for creating private clouds, Fujitsu Scientific & Technical Journal (FSTJ), 47
(2011), pp. 263–269.

[16] J. Povedano-Molina, J. M. Lopez-Vega, J. M. Lopez-Soler, A. Corradi, and L. Foschini, Dargos: A highly adaptable
and scalable monitoring architecture for multi-tenant clouds, Future Generation Computer Systems, May (2013).

[17] A. Ranabahu and M. Maximilien, A Best Practice Model for Cloud Middleware Systems, in Best Practices in Cloud
Computing: Designing for the Cloud, 2009.

[18] F. Valente, G. Zacheo, P. Losito, and P. Camarda, A telecommunications framework for real-time monitoring of dan-
gerous goods transport, in Intelligent Transport Systems Telecommunications,(ITST),2009 9th International Conference
on, October 2009, pp. 13 –18.

[19] Z. Wenbing, P. Melliar-Smith, and L. Moser, Fault Tolerance Middleware for Cloud Computing, in IEEE 3rd CLOUD’10,
July 2010, pp. 67–74.

[20] Z. Yingjun, X. Shengwei, X. Peng, and W. Xinquan, Shipping containers of dangerous goods condition monitoring system
based on wireless sensor network, in Networked Computing (INC), 2010 6th International Conference on, may 2010, pp. 1
–3.

Edited by: Maria Fazio and Nik Bessis
Received: Nov 2, 2013
Accepted: Jan 10, 2014

Scalable Computing: Practice and Experience

Volume 14, Number 4, pp. 215–233. http://www.scpe.org

DOI 10.12694/scpe.v14i4.929
ISSN 1895-1767
c© 2013 SCPE

MOBILES FOR SENSING CLOUDS: THE SAAAS4MOBILE EXPERIENCE ∗

SALVATORE DISTEFANO†, GIOVANNI MERLINO ‡, AND ANTONIO PULIAFITO§

Abstract. Smart devices, and mobiles in particular, are at the forefront of several hot new trends in ICT, such as the Internet
of Things and service computing. Cloud computing is another paradigm generating a great deal of offshoots, some of which are
aimed at enabling novel services and applications by exploiting its ubiquity and flexibility in combination with sensors and the
(meta)data they produce about phenomena, events and other interesting items about the physical world. In this context, the
authors, propose a new way to orchestrate devices, in particular SNs and mobiles, as resources to build up Clouds of sensors,
reverting the current wisdom about mobile Clouds, i.e. the integration of feature-rich devices into the Cloud fabric as mere clients
to one where personal / wearable devices are actively involved into a “sensing” Cloud, forming a fully feedback-enabled ecosystem.
The main aim of the Sensing and Actuation as a Service (SAaaS) approach is therefore to implement such a Cloud by enrolling and
aggregating sensing resources from sensor networks and personal, mobile devices. A device-centric approach is embraced as in IaaS
Clouds: once collected, the physical (sensing) resources are abstracted and virtualised and then provided elastically, on-demand,
as a service to end users, including facilities for customization of the (hosting) embedded platform.

A key point of the SAaaS approach is the abstraction of resources, i.e. providing a uniform way to access to and interact with
the underlying physical nodes. In this paper we focus on the low-level interaction with sensing resources in SAaaS, restricting
the scope to mobiles, thus providing details on theoretical and design aspects as well as technical and implementation ones. In
particular, we report on an implementation of the SAaaS low-level modules on Android devices, the SAaaS4Mobile one, providing
architectural descriptions of the main modules, implementation guidelines and discussing through a preliminary implementation
evaluation the effectiveness of the approach.

Key words: Cloud, sensors and actuators, sensing abstraction and virtualisation, OGC Sensor Web Enablement, Android.

1. Introduction and Motivations. Since their introduction and adoption, in early ’90s, mobiles strongly
impacted on everyday life changing, sometimes improving, the lifestyle. This transformation process is based
on the advancements of network and processor technologies, following new trends and forms of interactions.
Current smartphones have computing, storage and sensing capacities that can be compared to laptop or desktop,
as a new, radical, interpretation of personal computing, the personal device or PDA frontier. This state of affairs
has unlocked new ideas and paved the way for rethinking and reinterpreting foundational technologies such as
Internet, driving efforts towards the Internet of Things (IoT), or service engineering at the basis of the Cloud
computing and the Web 2.0.

At a lower scale, this also inspired us in developing an idea mixing aspects of both IoT and Cloud, involving
any form of sensing resource such as sensor networks as well as standalone smart devices into a wide-area
(geographic) sensing infrastructure. Our idea was to gather and collect sensing and actuation resources from
contributing nodes, either sensor networks or personal, mobile devices, following a volunteer-based approach
to build up a scalable sensing infrastructure, on-demand providing sensing resources to end users according to
their requirements, as computing resources in Infrastructure as a Service (IaaS) Clouds, towards sensing Clouds.
Thus, in previous work [9, 10] we proposed the Sensing and Actuation as a Service (SAaaS) framework to deal
with the issues arising in sensing Clouds, mainly referring to resource abstraction and virtualisation, enrolment,
indexing, discovery and management.

According to the SAaaS approach, the sensing Cloud provider that builds up and manages the infrastructure,
has to provide actual sensing and actuation resources, even if abstracted and virtualised through a specific
framework, to the user. Users may therefore handle, manage and customize (virtual) sensing resources at their
will, according to their needs, for example for inclusion into an existing sensor network they administrate, e.g.
when not able anymore to guarantee coverage of a certain area. This way the user resorts to a sensing Cloud

∗This work is partially funded by PhD programme under grant PON R&C 2007/2013 “Smart Cities” and by Simone project
under grant POR FESR Sicilia 2007/2013 n. 179. The authors would also like to acknowledge networking support by the COST
Actions IC1203 - ENERGIC and IC1303 - AAPELE.

†Dip. di Elettronica, Informazione e Bioingegneria Politecnico di Milano Piazza L. Da Vinci 32, 20133 Milano, Italy. Email:
salvatore.distefano@polimi.it

‡Dip. di Ingegneria, Università di Messina, Contrada di Dio, 98166 Messina, Italy. Email: gmerlino@unime.it
Dip. di Ingegneria Elettrica, Elettronica e Informatica, Università di Catania, Viale Andrea Doria 6, 98166 Catania, Italy.

Email: giovanni.merlino@dieei.unict.it
§ Dip. di Ingegneria, Università di Messina, Contrada di Dio, 98166 Messina, Italy. Email: apuliafito@unime.it

215

216 S. Distefano, G. Merlino, A. Puliafito

once the resources are not enough, asking for further sensing resources, in a Cloudbursting fashion. We defined
our approach as device-centric against the data-centric one, which aims at providing the user just with, more
or less elaborated, sensed data, hosted by traditional Cloud providers [12], thus a Software as a Service (SaaS)
approach at the core. A really key difference between the two approaches is that in the device-centric one the
user obtains actual sensing resources that could be configured and managed according to user requirements,
while in the data-centric one the user can just retrieve data gathered and offered by the provider itself, since
the sensing resource may not be handled directly by the former, because it is managed by the provider itself.

One of the key features of a device-centric approach is the abstraction of sensing resources, i.e. tech-
niques for abstracting details and mechanisms from heterogeneous hardware solutions, to access, interact and
communicate with the sensing resources. In the SAaaS paradigm such functionalities are delegated to the
Hypervisor component, which also provides virtualisation mechanisms. This kind of low-level albeit mediated
(shared-)access to resources is what bears most of the challenges to be investigated to design and implement an
IaaS-like Cloud such as the SAaaS one.

In this paper we specifically focus on the low-level interaction with sensing resources belonging to SAaaS-
enabled infrastructure, as a first step for a bottom-up implementation of the framework. Specifically, we start
our investigation by considering smart devices only, thus developing a first prototype of the SAaaS abstraction
layers for mobiles, the SAaaS4Mobile.

When mobiles are involved, certain advantages of our device-centric approach are more easily recognizable,
e.g. opening up opportunities for direct involvement of (i.e. notifications to) the device owner / resource
contributor, a chief requirement for mobile crowdsensing scenarios. On the other hand, for all its worth,
enrolment of mobiles bears many unique challenges, to be tackled by means of volunteering approaches, in
order to satisfy certain predefined (e.g. SLA-mandated) reliability and QoS requirements [8, 11]. Moreover,
reward systems are one of the approaches to be called for mobiles, as very peculiar motivations play their role
when dealing with volunteering owners of resources with such hard constraints (e.g. relatively fast battery
depletion [4]).

We therefore characterize the overall Hypervisor architecture [10] for mobiles, since some of the components
previously identified as distinct modules in the general case, i.e. also including SNs, merge when dealing with
standalone smart devices. Then, we focus on the main, mandatory components of the SAaaS4Mobile Hypervisor
architecture, investigating and implementing a solution with specific regards to the abstraction layers modules.
The implementation of SAaaS4Mobile abstraction modules has been tackled for Android mobiles only, at this
stage, starting from well-known standards as the Open Geospatial Consortium (OGC) Sensor Web Enablement
(SWE) [23] ones. To demonstrate the feasibility of the SAaaS approach the SAaaS4Mobile core modules
implementation has been tested through a proof of concept in which the performance of the main low level
operations have been measured. The values thus obtained fosters further developments of the paradigm, since
they provide useful insight on its effectiveness.

In order to explain in detail our work we organized the paper as follows. Section 2 provides an overview
of the state of the art on related work, mainly focusing on some specific aspects provided as background.
The Hypervisor architecture is discussed in cf. Sect. 3, with particular emphasis on the standalone device
characterization into SAaaS4Mobile. The corresponding architecture for abstraction layer modules is then
discussed in cf. Sect. 4, also describing possible interactions with the system from a dynamic-behavioural
perspective in cf. Sect. 5. Details on the implementation of a preliminary version of the SAaaS4Mobile stack on
Android and SWE standard environments are reported in cf. Sect. 6 with the evaluation of a proof of concepts.
Finally, cf. Sect. 7 summarizes the paper providing hints for future work.

2. Preliminary Concepts.

2.1. Related Work. In sensing environments, software abstraction layers allow to address interoperabil-
ity and communication issues [21, 27] to enable the dynamic reconfiguration of sensor nodes [19, 2], and to
manipulate sensor data [1, 20].

Some solutions are specifically conceived for building up networks of mobiles’ sensors. The Mobile phone
Sensor Network [6] allows to collect observations from Bluetooth-enabled sensors on mobiles and send them to
a database through an OGC SWE SOS. Similarly, [18] allows to perform the injected measurements and to
express them in SWE-compliant format, also resorting on the mobile computing and storage resources.

Mobiles for Sensing Clouds: the SAaaS4Mobile Experience 217

SWE [23] is a standards’ suite for achieving abstraction and interoperability in sensor networks, widely
used [6, 18, 5] in the implementation of sensing Web services as well as to address abstraction issues in virtual
sensor networks [24]. It comprises several standards such as the Sensor Model Language for the description of
sensor systems and processes associated with sensor observations; the Observations & Measurements to express
observations and measurements through standardWeb service interfaces; the Sensor Observations Service (SOS)
to collect observations and system information; the Sensor Planning Service (SPS) to plan observations; the
Sensor Alert Service (SAS) to publish and subscribe sensor alerts; the Web Notification Service (WNS) to
asynchronously deliver messages and alerts from SAS and SPS.

In [27], a framework to enable management of physical sensors on IT infrastructure, abstracting and vir-
tualising them into virtual sensors is provided. In [25] an infrastructure for connecting sensor networks and
applications is proposed, allowing to select physical sensors in wide-geographic sensor networks that can be
implemented as suggested in [13].

A Semantic Web Architecture for Sensor Networks (SWASN) is proposed in [17], specifically dealing with
inference on the sensor data collected by several heterogeneous SNs. In [5] a service-oriented framework to
integrate heterogeneous sensors and virtual ones is described, starting from the SWE SPS, WNS, and SOS.

In [3] Android mobile sensors are categorized into two different classes depending on the functionality
provided (common an complimentary) and are considered as potential providers of raw data. To recognize user
context information the mobile phone infrastructure of [14] can be used, e.g. for monitoring physical actions
performed by users such as walking and running. Similarly, [26] allows to recognize physical activities of mobile
phone owners-users.

2.2. Background. In this section we explore the topics about the background of SAaaS4Mobile: a high-
level description for the SAaaS paradigm, including a depiction of its layering, followed by a subsection on
standards relevant to our effort, in this case SWE by OGC, and by details on the specific platform to be
addressed, i.e. Android.

2.2.1. SAaaS. The main aim of SAaaS [9] is to adapt the IaaS paradigm to sensing platforms, bringing
to a Cloud of sensors, where sensing and actuation resources may be discovered, aggregated, and provided as a
service, according to a Cloud provisioning model.

The inclusion of sensors and actuators in geographic networks as Cloud-provisioned resources brings new
opportunities with regards to contextualization and geo-awareness. By also considering mobiles, possibly joining
and leaving at any time, the result can be a highly dynamic environment. The issue of node churn can only be
addressed through volunteer contribution paradigms [9, 7]. Furthermore, the SAaaS has to manage contributions
coming from sensor networks, mobiles or any other “smart” device equipped with sensors and actuators, to
ensure interoperability in a Cloud environment. It must also be able to provide the mechanisms necessary
for self-management, configuration and adaptation of nodes, without forgetting to provide the functions and
interfaces for the activation and management of voluntarily shared resources.

The SAaaS reference architecture [9] comprises three modules, Hypervisor, Autonomic Enforcer and Volun-
teerCloud Manager, shown in cf. Fig. 2.1. The Hypervisor allows to manage, abstract, virtualise and customise
sensing and actuation resources that could be provided by enrolling either mobile device or SN nodes. Among
key features are: abstraction of devices and capabilities, virtualization of abstracted resources, communications
and networking, customization, isolation, semantic labeling, and thing-enabled services. All these features are
presented in the next section. At a higher level with respect to the Hypervisor, the Autonomic Enforcer and
the VolunteerCloud Manager deal with issues related to the interaction among nodes. The former is responsible
of the enforcement of local and global Cloud policies, subscription management, cooperation on overlay instan-
tiation. The VolunteerCloud Manager is in charge of exposing the Cloud of sensors via Web service interfaces,
indexing of resources, monitoring Quality of Service (QoS) metrics and adherence to Service Level Agreements
(SLAs).

2.2.2. OGC: Sensor Web Enablement. The OGC provides a large number of specifications, among
which we can find the Sensor Web Enablement (SWE) family of standards. Designed for the management of
sensor data on the web, as mentioned in [23], a unique framework of open standards for exploiting Web-connected
sensors and sensor systems of all types is the focus of the specifications.

218 S. Distefano, G. Merlino, A. Puliafito

Sensing
Environment/
Infrastructure

Node

SAaaS
Sensing Cloud

Device

Autonomic
Enforcer

Hypervisor

SN

VolunteerCloud
Manager

Autonomic
Enforcer

Hypervisor

Fig. 2.1. SAaaS reference architecture

SWE standards aim at making all types of Web sensors, instruments, probes, and imaging devices accessible
and controllable on the Web. The SWE framework is composed of seven standards, four of them have been
approved as official standards by the OGC members.

• SensorML: it is a language based on XML schema to describe the sensor systems. It encodes a lot
of features for sensors, such as discovery, geolocation processing observations, mechanisms for sensor
programming, subscriptions to sensor alerts. In particular, it provides standard models and XML
schemas to describe processes, and instructions for obtaining information from observations. SensorML
enables discovery, access and query execution for the processes and sensors it models.

• Observations & Measurements (O & M): this model in particular is featured in the SOS specifica-
tion, coupled with an XML encoding for observations and measurements originating from sensors, and
archived in real-time. It provides standardized methods for accessing and exchanging observations,
alleviating the need to support a wide range of sensor-specific and community specific data formats.

• Sensor Observation Service (SOS): it corresponds to the Observation Agent specified in the previous
section. This is the service responsible of the transmission of measured observations, from sensors to
a client, in a standard way that is consistent for all sensor systems including remote, in-situ, fixed
and mobile sensors. It allows the customer to control the measurement retrieval process. This is the
intermediary between a client and an observation or near real-time sensor repository.

• Sensor Planning Service (SPS): it corresponds to the Planning Agent, whose design and implementation
are also addressed in this paper.

2.2.3. Mobile OS and IDE. Android is a mobile operating system developed by Google, in reality a
software platform composed of five parts [16, 28].

• Applications: the platform provides a set of core applications, which includes email client, SMS app,
contacts app, calendar, mapping, Web browser, etc.

• Application Framework: the base framework for developing Applications in Android. It is composed
of a set of tools enabling the realization of applications. Moreover, security implications and privacy
protection, among core concerns about such a device-driven approach, are mostly taken care by the
Application Framework itself, deviating most of the attention the topic, here unaddressed accordingly,
would otherwise deserve, e.g. in mixed / WSN-powered topologies.

• C/C++ Library: Android includes a set of C/C++ libraries, used by various components of the Android

Mobiles for Sensing Clouds: the SAaaS4Mobile Experience 219

Node Manager

Hypervisor

Abstraction Unit

Node

Mote 1
........

Virtualization Unit

Mote n

Adapter Adapter

(a) SN

Adapter

Hypervisor

Abstraction Unit

Device

Virtualization Unit

(b) Device

Fig. 3.1. The Hypervisor modular architecture.

system. These capabilities are exposed through the Application framework.
• Android Runtime Library: It provides a big part of functionalities available in the core libraries of the
Java programming language.

• The Linux kernel: Android relies on a Linux 2.6-based kernel for core system services such as memory
management, process management, network stack, security, driver model, etc. The core also acts as a
abstraction layer between the applications and the hardware.

In order to develop an application, Android offers a Software Development Kit (SDK) and a Native Development
Kit (NDK) [15]. The SDK provides a large number of development tools, needed to build, test, and debug
Android applications, including an emulator, able to emulate an Android mobile.

On the other hand, the NDK is the Android operating system API to natively develop in the language of
the target architecture, as opposed to the Android SDK, which provides (Java) bytecode-based abstractions,
thus hardware independent ones. The NDK helps developers integrate (typically, ARM) native code in their
applications to exploit the performance offered by accelerated operations in the processor. Based on the Dalvik
virtual machine, developers can embed C or C++ code to reuse some classes that have already been developed
for other systems.

3. The Hypervisor. A Hypervisor [10] can be viewed as the foundational component of our device-driven
approach to infrastructure-focused Clouds of sensors: it manages the resources related to sensing and actuation,
introducing layers of abstraction and mechanisms for virtualization. It works at the node level, which could
be either a whole sensor network, under a unique administrative domain, or a set of sensors, as built-in to a
standalone device. In other words, also referring to cf. Fig. 2.1, a node could be either a whole sensor network,
composed of several sensor boards or motes managed by a sink and/or a gateway, or a personal device that
could be more or less smart and thus can be equipped with one or more sensors. The Hypervisor functionalities
should fill this gap, dealing with such heterogeneity, hiding it to the above modules of the SAaaS reference
architecture. In the SN case, it is therefore necessary to split the Hypervisor architecture between the SN node
and mote layers. This way, all the motes composing an SN should have installed a specific Hypervisor module
locally managing the motes, coordinated by the high level modules of the Hypervisor deployed on the node/SN
gateway. This kind of two-level separation of concerns and assignment of operations descends also from the

220 S. Distefano, G. Merlino, A. Puliafito

InterfaceeeerrrfffaaaccceeeIIInnnttteee

Adapter

Observation

Agent
Planning Agent

Interface

Translation Engine
Customization

Engine

Mote

Manager

SN

(a) SN

InterfaceeeerrrfffaaaccceeeIIInnnttteee

Adapter

Translation Engine
Customization

Engine

Node

Manager

Device

(b) Device

Fig. 3.2. Adapter modules.

need for certain duties to be (self-)managed through autonomic approaches, typical of distributed entities.

A high-level, modular view of the Hypervisor architecture comprises four main building blocks, when dealing
with SNs: Adapter, Node Manager, Abstraction Unit and Virtualization Unit as shown in cf. Fig. 3.1(a),
collapsing down to three out of four components, when standalone devices (e.g. mobiles) are involved, as
depicted in cf. Fig. 3.1(b).

At the bottom of the Hypervisor, there is the Adapter, which plays several distinct roles through its modules.
The Translation Engine is a platform-specific driver, in charge of converting the high-level directives in native
commands. The Hypervisor is also appointed for processing requests for reconfiguration of the device, using the
(optional) Customization Engine, an interpreter able to execute on the sensing device the code needed to tailor
the sensing activities to customer-mandated requirements. Yet, the most important duty this layer-spanning
module has to cope with consists in providing mechanisms for the customer to establish an out-of-band (i.e. not
Interface- or Agent-mediated) channel to the system, for direct interaction with either the resources (e.g. for
Agent-agnostic collection of observations) or low-level modules (e.g. the Customization Engine), thus pinning
it as a mandatory component of the architecture.

The Node Manager works only at the node level and is in charge of the basic sensing resource operations
and mandating policies, in cooperation with the Adapter Mote Manager that replicates its functionalities at
mote level. In standalone device the two modules are collapsed into the Adapter Node Manager (cf. Fig.
3.2(b)). It is important to remark that the depiction (cf. Fig. 3.1(a)) of the Virtualization Unit for SNs is
L-shaped because it can work directly over the Agent-hosting Adapter in selected cases, e.g. when dealing
with a degenerate SN made up of a single mote. In such cases, an autonomic approach is adopted delegating
some management tasks of the Adapter to the Mote Manager running on the mote-side, performing specific
operations such as power-driven self-optimization with the Node Manager. The Mote Manager is not needed
on a standalone device, where the Node Manager itself makes up for the combination of the two modules.

The Observation Agent, featured in the Adapter for SNs (cf. Fig. 3.2(a)) and in the Abstraction Unit for
mobiles (cf. Fig. 3.3(b)), is in charge of requesting, retrieving, and eventually pre-processing measurements.
The Planning Agent (PA) pushes requests for actions (tasks) to the device. It is featured in the Adapter or the
Abstraction Unit, depending on the kind of topology, as also for the Observation Agent. The requests leaving
the PA are for preparing the resource to carry out a variety of duties (reservation of functionalities, tuning of
parameters, scheduling of observations). These commands allow management of operating parameters such as
duty cycle, sampling frequency, etc. Although providing useful and standardized mechanisms, the Observation
Agent is not strictly needed to let customers exploit sensing infrastructure. Indeed the PA is enough to handle
the physical (or virtualized) resources as long as a working bidirectional communication channel is established
between the client and the mote or mobile hosting the sensing device. Such a facility would then be enough
to let the customer do what is needed for getting and storing observations e.g. even build a client-side version
of a SensorML-compliant module for management of observations, synchronously working over the channel if
required.

Mobiles for Sensing Clouds: the SAaaS4Mobile Experience 221

Abstraction Unit

Planning

Aggregator

Observation

Aggregator

Resource Discovery

Customization

Manager

SN

(a) SN

Abstraction Unit

Planning

Agent

Observation

Agent

Device

(b) Device

Fig. 3.3. Abstraction unit modules.

Furthermore, in SN deployments, the Adapter has to expose a standard-compliant customer-friendly Inter-
face to on-board resources.

The Adapter provides its functionalities to the upper level Abstraction Unit. As can be seen comparing cf.
Fig. 3.3(a) with cf. Fig. 3.2(a), with regards to SNs it replicates planning and observation facilities, modeled
after those featured in the Adapter, but on a node-wide scale, combining the pool of resources of the whole SN.
In particular, the Observation Aggregator exposes all resources from the nodes and the Planning Aggregator
manages this set, sending combos, i.e. combination of commands, and tracking exit codes, eventually reacting
to (partial) failures by triggering apt adjustments. The Resource Discovery module, which offers an interface to
the motes, actively gathering descriptions of underlying resources and forwarding the results to the Aggregator
modules. The Customization Manager acts as an orchestrator for customization engines located on the motes.

With regards to mobiles, the architecture of the Abstraction Unit degenerates from the one depicted in cf.
Fig. 3.3(a) to the one in cf. Fig. 3.3(b), where only planning- and observation-oriented modules are part of the
unit, now named Agents for taking on the same role as their counterparts in the Adapter for SNs (cf. Fig. 3.2(a)),
thus leaving only the lowest layer of the latter in the version of the Adapter geared towards standalone mobiles
(cf. Fig. 3.2(b)).

All components of the Abstraction Unit in cf. Fig. 3.3(a) are mandatory (solid line border), as those are
needed to coordinate operations of the corresponding mote-side modules (when present), while the Observation
Agent in cf. Fig. 3.3(b) is optional (dashed line border), as its counterpart is in cf. Fig. 3.2(a).

The highest level of the Hypervisor is the Virtualization Unit, name after the Virtual Machine Monitor
to highlight its role as a manager of the lifecycle of virtualized resources instance. This includes APIs and
functionalities for virtual instance creation, reaping and repurposing, as well as for boot- (defined statically)
and run-time (dynamically) parameters discovery and tuning in accordance to contextualization requests.

4. Basic Abstraction Modules. Aim of this section is to provide details on the main modules imple-
menting abstraction and adaptation facilities of the SAaaS4Mobile framework on mobiles.

4.1. Translation Engine and Node Manager. The SAaaS4Mobile Node Manager of cf. Fig. 3.2(b) is
mandatory exclusively for its role as an out-of-band conduit, e.g. to the Customization Engine, where otherwise
the only way to interact with sensing resources is mediated by the Planning Agent, leaving no path to mould
the platform itself to the sensing requirements at hand. A way to establish this channel then, under a mobile
platform with typical features such as Android, can be through platform-provided facilities, i.e. Google Cloud
Messaging.

With regards to the Translation Engine, any sensing-related APIs provided by the node should be used when
available since developing the Agents against those frees us from the need to implement a layer for command
translation. For example, Android provides platform-specific Sensing APIs. Yet we cannot fully dispose of the
Translation Engine, because not all onboard devices, which could be leveraged for sensing, are exposed as such
(i.e. under the sensing APIs). This way the Translation Engine exploits the platform-standard (e.g. Android

222 S. Distefano, G. Merlino, A. Puliafito

InterfaceIIInnnttteeerrrfffaaaccceee

Planning Agent

Request Dispatcher

Interface

Sensor

Prober

Task

Explorer

Task

Manager

Observation

Access

Provider

Fig. 4.1. Planning Agent architecture

and Linux) low-level tools and mechanisms in order to export these resources under an extended set of devices
the sensing APIs know about, easing the job of the Sensor Prober, e.g. just letting it enumerate resources
through the sensing APIs.

4.2. The Planning Agent. The SAaaS4Mobile Abstraction Unit, as shown in cf. Fig. 3.3(b), is mainly
composed of the Planning Agent (PA) that is the only mandatory module of the unit, whereas the same
building block resides in the Adapter when considering SNs. In the following, the details about the PA and
its components are to be considered valid in both cases. The PA works side-by-side with the Observation
Agent, complementing its features. Unlike the latter, engaged in providing upper layers with XML-encoded
measurements (observations), sampled while driving the sensing resources, the former is mainly devoted to tune
sampling parameters according to user-defined preferences, still to be interfaced with by means of extensible
standards-compliant encoding of requests for tasks, and corresponding responses. Other than tuning, tasks for
scheduling of observations can be consumed by the PA: it may be following a predefined schedule, or upon the
occurrence of a particular event, or simply a request from a client. The main aim of this effort is exposing all
underlying knobs to make them available for customers to operate on transparently.

In order to meet the aforementioned requirements, an architecture comprising the six modules shown in
cf. Fig. 4.1 has been designed: a Request Dispatcher, a Sensors Prober, a Task Explorer, a Task Manager,
an Observation Access Provider and an Interface. The Request Dispatcher has to identify and demultiplex a
request to the modules underneath. The Interface has to interact with the SAaaS4Mobile Adapter services, i.e.
the Customization Engine, the Translation Engine and the Node Manager.

The Sensor Prober is in charge of enumerating all the sensors and actuators within a sensors platform,
however rich and complex, by low-level platform-specific system probing. These sensors are then identified
according to their types, supported observation facilities and sampling specs, overall (nominal) features and
manufacturing details (brand, model, etc.).

The Task Explorer is responsible for enumeration of available tasks, to be provided by probing sensors as
listed by the aforementioned Prober. In terms of tasks, those related to parameter tuning for sensing resources
logically differ depending on the sensor type and technology, it is therefore possible to e.g. plan retrieval of
temperature samples from a thermometer, once a certain threshold has been exceeded, change the relative
position and the focal length of a camera, or simply schedule reading of sensor observations at fixed intervals,
etc. Moreover, in order to assess feasibility of a certain task, among the ones enumerated for selection, the
sensor has to be queried and provide (runtime) confirmation, or else denial, of availability for servicing (or
reservation thereof). It’s then up to the querying party to decide what to do after feasibility assessment for the
task under consideration.

The Task Manager controls tasks’ lifecycle, since feasibility assessment through reservation/submission
stages, then following up, and acting upon, running task progress. Due to the number of, and dependencies for,

Mobiles for Sensing Clouds: the SAaaS4Mobile Experience 223

Task Manager

Task

Submitter

State

Controller

Reservation

Manager

Feasibility

Controller

Task

Updater

Task

Canceller

Fig. 4.2. Task Manager architecture

the operations involved, the Task Manager duties have been assigned to six modules as shown in the architecture
of cf. Fig. 4.2. Two of them are mandatory, the rest are optional.

Task Submitter and State Controller implement mandatory functionalities. Their roles are, respectively, to
enable users to set all (mandatory) parameters for a specific task before submission to a sensor, and submit
it when ready, and to follow up the processing of the task, alerting any agent, subsequently querying about
availability for task execution, about its (busy) status until completion. The optional modules are instead:
Reservation Manager, Feasibility Controller, Task Updater and Task Canceller. These modules provide addi-
tional facilities for control on running (or yet to be scheduled) tasks to process.

If needed, a user may reserve a task for a period of time, during which he/she gets exclusive access to the
underlying resource, as no other user can submit or reserve it. The task will then be executed as soon as the
user confirms for the real processing stages to commence. The Reservation Manager is responsible for both
reservation of tasks, and its confirmation. The Feasibility Controller has to check if a task is feasible, as detailed
above. The feasibility of a task depends on the availability of any resource essential for task servicing, e.g. if
not still allocated due to a previous request.

Then, the Task Updater is in charge of updating configuration parameters of a task, if some modifications
have to be pushed after tasks enter into processing stages. Lastly, the Task Canceller empowers users to stop
and therefore retire a task, when already submitted or under reservation.

Finally, once a task has been serviced, the resulting observation gets stored. Any observation will be
accessible through the Observation Agent only. In terms of observations, the sole duty up to the PA lies in
the Observation Access Provider ability to provide endpoints to access measurements. Being dependent on the
Observation Agent, it is an optional component, required only if the latter is implemented in the Abstraction
Unit.

5. A Dynamic Perspective. After having described the SAaaS4Mobile building block architecture, we
can go into further details about the interaction among them from a dynamic, behavioural perspective. We
identify three main phases of an end user-SAaaS4Mobile system interaction, as depicted in cf. Fig. 5.1:
i. Sensors & Tasks Acquisition: providing users with all available tasks, as offered by the SAaaS provider;
ii. Sensor Use / Interaction: selecting and preparing a task to be then submitted to the SAaaS provider, while

keeping the ability to manage the task during its execution;
iii. Observation Access : in case one or more observations were the expected output of the task (e.g. scheduling

or confirmed reservation), providing users with methods to retrieve stored measurements.
Resource release is not described here as it can be considered a special case degenerating from the manage-

ment of requests for cancellation of tasks.

5.1. Sensors & Tasks Acquisition. The first macro-step of this workflow consists in the acquisition
(enumeration) of all the tasks available over the full set of (on-board) sensing resources. More in detail, as
depicted in cf. Fig. 5.2, an activity diagram (AD) for resource acquisition, a client sends a request, featuring
requirements and preferences on the kind of needed sensing resources and corresponding range of tasks, to be
submitted to the SAaaS4Mobile framework server exposed by the provider of choice. At this stage the high-
level request gets mapped to standards-compliant constraints that can be easily be verifiable against enumerated
resources and associated task types; the mechanisms for this mapping are out of the scope of this paper, probably
the object of future investigation efforts. From the perspective of the contributor, e.g. mote-side, the job of the

224 S. Distefano, G. Merlino, A. Puliafito

Sensors & Tasks

 Acquisition

Sensor Use /

Interaction

Observation

Access

EndUser
SAaaS

Provider

Fig. 5.1. SAaaS4Mobile-end user interaction AD

SAaaS4Mobile framework is to independently (i.e. at boot-up) probe the mote, at a level as close to hardware
or OS / platform as possible, to find any exploitable sensing (or actuation) resource on board, e.g. not allocated
exclusively to some other, immutable, activity. The probing thus happens at the very least in parallel, or
possibly even long before the first request to be mapped comes in. The core resource (information) acquisition
then happens by means of a two-step operation: the first being the search for capabilities, e.g. the kinds
of phenomena the devices would sample during observations. The second one pursues the goal of retrieving
all available tasks among the subset of sensing resources chosen by selection over advertised capabilities, i.e.
according to one or more of the aforementioned criteria (e.g. phenomena to be sampled).

Again, upon reception of the list of available tasks, the SAaaS4Mobile framework server scans it to find
a task matching the provided requirements. Moreover, the enumerated tasks provide a detailed description of
parameters that can be set at the will of the customer. The list is sent as an endpoints’ notification. If none
correspondence was found, the SAaaS4Mobile framework server sends a notification to the client indicating that
there is no results.

5.2. Sensor Use / Interaction. The second macro-step enables users to manage and configure a task,
as obtained according to the first one. Therefore, the former can be split in its constituent macro-actions, and
depicted accordingly in two ADs, the Submission (cf. Fig. 5.3) and Management (cf. Fig. 5.4) ones, respectively.

Submission operations, per the AD, comprise pre-submission configuration stages for a task, and submission
itself. In the previous step of the high-level user-system interactions, the client has received a subset of available
tasks, filtered by compatibility to constraints on capabilities and other requirements. At this point the client
just has to choose one among the available alternatives for tasks, ready for reservation and submission, and
finally configure it. At last, once the configuration is over, there are three different methods to submit the task,
including configuration parameters, to the sensor:

• direct submission - a “Submit” request by the client gets forwarded to the sensor, being managed by
the Task Submitter, while containing all the parameters needed to enable the resource to service the
task under consideration.

• submission by reservation - reservation of a task for a beginning of processing stages in the future,
under the guise of a “Reserve” request, which aims to book a resource (e.g. task) for a limited period

Mobiles for Sensing Clouds: the SAaaS4Mobile Experience 225

Fig. 5.2. Resource acquisition AD

under exclusive access. In case the resources are already allocated to another client or the configuration
contains an error, no further progress can be achieved along the reservation attempt, apart from starting
over. Otherwise, if the reservation was successful, a request to “Confirm” it may be sent, at the
discretion of the client previously forwarding the reservation, upon which task processing commences,
up to completion and subsequent deallocation of reserved resources, for the next request to be serviced.
Both requests, i.e. reservation itself, and its confirmation, are managed by the Reservation Manager.

• feasibility checking - a “Get Feasibility” request, to be fully managed by the Feasibility Controller. The
corresponding response signals approval or denial of subsequent submission / reservation operations,
as evaluated at request time, thus dependent on availability of resources per conveyed requirements. If
execution is evaluated as feasible, then the client can send a submit (or a reserve) request, and follow
along one of the two aforementioned flows.

The AD related to Management describes the flows where the clients act upon an already running instance
of a task execution, in particular empowered by three kinds of requests available at that stage:

• status checking -“Get Status” invocation to know at which step of the execution is the task;

226 S. Distefano, G. Merlino, A. Puliafito

Fig. 5.3. Interaction for submission operations

Mobiles for Sensing Clouds: the SAaaS4Mobile Experience 227

Fig. 5.4. Interaction for management operations

Fig. 5.5. Observation access AD

• updating - “Update” invocation to reconfigure task parameters;
• cancelling - a “Cancel” request to quit submitted or reserved tasks.

As can be seen by inspecting the swimlanes in the diagram of cf. Fig. 5.4, these requests are services respectively
by: State Controller, Task Updater and Task Canceller, all components inside the Task Manager.

5.3. Observation Access. The last diagram, in cf. Fig. 5.5, depicts the flow for the user to get access to
past observations, obtained thanks to the corresponding task(s). Indeed, as specified in cf. Sect. 4.2, the PA may
also leverage Observation Agent services. So, after an interaction, when involving tasks to schedule observations,
a client may later demand for endpoints and/or mechanisms to access data about obtained measurements, by
means of “Describe Result Access” requests specifically. This translates to a transparent (to the user) interaction
between the PA and the Observation Agent.

228 S. Distefano, G. Merlino, A. Puliafito

6. Proof of Concepts. In this section we detail on the implementation of a preliminary version of the
SAaaS4Mobile framework including the very basic core abstraction modules and functionalities, which has been
first described and then evaluated from an operational point of view.

6.1. Implementation. The implementation of the low-level modules of the SAaaS4Mobile framework has
been targeted to mobiles equipped by Android OS 4.0, using the NDK developer libraries and API provided by
the Android community [15]. The core of this effort, the design and coding of the Abstraction Unit, is based
on the SWE Sensor Planning Service (SPS) 2.0 standard [22]. It enables the interaction among user clients and
sensor and actuator services using XML schemas to submit requests and to allow the service to reply. Modeling
behaviour after the SPS standard, the functionalities of the Sensor Prober, Task Explorer, Task Manager and
Observation Access Provider modules described in cf. Sect. 4.2 have been developed.

The Sensor Prober has to retrieve information regarding: i) the contributor, if available (the extent of
such information disclosure is totally up to the contributor); ii) the node sensors and their descriptions, also
including the measured phenomenon and corresponding metrics; and iii) the geographic area (range) inside
which observations are significant. This feature is implemented by the SPS GetCapabilities primitive. A
GetCapabilities request is composed of four sections. The first one is ServiceIdentification containing the
contributing node metadata, i.e. generic info on the type of the node, brand, model and similar. Then the
ServiceProvider section provides information on the contributor, if available and public. The third section is
the OperationsMetadata one, with metadata about the operations specified by the service and implemented by
the node. The last is the Content section, containing metadata about the sensors provided by the smart device
through the PA and the communication mechanisms supported (XML, SOAP, etc.).

The Task Explorer retrieves the list of tasks that can be performed on a sensor through specific SPS
DescribeTasking requests. A description of the available configuration operations for the sensor is thus obtained
and provided to the Task Manager. As shown in cf. Fig. 6.1(a), the request just contains a Procedure element
to enquiry a sensor in the list about the tasks that can be performed. The tasks are identified by the name,
the description, and the capabilities’ configuration information. The Task Manager implements a set of SPS
requests. The Submit one allows the user to launch the execution of a configured task. Eventually, before to
submit a job request, it is possible to enquire about its feasibility through the GetFeasibility primitive as shown
in cf. Fig. 6.1(b). The reply, as depicted in cf. Fig. 6.1(c), can be “Feasible” or “Not Feasible” and, optionally,
it may contain a list of alternative sets of tasking parameters that might help to the reformulation of a request.
The user can also reserve the resources required to perform a specific task and then launch the task through
the Reserve and Confirm requests as shown in cf. Fig. 6.2(a). In a Reserve request an expiration time has to
be specified. At expiration time, all the reserved resource are released if the task has not been confirmed as in
cf. Fig. 6.2(b).

It is possible to check the status of a task using the Status request as shown in cf. Fig. 6.3(a). A task
can be in six different states: “In Progress” if the service is executing it (cf. Fig. 6.3(b)), “Completed” if it
was completed as planned, “Reserved” if it has been reserved, “Failed” if execution fails, “Expired” when the
task reservation expires and “Cancelled” if the task was cancelled. The client can eventually update or cancel
a task, with the Update and Cancel requests respectively.

Finally, the Observation Access Provider in the PA aims at providing the client with mechanisms, if needed,
and endpoints to access the observations and measurements obtained during execution. It implements processing
of SPS DescribeTaskingResult requests to interact with a specific sensor or a specific task as the ones shown in
cf. Fig. 6.4.

6.2. Preliminary Evaluation. In this section we provide some results on a preliminary prototype im-
plementation of the SAaaS4Mobile abstraction layers. We have therefore implemented a mock SAaaS4Mobile
testbed composed of an Intel I7 laptop acting as the SAaaS4Mobile server and an Android 4.2 Samsung S3
mobile as client. The SAaaS4Mobile client and server are implemented leveraging Java servlet technology using
Apache Tomcat as the servlet container. The prototype is used to test the deployment and operation of very
simple and basic operations as the ones discussed above. More specifically we evaluated GetCapabilities, De-
scribeTasking, Submit and Observation Access requests, by invoking them and iterating each test 1000 times,
collecting the corresponding results to obtain the mean time and the standard deviation for each measurement
as described in the following.

Mobiles for Sensing Clouds: the SAaaS4Mobile Experience 229

(a) Acquisition (b) Configuration

(c) Feasibility

Fig. 6.1. SAaaS4Mobile resource acquisition, configuration and feasibility check

230 S. Distefano, G. Merlino, A. Puliafito

(a) Reservation (b) Expiration timeout

Fig. 6.2. SAaaS4Mobile resource reservation and expiration timeout setting

, and Parameter/ GetCapabilities DescribeTasking Submit Observation Access
Statistic ms ms ms ms

µ 383.3 381.52 586.53 345.66

σ 11.2 12.1 20.5 9.7

Table 6.1

Basic operations response time obtained through the experiments.

All the parameters thus obtained through the evaluation are reported in cf. Table 6.1 . From these values
we can argue that the most time-consuming operation is the Submit one, while the Observation Access request
is that with the lowest delay. It could be also observed that both GetCapabilities and DescribeTasking have
more or less similar performance. Thus, a whole workflow as the one depicted in Figure 5.1, made up of a
sequence of invocations for the four aforementioned operations, has at least a response time of about 1700 ms.

These preliminary values strongly encourage us in furthering the development of the SAaaS4Mobile frame-
work, since they serve as a foundation for assessing the feasibility of the SAaaS approach. A further and more
comprehensive use case development, based on this preliminary implementation, is ongoing.

Mobiles for Sensing Clouds: the SAaaS4Mobile Experience 231

(a) Reservation (b) Expiration timeout

Fig. 6.3. SAaaS4Mobile resource reservation and expiration timeout setting

7. Conclusions. Aim of this paper is to continue presenting and discussing the feasibility of a sensing
Cloud, able to actively involve devices, personal or standalone as well as grouped into specific administration do-
mains such as sensor networks, either mobile or static. According to this vision, sensing and actuation resources,
shared by device owners and administrators in a volunteer contribution fashion, are gathered by sensing Cloud
providers to be provided on-demand, elastically, according to end-user requirements. This approach has been
formalised into the Sensing and Actuation as a Service paradigm that, similarly to IaaS for compute Clouds,
aims at providing actual, even if virtual, (sensing) resources. With regards to mobiles, this perspective comple-
ments and extends the one relative to mobile Clouds, where mobiles are just clients of Cloud-powered services,
by actively involving them into a wide sensing infrastructure accessed and provided as a service. This way,
the SAaaS paradigm lays at the intersection between the IoT and the service oriented/utility/Cloud computing
fields.

To implement such a sensing Cloud several functionalities such as abstracting, virtualising, enrolling, col-
lecting, discovering and managing (sensing and actuation) resources are required. Abstraction is a very basic
one, since all nodes should be able to join the sensing Cloud and to communicate/interoperate, thus they
should provide a uniform, abstract interface to underlying physical resources. In this paper we mainly focus
on mobiles, dealing with issues related to sensing resource access and management through the SAaaS4Mobile

232 S. Distefano, G. Merlino, A. Puliafito

(a) Access request (b) Results URI

Fig. 6.4. SAaaS4Mobile oservation access

framework. In particular, the design of the SAaaS4Mobile Hypervisor module is tailored on mobiles’ unique
features, mainly specifying its blocks such as the Planning Agent, together with the communication layer inside
the Node Manager and with the low-level access to devices the Translation Engine abstracts away.

Static and dynamic behaviour of these components have been described, both detailing their architecture
and focusing on their interactions as well as on those between the end-user and the contributing node, i.e. the
SAaaS4Mobile Hypervisor client. We also described these interactions and commands, from the angle of our
prototype implementation on Android smartphones, also testing some on them through a proof of concepts
demonstrating the feasibility of the approach.

Further endeavours are going to investigate and explore aspects related to virtualization, as well as to port
SAaaS implementations to SNs. We are also eager to spend efforts over use cases and application scenarios,
especially to carry out useful evaluations on performance, trying to validate the SAaaS approach by uncovering
outstanding advantages and exploring unique features, by extending the current SAaaS4Mobile implementation.
Moreover, we are also investigating on further developments of the approach in context of IoT, considering it as
the implementation of a utility vision for the IoT paradigm, able to support novel, up and coming trends such
as crowdsensing.

Mobiles for Sensing Clouds: the SAaaS4Mobile Experience 233

REFERENCES

[1] K. Aberer, M. Hauswirth, and A. Salehi, Infrastructure for data processing in large-scale interconnected sensor networks,
in Mobile Data Management, 2007 International Conference on, may 2007, pp. 198 –205.

[2] M. Avvenuti, P. Corsini, P. Masci, and A. Vecchio, An application adaptation layer for wireless sensor networks,
Pervasive Mob. Comput., 3 (2007), pp. 413–438.

[3] M. Behan and O. Krejcar, Modern smart device-based concept of sensoric networks, EURASIP Journal on Wireless Com-
munications and Networking, 2013 (2013), p. 155.

[4] D. Bruneo, S. Distefano, F. Longo, A. Puliafito, and M. Scarpa, Evaluating wireless sensor node longevity through
markovian techniques, Computer Networks, 56 (2012), pp. 521–532.

[5] Z. Chen, N. Chen, L. Di, and J. Gong, A flexible data and sensor planning service for virtual sensors based on web service,
Sensors Journal, IEEE, 11 (2011), pp. 1429–1439.

[6] J. Clarke, J. Lethbridge, R. Liu, and A. Terhorst, Integrating mobile telephone based sensor networks into the sensor
web, in Sensors, 2009 IEEE, 2009, pp. 1010–1014.

[7] V. D. Cunsolo, S. Distefano, A. Puliafito, and M. Scarpa, Cloud@home: Bridging the gap between volunteer and
cloud computing, in Emerging Intelligent Computing Technology and Applications, D.-S. Huang, K.-H. Jo, H.-H. Lee,
H.-J. Kang, and V. Bevilacqua, eds., vol. 5754 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2009,
pp. 423–432.

[8] S. Distefano, Evaluating reliability of wsn with sleep/wake-up interfering nodes, Int. J. Systems Science, 44 (2013), pp. 1793–
1806.

[9] S. Distefano, G. Merlino, and A. Puliafito, Sensing and actuation as a service: A new development for clouds, in
Proceedings of the 2012 IEEE 11th International Symposium on Network Computing and Applications, NCA ’12, Wash-
ington, DC, USA, 2012, IEEE Computer Society, pp. 272–275.

[10] S. Distefano, G. Merlino, A. Puliafito, and A. Vecchio, A hypervisor for infrastructure-enabled sensing clouds, in IEEE
International Conference on Communications, Budapest, Hungary, June 9-13, 2013 2013.

[11] S. Distefano and K. S. Trivedi, Non-markovian state-space models in dependability evaluation, Quality and Reliability
Eng. Int., 29 (2013), pp. 225–239.

[12] M. Fazio, M. Villari, and A. Puliafito, Sensing technologies for homeland security in cloud environments, in Sensing
Technology (ICST), 2011 Fifth International Conference on, 28 2011-dec. 1 2011, pp. 165 –170.

[13] M. Gaynor, S. L. Moulton, M. Welsh, E. LaCombe, A. Rowan, and J. Wynne, Integrating wireless sensor networks
with the grid, IEEE Internet Computing, 8 (2004), pp. 32–39.

[14] G. Gil, A. Berlanga de Jesus, and J. Molina Lopez, incontexto: A fusion architecture to obtain mobile context, in
Information Fusion (FUSION), 2011 Proceedings of the 14th International Conference on, 2011, pp. 1–8.

[15] Google Inc., Android ndk - http://developer.android.com/tools/sdk/ndk/index.html.
[16] , Android Website - http://www.android.com/, 2013.
[17] V. Huang and M. Javed, Semantic sensor information description and processing, in Sensor Technologies and Applications,

2008. SENSORCOMM ’08. Second International Conference on, 2008, pp. 456–461.
[18] J. Jamsa, M. Luimula, J. Schulte, C. Stasch, S. Jirka, and J. Schoning, A mobile data collection framework for the

sensor web, in Ubiquitous Positioning Indoor Navigation and Location Based Service (UPINLBS), 2010, 2010, pp. 1–8.
[19] A. P. Jayasumana, Q. Han, and T. H. Illangasekare, Virtual sensor networks - a resource efficient approach for concurrent

applications, in Information Technology, 2007. ITNG ’07. Fourth International Conference on, april 2007, pp. 111 –115.
[20] Y. Liu, D. Hill, A. Rodriguez, L. Marini, R. Kooper, J. Myers, X. Wu, and B. Minsker, A new framework for

on-demand virtualization, repurposing and fusion of heterogeneous sensors, in Proceedings of the 2009 International
Symposium on Collaborative Technologies and Systems, CTS ’09, Washington, DC, USA, 2009, IEEE Computer Society,
pp. 54–63.

[21] M. Navarro, M. Antonucci, L. Sarakis, and T. Zahariadis, Vitro architecture: Bringing virtualization to wsn world,
in Proceedings of the 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems, MASS ’11,
Washington, DC, USA, 2011, IEEE Computer Society, pp. 831–836.

[22] Open Geospatial Consortium, OGC(R) Sensor Planning Service Implementation Standard, OGC, 2.0 ed., 2011.
[23] C. Reed, M. Botts, J. Davidson, and G. Percivall, Ogc(r) sensor web enablement: overview and high level achhitecture.,

in Autotestcon, 2007 IEEE, sept. 2007, pp. 372 –380.
[24] L. Sarakis, T. Zahariadis, H.-C. Leligou, and M. Dohler, A framework for service provisioning in virtual sensor networks,

EURASIP Journal on Wireless Communications and Networking, 2012 (2012), p. 135.
[25] J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos, M. Seltzer, and M. Welsh, Hourglass: An infrastructure for

connecting sensor networks and applications, tech. report, 2004.
[26] L. Sun, D. Zhang, and N. Li, Physical activity monitoring with mobile phones, in Toward Useful Services for Elderly and

People with Disabilities, B. Abdulrazak, S. Giroux, B. Bouchard, H. Pigot, and M. Mokhtari, eds., vol. 6719 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, 2011, pp. 104–111.

[27] M. Yuriyama and T. Kushida, Sensor-cloud infrastructure - physical sensor management with virtualized sensors on cloud
computing, in Network-Based Information Systems (NBiS), 2010 13th International Conference on, sept. 2010, pp. 1 –8.

[28] Y. Zhi-An and M. Chun-Miao, The development and application of sensor based on android, in Information Science and
Digital Content Technology (ICIDT), 2012 8th International Conference on, vol. 1, 2012, pp. 231–234.

234 S. Distefano, G. Merlino, A. Puliafito

Edited by: Maria Fazio and Nik Bessis
Received: Nov 2, 2013
Accepted: Jan 10, 2014

Scalable Computing: Practice and Experience

Volume 14, Number 4, pp. 235–247. http://www.scpe.org

DOI 10.12694/scpe.v14i4.930
ISSN 1895-1767
c© 2013 SCPE

TOWARDS AN AUTOMATED BPEL-BASED SAAS PROVISIONING SUPPORT FOR
OPENSTACK IAAS

PAOLO BELLAVISTA †, ANTONIO CORRADI †, LUCA FOSCHINI †, AND ALESSANDRO PERNAFINI ‡

Abstract. Software as a Service (SaaS) applications fully exploit the potential of elastic Cloud computing Infrastructure
as a Service (IaaS) platforms by enabling new highly dynamic Cloud provisioning scenarios where application providers could
decide to change the placement of IT service components at runtime, such as moving computational resources close to storage
so to improve SaaS responsiveness. Moreover, emergent Internet of Things (IoT) scenarios enable novel computing applications
involving several heterogeneous smart objects interacting with each other. These highly dynamic scenarios call for novel Cloud
support infrastructures able to automate the whole SaaS provisioning cycle spanning from resource management to dynamic IT
service components placement, including software deployment, components re-activation, and rebinding operations. However,
notwithstanding the core importance of these functions to truly enable the deployment of complex SaaS over IaaS environments, at
the current stage only partial and ad-hoc solutions are available. This paper presents a support infrastructure aimed to facilitate
the composition of heterogeneous resources, such as single Virtual Machines (VMs), DB services and storage, and stand-alone
services, by automating the provisioning of complex SaaS applications over the widely diffused real-world open-source OpenStack
IaaS. Collected experimental results show the effectiveness of parallel execution of deployment steps introduced by our solution and
demonstrate its applicability and advantages in a real SaaS production testbed.

Key words: Cloud computing; Internet of Things; Service orchestration; OpenStack; Juju; BPEL

1. Introduction. Novel Cloud computing infrastructures consisting of worldwide fully interconnected data
centers offering their computational resources as IaaS on a pay-per-use basis are opening brand new challenges
and opportunities to develop novel SaaS-based applications. Moreover, during the last decade, we experienced
the emergency of IoT application scenarios, where heterogeneous and ubiquitous devices, spanning from fully-
fledged smartphones to wired and wireless sensors, can interact with each other and cooperate to achieve
common goals of enabling new smart scenarios. The unique requirements of IoT environments (such as fast
deployability, high scalability, and large-scale provisioning), together with their highly dynamic nature, call for
the development of a large number of new SaaS applications exploiting the elasticity offered by novel Cloud
systems. These systems are typically characterized by both agile and continuous developments and deployments
as well as ever-changing service loads, and call for highly novel automatic solutions able to dynamically and
continuously supervise and facilitate the whole application management lifecycle.

In recent years, the advent of new Platform as a Service (PaaS) environments, such as CloudBees, Cloud-
Foundry, and OpenShift has simplified the provisioning of new SaaS applications over physical and IaaS-based
Cloud systems [1, 2, 3]; at the same time, PaaS technologies tend to impose to the final developer fixed and
well-defined software stacks (including languages and usable services), often difficult to modify and to tailor to
the specific service needs. In addition, from a more technological perspective, while SaaS and IaaS solutions have
been widely used and employed in the last decade even before the advent of the Cloud wave, PaaS represents
a younger technology that still deserves much work to improve flexibility and interoperability between different
PaaS environments, as well as in enhancing integration opportunities with other existing IaaS and SaaS ones.
Focusing only on SaaS-over-IaaS solutions, enabling the management and especially the provisioning of complex
SaaS applications over highly dynamic and large-scale Cloud-based IoT environments is still a difficult task that
requires to solve several open management issues spanning from virtualization issues, such as Virtual Machine
(VM), storage, and network virtualization, to large-scale Cloud monitoring, from optimal resource placement
computation to standardization and interoperability of the different deployment frameworks and Application
Programming Interfaces (APIs) adopted by various Cloud providers, and so forth.

Among all these challenging issues, the purpose of this paper is to present an architecture that offers a
support for the orchestration of all the steps needed to publish a SaaS application within a Cloud IaaS. A
SaaS application inside a Cloud environment can be viewed as a collection of opportunely configured service
components deployed into a set of dynamically created IaaS resources. In modern datacenters, there is a high

†Dipartimento di Informatica Scienza e Ingegneria (DISI), Bologna, Italy
({paolo.bellavista,antonio.corradi,luca.foschini}@unibo.it).

‡Centro Interdipartimentale di Ricerca Industriale ICT (CIRI ICT), Bologna, Italy (alessandro.pernafini@unibo.it).

235

236 P. Bellavista, A. Corradi, L. Foschini and A. Pernafini

availability of computational, storage, and network resources, but it is still missing a mechanism to automatically
orchestrate all the involved entities to allocate resources, to deploy and configure various software components,
and to manage their interactions in order to provide the requested application. Indeed, before application
providers can provide an application, they need to manually perform a set of operations (i.e., request new
VMs, install and configure software) that, especially for large-scale deployments, like the ones we could obtain
in IoT scenarios, could be really time consuming thus reducing the advantages of having flexible compute
infrastructures.

This specific problem has already been partially addressed by some contributions in the literature; however,
most of the existing efforts focus on single aspects. For instance, some proposal addressed deployment and life-
cycle management of service components [4, 5, 6], while the integration of software lifecycle management as a
core function of IaaS environment management supports, instead, apart a few specific seminal studies [7, 8, 10],
is still widely unexplored. In this context, we claim the necessity of new fully-integrated automated SaaS
provisioning facilities that start from the management of virtual resources, pass through the installation, con-
figuration and management of software components, and end with the coordination of these components. That
would be highly beneficial both for SaaS application providers, especially in highly dynamic IoT environments,
to ease the realization of new SaaS applications through the composition of existing single service components
in a mash-up like fashion, and for IaaS Cloud providers, by taking over all the error-prone and time-consuming
deployment and configuration operations at the IaaS level.

To address all these open issues, this paper proposes a novel automated SaaS-over-IaaS provisioning support
that adopts three main original guidelines. First, it provides to both IaaS Cloud providers and to SaaS appli-
cation providers a tool that transparently takes over the execution of software deployments and updates with
almost no need for human intervention. Second, it proposes a general automated application provision support
that integrates with state-of-the-art technologies, such as the highly interoperable OpenStack IaaS and the
standard Business Process Execution Language (BPEL), to ease the definition of all main deployment, config-
uration, and deployment monitoring steps. Third, our prototype has been implemented as an open-source tool
based on the open-source OpenStack Cloud platform and is made available to the Cloud community. Finally,
in order to better underline the benefits and original aspects of the proposed solution and to demonstrate the
effectiveness of our solution, the paper presents an experimental evaluation based on a realistic SaaS application
provisioning scenario on top of an open-source testbed based on OpenStack.

The remainder of this paper is organized as follows. In Sect. 2, we give an overview of related work
in the literature. In Sect. 3, we introduce needed background material about all main involved standards,
technologies, and support tools; in Sect. 4, we present our framework and outline its main components; in
Sect. 5, we provide some implementation details about our presented architecture. Finally, in Sect. 6 we show
collected experimental results. Conclusions and directions of future work end the paper.

2. Related works. The on-demand provisioning of services and resources in distributed architectures has
been deeply investigated in recent years. For the sake of space limitations, we will focus on two research directions
only: we start with works that provide solutions for the deployment and lifecycle management of software
components; then we move towards solutions that, closer to our proposal, enable automated provisioning of
applications by integrating software lifecycle as part of the wider Cloud IaaS management operations.

Focusing on the first research direction, the design, deployment, and management of software components
can be challenging in systems distributed on a large scale, and several different systems provide solutions to
automate these processes. The work depicted in [4] presents a system management framework that, given
a model of configuration and lifecycle, automatically builds a distributed system. Similarly, authors of [5]
introduce a model-based solution to automatically configure system specifications and provide this system on-
demand to the user. Finally, in [6], authors presented a solution to face change management issues; this solution
aims to automate all the steps required to handle software or hardware changes to existing IT infrastructures,
with the goal of an high degree of parallelism. All these solutions provide the automation of the deployment and
management of software components, so relieving administrator of the burden of manually configure distributed
systems; however, they only focus on the deployment of software components and do not consider virtual
infrastructure management, that instead assumes a central role in Cloud environments.

Along the second research directions, some seminal works have started to analyze the automated provisioning

Towards an Automated BPEL-based SaaS Provisioning Support for OpenStack IaaS 237

of applications in Cloud systems. The solution presented in [7] describes a multi-layer architecture that enables
the automated provisioning and management of cloud services; with this solution users can select a service from a
catalog of service templates, then the service can be configured by the user and deployed automatically. Authors
of [8] present a solution for on-demand resource provisioning based on BPEL [9]. This solution extends BPEL
implementations with the possibility to schedule workflow steps to VMs having a low load and the possibility to
add new VMs on-demand in peak-load situations. Both solutions focus on one of the most challenging aspects
of Cloud computing, i.e., the capability to request and use computational resources in a small lapse of time,
resulting in a fast performance increment and in a decrease of management costs. The works depicted in [10]
and [11] propose similar architectures for a generic provisioning infrastructure based on BPEL. These solutions
allow SaaS application providers to define generic provisioning workflows independent from the underlying
provisioning engines by enabling the possibility to automate the component-to-workflow matching process; they
also supports dynamic provisioning flows in order to face peak-load situations by allocating additional resources
at runtime. At the same time, these approaches focus more on the theoretical part of the management process
and leave out of the scope of the work possible implementation issues and analysis of additional overhead
introduced by the proposed solutions. Finally, another very interesting effort, also because complementary to
ours, is the one presented in [12] that aims to standardize both topology and orchestration specifications for
Cloud applications with a goal to make SaaS applications and their management portable across different IaaS
Cloud providers.

3. Background. This section introduces some background knowledge to provide a better understanding
of the area. Section 3.1 presents Cloud IaaS environments and provides needed details about the standard-de-
facto OpenStack IaaS [13]. Section 3.2 presents Juju, a scripting-based tool to ease the deployment of service
components [14]. Finally, Section 3.3 gives some needed background material about the BPEL standard that
we use to orchestrate the whole application provisioning process through the definition of proper workflows [9].

Before starting, let us introduce some terminology about the three main types of actors in Cloud systems:
Application users, Application providers, and Cloud providers. Application users are the final clients that require
access to particular online SaaS application and use its resources. Application providers build and expose SaaS
applications, typically composed by several service components, to the end users, and tend to externalize the
execution of their own services to avoid the deployment of costly private IT infrastructure. Finally, Cloud
providers supply application providers with resources on a pay-per-use fashion, in order to let them execute
their applications over their IaaS-based environment. In this paper, we will focus mainly on the application
providers and on how they interact with Cloud providers to enable, declare, and monitor the provisioning of
complex applications consisting of multiple service components.

3.1. OpenStack. OpenStack is an open-source project for building and managing private and public
Cloud infrastructures [13], proposed and promoted by NASA and Rackspace in 2010. OpenStack belongs to
the category of Infrastructure as a Service (IaaS) systems, whose goal is to provide resources, such as virtual
machines, virtual storage blocks, etc., on-demand from large pools installed in datacenters. OpenStack is based
on a very flexible architecture supporting a very large set of hardware devices and hypervisors (i.e. Hyper-V,
KVM, ESX, etc.) and even small businesses are allowed to deploy their own private Cloud because of the
open-source nature of this solution. However, OpenStack still lacks a monitoring and dynamic reconfiguration
mechanism to favor a dynamic deployment of applications on a large scale, thus requiring a manual management
to tailor specific scenarios and deployments.

OpenStack manages computation, storage and networking resources on the Cloud in order to provide
dynamic allocation of VMs [13]. OpenStack is based on five main services: the first one, called Nova, to manage
both computational and networking resources; the second one, named Glance, to manage and provide VMs
images; the third one, Neutron to manage network resources, and, finally, Swift and Cinder to manage storage
resources. To better understand our work, we provide a more detailed description of Nova service.

Nova manages the creation and the configuration of VMs, starting from images stored in Glance catalog.
Nova does not implement any virtualization software, rather it defines some standard interfaces to control the
underlying virtualization mechanisms. All the requests made to Nova components are sent through RESTful
APIs to nova-api that acts as a front-end to export all OpenStack IaaS functionalities, such as VM creation and
termination, through Web Services. To maintain compatibility towards multiple vendors and to facilitate the

238 P. Bellavista, A. Corradi, L. Foschini and A. Pernafini

migration toward different Cloud providers, OpenStack also supports Amazon EC2 APIs to deploy applications
written for Amazon Web Services with a minimal porting effort [15]. In the following, we report several other
details about the main Nova services.

Nova-compute service, running on every node in the Cloud, launches and configures VMs within a certain
physical host. It communicates with the underlying hypervisor to instantiate and terminate VMs and to obtain
load statistics as well as performance metrics of VMs. OpenStack supports a wide range of hypervisors, but
the most commonly used hypervisor is KVM, due to its good performance and its full support toward the
virtualization of x86 architectures.

Nova-network service manages all the aspects related to network management. This service makes it
possible to create virtual networks that allow communications between different instances of VMs. A private IP
is assigned to every VM during boot, but it is also possible to assign it a public IP in order to make it accessible
over the Internet. All networking functionalities are moving towards the OpenStack service Neutron. This
service offers the possibility to create networks that can be associated to different tenants; it is also possible
to create virtual routers to enable communication between two or more VMs belonging to different tenant
networks. Thus, networks can be seen as resources available in the Cloud and Neutron can be considered as a
Network as a Service (NaaS).

Finally, nova-scheduler service determines on which node a VM should be booted. Actually this service
offers only a small set of simple scheduling policies, such as selecting the least loaded host or randomly selecting
a host. Even if OpenStack offers a scheduler mechanism to choose where a VM should be booted, it does not
provide any dynamic mechanism to migrate running VMs based on the current host load.

To show the interactions between OpenStack services, we introduce a simple VM instantiation use case (see
Fig. 3.1). The current state of the entire Cloud is maintained in a SQL server; periodically each nova-compute
service running on a certain node updates the SQL server with load information about that node (step 0). When
a user requests the instantiation of a new VM through the RESTful APIs (step 1), the nova-api service sends
a request to the nova-scheduler service (step 2) to determine on which host the new VM should be launched.
In this step, the scheduler queries the database in order to obtain a list of available hosts along with their
load information (step 3), and then selects one of them (step 4) according to the chosen policy. Finally, the
scheduler sends a VM instantiation request to the nova-compute service running on the selected node (step 5)
that requests network configuration parameters to the network service (step 6).

Fig. 3.1. VM instantiation in OpenStack

3.2. Juju. Juju is a tool for the deployment and the orchestration of services that grants the same ease of
use we can see in some widely used packet management systems such as Advanced Packaging Tool (APT) or
Red Hat Package Manager (RPM) [14].

Towards an Automated BPEL-based SaaS Provisioning Support for OpenStack IaaS 239

Juju focuses on the management and deployment of various service units and components needed to provide
a single application, by taking over the configuration and installation of required software on the VMs where
these service components will be deployed. Juju allows independent service components to communicate through
a simple configuration protocol. End-users can deploy these service components inside the Cloud, in a similar
way they can install a set of packets with a single command. As a result, it is possible to obtain an environment
consisting of multiple machines whose service components cooperate to provide the requested application.

Juju is independent from the underlying Cloud Infrastructure Layer and supports several Cloud providers
such as OpenStack, Amazon Web Services, HP Cloud, Rackspace, etc. Thus, it is possible to migrate a service
component between different Clouds with minimal re-deploy effort.

A service component represents an application or a group of applications integrated as a single component
inside a Juju environment that can be used by other components in order to build an higher level application.
In this paper we consider the use case where we provide WordPress, an open-source platform to create, manage,
and create dynamic Web site [16], by configuring and orchestrating two distinct service components: a service
component exposing the MySQL database needed by WordPress, and another service component running the
WordPress engine. A service component instance is called Service Unit and it is possible to add more of these
Service Units to the environment in order to scale the whole system, thus reducing the load on each VM.

Three main concepts are at the basis of services publication: charms, hooks and relations.
A charm encapsulates the logic required to publish and manage a service component inside a Juju environ-

ment. A charm provides the definition of a service component, including its metadata, its dependences on other
service components, the software packets we need to install in a VM, along with the logic needed to manage
the service component. Through the definition of a charm, it is possible to define the functionalities exposed
by the service component and, if we are dealing with a composed service, all the sub-services required.

Hooks are executable files used by Juju to notify a service component about changes related to its lifecycle or
about other events happened inside the environment. When a hook is executed, it can modify the underlying VM
(i.e. it could install new software packets) or it can change relations between two or more service components.

Finally, relations allow the communication between different service components. Relations are defined
inside a charm to declare the interfaces needed/exposed by a service component, that are offered/used by
another service component. Low level communications between service components are based on TCP sockets.

The environment is a fundamental concept at the basis of Juju: it can be seen as a container where service
components can be published; environments are managed through a configuration file where it is possible to
define some configuration parameters such as used Cloud provider, IP address of the Cloud provider, authenti-
cation credentials, etc.

It is possible to execute an environment through the bootstrap operation exposed by Jujus API. The
bootstrap operation initialize the system, instantiating a VM that will act as the controller node of the envi-
ronment. Zookeeper and Provisioning Agent are two of the main software components executed on controller
node. Zookeeper can be viewed as a file systems that stores all the information about the environment, while
Provisioning Agent interacts with the underlying Cloud provider in order to instantiate and terminate VMs
where service components are going to be deployed.

3.3. BPEL. BPEL is the de facto standard to define business processes and business interaction protocols
[9]. The BPEL language, based on XML, allows to express the orchestration of multiple Web Services by
defining business interactions modeled after a sequence of message exchanges between involved entities. A
BPEL document contains the control logic required to coordinate all the Web Services involved in a workflow.

BPEL provides many language constructs and mechanisms to define a sequence of activities like invoke,
receive and reply, parallel and sequential execution, transactional execution of a group of activities, and exception
handling. A partnerLink is an important construct defined by BPEL to represent an external service that is
invoked by a process or that invokes the process itself.

A BPEL engine elaborates a BPEL document, by defining an orchestration logic, and consequently executes
all the activities according to the order defined by the logic. Typically, a BPEL engine exposes the business
process through a Web Service interface that can be either accessed by Web Service clients or used in other
business process. One of the main advantages of BPEL is that the several activities of a business process can
be executed simultaneously, instead of imposing a sequential execution.

240 P. Bellavista, A. Corradi, L. Foschini and A. Pernafini

4. Architecture. This section presents our architecture proposal to face all the main service orchestration
challenges described in the previous sections: the proposed architecture provides the support to orchestrate all
the steps involved in the publication of an application inside a Cloud platform, starting from the instantiation
of required VMs to the deployment of required software components, together with the definition of their
relationships. First, we briefly introduce this architecture and then we give a more in deep description of its
components.

The proposed architecture is easily extensible, due to its multi-layer nature; it allows to arbitrarily manage
the software components that form an application, and to use several Cloud providers. Starting from requests
asking for application provisioning sent from application providers, it is possible to automatically satisfy their
requests by monitoring all the steps involved in the application publication and notifying application providers
about the progress of their request.

The proposed architecture (see Fig. 4.1) consists of a Cloud Infrastructure Layer and a Service Orchestrator
Layer that, in its turn, we logically divided in two sub-layers: an Abstraction Layer and an Orchestration Layer.

Fig. 4.1. Proposed architecture

The Cloud Infrastructure Layer represents the virtual resources provided by the Cloud infrastructure
through the IaaS API: it contains VMs instances and defines the APIs required to create, configure and destroy
VMs used by upper layers; it also offers a connection mechanism in order to grant access to VMs. In our im-
plementation, we choose to use OpenStack as Cloud Infrastructure Layer, as it is a widely adopted open-source
solution; at the same time, thanks to the highly flexible nature of our architecture, it is possible to use any
other Cloud provider.

The Orchestration Layer and the Abstraction Layer compose together the Service Orchestrator Layer. It
is the composition of these two layers that makes it possible to create an orchestration support. Once the
application provider has sent a request, this layer will coordinate and execute all the activities to satisfy that
request, by opportunely configuring and communicating with the VMs provided by the Cloud Infrastructure
Layer.

Abstraction Layers goal is hiding the complexity of the underlying Cloud Infrastructure Layer by providing
a high level interface to the Orchestration Layer which encapsulates the functionalities offered by the Cloud
Infrastructure Layer. This abstraction mechanism obtains a highly flexible architecture working with several
Cloud providers. The functionalities exposed by this layer are useful to manage the entire VM lifecycle, in
addition to the services offered by that VM. This makes it possible to create a VM with a chosen operating
system and install on it all the software components required to build a service. Moreover, it is also possible to
add relationships between different services in order to allow them to cooperate. Let us introduce an example
to better understand the functionalities. If we want to build a service exposing a dynamic web site, we need
to instantiate and deploy two sub-services: a web server and a database to store all objects and data required

Towards an Automated BPEL-based SaaS Provisioning Support for OpenStack IaaS 241

by the web server. To deploy this scenario, the Abstraction Layer will create two VMs (one for the web server
and the other one for the database), install all the required software packages, and configure and start the two
services. However, in order to publish a working web server, these services need to communicate to each other.
This can be done by defining a relationship between the two services and specifying the functionalities exposed
by each service along with the required functionalities. It is essential that the Abstraction Layer could access
the VMs where the two services are deployed in order to monitor and, possibly, reconfigure the services; this is
achieved by establishing SSH tunnels to VMs.

The Orchestration Layer represents the orchestration engine inside our architecture. When an application
provider submits a request to this layer, it coordinates and orchestrates all the steps required to automatically
provide the application provider with the requested application. Every request received by the Orchestration
Layer contains a description of the required application, that can be seen as a model defining the service
components that compose the application, along with the description of their relationships to determine how
they must mutually interact. Typically, many activities are involved in exposing an application, so this layer
needs to manage transitions between these activities, by taking into account the dependencies between service
components as shown in Fig. 4.2. These dependencies represent the synchronization points between operation
sequences executed inside a workflow.

Fig. 4.2. Typical Orchestration Layer workflow

Going back to our previous example, it is impossible to publish a web server before the database is ready,
because it would lack the required support to manage data. When the database is ready and the web server has
been deployed, we can specify the relationship between these two software components. The Service Orchestrator
Layer deploys those service components in parallel, monitoring the involved steps; that allows to simultaneously
deploy several service components. In our solution, we implement this layer by using a BPEL engine.

5. Implementation Details. This section provides some implementation insights about our solution,
based on both proprietary and ad-hoc software. Our presentation will follow a bottom-up approach, starting
from the physical layer up to the Orchestration Layer. For the Cloud Infrastructure Layer, we have chosen
OpenStack due to its highly flexible and open-source nature; in particular, we used the latest Havana release.
Atop OpenStack, we use Juju to implement our Abstraction Layer: functionalities exposed by Juju encapsulate
APIs provided by OpenStack, so we opportunely configured Juju environment in order to work with OpenStack,
hiding these configuration details to the application provider. Other open-source service management tools,
such as Puppet [17] or Chef [18], could be used to implement the Abstraction Layer; we chose to use Juju
because it is a very recent solution, continuously evolving with the introduction of new useful features. The
Orchestration Layer, using Juju charms, enables the composition of complex applications and offers monitoring
facilities through the monitoring events forwarded by Zookeeper. The Orchestration layer represents the engine

242 P. Bellavista, A. Corradi, L. Foschini and A. Pernafini

of our support towards services orchestration: this layer makes it possible to coordinate the publication of SaaS
applications, defining reusable and modular workflows.

Fig. 5.1 shows how the architecture layers interact with each others in order to provide a generic application
composed by two different service components. Starting from a BPEL workflow defined by a Cloud provider,
the BPEL engine will send two simultaneous requests to Juju so as to deploy these service components (step 1
in Fig. 5.1). Juju will then ask OpenStack to create two VMs, and, after the VMs have been booted, it will
download and install software packets on them (steps 2 and 3). Once the two service components have been
configured, the BPEL engine will ask Juju to add a relation between them (step 4); finally, Juju will opportunely
configure these components in order to let them cooperate.

Fig. 5.1. Interactions among architecture layers

In particular, we used our Cloud support to implement the case study of a WordPress platform composed
by two service components: a MySQL database and a WordPress engine running on a web server, each one
deployed on a separate VM. Let us stress that simple services, such as this one and the Wiki service considered
in the experimental results, are becoming more and more relevant in IoT scenarios to ease the publication of
collected smart data by using Web-enabled and widely accessible data portals and front-ends.

In order to deploy a working WordPress platform, first we need to deploy the database service component
and the WordPress engine, and then to add a relation between them to let them cooperate. We mapped all
these steps into the BPEL workflow shown in Fig. 5.2.

The BPEL process, defined as an XML document, contains all the references to the external Web Services
employed in the workflow; this can be done by populating the <partnerLinks> section. In our case study, we
inserted references to DeployWS and AddRelationWS, to let the BPEL engine invoke them. These two Web
Services represents respectively the Web Service used to deploy a service component, and the Web Service used
to add a relation between two already deployed service components. The BPEL engine will also fill the request
sent to DeployWS with the name of the service component that need to be deployed. BPEL constructs allow to
execute the deployment of MySQL and WordPress service components (namely, two different instances of the
DeployWS, see Fig. 5.2) in parallel on different VMs, and, through the definition of synchronization points, it
is possible to orchestrate them. In particular, we use BPEL <flow> construct to achieve parallelism. A <flow>

terminates its execution only when all activities included inside this tag have completed: in our case study, the

Towards an Automated BPEL-based SaaS Provisioning Support for OpenStack IaaS 243

Fig. 5.2. BPEL workflow

completion of <flow> activity will occur only after both WordPress and MySQL have been deployed. Only at
this time, we can invoke AddRelationWS to add a relation between these two service components.

We encapsulated the functionalities exposed by Juju, to deploy and monitor a service component inside
the Web Services published on Apache Axis2. The name of the service component that needs to be published
is specified inside the request sent to the Web Service. DeployWS is realized by two Java classes: Executor,
that invokes juju deploy command in order to deploy the service component, and DataMonitor, that manages
ZooKeeper events in order to monitor the progress of the request. The following figure shows an excerpt of the
WSDL file relative to DeployWS (see Fig. 5.3). AddRelationWS invokes juju add-relation command and
communicates the result of this operation to the BPEL Engine.

<wsdl :message name=”deployWSRequest”>
<wsd l :pa r t name=”parameters” element=”ns:deployWS ”/>

</wsdl :message>
<wsdl :message name=”deployWSResponse”>

<wsd l :pa r t name=”parameters” element=”ns:deployWSResponse”/>
</wsdl :message>
<wsdl :portType name=”DeployWSPortType”>

<wsd l : ope ra t i on name=”deployWS”>
<wsd l : i nput message=”ns:deployWSRequest ” wsaw:Action=”urn:deployWS”/>
<wsdl :output message=”ns:deployWSResponse ” wsaw:Action=”urn:deployWSResponse

”/>
</ wsd l : ope ra t i on>

</wsdl :portType>

Fig. 5.3. DeployWS WSDL code

In order to publish WordPress and MySQL services, it is necessary to write the corresponding charm to be
memorized inside the bootstrap node and sent, during the creation of a VM, to the node where that service
component will be deployed. When deploying a MySQL service component, the hook install will be executed to
download and configure MySQL related packets, and finally to start the service component. In the same way,
all these steps will be repeated when deploying a WordPress service. After deploying MySQL and WordPress
service components, the BPEL workflow adds a relation between these service components, by executing the
respective relation-joined hooks. The relation-joined script relative to WordPress will write, in the WordPress

244 P. Bellavista, A. Corradi, L. Foschini and A. Pernafini

configuration file, a reference to the host where MySQL database is running, together with the credentials to
access the database. Fig. 5.4 shows an excerpt of the WordPress relation-joined hook used in our tests.

database=‘ r e l a t i o n−get database ‘
user=‘ r e l a t i o n−get user ‘
password=‘ r e l a t i o n−get password ‘
host=‘ r e l a t i o n−get pr ivate−address ‘
juju−l o g ”Writing wordpress c on f i g f i l e $ c o n f i g f i l e p a t h ”
Write the wordpress c on f i g
cat > $ c o n f i g i n f o p a t h << EOF
<?php
de f i n e (’DBNAME’ , ’ $ database ’) ;
d e f i n e (’DB USER ’ , ’ $ user ’) ;
d e f i n e (’DBPASSWORD’ , ’ $password ’) ;
d e f i n e (’DB HOST ’ , ’ $ host ’) ;
d e f i n e (’SECRET KEY’ , ’ $ s e c r e t k ey ’) ;
d e f i n e (’WPCACHE’ , t rue) ;

Fig. 5.4. Juju hook script

6. Experimental Results. We tested our solution on a Cloud testbed environment at our campus, by
considering two different use cases. The first one is more simple and realizes the implementation use case
detailed in the previous section, while the second one is more complex and represents a more realistic IoT SaaS
application with higher performance requirements.

Starting with the first WordPress use case, the physical Cloud testbed consists of 3 physical Linux boxes
with Intel Core 2 Duo E7600 at 3.06 GHz and 4 GB RAM, connected through two 1 Gbps LANs, and running
Linux Ubuntu 13.04. Fig. 6.1 shows the Cloud infrastructure and the software components deployed on it:
this virtual infrastructure consists of 3 VMs running Linux Ubuntu 12.04; Juju bootstrapping node has been
deployed on the first VM, while the remaining VMs, were used, respectively, to deploy a MySQL database and
a web server running a WordPress engine.

Fig. 6.1. Testbed deployment - first scenario

To demonstrate the efficiency of our solution, we ran two series of tests to measure the time needed to
deploy a working WordPress platform. In the first series, we sequentially executed Juju commands in order to

Towards an Automated BPEL-based SaaS Provisioning Support for OpenStack IaaS 245

deploy MySQL and WordPress, and, then, we added a relation between them. Instead, in the second series,
we used the Orchestration Layer, in order to achieve a parallel deployment of MySQL and WordPress. All the
measures were taken in a stable system, after the deployment of Juju bootstrapping node; we have repeated 30
runs for each test and we report both estimated average and standard deviation.

Fig. 6.2. Deployment time - first scenario

As we can see in Fig. 6.2, thanks to the parallel deployment of MySQL and WordPress, the overall time
needed to deploy a working WordPress platform halves the time measured when deploying it sequentially. The
average runtime of our tested BPEL process, including the time needed to instantiate a new VM, was about
578.4 seconds, with a standard deviation of 55.3 seconds. Instead, when using sequential Juju commands to
deploy the service components, we measured an average runtime of 1138.6 seconds with a standard deviation
of 115.8 seconds.

To challenge our support with a more realistic use case, we repeated all the tests described above with a
more complex deployment of a multi-tier SaaS application consisting of four different service components: a
service component providing a MySQL database; a service component running MediaWiki [19], an open source
platform used to create wiki websites such as Wikipedia; a service component running Memcached [20], used
to provide MediaWiki with a caching service, and finally a service component running HAProxy [21], an high
performance load balancer for TCP/HTTP-based application. Fig. 6.3 shows the Cloud infrastructure and the
software components deployed on it: this virtual infrastructure consists of 5 VMs running Linux Ubuntu 12.04;
Juju bootstrapping node has been deployed on the first VM, while the remaining VMs, were used, respectively, to
deploy a MySQL database, a web server running MediaWiki, a Memcached distributed memory object caching
system, and a HAProxy loadbalancer. After deploying these services, three relations are added, respectively
between MediaWiki and MySQL, between MediaWiki and Memcached, and between MediaWiki an HAProxy.

As shown in Fig. 6.4, the average runtime of our tested BPEL process, including the time needed to
instantiate a new VM, was about 832.8 seconds (standard deviation 56.22 seconds) that significantly lowers the
average runtime of 1780.8 seconds (standard deviation 119.88 seconds) needed for the sequential deployment.

So, we can conclude that the parallel execution of many processes can balance the overhead introduced by the
invocation of Web Services, by the BPEL engine execution, and by execution of multiple deployment operations
(potentially concurrent over the same physical host), with the enhanced performance due to parallelism; these
advantages are more and more sensible as the complexity of the SaaS application to deploy increases.

7. Conclusion and Future Works. In this paper, we presented and experimentally validated a man-
agement support to automate the provisioning of complex SaaS applications over Cloud based infrastructures.
Due to BPEL-based orchestration, our solution can achieve high expressivity in the definition of the application
provisioning logic, including not only deployment issues, but also advanced monitoring of service component

246 P. Bellavista, A. Corradi, L. Foschini and A. Pernafini

Fig. 6.3. Testbed deployment - second scenario

Fig. 6.4. Deployment time - second scenario

status. Moreover, it enables concurrent execution of parallelizable service component deployment steps, thus
significantly reducing the time needed to activate complex SaaS applications in large-scale Cloud environments,
particularly in IoT scenarios, where the highly dynamic nature of these environments often requires fast ap-
plications provisioning. Experimental results showed the effectiveness of the realized support that introduces
a limited overhead by granting a drastic reduction of the provisioning time when deployment steps can be
executed in parallel. Moreover, the use of BPEL and workflow processes enables a higher degree of flexibility
and reusability of our framework; indeed, already existing provisioning workflows can be reused to provide new
SaaS applications. Encouraged by these results, we are considering several future directions: on the one hand,
we are currently integrating our new application provisioning facilities with our IaaS runtime monitoring and
management support [22]; on the other hand, we are developing an automatic application live-migration support
to move the whole application, including all needed service components and relations, from local private Cloud
IaaS to public ones, by dynamically re-binding all needed virtual resources therein; finally, we are implement-
ing a mechanism to define multi-tenant network infrastructures and to provide isolation for multi-tenant SaaS
applications deployed atop them.

Acknowledgments. This research was partly funded by CIRI, technology transfer center for ICT, of the
University of Bologna; we also thank CINECA for its support.

REFERENCES

Towards an Automated BPEL-based SaaS Provisioning Support for OpenStack IaaS 247

[1] CloudBees home page, http://www.cloudbees.com/. Last accessed: June 2013.
[2] CloudFoundry home page, http://www.cloudfoundry.com/. Last accessed: June 2013.
[3] OpenShift home page, https://openshift.redhat.com/. Last accessed: June 2013.
[4] P. Goldsack et al., The SmartFrog configuration management framework, ACM SIGOPS Operating Systems Review,

43(2009), pp. 16–25.
[5] S. Singhal, M. Arlitt, D. Beyer, S. Graupner, V. Machiraju, J. Pruyne, J. Rolia, et al., Quartermaster A Resource

Utility System, in Proceedings of 9th IFIP/IEEE International Symposium on Integrated Network Management, 2005,
pp. 265–278.

[6] A. Keller, J. L. Hellerstein, J. L. Wolf, K. Wu and V. Krishnan, The CHAMPS system: change management with
planning and scheduling, in Proceedings of IEEE/IFIP Network Operations and Management Symposium (NOMS 2004),
2004, pp. 395–408.

[7] J. Kirschnick, J. M. Alcaraz Calero and N. Edwards, Toward an architecture for the automated provisioning of cloud
services, IEEE Communications Magazine 48 (2010), pp. 124–131.

[8] T. Dornemann, E. Juhnke and B. Freisleben, On-Demand Resource Provisioning for BPEL Workflows Using Amazon’s
Elastic Compute Cloud, in Proceedings of 9th IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGRID ’09), 2009, pp. 140–147.

[9] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,S. Thatte,

I. Trickovic and S. Weerawarana, Business Process Execution Language for Web Services Version 1.1. 1.1 Edition.
Microsoft, IBM, Siebel, BEA, and SAP (2003).

[10] R. Mietzner and F. Leymann, Towards provisioning the cloud: On the usage of multi-granularity flows and services to
realize a unified provisioning infrastructure for saas applications, in: IEEE Congress on Services - Part I, 2008, pp. 3–10.

[11] R. Mietzner, T. Unger and F. Leymann, Cafe: A Generic Configurable Customizable Composite Cloud Application Frame-
work, On the Move to Meaningful Internet Systems (OTM 2009), 2009, pp. 357–364.

[12] T. Binz, G. Breiter, F. Leyman, and T. Spatzier, Portable Cloud Services Using TOSCA, IEEE Internet Computing
Magazine 16 (2012), pp. 80–85.

[13] OpenStack Cloud Software, http://www.openstack.org/. Last accessed: June 2013.
[14] Juju homepage, https://juju.ubuntu.com/. Last accessed: December 2013.
[15] Amazon Elastic, Compute Cloud, http://aws.amazon.com/ec2/. Last accessed: June 2013.
[16] Wordpress, http://wordpress.org/. Last accessed: July 2013.
[17] Puppet, http://puppetlabs.com/. Last accessed: July 2013.
[18] Chef, http://www.opscode.com/chef/. Last accessed: 2013.
[19] MediaWiki, http://www.mediawiki.org/wiki/MediaWiki. Last accessed: December 2013.
[20] Memcached, http://memcached.org/. Last accessed: December 2013.
[21] HAProxy, http://haproxy.1wt.eu/. Last accessed: December 2013.
[22] J. Povedano-Molina, L. Foschini, A. Corradi, J. M. Lopez-Vega and J. M. Lopez-Soler, DARGOS: A highly adaptable

and scalable monitoring architecture for multi-tenant clouds, Future Generation Computer Systems, 29 (2013), pp. 2041–
2056.

Edited by: Maria Fazio and Nik Bessis
Received: Nov 2, 2013
Accepted: Jan 10, 2014

Scalable Computing: Practice and Experience

Volume 14, Number 4, pp. 249–263. http://www.scpe.org

DOI 10.12694/scpe.v14i4.931
ISSN 1895-1767
c© 2013 SCPE

A SESSION INITIATION PROTOCOL FOR THE INTERNET OF THINGS ∗

SIMONE CIRANI, MARCO PICONE AND LUCA VELTRI†

Abstract. The Internet of Things (IoT) refers to the interconnection of billions of constrained devices, denoted as “smart
objects”, in an Internet-like structure. Smart objects typically feature limited capabilities in terms of computation and memory
and operate in constrained environments, such as low-power lossy networks. As the Internet Protocol (IP) has been foreseen as the
standard for communications in IoT, an effort to bring IP connectivity to smart objects and define suitable communication protocols
(i.e. Constrained Application Protocol (CoAP)) is being carried out within standardization organizations, such as the Internet
Engineering Task Force (IETF). In this paper, we propose a constrained version of the Session Initiation Protocol (SIP), named
“CoSIP”, whose intent is to allow constrained devices to instantiate communication sessions in a lightweight and standard fashion.
Session instantiation can include a negotiation phase of some parameters which will be used for all subsequent communication.
CoSIP can be adopted in several application scenarios, such as service discovery and publish/subscribe applications, which are
detailed. An evaluation of the proposed protocol is also presented, based on a Java implementation of CoSIP, to show the benefits
that its adoption can bring about, in terms of compression rate with the existing SIP protocol and message overhead compared
with the use of CoAP.

Key words: Internet of Things, communication protocols, CoAP, SIP, signaling, service discovery

1. Introduction. The Internet of Things (IoT) refers to the interconnection of billions of constrained
devices, denoted as “smart objects”, in an Internet-like structure. Smart objects have limited capabilities,
in terms of computational power and memory (e.g., 8-bit microcontrollers with small amounts of ROM and
RAM), and might be battery-powered devices, thus raising the need to adopt particularly energy efficient
technologies. Smart objects typically operate in constrained networks which often have high packet error
rates and a throughput of tens of kbit/s. In order to interconnect smart objects in an Internet-like architecture,
standard and interoperable communication mechanisms and protocols are required, and a lot of work is currently
ongoing for defining proper standards. It is a common opinion that in the near future IP will be the base common
network protocol for the IoT. This does not imply that all objects will be able to run IP. In contrast, there
will always be tiny devices, such as tiny sensors or Radio-Frequency IDentification (RFID) tags, that will be
organized in closed networks implementing very simple and application-specific communication protocols and
that eventually will be connected to an external network through a proper gateway. However, it is foreseen that
all remaining small networked objects will exploit the benefits of IP and corresponding protocol suite.

In [1], the author tries to define the following pair of classes for constrained devices, in terms of memory
capacity, in order to be used as a rough indication of device capabilities:

• class 1: RAM size = ∼10 KB, Flash size = ∼100 KB
• class 2: RAM size = ∼50 KB, Flash size = ∼250 KB

Some of these networked objects, with enough memory, computational power, and power capacity, will
simply run existing IP-based protocol suite implementations. Some others will still run standard Internet
protocols, but may benefit from specific implementations that try to achieve better performance in terms of
memory size, computational power, and power consumption. Instead, in other constrained networked scenarios,
smart objects may require additional protocols and some protocol adaptations in order to optimize Internet
communications and lower memory, computational, and power requirements.

As billions of smart objects are expected to come to life and IPv4 addresses have eventually reached
depletion, IPv6 [2] has been identified as a candidate for smart-object communication at the network layer.
However, due to the possible limitations that constrained devices may encounter, some adaptation at network
layer (IP) and at upper layers may be required.

∗The work of Simone Cirani and Luca Veltri has been funded by the European Community’s Seventh Framework Programme,
area “Internetconnected Objects”, under Grant no. 288879, CALIPSO project - Connect All IP-based Smart Objects. The work
reflects only the authors views; the European Community is not liable for any use that may be made of the information contained
herein.

†Department of Information Engineering, University of Parma, Viale G.P. Usberti, 181/A, 43124 Parma, Italy (simone.cirani,
marco.picone, luca.veltri@unipr.it).

249

250 S. Cirani, M. Picone and L. Veltri

Significant reasons for proper protocol optimizations and adaptations for resource-constrained objects can
be summarized as follows.

• Smart objects typically use, at physical and link layers, communication protocols (such as IEEE
802.15.4) which are characterized by small Maximum Transmission Units (MTUs), thus leading to
packet fragmentation. In this case, the use of compressed protocols can significantly reduce the need
for packet fragmentation and postponed transmissions.

• Processing larger packets likely leads to higher energy consumption, which can be a critical issue in
battery-powered devices.

• Minimized versions of protocols (at all layers) can reduce the number of exchanged messages.

For this reason, within the IETF some specific working groups have been set. In particular, the IETF
6LoWPAN (IPv6 over Low power WPAN) Working Group [3] is defining encapsulation and other adaptation
mechanisms to allow IPv6 packets to be sent to and received from over Low power Wireless Personal Area
Networks, such as those based on IEEE 802.15.4. for the network layer, the ROLL (Routing Over Low power
and Lossy networks) Working Group [4] is currently studying and defining proper routing mechanisms. Instead,
for the application layer, the IETF CoRE (Constrained RESTful Environments) Working Group [5] is currently
defining a Constrained Application Protocol (CoAP) [6], to be used as a generic web protocol for constrained
environments, targeting Machine-to-Machine (M2M) applications, and that can be seen in some ways as a
compressed version of the HyperText Transfer Protocol (HTTP) [7]. CoAP will include the following features:

• request/response interaction model between application endpoints;
• built-in discovery of services and resources;
• key concepts of the Web such as URIs (Uniform Resource Identifiers) and Internet media types.

The typical Internet of Things protocol stack, compared with the standard web protocol stack, is depicted in
Fig. 1.1. The symmetry between the the two protocol stacks is clear: for instance, at the application layer,
while HTTP is the most widespread application protocol for Internet applications, such as the World Wide
Web, its constrained version, the CoAP, is expected to be used, reducing the complexity of implementation as
well as the size of packets exchanged. CoAP, in contrast to HTTP, uses UDP [8] as a lightweight transport
protocol.

CoAP is intended to provide application a RESTful (Representational state transfer) communication mech-
anism. According to the REST model, representations of resources are exchanged between a client and a server.
A resource representation is the current or intended state of a resource referred to the server through a proper
namespace. A client that is interested in the state of a resource sends a request to the server; the server then
responds with the current representation of the resource. An example of CoAP request/response interaction is
depicted in Fig. 1.2.

If the client is interested in receiving the representation during a period of time, according to this model the
client should periodically repeat such requests in order to always have the updated representation of the resource.
Of course this mode of operation would lead to unnecessary messages sent over the network and processing load
at both client and server sides, each time a request is sent for a resource state that is not changed. In order
to save both network and processing resources, a more suitable communication model, following the event
subscribe/notify paradigm, can be used. According to this paradigm, a client, called “observer”, interested in
a resource subscribes to a resource, called “subject”, informing the server that it is interested in being notified
whenever the subject changes the state; we say that the clients want to “observe” the resource.

There is a CoAP extension [9] currently in the IETF standardization process, that aims at defining a CoAP-
based subscribe/notify service can be implemented over the basic CoAP REST model. Figure 1.3 compares the
two approaches of “observing” a resource.

However, beside REST and subscribe/notify service models, there are also many other applications in both
constrained and non-constrained environments that feature non-request/response communication models. Some
of these applications require the creation and management of a “session”. With the term of “session” we refer
to any exchange of data between an association of participants. In case of two participants, the session may
involve the sending of one or (probably) more data packets from one participant to the other, in one or both
directions. In case of unidirectional sessions, they may be initiated by both the sender or the receiver. Examples
of sessions in IoT scenario may be the data flow generated by a sensor (measurement samples) and sent to a

A session initiation protocol for the Internet of Things 251

Fig. 1.1. Comparison between the IoT and the Internet protocol stack for OSI layers.

Fig. 1.2. CoAP request/response model.

given recipient for further processing, or some data streams exchanged by two interacting toys.
Although in principle CoAP encapsulation could be used also for carrying data in non-request/response

fashion, for example by using CoAP POST request in non-confirmable mode, or by using the CoAP “observation”
model, it is evident that could be much more efficient to setup a session between constrained nodes first, and
then perform a more lightweight communication without carrying unnecessary CoAP header fields for each
data packet. The data communication will be in accord to the network, transport, and application parameters
negotiated during the session setup.

The Session Initiation Protocol (SIP) [10] is the standard application protocol for establishing application-

252 S. Cirani, M. Picone and L. Veltri

Fig. 1.3. CoAP basic model (left) vs. CoAP “observing” (right). The CoAP “observe” extension introduces a subscribe/notify
communication model, in contrast to the request/response model of standard CoAP.

level sessions. It allows the endpoints to create, modify, and terminate any kind of (multi)media sessions, such
as VoIP calls, multimedia conferences, or data communications. Once a session has been established, the media
are transmitted typically by using other application-layer protocols, such as RTP and RTCP [11], or as raw
UDP data, directly between the endpoints, in a peer-to-peer fashion. SIP is a text protocol, similar to HTTP,
which can run on top of several transport protocols, such as UDP (default), TCP, or SCTP, or on top of secure
transport protocol such as TLS and DTLS. Session parameters are exchanged as SIP message payloads; a
standard protocol used for this purpose is the Session Description Protocol [12]. The SIP protocol also supports
intermediate network elements which are used to allow endpoint registration and session establishment, such as
SIP Proxy servers and Registrar servers. SIP also defines the concepts of transaction, dialog, and call as groups
of related messages, at different abstraction layers.

Although SIP has been defined for Internet application, we may think to re-use it also in constrained IoT
scenario. Note that SIP already includes mechanisms for subscribe/notify communication paradigms [13] and
for resource directory, particularly useful in IoT scenarios, for which proper CoAP extensions are currently
being specified [9, 14].

The main drawback of using standard SIP protocol in constrained environments is the large size of text-
based SIP messages (compared to other binary protocols such CoAP), and the processing load required for
parsing such messages.

For this reason, in this paper, we propose a constrained version of the Session Initiation Protocol, named
“CoSIP”, whose intent is to allow constrained devices to instantiate communication sessions in a lightweight
and standard fashion and can be adopted in M2M application scenarios. Session instantiation can include a
negotiation phase of some parameters which will be used for all subsequent communication. The proposed
CoSIP is a binary protocol which maps to SIP, similarly to CoAP does to HTTP. CoSIP can be adopted in
several application scenarios, such as service discovery and publish/subscribe applications.

A session initiation protocol for the Internet of Things 253

The rest of this paper is organized as follows. In Section 2, an overview of related works is presented.
In Section 3, fundamentals of the SIP protocol are summarized. In Section 4, the proposed CoSIP protocol
is detailed together with its architecture and preliminary implementation. Some use cases for CoSIP-based
applications in Internet of Things scenarios are presented in Section 5 and a performance evaluation of the
proposed protocol is shown in Section 6. Finally, in Section 7 we draw our conclusions.

2. Related Work. Smart objects typically are required to operate using low-power and low-rate com-
munication means, featuring unstable (lossy) links, such as IEEE 802.15.4, usually termed Low-power Wireless
Personal Area Networks (LoWPANs) or Low-power and Lossy Networks (LLNs). The Internet Engineering
Task Force (IETF) has setup several working groups in order to address many issues related to bringing IP
connectivity to LoWPAN smart objects. In particular, the 6LoWPAN (IPv6 over Low power WPAN) WG [3]
was chartered to work on defining mechanisms that optimize the adoption of IPv6 in LoWPANs and the ROLL
(Routing Over Low power and Lossy networks) WG [4] was chartered to develop optimal IPv6 routing in LLNs.
Finally, the CoRE (Constrained RESTful Environments) WG [5] has been chartered to provide a framework for
RESTful applications in constrained IP networks. The CoRE WG is working on the definition of a standard
application-level protocol, named CoAP, which can be used to let constrained devices communicate with any
node, either on the same network or on the Internet, and provides a mapping to HTTP REST APIs. CoAP is
intended to provide, among others, Create-Read-Update-Delete (CRUD) primitives for resources of constrained
devices and publish/subscribe communication capabilities. While the work on CoAP is already at an advanced
stage, the CoRE WG is also investigating mechanisms for discovery and configuration, but the work on these
issues is still at an early stage and therefore open to proposals.

The “observer” CoAP extension [9] allows CoAP clients to observe resources (subscribe/notify mechanism)
and be notified when the state of the observed resource changes. This approach requires the introduction of
a new CoAP Observe option to be used in GET requests in order to let the client register its interest in the
resource. The server will then send “unsolicited” responses back to the client echoing the token specified by
the client in the GET request and reporting an Observe option with a sequence number used for reordering
purposes. As we will describe later, we envision that the instantiation of a session could significantly reduce
the amount of transmitted bytes, since, after the session has been established, only the payloads could be sent
to the observer, thus eliminating the overhead due to the inclusion of the CoAP headers in each notification
message.

As for service discovery, the CoRE WG has defined a mechanism, denoted as Resource Directory (RD) [14],
to be adopted in M2M applications. The use of a RD is necessary because of the impracticality of a direct
resource discovery, due to the presence of duty-cycled nodes and unstable links in LLNs. Each CoAP server must
expose an interface /.well-known/core to which a client can send requests for discovering available resources.
The CoAP server will reply with the list of resources and, for each resource, an attribute that specifies the
format of the data associated to that resource. The CoAP protocol, however, does not specify how a node
joining the network for the first time must behave in order to announce itself to the resource directory node.
In [15], this functionality is extended to multicast communications. In particular, multicast Resource Discovery
is useful when a client needs to locate a resource within a limited scope, and that scope supports IP multicast.
A GET request to the appropriate multicast address is made for /.well-known/core. Of course this multicast
Resource Discovery works only within an IP multicast domain and does not scale to larger networks that do
not support end-to-end multicast.

The registration of a resource in the RD is performed by sending a POST request to the RD, while the
discovery can be accomplished by issuing a GET request to the RD targeting the .well-known/core URI. This
discovery mechanism is totally self-contained in CoAP as it uses only CoAP messages.

The adoption of the CoSIP protocol provides an alternative mechanism to register resources on a RD, which
may be also called CoSIP Registrar Server. The advantage of using a CoSIP based registration mechanism is that
it might be possible to register resources other than those reachable through CoAP, thus providing a scalable
and generic mechanism for service discovery in constrained applications with a higher degree of expressiveness,
such as setting an expiration time for the registration.

3. SIP. The Session Initiation Protocol (SIP) [10] is an IETF standard application-layer control protocol
that can be used to establish, modify, or terminate end-to-end sessions. SIP is a text-based client-server protocol,

254 S. Cirani, M. Picone and L. Veltri

where the client sends SIP requests and the server responds to requests. SIP architecture includes both end
systems (terminals), also called SIP user agents, and intermediate systems, called SIP proxy, redirect or registrar
servers, depending on their function. A “registrar server” is SIP server that receives registration requests issued
by SIP user agents, and used for maintaining the binding between the SIP user name also called address-
of-record SIP AOR, and its current contact address, that can be used for reaching such user/resource. The
mapping between SIP AORs and SIP contact URIs is called Location Service and is an important component
for resource discovery in SIP.

All SIP addresses are represented by URIs with the scheme “sip:”, and identify a name or contact address
of a SIP user; a SIP user can be a real user, a system, an application, or a any kind of resources.

The proxy servers are intermediary entities that act as both server and client for making requests on behalf
of other clients. A proxy server may act as “outbound” proxy when used for routing SIP request addressed to
a user that is not maintained in a local Location Service, or as “far-end” (or “destination”) proxy if the request
is addressed to a user with an AOR maintained by the proxy and mapped to one or more SIP contact URIs.

Differently by the proxy servers, the redirect servers accept requests and replies to the client with a response
message that typically provides a different contact address (URI) for the target of previous request.

SIP signaling between users consists of requests and responses. When a UA wants to send a request to a
remote user (identified by a SIP AOR), it may send the message directly to the IP address of the remote user’s
UA, or to the proxy server that is responsible for the target AOR (normally the fully qualified domain name
(FQDN) of the proxy server is included in the AOR), or to a locally configured outbound proxy server. When
the request reaches the target UA, the latter may optionally replies with some provisional 1xx responses and
with one final response (codes 2xx for success, 3xx, 4xx, 5xx and 6xx for failure).

SIP defines different request methods such as INVITE, ACK, BYE, CANCEL, OPTIONS, REGISTER,
SUBSCRIBE, NOTIFY, atc.

When a UA wants to initiate a session it sends an INVITE message that may be responded with provisional
1xx responses and a final response. The UA that issued the INVITE then have to confirm the final response with
a ACK message. Differently by all other SIP transaction, the INVITE transaction is a three-way handshake
(INVITE/2xx/ACK).

Once the session is established, both endpoints (user agents) may modify the session with a new INVITE
transaction, or tear-down the session with a BYE transaction (BYE/2xx). When the caller or the callee wish
to terminate a call, they send a BYE request. SIP messages may contain a “body” that is treated as opaque
payload by SIP.

Figure 3.1 shows an example of SIP message flow, including the registration of two UAs with their own
registrar/proxy servers, and a session setup and tear-down from UA1 (identified by the SIP AOR sip:u1@P1)
to UA2 (identified by the SIP AOR sip:u2@P2).

During an INVITE transaction the SIP body is used to negotiate the session in terms of transport and
application protocol, IP addresses and port number, payload formats, encryption algorithms and parameters,
etc. The negotiation follows an offer/answer paradigm, where the offer is usually sent within the INVITE while
the answer is in the 2xx final response. The most used protocol for such negotiation is the Session description
Protocol (SDP); however other prtocol may be used.

4. CoSIP. As described in Section 1, in both constrained and non-constrained environments there are
many applications that may require or simply may obtain advantages by negotiating end-to-end data sessions.
In this case the communication model consists in a first phase in which one endpoint requests the establishment
of a data communication and, optionally, both endpoints negotiate some communication parameters (transfer
protocols, data formats, endpoint IP addresses and ports, encryption algorithms and keying materials, and
other application specific parameters) of the subsequent data sessions. This may be useful for both client-server
or peer-to-peer applications, regardless the data sessions evolve or not according to a request/response model.
The main advantage is that all such parameters, including possible resource addressing, may be exchanged in
advance, while no such control information is required during data transfer. The longer the data sessions, the
more the advantage is evident respect to a per-message control information. Also in the case of data sessions
that may vary formats or other parameters during time, such adaptation may be supported by performing
session renegotiation. A standard way to achieve all this onto an IP-based network may be by using the Session

A session initiation protocol for the Internet of Things 255

Fig. 3.1. UA registrations and session setup with two intermediate proxy servers.

Initiation Protocol [10]. In fact SIP has been defined as standard protocol for initiating, modifying and tearing
down any type of end-to-end multimedia sessions. SIP is independent from the protocol used for data transfer
and from the protocol used for negotiating the data transfer (such negotiation protocol can be encapsulated
transparently within the SIP exchange). In order to simplify the implementation, SIP reuses the same message
format and protocol fields of HTTP. However, in contrast to HTTP, SIP works by default onto UDP, by
directly implementing all mechanisms for a reliable transaction-based message transfer. This is an advantage
in duty-cycled constrained environment where some problems may arise when trying to use connection-oriented
transports, such as TCP. However, SIP may also run onto other transport protocols such as TCP, SCTP, TLS
or DTLS. Unfortunately SIP derives from HTTP the text-based protocol syntax that, even if it simplifies the
implementation and debugging, results in i) larger message sizes, and ii) bigger processing costs and probably
larger source code size (RAM footprint) required for message parsing. Note that the SIP standard defines also
a mechanism for reducing the overall size of SIP messages; this is achieved by using a compact form of some
common header field names. However, although it allows a partial reduction of the message size, it may still
result in big messages, especially if compared to other binary formats, for example those defined for CoAP.
For this reason we tried to define and implement a new binary format for SIP in order to take advantages of
the functionalities already defined and supported by SIP methods and functions, together with a very compact
message encoding. We naturally called such new protocol CoSIP, that stands for Constrained Session Initiation
Protocol, or, simply, Constrained SIP. Due to the protocol similarities between SIP and HTTP, in order to

256 S. Cirani, M. Picone and L. Veltri

maximize the reuse of protocol definitions and source code implementations, we decide to base CoSIP onto the
same message format that has been defined for CoAP, thanks to the role that CoAP plays respect to HTTP.
However, it is important to note that, while CoAP required to define new message exchanges, mainly due to the
fact that CoAP need to operated in constrained and unreliable networked scenario over UDP transport protocol,
while HTTP works over TCP, CoSIP may completely reuse all SIP message exchanges and transactions already
defined by the SIP standard, since SIP already works over unreliable transport protocols (e.g. UDP).

SIP is structured as a layered protocol, where at the top there is the concept of dialog, that is a peer-to-peer
relationship between two SIP nodes that persists for some time and facilitates sequencing of different request-
response exchanges (transactions). In CoAP there is no concept equivalent to SIP dialogs, and, if needed, it
has to be explicitly implemented at application level. Under the dialog there is the transaction layer, that is
the message exchange that comprises a client request, the following optional server provisional responses and
the server final response. The concept of transaction is also present in CoAP where requests and responses
are bound and matched through a token present as message header field. Under the transaction there is the
messaging layer where messages are effectively formatted and sent through an underlying non-SIP transport
protocol (such as UDP or TCP). Instead of completely re-designing a session initiation protocol for constrained
environments, we propose to reuse the SIP layered architecture of SIP, by simply re-defining the messaging layer
with a constrained-oriented binary encoding. For such a purpose, we propose to reuse the same CoAP message
syntax [6]. Figure 4.1 shows the CoSIP message format derived by CoAP. A CoSIP message starts with the
2-bit Version field (set to 1, i.e. CoSIP version 1), followed by the 2-bit Type field (set to 1 = Non-confirmable),
the 4-bit CoAP TKL field (set to 0), the 8-bit Code field that encode request methods (for request messages)
and response codes (for response messages), the 16-bit CoAP Message ID field, followed by zero or more Option
fields. In case a CoSIP message body is present, as in CoAP it is appended after Options field, prefixed by an
1-byte marker (0xFF) that separates CoSIP header and payload. Options are encoded as in CoAP in Type-
Length-Value (TLV) format and encode all CoSIP header fields (From, Via, Call-ID, etc.) included in the CoSIP
message.

Fig. 4.1. CoSIP message format.

Since CoSIP re-uses the transaction layer of SIP, no CoAP optional Token field is needed [6] and the
TKL (Token Length) field can be permanently set to 0. Moreover, since CoSIP already has reliable message
transmission (within the transaction layer), no Confirmable (0), Acknowledgement (2) nor Reset (3) message
types are needed, and the only type of message that must be supported is Non-confirmable (1).

The comparison of the layered architecture of CoSIP and SIP is shown in Fig. 4.2.

Beside the above binary message, a CoSIP message can be virtually seen as a standard SIP message,

A session initiation protocol for the Internet of Things 257

Fig. 4.2. Comparison of the layered architectures of SIP (a) and CoSIP (b).

formed by one request–line or one status–line (depending if the message is a request or a response), followed
by a sequence of SIP header fields, followed by a message body, if preset. In particular, SIP header fields are
logically the same of the standard SIP protocol, properly encoded in corresponding CoSIP Options. For each
SIP header field a different option number has been set, and a proper encoding mechanism has been defined.
In particular general rules that we followed are:

• IP addresses are encoded as a sequence of 5 bytes for IPv4 and 17 bytes for IPv6, where the first byte
discriminates the type of address, i.e. 1 = IPv4 address, 2 = IPv6 address, 3 = FQDN (fully qualified
domain name);

• for header field parameters, when possible, the parameter name is implicitly identified by the position of
its value in the corresponded binary-encoded CoSIP Option; otherwise parameter names are substituted
by parameter codes; in the latter case the parameter is encoded as type-value pair (in case of fixed size
values) or type-length-vale tuple (in case of variable size values);

• random tokens, such as SIP “branch” values, SIP “from” and “to” tags, “call-id”, etc. are generated
as arrays of maximum 6 bytes.

One problem in reusing the current CoAP message format [6] is that in CoAP the 8-bit Code field is used
to encode all possible request methods and response codes. In particular, for response messages the 8-bit Code
field is divided by CoAP into two sub-fields “class” (3 bits) and “details” (5 bits); the upper three bits (“class”)
encodes the CoAP response classes 2xx (Success), 4xx (Client Error), and 5 (Server Error), while the remaining
5 bits (“details”) encode the sub-type of the response within a given class type. For example a 403 “Forbidden”
response is encoded as 4 (“class”) and 03 (“details”). Unfortunately, this method limits the number of possible
response codes that can be used (for example, using only 5 bits for “details” does not allow the direct encoding of
response codes such as 480 “Temporarily Unavailable” or 488 “Not Acceptable Here”). In CoSIP, we overcome
this problem by encoding within the Code field only the response class (2xx, 4xx, etc.) and by adding an explicit
Option field, called “Response-Code” option, that encodes the complete response code (e.g. 488), including the
response sub-type (88, in the case of response code 488). The size of the “Response-Code” option is 2 bytes.
Moreover, in order to support all SIP/CoSIP response codes we also added the classes 1xx (Provisional) and
3xx (Redirect) used in SIP.

5. IoT Application Scenarios. In this section, we will describe the most significant for IoT applications,
intended to provide an overview of the capabilities and typical usage of the CoSIP protocol. In all the scenarios,
we consider a network element, denoted as “IoT Gateway”, which includes also a HTTP/CoAP proxy, which
can be used by nodes residing outside the constrained network to access CoAP services.

5.1. CoAP Service Discovery. CoSIP allows smart objects to register the services they provide to
populate a CoSIP Registrar Server, which serves as a Resource Directory. The terms “Registrar Server” and

258 S. Cirani, M. Picone and L. Veltri

“Resource Directory” are here interchangeable.
Figure 5.1 shows a complete service registration and discovery scenario enabled by CoSIP. We consider a

smart object that includes a CoAP server, which provides one or more RESTful services, and a CoSIP agent,
which is used to interact with the CoSIP Registrar Server. The smart object issues a REGISTER request (denoted
with the letter “a” in the figure) which includes registration parameters, such as the Address of Record (AoR)
of the CoAP service and the actual URL that can be used to access the resource (Contact Address). Note that,
while the original SIP specification states that the To header MUST report a SIP or SIPS URI, CoSIP allows
to specify any scheme URI in the To header, e.g. a CoAP URI. Upon receiving the registration request, the
Registrar Server stores the AoR-to-Contact Address mapping in a Location Database and then sends a 200 OK

response.
When a REST client, either CoAP or HTTP, is willing to discover the services, it can issue a GET request

targeting the .well-known/core URI, which is used as a default entry point to retrieve the resources hosted by
the Resource Directory, as defined in [16]. The GET request is sent to the HTTP/CoAP proxy, which returns a
200 OK (in the case of HTTP) or a 2.05 Content (in the case of CoAP) response containing the list of services
in the payload.

Fig. 5.1. CoAP Service Discovery.

5.2. Session Establishment. A session is established when two endpoints need to exchange data. CoSIP
allows the establishment of session in a standard way without binding the session establishment method to a
specific session protocol. For instance, CoSIP can be used to negotiate and instantiate a RTP session between
constrained nodes. Once a session has been established, the data exchange between the endpoints occurs
(logically) in a peer-to-peer fashion.

Figure 5.2 shows how CoSIP can be used to establish a session between two endpoints. Let’s assume an
IoT Agent (IoT-A1) identified by the CoSIP URI cosip:user1@domain, which includes at least a CoSIP agent,
has registered its contact address to an IoT Gateway in the same way as described in the previous subsection
(steps 1 and 2). If another IoT-A2 cosip:user2@domain wants to establish a session with IoT-A1, it will send
a proper INVITE request to the IoT Gateway, which will act as a CoSIP Proxy relaying the request to IoT-A1

A session initiation protocol for the Internet of Things 259

(steps 3 and 4). IoT-A1 will then send a 200 OK response to IoT-A2 (steps 5 and 6), which will finalize the
session creation by sending an ACK message to IoT-A2 (steps 7 and 8).

At this point the session has been setup and data flow between IoT-A1 and IoT-A2 can occur directly.
The session establishment process can be used to negotiate some communication parameters, for instance
by encapsulating Session Description Protocol (SDP) [12] or equivalent in the message payload. As we will
show in the evaluation section, setting up a session, rather than using CoAP, both in a request/response or
subscribe/notify paradigm, is a very efficient approach to avoid the burden of the overhead due to carrying
headers in each exchanged message since eventually only the payloads would be relevant for the application.

Fig. 5.2. CoSIP Session Establishment.

5.3. Subscribe/Notify Applications. IoT scenarios typically involve smart objects which might be
battery-powered devices. It is crucial to adopt energy-efficient paradigms, e.g. OS tasks, application processing,
and communication. In order to minimize the power consumed, duty-cycled smart objects are adopted. Sleepy
nodes, especially those operating in LLNs, aren’t guaranteed to be reached, therefore it is more appropriate
for smart objects to use a Subscribe/Notify, also denoted as Publish/Subscribe (Pub/Sub), approach to send
notifications regarding the state of their resources, rather than receive and serve incoming requests. Such a
behavior can be achieved by leveraging on the inherent capabilities of SIP, and therefore of CoSIP, as sketched
in Fig. 5.3.

The depicted scenarios considers several Pub/Sub interactions: notifications can be sent either by a Notifier
IoT Agent (IoT-AN) or by an IoT Gateway, and subscribers can be either Subscriber IoT Agents (IoT-AS), IoT
Gateways, or generic Remote Subscribers. Let’s assume that all the notifiers have previously registered with
their CoSIP Registrar Server (this step is also denoted as the Publishing phase in a typical Pub/Sub scenario).
The standard subscription/notification procedure is the following:

1. the subscriber sends a SUBSCRIBE request to the notifier, also specifying the service events it is interested
in;

2. the notifier stores the subscriber’s URI and event information and sends a 200 OK response to the
subscriber;

3. whenever the notifier’s state changes, it sends a NOTIFY request to the subscriber;

260 S. Cirani, M. Picone and L. Veltri

4. the subscriber sends a 200 OK response back to the notifier.

Figure 5.3 reports all the use cases when a Pub/Sub might be used. An IoT-AS can subscribe to the service
of an IoT-AN in the same network, in case it is willing to perform some task, such as data/service aggregation.
The IoT Gateway can subscribe to the IoT-AN ’s in order to collect sensed data, e.g. to store them in the cloud,
without the need to periodically poll for data. Finally, the IoT Gateway itself might be a notifier for remote
subscribers, which are interested in notifications for specific services provided by the gateway, which may or
may not be the same of existing IoT-AN nodes managed by the gateway. Note that, it might be possible to
have interaction with legacy SIP agents in case the IoT Gateway is also able to perform SIP/CoSIP proxying.

Fig. 5.3. Subscribe/Notify applications with CoSIP.

The adoption of CoSIP in IoT scenarios allows to easily set up efficient Pub/Sub-based applications in a
standard way, thus allowing for seamless integration and interaction with the Internet. Moreover, the valuable
experience gained in the past years with SIP, both in terms of technologies and implementations, can be reused
to speed up the implementation and deployment of session-based applications.

6. Protocol Evaluation. In order to evaluate the performance of CoSIP, an implementation of the proto-
col has been developed together with some test applications. In this work, we have decided to focus on network
performance as a metric by measuring the amount of network traffic generated by the test applications. The
CoSIP protocol has been implemented in Java language, due to its simplicity, cross-platform support, and the
availability of already developed SIP and CoAP libraries [17, 18]. The source code of the CoSIP implementation
is freely available at [19].

The performance results show that many advantages can be achieved by using CoSIP, both in constrained
and non-constrained applications. The first evaluation compares CoSIP and SIP in terms of bytes transmitted
for the signaling part related to the instantiation and termination of a session. Each CoSIP request and response
message is separately compared with its SIP counterpart. The results are illustrated in Fig. 6.1. Table 6.1
shows the compression ratio for each CoSIP/SIP message pair. Regarding the session as a whole, CoSIP yields
an overall compression ratio of slightly more than 0.55.

A session initiation protocol for the Internet of Things 261

Message type CoSIP (bytes) SIP (bytes) compression ratio
INVITE 311 579 0.537

100 Trying 141 279 0.505
180 Ringing 173 372 0.465

200 OK 293 508 0.577
ACK 216 363 0.595
BYE 183 309 0.592

200 OK 162 274 0.591
Table 6.1

Comparison between CoSIP and SIP signaling (bytes per message) for session instantiation and establishment.

Fig. 6.1. Transmitted bytes for CoSIP and SIP session (signaling only).

Another evaluation has been made to show the advantage of using session in constrained applications.
Figure 6.2 shows the amount of network traffic (in bytes) generated by two constrained applications: the first
application uses CoSIP to establish a session and then performs the data exchange by sending the payloads
over UDP; the second is a standard CoAP-based application where the communication occurs between a CoAP
client and a CoAP server, using confirmed CoAP POST requests. In both cases data is sent at the same rate of
one data message every 2 seconds. The figure shows that the lightweight CoSIP session is instantiated in a very
short period of time and after the session has been established few bytes are exchanged between the endpoints.
On the other hand the CoAP-based application has no overhead at the beginning due to the instantiation of
the session but, soon after, the amount of traffic generated by this application exceeds that of the CoSIP-
based application, since in the CoAP-based scenario data is exchanged within CoAP messages resulting in an
unnecessary CoAP overhead.

Note that in the depicted scenario the CoSIP signaling used for session initiation includes all SIP header
fields normally used in standard non-constrained SIP application, that is no reduction in term of header fields
has been performed. Instead for the CoAP application we considered only mandatory CoAP header fields

262 S. Cirani, M. Picone and L. Veltri

resulting in the best-case scenario for CoAP in term of CoAP overhead (minimum overhead). This means that
in other CoAP applications the slope of the line could become even steeper, thus reducing the time when the
break-even point with CoSIP is reached.

Fig. 6.2. Transmitted bytes in a CoSIP Session vs. CoAP confirmed POST requests and responses.

7. Conclusions. In this paper, we have introduced a low-power protocol, named “CoSIP”, for establish-
ing sessions between two or more endpoints targeting constrained environments. Many applications, both in
constrained and non-constrained scenarios, do benefit from establishing a session between the participants in
order to minimize the communication overhead and to negotiate some parameters related to the data exchange
that will occur. The CoSIP protocol is a constrained version of the SIP protocol intended to minimize the
amount of network traffic, and therefore energy consumption, targeted for IoT scenarios. A similar effort in
trying to minimize the amount of data in IoT and M2M applications is being carried on in standardization
organizations, such as the IETF CoRE Working Group, which is currently defining a protocol (CoAP) to be
used as a generic web protocol for RESTful constrained environments and maps to HTTP. Similarly, in this
work we have proposed to apply the same approach to define a protocol for session instantiation, negotiation,
and termination. We have described some interesting IoT scenarios that might benefit from using such a pro-
tocol, namely service discovery, session establishment, and services based on a subscribe/notify paradigm. A
Java-language implementation of CoSIP has been developed and tested to evaluate the performance of the
newly proposed protocol, by measuring the amount of transmitted bytes compared to other solutions based on
SIP and CoAP respectively. The results show that applications that use CoSIP can outperform other SIP- and
CoAP-based applications in terms of generated network traffic: SIP signaling can be compressed of nearly 50%
using CoSIP, and long-running applications that may use CoAP for sending the same type of data to a given
receiver may be better implemented with CoSIP, since no CoAP overhead has to be transmitted along with each
transmitted data message leading to a packet size and per-packet processing reduction; packet size reduction
in turn may reduce the need for packet fragmentation (in 6LoWPAN networks) and the energy consumption of
the nodes involved in the data exchange.

Future work will include an exhaustive experimentation, both in simulation environments and a real-world
testbed comprising a variety of heterogeneous devices which is currently being setup at the Department of

A session initiation protocol for the Internet of Things 263

Information Engineering of the University of Parma, aimed to evaluate the performance of the CoSIP protocol
both in terms of energy consumption and delay. The tests will focus on the time required to setup a session in
different scenarios, such as in IEEE 802.15.4 multi-hop environments, and the measurement of energy consump-
tion with a comparison between CoSIP sessions and standard CoAP communication. Two different perspectives
will be analyzed: i) end-to-end delay between the actual session participants and ii) energy consumption on
intermediate nodes which will be indirectly involved in the session as responsible for multi-hopping routing at
lower layers. The target platforms will be both constrained and non-constrained devices for session participants
and relay nodes, in order to provide a thorough evaluation comprising heterogeneous devices operating under
different conditions.

REFERENCES

[1] C. Bormann, Guidance for Light-Weight Implementations of the Internet Protocol Suite, IETF Internet-Draft draft-ietf-lwig-
guidance (February 2013), http://tools.ietf.org/id/draft-ietf-lwig-guidance

[2] S. Deering, and R. Hinden, Internet Protocol, Version 6 (IPv6) Specification, Internet Engineering Task Force, RFC 2460
(December 1998).

[3] IETF IPv6 over Low Power WPAN Working Group. http://tools.ietf.org/wg/6lowpan/
[4] IETF Routing Over Low power and Lossy networks Working Group. http://tools.ietf.org/wg/roll/
[5] IETF Constrained RESTful Environments Working Group. http://tools.ietf.org/wg/core/
[6] Z. Shelby, K. Hartke, K., and C. Bormann, Constrained Application Protocol (CoAP), IETF Internet-Draft draft-ietf-

core-coap (May 2013), http://tools.ietf.org/id/draft-ietf-core-coap
[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee, Hypertext Transfer

Protocol – HTTP/1.1, Internet Engineering Task Force, RFC 2616 (June 1999).
[8] J. Postel, User Datagram Protocol, Internet Engineering Task Force, RFC 768 (August 1980).
[9] K. Hartke, Observing Resources in CoAP, IETF Internet-Draft draft-ietf-core-observe (February 2013),

http://tools.ietf.org/id/draft-ietf-core-observe

[10] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley, and E. Schooler,
SIP: Session Initiation Protocol, Internet Engineering Task Force, RFC 3261 (June 2002).

[11] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, RTP: A Transport Protocol for Real-Time Applications,
Internet Engineering Task Force, RFC 3550 (July 2003).

[12] V. Jacobson, and C. Perkins, SDP: Session Description Protocol, Internet Engineering Task Force, RFC 4566 (July 2006).
[13] A. B. Roach, Session Initiation Protocol (SIP)-Specific Event Notification, Internet Engineering Task Force, RFC 3265 (June

2002).
[14] Z. Shelby, S. Krco, and C. Bormann, CoRE Resource Directory, IETF Internet-Draft draft-ietf-core-resource-directory

(June 2013), http://tools.ietf.org/id/draft-ietf-core-resource-directory
[15] A. Rahman and E. Dijk, Group Communication for CoAP, IETF Internet-Draft draft-ietf-core-groupcomm (July 2013),

http://tools.ietf.org/id/draft-ietf-core-groupcomm

[16] Z. Shelby, Constrained RESTful Environments (CoRE) Link Format, Internet Engineering Task Force, RFC 6690 (August
2012).

[17] mjSIP project. http://mjsip.org/
[18] mjCoAP project. http://mjcoap.org/
[19] CoSIP project. http://cosip.org/download/

Edited by: Maria Fazio and Nik Bessis
Received: Nov 2, 2013
Accepted: Jan 10, 2014

Scalable Computing: Practice and Experience

Volume 14, Number 4, pp. 265–277. http://www.scpe.org

DOI 10.12694/scpe.v14i4.932
ISSN 1895-1767
c© 2013 SCPE

EVALUATING A FILE FRAGMENTATION SYSTEM FOR MULTI-PROVIDER CLOUD
STORAGE

MASSIMO VILLARI, ANTONIO CELESTI, MARIA FAZIO, AND ANTONIO PULIAFITO ∗

Abstract. Currently, storage services represent a new way to do business in Cloud computing. This new trend is proved by
the number of Cloud storage providers that are appearing on the market. In this work, we present an innovative approach useful
for using different Cloud storage providers in a transparent way, avoiding both data lock-in and possible data privacy violation that
can be caused by providers themselves. More specifically, we propose an approach enabling Cloud customers to rely on many Cloud
storage providers. Differently from other solutions, with our approach only the customers have the full control of their data, and
in addition, if a provider suddenly disappears and/or it is not available anymore, the customers will be able to continue accessing
their data, reconstructing them from data fragments replicated in other Cloud storage providers. The paper shows how such an
approach works. In particular, experiments, besides proving the goodness of our approach, also provide several guidelines regarding
how to properly configure software systems in order to meet the customer’s requirements (in terms of both QoS and costs).

Key words: Cloud Computing, Storage, Big Data, Reliability, Confidentiality.

1. Introduction. Nowadays, Cloud storage service is a very challenging topic, since it allows to store
huge amount of data into different providers. The business behind the Cloud storage service is evident due the
increasingly availability of storage providers (e.g., Dropbox, Google Drive, Copy, Amazon S3, SkyDrive, and so
on). However, from the customer point of view, it is hard to choose the best offers, manage several accounts,
and move data across multiple Cloud providers. Moreover, despite Cloud providers warranties, users’ privacy
could be compromised. From our point of view Cloud storage solutions lacks of a strong level of security and
privacy [2], [3], [13]. In order to address such a problem, we propose to disseminate pieces of data among several
Cloud providers that only the utilizer will be able to reconstruct.

In this work, we introduce an abstraction layer that works above heterogeneous Cloud storage providers.
The benefits of the proposed strategies are multiple. Firstly, customers do not need to take care about a specific
provider for data upload/download. They experience the storage service as a seamless service, where storage
space is almost the sum of the storage spaces offered by the involved Cloud providers. Secondly, Cloud providers
cannot have full access to the stored files, because each one is split in many chunks, that are stored into different
Cloud providers. The technique we adopt in our approach that aims to avoid misusing of personal data is called
Data Obfuscation.

Our solution is able to recover an rebuild the original file even if an error in a Cloud storage provider occurs
(e.g., the operator fails). This is possible by means of the Redundant Residue Number System (RRNS) algo-
rithm, that allows to split each file in several chunks that are called “residue-segments”, including a redundancy
code. Redundancy guarantees the recover of an original file when one or more residue-segments are missing.
Before uploading data, the user selects the level of redundancy along with the Cloud providers involved in the
storage service. Each residue-segment is BASE-64 encoded, attached within an XML wrapper and described
through an XML metadata file, called map-file. Data and metadata are spread over different Cloud storage
providers. The map-file tracks where the residue-segments are stored, in order to reconstruct the original file
when the user requires to retrieve it. Following this approach, only the user can reconstruct the XML metadata
combining the partial metadata coming from the two trusted providers, hence retrieve residue-segments, and
rebuild the original files. This paper, extends our previous work [14], providing a more in-depth analisys about
the proposed approach and further experimental results.

The paper is organized as follows. Section 2 describes related works, highlighting the lack of a resilient and
confidential multi-provider Cloud storage service. Section 3 motivates this work according to the current trend
on Cloud storage services. Section 4 briefly describe the RRNS algorithm on which our approach is based. Our
solution for a reliable and confidential multi-provider Cloud storage service is described in Sect. 5. Experimental
evaluations are discussed in Sect. 6. Finally, our conclusion are summarized in Sect. 7.

∗DICIEMA, University of Messina,C.Da Di Dio 1, 98166, Messina, Italy (mvillari, acelesti, mfazio, apuliafito)@unime.it.

265

266 M. Villari, A. Celesti, M. Fazio and A. Puliafito

2. Related Work. Many works in literature deal with data reliability in data centers and in Cloud
Infrastructure as a Service (IaaS). A well known solution is the Google File System (GFS), in which a file chunk
replication mechanism is used [6]. Specifically, Google thought to make up a redundant storage of massive
amounts of data on cheap and unreliable computers. The file chunk replication strategy is also at the basis of
our solution.

In [1], the authors claim the improvement of file reliability by introducing redundancies into a large storage
system exploiting different solutions, such as erasure correcting codes (used in RAID levels 5 and 6), introducing
several data placement, failure detection and recovery disciplines inside data centers.

In [10], a data restore is accomplished using regenerating codes. In such a work, both redundancy and check
controls are used to guarantee the possibility to repair data during file transfer over unreliable networks.

How to store pieces of file into Virtual Machines (VMs) is discussed in [11]. The authors introduce an
enhanced distributed Cloud storage system. Nevertheless, the adopted protocol is rather complex and hard to
be adapted in real scenarios. A similar technique is discussed in [15], where the authors present PRESIDIO,
a framework able to detect similarity and reduce or eliminate redundancy when storing objects. The work
in [7] discusses a way for optimizing the file partition in network storage environment. The model assessed by
the authors shows how a partitioned network is able to maintain high availability. However, the approach is
theoretical. In [9], a secure Cloud backup system is investigated. The authors study how to manage the Data
Deletion (Assured) and the Version Control.

In [7], the authors describe a technique for optimizing the file partition considering a Network Storage
Environment. They present a strategy to efficiently distribute files inside a cluster taking into account concepts
of reliability, availability and serviceability. A file partitioning approach for Cloud computing is described in [4],
where a smart procedure is used to optimize the placement of each data block according to its size. In [16],
the authors face the problems that arise whenever a laptop is lost or stolen. The system guarantees that data
cannot be accessed after an a priori configured time window and this can be a point of failure. The authors
use XOR operations to split and merge files that have to be protected. The procedure is hard to be applied,
because it requires to customize the kernel of the involved servers.

Data distribution [17] along with Data Migration [8] are topics quite relevant in the context of Cloud storage.
The need to send big data over the Internet is important as well as the possibility to overcome data lock-in
issues. Cloud operators are trying to prevent them for maintaining their business.

3. Motivations: the Current Trend on Cloud Storage. The arising requirement of Internet and, in
particular, of Cloud Computing is the management of “Big Data”. Big Data refers to a huge amount of data that
users produce due the massive interconnection of smart devices and sensors over the Internet, which represent
the basis for the development of Internet of Things (IoT) applications. Cloud Storage services represent the
basic infrastructure for storing this produced data.

Cloud services are organized into three main levels: Infrastructure, Platform, or Software as a Service
(i.e., IaaS, PaaS, or SaaS). Cloud providers can rely on these three levels in order to provide several storage
functionalities. Amazon is the largest Cloud storage player and provides Storage as IaaS. Looking at the Amazon
S3 storage service, it provides a simple web service able to store/retrieve any kind of data into/from the web.
S3 provides the access to the scalable, reliable, secure, and fast Amazon storage infrastructure. S3 is widely
used by many SaaS providers (e.g., Dropbox, Megauploader, Rapidshare, etc). In this paragraph, we discuss
the trend of the number of objects stored in the S3 infrastructure during the last seven years.

The number of objects stored into the Amazon S3 has grown from roughly 700 Billion objects in one year to
2000 Billion objects at the time of when this paper is written. Figure 3.1 shows the market on data production
and storage is vertiginously growing up in the last decade, according to the following equation:

NumObjs = 1, 1335 ∗X3,5905 (3.1)

Equation 3.1 allows to make the prevision on the storage demand of about 12000 Billion objects in the next
five years (2018). Such a prevision is justified by the increasing interest of Information and Communication
Technology (ICT) societies and end-users towards Cloud storage, with the purpose to reduce costs and satisfy
their needs with a large plethora of opportunities. According to these considerations, we propose a new way to
support emerging requirements for future Cloud storage.

Evaluating a File Fragmentation System for Multi-Provider Cloud Storage 267

Fig. 3.1. Amazon S3 growth in the last seven years and its future prevision for the next five years.

(a) Classic management of data over mul-
tiple Cloud storage providers

(b) The new approach introduced in this
work

Fig. 3.2. Storage Cloud Services distributed over the Internet

3.1. A New Approach to Store Data Into the Cloud. The usage of Cloud storage providers is
characterized by the possibility for customers to subscribe many storage services even for free (e.g., Copy,
DropBox, Drive,...) and to manually manage data upload and download. For example, a user holds files A, B
and C in his local file system and decides to upload these files into the Cloud, as shown in Fig. 3.2(a). He/she
has to choose where each file has to be uploaded (for example, file A in Copy, file B in Dropbox, and file C in
SkyDrive), by using personal policies (such as type of file, size of file, and so on) or making a random choice.
Thus, when he/she will require the file, he/she has to remember where the file has been uploaded. In addition,
after upload, Cloud providers have the full control of the files they store, and this can be a potential threat
for data confidentiality. We believe that a way for reducing such threats consists in using the Cloud storage
in a different way than usual. In this paper, we describe an approach that consists in spreading chunks of
each single file over different Cloud storage providers. Our approach introduces a software layer that abstracts
heterogeneous Cloud storage providers and allows end-users to upload their files in an efficient way. Figure
3.2(b) shows how the proposed approach works. The original file A is split in three chunks, A 1, A 2 and A 3.
The end-user makes a choice about the level of redundancy of each file, in order to overcome fails in data retrieval
or data loss. The algorithm we implemented in our solution allows to manage a particular file redundancy in
a smart way, as we will describe in Sect. 4.1. Of course, file splitting and merging processes are hidden to
each Cloud operator, so that they cannot have any knowledge about data content. This prevents the possible
fraudulent access to customer data by Cloud storage providers, that is a very hot topic on Cloud computing.

268 M. Villari, A. Celesti, M. Fazio and A. Puliafito

Moreover, pieces of file or chunks are wrapped into XML structure, in order to increase the portability of the
system. Any Cloud storage provider sees the XML file with a body containing a chunk of the original file
coded in BASE-64. In the example in Fig. 3.2(b), some chunks can be stored in Copy, others in SkyDrive,
till Dropobox. Only end-users should be totally aware of what data are stored in each Cloud storage operator.
Chunks distribution over the Cloud is described in a metadata map-file, an XML file that tracks where chunks
are stored and allows to reconstruct the original file. The failure of the metadata map-file determines the loss
of the whole file. To prevent this event and improve the reliability of the proposed solution, the map-file has to
be stored in the Cloud, but information on chunk distribution must be spread over two or more further partial
metadata map-files and deployed over two or more different independent trusted Cloud providers in order to
carry out also medadata obfuscation. Since the trusted providers hold only partial metadata map-file, no one
must be able, by itself, to reconstruct the whole metadata map-file of any particular user. In the following, we
describe the mathematical concepts behind the redundancy algorithm used in our approach.

4. The Redundant Residue Number System. If you consider p prime, pairwise and positive integers
m1,m2, · · · ,mp called modulus such as M =

∏p

i=1 mi and mi > mi−1 for each i ∈ [2, p]. Given W ≥ 0, we
can define wi = W mod mi the residue of W modulo mi. The p-tuple (w1, w2, · · · , wp) is named the Residue
Representation of W with the given modulus and each tuple element wi is known as the ith residue digit of the
representation. For every p-tuple (w1, w2, · · · , wp), the corresponding W can be reconstructed by means of the
Chinese Remainder Theorem:

W =

(

p
∑

i=1

wi

M

mi

bi

)

mod M (4.1)

where bi, i ∈ [1, p] is such that

(

bi
M

mi

)

mod mi = 1 (i.e. the multiplicative inverse of
M

mi

modulo mi). We call

Residue Number System (RNS), with residue modulus m1,m2, · · · ,mp, the number system representing integers
in [0,M) through the p-tuple (w1, w2, · · · , wp). Considering p + r modulus m1, · · · ,mp,mp+1, · · · ,mp+r we
have:

M =

p
∏

i=1

mi (4.2)

and

MR =
r
∏

i=p+1

mi (4.3)

without loss of generality mi > mi−1 for each i ∈ [2, p + r]. We define Redundant Residue Number System
(RRNS) of modulus m1, · · · ,mp+r, range M and redundancy MR, the number system representing integers in
[0,M) by means of the (p + r)-tuple of their residue modulus m1, · · · ,mp+r. Although the above mentioned
RRNS can provide representations to all integers in the range [0,M ·MR), the legitimate range of representation
is limited to [0,M), and the corresponding (p+ r)-tuples are called legitimate. Integers in [M,M ·MR) together
with the corresponding (p+r)-tuples are instead called illegitimate. Let now consider an RRNS whose range isM
and redundancy MR, where (m1,m2, · · · ,mp,mp+1, · · · ,mp+r) is the (p+ r)-tuple of modulus and (w1, w2, · · · ,
wp, wp+1, · · · , wp+r) is the legitimate representation on an W integer in [0,M). If an event maks unavailable d
arbitrary digits in the representation, we have two new sets of elements {w′

1, w
′
2, · · · , w

′
p+r−d} ⊆ {w1, · · · , wp+r}

with the corresponding modulus {m′
1,m

′
2, · · · ,m′

p+r−d} ⊆ {m1, · · · ,mp+r}. This status is also known as
erasures of multiplicity d. If the condition d ≤ r in true, the RNS of modulus {m′

1,m
′
2, · · · ,m

′
p+r−d} has range:

M ′ =

p+r−d
∏

i=1

m′
i ≤ M (4.4)

Evaluating a File Fragmentation System for Multi-Provider Cloud Storage 269

since W < M , (w1, w2, · · · , wp, wp+1, · · · , wp+r) is the unique representation of W in the latter RNS. Integer
W can be reconstructed from the p+ r − d-tuple (w′

1, w
′
2, · · · , w

′
p, w

′
p+1, · · · , w

′
p+r−d) by means of the Chinese

Remainder Theorem (as in the case of equation 4.1):

W =

(

p+r−d
∑

i=1

w′
i

M ′

m′
i

b′i

)

mod M ′ (4.5)

where bi is such that

(

b′i
M ′

m′
i

)

mod m′
i = 1 and i ∈ [1, p + r − d]. As a consequence, the above mentioned

RRNS can tolerate erasures up to multiplicity r. It can be proved (see [12] for further details) that the same
RRNS is able to detect any error up the multiplicity r and it allows to correct any error up the multiplicity
⌊ r
2
⌋.

In the following, we are going to explain the overhead introduced by the RRNS encoding algorithm.

(a) Classic man-
agement of data
redundancy.

(b) File management based on RRNS

Fig. 4.1. Traditional approach versus the RRNS-based approach.

4.1. RRNS Exploitation for Cloud storage. In this paper we present a new solution for storing files
into the Cloud based on RRNS. It works by using encoding techniques and redundancy policies to offer a very
reliable and more secure service using obfuscation. Of course, from the point of view of the storage overhead,
the RRNS cause an increase in terms of file size. Here, we analyze the impact of the proposed solution in terms
of space disk overhead, comparing our results with more traditional approaches.

The traditional approach used to increase fault tolerance in data storage is to replicate data, as shown in
Fig. 4.1(a). Thus, if we need a 3 degree of redundancy for file A (that means we can recover A even if 3 files
are lost), we need to deploy 4 replicas of A in different Cloud storage providers. The redundancy mechanism
implemented in RRNS allows to reduce the storage consumption. Let consider the following two parameters: p

270 M. Villari, A. Celesti, M. Fazio and A. Puliafito

is the minimum number of modules necessary to reconstruct a file and r is the redundancy degree. Let consider
a generic file A. We split A in p residue-segments. Moreover, to have 3 degree of redundancy, we set r = 3 and
we can recover A even if 3 residue-segment are lost (Figure 4.1(b) shows the behavior of the system for p=5).
According to formulations expressed in Sect. 4, a system able to tolerate chunks unavailability up to d = 3 can
be codified with different configurations:

• p=1, r=3 → that is 4 residue-segments;
• p=3, r=3 → that is 6 residue-segments;
• p=5, r=3 → that is 8 residue-segments;
• p=7, r=3 → that is 10 residue-segments;
• p=9, r=3 → that is 12 residue-segments.

The difference among the above configurations depends on the number of Cloud storage operators available to
store replicas/segments. By using RRNS, we can modulate the number of devices (i.e., Cloud storage providers)
that have to be involved for storing data, that is 4 (as the traditional case), 6, 8, 10 and 12. This allows us to
increase the overall reliability of the system if we consider many Cloud operators. In Fig. 4.1(b), the original
file is split into 8 residue-segments. Here, the erasure r is equal to 3. The system is able to reconstruct the
original file up to d = 3 residue-segments unavailability.

At the end of the encoding/uploading process, a single Cloud storage provider holding the whole file will
not exist and this will lead to some direct consequences: even though there’s not encryption on data, a self-
contained file will not exist on any storage provider, leading to an increased confidentiality degree. This type of
data access restriction is also know as data obfuscation. Thanks to the redundancy introduced by the RRNS,
in case of temporary unavailability of one or more residue-segments (according to Eq. 4.5), the user’s file might
still be reconstructed from the owner. Indeed, only the owner knows the logical distribution of segments stored
over the different Cloud storage providers, hence their potential reconstruction. Obviously, the introduced
redundancy increases the resulting amount of data to be stored and transferred, but how previously discussed
such an overhead is acceptable compared with the traditional approach consisting on managing whole replicas
of files. In addition, if a particular Cloud storage provider is heavily overwhelmed from users’ requests, having
data spread over different Cloud operators might quicken the download task. In particular, instead of waiting
for the transmission of a monolithic block from the overloaded Cloud provider, the client can download different
residue-segments in parallel from different operators, allowing a more efficient bandwidth occupation. This same
method is used by the Torrent protocol for increasing the speed of file downloading over the Internet. In the
following, we formalize the overhead of our approach with respect to the traditional one.

4.2. Overhead Evaluation for Reliable Capabilities. Let us consider a file management based on
RRNS(p,r) and x as the original file size of file A. The base64 encoding used to make the XML wrapping
implies that a set of 6 bits is converted in an ASCII character (8 bit), with a total overhead of 8−6

6
= 1

3
[5].

Considering that 4 is the compression rate due to the RRNS algorithm, the final size Sfile of the files we have
to upload over the Cloud can be calculated as following:

Sfile = (
p+ r

4
) ∗ x+ (

p+ r

4
) ∗

1

3
∗ x (4.6)

where the first term is related to the increased size of the file due to the RRNS algorithm and the second term
is the increased size of the overhead for the base64 encoding due to the RRNS algorithm. From equation 4.6
we obtain:

Sfile = (
p+ r

4
) ∗ 1, 33 ∗ x (4.7)

Thus, the storage size of the file depends on both p and r. In Fig. 4.2, we have drawn the multiplicative factor
of the file size for a file of 1MB, when p = 5. For example, when r = 7, the storage size required is about 4MB.
A traditional redundancy approach, where multiple copies of the file are stored, implies a storage size of 7MB.
Thus, on equal error tolerance, our approach reduces the storage size of about a factor 1, 75.

5. RRNS-Based Approch for a Reliable Cloud Storage. We underline that the two key-points on
which our approach is based consist in guaranteeing data availability (resiliency) and increasing data confiden-
tiality through the obfuscation technique. From the client point of view, different types of application front-end

Evaluating a File Fragmentation System for Multi-Provider Cloud Storage 271

Fig. 4.2. Multiplicative factor of file size with the redundancy

can be developed: web application in form of SaaS, java applets, stand-alone desktop application, mobile ap-
plication, and so on. Despite of any particular type of front-end application, here, we describe the main steps
required to split a file and upload residue-segments over different Cloud operators and the main steps to recover
residue-segments, downloading them, and reconstruct the original file. An application front-end should be able
to receive as input one or more files belonging to a given user and uploading them over the several Cloud
storage providers according to specific constraints. Thanks to the RRNS properties discussed in Sect. 4, each
time the encoding process is applied to a file, it is split (as depicted in Fig. 5.1) on different residue-segments
according to a given degree of redundancy. In order to guarantee a high level of flexibility, we use a XML
wrapper for representing residue-segments adopting the BASE-64 encoding. BASE-64 encoding schemes are
commonly used when there is the need to encode binary data that needs to be stored and transferred over media
that is designed to deal with textual data. Although the XML container allows a strong level of environment
independence, the BASE-64 encoding employed for encapsulating binary data within the content node involves
a storage size overhead. In fact, the user data after the BASE-64 encoding will involve a storage requirement
increment approximately of 33% as described in Sect. 4.2. Then, the XML residue-segments will be copied and
stored on different Cloud storage providers by using the APIs they make available for developers.

Fig. 5.1. Representation of the RRNS encoding/decoding.

After having introduced the general concepts regarding our idea, in the following we are going to discuss
the a few implementation guidelines, analyzing how data is processed both at upload and download phases.
Figure 5.1 depicts how these tasks are carried out: the top part represents the RRNS encoding/uploading
process, while the underside one represents the downloading/decoding process. The main steps that have to
be executed by a generic front-end application are schematized in Table 5.1. Whenever an end-user wants to
store a file W , he/she specifies his/her requirements through an init file, in which he/she sets the parameters
p and r and provides information on Cloud storage providers involved in data uploading (STEP S0). The

272 M. Villari, A. Celesti, M. Fazio and A. Puliafito

SPLITTING PHASE
S0: end-user selects the File W , the number of required fragments (p) and the
redundancy degree (r).
S1: Wzip = ZIP (W). The the File W is compressed by means of the zip
algorithm
S2: Wx = RRNS(Wzip). This process generates p+ r residue-segments.
S3: Wx BASE-64 encoding.
S4: Wx XML encapsulation.
DISSEMINATION PHASE
S5: Upload of XML residue-segments. This step involves several Cloud storage
operators. According to the particular type of front-end application, the upload
task can be accomplished after S0.
S6: Storage of XML residue-segments into several Cloud storage providers.
Each provider is not able to know the content of the whole file.
RETRIEVAL PHASE
S7: Download of the XML chunks.
RECONSTRUCTION PHASE
S8: Wx XML decapsulation.
S9: Wx BASE-64 decoding.
S10: Wzip = RRNS(Wx). The Zipped file is reconstructed using the Chinese
Reminder Theorem.
S11: W = UNZIP (Wzip). This compressed file is uncompressed with ZIP
utility.
S12: end-user access the original file. According to the particular type of
front-end application, S8, S9, and S10 steps can be accomplished after S8.

Table 5.1

Main steps that have to be accomplished by a front-end application.

application compress the W file with the ZIP utility in order to save space (STEP S1). The RRNS encoding
is applied to the zipped file and generate a set of p + r residue-segments (STEP S2). Each residue-segment is
BASE-64 encoded (STEP S3) and attached within an XML wrapper (STEP S4). Each XML wrapper, in turn,
will then be uploaded to a particular Cloud storage providers specified by the user (STEP S5). Retrieval and
reconstruction of the file W are performed thorough vice versa activities (STEPS S6-S12).

5.1. XML Wrapper Details. In order to track the location of uploaded residue-segments, for each file,
a metadata map-file is created. Although, how previously stated, how to obfuscate the metadata map-file
spreading it over different Cloud providers is out of scope, here we provide a few details about the structure of
such a file also presenting a simple example of metadata map-file obfuscation using the MD5 and two different
trusted Cloud providers. The metadata map-file must be accessible only from the data owner and it allows to
rebuild the original file. In the following is presented an example of possible metadata map-file:

<OWNER>ownerInfo</OWNER>
<SEGMENTS> . . .</SEGMENTS>
<FILE>

[. . .]
<CHUNK num=”11”>Path/ to / the /StorageProviderX/

94090 e1381a1700fb8c34a0069bc6533 . xml</CHUNK>
<CHUNK num=”5”>Path/ to / the /StorageProviderY/

eaf2bcdcb47cd1eba2a4392857e66b33 . xml</CHUNK>
[. . .]

</FILE>

The first element of the file, OWNER, specifies owner information. The SEGMENTS element includes the num-
ber of necessary segments to reconstruct the file (that is the value of p). The FILE element contains a variable

Evaluating a File Fragmentation System for Multi-Provider Cloud Storage 273

number of CHUNK elements. The CHUNK tag has the attribute num, which refers to the residue-segment
sequence number, its content represents a combination of the path on associated on the front-end application,
the Cloud storage provider for that chunk, and the name of the XML file containing data. Information stored
within the above XML document will allow to build up the original file during the decoding process. Depending
on the number of available providers and the number of XML chunks, providers are in charge to store one or
more chunks.

It is straightforward foreseeing that the metadata map-file represents a key point of the whole process: its
accidental lost or unavailability leads to data loss, because retrieving chunks and rebuilding the file becomes
impossible. Thus, keeping the map-file in the local file system of the end-user is not a strategic solution. To
improve the reliability of the metadata map-file storing, the front-end application has to be designed to also
store the map-file into several Cloud providers. To preserve data confidentiality, the map-file has to be slit
in different partial medatada map-files and spread over different independent trused Cloud providers. This
mechanism can be achieved using well known security techniques, in particular combining asymmetric and/or
symmetric encryption with the MD5 message-digest algorithm. In order to clarify ideas, in the following we
discuss a methodology to split the metadata map-file into two partial metadata map-files using the MD5. In this
example, partial metadata map-files are called servicelist and trusted. The servicelist file is an XML document
containing the list of storage providers on which a user holds an account for uploading/downloading files. The
trusted file in an XML document used to associate a residue-segment number to the name of the related XML
file containing the residue-segment data, and an unique identifier associated to the service provider on which
that chunk is stored:

[. . .]
<OWNER>ownerInfo</OWNER>
<SEGMENTS> . . .</SEGMENTS>
<FILE>
[. . .]
<CHUNK num=”11”>

<CHUNKREF>94090 e1381a1700fb8c34a0069bc6533 . xml</CHUNKREF>
<UUID REF>a72ebba5d9b695c39e6d2193c3cb8057</UUID REF>

</CHUNK>
<CHUNK num=”5”>

<CHUNKREF>eaf2bcdcb47cd1eba2a4392857e66b33 . xml</CHUNKREF>
<UUID REF>9e296 f8ea3992e f 53 f f 93e9adbc80299</UUID REF>

</CHUNK>
[. . .]
</FILE>
[. . .]

The first two elements of the file are identical to the ones in the map-file. The CHUNK tag within the FILE
element has the attribute num, which refers to the fragment order and the child elements CHUNK REF and
UUID REF respectively identify the name of the XML file containing the data associated to that chunk and a
unique identifier associated to the storage service provider. The UUID REF does not contain the actual service
provider in order to obfuscate this information to the storage provider where the file will be uploaded. In fact,
the unique identifier is obtained applying the MD5 to the couple (chunk , provider) in order to prevent brute
force attacks aiming at found out the actual paths associated to the chunks. Uploading to different trusted
Cloud providers the two partial metadata files instead of the actual whole metadata map-file guarantees only
to the end-user the knowledge about the file partitioning. This task is highlighted in Fig. 5.2. Starting from
serviceList and trusted files, we can obtain the metadata map-file necessary for reconstructing the original file.
The metadata map-file obfuscation can be obtained also with other techniques considering several trused Cloud
providers. Further details about metadata map-file obfuscation are out of scope. In the following, we specifically
focus on evaluating how the RRNS algorithm works considering multiple Cloud storage providers.

6. Experimental Results. In order to evaluate our system, we conducted several experiments considering
a real testbed composed of client stand-alone java desktop front-end application interacting with three different
commercial Cloud storage providers, that are Google Drive, Dropbox and Copy. In our experiments, we used
file with different sizes, different redundancy factors and we evaluated the time spent for the splitting activity,

274 M. Villari, A. Celesti, M. Fazio and A. Puliafito

Fig. 5.2. map file reconstruction.

the time spent for uploading residue-segments, and the time spent for retrieving and re-composing the original
file.

6.1. Testbed Setup. The local testbed was arranged at DICIEAMA GRID Laboratory at the University
of Messina. The front-end application was deployed in a blade with the following hardware configuration: CPU
Dual-Core AMD Opteron(tm) Processor 2218 HE, RAM 6GB, OS: ubuntu server 12.04.2 LTS 64 BIT. We
considered two sets of file sizes defined Small Files, characterized by 10KB, 100KB, 1MB, 10MB, and Big Files,
characterized by 100MB, 200MB, 300MB, and 400MB. We fix p=5 and the following values for r: [1, 4, 7].
According to Eq. 4.5, each file is split respectively into 6, 9, and 12 residue-segments, from now on called
chunks. We store chunks balancing the workload over the three Cloud storage providers, so that in each one,
we stored respectively 2, 3, and 4 pieces of file. Each experiment was repeated 30 times in order to consider
mean values and confidence intervals at 95%. In the following, we will describe the performance of Splitting
and Reconstruction phases along with Dissemination and Retrieval phases.

(a) Time needed for the Splitting phase
with Small Files

(b) Time needed for the Splitting phase
with Big Files

Fig. 6.1. Time needed for the Splitting phase with Small and Big Files.

6.2. Performance Analysis for Splitting and Reconstruction Phases. Here, we investigate the
behavior of Splitting and Reconstruction phases described in Table 5.1. They are quite similar, but the Re-
construction phase takes into account a reduced number of chunks, i.e., p = 5, that are downloaded and
reconstructed.

Figure 6.1 summarizes the time required to split each file. The x-axis reports the file size in bytes, whereas
the y-axis reports the time in milli-seconds (msec). The graphs show the trend for both Small and Big files. For
file sizes up to 1MB, the processing time is almost constant considering the different file sizes. Increasing the
file size from 10 MB to 400MB, the time increasing is quite double at each step. Different values for r do not

Evaluating a File Fragmentation System for Multi-Provider Cloud Storage 275

significantly affect the performance, hence the user can improve the reliability of the storage service without a
high degradation of performance.

Similar results, depicted Fig. 6.2, show the time spent for rebuilding Small and Big files. The time required
to reconstruct a big file size, i.e, 400MB is about 200 seconds. The reconstruction phase is much more heavy
respect to the split phase (110 seconds for a 400MB file with r = 7). Different values of r are not considered
because the minimum number that is used for file reconstruction is p = 5.

(a) Time needed for the Reconstruction
phase with Small Files

(b) Time needed for the Reconstruction
phase with Big Files

Fig. 6.2. Time needed for the Reconstruction phase with Small and Big Files.

6.3. Performance Analysis for Dissemination and Retrieval Phases. Here, we investigate the
behavior of Dissemination and Retrieval phases described in Table 5.1. Figure 6.3 shows the time spent to send

Fig. 6.3. Time spent for the dissemination process to three Cloud providers.

chunks in parallel to Google Drive, Copy, and Dropbox. We analyzed the transfer time of files up to sizes of
10MB with r = 1 and r = 7 respectively, i.e., the minimum and maxim values for r. The y-axis reports the time
in milliseconds (msec), whereas the x-axis reports the file size in bytes. In these proofs, we prefer to limit the
file size to 10 MB because in our testbed the upload bandwidth was much more low respect to the download
one. This allowed us to repeat more times experiments in a reasonable time interval. For files of 10KB and
100KB, we experienced very similar transfer times and Google Drive results the slowest. For files of 10KB with
r=1 the transfer times in Copy and Dropbox take respectively in average 523 msec and 543 msec. With Google
Drive, the transfer time instead takes in average 4603 msec. We observed a similar trend considering r=4 and
r=7 as well.

As the file size grows up over 1MB, results changed. Google Drive is the slowest provider again, but
the transfer times increases considering different redundancy factors. Analyzing the results, we distinguished
different behaviors between Copy and Dropbox: the former resulted the most efficient, instead the latter started

276 M. Villari, A. Celesti, M. Fazio and A. Puliafito

to degrade in performance. For files of 10MB, we observe an interesting behavior: Google Drive becomes more
efficient than Copy and Dropbox, that experienced performance degradation. In fact, with r=7 the transfer
times took 11223 msec, 12461 msec, and 19015 msec respectively with Google Drive, Copy and Dropbox. This
means that for small file sizes (< 100KB) Copy and Dropbox are more efficient than Google Drive, but for big
file (> 10MB) Drive is more efficient than Copy and Dropbox. In particular, Copy has a trend slightly worse
than Google Drive, instead Dropbox results absolutely the worst. Figure 6.4 analyzes the download time of

Fig. 6.4. Time spent to download chunks from three different Cloud providers

files with size from 100K up to 400 MB . For simplicity, we considered 5 segments (p = 5) stored on the same
operator since performance evaluation is more complex mixing different operators. The picture highlights the
better behavior of Google Drive respect to the others. In the worst case, the time for downloading 5 chunks for
a file of 400 MB is more of 10 minutes (65000 msec). With the other providers, it is necessary to spend less than
5 minutes (respectively 140000 msec and 240000 msec). These results are reasonable enough for guarantying a
good user experience in using the the our system.

This analysis allowed us to know the behavior of three of the major Cloud storage providers in order to
understand a few useful information about how setup a system using different Cloud storage providers.

7. Conclusion and Future Works. In this paper, we discussed the data reliability and confidentiality
problems considering a multi-provider Cloud storage service. By means of RRNS, our approach allows to split a
file in p+r chunks, which are deployed over different Cloud storage operators. The advantage of our approach is
twofold: on one hand, each single provider cannot access the whole file, and on the other hand if a provider is not
available, files can be retrieved considering p pieces of files stored in other operators. Experiments highlighted
how both file size and redundancy degree impact the performance of the proposed system considering Google
Drive, Dropbox, and Copy. In future works, we aim to better investigate such an approach also considering
data encryption.

REFERENCES

[1] Deepavali Bhagwat, Kristal Pollack, Darrell D. E. Long, Thomas Schwarz, Ethan L. Miller, and Jehan-Francois Paris. Pro-
viding high reliability in a minimum redundancy archival storage system. In Proceedings of the 14th IEEE International
Symposium on Modeling, Analysis, and Simulation, MASCOTS ’06, pages 413–421, Washington, DC, USA, 2006. IEEE
Computer Society.

[2] A. Celesti, M. Fazio, and M. Villari. Se clever: A secure message oriented middleware for cloud federation. In IEEE Symposium
on Computers and Communications (ISCC), 2013.

[3] A. Celesti, F. Tusa, M. Villari, and A. Puliafito. How the dataweb can support cloud federation: Service representation
and secure data exchange. In Second Symposium on Network Cloud Computing and Applications (NCCA), pages 73–79,
2012.

[4] Kai Fan, Libin Zhao, Xuemin Shen, Hui Li, and Yintang Yang. Smart-blocking file storage method in cloud computing. In
2012 1st IEEE International Conference on Communications in China (ICCC), pages 57–62, 2012.

[5] N. Freed and N. Borenstein. MIME: Multipurpose Internet Mail Extensions. Technical Report RFC2045, 1996.
[6] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system

, 2013. http://www.cs.umd.edu/class/spring2011/
cmsc818k/Lectures/gfs-hdfs.pdf.

Evaluating a File Fragmentation System for Multi-Provider Cloud Storage 277

[7] Wu Hai-Jia, Liu Peng, and Chen Wei-wei. The optimization theory of file partition in network storage environment. In Grid
and Cooperative Computing (GCC), 2010 9th International Conference on, pages 30–33, 2010.

[8] P. Nahar, A. Joshi, and A. Saupp. Data migration using active cloud engine. In Cloud Computing in Emerging Markets
(CCEM), 2012 IEEE International Conference on, pages 1–4, 2012.

[9] A. Rahumed, H.C.H. Chen, Yang Tang, P.P.C. Lee, and J.C.-S. Lui. A secure cloud backup system with assured deletion and
version control. In Parallel Processing Workshops (ICPPW), 2011 40th International Conference on, pages 160–167,
2011.

[10] K.W. Shum and Yuchong Hu. Functional-repair-by-transfer regenerating codes. In Information Theory Proceedings (ISIT),
2012 IEEE International Symposium on, pages 1192–1196, 2012.

[11] S. Srivastava, V. Gupta, R. Yadav, and K. Kant. Enhanced distributed storage on the cloud. In Computer and Communication
Technology (ICCCT), 2012 Third International Conference on, pages 321–325, 2012.

[12] N. S. Szabo and R. I. Tanaka. Residue Arithmetic and its Applications to Computer Technology. Mc Graw-Hill, New York,
1967.

[13] G Vernik, A. Shulman-Peleg, S. Dippl, C. Formisano, M.C. Jaeger, E.K. Kolodner, and M. Villari. Data on-boarding in
federated storage clouds. In IEEE 6th International Conference on Cloud Computing, 2013.

[14] Massimo Villari, Antonio Celesti, Francesco Tusa, and Antonio Puliafito. Data reliability in multi-provider cloud storage
service with rrns. In Carlos Canal and Massimo Villari, editors, Advances in Service-Oriented and Cloud Computing,
volume 393 of Communications in Computer and Information Science, pages 83–93. Springer Berlin Heidelberg, 2013.

[15] Lawrence L. You, Kristal T. Pollack, Darrell D. E. Long, and K. Gopinath. Presidio: A framework for efficient archival data
storage. Trans. Storage, 7(2):6:1–6:60, July 2011.

[16] Nan Zhang, Jiwu Jing, and Peng Liu. Cloud shredder: Removing the laptop on-road data disclosure threat in the cloud
computing era. In Trust, Security and Privacy in Computing and Communications (TrustCom), 2011 IEEE 10th
International Conference on, pages 1592–1599, 2011.

[17] Yu Zhang, Weidong Liu, and Jiaxing Song. A novel solution of distributed file storage for cloud service. In Computer Software
and Applications Conference Workshops (COMPSACW), 2012 IEEE 36th Annual, pages 26–31, 2012.

Edited by: Maria Fazio and Nik Bessis
Received: Nov 2, 2013
Accepted: Jan 10, 2014

Scalable Computing: Practice and Experience

Volume 14, Number 4, pp. 279–290. http://www.scpe.org

DOI 10.12694/scpe.v14i4.933
ISSN 1895-1767
c© 2013 SCPE

ANALYTICAL INVESTIGATION OF AVAILABILITY IN A VISION CLOUD STORAGE
CLUSTER

DARIO BRUNEO†, FRANCESCO LONGO†, DAVID HADAS‡, AND ELLIOT K. KOLODNER‡

Abstract. The goal of VISION Cloud, a European Commission funded project, is to design a new scalable and flexible
storage cloud architecture able to provide data-intensive storage cloud services. The proposed environment employs a distributed
file system on top of a set of storage rich nodes composing a cluster. Several clusters constitute a data center, while multiple
geographically distributed data centers form a single storage cloud. In this paper, we focus on a single VISION Cloud storage
cluster, providing a stochastic reward net model for an investigation of its availability. The proposed model is a first attempt at
obtaining a quantification of the availability level of the cloud storage provided by the VISION Cloud architecture.

1. Introduction. Focusing on IT assets as commodities and on-demand usage patterns, cloud computing
greatly mitigates the cost of service provisioning, through tools such as virtualization of hardware, rapid service
provisioning, scalability, elasticity, accounting granularity, and cost allocation models. However, Future Inter-
net, Internet of Things, and, in general, the rich digital environment we are experiencing nowadays pose new
requirements and challenges in the Cloud area, especially with respect to the explosion of personal and organi-
zational digital data. In fact, the strong proliferation of data-intensive services and the digital convergence of
telecommunications, media, and ICT will surely amplify the explosion of raw data and the dependence on data
services. System performance and dependability [3, 15], energy consumption [4], workload characterization [9]
are only few examples of the Cloud related research trends that have been investigated in the last years.

VISION Cloud [11] is a European Commission Seventh Framework Programme (FP7/2006-2013) funded
project. Its goal is to design a new scalable and flexible storage cloud architecture that allows the implemen-
tation of data-intensive storage cloud services, scalability and flexibility referring to the ability of the proposed
architecture to deal with a large number of concurrent users and in allowing the provisioning of different kinds
of storage services. Raising the abstraction level of storage, enabling data mobility across providers, allowing
computational storage and content-centric access to storage and deploying new data-oriented mechanisms for
QoS and security guarantees are some of the means that VISION Cloud exploits in order to achieve such a goal.
With respect to QoS guarantees, reliability, availability, and fault tolerance and resiliency characteristics of the
provided services are important aspects that need to be taken into consideration.

The single storage resource in the VISION Cloud reference architecture is represented by the storage cluster
which usually includes hundreds of storage rich nodes. Such a basic element is able to store data objects and
provide computational power on top of it in a transparent way. This is obtained by the use of a distributed file
system installed on the storage cluster. In the prototype implementation of the architecture that the VISION
Cloud project provides, the General Parallel File System for Shared Nothing Clusters∗ (GPFS-SNC) [8] is
exploited. A high level of availability and resiliency to faults is achieved by replicating data objects across
different storage clusters. VISION Cloud considers a single cloud as composed by multiple distributed data
centers interconnected through dedicated networks. Each data center can be composed of multiple storage
clusters.

In this paper, we provide an analytic model for the availability investigation of a storage cluster in the
context of the storage cloud environment proposed by the VISION Cloud project. The model is based on
stochastic reward nets (SRNs) [6], an extension of generalized stochastic Petri nets. SRNs are a graphical tool
for the formal high-level representation of systems characterized by concurrency, mutual exclusion, conflict,
and synchronization dynamics. Thus, such a formalism is useful in capturing the key concepts of large-scale
distributed systems [5, 2] and the model we propose allows obtaining information about the reached availability
level of a VISION Cloud storage cluster varying both structural and timing system parameters. Structural
parameters are related to the number of nodes in the cluster, the number of disks in each node, the cluster file
system metadata replication level, and similar information. Timing parameters involve information about the

†Dipartimento di Ingegneria DICIEAMA, Università degli Studi di Messina, Messina, Italy ({dbruneo,flongo}@unime.it)
‡IBM Research Labs Haifa, Haifa, Israel, ({kolodner,davidh}@il.ibm.com)
∗GPFS is a trademark of International Business Machines Corp., registered in many jurisdictions worldwide.

279

280 D. Bruneo, F. Longo, D. Hadas and E. K. Kolodner

time necessary to specific events (e.g., disk or node failure) to occur or specific operations (e.g., disk or node
repair, cluster file system metadata recovery) to be performed.

Prior work deals with the performance analysis of storage cloud infrastructure [13] while little effort has
been put in the context of availability analysis [20]. In this context, the majority of the work mainly considers
replica placement policies [12, 19] without taking into consideration real case studies as done in our work.
In fact, our model could be exploited by a VISION Cloud administrator in order to opportunely build the
infrastructure accordingly to the desired availability level both from the hardware (e.g., computation, storage,
network resources) and the software (e.g., replication schema, cluster file system configuration) points of view.
Moreover, it could represent an useful instrument for model assisted SLA management.

The paper is organized as follows. Section 2 gives a background about Petri nets with particular reference
to SRNs. Section 3 provides an overview of the VISION Cloud reference architecture and illustrates how
GPFS-SNC is exploited in the reference implementation. Section 4 formally describes the considered scenario
while Section 5 illustrates how such a scenario is modeled through the use of SRNs. Section 6 provides some
numerical results. Finally, Section 7 concludes the paper with some final remarks on the proposed approach
and on possible future work.

2. Background about Petri Nets. A Petri net (PN) [16] is a 4-tuple: PN = (P, T,A,M), where P
is the finite set of places (represented by circles), T is the finite set of transitions (represented by bars), A
is the set of arcs (connecting elements of P and T) and M is the set of markings each of which denotes the
number of tokens in the places of the net. Graphically, a PN is a directed bipartite graph, with two types of
nodes: places and transitions. A directed arc connecting a place (transition) to a transition (place) is called
an input (output) arc of the transition. A positive integer called multiplicity can be associated with each arc.
Each place may contain zero or more tokens. A transition is enabled if each of its input places has at least
as many tokens as the multiplicity of the corresponding input arc. A transition can fire when it is enabled,
and upon firing, a number of tokens equal to the multiplicity of the input arcs is removed from each of the
input places, and a number of tokens equal to the multiplicity of the output arcs is deposited in each of its
output places. In stochastic Petri net (SPN), exponentially distributed firing times can be associated to the net
transitions so that the stochastic process underlying a SPN is a homogeneous CTMC. In generalized stochastic
Petri nets (GSPN) [14], transitions are allowed to be either timed (exponentially distributed firing time, drawn
as rectangular boxes) or immediate (zero firing time, represented by thin black bars). Immediate transitions
always have priority over timed transitions and if both timed and immediate transitions are enabled in a marking
then timed transitions are treated as if they are not enabled. If several immediate transitions compete for firing,
a specified probability mass function is used to break the tie. A marking of a GSPN is called vanishing if at
least one immediate transition is enabled in it. A marking is called tangible otherwise. GSPN also introduces
the concept of inhibitor arc (represented by a small hollow circle at the end of the arc) which connects a place to
a transition. A transition with an inhibitor arc can not fire if the input place of the inhibitor arc contains more
tokens than the multiplicity of the arc. SRNs [6] are extensions of GSPNs. In SRNs, every tangible marking
of the net can be associated with a reward rate thus facilitating the computation of a variety of performance
measures. Key differences with respect to GSPNs are: (1) each transition may have an enabling function (also
called a guard) so that a transition is enabled only if its marking-dependent enabling function is true; (2)
marking dependent arc multiplicities are allowed; (3) marking dependent firing rates are allowed; (4) transitions
can be assigned different priorities; (5) besides traditional output measures obtained from a GSPN, such as
throughput of a transition and mean number of tokens in a place, more complex measures can be computed by
using reward functions.

3. The VISION Cloud storage environment. In this section, we provide an overview of the storage
cloud environment proposed by the VISION Cloud project [1] focusing on the implemented physical infrastruc-
ture and on the data model. We also provide details about GPFS-SNC [8], and about how it is used in the
reference implementation of VISION Cloud.

3.1. The proposed storage cloud environment. The goal of the VISION Cloud project is to provide
efficient support for data-intensive applications. Moreover, a content-centric view of storage services is provided.
Five main areas of innovation drive the VISION Cloud platform design and implementation [10]: i) content is

Analytical Investigation of Availability in a Vision Cloud Storage Cluster 281

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Fig. 3.1. The VISION Cloud reference infrastructure.

managed through data objects that can have rich metadata associated with them, ii) data lock-in is avoided by
allowing migration of data across administrative domains, iii) computations are moved close to data through
the use of storlets in order to avoid costly data transfers, iv) efficient retrieval of objects is allowed based on
object content, properties, and relationships, and v) a high QoS level is guaranteed together with security and
compliance with international regulations.

The storage cloud environment proposed by the VISION Cloud project is built on top of an infrastructure
consisting of multiple data centers, potentially distributed worldwide. Each data center can be composed of
one or more storage clusters containing physical resources providing computational, storage, and networking
capabilities. The data centers need to be connected by dedicated high speed networks.

Each storage cluster is composed of storage rich nodes that can be built from commodity hardware and
connected by commodity network devices. In fact, as common for cloud infrastructures, the storage cloud is
built from low cost components and the desired reliability level is assured through the software layer. The
software stack also builds advanced functionalities on top of this foundation. An example of initial hardware
configuration could be 4 or 8 multiprocessor nodes with 12 to 16 GB of RAM each. Each node could have 12 to
24 high capacity direct attached disks (e.g., 2TB SATA drives). The architecture, design, and implementation
of the VISION Cloud architecture supports a system with hundreds of storage clusters, where each storage
cluster can have several hundred nodes and the storage clusters are spread out over dozens of data centers.
Such a reference infrastructure is represented in Fig. 3.1.

The VISION Cloud data model is based on the concept of data object. A data object contains data of
arbitrary type and size. It has a unique identifier that allows users to access it through the whole cloud. An
object is written as a whole and cannot be partially updated, although it can be partially read. An object may
be overwritten, in which case the whole content of the object is replaced. Versioning is supported. Data objects
are stored in containers (with each data object residing within a single container). Containers provide easy data
management, isolation, and placement policies. A rich metadata model allows system and user metadata to be
associated with containers and objects. User metadata is set by the user and is transparent to cloud storage
system. System metadata has concrete meaning to the cloud storage system.

282 D. Bruneo, F. Longo, D. Hadas and E. K. Kolodner

The VISION Cloud data model extends traditional storage cloud models to include computation on the
data objects, which is performed within the cloud storage environment through storlets. Storlets are software
agents that are triggered according to specific events.

Objects may be replicated across multiple clusters and data centers. The degree of replication and placement
restriction policies are defined and associated with an object’s container. VISION Cloud employs a symmetric
replication mechanism, where any operation on an object can be handled at any of its replicas. A storlet, when
triggered, is executed once, usually at the site where the triggering condition first occurred.

3.2. GPFS-SNC as underlying distributed file system. In the storage cloud environment proposed
by the VISION Cloud project, the simpler and lower level storage unit is the storage cluster. A distributed file
system runs over the storage resources provided by each cluster (i.e., the servers and their direct attached disks).
This allows each node to access the data objects stored in the cluster and to provide computational power on
top of it by serving user requests and allowing the execution of storlets. In the current implementation of the
VISION Cloud stack, the General Parallel File System for Shared Nothing Clusters (GPFS-SNC) is exploited
in order to build such a distributed file system.

General Parallel File System (GPFS) [17] is a parallel file system for computer clusters providing the services
of a general-purpose POSIX file system running on a single machine. GPFS supports fully parallel access to
both file data and file system data structures (file system metadata). Moreover, administrative actions (e.g.,
adding or removing of disks) are also performed in parallel without affecting access to data. GPFS achieves
its scalability through its shared storage architecture where all nodes in the cluster have access to all storage.
Files are striped across all disks in the file system providing load balancing and high throughput. Large files
are divided into equal sized blocks which are placed on different disks in a round-robin fashion. GPFS uses
distributed locking to synchronize access to shared disks ensuring file system consistency while still allowing the
necessary parallelism. As an alternative or a supplement to RAID, GPFS supports replication, storing two or
more copies of each data or file system metadata block on different disks. Replication can be enabled separately
for data and file system metadata.

The GPFS-SNC file system [8] builds on the existing GPFS distributed file system extending it to a shared-
nothing cluster architecture. Such scenario is the one being used in the current implementation of VISION
Cloud. In shared-nothing cluster architecture, every node has local disks behaving as primary server for them.
If a node tries to access data and such a data is not present on a local disk, a request is sent to its primary
server to transfer it.

In the reference implementation of VISION Cloud, each object is stored as a file in GPFS-SNC on a single
disk. The files corresponding to objects are neither striped nor replicated within a cluster. Rather, additional
object replicas are created in other VISION Cloud clusters in order to guarantee the desired level of availability.
Typically a (1+1, 1+1) schema is used for object replication, i.e., each object is replicated in two data centers at
two storage clusters in each data center. However, other replication schema can be used changing the replication
level. GPFS-SNC file system metadata is replicated with a certain level of redundancy in order to guarantee
that the file system structure is preserved in the presence of faults and that it is possible to determine which
object has been lost and needs to be recovered. The use of GPFS-SNC in the VISION Cloud architecture is
graphically depicted in Fig. 3.2. In the remainder of the paper, we model a generic cluster file system with
characteristics similar to those described above.

4. Problem formulation. In the following, we formally describe the scenario we take into consideration in
the present work. Let us consider a VISION Cloud cluster composed by N nodes. Each node is associated with
D directed attached storage (DAS) disks where both the distributed file system metadata and data (VISION
Cloud objects) are stored. Note that, in the following we will consider only the distributed file system metadata
(simply metadata from now on) while we ignore the system and user metadata associated with VISION Cloud
objects, which are treated as files from the point of view of the cluster file system. Disks and nodes can fail. Let
us suppose that the time to fail of a single disk (node) is exponentially distributed with rate λdf (λnf). Disks
(nodes) are repaired in an exponentially distributed time with rate µdr (µnr).

Disk and node failures are assumed to be destructive. In other words, when a disk fails the metadata and
data stored in it are lost. Similarly, in order to maintain the distributed file system consistency, when a node
fails metadata and data stored in all its attached disks are considered lost. VISION Cloud objects are stored

Analytical Investigation of Availability in a Vision Cloud Storage Cluster 283

...

Fig. 3.2. The use of GPFS-SNC in the VISION Cloud architecture.

in the cluster without any striping or data replication, i.e., each object is fully contained in a single disk as a
single file. On the other hand, metadata is scattered on the cluster disks and metadata records for each file
are replicated on different nodes. Let us assume the level of metadata replication for each file to be R. This
value is an internal parameter of the cluster file system, it is usually set during installation and it cannot be
dynamically changed at runtime. When a disk fails the metadata that was present on it is replicated in a
working disk in order to restore the correct level of replication. The process of metadata replication recovery
takes an exponentially distributed amount of time with rate µmr to be performed.

VISION Cloud objects are replicated in other clusters. In the case of failure, the VISION Cloud Resiliency
Manager (RM) is responsible for returning the storage Cloud to the proper level of resiliency. In fact, if a disk
fails, a scan of the distributed file system metadata allows the RM to determine which objects were lost. Then,
the RM contacts the other clusters in the Cloud (clusters in the same data center are usually queried first, since
they are the closest) in order to recover the data from a replica and restore the objects into the cluster.

Let us consider a single VISION Cloud object X stored in the cluster. Objects are uniformly distributed
over the cluster disks, i.e., when an object needs to be stored the target disk is randomly chosen accordingly to
an uniform distribution. For such a reason, if a disk fails the probability that object X becomes unavailable (if it
was still available at the failure time) is 1/x where x is the number of disks actually working with 0 < x ≤ N ·D.
On the other hand, if a node fails the probability that object X becomes unavailable depends on the number
of working disks that were attached to the failed node. In a first approximation, we assume that, given a
VISION Cloud replication schema, at least one of the clusters in which object X was stored is always available
for data recovery. Moreover, let us assume that, in order to recover an entire disk full of data, an exponentially
distributed time is necessary with rate µfd. Among other factors, such a time can depend on the network
bandwidth that is present between the consider cluster and the cluster from which the objects will be recovered.

Of course, given that the RM performs the data recovery as soon as possible after a disk failure, free space
on other available disks is necessary in order to restore the lost objects in the cluster. Let us assume that the
recovery can be performed only if there are at least K working disks in the local cluster. K can be computed
considering the average disk capacity, the average object dimension, and the average number of objects in a
cluster. For example, if c is the average fraction of occupied space in a disk then K = ⌈N ·D · c⌉. The time that
is necessary to recover a single disk is also affected by the parameter c. In fact, the time needed to recover a

284 D. Bruneo, F. Longo, D. Hadas and E. K. Kolodner

#

#

#

Fig. 5.1. SRN model for a Vision Cloud cluster

single disk (characterized by an average fraction of occupied space c) is considered as exponentially distributed
with rate µobr = µfd/c.

Disk failures can affect the availability of a generic VISION Cloud object X even if it is not stored in the
disk that fails. In fact, the distributed file system correctly works only until at least one metadata replica for
each file is present on a working disk. If all the metadata replica for a single generic file are lost, the cluster
file system is unmounted thus making object X unavailable. We suppose that when the cluster file system
is unmounted no disk failures can occur and no objects recovery can be performed. The file system will be
mounted again only when a sufficient number of disks are available again (we suppose such a sufficient number
to be K). Moreover, all the objects that were originally present on the cluster need to be recovered. This
is assumed to take an exponentially distributed time with rate µgr that can be computed as a function of
µfd. In particular, if N ·D disks are present in the cluster with an average fraction of occupied space c, then
µgr = µfd/(c ·K) = µfd/(c · ⌈N ·D · c⌉).

Note that a complete description of the VISION Cloud architecture and of its components is out of the
scope of this paper. For further details please refer to [11].

5. The model. Figure 5.1 shows the SRN model for the Vision Cloud cluster described above. Three layers
have been identified: physical layer (concerning node and disk failures and repairs), distributed file system layer
(modeling the cluster file system metadata), and Vision Cloud layer (associated to object availability).

Places Pd and Pdf represent working and failed disks, respectively. Place Pd initially contains N ·D tokens
while place Pdf is initially empty. Each token represents a single disk. Transitions Tdf and Tdr represent disk

Analytical Investigation of Availability in a Vision Cloud Storage Cluster 285

failure and repair events moving tokens between places Pd and Pdf . Rates of these transitions are considered to
be dependent on the number of tokens in places Pd and Pdf , respectively, so that the overall disk failure rate is
equal to λdf multiplied by the number of available disks while the overall repair rate is given by µdr multiplied
by the number of failed disks. These marking dependent firing rates are represented by the # symbol near the
corresponding arc.

Transitions Tnf and Tnr represent node failure and repair events. The failure of a single node is modeled as
the contemporaneous failure of more than one disk by letting transition Tnf to move more than one token from
place Pd to place Pdf . This is obtained by associating to the arcs connecting transition Tnf to places Pd and Pdf

a multiplicity that depends on the actual status of the net through function [m1]. In particular, the number of
disks that contemporaneously fail when a node fails is assumed to be dependent on the actual number of failed
nodes and disks: if nf nodes and df disks are failed, then we assume that the average number of disks that fail
when a node fails is given by (N ·D− df)/(N −nf). Considering that transition Tnf also puts a token in place
Pnf at each node failure event (i.e., tokens in place Pnf model the number of failed nodes), we have:

[m1] = #Pd/(N −#Pnf)
†.

The rate of transition Tnf also depends on the actual status of the net and, in particular, it is equal to λnf

multiplied by the number of working nodes, i.e., λnf · (N−#Pnf). The repair of a single node is modeled as the
contemporaneous repair of D disks. For such a reason, each firing of transition Tnr moves D tokens from place
Pdf to place Pd. Also, one token is removed from place Pnf in order to model a single node being repaired.
The rate of transition Tnr depends on the number of tokens in place Pnf so that the overall node repair rate is
equal to λnr multiplied by the number of failed nodes.

Finally, transition Tdr is associated with guard function [g2] that allows single disks to be repaired only if
there is a sufficient number of working nodes:

[g2] =

{

1, if #Pdf > D ·#Pnf

0, otherwise

In this way, if all the failed disks correspond to failed nodes, transition Tdr is disabled.

Place Pm represents failed metadata replicas that need to be restored. It initially contains zero tokens.
As soon as a disk fails (transition Tdf fires) or a node fails (transition Tnf fires), a number of tokens equal to
the number of failed disks is moved in place Pm representing the corresponding metadata replicas being lost.
Transition Tmr represents the time necessary for the failed metadata replicas to be restored on the cluster. It
is associated with a rate equal to µmr and, as soon as it fires, it flushes the content of place Pm modeling all
the metadata replicas being restored. This is implemented by associating to the arc connecting transition Tmr

to place Pm a multiplicity equal to the number of tokens in such a place.

As soon as a certain number of disks fail (either transition Tdf or transition Tnf fires), a token is also put in
place Pmf enabling the conflicting immediate transitions tmf and tum. Transition tmf models the probability
for the cluster file system to continue to work properly after the newly occurred failure conditioned to the fact
that it was correctly working when the failure occurred. Such a probability depends on the actual number of
working nodes and metadata replicas present in the cluster so it can be computed as a function of the current
number of tokens in places Pd and Pm. As soon as transition tmf fires, it removes the token from place Pmf

leaving everything else unmodified. On the other hand, transition tum models the probability for the cluster file
system to be unmounted after the newly occurred failure conditioned to the fact that it was correctly working
when the failure occurred. Also in this case, such a probability depends on the actual number of working
nodes and metadata replicas present in the cluster and it can be computed as a function of the current number
of tokens in places Pd and Pm. Given that transitions tmf and tum are conflicting and no other transition
is contemporaneously enabled the sum of their associated probabilities needs to be equal to one. As soon as
transition tmf fires, a token is moved from place Pon to place Poff . Moreover, the token in place Pmf is removed.

Place Pon represents a working distributed file system while place Poff represents a faulty file system.
When the cluster file system is down, no new metadata replica can be created (inhibitor arc from place Poff to
transition Tmr) and no disks or nodes can fail (inhibitor arcs from place Poff to transitions Tdf and Tnf).

Transition Tgr represents the time necessary to repair the distributed file system after a crash due to

†The notation #P indicates the number of tokens in place P .

286 D. Bruneo, F. Longo, D. Hadas and E. K. Kolodner

metadata destruction, to recover all the objects from the replicas in other Vision Cloud clusters, and to create
the metadata replicas. It is associated with a rate equal to µgr. Such recovery operation can be performed only
after the repair of at least K disks (inhibitor arc from place Pdf to transition Tgr with multiplicity N ·D−K).
As soon as transition Tgr fires, a token is put back to place Pon (the cluster file system is up again) and all the
tokens in place Pm are flushed modeling the recovery of all the failed metadata replicas. This is implemented
by associating to the arc connecting transition Tgr to place Pm a multiplicity equal to the number of tokens in
such a place.

A token in place Pob represents the object being available. As soon as a failure occurs, a number of tokens
equal to the number of failed disks is moved in place Pod by transitions Tdf or Tnf . Such tokens enable the
conflict between transitions tyes and tno representing the object being contained in the disks that failed or not,
respectively. The probabilities associated to transitions tyes and tno (pyes and pno, respectively) depend on the
system status and are given by the following functions:

pyes = 1/(#Pd +#Pod)

pno =

{

1, if #Pd = 0 AND #Pun1
= 1

1− 1/(#Pd +#Pod), otherwise

Transition tno is also associated with a guard function ([g1]) that prevents it to fire if the last disk failed:

[g1] =

{

0, if #Pd = 0 AND #Pob = 1

1, otherwise

If transition tno fires, the object was not contained in the disks that failed and it is still available. If
transitions tyes fires, the object was contained in one of the disks that failed and the token in place Pob is moved
in place Pun1

modeling the object being unavailable. Transition Tobr represents the time necessary to recover
the object from another Vision Cloud cluster where a replica of that object is present. It is associated with a
rate equal to µobr. The recovery operation can be performed only when at least K disks are available (inhibitor
arc from place Pdf to transition Tobr). The token in place Pob can also be moved in place Pun2

when the cluster
file system is unmounted for a metadata destruction (transition tf). A soon as the cluster file system is repaired,
transition tr fires and the object becomes available again.

5.1. Cluster file system failure probability. In order to properly set the model parameters (i.e., the
probabilities associated to transitions tmf and tum) we need to know the probability that the cluster file system
is unmounted when a new failure condition arises. Such a probability depends on the number of metadata
replica as well as on the way the replica are distributed over the disks and the nodes. The problem can be
formalized in the following way.

Let us start by defining a working condition where:

• n (≤ N) is the number of actual working nodes.
• d (≤ D) is the average number of working disks per node.

Indicating with MF the total number of metadata records, we are interested in the evaluation of the
following probability:

• Pn,d,R,MF (i) = Probability that, in the working condition defined by the pair (n, d), there is still one
(out of the R) copy of each of the MF metadata files after i disk failures, given that the system was
still working before the last failure

subjected to the following constrains:

1. Metadata are not restored.
2. If a node fails all its disk have to be considered failed, i.e., we have to consider the concurrent failure

of d disks.
3. Replica are distributed so that, as long as there is a sufficient number of working nodes (i.e., n ≥ R),

two copies of the same file are not stored in the same node.

An estimation of MF can be obtained by considering the number of VISION Cloud objects actually stored
in the cluster O and the number of metadata replica R as

MF = 1.1 · O ·R (5.1)

Analytical Investigation of Availability in a Vision Cloud Storage Cluster 287

where the factor 1.1 refers to the assumption of a 10% overhead due to directory structure and VISION Cloud
user and system metadata. The analytical solution of such a problem is intractable for large-scale systems [20],
for this reason we solved the problem through simulation. We set up a simple simulator that starting from the
values n, d, R, and MF creates a scenario by distributing metadata in an uniform way (still taking into account
the constrains). Then, we iteratively introduce a failure (also in this case using an uniform distribution) until
a distributed file system fault is encountered.

6. Results. The SRN model reported in Fig. 5.1 can be analytically solved by using ad-hoc tools (e.g., the
SPNP tool [7]) thus allowing us to investigate the influence of system parameters on the desired performance
indexes. Several powerful measures can be obtained. One interesting index is the availability Aob of a generic
object X formally defined as the probability that the object is fully accessible from external users at steady
state. It can be obtained by computing the probability for place Pob to contain one token:

Aob = pr[#Pob = 1].

Similarly, the cluster availability Acl (formally defined as the probability that the cluster file system is properly
working at steady state) can be computed as the probability for place Pon to contain one token:

Acl = pr[#Pon = 1].

In this section, we present some preliminary results focusing on the object availability and taking into
account only disk failures (i.e., considering fully reliable nodes). The relaxation of such an assumption, as well
as the investigation of other performance indexes will be covered in future works.

System parameters have been set as follows. The number of nodes N has been fixed to 80 and the number
of disks per node D has been fixed to 12, also considering the average fraction of occupied space in a disk c
equal to 0.5. The disk mean time to failure (MTTF) 1/λdf has been considered equal to 2 years [18] while the
mean time to repair (MTTR) 1/µdr has been set to 48 h. Finally, the mean time to recover a metadata replica
1/µmr has been set to 20 m. The mean time to recovery an entire disk from a remote cluster has been computed
by assuming the disk dimension equal to 500 GB and by examining different scenarios with different level of
bandwidth among the clusters in the same Vision Cloud. Three scenarios have been considered: HPC-like
connectivity (10 Gb/sec bandwidth), high-speed WAN connectivity (100 Mb/sec bandwidth), and Internet-like
connectivity (20 Mb/sec bandwidth). In the following, the three scenarios will be identified as high, medium,
and low bandwidth scenario, respectively. Starting from the above reported assumptions, the values of the
mean time to recover a disk 1/µobr and the mean time to recover an entire cluster file-system 1/µgr have been
computed, as described in Section 4.

In the first experiment, we aim to investigate the influence of the metadata replication level R. First of
all, in order to obtain the values of Pn,d,R,MF (i) in all the working conditions, once the values for N and D
have been chosen, we launched the simulator whit n = 1, ..., N and d = 1, ..., D. The value of MF has been
estimated‡ through Eq. (5.1) by considering an average object size equal to 8MB (that can be considered a
realistic example considering the presence of different kind of file, e.g, audio, photo, document, video files) and
a corresponding number of object O = 500GB·N ·D·c

8MB
= 30, 720, 000. Data obtained for different value of R have

been then collected in a file that has been used during the evaluation of the SRN model. Figure 6.1 shows the
results obtained with n = 80, d = 12 and varying R from 3 to 5 (such values of R can be considered a good
trade-off between redundancy and storage consumption). It can be observed that, as expected, the distributed
file system failure probability increases when the number i of failed disks increases, reaching a value near to 1
when i = 7, 22, 47 with R = 3, 4, 5 respectively. Such a result highlights the influence of the replication level on
the system fault tolerance. However in order to quantify the advantages obtained in terms of object availability,
we solved the model using the Pn,d,R,MF (i) values as input thus obtaining the data reported in Table 6.1. These
data refer to the values of Aob obtained in the three bandwidth scenarios. It can be observed that the influence
of R strictly depends on the network bandwidth. In fact, in the low bandwidth scenario the object availability
increases from a value of 0.95 to a value of 0.99 when R changes from 3 to 5, with a percentage gain of about
4%. On the contrary, in the high bandwidth scenario we obtain, in the same conditions, only a percentage gain
of about 0.009%.

‡In the computation of the value of O the storage space occupied by metadata has been neglected.

288 D. Bruneo, F. Longo, D. Hadas and E. K. Kolodner

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

C
lu

st
er

 fi
le

 s
ys

te
m

 fa
ilu

re
 p

ro
ba

bi
lit

y

Number of failed disks

R=3
R=4
R=5

Fig. 6.1. Cluster file system failure probability with respect to the number of disk failures (n = 80, d = 12, MF = 30, 720, 000 ·
1.1 ·R).

Low Medium High
R = 3 0.9548245227 0.9906377221 0.9999077434
R = 4 0.9983792830 0.9996754359 0.9999968294
R = 5 0.9983795900 0.9996754973 0.9999968300

Table 6.1

Object availability Aob varying R in three different bandwidth scenarios.

In the next experiment, we focus on the influence of the disk MTTF. Figure 6.2 shows the results obtained
varying the value of the MTTF from 500 to 900 days in the medium bandwidth scenario. Such an analysis
shows how increasing the disk MTTF it is possible to increment the overall object availability from a user
perspective. This can be performed by choosing more reliable disks or exploiting RAID technologies with a
consequent increase in the operating costs of the storage cloud infrastructure.

The above reported results give rise to interesting optimization problems. In fact, the Vision Cloud provider
could take advantages of the proposed model in order to obtain useful insights during the design of a Cloud
infrastructure. For example, given a certain level of desired availability and given the topological configuration
of the clusters (in terms of network bandwidth), the provider can use the models to obtain the optimal number
of replica to adopt and the needed disk reliability (in terms of MTTF). Similarly, per-user model-driven design
could be conducted in order to optimize the placement of objects: according to the availability level requested
by a single user the Cloud provider can understand in which clusters the user object replica have to be stored.

7. Conclusions. In the context of the VISION Cloud project reference architecture, we provided an SRN
model for a storage cluster able to provide information about the reached availability level. Numerical results
demonstrated the effectiveness of the proposed model. In fact, the model can be exploited for an assisted SLA
management and a guided dimensioning of the VISION infrastructure. Future work will focus on extending
the obtained results to the case of node failures and relaxing the simplifying hypothesis that we took into
consideration in the present work, e.g., considering transient failures that can affect the overall object and
cluster availability. Moreover, a high level methodology and a tool for the management of VISION Cloud

Analytical Investigation of Availability in a Vision Cloud Storage Cluster 289

0.99970

0.99975

0.99980

0.99985

0.99990

0.99995

1.00000

 500 550 600 650 700 750 800 850 900

A
ob

j

Disk MTTF (days)

Fig. 6.2. Object availability Aob varying the disk MTTF in a medium bandwidth scenario with R = 3.

storage infrastructures based on our model will be designed and implemented providing a powerful tool for both
business and administrator choices. Finally, comparison of the obtained results against real world observation
will be carried out in order to validate the model.

Acknowledgement. The research leading to these results has received funding from the European Com-
munitys Seventh Framework Programme (FP7/2007-2013) under grant agreement number 257019.

REFERENCES

[1] VISION Cloud Project, funded by the European Commission Seventh Framework Programme (FP7/2006-2013) under grant
agreement n. 257019. http://www.visioncloud.eu/.

[2] D. Bruneo, A stochastic model to investigate data center performance and qos in iaas cloud computing systems, Parallel
and Distributed Systems, IEEE Transactions on, PP (2013), pp. 1–10.

[3] D. Bruneo, S. Distefano, F. Longo, A. Puliafito, and M. Scarpa,Workload-based software rejuvenation in cloud systems,
IEEE Transactions on Computers, 62 (2013), pp. 1072–1085.

[4] D. Bruneo, M. Fazio, F. Longo, and A. Puliafito, Smart data centers for green clouds, in Computer and Communications
(ISCC), 2013 IEEE 18th International Symposium on, 2013, pp. 1–8.

[5] D. Bruneo, M. Scarpa, and A. Puliafito, Performance evaluation of glite grids through gspns, Parallel and Distributed
Systems, IEEE Transactions on, 21 (2010), pp. 1611–1625.

[6] G. Ciardo, A. Blakemore, P. F. Chimento, J. K. Muppala, and K. S. Trivedi, Automated generation and analysis of
Markov reward models using stochastic reward nets., IMA Volumes in Mathematics and its Applications: Linear Algebra,
Markov Chains, and Queueing Models, 48 (1993), pp. 145–191.

[7] C. Hirel, B. Tuffin, and K. S. Trivedi, SPNP: Stochastic Petri Nets. Version 6, in International Conference on Computer
Performance Evaluation: Modelling Techniques and Tools (TOOLS 2000), B. Haverkort, H. Bohnenkamp (eds.), Lecture
Notes in Computer Science 1786, Springer Verlag, Schaumburg, IL, 2000, pp. 354 – 357.

[8] R. Jain, P. Sarkar, and D. Subhraveti, Gpfs-snc: An enterprise cluster file system for big data, IBM Journal of Research
and Development, 57 (2013), pp. 5:1–5:10.

[9] A. Khan, X. Yan, S. Tao, and N. Anerousis, Workload characterization and prediction in the cloud: A multiple time series
approach, in Network Operations and Management Symposium (NOMS), 2012 IEEE, 2012, pp. 1287–1294.

[10] E. Kolodner, S. Tal, D. Kyriazis, D. Naor, M. Allalouf, L. Bonelli, P. Brand, A. Eckert, E. Elmroth, S. Gogou-

vitis, D. Harnik, F. Hernandez, M. Jaeger, E. Lakew, J. Lopez, M. Lorenz, A. Messina, A. Shulman-Peleg,

R. Talyansky, A. Voulodimos, and Y. Wolfsthal, A cloud environment for data-intensive storage services, in Cloud
Computing Technology and Science (CloudCom), 2011 IEEE Third International Conference on, 2011, pp. 357–366.

290 D. Bruneo, F. Longo, D. Hadas and E. K. Kolodner

[11] E. K. Kolodner, A. Shulman-Peleg, D. Naor, P. Brand, M. Dao, A. Eckert, S. Gogouvitis, D. Harnik, M. Jaeger,

D. Kyriazis, et al., Data intensive storage services on clouds: Limitations, challenges and enablers, European Research
Activities in Cloud Computing, D. Petcu and JL Vazquez-Poletti, Eds. Cambridge Scholars Publishing, (2012), pp. 68–96.

[12] S. Krishnamurthy, W. Sanders, and M. Cukier, A dynamic replica selection algorithm for tolerating timing faults, in
Dependable Systems and Networks, 2001. DSN 2001. International Conference on, 2001, pp. 107–116.

[13] , Performance evaluation of a probabilistic replica selection algorithm, in Object-Oriented Real-Time Dependable
Systems, 2002. (WORDS 2002). Proceedings of the Seventh International Workshop on, 2002, pp. 119–127.

[14] M. A. Marsan, G. Balbo, and G. Conte, A class of generalized stochastic Petri nets for the performance evaluation of
multiprocessor systems, ACM Transactions on Computer Systems, 2 (1984), pp. 93–122.

[15] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema, A Performance Analysis of EC2 Cloud
Computing Services for Scientific Computing, in Cloud Computing, vol. 34 of Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010,
ch. 9, pp. 115–131.

[16] C. Petri, KommuniKation mit Automaten, PhD thesis, University of Bonn. Germany, 1962.
[17] F. Schmuck and R. Haskin, Gpfs: A shared-disk file system for large computing clusters, in In Proceedings of the 2002

Conference on File and Storage Technologies (FAST, 2002, pp. 231–244.
[18] B. Schroeder and G. A. Gibson, Disk failures in the real world: What does an mttf of 1,000,000 hours mean to you?,

in Proceedings of the 5th USENIX Conference on File and Storage Technologies, FAST ’07, Berkeley, CA, USA, 2007,
USENIX Association.

[19] V. Venkatesan, I. Iliadis, C. Fragouli, and R. Urbanke, Reliability of clustered vs. declustered replica placement in data
storage systems, in Modeling, Analysis Simulation of Computer and Telecommunication Systems (MASCOTS), 2011
IEEE 19th International Symposium on, 2011, pp. 307–317.

[20] V. Venkatesan, I. Iliadis, X.-Y. Hu, R. Haas, and C. Fragouli, Effect of replica placement on the reliability of large-scale
data storage systems, in Modeling, Analysis Simulation of Computer and Telecommunication Systems (MASCOTS), 2010
IEEE International Symposium on, 2010, pp. 79–88.

Edited by: Maria Fazio and Nik Bessis
Received: Nov 2, 2013
Accepted: Jan 10, 2014

Scalable Computing: Practice and Experience

Volume 14, Number 4, pp. 291–306. http://www.scpe.org

DOI 10.12694/scpe.v14i4.934
ISSN 1895-1767
c© 2013 SCPE

DELEGATION ACROSS STORAGE CLOUDS: ON-BOARDING FEDERATION AS A CASE
STUDY

CIRO FORMISANO3 AND ELLIOT K. KOLODNER2 AND ALEXANDRA SHULMAN-PELEG2 AND ERMANNO

TRAVAGLINO3 AND GIL VERNIK2 AND MASSIMO VILLARI1 ∗

Abstract. As the volume of digital data rapidly increases, storage clouds are becoming a popular solution for both enterprise
and personal data, and the number of storage cloud solutions is also increasing. However, these solutions do not yet deal with
the need of customers for interoperability and data migration from one cloud to another. These issues can be addressed through
federation of cloud infrastructures. An important aspect of federation is delegation of access control, where one actor, e.g., an end
user, authorizes another actor, e.g., a cloud provider, to act on its behalf, typically with a subset of its access rights, safely and
securely.

This paper deals with delegation across storage clouds. We describe a delegation architecture for on-boarding federation, which
allows an enterprise to efficiently migrate its data from one storage cloud provider to another (e.g., for business or legal reasons),
while providing continuous access and a unified view over the data during the migration. In our architecture a user delegates a
subset of his access rights on the source and destination clouds to an on-boarding federation layer on the destination cloud. This
enables on-boarding to occur in a safe and secure way, such that the on-boarding layer has the least privilege required to carry out
its work. We evaluate the security implications of delegation that need to be taken into account for on-boarding. We also show
how the delegation architecture can be implemented using the Security Assertion Markup Language.

Key words: Storage Cloud, Federation, Delegation, SAML.

1. Introduction. Existing storage clouds do not provide true data mobility as well as adequate mech-
anisms for allowing efficient migration of their data across providers. This of problem of “data lock-in” is
considered to one of the top ten obstacles for growth in Cloud Computing [1]. In a recent paper Vernik et
al. [30] present an architecture for on-boarding federation to deal with this problem. On-boarding federation
allows an enterprise to efficiently migrate its data from one storage cloud provider to another (e.g., for business
or legal reasons), while providing continuous access and a unified view over the data over the course of the
migration. On-boarding is provided through a federation layer on the new destination cloud by setting up a
relationship between its containers and the containers on the old source cloud. Once the relationship is set up,
the on-boarding layer is responsible to carry out the migration on behalf of the user, reading objects from the
old source cloud and writing objects to the new destination cloud. This layer acts on behalf of the user and
requires authorization from the user to act in his/her name with the old and new providers.

A delegation mechanism empowers one actor, e.g., an end user, to authorize another actor, e.g., a cloud
provider, to act on its behalf, typically with a subset of its access rights, safely and securely. In this paper we
show how to employ delegation for on-boarding federation. In particular, when a user sets up an on-boarding
relationship between a container in the new and old clouds, the user also delegates a subset of his/her access
rights to the federation layer of the new cloud. This subset should include the minimum rights needed for the
federation layer to on-board objects of the old container. The delegation mechanism is also secure; it ensures
that no other entity except the federation layer can employ the rights delegated to it.

In this paper, we consider two popular standards for delegation, OAuth 2.0 [28] and the Security Assertion
Markup Language (SAML) [24]. Motivated by the better security of SAML, we developed an architecture
allowing to use it for delegation between the two clouds involved in on-boarding federation. We detail our
solution implemented in the context of the VISION Cloud [13], which is an EU-funded project developing
advanced features for storage clouds. We provide details of the delegation API and the SAML assertions used
to implement it.

The paper is organized as follows. Section 2 overviews the VISION Cloud architecture and Sect. 3 describes
the principles of cloud access control and delegation. Section. 4 describes the difference between single sign-on
and delegation, and then presents and compares two techniques for web delegation, OAuth 2.0 and SAML.
Sect. 5 presents use cases for delegation in VISION Cloud. We present our delegation architecture for on-

∗1)Dept. of DICIEMA, University of Messina, Italy 2)IBM Haifa Research Lab, Israel 3)Engineering Ingegneria Informatica
SPA, Italy

291

292 C. Formisano, E. K. Kolodner, A. Shulman-Peleg, E. Travaglino, G. Vernik and M. Villari

boarding and its implementation using SAML in Sect. 6. Sect.s 7 and 8 review the related work and conclude.
Finally, the appendices detail the delegation API and the SAML assertions implementing it.

2. A brief overview of VISION Cloud. The VISION Cloud architecture is designed to support tens of
geographically dispersed data centers (DCs, see Figure 2.1), where each DC may contain tens of clusters each
with hundreds of storage-rich compute nodes. An object consists of data and metadata, where the data can
be of arbitrary size and type, and the metadata can include arbitrary key value pairs, typically describing the
content of the object. Object data cannot be updated, but an entire new version of an object can be created.

Fig. 2.1. VISION Cloud Reference Framework: the physical view

Fig. 2.2. Simplified Stack of VISION Cloud:
the logical view

In contrast, new metadata can be appended to an object and updated over time. Data objects are grouped
in containers, and each data object has a unique name within a container. Containers provide context and
are used for purposes of data management, isolation, and placement (i.e., containers are the minimal units of
placement and can not be split across clusters). Metadata can also be associated with containers.

The account model includes tenants and users. A tenant subscribes to cloud storage services and usually
represents a company or an organization. A tenant may have many users. A tenant administrator creates user
accounts and manages them. A user has an identifier and may have credentials allowing him to authenticate
himself to the cloud; finally, a user may create containers and data objects in them.

A user is the entity that actually uses storage services, and may refer to a person or to an application. A
user belongs to one and only one tenant, although a person might own a user account in more than one tenant.

Figure 2.2 shows a simplified view of the VISION Cloud stack. On the left side, the Data layers are depicted
wheres on the right side there are represented the Management layers. The picture highlights the two main
elements (Object Service and Identity Access Manager, see the text of labels in bold) involved in this paper.

3. Identity and access management systems for storage clouds. Most storage clouds provide REST-
ful interfaces to allow manipulation of resources with standard HTTP methods. Thus, we address access control
methodologies in the context of web technologies, considering two stages: authentication and authorization.
Authentication is the phase responsible for verifying the identity of a user needing to access web resources.
Authorization is the phase responsible for verifying the operation (i.e., read, write, delete, etc.) that users
may make on web resources. We use the term Identity and Access Management (IAM) to identify the
systems able to perform the phases mentioned above. In federated storage cloud scenarios the IAM systems
may assume more complex configurations. There are three identity management architectures that are relevant
for federation:

• One Shared IAM: In this set up the two federated storage clouds use the same internal IAM. This
architecture is possible when there are two Clouds deployed on the same public infrastructure. For
example, it could correspond to two different OpenStack Swift [27] deployments sharing the same
Keystone [10] infrastructure. Any authentication protocol can be used in this set up.

• One External IAM: In this case each cloud customer (tenant) has its own IAM, defining an identity
and access domain that establishes a trust relationship with both federated Clouds. This architecture

Delegation across storage clouds: on-boarding federation as a case study 293

allows the user to authenticate with a single set of credentials for applications residing at different cloud
and non-cloud systems.

• Two IAMs: Each cloud may have its own internal IAM. For example, let’s consider two clouds named
A and B, in which A needs to access resources hosted in B. In this case the Cloud A should have the
credentials on IAM of B to authenticate against the Cloud B.

In the case of One IAM (shared or external), the access control is not particularly complex, because the
two clouds rely on the same IAM. However, in the case of Two IAMs the scenario is much more complex.
Every cloud, having an internal IAM, needs to overcome the issues of authentication and authorization of users
belonging to different administration domains. Delegation is a common way of overcoming the problems while
preserving the proper privileges of users of each cloud. Before discussing our solution to the problem of two
IAMs, we describe the concept of delegation (see Sect. 3.1) and compare the existing web delegation technologies
(see Sect. 4).

3.1. Introduction to Delegation. Delegation provides the capability for a user (U1) to delegate a subset
of his access privileges to another user or process (U2). U1 is called delegator while U2 is the delegate. Both
the users keep their own identities, but U2 obtains a delegation document signed by U1 and stating that U2
is authorized to act on behalf of U1 for certain operations. Note that U2 does not obtain the identity of U1,
i.e., U2 does not impersonate U1, rather U2 is explicitly authorized to perform certain actions on behalf
of U1. An example taken from everyday life, would be a person going to a public office to get a document on
behalf of another person. In this case the human delegate shows his own ID card and a Power of Attorney, the
delegation document, signed by the delegator, and a copy of the delegator’s ID card.

In computer science the concept is identical, in particular:

• The delegator provides the delegate with an electronic delegation document, digitally signed, containing
the details of the delegation (permitted operations, possibility to transfer the delegation, etc.)

• The delegate provides his credentials and the delegation document in order to use the delegation and
obtain access.

Fig. 4.1. An example showing Web Single Sign-on

4. Web Single Sign-on vs. Access Delegation. Single Sign-On (SSO) is an identity federation mech-
anism removing the need to have multiple accounts on different Relying Parties. Other terms for this party
include Service Provider (SP). The user can login once to one provider and then access multiple web services.
Figure 4.1 shows a typical SSO system, consisting of a Relying Party (RP), an IAM (Identity Provider or
OpenID Provider - IdP, OIdP - relying on an internal Directory Service), and the end-user (here identified
with the User U). User U has an identity registered in the IAM and needs to access a certain web resource on
RP:

294 C. Formisano, E. K. Kolodner, A. Shulman-Peleg, E. Travaglino, G. Vernik and M. Villari

1. The user is redirected to IAM for the authentication (the authentication must be performed on the
home domain).

2. If the authentication has succeeded, he/she is redirected to RP for obtaining the requested resource.
Examples of protocols providing Web SSO are SAML [24], OpenID [20], CAS [2]. SAML, OpenID and CAS

work at different levels: the first two protocols provide inter-domain Identity Federation (with some difference),
while CAS provides only SSO on a single domain.

Fig. 4.2. An example showing the Access Delegation procedure

The Access Delegation procedure is conceptually different than identity federation in SSO. It is the mech-
anism employed when a consumer application (e.g., Instagram) wants to use Twitter(Tw) or Facebook (Fb)
to post a Tweet or write on a Facebook wall on behalf of an end user. Let’s assume an end-user, that after
downloading a consumer application from mobile market place, decides to exploit the application for interacting
with Tw/Fb resources. At the early stage the user gains the access to Tw/Fb through the consumer applica-
tion, hence the application itself will continue to work without any user supervision. Specifically, the user gains
temporary access to Fb/Tw, obtaining special tokens necessary for the consumer application. These tokens are
uniquely bound and tailored to the application, and they can allow limited operations on behalf of the user.
Figure 4.2 depicts all parts composing a typical Access Delegation system. In the figure the Service Provider
(SP) can be Fb and/or Tw services, whereas the Third Part Application is equivalent to a consumer application
(e.g., Instagram, see the icon avatar in the figure.) For example, using this delegation model the Instagram
application is able to post pictures on Facebook on behalf of the end-user. To summarize:

• Web SSO provides a mechanism to Share the same User Identity among multiple Web Services. Hence,
SSO allows logging in once and then accessing several web services.

• Access Delegation provides a mechanism to Share User Resources without sharing credentials.
Access delegation has been widely used in multiple applications implemented with well know protocols

like OAuth [28]. However, when considering a setup with delegation across two clouds OAuth protocols have
the limitation that they assume the existence of an IAM server shared between the clouds. Another way to
setup delegation is using a modified version of the SAML protocol. SAML was originally designed for allowing
SSO, but with several new specifications it is now able to provide delegation as well, e.g., through SAML 2.0
Condition to Delegate [22]. The next section introduces OAuth and SAML 2.0 Condition to Delegate solutions,
highlighting the advantages and the disadvantages of each.

4.1. OAuth 2.0. The RFC 6749, defined by the IETF, describes the OAuth 2.0 Authorization Framework,
and it specializes the existing features of OAuth 1.0 (for further details see the reference [7]). In particular the
OAuth 2.0 Authorization Framework allows a third-party application to achieve limited access to an HTTP
service. Looking at the OAuth 2.0 Framework it is possible to identify the following actors: Client, Resource
Owner, Authorization Server, and Resource Server. The Client is the application that needs to access protected
resources on behalf of the user Resource Owner that is the user owning the protected resources that the client
needs to access. Authorization Server is the server that provides access tokens to the client after the user

Delegation across storage clouds: on-boarding federation as a case study 295

has been authenticated and has been granted access to his resources. Resource Server is the server managing
the user protected resources.

Fig. 4.3. SAML Condition to Delegate Abstract Protocol Flow

4.2. SAML 2.0 Condition to Delegate. SAML was introduced by the OASIS consortium following
the standardization of XML docs (i.e., SAML [24], XACML [31]). The SAML 2.0 Condition to Delegate
(SAML2Del) specification [22] shows how to use the SAML 2.0 protocol for delegation. In particular SAML2Del
describes the following delegation-like scenarios:

• Proxying where an intermediate identity provider issues an assertion to a relying party on the basis
of an assertion issued to it. Proxying is a gateway in which the subject of the assertion is presumed to
directly interact with each party.

• Impersonation where an entity acting on behalf of an assertion subject is able to obtain and use an
assertion indistinguishable from an assertion that can be issued directly to the subject.

• Forwarding where an assertion is directly reused by an intermediary to impersonate a subject from
whom an assertion was obtained. Forwarding is a form of Impersonation, where the assertion is not
modified.

• Delegation goes beyond the forwarding scenario by adding information to the assertion that explicitly
identifies all the parties through which a transaction flows.

Figure 4.3 depicts how delegation works using SAML. The User Agent (called the Client in the OAuth 2.0
model) gains access to Service Provider A (SP A), using its credentials stored in the Identity Provider (IdP).
The SP A also obtains a SAML Assertion (identifying itself to the IdP using its credentials); hence, it can
access the resource on SP B. The SAML Assertion of SP A is different respect to the User Agent version; it is
modified. In the Figure, all steps characterizing the protocol are shown using the A−D letters.

4.3. Comparison of OAuth 2.0 with SAML 2.0 Condition to Delegate. “OAuth 2.0 Threat Model
and Security Considerations” [17] details the main threats and attacks on OAuth 2.0 as well as countermeasures
to overcome them. One reason for the weakness of OAuth 2.0 is its evolution from OAuth 1.0 along with the
adoption of incremental improvements that have exposed the system to possible flaws, such as:
a) compromising the communication among the parties;
b) obtaining client secrets; and
c) eavesdropping on access tokens.

The OAuth 2.0 protocol provides a greater degree of flexibility with respect to OAuth 1.0, especially in the way
it can be applied and the use cases that it addresses, which may come at the price of security [17]. SAML is a
much more mature framework conceived for many security purposes, in which the exchange of XML “assertion”
guarantees a high degree of security. Especially if we consider the possibility offered by SAML to sign all
communications with X509 certificates embedded into XML tags (see the XML Signature and XML Encryption
Native Support of SAML 2.0 [23]). For example, XML Signature and XML Encryption help to avoid threats like
a) and b) respectively. Given the greater security of the SAML, we chose it for our work, and in the next sections
we describe our adoption of SAML for delegation, presenting detailed examples of SAML Assertions. Note also,
that with the goal of improving the current OAuth 2.0 solution and reducing its weaknesses a working group
of the IETF has recently released the draft: SAML 2.0 Profile is used for OAuth 2.0 Client Authentication and
Authorization Grants [25], which describes a hybrid approach adopting SAML to strengthen OAuth 2.0.

296 C. Formisano, E. K. Kolodner, A. Shulman-Peleg, E. Travaglino, G. Vernik and M. Villari

5. VISION Cloud delegation scenarios. VISION Cloud addresses various use cases from different
industries such as telco, media, healthcare and enterprise applications. Notably, all of them require some sort
of delegation. Below, we describe some of the scenarios.

• Delegation for Federated Resources VISION Cloud also addresses scenarios where one cloud can
rent external storage resources from other, foreign, clouds. The cloud needing these resource is re-
sponsible for accessing data objects in the new cloud on the behalf of the end user. The Delegation
mechanism allows solving the access control problem of this scenario, where, as described above each
cloud may have its own IAM.

• Delegation for Storlets VISION Cloud uses computational elements (special Agents called Storlets)
for performing on-demand computations close to the data physical location. Access delegation is re-
quired to properly control a storlet’s access to a user’s resources on his behalf (e.g., storlets that perform
data analytics or statistics should have the proper permissions from the resource owners).

• Delegation for On-Boarding On-boarding is a process in which a cloud customer migrates his data
from one storage cloud (a New Cloud, i.e., Cloud A) to another cloud (an Old Cloud, i.e., Cloud B).
Delegation mechanisms allow to grant the on-boarding component (termed the Federator) sufficient,
but limited access rights to the customer resources.

Fig. 5.1. Delegation for VISION Cloud in On-Boarding Scenario

In the remainder of the paper we use this last use case to illustrate delegation for on-boarding federation.
Below we present the on-boarding federation system (see Figure 5.1). It was implemented as part of the
VISION Cloud, but can also be easily added to other cloud systems wishing to provide a service for migration
(on-boarding) from other providers. The new provider (Cloud A) is responsible for moving the customer data to
itself from the old cloud provider (Cloud B). Furthermore, following the federation set up, applications and users
begin accessing their data through the new cloud, which provides instant access to customer data remaining
in the old cloud. Thus, the applications that access the migrated data are not influenced by on-boarding and
can work transparently. The old cloud is assumed to be unaware of the on-boarding and is not required to
introduce any modification. Migrating data via on-boarding federation directly between the clouds leads to a
significant savings in time and cost [30]. From the technical standpoint, the on-boarding architecture specifies
the following three primary flows:

1. On-boarding set-up: An on-boarding relationship between a container in the old cloud and a container
in the new cloud is set up and persisted through the protected metadata of the container on the new
cloud.

2. Direct access: Once the relationship is set-up, all client’s applications may start to immediately access
the objects of the old container through the new cloud. When a client accesses an object on the new
cloud that has not yet been on-boarded, the Federator module gets the object from the old cloud and
puts it in the new cloud on the behalf of the end user.

Delegation across storage clouds: on-boarding federation as a case study 297

3. Background on-boarding: The Federator component creates background jobs on the the cloud that fetch
objects from the container in the old cloud and copy them to the container in the new cloud. These
jobs run when the resource utilization (e.g., CPU and network) in the new cloud is low so that they do
not interfere with the normal operation of the cloud. These jobs also need authorization from the user
to access the old cloud and depending on the architecture may also need authorization the write the
objects on the new cloud.

The delegation architecture to provide the authorization required for the direct and background on-boarding is
described in the next section.

6. VISION Cloud on-boarding delegation architecture. We first describe the flow for the SAML-
based delegation mechanism that we have chosen, and then show how we apply it for on-boarding.

Fig. 6.1. Delegation for on-boarding in VISION Cloud

Based on the comparison presented in Sect. 4.1 we chose to implement the delegation using SAML2Del.
In this protocol, the delegation document is a signed SAML assertion containing the details of the delegation,
held in a specific field called Condition. To describe the delegation flow, we consider a simple setup with single
IAM and two accounts, U1 and U2, which correspond to the user in the old and new clouds respectively, where
a user can also be a process or an infrastructure.

The access flow is as follows:
1. U1 logs into the IAM using her credentials and asks to generate a signed delegation assertion stating

that U2 is authorized to perform, for example, GET operations on behalf of U1 for one day.
2. U1 provides the assertion to U2.
3. U2 logs into the IAM using her credentials, provides the assertion and is authorized to perform GET

operations for the entire day.
In the on-boarding federation scenario, the Federator reads the objects on behalf of the user U1@Old in

the Old Cloud, and writes them on the behalf of the user U1@New in the New Cloud, where @Old and @New
correspond to the different identity management servers of the two clouds.

6.1. On-boarding Delegation Flow. Figure 6.1 shows the on-boarding delegation flow between two
VISION Clouds: the New and the Old, where each cloud has its own IAM. Each IAM incorporates an Identity
Provider (IdP) and a Service Provider (SP) in order to carry out the SAML protocol. The figure shows a
Federator component which can be introduced either independently or as an added-value feature of the New
Cloud. Each cloud also has an Object Service, which carries out the basic data access operations such as
GET/PUT of objects and containers.

The Federator has an identity in both clouds. In particular, let F@OLD, denote the federator identity (F)
in the IAM of the Old Cloud and let F@NEW denote its identity (F) in the IAM of the New Cloud. The
user (U) that requests the on-boarding also has an identity on each cloud, in particular, U@OLD (in the Old

298 C. Formisano, E. K. Kolodner, A. Shulman-Peleg, E. Travaglino, G. Vernik and M. Villari

Cloud) and U@NEW (on the New Cloud). All the identities must be registered with suitable credentials (e.g.
username/password) in their corresponding IAMs.

The delegation flow is modeled using two delegations, in particular: (1) U@OLD delegates F@OLD to
GET her objects from her container on Old Cloud; and (2) U@NEW delegates F@NEW to PUT objects on
her container in New Cloud.

The following operations are performed during the delegation flow for on-boarding.
1. The user logs in and obtains delegation assertions for both clouds:

(a) Delegation assertion (A@NEW), based on the credentials of U@NEW and the userid of F@NEW .
(b) Delegation assertion (A@OLD), based on the credentials of U@OLD and the userid of F@OLD.

2. The user starts the federation process, providing the following parameters:
(a) U@NEW - credentials to activate the Federator.
(b) A@NEW - the assertion ID delegating F@NEW to ask for PUT operations on behalf of U@NEW .
(c) A@OLD - the assertion ID delegating F@OLD to ask for GET operations on behalf of U@OLD.

3. The Federator authenticates U@NEW through the IAM of the New Cloud.
4. The Federator performs a GET operation to the Old Cloud using F@OLD credentials as delegate of

U@OLD.
5. The Object Service of the Old Cloud checks the credentials and the delegation with the IAM of the

Old Cloud.
6. The Federator PUTs the retrieved object to the New Cloud using F@NEW credentials as Delegate of

U@NEW .
7. The Object Service of the New Cloud checks the credentials and the delegation with the IAM of the

New Cloud.

6.2. Delegation Advantages. The Federator acts as a canonical user, authenticating itself for each
REST request (GET from Old Cloud and PUT to New Cloud). The delegation protocol allows it to access
the user resources without possessing the user credentials or requiring an explicit trust relationship with the
Old Cloud. The assertion IDs are inserted into the REST messages and they are cached by the IAM for
increasing the performances (as below). In addition to preserving the security, this scheme has the advantage
of an easy combination with other authorization methods used in the underlying object store system. For
example, VISION Cloud uses Access Control Lists (ACLs), which are associated with every resource, such
as object or container. ACLs are configured with a RESTful API as specified by CDMI, where the syntax
is NFSv4 compatible allowing compatibility with traditional file systems. Since ACLs are distributed with
the resource, they provide an efficient way of setting fine-grained access control with per object/container
permissions. Notably, by granting the Federator specific but limited permissions to act on the behalf of the end
user, the described delegation allows to properly preserve all of the permissions set by ACLs. Specifically, after
the Object Service in Figure 6.1 checks the Federator credentials and assertion (Step 7), the system drops the
privileges to those defined in the assertion (the identity and the delegated role granted to the Federator by the
end user). Due to the mechanism of role delegation the Federator can securely access the resources without the
need to specifically add it to the ACLs.

7. Related Work. Below, we review the models for federation between cloud operators and then focus
on works for federation of access control for identity federation and delegation.

Usually federation consists of the establishment of a trust context between parties with the purpose of
benefiting of business advantages. According to the view of the VISION Cloud project, Cloud federation may
represent a compelling business model for SMEs, where many stakeholders (i.e., Cloud providers, tenants and
customers) interact with each other for creating new opportunities and satisfying even more needs [12]. There
are four basic capabilities that characterize each entity of the federation, which “keeps authority about the
information passed to the other entities of the federation” and “has authority to create a global view of the data
that is available among all the entities of the federation”. An entity of the federation “is not forced to perform
tasks of another entity of the federation” and “can autonomously decide to enter or leave the federation”.
Examples of such systems were presented by Tordsson et al. [29], Kurze et al. [14] as well as the recent Colony
system, that federated several Openstack Swift deployments in a Colony by introducing a Swift Dispatcher
component, prefixing the container names. Unlike this work, we do not assume any naming conventions or

Delegation across storage clouds: on-boarding federation as a case study 299

architectural components common to the two clouds. The federation described in [6] is aimed at computation
management (consolidation of VMs among Clouds). It shows similarities to the work done by Celesti et al.
[3] and Rochwerger et al. [21], where the federation problems for data management between several IaaSs are
addressed. In the latter case the authors described how to elastically enlarge in a transparent way, the physical
resource of cooperating IaaSs.

From the security and privacy standpoint, the cloud has not kept pace with the enormous volumes of
user identities that network administrators must manage and secure. An identity fabric that links multiple
applications to a single identity would address this problem, enabling full-scale cloud adoption as it is highlighted
in the Architecting a Cloud-Scale Identity Fabric (see [18]). The authors in [4] identified the services and APIs
are necessary to be realized for accessing cloud resources in a useful and focused way. They range from: Federated
Identity, to Delegation Of Authority, and Levels Of Assurance, Attributes, Access Rights, till Authorization. In
this work, the authors described all APIs they introduced, and applied them to a real cloud middleware, the
Eucalyptus S3 Service. This work explains how the researchers have used these proof-of-concept APIs and how
to exploit and match them with the existing services of Kent University.

The Security Assertion Markup Language (SAML) became a popular technology for solving issues related
to the federation needs. Indeed many existing works provide solutions for a variety of scenarios that are based
on the SAML mechanism and its capabilities. These solutions do not solve all the cloud federation problems.
The federation problem in cloud computing is greater than the one in traditional systems.

The first practice of cooperation between providers was about sharing the network traffic. A few years
later service federation over the Internet has become a well established approach: it had to be supported by
a mechanism for trusting identities across different domains, which is identity federation. The latest trend to
federate identities over the Internet is represented by the Identity Provider/Service Provider (IdP/SP) model
[16], supported by digital certificates.

An important example of a popular implementation of SAML is Shibboleth [26]. Unfortunately, most
systems still lack important capabilities required for the federation among different cloud providers. The main
constraint of the existing federation solutions is that they are designed for static environments requiring a
priori policy agreements, whereas clouds are dynamic and heterogeneous environments which require particular
security and policy arrangements.

Interoperability in federated heterogeneous cloud environments is addressed in [15], in which the authors
propose a trust model where the trust is delegated between trustworthy parties satisfying certain constrains.
The approach in VISION Cloud considers also the issue with the data location and protection with fine-grain
ACLs. Pearson at al. [19] also introduce a privacy manager, taking care of data compliance according to the
laws of different jurisdictions.

Huang et al. present [9] an Identity Federation Broker for service clouds. They address federation in the
context of SaaS services in which SAML represents the basic protocol. They make use of a trusted third party
as a trust broker to simplify the management of identity federation in a user centric way.

A recent work called FACIUS describes the use of SAML for Non Web-Based Services [11]. The authors
make an assessment of a system accomplishing a real implementation of SAML with SSH. In particular they
have reported evaluations with respect to requirements, performance, security, and legal aspects.

The works presented above show various SAML applications and justify its adoption in our solution. How-
ever, the they consider it in a different aspect which is not suitable for our aims. Here, in addition to presenting
standard SAML flows, we discuss a slightly modified version allowing to simplify the on-boarding federation.

When considering the delegation technologies, protocols leveraging the Public-Key Infrastructures (PKI)
was widely adopted grid systems. For example, grids make use of signed certificates for users’ identification and
jobs submission. In grid terminology, Virtual Organizations (VOs) represent entities that are able to manage
certificates, distributing and verifying them, accomplishing a full PKI. Right now, a recent trend for managing
credential and delegations in federated cloud scenarios appears to make use of X.509 certificates.

In the direction of managing identity and authorization for Community Clouds using PKI is discussed in [5].
The authors introduce an identity broker to bind the Web Single Sign-on to a key-based system. In particular
they implemented a solution (libabac package) using the Attribute-based Access Control (ABAC) and the role-
based trust management (RT): RT/ABAC. The libabac uses X.509 as a transport. RT/ABAC credentials are

300 C. Formisano, E. K. Kolodner, A. Shulman-Peleg, E. Travaglino, G. Vernik and M. Villari

X.509 attribute certificates. The RT/ABAC may handle the processing of delegation chains.
A recent and detailed work on delegation is described in the paper entitled: OAuth and ABE based Autho-

rization in Semi-Trusted Cloud computing, [28]. Here, the authors enhanced the OAuth capabilities using the
encryption in attribute-based access control system exploiting metadata. They introduced a complex model
in which authentication, authorization, delegation, access trees, new tokens, time slots, user certificates are
investigated. Their objective is to provide a complete solution with a high level of flexibility useful in many
cloud scenarios.

In spite this progress early storage cloud solutions focused on scalability and had difficulties in achieving
the delegation requirements [8]. However, in recent years they are slowly adopting more advanced access
control technologies. For example, the OpenStack security and access control component Keystone has recently
adopted PKI (see [10]). Keystone uses tokens, which are json documents that contain the required access control
information about users, projects, roles and domains. Starting from the Grizzly release of Openstack, these
tokens are cryptographically signed based on the X509 standard. Keystone serves as a Certificate Authority
(CA) and uses its signing key and certificate to sign tokens. Thanks to PKI, other OpenStack entities can then
locally verify these tokens with the public key without the need to contact Keystone.

8. Conclusions and Future Work. In this paper we presented the concept of delegation for on-boarding
federation between storage clouds. Our solution is based on the SAML 2.0 Condition to Delegate extension.
The added value of this work is in considering all security implications in using the delegation technique for
the on-boarding procedure. We also show how this delegation architecture can be implemented using SAML
solution. We implemented the solution as part of our work on VISION Cloud, accomplishing RESTful APIs
and creating new SAML delegation Assertions. In the future we will evaluate the impact of it on VISION Cloud
architecture, analyzing its complexity and performance.

Acknowledgments. The research leading to the results presented in this paper has received funding from
the European Union’s Seventh Framework Programme (FP7 2007-2013) Project VISION-Cloud under grant
agreement number 217019.

Delegation across storage clouds: on-boarding federation as a case study 301

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,

and M. Zaharia, Above the Clouds: A Berkeley View of Cloud Computing, Tech. Report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley, Feb 2009.

[2] CAS, Central authentication service,. http://www.jasig.org/cas, June 2013.
[3] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, Integration of clever clouds with third party software systems through

a rest web service interface, in Proceedings - IEEE Symposium on Computers and Communications, 2012, pp. 827–832.
[4] D. W. Chadwick and M. Casenove, Security apis for my private cloud - granting access to anyone, from anywhere at any

time, in Proceedings of the 2011 IEEE Third International Conference on Cloud Computing Technology and Science,
CLOUDCOM ’11, Washington, DC, USA, 2011, IEEE Computer Society, pp. 792–798.

[5] J. Chase and P. Jaipuria, Managing identity and authorization for community clouds, tech. report, Department of Computer
Science, Duke University, 2012. Technical Report CS-2012-08.

[6] I. Goiri, J. Guitart, and J. Torres, Characterizing cloud federation for enhancing providers’ profit, in Cloud Computing
(CLOUD), 2010 IEEE 3rd International Conference on, Jul 2010, pp. 123–130.

[7] D. Hardt, The OAuth 2.0 Authorization Framework. RFC 6749 (Proposed Standard), Oct. 2012.
[8] D. Harnik, E. K. Kolodner, S. Ronen, J. Satran, A. Shulman-Peleg, and S. Tal, Secure access mechanism for cloud

storage, Scalable Computing: Practice and Experience, 12 (2011).
[9] H. Y. Huang, B. Wang, X. X. Liu, and J. M. Xu, Identity federation broker for service cloud, in Service Sciences (ICSS),

2010 International Conference on, May 2010, pp. 115–120.
[10] KEYSTONE, Welcome to keystone, the openstack identity service. http://docs.openstack.org/developer/keystone, 2013.
[11] J. Kohler, S. Labitzke, M. Simon, M. Nussbaumer, and H. Hartenstein, Facius: An easy-to-deploy saml-based approach

to federate non web-based services, in Trust, Security and Privacy in Computing and Communications (TrustCom), 2012
IEEE 11th International Conference on, Jun 2012, pp. 557–564.

[12] E. K. Kolodner, A. Shulman-Peleg, D. Naor, P. Brand, M. Dao, A. Eckert, S. Gogouvitis, D. Harnik, M. Jaeger,

D. Kyriazis, et al., Data intensive storage services on clouds: Limitations, challenges and enablers, European Research
Activities in Cloud Computing, D. Petcu and JL Vazquez-Poletti, Eds. Cambridge Scholars Publishing, (2012), pp. 68–96.

[13] E. K. Kolodner, S. Tal, D. Kyriazis, D. Naor, M. Allalouf, L. Bonelli, P. Brand, A. Eckert, E. Elmroth, S. V.

Gogouvitis, D. Harnik, F. Hernández, M. C. Jaeger, E. B. Lakew, J. M. Lopez, M. Lorenz, A. Messina,

A. Shulman-Peleg, R. Talyansky, A. Voulodimos, and Y. Wolfsthal, A cloud environment for data-intensive
storage services, in CloudCom, 2011, pp. 357–366.

[14] T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai, and M. Kunze, Cloud federation, in Proceedings of the 2nd
International Conference on Cloud Computing, GRIDs, and Virtualization (CLOUD COMPUTING 2011), IARIA, Sep
2011.

[15] W. Li and L. Ping, Trust model to enhance security and interoperability of cloud environment, in Cloud Computing, Nov
2009, pp. 69–79.

[16] Liberty, An alliance project. http://projectliberty.org, 2013.
[17] T. Lodderstedt, M. McGloin, and P. Hunt, OAuth 2.0 Threat Model and Security Considerations. RFC 6819 (Informa-

tional), Jan. 2013.
[18] E. Olden, Architecting a cloud-scale identity fabric, Computer, 44 (2011), pp. 52–59.
[19] S. Pearson, Y. Shen, and M. Mowbray, A privacy manager for cloud computing, in Cloud Computing, Nov 2009, pp. 90–

106.
[20] D. Recordon and D. Reed, Openid 2.0: a platform for user-centric identity management, in Proceedings of the second

ACM workshop on Digital identity management, DIM ’06, New York, NY, USA, 2006, ACM, pp. 11–16.
[21] B. Rochwerger, S. Naqvi, C. Ponsard, J. Latanicki, P. Massonet, and M. Villari, A monitoring and audit logging

architecture for data location compliance in federated cloud infrastructures, in IEEE International Symposium on Parallel
and Distributed Processing Workshops and Phd Forum, 2011, pp. 1510–1517.

[22] SAML-DEL, V2.0 condition for delegation. http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-delegation-cs-01.pdf,
2013.

[23] SAML-ENHANC, 2.0 enhancements. http://saml.xml.org/saml-2-0-enhancements, 2007.
[24] SAML-OASIS, V2.0 technical. http://www.oasis-open.org/specs/index.php, Jan 2013.
[25] SAML-OAUTH, Saml 2.0 profile for oauth 2.0 client authentication and authorization grants”,

note=”http://datatracker.ietf.org/doc/draft-ietf-oauth-saml2-bearer, 2013.
[26] Shibboleth, System standards. http://shibboleth.internet2.edu/, Jan 2012.
[27] SWIFT, Welcome to Swift’s documentation, June, 2013. http://http://docs.openstack.org/developer/swift/.
[28] A. Tassanaviboon and G. Gong, Oauth and abe based authorization in semi-trusted cloud computing: aauth, in Proceedings

of the second international workshop on Data intensive computing in the clouds, DataCloud-SC ’11, New York, NY, USA,
2011, ACM, pp. 41–50.

[29] J. Tordssona, R. S. Monterob, R. Moreno-Vozmedianob, and I. M. Llorente, Optimized placement of a computational
cluster across multiple clouds.

[30] G. Vernik, A. Shulman-Peleg, S. Dippl, C. Formisano, M. Jaeger, E. Kolodner, and M. Villari, Data on-boarding in
federated storage clouds, in IEEE CLOUD 2013 IEEE 6th International Conference on Cloud Computing June 27-July
2, 2013, Santa Clara Marriott, CA, USA (Center of Silicon Valley), 2013.

[31] XACML, Cross-enterprise security and privacy authorization (xspa) profile of xacmlv2.0 for healthcare version 1.0.
http://www.oasis-open.org/committees/document.php?document id=34164&wg abbrev=xacml.

302 C. Formisano, E. K. Kolodner, A. Shulman-Peleg, E. Travaglino, G. Vernik and M. Villari

Appendix A. On-Boarding Delegation details: REST API.
In this section we present the API of VISION Cloud for delegation, first a description of the parameters

and then some details of the RESTful API for creating and using a delegation.

A.1. API parameters. Table A.1 shows the parameters to be provided by an end-user (the delegator)
during the interaction with his IAM to create a delegation document and the delegation token representing it
to be granted to the delegate. The delegator provides his credentials, and describes the capabilities and the
actions he wishes to delegate, including a limitation of the delegation to certain containers, and identifies the
delegate.

Name Type Mandatory/Optional Description
delegatorUsername JSON String mandatory Name of the delegator

user.
delegatorPassword JSON String mandatory Password of the user.
delegatorTenant JSON String mandatory Tenant of the user.
delegatedId JSON String mandatory Identifier of the dele-

gated user.
delegatedTenant JSON String mandatory Name of the delegated

tenant.
delegatedRoles JSON Array mandatory Roles of the delegator

(to be delegated).
delegatedActions JSON Array mandatory Actions of the delega-

tor (to be delegated).
delegatedContainer JSON String mandatory Name of the container

(to be delegated)
Table A.1

Delegation capabilities provided to a delegated user and/or software component (e.g., the Federator).

A.2. RESTful API for on-boarding delegation. In VISION Cloud storage related operations (cre-
ate/read/update/delete) are invoked through a RESTful API over standard HTTP. A token for a delegation
assertion is also obtained through a RESTful request. In particular, Listing 1 shows a request to create a
delegation assertion and return a token for it, e.g., as required in steps 1a and 1b of Figure 6.1.

Listing 1

HTTP - User Delegation Request

1 Request:

2 POST <root-uri>/visionIAM/requestDelegation

3 Accept: application/json

4 Content-Type: application/json

5 {
6 "delegatorUsername":"delegator_username",

7 "delegatorPassword":"delegator_password",

8 "delegatorTenant":"delegator_tenant",

9 "delegatedId":"delegated_identifier",

10 "delegatedTenant":"delegated_tenant",

11 "delegatedRoles":["role1","role2",...,"roleN"],

12 "delegatedActions":["action1","action2",...,"actionN"],

13 "delegatedContainer":"delegated_container"

14 }

If the delegator is authorized to perform a delegation for the required roles and operations, the response is
a 200 OK and contains the the delegation token. Such a response is shown in Listing 2. If the delegator is not
authorized then the response is a 400.

Listing 2

HTTP - IAM Delegation Token Released

1 Response:

2 HTTP Status

Delegation across storage clouds: on-boarding federation as a case study 303

3 HTTP/1.1 200OK

4 Content-Type: application/json

5 {
6 "delegationToken":"NGFiYWVmOTctMmY0MS00MTgyLWFkYTItODc0M2EyMDA1MDZi"

7 }

A RESTful request on VISION Cloud, e.g., a GET request to read an object, contains an authorization
header holding the credentials (username/password) for the user making the request. The VISION Cloud
Identity Management System uses these credentials to authenticate the user. The same header is used for a
request on VISION Cloud from a delegate; in this case the header contains the credentials of the delegate and
the delegation token. Listing 3 shows an authorization header containing a delegation token.

Listing 3

HTTP - Delegated Access

1 Request:

2 GET <root-uri>/visionIAM/authenticate HTTP/1.1

3 Authorization: DEL base64Encoded{username@tenantName:password:delegationToken}

In SAML all messages are signed with X509 certificates, to avoid any kind of attack when managing
identities, roles and actions (Authentication and Authorization phases). The signature is done with valid
(recognized) certificates and thus is not exploitable for an attack. Section. B briefly describes these SAML
security capabilities.

Appendix B. SAML Assertion for On-Boarding Delegation.

Fig. B.1. SAML Assertion used for the VISION Cloud On-Boarding Delegation scenario

304 C. Formisano, E. K. Kolodner, A. Shulman-Peleg, E. Travaglino, G. Vernik and M. Villari

This section highlights the various parts comprising a SAML Assertion used for the on-boarding delegation
scenario. As can be seen, the assertion is an XML-based container of information. In general all SAML assertions
are associated with a subject (< Subject > element, see Listing 6. The standard defines three statements:
Authentication Assertion, Attribute Assertion (see Listing 7), and an Authorization Decision Assertion. In
SAML there are also Signatures, Conditions (see Listing 6) and Issuers. The prefix “saml” represents the basic
namespace for a SAML V2.0 assertion (see Listing 4). In our case the SAML Assertion has 6 parts as depicted
in Figure B.1. In all listings reported below we highlight the flexibility of the SAML standard as well as its
strong security.

Listing 4

SAML - Root container and Issuer

1 <?xml version="1.0" encoding="UTF-8"?>

2 <saml2:Assertion

3 xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"

4 ID="_9a5a551aeb58718ed0076e31d1cf510b" IssueInstant="2013-10-29T10:42:25.908Z"

5 Version="2.0"

6 xmlns:xs="http://www.w3.org/2001/XMLSchema">

7

8 </saml2:Assertion>

9 ------

10 <saml2:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

11 https://identityProvider.hostname/idp

12 </saml2:Issuer>

13 ------

Listing 5

SAML - Signature parts

1 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

2 <ds:SignedInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

3 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"

4 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"/>

5 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"

6 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"/>

7 <ds:Reference URI="#_8f1c03bb-bcb1-48eb-8a52-33c19e8a5d66"

8 xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

9 <ds:Transforms xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

10 <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature

11 " xmlns:ds="http://www.w3.org/2000/09/xmldsig#"/>

12 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" xmlns:ds="

13 http://www.w3.org/2000/09/xmldsig#">

14 <ec:InclusiveNamespaces PrefixList="del xs" xmlns:ec="http://www.w3.org

15 /2001/10/xml-exc-c14n#"/>

16 </ds:Transform>

17 </ds:Transforms>

18 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" xmlns:ds="

19 http://www.w3.org/2000/09/xmldsig#"/>

20 <ds:DigestValue xmlns:ds="http://www.w3.org/2000/09/xmldsig#">...

21 </ds:DigestValue>

22 </ds:Reference>

23 </ds:SignedInfo>

24 <ds:SignatureValue xmlns:ds="http://www.w3.org/2000/09/xmldsig#">...

25 </ds:SignatureValue>

26 <ds:KeyInfo>

27 <ds:X509Data>

28 <ds:X509Certificate>...</ds:X509Certificate>

29 </ds:X509Data>

30 </ds:KeyInfo>

31 </ds:Signature>

Delegation across storage clouds: on-boarding federation as a case study 305

Listing 6

SAML - Subject and Conditions

1

2 <saml2:Subject>

3 <saml2:NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-format:transient"

4 NameQualifier="https://identityProvider.hostname/idp"

5 SPNameQualifier="https://serviceProvider.hostname/sp">

6 _a36102490a9b9c196255ff86ee1a052f</saml2:NameID>

7 <saml2:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:holder-of-key">

8 <saml2:SubjectConfirmationData>

9 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

10 <ds:X509Data>

11 <ds:X509Certificate>...</ds:X509Certificate>

12 <ds:X509SubjectName>...</ds:X509SubjectName>

13 <ds:X509IssuerSerial>

14 <ds:X509IssuerName>...</ds:X509IssuerName>

15 <ds:X509SerialNumber>...</ds:X509SerialNumber>

16 </ds:X509IssuerSerial>

17 </ds:X509Data>

18 </ds:KeyInfo>

19 </saml2:SubjectConfirmationData>

20 </saml2:SubjectConfirmation>

21 </saml2:Subject>

22 ---------

23 <saml2:Conditions>

24 <saml2:Condition

25 NotBefore="2013-10-31T09:40:00.440Z"

26 NotOnOrAfter="2013-10-31T18:40:00.440Z"

27 xmlns:del="urn:oasis:names:tc:SAML:2.0:conditions:delegation"

28 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

29 xsi:type="del:DelegationRestrictionType">

30 <del:Delegate ConfirmationMethod="#sender-vouches"

31 DelegationInstant="2013-10-29T10:42:25.900Z">

32 <saml2:NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">

33 delegated</saml2:NameID>

34 </del:Delegate>

35 </saml2:Condition>

36 </saml2:Conditions>

Listing 6 shows the flexibility of SAML in defining Conditions. In this case the Assertion is valid for a
specific time interval as highlighted in NotBefore and NotOnOrAfter Condition Attributes (see lines 25 and 26).
A timestamp allows tracking the creation time of a delegation (see line 31). The Subject tag describes all the
fields of a X509 user/host certificate necessary for ensuring security (see from line 9 to 18).

Listing 7

SAML - Authentication and Attribute Statements

1 <saml2:AuthnStatement AuthnInstant="2011-03-29T16:35:12.440Z" SessionIndex="123456">

2 <saml2:AuthnContext>

3 <saml2:AuthnContextClassRef>

4 urn:oasis:names:tc:SAML:2.0:ac:classes:PreviousSession

5 </saml2:AuthnContextClassRef>

6 </saml2:AuthnContext>

7 </saml2:AuthnStatement>

8 -------

9 <saml2:AttributeStatement>

10 <saml2:Attribute FriendlyName="delegated_roles" Name="delegated_roles">

11 <saml2:AttributeValue

12 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

13 xsi:type="xs:string">REMOTE_ADVISOR

14 </saml2:AttributeValue>

15 </saml2:Attribute>

16 <saml2:Attribute FriendlyName="delegated_actions" Name="delegated_actions">

17 <saml2:AttributeValue

18 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

306 C. Formisano, E. K. Kolodner, A. Shulman-Peleg, E. Travaglino, G. Vernik and M. Villari

19 xsi:type="xs:string">CREATE_OBJECT

20 </saml2:AttributeValue>

21 <saml2:AttributeValue

22 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

23 xsi:type="xs:string">DELETE_OBJECT

24 </saml2:AttributeValue>

25 </saml2:Attribute>

26 <saml2:Attribute FriendlyName="delegated_container"

27 Name="delegated_container">

28 <saml2:AttributeValue

29 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

30 xsi:type="xs:string">7D1FG1

31 </saml2:AttributeValue>

32 </saml2:Attribute>

33 <saml2:Attribute FriendlyName="delegator_username"

34 Name="delegator_username">

35 <saml2:AttributeValue

36 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

37 xsi:type="xs:string">delegator

38 </saml2:AttributeValue>

39 </saml2:Attribute>

40 <saml2:Attribute FriendlyName="delegator_username"

41 Name="delegator_username">

42 <saml2:AttributeValue

43 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

44 xsi:type="xs:string">delegationTenant

45 </saml2:AttributeValue>

46 </saml2:Attribute>

47 <saml2:Attribute FriendlyName="delegated_username"

48 Name="delegated_username">

49 <saml2:AttributeValue

50 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

51 xsi:type="xs:string">delegated

52 </saml2:AttributeValue>

53 </saml2:Attribute>

54 <saml2:Attribute FriendlyName="delegated_tenant"

55 Name="delegated_tenant">

56 <saml2:AttributeValue

57 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

58 xsi:type="xs:string">delegationTenant

59 </saml2:AttributeValue>

60 </saml2:Attribute>

61 </saml2:AttributeStatement>

As can seen in Listings 5 and 6, 50% of the SAML structure is devoted to the security definitions (certificates
X509, keys, sec algorithm, digests, etc.). These parts are necessary for securing any complex distributed scenario
where many actors are involved. The complexity increases if we consider the case of federation among clouds.
We remark that other solutions for delegation do not have the same level of accuracy and security in treating and
exchanging sensitive data as does SAML. All Actions, Roles and Resources introduced in our implementation
are described in the < saml2 : AttributeStatement > statement (see Listing 7). In particular, all fields of table
A.1 are reported in the listing from the line 9 to 61.

Edited by: Maria Fazio and Nik Bessis
Received: Nov 2, 2013
Accepted: Jan 10, 2014

AIMS AND SCOPE

The area of scalable computing has matured and reached a point where new issues and trends require a pro-
fessional forum. SCPE will provide this avenue by publishing original refereed papers that address the present
as well as the future of parallel and distributed computing. The journal will focus on algorithm development,
implementation and execution on real-world parallel architectures, and application of parallel and distributed
computing to the solution of real-life problems. Of particular interest are:

Expressiveness:
• high level languages,
• object oriented techniques,
• compiler technology for parallel computing,
• implementation techniques and their effi-
ciency.

System engineering:
• programming environments,
• debugging tools,
• software libraries.

Performance:
• performance measurement: metrics, evalua-
tion, visualization,

• performance improvement: resource allocation
and scheduling, I/O, network throughput.

Applications:

• database,

• control systems,

• embedded systems,

• fault tolerance,

• industrial and business,

• real-time,

• scientific computing,

• visualization.

Future:

• limitations of current approaches,

• engineering trends and their consequences,

• novel parallel architectures.

Taking into account the extremely rapid pace of changes in the field SCPE is committed to fast turnaround
of papers and a short publication time of accepted papers.

INSTRUCTIONS FOR CONTRIBUTORS

Proposals of Special Issues should be submitted to the editor-in-chief.
The language of the journal is English. SCPE publishes three categories of papers: overview papers,

research papers and short communications. Electronic submissions are preferred. Overview papers and short
communications should be submitted to the editor-in-chief. Research papers should be submitted to the editor
whose research interests match the subject of the paper most closely. The list of editors’ research interests can
be found at the journal WWW site (http://www.scpe.org). Each paper appropriate to the journal will be
refereed by a minimum of two referees.

There is no a priori limit on the length of overview papers. Research papers should be limited to approx-
imately 20 pages, while short communications should not exceed 5 pages. A 50–100 word abstract should be
included.

Upon acceptance the authors will be asked to transfer copyright of the article to the publisher. The
authors will be required to prepare the text in LATEX2ε using the journal document class file (based on the
SIAM’s siamltex.clo document class, available at the journal WWW site). Figures must be prepared in
encapsulated PostScript and appropriately incorporated into the text. The bibliography should be formatted
using the SIAM convention. Detailed instructions for the Authors are available on the SCPE WWW site at
http://www.scpe.org.

Contributions are accepted for review on the understanding that the same work has not been published
and that it is not being considered for publication elsewhere. Technical reports can be submitted. Substantially
revised versions of papers published in not easily accessible conference proceedings can also be submitted. The
editor-in-chief should be notified at the time of submission and the author is responsible for obtaining the
necessary copyright releases for all copyrighted material.

