
Scalable Computing:
Practice and Experience

Scientific International Journal
for Parallel and Distributed Computing

ISSN: 1895-1767

~~
~
~

~
~

t

Volume 15(1) March 2014

Editor-in-Chief

Dana Petcu
Computer Science Department
West University of Timisoara
and Institute e-Austria Timisoara
B-dul Vasile Parvan 4, 300223
Timisoara, Romania
petcu@info.uvt.ro

Managinig and
TEXnical Editor

Marc Eduard Fr̂ıncu
Electrical Engineering Department
University of Southern California
3740 McClintock Avenue, EEB 300A
Los Angeles, California 90089-2562,
USA
frincu@usc.edu

Book Review Editor

Shahram Rahimi
Department of Computer Science
Southern Illinois University
Mailcode 4511, Carbondale
Illinois 62901-4511
rahimi@cs.siu.edu

Software Review Editor

Hong Shen
School of Computer Science
The University of Adelaide
Adelaide, SA 5005
Australia
hong@cs.adelaide.edu.au

Domenico Talia
DEIS
University of Calabria
Via P. Bucci 41c
87036 Rende, Italy
talia@deis.unical.it

Editorial Board

Peter Arbenz, Swiss Federal Institute of Technology, Zürich,
arbenz@inf.ethz.ch

Dorothy Bollman, University of Puerto Rico,
bollman@cs.uprm.edu

Luigi Brugnano, Università di Firenze,
brugnano@math.unifi.it

Bogdan Czejdo, Fayetteville State University,
bczejdo@uncfsu.edu

Frederic Desprez, LIP ENS Lyon, frederic.desprez@inria.fr

Yakov Fet, Novosibirsk Computing Center, fet@ssd.sscc.ru

Andrzej Goscinski, Deakin University, ang@deakin.edu.au

Janusz S. Kowalik, Gdańsk University, j.kowalik@comcast.net

Thomas Ludwig, Ruprecht-Karls-Universität Heidelberg,
t.ludwig@computer.org

Svetozar D. Margenov, IPP BAS, Sofia,
margenov@parallel.bas.bg

Marcin Paprzycki, Systems Research Institute of the Polish
Academy of Sciences, marcin.paprzycki@ibspan.waw.pl

Lalit Patnaik, Indian Institute of Science, lalit@diat.ac.in

Boleslaw Karl Szymanski, Rensselaer Polytechnic Institute,
szymansk@cs.rpi.edu

Roman Trobec, Jozef Stefan Institute, roman.trobec@ijs.si

Marian Vajtersic, University of Salzburg,
marian@cosy.sbg.ac.at

Lonnie R. Welch, Ohio University, welch@ohio.edu

Janusz Zalewski, Florida Gulf Coast University,
zalewski@fgcu.edu

SUBSCRIPTION INFORMATION: please visit http://www.scpe.org

Scalable Computing: Practice and Experience

Volume 15, Number 1, March 2014

TABLE OF CONTENTS

Special Issue on Selected Papers from Synasc 2013 Workshops:

Introduction to the Special Issue iii

Tree-based Space Efficient Formats for Storing the Structure of Sparse
Matrices 1

I. Šimeček and D. Langr

Large-Scale Visualization of Sparse Matrices 21
D. Langr, I. Šimeček, P. Tvrd́ık and T. Dytrych

Adaptive Multi-Grid Methods for Parallel CFD Applications 33
Jérôme Frisch, Ralf-Peter Mundani and Ernst Rank

Developing Secure Cloud Applications 49
Massimiliano Rak, Massimo Ficco, Ermanno Battista, Valentina Casola
and Nicola Mazzocca

A Distributed Agent-based Decision Support for Cloud Brokering 65
Alba Amato and Salvatore Venticinque

Regular Papers:

Image scrambling on a ”mesh-of-tori” architecture 79
Maria Ganzha, Marcin Paprzycki and Stanislav G. Sedukhin

TTL-Chord: A Chord-based Approach for Semantic Web Services
Discovery 89

Mohamed Gharzouli, Youcef Messelem and Mohamed Elhadi Bounas

A new decentralized periodic replication strategy for dynamic data
grids 101

Hanène Chettaoui and Faouzi Ben Charrada

c© SCPE, Timişoara 2014

Scalable Computing: Practice and Experience
Volume 15, Number 1, pp. iii–iv. http://www.scpe.org

DOI 10.12694/scpe.v15i1.961
ISSN 1895-1767
c© 2014 SCPE

INTRODUCTION TO THE SPECIAL ISSUE ON SELECTED PAPERS FROM SYNASC
2013 WORKSHOPS

Dear SCPE readers,

It is a pleasure to present a special issue covering subjects related with high-performance computing and
cloud computing. Although there are distinct research interests, approaches that are relevant for both topics
could be identified. In the context of Big Data research, HPC-based approaches and algorithms are becoming
increasingly relevant in the context of cloud computing. On the other hand, the access to a wider pool of
computing resources, together with the expected integration of new resource types, transform the cloud into an
interesting candidate for supporting some HPC-related tasks.

This special issue is based on several contributions presented at workshops that were organized in con-
junction with the 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC 2013). We selected four papers from the second Workshop on Management of resources and services
in Cloud and Sky computing (MICAS 2013) and the Workshop on HPC for Scientific Problems (HPCSP 2013),
together with a fifth paper that is highly relevant for the topics of interest that were covered by this special
issue.

Challenging problems related with sparse matrices are discussed in [3, 5]. In the paper of Šimeček et al.,
different memory-efficient storage formats are investigated for very large sparse matrices which, due to their
requirement, require strong support from massively parallel computer systems. Specific large sparse matrices
are considered in their research, with a focus on the compression of the information describing the structure
of these matrices [5]. This specific approach is required in order to minimize the memory footprint of stored
matrices.

The results from [5] are complemented by the work of Langr et al., where, in the context of the problem of
visualization of large sparse matrices emerging in HPC applications, a novel algorithm for parallel acquisition of
visualization data is discussed. The algorithm was designed to cope with the heterogeneous aspects of modern
HPC systems [3].

A third paper coming from the HPCSP 2013 workshop was developed with an important support from
different Blue Gene/P installations, including the supercomputer at HPC Center from West University of
Timişoara1 [2]. The research from the work of Frisch et al., is built on top of the outstanding requirements
coming from computational fluid mechanics computations, which are memory- and time-intensive, and require
an impressive range of computational resources.

Two papers covering subjects that are relevant to cloud computing conclude this special issue. The first
one is coming from the MICAS 2013 workshop, and offer a perspective on developing and modeling secure cloud
applications [4], with an interesting case study on securing mOSAIC-based2 applications. The approach used
by Rak et al., is based on the currently low perception on security issues in cloud environments, which affect
cloud adoption, especially by small and medium sized enterprises.

The second contribution, and last paper of this special issue, offer a different point of view in the context
of cloud computing: brokering of cloud resources [1]. The multi-agent approach described by Amato and
Venticinque is built in relation with the mOSAIC Cloud Agency. As different performance limitations were
identified both in the case of the aforementioned solution and in the case of a centralized approach, a new set
of requirements were identified and investigated in this work in order to support advances for the brokering
problem.

REFERENCES

[1] A. Amato and S. Venticinque, A distributed agent-based decision support for cloud brokering, Scalable Computing: Practice
and Experience, 15(1), pp. 65-78 (2014).

[2] J. Frisch, R.-P. Mundani, and E. Rank, Adaptive multi-grid methods for parallel CFD applications, Scalable Computing:
Practice and Experience, 15(1), pp. 33-48 (2014).

1http://hpc.uvt.ro/infrastructure/bluegenep/
2http://www.mosaic-cloud.eu

iii

iv Selected Papers from Synasc 2013 Workshops

[3] D. Langr, I. Šimeček, P. Tvrd́ık, and T. Dytrych, Large-scale visualization of sparse matrices, Scalable Computing:
Practice and Experience, 15(1), pp. 21-31 (2014).

[4] M. Rak, M. Ficco, E. Battista, V. Casola, and N. Mazzocca, Developing secure cloud applications, Scalable Computing:
Practice and Experience, 15(1), pp. 49-62 (2014).

[5] I. Šimeček, D. Langr, and P. TvrdÍk, Tree-based space efficient formats for storing the structure of sparse matrices, Scalable
Computing: Practice and Experience, 15(1), pp. 1-20 (2014).

Teodor-Florin Fortiş, West University of Timişoara, Romania (fortis@info.uvt.ro)

4

Scalable Computing: Practice and Experience
Volume 15, Number 1, pp. 1–20. http://www.scpe.org

DOI 10.12694/scpe.v15i1.962
ISSN 1895-1767
c© 2014 SCPE

TREE-BASED SPACE EFFICIENT FORMATS FOR STORING THE STRUCTURE OF
SPARSE MATRICES ∗

I. ŠIMEČEK†, D. LANGR†, AND P. TVRDÍK†

Abstract.

Sparse storage formats describe a way how sparse matrices are stored in a computer memory. Extensive research has been
conducted about these formats in the context of performance optimization of the sparse matrix-vector multiplication algorithms,
but memory efficient formats for storing sparse matrices are still under development, since the commonly used storage formats (like
COO or CSR) are not sufficient. In this paper, we propose and evaluate new storage formats for sparse matrices that minimize the
space complexity of information about matrix structure. The first one is based on arithmetic coding and the second one is based on
binary tree format. We compare the space complexity of common storage formats and our new formats and prove that the latter
are considerably more space efficient.

Key words: sparse matrix representation; parallel execution; space efficiency; arithmetical-coding-based format; minimal
binary tree format; minimal quadtree format;

AMS subject classifications. 68M14, 68W10, 68P05, 68P20, 94A17

1. Introduction. The paper investigates memory-efficient storage formats for very large sparse matrices
(LSMs). By LSMs, we mean matrices that due to their sizes must be stored and processed by massively parallel
computer systems (MPCSs) with distributed memory architecture consisting of tens or hundreds of thousands
of processor cores.

Within our previous work [9, 12, 11, 8, 7], we have addressed weaknesses of previously developed solutions
for space-efficient formats for storing of large sparse matrices. The space complexity of the representation of
sparse matrices depends strongly on the used matrix storage format. A matrix of order n is considered to be
sparse if it contains much less nonzero elements than n2. Some alternative definitions of sparse matrix can
be found in [22]. In practice, a matrix is considered sparse if the ratio of nonzero elements drops bellow some
threshold. Our research addresses computations with LSMs satisfying at least one of the following conditions:

1. The LSM is used repeatedly and the computation of its elements is slow and it takes more time than
its later reading from a file system.

2. Construction of a LSM is memory-intensive. It needs significant amount of memory for auxiliary data
structures, typically of the same order of magnitude as the amount of memory required for storing the
LSM itself.

3. A solver requires the LSM in another format than is produced by a matrix generator and the conversion
between these formats cannot be performed effectively on-the-fly.

4. Computational tasks with LSMs need check-pointing and recovery from failures of the MPCSs. We
assume that a distributed-memory parallel computation with a LSM needs longer time. To avoid
recomputations in case of a system failure, we need to save a state of these long-run processes to allow
fast recovery. This is especially important nowadays (and will be more in the future) when MPCSs
consist of tens or hundreds of thousands of processor cores.

If at least one of these conditions is met, we might need to store LSMs into a file system. And since the file
system access is of orders of magnitude slower compared to the memory access, we want to store matrices in a
way that minimizes their memory requirements.

In this paper, we focus only on the compression of the information describing the structure of LSMs (i.e., the
locations of nonzero elements). The values of the nonzero elements are unchanged, because their compression
depends strongly on the application. For some application areas, the values of nonzero elements are implicit
and only the information about the structure of a LSM is stored (for example, incident matrices of unweighed

∗This research has been supported by GACR grant No. P202/12/2011.
†Department of Computer Systems, Faculty of Information Technology, Czech Technical University in Prague, Thákurova 9,

160 00, Praha, Czech Republic. E-mail: mailto:xsimecek,langrd@fit.cvut.cz.

1

2 I. Šimeček and D. Langr

graphs). Alternatively, we can interleave computations with reading of nonzero elements. For example, we can
divide the process of a sparse matrix factorization into these steps:

1. read the matrix structure,
2. do in parallel: perform the symbolic factorization and read the values of nonzero elements of the matrix,
3. perform the numeric factorization.

This paper is an extended version of our previous results [9]. We present updated versions of the algorithms
and derivation of lower and upper bounds of space and computational complexity. We also provide more detailed
analysis of the computational, space, and communication complexities of parallel implementation of conversion
to the new MBT format.

1.1. Terminology and notation. We consider a LSM A of order n. The number of its nonzero elements
is denoted by N , the average number of nonzero elements per rows is N/n and it is denoted by avg per row .

• We assume that 1≪ N ≪M = n2.
• The pattern of nonzero elements in A is unknown or random.
• Indexes of all vectors and matrices start from zero.
• The number of nonzero elements in submatrix B of matrix A is denoted by nnz (B).
• Let P be the number of processors. The matrix A is partitioned among P processors p1, . . . , pP of a
given massive parallel computer system (MPCS).
• The MPCS uses some variant of parallel I/O that allows to read/write a separate file for each process
independently. Parallel I/O is a bottleneck of typical MPCS. Therefore we require that the new format
should be space-efficient, in order to keep resulting file sizes as low as possible.
• We assume that nonzero elements are stored using a distributed version of a common sparse storage
format (SSF). This initial distribution we called an input mapping.

This work is inspired by some real applications, for example ab initio calculations of medium-mass atomic nuclei
(for future details see [1, 2].

1.2. Representing indexes in binary codes. Let us have an array of ξ elements indexed from 0 to
ξ − 1. The minimum number of bits of an unsigned indexing data type is

SMIN(ξ) =
⌈

log2 ξ
⌉

.

The value SMIN is the minimum number of bits, but it is usually padded to whole bytes (SBYTE bits)

SBYTE(ξ) = 8 ·
⌈

SMIN(ξ)/8
⌉

,

or it is padded to the nearest power of 2 bytes (SPOW bits)

SPOW(ξ) = 2η, where η =
⌈

log2 S
MIN(ξ)

⌉

.

When we describe a matrix storage format, we use simply S(ξ) instead of SMIN(ξ).

2. State-of-the-art.

2.1. The Coordinate (COO) Format. The coordinate (COO) format is the simplest SSF (see [19, 3]).
The matrix A is represented by three linear arrays values , xpos , and ypos (see Fig. 2.1 (b)). The array
values [1 , . . . ,N] stores the nonzero values of A, arrays xpos [1 , . . . ,N] and ypos [1 , . . . ,N] contain column and
row indexes, respectively, of these nonzero values. The space complexity of the structure of matrix A (the size
of the array values is not counted) of this format is

SCOO(n,N) = 2 ·N · S(n). (2.1)

Tree-based Space Efficient Formats for Storing the Structure of Sparse Matrices 3

(a) An example of the sparse matrix (b) Representation of this matrix in the COO format

Fig. 2.1. An example of representation of sparse matrix in the COO format

2.2. The Compressed Sparse Row (CSR) format. The most common SSF is the compressed sparse
row (CSR) format (see [19, 3] for details). The matrix A stored in the CSR format is represented by three linear
arrays values , addr , and ci (see Fig. 2.2 (b)). The array values [1 , . . . ,N] stores the nonzero elements of A, the
array addr [1 , . . . , n + 1] contains indexes of initial nonzero elements of rows of A; if row i does not contain any
nonzero element, then addr [i] = addr [i + 1]. It is obvious that addr [1] = 1 and addr [n + 1] = N . The array
ci [1 , . . . ,N] contains column indexes of nonzero elements of A. Hence, the first nonzero element of the row j is
stored at index addr [j] in array values. The space complexity of the structure of matrix A (array values is not
counted) in this format is

SCSR(n,N) = N · S(n) + n · S(N). (2.2)

(a) An example of the sparse matrix (b) Representation of this matrix in the CSR format

Fig. 2.2. An example of representation of sparse matrix in the CSR format

2.3. Register blocking formats. Widely-used SSFs are easy to understand, however, sparse operations
(like matrix-vector or matrix-matrix multiplication) using these formats are slow (mainly due to indirect ad-
dressing). Sparse matrices often contain dense submatrices (blocks), so various blocking SSFs were designed to
accelerate matrix operations. Compared to the CSR format, the aim of these formats (like SPARSITY [6] or [16]
or CARB [20, 10]) is to allow a better use of registers and more efficient computations. But these specialized
SSFs have usually large transformation overhead and consume approximately the same amount of memory as
the CSR format.

2.4. Minimal quadtree (MQT) format. The Quadtree (QT) is a tree data structure in which all inner
nodes have exactly four child nodes. Since our aim is to minimize the space complexity of QT-based formats,
in [7] we proposed a new QT format called minimal quadtree (MQT) format. Instead of pointers, each node of
the MQT contains only 4 flags (i.e., 4 bits only) indicating whether given subquadtrees are nonempty.

4 I. Šimeček and D. Langr

2.5. Other state-of-art SSFs. There are several other SSFs specialized for given areas (e.g., compression
of text, picture or video). They can be used for compression of sparse matrices, but none of them satisfies all
these four requirements:

1. non-lossy compression,
2. possibility of massively parallel execution,
3. space efficiency (high compression rate),
4. high speed compression/decompression.

Only few research results have been published about SSFs in the context of minimization of the required
memory, which is the optimization criterion for a file I/O of LSMs. Some recent research of hierarchical blocking
SSFs, though primarily aimed at optimization of matrix-vector multiplication, also addresses optimization of
memory requirements [13, 14, 15]. We have published several papers about space-efficient SSFs suitable for
storing sparse matrices [8, 11, 7].

Fig. 3.1. Visualization of the binary tree from the Example in Sect. 3.2.1.

3. Our new space-efficient formats.

3.1. The arithmetical-coding-based (ACB) format. Matrix A can be represented by a bit vector B
of size M in which N bits are set to 1 and M −N bits are set to 0. The probability p0 that a given bit in B is
equal to 0 is M−N

M . In the arithmetical coding (see [21]), we can encode this information using − log2 p0 bits.

The probability p1 that a given bit in B is equal to 1 is N
M . In the arithmetical coding, we can encode this

information using − log2 p1 bits. Since we assume a random distribution of nonzero elements, the vector B is
considered to be an order-0 source (each bit is selected independently on other bits). The total number of bits
to encode vector B is equal to the value of binary entropy of vector B. This value is

S(B) = −M · (p0 log2 p0 + p1 log2 p1)

Since this expression is hard to compare with other formats, the approximation of the binary entropy of vector
B follows:

SACB(n,N) = −M · (M −N

M
log2

M −N

M
+

N

M
log2

N

M
)

= −(M −N) log2
M −N

M
−N log2

N

M
= −(M −N) log2(M −N) +M log2 M −N log2 N.

Since we assume that N ≪ M , we can use the following approximation for very small x: ln(1 + x) ≈ x. This
implies that ln(M −N) ≈ lnM −N/M . The final approximation of the space complexity of the ACB format

Tree-based Space Efficient Formats for Storing the Structure of Sparse Matrices 5

is then:

SACB(n,N) ≈ N

ln 2
+N log2 M −

N2

M · ln 2 −N log2 N

≈ N ·
(

1

ln 2
+ log2 M − log2 N

)

≈ N ·
(

1

ln 2
+ 2 · log2 n− log2 N

)

.

The same space complexity (based on other assumptions) was derived in [8], but it serves only for comparison
and no practical algorithm to achieve this space complexity was given. As far as we know, the ACB format has
not been described in literature.

The idea of transforming of the matrix A’s structure to the ACB format is simple: create n × n bitmap
(with N 1’s) from matrix A’s structure. Then, compress this bitmap as a bitstream using the arithmetical
coding. The representation of matrix A’s structure in the ACB format is given by the compressed bitstream.

A comparison to common SSFs is done in Sect. 5.2. A drawback of the ACB format is its computational
complexity. Since each bit of vector B is encoded in time Θ(1), the complete vector B (representation of sparse
matrix A) is encoded in time Θ(n2). This is too much for sparse matrices with a constant number of nonzero
elements per row (i.e., N ∈ Θ(n)).

3.2. The minimal binary tree (MBT) format. The full binary tree (FBT) is a widely used data
structure in which all inner nodes have exactly two child nodes. Binary trees especially those used for binary
space partitioning can also be used for storing sparse matrices. The idea of binary space partitioning is not
new, but as far as we know, the use of these formats for efficiently storing sparse matrices was not described in
literature. In standard implementations, every node in a FBT is represented by a structure standard_BT_struct
consisting of the following items:

• two pointers (left , right) to child nodes,
• (only for leaves) the value of a nonzero element.

If a FBT is used as a basis for SSF, it describes a partition of the sparse matrix into submatrices and each
node in the FBT represents a submatrix. Equally as in k-d trees, see [18], the decomposition is performed in
alternating directions: first horizontally, then vertically, and so on. In other words, nodes in an odd height
represent a partition of the submatrix into two halves along the the x-axis (left/right), nodes in an even height
represent a partition of the submatrix into two halves along the y-axis (upper/lower). From the viewpoint of
space efficiency, a drawback of the standard FBT representation is the overhead caused by pointers left , right .
It causes that the standard FBT-based SSF may have worse space complexity than the CSR format.

To eliminate this drawback, we propose a new k-d-tree-based SSF. Each tree node represents again a
submatrix, but we modify the standard representation of the FBT and we call this data structure the minimal
binary tree (MBT) format. The idea is very similar to that in the MQT format.

• All nodes of a MBT are stored in one array (or stream). Since the size of the input matrix is given, we
can compute locations of all child nodes, we can omit pointers left , right .
• All nodes of a MBT contain only two flags (it means only two bits). Each of them is set to 1 if the
corresponding half of the submatrix (left/right or upper/lower) contains at least one nonzero element,
otherwise it is set to 0.

A comparison of the MBT format with other SSFs is done in Sect. 5.3. Let us describe algorithm 2 that
generates an output bitstream representing the matrix in the MBT format from the standard CSR format.

3.2.1. An example of a transformation to the MBT format. Let us give an example of a construction
of matrix representation in the MBT format implemented as a bitstream S. The corresponding binary tree is

6 I. Šimeček and D. Langr

0 0

0 0

00

0 0

0

00

0 0

0

0

0

0 0

0 0

00

0 0

0

00

0 0

0

0

0

1 1

1 1

00

0 0

0

00

0 0

0

0

0

0 0

0 0

00

0 0

0

00

0 0

0

0

0

(a) Original sparse matrix A.

1 0

1 0

1 0

1 0

1 1

1 1 1 1

(b) The MBT representation of
matrix A.

Fig. 3.2. The MBT with the minimal number of nodes.

h1

h2

1 1

.............................

1 0

1 1 1 1

.............................

Fig. 3.3. MBT with the minimal number of nodes (the number of leaves is N/2).

shown in Fig. 3.1.

S = MBT(A) = MBT

0 0 0 1
0 0 1 0
1 0 0 0
0 0 0 1

=

= ”11” +MBT

(

0 0 0 1
0 0 1 0

)

+

+MBT

(

1 0 0 0
0 0 0 1

)

=

= ”11” + ”01” + ”11” +MBT

(

0 1
1 0

)

+

+MBT

(

1 0
0 0

)

+MBT

(

0 0
0 1

)

=

= ”11” + ”01” + ”11” + ”11” + ”10” + ”01”+

+MBT(”01”) +MBT(”10”) +MBT(”10”) +MBT(”01”) =

= ”11” + ”01” + ”11” + ”11” + ”10”+

+ ”01” + ”10” + ”10” + ”01”

Tree-based Space Efficient Formats for Storing the Structure of Sparse Matrices 7

So, if matrix A is stored in the MBT format, 20 bits are needed for representing its structure.

0 0

0 0

10

0 0

0

00

0 0

0

0

0

0 0

0 0

00

0 0

0

00

0 1

0

0

0

1 0

0 0

00

0 0

0

00

0 0

0

0

0

0 0

0 0

00

0 0

1

00

0 0

0

0

0

(a) Original sparse matrix A.

1 0

1 0

1 0

1 0

1 1

1 1 1 1

1 0

0 1

1 0

0 1

0 1

1 0

0 1

1 0

0 1

0 1

0 1

0 1

(b) The MBT representation of
matrix A.

Fig. 3.4. The MBT with the maximal number of nodes.

h1

h2

1 1

.............................

1 0 1 0

1 0 1 0

.............................

Fig. 3.5. MBT with the maximal number of nodes (the number of leaves is N/2).

3.2.2. Space complexity. Let us assume a very small example of a sparse matrix with n = 8 and N = 4.
For common storage formats, the space complexity is given by Eq. (2.1) or (2.2), so SCOO(n,N) = 24[bits] and
SCSR(n,N) = 28[bits]. For the MQT, the exact size of the output bitstream S (it means the size of the MBT
format) cannot be derived from these global parameters, because it depends on the exact locations of nonzero
elements. It ranges from 14 to 38 bits (see Figs. 3.2 and 3.4). The derivation of the lower and upper bounds
on the size of the MBT format in a general case is the following.

Lower bound. We consider the best case: the MBT with the minimal number of nodes, i.e., the number
of leaves is equal to N/2 (see Fig. 3.3). It is obviously a generalized idea from Fig. 3.2. This matrix with 4
nonzero elements is represented by 7 MBT nodes = 14 bits. Output bitstream is ”10 10 10 10 11 11 11”.

• The height of the MBT on Fig. 3.2 is h = h1 + h2 = 2 log2 n − 1, where h2 = log2 N − 1 and
h1 = 2 log2 n− log2 N .

8 I. Šimeček and D. Langr

• All nodes with height < h1 (in upper h1 levels) contain exactly one 1 (they have one child node). The
number of nodes in these levels is h1,

h1 = log2(n
2/N).

• All nodes with height ≥ h1 (in lower h2 levels) are full of 1’s (they have two child nodes). The number
of nodes in these levels is equal to (this part is a full binary tree)

2 log2 n−1
∑

i=h1+1

2i−(h1+1) = N − 1.

So, the minimal size of the MBT format is

2 ·
(

N − 1 + log2(n
2/N)

)

.

Upper bound. We consider the worst case: the quadtree with the maximal number of nodes, i.e., the number
of leaves is equal to N/2 (see Fig. 3.5). Again, it is a generalized idea from Fig. 3.4. This matrix with 4 nonzero
elements is represented by 19 MBT nodes = 38 bits.
The output bitstream is ”11 11 11 10 10 01 01 10 01 10 01 10 10 01 01 10 01 10 01”.

• The height of this tree is h = h1 + h2 = 2 log2 n− 1, where h1 = log2 N − 1.
• All nodes with height< h1 (in upper h1 levels) are full of 1’s (they have two child nodes), h1 = log2 N−1.
The number of nodes in these levels is approximately

h1−1
∑

i=0

2i = N − 1.

• All nodes with height ≥ h1 (in lower h2 levels) contain exactly one 1 (they have one child node). The
number of nodes in these levels is

N · h2 = N · (2 log2 n− log2 N) = N · log2(n2/N).

So, the maximal size of the MBT format is

≈ 2 ·N
(

1 + log2(n
2/N)

)

.

3.2.3. Time complexity of the transformation algorithm. Time complexity of the transforma-
tion algorithm 2 is relatively high, because for each node in the MBT, it uses algorithm 1 with complexity
O(log2 n · (y2− y1 + 1)). Fortunately, the average complexity is much lower (it depends on the value of the
parameter avg per row , distribution of nonzero elements, etc.).

We consider the worst case (similar ideas as for derivation of the space complexity in Sect. 3.2.2): the
MBT with the maximal number of nodes, the number of leaves is equal to N (see Fig. 3.5). We assume that
the time complexity of procedure AppendToBitstream is Θ(1). Procedure INES(A,x1,y1,x2,y2) is called for
every node in the MBT in the output stream S two times.

• For nodes with height = h1: The number of these nodes is N , the expression (y2 − y1 + 1) is equal
to 1 + n/

√
N . Time complexity of the transformation for all nodes with this depth is Th1 = N · (1 +

n/
√
N) · log2 avg per row .

• For nodes with height = h1− 1: The number of nodes is N/2 and the expression (y2− y1+ 1) is equal
to 1 + 2n/

√
N . So, the total time complexity of the transformation for all nodes with depth ≤ h1 (in

upper h1 levels) is Tupper ≈
∑h1

i=0 Th1/2
(i−h1) = Θ(N · (1 + n/

√
N) · log2 avg per row).

• For nodes with height > h1: The time complexity of the transformation for all these nodes (for the

lower h2 levels) is Tlower ≈
∑h

i=h1+1 Th1/2
(i−h1) = Θ(N(1 + n/

√
N) · log2 avg per row).

So, the total time complexity of the transformation is

Θ(N(1 + n/
√
N) · log2 avg per row).

A very usual case is N = Θ(n), it means matrices with constant number of nonzero elements per row. For this
case the time complexity is Θ(n3/2).

Tree-based Space Efficient Formats for Storing the Structure of Sparse Matrices 9

Algorithm 1 Procedure to test if the given submatrix is nonempty

1: procedure INES(A,x1,y1,x2,y2)
Input: A = an input submatrix in the CSR format
Input: x1,y1,x2,y2 = coordinates of the submatrix
Output: logical value indicating whether the given submatrix is nonempty
2: for y ← y1, y2 do
3: low ← A.addr[y]; high← A.addr[y + 1]
4: i← binary search(in array A.ci)
5: ⊲ within indexes from 〈low . . . high〉
6: ⊲ to find a minimal i such that A.ci[i] ≥ x1
7: if C.ci[i] ≤ x2 then
8: return true
9: end if

10: end for
11: return false
12: end procedure

3.3. Compression of minimal formats. The MBT and MQT formats have minimal space complexity
only if we assume fixed number of bits for each node (2 bits for MBT and 4 bits for MQT). We can relax this
assumption to achieve more space efficient formats.

Lemma 3.1. Every node in the MBT (or in MQT) format (except for the root node for the zero matrix A)
has got at least one bit equal to 1. The proof of Lemma 3.1 for the MBT format can be done by contradiction:
if both bits in a MBT node X are zero, then this submatrix does not contain any nonzero element, so in the
parent’s node of X the corresponding bit is set to 0 and node X is not included in the output stream and this
is a contradiction with the initial assumption.
Similar proof can be done for the MQT format. Q.E.D.

Since we assume only nonempty matrices, the only allowed values in every MBT node are: 01, 10, and 11
(value 00 is not possible as a result of Lemma 3.1). So, if the first bit is 0, then the second bit must 1. This
redundant information can be excluded from the output stream. We call this case the hidden one. Based on this
idea, we propose a new format, called compressed binary tree (CBT). There are two approaches to transform a
LSM to the CBT format:

1. Transform the input matrix to the MBT format (it creates output stream S) and then remove from S
all hidden ones (all 4-tuples are read and transformed values according to Table 3.1 are written.

2. Modify Algorithm 2 to Algorithm 3 that directly create the CBT format.

Similarly in the MQT format, the value 0000 is not possible as a result of Lemma 3.1, so if the first three bits
are 0, then the fourth bit must 1. Again, this redundant information can be excluded from the output stream,
which allows us to construct another new compressed quadtree (CQT) format. It is obvious that the probability
of hidden one is higher in the MBT format than in the MQT format. In the Table 3.1 is the comparison
of code-words in MQT, CQT, MBT, and CBT formats. If we assume the same probabilities for all possible
code-words, then the average size of code-word is 4 bits in MQT format, 3.93 bits for CQT format, 5.2 bits for
MBT format, and 4.47 bits for CBT format. A comparison of these formats with real matrices is done in Sect.
5.3. A transformation algorithm from the CBT format is described by Algorithm 4. This algorithm transforms
the input bitstream from the CBT format into the CSR format.

10 I. Šimeček and D. Langr

Algorithm 2 Transformation algorithm to the MBT format

1: procedure Tr2MBT(A)
Input: A = the matrix for the transformation in CSR format
Output: S = the bitstream representing the input matrix in the MBT format
2: current← ()
3: enqueue {1, 1, A.n,A.n, 0} into current
4: while current is not empty do
5: dequeue {x1, y1, x2, y2, h} from current
6: ⊲ x1,y1,x2,y2 = coordinates of submatrix
7: ⊲ h = current BFS level, divide rows (h is odd) or columns
8: if h is even then
9: mx← x2; my ← (y1 + y2)/2

10: lx← x1; ly ← (y1 + y2)/2 + 1
11: else
12: mx← (x1 + x2)/2; my ← y2
13: lx← (x1 + x2)/2 + 1; ly ← y1
14: end if
15: l1← INES(A, x1, y1,mx,my)
16: l2← INES(A, lx, ly, x2, y2)
17: AppendToBitstream(S, l1)
18: AppendToBitstream(S, l2)
19: if l1 = true then
20: enqueue {x1, y1,mx,my, h+ 1} into current
21: end if
22: if l2 = true then
23: enqueue {lx, ly, x2, y2, h+ 1} into current
24: end if
25: end while
26: return S
27: end procedure

3.3.1. An example of a transformation to the CBT format. For an example, we used the same
matrix as in the example in Sect. 3.2.1. Hidden ones are denoted by bold numbers.

S = CBT(A) = CBT

0 0 0 1
0 0 1 0
1 0 0 0
0 0 0 1

=

= ”11” + CBT

(

0 0 0 1
0 0 1 0

)

+

+CBT

(

1 0 0 0
0 0 0 1

)

=

= ”11” + ”0” + ”11” + CBT

(

0 1
1 0

)

+

+CBT

(

1 0
0 0

)

+CBT

(

0 0
0 1

)

=

= ”11” + ”0” + ”11” + ”11” + ”10” + ”0”+

+ CBT(”01”) + CBT(”10”) + CBT(”10”) + CBT(”01”) =

= ”11” + ”0” + ”11” + ”11” + ”10”+

+ ”0” + ”0” + ”10” + ”10” + ”0”

Tree-based Space Efficient Formats for Storing the Structure of Sparse Matrices 11

Algorithm 3 Transformation algorithm to the CBT format

1: procedure Tr2CBT(A)
Input: A = the matrix for the transformation in CSR format
Output: S = the bitstream representing the input matrix in the CBT format
2: current← ()
3: enqueue {1, 1, A.n,A.n, 0} into current
4: while current is not empty do
5: dequeue {x1, y1, x2, y2, h} from current
6: ⊲ x1,y1,x2,y2 = coordinates of submatrix
7: ⊲ h = current BFS level, divide rows (h is odd) or columns
8: if h is even then
9: mx← x2; my ← (y1 + y2)/2

10: lx← x1; ly ← (y1 + y2)/2 + 1
11: else
12: mx← (x1 + x2)/2; my ← y2
13: lx← (x1 + x2)/2 + 1; ly ← y1
14: end if
15: l2← false
16: l1← INES(A, x1, y1,mx,my)
17: AppendToBitstream(S, l1)
18: if l1 = true then
19: l2← INES(A, lx, ly, x2, y2)
20: AppendToBitstream(S, l2)
21: end if
22: if l1 = true then
23: enqueue {x1, y1,mx,my, h+ 1} into current
24: end if
25: if l2 = true then
26: enqueue {lx, ly, x2, y2, h+ 1} into current
27: end if
28: end while
29: return S
30: end procedure

For storing matrix A in the CBT format only 16 bits are needed (instead of 20 bits in the MBT format).

12 I. Šimeček and D. Langr

MQT CQT MBT CBT
0000 N/A 00 N/A
0001 000 01 01 0 0

0010 0010 01 10 0 10
0011 0011 01 11 0 11
0100 0100 10 01 10 0

0101 0101 11 01 01 11 0 0

0110 0110 11 01 10 11 0 10
0111 0111 11 01 11 11 0 11
1000 1000 10 10 10 10
1001 1001 11 10 01 11 10 0

1010 1010 11 10 10 11 10 10
1011 1011 11 10 11 11 10 11
1100 1100 10 11 10 11
1101 1101 11 11 01 11 11 0

1110 1110 11 11 10 11 11 10
1111 1111 11 11 11 11 11 11

Table 3.1
Transformation table between the MQT, CQT, MBT, and CBT formats. Hidden ones are marked by bold numbers.

Tree-based Space Efficient Formats for Storing the Structure of Sparse Matrices 13

Algorithm 4 Transformation from the CBT format to the CSR format

1: procedure Tr2CSR(S)
Input: S = the input bitstream of the input matrix in the CBT format
Output: A = the output matrix in the CSR format
2: A← new empty matrix
3: enqueue {1, 1, A.n,A.n, 0} into current
4: while current is not empty do
5: dequeue {x1, y1, x2, y2, h} from current
6: ⊲ x1,y1,x2,y2 = coordinates of submatrix
7: ⊲ h = current BFS level, divide rows (h is odd) or columns
8: if x1 = x2 & y1 = y2 then
9: X ← new nonzero element (x1, y1)

10: add X to A
11: else
12: if h is even then
13: mx← x2; my ← (y1 + y2)/2
14: lx← x1; ly ← (y1 + y2)/2 + 1
15: else
16: mx← (x1 + x2)/2; my ← y2
17: lx← (x1 + x2)/2 + 1; ly ← y1
18: end if
19: l1← ReadOneBit(S)
20: if l1 = false then
21: l2← true ⊲ hidden one
22: else
23: l2← ReadOneBit(S)
24: end if
25: if l1 = true then
26: enqueue {x1, y1,mx,my, h+ 1} into current
27: end if
28: if l2 = true then
29: enqueue {lx, ly, x2, y2, h+ 1} into current
30: end if
31: end if
32: end while
33: return A
34: end procedure

14 I. Šimeček and D. Langr

4. Parallel execeution of transformation algorithm.

4.1. Main idea of parallelization. The proposed formats are generic, i.e., they may be applied to sparse
matrices of any structure. When processing LSMs on a massively parallel computer system, every processor has
its own part of a matrix, which itself can be treated as a stand-alone matrix of a smaller size. Every processor
can apply one of the proposed formats to its own matrix independently. Hence, the proposed formats can be
utilized on massively parallel computer systems the very same way as in sequential computations. This approach
to parallelization is straightforward for the ACB format, but for SSFs based on trees the parallelization is more
complicated.

Fig. 4.1. The main idea of parallelization of MBT or CBT transformation.

Fig. 4.2. The main idea of parallelization of MQT or CQT transformation.

4.2. Parallel transformation of formats based on trees. Consider the MBT format. The proposed
Algorithm 2 for transformation is sequential. Let us now describe its master-slave parallelization. We assume
two possible mappings how the matrix A is distributed among processors:

• using general mapping.
• using row-wise 1D block mapping (see [17]). Matrix A is divided into P row blocks of variable size
(recall P is the number of processors in a MPCS. This mapping uses array start row. In this array,
the value start row[i] is the starting row for the row block assigned to processor pi.

The only difference is that for general mapping we must use a general (unoptimized) procedure ParINES
(see Algorithm 5) and for the row-wise 1D block mapping we can use a optimized procedure ParINES2 (see

Tree-based Space Efficient Formats for Storing the Structure of Sparse Matrices 15

Algorithm 6).
1. In the first step (Algorithm 8 and codelines 1-10 in Algorithm 7), only processor p1 (similarly to

Algorithm 2) expands nonempty nodes of a binary tree by BFS until the number of nodes (denoted by
C) is greater or equal to k · P , where k is the chosen constant (see Figs. 4.1 and 4.2, and Algorithm
7). The proper value of parameter k is the trade-off between better work-load balancing (higher values
of k) and smaller sequential part of transformation (lower values of k).
This binary tree defines partitioning of the matrix among processors. This tree (more exactly intervals
of coordinates of nodes) is stored into array B and also stored in the MBT format in a special master
file.

2. Initial communication (codeline 11 in Algorithm 7): Processor p1 sends to all other processor blocks of
array B using one-to-all-scatter operation. The block for pi starts at index 1 + (i− 1)⌈C/P ⌉ and ends
at min(i⌈C/P ⌉, C). Each block contains intervals of coordinates of submatrices that are assigned to
the given processor (see Algorithm 6).

3. Redistribution of nonzero elements (codeline 12 in Algorithm 7): nonzero elements of the matrix A are
redistributed between processors according to the resulting partitioning (array B).

4. Local transformation (codelines 13-20 in Algorithm 7): Every processor transforms assigned submatrices
to the required MBT format independently and stores them into a separate file.

Algorithm 5 Distributed procedure to test if the given submatrix is nonempty

1: procedure ParINES(A,x1,y1,x2,y2)
Input: A = the input matrix in the distributed CSR format
Input: x1,y1,x2,y2 = coordinates of submatrix
Output: logical value indicating whether the given submatrix is nonempty
2: one-to-all broadcast {x1, y1, x2, y2}
3: output = false
4: for j ← y1, y2 do
5: for i← A.Addr[j], A.Addr[j + 1]− 1 do
6: if (x1 ≥ A.Ci[i] ≤ x2) then
7: output = true
8: break
9: end if

10: end for
11: end for
12: send predicate output to parallel reduction
13: po← parallel reduction of output using logical OR
14: return po
15: end procedure

Matrix n N avg per row
circuitM5 5.56 · 106 5.95 · 107 1.93 · 10−6

nlpkkt120 3.54 · 106 5.02 · 107 4.01 · 10−6

ldoor 9.52 · 105 2.37 · 107 2.60 · 10−5

TSOPF RS b2383 3.81 · 104 1.62 · 107 1.10 · 10−2

mouse gene 4.51 · 104 1.45 · 107 7.10 · 10−3

t2em 9.25 · 105 4.59 · 106 5.36 · 10−6

bmw7st 1 1.41 · 105 3.74 · 106 1.88 · 10−4

amazon0312 4.01 · 105 3.20 · 106 2.00 · 10−6

thread 2.97 · 104 2.25 · 106 2.55 · 10−3

gupta2 6.21 · 104 2.16 · 106 5.60 · 10−4

c-29 5.03 · 103 2.44 · 104 9.64 · 10−4

Table 4.1
Characteristics of the testing matrices.

16 I. Šimeček and D. Langr

Algorithm 6 Distributed procedure to test if the given submatrix is nonempty

1: procedure ParINES2(A,x1,y1,x2,y2)
Input: A = the input matrix in the distributed CSR format
Input: x1,y1,x2,y2 = coordinates of submatrix
Output: logical value indicating whether the given submatrix is nonempty
2: construct G′

3: multicast {x1, y1, x2, y2} in G′

4: i← index of the current processor
5: si← start row[i]
6: si1← start row[i + 1]
7: if (si > y2) OR (si1 ≤ y1) then
8: output = false
9: else

10: for y ← max(y1, si),min(y2, si1− 1) do
11: low← A.addr[y]; high← A.addr[y + 1]
12: i← binary search(in array A.ci)
13: ⊲ within indexes from 〈low . . . high〉
14: ⊲ to find a minimal i such that A.ci[i] ≥ x1
15: if C.ci[i] ≤ x2 then
16: output = true
17: break
18: end if
19: end for
20: output = false
21: end if
22: send predicate output to parallel reduction
23: po← parallel reduction of output using logical OR in G′

24: return po
25: end procedure

5. Results of space efficient formats.

5.1. Testing matrices. We have used 11 testing matrices from various application domains from the
University of Florida Sparse Matrix Collection [5]. Table 4.1 shows the characteristics of the testing matrices.
For quantification of the reduction in data-representation size produced by a data format, we have used ratio
of space complexities. For comparison of the results, we have used these common formats:

• the COO format,
• the CSR format,
• the text-based Matrix Market format [4],
• the zipped Matrix Market format (we have used the PKZIP program with the option for maximal
compression).

For our purposes, we have excluded all temporary informations from the source Matrix Market files (like
comments and values of nonzero values).

5.2. Comparison of space complexities of common and ACB SSFs. Table 5.1 illustrates the fact
that the space complexity of storing the structure of these sparse matrices using common storage formats (COO
and CSR) are significantly greater than in the ACB format (independently on the padding). We can conclude
that the common SSFs (COO, CSR) are not suitable for our purposes.

5.3. Results for the tree-based formats. The ACB format is space optimal, but only if the distribution
of nonzero elements is random (i.e., without any locality in the matrix). Due to this fact, we use this format as
the reference format. Table 5.2 compares the ratios of the matrix space complexities in the MBT format w.r.t.

Tree-based Space Efficient Formats for Storing the Structure of Sparse Matrices 17

Algorithm 7 Parallel transformation algorithm to the MBT format

1: procedure ParTr2MBT(A)
Input: A = the input matrix in the distributed CSR format
Output: S = the local bitstream of the resulting MBT format
2: i← index of the current processor
3: if i = 1 then ⊲ master section
4: S ← ()
5: enqueue {A, 1, 1, A.n,A.n, 0} into current
6: while |current | < k · P do
7: current ← ExpandLevel(S, current)
8: end while
9: store S in master file

10: convert current to array B
11: end if
12: barrier
13: one-to-all scatter of B
14: all-to-all scatter of matrix structure
15: S ← ()
16: C ← |current |
17: for j ← 1 + (i− 1)⌈C/P ⌉,min(i⌈C/P ⌉, C) do
18: {x1, y1, x2, y2, h} ← B[j]
19: D ← A[y1 . . . y2][x1 . . . x2]
20: Tr2MBT(D, x1, y1, x2, y2, h)
21: end for
22: store S in separate file dedicated to pi
23: return
24: end procedure

Matrix COO COO CSR CSR
SMIN SPOW SMIN SPOW

circuitM5 2.25 3.13 1.24 1.71
nlpkkt120 2.27 3.30 1.23 1.77
ldoor 2.40 3.84 1.26 2.00

TSOPF RS b2383 4.04 4.04 2.03 2.03
mouse gene 3.73 3.73 1.87 1.88

t2em 2.11 3.38 1.30 2.03
bmw7st 1 2.61 4.63 1.36 2.40

amazon0312 2.23 3.75 1.28 2.11
thread 2.98 3.18 1.52 1.63
gupta2 2.61 2.61 1.36 1.38
c-29 2.27 2.79 1.40 1.68

Table 5.1
The ratio of the space complexities of matrices in the COO or CSR formats using different paddings and in the ACB format.

other storage schemes. CR stands for compression rate. CR1 denotes the ratio of the MBT to the (CSR, SPOW)
format space complexities. CR2 denotes the ratio of the MBT to the ACB format space complexities. CR3
denotes the ratio of the MBT format space complexity to space complexity of the text based Matrix Market
format. CR4 denotes the ratio of the MBT format space complexities to the zipped Matrix Market format space
complexity.

Table 5.3 shows ratios of space complexities of the four tree-based formats studied in this paper to the ACB
format. From this table, we can observe that the CBT format:

• has usually smaller space complexity than the ACB format. There was only one exception among the
11 testing matrices: (mouse gene).

18 I. Šimeček and D. Langr

Algorithm 8 Master section of parallel transformation algorithm to the MBT format

1: procedure ExpandLevel(S, current)
2: create empty queue new
3: while current is nonempty do
4: dequeue {x1, y1, x2, y2, h} from current
5: if h is even then
6: mx← x2; my ← (y1 + y2)/2
7: lx← x1; ly ← (y1 + y2)/2 + 1
8: else
9: mx← (x1 + x2)/2; my ← y2

10: lx← (x1 + x2)/2 + 1; ly ← y1
11: end if
12: l1← ParINES(A, x1, y1,mx,my)
13: l2← ParINES(A, lx, ly, x2, y2)
14: AppendToBitstream(S, l1)
15: AppendToBitstream(S, l2)
16: if l1 = true then
17: enqueue {A, x1, y1,mx,my, h+ 1} into next
18: end if
19: if l2 = true then
20: enqueue {A, lx, ly, x2, y2, h+ 1} into next
21: end if
22: end while
23: return next
24: end procedure

Matrix CR1 [%] CR2 [%] CR3 [%] CR4 [%]
circuitM5 16.5 28.3 4.9 28.8
nlpkkt120 12.8 22.6 3.5 25.6

ldoor 8 16.1 2.4 15.3
TSOPF RS b2383 15.6 31.5 2.7 14.0
mouse gene 73.0 137.0 12.8 53.9

t2em 16.3 33.0 5.7 26.2
bmw7st 1 8.5 20.3 2.8 15.7

amazon0312 53.1 112.1 18.1 67.7
thread 16.4 26.8 3.0 14.4
gupta2 28.7 39.7 5.3 23.3
c-29 31.7 53.4 8.6 27.2

Table 5.2
Comparison of the space complexity of the MBT format with that of other storage schemes.

• has similar space complexity as the MQT or CQT formats.

We can conclude that the CBT format is very space efficient.

5.4. Results for parallelization of the tree-based formats. The most time-consuming part of master
section of ParTr2MBT procedure (parallel implementation of conversion to the MBT format) is the blocking
call of ParINES (or ParINES2) procedure. To achieve good scalability of this code, the overhead of these
calls should be small in comparison to the global parameters (n and N), because these parameters influence the
time complexity of parallel section (local transformation) of ParTr2MBT procedure (see Sect. 3.2.3).

Table 5.4 shows the number of calls of ParINES in comparison to global parameters. From this table, we
can observe that these numbers of calls are relatively close to the parameter kP , so the parallel conversion to
the MBT format is reasonable (and the value of parameter k is suitable) if kP ≪ n.

Tree-based Space Efficient Formats for Storing the Structure of Sparse Matrices 19

Matrix MBT [%] CBT [%] MQT [%] CQT [%]
circuitM5 27,4 24,4 26,6 26,5
nlpkkt120 26,1 23,5 19,8 19,8

ldoor 22,5 21,2 14,4 14,3
TSOPF RS b2383 36,1 35,9 33,6 33,5
mouse gene 130,8 111,0 130,4 128,0

t2em 36,6 31,7 29,9 29,4
bmw7st 1 26,3 25,0 20,3 20,3

amazon0312 110,8 89,1 107,1 103,1
thread 37,3 35,3 23,8 23,8
gupta2 48,0 42,3 36,3 36,0
c-29 55,7 48,8 51,3 50,9

Table 5.3
Comparison of the space complexity of the tree-based SSFs with that of the ACB format.

Matrix n N #calls (kP = 101) #calls (kP = 102) #calls (kP = 103)
circuitM5 5.56 · 106 5.95 · 107 20 278 4248
nlpkkt120 3.54 · 106 5.02 · 107 26 452 3852

ldoor 9.52 · 105 2.37 · 107 26 240 2204
TSOPF RS b2383 3.81 · 104 1.62 · 107 20 378 3210
mouse gene 4.51 · 104 1.45 · 107 22 220 2060

t2em 9.25 · 105 4.59 · 106 26 426 4906
bmw7st 1 1.41 · 105 3.74 · 106 22 232 3368

amazon0312 4.01 · 105 3.20 · 106 18 200 2072
thread 2.97 · 104 2.25 · 106 26 260 3486
gupta2 6.21 · 104 2.16 · 106 28 380 3888
c-29 5.03 · 103 2.44 · 104 26 348 3900

Table 5.4
The efficiency of parallel algorithm (the number of calls of ParINES).

6. Conclusions. This paper deals with the design of four new SSFs called arithmetical coding based
format, minimal binary tree format, compressed binary tree format, and compressed quadtree format. These
formats have been designed in order to minimize the space complexity. We performed experiments with these
formats and compared them with other common SSFs (COO or CSR) and other schemes used for LSMs in a
file. These experiments proved that our new formats can significantly reduce the amount of data needed for
storing LSMs. We have also presented a parallel algorithm for transformation of a LSM in the CSR format to
one of these newly proposed formats.

REFERENCES

[1] T. Dytrych, K. D. Launey, J. P. Draayer, P. Maris, J. P. Vary, E. Saule, U. Catalyurek, M. Sosonkina, D. Langr,
and M. A. Caprio, Collective Modes in Light Nuclei from First Principles, PHYSICAL REVIEW LETTERS, 111
(2013).

[2] K. D. Launey, S. Sarbadhicary, T. Dytrych, and J. P. Draayer, Program in C for studying characteristic properties of
two-body interactions in the framework of spectral distribution theory, COMPUTER PHYSICS COMMUNICATIONS,
185 (2014), pp. 254–267.

[3] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V.
der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia,
PA, 2nd ed., 1994.

[4] R. F. Boisvert, R. Pozo, and K. Remington, The Matrix Market Exchange Formats: Initial Design, Tech. Report NISTIR
5935, National Institute of Standards and Technology, Dec. 1996.

[5] T. A. Davis, The university of florida sparse matrix collection, NA DIGEST, 92 (1994).
[6] E. Im, Optimizing the Performance of Sparse Matrix-Vector Multiplication - dissertation thesis, Dissertation thesis, University

of Carolina at Berkeley, 2001.
[7] I. Šimeček, D. Langr, and P. Tvrdik, Minimal quadtree format for compression of sparse matrices storage, in 14th

International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’2012), SYNASC’2012,
Timisoara, Romania, sept. 2012, pp. 359–364.

[8] I. Šimeček, D. Langr, and P. Tvrd́ık, Space-efficient sparse matrix storage formats for massively parallel systems, in High
Performance Computing and Communication and 2012 IEEE 9th International Conference on Embedded Software and

20 I. Šimeček and D. Langr

Systems (HPCC-ICESS), HPCC’12, Liverpool, Great Britain, june 2012, pp. 54–60.
[9] I. Šimeček, D. Langr, and P. Tvrd́ık, Space efficient formats for structure of sparse matrices based on tree structures, in

Proceedings of 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC
2013), SYNASC ’13, 2013. to be published.

[10] I. Šimeček and P. Tvrd́ık, Sparse matrix-vector multiplication - final solution?, in Parallel Processing and Applied Mathe-
matics, vol. 4967 of PPAM’07, Berlin, Heidelberg, 2008, Springer-Verlag, pp. 156–165.

[11] D. Langr, I. Šimeček, P. Tvrd́ık, T. Dytrych, and J. P. Draayer, Adaptive-blocking hierarchical storage format for
sparse matrices, in Federated Conference on Computer Science and Information Systems (FedCSIS), 345 E 47TH ST,
NEW YORK, NY 10017 USA, September 2012, IEEE Xplore Digital Library, pp. 545–551.

[12] D. Langr, I. Šimeček, and P. Tvrd́ık, Storing Sparse Matrices in the Adaptive-Blocking Hierarchical Storage Format, in
Federated Conference on Computer Science and Information Systems (FedCSIS), September 2013, IEEE Xplore Digital
Library, pp. 479–486.

[13] M. Martone, S. Filippone, M. Paprzycki, and S. Tucci, On the usage of 16 bit indices in recursively stored sparse
matrices, in Proceedings of the 2010 12th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, SYNASC ’10, Washington, DC, USA, 2010, IEEE Computer Society, pp. 57–64.

[14] M. Martone, S. Filippone, S. Tucci, P. Gepner, and M. Paprzycki, Use of hybrid recursive csr/coo data structures in
sparse matrix-vector multiplication, in Computer Science and Information Technology (IMCSIT), Proceedings of the 2010
International Multiconference on, Oct 2010, pp. 327–335.

[15] M. Martone, S. Filippone, S. Tucci, and M. Paprzycki, Assembling recursively stored sparse matrices, in Computer
Science and Information Technology (IMCSIT), Proceedings of the 2010 International Multiconference on, Oct 2010,
pp. 317–325.

[16] M. Martone, M. Paprzycki, and S. Filippone, An improved sparse matrix-vector multiply based on recursive sparse blocks
layout, in Large-Scale Scientific Computing, vol. 7116 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,
2012, pp. 606–613.

[17] A. Pinar and C. Aykanat, Sparse matrix decomposition with optimal load balancing, in Proceedings of the Fourth Inter-
national Conference on High-Performance Computing, HIPC ’97, Washington, DC, USA, 1997, IEEE Computer Society,
pp. 224–.

[18] L. Romero and E. Zapata, Data distributions for sparse matrix vector multiplication, Parallel Computing, 21 (1995), pp. 583
– 605.

[19] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2nd ed., 2003.

[20] P. Tvrd́ık and I. Šimeček, A new diagonal blocking format and model of cache behavior for sparse matrices, in Proceedings of
the 6th International Conference on Parallel Processing and Applied Mathematics, vol. 12 of PPAM’05, Poznan, Poland,
2005, Springer-Verlag, pp. 164–171.

[21] I. H. Witten, R. M. Neal, and J. G. Cleary, Arithmetic coding for data compression, Commun. ACM, 30 (1987), pp. 520–
540.

[22] M. Tuma, Overview of direct methods, I. Winter School of SEMINAR ON NUMERICAL ANALYSIS, January 2004, Ostrava,
Czech Republic.

Edited by: Teodor Florin Fortiş
Received: Mar 3, 2014
Accepted: Apr 4, 2014

Scalable Computing: Practice and Experience
Volume 15, Number 1, pp. 21–31. http://www.scpe.org

DOI 10.12694/scpe.v15i1.963
ISSN 1895-1767
c© 2014 SCPE

LARGE-SCALE VISUALIZATION OF SPARSE MATRICES∗

D. LANGR†, I. ŠIMEČEK†, P. TVRDÍK†, AND T. DYTRYCH‡

Abstract.

An efficient algorithm for parallel acquisition of visualization data for large sparse matrices is presented and evaluated both
analytically and empirically. The algorithm was designed to be application-independent, i.e., it works with any matrix-processors
mapping and with any sparse storage format/scheme. The empirical scalability study of the algorithm was carried on using multiple
modern HPC systems. In our largest experiment, we utilized 262144 processors for 73 seconds to gather and store to a file the
visualization data for a matrix with 1.17 ·1013 nonzero elements. Using the proposed algorithm, one can thus visualize large sparse
matrices with a minimal runtime overhead imposed on executed HPC codes.

Key words: visualization, sparse matrices, parallel system, distributed algorithm, data acquisition

AMS subject classifications. 65F30, 65F50, 68W15

1. Introduction. Within our previous work, we have addressed weaknesses of common solutions for the
problem of visualization of large sparse matrices emerging in HPC applications [9]. There are several reasons
that make such a problem difficult to solve. First, matrices exist in memory only for a short and unknown period
of time determined by the scheduler of a given HPC system. Second, it is generally impossible to integrate
the visualization process directly into the HPC code so that it will automatically produce a final matrix image
of a desired quality. Third, very large matrices, due to their sizes, cannot be processed locally on personal
computers. Moreover, their storage to a file on an HPC system and their transfer via network would take high
amount of time.

We therefore proposed a solution where a matrix is first partitioned into blocks. Then, for each block,
visualization information is calculated and stored into a file. Finally, this file is downloaded from the HPC
system into a personal computer and processed there, possibly interactively, into a final matrix image. We
introduced an algorithm that accomplishes a part of this procedure performed on the side of an HPC system, i.e.,
the acquisition of visualization data for a given sparse matrix. We also evaluated this algorithm experimentally
using up to 1024 processors of a small-scale HPC system.

This paper is an extended version of our previous results [9]. We present an updated version of the algorithm,
which uses more efficient approach to the calculation of visualization data. Namely, due to the utilization of an
ordered associative array, frequent lookup operations with logarithmic runtime complexity were substituted by a
single iteration over the ordered records. Each required record is thus available with constant runtime complexity.
We also provide more detailed analysis of the computational, space, and communication complexities of the
algorithm. The results of large-scale experiments using several modern HPC systems are presented for up to
266144 utilized processors.

Modern HPC systems are typically hybrid shared-distributed memory machines. They consist of shared-
memory multicore computational nodes connected by network subsystems. Parallel programming models and
corresponding runtime environments allow to use these machines as are, virtualize them as pure shared-memory,
or virtualize them as pure distributed-memory. In the context of this paper, we consider the latter case.

∗This work was supported by the Czech Science Foundation under Grant No. P202/12/2011, and by the Czech Technical
University in Prague under Grant No. SGS14/106/OHK3/1T/18. This research is part of the Blue Waters sustained-petascale
computing project, which is supported by the National Science Foundation (award number OCI 07-25070) and the state of Illinois.
Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing
Applications. This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is
supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work
was supported by the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), funded by the European Regional
Development Fund and the national budget of the Czech Republic via the Research and Development for Innovations Operational
Programme, as well as Czech Ministry of Education, Youth and Sports via the project Large Research, Development and Innovations
Infrastructures (LM2011033).

†Department of Computer Systems, Faculty of Information Technology, Czech Technical University in Prague, Thákurova 9,
160 00, Praha, Czech Republic. E-mail: mailto:langrd@fit.cvut.czlangrd@fit.cvut.cz.

‡Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA.

21

22 D. Langr, I. Šimeček, P. Tvrd́ık and T. Dytrych

Particularly, we assume the utilization of the MPI parallel programming library and its runtime environment [5,
11], which is motivated by its widespread adoption in the HPC community.

We further call MPI processes involved in algorithm runs simply processors. However, we always assume
that each MPI process is mapped at runtime to a single CPU core. Therefore, a processor may also refer to a
CPU core on which the algorithm runs.

2. Terminology and Notation. Let A = (ai,j) be an mA × nA real or complex matrix. Let B = (bi,j)
be an mB × nB real matrix, where mB ≤ mA and

nB =

⌊

mB ·
nA

mA
+

1

2

⌋

. (2.1)

We call B the visualization matrix.
Let us partition A into mB × nB blocks (submatrices) of same or nearly same sizes as follows:

A =

A1,1 · · · A1,nB

...
. . .

...
AmB ,1 · · · AmB ,nB

, Ak,l =

ark,cl · · · ark,c′l
...

. . .
...

ar′
k
,cl · · · ar′

k
,c′

l

where

rk =

⌈

(k − 1) · mA

mB
+

1

2

⌉

, r′k =

⌈

k · mA

mB
− 1

2

⌉

, (2.2a)

cl =

⌈

(l − 1) · nA

nB
+

1

2

⌉

, c′l =

⌈

l · nA

nB
− 1

2

⌉

. (2.2b)

We will further write simply ai,j ∈ Ak,l to indicate that the element ai,j belongs to the block Ak,l.
From Eq. (2.2) it follows that ai,j ∈ Ak,l if

k =

⌊(

i− 1

2

)

· mB

mA

⌋

+ 1 and l =

⌊(

j − 1

2

)

· nB

nA

⌋

+ 1. (2.3)

Let D = R or C if A is real or complex, respectively. Let V : D→ R be a function that satisfies

V(0) = 0. (2.4)

We call V the visualization function. Then, we define the elements of the visualization matrix B as follows:

bk,l =
1

Sk,l

∑

ai,j∈Ak,l

V(ai,j) =
1

Sk,l

∑

rk≤i≤r′k
cl≤j≤c′l

V(ai,j), (2.5)

where

Sk,l = (r′k − rk + 1)× (c′l − cl + 1) (2.6)

(Sk,l equals the number of elements of Ak,l).
In case of sparse A, condition Eq. (2.4) allows to calculate bk,l by performing the summation only over

nonzero elements of Ak,l. We can thus rewrite Eq. (2.5) as

bk,l =
1

Sk,l

∑

ai,j∈Ak,l

ai,j 6=0

V(ai,j). (2.7)

Large-Scale Visualization of Sparse Matrices 23

Suppose now that we have an algorithm that calculates B for a sparse matrix A on a given HPC system.
Let P denote the number of processors involved in an algorithm run and let p1, . . . , pP denote these processors.
Then, we can consider A as

A = A(1) + · · ·+A(P),

where A(q) contains nonzero elements of A stored in the local memory of processor pq. (We use the (q)
superscript frequently in this text to indicate that some entity belongs to processor pq.) We will further write
simply ai,j ∈ A(q) to indicate that the element ai,j is contained in A(q), therefore in the local memory of
processor pq. Let |A(q)| denote the number of nonzero elements of A(q).

The calculation of bk,l now becomes trickier, since the nonzero elements of Ak,l can be distributed among
multiple processors. Let Pk,l denote a set of processors each of which contains at least one nonzero element of
Ak,l. Thus,

Pk,l =
{

pq
∣

∣ there exists ai,j such that ai,j ∈ A(q) and ai,j ∈ Ak,l

}

. (2.8)

Conversely, let Aq denote a set of blocks from each of which processor pq contains in its memory at least one
nonzero element. Thus

Aq =
{

Ak,l

∣

∣ there exists ai,j such that ai,j ∈ A(q) and ai,j ∈ Ak,l

}

.

We can now rewrite Eq. (2.7) as

bk,l =
∑

q∈Pk,l

b
(q)
k,l , b

(q)
k,l =

1

Sk,l

∑

ai,j∈Ak,l

ai,j∈A(q)

ai,j 6=0

V(ai,j). (2.9)

We further say that any processor from Pk,l contributes to the calculation of bk,l.
Let bk,∗ denote the k-th row of B. Let Pk,∗ denote a set of processors that contribute to at least one element

of this row, thus:

Pk,∗ = Pk,1 ∪ · · · ∪ Pk,nB
.

We can now define the problem of acquisition of visualization data for a sparse matrix A as follows:
Problem 1. We are looking for an efficient parallel algorithm that calculates the visualization matrix B,

for a given sparse matrix A and a visualization function V, and saves it to a file F. The additional requirements
are:
Req. 1: The algorithm should not depend on the type of matrix-processors mapping (the type of distribution of

the nonzero elements of A among processors).
Req. 2: The algorithm should not depend either on the computer representation of A or on the order in which

its nonzero elements are accessible.

Sparse matrices are stored in computer memory in special data structures called sparse matrix storage
formats/schemes (see, for instance [10, 1, 12]). All these formats have one common feature—they allow to
iterate over the nonzero elements. Due to Req. 2, we thus further regard A(q), . . . , A(P) as a sequence of their
nonzero elements with unspecified order. This allows us to work with A independently of the storage format
used within an actual HPC code, where the matrix appears. Moreover, this allows us to work with matrices
that are even not stored in memory at all (their elements are computed on-thy-fly).

The information we want to visualize is determined by V . For instance, if we want to visualize the structure
(pattern) of the nonzero elements of A, the visualization function might be defined simply as follows:

V1(ai,j) =
{

1 if ai,j 6= 0,

0 otherwise.
(2.10)

24 D. Langr, I. Šimeček, P. Tvrd́ık and T. Dytrych

Then, B would contain the density of the nonzero elements of blocks of A. Other visualization functions might
be defined, e.g., as follows:

V2(ai,j) =
{

|ai,j | if ai,j 6= 0,

0 otherwise,

V3(ai,j) =
{

∣

∣Re(ai,j)
∣

∣ if ai,j 6= 0,

0 otherwise,

V4(ai,j) =
{

∣

∣Im(ai,j)
∣

∣ if ai,j 6= 0,

0 otherwise.

Thus, the usage of V2, V3, and V4 results in the visualization of the average magnitude of the elements of
each block, the average magnitude of their real parts, and the average magnitude of their imaginary parts,
respectively.

The visualization matrix B represents the intermediate visualization data that will be saved into F and from
which the final matrix image will be constructed. We call F the visualization file. Recall that F is supposed to
be downloaded from a parallel system to a user’s personal computer. This, in effect, limits the size of F to some
extent (presumably, to hundreds of megabytes or gigabytes nowadays), which consequently limits the size of B.

Suppose that F is a binary file and that we save the elements of B into F using a b-byte floating-point
data type T (e.g., b = 4 for T being the IEEE 754 single-precision floating point data type [6]). The memory
requirements in bytes for saving B in F are then

S(B) = mB · nB · b. (2.12)

Let S(F) denote the file size of F . Actually, it might be slightly higher than S(B), since there might be some
space overhead given by the used file format as well as by any supplemental saved information. In practice,
such overhead should not exceed several kilobytes, therefore we consider it as negligible for further analysis and
set

S(F) = S(B). (2.13)

Since our goal is to acquire as much visualization data as possible, we are looking for the answer to the
following question: What is the maximum size of the visualization matrix B to be stored in F of size at most
S(F) bytes? Combining Eqs (2.1), (2.12), and (2.13), we can find the solution as

mB =

⌊

(

1

b
· mA

nA
· S(F)

)1/2

+
1

2

⌋

(2.14)

together with Eq. (2.1).

2.1. Example. Let A be a square matrix. Let us limit the size of the visualization file to 4 GB, which
implies S(B) = 232. Let us use the IEEE 754 single-precision floating-point data type for storing elements of
B into F, thus b = 4. Then, mB = nB = 32768. We can thus partition A into 32768× 32768 ≈ 109 blocks and
save the visualization data in a form of a single floating-point number for each block into a file of approximate
size 4 GB. From this file, we can then generate a matrix image up to the size of 1 gigapixel.

In the text below, the capitalized word “Algorithm” followed by a number always refers to a pseudocode
presented by a corresponding floating text environment (as are figures and tables). Within pseudocode, we
write references to corresponding equations in the end-of-line comments.

3. Methodology and Algorithm. To solve Problem 1, we need to develop an algorithm for the calcu-
lation of the visualization matrix B according to Eq. (2.9), and its storage into the visualization file F. First,
note that we can translate Eq. (2.9) into pseudocode as follows:

Large-Scale Visualization of Sparse Matrices 25

Algorithm 9 Visualization data acquisition: computationally expensive solution

1: for k ← 1 to mB do
2: for l← 1 to nB do
3: construct Pk,l ⊲ (2.8)
4: for all processors in Pk,l do in parallel

5: b
(q)
k,l ← 0

6: for all local nonzero elements ai,j do

7: if ai,j ∈ Ak,l then b
(q)
k,l ← b

(q)
k,l + V(ai,j) ⊲ (2.9)

8: end for
9: b

(q)
k,l ← b

(q)
k,l/Sk,l ⊲ (2.9), (2.6), (2.2)

10: perform parallel reduction of b
(q)
k,l to bk,l using + operator ⊲ (2.9)

11: write bk,l into F

12: end for
13: end for
14: end for

for all processors pq in Pk,l do in parallel

b
(q)
k,l ← 0

for all local nonzero elements ai,j ∈ Ak,l do b
(q)
k,l ← b

(q)
k,l + V(ai,j)

b
(q)
k,l ← b

(q)
k,l/Sk,l

perform parallel reduction of b
(q)
k,l to bk,l using + operator

end for

Since this process needs to be performed for all possible combinations of k and l, a pseudocode that would solve
Problem 1 might look like Algorithm 9.

The drawback of this approach is its computational complexity O
(

|A(q)| ·mB · nB

)

for processor pq, where

|A(q)| might be very high in HPC applications. However, by rearranging Algorithm 9 as described below, we
can reduce the computational complexity to O

(

|A(q)| · log2 |Aq|+mB · nB

)

. Since |Aq| ≤ mB · nB,

|A(q)| · log2 |Aq|+mB · nB ≤ |A(q)| · log2(mB · nB) +mB · nB ≪ |A(q)| ·mB · nB,

when |A(q)|, mB , nB are not all extremely small numbers.
The idea of this rearrangement is to split the solution of Problem 1 into two phases:
1. Within Phase1, processor pq iterates over all its local nonzero elements ai,j ∈ A(q). In each iteration,

the contribution of ai,j to b
(q)
k,l is calculated, where k and l are given by Eq. (2.3). This process can be performed

by all processors in parallel with no communication costs.

2. Within Phase2, the local contributions b
(q)
k,l are reduced in parallel to bk,l, which is then written to the

visualization file F.
The price for such a solution is the additional need to temporarily store the local contributions b

(q)
k,l in

memory of processor pq. Usage of a plain two-dimensional array would imply the algorithm space complexity
O(mB · nB) for each processor. Consequently, it would limit the size of B by the minimum of the available
amounts of memory of all processors. An alternative is to store the contributions in an associative array
(commonly also known as a map or a dictionary) of type (k, l)→ R, where k and l are integers. The algorithm
space complexity then changes to O

(

|Aq|
)

for processor pq. In the worst case, processor pq contributes to all
elements of B, which turns this space complexity into O(mB · nB) as well (moreover, the hidden constants will
be higher here, since the memory overhead of an associative array is higher than of a plain array). However,
matrices are in practice mapped to processors typically according to some one- or two-dimensional partitioning
scheme. In the best case, nonzero elements are distributed in matrices evenly, which implies |Aq| ≈ mB · nB/P .
The space complexity of an associative array-based algorithm then becomes O(mB ·nB/P). (We observed such

26 D. Langr, I. Šimeček, P. Tvrd́ık and T. Dytrych

Algorithm 10 Visualization data acquisition

Input: A = A(q), . . . , A(P): A(q) is located on pq ⊲ input sparse matrix
Input: mA, nA ⊲ input matrix size
Input: P ⊲ number of processors
Input: q ⊲ actual processor number
Input: V ⊲ visualization function
Input: T ⊲ data type used for visualization data (elements of B)
Input: S(F) ⊲ required size of the visualization file in bytes
Output: F ⊲ visualization file
Data: ≎ap ⊲ ordered associative array
Data: mB, nB, b ⊲ auxiliary variables

1: for all processors p1, . . . , pP do in parallel
2: b← byte size of the element of type T

3: mB =
⌊

(

1/b ·mA/nA · S(F)
)1/2

+ 1/2
⌋

⊲ (2.14)

4: nB = ⌊mB · nA/mA + 1/2⌋ ⊲ (2.1)

5: execute Phase1 ⊲ calculate local contributions b
(q)
k,l

6: execute Phase2 ⊲ reduce them to bk,l and store into F

7: end for

a behaviour in experiments [9].)
In HPC applications, computational problems are often solved as big as the available resources allow.

Therefore, the minimum of available amounts of memory of processors can be a relatively small value. Since
we do not want it to limit the size of B, we further consider, for the algorithm design, the storage of local
contributions in associative arrays.

Moreover, we assume this associative array to be ordered lexicographically by the (k, l) key. This allows to

iterate over the contributions b
(q)
k,l of processor pq in Phase2 only once, which is much more efficient than calling

the lookup operation for each needed combination of k and l. We further denote an instance of the defined
ordered associative array by ≎ap and its record with the (k, l) key by ≎ap[k, l].

3.1. Algorithm Pseudocode. We present here an efficient algorithm that solves Problem 1. Its outline is
presented by a pseudocode as Algorithm 10. Let all variables introduced by Algorithm 10 have a global scope,
i.e., they are available within the pseudocode of phases as well. Moreover, let all auxiliary variables/arrays
defined in the “Data” section of each pseudocode be local to processors.

The pseudocode of Phase1 is shown as Algorithm 11. Within, each processor iterates over its nonzero
elements and for each one, its contribution to the corresponding element of B is calculated. These contributions

are stored in the ≎ap data structure such that at the end of Phase1, ≎ap[k, l] equals b
(q)
k,l on processor pq.

In Phase2, local contributions to the elements of B are reduced in parallel to their final values. These are
then written to the visualization file F. Performing the parallel reduction mB × nB times, each one for a single
element of B, would be inefficient due to the overhead of communication operations. We therefore designed
Phase2 such that the reductions are performed for whole rows of B at once, resulting in mB reductions, each
one for nB elements at once.

To calculate bk,∗, all the contributions b
(q)
k,l need to be reduced in parallel from processors pq ∈ Pk,∗. Due to

Req. 1 of Problem 1, each processor can generally contribute to any element of B. Consequently, the sets Pk,l

and Pk,∗ can consist of all processors p1, . . . , pP . To calculate bk,∗, all the contributions b
(q)
k,l need to be reduced

in parallel from processors pq ∈ Pk,∗. There are thus two options how to perform such a reduction:

1. from all processors p1, . . . , pP , while setting b
(q)
k,l = 0 for pq /∈ Pk,∗;

2. from Pk,∗ only, while this set need to be constructed first.
The second option provides no advantage over the first, since the construction of Pk,∗ would require collective
communication between all processors as well. (In terms of MPI, it would require to form a processors group
and a corresponding communicator. There has been, in fact, developed even a noncollective communicator

Large-Scale Visualization of Sparse Matrices 27

Algorithm 11 Visualization data acquisition: Phase1

Data: k, l, r, r′, c, c′, S ⊲ auxiliary variables
1: for all local nonzero elements ai,j do
2: k ←

⌊

(i− 1/2) ·mB/mA

⌋

+ 1 ⊲ (2.3)

3: l←
⌊

(j − 1/2) · nB/nA

⌋

+ 1 ⊲ (2.3)
4: if record (k, l) does not exist in ≎ap then
5: insert a record into ≎ap with (k, l) key and value V(ai,j) ⊲ (2.9)
6: else
7: ≎ap[k, l]← ≎ap[k, l] + V(ai,j) ⊲ (2.9)
8: end if
9: end for

10: for all records (k, l) in ≎ap do
11: r←

⌈

(k − 1) ·mA/mB + 1/2
⌉

⊲ (2.2a)
12: r′ ← ⌈k ·mA/mB − 1/2⌉ ⊲ (2.2a)
13: c←

⌈

(l − 1) · nA/nB + 1/2
⌉

⊲ (2.2b)
14: c′ ← ⌈l · nA/nB − 1/2⌉ ⊲ (2.2b)
15: S ← (r′ − r + 1)× (c′ − c+ 1) ⊲ (2.6)
16: ≎ap[k, l]← ≎ap[k, l]/S ⊲ (2.9)
17: end for

Algorithm 12 Visualization data acquisition: Phase2

Data: r≫⋍[] ⊲ array of size nB

Data: j, k, l, l′ ⊲ auxiliary variables
1: j ← 1
2: for k ← 1 to mB do ⊲ for all rows of B

⊲ gather contributions b
(q)
k,l for kth row:

3: for l← 1 to nB do r≫⋍[l]← 0 ⊲ ensure that b
(q)
k,l = 0 if pq /∈ Pk,l

4: while j ≤ number of ≎ap records and k′ = k, where (k′, l′) is the key of the jth ≎ap record do

5: r≫⋍[l′]← value of the jth ≎ap record ⊲ b
(q)
k,l ← ≎ap[k, l]

6: j ← j + 1
7: end while

⊲ reduce to bk,l on p1 and write to F:
8: perform parallel reduction of all values of the r≫⋍ array using + operator to processor p1 ⊲ from all

processors
9: if q = 1 then ⊲ if run on processor p1

10: for l ← 1 to nB do append r≫⋍[l] into file F ⊲ write bk,∗ into F

11: end if
12: end for

creation technique, however, it does not perform well for our purposes [4]). We therefore further consider only
the first option for algorithm design.

The pseudocode of Phase2 is presented as Algorithm 12. Note that the order of processing the local
contribution matches the order of records in the ≎ap data structure. This allowed us to design the pseudocode
such that no ≎ap lookup operation is needed, which considerably reduced the overall algorithm complexity.
The auxiliary array r≫⋍ serves as a buffer for storing and reducing local contributions for a single row of

B. Before reduction of the kth row contributions, r≫⋍[l] = b
(q)
k,l on processor pq. After this reduction,

r≫⋍[l] = bk,l on processors p1. The reduction is performed by all processors (see line 1 in Algorithm 10).

3.2. Complexities. Let us analyze complexities of the presented algorithm. Generally, the complexities
highly depend on the matrix-processors mapping. We therefore restrict our analysis to the following two extreme

28 D. Langr, I. Šimeček, P. Tvrd́ık and T. Dytrych

cases: In the worst case, there is at least one processor that contributes to all mB × nB elements of B. On the
other hand, in the best case, all processors contribute to at most ⌈mB × nB/P ⌉ elements of B.

We define the complexity of the algorithm as its complexity for the most loaded processor (this value
determines both the algorithm running time as well as its per-processor memory requirements).

3.2.1. Computational Complexity. For processor pq, the computational complexity of Phase1 is given
by two iterative processes defined at lines 1–9 and 10–17 of Algorithm 11. The computational complexity of the
first process is given by iterating over |A(q)| nonzero elements, while in each iteration a record is either found or
inserted into ≎ap. Recall, that ≎ap is an ordered associative array. These are typically implemented as binary
search trees with logarithmic complexity of both search and insert operations (see, for instance [2, Chap. 12]).
The computational complexity of the second process is given by iterating over all |Aq| records of ≎ap. The
computational complexity of Phase1 on processor pq is thus

T
(q)
Phase1 = O

(

|A(q)| · log2 |Aq|+ |Aq|
)

.

In the worst case, |Aq′ | = mB · nB for some processor pq′ . Therefore, the computational complexity of Phase1
becomes

T
(worst)
Phase1 = O

(

max
1≤q≤P

|A(q)| · log2(mB · nB) +mB · nB

)

.

In the best case, |Aq| ≤ ⌈mB · nB/P ⌉ for all processors. The computational complexity of Phase1 then equals

T
(best)
Phase1 = O

(

max
1≤q≤P

|A(q)| · log2
(

⌈mB · nB/P ⌉
)

+ ⌈mB · nB/P ⌉
)

.

The computational complexity of Phase2 is, for processor p1 and thus for the whole algorithm,

TPhase2 = O(mB · nB)

in all cases.

3.2.2. Space Complexity. The space complexity of Phase1 is given by the number of records of the
associative array ≎ap, which equals |Aq| on processor pq. The space complexity of Phase2 is given by the
auxiliary array r≫⋍ of size nB. The overall space complexity of the algorithm is thus

S(worst) = O(mB · nB) and S(best) = O
(

⌈mB · nB/P ⌉+ nB

)

in the worst case and best case, respectively.

3.2.3. Communication Complexity. The communication complexity depends on the network topology
of a given HPC system as well as on the implementation of communication operations by the utilized version of
the MPI library. We can therefore only discuss the number of communication operations, instead of analyzing
their asymptotic behaviour in terms of running time. In Phase1, there is no communication at all. In Phase2,
mB parallel all-to-one reductions are performed by all processors, each over nB elements.

4. Experiments. We have performed a weak-scalability study (constant problem size per processor), since
it matches the real-world situations, where HPC problems are usually solved as large as available resources allow.
On modern hybrid shared-distributed memory HPC systems, the available amount of memory, which limits the
size of A, is thus proportional to the number of utilized processors P . In experiments, we always set the size of A
such that its number of nonzero elements was approximately P ·4.6 ·107 (this corresponded to the per-processor
memory requirements of A being around 1 GB using the coordinate storage scheme and the single-precision
floating point data type for matrix elements).

As a source of large sparse matrices, we used the parallel scalable generator of benchmark sparse matrices [8].
This generator produces matrices by scalable enlargement of a small fixed seed matrix. As the seed matrix, we
used the cage12 real square matrix obtained from the University of Florida Sparse Matrix Collection [3].

Large-Scale Visualization of Sparse Matrices 29

Table 4.1
Configurations of HPC systems and their run-time environments used for experiments.

System: Anselm Edison Blue Waters

Provider: IT4Innovations NERSC NCSA

Type: Linux cluster Cray XC30 Cray XE6

Total CPU cores: 3344 124608 362240

Total memory [TB]: 15 332 1380

Interconnect: Infiniband Aries Gemini

Topology: Fat tree (nb) Dragonfly 3D torus

I/O bandwidth [GB/s]: 6 48 1000+

C++ compiler: Intel icpc 13.1 Intel icpc 14.0 GNU g++ 4.8.1

MPI library: Intel MPI 4.1 cray-mpich 6.2.0 cray-mpich 6.0.1

HDF5 library version: 1.8.11 Cray 1.8.11 Cray 1.8.11

We set the input algorithm parameters so to generate a matrix image according to Section 2.1. The size of
B was thus always set to mB = nB = 32768, which resulted in possibility of generation of a 1 gigapixel matrix
image. As a visualization function, we used V1 defined by Eq. (2.10).

We have implemented the presented algorithm with C++ and MPI to evaluate its performance and scal-
ability. As an ordered associative array, we used the std::map container from the C++ Standard Library [7,
Sect. 7.7], which is typically implemented as a red-black tree [2, Chap. 13]. We exploited the HDF5 library [13]
for creation of visualization files F.

We utilized several modern parallel systems that are listed in Table 4.1, where we show their parameters
together with the C++ compilers and the MPI libraries used for compilations of test programs and their runtime
execution. For the Blue Waters system, we present parameters of the XE cabinets only (the XK cabinets are
intended primarily for GPU-based computations).

In all experiments, we primarily measured algorithm running times. These are presented by Figure 4.1. The
results indicate that the majority of the running time is spent in Phase2, which is caused by the execution of
communication and I/O operations. However, the algorithm is generally fast and the overall algorithm running
time grows only slightly with the growing number of processors.

We also measured the estimated memory requirements of the ≎ap data structure for all processors. Their
maximal and average values are shown in Figure 4.2. Up to some small constant memory overhead, these
memory requirements clearly decrease inversely proportionally to the number of processors P . For higher P ,
the overall memory footprint of the algorithm is thus negligible in practice.

5. Conclusions. This paper extends the work of Langr et al. [9]. It presents an updated version of the
algorithm for the parallel acquisition of visualization data for large sparse matrices, along with its more detailed
analytical and empirical evaluation. The main characteristic of the algorithm, from a user’s point of view, is its
application independence. It can be used with any mapping of matrices to processors and any sparse storage
formats/schemes. Moreover, it can be used even when matrix nonzero elements are computed on-the-fly. It can
be also easily implemented using the MPI parallel programming library, from which it needs to execute only
the all-to-one parallel reduction operations.

Using this algorithm, one can visualize sparse matrices emerging in an HPC code with minimal runtime
and memory overhead. Namely, within the largest presented experiment, 266144 processors gathered and stored
visualization data for a sparse matrix with 1.17 · 1013 nonzero elements with a measured runtime of 73 seconds.

The majority of the algorithm running time takes the collective communication between all processors
together with serial I/O operations. Resulting visualization data are appended to output files, which allows,
among others, visualization files to be ASCII-based. Due to the application independence of the algorithm,
parallel I/O cannot be efficiently employed to increase the I/O performance. This does not seem to be of much
importance at the petascale performance level of today’s prime HPC systems, as demonstrated by the presented
experiments.

However, for emerging exascale and higher-level computing, even faster algorithms might appear to be
necessary. In our future work, we want to focus on two promising options how to achieve them. The first one is

30 D. Langr, I. Šimeček, P. Tvrd́ık and T. Dytrych

2.9 5.7 11.4 22.8 45.7 91.7 182.9 367.1 734.2 1465.1 2931.7 5867.1 11726.9

1

2

4

8

16

64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

Number of nonzero elements of A (in billions)

R
u

n
n

in
g

ti
m

e
 [

s]

Number of processors

Anselm

Edison

Blue Waters

(a) Phase1

2.9 5.7 11.4 22.8 45.7 91.7 182.9 367.1 734.2 1465.1 2931.7 5867.1 11726.9

8

16

32

64

128

64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

Number of nonzero elements of A (in billions)

R
u

n
n

in
g

ti
m

e
 [

s]

Number of processors

Anselm

Edison

Blue Waters

(b) Phase2

Fig. 4.1. Running times of both algorithm phases measured on different parallel systems.

to adapt the presented algorithm for the hybrid MPI+OpenMP parallel programming model, which naturally
represents the shared-distributed memory architecture of modern HPC systems. The second option is to give
up the application independence and to adapt the algorithm for certain types of matrix-processor mappings,
which should allow to reduce the burden of collective communication and to efficiently utilize parallel I/O.

REFERENCES

[1] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V.
der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia,
PA, 2nd ed., 1994.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, Third Edition, The MIT Press,
Cambridge, Massachusetts, USA, 3rd ed., 2009.

[3] T. A. Davis and Y. F. Hu, The University of Florida Sparse Matrix Collection, ACM Transactions on Mathematical Software,
38 (2011).

[4] J. Dinan, S. Krishnamoorthy, P. Balaji, J. R. Hammond, M. Krishnan, V. Tipparaju, and A. Vishnu, Noncollective

Large-Scale Visualization of Sparse Matrices 31

2.9 5.7 11.4 22.8 45.7 91.7 182.9 367.1 734.2 1465.1 2931.7 5867.1 11726.9

1

2

4

8

16

32

64

128

256

512

í�ìîð

î�ìðô

64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

Number of nonzero elements of A (in billions)
M

a
p

 s
p

a
ce

 c
o

m
p

le
x
it

y
 [

k
B

]

Number of processors

Average

Maximum

Fig. 4.2. Statistics of the estimated per-processor memory requirements of the ≎ap data structure.

communicator creation in mpi, in Proceedings of the 18th European MPI Users’ Group Conference on Recent Advances
in the Message Passing Interface, Y. Cotronis, A. Danalis, D. Nikolopoulos, and J. Dongarra, eds., vol. 6960 of Lecture
Notes in Computer Science, Berlin, Heidelberg, 2011, Springer-Verlag, pp. 282–291.

[5] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir, and M. Snir, MPI—The Complete
Reference, Volume 2: The MPI-2 Extensions, MIT Press, Cambridge, MA, USA, 1998.

[6] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008, (2008), pp. 1–58.
[7] N. M. Josuttis, The C++ Standard Library—A Tutorial and Reference, Addison Wesley Longman, Boston, MA, USA,

2nd ed., 2012.
[8] D. Langr, I. Šimeček, P. Tvrd́ık, and T. Dytrych, Scalable parallel generation of very large sparse matrices, in 10th

International Confernce on Parallel Processing and Applied Mathematics (PPAM 2013), Lecture Notes in Computer
Science, Springer Berlin Heidelberg. Accepted for publication.

[9] , Parallel data acquisition for visualization of very large sparse matrices, in Proceedings of the 15th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2013), Los Alamitos, CA, USA,
September 2013, IEEE Computer Society, pp. 338–345.

[10] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2nd ed., 2003.

[11] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI—The Complete Reference, Volume 1: The
MPI Core, MIT Press, Cambridge, MA, USA, 2nd (revised) ed., 1998.

[12] P. T. Stathis, Sparse Matrix Vector Processing Formats, PhD thesis, Technische Universiteit Delft, 2004.
[13] The HDF Group. Hierarchical data format version 5, 2000-2013. http://www.hdfgroup.org/HDF5/ (accessed June 3, 2013).

Edited by: Teodor Florin Fortiş
Received: Feb 28, 2014
Accepted: Apr 2014

Scalable Computing: Practice and Experience
Volume 15, Number 1, pp. 33–48. http://www.scpe.org

DOI 10.12694/scpe.v15i1.964
ISSN 1895-1767
c© 2014 SCPE

ADAPTIVE MULTI-GRID METHODS FOR PARALLEL CFD APPLICATIONS∗

JÉRÔME FRISCH, RALF-PETER MUNDANI, AND ERNST RANK

Abstract. Computational fluid dynamic (CFD) computations are memory and time intensive and need to be executed in
parallel for larger computational domains. In order to produce physical accurate solutions, adaptive grid setups have to be chosen
as the memory and computing time would otherwise be too high, and results would not be obtained in a reasonable amount of time.
This paper describes the usage of a multi-grid based approach for solving the pressure Poisson equation, arising during every time
step of the Navier-Stokes equations. It will then highlight an analysis of errors introduced due to an adaptive setup of the domain,
and show performance measurements for uniform and adaptive grid setups. Last but not least, a CFD benchmark example based
on the von Kármán vortex street will be presented, and the results will be discussed.

Key words: parallel computation, adaptive data structure, multi-grid like solver, computational fluid dynamics, Poisson
equation, message passing paradigm

AMS subject classifications. 65Y05, 65G99, 65M55, 35J05, 76D05

48

1. Introduction. Computational fluid dynamics (CDF) simulations are time intensive and require a lot
of computational resources. Hence, every optimisation or algorithmic speed-up has huge benefits for expensive
long running scenarios in terms of energy efficiency and CPU costs. Moreover, design parameters regarding
domain setup or solver settings also prove to have a high impact on run times.

Uniform grids exhibit huge advantages due to very easy computations via stencil-based operations, they
require no additional grid management, and are very easy to implement (cf. [5]). Thus, it is very cost efficient
using structured uniform grids for computations. One disadvantage of such an approach is the required equidis-
tant discretisation of the entire domain, which is not always necessary depending on the geometry settings.
For an engineering based air-flow simulation of an indoor airspace for example, regions have to be computed
very fine around obstacles but do not necessarily need to have the same resolution at regions far away from
these obstacles. Thus, a geometry based, adaptively refined grid has huge advantages in terms of reducing
unnecessary refinements.

Adaptive grids are already quite well studied in literature. There exist several possibilities of generating
adaptive grid refinements. One possibility is the stepwise approximation with regular grids, such as the approach
described in this paper or from Manhart and Wengle [13]. Another possibility which will not be regarded for
this code would be the overlapping of two different grids of different resolution, so called Chimera grids, as
studied by Hadžić [11]. Furthermore, boundary adapted non-orthogonal grids could be used. All methods
have advantages and disadvantages listed in detail in [5]. The authors chose to use the approximation with
hierarchical block-structured grids, as they fit quite well to the used data structure.

The main CFD implementation is based on an incompressible Newtonian fluid flow simulation governed
by the Navier-Stokes equations. The spatial discretisation is realised by a finite-volume scheme and for the
temporal discretisation currently an explicit forward Euler method enhanced by the Adams-Bashforth method
of 2nd order is applied. Further details are given in section 6.

A Poisson equation for the pressure term has to be solved in every step of the fluid solver, hence this step
needs to be analysed in detail in order to speed up the solution process. This paper will describe a multi-grid
based approach for solving the pressure Poisson equation which is deeply integrated in the data structure itself,
and takes advantage of the internal exchange functions and similar concepts of the two approaches. Further
details can be found in section 4.

The paper quickly outlines the applied hierarchical data structure for block-structured, orthogonal Cartesian
grids and presents additions to compute with an adaptively refined grid structure. For a fair parallel efficiency,
a load distribution has to be performed in order to balance the computational effort to the various machines. A
detailed analysis concerning errors generated by an adaptive refinement is presented and a performance overview
is given. Last but not least, an adaptively refined von Kármán vortex street is computed as test example, which
is according to Hirsch [12] a simple geometry which generates a quite complex flow.

∗Chair for Computation in Engineering, Technische Universität München, 80290 Munich, Germany (frisch@tum.de).

33

34 J. Frisch, R.-P. Mundani and E. Rank

This paper is based on the conference publication [8], and was extended by including a section on the multi-
grid based solver concept, as well as further performance measurements and an enhanced error evaluation.

2. Data Structure Layout. The data structure is based on block-structured, non-overlapping, regular,
orthogonal Cartesian grids organised in a hierarchical management grid as depicted in figure 2.1. Two main
components form up the system: the management grids on the one hand and the data grids on the other hand.
The management grids are ordered according to a hierarchical organisation structure in a tree-like fashion
starting from a root grid (also called top grid, cf. figure 2.1 on the right hand side). They contain logical
information such as parentage or children links. One management grid can have up to 73 management grid
children, although the refinement in each dimension can be selected separately.

A special case is the so called octree data structure, if the child refinement is set to 2 in every direction, giving
23 management grid children per parent grid. Furthermore, the refinement of the root (rtx, r

t
y, r

t
z) can be chosen

differently than that of any subsequently refined grid (rsx, r
s
y , r

s
z), in order to allow for a useful discretisation of

e. g. a channel. A refinement of ri = 1 can be chosen in order to impose a non-refinement in a given axis i,
which can be useful for a pseudo-2D computation. The refinement levels impose certain limits on the accuracy
of the solution in an adaptive area, and thus, studies about accuracy will be carried out in section 5 of this
paper in order to quantify this approximation.

each cell is linked to one

data grid of size bxubyubz

surrounded by halo

Fig. 2.1. Logical data structure layout in tree form (on right-hand side) and in overlayed grid form (on left-hand side). Each
logical grid holds a pointer to a data grid containing the actual data surrounded by a halo of ghost cells (mid of picture). (Picture
based on [9])

The second main part of the data layout is formed by the data grids depicted in the middle of figure 2.1.
Each management grid is linked to exactly one data grid, which will hold the actual computational data of all
internal fields, such as velocities, pressure, temperature, etc. The size of a data grid is fixed to (bx, by, bz) for
all grids, with the restriction, that bi has to be dividable without remainder by rti and rsi for all i in order to
avoid non-conforming grid boundaries.

This data structure setup enables a strict separation of computation and communication phases. From the
user’s point of view, a new kernel can be implemented on a regular Cartesian grid. Everything else which has to
do with adaptivity, interpolation, or data exchange is outsourced to communication functions which are called
by one single call from within the kernel. Thus, an expert in his area of research can easily implement a new
computational kernel without being an expert in parallel computing or computer science.

On the other hand, the data exchange has to be treated with extreme care, as race conditions during
the update procedure could occur and generate undefined data states. Hence, the communication has to be
separated into three different steps which have to be properly synchronised: in a first step, data is aggregated
to the parent cells by interpolating child values. The parent grid can only proceed, if updates from all its
children have arrived. As the data is send upwards in the scheme depicted in figure 2.1, this stage is called
bottom-up communication stage. In a next step, neighbour cells on the same level can exchange values without
any synchronisation needs, as no race condition can occur here. This step is called horizontal communication.

Adaptive Multi-Grid Methods for Parallel CFD Applications 35

As last step, all the ghost cells of the grids have to be filled which have not been touched in the previous
horizontal communication phase. Therefore, data stored in the current ghost cells of the parent grids are used to
interpolate values in the ghost cells of the child grids. Further information about the communication procedures
or the grid setup can be found in [6, 9].

It should be mentioned that unlike in similar concepts, the intermediate grids are not discarded during
the refinement process. Hence, all grids are kept in memory, even if refined children are available. The actual
computation however, will be carried out only on the ‘leaf’ (i. e. non-refined) grids. This concept has some
considerable advantages. For one, the applied solver for the Poisson problem introduced in section 4 is using
the parent grids for its internal solving procedures.

A second advantage is that if a very fast computational response is necessary, such as in the case of a
computational steering approach (cf. [19]), e. g., a maximal computation depth can be imposed, where higher
refinements will be disregarded, and a coarser but faster computation can be performed on the exact same data
structure.

As third advantage, a visualising technique for reducing the amount of transferred data can be applied
easily, such as described in [16], called sliding-window approach. Here, a certain window of interest as well as
a maximal bandwidth can be fixed. A special server-sided collector decides which data on which level will be
sent to a client-sided visualisation application. Thus, interactive data visualisation can be managed at run-time
with constant bandwidth requirements for data exchange.

3. Parallel Data Distribution and Load Balancing. For a parallel computation, a good data distri-
bution is inevitable in order to minimise communication over the network. The following section will describe
how such a distribution can be achieved by using space-filling curves.

3.1. Neighbourhood Server Concept. For a load distribution or redistribution, two different strategies
can be applied: a global view or a local view strategy. In the local view strategy, a diffusion process as proposed
by Cybenko [4] can be applied. No information about the global system is necessary, and work is only distributed
to the direct neighbours. This process has to be repeated a certain amount of steps, until an overall balanced
distribution has been reached. On the other hand, a global view can do the distribution in one single step by
having global knowledge of the problem. Unfortunately, the process having the global view typically becomes
a bottle neck with an increasing amount of processes in the system.

Nevertheless, due to its better characteristics the authors chose to implement a global view concept. A
dedicated server, the so called ‘neighbourhood server’, keeps track of all management grids without having any
actual data of the grids themselves. Using this concept, rebalancing and grid migrations are easily possible
without a lot of overhead. Possible bottle-neck simulations are avoided by having multiple servers running
concurrently and serving different processes. Details of the synchronisation procedures can be found in [7].

3.2. Load Balancing using Space-Filling Curves. The neighbourhood server contains all management
grids and can compute the best possible data distribution according to a certain given strategy. Possible
distribution strategies should ensure a good data locality, i. e. keeping neighbouring grids as close as possible,
and thus, minimising communication efforts. Space-filling curves deliver a good distribution for such purposes
(cf. [1]).

Of all the possible space filling curves (SFC), such as Hilbert, Lebesgue, Sierpiński, or Peano, among many
others, the authors chose to use the Lebesgue curve depicted in Figure 3.1. The main reason for this choice is
the very simple computation of the position of a given cell in the grid. The geometric construction of the curve
can be seen in Figure 3.1(a). On the left-hand side, the geometric primitive is shown. Each part in the grid
can then be refined further by applying again the construction primitive (due to the form of the primitive, the
curve is also referred to as ‘z-order curve’).

The hierarchical tree is traversed in a depth first approach, respecting on every level the geometric primitive
of the construction, thus delivering the figure on the right-hand-side of figure 3.1(a). Contrary to other work
(e. g. [20]), the parent grids are not omitted, but also pushed to the linearised list. Thus, the list of grids on the
right-hand-side would have a size of 29, even if only 22 of them are currently visible. This linearised list is split
into (nearly) equal parts and distributed by means of grid migration to different computing processes.

Although, the Hilbert curve would conserve the locality better than the Lebesgue curve, it is easier to

36 J. Frisch, R.-P. Mundani and E. Rank

(a) geometric construction of a Lebesgue
curve on an adaptive grid

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

y

x

0

2

8

10

32

34

40

42

1

3

9

11

33

35

41

43

4

6

12

14

36

38

44

46

5

7

13

15

37

39

45

47

16

18

24

26

48

50

56

58

17

19

25

27

49

51

57

59

20

22

28

30

52

54

60

62

21

23

29

31

53

55

61

63

(b) uniform grid distribution with
enumeration according to Morton’s
index.

Fig. 3.1. Load balancing strategy by applying Lebesgue’s curve and Morton’s indexing.

compute the position in the grid using Morton’s index [15], which can be generated easily by bit-interleaving.
As example, an 8 × 8 grid is depicted in Figure 3.1(b). By writing the desired coordinates in binary form and
padding them to the largest multiple of two, one can generate the Morton index by interleaving each bit from
y with each bit from x. Conversion from binary into decimal form delivers then Morton’s index. As example,
x = 5, y = 3 is written in binary form x = 101, y = 011. By bit-interleaving, one obtains 011011 which reads
in decimal 27 and corresponds to the Morton index of x, y. The same procedure works in 3D by using x, y, and
z coordinates.

4. Multi-Grid Like Solver Concept. As mentioned in the previous section, the solver concept is based
on a multi-grid like approach for the pressure Poisson equation. The basics, describing the mathematical
properties, convergence studies, etc can be found in [2, 18, 10]. Putting it into a nutshell, a multi-grid based
approach can be described as follows:

Let’s suppose the Poisson equation A · u = f should be solved on a given grid discretisation Ωh with a
spacing of h. First, a smoothing using a 2/3 damped Jacobi relaxation method is applied α1 times, obtaining
an approximation to the solution vh on this grid. The residual rh = fh −Ah · vh is computed and restricted
to a coarser grid using a restriction operator I2hh to serve as right-hand side f2h. On the coarser grid Ω2h, the
residual equation A2h · e2h = f2h is relaxed to obtain an approximation to the error e2h. Again, the residual
r2h = f2h −A2h · e2h is computed and restricted to an even coarser level using a restriction operator I4h2h.

This procedure is repeated until the coarsest level L has been reached, where the residual equation system
ALh ·eLh = fLh is small enough to be solved directly. After eLh is known, the error correction is prolongated to
the finer grids and added to the approximation of the solution v. Assuming the error correction e4h is known,
then the approximation on level 2h can be obtained by e2h = e2h+I2h4h ·e4h, where I2h4h describes the prolongation
operator. The error is then relaxed α2 times using the 2/3 damped Jacobi smoother, before the prolongation
to level h is performed. In the end, the error correction eh is added to the approximation of the solution vh.
This procedure is called a v-cycle and is the simplest form of a multi-grid approach. This v-cycle has to be
repeated until the norm of the residual is below a given tolerance, at which point the system is solved to the
given accuracy.

While analysing the standard multi-grid approach, similarities can be seen between prolongation and re-
striction in the v-cycle, and the data exchange mechanisms introduced in the data structure itself. Therefore,
it is obvious to combine the two approaches reusing parts already existing in order to construct a multi-grid
like solver which is ‘fused’ into the structure itself. The method is based on matrix-free cell-centred multi-grids,

Adaptive Multi-Grid Methods for Parallel CFD Applications 37

meaning that no matrix A is explicitly assembled, but a stencil operator is used for iterating over the grid points
in memory. As the data grid uses a collocated data arrangement, where all values are stored in the cell centre,
the data for the multi-grid also needs to be interpreted as cell-centred. As consequence, coarsened points do
not coincide with finer points.

The amount of levels and thus, implicitly the amount of grid coarsening is dictated by the data structure
itself and by the approximation of the geometry which should be solved.

Figure 4.1 shows performance measurements on ‘Shaheen’, a 16-rack Blue Gene/P system having a total of
65536 compute cores at King Abdullah University of Science and Technology (KAUST) in the Kingdom of Saudi-
Arabia1. Figure 4.1(a) shows the pure data exchange times for exchanging all ghost layers of 9 independent
variables for different problem sizes using up to 32768 processes. The curves show, that the communication
time is decreasing while using more processes. Figure 4.1(b) shows strong scaling results for two different
problem sizes for a 3D Laplace problem discretised uniformly up to a given depth. It can be seen, that a certain
saturation is reached for a higher amount of processes. This happens earlier for the 16 million unknowns and
starts later for the 134 million unknowns due to increased communication overhead and less work per process.

The standard multi-grid algorithm uses a certain amount of smoothing steps α1 for the residual equation
and α2 for the error correction. These values are usually in a range of approximately 2–3. The multi-grid like
concept needs more smoothing steps in order to converge to the correct solution, especially when obstacles are
present in the domain.

Following the ideas of [14], boundary conditions need to be handled on coarse grids in order to reproduce
the effect they exhibit on the fine grids. Therefore, they need to be restricted in some way onto coarser grids.
Dirichlet conditions have the highest priority, i. e. if one of the child cells has a Dirichlet boundary condition,
the coarse cell will be marked as having a Dirichlet boundary condition. Neumann boundary conditions have
a very low priority, and will only be restricted as Neumann conditions on the coarse grid if all child cells had
Neumann boundary conditions. Otherwise, the coarse cell will be marked as fluid cell. As consequence, huge
Dirichlet regions will appear in the coarsest grid representation, which can only be handled by a higher amount
of smoothing towards the boundary regions.

Figure 4.2 shows a plot of the error convergence for different smoothing strategies until a maximal error
of 10−9 was reached. While applying α1 = α2 = 10 on every level, 153 cycles were needed to converge (curve
‘constant 10’). A next approach is to adaptively change α over different levels. On fine grids, α should be small,
as exchanging data is costly. On coarser grids however, α can be increased as less data has to be exchanged,
which produces less communication overhead. Hence, the plots named ‘adaptive’ use such a concept. ‘Adaptive
2’ starts with 2 smoothing steps on the finest level. In the next coarser level, 4 steps are used, then 8 and so
on. This curve shows an even worse convergence than the constant 10. ‘Adaptive 4’ uses 4 smoothing steps to
start on the finest level, then 8 on the next coarser, then 16 and so on. This curve shows exceptionally good
convergence and needs only 27 cycles to converge to an error of 10−9 whereas ‘adaptive 2’ needed 477 cycles.
This study shows that attention has to be paid to the choice of settings for the solver, as small changes could
generate a huge performance impact.

5. Performance and Accuracy Measurements of the Adaptive Data Structure. In order to
evaluate the performance as well as the accuracy of the used data structures and its solvers, a Poisson equation
will be solved for a simple test geometry. The use of the Poisson equation is realistic, as this equation has to
be solved in every time step of a CFD simulation for evaluating the pressure-correction in order to obtain a
divergence free velocity field of an incompressible fluid flow after each time step, and thus, ensuring the validity
of the continuity equation.

5.1. Test Case Setup. The 3D test case geometry is composed out of a 1× 1× 1m block. The top-level
as well as the subsequent refinement levels are set to bisection (rti = rsi = 2 ∀i). The block size of the data
grids is set to bi = 12 in every direction. Dirichlet boundary conditions are imposed on all 6 walls. The west
and east wall in x-direction are set to 1.0 whereas all other walls are set to 0.0. The right-hand-side f of the
Poisson equation ∆p = f is set to 0, thus describing actually a pure Laplace equation.

1KAUST Supercomputing Lab: https://www.hpc.kaust.edu.sa

38 J. Frisch, R.-P. Mundani and E. Rank

 0.001

 0.01

 0.1

 1

 10

 1024 2048 4096 8192 16384 32768

d
at

a
in

te
rc

h
an

g
e

ti
m

e
[s

]

amount of processes

depth 6: 16 million unknowns
depth 7: 134 million unknowns

(a) Communication times for a total ghost cell exchange of 9 independent variables in seconds

on ‘Shaheen’ for a 3D domain of fully refined grids with a refinement level (2,2,2) up to depth
6 or 7 and a data grid size of (4,4,4).

 1

 10

 100

 1000

 1024 2048 4096 8192 16384 32768

ti
m

e
to

 s
o
lu

ti
o
n
 [

s]

amount of processes

depth 6: 16 million unknowns
depth 7: 134 million unknowns

(b) ‘Shaheen’ strong scaling with different depths and block sizes of (4,4,4)

Fig. 4.1. Performance Measurements for different problem sizes for a 3D Laplace problem on an uniformly refined grid using
refinements (2,2,2), block sizes of (4,4,4), and various depths.

Adaptive Multi-Grid Methods for Parallel CFD Applications 39

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

 0 50 100 150 200 250 300 350 400 450

m
ax

.
ab

s.
 e

rr
o
r.

 [
-]

time to solution [s]

constant 10
adaptive 2
adaptive 4

Fig. 4.2. Time to solution for different choices of α1,2 computed on 1024 processes on ‘Shaheen’ for a 3D Laplace problem
on an uniformly refined grid in depth 6 using refinements (2,2,2) and block sizes (4,4,4).

Figure 5.1 shows a 2D cut through the 3D test problem case (red means p = 1.0, blue means p = 0.0). In
the case of a uniform refinement, all grids were refined up to a certain depth. The amount of grid cells in the
complete system can be computed for this example by

dmax
∑

d=0

(

2d · s
)3

=

dmax
∑

d=0

(

2d · 12
)3

.

In this case, the total amount of grid cells can be given as follows: depth 4 has approximately 8 million cells,
depth 5 has 64.7 million cells, and depth 6 has 517.7 million cells. The cut shown in Figure 5.1(a) is depicted
for depth 4 in order to better illustrate the grid refinement. The solution on level 6 is regarded as sufficiently
fine and, thus, used as a reference solution.

According to the setting of the boundary conditions, the highest gradients are expected near the walls, thus
in the case of an adaptive grid the refinement is increased closer to the boundaries by refining the bisected parts.
Figure 5.1(c) shows a grid with a uniform refinement up to level 2 and two consecutive refinements towards the
west and east walls. Figure 5.1(b) shows the results computed on that adaptive grid. Hence, such a grid is from
now on called adaptive 2+2 or a2+ 2. Close to the west and east walls, the two setups have the same grid size,
and are thus comparable.

5.2. Distribution Performance. In order to check the distribution for a real 3D problem, the distribu-
tion and communication patterns were analysed using the integrated performance monitoring tool IPM2. The
measurements were performed on ‘Shaheen’. Furthermore, some computations were done on the one-rack Blue
Gene/P having in total 4096 compute cores at Universitatea de Vest din Timişoara (UVT) in Romania3.

Figure 5.2 shows two distribution patterns for parallel computations using 512 processes performed on
Shaheen. The communication pattern of the u4 refinement is depicted in Figure 5.2(a), the a2 + 2 refinement
is shown in Figure 5.2(b).

2Integrated Performance Monitoring (IPM): http://ipm-hpc.sourceforge.net
3Universitatea de Vest din Timişoara HPC Center: http://hpc.uvt.ro

40 J. Frisch, R.-P. Mundani and E. Rank

(a) Uniform Grid Distribution setup at

depth 4 (u4)

(b) Adaptive Grid Distribution setup at

depth 4 (a2 + 2)

(c) Adaptive Grid Distribution setup at depth 4 (a2+2) (grid only)

and the cutline (in red) introduced in subsection 5.3

Fig. 5.1. 2D cut through a 3D test problem for testing the adaptive code and distribution.

Adaptive Multi-Grid Methods for Parallel CFD Applications 41

MPI Rank (send)

0 100 200 300 400 500

M
P

I
R

a
n
k
 (

re
c
v
)

0

100

200

300

400

500

(a) Communication Pattern Uniform setup up at depth 4

MPI Rank (send)

0 100 200 300 400 500

M
P

I
R

a
n
k
 (

re
c
v
)

0

100

200

300

400

500

(b) Communication Pattern Adaptive setup up at depth 4

(2+2)

Fig. 5.2. MPI communication patterns for 512 processes on Shaheen using IPM.

42 J. Frisch, R.-P. Mundani and E. Rank

Black markers depict a communication between the ranks on the x- and y-axis. In both patterns, the
communication with the neighbourhood server residing on rank 511 is obvious and marked completely black,
as each process gets its neighbouring information once from the server which will be cached until a change
occurs. Otherwise, the main communication is focussed on a diagonal, indicating that only processes close to
each other communicate with each other. Independent of the underlying network topology of the respective
hardware, this shows that the average number of communication partners per process is small. In case of a
non-locality preserving grid distribution, a much higher amount of communication partners could be seen in
the communication diagram and would consequently slow down the communication in the system.

It can be observed, that the adaptive grid setup is not differing a lot from the uniform setup, which shows
that the data distribution using the selected space filling curve is working as expected by preserving the locality
of the data.

5.3. Accuracy Measurements. A first glance at the colour distribution of Figure 5.1 gives already a
good hint, that the computations are not that far off and in the same order. To better quantify the error made
by the adaptive approach, further treatment is necessary. In Figure 5.3, a quantification of the error is given.

Figure 5.3(a) shows the value for the pressure in the complete domain for different simulation setups. The
plot is shown over a cutline going in x-direction through the domain while maintaining y and z at 1/2. Thus,
x = 0 represents the west wall and x = 1 represents the east wall having each Dirichlet boundary conditions of
p = 1. On the other walls in the 3D domain, the boundary conditions are set to p = 0. As solver, the multi-grid
like solver from section 4 is used on the adaptive data structure. To be able to draw 1D results along a cutline,
a trilinear interpolation is applied, for interpolating the values along the cutline out of the cell-centred values
stored in the model.

In Figure 5.3(a) the general behaviour of the solution is similar. For better quantification, the relative error
is plotted in Figure 5.3(b). As reference solution, a linear interpolation of the finest computation of a uniform
distribution at depth 6 was used. The relative error is computed by the formula

erel =
p− pref,u6

pref,u6

· 100 [%] .

First of all, uniform grids at different levels were compared, namely level 4 and 5. The results show that the
error is larger towards the boundaries than in the middle of the domain. This is due to the fact, that the larger
cells cannot capture the higher gradients closer to the wall as good as the refined grids can. In the middle of
the domain, where the gradients are small however, the approximation is quite good. Level 4 is worse than level
5, but nevertheless, the computational time and memory consumption are much better. On Sandstorm, the
department for Computation in Engineering’s own cluster, with four nodes consisting each of two Intel Xeon
E5-2690 processors with 8 cores each and a total of 768 GB of main memory, one node using 16 processes needed
6.8 seconds to compute the 8 million cells on level 4 and 98.5 seconds to compute the 64.7 million cells on level
5.

Furthermore, the error from the adaptive refinement with respect to the reference solution can be seen in
Figure 5.3(b). Obviously the coarsest grid (a2 + 2) has the largest error. Towards the boundary, a2 + 2 shows
the same error as u4 which is not remarkable, as the grids cells have the same size. Towards the middle, the
error increases, as the grid is not fine enough to capture effects noticeable on the reference grids. A maximum
error of approximately 0.6% can be observed for the a2 + 2 curve, which is with respect to all factors such as
runtime and memory reduction quite acceptable.

Moreover, it can be noticed that the uniform grids never overestimate the solution of the reference grids,
i. e. that the solution never ‘crosses’ through the reference solution. This is not the case with the adaptive
refinement. Here, some solutions cross ‘through’ the reference solution (i. e. crossing the x-axis).

5.4. Scaling and Performance Measurements. Scaling and performance measurements for uniform
grids using up to 32768 processes were already presented in section 4. The following section will provide a few
comparative measurements to assess the performance impacts of the adaptive distribution. The measurements
were performed on the UVT Blue Gene/P for the same 3D test case described above. The only difference is,
that the block size of the data grids was set to bi = 4 instead of 12. Experience suggested that the Blue Gene/P
has a much better performance with its PowerPC processors for these chosen settings.

Adaptive Multi-Grid Methods for Parallel CFD Applications 43

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
re

ss
u
re

x-coordinate

u4
u5
u6

a2+2
a3+2
a3+3

(a) Pressure distribution along the cutline

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
la

ti
v
e

er
ro

r
[%

]

x-coordinate

u4 - u6
u5 - u6

a2+2 - u6
a3+2 - u6
a3+3 - u6

(b) Relative error in % along the cutline

Fig. 5.3. Data along the cutline in x-direction through the domain at y = z = 0.5. The geometric position of the cutline is
also displayed in Figure 5.1(c).

44 J. Frisch, R.-P. Mundani and E. Rank

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 200 400 600 800 1000

co
m

p
le

te
 e

x
ch

an
g
e

ti
m

e
[s

]

grids per proc.

adapt 2+4
adapt 2+5

unif 5
unif 6

(a) Exchange time in seconds plotted over the amounts of grids per process

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000

w
al

lt
im

e
to

 s
o
lu

ti
o
n
 [

s]

grids per proc.

adapt 2+4
adapt 2+5

unif 5
unif 6

(b) time to solution plotted over the amounts of grids per process

Fig. 5.4. Scaling and performance measurements on the UVT Blue Gene/P. A bisection to the given depth was chosen. The
3D test case from section 5 was used with a different data grid size of 4×4×4.

Adaptive Multi-Grid Methods for Parallel CFD Applications 45

Figure 5.4(a) shows scaling results for the pure exchange time in seconds of all the necessary variables for
the fluid code (3 velocity values, a pressure value, a temperature value, etc). Figure 5.4(b) shows the wall time
in seconds until a solution of the Poisson equation converged to an error below 10−9.

The x-axis displays the amount of grids per process, in order to better compare the resulting times of the
adaptive and uniform distributions. Computations were performed using up to 1024 processes. Table 5.1 shows
the amount of grids in the different configurations.

Table 5.1
Amount of grids for different configurations used in the performance measurements

configuration # grids

adapt 2+4 21833
adapt 2+5 87369
unif 5 37449
unif 6 299593

It can be seen, that the performance of the exchange as well as the solution of the Poisson equation using
the multi-grid-like approach is behaving well if less than 600 grids per process are used. On the other hand,
a very similar behaviour of the adaptively refined grids can be observed. Hence, it can be concluded, that
the adaptive refinements have no negative impact on the overall performance of the code. Contrary, a similar
performance can be obtained with less computing power for simulating a domain with nearly the same accuracy
but far less grids.

6. Adaptive CFD Example. The implemented CFD code for simulating an incompressible Newtonian
fluid flow is currently based on the fractional step method proposed by Chorin [3]. In this approach, an explicit
time stepping scheme is used. First, intermediate velocities are computed by omitting the pressure part in the
Navier-Stokes equations. Then, using these intermediate velocities, the divergence of the momentum equation
is computed leading to a Poisson equation for the pressure. After solving the Poisson equation, the obtained
pressure correction is used to correct the intermediate velocity field leading to the velocities at the next time
step.

As engineering example of a non-steady-state fluid flow application, the von Kármán vortex street was
computed according to the settings of the 2D-2 benchmark of Schäfer and Turek [17]. It is basically a channel
flow with a cylinder as obstacle in the channel. After a certain simulation time, vortices start to shed from the
disturbances downstream of the cylinder and will be transported out of the region.

Figure 6.1 shows the results of computations for different refinement levels using a Reynolds number of 100.
For the a3 + 2 setting, the area consists of 405 adaptively organised grids in a hierarchy going up to depth 5
with an increased refinement around the area where the cylinder is located and the shedding of the vortices
starts. a3 + 3 has a more refined resolution around the cylinder using 597 grids. In case the area would be
uniformly refined up to level 5, the domain would contain 1365 grids and 5461 grids for level 6 respectively.

Using a normal desktop computer, a speed up of approximately 7.8 could be achieved by using the a3 + 3
version versus the fully refined u6 version (having around 9.1 times more grids), which corresponds also quite
nice to the results of the scaling of the solution of the Poisson equation shown in Figure 5.4.

For the 2D-2 benchmark, the adaptive code delivered a Strouhal number (St = D · f/Ū , where D is the
diameter of the obstacle, f is the frequency of the vortex shedding and Ū is the mean input velocity as defined
in [17]) of 0.290 which correlates very good with the experimental results of St = 0.287± 0.003. Furthermore,
the pressure difference ∆P between the front and the back of the cylinder delivered values between 2.40 and
2.48 depending on the state of the shedding which also corresponds quite well to the benchmark’s Table 4
in [17]. These results confirm that the fully adaptive CFD computation as it is currently implemented delivers
reasonable physical results.

Although the above presented benchmark is 2D only, the adaptive CFD code is capable of 3D computations.
Figure 6.2 shows a fully 3D computation of the 3D-2Z benchmark at Re=20. The adaptive grid refinement has
the same settings as the corresponding 2D benchmark.

46 J. Frisch, R.-P. Mundani and E. Rank

(a) a3 + 2 refinement

(b) a3 + 3 refinement

Fig. 6.1. Adaptively refined von Kármán vortex street according to the Schäfer-Turek benchmark 2D-2 at Re=100 (represented
by LIC (line integral convolution) overlaid with the grid refinement. The colour code represents the velocity magnitude. The current
time of the two computations is different).

7. Conclusion and Outlook. In this paper, the authors presented a detailed study about an adaptive
layout for a parallel distributed data structure capable of computing fluid flow simulations, as well as the main
idea of a multi-grid based solver approach. The accuracy of the adaptive data structure as well as the introduced
error was analysed and the influence on distribution and performance was evaluated. It could be shown, that
introducing an adaptive layout does not have a negative influence on either performance or distribution, and
the error is acceptable if compared to the massive gain in CPU time and memory consumption.

The solution process of the Poisson equation for the pressure correction could be considerably improved by
applying a multi-grid-like solver on an adaptive domain. Future work includes further optimisation of the CFD
code in order to increase the performance of long time consuming transient computations. Furthermore, the
explicit time stepping scheme should be replaced at some point by an implicit scheme which allows larger time
steps in the domain. Moreover, run-time adaptivity according to fluid criteria, such as maximal gradients of
velocities, can be tackled and incorporated, which will improve the quality of the solution enormously.

Acknowledgments. This publication is partially based on work supported by Award No. UK-c0020,
made by King Abdullah University of Science and Technology (KAUST). Furthermore, the authors would like
to cordially thank for the support and usage of the Blue Gene/P at Universitatea de Vest din Timişoara (UVT)
in Romania.

REFERENCES

[1] M. Bader, Space-Filling Curves - An Introduction with Applications in Scientific Computing, vol. 9 of Texts in Computational
Science and Engineering, Springer-Verlag, 2013.

[2] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2nd rev. ed., 2000.

[3] A. J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp., 22 (1967), pp. 745–762.

Adaptive Multi-Grid Methods for Parallel CFD Applications 47

Fig. 6.2. Adaptively refined von Kármán vortex street according to the Schäfer-Turek benchmark 3D-2Z at Re=20. The
colour code represents the velocity magnitude.

[4] G. Cybenko, Dynamic load balancing for distributed memory multiprocessors, Journal of Parallel and Distributed Computing,
7 (1989), pp. 279–301.

[5] J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Springer, 3rd, rev. ed ed., 2002.
[6] J. Frisch, R.-P. Mundani, and E. Rank, Communication schemes of a parallel fluid solver for multi-scale environmental

simulations, in Proc. of the 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC), Timişoara, Romania, Sept. 26.-29. 2011, pp. 391–397.

[7] , Resolving neighbourhood relations in a parallel fluid dynamic solver, in Proc. of the 11th International Symposium on
Parallel and Distributed Computing, Los Alamitos, CA, USA, 2012, IEEE Computer Society, pp. 267–273.

[8] , Adaptive distributed data structure management for parallel CFD applications, in Proc. of the 15th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Timişoara, Romania, Sept. 23.-
26. 2013, pp. 513–520.

[9] , Parallel multi-grid like solver for the pressure Poisson equation in fluid flow applications, in Proceedings of the IADIS
International Conference - Applied Computing, Fort Worth, Texas, USA, 2013, pp. 139–146.

[10] W. Hackbusch, Multi-Grid Methods and Applications, Volume 4 of Springer Series in Computational Mathematics, Springer,
2010.

[11] H. Hadžić, Development and Application of Finite Volume Method for the Computation of Flows Around Moving Bodies on
Unstructured, Overlapping Grids, PhD Thesis, Technische Universität Hamburg-Harburg, 2005.

[12] C. Hirsch, Numerical Computation of Internal and External Flows, Volume 1, Butterworth–Heinemann, 2nd ed., 2007.
[13] M. Manhart and H. Wengle, Large-eddy simulation of turbulent boundary layer flow over a hemisphere, in first ERCOFTAC

Workshop on ‘Direct and Large-eddy Simulation’, Guildford, Mar. 27–30 1994, Kluwer Academic Publisher.
[14] A. McAdams, E. Sifakis, and J. Teran, A parallel multigrid Poisson solver for fluids simulation on large grids, in ACM

SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), 2010.
[15] G. M. Morton, A computer oriented geodetic data base; and a new technique in file sequencing, tech. report, IBM Ltd.,

Ottawa, Canada, 1966.
[16] R.-P. Mundani, J. Frisch, and E. Rank, Towards interactive HPC: Sliding Window Data Transfer, in Proc. of the 3rd Inter-

national Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering (ParEng2013), Pécs, Hungary,
2013.

[17] M. Schäfer and S. Turek, Benchmark computations of laminar flow around cylinder, in Flow Simulation with High-
Performance Computers II, E. Hirschel, ed., vol. 52 of Notes on Numerical Fluid Mechanics, Vieweg, Jan. 1996, pp. 547–
566.

[18] U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid, Academic Press, 2001.
[19] R. van Liere, J. D. Mulder, and J. J. van Wijk, Computational steering, Future Generation Computer Systems, 12 (1997),

pp. 441 – 450. HPCN96.

48 J. Frisch, R.-P. Mundani and E. Rank

[20] T. Weinzierl and M. Mehl, Peano – a traversal and storage scheme for octree-like adaptive cartesian multiscale grids,
SIAM Journal on Scientific Computing, 33 (2011), pp. 2732–2760.

Edited by: Teodor Florin Fortiş
Received: Feb 28, 2014
Accepted: Apr 16, 2014

Scalable Computing: Practice and Experience
Volume 15, Number 1, pp. 49–62. http://www.scpe.org

DOI 10.12694/scpe.v15i1.965
ISSN 1895-1767
c© 2014 SCPE

DEVELOPING SECURE CLOUD APPLICATIONS

MASSIMILIANO RAK, MASSIMO FICCO∗AND ERMANNO BATTISTA, VALENTINA CASOLA, NICOLA MAZZOCCA†

Abstract. Today the main limit to Cloud adoption is related to the perception of a security loss the users have. Indeed,
the existing solutions to provide security are mainly focused on Cloud service provider prospective in order to securely integrate
frameworks and Infrastructures as a Services in a Cloud datacenter. Customer could not monitor and evaluate the security
mechanisms enforced by service provider. Service Level Agreements mainly focus on performance related terms and no guarantees
are given for security mechanisms. Customers are interested in tools to verify and monitor the implemented security requirements.
On the other hand, developers need tools to deploy Cloud applications offering measurable security grants to end users. In this
paper, we propose an approach to implement security mechanisms as components in the application design process. We modeled
security interactions according to the specific threat, the specific security requirements and user/application capabilities trying to
improve security. It enables a Service Provider to offer security guarantees to customers. The approach has been designed to fit
with different Cloud platforms, but to demonstrate its applicability, we will present a case study on the mOSAIC Platform.

Key words: Cloud security, security engineering, secure application design

62

1. Introduction. The most desirable Cloud feature is the self-service on demand approach. Cloud cus-
tomers are able to access and use Cloud services without interacting with system administrators. Resources and
services are charged on a pay-per-use base. The clear advantage for customers is the chance to have access to
virtually infinite amount of resources, paying for them only when effectively used. As a side effect, end users do
not own a real infrastructure: servers and data reside in the Cloud. In such scenario, the main limit to Cloud
adoption is related to the perception of a loss of security the users have: is it possible to control where data
reside? Are the customers granted about who can access their data? Is the provider reliable? Cloud customers
can buy resources from different providers on the basis of the grants they offer, usually expressed in terms of
Service Level Agreements (SLAs), i.e., contracts among the customer and the provider that specify what is
granted [1, 2]. At state of art, even if clear innovative solutions exist, like the one proposed in the FP7 projects
(SLA@SOI [3, 4], Contrail [5], mOSAIC [6]) or with standard languages like WS-Agreement ([7]), SLAs are
commonly expressed in natural language and usually focus on performance related terms.

Existing solutions to provide security are mainly focused on Cloud service provider prospective in order
to securely integrate frameworks and Infrastructures as a Services (IaaS) in Cloud datacenter. So, they focus
on how to enable a Cloud service provider to offer security grants. Up to date very few results are available
that consider end customers’ perspectives. However, customers are interested in tools to verify and monitor the
implemented security requirements. Nevertheless, application developers should be taken in consideration, too.
They need tools to deploy Cloud application offering measurable security grants to end users [8, 9].

In this paper we will focus on these latter perspectives. In particular, we propose a methodology that
enables the correct usage of a Platform as a Service (PaaS), in order to develop applications which clearly
expose security grants to end users. The methodology has been designed to fit with different Cloud platforms,
but to demonstrate its applicability we present a case study on the mOSAIC Platform [6].

The remainder of the paper is organized as follows: the next section aims at defining the problem of
Cloud application security, outlining actors and roles. Section 3.1 describes the technology we focused on for
application development and introduces a simple application we will use as a running example. Some related
works are presented in Section 3.2. Section 4 describes the proposed methodology to take into account security
requirements in Cloud application design. Section 5 shows how to apply the methodology. Finally, in Section
6 some conclusions and future work are presented.

2. Problem Description. The Cloud Computing paradigm implies to move from a local ownership of
resources, services and infrastructures to a different approach in deploying, accessing and managing them. This
leads to the multiplication of interactions among providers and Cloud users (actors), involved in the system
and, consequently, to the perception of loss of control over data and offered services.

∗Department of Industrial and Information Engineering, Second University of Naples, Aversa, Italia
†Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Napoli, Italia

49

50 M. Rak, M. Ficco, E. Battista, V. Casola, N. Mazzocca

Fig. 2.1. Actors and interactions

Figure 2.1 briefly describes the interactions among Cloud actors. In particular, we identified three main
actors: the customer, which uses Cloud applications and has specific security requirements; the Cloud service
provider that deploys applications over Cloud resources, and provides application features to customers; de-
veloper that builds up the applications, and delivers them in terms of software packages offered to the service
provider. Moreover, resources may be hosted over independent Cloud providers, which may sell them to the
service provider under different conditions and with different guarantees. Service providers can then negotiate
with their customers the adoption of such resources and services. In such context, a Cloud application runs over
a Platform and it is offered in terms of a Cloudware (i.e., a software package that can be executed over Cloud
resources in order to offer a platform able to run Cloud applications).

Customers have security requirements that should be granted by the service provider, but many security
issues can arise in the described service supply chain. The service provider’s task is to grant the overall security
for the offered applications, but: (i) it uses resources bought from an independent Cloud provider, and (ii) it
offers applications developed by third-party developers. Both Cloud providers and developers can enforce proper
security mechanisms, but the interaction among them may not be secure at all.

We can summarize the problems to address, as follows: the customers have their security requirements, the
developers have to implement them and service providers have to guarantee them in spite of the complex supply
chain that can be effectively used. Therefore: (1) developers need to understand the requirements and enforce
them into the application; (2) Service providers should be able to control the applications and their security
features in order to guarantee them; (3) Customers need to negotiate and monitor their enforcement.

2.1. Contribution. Our first goal, presented in this paper, is to propose a methodology that enables
developers to map user security requirements into security mechanisms to enforce; the enforcement is performed
by adding security components to existing applications in the design phase and taking into account user re-
quirements and possible application threats. Our long term goal, in future work, will be to enable the automatic
negotiation, evaluation and enforcement of security features on developed applications.

In order to illustrate the approach in the practice, we focus on the mOSAIC Platform [10, 6], as the enabling
technology for development of Cloud applications. The next section briefly introduces the mOSAIC Platform
and shows how to develop an application using the mOSAIC APIs. We will use this example to outline the
steps of the application development and how to improve security during the design stages.

3. Background and Related Works.

3.1. Developing applications with the mOSAIC Framework. The mOSAIC platform aims at pro-
viding a very simple way to develop Cloud applications [6, 10]. The target user for the mOSAIC solution is the
application developer (mOSAIC user). In mOSAIC, a Cloud application is structured as a set of components
running on Cloud resources (i.e., on resources leased by a Cloud provider) and able to communicate with each

Developing Secure Cloud Applications 51

other. Cloud applications may also be provided in the form of Software-as-a-Service, and can be accessed/used
by users and by the mOSAIC developer (i.e., by final users).

Developing a mOSAIC application is very simple as it is built up as a collection of interconnected mOSAIC
components. Furthermore a wide set of components is available. Components may be (i) core components, i.e.,
predefined tools offered by the mOSAIC platform for performing common tasks, (ii) COTS (commercial off-
the-shelf) solutions embedded in a mOSAIC component, or (iii) Cloudlets developed using the mOSAIC APIs
and running in a Cloudlet Container. mOSAIC Cloudlets are stateless, and developed following an event-driven
asynchronous approach [10].

Among ready-to-use components it offers: (1) queuing systems used for component communications (rab-
bitmq and zeroMQ), (2) an HTTP gateway, which accepts HTTP requests and forwards them to application
queues, and (3) NO-SQL storage systems (as Key-Value stores and columnar databases). mOSAIC components
run on a dedicated virtual machine, named mOS (mOSAIC Operating System), which is based on a minimal
Linux distribution. The mOS is enriched with a special mOSAIC component, the Platform Manager, which
makes it possible to manage set of virtual machines hosting the mOS as a virtual cluster, on which the mOSAIC
components are independently managed. It is possible to increase or to decrease the number of virtual machines
dedicated to the mOSAIC application, which scales up and down automatically.

A Cloud application is described as a whole in a file named Application Descriptor, it lists all the required
components and Cloud resources. A developer has both to develop new components, and to write the application
descriptor to connect them together.

3.1.1. mOSAIC application example. To illustrate our work, in this paper, we refer to a simple Cloud
application: an XML document manager (XDM) that analyzes the incoming XML files. For each received file,
it counts the number of occurrences of XML tags inside the file and stores the results as a pair <filename,
tagcounts> (where tagcounts is a collection of <tag, count> pairs) into the Key-Value store (KV).

The application consists of several components, which interact according to the sequence diagram shown
in Fig. 3.1: an HTTPgw Cloudlet manages the HTTP messages, and pushes the XML document (XML Doc)
into a queue; the XML Analyzer extracts and parses the queued XML documents, and stores the results (Res)
in a KV store.

Fig. 3.1. XDM component interactions

Fig. 3.2 shows the architecture of such mOSAIC application, outlining the role of the different actors
identified at the beginning of this section and different application components (Httpgw, Queue, Analyser and
KV store).

Such application does not provide any security features and it is subjected to a number of attacks and
threats. As an example, it may be subjected to XML Denial of Services attacks and it cannot guarantee
mutual authentication among users and the application. The application developer well knows the components
and how to connect them thanks to the application descriptor. If the developer knows - at this stage - the
user requirements, is he able to enforce proper security mechanisms? Is there the possibility to design a
methodology that help him in identifying and enforcing correct security solutions? At this aim, we propose
an approach to implement security mechanisms as components to add in the design process. We can design

52 M. Rak, M. Ficco, E. Battista, V. Casola, N. Mazzocca

Fig. 3.2. The XML Analyzer mOSAIC application

component interactions according to the specific user security requirement, to its security capabilities and to
known threats, trying to connect such security components with application/functional specific components.

3.2. Related Work. The protection of cloud resources is still an open problem and different approaches
are available in the literature. In particular, several works propose specification languages to specify security
attacks and requirements.

Abstract State Machine Language (AsmL) is a software specification language developed by Microsoft,
defining abstract state machines through a fairly high-level language that can be compiled into executable code.
Raihan et al. [11] propose a formal extension of AsmL, which describes how to model attacks, and present
the design and implementation of a compiler that generates attack signatures from the attack specifications.
Zulkernine et al. [12] present a method for integrating AsmL and Unified Modeling Language (UML) state
charts, in order to extend finite state machine based software specification languages, with the Snort open
source Intrusion Detection System (IDS). The attack scenarios are specified in AsmL or UML state charts,
and then, automatically translated into Snort rules. The Snort’s detection engine is modified so that it can
understand the rules translated from AsmL or UML state chart scenarios.

Hussein et al. [13] present a framework for developing components with intrusion detection capabilities.
This framework uses UMLintr, an UML profile for intrusion specifications [14]. The profile allows developers to
specify intrusion scenarios using UML diagrams. Specifying intrusion scenarios, using the same language that is
used for specifying software behavior, eliminates the need for separate languages for describing intrusions. UML
diagrams used in UMLintr are called misuse-case and misuse-state-machine diagrams. Misuse-state-machine
diagrams are used to specify the detection of intrusion scenarios. Each misuse-state-machine represents the
states which its corresponding attack may go through.

STATL is a language to describe security violations as sequences of actions that an attacker performs
to compromise a computer system [15]. The STATL language has been successfully used in describing both
network-based and host-based attacks, and it has been tailored to very different environments. By abstracting
away from the details of a particular attack, it is possible to detect previously unknown variations of an attack
or attacks that exploit similar mechanisms. In particular, the STATL language provides constructs to represent
an attack as a composition of states and transitions.

CORAS [16] is a method for conducting security risk analysis, it presents a customized language for threat
and risk modeling, and provides detailed guidelines explaining how the language should be used to capture and
model relevant information during the various stages of the security analysis.

The main difference between the proposed approach and the above described solutions, is that, our solution
follows a bottom-up approach, focusing on the application architecture and implementation, having has target

Developing Secure Cloud Applications 53

user the developer. In particular, the previous works mainly propose formalisms to specify attack and intrusion
models, as well as security rules. Our approach aims at proposing a methodology to describe mechanisms as
components in the cloud-based application design process, which can be used to enforce security requirements
specified in SLA.

4. Modeling Secure Cloud Interactions. Traditional techniques for protecting systems have almost
clear boundaries and rely on a permanent architecture, which is hardened through the introduction of ad-hoc
security mechanisms. This is not the case for a Cloud application: it runs over an enabling platform, which
consumes multiple Cloud resources dynamically acquired. In order to design an application which offers clear
grants to Customers, grant for which the Provider is responsible, we need a way to state such requirements and
a way to evaluate how they are offered.
The approach is based on the following logical steps:

1. developers identify application use cases according to a common software development methodology;
2. developers identify the interactions (i.e., every kind of data exchange among actors in a Cloud system)

among components of the Cloud application under study (next sections will detail what we mean with
the interaction terms) and describe the use cases as a workflow of different interactions ;

3. any interaction can be implemented and offered with different modalities, taking into account security
mechanisms, threats, user requirements, user security attributes and capabilities.

Basing on these assumptions, we propose to develop specific security components that are available to
developers, pre-associated to user requirements and pre-evaluated in terms of security guarantees. In this way,
a developer can easily add security mechanisms to their applications and, furthermore, he will be able to control
the security level that he is enforcing. The pre-evaluated components also enable the Service Provider to evaluate
the goodness of a secure application and have a tool to guarantee this to end-users.

In order to demonstrate this, we will introduce the main concepts of modeling interactions and interaction
modalities by using an Infrastructure as a Service example, then we will apply them on a real case study, based
on a Platform as a Service (the mOSAIC Platform) to develop the security components.

4.1. The proposed approach. Several Cloud providers, such as Amazon EC2, Google Compute Engine,
GoGrid, offer similar services and applications to customers, but they use different technologies and techniques
to guarantee security grants to end users. Our approach is to offer to developers and customers a way to identify,
independently of the technologies, the features they are interested in terms of components and additional security
components to enforce security requirements expressed by end-users. We introduce a model that describes Cloud
applications in terms of interactions and the ways in which such interactions take place (modalities) to implement
specific Use Cases. Moreover, we took into account the roles’ interactions that may occur in a Use Case.

4.1.1. Cloud actors. The actors classification introduced in the first section is specialized according to
their capabilities to perform an action inside or outside the Cloud:

• EU: End Users (the customers) that interact with the Cloud by means of proper Web or software
interfaces.
• CSP: Cloud Service Provider.
• S: Services that provide access to applications, resources and features.
• R: Resources located in the Cloud.

Each actor can assume different roles being both providers or requester of services. According to the specific
interaction with the system, the roles we located are:

• INVOKER: It initiates the interaction and provides all the necessary information to process.
• TARGET: It is the interaction object.
• PROVIDER: It provides and manages the target. It is responsible for the accessing mechanisms both
in terms of functionalities (such as interfaces) and security (e.g., access control lists, policy).

4.1.2. Actor roles. Even if actors can assume any role, generally, the EU acts as an INVOKER, the R
acts as a TARGET, while CSP and S assume all the three roles. The general interaction schema among actors is

54 M. Rak, M. Ficco, E. Battista, V. Casola, N. Mazzocca

SNS2S1

RMR2R1

Cloud Service Provider
(CSP)

End Users

Fig. 4.1. Interactions among actors

reported in Fig. 4.1. For instance an EU can access a resource either using an ad-hoc service or through a CSP
interface. Moreover, a CSP can offer a resource using direct access or by a service. The EU interacts with the
Cloud resources and services in order to use an available Use Case. The term Use Case refers to the application
features that an Invoker requests to the Provider. An Use Case implementation requires several interactions
that can be implemented in different modalities. Therefore, we will model an Use Case as a workflow (sequence)
of interactions. Each an interaction is characterized by the triple:

<INVOKER, PROVIDER, TARGET>.

Examples of valid interactions in which an EU has the Invoker role are reported in Tab. 4.1. Such examples
help in clarifying what we mean with an interaction Type.

Table 4.1
Examples of valid Interactions Types

n. Use Case description Interaction Type

1 First EU’s registration to CSP <EU,CSP,CSP>

2 EU mounts a disk to an instance <EU, S, R>

3 EU creates a virtual volume <EU, S, S>

4 EU generates a new set of credentials for SSH <EU,CSP,S>

The first example focuses on the actions performed by an EU when he registers himself to the Cloud
provider. In this case, we outline that the End user acts as Invoker, while the CSP as Provider. Note that, the
Target is the CSP itself: the interaction has the effect of changing the set of users of the CSP, enabling the EU
to accept future requests for different services. From a security point of view, this operation is critical and the
security mechanisms adopted to protect such interaction will be very relevant. We will take into account these
mechanisms in the Iteraction Modality.

4.1.3. Iteraction modalities. CSPs can offer the same Use Case by several modalities. In Tab. 4.2
different examples of Interaction Modalities are associated to the same interaction. The Use Case “First EU’s
registration to CS” can be implemented with a Web Console interface and can require a user and password
authentication mechanisms, or a more secure One Time Password mechanisms; these two are equivalent from
the functional point of view, but provide a different security level being the second more secure.

Each modality can be associated to a different security mechanisms, which depends on threat related to
the specific interaction modality, on user requirements, on his attributes and capabilities. Finally, different
modalities can provide a different security level that is pre-evaluated. The evaluation of the security level
is performed by adopting an evaluation methodology as the ones presented in [17, 18, 19]. Therefore, we
can characterize an interaction modality by <Threat, Security Requirements, Security Mechanisms, Invoker’s
Attributes>, where:

• threats are specific attacks or systems vulnerabilities that we want to mitigate;

Developing Secure Cloud Applications 55

Table 4.2
Examples of valid Interactions Modalities and Security Level

Interaction Type Interaction Modalities Security Level

<EU,CSP,CSP> Web Console with usr/pwd 2

- Web Console with OTP 3

<EU,S,S> Web Console with usr/pwd 1

- Web Console with OTP 2

- HMAC SHA1 3

- HMAC SHA2-256 4

• security requirements are user desiderata that usually are requested in the Service Level Agreement
with the provider;
• security mechanisms can be enforced with both additional components or with a specific implementation
of an already existing component; for example, to improve security in the communication channel, one
can use components that already have cryptoghaphic primitives to encrypt the channel or, alternatively,
one can add external components to provide this feature;
• invoker attributes are needed to specify invokers security capabilities, if any.

Fig. 4.2. Modeling a Use Case with interactions

From the developer point of view, this model helps to see a Cloud application as a composition of n
different Use Cases implemented by a number of interactions Ti. In Fig. 4.2 the Use Case representation
model is reported. Interactions Ti can be implemented in different modalities Mj that enforce different security
mechanisms and are able to guarantee different pre-evaluated security levels. The developer has the possibility
to choose one of the available application packages that best fit user requirements and provider guarantees.

56 M. Rak, M. Ficco, E. Battista, V. Casola, N. Mazzocca

Specifically, the approach will enable to add security related terms in the Service Level Agreements among
Customers and Service Providers being able to easily evaluate and enforce proper security mechanisms.

4.2. Security mechanism description. Some security mechanism to be adopted can be defined by the
security (detection) rules that it has to implement. A rule is specified by three basic elements: Condition,
Attributes, and Reaction.

• Condition A rule is satisfied if its condition is true. A condition is made of a set of events. An event can
be any significant occurrence detected by a probe, such as a particular string contained in a received
packet, a predetermined number of messages received from the same IP or a high number of failed login
attempts. It is also possible to set up a hierarchy of rules. In this case, a condition can be made of
multiple rules too. If all the rules are true and the events are occurred, then the condition is satisfied.
Events and rules can be combined with AND, OR, NOT logical operators.
• Attributes Every rule may have some attributes too. Designer has the possibility to specify the involved
security probes or the monitored resource. For example, it is possible to specify the variable or the
log file considered by the rule condition. It is also possible to include the eventual security protocol
involved in the rule.

• Reaction If the specified condition occurred, the rule is true and the system may be under cyber attack.
Thus, when all the events and the rules in a condition are true, an appropriate reaction is performed.
The action to take is different basing on the events occurred. Actions depend also on events severity
level. For example, an alert e-mail can be sent to the administrator if a low severity event occurs.
Instead, in the case of a critical event extreme countermeasures must be taken.

Figure 4.3 shows an example of a rule representation. The stereotype ‘Rule’ characterizes the object and
a numerical ID uniquely identifies the rule. The object is divided in three sections. The first one contains a
short rule description and a list of all its optional attributes. In ‘Condition’ there are events and rules that
make true the rule considered. The rule is valid if at least one of the conditions is verified. Each event must be
associated to an ID and should be described in a separately table. ‘Reaction’ contains a short description of
what the system has to do. It may contain a list of operations too.

5. A Case Study: Securing mOSAIC Applications. In order to validate the proposed approach we
consider the application described in Section 3.1. We assume that the application offers two use cases:

• UCP : a parsing service of the XML documents (XML Doc), i.e., it performs the XML analysis (using
a DOM approach), and computes the total number of nested XML tags;
• UCQ: a query service for retrieving results (Res).

In this case study, we consider two kinds of Denial Of Service threats, the HTTP flooding and the Deeply-
Nested XML:

• The HTTP flooding aims at creating a plenty of requests to the XDM application in order to exhaust
resources and to inflict a denial of service to legitimate EUs.
• The Deeply-Nested XML exploits the XML message format by inserting a large number of nested
XML tags in the message body. The goal is to force the XML parser (the Analyzer), to exhaust the
computational resources of the host VM, by processing a large number of deeply-nested XML tags [20].
Moreover, this kind of attack is particularly harmful when using DOM based parser. A DOM based
parser reads the complete message and builds an in-memory representation (called DOM tree), that is
much larger than the message itself. Therefore, the application memory would be exhausted before the
validator could even start the validation process.

For this case study, an advantage of using mOSAIC is the ability of automatically scale the application
components (the Cloudlets and queues) when the host resources are overloaded (because the attack). But, as
a side effect, the application consumes an increased amount of resources, on charge of the application owner
(the Service Provider). The Provider needs proper security mechanisms in order to mitigate the considered
attacks, as well as to guarantee the signed SLA. In next section we will illustrate how the developer can add
such security mechanisms within the already deployed application, by simply adding the set of already available
Cloudlets that act as mitigation means.

Developing Secure Cloud Applications 57

Fig. 4.3. Example of rule representation

5.1. Approach implementation. To understand how to apply the proposed methodology, we need to
understand how to map user requirements with specific security mechanisms to add in the application. For
this reason, to express user requirements, we will adopt the same tuple as described in the previous section,
in this way it will be easier to identify additional components for the application developer. Fig. 5.1 expresses
the security requirements and attacks to mitigate (they can be reported in a Service Level Agreement with
the adoption of the same tuple [21]). In particular, they state that the User wants to protect the interaction
TP from both the attack types, and TQ by the HTTP flooding. During the specification of requirements, the
protection mechanisms and security attributes are not explicitly indicated and the values in the tuple are zero.

Fig. 5.1. Security requirements expressed with the same formalism as interaction types

According to these requirements, in the design phase, in order to protect the application from the considered

58 M. Rak, M. Ficco, E. Battista, V. Casola, N. Mazzocca

attacks, the developer has to identify/choose appropriate mitigation means (i.e., the modalities) for reducing or
eliminating the potential intrusions. Specifically, for each interaction between the application components (in
terms of INVOKER and PROVIDER), the developer has to identify the vulnerabilities that can be exploited
by the specified attacks and, for each attack, he has to define/choose the mitigation means to be implemented,
in order to mitigate or eliminate attacks exploiting an interaction vulnerability.

Therefore, the overall approach consists in mapping the high level Interaction Modes Mp1 and Mp2, which
express security requirements, with the low-level interactions among application components, as defined in
the Service Descriptor of mOSAIC [22]. Moreover, for each interaction type, the developer has to identify
vulnerabilities, possible mitigation means, needed user attributes to eventually enforce one mechanism (Can the
user manage security tokens? Can the user provide a secret password?).

Looking at the sequence diagram represented in Fig. 3.1, the Use Case UCP is implemented with four
interactions (Fig. 5.2): 〈EU,HTTPgw, put〉, 〈HTTPgw,Queue,
publish〉, 〈Analyzer,Queue, consume〉, 〈Analyzer,KV, put〉 and, for each of them, the possible Interaction Modes
with associated vulnerability are reported. For the sake of simplicity, in figure we just reported the threat and
the requirement without reporting the mechanisms and user attributes that we will illustrate later together with
a description of the located threats.

Fig. 5.2. Use Case P: interaction types and Modes

5.1.1. Interaction Mode implementation. As for the Interaction Mode Mp1.1 related to X-DOS threat,
the schema validation is a good countermeasure against attacks based on XML messages that are not conform
to the Web service description. These schema can be enforced by validating the incoming messages against
specific restrictions [23]. Sophisticated solutions can be implemented by restricting the length of each XML
element or limiting the list of XML elements contained within each message. However, although efficient XML
validation engines (that can operate completely on the fly) have been proposed [24], in the current Web server
frameworks, they are not used or not activated by default. This is mainly due to performance reasons, since
schema validation is expensive regarding CPU load and memory consumption. This mechanism can be used to
verify the presence of an attack, and to identify the malicious flows. If an attack is detected, a reaction can be
triggered to filter malicious requests, or to block the attack sources [25].

The detection rule consists in monitoring the overall CPU consumption of the target application deployed
over the distributed VMs. We can adopt a window-based state monitoring that triggers state alerts only when
the normal state is continuously violated for a time window W [26]. W is essentially the tolerable time in
abnormal state, which must be established by the service provider. Given the threshold TR, the size W of the

Developing Secure Cloud Applications 59

monitoring window, and n monitored VMs with CPU values CPUi(t) at time t, an alert is triggered only when
∑n

i=1 CPUi(t − j) > T , ∀j ∈ [0,W] at any t. In order to validate the adopted technique, we assume that
the alarm must be triggered when the overall CPU load on the involved VMs exceeds 80% for a time window
W = 10 minutes. The considered rule is represented in Figure 5.3.

Fig. 5.3. Detection rule description for modality MP1.1

As for the Interaction Modes Mp2.1 and Mp2.2 related to HTTP flooding threat, a different consideration
can be done. In the process of visiting a Web site, the user sends requests, which have different properties
in idle time, memory computational and computational load. On the contrary, the HTTP flooding sources
send out HTTP requests with another pattern. In particular, several known worms’ attack pattern use parallel
threads to send GET requests in order to exhaust the server’s resource. They might use different numbers of
threads or different delays, but it’s hard to simulate human user’s request patterns. Therefore, the fact that the
human user and attacker have different request patterns can be used in detecting the attackers, for example, by
exploiting the idle time between each request from the same user [27].

5.1.2. Interaction Mode enforcement. In order to implement the identified solutions, we used specific
mOSAIC components that are available and can be added by the Service Provider in a transparent way with
respect to the application. For example, as for the X-DoS attack the following additional security components

60 M. Rak, M. Ficco, E. Battista, V. Casola, N. Mazzocca

can be used to implement the iteration modality:
• Monitor : By using the features offered by the mOSAIC Platform, the Monitor monitors the CPU
consumption of the application. In particular, if the average computational load of the XML Analyzer
instances exceeds a fixed threshold for a long time period, the Monitor enables the Detector.
• Detector : It consists of several sub components: the Parser, the Validator, and the Engine [8, 28].
The first two parse and validate the incoming messages, by using a schema validation approach (e.g.,
it is verified whether a hunge number of XML tags included in the incoming messages is below a fixed
threshold). The Engine uses an anomaly based methods to identify the malicious sources (e.g., for each
flow of messages, it counts the number of malformed XML documents received by the application). If
a flow of requests is identified as malicious, it sends a message to the HTTPgw, reporting the malicious
source of the messages (IP address).
• HTTPgw : It is enabled to operate as a filter. It discards the messages flows that are identify as
malicious. This action is applied until the system performance returns to a normal state (e.g., the
average CPU consumption of the observed Cloudlets is below the fixed threshold).

Fig. 5.4 shows how the architecture of the identified solution changes respect to the original one in Fig. 3.2,
with all connected components to enforce the chosen interaction modalities.

Fig. 5.4. Application components to enforce chosen Interaction modes

According to the proposed solution, the validation process of the incoming messages is enabled only when
an attack symptom is detected. Moreover, in order to prevent resource exhaustion, the Detector works on an
event-based approach, using a SAX parser. For each XML document parsed, an event is sent to the Validator,
which directly operates on this event to validate the document. There is no need, neither for the Parser
nor the Validator, to reconstruct the whole document in memory. In fact the Validator has constant memory
consumption (only depending on the schema size) and linear run-time. The Detector can therefore easily process
very large documents. If the Validator finds a schema violation inside a message, the Detector has read the
document only up to that particular element, the remaining document is not read and therefore there is not
impact on the Detector performance. If the Engine detects a potential attack, the message source is tagged as
malicious, and a policy is set on the HTTPgw to discard messages from that source.

As for the HTTP flooding, two interaction modes can be enabled, but they cover different requirements
(Fig. 5.2). The first mode can be used to prevent the attack. In particular, secure sockets layer (SSL) and
transport layer security (TLS) encryption protocol can be used to secure Web communications via HTTPS. In
particular, we can assume that a flooding attack is likely in progress, if the XDM application is overloaded with
HTTP requests to be processed, and a huge number of incoming HTTP requests are discarded. In such a case,
a detection method must be enabled in order to identify and filter malicious sources. The second mode can be
applied for detecting and mitigating the attack. The associated detection rule is represented in Fig. 5.5

The implemented solution is similar to that presented in Fig. 5.4. By using some mOSAIC Platform
features, a Monitor can monitor the state the XDM application’s queue, as well as the number of incoming

Developing Secure Cloud Applications 61

Fig. 5.5. Detection rule description for modality MP1.2

HTTP requests. If the queue is full for a long time and many HTTP requests are discarded, a specific Detector is
enabled. The Detector analyzes each incoming flow of requests. If a flow is identified as anomalous (it does not
fit the model estimated during the training phase), the source of the flow is considered malicious and filtered by
the HTTPgw. The detection method is based on the assumption that attackers and normal users have different
properties in the request patterns. Therefore, a large volume of normal users’ request sequences can be used
to train a normal model, and then use the model to check incoming users. A Hidden Semi-Markov Model can
be used to describe the process of an user visiting a website [27]. If the user’s request sequence fits the model,
the user will be considered as normal user. Otherwise, it will be considered as a potential attacker source and
should be filtered.

6. Conclusions and Future Work. Security is one of the main limits in the adoption of Cloud infras-
tructures and applications. Users and providers do not have enough tools to evaluate and monitor the real
enforcement of implemented security solutions. Indeed, security parameters are not included in Service Level
Agreements as they cannot be negotiated and easily monitored. In this paper, we propose an approach to
cope with this problem, by giving to cloud application developers the possibility to choose different security
mechanisms that can be easily integrated in the application and have been pre-evaluated from the security
point of view. We propose to model components’ interactions from a security point of view in order to enable a
developer to choose from different solutions which best fits the user requirements. The methodology we propose
does not aim at proposing a new language to specify security attacks and requirements, indeed at the state
of the art many solutions to this problem are based on this kind of approach. We aim at demonstrating the
applicability of a simple methodology to implement security mechanisms in a transparent way with respect to
the user applications, and to enable a Service Provider to easily offer security guarantees to customer. This is
a first work in this direction, and we presented first results through a simple case study that introduces new
components in an existing application to improve the overall security and meet user requirements. In future

62 M. Rak, M. Ficco, E. Battista, V. Casola, N. Mazzocca

work, we are going to implement different security packages and truly offer different secure interaction modali-
ties. Our goal is to design a full and easy-to-use methodology to develop secure Cloud applications, such that
the provided security is measurable and can be monitored by both end users and providers.

Acknowledgments. This work has been partially supported by the FP7-ICT-2013-10-610795 (SPECS).

REFERENCES

[1] M. Ficco, L. Tasquier, and B. Di Martino, “Interconnection of federated clouds,” Studies in Computational Intelligence, vol.
511, pp. 243–248, 2014.

[2] C. Esposito, M. Ficco, F. Palmieri, and A. Castiglione, “Interconnecting federated clouds by using publish-subscribe service,”
Cluster Computing, vol. 6, no. 4, pp. 887–903, 2013.

[3] W. Theilmann, R. Yahyapour, and J. Butler, “Multi-level sla management for service-oriented infrastructures,” vol. 5377,
pp. 324–335, 2008. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-89897-9\ 28

[4] M. Comuzzi, C. Kotsokalis, C. Rathfelder, W. Theilmann, U. Winkler, and G. Zacco, “A framework for multi-level sla
management,” vol. 6275, pp. 187–196, 2010. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-16132-2\ 18

[5] CONTRAIL, “Contrail: Open computing infrastructres for elastic computing,” http://contrail-project.eu/, 2010.
[6] mOSAIC Project, “mosaic: Open source api and platform for multiple clouds,” http://www.mosaic-cloud.eu, 2010.
[7] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu, “Web

services agreement specification (ws-agreement),” in Global Grid Forum. The Global Grid Forum (GGF), 2004.
[8] M. Ficco, “Security event correlation approach for cloud computing,” High Performance Computing and Networking, vol. 7,

no. 3, pp. 173–185, 2013.
[9] M. Ficco and L. Romano, “A generic intrusion detection and diagnoser system based on complex event processing,” in Proc. of

the IEEE Int. Conf. on Data Compression, Communications and Processing (CCP’11). IEEE CPS, 2011, pp. 275–284.
[10] I. Ivanov, M. van Sinderen F. Leymann, B. S. SciTePress, and T. Publications, Eds., Towards a cross platform Cloud API.

Components for Cloud Federation, 2011.
[11] M. Raihan and M. Zulkernine, “Asmlsec: An extension of abstract state machine language for attack scenario specification,”

Proc. of the 2nd Int. Confe. on Availability, Reliability and Security (ARES’07), pp. 775–782, 2007.
[12] M. Zulkernine, M. Graves, and M. Khan, “Integrating software specification into intrusion detection,” Journal on Information

Security, vol. 6, pp. 345–357, 2007.
[13] M. Hussein and M. Zulkernine, “Intrusion detection aware component-based system: A specification-based framework,”

Journal of System and Software, vol. 80, no. 5, pp. 700–710, 2007.
[14] Hussein and M. Zulkernine, “Umlintr - a uml profile for specifying intrusions,” Proc. of the 13th IEEE International Conference

and Workshop on the Engineering of Computer-Based Systems, pp. 279–286, 2006.
[15] S. Eckmann, G. Vigna, and R. Kemmerer, “Statl - an attack language for state-based intrusion detection,” Journal of

Computer Security, vol. 10, no. 1-2, pp. 71–104, 2002.
[16] F. den Braber, I. Hogganvik, M. Lund, K. Stølen, and F. Vraalsen, “Model-based security analysis in seven steps - a guided

tour to the coras method,” BT Technology Journal, vol. 25, no. 1, pp. 101–117, 2007.
[17] V. Casola, A. Mazzeo, N. Mazzocca, and V. Vittorini, “A security metric for public key infrastructures,” Journal of Computer

Security, vol. 15, no. 2, 2007.
[18] R. Preziosi, M. Rak, L. Troiano, and V. Casola, “A reference model for security level evaluation: Policy and fuzzy techniques,”

Journal of Universal Computer Science, January 2005.
[19] V. Casola, A. Mazzeo, N. Mazzocca, and M. Rak, “A sla evaluation methodology in service oriented architectures,” Advances

in Information Security, vol. 23, pp. 119–130, 2006.
[20] M. Ficco and M. Rak, “Intrusion tolerant approach for denial of service attacks to web services,” Proc. of the IEEE Int. Conf.

on Data Compression, Communications and Processing (CCP’11), pp. 285–292, 2011.
[21] M. Ficco, M. Rak, and B. Di Martino, “An intrusion detection framework for supporting sla assessment in cloud computing,”

Proc. of the 4th IEEE Int. Conf. on Computational Aspects of Social Networks, pp. 244–249, 2012.
[22] M. Ficco, S. Venticinque, and B. Di Martino, “mosaic-based intrusion detection framework for cloud computing,” On the

Move to Meaningful Internet Systems: OTM 2012, vol. 7566, pp. 628–644, 2012.
[23] M. Jensen, N. Gruschka, R. Herkenhoner, and N. Luttenberger, “Soa and web services: new technologies, new standards -

new attacks,” Proc. of the 5th European Conf. on web services, pp. 35–44, 2007.
[24] N. Gruschka and N. Luttenberger, “Protecting web services from dos attacks by soap message validation,” IFIP Advances in

Information and Communication Technology, vol. 201, pp. 171–182, 2011.
[25] M. Ficco and M. Rak, “Intrusion tolerance of stealth dos attacks to web services,” IFIP Advances in Information and

Communication Technology, vol. 376 AICT, pp. 579–584, 2012.
[26] S. Meng, T. Wang, and L. Liu, “Monitoring continuous state violation in datacenters: Exploring the time dimension,” in

IEEE 26th Int. Conf. on Data Engineering (ICDE). IEEE, 2010, pp. 968–979.
[27] W.-Z. Lu and S.-Z. Yu, “An http flooding detection method based on browser behavior,” Proc. of the Int. Conf. on Compu-

tational Intelligence and Security, vol. 2, pp. 1151–1154, 2006.
[28] M. Ficco, L. Tasquier, and R. Aversa, “Intrusion detection in cloud computing,” Proc. of the 8th Int. Conf.on P2P, Parallel,

Grid, Cloud and Internet Computing, pp. 276–283, 2013.

Developing Secure Cloud Applications 63

Edited by: Teodor Florin Fortiş
Received: Mar 3, 2014
Accepted: Apr 16, 2014

Scalable Computing: Practice and Experience
Volume 15, Number 1, pp. 65–78. http://www.scpe.org

DOI 10.12694/scpe.v15i1.966
ISSN 1895-1767
c© 2014 SCPE

A DISTRIBUTED AGENT-BASED DECISION SUPPORT FOR CLOUD BROKERING

ALBA AMATO∗AND SALVATORE VENTICINQUE†

Abstract. In goal oriented problems, decision-making is a crucial aspect aiming at enhancing the ability to make decisions
by full autonomous, or supervised software agents. Agents usually resolve a huge number of evaluations and decisions without
the user intervention. Just the remaining uncertainty should be left to the user’s attention. In this paper we present a complete
constrained multi-objectives optimization problem, modeled as an agent based decision support systems, that helps to choose the
Cloud proposals that best satisfy the needs of the user, among the ones offered by known vendors. In particular we focus on a
distributed solution that exploits the multi-agents programming model and the Cloud elasticity to comply with computational
requirements of delivering such brokering at Cloud service level.

Key words: Multi-Agents systems, Cloud provisioning, Brokering, Multi-Criteria Decision

78

1. Introduction. The research of solutions for delegation to intelligent software agents in information
systems has implied the need to develop systems able to act effectively: the systems must be able to act
independently and follow the choice that best represents their interest during the interaction with a human
being or another system.

To successfully interact, is essential for agent the ability to cooperate, coordinate, and negotiate with
each other. In particular the research for even more intelligent systems implies that the complexity of tasks
delegating to computers has also grown steadily leading to the need to develop systems able to act effectively
and independently and to make decisions. In fact delegation and intelligence imply the need to build computer
systems that can act effectively in a way that represents the best interests of the user while interacting with
other humans or systems [23].

In this kind of goal oriented problem, decision-making is a crucial aspect aiming at enhancing the user’s
ability to make decisions. The decision has to be made among possible alternatives taking into account all the
certainty and uncertainty considerations and using a prescribed set of decision criteria.

The reason for this intensive interest in decision-making [35] is that the metaphor of autonomous problem
solving entities cooperating and coordinating in order to achieve their desired objectives is an intuitive and
natural way of the problem solving. Moreover, the conceptual apparatus of this technology provides the powerful
and useful set of computational structures and processes for designing and building the complex software
applications.

The multi-agent techniques combined with decision-making tools can help decision makers to deal with
the problems of the information overload. In addition, it is possible to make better and wider use of the
existing knowledge by extracting value from large volumes of data. An additional challenge of the research is
the possibility for an intelligent agent of being “rational” by having preferences about the goals to be achieved
on the basis of interests expressed by the user. In particular the application of agent-based decision support
helps users to make the right choice improving their satisfaction.

Enhancing software agents with decision making features and addressing them like rational entities is a
topic of keen interest in designing agents and, which has been researched intensively [16] , [32].

The brokering problem, described in [1, 5] is a decision problem that consists of choosing the best proposals
among the number of offers, which have been received from different providers, who answered to the same
call [4]. The brokering has been addressed as a complete multi-objective constrained problem. The solution of
this problem is one of the main objective of mOSAIC project [21].

To solve the brokering problem, we designed and developed Cloud Agency, a Multi-Agent System (MAS)
that has the main task of dynamically selecting a set of Cloud resources, from different vendors, that best fits
users’ requirements. It also allows for vendor agnostic management and monitoring of Cloud infrastructures,
where legacy or mOSAIC application are deployed as presented in [11]. It is compliant with the NIST definition

∗Department of Industrial and Information Engineering, Second University of Naples, Aversa, Italy (alba.amato@unina2.it).
†Department of Industrial and Information Engineering, Second University of Naples, Aversa,

Italy(salvatore.venticinque@unina2.it).

65

66 A. Amato AND S. Venticingue

of cloud broker as defined in [20], that is an entity that manages the use, performance and delivery of cloud
services, and negotiates relationships between Cloud Providers and Cloud Consumers. Cloud Agency actively
performs cloud broker functions at the platform level.

In [3] we demonstrated the feasibility of the specific approach in the case of a single user, considering the
number of existing providers in the current Cloud market, in the case that all the providers have at least one
proposal. However the centralized approach is not effective in the case of brokering delivered as a service to a
huge number of users. Performance bottleneck was observed so we investigated a new solution to support either
a greater number of decisions and the dimension of the single decision problem.

To provide the brokering facility at Application as a Service level we have to overcome the performance
limitations of the mOSAIC Cloud Agency solution, starting from the identification of new requirements. First of
all it needs to identify the issues introduced by the new scenario, but also to take in consideration the available
technologies for designing and implementing a new engineered solution.

About the issues, we need to take into account the number of service users who can access contemporary
the service by multiple requests. We have to consider that in a service oriented context, not only human
users, but also applications and robots will be able to invoke the service producing different kind of workloads.
The new workload can vary in dimension and it can also dynamically change during the day, with regular
or unforeseeable bursts on special periods. For this reason we have to share the workload over a distributed
computing infrastructure, and we need to grant that both the infrastructure and the application will scale
dynamically.

In this paper we present a scalable distributed multi-users version of the brokering service provided by
Cloud Agency. Such new Broker As A Service solution exploits the capability of a distributed environment and
addresses related issues. The idea is to divide the brokering problem into simple tasks, which are distributed to
independent and collaborative agents, scaling dynamically in number, together the computing infrastructure,
to support unforeseeable workloads produced by the interactions with large groups of users. In addition we
evaluate and discuss performance results and effectiveness of a first prototype implementation.

2. Related Work.

2.1. Decision-making. According to [34] the Multi-Criteria Decision Making (MCDM) is divided into
Multi-Objective Decision Making (or MODM) and Multi-Attribute Decision Making (or MADM). As described
in [28] MODM studies decision problems in which the decision space is continuous. The goal is to find the best
alternative among endless alternatives known implicitly.

On the other hand, MADM concentrates on problems with discrete decision spaces. In these problems
the set of decision alternatives has been predetermined. Paper [9] claims that, although MADM methods may
be widely different, many of them have certain aspects in common, such as the notions of alternatives, and
attributes (or criteria, goals). In fact the general approach consists of the utilization of information about the
problem (factual elements) together with the preferences express by the decision maker (value elements) to find
the best compromise that will help to select the most consistent alternative, according to his preferences.

A decision making process typically has five steps that are summarized as follow [7]: Identify the problem
or opportunity, Develop alternative, Evaluate alternative, Choose and implement the best alternative, Evaluate
the decision.

In general, the outcome of a decision (action) depends on the context in which the decision is implemented,
but a very general decision rule applied to MCDM problems consists in the identification of all efficient al-
ternatives and the selection of the solution using the information of preference that the decision maker makes
available. According to [6] the ”optimum” solution corresponds to the feasible point for which the objective
function achieves an optimum value.

The current role of multi-objective optimization in various sectors is becoming increasingly relevant. As
with most problems, the objectives to be considered are many and often contradict each other. In particular,
our approach is a MultiCriteria Decision Analysis/Aiding (MCDA) as addresses mainly discrete problems with
not very large (combinatorial) sets of alternatives. For combinatorial problems find rules for decision making.
Constrains are taken into account implicitly: into set of criteria and/or alternatives.

The multi-criteria decision-support is a valuable methodological tool in the processes of decision-making
support. The multi-criteria decision-support is intended to provide to decision-makers some tools, which help

A Distributed Agent-based Decision Support for Cloud Brokering 67

them in resolution of a problem of choice among alternatives, when numerous and often contradictory points of
view must be taken simultaneously in consideration.

In general there is no decision (solution, action) that is the best one compared to all involved points of view.
Besides there are situations where, as many factors have to be considered, the available alternatives are too
much different or even not comparable. In addition, we are interested in those contexts where there are different
stakeholders that give a different value to the several factors to be considered, that represent the preferences
for criteria. Hence the problem is how to measure the importance of these criteria and how to combine these
values.

In this scenario, one of the main implications of multi-criteria decision support has been the loss of opti-
mality. In fact, given the presence of heterogeneous objectives often in conflict with each other, a cost benefit
analysis is not feasible. Usually it is not possible to find solutions that simultaneously pursue all the objectives.
The decision problem is solved looking for the most satisfactory solution, or ”more consistent” with the logic
of decision makers. The choice must therefore be performed among those solutions that realize a certain level
of achievement of the various objectives, such that it is not possible to improve one of them without degrading
some others.

According to [22], multiple criteria modeling methodology can address the following set of issues :
• Issue 1: Object of the decision, including the definition of the set of potential actions A and the
determination of a problematic applied on A.
• Issue 2: Modeling of a consistent family of criteria assuming that these criteria are non-decreasing value
functions, exhaustive and non-redundant.
• Issue 3: Development of a global preference model, to aggregate the marginal preferences on the criteria.
• Issue 4: Decision-aid or decision support, based on the results of Issue 3 and the Issue 1.

In Issue 1, Roy [22] distinguishes four referential problematics, each of which does not necessarily preclude
the others. These problematics can be addressed separately, or in a complementary way in all phases of the
decision-making process. They are listed below:

a: Choosing one action from A (choice).
b: Sorting the actions in well defined categories which are given in a preference order (sorting).
c: Ranking the actions from the best one to the worst one (ranking).
d: Describing the actions in terms of their performances on the criteria (description).

2.2. The Brokering Problem. There were some efforts aimed on solving the brokering problem. In [8]
an architecture is presented for a federated Cloud computing environment named InterCloud to support the
scaling of applications across multiple Cloud providers using a Cloud Broker for mediating between service
consumers and Cloud coordinators for an allocation of resources that meets QoS needs of users.

Sim [24] proposes an extension of the alternate offers protocol that supports multiple complex negotiation
activities in interrelated markets between user agents and broker agents, and between broker agents and provider
agents.

In [19] an architectural design of a framework capable of powering the brokerage based Cloud services is
presented. It is currently being developed in the scope of OPTIMIS, an EU FP7 project. The cited paper
introduces the problem and the architectural design but it does not provide an implementation or algorithms
to achieve the brokering.

Our brokering solution, overcomes the problems of the centralized broker so allowing a multi-user utilization.
Besides it allows the concurrency, is highly scalable, open and available to enable easy extensions of existing
components and addition of new components.

2.3. BDI agents. In BDI architecture [15],Beliefs, Desires, Intentions are the basic components of an
agent that should be able to operate in a dynamic, uncertain world. Beliefs represent agent’s knowledge of the
world, Desires (or goals) represent what the agent wants and Intentions are a set of plans used to describe how
an agent achieve his goals. BDI agents are adaptive in the sense that they can quickly reason and react to
asynchronous events acting accordingly to them.

According to Wooldridge [32], the process of practical reasoning in a BDI agent is summarized in Figure
3.1 As this figure illustrates, there are seven main components to model a BDI agent:

68 A. Amato AND S. Venticingue

• a set of current beliefs, representing information the agent has about its current environment;
• belief revision function, (brf), which takes a perceptual input and the agent’s current beliefs, and on
the basis of these, determines a new set of beliefs;
• an option generation function, (options), which determines the options available to the agent (its
desires), on the basis of its current beliefs about its environment and its current intentions;
• a set of current options, representing possible courses of actions available to the agent;
• a filter function (decision), which represents the agent’s deliberation process, and which determines the
agent’s intentions on the basis of its current beliefs, desires, and intentions;
• a set of current intentions, representing the agent’s current focus (those states of affairs that it has
committed to trying to bring about);
• an action selection function (execute), which determines an action to perform on the basis of current
intentions.

BDI agents often have to make decisions, about which plan is used to achieve a goal, and in which order
goals are to be achieved. Besides The BDI approach has proved valuable for the design of agents that operate
in dynamic environments. It offers a higher level of abstraction by explicitly allowing beliefs to have a direct
impact upon the agents behavior. This means the agents can respond flexibly to changing circumstances despite
incomplete information about the state of the world and the agents in it [12].

2.4. Mult-agent decision support systems. Intelligent agents, when combined with Decision Support
System, provide powerful support in solving difficult applied problems that are often real-time, involve large
amounts of distributed data, and benefit from complex reasoning.

In fact it is evident [10] that a methodology for solving multi-criteria decision support can be applied to
the agents modeling problems [13]: a consistent family of criteria (Issue 2) can sufficiently model the world
with respect to the object of the decision (Issue 1). A global preference model (Issue 3) is able to guide agents’
decisions. Finally, agents’ actions will be realized based upon the decision support step (Issue 4).

Multiple criteria methodologies could contribute as a methodological background for agents modeling as well
as a tool for their real-time implementation [29]. However, in this work we stress their potential for modeling
support. In this respect, the potential contributions lie across two levels:

1. Agent design level: The multiple criteria modeling can respond to the representation issue discussed
earlier. Existing methods can provide agents with critical decision making elements.

2. Multi agent level: Existing methods can profile decision makers (DMs), thus facilitate coordination –
negotiation. In addition, DM’s profiles can be exploited to assign roles or tasks to agents.

3. Problem Formulation. Problem formulation represents the first step of the decision process. The
way of approaching the problems means defining a set of actions in order to act in an organized and methodical
manner in the situations where a problem appears. In that way, the plan defines problem solving procedures
according to the typology and the level of complexity of the problem itself. In particular in our approach the
problem is modeled as shown in Figure 3.1. Some elements of the agents model will be introduced here and
detailed in the next sections.

Using a simple definition, an agent can be seen as an entity that perceives the environment and acts
rationally trying to achieve goals after that input perceptions and a knowledge base are given.

3.1. Environment. An agent is anything that can be viewed as perceiving environment through sensors
and acting upon that environment through effectors. Intelligence of agents is the ability to adapt to the
environment. In other words, as the environment changes an intelligent agent is able to adapt its behaviour to
the new environment [25].

Environment represents information source to which react. This environment might be a real physical
environment, a virtual one (so only existing in a computer), or a mix of both. Environment can be changed by
agents through actions.

Arguably, the capability to adapt to the environment, means that just about any agent is an intelligent
agent. Given an environment that can be in two possible states, an agent that is able to adapt its behaviour to
both states is intelligent. An intelligent agent is then an agent that is able to adapt to a large number of states
of its environment.

A Distributed Agent-based Decision Support for Cloud Brokering 69

Fig. 3.1. Decision-making support methodology

In the brokering problem the environment is represented by the different proposals that agents perceive.

3.2. Knowledge representation. Knowledge is a set of representations of facts of the world and con-
stitutes the base for reasoning. In facts intelligent agents need knowledge about the world for making good
decisions.

Knowledge also includes the awareness and control of environment, but obviously an agent will not have
complete control over its environment. In fact we always assume an agent has an imperfect view of its environ-
ment, and hence it cannot be certain if its actions always have the intended result. It will have at best partial
control, in that it can influence it. The agent takes sensory input from the environment, and produces as output
actions that will affect it.

Perceptions, state and actions of an agent constitute the agent’s knowledge. If an agents is able to choose
action sequences that maximize changes of the environment according to its own expected preferences, it can
be defined a rational agent. Rationality is an important aspect of intelligence, although not the only one.

A rational agents has preferences about the state of its environment. What is the rational thing to do
depends on the preferences of the agent, what at the agent has perceived so far, what the agent knows about its
environment, what its sensors perceive and what the agent deduces from perceptions, what actions the agent is
able to take.

In the brokering problem the knowledge is represented by the different proposals that agents perceive,
together with the Call for Proposals and the set of constraints and objectives.

3.3. Decision Making. Making a rational agent more intelligent means making it better able to adapt
to its environment. It implies more knowledge, better sensors, additional sensors, and enhancing its possible
actions, but also better deduction skills.

The Decision Making process, described in detail in the next section, can be seen as an e inference mecha-
nism, that uses perceptions and the knowledge base to deduce which actions to take.

4. The decision process. In our approach, the decision process is modeled as a problem of choosing
among many contents or proposals to be retrieved according to the users’ need. The process of discovery is
performed in different ways depending on the problem and the solution is realized as a multi-agent system.

Multi-agent systems are fundamental enabling technology, especially in situations where mutual interde-
pendencies, dynamic environments, uncertainty, and sophisticated control play a role. They can provide, as
stated in [14], robust representational theories and very direct modeling technologies to help us understand
large, multi-participant, multi-perspective aggregates.

The decision-making support methodology proposed here is shown in Figure 3.1. First of all it needs
to define a knowledge model and its formal representation. It is necessary for the following evaluation and

70 A. Amato AND S. Venticingue

comparison.
Besides it needs to provide a discovery service to collect the relevant information about the available choices.

In particular in the following case studies a semantic discovery has been carried out and a negotiation protocol
has been implemented to ask for a proposal to available vendors. Different objectives can be defined and both
quantitative and qualitative characterization of available information must be provided.

In fact decision problems are governed by a number of stakeholders with their own objectives and priorities.
Finally a strategy to evaluate the optimal decision is needed. The following subsections details each phase of
the process shown in Figure 3.1.

4.1. Discovery service. The process of discovery consists of the retrieval of a set of resources, which are
are relevant to the user’s query, expressed by a set of requirements or a personal profile. The process of discovery
is performed in different ways depending on the problem. The aim is the retrieval of all feasible alternatives.

4.2. Evaluation. The process of evaluation consists of assessing an overall evaluation measure to the
alternatives in order to provide a ranking of alternative assignments. This overall evaluation is assessed taking
into account user’s constraints and preferences. The aim is to find the expected utility of each alternative,
calculated using an utility function U(x) that depends on the problem.

4.3. Decision Strategy. The process of decision consists of filtering the alternatives with the highest
expected utility, that are compliant with user’s constraints. The aim is to choose the alternative or the set of
alternatives that maximize the utility function.

Results of this phase could still be multiple choices, in fact aim of the decision support is to delegate all the
evaluations and decisions, which can be resolved without the user intervention, to agents. Only the remaining
uncertainty should be left to the user’s attention.

5. The decision problem formulation.

5.1. Agents based modeling. In [33] an agent is defined as a computer system that is situated in some
environment, and that is capable of autonomous action in this environment in order to meet its objectives. We
need to formally define objectives, believes and actions in order to formulate the problem in terms of multi-agent
system.

The decision making model can be formally defined by the following items:
• A set of Believes B = {b1, · · · , bne, }, to be used for describing the knowledge in the application context,
is described by a domain ontology. The ontology has to be defined for the specific use case.
• The knowledge of agent i at the time t, about the environment and about his own preferences, is
described by a set of concepts and individuals belonging to the ontology. It is used to build the query
for retrieving the available options to be evaluated in the decision process. For each user i we have a
representation of his interest by a subset of preferred believes Pi ⊂ B and a set of constraints C(P).
• A discovery service for retrieving all available alternatives that are relevant to Pi.
• A set of goals: G = {g1, · · · , gnw}, whose achievement improves the user’s utility.
• Let us define A = {a1, · · · , ana} the set of assets which have been discovered. We need to define a
multi-objectives metric for the user utility U : A → u1(A), . . . , unw(A), that is the measure of the
achievement of each goal. U is a set of functions the defines the evaluation criteria based on which the
alternative assets are evaluated;
• A decision maker or group of decision makers will choose the best collection of assets A′ ⊂ A which
optimize the user’s utility, but it is compliant with user’s constraints. The optimal set of assets to
be proposed will be U(G(A′)) > U(G(A′ ∪ aj))∀j : aj ⊂ A − A′. It means that any additional asset
that is not useful to increase the user’s utility must be excluded. Of course both an empty solution, or
equivalent ones could be found.

In our multi-agents solution:
• perceptions provide information regarding the context of decision,
• the review process of knowledge updates the user profile and then the requirements for the decision,
• in the discovery phase the goal determines the alternative plans or actions to be evaluated for making
the decision.

A Distributed Agent-based Decision Support for Cloud Brokering 71

5.2. Believes and Preferences. In this case study, the set of Believes B = {b1, · · · , bne, } is described
using the OCCI taxonomy defined in [17], an interface that offers a uniform access to IaaS resources. Here we
define Call For Proposal (CFP) the document to be prepared by the customer to specify his requirements.

The CFP includes the list of resources to be acquired and the rules/policies to be used for defining resource
brokering strategies, i.e., prices, availability, etc.

As shown in Fig.5.1, the CFP is composed of two documents. The first one is the SLA Template described
according to the XML SLA@SOI schema [27]. The SLA Template expresses the configuration of resources that
are necessary for the user and consists of a set of virtual resources that may include compute, network and
storage and can be complemented by the user with other information. In particular, as it is described in [2],
the SLA template is composed of Service Properties, Guarantee Terms and Terms of Service.

The second document is the Broker Policy, containing a set of rules, to be enforced by the brokering
algorithm, in order to choose among the different proposals offered by the Cloud market.

SLA brokering is part of the agent based provisioning service of Cloud Agency. The broker collects a number
of proposals described in an vendor agnostic way and chooses the best one(s) according to the brokering rules.

Broker service provided by Cloud Agency is targeted to Cloud developers and deployers, who aim at building
their own Cloud Infrastructure.

Fig. 5.1. Broker

Of course different proposals will come from Cloud Vendors. They will offer different kind of products at
different terms. The broker should be able to choose the best one according to the policies specified by the
customer such as best price per time unit, maximum amount of memory, service availability and so on.

The set of Goals G = {g1, · · · , gnw} includes the best price, the greatest number of cores, the best accredited
provider or the minimum accepted availability. A number of constraints can be also defined to specify the
minimal user’s requirements.

6. Brokering Model. Our broker finds in a set of SLA proposals {P1, . . . , Pm} the ones that optimize
a multi objectives function and satisfy a number of constraints. Those proposals constitutes the set of Assets
which have been discovered.

Each proposal is provided by a Cloud vendor complementing the terms of the SLA template T = {t1, . . . , tn},
received from the customer, with the correspondent offered values Pj = {(t1; vj,1), . . . , (tn; vj,n)}.

In order to evaluate the best proposal the broker uses a set of rules R = C ∪ O, which can be constraints
rules cr ∈ C or goals rules or ∈ O rules.

Constraints rules are boolean expressions that represent soft or hard requirements:

cr : (ti, ci,mi)→ [0, 1]

ti is an SLA term, ci is a boolean expression, and mi is a float number whose value specifies that the constraints
is hard (when 1) or soft (0).

72 A. Amato AND S. Venticingue

Goals rules assign a score between 0 and 1 to the compliance of the SLA value of the term ti with the
correspondent user’s requirements

or : (ti, fi, oi)→ [0, 1]

For each goal rule the user has to select a mapping function fi between the ti values and the correspondent
score, and has to specify if that rule is an explicit (oi = true) or implicit goal (oi = false).

The mapping function change the way used by the user to evaluate that goal. For example logarithmic,
linear, and exponential function can be used to define the relevance of that goal according to the value vj,i
offered by the provider and the one desired by the customer.

The broker policy will be a subset of rules R′ ⊂ R that is defined for those terms of the SLA template,
which are relevant for the user’s requirements.

To solve the brokering problem we have to perform the following computation for each received proposal
by replacing ti with the correspondent value vj,i:

• Mj =
∏n

i=1 ¬(¬ci ∧mi) ∀j = 1, . . . ,m
that is used to check if the SLA proposal can be considered as a valid candidate for the SLA , in fact
at least a false hard constraint invalidates that offer.
• Optj =

∑n
i=1(¬mi ∗ cri) ∀j = 1, . . . ,m

evaluates how many soft constraints are met. It can contribute to the evaluation of the proposal.
• Vj =

∑n
i=1(¬oi ∗ fi(vj,i)) ∀j = 1, . . . ,m

represents an overall evaluation for all those terms which have not to be negotiated independently.
All goals rules which have oi = true will be considered independent goals. In general the best proposals will be
the ones which solve the following equations:

maxm
j=0(ori) : oi = true andMj = 1 ∀i = 1, n

An additional criteria will be:

maxm
j=0(Optj) : Mj = 1

All the defined criteria can be grouped if the user set oi = false ∀i = 1, . . . , n, and mi = false ∀i = 1, . . . , n.
In this case the result of brokering will be:

maxm
j=0(Vj) : Mj = 1

that means the best proposal are the ones with the best overall score.
The policy edited will be translated in a language supported by programs for symbolic computation like

Octave, Matlab or Maple and is computed by replacing ti parameter with actual values of each proposal.

6.1. Goals and Constraints. Goals and constraints are defined by a brokering policy embedded into the
CFP. Constraints can be architectural constraints and service level constraints. Hard constraints refer to the
fact that the cloud offer must satisfy the required condition, otherwise it is to be excluded. Soft constraints
refer to desired requirements that can make a provider preferred with respect to another. The classification of
constraints into hard or soft depends on user’s need.

Explicit objectives can be the maximization or minimization of some parameters (e.g.: memory and price).
Implicit objectives are automatically evaluated by the broker. An example is the amount of soft constraints
that have been satisfied.

The rules can be defined selecting the SLA parameters and setting the required options using a friendly
graphic interface.

Examples of constraints rules, shown in Table 6.1 are:
• exact matches,
• value in a set,
• greater/less then,
• value in a range.

A Distributed Agent-based Decision Support for Cloud Brokering 73

Table 6.1
Rules Types

Rule’s Name Value Type Boolean Expression

Exact Match Numerical & Non Nu-
merical

ti = s

Value in a Set Numerical & Non Nu-
merical

ti ∈ S

Greater then Numerical ti > s
Less then Numerical ti < s
Value in a Range Numerical ti ∈ R

Of course not every constraint can be applied to any SLA parameters.
Some among the same parameters can be considered as input of objectives functions to be optimized [18].

There may be no one single goal for the optimization, and no single optimal solution. For example, given a set
of constraints, a goal could be the minimization of the cost, maximizing the memory.

In this case, a multi-objective approach should be adopted and one of the solutions on the Pareto front
(that is a set of all those solutions that are considered to be optimal in multi-criteria optimization) should be
chosen. To choose one of the solutions on the Pareto front, a posteriori approaches is used that deliver to the
user the set of Pareto-optimal solutions among which the user will choose the preferred one.

In order to simplify the usage of the brokering service we allow for grouping multiple objectives according
to the kind of SLA parameter: Service Properties, Terms of Services or Service Levels. We also define the
Provider Reputation as an additional brokering parameter, that is out of the SLA Template, but it is known to
the broker.

To compute the overall score we map the domain of each SLA parameter to [0, 1] ⊂ R and we allow to
assign a percentage relevance to each category.

7. Brokering As A Services.

7.1. Cloud Agency Brokering AAS requirements. Cloud Agency, presented in details in [30], is a
Multi-Agent System that complements the common management functionalities which are currently provided
by Private and Public Infrastructure as a Service (IAAS) with new advanced services, by implementing a Vendor
Agnostic layer.

The Provisioning service of Cloud Agency implements the FIPA Contract-Net protocol described in [26].
It is a minor modification of the original contract net IP pattern in that it adds rejection and confirmation
communicative acts.

In the contract net IP, one agent (the Initiator) takes the role of manager, which wishes to have some
tasks performed by one or more other agents (the Participants) and further wishes to optimize a function that
characterizes the task. This characteristic is commonly expressed as the price per time unit, in some domain
specific way, but could also be soonest time to completion, fair distribution of tasks, etc.

For a given task, any number of Participants may respond with a proposal; the rest must refuse. Negotiations
then continue with the Participants that returned valid proposals. For each received CFP Cloud Agency creates
a broker that searches for vendors that can offer resources with the required QoS (Quality of services).

Cloud Agency implements a single-user service at platform level that can be used to provide autonomic
capability to Cloud applications over IaaS infrastructures.

At Application as a Service level we have to overcome the performance limitations of the mOSAIC Cloud
Agency solution as it has been developed [31], starting from the identification of new requirements.

First of all it needs to identify the issues introduced by the new scenario, but also to take in consideration
the available technologies for designing and implementing a new engineered solution. About the issues we need
to take into account the number of service users who can access contemporary the service by multiple requests.

We have to consider that in a service oriented context, not only human users, but also applications and
robots will be able to invoke the service producing different kind of workloads. The new workload can vary in

74 A. Amato AND S. Venticingue

dimension, but also it can dynamically change during the day, with regular or unforeseeable bursts on special
periods. For this reason we have to share the workload over a distributed computing infrastructure, and we
need to grant that both the infrastructure and the application will scale dynamically.

7.2. Architecture design and implementations. The Cloud technology is a promising solution to
build a scalable computing infrastructure, but it needs to re-design the agents in order to let them exploit such
an elastic computing model.

In fact while the Cloud allows to scale the computing resources according to the measured workload improv-
ing also the utilization, the application must be able to reconfigure itself autonomically to keep the QoS level
above the desired threshold. Hence we are going to build a distributed Cloud broker over a Cloud infrastructure.

Not only performance issues should be addressed, but also reliability and availability when the service
execute over such kind of distributed platform, due to lack of control both of the network and of the compute
utility.

Hence, the main assumption we will take as strict requirement here will be the design of stateless and
asynchronous scheduling of agents that will be able to run on every available computing resources.

This solution delegates the evaluation of a single proposal to any idle broker within a pool of agents, who are
waiting for the evaluation of a proposal and update an eventual optimal solution. This design choice allows for
the easy distribution of the workload using a task parallel programming model. On the other hand the front-end
will be implemented by a service interface that accepts synchronous requests. It stores the new pending tasks
to be handled by pools of asynchronous working agents, and returns the current status of service elaboration.

The service architecture is shown in Figure 7.1. In Figure 7.1, in the upper left corner, we can see many
service instances that receive requests from end users and access in-memory shared information. The in-memory
session manager will allow for the exploitation of elastic capability of the Cloud infrastructure. The warm copy
of the session manager allows for improving reliability. As it is shown in Figure 7.1 agents will implement the
back-end of the new agency, that is completely relieved of handling interactions with clients. Cloud storages
(database ad queues) keep persistent information of the distributed applications and implement communication
channel between synchronous front-end handlers and back-end workers. This design choice allows for the easy
distribution of the workload using a task parallel programming model.

Stateless agents take new problems by a common bag of task, execute wherever there are available computing
resources, and update the computing results if they complete successfully. Reliability is addressed by re-
scheduling of unsolved problems which remain in the bag because of any failures or delay.

The vendors agent sign up to the CFP QUEUE to receive the cfps received from users. Each of them
submits its proposal to the PROPOSALS QUEUE. Idle brokers are waiting for proposals. A single proposal
is dispatched to one broker that executes its matching with the correspondent CFP for evaluation purpose.
The matching results is updated into the SLA QUEUE if it belongs to the Pareto front of optimal solutions.
Brokering results are stored also into an in-memory session, together with information of each related user’s
request.

Users are provided with the web interface shown in Figure 7.2. It allows for composing the CFP and listing,
for each session, the best SLAs according to different brokering objectives. Users log into a web page, the web
page makes a request to a REST service and submits the call for proposals.

The Call for Proposal are included, along with information of the session and the user, in CFP queue. The
characteristic of the CFP queue is that all consumers that join the queue, receive all the submitted CFPs.

Apache Tomcat has been used as web and application server to run the web service at front-end. It has
been specifically configured for working with the Terracotta Framework for the transparent distribution and
sharing of web sessions.

Jersey API have been used to implement the RESTFull service that provides methods for authentication,
CFP submission and SLA retrieval. Meanwhile their requests are pending, users can wait for the result of
brokering or may poll periodically to get the status of their request. When one of the brokers has found a
feasible proposal for that request the current results are updated. The completion of brokering is notified when
there are no more proposal candidate to optimize the user’s query to be evaluated.

The RDBMS Mysql databases is used as persistent storage of CFPs and to SLAs. ActiveMQ has been used
as queue services for communication and synchronization.

A Distributed Agent-based Decision Support for Cloud Brokering 75

Fig. 7.1. Distributed architecture

In this solution, on the arrival of any Call for Proposal worker agents will cooperate to compare all the
proposal candidate to satisfy the brokering policy. Each agent continuously will keep from a queues the next
proposal to be evaluated, till when there are not more waiting requests. On their own users will be able to
query the system about the status of their requests and the intermediate results.

7.3. Experimental results and discussion. In order to evaluate performances of the proposed approach
we set up the following testbed. A Linux physical machine hosts the ActiveMQ 5.6 service, with a Topic, named
CFP QUEUE, that receives CFPs from concurrent clients, which run on a different physical machine in the
same 1GB Ethernet local network. The server (H1) is 64bit Intel Core T M 2 Quad Processor Q9300 (6M
Cache, 2.50 GHz, 1333 MHz FSB) with 4GB RAM. Oracle Java7 is the runtime environment.

Concurrent clients send 10 CFPs, each one, according to a Poisson process with different mean time of
arrivals. Vendors run on the server and wait for incoming CFPs. All vendors get the same CFP and generate
their proposal, which is sent to the PROPOSALS QUEUE.

In a first scenario all brokers run on the server itself. They receive a different proposal from the QUEUE
and evaluate the compliance with the correspondent CFP. The result is sent to an SLA QUEUE from which
only the best ones are notified to the clients.

In different scenario, in order to improve this parameter we investigated the possibility to offload part of
the workload by a Cloud Infrastructure.

76 A. Amato AND S. Venticingue

Fig. 7.2. Web GUI

We used an OpenStack installation in the same local network. This private cloud provided a Linux virtual
machines (H2). The Linux OS sees just one processor with a 64bit virtual Intel Core 2 Duo P9xxx (Penryn
Class Core 2) 2.5GHz with 2K L1 cache and 2GB RAM.

We evaluated the performance of such configurations changing the number of clients, the number of vendors
and the number of brokers.

We observed a increasing throughput in terms of number proposals per second evaluated by brokers when
the mean time of arrivals decreases and the number of brokers increases.

A drop of the throughput has been observed when the number of brokers running on a machine is greater
than the number of cores, both on the server and on the working machines, and when the system is overloaded
by a huge number of proposals to be evaluated, which depends wither on the number of vendors and on the
mean time of CFPs arrivals.

In the first case the time of proposals evaluation increases due to the scheduling overhead. In the second
case a noticeable effect is above all the average waiting time of a proposal into the queue, that affects directly
the response time of the system and service level perceived by the client.

In Table 7.1 we show the mean enqueued time of a proposal in the case of 8 clients sending 10 CFPs with
a mean time of arrivals of 500 ms. In all the case we have 8 vendors, that means 640 proposals to be evaluated.

Due to the unbalance between the computational power of H1 and H2 the queue service is able to dispatch
a limited number of proposals to the working machine spawned in the Cloud and we have not a relevant benefit.
We expect the with more homogeneous machines and with an greater number of working nodes we will get
better improvement.

8. Conclusion. In this paper we presented a methodology that uses Multi Criteria Decision-Aid for de-
signing and developing multi-agents solution of problems, whose complexity is characterized by different criteria
to be evaluated and compared independently and according to the user’s/agent’s preferences.

We applied the proposed methodology to solve brokering problem of Cloud service with multiple objective
and constraints set by the users’ requirements. The proposed Brokering As A Service application has been built
and executed on a distributed computing infrastructure that uses Cloud resources as working machines and
asynchronous brokers for evaluating independent proposals from different vendors.

To perform an exhaustive search of the optimal solutions we assumed that the resulting SLA cannot be
composed with offers from different vendors to dominate the complexity. We evaluated the performance changing
the mean time of arrivals of CFPs from multiple clients and the number of vendors.

Future works will take in consideration larger problem by service compositions, using bigger computing
infrastructure and heuristics for the computation of sub-optimal solution within the required time limits.

Furthermore we aim at advancing the current results by extending the proposed methodology to support
multiple conflicting decisions in many-to-many negotiation protocols and by Game Theory techniques.

A Distributed Agent-based Decision Support for Cloud Brokering 77

Table 7.1
Proposals mean enqueued time

Client H1 H2 Mean Enqueued
Time

8c 8v+1b 428
8c 8v+2b 180
8c 8v+4b 170
8c 8v+8b 171
8c 8v 1b 1430
8c 8v 2b 920
8c 8v 4b 11296
8c 8v+4b 1b 165.578
8c 8v+4b 2b 160
8c 8v+4b 4b 167

REFERENCES

[1] A. Amato, G. Cretella, B. D. Martino, and S. Venticinque, Semantic and agent technologies for cloud vendor agnostic
resource brokering, in AINA Workshops, 2013, pp. 1253–1258.

[2] A. Amato, L. Liccardo, M. Rak, and S. Venticinque, Sla negotiation and brokering for sky computing, in CLOSER, 2012,
pp. 611–620.

[3] A. Amato, B. D. Martino, and V. Salvatore, Cloud brokering as a service, in The 8th International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing, USA, December 28-30 2013, IEEE Computer Society, pp. 9–16.

[4] A. Amato, L. Tasquier, and A. Copie, Vendor agents for iaas cloud interoperability, in Intelligent Distributed Computing
VI, G. Fortino, C. Badica, M. Malgeri, and R. Unland, eds., vol. 446 of Studies in Computational Intelligence, Springer
Berlin Heidelberg, 2013, pp. 271–280.

[5] A. Amato and S. Venticinque, Multi-objective decision support for brokering of cloud sla, in AINA Workshops, 2013,
pp. 1241–1246.

[6] F. Andrè, M. Cardenete, and C. Romero, Basic aspects of the multiple criteria decision making paradigm, in Designing
Public Policies, vol. 642 of Lecture Notes in Economics and Mathematical Systems, Springer Berlin Heidelberg, 2010,
pp. 33–53.

[7] H. Armesh, Decision making, in Proceedings of the 12th International Business Research Conference, Melbourne, Australia,
2010, World Business Institute, pp. 11–21.

[8] R. Buyya, R. Ranjan, and R. N. Calheiros, Intercloud: Utility-oriented federation of cloud computing environments for
scaling of application services, in ICA3PP (1), 2010, pp. 13–31.

[9] S. J. Chen, C. L. Hwang, and F. P. Hwang, Fuzzy multiple attribute decision making: Methods and applications in
collaboration with dr. frank p. hwang, (1992).

[10] P. Delias and N. F. Matsatsinis, The multiple criteria paradigm as a background for agent methodologies, in 8th Annual
International Workshop ’Engineering Societies in the Agents World’, 2007, pp. 227–237.

[11] B. Di Martino, D. Petcu, R. Cossu, P. Goncalves, T. Máhr, and M. Loichate, Building a mosaic of clouds, in
Proceedings of the 2010 conference on Parallel processing, Euro-Par 2010, Berlin, Heidelberg, 2011, Springer-Verlag,
pp. 571–578.

[12] F. Dignum, D. Morley, E. Sonenberg, and L. Cavedon, Towards socially sophisticated bdi agents, in MultiAgent Systems,
2000. Proceedings. Fourth International Conference on, 2000, pp. 111–118.

[13] M. Doumpos and E. Grigoroudis, Multicriteria Decision Aid and Artificial Intelligence: Links, Theory and Applications,
Wiley, 2013.

[14] L. Gasser, Mas infrastructure: Definitions, needs and prospects, in Revised Papers from the International Workshop on In-
frastructure for Multi-Agent Systems: Infrastructure for Agents, Multi-Agent Systems, and Scalable Multi-Agent Systems,
London, UK, UK, 2001, Springer-Verlag, pp. 1–11.

[15] M. P. Georgeff, B. Pell, M. E. Pollack, M. Tambe, and M. Wooldridge, The belief-desire-intention model of agency,
in Proceedings of the 5th International Workshop on Intelligent Agents V, Agent Theories, Architectures, and Languages,
ATAL ’98, London, UK, UK, 1999, Springer-Verlag, pp. 1–10.

[16] N. R. Jennings, K. Sycara, and M. Wooldridge, A roadmap of agent research and development, Autonomous Agents and
Multi-Agent Systems, 1 (1998), pp. 7–38.

[17] T. Metsch, A. Edmonds, and R. Nyren, Open cloud computing interface – core and models, in Standards Track, no. GFD-R
in The Open Grid Forum Document Series, Muncie (IN), 2011, The Open Grid Forum Document Series.

[18] F. Moscato, R. Aversa, and A. Amato, Describing cloud use case in metamorp(h)osy, in CISIS, 2012, pp. 793–798.
[19] S. K. Nair, S. Porwal, T. Dimitrakos, A. J. Ferrer, J. Tordsson, T. Sharif, C. Sheridan, M. Rajarajan, and A. U.

78 A. Amato AND S. Venticingue

Khan, Towards secure cloud bursting, brokerage and aggregation, in Proceedings of the 2010 Eighth IEEE European
Conference on Web Services, ECOWS ’10, Washington, DC, USA, 2010, IEEE Computer Society, pp. 189–196.

[20] NIST, Nist cloud computing reference architecture - special publication 500-292. Available at http://www.nist.gov/.
[21] D. Petcu, C. Craciun, M. Neagul, S. Panica, B. D. Martino, S. Venticinque, M. Rak, and R. Aversa, Architecturing

a sky computing platform, in ServiceWave Workshops, 2010, pp. 1–13.
[22] B. Roy, Multicriteria Methodology for Decision Aiding, vol. 12 of Nonconvex Optimization and Its Applications, Springer,

Formerly Kluwer Academic Publishers, Dordrecht, Boston, London, 1996. Translator: Mark R. McCord.
[23] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach, Prentice-Hall, Inc., Upper Saddle River, NJ, USA,

1995.
[24] K. M. Sim, Towards complex negotiation for cloud economy, in 5th International Conference on Advances in Grid and

Pervasive Computing (GPC 2010), 2010, pp. 395–406.
[25] R. Slotboom, Mobile agents as a distributed application architecture, 2000.
[26] F. I. P. A. Technical report, Fipa contract net interaction protocol, 2002. Available at http://www.fipa.org.
[27] W. Theilmann, Slasoi, 2011. Available at http://sla-at-soi.eu/.
[28] E. Triantaphyllou, B. Shu, S. Nieto Sanchez, and T. Ray, Multi-criteria decision making: An operations research

approach, In: Encyclopedia of Electrical and Electronics Engineering, vol. 15 (1999), pp. 175–186.
[29] P. Tučńık, J. Kožaný, and V. Srovnal, Multicriterial decision-making in multiagent systems, in Computational Science –

ICCS 2006, V. Alexandrov, G. Albada, P. Sloot, and J. Dongarra, eds., vol. 3993 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2006, pp. 711–718.

[30] S. Venticinque, User-centric infrastructure as a service by cloud agency, MULTIAGENT AND GRID SYSTEMS, 9 (2013),
pp. 157–159.

[31] S. Venticinque, R. Aversa, B. Di Martino, M. Rak, and D. Petcu, A cloud agency for SLA negotiation and management,
vol. 6586 LNCS of Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), Springer, 2011, pp. 587–594.

[32] M. Wooldridge, Intelligent agents: The key concepts, in Proceedings of the 9th ECCAI-ACAI/EASSS 2001, AEMAS 2001,
HoloMAS 2001 on Multi-Agent-Systems and Applications II-Selected Revised Papers, London, UK, UK, 2002, Springer-
Verlag, pp. 3–43.

[33] M. Wooldridge, An Introduction to MultiAgent Systems, Wiley Publishing, USA, 2nd ed., 2009.
[34] H.-J. Zimmermann, Fuzzy set theory and its applications, second edition, (1991).
[35] R. Šperka and K. Slaninova, The usability of agent-based simulation in decision support system of e-commerce architecture,

I.J. Information Engineering and Electronic Business, 4 (2012), pp. 10–17.

Edited by: Teodor Florin Fortiş
Received: Mar 3, 2014
Accepted: Apr 16, 2014

Scalable Computing: Practice and Experience
Volume 15, Number 1, pp. 79–87. http://www.scpe.org

DOI 10.12694/scpe.v15i1.967
ISSN 1895-1767
c© 2014 SCPE

IMAGE SCRAMBLING ON A ”MESH-OF-TORI” ARCHITECTURE∗

MARIA GANZHA†, MARCIN PAPRZYCKI‡, AND STANISLAV G. SEDUKHIN§

Abstract.

Recently, a novel method for image scrambling (and unscrambling) has been proposed. This method is based on a linear
transformation involving the Kroneker-delta function. However, while quite interesting, the way it was introduced, leaves some
open issues concerning its actual usability for information hiding. Therefore, in this paper, we extend the original proposal and
show how it can be used to securely pass image-like information between the users.

87

1. Introduction. Recently we observe a constantly growing interest in processing multimedia content.
Here, the multimedia content is understood broadly and encompasses “still images” of all types, as well as video
streams. Since a video stream can be viewed (with all understandable caution) as a sequence of still images
(video frames), let us focus our attention on images, while keeping in mind that data processing may involve
their sequences.

Observe that, there are two main sources of large images. First, sensor arrays of various types. For instance,
one of the largest of them is the 2D pixel matrix detector installed in the Large Hadron Collider in CERN [14],
which has approximately 109 sensor cells. Similar number of sensors would be required in a CT scanner array
of size approximately 1m2, with about 50K pixels per 1cm2. Second, large data streams start to materialize in
“consumer electronics.” For instance, currently existing digital cameras capture images consisting of 22.3× 106

pixels (Cannon EOS 5D Mark II [3], as well as its successor Cannon EOS 6) or even 36.3 × 106 pixels (Nikon
D800 [4]). What is even more amazing, recently introduced Nokia phones (Nokia 808 PureView [5], and Nokia
Lumia 1020 [6]) have cameras capturing 41× 106 pixels.

What has to be noted, from the point of view of computing (here, image processing), is that most of the
existing sensor systems do not consider the natural arrangement of data. Specifically, the input image, which is
square or rectangular, is “serialized” to be processed. Specifically, input data from multiple sensors is read out
serially, pixel-by-pixel, and send to the CPU for processing 1. Next, after processing is completed, results are
sent (serially) to a “display device,” where they are reassembled into a rectangular format. This means that
the transfer of pixels destroys the 2D integrity of data (in computer memory, an image or a frame, exists not in
their natural layout). As a result, the need to transfer large amount of data, from “multiple data input streams”
to the processor, may prohibit development of applications, which require (near) real-time response [10].

Observe that, for the (near) real-time image / video processing, as well as a 3D reconstruction, it could be
advantageous to process them using a device that has multiple processing units arranged rectangularly, and that
allows to load data directly from the sensors to these units (for immediate processing). This would be possible,
for instance, when a focal-plane I/O, which maps the pixels of an image (or a video frame) directly into the
stacked “array of processors,” was to be used. Here, the computational elements could store the sensor generated
information (e.g. a single pixel, or a block of pixels of a specific size) directly in their registers (or their local
memory). Such an architecture would have three potential advantages. First, cost could be reduced, because
there would be no need for the memory buses or a complicated layout of the communication network. Second,
speed could be improved as the integrity of the input data would not destroyed by the serial communication.
Third, speed could be considerably improved by skipping the step of serialization of the rectangular image and,
later, its reassembling in order to be displayed. As a result, data processing could start as soon as the data
is available (i.e. in the registers / memory). Note that proposals for similar hardware architectures have been
outlined, among others, in [9, 16, 26]. However, such approaches have not been tried in real-life. Furthermore,
previously proposed focal-plane array processors were envisioned with a mesh-based interconnect between the

∗Work of Marcin Paprzycki was completed while visiting the University of Aizu.
†Systems Research Institute Polish Academy of Sciences, Warsaw, Poland, email: maria.ganzha@ibspan.waw.pl
‡Systems Research Institute Polish Academy of Sciences, Warsaw, Poland, email: marcin.paprzycki@ibspan.waw.pl
§University of Aizu, Aizu Wakamatsu, Japan, email: sedukhin@u-aizu.ac.jp
1Here, the term CPU is used broadly and encompasses standard processors, GPU’s, Digital Signal Processing units, etc.

79

80 M. Ganzha, M. Paprzycki and S. G. Sedukhin

processing elements. This arrangement is good for the local data reuse (convolution-like simple algorithms),
but is not the best to support global data reuse (matrix-multiplication-based complex algorithms).

2. Mesh-of-tori interconnection topology. This discussion leads us to the following question. As-
suming that the focal plane I/O like approach is used to provide an effective data transfer to a rectangularly
arranged group of processing units, what network topology should be used to connect them. Here, the experi-
ences from development of parallel supercomputers could be useful. Historically, a number of topologies have
been proposed, and the more interesting of them were: (1) hypercube – scaled up to 64000+ processor in the
Connection Machine CM-1, (2) mesh – scaled up to 4000 processors in the Intel Paragon, (3) processor array –
scaled up to 16000+ processor in the MassPar computer, (4) rings of rings – scaled up to 1000+ processors in
the Kendall Square KSR-1 machines, and (5) torus – scaled up to 2048 units in the Cray T3D.

However, all of these topologies suffered from the fact that at least some of the elements were reachable with
a different latency than the others. This means, that algorithms implemented on such machines would have to
be asynchronous, which works well, for instance, for ising-model algorithms similar to these discussed in [8], but
is not acceptable for most computational problems, that require synchronous data access. Therefore, an extra
latency had to be introduced, for the processing units to wait for the information to be propagated across the
system. Obviously, this effect became more visible with the increase of the number of processing units. At the
same time, miniaturization counteracted this process only to some extent. Interestingly, supercomputers with
some of the most efficient network connectivity, the IBM Blue Gene machines, combine the toroidal network
with an extra networking provided for operations involving global communication (primarily, reduction and
broadcast). To overcome this problem, recently, a new (mesh-of-tori ; MoTor) parallel computer architecture
(and topology) has been proposed. Let us now summarize this proposal. What follows is based on [20] and this
source should be consulted for further information.

The fundamental (indivisible) unit of the MoTor system is a µ-Cell. The µ-Cell consists four computational
units connected into a 2× 2 doubly-folded torus (see, Figure 2.1). Logically, an individual µ-Cell is surrounded
by so-called membranes that allow it to be combined into larger elements through the process of cell-fusion.
Obviously, collections of µ-Cells can be split into smaller structures through cell division. For instance, in Figure
2.1, we see a total of 9 µ-Cells logically fused into a single macro-µ-Cell consisting of 4 µ-Cells (combined into a
4× 4 doubly folded torus), and 5 individual (separate) µ-Cells. Furthermore, in Figure 2.2 we observe all nine
µ-Cells combined into a single system (a 6×6 doubly folded torus; with a total of 36 processing units). Observe
that, when the 2 × 2 (or 3 × 3) µ-Cells are logically fused (or divided), the newly formed structure remains a
doubly folded torus. In this way, it can be postulated that the single µ-Cell represents a “holographic image”
of the whole system.

Let us note that the proposed MoTor topology has similar restriction as the array processors from the early
1990’s. Specifically, the MoTor system must be square. While this was considered an important negative factor
in the past, this is no longer the case. When the first array processors were built and used, arithmetical opera-
tions and computer memory were “expensive.” Therefore, it was necessary to avoid performing “unnecessary”
operations (and maximally reduce the memory usage). Today (December 2013), when GFlops costs about 16
cents (see, [25]) and its price is systematically dropping; and when laptops come with 8 Gbytes of RAM (while
some cell phones include as much as 64 Gbytes of flash memory on a card), it is the data movement / access
/ copying that is “expensive” (see, also [13]). Therefore, when images (matrices) are rectangular (rather than
square), it is reasonable to assume that one could just pad them up, and treat them as square. Obviously, since
the µ-Cell is a single indivisible element of the MoTor system, if the matrix is of size N ×N then N has to be
even (or padded to be such).

Note that in earlier publications (e.g. [20, 19, 18, 21] the computational units, as well as the whole concept
of the MoTor system, were purely “theoretical entities.” However, in [11] we have considered such system more
closely, from the perspective of its potential realization. This line of reasoning resulted in the following proposal
of the computational unit to be realized in the MoTor system. (1) It accepts input from the sensor(s) and
transfers it directly to the operational registers / local memory. (2) Is capable of generalized fused multiply-add
(gfma) operations, originating from various algebraic semirings (see, also [22, 1] for more details). The latter
requirement means that, (3) the gfma unit considered here should store (in its registers) all constants needed
to efficiently perform fma operations originating from various semirings. Finally, analysis of cell connectivity

Image scrambling on a ”mesh-of-tori” architecture 81

0300

3330

1310

2320

0100

1110

0201

3231

1211

2221

0100

1110

0100

1110

0100

1110

0100

1110

Fig. 2.1. 9 µ-Cells fused into a single 2× 2 “system,” and 5 separate µ-Cells

in Figure 2.1 shows that (4) the gfma unit should include four interconnects that allow assembly of the MoTor
system. Let us name such computational unit the extended generalized fma: egfma. Furthermore, let us keep
in mind that the MoTor architecture is build from indivisible µ-Cells, each consisting of four, interconnected
into a doubly folded torus egfma units.

Let us now observe that there are two sources of inspiration for the MoTor system: (i) processing data
from, broadly understood, sensor arrays (e.g. images), and (ii) matrix computations. Furthermore, we have
stated that the egfma should contain data registers to store (a) the needed scalar elements originating from
various semirings, (b) data that the fma is to operate on and, as stipulated in [11], (c) elements constituting
special matrices needed for matrix operations / transformations. Here, we have to take into account that each
egfma should have a “local memory” to allow it to process “blocks of data.” This idea is based on the following
insights. First, if we define a pixel as “the smallest single component of a digital image” (see, [7]), then the data
related to a single RGBX-pixel is very likely to be not larger than a single 32 bit number. Second, in early 2013
the (Tianhe-2) has 23,040,000 fma units 2 (see, [2]). This means that, if there was a one-to-one correspondence
between the number of egfma units and the number of “pixels streams,” then the system could process stream
of data from 23 Megapixel input devices (or could process a matrix / image of size N ≃ 4800). This is clearly
not enough. Finally, let us note that to keep an fma / gefma unit operating at 100% it is necessary to form a
pipeline that is (minimally) 4-6 elements deep. Therefore, from here on, we will assume (and in this follow [19])

2Here, we count only the Intel Xeon Phi nodes. There are 48000 such nodes, each with 60, 8-way, cores, giving us a total of
23,040,000 double precision fma units

82 M. Ganzha, M. Paprzycki and S. G. Sedukhin

0500

5550

1510

4540

2520

3530

0401

5451

1411

4441

2421

3431

0302

5352

1312

4342

2322

3332

Fig. 2.2. 9 µ-Cells fused into a single 6× 6 EG FMA system

that each computational unit in the MoTor system has local memory and thus be capable of processing blocks
of data. For instance, a natural way of augmenting the egfma to achieve this goal would be to use 3D stacked
memory [15].

Let us now consider the development of the MoTor -based system. In the initial works, e.g. in [20], links
between cells have been conceptualized as purely abstract links (µ-Cells were surrounded by logical membranes
that could be fused or divided as needed, to match the size of the problem). Obviously, in an actual system, the
abstract links and membranes could be realized logically, while the whole system would have to be hard-wired to
form an actual MoTor system (of a specific size). Therefore to build a large system with M2 µ-Cells (recall the
assumption that the MoTor system will have the form of a square array), it can be expected that such system
will consist of silicon etched groups of µ-Cells residing on separate chips (µ-processors), combined into the
MoTor system of a given size (similarly to multicore / multi-FMA processors combined into supercomputers).

As what concerns cell fusion and division, it will be possible to assemble sub-system(s) of a needed size, by
logically splitting and/or fusing an appropriate number of cells within the MoTor system. However, it should be
stressed that while the theoretical communication latency across the MoTor system is uniform, this is not likely
going to be the case when the system will be assembled from µ-processors constituting physical macro-µ-Cells.
In this case it may be possible that the communication within the µ-processor (physical macro-µ-Cell) will be
relatively faster than between the µ-processors. Therefore, the most natural µ-Cell split should involve complete
µ-processors. However, let us stress that the design of the mesh-of-tori topology does not distinguish between
the connections that are “within the µ-processor” and “between µ-processors.” Therefore, the communication
model used in the algorithms described in [20, 19, 11], and applied in subsequent sections, is independent of the

Image scrambling on a ”mesh-of-tori” architecture 83

hardware configuration.

3. Fundamental operation. To proceed, let us note that, in what follows, we use the generalized matrix
multiply-and-update operation (MMU) in the form elaborated in [23, 12, 11]:

C← MMU[⊗,⊕](A, B, C) : C← C⊕ AN/T ⊗ BN/T.

Here, A, B and C are square matrices of (even) size N ; while the ⊗,⊕ operations originate from a matrix
semiring; and N/T specify if a given matrix is to be treated as being in a standard (N) or in a transposed (T)
form, respectively.

3.1. Reordering for the mesh-of-tori processing. Before discussing image processing, which is the
main contribution of this paper, we have to consider the data input (e.g. from the sensor array, a medical
scanner, or a cell phone photo camera) into the MoTor system. As shown in [20] (and followed in [11]), any
input that is in the canonical (standard image / square matrix) arrangement, is not organized in a way that
is needed for the matrix processing in a (doubly folded) torus. However, as shown in [19], the needed format
can be obtained by an appropriate linear transform, through two matrix-matrix multiplications. Specifically,
matrix product in the form M ← R × A × RT , where A is the original / input (N × N) matrix that is to be
transformed, M is the matrix in the format necessary for further processing on the MoTor system, and R is the
format rearranging matrix (for the details of the structure of the R matrix, consult [19]). Taking into account
the implementation of the generalized MMU operation (see, equation 3), the needed transformation has the
form:

M = R×A×RT .

Note that, according to [20, 19], on the MoTor system: (a) operation Z = R×A is performed in place and
requires N time steps, (b) operation M = Z × RT is performed in place, and also requires N time steps and
is implemented as a parallel matrix multiplication with a different data movement pattern than the standard
multiplication. In other words, the matrix arrangement within the system remains unchanged for the transposed
matrix operations, and the well-known problems related to row vs. column matrix storage (see, for instance, [17])
do not materialize (for more details, see [24]).

Observe that, when instantiating the MoTor system, it is assumed that an appropriate matrix R will be
preloaded into the macro-µ-Cell, upon its creation (see, [11] for more details). Specifically, in addition to the
operand registers dedicated to special elements (0̄, 1̄) originating from selected semirings, appropriate elements
of a transformation matrix, needed to perform operations summarized in [11] will be preloaded in separate
operand registers. These operations include the transformation from the canonical to the “MoTor format” and
back. Therefore, matrix R (of an appropriate size) will be preloaded into the MoToR system.

4. Image scrambling and unscrambling. Taking into account the background material presented thus
far, let us focus on the main contribution of this paper. An interesting application of the matrix multiplication
has been proposed in [18]. There, a linear transform, based on the Kronecker-delta function, was introduced.
This transformation was then used to create a scrambling matrix C that could be used to scramble and un-
scramble images (via matrix-matrix multiplication). Since matrix denoted as “C” is very often used in different
contexts (e.g. see, the above equation 3), for the purpose of this paper, let us re-name it as SCRAM . The
complete description of the linear transform, as well as the specific structure of the SCRAM matrix can be
found in [18]. Let us recall that, while the discussion below considers “single element per gefma” model, the
real assumption is that a “data block per gefma” format is used (for more details, see [18, 19]). Therefore, all
claims should be seen as actually concerning a blocked data format. Finally, we assume that image / matrix A
is of size N ×N (with N even).

Similarly to the processing needed to transform the matrix / image from the canonical to the MoTor
format (and back), image (represented as a matrix A) scrambling consists of a triple-matrix product (forward
transform): S ← SCRAM ×A× SCRAMT ; where S is the resulting scrambled image/matrix. Unscrambling

84 M. Ganzha, M. Paprzycki and S. G. Sedukhin

of the same image (S) is a result of the following triple-matrix product (inverse transform): A← SCRAMT ×
S × SCRAM .

In [18], two ways to apply this approach to scramble images have been proposed. First, scrambling was to
be applied 1 ≤ J ≤ N times to the whole image (matrix). The second approach was a “progressive” one. Here,
one had to pick a key (parameter) 1 ≤ KP ≤ N . Next, scrambling was applied to the left top corner of the
image, of size KP ×KP , 2KP × 2KP , and proceeded until the whole matrix was scrambled (in the case when
N was not divisible by KP then the complete matrix / image was scrambled in the last step).

In both cases, the scrambling operation could be realized by a Scramble(A, nb) function. This function was
to perform the tripe-matrix product involving the left top corner of size nb×nb, where 1 ≤ nb ≤ N . In the first
approach, scrambling was achieved by calling the Scramble(A,N) function J times. Observe that, on theMoTor
system, each scrambling step would be performed in place, and would take 2N time steps. Therefore, the total
cost of scrambling would be 2N ≤ 2NJ ≤ 2N2 time steps. Here, to unscramble the image without knowledge of
the key K, would require knowledge of the matrix SCRAM , and applying the unscrambling operation J times
(using function ScrambleInv(A,N)) until the original image was to be revealed (to the human observer).

In the second case, the Scramble(A, nb) function would be called N/KP times (and possibly one more time
if N was not divisible by KP). On the MoTor system, each scrambling step would cost 2KP time steps (plus
the cost of cell fusion, and of re-instantiating the SCRAM matrix (for the next image / matrix size); however,
these costs would be negligible in comparison with the cost of matrix multiplication). Therefore, the total cost
would be between 2N (for KP = N) and 4N − 2 for (for KP = 1) time steps. Here, recovering the original
image would require knowledge of the matrix SCRAM , and searching space of all possible values of KP , by
applying the unscrambling function ScrambleInv(A, nb).

Let us stress that the material presented in [18], while conceptually originating from the same roots (dense
matrix multiplication), was not directly related to the MoTor architecture. Furthermore, it did not consider
practicalities of use of the proposed transformation for secure image (multimedia) transfer / communication.
Earlier, we have already made some comments about possible implementation of the scrambling (and unscram-
bling) procedures on the MoTor system, conceptualized as above (and approached as in [11]). Let us continue
this line of reasoning.

First, let us make an obvious observation. The goal of image scrambling is to be able to hide the in-
formation (make the image unrecognizable to unauthorized persons), pass it to the authorized recipient, and
reveal it by unscrambling. In this context, let us consider in some detail the implementation of the proposed
image scrambling on a MoTor system. Here, the first approach involves initialization of the SCRAM matrix
(similarly to the R matrix mentioned above, and to other transformation matrices summarized in [11]). Note
that, only a single SCRAM matrix is going to be needed, as the scrambling procedure consists of applica-
tion of the Scramble(A,N) function J times to the whole image (matrix). As stated above, this approach is
not safe at all. As soon as the potential attacker knows the SCRAM matrix, (s)he can repeatedly apply the
ScrambleInv(A,N) function and after J steps the original image will be revealed. Furthermore, the computa-
tional cost of unscrambling will be the same as that of scrambling (assuming that the attacker also has a MoTor
system at her/his disposal).

The situation is different in the second approach. Here, even the knowledge of the SCRAM matrix, and the
possession of the MoTor system, do not help the potential attacker sufficiently. Without the knowledge of the
KP parameter, the search space to uncover the information is much larger (though, obviously, the unscrambling
is not impossible). However, this approach would be somewhat difficult to efficiently implement on a MoTor
system (as described above, and in [11]). Observe that the recursive approach would require cell fusion. For
instance, if KP = 64 then the first scrambling would be performed on a block of size 64× 64 (on a macro-µ-Cell
consisting of 32 × 32 µ-Cells). Next, cell fusion would have to be applied (to create a macro-µ-Cell consisting
of 64× 64 µ-Cells, and matrix SCRAM would have to be re-initialized, to apply scrambling to a block of size
128 × 128). In other words, let us assume that image of size 1024 × 1024 is to be scrambled, with the key
KP = 16. This means that the macro-µ-Cells of size 8, 16, 32, 64, 128, 256 and 512 would have to be used, and
the SCRAM matrices of sizes N = 16, 32, 64, 128, 256, 512, 1024 would have to be instantiated after each cell
fusion. Note that the SCRAM matrices cannot be preloaded, among others because the user can pick any value
for KP (even values that are not the most effective from the perspective of the MoTor system; including odd

Image scrambling on a ”mesh-of-tori” architecture 85

values ofKP). Here, it should be stressed that, while use of odd values ofKP is possible, this does not match the
concept of the MoTor system, where the µ-Cell is the fundamental computational unit. Furthermore, this also
means that there is no natural way of utilizing the cell fusion and splitting that could allow dynamic creation
of the MoToR systems that match the size of the scrambled block. Finally, note that padding, proposed above
for the full-matrix operations, is not an option in an “internal step” of image scrambling, as the scrambling
operation has to be performed on a block of data within an image (matrix).

Summarizing, while very interesting conceptually, ideas for image scrambling presented in [18] are not best
suited for the MoTor architecture. Therefore, we propose a slightly different approach to image scrambling (and
unscrambling), seen as a mechanism for information hiding (and safe transmission) on aMoTor architecture. Let
us assume that two users would like to communicate multimedia content using the scrambling / unscrambling
method discussed above. Observe that, for any matrix A, as long as the SCRAM matrix is known, the
ScrambleInv(A, nb) reverses the effect of application of the Scramble(A, nb) function. This being the case,
it is easy to see that all that is needed is that the sender applies the Scramble(A, nb) function a specific
number of times (e.g. L times) for the selected values of nb. Next, it communicates to the receiver a tuple
(nb1, nb2, . . . , nbL) that defines what were the values of nbi used in each of the scrambling steps, and what was
their order. Here, we assume that the SCRAM matrix is known to both the sender and the receiver. Next,
the receiver applies the ScrambleInv(A, nb) function in an appropriate order (based on the known sequence of
nbi values) to recover the original image. A small “restriction” on this approach is such that at least one of the
scrambling operations should involve the whole matrix A (as application of only blocked scrambling, without
scrambling the whole image, leaves an unscrambled image strip; see [18, 19]). However, this approach makes it
very difficult to unscramble the original image even if the attacker knows the form of the matrix SCRAM . The
problem is in the fact that the sequence (nb1, nb2, . . . , nbL) can be completely “random,” while being known
only to the sender and the receiver.

The interesting part of this approach is in the fact that the number different blocks used in scrambling does
not have to be large (as they can be repeated in the scrambling sequence) and that they can be defined in such
a way to match the structure of the MoTor system. Here, let us recall that the size of the macro-µ-Cell can
be dynamically adjusted through cell division and fusion. However, the image (matrix) A is stored across the
whole MoTor system and this fact is not going to change. Let us now assume that the following scrambling
sequence is to be applied nb = 1024, 256, 512, 1024 to a matrix (image) of size 1024× 1024. Here, it is possible
(assuming that this is known in advance) to instantiate three SCRAM matrices in the MoTor system. Each
element of these SCRAM matrices would be stored in a separate register. Now, the first scrambling would
involve triple-matrix multiplication performed on the whole system. Next, the cell division would be applied
to create a subsystem of size 256 × 256 (macro-µ-Cell consisting of 128 × 128 µ-Cells). Here, let us note that
this subsystem would have preloaded SCRAM matrix of the correct size. In the following step, cell fusion
would be used to create a subsystem of size 512 × 512 (macro-µ-Cell consisting of 256 × 256 µ-Cells); where
an appropriate SCRAM matrix would be already preloaded. After the scrambling operation, cell fusion would
be applied, again, to restore the original system, where the initial SCRAM matrix would still be available.
Another triple-matrix multiplication would end the process. The unscrambling will proceed in exactly the
opposite order, dynamically splitting and fusing the meta-µ-Cells and using the preloaded SCRAM matrices.

4.1. Object oriented implementation. In our earlier work (see, [23, 12, 11]), one of our goals was
to develop a library of functions that will simplify writing codes for scientific computing applications (through
application of matrix operations, represented in the style similar to that found in MATLAB /MATHEMATICA).
In [11] we have introduced such a library, for a collection of operations involved in matrix / image manipulations,
and supporting global reduction and broadcast operations. Obviously, there are multiple ways of implementing
the proposed routines, and it is likely that such implementations are going to be vendor / hardware specific.
Nevertheless, currently, object oriented (OO) programming is one of the more popular ways of writing codes
in scientific computing and image processing. This being the case, we have conceptualized the top-level object
oriented representation of the routines proposed in [11]. Since different OO languages have slightly different
syntax (and semantics), we have used a generic notation, focusing on distinguishing information that needs
to be made available in the interface and that to be placed in the main class. Here, we extend our proposal
to include also scrambling and unscrambling operations. We start from the interface (see, also [11] for the

86 M. Ganzha, M. Paprzycki and S. G. Sedukhin

remaining matrices and operations that have been omitted in the snippets below).

/∗ T − type o f matrix e lement ∗/

i n t e r f a c e Ma t r i x i n t e r f a c e {
pub l i c Matrix 0(i n t n) {/∗ g e n e r a l i z e d ze ro matrix ∗/}
pub l i c Matrix I (i n t n) {/∗ g e n e r a l i z e d i d e n t i t y matrix ∗/}
pub l i c Matrix operator + /∗ g e n e r a l i z ed A+B∗/
pub l i c Matrix operator ∗ /∗ g e n e r a l i z ed A∗B∗/
pub l i c Matrix Canon ica l to Motor (Matrix A) ;
/∗ r e o rd e r i ng f o r the mesh−of−t o r i p roc e s s i ng ∗/
pub l i c Matrix Motor to Canon ica l (Matrix A) ; /∗ i n v e r s e o f
the r e o rd e r i ng f o r the mesh−of−t o r i p roc e s s i ng ∗/
pub l i c Matrix Scramble (Matrix A, i n t nb) ;
/∗Matrix (Image) Scrambl ing∗/
pub l i c Matrix ScrambleInv (Matrix A, i n t nb) ;
/∗Matrix (Image) Unscrambling∗/

}

This interface is to be used with the following class Matrix that summarizes the proposals outlined above.

c l a s s Matrix i n h e r i t s ca l a r Sem i r i ng
implement Mat r i x i n t e r f a c e {

T: type o f element ; /∗ double , s i ng l e , . . . ∗ /
p r i va t e Matrix SCRAM (in t n) /∗ scrambl ing matrix
p r i va t e Matrix R (i n t n) ; /∗ matrix f o r MoTor

trans f ormat i on ∗/
p r i va t e Matrix ONES (i n t n) /∗ matrix o f ones ∗/
p r i va t e Matrix PERMUT(i n t i , j , n)/∗ i d e n t i t y matrix

with inter changed columns i and j ∗/
// anti−diagona l matrix o f ones
p r i va t e Matrix SWAP (i n t n)

// Methods
pub l i c Matrix 0(i n t n) {/∗0 matrix ∗/}
publ i c Matrix I (i n t n) {/∗ i d e n t i t y matrix ∗/}
publ i c Matrix t ranspose (Matrix A){

/∗MMU −based t r an s p o s i t i o n o f A∗/}
publ i c Matrix operator + (Matrix A,B)

{ r e turn MMU(A, I (n) ,B, a , b)}
publ i c Matrix operator ∗ (A,B: Matrix)

{ r e turn MMU(A,B, matrix 0 , a , b)}
. . .
/∗ image scrambl ing ∗/
pub l i c Matrix Scramble (Matrix A, i n t nb){

r e turn SCRAM ∗ A ∗ SCRAMˆT} ;
pub l i c Matrix ScrambleInv (Matrix A, i n t nb){

r e turn SCRAMˆT ∗ A ∗ SCRAM} ;
. . .

p r i va t e MMU(A,B,C: Matrix (n)){
r e turn ”vendor / implementer s p e c i f i c

r e a l i z a t i o n o f MMU = C + A∗B where
+ / ∗ are from c l a s s s ca l a r Sem i r i ng ”}

. . .
}

Obviously, this class and the interface would allow writing codes in the suggested manner. Here, the matrix
operations (image scrambling and unscrambling) would be performed by calling simple functions, and hiding
all implementation details (including the existence of the matrix SCRAM) from the user.

5. Concluding remarks. The aim of this paper was to extend and modify a recently proposed novel
method of image scrambling. The proposed improvements were made from the perspectives of (1) practical use
of image scrambling for secure transmission of multimedia content, and (2) realization of the proposed method
on the MoTor architecture. We have started from the rationale behind the need for efficient processing of large
scale multimedia content and used this to outline the fundamental properties of the MoTor architecture. Next,
we have introduced the image scrambling and unscrambling method proposed in [18]. This method was then
analyzed from the perspective of its practical applicability, which resulted in the proposed modifications. Finally,

Image scrambling on a ”mesh-of-tori” architecture 87

we have illustrated how the proposed approach fits into the object oriented realization of matrix operations
proposed in [11]. In the future we plan to implement the proposed approach on the virtual MoTor system and
study its efficiency.

Acknowledgment. Work of Marcin Paprzycki was completed while visiting the University of Aizu.

REFERENCES

[1] Kalray multi-core processors. http://www.kalray.eu/.
[2] Top500 list. http://www.top500.org.
[3] Canon EOS 5D. http://www.usa.canon.com/cusa/consumer/products/cameras/slr_cameras/eos_5d_mark_iii, 2013.
[4] Nikon D800. http://www.nikonusa.com/en/Nikon-Products/Product/Digital-SLR-Cameras/25480/D800.html, 2013.
[5] Nokia 808 Pureview. http://reviews.cnet.com/smartphones/nokia-808-pureview-unlocked/4505-6452_7-35151907.html,

2013.
[6] Nokia Lumia 1020. http://www.nokia.com/global/products/phone/lumia1020/, 2013.
[7] Wikipedia pixel. http://en.wikipedia.org/wiki/Pixel, March 2013.
[8] P. Altevogt and A. Linke, Parallelization of the two-dimensional ising model on a cluster of ibm risc system/6000 work-

stations, Parallel Computing, 19 (1993), pp. 1041–1052.
[9] S. Chai and D. Wills, Systolic opportunities for multidimensional data streams, Parallel and Distributed Systems, IEEE

Transactions on, 13 (2002), pp. 388–398.
[10] D. Fey and D. Schmidt, Marching-pixels: a new organic computing paradigm for smart sensor processor arrays, in CF

’05: Proceedings of the 2nd conference on Computing frontiers, New York, NY, USA, 2005, ACM, pp. 1–9. doi:http:

//doi.acm.org/10.1145/1062261.1062264.
[11] M. Ganzha, M. Paprzycki, and S. Sedukhin, Library for matrix multiplication-based data manipulation on a “mesh-of-tori”

architecture, in Proceedings of the 2013 Federated Conference on Computer Science and Information Systems, M. Ganzha,
L. Maciaszek, and M. Paprzycki, eds., IEEE, 2013, pp. pages 455–462.

[12] M. Ganzha, S. Sedukhin, and M. Paprzycki, Object oriented model of generalized matrix multiplication, in FedCSIS, IEEE,
2011, pp. 439–442.

[13] J. L. Gustafson, Algorithm leadership, HPCwire, Tabor Communications (April 06, 2007).
[14] E. H. M. Heijne, Gigasensors for an attoscope: Catching quanta in CMOS, IEEE Solid State Circuits Newsletter, 13 (2008),

pp. 28–34.
[15] P. Jacob, A. Zia, O. Erdogan, P. M. Belemjian, J.-W. Kim, M. Chu, R. P. Kraft, J. F. McDonald, and K. Bernstein,

3D memory stacking; mitigating memory wall effects in high-clock-rate and multicore CMOS 3-D processor memory
stacks, Proceedings of the IEEE, 97 (2009).

[16] S. Kyo, S. Okazaki, and T. Arai, An integrated memory array processor architecture for embedded image recognition
systems, in Computer Architecture, 2005. ISCA ’05. Proceedings. 32nd International Symposium on, June 2005, pp. 134–
145.

[17] M. Paprzycki, Parallel Gaussian elimination algorithms on a Cray Y-MP, Informatica, 19 (1995), pp. 235–240.
[18] A. Ravankar and S. Sedukhin, Image scrambling based on a new linear transform, in Multimedia Technology (ICMT), 2011

International Conference on, 2011, pp. 3105–3108.
[19] A. A. Ravankar, A new “mesh-of-tori” interconnection network and matrix based algorithms, master’s thesis, University of

Aizu, September 2011.
[20] A. A. Ravankar and S. G. Sedukhin, Mesh-of-tori: A novel interconnection network for frontal plane cellular processors,

2013 International Conference on Computing, Networking and Communications (ICNC), (2010), pp. 281–284.
[21] , An O(n) time-complexity matrix transpose on torus array processor, in ICNC, 2011, pp. 242–247.
[22] S. G. Sedukhin and T. Miyazaki, Rapid*closure: Algebraic extensions of a scalar multiply-add operation, in CATA, 2010,

pp. 19–24.
[23] S. G. Sedukhin and M. Paprzycki, Generalizing matrix multiplication for efficient computations on modern computers, in

Parallel Processing and Applied Mathematics, R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Waśniewski, eds.,
vol. 7203 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2012, pp. 225–234.

[24] S. G. Sedukhin, A. S. Zekri, and T. Myiazaki, Orbital algorithms and unified array processor for computing 2D sepa-
rable transforms, in Parallel Processing Workshops, International Conference on, Los Alamitos, CA, USA, 2010, IEEE
Computer Society, pp. 127–134.

[25] Wikipedia, Flops. http://en.wikipedia.org/wiki/FLOPS.

[26] Á. Zarándy, Focal-Plane Sensor-Processor Chips, Springer, 2011.

Edited by: Dana Petcu
Received: Dec 1, 2013
Accepted: Jan 15, 2014

Scalable Computing: Practice and Experience
Volume 15, Number 1, pp. 89–99. http://www.scpe.org

DOI 10.12694/scpe.v15i1.968
ISSN 1895-1767
c© 2014 SCPE

TTL-CHORD: A CHORD-BASED APPROACH FOR SEMANTIC WEB SERVICES
DISCOVERY

MOHAMED GHARZOULI ∗, YOUCEF MESSELEM †, AND MOHAMED ELHADI BOUNAS ‡

Abstract. Recently, P2P-based discovery methods for semantic Web services require special attention from collaboration and
interoperability in distributed computing environment. In this paper, we present an approach for semantic Web services discovery
through a structured P2P network based on Chord. This protocol is chosen because it is scalable and still achieves very good
resilience and proximity performance. However, because the discovery of Web services is made semantically, the search time will
be significant. For this reason, we integrate a proposed algorithm into original implementation of Chord, where we mark the sent
requests by a TTL (Time To Live). After this proposition, we present some experimental results wherever we analyze and discuss
the influence of the TTL on the discovery operation and on the network stability.

Key words: Web services discovery, P2P, Chord, distributed algorithm

99

1. Introduction. In recent years, Peer-to-Peer (P2P) computing has emerged as a popular model for
distributed computing. Quickly, P2P infrastructures are increasing important attentions from both industry
field and academic field. It enables large-scale aggregation of resources (e.g. files, applications, services, storage)
geographically distributed and belonging to different domains. P2P networks have received great attention
due to their inherent flexibility. In comparison to traditional client/server paradigm, P2P systems offer more
advantages in term of scalability and robustness [1, 15].

Since their apparition, P2P networks have been used for files exchange between different participants. Until
now, this application occupies the most important traffic rate of generated requests in P2P networks. However,
the increasing popularity of P2P systems for file sharing indicates general interest in resources sharing [14].
In the last few years, research on P2P systems has been quite intensive, and has produced significant results
in scalability, robustness, location, distributed storage, and system measurements. P2P systems are being
increasingly used in many recent application domains [20]. Among these emergent research fields, Web services
based on P2P computing require special attention from collaboration and interoperability in a distributed
computing environment. In this field, a particular interest has been expressed on Web services discovery, in
which important research works focus on new mechanisms for large-scale discovery of Web services [17, 24].

In the same context, to involve the automatic Web services discovery, which requires a more intelligible
description, the Web semantic technologies have been used to improve the automatic discovery and composition
of Web services. A semantic description is more comprehensible, which facilitates the dynamic discovery of Web
services. In this field, many semantic languages are proposed like OWL-S [7], WSMO [21], METEOR-S [29]
and other specifications.

Consequently, the P2P- based approaches for semantic Web services discovery are the result of the con-
vergence of three IT disciplines: Web services, semantic Web and P2P computing. In this context, several
research works improve the decentralized discovering strategies of semantic Web services in the P2P networks.
An important number of them focus on new methods, algorithms and frameworks to efficiently and effectively
select and compose semantic Web services over large-scale P2P overlay [4, 18, 27, 34].

In comparison with centralized discovery methods of Web services (such as those based on UDDI (Universal
Discovery, Description and Integration) [35]), P2P-based discovery mechanisms provide a scalable alternative
to centralized repositories by distributing the Web services among all peers. The P2P-based approaches offer a
decentralized and self-organizing context, where Web services interact with each other dynamically [10].

However, although the results obtained by many researchers, P2P-based discovery methods pose many
challenges in terms of protocols, infrastructures, fault tolerance, scalability and performance. An important
issue arising in P2P applications is how to accurately and efficiently discover the required services in P2P

∗Department IFA, Faculty of New Technologies of Information and Communication, University Constantine 2, Algeria.
(gharzouli@gmail.com).

†Department IFA, Faculty of New Technologies of Information and Communication, University Constantine 2, Algeria.
‡Department IFA, Faculty of New Technologies of Information and Communication, University Constantine 2, Algeria.

89

90 M. Gharzouli, Y. Messelem and M. E. Bounas

networks. A number of criteria like: the type of the P2P overlay, the network size and the number of pertinent
peers involve the quality of responses.

In contrast with our previous works ([9, 10, 11]), where we have employed the unstructured P2P networks
for semantic Web services discovery and composition, in this paper, we present a new distributed algorithm
based on an architecture that combines hybrid and structured topologies. We concentrate our efforts only on
the discovery operation, where we try to implement a distributed algorithm for semantic Web services discovery
by using an ameliorated version of Chord protocol [32], in which we have marked the research requests by a
TTL (Time To Live).

The rest of this paper is structured as follows. In Section 2, we briefly introduce a background about
discovery methods for Web services. Section 3 describes our solution for semantic Web services discovery. In
this section, we present an architecture to implement this solution and we propose a distributed algorithm for
Web services discovery in a hybrid/Chord P2P network. In Section 4, we discuss some experimental results.
Section 5 reviews related works and Section 6 concludes the paper and discusses further research.

2. Discovery methods for semantic Web services. Before presenting the different categories of se-
mantic Web services discovery methods, it is important to clarify first what precisely means ”Web services
discovery”. Although various proposals for discovering Web services are available, the understanding of dis-
covery is different, and has often been confused with terms such as selection and matching [36]. Among little
number of definitions of services discovery in the literature, the most official definition is that presented in [38]:

”The act of locating a machine-processable description of a Web service-related resource that may have been
previously unknown and that meets certain functional criteria. It involves matching a set of functional and other
criteria with a set of resource descriptions. The goal is to find an appropriate Web service-related resource”.

Originally, the main goal of Web service technology is to define Web services in a machine-understandable
way, in order to be automatically discoverable by other actors (agents or services). Consequently, to find the
appropriate Web services is considered as an important key to service composition, invocation and execution.
Basically, Web services are discovered by measuring the similarity between service requirements given by a
service requester and service advertisements from service providers [36]. However, independently to the category
of technique used to measure the similarity measurements, we can classify the Web services discovery methods
into two main types: centralized and decentralized.

2.1. Centralized Methods. Centralized discovery methods (such as UDDI) present the first generation
of works done on Web services architectures, where Web services are described by service interface functions and
they publish their capabilities and functionalities with a registry [37]. Consequently, the centralized discovery
methods are not adapted to the dynamic interactions, they restrict the scalability of flexible and dynamic
environment [12, 18], induce performance bottleneck and may result in single points of failure [26]. Moreover, the
centralized control of published services suffers from many problems such as high operational and maintenance
cost.

In addition, even if the Web services are described semantically, one of the major problems with existing
structure is that UDDI does not capture the relationships between entities in its directory and therefore is not
capable of making use of the semantic information to infer relationships during search [3]. Secondly, UDDI
supports search based on the high-level information specified about businesses and services only. It does not
get to the specifics of the capabilities of services during matching [28].

2.2. Distributed Discovery Methods. To solve the problems of the centralized methods, other archi-
tectures are proposed to facilitate the discovery and composition of Web services. Recently, many solutions
are proposed to proceed to the distributed discovery of Web services. The majority of research works illustrate
P2P-based discovery methods. Many of them are related to automated discovery and composition of semantic
Web services in the P2P networks. These research works are categorized according to the different types of P2P
networks: unstructured (Gnutella V0.4 [2]), hybrid (Gnutella 0.6 [25]) or structured (like Chord [32]).

In this research field, several research works improve the discovering methods of Web services in the struc-
tured P2P networks. These systems provide an effective routing of a point to another of the system, and are
based on a concept of local knowledge: a node does not have total knowledge, but it can approaches to the
required data.

TTL-Chord: A Chord-based Approach for Semantic Web Services Discovery 91

Structured P2P systems are proposed to solve a number of problems appeared in first generation of these
systems (hybrid and pure P2P systems). They are based on a Distributed Hashing Table (DHT). An example
of a structured P2P system (the most used in the recent research works) is the protocol Chord.

3. A Chord-based Architecture for Semantic Web Services Discovery. This paper is interested
to decentralized P2P networks. As we have already mentioned, in these systems, there are two methods to send
queries: DHT and flooding-based algorithms. In comparison with unstructured P2P topologies, structured P2P
systems have several advantages like: scalability, availability, and management of the fault tolerance.

On the other hand, unstructured P2P networks (such as Gnutella V0.4) require no centralized directories
and no precise control over network topology or data placement. Though, the flooding-based query algorithm
used in these systems does not scale; a query generates a large amount of traffic hence large systems become
quickly overwhelmed by the query-induced load [6].

Our proposed architecture is based on Chord, which is chosen because it is simple and still achieves very good
resilience and proximity performance. In the following subsection, we will briefly present the main characteristics
of this protocol.

3.1. Chord Overview. Chord implements a DHT using an m-bit identifier ring, [0, 2m−1], for routing and
object location. In an N−nodes system, a query can be routed via O(logN) hops (see Fig.3.1). The destination
point of a query is determined by hashing its key. At each hop during routing, the query is forwarded to a peer
whose identifier most immediately precedes the destination point in its finger table (contains the list of peers
that a peer uses to send messages to) [4].

Chord is a dynamic system where the peers can enter or leave the system at anytime at will. Then, each
node maintains information only about O(logN) other nodes, and resolves all lookups via O(logN) messages to
other nodes. Chord maintains its routing information as nodes join and leave the system; with high probability
each such event results in no more than O(log2 N) messages [32].

Fig. 3.1. Example of Chord system

Chord protocol has several advantages and important characteristics like: Scalability, availability, and
management of the fault tolerance. However, in the context of semantic Web services discovery, the requester
can search for a capacity, a goal or a property of a resource. In this case, one of the disadvantages of this
protocol is the convergence of the request, especially, when the number of nodes is certainly large. For this
reason, we have integrated the time aspect in our discovery algorithm, in which we have marked the requests
by a TTL (Time To Live).

3.2. An overview of the proposed architecture . In this paper, we describe a P2P based architecture
that combines the hybrid and the structured typology of P2P network, in which we employ Chord. This
architecture supports the centralized and decentralized discovery methods of Web service. It uses a central
common ontology, which used by the different providers to annotate semantically their Web services descriptions.

92 M. Gharzouli, Y. Messelem and M. E. Bounas

The P2P network is used to organize the service providers into a hybrid/Chord overlay and allows them
to advertise and lookup services in a centralized/decentralized dynamic manner. Figure 3.2 shows the main
components of this architecture.

Fig. 3.2. The main Architecture

The main P2P network is presented by the whole of super peers organized as a Chord ring. The main
system is decomposed on clusters presented by the Client/Server relationship between each super peer and their
connected client peers. A cluster is a mini network, in which every super peer provides to the client peers an
ensemble of services in term of discovery and publication of Web services. In the following subsections, we
detailed the three main components of this architecture: Central common ontology, clusters and the distributed
discovery over the Chord overlay.

3.3. Central Common Ontology. In a large distributed system, it is evident that the provided resources
are strongly heterogeneous. In the same context, if the resources are Web services, this problem is vital. Even
though the technical interoperability of Web services was assured essentially by the three main standards XML,
SOAP [30] and WSDL [31], the semantic interoperability is already a real problem that influences the discovery
of Web services, especially, in the large distributed networks.

Consequently, to guarantee the semantic interoperability between the different provider peers of the network,
it’s important to provide a mechanism that assures the dynamic discovery of Web services those distributed
among the different participant peers.

In this framework, we propose to use a common central ontology that provides a large variety of concepts
of great selection of Web services domains. In the first case, each provider peer can reuse one or more several
descriptions that provided by this central base. An example of such ontology is that created by [33] that

provide about 240 OWL-S services descriptions based on a main ontology named ”concepts.owl”. In this
case, if the provider want to supply a Web service that corresponding to one of the provided OWL-S descriptions,
he can reuse directly this one. Thus, in our proposed architecture each provider peer can use the common
ontology to extend semantically the descriptions of their Web services.

Furthermore, in our work, we suppose that every Web service is defined by the tipple (input, output, goal).
The following example presents a Web service that accepts in its input book information, in the output the
price of this book and the goal specifies the used Money (EUR in this example):

Listing 1

TTL-Chord: A Chord-based Approach for Semantic Web Services Discovery 93

example of a semantic search request

Input : T i t l e | | Author | | Edit ion | | year−of−ed i t i o n Output : P r i c e
Goal :∗ input:=#book : T i t l e | | Author | | Edit ion | | year−of−ed i t i o n
∗ output:=#book : Pr i c e //Money :EUR

3.4. Client Peers/Super Peers. A client peer joins the system by connecting to one and only one super
peer. Then, it leaves the network by disconnecting from it’s super node. Each super peer processes the different
requests forwarded by their client peers. However, this description does not mean that client peers are only
customers. They can provide some Web services; which are indexed and published within the Chord ring by
super peers.

Furthermore, to the high availability and computing capacity, super peers are characterized by the number
and the quality of the provided services and resources. Thus, after the first peer joins the system as a super
peer, it designs one of its client peers with good resources as a new super peer. Furthermore, the super peer
can observes the participation of each client peer, if anyone was a good participant; it will be supported by the
super peer to be a new one.

In addition, the clustering organization of the peers (client peers/Super peers) offers many benefits:
• Whenever client peers just send queries and reply some service requests, super peers (peers provide
a lots of services) benefit directly from the advantages of the Chord overlay network by doing all the
message routing and indexing which minimizes the discovery time of the requested Web services when
the requestor is a super peer.
• This gain for super peers, in term of resources and the search time by exploiting the distributed system
(Chord ring), encourages the other peers (client peers) to provide more services and participate actively
in the system. Thus, the number of the selfish peers in the system will be reduced, whenever, this one of
the most important problems of the P2P systems (selfish peers are just consumers, they don’t provide
any resource for the other peers).
• For the super peers, the system is more flexible and scalable because of the simplicity of Chord in term
of routing messages and locating resources. Whereas, the client peers can join (leave) the system by
simply connecting to (disconnecting from) their super peers.

3.5. Distributed discovery over the Chord ring. To ensure the cooperation between the different
super peers, we implement a distributed discovery algorithm over the Chord ring. As a first step of this
work, we favorite to propose the Algorithm 13, that researches only for basic Web services. However, we have
optimized the original implementation of Chord protocol through the insertion of a TTL (Time To Live) into
sent requests. Because the discovery of Web services is made semantically, the search time, in each super peer,
will be significant. For this reason, the marking of the request by a TTL becomes the discovery operation more
realistic and reflects the exigencies of users in term of research time.

In this context, it’s important to mention that the original implementation of Chord didn’t design for ”se-
mantic discovery”. It is more developed for ”exact search” where the requester knows previously the precise
identifier of the service. So, the ”semantic discovery” is the most motivation to use the TTL in our solution.
In this approach, the requester doesn’t know the exact identifier of the requested service. The semantic dis-
covery is based on keywords extracting from the common ontology. Consequently, the integration of the TTL
becomes a necessity because the search time is important in such approach. Thus, in contrast with the original
implementation of Chord, the requestor searches ”semantically” for the adequate service until he finds it or the
discovery operation stops when the TTL is finished.

The following Algorithm 13 is implemented in each super peer. It is executed when a super peer receives a
request from a client peer or another super peer in the Chord ring.

From the Algorithm 13, we can deduce that the execution stops if we obtained the researched Web service
or if the TTL is finished. For this reason, it’s evident that the insertion of the TTL influences directly the
obtained result. To study this effect, in the following section, we present some experimental results after the
simulation of the Algorithm 13.

4. Simulation and Experimental Results. After the insertion of the Algorithm 13 in the Chord imple-
mentation for PeerSim simulator [19], we obtained various experimental results presented in the next sections.

94 M. Gharzouli, Y. Messelem and M. E. Bounas

Algorithm 13 Distributed Discovery Algorithm

Require: Webservice(input, output, goal, TTL)
Ensure: service contract
Receive[Search Service(input, output, goal, TTL)];
if (there is a Web service published in the cluster) then

Get(contract service);
else

Decrease(TTL);
Send[Search Service(input, output, goal, TTL)];

end if

In the following, we present different case studies by using some characteristic of the network: size (number of
super peers), number of nodes that join/leave the network, stabilizations..etc. The observations of the different
input/output results are summarized in Table 4.1.

Table 4.1
Observations of the hops number in the Chord ring.

Number of Super peers Join/leave Number of Min/Max of Hops
super peers the Network hops hops Average

500 200/250 2049 0/13 3
1000 250/500 3094 0/13 3
2000 500/750 3169 0/15 4

5000 750/1000 4187 0/15 6
10 000 1000/1250 5322 0/14 6
50 000 2000/1000 6900 0/15 8

4.1. Number of Failures. The main difference between the original implementation of Chord protocol
and our implementation is that we mark the discovery request by a TTL. For these reason, we made a simulation
to detect the number of failures where the request doesn’t achieve its goal because of the end of TTL. Further-
more, the number of super peers that can be leave the network or when they can break down. To calculate the
initial TTL for each experience, we have added a method named durationTime to the classes ChordProtocol
and CreateNw. The java code of this method is presented in the following listing:

Listing 2
java code of the durationTime method

public long durationTime (long durat ion) {
startTime = System . nanoTime () ;
. .
endTime = System . nanoTime () ;

durat ion= endTime−startTime ;
return durat ion ;
}
The main objective of this method is to evaluate the maximum time to cover the entire network. It’s calculated
as follow:

MaxTTL =
∑n

i=1(durationT ime(super− peer(i))) +
∑m

j=1 T ime create new peer(j). Where:
• n : number of super peers
• m : number of new super peers that joined the network

The ”MaxTTL” (or TTL) is evaluated before the integration of the Algorithm 13 in the original imple-
mentation of Chord. Table 4.2 summarizes the evaluation of the TTL in correspondence with the network
size.

In addition, before the integration of the Algorithm 13 in the source code of Chord protocol, we have
obtained the observations presented in Table 4.3.

TTL-Chord: A Chord-based Approach for Semantic Web Services Discovery 95

Table 4.2
Evaluation of the TTL.

Network size MaxTTL (nano second) TTL (second)

500 5 521 468 554 ≃ 6
1000 10 756 845 215 ≃ 11
2000 21 032 225 142 ≃ 21
5000 45 689 998 569 ≃ 46
10 000 112 231 543 268 ≃ 112
50 000 564 523 669 884 ≃ 565

Table 4.3
Number of failures without discovery algorithm.

Number of Super peers Join/leave observations Number of Stabilization
super peers the Network failures

500 200/250 828 2 126
1000 250/500 1200 5 220
2000 500/750 3169 7 608
5000 750/1000 4187 8 828

10 000 1000/1250 5322 10 1750
50 000 2000/1000 6900 13 5458

After the integration of the discovery Algorithm in the Chord implementation, we have obtained the results
presented in Table 4.4.

Table 4.4
Number of failures after the integration of Algorithm13

Number of Super peers Join/leave observations Number of Stabilization
super peers the Network failures

500 200/250 828 9 544
1000 250/500 1200 13 627
2000 500/750 3169 15 700

5000 750/1000 4187 18 965
10 000 1000/1250 5322 25 2078
50 000 2000/1000 6900 32 7865

According to the experimental results summarized in the Table 4.4, we can conclude that the TTL increases
the number of failures, because the request cannot continue its path in the Chord ring when the TTL is finished.
However, in Table 4.3, the request stops, only, if a super peer (receiver or intermediary) is break down or leaves
the network. Figure 4.1 schematizes a comparison between the number of failures before and after the integration
of Algorithm 13 (where we mark the request by a TTL).

From the results presented in Figure 4.1, we can demonstrate that, after the implementation of the discovery
algorithm of Web services (Algorithm 13), the TTL has increase the number of failures. In comparison with
the original implementation of Chord protocol, the integration of the TTL becomes the Web services discovery
operation more realistic. Furthermore, we have observed that the most practical number of super peers is 2000,
where the percentage of the success request is approximately 50%. In this context, it’s important to clarify that
as a first step, we studied only the influence of the TTL on the success rate of the discovery operation. For this
reason, the described simulation and experimental results offer better values in the non-TTL set of experiments.
An additional work is necessary to decrease the number of failures in the TTL results.

4.2. Stabilizations. Another important characteristic that we have experimented is the stabilization of
the network after the implementation Algorithm 13. It is presented by the number of operations realized per
a super peer to update the DHT table. Figure 4.2 demonstrates the number of stabilizations before and after
the addition of the discovery algorithm to the Chord implementation.

In Figure 4.2, we observe that the call of the stabilization method, by a super peer, increases when the
size of the network augments. Once the number of super peers exceeds 10000, the network becomes non-stable.

96 M. Gharzouli, Y. Messelem and M. E. Bounas

Fig. 4.1. Number of failures with and without TTL

Fig. 4.2. Number of stabilizations

For this reason, the super peers call the stabilization method frequently. In addition, we note that, when the
number of super peers is between 2000 and 5000, the number of stabilizations is very close in the tow cases.
Most precisely, the number of calls of stabilization method is nearly the same when the number of nodes is
2000. This result confirms the conclusion that we had already deduced in the previous subsection.

4.3. Traffic generation. The last propriety that we have analyzed, in this experimental study, is the
traffic generation. This last is defined by the number of sent requests generated by the nodes that research
a particular Web service. Figure 4.3 presents the number of observations with and without integration of
Algorithm 13.

In this case, we detect that the difference between the two results is almost negligible. This conclusion is
resulted because the discovery algorithm traits the live time of a request but not the number of sent requests.
This is generated arbitrary by the class ”trafficGnerated” implemented originally by the Chord protocol. How-
ever, from a more precise observation, we can view that the exactitude between the two results is inspected

TTL-Chord: A Chord-based Approach for Semantic Web Services Discovery 97

Fig. 4.3. Number of observations in function of the size of the network

when the number of super peers is less than 2000.

5. Related works. Firstly, it’s important to clarify that this paper doesn’t focus on a new family of P2P
routing schemes or an extension version of Chord, like the works presented in [5, 8, 16]. Our work presents a new
distributed approach for semantic Web services discovery. In this context, several research works improved the
decentralized discovering methods of Web services in the P2P networks. For example, a number of centralized
and P2P Web service discovery methods have been proposed in the area of the Web services composition, Web
services based business process management and Web services discovery in P2P Clouds [13]. In comparison
with our previous works [10, 11], where we have employed the unstructured P2P paradigm, in this work, we
have used Chord, which is a structured P2P protocol. Another difference is that in our previous work [10],
we have proposed a number of algorithms that realized the discovery and the composition of Web services in
the same time. The proposed solution has posed some problems in term of convergence and the complexity
of the algorithms. In contrast, this article presents an algorithm, which intended the discovery operation only.
However, the proposed algorithm has proved its scalability and doesn’t influence the stabilization and the traffic
generation of Chord protocol.

Another related work is that of Z. Zhengdong et al [39], that designs a localized mechanism of semantic Web
services in CAN-based P2P networks to ensure that each service is registered in a specific node of the public
Web. The registration services of public Web nodes are divided by the area and shared by all nodes. This
work processes the CAN-based P2P networks; in contrast, in our work, even we presented a simple discovery
algorithm; the proposed solution is generic and can be extended to a multi-layer Chord model like in [5].

In the same area, F. Mandreoli et al. [18] present the architecture of FLO2WER, which is a framework
that supports large scale interoperation of semantic Web services in a dynamic and heterogeneous P2P context.
They have adopted a hybrid approach that exploits the advantages of centralized registries for service discovery
and composition, as well as the dynamism and the scalability of non-structured P2P networks. The main idea of
FLO2WER framework is that, while decentralizing the knowledge of what specific services are available in the
system, they keep centralized knowledge of what objectives may be satisfied within the network namely Goals.
Each Goal specifies therefore a sub network of specific services, and it is stored in an appropriate repository, called
Goal Repository. However, it is not described and detailed how the goals have been discovered. Moreover, the
use of a central repository of goals is similar to central discovery methods based on Web services functionalities.
In contrast, our discovery method combines decentralized and centralized solution in the same time.

In another work, T. Essafi et al. [34] present a scalable P2P approach to service discovery using ontology.
This work incorporates input/output matching algorithm proposed in paper [23] and extends the solution

98 M. Gharzouli, Y. Messelem and M. E. Bounas

described in paper [22] by adding an encoding that locates servers in a P2P network to simplify rerouting of
query messages. Idem to the precedent work [24], this project adopts only network centralization and hierarchy.
However, the main objective of our work is to ensure dynamic Web service discovery. Also, in this work, they
still relay on the old DAML-S, which proved to be less flexible than the new OWL-S.

One of the adjacent researches works is that of O. D. Sahin et al [27] where they proposed a similar
architecture of us. Though, this paper presents the different semantic techniques for Web services discovery
in P2P Chord network. It was very poor in term of experimental results and the improvement of the original
Chord implementation. In contrast, our work focuses on Chord proprieties before and after the implementation
of the algorithm (more precisely, the influence of the TTL).

6. Conclusion. In this paper, we proposed a P2P based discovery approach for semantic Web services
in a large distributed environment. In this approach we employed Chord, which is a structured P2P protocol
that improved a high degree of scalability. At this purpose, we adopted a hybrid architecture that exploits the
advantages of the decentralized design of the Chord protocol and the clustering organization of the different
peers.

This architecture contains two main components: a common central ontology and a P2P network. To
guarantee the semantic interoperability in such large environment, which characterized by high degree of het-
erogeneity, we supposed that the participant peers offer semantic descriptions of their proposed Web service by
using the same ontology. This proposition ensures the interoperability and facilities the discovery operation in
the P2P network.

The main contribution of our work is the proposition of distributed algorithm for semantic Web services
discovery. To achieve this goal, we have updated the original Chord implementation (for Peersim simulator) by
injecting the proposed algorithm. The main change that we have realized is the addition of the TTL to the sent
requests.

After the simulation, we have obtained experimental results about the effect of the TTL in term of number
of failures, stabilization and the traffic generation in the network. According to the achieved results, we have
concluded that the TTL increases the number of failures, because the request cannot continue its path in the
Chord ring when the TTL is finished. However, for the network stabilization and the traffic generation, the
implementation of the discovery algorithm doesn’t strongly influence the network. For the network stabilization,
we have observed that the call of the stabilization method increases when the number of super peers exceeds
10000 nodes. Though, for the last propriety that we have analyzed (traffic generation), we have detected that
the difference between TTL-Chord and original Chord is almost negligible.

However, this task presents the first step of this work. In the future, we plan to optimize the proposed
algorithms by the following characteristics:

• Evaluation of the quality of the discovered services (QoS),
• Improvement of the proposed algorithm to discover composite Web services,
• Proposition of a probabilistic algorithm that ameliorates the proposed one.

As a short objective, we are, now, trying to apply the proposed solution for semantic Web services discovery
in a P2P Cloud environment.

REFERENCES

[1] Tien Tuan AnhDinh, GeorgiosTheodoropoulos, and Rob Minson. Evaluating large scale distributed simulation of p2p networks.
In 12th IEEE/ACM International Symposium on Distributed Simulation and Real-Time Applications, pages 51–58,
Vancouver, Canada, October 2008.

[2] The annotated Gnutella protocol specification v0.4. http://rfcgnutella.sourceforge.net/developer/stable/, 2001.
[3] Bawa S. Batra, S. Review of machine learning approaches to semantic web service discovery. Advances in Information

Technology, 1(3):146–151, August 2010.
[4] Fatih Emekçi, Ozgur D. Sahin, Divyakant Agrawal, and Amr El Abbadi. A peer-to-peer framework for web service discovery

with ranking. In ICWS, pages 192–199, 2004.
[5] Yung-FaHuang Eric Jui-LinLu and Shu-ChiuLu. Ml-chord: A multi-layered p2p resource sharing model. Journal of Network

and Computer Applications, 32:578–588, 2009.
[6] Ronaldo A. Ferreira, Murali Krishna Ramanathan, Asad Awan, Ananth Grama, and Suresh Jagannathan. Search with

probabilistic guarantees in unstructured peer-to-peer networks. In Peer-to-Peer Computing, pages 165–172, 2005.
[7] OWL-S: Semantic Markup for Web Services. http://www.w3.org/submission/owl-s/, 2004.

TTL-Chord: A Chord-based Approach for Semantic Web Services Discovery 99

[8] Mikael Hammar Alberto Negro Gennaro Cordasco, Luisa Gargano and Vittorio Scarano. Fchord:improved uniform routing on
chord. In 11th Colloquium on Structural Information and Communication Complexity (SIROCCO 2004),Lecture Notes
in Computer Science,Vol. 3104, 2004.

[9] Mohamed Gharzouli and Mahmoud Boufäıda. A generic p2p collaborative strategy for discovering and composing semantic
web services. In ICIW, pages 449–454, 2009.

[10] Mohamed Gharzouli and Mahmoud Boufäıda. A distributed p2p-based architecture for semantic web services discovery and
composition. In NOTERE, pages 315–320, 2010.

[11] Mohamed Gharzouli and Mahmoud Boufäıda. Pm4sws: A p2p model for semantic web services discovery and composition.
Journal of Advances in Information Technology, Special Issue on Advances in P2P Technology, 2(1), 2011.

[12] Jianqiang Hu, Changguo Guo, Huaimin Wang, and Peng Zou. Web Services Peer-to-Peer Discovery Service for Automated
Web Service Composition. In ICCNMC, pages 509–518, 2005.

[13] Zhongzhi Shi Jing Zhou, Nor Aniza Abdullah. A hybrid p2p approach to service discovery in the cloud. I.J. Information
Technology and Computer Science, 3(1):1–9, 2011.

[14] Peep Küngas and Mihhail Matskin. Semantic web service composition through a p2p-based multi-agent environment. In
AP2PC, pages 106–119, 2005.

[15] Dongsheng Li, Xicheng Lu, Yijie Wang, and Nong Xiao. Efficient search in gnutella-like ”small-world” peer-to-peer systems.
In GCC (1), pages 324–331, 2003.

[16] Shiming Zheng Wenjie Sun Li Chen, Zilin Song and Zhanfeng Wang. A model of web service discovery based on balancechord.
Journal of Computational Information Systems, 7(7):2241–2247, 2011.

[17] Jie Liu and Hai Zhuge. A semantic-link-based infrastructure for web service discovery in p2p networks. In Special interest
tracks and posters of the 14th international conference on World Wide Web, WWW ’05, pages 940–941, New York, NY,
USA, 2005. ACM.

[18] Federica Mandreoli, Antonio Massimiliano Perdichizzi, and Wilma Penzo. A p2p-based architecture for semantic web service
automatic composition. In DEXA Workshops, pages 429–433, 2007.

[19] Alberto Montresor and Mark Jelasity. Peersim: A scalable p2p simulator. In Proc. of the 9th Int. Conference on Peer-to-Peer
(P2P’09), 2009.

[20] Hajar Mousannif, Ismail Khalil, and Gabriele Kotsis. The cloud is not ’there’, we are the cloud! IJWGS, 9(1):1–17, 2013.
[21] WSMO: Web Service Modeling Ontology. http://www.w3.org/submission/wsmo/, 2004.
[22] Kawamura T. Payne T.R. Sycara K. Paolucci, M. Semantic matching of web services capabilities. In First International

Semantic Web Conference (ISWC), pages 333–347, Sardinia, Italy, 2002.
[23] Sycara K. Nishimura T. Srinivasan N. Paolucci, M. Using daml-s for p2p discovery. In International Conference on Web

Services (ICWS), pages 203–207, Las Vegas, Nevada, USA, 2003.
[24] Mike P. Papazoglou, Bernd J. Krämer, and Jian Yang. Leveraging web-services and peer-to-peer networks. In CAiSE, pages

485–501, 2003.
[25] Gnutella protocol Development v0.6. http://rfc-gnutella.sourceforge.net/src/rfc-06-draft.html, 2002.
[26] K. Rageb. An Autonomic ¡K, D¿-Interleaving Registry Overlay Network for Efficient Ubiquities Web Services Discovery

Service. Journal Information Processing Systems (JIPS), 4(2), 2008.
[27] Ozgur D. Sahin, Cagdas Evren Gerede, Divyakant Agrawal, Amr El Abbadi, Oscar H. Ibarra, and Jianwen Su. SPiDeR:

P2P-Based Web Service Discovery. In ICSOC, pages 157–169, 2005.
[28] Winterhalter C. Schmidt, A. User context aware delivery of e-learning material: Approach and architecture. Universal

Computer Science (JUCS), 10, 2004.
[29] METEOR-S: Semantic Web services and Process. http://lsdis.cs.uga.edu/projects/meteor-s/, 2004.
[30] SOAP specification. http://www.w3.org/tr/soap/, 2007.
[31] WSDL specification. http://www.w3.org/tr/wsdl20, 2007.
[32] Morris R. Karger D. Kaashoek M.F Balakrishnan H. Stoica, I. Chord: A scalable peer-to-peer lookup service for internet

applications. In ACM SIGCOM, pages 149–160, California, USA, 2001.
[33] Semantic Web Central: Project sws tc. http://projects.semwebcentral.org/projects/sws-tc/, 2006.
[34] N. DORTA T. ESSAFI and D. SERET. A scalable peer-to-peer approach to service discovery using ontology. In Proc of 9th

World Multiconference on Systemics, Cybernetics and Informatics, Orlando, 2005.
[35] UDDI:. https://www.oasis-open.org/committees/tc home.php?wg abbrev=uddi-spec, 2005.
[36] Xia Wang and Wolfgang A. Halang. Discovery and Selection of Semantic Web Services, volume 453 2013. Springer-Verlag

Berlin Heidelberg, studies in computational intelligence edition, 2013.
[37] W3C Working group Web services Architecture. http://www.w3.org/tr/ws-arch/, 2004.
[38] WS-Gloss:. http://www.w3.org/tr/ws-gloss/, 2004.
[39] Yahong H. Ronggui L. Weiguo W. Zengzhi L. Zhengdong, Z. A p2p-based semantic web services composition architecture.

In IEEE International Conference on e-Business Engineering, pages 403–408, Macau, China, 2009.

Edited by: Dana Petcu
Received: Sep 1, 2013
Accepted: Mar 4, 2014

Scalable Computing: Practice and Experience
Volume 15, Number 1, pp. 101–119. http://www.scpe.org

DOI 10.12694/scpe.v15i1.969
ISSN 1895-1767
c© 2014 SCPE

A NEW DECENTRALIZED PERIODIC REPLICATION STRATEGY FOR DYNAMIC
DATA GRIDS∗

HANÈNE CHETTAOUI†AND FAOUZI BEN CHARRADA‡

Abstract. Data grids provide scalable infrastructure for storage resource and data files management, which support data-
intensive applications that need to access to huge amount of data stored at distributed locations around the world. The size of these
data can reach the scale of terabytes or even petabytes in many applications. These applications require reaching several main goals,
namely efficient accessing, storing, transferring and analyzing a large amount of data in geographically distributed locations. In this
situation, replication is a general and simple technique used in data grids to achieve these goals. Indeed, it has as main purposes
improving data access efficiency, providing high availability, decreasing bandwidth consumption, improving fault tolerance and
enhancing scalability. In this paper, we propose a new classification of replication strategies through two complementary criteria as
well as a survey of the induced categories of strategies. In addition, we introduce a new decentralized periodic replication strategy
for dynamic data grids assuming limited storage for replicas, called DPRSKP, which stands for Decentralized Periodic Replication
Strategy based on Knapsack Problem. This strategy takes into consideration the changing availability of sites. DPRSKP is based
on two polynomial-time complexity algorithms. The first one starts by selecting the best candidate files for replication while the
second places them in the best locations. The replication problem in DPRSKP is formulated according to the Knapsack problem. In
addition, DPRSKP extends the well known LRU and LFU strategies. The simulation experiments were carried out using OptorSim
and a dynamic period rather than a static one. The obtained results show that DPRSKP can effectively improve response time,
bandwidth consumption, remote file accesses number and local file accesses number as compared with other replication strategies.

Key words: data grid, replication, knapsack problem, strategy, period, decision taking, complexity

119

1. Introduction and motivations. Nowadays, a huge amount of data is generated in many fields of
science and engineering, some of which are geographic information science [43], astrometry [45], medical [32],
and remote instrumentation [47]. These produced data need to be distributed around the world for the sake of
data sharing and collaboration. Hence, ensuring an efficient and fast access to such massive data is a challenge
that must be addressed. The data grid, which represents a type of grid computing [15], is a solution for this
problem. A data grid connects a collection of hundreds of geographically distributed computers and storage
resources located in different parts of the world to facilitate sharing of data and resources [23]. Biomedical
Informatics Research Network (BIRN)1, Large Hadron Collider (LHC)2 and, the European DataGrid Project
(EDG)3 are some examples of existing data grids.

In this paper, we focus on data grids. Since the data represent the most important resource in data grids,
how to decrease access time, reduce the bandwidth consumption and improve the data availability and system
reliability have become challenging tasks. Replication is a key technique often used to achieve these tasks. The
general idea of replication is to create multiple copies of the same data in several storage resources to improve
response time, reduce the bandwidth consumption, increase data availability, and to improve system reliability.
Currently, data replication in grids mostly deals with file replication [20]. Several replication strategies have
been proposed in the literature. A replication strategy must answer the following questions [9, 21, 38]:
1- Which files must be replicated?
2- Where to place the candidate files for replication (i.e., the new replicas)?
3- How to select the best replica of a file among many replicas available in the grid?

In the literature, replication strategies are categorized according to several criteria. Indeed, replication
strategies can be classified according to the adopted grid model. We then distinguish between strategies ded-
icated for hierarchical grids and other dedicated for Peer-To-Peer or hybrid grids. In addition, replication
strategies can be classified according to the taking decision type. Hence, two strategy types appeared which
are centralized and decentralized strategies. On the one hand, a centralized replication strategy is based on
a central site that collects all information about files and grid sites. The central site makes the replica and

∗This paper is a largely extended version of our work proposed in [14].
†Department of Computer Sciences, Faculty of Sciences of Tunis, Tunis, Tunisia (hanene1ch@gmail.com).
‡Department of Computer Sciences, Faculty of Sciences of Tunis, Tunis, Tunisia (f.charrada@gnet.tn).
1BIRN: http://www.birncommunity.org/
2LHC accelerator project: http://lhc.web.cern.ch/lhc/
3EU Data Grid Project: http://www.eu-datagrid.org/

101

102 H. Chettaoui and F. Ben Charrada

placement decisions. On the other hand, in a decentralized approach, all grid sites keep files track in order to
decide which files to replicate or to remove locally. We also find static or dynamic replication strategies. A
static replication way decides the distribution files initially and retains files location during the grid running.
However, in a dynamic replication type, replicas are automatically created and deleted according to changes in
the grid users’ behavior.

The majority of strategies on data replication have considered only static grids (having invariable number
of sites). For several types of grids, this assumption does not reflect reality. Indeed, new sites can join the grid
and others can leave, to join it possibly again. For this reason, the dynamicity becomes a fundamental criterion
to establish an effective replication strategy.

In this paper, we propose a new decentralized periodic replication strategy, called DPRSKP (Decentralized
Periodic Replication Strategy based on Knapsack Problem) for dynamic data grids. In fact, DPRSKP has two
main features:

• the storage space of each site is supposed to be limited, contrary to several approaches of the literature
which suppose it unlimited.
• the number of grid sites is variable in the sense that sites can leave or join the grid at any time.

In our strategy, we will address these issues characterizing the grid dynamicity. For each site, the DPRSKP
strategy selects files to be replicated or deleted based on an adaptation of the well known Knapsack problem
[22, 30]. We then evaluate the benefit of our strategy through simulations. The obtained experiment results,
using OptorSim, show that our strategy outperforms other replication strategies in terms of several parameters.
It is important to note that, as this will be shown hereafter, the proposed strategy is periodic-fee in the sense
that it can also be used as a non periodic strategy.

The remainder of the paper is organized as follows. Section 2 gives an overview of previous work on data
grid replication. Section 3 presents our replication strategy DPRSKP as well as an illustrative example of its
different components. Section 4 describes a study of the complexity of our proposed strategy. Section 5 provides
the simulation framework and the obtained experimental results. The last section summarizes our contributions
and depicts future work.

2. Related work. Replication in data grids is a technique used to reduce the response time and the
bandwidth consumption. Replication also increases data availability thereby enhancing system reliability. In
this section, we classify and survey the main replication strategies of the literature.

We propose in this paper another type of classification according to the following two complementary
criteria:

• Periodicity: this criterion specifies when the replication strategy is triggered, at each demand of a file
or after a given period of time.
• Taking decision type: this criterion distinguishes between centralized and decentralized replication
strategies.

As a consequence, replication strategies in the literature can be categorized as follows:
• A non periodic replication strategy is triggered by the requesting site when the needed file is not found
locally and assumes limited storage for replicas. In that case, each strategy offers a replacement strategy
when there is not enough space to replicate a new file. For this type of strategy, the decision about
replicating or deleting files is taken by each requesting site in the grid. The associated strategies are
then called non periodic decentralized strategies.
• A periodic replication strategy is triggered at each period. In general, these strategies assume unlimited
replica storage. For this type of strategies, the selection of files to replicate and of sites to place them is
done either by a central site or by the requesting site. We then distinguish between centralized periodic
and decentralized periodic replication strategies.

The proposed classification of replication strategies is depicted in Fig. 2.1.
The following two subsections describe the main centralized and decentralized periodic and decentralized

non periodic strategies of the literature.

2.1. Periodic strategies.

A new decentralized periodic replication strategy for dynamic data grids 103

����������	 ��
����

�������� ��� ��������

����������� �������������

First criterion: Periodicity

Second criterion: Taking
decision type

Fig. 2.1. Classification of replication strategies

2.1.1. Centralized strategies. This part exposes according to the chronological order the centralized
periodic replication strategies where the replication algorithm is triggered by a central site.

In [37, 38], Ranganathan and Foster propose six different replication strategies (periodic and non periodic)
for hierarchical data grids. They distinguish between replication and caching. Indeed, the authors consider
replication as a server-side phenomenon and caching is assumed to be a client-side phenomenon. The proposed
periodic centralized strategies are:

• No Replication: the entire data set is available at the root of the hierarchy. During the grid execution,
the number of replicas and their locations remain the same.
• Cascading Replication: once the requests number of a file exceeds a given threshold, a replica is created
at the next level which is on the path to the best client.

All these strategies take into account the requests number of each file to identify files to replicate and sites
where to place them. In addition, a replacement strategy is triggered in the case there is a shortage of storage
space at the selected site to replicate a new file. The least popular file is expunged. If more than one file are
equally unpopular, the oldest file is removed.

In [34], Rahman et al. propose four replication algorithms based on utility and risk. The utility and risk
are calculated using the current network load and the user requests. All these algorithms select one site to host
the new replica. An improvement is proposed in [35, 36] by selecting p sites to place the new file using three
models, namely p-median, p-center and multi-objective. Note that the number p is a parameter specified by the
grid administrator.

In [18, 19], the authors propose a replication strategy by organizing the data into several data categories
that it belongs to. They consider the requests number of each file to decide which one needs to be replicated.
In addition, they take into account the file size and the bandwidth width to choose the best place for the new
replica.

To trigger replica creation, Al Mistarihi and Yong [21] present a replication strategy for data grids that
uses the requests number of each file as well as the time starting from the creation date of a replica until the
current date. In addition, the candidate file for replication is identified based on the copies number 4 and the
requests number of each file. Finally, the new replica is placed at the best site based on the number of requests
and the response time.

Rasool et al. introduce a replication strategy, called Fair Share Replication (FSR) [40], for hierarchical data
grids. The proposed strategy takes into account the requests number of each file to select the candidate file for
replication. On the other hand, the replica placement is based on the server workload and the requests number
of each client.

Chang et al. propose a replication strategy called Least Access Largest Weight (LALW) [13]. The infor-
mation received at different time intervals has different weights. The concept of half-time is used to set the
information weights. LALW works in three steps. The first step finds the candidate file for replication. The
second computes how many replicas are required. The last step identifies clusters to host new replicas. These
three steps are based on the requests number and the weight of each file.

4The copies number of a file is equal to the number of its replicas in the grid.

104 H. Chettaoui and F. Ben Charrada

In [8, 9], Ben Charrada et al. propose a replication strategy called Periodic Optimiser for data grids. The
first step of Periodic Optimiser identifies the candidate files for replication based on the requests number and
the copies number associated to each file. The second step selects the best sites to host new replicas based on
the requests number of each file and the availability of each site. The selection of the best replica depends on
the availability of sites and the bandwidth.

Lee et al. propose a replication strategy called Popular File Replicate First (PFRF) [25] for hierarchical
data grids containing a global replica controller (GRC) and several clusters connected to the GRC. After
each period, the GRC selects the candidate files for replication based on the popularity weight for each file.
The popularity weight is calculated according to the requests number of each file. For each candidate file for
replication, the GRC selects the candidate clusters to place it. The candidate file is replicated in a site belonging
to the candidate cluster when there is sufficient storage space to accommodate it. Otherwise, PFRF deletes
some files which are less popular than the candidate file to be replicated.

2.1.2. Decentralized strategies. This part surveys, w.r.t. the chronological order, the decentralized
periodic replication strategies where the replication algorithm is triggered by a requesting site.

As mentioned above (see page 102), Ranganathan and Foster propose in [37, 38] six, periodic and non
periodic, replication strategies for hierarchical data grids. The authors design a decentralized periodic replication
strategy called Best Client. In this strategy, each node maintains a detailed history describing each file that it
contains (more precisely the requests number of each file and its requesting nodes). At each period, each node
selects the popular files (having a requests number exceeding a given threshold) and a replica is created at the
best client that has the largest number of requests for the file.

Ranganathan et al. introduce a replication strategy for a decentralized P2P environment [39]. The proposed
strategy computes first the number of replicas needed per file based on the file availability and the accuracy
of the RLS (Replica Location Service). Then, the best location of each new replica is chosen. The best site is
then that maximizing the difference between replication benefits and replication costs.

Suri and Singh present a replication strategy, called DR2 (Two-Stage Dynamic Replication), for data
grids [44]. DR2 works in two stages. Indeed, each site starts by selecting the files to replicate and then
determines the best sites to transfer these files. The selection of the candidate file for replication takes into
account the requests number, the size and the copies number associated to each file. The best replica is
determined according to the bandwidth and the number of hops between the grid sites. In addition, LRU [3] is
adopted as a replacement strategy.

Cui et al. propose a replication strategy called BSCA (Based on Support, Confidence and Access numbers)
for hierarchical data grids [17]. After each period, each site selects the candidate files for replication whose
the requests number exceeds a given threshold. Each candidate file and those files strongly correlated to it are
replicated if there is enough space to accommodate them. Otherwise, the weakly correlated files are removed.
If the storage space is still insufficient to replicate these files, BSCA deletes files having a requests number lower
than a threshold. It is important to mention that no indication on the threshold choice is made.

2.2. Non periodic strategies. This section provides an overview in the chronological order of decentral-
ized non periodic replication strategies. These strategies often replicate files at the request of any site and for
any file. Therefore, a replacement strategy is used when there is not enough space to replicate a new file.

As mentioned above (see page 102), Ranganathan and Foster [37, 38] propose non periodic replication
strategies for hierarchical grids. These strategies are:

• Plain Caching: the client that requests a file stores a copy locally.
• Caching plus Cascading Replication: this strategy combines Cascading Replication (cf. page 103) and
Plain Caching strategies. Each client stores the requested files locally. In addition, at each period, each
server identifies the popular files and replicates them down the hierarchy.
• Fast Spread: this strategy replicates files at each node along its path to the client.

All these strategies take into account the requests number of each file to identify files to replicate and sites
where to place them. In addition, a replacement strategy is triggered in the case there is a shortage of storage
space at the selected site to replicate a new file. The least popular file is expunged. If more than one file are
equally unpopular, the oldest file is removed.

A new decentralized periodic replication strategy for dynamic data grids 105

In [4], a replication strategy called LFU (Least Frequently Used) is introduced. LFU always replicates
the requested file in the site where the job needing the replica is running. If there is not enough space to
accommodate the replication, the least accessed file in the local storage is deleted. The strategy LRU (Least
Recently Used) [3] proceeds in the same way as the LFU strategy, except that the oldest replica is removed.

Park et al. [33] introduce a replication strategy, called BHR (Bandwidth Hierarchy based Replication),
which is based on bandwidth hierarchy of Internet. Nearest sites are located in the same network region. BHR
tries to replicate files that will be used within the same region in the near future. If there is not enough space to
accommodate the new replica, the least accessed files that are replicated in other sites within the same region
will be deleted. If the available space is still insufficient to host the new replica, those files having a lower
number of requests than the new replica are expunged.

In [26, 27], the authors propose a replication strategy called MinDmr (Minimize Missing Data Rate) which
performs as follows. If the required file is not present locally, a new replica is created if the available free storage
space is large enough. Otherwise, the candidate files for deletion are selected depending upon their weights.
The file weight is computed according to the availability, the requests number, the size, and the copies number
of the file.

Bsoul et al. [10] present a replication strategy named MFS (Modified Fast Spread) that is based on the Fast
Spread strategy [37, 38]. MFS considers a network topology in which there is one server node and a number of
client nodes. If there is enough storage space to replicate the required file, a new replica is created. Otherwise,
a group of replicas needs to be removed if it is less important than the new replica. The file importance depends
on the available storage space, the size, and the requests number of the file.

Zhao et al. [48] propose a replication strategy called VBRS (Value-Based Replication Strategy) that first
calculates a threshold deciding whether the requested file should be replicated or not. The computed threshold
depends on the requests number of each file. If the available storage space is insufficient to place the new replica,
some files will be removed based on access time, bandwidth and file size.

Sashi and Thanamani [42] propose a strategy, called Modified BHR, to overcome the limitations of the BHR
strategy (cf. page 105). According to Modified BHR, sites that are located in the same network region are
grouped together. The main idea of Modified BHR is to replicate files within a region and to store replica in a
site where the file has been accessed frequently. If there is not enough space to replicate the new replica in a
site and the replica is duplicated in other sites within the region, no action is done. If there is no duplication,
a replacement strategy is executed. It sorts files using the LFU strategy [4]. Then, it deletes files that are
duplicated in other sites within the same region. If the available space is still insufficient to hold the new file,
unpopular files having a requests number smaller than the new file requests number are deleted.

Ben Charrada et al. propose a replication strategy called LWF (Least Weight File) [5] which performs as
follows. The required file is replicated in the requesting site if there is enough space to host the new replica.
Otherwise, the candidate files for deletion are selected according to their weights. If the weight of the new
replica is greater than the sum of the candidate files weights, they will be replaced by the new replica. Note
that the file weight takes into account file-related parameters, i.e., its size and requests number, as well as
topology-related parameters, namely bandwidth and site availability.

Mehraban et al. propose a replication strategy called Prediction Replica Replacement Strategy (noted
PRA) [31]. PRA is started when a site requests a file and does not have sufficient space to accommodate it. In
this case, the requesting site computes the value of each file stored locally based on the requests number and
the copies number of each file. Then, the requesting site determines the candidate files for deletion according to
their sizes. Once the candidate files for deletion are selected, they will be sorted in ascending order according
to their values. The files having the least values will be removed and the requested file will then be replicated.

In [2], Beigrezaei et al. propose a replication strategy called fuzzy rep improving the modified BHR
method [42]. According to the fuzzy rep strategy, when there is not enough storage space to replicate the new
requested file, the potential candidates for replacement will be chosen according to their weight. The weight
computation is based on a fuzzy inference system and takes into account two factors, namely the number of
replica access and the difference between the current time and the last access time of replica. The candidate
replicas for replacement are sorted according to their respective weights in ascending order and, then, minimum
weight replicas will be deleted. If the available storage space is still insufficient to place the new one, fuzzy rep

106 H. Chettaoui and F. Ben Charrada

tries to delete the replicas that were not stored in the other grid sites of the current region.

In [46] Vashisht et al. propose a replication strategy called EDRA (Efficient Dynamic Replication Algo-
rithm) adapting agents for data grid. In EDRA, a data grid contains several regions connected with a master
node. A number of grid nodes collectively form one sub-region. EDRA tries to place a requested replica in
each sub-region. The head node located in regions is responsible for scheduling the jobs to the nodes where the
replica is placed. An agent is placed on each head node of the region, which keeps information of the nodes
located in the sub-regions. The new replica is placed on the nodes based on two factors, namely high data access
frequency and sufficient storage capacity. If there is enough space to accommodate the new file, the replica is
placed on the node. If the node has insufficient space, EDRA checks free space in the nearby node within the
sub-region and replicates the new file. If there is insufficient space in the sub-region, old files are deleted from
the node. The file having less access frequency is thus deleted and is replaced by the new replica.

Mansouri and Dastghaibyfard propose in [29] a replication strategy called Modified Dynamic Hierarchical
Replication (MDHR) which is an enhanced version of Dynamic Hierarchical Replication (DHR) [28]. In MDHR,
a data grid contains several regions. Each region contains several LAN. When a requested file is not available
in the local storage, MDHR selects the best site to replicate the new file. The best site has the highest number
of requests of the new file. If there is enough space in the selected site, the new file is replicated. Otherwise,
if the new file is available within the LAN of the requested site, the file is accessed remotely. If the file is not
available in the same LAN and there is not enough space to replicate it, files existing in the best site as well
in the local LAN are deleted using the LRU strategy. Moreover, if the available storage is still insufficient to
accommodate the new file, files existing in the best site as well in the local region are deleted using the LRU
strategy. If the required space is still insufficient, remaining files in the best site are deleted also using the LRU
strategy.

In the next section, we introduce our new strategy for dynamic data grids, called Decentralized Periodic
Replication Strategy based on Knapsack Problem (DPRSKP). A dynamic data grid has a variable number of
sites i.e. new sites can join the grid and others can leave, to join it possibly again.

3. DPRSKP strategy. As mentioned above, the majority of strategies on data replication have considered
only static grids i.e. those having an invariable number of sites. For several types of grids, this assumption does
not reflect the reality. Indeed, new sites can join the grid and others can leave it, to join it possibly again after.
For this reason, the dynamicity becomes a fundamental criterion to design an effective replication strategy. In
other words, by “dynamicity” we mean that the availability of a given site, i.e. the fact that it can be joined
or not at given moment, will be taken into consideration in our approach.

In this context, we proposed in [8, 9] a centralized periodic replication strategy called Periodic Optimiser.
Centralized replication is based on a central site that collects all information about files and grid sites. The
central site makes the replica and placement decisions. However, in a decentralized strategy, all grid sites keep
files track in order to decide which files to replicate or to remove locally. The benefit of a decentralized decision
is that there is no single point of failure [1]. This motivates our choice of a decentralized way for replicating
files. Moreover, in [5], we proposed a decentralized non period replication strategy called Least Weight File
(LWF). LWF computes the weight of each file in a site Si requesting a file Fnew. In the first step of LWF,
these files of Si are sorted in an ascending order according to their weight. In the second step, LWF searches
for the smallest index p of the files list as the sum of their sizes is greater than or equal to the missing space
allowing to store Fnew . Finally, Fnew will be replicated if the sum of the weights of these p files is less than the
weight of Fnew . However, the choice of p is not performed optimally as shown in the following counter example.
Let SizeF1 = 2, SizeF2 = 3, SizeF3 = 5 and SizeF4 = 6 where SizeFk

denotes the size of a file Fk locally
stored in the site Si. Also, let FileWeightF1 = 4, FileWeightF2 = 5, FileWeightF3 = 6, FileWeightF4 = 10
and FileWeightFnew

= 7 where FileWeightFk
denotes the weight of a file of Si (for F1, F2, F3 and F4) and

that to be replicated (Fnew). Suppose the missing space is 5, i.e., SizeFnew
- Si.F reeSpace = 5. LWF chooses

F1 and F2 whose total weight is 9 (> 7). Therefore, Fnew will not be replicated. On the other side, if F3 is
chosen (FileWeightF3 = 6), then Fnew is replicated and F3 is deleted from Si since (i) FileWeightF3 = 6 <
7, (ii) SizeF3 = 5.This counter-example can be avoided through making the replication problem as a Knapsack
problem with bivalent variables [22, 30, 41].

A new decentralized periodic replication strategy for dynamic data grids 107

3.1. Proposed strategy. In this subsection, we present our decentralized periodic replication strategy
DPRSKP for dynamic P2P data grids assuming limited replica storage. DPRSKP aims at increasing files
availability, improving response time and reducing bandwidth consumption.

DPRSKP performs as follows. After each period, each site Si identifies the candidate files for replication.
These files are replicated if there is enough storage space. However, if the available storage space is insufficient
to hold these files, the site Si should place the files with the highest priority among the candidate files and local
ones of Si by using the Knapsack problem. Thus, our strategy mainly deals with the following steps:

1. Selection of candidate files for replication;
2. Placement of a set of files in the site.

It is worth mentioning that, for answering the third question required by a replication strategy (cf. page 101),
we rely on the formula proposed in [9].

3.1.1. Selection of the candidate files for replication. At each period, each site Si identifies the
candidate files for replication based on the following parameters:

• #RequestSi,Fk
: the number of times that a file Fk has been requested by the site Si.

• #ReplicaFk
: the number of available copies of a file Fk on the whole grid.

We consider that a file Fk needs to be replicated in Si if it has been requested many times by Si and there
are not enough copies of Fk in the grid. For that purpose, a metric is introduced, called average value of a file
Fk for a site Si, noted AV G V ALUESi,Fk

, and defined as follows:

AV G V ALUESi,Fk
=

#RequestSi,Fk

#ReplicaFk

The average value of a file Fk for a site Si represents the average number of requests for a replica of Fk by Si.

Similarly to the previous metric, we introduce a metric called average value of a site Si, denoted
AV G V ALUESi

, and defined by the following expression:

AV G V ALUESi
=

n
∑

k=1

#RequestSi,Fk

n
∑

k=1

#ReplicaFk

where n is the total number of requested files by the site Si.

These two metrics are used in Algorithm 3.1.1 for choosing the best candidate files for replication in a site
Si. Algorithm 3.1.1 takes as entry the requests number and the copies number of each file requested by Si as a
list of triplets SF= {(Fk,#RequestSi,Fk

,#ReplicaFk
) | k = 1..n}, where n is the total number of requested

files by the site Si.

In the first loop (cf. Lines 5 - 8), we calculate the average value of each requested file by the site Si. In
the second loop (cf. Lines 10 - 12), we select the candidate files for replication. A file Fk is considered as a
candidate file for replication if its average value exceeds the average value of the site Si.

3.1.2. Replica placement. After selecting the candidate files for replication in a site Si, it is necessary
to check the available storage space of Si that contains locally a set of files noted F . If the free storage space
is sufficient to hold the set of all candidate files for replication, noted FToReplicate, then the replication of these
files will be conducted without any constraint. If there is not enough storage space, the potential candidate
files for replacement will be chosen to place all or part of FToReplicate in Si. As our strategy aims to reduce
the response time and the bandwidth consumption, the choice of the potential replacement candidate files is
important because they can be requested in the future by the same site Si.

To achieve these objectives by choosing the best potential candidate files for replacement in a site Si, we
introduce the average number of requests of each file Fk ∈ F ∪ FToReplicate by Si, noted #AV G RequestSi,Fk

,

108 H. Chettaoui and F. Ben Charrada

and defined as follows:

#AV G RequestSi,Fk
=

#RequestSi,Fk

TCurrent − TFirstRequestSi,Fk
+ 1

where:
• #RequestSi,Fk

: the total number of requests of Fk by Si;
• TCurrent: the number of the current period;
• TFirstRequestSi,Fk

: the period number of the first request of Fk by Si.

Then, we associate to each file Fk ∈ F ∪ FToReplicate a file weight (denoted FileWeightFk
) defined by the

following expression:

FileWeightFk
=

SizeFk
·#AV G RequestSi,Fk

BW(Si,Sj)Fk
· PSj

where:

• SizeFk
: the size of Fk;

• #AV G RequestSi,Fk
: the average number of requests of Fk by Si;

• BW(Si,Sj)Fk
: the bandwidth between the requesting site Si and the site Sj (j 6= i) containing the

best replica of Fk. The choice of the best replica is done using the formula proposed in [8, 9] and is
determined as follows:

|ΞFk
|

Max
j=1

(BW(Si,Sj)Fk
· PSj

)

where ΞFk
is the set of sites containing a replica of Fk.

• PSj
: the availability of the site Sj defined by the following expression [8, 9]:

PSj
= 1− #FailureSj

#SiteRequestSj

where #FailureSj
is the number of times the site Sj is failing (i.e., the number of requests to Sj which

are not satisfied) and #SiteRequestSj
is the total number of times the site Sj has been requested.

For the site Si, according to the expression (3.1.2), the most popular files situated in unstable sites having
a low bandwidth with Si are the most preferred to be placed in it. Indeed, it is preferred to have such files in

A new decentralized periodic replication strategy for dynamic data grids 109

Si since it requests them several times. On the other side, if they are not locally stored in Si, each time they
will be of need in a job executed by Si, their use will be high costly due to the low quality of bandwidth with
Si for the best site where they are contained as well as the low availability of these latter.

For each site Si, the goal of our strategy DPRSKP is to find a set of files Ω ⊂ F ∪FToReplicate that can be
stored in Si and having a maximum total files weights.

To achieve this goal, our strategy is formulated according to the Knapsack problem to select files to be
replicated and those to be deleted. The replication problem is then formulated as follows.

We associate to each file Fk ∈ F ∪ FToReplicate the value Xk ∈ {0, 1} defined by:

Xk =

{

1: Fk should be placed in Si

0: Fk should not be placed in Si

(K)

N
∑

k=1

(SizeFk
·Xk) ≤ SESi

such that Xk ∈ {0, 1}

N
∑

k=1

(FileWeightFk
·Xk) = Z(Max)

where:
N is the cardinality of the set F ∪ FToReplicate;
Z(Max) is the objective function to maximize;
SESi

is the storage space of Si.

3.1.3. Resolution algorithm. The resolution of our replication problem formulated through to the Knap-
sack problem by exact algorithms using the Branch and Bound method, the polyhedral techniques or the Dy-
namic Programming can be costly in terms of response time. In such a situation, it would be better to use
approximation methods with a reasonable compromise between response time and approximation quality. In
general, the approximation algorithms are effective. This is the case of greedy algorithms having generally a
low complexity. The idea often used in such algorithms is to keep the option of the local optimum according to
some criteria in order to have a global optimal solution [16, 22, 30].
Our proposed algorithm gives an approximate solution that is acceptable given response time constraints. The
greedy algorithm 3.1.3 presents the placement of a set of files in a site Si.

In Algorithm 3.1.3, we use the following terminology. We introduce the file efficiency for a file Fk, noted
EfficiencyFk

, as the ratio of the weight to the size of Fk (cf. Line 7 of Algorithm 3.1.3). The more the weight

110 H. Chettaoui and F. Ben Charrada

of Fk is large relative to the storage capacity consumption, the more Fk is interesting. To summarize:

• For each file Fk such as Xk = 1: Fk will be placed in Si.
• For each file Fk such as Xk = 0:

{

Fk is deleted from Si if Fk ∈ F
Fk is not replicated in Si if Fk ∈ FToReplicate

3.2. Illustrative example. Let us consider the data grid, shown in Fig. 3.1, which contains four sites.
The arcs sketch the available bandwidth between sites in Mb/s. The availability of each site is given into
brackets. For instance, the availability of S2 is 0.5. The master files5 are placed in the site S0. All the other
sites have a storage capacity of 5 Gb. We will apply DPRSKP strategy to the site S1.

S2

Fig. 3.1. Topology of the grid

Step 1: Determination of the candidate files for replication in S1

Table 3.1 sketches the requested files by the site S1. The execution of Algorithm 3.1.1 provides:

• The average value of S1 is AV G V ALUES1 = 300.
• F1 and F3 as candidate files for replication in S1 since the associated average values are greater than
or equal to 300.

Table 3.1
The values of #RequestS1,Fk

, #ReplicaFk
and AV G V ALUES1,Fk

for the three files requested by S1

Fj #RequestS1,Fk
#ReplicaFk

AV G V ALUES1,Fk

F1 1 000 2 500.00
F2 500 3 166.66
F3 300 1 300.00

Step 2: Files placement in S1

Table 3.2 describes the candidate files for replication (F1 and F3) and those stored locally (F4, F5 and F6) for
the site S1. We note that the number of the current period (TCurrent) is 10.

We remark that the free space at the site S1 is not enough to replicate F1 and F3. Indeed, the size of the
files stored in S1 is 4 Gb. Therefore, the available free space in S1 is 1 Gb which is insufficient to replicate F1

and F3 because the total size of F1 and F3 is 3 Gb. Thus, we need to calculate the weight and the efficiency of
these files and those local ones. Table 3.3 sketches the obtained results.

The execution of Algorithm 3.1.3 provides the following result: the selected files to be placed in S1 are F1,
F3, F4 and F6. Consequently, the file F5 will be deleted from S1 while F1 and F3 will be replicated in S1.

5A master file contains the original copy of some data sample and cannot be deleted [4].

A new decentralized periodic replication strategy for dynamic data grids 111

Table 3.2
Characteristics of the files set F ∪ FToReplicate

Fk #RequestS1,Fk
SizeFk

in Gb Sj TFirstRequestS1 ,Fk

F1 1 000 2 S2 10
F3 300 1 S3 10
F4 800 1 S2 7
F5 300 2 S2 6
F6 700 1 S3 5

Table 3.3
Weight and efficiency of F ∪ FToReplicate

Fk SizeFk
in Gb FileWeightFk

EfficiencyFk

F1 2 20.00 10.00
F3 1 4.00 4.00
F4 1 2.00 2.00
F5 2 1.20 0.60
F6 1 1.55 1.55

3.3. DPRSKP extends the LFU and LRU strategies. A main feature of our strategy DPRSKP is
that it allows subsuming the LFU and LRU strategies. To explain this, it is necessary to prove that each file
retained by either the LRU or the LFU strategy is also retained by DPRSKP strategy. Recall that:

• The file weight of a file Fk is defined as follows:

FileWeightFk
=

SizeFk
·#AV G RequestSi,Fk

BW(Si,Sj)Fk
· PSj

• the file efficiency for a file Fk is defined as follows:

EfficiencyFk
=

FileWeightFk

SizeFk

=
#AV G RequestSi,Fk

BW(Si,Sj)Fk
· PSj

=
#RequestSi,Fk

(TCurrent − TFirstRequestSi,Fk
+ 1) · BW(Si,Sj)Fk

· PSj

Thus, it is clear that the ratio defined in the expression 3.3 has a low value when the value of #RequestSi,Fk
is

low and the value of (TCurrent − TFirstRequestSi,Fk
+ 1) is high.

In addition, we have:
• In the LFU strategy, the least accessed file in the local storage is deleted. In our proposal, this is also
the case for each file Fk having a low value of #RequestSi,Fk

.
• In the LRU strategy, the oldest replica in the local storage is removed. In our case, this is done for each
the file Fk having a high value of (TCurrent − TFirstRequestSi,Fk

+ 1).

4. Computational complexity of DPRSKP. In this section, we evaluate the theoretical computational
complexity in the worst case of the two algorithms described in Sect. 3.

4.1. Complexity of the algorithm determining the candidate files for replication. Let m be the
number of requested files by the site Si. The complexity in the worst case of Algorithm 3.1.1 (cf. page 107) is
function of this parameter.

• The lines 2, 3 and 4 are simple initializations and thus their complexity is in O(1).

112 H. Chettaoui and F. Ben Charrada

• The loop, between line 5 and line 8, has a complexity of O(m).
• The line 9 has a complexity of O(1).
• The loop, between line 10 and line 12, has a complexity of O(m).

Thus, the complexity in the worst case of Algorithm 3.1.1 is O(1) + O(m) + O(1) + O(m) = O(m).

4.2. Complexity of the files replication algorithm. Let n be the cardinality of the set F∪FToReplicate.
The complexity in the worst case of Algorithm 3.1.3 is function of this parameter.

• The block of instructions, between line 2 and line 4, has a complexity of O(n).
• The loop, between line 6 and line 7, has a complexity of O(n).
• The instruction of line 8 has a complexity of O(n · log(n)).
• The instruction of line 9 has a complexity of O(1).
• The loop, between line 10 and line 15, has a complexity of O(n).
• The block of instructions, between line 5 and line 15, has thus a complexity of O(n) + O(n · log(n)) +
O(1) + O(n) = O(n · log(n)).

Therefore, the complexity in the worst case of Algorithm 3.1.3 is Max(O(n) , O(n·log(n))) = O(n·log(n)).

It is however important to note that the majority of replication strategies have a polynomial-time complexity
as shown in [1]. The experiments presented in the next section prove the effectiveness of our strategy DPRSKP.

5. Experiment setup and results. We use the OptorSim simulator [11] to evaluate and compare our
strategy DPRSKP with the DR2 [44] and Best Client [37, 38] strategies. We compare our strategy with Best
Client and DR2 since these strategies can be applied in P2P grids and are periodic strategies. In addition,
Best Client and DR2 are two decentralized replication strategies that are based on the requests number of each
file to choose the files needed to be replicated. Moreover and in order to show that our replacement strategy
is better than LRU and LFU strategies, we compare DPRSKP to Best Client and DR2 which use LRU and
LFU as replacement strategies. We note that we have made extensions to the OptorSim simulator in order to
model dynamic grids. Indeed, we have added new classes and methods in the simulator to satisfy our needs.
Moreover, we have made some changes to the configuration files to support the grid dynamicity.

5.1. Simulation environment. OptorSim is a simulator written in Java to evaluate the performance of
replication strategies in data grids. It adopts the model of EU DataGrid Project6 for the grid structure [12].

In OptorSim, a grid is composed of a User, a Resource Broker (RB) and several sites. A site contains
a Computing Element (CE), a Replica Manager (RM) and a Storage Element (SE). These components are
described as follows:

• User: the user submits jobs to the RB according to a pattern.
• Resource Broker: the RB handles the scheduling of the jobs to sites.
• Storage Element: each SE has a size in Mb and contains some files.
• Computing Element: each CE contains a given number of “worker nodes” with a given processing power
and having for task to run jobs.
• Replica Manager: the RM performs the movement of data associated with jobs between sites. Moreover,
the RM contains a Replica Optimiser (RO) responsible for both replica selection and the creation and
deletion of replicas.

In OptorSim, the execution of a simulation is given as below:
1- Initially, the master files are placed in the SEs of the sites as specified in the configuration file. In our

strategy, we assume the existence in the grid of a specific site called “Master Site” containing the
master files. The Master Site is always connected to the grid.

2- The SEs register these master files in the Replica Catalog (RC).
3- The RB schedules each job to the appropriate site according to a scheduling strategy.
4- The CE of the chosen site in the previous step runs the job and selects the best replicas if the requested file

is not present in the SE of the site.
5- The CE saves the transfer history of replicas.

6The European DataGrid Project. http://www.edg.org

A new decentralized periodic replication strategy for dynamic data grids 113

Fig. 5.1. Testbed grid topology

6- After a period (number of jobs), each site determines and replicates the candidate files for replication.
7- Each site updates the RC.

5.2. Grid topology. We base all simulation studies on the testbed used during a large scale production
effort for the high energy physics experiment CMS [12]. The grid topology (see Fig. 5.1) consists of 20 sites
in Europe and the USA. CERN and FNAL have a storage capacity of 100 Gb. Every other site has a CE and
initially an empty storage element of a capacity of 50 Gb. CERN stores a master copy of each file. Table 5.1
describes the parameters used in the simulation experiments.

Table 5.1
Grid and jobs configurations

Parameter Value

Size of a single file 1 Gb

Number of files 97

Access pattern Sequential

Scheduling access cost for current job + all queued jobs

5.3. Experimental results.

5.3.1. Performance evaluation metrics. In OptorSim, the experiments consist in submitting a variable
number of jobs to the RB. At the end of each simulation, we get the response time, the number of remote file
accesses, the number of local accesses and the ENU (the Effective Network Usage). This latter parameter [11, 21]
is measured as follows:

ENU =
Nremote file accesses +Nfile replications

Nremote file accesses +Nlocal file accesses

ENU defines the ratio of files transferred to files requested. The parameter ENU is an important parameter in
quantifying the effectiveness of any replication strategy in data grids. A low value indicates the efficiency of
the adopted replication strategy [11, 24]. In addition, the response time is a good measure for evaluating the
effectiveness of a replication strategy. Indeed, each job requests a set of files. If a file is present in the requesting

114 H. Chettaoui and F. Ben Charrada

site, file transfer time is assumed to be zero, otherwise the file must be transferred from the best site containing
it. Thus, the response time incorporates the time required to transfer files in addition to the time needed to
process jobs. The best replication strategy will have the lowest response time. On the other hand, the number
of remote file accesses and the number of local file accesses are two measures to evaluate the effectiveness of a
replication strategy. Indeed, the number of remote file accesses represents the number of times where the sites
read the necessary files from another one. Thus, the best replication strategy will have the lowest number of
remote file accesses. However, the number of local accesses represents the number of times where the sites read
the necessary files locally. Thus, the best replication strategy will have the greatest number of local file accesses.

5.3.2. Choice of the period. As mentioned above, DPRSKP is a decentralized periodic replication
strategy, i.e., DPRSKP is triggered at each period. The choice of this period is important as proven in [6, 7].
Indeed, the period greatly affects the efficiency of any periodic replication strategy. In this respect, a dynamic
period, i.e. whose value changes according to the grid behavior, is shown to be much better than a static period,
i.e. of constant value, whatever the adopted replication strategy. Thus, in our experiments, we use the model
of dynamic period.

Now, we briefly sketch the formula used for computing the period (for more details, interested readers are
referred to [6, 7]) . To take into account the replicas placement, the (n+1)th period Tn+1 is defined based on
the replications number (denoted #ReplicaTn

) made during the previous period Tn.
The period Tn+1 is indeed given by the following formula:

Tn+1 =
Tn

(#ReplicaTn
/Tn)+ 1

The next subsection depicts the obtained results which will be discussed in subsection 5.3.4.

5.3.3. Simulation results. This part presents the obtained results for the different metrics.

• Evaluation of response time: Table 5.2 shows the response time in milliseconds of each strategy and for
different numbers of jobs. The last column indicates the percentage gain of our strategy compared to the other
ones and is calculated as follows:

Gain in % =
Min(V alueBest Client, V alueDR2) − V alueDPRSKP

Min(V alueBest Client, V alueDR2)
· 100

The same experiments of Table 5.2 are represented by histograms in Fig. 5.2.

• Evaluation of the ENU parameter: Table 5.3 and Fig. 5.3 give the ENU evaluation for the three strategies
under the same conditions. The last column of Table 5.3 represents the percentage gain of DPRSKP compared
to the other strategies and is calculated according to expression 5.3.3.

• Evaluation of the number of remote file accesses: Table 5.4 sketches the number of remote file accesses for
each strategy and for different numbers of jobs. The last column computes the gain percentage of DPRSKP
compared to Best Client and DR2 according to expression 5.3.3. The results of Table 5.4 are also represented
through histograms in Fig. 5.4.

• Evaluation of the number of local file accesses: Table 5.5 and Fig. 5.5 show the number of local file accesses
of each strategy and for different numbers of jobs. The last column in Table 5.5 indicates the percentage gain
of DPRSKP compared to Best Client and DR2. This percentage is computed as follows:

Gain in % =
V alueDPRSKP − Max(V alueBest Client, V alueDR2)

Max(V alueBest Client, V alueDR2)
· 100

5.3.4. Discussion. It is clear from the obtained experimental results that the proposed DPRSKP strategy
aims at increasing files availability, improving response time and reducing bandwidth consumption. Indeed, we
notice, from Table 5.2 and Fig. 5.2, that the response time of our strategy is always better than that of the
other strategies. In addition, our strategy offers an ENU much better than Best Client and DR2 whatever the

A new decentralized periodic replication strategy for dynamic data grids 115

Table 5.2
Response time in milliseconds and associated percentage gain of DPRSKP compared to Best Client and DR2

Number of jobs Best Client DR2 DPRSKP Gain (%)

100 3 580 3 070 2 989 2.64

500 8 790 8 623 6 417 25.58

1 000 18 067 16 847 14 897 11.57

1 500 25 922 23 663 19 138 19.12

2 000 41 650 49 504 32 653 21.60

2 500 54 396 76 713 50 203 7.71

3 000 69 500 72 406 56 687 18.44

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100 500 1000 1500 2000 2500 3000

R
e

sp
o

n
se

 t
im

e
 i

n
 m

il
li

se
co

n
d

s

Number of jobs

Best Client

DR2

DPRSKP

Fig. 5.2. Response time for the different replication strategies

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

100 500 1000 1500 2000 2500 3000

E
N
U

Number of jobs

Best Client

DR2

DPRSKP

Fig. 5.3. ENU for the different replication strategies

number of jobs. Indeed, the obtained average gain of our strategy compared to both others is about 20.74% (cf.
Table 5.3). On the other hand, we remark from Table 5.4 that the number of remote file accesses of DPRSKP
is always lower than Best Client and DR2 strategies. We notice, also from Table 5.5 and Fig. 5.3, that the
number of local file accesses of our strategy is always higher than the other strategies. All these obtained results
are explained by the fact that the files deletion in the case of a shortage space is not automatic in our approach.

116 H. Chettaoui and F. Ben Charrada

Table 5.3
ENU and associated percentage gain of DPRSKP compared to Best Client and DR2

Number of jobs Best Client DR2 DPRSKP Gain (%)

100 0.61 0.58 0.44 24.17

500 0.48 0.43 0.30 30.68

1 000 0.41 0.43 0.27 35.02

1 500 0.24 0.25 0.25 -1.38

2 000 0.28 0.27 0.23 15.20

2 500 0.26 0.27 0.25 6.60

3 000 0.27 0.30 0.25 6.22

Table 5.4
Number of remote file accesses and associated percentage gain of DPRSKP compared to Best Client and DR2

Number of jobs Best Client DR2 DPRSKP Gain (%)

100 801 599 502 16.19

500 3 057 2 437 1 710 29.83

1 000 4 973 5 048 3 291 1.26

1 500 4 509 4 656 4 452 18.33

2 000 6 776 6 281 5 534 11.89

2 500 8 042 8 103 7 328 8.88

3 000 10 041 9 681 9 233 4.63

Indeed, contrary to DR2 and Best Client strategies which always removes files in the case there is a shortage in
the storage space at the selected site to replicate a new file, DPRSKP cannot replicate candidate files if their
added values are less than those existing in a site and then it preserves those existing files in the site. In other
words, DPRSKP deletes files from a given site only if they are qualified as not beneficial in the future and
replaces them with more beneficial files. All these results confirm the efficiency of our strategy.

6. Conclusions and future work. Data grids are large scale systems that connect a collection of several
machines and storage resources distributed around the world. In such systems, an optimized management and
access of distributed resources is the primary purpose. Data grids aggregate a collection of distributed resources
placed around the world to enable data intensive applications to share data and resources. As the data is
the most important resource in data grids, their quick access time and efficient management have become
challenging tasks. Replication is a technique used to ensure these tasks. In this paper, we proposed a new
decentralized periodic replication strategy, called DPRSKP, formulated according to the Knapsack problem
with storage constraints. Our strategy takes into account the dynamicity of grid sites. Indeed, the dynamicity
of sites is an important challenge in grids. We designed first an algorithm which selects the best candidate files
for replication based on the requests number and the copies number of each file. We then proposed an algorithm
which chooses the candidate files for deletion when there is not enough space to accommodate new files. This

algorithm introduces the file efficiency of a file Fk, EfficiencyFk
, which is equal to

#AVG RequestSi,Fk

BW(Si,Sj)Fk
·PSj

. As

a result, the file efficiency does not depend on the file size. Thus, contrary to the majority of work in the
literature, all large and small files have the same chance to be placed in the site. We believe that this notion of
file efficiency is at the root of the good performances of our strategy.

In future work, we plan to validate our strategy by deploying the replication algorithm in a real grid
environment. In addition, in practice, the files are required simultaneously with others, i.e., there exists a

A new decentralized periodic replication strategy for dynamic data grids 117

0

2000

4000

6000

8000

10000

12000

100 500 1000 1500 2000 2500 3000

N
u

m
b

e
r
 o

f
r
e

m
o

t
e

 f
il

e
 a

c
c
e

s
s
e

s

Number of jobs

Best Client

DR2

DPRSKP

Fig. 5.4. Number of remote file accesses for the different replication strategies

Table 5.5
Number of local file accesses and associated percentage gain of DPRSKP compared to Best Client and DR2

Number of jobs Best Client DR2 DPRSKP Gain (%)

100 596 564 823 38.09

500 3 467 3 374 4 387 26.54

1 000 7 501 6 846 9 721 29.60

1 500 14 964 14 801 15 527 3.76

2 000 18 361 18 636 19 431 4.27

2 500 23 864 23 886 23 957 0.30

3 000 28 641 28 309 28 808 0.58

strong correlation between requested files. Thus, it is possible to investigate replication strategies which consider
as granularity a set of correlated files instead of a single file. Moreover, the grid files can be modified by
some applications. Since these data files are replicated in grid sites, it is necessary to update them to ensure
maintaining coherent copies. It is then important to look for an efficient way for extending the replication
strategies proposed in the literature in order to be able to take into consideration file consistency.

REFERENCES

[1] T. Amjad, M. Sher, and A. Dau, A survey of dynamic replication strategies for improving data availability in data grids,
Future Generation Computer Systems, 28 (2012), pp. 337–349.

[2] M. Beigrezaei, A. T. Haghighat and A. Khademzadeh, A new fuzzy based dynamic data replication algorithm in data
grids, Journal of Basic and Applied Scientific Research, 3 (2013), pp. 350–358.

[3] W. Bell, D. Cameron, L. Capozza, A. Millar, K. Stockinger, and F. Zini, Simulation of dynamic grid replication
strategies in OptorSim, Lecture Notes in Computer Science, 2536 (2002), pp. 46–57.

[4] , OptorSim - a grid simulator for studying dynamic data replication strategies, International Journal of High Perfor-
mance Computing Applications, 17 (2003), pp. 403–416.

[5] F. Ben Charrada, H. Chettaoui, and R. Mili, A new replication strategy for data grids, in Proceedings of the 10th IASTED
International Conference on Parallel and Distributed Computing and Networks, 2011, pp. 184–189.

[6] F. Ben Charrada, H. Ounelli, and H. Chettaoui, Dynamic period vs static period in data grid replication, in Proceedings
of the 3rd International Workshop on Simulation and Modeling of Emergent Computational Systems, 2010, pp. 565–568.

[7] , A model for dynamic period in data grid replication, International Journal of Modeling and Optimization, 3 (2013),
pp. 163–166.

[8] , An efficient replication strategy for dynamic data grids, in Proceedings of the 5th International Conference on P2P,

118 H. Chettaoui and F. Ben Charrada

0

5000

10000

15000

20000

25000

30000

35000

100 500 1000 1500 2000 2500 3000

N
u

m
b

e
r
 o

f
lo

c
a

l
fi

le
 a

c
c
e

s
s
e

s

Number of jobs

Best Client

DR2

DPRSKP

Fig. 5.5. Number of local file accesses for the different replication strategies

Parallel, Grid, Cloud and Internet Computing, 2010, pp. 50–54.
[9] , An efficient replica placement strategy in highly dynamic data grids, International Journal of Grid and Utility Com-

puting, 2 (2011), pp. 156–163.
[10] M. Bsoul, A. Al-Khasawneh, Y. Kilani, and I. Obeidat, A threshold-based dynamic data replication strategy, The Journal

of Supercomputing, (2010).
[11] D. Cameron, R. Carvajal-Schiaffino, J. Ferguson, A. Millar, C. Nicholson, K. Stockinger, and F. Zini, OptorSim

v2.1 installation and user guide, tech. report, 2006.
[12] D. Cameron, A. Millar, C. Nicholson, R. Carvajal- Schiaffino, F. Zini, and K. Stockinger, Analysis of scheduling

and replica optimisation strategies for data grids using OptorSim, Journal of Grid Computing, 2 (2004), pp. 57–69.
[13] R. Chang, H. Chang, and Y. Wang, A dynamic weighted data replication strategy in data grids, in Proceedings of the

IEEE/ACS International Conference on Computer Systems and Applications, 2008, pp. 414–421.
[14] H. Chettaoui and F. Ben Charrada, A Decentralized Periodic Replication Strategy based on Knapsack Problem, in

Proceedings of the 13th ACM/IEEE International Conference on Grid Computing, 2012, pp. 3–11.
[15] U. Cibej, B. Slivnik, and B. Robic, The complexity of static data replication in data grids, Parallel Computing, 31 (2005),

pp. 900–912.
[16] T.H. Cormen, C.E. Leicerson, R.L. Rivest, and C. Stein, Introduction to Algorithms, Third Edition, MIT Press, 2009.
[17] Z. Cui, D. Zuo, and Z. Zhang, Based on support and confidence dynamic replication algorithm in multi-tier data grids,

Journal of Computational Information Systems, 9 (2013), pp. 3909–3918.
[18] N. Dang, S. Hwang, and S. Lim, Improving job scheduling performance with dynamic replication strategy in data grids,

Lecture Notes in Computer Science, 4671 (2007), pp. 194–199.
[19] N. Dang and S. Lim, Combination of replication and scheduling in data grids, International Journal of Computer Science

and Network Security, 7 (2007), pp. 304–308.
[20] D. Dullmann, W. Hoschek, J. Jaen-martinez, B. Segal, A. Samar, H. Stockinger, and K. Stockinger, Models

for replica synchronisation and consistency in a data grid, in Proceedings of IEEE International Symposium on High
Performance Distributed Computing, 2001, pp. 67–75.

[21] H. E. Al Mistarihi and C. Yong, Replica management in data grid, International Journal of Computer Science and Network
Security, 8 (2008), pp. 22–32.

[22] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack problems, Springer, 2004.
[23] H. Lamehamedi, Z. Shentu, and B. Szymanski, Simulation of dynamic data replication strategies in data grids, in Proceed-

ings of the Heterogeneous Computing Workshop, 2003.
[24] H. Lamehamedi and B. Szymanski, Decentralized data management framework for data grids, Future Generation Computer

Systems, 23 (2007), pp. 109–115.
[25] M. Lee, F. Leu, and Y. Chen, PFRF: An adaptive data replication algorithm based on star-topology data grids, Future

Generation Computer Systems, 28 (2012), pp. 1045–1057.
[26] M. Lei and S. Vrbsky, A data replication strategy to increase data availability in data grids, in Proceedings of the Interna-

tional Conference on Grid Computing and Applications, 2006, pp. 221–227.
[27] M. Lei, S. Vrbsky, and X. Hang, An on-line replication strategy to increase availability in data grids, Future Generation

Computer Systems, 24 (2008), pp. 85–98.
[28] N. Mansouri and Gh. Dastghaibyfard, A dynamic replica management strategy in data grid, Journal of Network and

Computer Applications, 35 (2012), pp. 1297–1303.
[29] , Improving data grids performance by using modified dynamic hierarchical replication strategy, Iranian Journal of

Electrical & Electronic Engineering, 10 (2014), pp. 27–37.
[30] S. Martello and P. Toth, Knapsack problems: Algorithms and computer implementations, John Wiley & Sons, 1990.
[31] M. Mehraban, A. Khademzadeh, and M. Salehnamadi, A prediction-based replica replacement strategy in data grid,

A new decentralized periodic replication strategy for dynamic data grids 119

Journal of Basic and Applied Scientific Research, 2 (2013), pp. 928–939.
[32] J. Montagnat, V. Breton, and I. Magnin, Using grid technologies to face medical image analysis challenges, in Proceedings

of the Workshop on Biomedical Computations on the Grid, 2003, pp. 588–593.
[33] S. Park, J. Kim, Y. Ko, and W. Yoon, Dynamic data grid replication strategy based on internet hierarchy, in Proceedings

of the International Workshop on Grid and Cooperative Computing, 2003, pp. 838–846.
[34] R. Rahman, K. Barker, and R. Alhajj, Replica placement in data grid: Considering utility and risk, in Proceedings of the

International Conference on Information Technology: Coding and Computing, 2005, pp. 354–359.
[35] , Replica placement design with static optimality and dynamic maintainability, in Proceedings of the IEEE International

Symposium on Cluster Computing and Grid, 2006, pp. 434–437.
[36] , Replica placement strategies in data grid, Journal of Grid Computing, 6 (2008), pp. 103–123.
[37] K. Ranganathan and I. Foster, Design and evaluation of dynamic replication strategies for a high-performance data grid,

in Proceedings of the International Conference on Computing in High Energy and Nuclear Physics, 2001.
[38] , Identifying dynamic replication strategies for a high performance data grid, in Proceedings of the Second International

Workshop on Grid Computing, 2001, pp. 75–86.
[39] K. Ranganathan, A. Iamnitchi, and I. Foster, Improving data availability through dynamic model-driven replication in

large peer-to-peer communities, in Proceedings of Global and Peer-to-Peer Computing in Large Scale Distributed Systems
Workshop, 2002, pp. 376–381.

[40] Q. Rasool, J. Li, G. Oreku, and E. Munir, Fair-share replication in data grid, Information Technology Journal, 7 (2008),
pp. 776–782.

[41] M. Sakarovitch, Optimisation Combinatoire, Hermann Edition, 1984.
[42] K. Sashi and A. Thanamani, Dynamic replication in a data grid using a modified BHR region based algorithm, Future

Generation Computer Systems, 27 (2011), pp. 202–210.
[43] Y. Shi, A. Shortridge, and J. Bartholic, Grid computing for real-time distributed collaborative geoprocessing, in Proceed-

ings of the Symposium on Geospatial Theory, Processing and Applications, 2002.
[44] P. Suri and M. Singh, DR2: A two-stage dynamic replication strategy for data grid, International Journal of Recent Trends

in Engineering, 2 (2009), pp. 201–203.
[45] H. Takeuchi, T. Kondo, Y. Koyama, and J. Nakajima, Vlbi@home-vlbi correlator by GRID computing system, in Pro-

ceedings of the International VLBI Service for Geodesy and Astrometry, 2004, pp. 200–204.
[46] P. Vashisht, R. Kumar and A. Sharma, Efficient dynamic replication algorithm using agent for data grid, The Scientific

World Journal Volume (2014), 10 pages, http://dx.doi.org/10.1155/2014/767016
[47] G. von Laszewski, M. Su, J. Insley, I. Foster, J. Bresnahan, C. Kesselman, M. Thiebaux, M. Rivers, S. Wang,

B. Tieman, and I. McNulty, Real-time analysis, visualization, and steering of microtomography experiments at photon
sources, in Proceedings of the 9th SIAM Conference on Parallel Processing for Scientific Computing, 1999.

[48] W. Zhao, X. Xu, Z. Wang, Y. Zhang, and S. He, Improve the performance of data grids by value-based replication strategy,
in Proceeding of the International Conference on Semantics, Knowledge and Grids, 2010, pp. 313–316.

Edited by: Dana Petcu
Received: Feb 9, 2014
Accepted: Mar 11, 2014

AIMS AND SCOPE

The area of scalable computing has matured and reached a point where new issues and trends require a pro-
fessional forum. SCPE will provide this avenue by publishing original refereed papers that address the present
as well as the future of parallel and distributed computing. The journal will focus on algorithm development,
implementation and execution on real-world parallel architectures, and application of parallel and distributed
computing to the solution of real-life problems. Of particular interest are:

Expressiveness:
• high level languages,
• object oriented techniques,
• compiler technology for parallel computing,
• implementation techniques and their effi-
ciency.

System engineering:
• programming environments,
• debugging tools,
• software libraries.

Performance:
• performance measurement: metrics, evalua-
tion, visualization,
• performance improvement: resource allocation
and scheduling, I/O, network throughput.

Applications:

• database,

• control systems,

• embedded systems,

• fault tolerance,

• industrial and business,

• real-time,

• scientific computing,

• visualization.

Future:

• limitations of current approaches,

• engineering trends and their consequences,

• novel parallel architectures.

Taking into account the extremely rapid pace of changes in the field SCPE is committed to fast turnaround
of papers and a short publication time of accepted papers.

INSTRUCTIONS FOR CONTRIBUTORS

Proposals of Special Issues should be submitted to the editor-in-chief.
The language of the journal is English. SCPE publishes three categories of papers: overview papers,

research papers and short communications. Electronic submissions are preferred. Overview papers and short
communications should be submitted to the editor-in-chief. Research papers should be submitted to the editor
whose research interests match the subject of the paper most closely. The list of editors’ research interests can
be found at the journal WWW site (http://www.scpe.org). Each paper appropriate to the journal will be
refereed by a minimum of two referees.

There is no a priori limit on the length of overview papers. Research papers should be limited to approx-
imately 20 pages, while short communications should not exceed 5 pages. A 50–100 word abstract should be
included.

Upon acceptance the authors will be asked to transfer copyright of the article to the publisher. The
authors will be required to prepare the text in LATEX2ε using the journal document class file (based on the
SIAM’s siamltex.clo document class, available at the journal WWW site). Figures must be prepared in
encapsulated PostScript and appropriately incorporated into the text. The bibliography should be formatted
using the SIAM convention. Detailed instructions for the Authors are available on the SCPE WWW site at
http://www.scpe.org.

Contributions are accepted for review on the understanding that the same work has not been published
and that it is not being considered for publication elsewhere. Technical reports can be submitted. Substantially
revised versions of papers published in not easily accessible conference proceedings can also be submitted. The
editor-in-chief should be notified at the time of submission and the author is responsible for obtaining the
necessary copyright releases for all copyrighted material.

