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INTRODUCTION TO THE SPECIAL ISSUE ON CLOUD FOR HEALTH

Dear SCPE readers,

It is a pleasure to present this special issue covering subjects related to applying cloud computing to
bioinformatics, biomedicine, and health, including solutions to area problems and architectural adaptation of
cloud systems to fit those problems. The special issue includes papers selected from the workshops C4Bio 2014
and CCGrid-Health 2014 that, after further extension and additional review, were selected for publication.
C4Bio 2014 and CCGrid-Health 2014 were held in Chicago, during May 26-29th 2014 within the framework of
the 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2014).

The special issue begins with the review paper ”Cloud Computing in Healthcare and Biomedicine”. Cal-
abrese and Cannataro explore the current academic and commercial cloud-based solutions developed in the
healthcare and biomedicine domains, designed in order to satisfy the specific needs (e.g. massive scalable com-
puting and storage, data sharing, on-demand access anytime and anywhere) in these fields. Subsequently, the
paper summarizes main issues regarding the use of Cloud Computing in healthcare and biomedicine.

The article ”Selected Approaches and Frameworks to Carry out Genomic Data Analysis on the Cloud”, by
Church and Goscinski, examines commonly used cloud-based genomic analysis services, introduces the approach
of exposing data as services and proposes two new solutions, namely HPCaaS and Uncinus, which aim to
automate service development, deployment process and data provision. By comparing and contrasting these
solutions, the authors identify key mechanisms of service creation, execution and data access required to support
non-computing specialists employing clouds.

Ahmad, Hasan, and Siddique propose to formally reason about molecular pathways of Zsyntax based
deduction using the HOL4 theorem prover and developing a biologist friendly graphical user interface. ”On
the Formalization of Zsyntax with Applications in Molecular Biology” shows additionally a use case with the
formal analysis of cancer-related molecular pathway, i.e., TP53 degradation and metabolic pathway, known as
Glycolysis.

The article ”Accelerating Comparative Genomics Workflows in a Distributed Environment with Optimized
Data Partiotioning and Workflow Fusion”, by Choudhury et al., discusses different strategies for alleviating
the computational constraints experienced by several data-intensive bioinformatics applications, presenting a
workflow-based framework to parallelize the compute-intensive tasks of genome alignment and variant calling,
the two most important stages in most comparative genomics applications. This framework provides workflow
fusion to merge multiple sequential workflows into a single optimized workflow that benefits from caching,
eliminating choke points, and stacked partitioning.

In ”Performance Comparison and Tuning of Virtual Machines For Sequence Alignment Software”, Estrada
et al. explore the performance cost of virtualization for the fast growing application domain of genomics to
inform the feasibility of running an NGS pipeline in a cloud, and in doing so consider two prevalent short-read
sequence alignment programs, BWA and Novoalign. They execute these applications in three separate open-
source system virtualization solutions (KVM hypervisor, Xen paravirtualized hypervisor, and Linux Containers)
and compare the runtime in each environment against the runtime of the same system without virtualization
and measure the relative performance of each hypervisor, presenting tuning suggestions for cloud implementors
and users.

The article ”Extending XNAT towards a Cloud-based Quality Assessment Platform for Retinal Optical
Coherence Tomographies”, by Jansen et al., presents a platform designed for automatic quality assessment of
retinal OCTs and provided as a cloud-based service employing OpenStack. It extends the image management
platform XNAT by services to calculate and store quality measures. It is also extensible regarding new quality
measure algorithms, allowing the developer to upload, compile and test code for the system’s architecture.

Finally, the paper ”A Tool for Managing the X1.V1 Platform on the Cloud”, by Marzini et al., proposes a
framework for managing the execution of the X1.V1 platform on the Cloud. This framework enables an easy,
quick, and secure management of the Cloud resources allocation and reallocation to X1.V1 Virtual Machines, in
order to enhance the platform performance, optimize resource utilization and, consequently, reduce the whole
services cost.

iii
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We would like to thank all the reviewers for their effort, cooperation, and valuable feedback and all the
authors who submitted papers to C4Bio 2014 and CCGrid-Health 2014 and to this Special Issue.

Jesus Carretero and Javier Garćıa-Blas, Universidad Carlos III de Madrid, Spain
Sandra Gesing, University of Notre Dame, USA
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CLOUD COMPUTING IN HEALTHCARE AND BIOMEDICINE

BARBARA CALABRESE∗
AND MARIO CANNATARO†

Abstract. High throughput platforms available in clinical settings or in research laboratories, such as magnetic resonance
imaging, microarray, mass spectrometry and next-generation sequencing, are producing an increasing volume of clinical and omics
data that poses new issues in terms of secure data storage, models for data integration and analysis, and high performance
computing. Cloud Computing offers large scalable computing and storage, data sharing, on-demand anytime and anywhere access
to resources and applications, and it supports easy but powerful distributed computing models, for facing those issues. In fact, in the
recent years it has been adopted for the deployment of several applications in healthcare and bioinformatics both in academia and
in the industry. However, cloud computing presents several issues regarding the security and privacy of data, that are particularly
important when analyzing patients data, such as in personalized medicine. This paper reviews main cloud-based healthcare and
biomedicine applications; with a special focus on healthcare, biomedicine and bioinformatics solutions and underlines main issues
and problems related to the use of such platforms for the storage and analysis of patients data.

Key words: cloud computing, healthcare, biomedicine, bioinformatics, virtualization

AMS subject classifications. 68M14, 68U01

1. Introduction. Research in life sciences, as well as, clinical practice in medicine, are more and more
based on the large datasets produced by high throughput platforms used for the investigation of the human body
(e.g. magnetic resonance imaging), as well as the cell machinery (e.g mass spectrometry, microarray, and next
generation sequencing). For instance, medical imaging is producing large datasets of biomedical images, while
omics sciences, such as genomics, proteomics and interactomics, are producing large datasets of experimental
data. Some recent advances in biomedicine and healthcare are based on the integrated analysis of clinical
and omics data, as in pharmacogenomics. Pharmacogenomics is an important branch of genomics that studies
the impact of genetic variation (e.g. Single Nucleotide Polimorphisms - SNPs) on drug response in patients
and is at the basis of the so-called ”personalized medicine”, where drugs are chosen or optimized to meet the
genetic profile of each patient. The application of omics studies on large populations is producing an increasing
amount of experimental and clinical data, as well as specialized databases spread over the Internet. However,
the storage, preprocessing and analysis of experimental data are becoming the main bottleneck of the analysis
pipeline.

Cloud computing is a computing model that has spread very rapidly in recent years for the supply of IT
resources (hardware and software) of different nature, through services accessible via the network. Cloud can
provide Virtual Machines (VM) in the sense of hardware resources, platforms to deploy applications or ready-
to-use services. The cloud resources are dynamically scalable, virtualized and accessible on the Internet [1].
This model provides new advantages related to massive and scalable computing resources available on demand,
virtualization technology and payment for use as needed [2].

Thus, cloud computing may play an important role in many phases of the bioinformatics analysis pipeline,
from data management and processing, to data integration and analysis, including data exploration and visu-
alization.

Healthcare requires continuous and systematic innovation in order to remain cost effective, efficient and to
provide high-quality services. Many managers and experts predict that cloud computing can improve healthcare
services and benefit healthcare research. The work [3] summarizes main opportunities and challenges of cloud
computing to improve healthcare services. The author recalls that Schweitzer [4], Haughton [5], and Kabachinski
[6] believe that cloud computing can reduce electronic health record (EHR) startup expenses, and licensing fees,
and thus this will encourage cloud computing adoption.

Different works reported the successful application of cloud computing in healthcare and biomedicine [7, 8,

∗Laboratory of Bioinformatics, Department of Medical and Surgical Sciences, University ”Magna Graecia”, viale Europa 88100,
Catanzaro, Italy (calabreseb@unicz.it).

†Corresponding Author. Laboratory of Bioinformatics, Department of Medical and Surgical Sciences, University ”Magna Grae-
cia”, viale Europa 88100, Catanzaro, Italy(cannataro@unicz.it).
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2 B. Calabrese and M. Cannataro

9, 10]. Besides academic researchers, many world-class software companies have heavily invested in the cloud,
such as Microsoft HealthVault (www.healthvault.com).

Despite the many benefits associated with cloud computing to healthcare, there are also several management,
technology, security, and legal issues to be addressed. For example, the storing of personal health information
into a party, remote data center raises serious issues related to patient privacy. The possibility that patient
data could be lost, misused or fall into the wrong hands, could affects rapid adoption.

The aim of this paper is to describe and discuss the most significant applications of cloud computing in the
healthcare and biomedicine. The examined fields include bioinformatics, medical informatics, telemedicine and
bioimaging. Then the paper focuses on specific requests and issues of such applications on cloud computing.
The paper is organized as follows: in the Section 2 cloud computing definition is discussed. Service and delivery
models are presented in order to define the cloud-related background. Successively, in the Section 3 the paper
focuses on the application of cloud computing in bioinformatics, molecular modeling, medical informatics (EHR),
medical imaging, telemedicine. Section 4 summarizes the main problems to be faced when moving biomedical
applications on the cloud. Finally, Setion 5 concludes the paper and outlines future developments.

2. Background on Cloud Computing. Even though cloud computing is now becoming the key tech-
nology for the storage and analysis of large data sets both in academia and industry, it is not a totally new
concept. In fact, it has some relations with grid computing and other technologies such as utility computing,
clustering, virtualization systems, and distributed systems.

Specifically, High Performance Computing (HPC) covers all aspects of computing that require a lot of
computing power and memory [11]. Common HPC computer environments are multi-core processors, clusters,
grids, graphics processing units (GPUs). These computing environments have one thing in common: serial code
will not run faster on these computers than on any other normal computer. The power of HPC environments
is in fact gained through the possibility of parallel or distributed computing. In other words, exploiting HPC
requires extensive rewritting of serial code. On the other hand, cloud computing can be interpreted as the next
generation of grid computing because the delivery of computing is seen as a service rather than a product, and
moreover, it supports easy to implement distributed computing models such as map-reduce [12].

There are many definitions of cloud computing. The first definition comes from the work of Mell and
Grance [1] and is a popular working definition of cloud computing from the National Institute of Standards
and Technology, U.S. Department of Commerce. Their definition focuses on computing resources which can be
accessed from anywhere and may be provisioned online. It also specifies five characteristics of cloud computing
(i.e. on-demand self-service, broad network access, resource pooling, rapid elasticity and measured service),
three service models (i.e. Software as a Service, Platform as a Service and Infrastructure as a Service) and four
deployment methods (i.e. private cloud, community cloud, public cloud and hybrid cloud). Most of the other
definitions do not mention deployment methods. In contrast to other definitions, this one does not explicitly
mention virtualization as a key technology.

According to this definition, the five key characteristics of cloud services are:

• on demand self service: a consumer can acquire computing power unilaterally and automatically without
requiring any human intervention by the service provider;

• broad network access: the computational capabilities are accessible on the Internet in accordance with
standard mechanisms;

• resource pooling: users have the impression that the available resources are unlimited and can be
purchased in any amount and at any time. Resources of the service provider come together to serve
a variety of consumers, according to a multi-tenant model. The physical and virtual resources are
dynamically assigned and reassigned to consumer, based on his/her requests without having any control
or knowledge of the exact location of the resources assigned to him/her;

• rapid elasticity: resources are able to be quickly allocated and elastically;
• measured services: the cloud systems automatically control and optimize resource use by evaluating
appropriate parameters (e.g, storage, processing power, bandwidth and active user accounts).

Buyya et al. [13] supply a definition with the vision that cloud computing will become the fifth utility and
that cloud computing is the next generation data centre. This definition extensively highlights the importance
of Service Level Agreement (SLA) and the lack of market oriented resource management (e.g. violation of SLAs,
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automatic allocation of resources to fulfil SLAs, etc.) in cloud environments.

Grossman [14] offers a general, working definition of cloud computing, which highlights that cloud computing
environments should behave like local data centres.

Vaquero et al. [15] collected 22 excerpts from previous works and fused these into a single definition by
studying the common properties of cloud computing. This definition emphasizes the importance of Service
Level Agreements (SLA) in order to increase confidence in the cloud environment and defines virtualization as
the key enabler of cloud computing.

In the paper [16], Marston et al. explicitly state that cloud computing lowers costs by offsetting capital
costs with operational ones. Moreover, they give an interesting business perspective to cloud computing which
is missing in almost all the other related publications.

The definition taken from [17] by Intel, offers a particular perspective on cloud computing, from the vantage
point of a major hardware manufacturer with a commercial interest in building clouds. It describes three main
aspects that help realize cloud computing: federation (ease of moving data and services within the cloud), au-
tomation (cloud services should be provisioned with no human intervention) and client-awareness (cloud-based
applications can take advantage of the capabilities of the end-point device). The definition also makes explicit
reference to security, by evidencing that only authenticated devices may connect to the cloud environment.

Hill et al. [18] give a recent definition of cloud computing that presents cloud computing as a utility.

Finally, the Open Grid Forum (OGF) reports a cloud definition in [19]. Specifically, cloud is a data
processing infrastructure providing an extensive integrated client interface permitting information discovery,
data management, job management, logging, accounting and monitoring. Most clouds are enclosed inside a
single administrative domain, do not provision communication between different administrative domains, and
provide limited security.

Thus, it is possible to summarize the main advantages of cloud computing model:

• Service-oriented: computing services are all offered as end-products to customers. Therefore, the ad-
ministration and maintenance of these devices fall under the responsibility of the cloud vendor.

• Massive scalability: the allocation of resources is flexible and elastic, allowing an efficient management
of spikes in computational requirements.

• On-demand resources: resources can be added in real time, sometimes in an automated fashion (e.g.
through a process that monitors CPU load and automatically adds more CPU resources once a usage
threshold is reached).

• Virtualization: this technology enables the sharing of computer hardware amongst multiple users in a
common resource pool, thanks to the abstraction of physical servers and of storage devices. This is, in
particular, advantageous when using heterogeneous computing resources which need to be presented as
one single platform or when different operating systems are to be run on the same hardware.

2.1. Service models. Cloud services can be classified into three main models:

• Infrastructure as a Service (IaaS): this service model is offered in a computing infrastructure that
includes servers (typically virtualized) with specific computational capability and/or storage. The
user controls all the storage resources, operating systems and applications deployed to, while he/she
has limited control over the network settings. An example is Amazon’s Elastic Compute Cloud (EC2),
which allows the user to create virtual machines and manage them, and Amazon Simple Storage Service
(S3), which allows to store and access data, through a web-service interface.

• Platform as a Service (PaaS): it allows the development, installation and execution of user-developed
applications. Applications must be created using programming languages, libraries, services and tools
supported by the provider that constitute the development platform provided as a service. An example
is Google Apps Engine, which allows to develop applications in Java and Python, provides for both
languages the SDK and uses a plugin for the Eclipse development environment.

• Software as a Service (SaaS): customers can use the applications provided by the cloud provider infras-
tructure. The applications are accessible through a specific interface. Customers do not manage the
cloud infrastructure or network components, servers, operating systems or storage. In some cases, it is
possible to manage specific configurations of the application.
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2.2. Delivery models. Cloud services can be made available to users in different ways. In the following,
a brief description of the delivery models is presented:

1. Public Cloud : public cloud services are offered by vendors who provide the users/customers the hard-
ware and software resources of their data centers. Examples of public clouds are Amazon1 (Amazon
EC2 provides computational services, while Amazon S3 storage services); Google Apps (which provides
software services like Gmail, Google Docs or Google Calendar, and development platform like Google
App Engine); and Microsoft Azure2, that is a cloud computing platform and infrastructure, created
by Microsoft, for building, deploying and managing applications and services through a global network
of Microsoft-managed datacenters. It provides both PaaS and IaaS services and supports many differ-
ent programming languages, tools and frameworks, including both Microsoft-specific and third-party
software and systems.

2. Private Cloud : private cloud is configured by a user or by an organization for their exclusive use.
Services are supplied by computers that are in the domain of the organization. To install a private
cloud, several commercial and free tools are available (e.g. OpenStack3, Eucalyptus4, Open Nebula5,
Terracotta6 and VMWare Cloud7).

3. Community Cloud : it is an infrastructure on which are installed cloud services shared by a community
or by a set of individuals, companies and organizations that share a common purpose and that have
the same needs. The cloud can be managed by the community itself or by a third-party (typically a
cloud service provider).

4. Hybrid Cloud : the cloud infrastructure is made up of two or more different clouds using different delivery
models, which, while remaining separate entities, are connected by proprietary or standard technology
that enables the portability of data and applications.

3. Cloud Computing in Healthcare and Biomedicine. Recent studies indicated that cloud computing
can improve healthcare services and benefit biomedical research [10, 12, 20], by offering new possibilities.

An important driver for the adoption of cloud technology in the healthcare is to lower the cost of healthcare
delivery. This cost has grown to such huge proportions that governments face serious funding issues. The
recognition that technology can improve patient care while reducing costs has meant that governments are
willing to push the traditionally slow healthcare industry to a faster pace of adoption. In [21], the authors
pointed out that, based on Azures pricing model, the cost of their cloud-based telemedicine service is based on
the use of CPU resources, which is charged by USD $ 0.12 per hour, and the use of database, which is charged
by USD $9.99 per GB per month. Dudley and his colleagues [22] demonstrated that cloud computing is a
viable and cheaper technology that enables large-scale integration and analysis for studies in genomic medicine.
They compared computational and economic characteristics of a cloud-based service, with a local institutional
cluster.

Another important driver is the big data growth in healthcare and bioinformatics [23]. As the amount of
digital information increases, the ability to manage this data becomes a growing problem. This data holds the
keys to future clinical advances, but often remains inaccessible to researchers. Cloud Computing can be the
enabling factor for data sharing and integration at a large scale. In the paper [24], high performance computing
(HPC) solutions in bioinformatics, Big Data analysis paradigms for computational biology, and the issues that
are still open in the biomedical and healthcare fields are discussed. Specifically, the authors pointed out that
cloud computing addresses Big Data storage and analysis issues in many fields of bioinformatics, thanks to the
virtualization that avoid to move too big data.

Moreover, in the specific field of telemedicine, in order to support efficient monitoring and automated
analysis of larger patient populations, it is essential to have an infrastructure that provides high throughput, high
volume storage and reliable communication. Horizontal scalability (i.e. the ability for a system to easily expand

1hhtps://aws.amazon.com
2https://azure.microsoft.com
3https://www.openstack.org
4https://www.eucalyptus.com
5http://opennebula.org
6http://terracotta.org
7http://www.vmware.com/
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its resource pool to accomodate heavier load) and geographic scalability (i.e. the ability to maintain performance,
usefulness or usability regardless of expansion from concentration in a local area to a more distributed geographic
pattern) represent two requirements that cloud computing can fulfill [25].

In the field of medical imaging, thanks to high-resolution imaging instruments, the volume of data will
reach petabytes. Therefore, it is evident that the cloud computing model will provide a potential contribution
to satisfy computational needs related to the reconstruction and analysis of medical images and to allow a wide
sharing of imaging data, as well as advanced remote analysis.

In the following sections, the main cloud-based applications proposed in the fields of bioinformatics, molec-
ular modeling, medical imaging, telemedicine and medical informatics are illustrated and discussed.

3.1. Cloud-based Bioinformatics Solutions. The cloud computing represents a cost-effective solution
for the problems of storing and processing data in the context of bioinformatics. Thanks to the progress of high-
throughput sequencing technologies, there was an exponential growth of biological data. Therefore, classical
computational infrastructure for data processing have become ineffective and difficult to maintain [26, 27].

The traditional bioinformatics analysis involves downloading of public datasets (e.g. NCBI, Ensembl),
installing software locally and analysis in-house. By entering the data and software in the cloud and providing
them as a service, it is possible to get a level of integration that improves the analysis and the storage of
bioinformatics big-data. In particular, as a result of this unprecedented growth of data, the provision of data as
a service (Data as a Service, DaaS) is of extreme importance. DaaS provides a data storage in a dynamic virtual
space hosted by the cloud and allows to have updated data that are accessible from a wide range of connected
devices on the web. An example is represented by the DaaS of Amazon Web Services (AWS) [28], which provides
a centralized repository of public data sets, including archives of GenBank, Ensembl, 1000 Genomes Project,
Unigene, Influenza Virus. AWS public dataset8 contains not only data related to the field of biology but also to
other scientific fields, such as astronomy, chemistry, climate, economy, etc. All datasets are provided as public
AWS services and so can be easily integrated into cloud-based applications.

In the following subsections, examples of SaaS, PaaS and IaaS for several tasks in bioinformatics domain
are presented.

3.1.1. Bioinformatics Tools deployed as SaaS. In recent years, there have been several efforts to
develop cloud-based tools to execute different bioinformatics tasks [29], e.g. genomic applications9 10 [30, 31],
sequences alignment [32], gene expression analysis11 12 13 [33, 34, 35]. Other examples of SaaS bioinformatics
tools are reported in the following.

CloudBurst14 is a new parallel read-mapping algorithm optimized for mapping next-generation sequence
(NGS) data to the human genome and other reference genomes, for use in a variety of biological analyses
including SNP discovery, genotyping and personal genomics [36]. CloudBurst uses the open-source Hadoop
implementation of MapReduce to parallelize execution using multiple compute nodes.

PeakRanger15 [37] is a software package for the analysis in Chromatine ImmunoPrecipitation Sequencing
(ChIP-seq) technique. This technique is related to NGS and allows to investigate the interactions between
proteins and DNA. Specifically, PeakRanger is a peak caller software package that can be run in a parallel cloud
computing environment to obtain extremely high performance on very large data sets.

VAT (Variant Annotation Tool)16 [38] has been developed to functionally annotate variants from multiple
personal genomes at the transcript level as well as to obtain summary statistics across genes and individuals.
VAT also allows visualization of the effects of different variants, integrates allele frequencies and genotype data
from the underlying individuals and facilitates comparative analysis between different groups of individuals.

8http://aws.amazon.com/publicdatasets
9http://cloudaligner.sourceforge.net

10http://bowtie-bio.sf.net/myrna
11http://fx.gmi.ac.k
12http://bowtie-bio.sourceforge.net/myrna/index.shtml
13http://tinyurl.com/yunbedownload
14http://sourceforge.net/projects/cloudburst-bio/
15http://www. modencode.org/software/ranger/
16http://vat.gersteinlab.org
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VAT can either be run through a command-line interface or as a web application. Finally, in order to enable
on-demand access and to minimize unnecessary transfers of large data files, VAT can be run as a virtual machine
in a cloud-computing environment.

STORMSeq (Scalable Tools for Open-source Read Mapping) [39], is a graphical interface cloud computing
solution that performs read mapping, read cleaning and variant calling and annotation with persoanl genome
data. At present, STORMSeq costs approximately 2 dollars and 510 hours to process a full exome sequence
and 30 dollars and 38 days to process a whole genome sequence. The authors provide this open-access and open
source resource17 as a user-friendly interface in Amazon EC2.

In [40], the authors propose an efficient Cloud-based Epistasis cOmputing (eCEO) model for large-scale
epistatic interaction in genome-wide association study (GWAS). Given a large number of combinations of
SNPs (Single-nucleotide polymorphism), eCEO model is able to distribute them to balance the load across
the processing nodes. Moreover, eCEO model can efficiently process each combination of SNPs to determine
the significance of its association with the phenotype. Authors have implemented and evaluated eCEO model
on their own cluster of more than 40 nodes. The experiment results demonstrate that the eCEO model is
computationally efficient, flexible, scalable and practical. In addition, authors have also deployed the eCEO
model on the Amazon Elastic Compute Cloud18.

Cloud4SNP [41] is a novel Cloud-based bioinformatics tool for the parallel preprocessing and statistical
analysis of pharmacogenomics SNP DMETmicroarray data. It is a Cloud-based version of DMET- Analyzer [42],
that has been implemented on the Cloud using the Data Mining Cloud Framework [43], a software environment
for the design and execution of knowledge discovery workflows on the Cloud [44]. It allows to statistically test
the significance of the presence of SNPs in two classes of samples using the well known Fisher test. Cloud4SNP
uses data parallelism and employs an optimization technique to avoid the execution of useless Fisher tests,
through the filtering of probes with similar SNPs distributions.

ProteoCloud [45] is a freely available, full-featured cloud-based platform to perform computationally
intensive, exhaustive searches using five different peptide identification algorithms. ProteoCloud19 is entirely
open source, and is built around an easy to use and cross-platform software client with a rich graphical user
interface. This client allows full control of the number of cloud instances to initiate and of the spectra to assign
for identification. It also enables the user to track progress, and to visualize and interpret the results in detail.
Table 3.1 lists the main SaaS bioinformatics applications and their essential features.

3.1.2. Bioinformatics Platforms deployed as PaaS. Currently, the most used platform (PaaS) for
bioinformatics applications is Galaxy Cloud20, which is a Galaxy cloud-based platform for the analysis of
data at a large scale. It allows anyone to run a private Galaxy installation on the Cloud exactly replicating
functionality of the main site21, but without the need to share computing resources with other users. With
Galaxy Cloud, unlike software service solutions, the users can customize their deployment as well as retain
complete control over their instances and associated data; the analysis can also be moved to other cloud
providers or local resources, avoiding concerns about dependence on a single vendor. Currently, a public Galaxy
Cloud deployment is provided on the popular Amazon Web Services (AWS) cloud; however, it is compatible
with Eucalyptus and other clouds [46]. CloudMan22 [47] enables individual bioinformatics researchers to easily
deploy, customize, and share their entire cloud analysis environment, including data, tools, and configurations.

In [48], a modular and scalable framework called Eoulsan23, based on the Hadoop implementation of the
MapReduce algorithm dedicated to high-throughput sequencing data analysis, is presented. Eoulsan allows
users to easily set up a cloud computing cluster and automate the analysis of several samples at once using
various software solutions available. Tests with Amazon Web Services demonstrated that the computation cost
is linear with the number of instances booked, as the running time with the increasing amounts of data. Eoulsan
is implemented in Java, supported on Linux systems and distributed under the LGPL License.

17http://www.stormseq.org
18http://www.comp.nus.edu.sg/ wangzk/eCEO.html
19http://proteocloud.googlecode.com
20http://galaxy.psu.edu
21Galaxy is an open source, web-based platform for data intensive biomedical research; http://usegalaxy.org/
22http://cloudman.irb.hr
23http://transcriptome.ens.fr/eoulsan/
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Table 3.1

SaaS Bioinformatics Applications

Name Available Domain Task/Data Cloud Type

Cloud Aligner [30] YES Genomics (Genome
resquencing, short-
read aligner)

A map/reduce based
application for map-
ping short reads gen-
erated by the next-
generation sequencing
machine

Public Cloud (AWS)

CloudBlast [32] YES Genomics Massive sequence
alignment

Public Cloud (AWS)

Fx [33] YES Genomics RNA-Seq analysis tool Public Cloud (AWS)
Myrna [34] YES Genomics (RNA-

sequencing)
Calculation of differ-
ential gene expression
in large RNA-seq
datasets

Public Cloud (AWS)

YunBe [35] YES Transcriptomics Gene set analysis tool
for biomarker identifi-
cation

Public Cloud (AWS)

CloudBurst [36] YES Genomics (Genome
resquencing, short-
read aligner)

Parallel Mapping of
NGS data

Public Cloud (AWS)

PeakRanger [37] YES Genomics (Sequenc-
ing)

Peak caller for ChIP-
Seq data

Binaries for an Ama-
zon EC2 image will be
available

VAT [38] YES Genomics Framework to func-
tionally annotate
variants in personal
genomes

Public Cloud (AWS)

StormSeq [39] YES Genomics (Sequenc-
ing)

Parallel Processing
Personal Genomics
Data

Public Cloud (AWS)

eCEO [40] YES Genomics (Sequenc-
ing)

Epistasis Computing
Model of SNPs data

Public Cloud (AWS)

Cloud4SNP [41] No Genomic Microarray data anal-
ysis

Private Cloud (Mi-
crosoft Azure)

ProteoCloud [45] YES Proteomics (Mass
spectrometry)

Tools for identification
of very large sets of
spectra using five dif-
ferent peptide identifi-
cation algorithms

Public Cloud (AWS)

The Table 3.2 summarizes the bioinformatics platforms (PaaS) introduced so far by evidencing the appli-
cation domain, the type of cloud (public, private, etc.) and the information relative to possible availability.

3.1.3. Bioinformatics Virtual Machines deployed as IaaS. Bionimbus24 [49] is an open source
cloud-computing platform used by a variety of projects to process genomics and phenotypic data. It is based
primarily upon OpenStack, which manages on-demand virtual machines that provide the required computational

24http://bionimbus.opensciencedatacloud.org
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Table 3.2

PaaS Bioinformatics Applications

Name Avail Domain Task Cloud
Type

O.S. Progra-
mming
Language

GalaxyCloud [46] YES Bioinformatics Cloud-scale
Galaxy for
large-scale
data analysis

Public Cloud
(AWS)

Not available Not available

CloudMan [47] YES Bioinformatics Platform for
tool, data,
and analysis
distribution.

Public Cloud
(Nectar)

*NIX Python

Eoulsan [48] YES Genomics High
throughput
sequencing
analyses

Public Cloud
(AWS)

Linux Java

resources, and GlusterFS, which is a high-performance clustered file system. Bionimbus also includes Tukey,
which is a portal, and associated middleware that provides a single entry point and a single sign on for the
various Bionimbus resources; and Yates, which automates the installation, configuration, and maintenance of
the software infrastructure required. Bionimbus is required to operate under a set of guidelines developed
by NIST called FISMA. These requirements served as a guide to improve the security of Bionimbus and to
generate the associated documentation. The authors modified the OpenFISMA application to help automate
this process, e.g. with their modifications, security scans are performed automatically at regular intervals and
the results recorded.

Cloud Virtual Resource, CloVR25 [50] is a new desktop application for push- button automated sequence
analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine
(VM) that provides several automated analysis pipelines for microbial genomics, whole genome and metagenome
sequence analysis. In addition CloVR supports use of remote cloud computing resources to improve performance
for large-scale sequence processing. Supported clouds include the commercial Amazon Elastic Compute Cloud
and the academic platforms DIAG [51] and Magellan [52] To provide security and help ensure data privacy,
each remote cluster of CloVR VMs uses a unique, randomly generated authentication key. This key is used
to enable secure data transfer between instances with Secure Shell (SSH) both within the cloud and over the
Internet and between the local client VM and master cloud CloVR VMs.

Cloud BioLinux [53]26 is a publicly accessible Virtual Machine (VM) that enables scientists to quickly pro-
vision on-demand infrastructures for high-performance bioinformatics computing using cloud platforms. Users
have instant access to a range of pre-configured command line and graphical software applications, including a
full-featured desktop interface, documentation and over 135 bioinformatics packages for applications including
sequence alignment, clustering, assembly, display, editing, and phylogeny. Cloud BioLinux is available through
the Amazon EC2 cloud. For higher security, instead of providing a password through the EC2 launch instance
wizard, a user can take the additional step of setting up Secure Shell (SSH) keys, which is fully described in the
documentation. Besides the Amazon EC2 cloud, the authors started instances of Cloud BioLinux on a private
Eucalyptus cloud and demonstrated access to the bioinformatics tools interface through a remote connection to
EC2 instances from a local desktop computer.

3.1.4. Cloud-based Solutions for Molecular Modeling. Different molecular modeling tasks, such as
molecular dynamics simulations, quantum mechanical calculations or 3D virtual library construction, are very

25http://clovr.org
26http://cloudbiolinux.org
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Table 3.3

Bioinformatics IaaS

Name Avail. Domain Task Cloud Type Operating
System

Program-
ming Lan-
guage

CloudBio-
Linux [53]

YES Bioinfor-
matics

A publicly
virtual ma-
chine for high
performance
bioinformat-
ics computing

Public (AWS)
and pri-
vate Cloud
(Eucalyptus)

Linux, Win-
dows, Mac
OSX

Python

CloVR [50] YES Genomics A virtual
machine for
automated
and portable
sequence
analysis

Cloud Mid-
dleware EC2,
Eucalyptus,
Nimbus

Platform
independent

Not available

Bionimbus
[49]

YES Genomics Cloud-based
system for
genomic data

Private cloud
(OpenStack)

Not available Not available

computationally intensive tasks and generate or process huge amount of data. Therefore, cloud computing
model guarantees for these types of molecular modeling tasks scalability, reliability, and lower cost [54]. The
use of cloud computing for molecular modeling applications is still in its infancy, because in order to use
cloud computing, many technical tasks must be performed by the user such as configuring the compute nodes,
installing the required software, and launching, monitoring and terminating the computation [55].

One of the most sophisticated SaaS for cloud computing are provided by commercial providers such as Cycle-
Cloud27, which offers clusters with preinstalled applications that are widely used in the area of bioinformatics,
proteomics, and computational chemistry. The most interesting from a molecular modeling perspective are
Gromacs, to perform molecular dynamics (MD) simulations, and ROCS to perform shape-based screening of
compounds.

Recently announced AceCloud28 is a commercial on-demand GPU cloud computing service. The opti-
mization of MD simulation packages for running on GPUs, such as Amber, Gromacs, Lammps, and NAMD is
reported to result in large performance increases compared to calculations run on CPUs [56].

The Rosetta software suite29 facilitates molecular modeling tasks such as prediction of protein and RNA 3D
structures, protein-ligand and protein-protein docking, antibody modeling, and enzyme design. Because of the
large search spaces of these problems, finding good solutions is highly computationally demanding. To meet this
challenge a Seattle biomedical software company Insilicos announced the formation of RosettaATCloud LLC,
a joint venture with the University of Washington, that developed Rosetta@cloud, which offers the Rosetta
software suite as a cloud-based service hosted on Amazon Web Services.

AutoDockCloud [57] is a workflow system that enables distributed screening on a cloud platform using the
molecular docking program AutoDock. AutoDockCloud is based on the open source framework Apache Hadoop,
which implements the MapReduce paradigm for distributed computing. In addition to the docking procedure
itself, preparation steps, such as generating docking parameters and ligand input files, can be automated and
distributed by AutoDockCloud.

27http://www.cyclecomputing.com/ cyclecloud/applications
28http://www.acellera.com/products/acecloud/
29https://www.rosettacommons.org
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3.2. Cloud-based Medical Informatics Solutions. A major challenge for medical informatics concerns
the storage of heterogeneous data into a single searchable database for clinical purposes or research. The cloud
allows greater sharing and integration of Electronic Health Record (EHR), also allowing a reduction in costs
related to hardware, software, network and staff. Following these considerations, it is expected a considerable
increase in the use of the cloud for storing personal health information online [58].

Many studies have proposed different cloud-based frameworks in an attempt to improve the EHR. Among
these, Chen et al. [59] have proposed a new system of access control in cloud computing environment that allows
to securely access the patient’s medical record even in multi-user system.

Doukas et al. [60] have presented the implementation of a mobile system that allows data storage of e-health,
updating and recovery with cloud computing.

In addition to the works presented so far as result of academic research, there are also several commercial
systems made by companies that provide services of medical records.

An example is the Microsoft HealthVault30 platform developed by Microsoft for managing health informa-
tion of its members. The system helps people to collect, store and share their medical information with family
members and health care providers. In addition, it also allows the management of fitness and diet connecting
with third-party applications.

HealthVault gives particular attention to privacy and security of health information users. In the following,
some security mechanisms are listed:

• Authentication: users can access the system through various mechanisms such as Facebook, Windows
Live ID;

• Authorization: The system asks the user’s permission before enabling any data access by an application;
• User Control: Users are able to control how their data have to be shared, explicitly granting or revoking
consent for third-party applications to access their account. Users are also able to close the account at
any time or to remove specific information.

• Auditing: a log that records the data access is built-in into the system and available to users.
• Source of data: the data in HealthVault contain the source of the data and applications and one can
use this information to determine how to treat information coming from different sources. The digital
signature also allows users to optionally verify the integrity of the data and their source.

Fusion [61] is a cloud-based experimental platform that aims to manage in a simple and secure way, health
information of patients allowing them to share between operators in the healthcare system. The key features are
low cost and large scale. With regard to data protection, the Fusion architecture includes mechanisms to enable
the security and privacy and traceability of access to stored medical data. Specifically, since all data residing
in the cloud are encrypted, and the Fusion Store by itself cannot decrypt the data, the security and privacy of
data are guaranteed. Different health care professionals can use Fusion to store patient information and share
it securely. Fusion also supports the integration of proprietary systems of health information management and
provides integrated data sharing mechanisms.

Several hospitals and healthcare organizations have been adopted cloud computing solution. On July 2011
Chelsea and Westminster Hospital set a cloud computing system to manage and store their EHRs. With this
system, patients have full control over who has access to their health records. However the Cloud provider com-
pany must prove the security of its system. To solve this problem the Cloud provider company has implemented
a security mechanism in which users have to pass multiple ID checkpoints to access the database [83].

Another example of Cloud Computing and e-Health services is found at the ”Bambino Gesu” Italian Hos-
pital. This hospital, placed in Rome, is famous for being one of the largest research and treatment centers
in the field of pediatrics. Since hospital people are using Cloud, they have experienced advantages such as:
better collaboration between the medical staff, better connection with patients and more free time for the IT
group [62].

Cloudera has been working with Mount Sinai School of Medicine clinical and academic faculty to develop
new methods and systems for analyzing data in a variety of important areas including genomics and multiscale
biology.

30https://www.healthvault.com/



Cloud Computing in Helthcare and Bioinformatics 11

Recently, Apple has announced new Health app that collects all health and fitness data (heart rate, calories
burned, blood sugar, cholesterol) in order to give to the user a clear and current overview of his/her health. It
is possible also to create an emergency card with important health information, for example, the blood type or
allergies.

The Google project, called Baseline Study, will collect anonymous genetic and molecular information from
175 people – and later thousands more – to create what the company hopes will be the fullest picture of what
a healthy human being should be. Baseline will amass a much larger and broader set of new data. The hope
is that this will help researchers detect killers such as heart disease and cancer far earlier, pushing medicine
more toward prevention rather than the treatment of illness. Google has already built one of the world’s largest
networks of computers and data centers to serve online-search results quickly.

3.3. Cloud-based Medical Imaging Solutions. Many studies have demonstrated the utility of MapRe-
duce to solve the problems of medical imaging on a large scale in a cloud computing environment. For example,
Meng et al. [63] have developed a fast and scalable technique for image reconstruction of 4D CT (Four Dimension
Computer Tomography) cone beam with MapReduce in a cloud computing environment.

Avila-Garcia et al. [64] proposed a framework based on cloud for the analysis of images in order to diagnose
colorectal cancer.

Silva et al. [65] proposed a system based on a set of DICOM routers interconnected through an infrastructure
of public cloud to support the exchange of medical images between institutions.

In the field of radiology, Patel [66] highlighted the main advantages of the use of cloud-based SaaS, PaaS and
IaaS applications. Specifically, SaaS allows access to three-dimensional visualization and quantitative analysis
tools from any computer with a web client and internet access. This permits to solve license problems and
the need of powerful local workstation. iNtuition UNLIMITED31 cloud-based service by TeraRecon, Inc is an
example of commercial product for radiologists. Moreover, the sharing of images between radiologist of different
institutions and the increasing storage capacities needed bring to adoption of cloud-based solutions. Commercial
vendors such as Insite One and Pacs Drive offer cloud based imaging archiving and storing solutions.

Security and privacy of patients images should be ensured in order to avoid unauthourized access. Kagadis
et al. [67] discuss the need to adopt specific methods of ensuring data security including encrypting all data
transferred over the internet using SSL (Secure Sockets Layer), and giving only an authorized user access to
the system.

3.4. Cloud-based Telemedicine Solutions. In many countries, increasing longevity and declining fer-
tility rates have led to the aging of the population and, consequently, the need for medical care is increased. In
addition, there is a large population that does not receive good health care services because they live in rural
communities.

Telemedicine, through the provision of remote monitoring services and medical assistance, allows to reach
people living in rural areas and to reduce the healthcare costs. Moreover, the use of cloud computing could
allow to delivery better telemedicine services. Specifically, the cloud can help provide effective treatment and
care of patients due to its benefits such as on-demand access anywhere, anytime, low costs and high elasticity.

In this subsection, a description of cloud-based telemedicine applications are illustrated, highlighting the
advantages and limits of the proposed approaches. Table 3.4 listed the features of the cited telemedicine
applications. The major number of reported studies focus on telecardiology [68].

Pandey et al. in [25] propose the development of an autonomic cloud environment that collects people’s
health data and stores them to a cloud-based information repository and facilitates analysis on the data using
software services hosted in the cloud. The scheme by Pandey et al. integrates mobile and Cloud technologies
with electrocardiogram (ECG) sensors to enable remote monitoring of patients with heart-related problems
such as cardiac arrhythmias. The patients connect the sensors to their body and then run an app on a mobile
device. The app connects to the sensors via Bluetooth. The app will then periodically upload data to the Cloud.
The user can then download graphs from the Cloud which represent the users health states. The scheme also
implements middleware in the Cloud. There are web services for users to analyse their ECG, draw graphs, etc.
The current scheme does not handle security issues, even if the authors propose and discuss the use of a trusted

31http://www.terarecon.com/cloud/
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third party-certification authority to implement a Public Key Infrastructure (PKI) based authentication and
authorization system.

Also in the paper [69], security and privacy issues are not discussed. The authors propose a cloud-based
system for monitoring and real-time analysis of electrocardiographic signals (ECG). The system has been de-
signed to be accessible from anywhere using a smartphone, a tablet, desktop or laptop. The ECG signals can
be collected by wearable ECG devices and transmitted via Bluetooth to the client, which then transmits to the
cloud. In particular, the web application has been developed using the Spring framework32. The final applica-
tion was deployed to a server in the Amazon Cloud using Amazon Web Services (AWS). The transmission of
data between the client and the server has been done by using HTTPS (Hypertext Transfer Protocol Secure).
The server, upon receiving the data, controls the quality of the signals and, if necessary, applies appropriate
pre-processing and enhancement techniques. Subsequently, the system extracts information related to heart
rate variability (RR interval33). The system provides an interface for the patient and for the physician. The
patient may display the ECG trace and the extracted parameters. The physician can visualize these data, and
according to their value, he/she could make a diagnosis that is sent to the patient.

In [21], Hsieh et al. describe the implementation of a cloud computing based telemedicine application,
which can upload 12-lead ECG reading to a cloud service from which they can be visualized on a variety of
network connected devices, both mobile and fixed. This cloud application supports a variety of clinically used
12-lead ECG devices, such as Philips XML-ECG, HP compatible SCP-ECG, and Mortara DICOM-ECG by first
transcoding the data from a vendor-specific format to an XML format in a public cloud computing platform,
Microsoft Azure. To safeguard the ECG data in the cloud, they have designed a security mechanism to prevent
them from theft and protect the patients privacy, including authentication for the use of Web roles and Worker
roles, data encryption during message communications among roles, and ECG file encryption and verification
while ECG report are retrieved in storage account and database. Moreover, ECG files are transmitted via secure
sockets layer (SSL) based HTTP (HTTPS) where ECG files are protected by certificate based encryption and
verification instead of plain text based HTTP.

Body Sensor Network (BSN), with their huge amount of gathered sensor data and their limited processing
power, can be empowered by exploiting a Cloud computing infrastructure to realize an integrated platform that
provides [70]:

• the ability to utilize heterogeneous sensors;
• scalability of data storage;
• scalability of processing power for different kinds of data analysis;
• global access to the processing and storage infrastructure;
• easy sharing of results;
• pay- as-you-go pricing for using BSN services;

Fortino [71] introduced the BodyCloud architecture which enables the management and monitoring of body
sensor data via the Cloud. It provides functionality for receiving and managing sensor data in a seamless way
from a body sensor network (BSN). BodyCloud also comprises of a scalable framework that allows support
for multiple data streams required for running concurrent applications. Many challenges (interoperability,
heterogeneity, security, data validation and consistency) strictly related to BSNs are discussed in [72].

In [73] a cloud computing based Voice over IP (VoIP) service for diabetic patients self care management, is
presented. The patients subscribing the cloud service received VoIP calls with pre-recorded voice messages as
self-care reminders. In this study, the participants obtained better glycemic control than the patients without
subscribing the service.

In [74] a cloud-based intelligent system for real-time monitoring of users with diabetes (Cloud Based In-
telligent Health Care Service, CBIHCS), has been presented. CBIHCS allows the monitoring of different vital
parameters such as blood pressure, glucose and ECG. The collected data are sent via bluetooth to mobile
devices which then transmit them to the cloud. Measured signals and patients information are stored on the
cloud. Considering the analysis of the data, a PCA (Principal Component Analysis) is applied for the selection

32http://projects.spring.io/spring-framework/
33the time elapsing between two consecutive R waves in the electrocardiogram or the interval from the peak of one QRS complex

to the peak of the next as shown in the electrocardiogram
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of attributes, and classification techniques, such as KNN and Näıve Bayes have been used to determine the
state of health of the users. Furthermore, the authors have implemented statistical prediction techniques to
determine the patterns of resource use and have proposed a simple heuristic for a dynamic elastic infrastructure.
In particular, the authors highlight that in the development of the system, the standard Web Service Resource
Framework (WSRF) has been adopted in order to facilitate the deployment of the final system on a cloud, like
Amazon EC2. They carried out two types of experiments: the aim of the first experimentation was to assess
the classifier’s performances and to check the proper functioning of the system; in the second experimentation
a study on dynamic allocation of resources was performed. Moreover the authors have been addressed security
challenges in a cloud hosted health care application: they have implemented security mechanisms at multi-
ple levels and provide role based access control to ensure the protection of critical medical data of patients.
They propose to integrate the use of symmetric cryptosystems for authentication and role based access control
(RBAC) mechanisms for authorization.

In Kim et al. [75], another cloud-based system for vital signs monitoring is presented. The framework is
composed of four distinct modules: a module to receive vital sign data using standardized messaging methods; a
module to transform these data into a standardized schema; a module to evaluate the health state using biosignal
data; and a service-oriented architecture (SOA) component module that allows users to access medical services
with standardized messaging methods. Security and privacy issues have not been discussed, but a new concept
of HaaS Healthcare as Service has been introduced: healthcare systems are defined as services in order to secure
interoperability.

The paper [76] presents an expert diagnosis system based on cloud computing. It classifies a users fitness level
based on supervised machine learning techniques. This system is able to learn and make customized diagnoses
according to the users physiological data, such as age, gender, and body mass index (BMI). In addition, an
elastic algorithm based on Poisson distribution is presented to allocate computation resources dynamically. The
paper does not present any detailed information about cloud implementation.

In [77], a new mobile app, Dental Calendar, combined with cloud services specific for dental care, has
been created. This new system would remind patients about every scheduled apointment, and help them take
pictures of thier own oral cavity parts that require dental treatment and send them to dentists along with
a symptom description. All this information would be sent to dentists through cloud services. The authors
propose a general system’s architecture, but they do not discuss it in detail.

Finally, Thilakanathan et al. [78] addressed the issues of privacy and security in the domain of mobile
telecare and Cloud computing. They demonstrated a telecare application that will allow doctors to remotely
monitor patients via the Cloud. They use this system as a basis to showcase a model that will allow patients to
share their health information with other doctors, nurses or medical professionals in a secure and confidential
manner. The key features of the model include the ability to handle large data sizes and efficient user revocation.
The authors also addressed the problems of achieving efficient user revocation, especially when considering large
data sizes. For this, they defined a secure data sharing model and protocol, and demonstrated the feasibility of
the protocol through a prototype which combines smartphone, Bluetooth and Cloud computing technologies.

4. Cloud challenges in healthcare and biomedicine. Clinical data must be hosted on publicly acces-
sible servers according to privacy and security rules, such as the Health Insurance Portability and Accountability
Act (HIPAA). The EHRs are exposed to possible abuse and require security measures based on the identity
management, access control, policy integration and compliance management.

Typical entities in a cloud based health record system are patients, hospital staff, such as doctors, nurses,
pharmacies, and laboratory staff, insurance companies, and the cloud service providers. Due to the distributed
architecture of the cloud, the patient EHRs are stored at and shared among many third-party providers. There-
fore, the data is susceptible to unauthorized access and attacks. Specifically, the paper [79] claims that storing
huge volumes of patients’ sensitive medical data in third-party cloud storage is susceptible to loss, leakage or
theft. The privacy risk of cloud environment includes the failure of mechanisms for separating storage, memory,
routing, and even reputation between different tenants of the shared infrastructure. The centralized storage and
shared tenancy of physical storage space means the cloud users are at higher risk of disclosure of their sensitive
data to unwanted parties.

Threats to the data privacy in the cloud include spoofing identity, tampering with the data, repudiation,
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Table 3.4

Cloud-based telemedicine systems

References Application Do-
main

Task/Data Cloud Security and Pri-
vacy

[25] Telecardiology ECG monitoring Public Cloud (Ama-
zon Web Services)

No

[69] Telecardiology ECG real-time moni-
toring

Public Cloud (Ama-
zon Web Services)

No

[21] Telecardiology ECG monitoring Public Cloud (Mi-
crosoft Azure)

Yes

[71] Body Sensor Net-
work (BSN)

Management and
Monitoring of body
sensor data

Not available Yes

[73] Teleconsulting Diabetes Not available No
[74] Diabetes Monitoring of differ-

ent vital parameters
Public Cloud (Ama-
zon Web Services)

Yes

[75] Telemonitoring VMonitoring of vital
parameters

Not available Not available

[76] Wellness Expert system for
health fitness level
classification

Not available Not available

[77] Dental care Appointment re-
minders and trans-
mission of oral cavity
pictures

Not available Not available

and information disclosure. In spoofing identity attack, the attacker pretends to be a valid user whereas data
tampering involves malicious alterations and modification of the content. Repudiation threats are concerned
with the users who deny after performing an activity with the data. Information disclosure is the exposure of
information to the entities having no right to access information. The same threats prevail for the health data
stored and transmitted on the third-party cloud servers.

Therefore, confidentiality and integrity of the stored health data are the most important challenges elevated
by the healthcare and biomedicine cloud-based systems.

A secure protection scheme will be necessary to protect the sensitive information of the medical record.
There is considerable work on protecting data from privacy and security attacks. NIST [80] has developed
guidelines to help consumers to protect their data in the Cloud. The paper [81] evidences that using crypto-
graphic storage significantly enhances security of the data. The paper discusses the main mechanisms to be
adopted in order to guarantee and satisfy the previous cited issues. Specifically, the authors present and discuss
the utility of cryptographic and non-cryptographic approaches. The cryptographic approaches to mitigate the
privacy risks utilize certain encryption schemes and cryptographic primitives. Conversely, non-cryptographic
approaches mainly use a policy based authorization infrastructures that allow the data objects to have access
control policies. Particularly, in the public cloud environment operated by the commercial service providers and
shared by several other customers, data privacy and security are the most important requirements.

Abbas et al. [82] summarized the security and privacy requirements for cloud-based applications in health-
care and biomedicine fields in the following way:

1. Integrity: it is needed to ensure that the health data captured by a system or provided to any entity is
true representation of the intended information and has not been modified in any way.

2. Confidentiality: the health data of patients is kept completely undisclosed to the unauthorized entities.
3. Authenticity: the entity requesting access is authentic. In the healthcare systems, the information

provided by the healthcare providers and the identities of the entities using such information must be
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verified.
4. Accountability: an obligation to be responsible in light of the agreed upon expectations. The patients

or the entities nominated by the patients should monitor the use of their health information, whenever
that is accessed at hospitals, pharmacies, insurance companies etc.

5. Audit: it is needed to ensure that all the healthcare data is secure and all the data access activities in
the e-Health cloud are being monitored.

6. Non-Repudiation: repudiation threats are concerned with the users who deny after performing an
activity with the data. For instance, in the healthcare scenario neither the patients nor the doctors can
deny after misappropriating the health data.

7. Anonymity: it refers to the state where a particular subject cannot be identified. For instance, identities
of the patients can be made anonymous when they store their health data on the cloud so that the
cloud servers could not learn about the identity.

8. Unlinkability: it refers to the use of resources or items of interest multiple times by a user without other
users or subjects being able to interlink the usage of these resources. More specifically, the information
obtained from different flows of the health data should not be sufficient to establish linkability by the
unauthorized entities.

Finally, in the cloud, physical storages could be widely distributed across multiple jurisdictions, each of
which may have different laws regarding data security, privacy, usage, and intellectual property. For example,
the US Health Insurance Portability and Accountability Act (HIPAA) restricts companies from disclosing per-
sonal health data to nonaffiliated third parties. Similarly, the Canadian Personal Information Protection and
Electronic Documents Act (PIPEDA) limits the powers of organizations to collect, use, or disclose personal
information in the course of commercial activities. However, a provider may, without notice to a user, move the
users information from jurisdiction to jurisdiction. Data in the cloud may have more than one legal location at
the same time, with differing legal consequences.

In summary, security and privacy of data are the main challenges to be faced when deploying healthcare and
biomedicine applications on the cloud. However, while in the healthcare community this awareness starts to be
recognized by the various actors involved in data production, collection and decision making, as demonstrated
by several initiatives and approaches developed, in biomedicine applications, based on the integrated analysis of
biological (mainly omics) data and clinical data, there is not yet a clear indication on how security and privacy
issues are to be faced. Most probably, the solutions that start to be adopted in healthcare could be adapted to
biological and clinical data used in such applications.

5. Conclusions. Applications and services in health care and biomedicine pose quite demanding require-
ments. The fulfillment of these requirements could results in an improvement in the provision of services to
patients in health care, as well as an increase in knowledge in the biomedical field. As shown and discussed in
this paper, in order to meet these requirements, the use of the cloud computing model is required. Although
supercomputing or Grid Computing can provide the computational power and the storage required in biomedi-
cal applications such as medical imaging or electronic medical record, the elasticity in providing such resources,
a clear definition of Service Level Agreement, and the possibility for the customer to use a pay-per-use model,
make the Cloud more suitable to support those applications.

Naturally, the adoption of this technology with its benefits will determine a reduction of costs and the
possibility of also providing new services. Different comparative analysis demonstrate the potentials of cloud
technology in reducing cost of IT organization: in the case of cloud adoption, institutions and laboratories are
free from the expense and having to install and maintain applications locally [83]. Knaus et al. [84] focus on
the financial aspects of grid and cloud computing. The authors discuss and compare the costs of a local cluster
maintained by a department to a comparable cloud offer. Specifically, they list all direct costs and estimate all
indirect costs and, with the help of a simulation study they estimate the costs for typical research projects in
biomedicine. In their case, they conclude that using a cloud is a more viable option.

Also in the paper [85], the authors analyzed some economic and practical aspects of exploiting cloud
computing for the in silico drug discovery and they highlight the advantages for small-medium laboratories
working in the field of biotechnology, which typically do not have the possibility to invest a sufficient amount
of time and money in creating and maintaining an in-house ICT infrastructure that suits the processing of the
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large amount of bioinformatics data that are nowadays produced.

However, it is important to emphasize that the use of cloud in these fields is featured still by a number of
open issues, such as the security and privacy, that require a rapid and efficient solution.
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1. Introduction. High Performance Computing (HPC) has enabled new discoveries in disciplines such
as biology and medicine by providing computer facilities to perform complex algorithms and process big data
within reasonable time frames. However, HPC requires powerful and expensive computational hardware, data
storage, advanced middleware, and sophisticated discipline oriented applications. Due to their high initial
purchase and maintenance costs, HPC resources are only affordable by rich institutions. Furthermore, these
resources are shared by many researchers, which leads to long waiting times for application execution. Thus,
many researchers cannot access HPC infrastructures when needed; they often scale down their applications to
reduce waiting times.

In response to these problems, public cloud vendors such as Amazons Elastic Compute Cloud (EC2) [1]
have started to provide solutions specifically designed for running HPC applications. These clouds provide the
ability to scale on demand as the users requirements change, accelerating the discovery of new knowledge in
various fields of research. Thus, discipline specialists now have access to on-demand, scalable and pay-as-you-go
HPC facilities that can provide users faster turnaround times on their experiments.

However, while these clouds alleviate the costs of procuring required IT resources, the cost and time of
learning how to prepare a HPC cloud and its applications remain a problem to many users [2]. Thus, if discipline
scientists want to use HPC clouds for scientific discovery, they must also become system administrators and
computer specialists performing time consuming resource management and software configuration activities [3].
Once the HPC cloud has been set up, additional time must be spent transferring data from local machines to
the cloud before analysis can be carried out. This process differs depending on the area of discovery; when
working with genomic data, users take advantage of both publicly available and privately collected data. As a
result, a significant amount of the scientists time is spent to build an understanding of the HPC cloud, acquiring
system management skills and managing data instead of conducting research on these HPC clouds.

Discipline specialists are used to accessing software tools through user friendly discipline oriented interfaces.
Therefore, we propose to use the lessons learnt from using software tools and hide from a discipline specialist
all the operations that require administrator and computing expert knowledge and skill to exploit clouds. This
paper examines currently used solutions in the area of bioinformatics to carry out research in the cloud, as well
as our work on building frameworks to simplify development and deployment of sequential and HPC application
exposed as services to be executed in a Software as a Service (SaaS) cloud.

In terms of genomic data, the current approach taken in the bioinformatics area is that data is shared
through public data servers (also known as biological databases). Three geographically separated databases
(American, European and Asian) store genomic data which is mirrored on a daily basis; this is supplemented
by smaller public databases which store specialized data (for example cancer data [4]). Research groups will
often have a local server in which they maintain copies of the data they are interested in (public and privately
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collected) as well as analysis tools [5]. Since data is stored not only on private data servers but mainly on public
data servers, there is a natural opportunity to expose them as Data as a Service (DaaS).

By comparing and contrasting these solutions, we identify the cloud access procedures that are carried out
by discipline specialists, and cloud service components that are commonly provided by developers but hidden
from these specialists. We demonstrate that building frameworks that automate these cloud service components
opens the way to build SaaS and DaaS clouds that support genomic data analysis and make them easy to use
by discipline, non-computing specialists.

In brief, the contributions of this paper are as follows;
• A review of current cloud service approches to analyse genomic data.
• An extention of the Uncinus framework to publish and access genomic databases.
• The identification of key components required by cloud services to support non-computing specialists.

The rest of this paper is as follows. Section 2 describes current approaches to carry out genomic research
on the cloud. Sections 3 presents developed by us two cloud service solutions (HPCynergy and Uncinus).
Section 4 presents the path towards DaaS in biology and describes an extension to the Uncinus framework
to support current genomic data resources. Section 5 compares and contrasts cloud solutions using a range of
criteria. Section 6 describes the key components required by cloud services to support non-computing specialists.
Finally, section 7 presents the conclusion and future work.

2. Current Approches. The use of HPC clouds to support genomic analysis is of great interest to the
bioinformatics community. HPC clouds promise the ability to access HPC resources cheaply and on-demand.
While any software can run on IaaS clouds, software exposed as a service can be accessed by a majority of
researchers working in the area of bioinformatics and therefore it is inherently more useful.

Popular tools used to carry out genomic research on the cloud include: Cloud BioLinux, Galaxy and the
Tuxedo Suite.

2.1. Cloud BioLinux. One of the early attempts to simplify the deployment and execution of bioinfor-
matics software on the cloud was Cloud BioLinux [6]. Cloud BioLinux is a virtual machine (VM) configured
for high-performance bioinformatics using cloud platforms. At time of writing [7], over 135 bioinformatics tools
have been deployed and configured on the virtual machine. As applications have been taken from a large number
of sources, there is no standard interface mechanisms, instead users access and execute installed applications
through unique graphical interfaces or command line. However documentation of each installed application is
made available through a centralized website.

Cloud BioLinux is compatible with IaaS clouds that implement the Amazon model, such as Amazon EC2 [1],
OpenStack [8] and Eucalyptus [9]. Alternatively the Cloud BioLinux VM can be executed on a desktop computer
using virtualization software such as Virtualbox [10]. The operation to deploy Cloud BioLinux on Amazon EC2
is shown in Fig. 2.1.

1. First, the user selects and configures the Cloud BioLinux VM. This process requires that the user
create or select a key pair (a security credential), which will be used by the user to securely connect to the VM
instance after it is running. The user must also create or select a security group, which defines firewall rules for
the VM instance. Lastly, they specify the number of machines in which to deploy Cloud BioLinux. Running
VMs are shown in the Amazon EC2 management console.

2. Once the VM has been launched, the user can access Cloud BioLinux. Users can access the Cloud
BioLinux command line through a SSH client (secure shell) and the security keys generated in step 1. Alternately
they can use a virtual desktop client to access Cloud BioLinux graphically. Once connected, users transfer files
to Cloud BioLinux from a local or remote server before running applications.

3. Once a user has finished their analysis, they can terminate their Cloud BioLinux virtual machine. For
this purpose, in the Management Console, they locate the instance(s) in the list of instances on the Instances
page, and confirm to terminate the instance(s).

Currently Cloud BioLinux does not provide HPC support; instead each user runs distinct VMs that
encapsulate an operating system, analysis software and data. With this approach, users receive distinct
and pre-defined computational resources, since each user initializes their own Cloud BioLinux server. While
Hadoop/MapReduce [11] [12] is available on Cloud BioLinux, computation is limited to the single virtual ma-
chine. Future work will allow end-users to easily provision Hadoop clusters on any cloud. This will facilitate
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Fig. 2.1. Cloud BioLinux Deployment Process

running large-scale bioinformatics data processing pipelines.

2.2. Galaxy. Galaxy [13] is an web-based framework for genomic research. Due to the flexibility and
easy-to-use nature of Galaxy, it has become a popular method for carrying out genomic analysis. Galaxy is
deployed on a server and accessed through a web browser. Using provided web interfaces, users can share data
and applications (as tools) and execute tools as workflows (see Fig. 2.2). Users using Galaxy first upload
data from local or public data servers (biological databases) using a range of Galaxy tools. Uploaded data is
transfered via FTP and stored on the Galaxy server. Tools which provide analysis capabilities are then used to
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Fig. 2.2. Galaxy Framework Interface

Fig. 2.3. Galaxy Tool Deployment Process

process data uploaded to the Galaxy server. Galaxy ensures that this analysis is reproducible by automatically
generating metadata for each analysis step. Galaxys metadata includes: input datasets, tools used, parameter
values, and output datasets. Galaxy also provides a workflow system which facilitates analysis repeatability,
allowing users to carry out analysis based on stored metadata.

Adding a tool to Galaxy requires the user to provide an application to execute and a graphical interface
(see Fig. 2.3). Applications can be written in a number of different programming languages as long as the
Galaxy server has a valid interpreter installed; common languages include Python and Perl. Regardless of the
language utilized, code is placed in the tools directory of the Galaxy installation. Each tool in this directory
must be exposed through a graphical interface. To simplify this process, Galaxy users define a GUI for their
tool using a Tool Definition File (TDF). A TDF is written in XML and consists of four parts; input controls,
output data, test inputs (for validation purposes) and user help.

A key feature of Galaxy is workflow generation, where users can link together installed tools into a single
pipeline. Through a pipeline Galaxy can run multiple tools concurrently, reducing the time taken for analysis.
To simplify the construction of these pipelines, Galaxy provides an editor (see Fig. 2.4) from which users access
a graphical interface for creating and modifying workflows. A user drags and drops tools onto the workflow
canvas and configures each step in the workflow. Users can add tags to a workflow, annotating each step of
the workflow. Workflows are run in Galaxys analysis workspace; like all tools executed in Galaxy, Galaxy
automatically generates history items and provenance information for each tool executed via a workflow.

Galaxy supports the use of the Amazon EC2 cloud through the CloudMan service [14] (see Fig. 2.5). Cloud-
Man automates the process of constructing a cluster using Amazon EC2 resources. Through a web interface,
users must first specify their AWS Secret Key ID, and Secret Key. Once these details have been validated, a
user can select the size of the cluster required and the location of a persistent data volume. CloudMan utilizes
a modified Cloud BioLinux image which contains Sun Grid Engine (SGE) [15]. This image is automatically
deployed on the Amazon EC2 cloud as both the head node and workers. Data stores are then linked to the
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Fig. 2.4. Galaxy Workflow Deployment Interface

Fig. 2.5. Galaxy Cloud Deployment Process

constructed cluster. Once deployed, users can access Cloud BioLinux tools through command line and Galaxy
through framework interfaces (via a web browser). By providing user with standard Galaxy interfaces, the cloud
is made transparent to the user, in other words Galaxy running on the cloud is indistinguishable from Galaxy
running on a local server.

2.3. Tuxedo Suite. The Tuxedo suite brings together commonly used bioinformatics tools for analyzing
genomic data generated from high throughput sequencing machines. Some of these tools provide support for
HPC platforms in order to reduce the time taken to process genomic data. Two HPC enabled tools in this
suite, Crossbow and Myrna, have been made available as cloud services.

Crossbow [16] is a scalable application for genome sequencing aimed at performing alignment between the
small fragments produced by the current generation of high-throughput sequencing machines. Crossbow has
been integrated into Amazon EC2 using a map and reduce strategy [12]. A graphical interface (see Fig. 2.6)
allows users to deploy Crossbow on the Amazon EC2 cloud. This interface requires user provide their AWS
Secret Key ID and Secret Key to access their Amazon Account, input any optional arguments accepted by
Crossbow and select the number and type of cloud instances they wish to use.

The operation of Crossbow is shown in Fig. 2.7, where a virtual cluster is first created on the Amazon EC2
cloud. Sequence fragments are then uploaded from the users desktop to Amazon storage (S3). Next crossbow
code is uploaded to the master/head node, compiled and run. Output data is compressed and sent back to the
user.

Myrna [17] is cloud-scale software developed for the purpose of analysing RNA-seq data. Using this software,
it is possible to identify the number and type of genes present in a biological sample. To accomplish this, Myrna
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Fig. 2.6. Crossbow Service Interface

Fig. 2.7. Crossbow Cloud Workflow

aligns sequence data, normalizes and carries out statistical modeling in a single computational pipeline. Like
Crossbow, Myrna also runs on Amazon EC2 using a map reduce strategy. During execution, each step in the
Myrna pipeline is mapped and reduced. A map stage takes a stream of input data, analyses and returns results
in the form of a stream. A sort/huffle phase is carried out that sorts data according to data similarity. Lastly,
the reduce stage performs computation on data. Myrna is accessed as a service through a web interface in
the same manner as Crossbow. Through this interface, users provide their Amazon ID and Secret Key and
configure software settings. Upon execution of Myrna as a service, a virtual cluster on Amazon EC2 is created
before deploying and executing Myrna.

3. Proposed Approches For Bioinformatic Services. Popular approaches to carry out bioinformatics
on the clouds utilize a combination of packaged virtual machines and graphical interfaces to expose applications
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Fig. 3.1. Implementation overview of HPC cloud framework

as services. In this way, tools such as Galaxy and Tuxedo Suite (and to a lesser extent Cloud BioLinux)
allows users to take advantage of scalability and clouds without understanding cloud architecture. While these
solutions are simpler to use, they are difficult to develop and are not flexible (users limited to the services made
available). In response we present two approaches for exposing bioinformatics applications as services, HPCaaS
and Uncinus. HPCaaS brings targeted cloud computing to Galaxy, while Uncinus supports the development
and deployment of services through a cloud middleware.

Our frameworks offer these features through HPC-based publicly accessible virtual machine (IaaS) abstrac-
tion, automating the process of exposing HPC biology and discipline applications as services, making these
services visible through a broker, and evocable through user friendly discipline oriented interfaces.

3.1. HPCaaS: Galaxy Plugin. We have implemented a Galaxy plugin that allows users to deploy soft-
ware packages on the EC2 cloud. This plugin was developed by integrating three components: (i) the EC2
service (public IaaS cloud) for providing HPC infrastructure, (ii) a HPC service software library for access-
ing high level HPC resources obtained from a IaaS cloud, and (iii) the Galaxy software application used as a
web-based platform for exposing and accessing HPC application services.

The overview of the prototype design, demonstrating the relationships among the Amazon EC2 service,
the HPC software library, and the Galaxy software application is shown in Fig. 3.1. Also shown in Fig. 3.1
is our view of the cloud service stack and where different cloud services would be found. At the bottom (IaaS
layer), Amazon EC2 provides cloud infrastructure services. Supported HPC applications are installed in virtual
machines and their images were saved and stored in EC2.

In the middle (HPCaaS layer), a HPC software library [18] was used to expose and access Amazon EC2
services in order to provide users a higher level of HPC services such as constructing and managing computer
clusters. By using a specific feature of the Galaxy software application, a web-form of the HPC service was
generated to be used as a simple but effective interface for users to access the HPC service. Finally, such HPC
service was exposed as a tool in a Galaxy server.

On the top (SaaS layer), a HPC application service for a supported HPC application was developed as
follows. First, an API of the HPC application was constructed. This API acts as a program stub for its
corresponding HPC application, which had been installed in a virtual machine and had been stored in the
Amazon EC2 service. Second, a web-form of the HPC application service was generated using the Galaxy
application software. Finally, such HPC application service was exposed as a tool in a Galaxy server. It should
be noted that each HPC application service would access the HPC services in the HPCaaS layer and the HPC
application installed and stored in a VM image at the bottom IaaS layer through its web-form.

Using the HPCaaS Galaxy plugin, users can expose existing virtual machines stored on the Amazon cloud.
For each VM, HPCaaS’s Tool Definition File (TDF) needs to be modified. In this process, the location of the
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Fig. 3.2. HPCaaS Galaxy Deployment Interface

Fig. 3.3. HPCaaS mpiBLAST service Interface

Amazon Machine Image (defined as an ID given by the cloud provider) is added to the dropdown menu of the
graphical interface (see Fig. 3.2). Lastly, an interface for the VM is generated; this is performed by defining a
TDF in the same manner as other Galaxy tools.

The steps taken to utilize this interface is similar to that of the Tuxedo suite (see section 2.3), in that users
can create a virtual cluster in the cloud by specifying the required number and type of cloud resources. HPCaaS
will automatically construct a virtual cluster with the specified resources, each node consisting of a copy of the
virtual machine image. However, HPCaaS is more flexible then the Tuxedo Suite as it allows multiple VM to
be exposed through the same interface. In this way, the time taken to build HPC cloud services is reduced.
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Fig. 3.4. Uncinus Server Overview

Once the virtual machine has been deployed on cloud resources, it is made available as a Galaxy tool. An
interface for mpiBLAST [19], a commonly used distributed sequence alignment tool, is shown in Fig. 3.3. It
consists of six input controls;

• Cluster Name: the name given to the cloud cluster deployed using HPCaaS.
• Number of processes: The number of instances of mpiBLAST that should be run. This also effects the
number of fragments that the mpiBLAST database is divided into.

• Search Sequences: the file containing the sequence fragments in which to align.
• The database type: the database in which to carry out BLAST.
• The type of blast: the version of BLAST to run. This option depends on the type of data being analyzed
• The expectation cutoff: a text control which allows a user to choose a value in which to filter results.

The mpiBLAST interface is defined such that it mirrors similar tools such as the Tuxedo Suite and those
provided through Galaxy. In this way, a user can access services in a uniform manner regardless of where the
software package is being run.

3.2. Uncinus. Uncinus is an environment which takes advantage of existing computer and software re-
sources. Users are provided with a web based interface in which they can share and access a range of cloud,
resource and software services. Through use of a broker, Uncinus supports a modular approach to deploying
applications on HPC clusters and IaaS clouds, users constucting services (consisting of software and hardware)
on demand [20]. These on-demand services are made possible through automated application deployment and
job submission provided by the Uncinus middleware.

Deployment of Uncinus on a Linux server is shown in Fig. 3.4. Both end-users and developers access
Uncinus through a series of web pages (HTML/PHP) hosted by an APACHE server. Through these web pages,
users can access services to publish applications and request compute resources. To provide these services,
Uncinus interacts with a mySQL database (to store user credentials and service deployment information) and
Euca2ools [9] (to interact with Amazon like clouds). Through euca2ools, users can access the Amazon Web
Service API and thereby request cloud resources. Once cloud resources are deployed SSH is used to interact
directly with virtual machines.

Users accessing Uncinus for the first time must create a user account. Through this account creation process,
a user provides a unique username, password and cloud provider account details. For security reasons, cloud
provider account details must be provided in the form of access and secret keys. Once logged in, users can access
the components that make up Uncinus (mySQL DBMS, cloud middleware and Euca2ools) through graphical
interfaces, shown in Fig. 3.5. The mySQL database is used to store end-user credentials and information
about deployed applications/resources. Cloud Deployment Middleware sits above the IaaS cloud and provides
a number of services including secure data transfer, cloud resource allocation, HPC environment setup, job
submission systems and automated application deployment. Communication between the middleware services
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Fig. 3.5. Uncinus Software Overview

and the cloud is performed through Euca2ools.

Users access Uncinus through a series of web interfaces that expose the Cloud Deployment Middleware.
Unlike other commonly used cloud solutions (described in section 2) which require construction of virtual
machines, Uncinus creates services at the application level allowing users with limited cloud experience to
develop software services. During the process of exposing an application, users specify a variety of attributes [21]
including the service name, software files, installation scripts, software I/O and hardware requirements.

Fig. 3.6 presents the attributes required to deploy mpiBLAST as a service. Publication of this service begins
by assigning the service a name (Application Name). Next, a compressed file containing the mpiBLAST source
code was uploaded to the broker (Files). An installation script (Install Script) was provided to specify that the
openMPI service be loaded as a prerequisite before compiling mpiBLAST. The services interface (Arguments) is
specified by defining the type of data required. For this service, a control to upload sequence data and three text
controls that determine the type of database and BLAST to be run were specified. The commands to execute
mpiBLAST were provided (Running script) in the form of a shell script that formats the selected database and
executes mpiBLAST over the selected number of processes. The output of the mpiBLAST service (Result) is a
file called blast results.txt which is to be downloadable by the user. Lastly, requirements for running mpiBLAST
are provided; Linux (Operating System), a cluster with 8 nodes each with 8 core running at 2.66 GHz (CPU)
and 2 GB of RAM per node (RAM).

The published mpiBLAST service was deployed using the interface shown in Fig. 3.7. Users begin by
selecting from available computational resources (cloud and non-cloud) and from a list of published services.
When this job is submitted, Uncinus carries out automated resource selection (using published attributes such
as CPU and RAM) to identify how to deploy services on the selected resources. This resource selection process
calculates a distance metric based on the service requirements and resource specifications.

Once the mpiBLAST service was deployed, a web interface is automatically generated using the published
attributes. The mpiBLAST service interface presented to the user is shown in Fig. 3.8. Through this interface,
users can: specify mpiBLAST argument, upload sequence data, execute mpiBLAST, download results, and
terminate the job (freeing all cloud resources). Also provided through this interface is a tool for transferring
files to and from the cloud; uploaded files are mirrored across each node in the cluster.

Through the current implementation of Uncinus, users can take advantage of published software and cloud
resources, accessing resources without the need to carry out complex configuration tasks such as setting up a
virtual cluster. However in the example above, users are still required to upload sequence data from their local
machine. By exposing data as a service, Uncinus can be extended to allow software services to take advantage



Selected Approaches and Frameworks to Carry out Genomic Data Provision and Analysis on the Cloud 29

Fig. 3.6. Uncinus mpiBLAST Publication

of publically available data.

4. Moving Toward Data as a Service. Data as a Service is an area not highly explored in the area of
genomics. The only commercial example is Amazon which provides two DaaS services: S3 which provides users
with extendable storage and the Elastic Block Storage (EBS) which provides users the ability to create virtual
hard-drives. Through these two services, Amazon provides access to genomic data from the 1000 genome project.
An academic attempt at DaaS is being led by the University of Chicago [26], who have recently announced the
creation of a petabtye scale open science data cloud which will allow researchers access to manage, analyze and
share their data.

4.1. Toward DaaS in Biology. Currently the approach taken in the bioinformatics area is that data is
shared through public data servers (also known as biological databases). Three primary databases (NCBI [22],
EBI [24] and NGI [23]) store DNA sequence data and are mirrored on a daily basis, this is supplemented by many
smaller databases which target a subset of data (for example specific diseases [4] and collection platforms [25]).
Research groups working the area will often have a local server in which they maintain copies of the data they
are interested in (public and privately collected) as well as analysis tools (as seen in solutions such as Galaxy) [5].
Data stored on these local servers exist in the form of human readable ASCII files which are often not indexed
or easily searchable.

While these methodologies are satisfactory for small amounts of data, when analysing the amount of genomic
data generated by current sequencing machines, there arises a number of issues.

• Database Discovery: Smaller specialized databases can be difficult to find, currently discovery of new
databases is reliant on paper publication and word-of-mouth.

• Lack of Data Management: Research groups maintain local data servers which store data. Data is often
stored in a human readable ASCII format which takes up more disk space compared to binary formats.
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Fig. 3.7. Uncinus Service Development Interface

Fig. 3.8. Uncinus mpiBLAST Service Interface

Data is difficult to find as there are limited search/discovery mechanisms implemented on these local
data servers.

• Database Reliability: Local data servers often have minimal/no backup or redundancy (due to the cost
of storage). These systems are inflexible, which jeopardizes availability and reliability.

• Data Transfer: In context of utilizing cloud resources, most cloud tools require that data is moved from
public databases to a user’s local machine and then back to the cloud. This method is wasteful as data
is transferred to a local machine where it is not needed.

Since data is stored not only on private data servers but mainly on public data servers, there is a natural
opportunity to expose them as Data as a Service. The data could be stored on any of the server without the
user involvement; the data attributes could be stored on a data broker, which becomes a major tool used by
other user who wish to search for specific data. The data copies, for reliability and availability, could be stored
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Fig. 4.1. DaaS Overview

on a number of servers; their location could be hidden from the user. The selection of a copy of the requested
data could be carried out by the broker taking into consideration user location and money limits. A user
oriented interface could offer an easy access to the data broker that supports data selection for the application
of interest. Data are managed by cloud service providers; that relieves discipline specialists from many activities
of computing nature. As shown in Fig. 4.1, the user can carry out discovery on their local resources, within
the research group/laboratory private cloud, and/or a public or hybrid cloud. The last option lowers the costs
of resources, supports computations on demand, and allows cooperation to be exploited widely.

4.2. DaaS in Uncinus. In this proposed solution we extend the Uncinus application broker to publish
data severs. Users specify the location of the server as well as methods to download files (GET), upload files
(PUT) and get directory listings (LIST). In this way Uncinus can support a range of public biological databases
by abstracting their unique API. Public data brokers are also deployed which users can access to discover
databases and share their own data. The data broker will also be able to upload data to published biological
databases. By linking the Uncinus broker to a public broker, Uncinus users will be able to access private data
servers and public biological databases. Through the proposed solution we are convinced that in many cases the
performance of discovery in biology and medicine could be dramatically improved if data sharing (as described
above) is applied widely.

5. Comparison of Solutions. Our paper investigates a number of popular bioinformatics SaaS cloud
solutions. These solutions differ in how they are developed, deployed and used. We compare and contrast these
solutions through the use of six criteria; 1) usability/access, 2) development, 3) deployment, 4) service discovery
5) cloud utilization and 6) data intergration. Each platform and their adherence to the five criteria are shown
in Table 5.1.

The first criterion focuses on how the presented solutions are accessed and used. In general, all of the
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Table 5.1

Popular solutions compared to defined criteria.

Access Develop. Deploy. Discovery Utilization Data
BioLinux Amazon
Tuxedo Amazon
Galaxy Tools
HPCaaS Tools
Uncinus Data Broker

bioinformatics cloud software described in this paper allows users to take advantage of scalability and clouds
without understanding cloud architecture. Through graphical interfaces, users can access HPC clouds without
needing to carry out the time consuming task of setting up middleware to create a virtual cluster in the
cloud. Cloud BioLinux exposes applications through an OS interface, while Tuxedo Suite, Galaxy, HPCaaS and
Uncinus provide web based controls.

The second criterion focuses on comparing the effort taken to develop services. In general, development
of bioinformatics cloud services is difficult and time consuming, requiring skills in genomics, HPC computing,
programming and cloud computing. This is seen in Cloud BioLinux and HPCaaS, which depend on the creation
and packing of a VM through the use of command line tools. In the case of HPCaaS, users must also modify
the HPCaaS tool to recognize the VM. The Tuxedo Suite required the development of graphical interfaces and
software API to communicate with the cloud application. Recognizing the difficulty of cloud service development,
we have seen a gradual shift from individual services to frameworks such as Galaxy and Uncinus, which attempt
to simplify service development. Galaxy makes the development process easier by simplifying construction of
graphical interfaces. Uncinus takes this one step further and allows users to define attributes, which are used
to generate graphical interfaces and better utilize resources.

The third criterion examines how solutions are deployed on the cloud; currently this ranges from difficult to
deploy to no deployment required. Traditionally, HPC cloud solutions have been offered at an IaaS level, which
is targeted at computing experts. Early bioinformatics solutions which made use of these IaaS cloud platforms
(such as Cloud BioLinux) are difficult to deploy. Other solutions attempt to simplify deployment through
automation of this deployment process. Galaxy, HPCaaS and Uncinus as frameworks, provide functions to
deploy services on clouds. The Tuxedo Suite automates all aspects of deployment; users require only their
Amazon ID and Secret Key.

The fourth criterion examines how these services are discovered by users. Individual services such as Cloud
BioLinux and the Tuxedo Suite do not have any inbuilt form of discovery. The Tuxedo Suite consists of a
small number of tools and therefore has no need for discovery mechanisms; as these suites get larger, the lack
of service discovery can limit their use. Cloud BioLinux contains hundreds of different applications; however
service discovery is not supported. Each application provided by Cloud BioLinux has different access methods.
Frameworks such as Galaxy, HPCaaS, and Uncinus, which also make available large amounts of tools, use service
repositories. By centralizing and indexing available services, users can find software easier.

The fifth criterion examines how well these solutions take advantage of the cloud during execution. The
Tuxedo Suite is built directly for the cloud; this solution takes advantage of cloud scalability to increase perfor-
mance. CloudBioLinux and Galaxy (via CloudMan) are based around duplicating the environment, and unless
parallelism is built into the hosted tools, can only ensure a consistent level of performance (each user having
their own instance of Galaxy or Cloud BioLinux). Our approaches aimed to expose individual distributed
applications like the Tuxedo Suite while taking advantage of the framework features to simplify service devel-
opment. The first approach, HPCaaS, extended Galaxy based analysis to the cloud through a HPC software
library that exposed Amazon EC2 services. Using HPCaaS, users could access VM stored on the EC2 cloud
and execute distributed applications through Galaxy interfaces. Uncinus focused on service level development
and deployment on clouds. Instead of developing a VM, users could publish installation steps which would be
automatically carried out.

The sixth criterion examines how well these solutions are integrated with data. While all package can be
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integrated with data, some are more complex to set-up then others. Packages that use Amazon EC2 can use
genomic data (such as data from the 1000 genome project) stored using Amazon Cloud Storage (S3) and the
Elastic Block Store (EBS). Some variants of CloudBioLinux will automatically mount the virtual EBS drives,
and Tuxedo Suite (while not providing native access to this data) could be configured to use the genomic data
stored on Amazon S3. Galaxy provides tools which can be used to discover and download genomic data which
is stored on the Galaxy Server. HPCaaS (as a Galaxy tool) can also utilize the data downloaded in this way.
The method proposed by Uncinus uses a data broker, allowing for discovery of data across multiple up-to-date
genomic databases, as a result Uncinus is able to access a wider range of data when compared to the Amazon
based solutions. Furthermore Uncinus stores only the link and description of the data, instead of the actual
data as seen in the Galaxy approach, this minimizes the need for local storage and prevents unnecessary transfer
between the genomic database, the Uncinus server and the computational resources.

In conclusion, the cloud solutions presented in this paper fall under two categories, stand-alone services
and frameworks. Individual solutions include Cloud BioLinux and the Tuxedo Suite, while frameworks include
Galaxy, HPCaaS, and Uncinus. The benefits of utilizing individual services are that they are often built for
and can fully utilize the cloud, in addition they often have minimal to no deployment requirements. On the
other hand, individual services are difficult to develop (requiring specialized GUI and API) and are difficult
to discover. For a user looking to carry out research on the cloud, picking the right service from hundreds is
difficult. Popular frameworks solve this problem with large repositories of services managed by brokers. This
model can identify and therefore reduce the overlap in the types of cloud software services being made available.
Additionally, frameworks simplify development by automating key steps in the service development process such
as for example construction of graphical interfaces. While these features clearly benefit discipline researchers,
popular frameworks (Galaxy) do not take full advantage of distributed and cloud computing platforms. Our
solutions attempted to fill this gap to some success, proposing frameworks which provided access to clouds in a
manner similar to individual services.

6. Discussion. While originally developed for business, cloud and service computing can be used for
research. Cloud resources on-demand can enhance local resources, reducing the turn-around time of analysis
and/or allowing for bigger problems to be solved. However clouds do not fit all applications; depending on the
research being carried out, HPC hardware may be required. Fortunately, a range of cloud providers now offer
HPC cloud solutions. Services built on top of these HPC cloud solutions could offer researchers access to HPC
on demand without the need to understand and carry out complex deployment methods. It is by combining
service and cloud computing technologies that solutions have been devised to simplify genomics analysis. These
solutions fall into two categories; stand-alone services which are built from the ground up to utilize the cloud,
and cloud frameworks which simplify the development of cloud services.

Despite the advantages of frameworks such as Galaxy, the bioinformatics cloud software service area is still
dominated by individual, isolated applications (as seen in the Tuxedo Suite and Cloud BioLinux). Development
of these cloud services are time consuming and often repetitive. A review of these approaches shows that the
most utilized operations during IaaS application deployment fall into four categories: cloud security, resource
allocation, application deployment, and data transfer (see Table 6.1). When deploying HPC applications,
operations in these categories must be repeated for each computational node utilized. For this reason, steps
such as installation and data transfer (particular in large data scenarios) can greatly increase the time spent to
utilize cloud resources. In addition, a user wishing to provide services through the cloud (a service provider)
is required to provide a further layer of abstraction on top of the IaaS cloud, exposing the deployed cloud
application through a graphical interface.

Table 6.1

Most Utilized Operations during IaaS deployment.

Cloud Security Creating security keys and groups
Application Deployment Installing software applications
Data Transfer Transfer files to and from the cloud
Resource Allocation Launch and Terminate Instances
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Table 6.2

Components required for SaaS development.

Software API Allows execution of cloud applications
Graphical Interface Allows communication with the API
Service Publication (Optional) Stores and allows users to find service

Once software has been deployed on the cloud, it is possible to expose it as a service. Software services can
be discovered and utilized by a larger number of discipline specialists but require development of a software
API and graphical interface which are then (optionally) published (see Table 6.2). A software API defines
the instructions used to run the application. A graphical interface allows users to execute and pass application
arguments to the API. These services can be published; cloud application, API and interfaces stored and indexed
through a broker. Service publication supports users, allowing then to discover services that fulfill their goals.

We propose that future cloud solutions should look to automate as much of these operations as possible in
order to make service development as simple as possible. When building clouds aimed at carrying out research,
cloud specific operations should be logically separated from data processing and analysis.

7. Conclusion. In conclusion, this paper presents a survey of approaches currently used in genomic anal-
ysis. Trends in the area show a move from IaaS clouds to SaaS frameworks. Early cloud solutions (Cloud
BioLinux) packaged software tools into a single virtual machine. Due to the difficulty of maintaining this type
of monolithic solution, developers moved to individual cloud services (Tuxedo Suite). More recently, frameworks
such as Galaxy, which provide usability similar to cloud services while simplifying development, have become
popular. However Galaxy’s support for clouds is still primitive, reliant on mirroring the current state of the
Galaxy server.

As a response we developed and presented two SaaS cloud frameworks that draw upon concepts from
SaaS clouds, Galaxy and bioinformatics cloud software, in order to solve known cloud usability issues (the
difficultly of cloud development and flexibility of individual tools). These frameworks addressed cloud usability
by providing researchers the tools to access the cloud and run distributed applications. Users with a background
in programming, system administration and cloud computing can develop HPC software and publish VM
resources. Users with knowledge of the software applications (but limited programming skills) can define
required attributes through the service publication interfaces and become SaaS providers. Lastly, users with a
background in biology and minimal computing knowledge can access the applications and resources (published
by the broker) that are required to perform analysis. For such users, clouds are made completely transparent and
HPC applications are exposed as services. In this way discipline specialists with different levels of computing
expertise can take advantage of cloud resources. By incorperating the ability to publish data resources, we
further simplfy the genomic analsis process, users will be able to access up-to-date genomic data while removing
the need for locally maintained genomic databases.

Through this successful integration of cloud and service computing, the analysis, interpretation and compu-
tation of genomic mammalian data was made easier, to be carried out by non-computing discipline specialists,
and cheaper. By comparing current approaches and our cloud frameworks we identify the cloud access proce-
dures that are commonly carried out by users, and cloud service components that are commonly provided by
developers. Operations carried out by users during IaaS application deployment fall into four groups: cloud
security, resource allocation, application deployment, and data transfer. They require a computing expert to
be carried out; discipline specialists should be relieved from learning clouds and acquiring skills to carry out
these operations. Instead they should concentrate on their discipline problems using clouds, in particular SaaS
clouds. The major components provided by cloud services fall into three categories: Software API, Graphi-
cal Interface and Service Publication. The development of these components should be carried out to satisfy
discipline specialists requirements to allow them to directly benefit from SaaS clouds.

Future work should aim to automate these procedures in such a way that clouds are made transparent to
the user. Research into graphical methods to create virtual machines could widen the use of IaaS clouds, while
natural language could be applied to service development to automatically generate graphical interfaces from
software manuals and source code. A number of technical improvments could also be made: to take advantage
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of exisiting software repositories such as Galaxy, there is a need to standardize interface mechanisms, there is
also a need to enable seamless application scalability to improve cloud performance.
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ON THE FORMALIZATION OF ZSYNTAX
WITH APPLICATIONS IN MOLECULAR BIOLOGY

SOHAIB AHMAD, OSMAN HASAN, UMAIR SIDDIQUE∗

Abstract. Recent progress in nanotechnology and optical imaging offers promising features to develop effective drugs to cure
chronic diseases, such as cancer and malaria. However, qualitative characterization of biological organisms (such as molecules)
is the foremost requirement to identify key drug targets. One of the most widely used approaches in this domain is molecular
pathways, which offers a systematic way to represent and analyse complex biological systems. Traditionally, such pathways are
analysed using paper-and-pencil based proofs and simulations. However, these methods cannot ascertain accurate analysis, which
is a serious drawback given the safety-critical nature of the applications of molecular pathways. To overcome these limitations, we
recently proposed to formally reason about molecular pathways within the sound core of a theorem prover. As a first step towards
this direction, we formally expressed three logical operators and four inference rules of Zsyntax, which is a deduction language
for molecular pathways. In the current paper, we extend this formalization by verifying a couple of behavioural properties of
Zsyntax based deduction using the HOL4 theorem prover and developing a biologist friendly graphical user interface. Moreover,
we demonstrate the utilization of our work by presenting the formal analysis of cancer related molecular pathway, i.e., TP53
degradation and metabolic pathway known as Glycolysis.

Key words: Molecular biology, logical deduction
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1. Introduction. Molecular biology is extensively used to construct models of biological processes in
the form of networks or pathways, such as protein-protein interaction networks and signalling pathways. The
analysis of these biological networks, usually referred to as biological regulatory networks (BRNs) or gene
regulatory networks (GRNs) [10], is based on the principles of molecular biology to understand the dynamics
of complex living organisms. Moreover, the analysis of molecular pathways plays a vital role in investigating
the treatment of various human infectious diseases and future drug design targets. For example, the analysis of
BRNs has been recently used to predict treatment decisions for sepsis patients [15].

Traditionally, the molecular biology based analysis is carried out by biologists in the form of wet-lab ex-
periments (e.g. [7, 13]). These experiments, despite being very slow and expensive, do not ensure accurate
results due to the inability to accurately characterize the complex biological processes in an experimental set-
ting. Other alternatives for deducing molecular reactions include paper-and-pencil proof methods (e.g. using
Boolean modelling [27] or kinetic logic [28]) or computer-based techniques (e.g. [29]) for analysing molecular
biology problems. The manual proofs become quite tedious for large systems, where the calculation of unknown
parameters takes several hundred proof steps, and are thus prone to human errors. The computer-based methods
consist of graph-theoretic techniques [21], Petri nets [11] and model checking [3]. These approaches have shown
very promising results in many applications of molecular biology (e.g. [8, 14]). However, these methods are not
generic and hence have been used to describe some specific areas of molecular biology only [4]. Moreover, the
inherent state-space explosion problem of model checking [20] limits the scope of this success only to systems
where the biological entities can acquire a small set of possible levels.

Theorem proving [12] can be considered as the second most widely used formal method. It does not
suffer from the state-space explosion problem of model checking and has also been advocated for conducting
molecular biology based analysis [30]. The main idea behind theorem proving is to construct a computer based
mathematical model of the given system and then verify the properties of interest using deductive reasoning.
The foremost requirement for conducting the theorem proving based analysis of any system is to formalize
the mathematical or logical foundations required to model and analyse that system in an appropriate logic.
There have been several attempts to formalize the foundations of molecular biology. For example, the earliest
axiomatization even dates back to 1937 [31] and other efforts related to the formalization of biology are presented
in [32, 25]. Recent formalizations, based on K -Calculus [6] and π-Calculus [22, 23, 24], also include some formal
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reasoning support for biological systems. But the understanding and utilization of these techniques is very
cumbersome for a working biologist as highlighted by Fontana in [9].

In order to develop a biologist friendly formal deduction framework for reasoning about molecular reactions,
we propose to formalize the Zsyntax [4] language in higher-order logic. Zsyntax is a formal language that
supports modelling and logical deductions about any biological process. The main strength of Zsyntax is
its biologist-centred nature as its operators and inference rules have been designed in such a way that they
are understandable by the biologists. Traditionally, logical deductions about biological processes, expressed in
Zsyntax, were done manually based on the paper-and-pencil based approach. This limits the usage of Zsyntax to
smaller problems and also makes the deduction process error-prone due to the human involvement. As a first step
towards overcoming this limitation, we formalized the logical operators and inference rules of Zsyntax in higher-
order logic [2]. In the current paper, we build upon these formal definitions to verify a couple of key behavioural
properties of Zsyntax based molecular pathways using the HOL4 theorem prover. The formal verification of
these properties raises the confidence level in our definitions of Zsyntax operators and inference rules, which
have complex interrelationships. Moreover, these formally verified properties can be used to facilitate the formal
reasoning about chemical reactions at the molecular level. In order to illustrate the usefulness and effectiveness
of our formalization for analysing real-world problems in molecular biology, we present the formal analysis of a
cancer related molecular pathway involving TP53 degradation and a metabolic pathway known as Glycolysis.
As a part of this work, we have also developed a user-friendly graphical user interface (GUI) for conducting
the Zsyntax based formal analysis of molecular pathways. The distinguishing features of this tool includes its
biologist friendliness and dedicated proof tactic that allows the users to perform automated reasoning about
molecular pathways.

Our current framework handles static reactions but it can be further extended to study the reaction kinetics
[4] due to the flexibility of Zsyntax. The main motivation behind using higher-order-logic theorem proving in our
work is to be able to leverage upon the high expressiveness of higher-order logic and thus reason about differential
equations and probabilistic properties, which form an integral part of reaction kinetics. However, the scope of
the current paper is on the formalization of Zsyntax based deduction calculus for molecular pathways but this
formalization can later be extended to support reaction kinetics as well because it is done in a higher-order-logic
theorem prover.

The rest of the paper is organized as follows: Section 2 provides an introduction to Zsyntax and the HOL4
theorem prover. The higher-order-logic formalization of Zsyntax operators and inference rules using HOL4 are
described in Sect. 3. This is followed by the descriptions of the behavioural properties of Zsyntax along with
their formal proof sketches in Sect. 4 and 5, respectively. We provide a brief overview of the GUI developed as
a part of this work in Sect. 6. In order to demonstrate the use of our formalization, we present two case studies
on the TP53 degradation and glycolytic pathway in Sect. 7. We conclude the paper in Sect. 8 while highlighting
some interesting potential applications of our work.

2. Preliminaries.

2.1. Zsyntax. Zsyntax [4] exploits the analogy between biological processes and logical deduction. Some
of the key features of Zsyntax are: 1) the ability to express molecular reactions in a mathematical way; 2)
heuristic nature, i.e., if the conclusion of a reaction is known, then one can deduce the missing data from the
initialization data; 3) computer implementable semantics. Zsyntax consists of the following three operators:
Z-Interaction: The interaction of two molecules is expressed by the Z-Interaction (∗) operator. In biological
reactions, Z-interaction is not associative.
Z-Conjunction: The aggregate of same or different molecules (not necessarily interacting with each other) is
formed using the Z-Conjunction (&) operator. Z-Conjunction is fully associative.
Z-Conditional: A path from A to B under the condition C is expressed using the Z-Conditional (→) operator
as: A → B if there is a C that allows it.

Zsyntax supports four inference rules, given in Table 2.1, that play a vital role in deducing the outcomes of
biological reactions:

Besides the regular formulas that can be derived based on the above mentioned operators and inference rules,
Zsyntax also makes use of Empirically Valid Formulae (EVF). These EVFs basically represent the non-logical
axioms of molecular biology and are assumed to be validated empirically in the lab.
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Table 2.1

Zsyntax Inference Rules

Inference Rules Definition

Elimination of Z-conditional(→E) if C ⊢ (A → B) and (D ⊢ A) then (C&D ⊢ B)
Introduction of Z-conditional(→I) C&A ⊢ B then C ⊢ (A → B)
Elimination of Z-conjunction(&E) C ⊢ (A&B) then (C ⊢ A) and (C ⊢ B)
Introduction of Z-conjunction(&I) (C ⊢ A) and (D ⊢ B) then (C&D) ⊢ (A&B)

It has been shown that any biological reaction and its final outcome can be derived by using the above
mentioned three operators and four inference rules [4]. For example, consider a scenario in which three molecules
A, B and C react with each other to yield another molecule Z. This can be represented as a Zsyntax theorem
as follows:

A & B & C ⊢ Z

The Z-Conjunction operator & is used to represent the given aggregate of molecules and then the inference rules
from Table 1 are applied on these molecules along with some EVFs (chemical reactions verified in laboratories)
to obtain the final product Z. For the above example, these EVFs could be:

A * B → X and X * C → Z

meaning that A will react with B to yield X and X in return will react with C to yield the final product Z.
The main contribution of our paper is the formal verification of the Zsyntax based deduction method based

on the higher-order-logic formalization of the above-mentioned operators and inference rules using the HOL4
theorem prover. This work will in turn facilitate the derivation of biological reactions within the sound core of
HOL4.

2.2. HOL4 Theorem Prover. HOL4 is an interactive theorem prover developed at the University of
Cambridge, UK, for conducting proofs in higher-order logic. It utilizes the simple type theory of Church [5]
along with Hindley-Milner polymorphism [17] to implement higher-order logic. HOL4 has been successfully
used as a verification framework for both software and hardware as well as a platform for the formalization of
pure mathematics.

In order to ensure secure theorem proving, the logic in the HOL4 system is represented in the strongly-typed
functional programming language ML [19]. An ML abstract data type is used to represent higher-order logic
theorems and the only way to interact with the theorem prover is by executing ML procedures that operate on
values of these data types. The HOL4 core consists of only 5 basic axioms and 8 primitive inference rules, which
are implemented as ML functions. Soundness is assured as every new theorem must be verified by applying
these basic axioms and primitive inference rules or any other previously verified theorems/inference rules.

A HOL4 theory is a collection of valid HOL4 types, constants, axioms and theorems, and is usually stored
as a file in computers. Users can reload a HOL4 theory in the HOL4 system and utilize the corresponding
definitions and theorems right away. Various mathematical concepts have been formalized and saved as HOL4
theories by the HOL4 users. We utilize the HOL4 theories of Booleans, arithmetics and lists extensively in
our work. Table 2.2 provides the mathematical interpretations of some HOL4 symbols and functions frequently
used in this paper.

3. Formalization of Zsyntax. We modelled the molecules as variables of arbitrary data types (α) in our
formalization of Zsyntax [2]. A list of molecules (α list) represents the Z-Interaction or a molecular reaction
among the elements of the list. The Z-Conjunction operator forms a collection of non-reacting molecules and can
now be formalized as a list of list of molecules (α list list). This data type allows us to apply the Z-Conjunction
operator between individual molecules (a list with a single element) or multiple interacting molecules (a list
with multiple elements). The Z-Conditional operator is used to update the status of molecules, i.e., generate
a new set of molecules based on the available EVFs (wet-lab verified reactions). Each EVF is modelled in our
formalization as a pair (α list # α list list) where the first element is a list of molecules (α list) indicating the
reacting molecules and the second element is a list of list of molecules (α list list) indicating the resulting set of
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Table 2.2

HOL4 Symbols and Functions

HOL4 Symbol Standard Symbol Meaning

∧ and Logical and
∨ or Logical or
¬ not Logical negation
:: cons Adds a new element to a list
++ append Joins two lists together
HD L head Head element of list L
TL L tail Tail of list L
EL n L element nth element of list L
MEM a L member True if a is a member of list L
LENGTH L length Length of list L

FST fst (a, b) = a First component of a pair
SND snd (a, b) = b Second component of a pair
SUC n n+ 1 Successor of a num

molecules after the reaction between the molecules of the first element of the pair has taken place. A collection
of EVFs is represented as a list of EVFs ((α list # α list list)list) in our formalization.

The elimination of Z-Conditional rule is the same as the elimination of implication rule (Modus Ponens)
in propositional logic and thus it can be directly handled by the HOL4 simplification and rewriting rules.
Similarly, the introduction of Z-Conditional rule can also be inferred from the rules of propositional logic and
can be handled by the HOL4 system without the introduction of a new inference rule. The elimination of the
Z-Conjunction rule allows us to infer the presence of a single molecule from an aggregate of inferred molecules.
This rule is usually applied at the end of the reaction to check if the desired molecule has been obtained. Based
on our data types, described above, this rule can be formalized in HOL4 by returning a particular molecule
from a list of molecules:

Definition 3.1. Elimination of Z-Conjunction Rule
⊢ ∀ L m. z conj elim L m = if MEM m L then [m] else L

The function z conj elim has the data type (α list → α → α list). The above function returns the given
element as a single element in a list if it is a member of the given list. Otherwise, it returns the argument list
as it is.

The introduction of Z-Conjunction rule along with Z-Interaction allows us to perform a reaction between
any of the available molecules during the experiment. Based on our data types, this rule is equivalent to the
append operation of lists.

Definition 3.2. Intro of Z-Conjunction and Z-Interaction
⊢ ∀ L m n. z conj int L m n = FLAT [EL m L; EL n L]::L

The above definition has the data type (α list list → num → num → α list list). The HOL4 functions
FLAT and EL are used to flatten a list of list to a single list and return a particular element of a list, respectively.
Thus, the function z conj int takes a list L and appends the list of two of its elements m and n on its head.

Based on the laws of stoichiometry [4], the reacting molecules using Z-Conjunction operator have to be
deleted from the aggregate of molecules. The following function represents this behaviour in our formalization:

Definition 3.3. Reactants Deletion
⊢ ∀ L m n. z del L m n = if m > n

then del (del L m) n

else del (del L n) m

Here the function del L m deletes the element at index m of the list L and returns the updated list as follows:
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Definition 3.4. Element Deletion
⊢ ∀ L. del L 0 = TL L ∧

∀ L n. del L (n + 1) = HD L::del (TL L) n

Thus, the function z del L m n deletes the mth and nth elements of the given list L. We delete the higher
indexed element before the lower one in order to make sure that the first element deletion does not effect the
index of the second element that is required to be deleted. The above data types and definitions can be used to
formalize any molecular pathway (which is expressible using Zsyntax) and reason about its correctness within
the sound core of the HOL4 theorem prover.

4. Formal Reasoning support for Zsyntax. Our main objective is to develop a framework that accepts
a list of initial molecules and possible EVFs and allows the user to formally deduce the final outcomes of the
corresponding biological experiment within the sound core of HOL4.

In this regard, we first develop a function that compares a particular combination of molecules with all
the EVFs and upon finding a match introduces the newly formed molecule in the initial list and deletes the
consumed instances.

Definition 4.1. EVF Matching
⊢ ∀ L E m n. z EVF L E 0 m n =

if FST (EL 0 E) = HD L

then (T,z del (TL L ++ SND (EL 0 E)) m n

else (F,TL L) ∧

∀ L E p m n.

z EVF L E (p + 1) m n =

if FST (EL (p + 1) E) = HD L

then (T,z del (TL ++ SND (EL (p + 1) E)) m n

else z EVF L E p m n

Here, HD and TL returns head and tail of a list respectively. Similarly, FST and SND returns first and second
element of a pair respectively. The data type of the function z EVF is: (α list list → (α list#α list list) list →
num → num → num → bool # α list list). The function LENGTH returns the length of a list. The function
z EVF takes a list of molecules L and recursively checks its head, or the top most element, against all elements
of the EVF list E. If there is no match then the function returns a pair with its first element being false (F),
indicating that no match occurred, and the second element equal to the tail of the input list L. Otherwise, if
a match is found then the function replaces the head of list L with the second element of the EVF pair and
deletes the matched elements from the initial list as these elements have already been consumed. This modified
list is then returned along with a true (T) value, which acts as a flag to indicate an element replacement.

Next, in order to deduce the final outcome of the experiment, we have to call the function z EVF recursively
by placing all the possible combinations of the given molecules at the head of list L one by one. This can be
done as follows:

Definition 4.2. Recursive Function to model the argument n in Def. 4.1
⊢ ∀ L E m. z recur1 L E m 0 =

z EVF (z conj int L m 0) E (LENGTH E - 1) m 0 ∧

∀ L E m n.

z recur1 L E m (n + 1) =

if FST (z EVF (z conj int L M (n + 1)) E (LENGTH E - 1) m (n + 1)) ⇔ T

then z EVF (z conj int L m (n + 1)) E (LENGTH E - 1) m (n + 1)

else z recur1 L E m n

Definition 4.3. Recursive Function to model the augment m in Def. 4.1
⊢ ∀ L E n.z recur2 L E 0 n =

if FST (z recur1 L E 0 n) ⇔ T

then (T,SND (z recur1 L E 0 n))
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else (F,SND (z recur1 L E 0 n)) ∧

∀ L E m n.

z recur2 L E (m + 1) n =

if FST (z recur1 L E (m + 1) n) ⇔ T

then (T,SND (z recur1 L E (m + 1) n))

else z recur2 L E m (LENGTH L - 1)

Both the above functions have the same data type, i.e, (α list list → (α list #α list list) list → num →

num → num → bool #α list list). The function z recur1 calls the function z EVF after appending the
combination of molecules indexed by variables m and n using the introduction of Z-Conjunction rule. Thus, the
new combination is always placed on the top of the list, which is passed as the variable L to the function z EVF.
Moreover, we provide the length of the EVF list (LENGTH E - 1) as the variable p of the function z EVF so
that the new combination is compared to all the entries of the EVF list. It is also important to note that the
function z recur1 terminates as soon as a match in the EVF list is found. This function also returns a flag
indicating the status of this match as the first element of its output pair. The second function z recur2 checks
this flag and if it is found to be true (meaning that a match in the EVF list is found) then it terminates by
returning the output list of the function z recur1. Otherwise, it continues with all the remaining values of the
variable m recursively. In the first case, i.e., when a match is found, the above two functions have to be called
all over again with the new list. These iterations will continue until there is no match found in the execution of
functions z recur1 and z recur2. This overall behaviour can be modelled by the following recursive function:

Definition 4.4. Final Recursion Function for Zsyntax
⊢ ∀ L E m n.

z deduction recur L E m n 0 = (T,L) ∧

∀ L E m n q.

z deduction recur L E m n (q + 1) =

if FST (z recur2 L E m n) ⇔ T

then z deduction recur

(SND (z recur2 L E m n)) E (LENGTH (SND (z recur2 L E m n)) - 1)

(LENGTH (SND (z recur2 L E m n)) - 1) q

else (T,SND (z recur2 L E (LENGTH L - 1) (LENGTH L - 1)))

The function z deduction rec also has the same data type as the above mentioned recursion functions.
The variable of recursion in this function should be assigned a value that is greater than the total number
of EVFs so that the application of none of the EVF is missed to guarantee correct operation. Similarly, the
variables m and n above should be assigned the values of (LENGTH L - 1) to ensure that all the combinations
of the list L are checked against the elements of the list of EVFs. Thus, the final deduction function for Zsyntax
can be expressed in HOL4 as follows:

Definition 4.5. Final Deduction Function for Zsyntax
⊢ ∀ L E. z deduction L E =

SND (z deduction recur L E (LENGTH L - 1) (LENGTH L - 1) LENGTH E)

The type of the function z deduction is (α list list → (α list # α list list) list → α list list). It accepts
the initial list of molecules and the list of valid EVFs and returns a list of final outcomes of the experiment
under the given conditions. Next, the output of the function z deduction has to be checked if the desired
molecule is present in the list. This can be done by using the elimination of the Z-Conjunction rule given in
Definition 1.

The formal definitions, presented in this section, allow us to recursively check all the possible combinations
of the initial molecules against the first elements of given EVFs. In case of a match, the corresponding EVF
can be applied and the process can restart again to find other possible matches from the new list of molecules.
This process terminates when no more molecules are found to be reacting with each other and at this point
we will have the list of post-reaction molecules. The desired result can then be obtained from these molecules
using the elimination of Z-Conjunction rule. The main benefit of the development, presented in this section, is
that it facilitates automated reasoning about the molecular biological experiments within the sound core of a
theorem, which will be demonstrated later.



On the Formalization of Zsyntax with Applications in Molecular Biology 43

5. Formal Verification of Zsyntax Properties. In order to ensure the correctness and soundness of
our definitions, we use them to verify a couple of properties representing the most important characteristics of
molecular reactions. The first property deals with the case when there is no combination of reacting molecules
in the list of molecules and in this case we verify that after the Zsyntax based experiment execution both the
pre and post-experiment lists of molecules are the same. The second property captures the behaviour of the
scenario when the given list of molecules contains only one set of reacting molecules and in this case we verify
that after the Zsyntax based experiment execution the post-experiment list of molecules contains the product of
the reacting molecules minus its reactants along with the remaining molecules provided initially. We represent
these scenarios as formally specified properties in higher-order logic using our formal definitions, given in the
previous section. These properties are then formally verified in HOL4.

5.1. Scenario 1: No Reaction. We verify the following theorem for the first scenario:

Theorem 1.
⊢ ∀ E L.

∼(NULL E) ∧ ∼(NULL L) ∧

(∀ a m n. MEM a E ∧ m < LENGTH L ∧ n < LENGTH L

⇒ ∼MEM (FST a) [HD (z conj int L m n)])

⇒ z deduction L E = L

The variables E and L represent the lists of EVFs and molecules, respectively. The first two assumptions
ensure that both of these lists have to be non-empty, which are the pre-conditions for a molecular reaction
to take place. The next conjunct in the assumption list of Theorem 1 represents the formalization of the no-
reaction-possibility condition as according to this condition no first element of any pair in the list of EVFs E is
a member of the head of the list formed by the function z conj int, which picks the elements corresponding
to the two given indices (that range over the complete length of the list of molecules L) and appends them
as a flattened single element on the given list L. This constraint is quantified for all variables a, m and n and
thus ensures that no combination of molecules in the list L matches any one of the first elements of the EVF
list E. Thus, under this constraint, no reaction can take place for the given lists L and E. The conclusion of
Theorem 1 represents the scenario that the output of our formalization of Zsyntax based reaction would not
make any change in the given molecule list L and thus verifies that under the no-reaction-possibility condition
our formalization also did not update the molecule list.

The verification of this theorem is interactively done by ensuring the no-update scenario for all molecule
manipulation functions, i.e., z EVF, z recur1,
z recur2 and z deduction recur, under the no-reaction-possibility condition [1]. For example, the correspond-
ing theorem for z EVF function is as follows:

Theorem 2.
⊢ ∀ E L m n P.

∼(NULL E) ∧ ∼(NULL L) ∧ m < LENGTH L ∧ n < LENGTH L ∧

P < LENGTH E ∧ (∀ a. MEM a E ⇒ ∼MEM (FST a) [HD L])

⇒ z EVF L E P m n = (F,TL L)

The assumptions of above theorem ensure that both lists L and E are not empty and the arguments of
the function z EVF are bounded by the LENGTH of L and E. The last conjunct in the assumption list models
the no-reaction-possibility condition in the context of the function z EVF. The conclusion of the theorem states
that no update takes place under the given conditions by ensuring that the function z EVF returns a pair with
the first element being F (False), representing no match, and the second element being equal to TL L, which is
actually equal to the original list L since an element was appended on head of L by the parent function.

5.2. Scenario 2: Single Reaction. The second scenario complements the first scenario and, caters for
the case when a reaction is possible and we verify that the molecules list is indeed updated based on the
outcomes of that reaction. In order to be able to track the reaction and the corresponding update, we limit
ourselves to only one reaction in this scenario but since we verify a generic theorem (universally quantified) for
all possibilities our result can be extended to cater for multiple reactions as well. The theorem corresponding
to this scenario 2 is as follows:
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Theorem 3.
⊢ ∀ E L z m’ n’.

∼NULL E ∧ ∼NULL (SND (EL z E)) ∧ 1 < LENGTH L ∧ m’ < LENGTH L ∧

n’ < LENGTH L ∧ z < LENGTH E ∧ ALL DISTINCT (L ++ SND (EL z E)) ∧

(∀ a b. a ̸= b ⇒ FST (EL a E) ̸= FST (EL b E)) ∧ m’ ̸= n’ ∧

(∀ K m n. m < LENGTH K ∧ n < LENGTH K ∧

(∀ j. MEM j K ⇒ MEM j L ∨ ∃ q. MEM q E ∧ MEM j (SND q)) ⇒

if (EL m K = EL m’ L) ∧ (EL n K = EL n’ L)

then HD (z conj int K m n) = FST (EL z E)

else ∀ a. MEM a E ⇒ FST a ̸= HD (z conj int K m n))

⇒ z deduction L E = z del (L ++ SND (EL z E)) m’ n’

The first two assumptions ensure that neither the list E, i.e., the list of EVFs, nor the second element of
the pair at index z of the list E is empty. Similarly, the third assumption ensures that the list L, i.e., the list of
initial molecules, contains at least two elements. These constraints ensure that we can have at least one reaction
with the resultant being available at index z of the EVF list. The next four assumptions ensure that the indices
m’ and n’ are distinct and these along with the index z fall within the range of elements of their respective
lists of molecules L or EVFs E. According to the next assumption, i.e., ALL DISTINCT (L ++ SND (EL z E)),
all elements of the list L and the resulting molecules of the EVF at index z are distinct, i.e., no molecule can
be found two or more times in the initial list L or the post-reaction list E. The next assumption, i.e., (∀ a b.

a ̸= b ⇒ FST (EL a E) ̸= FST (EL b E)), guarantees that all first elements of the pairs in list E are also
distinct. Note that this is different from the previous condition since the list E contains pairs as elements and
the uniqueness of the pairs does not ensure the uniqueness of its first elements. The final condition models the
presence of only one pair of reactants scenario. According to the assumptions of this implication condition, the
variable K is used to represent a list that only has elements from list L or the second elements of the pairs in
list E. Thus, it models the molecules list in a live experiment. Moreover, the variables m and n represent the
indices of the list K and thus they must have a value less than the total elements in the list K (since the first
element is indexed 0 in the HOL4 formalization of lists). Now, if the indices m and n become equal to m’ and n’,
respectively, then the head element of the z conj int K m n would be equal to FST of EL z E. Otherwise, for
all other values of indices m and n, no combination of molecules obtained by HD(Z conj int K m n) would be
equal to the first element of any pair of the list E. Thus, the if case ensures that the variables m’ and n’ point
to the reacting molecules in the list of molecules L and the variable z points to their corresponding resultant
molecule in the EVF list. Moreover, the else case ensures that there is only one set of reacting molecules in the
list L. The conclusion of the theorem formally describes the scenario when the resulting element, available at
the location z of the EVF list, is appended to the list of molecules while the elements available at the indices
m’ and n’ of L are removed during the execution of the function z deduction on the given lists L and E.

The proof of Theorem 3 is based on verifying sub-goals corresponding to this scenario for all the sub-
functions, i.e., z EVF, z recur1, z recur2 and z deduction recur. The formal reasoning for all of these proofs
involved various properties of the del function for a list element and some of the key theorems developed for
this purpose in our development are given in Table 5.1 and more details can be found in [1].

The formalization described in this section consumed about 500 man hours and approximately 2000 lines
of HOL4 code, mainly due to the undecidable nature of higher-order logic. However, this effort raises the
confidence level on the correctness of our formalization of Zsyntax. This fact distinguishes our work from all
the other formal methods based techniques used in the context of BRNs, where the deduction rules are applied
without being formally checked. Moreover, our formally verified theorems can also be used in the formal analysis
of molecular pathways. The assumptions of these theorems provide very useful insights about the constraints
under which a reaction or no reaction would take place. To the best of our knowledge, this is the first time that
properties, like Theorems 1 and 3, about a molecular pathway experiment have been formally verified. Thus,
the identification of these properties and their formal verification both constitute contributions of this paper.

As part of this work, we also developed a simplifier Z SYNTAX SIMP [1] that simplifies the proof with a single
iteration of the function z deduction recur and works very efficiently with the proofs involving our functions.
The proof steps can be completely automated and the proof can be done in one step as well. However, we
have kept the reasoning process manual purposefully as this way users can observe the status of the reaction
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Table 5.1

Formally verified Properties of the del Function

Signature Theorem

del ASSOC THM ⊢ ∀ L E m. m < LENGTH L

⇒ del (L ++ E) m = del L m ++ E

del LENGTH THM ⊢ ∀ L E m. m < LENGTH L

⇒ LENGTH (del L m) = LENGTH L− 1

del EL THM ⊢ ∀ L m n. m < n ∧ n < LENGTH L ∧ 1 < LENGTH L

⇒ EL m L = EL m (del L n)
del DISTINCT THM ⊢ ∀ L n. n < LENGTH L ∧ ALL DISTINCT L

⇒ ALL DISTINCT (del L n)
del MEM THM ⊢ ∀ L a m. m < LENGTH L ∧ MEM a (del L m)

⇒ MEM a L

del NOT MEM THM ⊢ ∀ L m. ALL DISTINCT L ∧ m < LENGTH L

⇒∼ MEM (EL m L) (del L m)

at every iteration, which is a very useful feature to get an insight of what is happening inside a reaction. Each
application of Z SYNTAX SIMP on the reaction, depicted in Fig. 7.1, would result in moving from a state n to
n+ 1.

6. Graphical User Interface. The interest of using formal methods in the domains of bio-informatics
and system biology has been rapidly growing since the last decade. However, there is a notable gap between
biologists, who prefer wet lab experiments, and computer scientists, who can provide efficient tools to perform
computer experiments with a unified framework. This fact has somewhat limited the usage of formal methods
by the bio-informatics and pharmaceutical industry in research and development. We believe that one of the
major reasons for the above-mentioned gap is the unavailability of biologists friendly formal tools. The idea
on which our GUI functions is that the user needs to provide the initial list of molecules and possible EVFs.
Consequently, the verification relating the two inputs can be done automatically. The GUI, developed in C#, is
capable of initiating a HOL4 session in the command line and automatically converting user provided data into
the language supported by HOL4. These translated texts are then utilized to form a HOL 4 theorem, which is
then passed to HOL4 via the command line and the verification process automatically starts using the formal
definitions and tactics developed in our work. Figure 6.1 provides a snapshot of our GUI while handling the
example of Glycolysis pathway, which will be described in more detail in the next section. Many real-world

Fig. 6.1. Graphical User Interface
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case studies have been automatically verified, including the examples that are described in the next section, by
our GUI. Upon the successful verification of a theorem the GUI returns a message that the given pathway has
been successfully deduced. The current version of our GUI is available for download at [1] and we are working
to further enhance its usability by providing graphical insights about the verification.

7. Case Studies. In the section, we present the utilization of our Zsyntax formalization and its corre-
sponding properties by two real-world cases studies: 1) Reaction involving TP53 degradation. 2) Molecular
pathway of Glycolysis which is responsible for the production of Pyruvate and also provides energy for cell
growth.

7.1. TP53 Degradation. TP53 gene encodes p53 protein, which plays a crucial role in regulating the
cell cycle of multicellular organisms and, thus, functions as a tumour suppressor for preventing cancer [4]. We
utilize the proposed framework to analyse the TP53 degradation reaction [4]. The regulatory loop leading to
the TP53 degradation is illustrated in Fig. 7.1, where the dark coloured circles denote the list of molecules
given by biologists and the hollow circles depict the molecules that do not interact with any other molecule in
a particular step of the reaction.

TP53 TP53 U PMDM2`

MDM2TP53 U P

TP53 * MDM2 U P

MDM2 TP53 * U P

(TP53 * U) * PMDM2

PUdTP53MDM2

Fig. 7.1. Reaction Representing Degradation of TP53

A theorem representing the regulatory loop involving MDM2, MDM2 and TP53 and leading to TP53
degradation [4], can be described as follows:

TP53 & TP53 & MDM2 & U & P ⊢ d(TP53)
In HOL4, this biological reaction can be written as the following theorem using our reported framework:

⊢ DISTINCT [TP53;dTP53;P;U;iMDM2;MDM2] =⇒

z conj elim (z deduction [[TP53];[TP53];[iMDM2];[U];[P]]

[([TP53;MDM2],[[MDM2]]);

([MDM2;TP53],[[TP53;MDM2]]);

([TP53;MDM2;U],[[TP53;U];[MDM2]]);

([TP53;U;P],[[dTP53];[U];[P]])]) [dTP53]

=[[dTP53]]

The DISTINCT function used in the assumption of the above theorem ensures that all the molecules are distinct.
The first list argument of the function z deduction is the initial aggregate (IA) of molecules that are available for
reaction and the second list argument of the function z deduction represents the valid EVFs for this reaction.
Thus, the function z deduction would deduce the final list of molecules under these particular conditions. The
function z conj elim will return the molecule dTP53 if it is present in the post-reaction list of molecules, as
previously described.
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Figure 7.1 shows the step-wise reaction leading to d(TP53). The blue-coloured circles show the chemical
interactions and green colour represents the desired product in the pathway, whereas each rectangle shows the
total number of molecules in the reaction at a given time. It is obvious from the figure that whenever a reaction
yields a product, the reactants get consumed (no longer remain in the list) hence satisfying the stoichiometry
of a reaction.

The script of TP53 Degradation Theorem is given below:

e(RW_TAC std_ss[DISTINCT,UNIQ_MEM,MEM]);

e(Z_SYNTAX_SIMP z_EVF_def );;

e(Z_SYNTAX_SIMP z_EVF_def );;

e(Z_SYNTAX_SIMP z_EVF_def );;

e(Z_SYNTAX_SIMP z_EVF_def );;

e(Z_SYNTAX_SIMP z_EVF_def );;

e(REWRITE_TAC [MEM,z_conj_elim_def]);

It is quite evident from the proof script of Theorem 1 that its proof steps can be completely automated and
the proof can be done in one step as well. However, we have kept the reasoning process manual purposefully
as this way the users can observe the status of the reaction at every iteration. For example, each application of
Z SYNTAX SIMP on the reaction, depicted in Fig. 7.1, would result in moving from a state n to n+ 1.

Note that we can also record the time required to complete each iteration. For example, in case of above
examples, the time for each step in the above case-study is given in Table 7.1.

Table 7.1

Runtime per Iteration

Iteration Duration (Seconds)

1 → 2 95.969
2 → 3 51.829
3 → 4 27.127
4 → 5 28.062
5 → 6 0.2130

7.2. Molecular Pathway of Glycolysis. Glycolysis is a metabolic pathway which converts glucose into
pyruvate and energy released in this process is used for the cell growth [18]. In molecular biology literature,
Glycolysis is a determined sequence of ten enzyme-catalyzed reactions. Formation of Glucose-6-phosphate,
Fructose-1,6-bisphosphate (F1,6P), etc. are intermediate steps in glycolysis [18]. In order to deduce the complete
Glycolysis pathway, it is convenient to divide the pathway in three blocks as shown in Fig. 7.2. All the
abbreviations used in Fig. 7.2 are described in Table 7.5. The dark coloured circles represent enzymes and
each of them participates in the reaction at a certain point and only helps in the formation of new molecules.
It is important to note that enzymes do not get consumed, which means that they retain their state after the
completion of the reaction.

The first phase of the pathway leads to formation of Fructose-1,6-bisphosphate (F1,6P). The theorem
representing the reaction of the glycolytic pathway leading from D-Glucose to F1,6P [4] can be described in
classical Zsyntax format as follows:

Glc & HK & GPI & PFK & ATP & ATP ⊢ F1,6P

We can formally encode this theorem in HOL4 as follows:

⊢ DISTINCT [Glc; HK; GPI; PFK; ATP; ADP; G6P; F6P; F16P] =⇒

(z conj elim (z deduction [[Glc];[HK];[GPI];[PFK];[ATP];[ATP]]

[([Glc;HK],[[HK;Glc]]);

([HK;Glc;ATP],[[HK];[G6P];[ADP]]);

([G6P;GPI],[[F6P];[GPI]]);

([F6P;PFK],[[PFK;F6P]]);

([PFK;F6P;ATP],[[PFK];[F16P];[ADP]])] ) [F16P]

= [[F16P]]
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Glc Glc * HK G6P

ATP

HK

ADP

G6P * GPI

GPI

F6P F6P * PFK F16P

ATP

PFK

ADP

F16P * ALD ALD

DAP

G3P

DAP * TPIG3PP13G G3P * TPD

NADH

TPD

NAD

P3G P13G * PGK

ATP

PGK

ADP

P3G * PGM

PGM

PP PP * PYK PY

ADP

PYK

ATP

P2G P2G * ENL

ENL

H2O

1

2

3

Fig. 7.2. Formation of Pyruvate through Glycolysis

where the first list argument of the function z deduction is the initial aggregate (IA) of molecules that are
available for reaction and the second list represents the valid EVFs for this reaction. The EVFs mentioned
in the form of pairs and involving the molecules (G6P, F6P, etc.) are obtained from wet lab experiments, as
reported in [4]. The DISTINCT function used above makes sure that all molecules (from initial aggregate and
EVFs) used in this theorem are indeed distinct. Thus, the function z deduction would deduce the final list
of molecules under these particular conditions. The function z conj elim returns the molecule F1,6P if it is
present in the post-reaction list of molecules. The verification time required for each iteration step is given in
Table 7.2.

Table 7.2

Runtime per Iteration

Iteration Duration (Seconds)

1 → 2 11.996
2 → 3 7.376
3 → 4 12.964
4 → 5 12.756
5 → 6 9.240
6 → 7 0.048

Fructose-1,6-bisphosphate formed in the above reaction further reacts with different enzymes to form 3-
Phosphoglycerate, which completes the second phase of Glycolysis pathway. Note that during this phase two
molecules of G3P are formed and each molecule follows the same path. For the sake of simplicity, we only
provided one NAD molecule so that only one molecule can complete the pathway to form one Pyruvate molecule.
After the successful deduction of first phase of Glycolysis, we can model the second phase as follow:

F16P & ADP & ALD & TPI & NAD & TPD & PGK ⊢ P3G

which can be formalized in HOL4 as follows:
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⊢ DISTINCT [F16P; ALD; TPI; NAD; TPD; PGK; G3P;

DAP; P13G; P3G; NADH; ADP; ATP] =⇒

(z conj elim (z deduction [[F16P];[ADP];[ALD];[TPI];[NAD];[TPD];[PGK]]

[([F16P;ALD],[[G3P];[DAP]]);

([DAP;TPI],[[G3P];[TPI]]);

([G3P;TPD],[[TPD;G3P]]);

([TPD;G3P;NAD],[[P13G];[TPD];[NADH]]);

([P13G;PGK],[[PGK;P13G]]);

([PGK;P13G;ADP],[[PGK];[P3G];[ATP]])] ) [P3G]

= [[P3G]]

The time required for each iteration of the second phase of Glycolysis is given in Table 7.3.

Table 7.3

Runtime per Iteration

Iteration Duration (Seconds)

1 → 2 24.940
2 → 3 20.532
3 → 4 22.676
4 → 5 16.804
5 → 6 20.780
6 → 7 17.120
7 → 8 0.188

3-Phosphoglycerate (P3G) formed in the above step further reacts with other enzymes to yield the final
product of Glycolysis pathway, i.e., Pyruvate. A theorem representing the conversion of 3-Phosphoglycerate
(P3G) to Pyruvate (PY) can be described as follows:

P3G & ADP & PGM & ENL & PYK ⊢ PY

Consequently, the corresponding HOL4 expression is given as follows:

⊢ DISTINCT [PGM; ENL; PYK; P3G; P2G; H2O; PP; PY; ADP] =⇒

(z conj elim (z deduction [P3G];[ADP];[PGM];[ENL];[PYK]]

[([P3G;PGM],[[P2G];[PGM]]);

([P2G;ENL],[[H2O];[PP];[ENL]]);

([PP;PYK],[[PYK;PP]]);

([PYK;PP;ADP],[[PYK];[PY];[ATP]])] ) [PY]

= [[PY]]

Similar to the above steps, the timing statistics for the above theorem are given in Table 7.4.

Table 7.4

Runtime per Iteration

Iteration Duration (Seconds)

1 → 2 5.860
2 → 3 5.676
3 → 4 9.384
4 → 5 7.784
5 → 6 0.044

This completes the description of the utilization of our work to formally reason about two real-world case
studies, i.e., TP53 degradation and molecular pathway of Glycolysis.

Our HOL4 proof script is available for download [1], and thus can be used for further developments and
analysis of different molecular pathways. It is important to note that formalizing Zsyntax and then verifying its
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Table 7.5

Abbreviations of molecules used in Glycolysis

Abbr. Biological Entity Abbr. Biological Entity

Glc Glucose PYK Pyruvate Kinase
HK Hexokinase G6P Glucose-6-phosphate
ATP Energy F6P Fructose-6-phosphate
GPI Phosphoglucomutase F16P Fructose-1,6-diphosphate
PFK Phosphofructokinase G3P Glyceraldehyde-3-Phosphate
ALD Aldolase DAP Dihydroxyacetonephosphate
TPI Triosephosphateisomerase P13G 1,3-biphosphoglycerate
TPD Triosephosphate Dehydrogenase P2G 2-phosphoglycerate
PGK Phosphoglycerokinase PP Phophoenolpyruvate
PGM Phosphoglyceromutase PY Pyruvate
ENL Enolase P3G 3-Phosphoglycerate

properties was a very tedious effort. However, it took around 10 lines of code to formally define and verify each
theorem related to the above case studies in HOL4, which clearly illustrates the usefulness of our foundational
work. We have shown that our formalization is capable of modelling molecular reactions using Zsyntax inference
rules, i.e., given a set of possible EVFs, our formalism can derive a final aggregate B from an initial aggregate
A automatically. In case of a failure to deduce B, the proposed method still provides the biologist with all the
intermediate steps so that one can examine the reaction in detail and figure out the possible cause of failure.
The evident benefit of our reasoning approach is its automatic nature as the user does not need to think about
the proof steps and which EVFs to apply where. However, the most useful benefit of the proposed approach is
its accuracy as the theorems are being verified in a formal way using a sound theorem prover. Thus, there is no
risk of human error or wrong application of EVFs. Finally, due to the computer-based analysis, the proposed
approach is much more scalable than the paper-and-pencil based analysis presented in [4].

8. Conclusions. Most of the existing formal verification research related to molecular biology has been
focussed on using model checking. As a complementary approach, the primary focus of the current paper
is on using a theorem prover for reasoning about molecular pathways. The main strength of this approach,
compared to existing model checking related work, is that the underlying methods and deduction rules can
also be formally verified besides the verification of a particular molecular pathway case. Leveraging upon this
strength, we formally verified two key behavioural properties of molecular pathways based on the Zsyntax
language, which presents a deduction style formalism for molecular biology in the most biologist-centred way.
Besides ensuring the correctness of our formalization of the Zsyntax operators and inference rules, the formally
verified properties also play a vital role in reasoning about molecular pathways in the sound core of a theorem
prover. The practical utilization and effectiveness of the proposed development has been shown by presenting
the automatic analysis of reaction involving TP53 degradation and metabolic pathway known as Glycolysis.

The proposed work opens the doors to many new directions of research. Firstly, we are enhancing our GUI
to add more biologist friendly features in it. Moreover, we are also targeting some larger case studies, such
as Dysregulation of the cell cycle pathway during tumour progression [16] and Fanconi Anemia/Breast Cancer
(FA/BRCA) pathway [26]. Another interesting future direction is to leverage upon the high expressiveness of
higher-order-logic and utilize calculus and differential theoretic reasoning to add reaction kinetics support in
our formalism.
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[20] R. Pelánek. Fighting State Space Explosion: Review and Evaluation. In Formal Methods for Industrial Critical Systems,

volume 5596 of Lecture Notes in Computer Science, pages 37–52. Springer, 2008.
[21] J. Pospchal and V. Kvasnika. Reaction Graphs and a Construction of Reaction Networks. Theoretica Chimica Acta,

76(6):423–435, 1990.
[22] A. Regev and E. Shapiro. Cells as Computation. Nature, 419:343, 2002.
[23] A. Regev and E. Shapiro. The π-Calculus as an Abstraction for Biomolecular Systems. In Modelling in Molecular Biology,

Natural Computing Series, pages 219–266. Springer, 2004.
[24] A. Regev, W. Silverman, and E. Y. Shapiro. Representation and Simulation of Biochemical Processes Using the pi-Calculus

Process Algebra. In Pacific Symposium on Biocomputing, pages 459–470, 2001.
[25] M. Rizzotti and A. Zanardo. Axiomatization of Genetics. 1. Biological Meaning. Journal of Theoretical Biology, 118(1):61–

71, 1986.
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Abstract. The advent of next generation sequencing technology has generated massive amounts of biological data at unprecen-
dented rates. Comparative genomics applications often require compute-intensive tools for subsequent analysis of high throughput
data. Although cloud computing infrastructure plays an important role in this respect, the pressure from such computationally
expensive tasks can be further alleviated using efficient data partitioning and workflow fusion. Here, we implement a workflow-based
model for parallelizing the data-intensive tasks of genome alignment and variant calling with BWA and GATK’s HaplotypeCaller.
We explore three different approaches of partitioning data, granularity-based, individual-based, and alignment-based , and
how each affect the run time. We observe granularity-based partitioning for BWA and alignment-based partitioning for
HaplotypeCaller to be the optimal choices for the pipeline. We further discuss the methods and impact of workflow fusion on per-
formance by considering different levels of fusion and how it affects our results. We identify the various open problems encountered,
such as understanding the extent of parallelism, using heterogenous environments without a shared file system, and determining
the granularity of inputs, and provide insights into addressing them. Finally, we report significant performance improvements, from
12 days to under 2 hours while running the BWA-GATK pipeline using partitioning and fusion.

Key words: genome alignment, variant calling, workflow fusion, data partitioning, performance

AMS subject classifications. 68M14, 92D20

1. Introduction. Next generation sequencing (NGS) [35] techniques have had widespread impact in fields
such as molecular medicine, evolution, human migration, DNA forensics, and agriculture by inexpensively
generating Giga base-pairs (Gbp) per machine day [29]. As sequencing throughput increases, the major research
bottlenecks are the time and computational resources demanded for managing, deciphering and analyzing
such large-scale biological data. Genome alignment and variant calling are the two most important stages
of comparative genomics applications, which often require weeks or months for downstream analysis of NGS
data. Thus, developing high throughput workflows for such data-intensive applications is an important and
challenging problem in bioinformatics.

In the last few years, many alignment and variant discovery tools have implemented sophisticated algorithms
to reduce computational resource requirement and run time for analyzing massive biological data [17, 15, 27,
20, 24, 13]. The extent of parallelism that can be achieved by adopting the optimization techniques focused
on multicore servers is often limited. For instance, Burrows Wheeler Aligner (BWA) [19] is one of the fastest
and most accurate alignment tools currently available. However, for our test data of 100-fold coverage of 50
oak individuals’ genomes the multithreading option provided by BWA did not significantly reduce run time.
Similarly, GATK’s SNP and indel calling walker HaplotypeCaller [8] generates more accurate results compared
to the other variant calling tools, but often requires weeks or months to analyze high coverage NGS data. For
example, HaplotypeCaller required 12 days to determine variants for our test data, and the in-built options for
runtime improvement on a multicore machine also did not considerably reduce run time.

As the underlying algorithms of both tools support coarse-grained parallelism, the trade off between accuracy
and speedup can be mitigated by creating a parallelizable workflow [14]. Such a workflow can harness resources
from distributed systems by dividing the workload into independent tasks and executing the tasks parallely. In
this regard, one of the key factors responsible for achieving a considerable speedup is efficient partitioning of
data at the preliminary stage of the workflow. As BWA and HaplotypeCaller do not provide any method of
data partitioning, we explored different ways of doing so, some specific to a particular tool. For each tool, we
identified the best partitioning technique and tested the same for the entire pipeline. We also discussed several
open problems that are likely to be encountered while developing such data-intensive applications, particularly
understanding the scope of parallelism within an entire pipeline, finding the optimal partitioning value for
parallelism, and using a heterogeneous environment without a shared file system.

∗Corresponding Author. Email: semrich@nd.edu. All authors are affiliated with the Department of Computer Science and
Engineering at the University of Notre Dame, Notre Dame, IN, USA.
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For BWA, we partitioned the data following granularity-based and individual-based approaches. For
the former, we split the query file based on a predetermined optimal granularity value whereas for the latter, we
split it based on individual names. We observed that times taken for the alignment procedure in both approaches
were similar, but there was an additional cost incurred in the splitting step of the individual-based approach.
Here, each read from the query had to be compared with the barcode information, which ended up being time
consuming for approximately 140 million reads. Thus, granularity-based approach of data decomposition was
efficient for parallelized execution of BWA.

The second stage of the pipeline involved variant calling using HaplotypeCaller. Similar to BWA, we tested
granularity-based and individual-based approaches for the input data containing alignment information in
BAM format [20]. In addition to that, we adopted a new method, named alignment-based partitioning.
Here, we first split the reference file into multiple bins, each containing unique contigs. We then split the
concatenated SAM output of BWA into smaller files, each having alignment information pertaining to a reference
bin. We then run HaplotypeCaller for a pair of sorted BAM file and its corresponding reference bin. Contrary
to the other two approaches, the alignment-based approach caused a significant run time improvement for
HaplotypeCaller as the search space was considerably reduced while preserving all required data in smaller
reference files. The overall run time of the pipeline for genome mapping and variant calling, which earlier took
approximately 12 days, was now drastically reduced to 2 hours.

Makeflow was used as the workflow description language and execution engine. Makeflow allows for the
description of static DAG workflows. Work Queue was used as the batch execution engine. It implements the
master-worker framework. With Work Queue a determined number of workers can be initialized and used,
allowing for caching between jobs on the worker.

After exploring the parallelism within each component of the pipeline, we merged the pipeline into a
single workflow to explore the effects of workflow fusion. We define workflow fusion as the process of merging
two sequential workflows into a single workflow that takes advantage of caching, elimination of choke points,
and higher throughput using stacked partitioning methods. Here, we also explored how different partitioning
methods perform within a single fused workflow, and discuss how workflow fusion can apply in data-intensive
pipelines often found in bioinformatics.

2. Methods.

2.1. Overview of Genome Alignment and BWA. The millions of short reads generated by next gen-
eration sequencing techniques are usually compared to the genome of a model organism, known as the reference
genome, for further biological analysis. One accurate means of genome comparison is genome alignment. In
Fig. 2.1, after aligning sequences A and B, the vertical bars denote the positions of matches whereas the hy-
phens represent insertions or deletions, commonly known as indels. There are two major categories of mapping
algorithms. The first implements the Burrows Wheeler Transform (BWT) [3] for data compression, and the
second method is based on hashing to speed up alignments. Depending on the genome size, the entire alignment
procedure may take several days to compute similarity between two given sequences. For instance, short read
alignment tools like MAQ [22] and SOAP [26] typically require more than 5 CPU-months and 3 CPU-years,
respectively, for aligning 140 billion base pairs (Bbp) [18].

Fig. 2.1. Genome alignment between sequences A and B showing matches, mismatches, and indels

One of the widely used alignment tools, Burrows Wheeler Aligner (BWA) employs the Burrows Wheeler
Transform (BWT) algorithm to align short queries with low error rate as well as long queries with higher
error rates. BWA is light-weight, supports paired-end mapping, gapped alignment, and various file formats,
like ILLUMINA [4] and ABI SOLiD [12]. The default output format for all its algorithms is SAM (Sequence
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Alignment Map), which can further be analyzed using the open-source SAMtools package and others to visualize
the alignments and call variants [20].

2.2. Overview of Variant Calling and HaplotypeCaller. Variants are allelic sequences that differ
from the reference sequence by a single base pair or a comparatively longer interval. In Fig. 2.1, at the fifth
position of the aligned sequence there occurs a mismatch or single nucleotide polymorphism (SNP). SNPs can
account for the variation in phenotypic traits and disease susceptibility among different individuals. They can
also serve as markers in genome wide association studies (GWAS) and help in identifying genes associated with
various traits or diseases. The performance of a variant calling tool is largely dependent on the quality and
coverage of sequencing data. Popular variant calling tools like SAMtools and MAQ use a Bayesian statistical
model to evaluate the posterior probability of genotypes.

GATK employs similar, yet more sophisticated Bayesian algorithms. For our experiments we used GATK’s
HaplotypeCaller walker because of its high sensitivity. HaplotypeCaller functions by indexing the input set and
creating walkers to locate variations between the query and reference. Once a difference is detected, it performs
local assemblies to fill gaps or correct mistakes. Though it generates accurate results, it is less frequently used
as it takes a long time check more variants, both indels and SNPs, for a given sequence. To remedy the slower
performance, we opted for parallel execution of its subtasks.

2.3. Framework of the parallelized pipeline. For our active projects, BWA (version 0.7.5) and GATK’s
(version 2.5-2) SNP and indel calling walker HaplotypeCaller produced the best biological results. As seen in
Table 4.5, the method of genome alignment, preparation of inputs for subsequent variant calling, and deter-
mination of variants using these tools in a sequential order took 12 days to complete. Many newly developed
variant detection tools, including GATK’s HaplotypeCaller improve genotype calling by increasing runtime [33],
which is a major bottleneck.

A possible approach to address this problem is to develop efficient algorithms or data structures to reduce
the search space during the computationally expensive task of alignment or variant calling [21]. Considering
the massive size of NGS data and the considerably high computational resource requirement for their analysis,
parallelizing the tools using a workflow-based model that can harness resources from clusters, clouds, and grids
is a more tractable solution. We conceptually divided up genome alignment and variant discovery, and used
the Makeflow [38] language to define each subtask along with its dependencies. Makeflow can employ various
systems, including multi-core machines, batch systems like the Sun Grid Engine (SGE) [9] and Condor Pool [28]
to execute the individual tasks. For our experiments, we enabled Makeflow to use the Work Queue [2] master-
worker framework as an alternative scalable framework to process data across clusters, clouds, and grids. The
Work Queue framework also handles all data transfers and can cache files when running jobs remotely.

We identified that a key feature for assuring improved run time during parallelization is efficient partitioning
of data. We adopted different approaches of data partitioning for BWA and HaplotypeCaller and compared
and contrasted each combination using Work Queue-derived resources.

• For granularity-based partitioning in BWA, we tested the workflow by varying the number of
partitions and the size of each partition. We determined the optimal granularity value or partition size
to be the one for which run time was the lowest. For our query data containing approximately 140
million reads, splitting it into smaller chunks such that each contained 200000 reads proved to be the
optimal choice. The splitting resulted in the generation of 715 smaller files, which were then used for
running BWA.

• For individual-based partitioning in BWA, we used coarser granularity by dividing the pooled data
into multiple files, each corresponding to an individual. As our data comprised genomic sequences of
50 individuals, we divided it into 50 files based on individual names.

Fig. 2.2 illustrates the workflow of these approaches when applied to BWA. The split function refers to the
creation of smaller query files based on a granularity value (for granularity-based partitioning) or individual
names (for individual-based partitioning). In both cases, we assigned the task of running BWA on each
pair of small query data and reference data to a work queue worker. At the completion of alignment phase, we
added read group and platform information to each BWA output (SAM file) and compressed them into their
sorted and indexed binary versions (BAM) to be compatible with HaplotypeCaller.
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Fig. 2.2. Framework of granularity-based and individual-based data partitioning approaches in BWA. N=715 for
granularity-based and N=50 for individual-based. At the end, the output files (SAM format) of BWA were joined to form
a single file containing all the alignment information.

Fig. 2.3. Framework of granularity-based and individual-based data partitioning approaches in HaplotypeCaller. N=715
for granularity-based and N=50 for individual-based. The reference file and each sorted and indexed BAM file were sent to a
worker for executing GATK’s HaplotypeCaller. Outputs of HaplotypeCaller in VCF format were joined to create a single output
file.

In the next phase of the pipeline, we tested three ways of partitioning mapped data for variant calling using
HaplotypeCaller.

• For granularity-based partitioning, similar to BWA, we split the aligned data for HaplotypeCaller
on the basis of a determined optimal granularity value.

• For individual-based partitioning, we split the aligned data based on individual names, resulting
in 50 smaller files.

• For the new approach, called alignment-based partitioning, we partition the SAM file based on
alignment information. We first split the reference file into multiple smaller files, each having a fixed
number of unique contigs. For each small reference file, we split the pooled SAM file such that the
smaller SAM file would contain alignment information of reads corresponding to the contigs of that
particular reference subset.

Fig. 2.3 depicts the workflow for executing parallelized HaplotypeCaller using granularity-based and
individual-based approaches. Fig. 2.4 shows alignment-based data partitioning implemented in Haplo-
typeCaller. For each approach, we executed HaplotypeCaller for a pair of smaller sorted BAM file and the
reference sequence on a work queue worker. The output of HaplotypeCaller contained variant information in
VCF format [5]. In the final step of the pipeline, we concatenated individual VCF files into a single VCF file
containing variants for the entire population, with which we began the analysis. As we will discuss in Section
3, granularity-based and alignment-based data partitioning were the most efficient approaches for running
the parallelized pipeline for BWA and HaplotypeCaller, respectively.
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Fig. 2.4. Framework of alignment-based data partitioning approach in HaplotypeCaller. The reference file was split into
bins and the SAM file was split based on the contigs in the bins to which the reads aligned. Each pair of smaller reference bin and
its corresponding BAM file were then sent to a worker to run GATK’s HaplotypeCaller.

Fig. 2.5. Framework of the optimized pipeline incorporating granularity-based BWA and alignment-based HaplotypeCaller.
It also includes the intermediate stages of adding read groups to SAM files and converting them to their sorted and binary formats.

2.4. Makeflow and Work Queue. Makeflow is a workflow engine that allows for the expression of static
DAG (Directed Acyclic Graphs) workflows. Makeflow uses a straight-forward syntax for describing each task
within a workflow. This syntax requires a list of all input files, a list of all output files, and the command to run
on these input files. Makeflow requires that all files, both explicit in the command and implicit requirements,
are listed. Requiring all files to be mentioned allows the task to be sent to any platform that supports the
executable. When the makeflow is executed, only tasks whose required input files exist are sent for execution.

Work Queue is a master-worker job execution engine that is used for this project. With the Makeflow that
describes the workflow, execution is started by creating and broadcasting a Work Queue master. This master
then waits for worker and distributes jobs as available to keep the workers busy. Workers are created either at
a local machine, or by submitting multiple workers at once to a batch system such as Condor or SGE. Once
these workers connect, jobs are sent and the files required are transported and cached. This strategy is key as
it allows for a file to be sent only once to each worker and then reused for every subsequent job sent to it.

Within a single workflow, the benefits of file reuse are evident, but as soon as the workflow ends the caches
are cleared for security and efficient use, as leaving files on remote systems is to be avoided. Therefore, to utilize
the cache the workflow must be fused into one workflow, where caches are used consistently within a single
workflow.

3. Workflow Fusion. We define workflow fusion as the idea of using information about the software and
the computing systems, which are involved in the execution of a workflow, to accelerate a set of sequential
but interrelated workflows. These cross workflow optimizations fuse the previously independent workflows into
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Fig. 3.1. The figure illustrates how two merged workflows, A and B, utilize the same cache controller. In practice this is
done using Work Queue, where all files in a Makeflow are aggressively cached. When separate, the two workflows’ caches are
independent and can not be used between each other. However, when the control of that cache is shared, previously transferred
files can be utilized.

one. Though this causes less flexibility in how the workflows are used, the improvements can be worthwhile.
As we look at ways in which workflow fusion can benefit performance, it can be noted that different methods
require different levels of knowledge of the workflows and difficulty in the depth of fusion. We explored full
workflow caching, which was done automatically by concatenating makeflow, choke elimination, which required
understanding how two workflows can be efficiently partitioned, and full fusion, in which we manually merged
two divergent partitioning techniques for acceleration.

3.1. Full Workflow Caching. A basic approach of workflow fusion is full workflow caching. This method
relies on a single manager of tasks and data that allows for better data management. Although Work Queue as a
system aggressively caches all files that are sent to a worker, no caching occurs between independent workflows.
By fusing the workflows, we take full advantage of previously sent data that are useful for multiple steps such
as reference information. Fig. 3.1 shows the organization of the cache controller, and how merging them unifies
the controller. This is the most basic form of workflow fusion, as all that is needed is to merge two makeflow
files together and check that the references and input and output files are consistent to maintain the logical flow
of the newly created workflow.

In this form of workflow fusion, we rely on the workflow execution engine for the performance improvement.
This method is the easiest to implement, and its benefits can be seen at all levels of workflow fusion, as illustrated
in Fig. 3.2. This benefit however, is negated if files are modified between workflows. For example, the base
reference is split during the alignment-based partitioning for GATK, and is no longer recognized by Work Queue
as a cached file. Originally, the alignment-based GATK benefitted by limiting the data that needed to be
transferred [32], but with full workflow caching each new smaller piece of the reference is sent and the benefit
of the cached reference is lost. Thus, combining two workflows presents challenges when the previously used
partitioning scheme may no longer be the optimal solution of the fused workflow.

3.2. Elimination of Choke Points. A choke point is simply a location in the workflow that requires
all threads of computation to converge. Similar to a barrier operation in traditional parallel computing, choke
points hinder computation by stopping all concurrency until the slowest serial task completes. The effort of
eliminating these choke points is the second method of workflow fusion. When eliminating choke points, an
effort is made to alleviate traffic where data converges on a single node and is redistributed in some form.
Although caching can limit some of the outgoing traffic from later partitioning steps, there is still a lot traffic
that is incurred sending files in and out of these choke points.

Because choke point elimination strives to take advantage of files already distributed, it is important to
understand how to convert the results of the previous workflow into the inputs of the next workflow. Such
transformations are crucial, since they can be applied directly to the data. A clear example of a transformation
is the sorting of aligned results prior to starting variant calling. Prior to fusion, all of these processes were
sequentially completed, but performing a transform as part of the prior step allows avoiding expensive traffic
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Fig. 3.2. Framework of the Cache Fused Concept. The pipeline comprises the BWA step, intermediate conversion steps for
adding read groups, converting SAM files to their sorted and indexed formats, and the GATK step. The reference used by GATK
is the same as that used in BWA, allowing for it to be cached at the worker and not sent as additional traffic.

Fig. 3.3. Framework of the Choke Elimination Concept. As can be seen here, the removal of intermediate data choke points
allows computational threads to progress further through the workflow without needing to wait for slower threads to finish and
communicate with the master. This lowers the amount of data the master is required to deliver at once and allows it the transfers
to be offset based on when they arrive.

Fig. 3.4. Framework of the Merged Partition Concept. As can be seen here, the conversion step appears prior to the mapping,
but could go either before or after depending on what state the inputs need to be. It is also useful to note how, though as simple
map is used here, any process that relates two partitioning methods could be added as long as it does not require coalescing the full
data set.
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to converge the data on one system.
This is done most clearly by utilizing the partitions of the previous workflow as the partitions of the

subsequent workflow, as shown in Fig. 3.3. Using established partitioning eliminates intermediate partition
transfers, and allows independent partitions to continue executing without waiting for slower branches. The
cost of this approach is that both workflows must be able to utilize this partition with acceptable performance. If
the two different workflows do not share a common suitable partitioning scheme, we can utilize the information
about the workflows to potentially find a more appropriate hybrid method.

3.3. Merged Partitioning. Finding a hybrid partitioning scheme requires knowledge about how different
workflows interact and therefore how they could be optimally partitioned. Unfortunately, it is not always
obvious how to do such divisions. For example, alignment-based partitioning is best for GATK but this requires
performing alignments using BWA. One compromise is to maintain BWA partitions utilizing individual-based
partitioing in BWA, and then partioning each individual utilizing the alignment-based. Although this is a
basic method to merge partitioning schemes, the idea can be extend to any method that relates one set of inputs
to another, as shown in Fig. 3.4.

When successful, applying these ideas to a set of workflows alleviates the time and stress on the system,
while allowing faster machines to process more without having to wait and proceed in lock step with remaining
tasks.

3.4. Issues that may arise with workflow fusion. Though performance is often improved by melding
multiple workflows together, there are several pitfalls. The first is that as the workflows become more inter-
twined, debugging becomes more difficult to monitor, understand, and fix. Undetected failures in different
states produce incorrect output, which could have occurred at any of the fused processes. This issue can be
exacerbated when workflows operate at different stages concurrently. For this reason a clear understanding of
what errors may occur within the different processes and how to handle them is paramount. The second pitfall
is some methods of partitioning, or combinations of partitioning methods, may not accelerate the workflow or
be feasible due to dependencies (e.g., alignment-based GATK drawn from BWA output). When this occurs
more time must be spent understanding and writing appropriate transformations.

4. Results. For our experiment, we aligned and detected variants for 50 Quercus rubra (northern red
oak) individuals’ ILLUMINA HiSeq RAD [30] data with over 100-fold coverage. The reference sequence for
this non-model species contained approximately 400000 individual loci. The system used for analysis consisted
of a cluster of 26 machines, each with 8 cores and 32 GB RAM. This allowed us to use up to 208 (26 × 8)
workers in the cluster. To illustrate our base run time, BWA (single end) required about 4 hours to complete
the alignment procedure sequentially, and GATK’s HaplotypeCaller required 12 days to detect SNPs and indels.
Run times for BWA does not include the time for indexing the reference, which can be done once and re-used for
each alignment task. Next we will discuss different techniques explored for partitioning data to find an optimal
solution.

4.1. Partition. Prior to running the experiments, it was important to understand the impact the selected
partitioning method would have on the overall runtime.

The performance of the algorithm with each partitioning method is important, but if several methods
perform similarly within a process the deciding factor is the impact of the method used on the data organization.
As such, we developed several parsing scripts in Perl that allowed us to partition the data using a common
language for comparison. To find an accurate time for each, the scripts were run 5 times with the reported run
time being the average of those runs.

First we explored the two methods that were discussed for BWA. Granularity-based partitioning performed
well, by only requiring 13:23 minutes to parse the entire data set into 715 partitions. This was expected, as the
partitioning done here was superficial and only relied on the number of reads that were to be placed in each
file. The second method, individual-based was expected to be considerably slower as it needed to map its
barcodes to individual names for subsequent splitting. However, individual-based partitioning required only
18:39 minutes to create 50 partitions. A comparison of results can be seen in Table 4.1.

Next, the different partitioning methods that were used in GATK were explored. Granularity-based ap-
proach required 4 hours 52 minutes to divide the aligned data from BWA up to 2000 partitions. Individual-
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Table 4.1

Comparison of runtimes for different approaches of data partitioning in BWA. Due to lower splitting time, granularity-
based partitioning was the best approach for BWA. However, the two approaches’ similar times make them good candidates for
the pipeline.

BWA Runtime (DD:HH:MM:SS)
Partitioning Split Align Concat Total
Individual 18:39 17:58 22:26 59:23
Granular 13:23 21:11 21:10 55:44

Table 4.2

Granularity-based BWA requires less time when more workers are in use. For the test data set (Data 1), due to the overhead
of additional data transfer, the system could not scale well beyond 20 workers. This should not be considered as a shortcoming of
the framework, which achieved higher speedup and efficiency with more workers when tested on a larger query data set (Data 2)
comprising 60 individuals.

Runtime (HH:MM:SS)

Workers
Data 1 Data 2

Time Speedup Efficiency Time Speedup Efficiency
2 3:01:57 1.94 0.97 8:46:13 1.80 0.90
5 1:14:30 4.77 0.95 3:33:45 4.45 0.89
10 1:08:42 5.19 0.51 1:48:10 8.78 0.87
20 59:00 5.98 0.29 55:34 17.23 0.86
50 57:06 6.19 0.12 33:17 28.27 0.57
100 56:00 6.30 0.06 20:52 47.41 0.47

based required 27:35 minutes and produced 50 partitions, for 50 individuals. The following partitioning ap-
proach was based on alignment-based partitioning that was discussed earlier. Alignment-based splits the
reference and entire SAM query file into 10 partitions based on alignment information. This method required
15:41 minutes to perform. A comparison of results can be seen in Table 4.3.

4.2. Tool Improvement. Once a splitting script was created implementing each of the above-mentioned
partitioning schemes, BWA and HaplotypeCaller were executed using 100 workers. Table 4.1 presents the run-
times for BWA using different data partitioning approaches. For BWA, the alignment and concatenation stages
of granularity-based and individual-based approaches required similar time. The step of splitting the query
in individual-based partitioning was a bottleneck due to the higher look up time to match an individual’s
name from barcode information. The granularity-based approach did not involve this searching step and
hence was more efficient (Table 4.1: shown in bold font). For HaplotypeCaller, preparation of input comprised
the times for splitting the concatenated SAM file based on each approach, adding read group information, and
converting SAM to sorted and indexed BAM formats. Although there was an additional cost in splitting the
SAM file for alignment-based partitioning, the overall runtime was significantly lower (Table 4.3: shown in
bold font) than the other two approaches.

After inferring granularity-based approach to be the best for BWA, we tested its run time behavior from
2 workers up to 100 workers. Fig. 4.1 shows how the framework performed with increased number of workers.
As more workers were used, the increase in performance diminished rapidly. For the test data set and machine
configuration, we achieved the best performance with 100 workers, after which adding more workers did not
improve run time. However, when compared to 20 workers, the 50 and 100 worker iterations had only a minor
performance improvement, showing the system did not scale linearly. This was due to the additional time
incurred in data transfer, particularly in sending all the query files, reference and index files to each worker,
which caused an overhead as we added more workers. Fig. 4.1 supports this fact as we can see the amount of
data sent and the time required for it increased with more workers. Fig. 4.3 presents a histogram for running 715
tasks in each stage (bwa aln and samse) of BWA. It gives an overview of the overall behavior of granularity-
based BWA tasks when allowed to use 100 workers. Similarly, Fig. 4.4 provides a visualization of the run
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Table 4.3

Comparison of runtimes for different approaches of data partitioning using GATK’s HaplotypeCaller. Due to overall shorter
coupling time alignment-based partitioning was the most optimal choice. The HaplotypeCaller phase was also fastest due to
reduced search space by limiting the number of loci in the reference at each partition. The quick HaplotypeCaller performance for
granularity, similarly, comes from limited loci available during variant calling.

GATK Runtime (DDd HH:MM:SS)

Partitioning
Coupling Variant

Concat Total
Split Other Calling

Individual 27:35 3:59:10 2d 5:18:23 9:00 2d 9:54:08
Granular 4:52:34 7:06:25 41:51 5:30 12:46:20
Alignment 15:41 1:03:47 24:36 4:00 1:48:04
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Fig. 4.1. Runtime of granularity-based BWA for increasing number of workers. The time accounts for the parallelized
alignment step of BWA, and does not consider the times for splitting the query sequence or concatenating the outputs. The
run time gradually decreases with more workers. For large number of workers the overhead of data transfer hinders further
improvement.

time behavior of the same approach for 100 workers. The number of tasks submitted and completed followed a
similar pattern until the former reached a plateau denoting submission of all tasks while there were some tasks
yet to be complete. The number of tasks running followed a steady line due to the use of a dedicated cluster.
We also tested the framework for another data set (Data 2 in Table 4.2) having a larger unique query data.
Fig. 4.2 shows the transfer of necessary files from the master to the workers over the network. This feature is
particularly useful in an environment without a shared file system, as in our case. The transferred shared data
can be cached at the workers to be re-used by the workers.

As seen in Table 4.3, for HaplotypeCaller, the alignment-based approach was most efficient. While
splitting the SAM file into smaller SAM files, based on the contigs to which the reads aligned, we optimized the
method of looking up the reference sequence to detect variants. Instead of searching the entire reference file, we
searched through a small section of the reference sequence that was guaranteed to contain information for all
the alignments in the small SAM file. During splitting of the SAM file we also ignored the entries that did not
align to contigs, reducing the number of elements to process. The other two approaches did not have the scope
of reducing the search space during variant detection. Also, the overhead of sending the entire reference file to
a worker for each task was responsible for increased run times in individual-based and granularity-based
approaches of HaplotypeCaller.

4.3. Pipeline Improvement. Based on the aforementioned results, we generated an optimized pipeline
for genome alignment and variant calling combining granularity-based BWA and alignment-based Hap-
lotypeCaller, as shown in Fig. 2.5. Fig. 4.3 presents the average time taken by a task running BWA and
Haplotyper. This time represents the generalized functioning of the pipeline and is independent of the underly-
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ing batch system. On the other hand, Table 4.4 provides the runtimes specific to our pipeline which employed
100 work queue workers in a heterogeneous, distributed system. It shows the breakdown of run times for indi-
vidual components of the pipeline. The efficient data partitioning followed by parallelization of tasks reduced
the runtimes of each phase, resulting in an overall runtime improvement from approximately 12 days to under
3 hours.

4.4. Workflow Fusion. Table 4.5 compares the times when running the individual tools sequentially to
that when run in our optimized pipeline as well as the workflow fusion-based pipeline.

The first method that we performed was a full cache fused workflow. This was done by concatenating the
Makeflow files for each workflow together. Following this, all intermediate conversion processes were added,
and the fused makeflow was run utilizing Work Queue as before. We were able to acheive a result of 2 hours
and 42 minutes, as shown in Table 4.5. This is not surprising as it is close to the seperate disjoint pieces of
the workflow, and used individual-based BWA followed by alignment-based HaplotypeCaller. This result
verifies concept, and does not hinder the performance of the workflow.

The second method implemented was the choke point elimination by matching partitioning types. For this
we utilized the makeflows written using individual-based partitioning for both BWA and GATK. For the
intermediate processes, the concatenation of BWA and splitting of GATK were ommitted and the intermediate
steps of adding read groups and converting to sorted and indexed binary formats were applied to each individual.
This method completed in almost 2 and a half days,(Table 4.5) which is on the same scale as the BWA and
GATK seperate makeflow using individual-based partitioning. Individual-based paritioning was used,
as granularity-based is conceptually the same from BWA to GATK, but split into different partitions due
to the different organization of FASTQ and SAM files. This implementation improved the coupling of the
workflow by eliminating the join-split sequence used in the pipeline and cache fused. However, the results are
much slower, due to GATK’s performance on this partition method. The intermediate steps while faster, are
dominated by GATK’s slower perfomance using individual-based partitioning.
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Table 4.4

Run times of individual steps of the optimized pipeline using 100 workers. For BWA, the query data is split based on
granularity-based partitioning. The outputs of BWA, in SAM format, are then concatenated. This is followed by the coupling
stage which includes splitting the reference and concatenated SAM file based on alignment-based partitioning, adding read groups
(RGs), and converting SAMs to their sorted, indexed binary versions (BAMs). GATK’s HaplotypeCaller runs on the BAM files
and reference bins to generate VCF files, which are finally concatenated to contain variant information for the entire dataset. It
is important to note that conversion from SAM to BAM is the most expensive step. We address this problem using Workflow
Fusion.

Runtime (MM:SS)

BWA
Split Query 13:23
Parallelized BWA 21:11
Concat SAM 21:10

Coupling
Split Ref and SAM 15:41
Add RGs 11:10
SAM to BAM 52:37

GATK
Parallelized GATK 24:36
Concat VCF 4:00

Total 2:43:48

The final method implemented was the full partition merging of BWA and GATK. Beginning with the
makeflow for individual-based BWA, the concatenation step was removed, and each individual was then
split using the alignment-based method. Following the splitting for alignment-based, each new split had
the intermediate processes performed. This added a significant amount of tasks, with only a small amount of
additional overhead, as the inputs were smaller. This method was able to complete in 1 hour and 55 minutes
(Table 4.5). This was an improvement over the best results we were able to obtain utilizing the seperate
makeflows, and was a result of caching and higher number of available tasks. Specifically, nodes that took
longer now did not slow down the workflow. This higher level of granularity and better partitioning scheme
selection allowed for runtime improvement. The performance of the entire pipeline was improved by increasing
the concurrency and allowing coupling steps to be completed more quickly, as seen in Fig. 4.5. In Fig. 4.6, the
significant differences between the coupling steps of cache fused and partition fused are evident.

The interesting information that arises when using different workflow fusion techniques is the intermediate
steps. The three different methods that were outlined, do not necessarily apply well to all workflows. This
current workflow is a perfect example, because the overall runtime for choke elimination is considerably slower
than the pipeline described without fusion, the intermediate steps were faster. This can be seen in Table 4.6. It
is also interesting to note that additional splitting step for partition fused did not slow down the entire execution
more than it increased performance. However, when choke elimination was applied in conjuction with partition
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Table 4.5

Comparison of run times for sequential, parallel, and workflow fusion execution of the pipeline. CF stands for Cache Fused,
CE stands for Choke Elimination, and PF stands for Partition Fused. The run time for the parallelized execution represents the
times taken by the optimized pipeline for 100 workers. The intermediate coupling column describes the time spent transforming
data from BWA for GATK. The fused workflows were run using 100 workers, as can be seen by the conversion times workflow
fusion mitigates conversion and spends more time in computation.

Runtime (HH:MM:SS)
BWA Coupling GATK Total

Sequential 4:04:00 6:50:41 12d 00:00:00 12d10:54:41
Parallel 55:44 1:23:28 24:36 2:43:48
CF 2:42:49 2:42:49
CF + CE 2d 8:43:46 2d 8:43:46
CF + CE + PF 1:55:37 1:55:37

Table 4.6

Comparison of time spent in the coupling stages between BWA and GATK using different levels of workflow fusion. It is
interesting to note that time spent in partition fused splitting the data further increased the remaining intermediate steps enough
to mitigate the cost.

Coupling Runtime (HH:MM:SS)
Concat Split Convert Total

CF 9:11 15:41 1:42:09 2:07:01
CF + CE - - 1:07:00 1:07:00
CF + CE + PF - 18:52 39:36 58:28

fusion the resultant workflow performed well and aided the effect of partition fusion.
While applying these different optimization methods, we can clearly see that these methods can be applied

in a cumulative manner to the workflow. In fact, the three methods that were outlined have a hierarchy, with
the base method of cache fusion is built on by choke elimination, and choke elimination is used with partition
fusion. This set of methods is a preliminary look at methods of workflow fusion, and could likely be expanded
into different operations that could be either cumulative, as the methods presented, or mutually exclusive from
one or more methods due to workflow structure. Exploring workflow fusion with other workflow pipelines would
facilitate better understanding of workflow fusion methods.

Using this set of experiments, we were able to outline and show a set of operations for workflow fusion and
how they applied to a genomic pipeline. We were able to achieve a 40% improvement in performance from
the base pipeline. This improvement warrants further exploration of workflow fusion, and understanding how
different operations used in fusion affect the performance of a process. Though this concept was applied to a
genomic pipeline in this paper, the concepts discussed are applicable to different sectors of research.

5. Open Problems. Understanding the extent of parallelism: One of the most important factors
while developing a parallel application is understanding if the underlying algorithm exhibits potential for par-
allelism. In each step of this pipeline, individual tasks were independent, without one task having to wait for
the completion of another, but the data decomposition was critical. In this context, the commands written
in the Makeflow script represented the order of execution of tasks as a directed acyclic graph (DAG) [11] but
additional work was needed to do it in the best manner. As shown in our results, adding more workers does
not guarantee reduced run time. Resource contention, lack of sufficient tasks to exploit the availability of all
workers, few tasks with abnormally long run times, network traffic, and higher data transfer times often cause
an overhead, especially in such data-intensive parallel applications.

Using a heterogeneous environment without shared file system: The procedure of data transfer
while executing tasks in a distributed environment becomes challenging in the absence of a shared file sys-
tem. The use of work queue workers mitigates this problem as they solely depend on the files transferred
by the masters (Fig. 4.2), as specified in the makeflow rules. For even larger data-intensive applications that
require various clusters to scale up their performance, a hierarchical implementation of work queue comprising
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a multi-slot worker and a foreman [1] can reduce the overhead of data transfer, causing an improvement in per-
formance. For our application, because the shared data (reference file) was comparatively smaller than unique
data (sequence/BAM), we did not benefit from these features, but others may.

Determining the granularity value: One of the important challenges in developing parallel programs is
determining the optimal granularity to balance the times spent on communication, particularly the overhead due
to file transfer, and computation. Earlier studies [31] have shown that a significant improvement in performance
can be achieved if the number of tasks and size of each task can be optimized. This trade off is based on the
underlying algorithm as well as the configuration of the machine on which the program runs. For a heterogeneous
system like the Condor pool, care should be taken while determining the optimal value of granularity; however
we have shown our framework is consistent under load and will use the maximum parallelism available.

6. Related Work. Genome mapping and assembly have traditionally been refa- ctored using MPI (Mes-
sage Passing Interface) [6] or MapReduce [7] frameworks. ClustalW-MPI [23] is a version of the multiple
sequence aligner ClustalW [37] that uses MPI to run on distributed memory systems. CloudBurst [36] is an
early application that implements the seed-and-extend genome mapping algorithm on a Hadoop [10] based
MapReduce framework. Although CloudBurst can align millions of reads in a reasonable time, it takes longer
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to process billions of reads when compared to a multi-core version of another cloud-based variant calling tool
Crossbow [16]. Further, CloudBurst identifies all possible alignments in a read, which is often not a requirement
in current comparative genomics projects. Crossbow employs Hadoop to parallelize Bowtie for alignment and
SOAPsnp [25] for variant calling. It does not natively support gapped alignment. SEAL [34] is another scalable
aligner based on BWA and Picard that uses the MapReduce framework for parallelization of tasks.

Although the MPI framework allows execution of parallel programs, it requires complicated software de-
velopment for refactoring tools. With Hadoop’s MapReduce-based parallelization, it is not easy to tune the
parameters for granularity, as was required in our experiments. Hadoop implements its own method of map-
ping tasks and reducing them on completion. Also, our application was capable of dynamically scaling up or
down the workers as needed, which is difficult to implement in Hadoop’s MapReduce-based framework. Finally,
unlike Hadoop, our developed framework could harness resources from a heterogeneous system. Our system
supported these features by implementing the Makeflow language and Work Queue master-worker framework
to generate a parallelized workflow for comparative genomics applications. In this paper, we also analyzed the
effect of different data partitioning approaches on the runtime of mapping and variant calling tools. Although
we considered BWA and HaplotypeCaller as test cases, the approaches of data partitioning presented in this
paper are generic and can be implemented to improve the performance of other bioinformatics tools. Particu-
larly, the tools whose underlying algorithm or data structure is similar to our test tools, can potentially benefit
from our proposed approach of optimized data partitioning. We observed that our optimized pipeline could
further benefit from workflow fusion which merges diverse sequential workflows for optimization. We explained
the impact of caching, eliminating choke points, and stacked partitioning methods on performance while im-
plementing workflow fusion. Again, this idea is highly applicable in developing parallelized workflows for any
data-intensive application. Moreover, the discussion on the possible barriers and the solutions to overcome them
is useful for adapting parallelized workflows on ad hoc clouds. This in turn can aid the development of efficient
bioinformatics applications that can harness resources from a heterogeneous, distributed environment.

7. Conclusion. We significantly improved the performance of a variant discovery bioinformatics pipeline
by developing a new workflow to run parallely on a heterogeneous, distributed system. We identified that
one of the important factors to enable efficient parallelism is optimized partitioning of data. In this regard,
we discussed different techniques of data decomposition, namely granularity-based, individual-based, and
alignment-based partitioning. We considered BWA for genome alignment and GATK’s HaplotypeCaller for
SNP and indel calling as our test tools. We tested both the tools for all the approaches of data partitioning and
concluded that granularity-based partitioning was the best approach for BWA. Unlike individual-based
partitioning, this method did not require the overhead of comparing each read in the query with the barcode
information to find a matching individual name. For HaplotypeCaller, alignment-based approach was proved
to be the most efficient technique. By splitting the reference file and the SAM file accordingly, it reduced the
search space to a considerable extent, which in turn lowered the runtime from days to hours. After selecting
the optimized data partitioning approach for each tool, we combined them into a pipeline framework that could
efficiently analyze NGS data in a substantially reduced time. For the test dataset comprising genomic data of
50 oak individuals, our optimized pipeline required approximately 4 hours when run parallely with optimized
number of workers, in this case 100 workers, as opposed to 12 days, when the tools were run sequentially.
Following our exploration of the pipeline, we applied the concepts discussed in workflow fusion to our optimized
workflow. After applying all of the concepts, we were able to achieve an execution time of just under 2 hours. We
further discussed the potential challenges that are likely to be encountered while parallelizing such data-intensive
applications and proposed a solution to each.
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PERFORMANCE COMPARISON AND TUNING OF VIRTUAL MACHINES FOR
SEQUENCE ALIGNMENT SOFTWARE
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Abstract. We explore the performance cost of virtualisation for the fast growing application domain of genomics. Traditionally,
scientific applications have been considered too high-performance to pay the performance cost of virtualisation. However, as the
demand for computing power for genomics is ever-increasing, the cloud can become an attractive way to meet the scaling challenge
presented by Next-Generation Sequencing (NGS). We seek to explore the feasibility of running an NGS pipeline in a cloud, and
in doing so consider two prevalent short-read sequence alignment programs, BWA and Novoalign. We executed those applications
in three separate open-source system virtualisation solutions: the KVM hypervisor, the Xen para-virtualised hypervisor, and
Linux Containers. We compare the runtime in each environment against the runtime of the same system without virtualisation
and measure the relative performance of each hypervisor. We investigate and reduce as much as possible any overhead, presenting
tuning suggestions for cloud implementers and users. Overall, we find that the overhead introduced by virtualisation can be reduced
to low single-digit percentages, a cost we believe to be more than acceptable, especially given that two of the three solutions, Xen
and Containers, exhibit near-zero overhead.

Key words: Sequence alignment, virtual machines, performance
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1. Introduction. The booming throughput of Next-Generation Sequencing (NGS) platforms imposes a
progressively larger burden on genomics computing infrastructures as that throughput can cause genomic data
to be generated faster than they can be consumed. For smaller sequencing facilities without a dedicated IT
staff, that growing requirement for data centre resources may move beyond the skill set of non-IT professionals.
In such cases, the effort of managing and processing information could inhibit researchers and clinicians from
making innovations in their own fields of expertise. Even for larger institutions, unpredictable demand and
high ownership costs can make the traditional enterprise IT model undesirable. Cloud computing is becom-
ing a natural solution to the problem of expanding computational needs, thanks to its low-cost, on-demand
nature and offloaded management [27, 25, 6]. For the bioinformatician or clinician, cloud computing can offer
a convenient, scalable alternative to traditional methods of managing computational resources. In particu-
lar, Infrastructure-as-a-Service (IaaS) cloud resources offer users nearly complete control over their computing
environment, allowing them to install an operating system of their choosing and run their applications natively.

The key enabling technology for IaaS cloud computing is server virtualisation, in which one partitions a
single computer’s resources into a set of virtual machines (VMs). The effort to virtualise systems has mainly been
fuelled by growing enterprise IT environments, where the primary benefits of virtualisation (isolation, flexibility
and density) help these environments scale more efficiently while consolidating costs. Cloud computing further
exploits those benefits at a larger scale and uses virtualisation to abstract computing resources as a utility
model.

The benefits of virtualisation do not come without cost. Fundamentally, some overhead is expected from
having an additional layer between the hardware and software. There are many approaches to system virtu-
alisation, including instruction emulation, para-virtualisation and hardware virtualisation (further details are
included in Sect. 2), offering a range of management features and performance costs to applications. Further-
more, those costs are affected by the configuration of each virtualisation technology, as well as the specific
application being run. As will be demonstrated throughout this work, many aspects of a system’s configura-
tion can impact virtualisation performance overhead in subtle ways. Thus, understanding the trade-offs and
differences between virtualisation technologies is important when one is deciding whether or not to move to the
cloud, which cloud platform to choose, or how to manage a virtualised data centre.

In this paper, we investigate three of the most popular open-source system virtualisation technologies: Linux
Kernel Virtual Machines (KVM) [15], Xen [3] and Linux Containers (LXC) [1]. While the kernel features that
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enable LXC are not a Virtual Machine Manager (VMM) or hypervisor in the strictest sense, LXC is increasingly
considered as a potential replacement for virtualisation, and for simplicity, we refer to all three technologies
as VMMs. This article extends our previous work on measuring the performance of sequence alignment ap-
plications in a virtualised environment [7]. In that work, we conducted synthetic benchmarks and measured
the performance overhead of virtualisation for the Burrows-Wheeler Aligner (BWA) and Novoalign sequence
aligners. We found that VM performance was not consistent across applications and that VMs could have up to
20% overhead for our sample workloads. In this work, we describe the results of performing the same measure-
ments on an additional class of hardware (a workstation computer with a different generation processor) and
move beyond default configurations to determine the source of the previously observed performance overhead.
Additionally, we tuned the VMMs to achieve the minimum possible overhead for the applications studied. We
found that after proper tuning and setup, the overhead for each VMM can be reduced to a nearly insignificant
value, with Xen and LXC exhibiting near-zero overhead and KVM showing 4% overhead for BWA and 2% for
Novoalign. The results were demonstrated to be relatively stable across both machine types considered.

2. Background.

2.1. Genomics Workloads. The most resource and time intensive step in many Next-Generation Se-
quencing (NGS) pipelines is often the alignment step, where short reads are mapped to a reference sequence.
In collaboration with a major genomics institution1 we have studied a production variant calling pipeline and
observed that alignment can take roughly 30% of the total execution time of the entire workflow. Therefore,
when one is looking to reduce costs or gain mobility by moving tasks to a cloud, it is important to consider
the effect of doing so on this critical component. It can be expected that various alignment programs may
utilise computing resources in a similar way, so we run two production-grade alignment packages to test this
hypothesis and derive conclusions that we intend to be representative of alignment programs in general. One
of the programs chosen is the Burrows-Wheeler Aligner [17] (BWA) and the other is Novoalign [2]. We chose
BWA as it is a popular open-source package and Novoalign as it is widely considered by many in the genomics
community to be the most accurate alignment program available [16].

2.2. Kernel-based Virtual Machines. Hardware assisted virtualisation (HAV) technologies provided
by different CPU vendors (e.g. VT-x from Intel or SVM from AMD) add extensions to the x86 64 instruction
set to readily support Virtual Machines. The Linux Kernel Virtual Machine (KVM) hypervisor utilises HAV
and serves as a good example of a hardware-assisted virtualisation platform.

In addition to being a demonstrative example of a VMM built using HAV, KVM is a valuable use case
as it is a natural choice for Linux VMs since it is included with the upstream Linux kernel. Furthermore,
KVM is widely considered the de facto standard for the open-source Infrastructure-as-a-Service (IaaS) cloud
management platform OpenStack2 and the virtualisation management platform libvirt.

2.3. Xen. Xen is considered a full Type I hypervisor, even the ‘host’ OS that has direct access to the
hardware and manages the other VMs runs inside a special VM called ‘Domain 0.’ Xen helped popularise the
concept of para-virtualisation, where a modified version of the operating system is run to avoid the unnecessary
redundancy and overhead that comes with providing a full system (e.g., having to virtualise x86 instructions
that are difficult to virtualise) to the guest OS [3].

Xen is an important use case because the most widely used public cloud IaaS platform, Amazon EC2,
is built on top of a modified version of Xen. While the results presented here may not be representative of
performance on EC2, Xen is still a popular hypervisor.

2.4. Linux Containers. Linux Containers (LXC) represent a different virtualisation paradigm that of-
fers less isolation than the other two VMMs introduced, i.e. all containers share the same operating system
kernel [26]. The advantage of sharing an OS kernel means that there is no device emulation and no duplicated
effort of running an OS on top of another OS. This method is not virtualisation in the usual sense, but con-
tainers can be used for many of the same reasons one would use virtual machines. The isolation provided by
LXC is stronger than usual OS process isolation, thanks to the use of cgroups [22] and kernel namespaces [14].

1The institution wishes to remain anonymous
2http://openstack.org
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Kernel namespaces allow one to have separate domains for certain kernel objects (i.e. processes, users, network
interfaces and mounts) and cgroups allow one to allocate and partition resources amongst different processes.

Container-based virtualisation is gaining popularity and acceptance, as evidenced by the successful open-
source project Docker [12].

3. Methodology.

3.1. Performance Measurements in Virtual Machines. Since a virtual machine does not have com-
plete control over the hardware, some care should be taken to ensure accurate measurements. One particular
problem for performance measurements is unstable timekeeping inside VMs [4]. It is easy to see that since a
VM time-shares with the host operating system, there will be more clock drift than expected for a physical
server. This drift tends to be unpredictable as well because it is dependent on the state of a live system (e.g.
how applications running on the hypervisor and other VMs use the system). As a simple example, consider a
VMM implemented using Intel’s VT-x HAV: when a virtual machine attempts a certain action (e.g. execute a
privileged instruction), it induces a VM Exit event. Control is then transferred to the hypervisor, which per-
forms some task related to the action and returns control to the VM. During this switch, the VM is not running
and a gap could be introduced in the VM’s virtual timestamp counter (TSC). While there are well established
techniques for minimising this clock drift (e.g. a para-virtualised clock synchronised for KVM, kvm-clock),
precise timing measurements in VMs are still difficult to obtain. For precise measurements, it is considered best
practice to use a stable reference outside of the VM [20]. While the timing measurements used in this work
are of a large enough scale for these effects to be considered insignificant, we use a 3rd party server to measure
timestamps so that the same clock is used for all measurements. For higher resolution timing, one could use
the hypervisor and a trapping mechanism (e.g. hypercall) as opposed to an external server.

3.2. Operating System Considerations. When benchmarking applications that use a large amount
of input data from the disk, it is important to be mindful of how these machines cache this data. If one is
using virtual machine images that are layered on top of an existing filesystem (as could be expected in a cloud
environment utilising the KVM hypervisor), then both the VM operating system and host operating system
could be caching data, depending on how the VMM is configured. Therefore, it is important to clear the buffer
cache between all data samples to ensure that each experiment starts in a similar state (one could also reboot
the machines to ensure a consistent state, but our experimentation has shown this to be excessive). In our
experiments, virtual machines were restarted and the buffer cache was cleared before each sample.

Most modern multi-processor architectures have their memory arranged in a Non-Uniform Memory Access
(NUMA) configuration. In a NUMA architecture, different processors/cores communicate with different regions
of memory at different speeds, with fastest access to ‘local’ memory and slower access to ‘non-local’ memory.
For optimal performance, it is clear that a process should only be scheduled to run on a CPU that has local
access to the process’s memory. Most modern OS schedulers are aware of NUMA, but one can still direct the
OS to only run a process on a certain set of CPUs by setting the process to have affinity for a set of CPUS
or ‘pinning’ it to those CPUs (e.g. by using the taskset command in Linux) [19]. Similarly, most VMMs offer
the ability to pin vCPUs to certain physical CPUs. In this study, pinning of virtual machines’ vCPUs was
considered in performance tuning to avoid negative effects from non-local memory accesses.

4. Experimental Set-up.

4.1. Hardware and Operating System. The experiments were performed on two classes of machines, a
Dell PowerEdge R720 server with dual-socket 8 core Intel Xeon E5-2660 ‘Sandy Bridge’ 2.20GHz CPUs (3.0GHz
Turbo boost) with 20MiB of cache and a homebuilt workstation computer with dual-socket 6 core Intel Xeon
E5645 ‘Westmere’ 2.40GHz CPUs (2.67 GHz Turbo boost) with 12MiB cache. Since multiple machines were
available, experiments were repeated on two identical Dell R720 machines to rule out machine-specific bias and
there was no discernible difference between the two (only one workstation class machine was available, so we
could not perform the same validation). The Dell servers have 128GiB of DDR3-1333MHz memory and 8 1TiB
ST91000640SS 6.0Gb/s SAS drives arranged in a RAID 1+0 array. The RAID controller used (PERC H710P
Mini) has a 1024MiB battery backed cache, with the disk array set to the default ‘write back’ mode. This
server configuration can be considered a typical enterprise class large-memory server one could expect to find
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Table 4.1

Hardware specifications

Machine System Name CPU Memory Storage

Machine 1 Dell PowerEdge R720 Dual-socket
Intel Xeon
E5-2660

128GiB
DDR3-
1333MHz

8x1TiB
6.0Gb/s SAS
RAID 1+0

Machine 2 ‘Homebuilt’ worksta-
tion

Dual-socket
Intel Xeon
E5645

32GiB
DDR3-
1333MHz

1TiB
6.0Gb/s
SATA

in a data centre or research cluster. The workstation has 32GiB of DDR3-1333Mhz memory with a single 1TiB
ST1000DM003 6.0Gb/s SATA hard drive. Throughout this work, the Sandy Bridge Dell servers will be referred
to as ‘Machine 1’ and the homebuilt Westmere workstation as ‘Machine 2.’ The hardware specifications of each
machine are summarised in Table 1.

The host operating system used was Ubuntu 12.04 LTS (kernel version 3.5.0-45-generic). This platform was
chosen as it is nearly ubiquitous in IaaS cloud environments and VM images containing this operating system
are available by default from most, if not all, major IaaS public cloud providers.

4.2. Virtual Machine Configuration. The libvirt3 API and toolchain (e.g. the virsh utility) were used
to manage VMs for all platforms. The VMs started as OpenStack instances based on the 12.04 LTS Ubuntu
cloud image,4 and were afterwards the exported to be run separately outside of OpenStack. Both of the CPUs in
the different machines support Intel VT-x HAV technology with VT-d and they also have support for Extended
Page Tables (EPT). Unless stated otherwise, each VM was allocated 8GiB of memory and 4 vCPUs.

For each VMM, we first ran experiments with default configurations and then attempted to obtain max-
imum performance (shortest run time for the alignment applications) by tuning VMM settings for improved
throughput. In the VMM configurations specified as ‘default,’ limited performance tuning was performed, i.e.
ensuring all supported cpu features were available to VMs’ vCPUs, using para-virtualised drivers wherever
possible (e.g. virtio for KVM and the para-virtualised version of Xen).

4.3. Simulated Read Data. In order to ensure that differences observed were not caused by variance
in input data, all of the results presented below used an identical copy of the input dataset. The input data
consisted of paired-end 75bp reads sampled uniformly from human chromosome 1 (UCSC hg195) with 2x
coverage using the ART Illumina read simulator [11]. The simulated FASTQ files contained approximately 3
million reads with an average Phred score of 22 and mean fragment length of 200bp. We will refer to this
dataset as chr1 throughout the remainder of this work.

Since we simulate paired-end short reads, BWA was run with the aln command twice (to align each half of
the read) and the sampe command took the output of each aln step to perform the final mapping. For both BWA
and Novoalign, we indexed the reference a priori and both aligners were configured to output the alignment in
SAM format [18]. Note that we only investigate the performance characteristics of the alignment utilities and
aside from generic comments when comparing these tools, the quality of the output is beyond the scope of this
work.

5. Results.

5.1. Default Settings. All of the results presented in this Subsection are for VMs and hypervisors with
default settings from Ubuntu 12.04, as described in Sect. 4.2. The measurements reflect what one can expect for
‘out-of-the-box’ performance. Furthermore, the default performance values provide a useful baseline for tuning,
enabling one to see what improvements can be made later on (cf. Sect. 5.2).

3http://libvirt.org/
4http://cloud-images.ubuntu.com/precise/
5http://hgdownload.soe.ucsc.edu/goldenPath/hg19/chromosomes/chr1.fa.gz
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Fig. 5.1. Results from 30 samples (10 on Machine 2) of running BWA on simulated paired-end Chromosome 1 reads on one
virtual machine with the hypervisors in default configuration for Ubuntu 12.04. The x-axis indicates the hypervisor, where PHY =
physical server, KVM = Kernel Virtual Machine, XEN-pv = Paravirtualised Xen and LXC = Linux Container. The error bars
indicate the 95% confidence interval. (a) Machine 1 (Sandy Bridge R720), for which the physical server took a mean of 1955.49
seconds to complete the alignment. (b) Machine 2 (Westemere workstation), for which PHY took a mean of 2460.09 seconds
to complete. (Note that even though XEN-pv has a normalised runtime of 0.99, the confidence intervals of PHY and XEN-pv
overlap.)

5.1.1. BWA. The results of running BWA on Machine 1 and all four execution environments (physical
server, Kernel Virtual Machine, para-virtualised Xen and Linux Containers) are shown in Fig. 5.1.a. (Note that
only one virtual machine was running at a time.) In this test, a paired end alignment with BWA was run 30
times on the chr1 dataset, and a mean of the run time was obtained. In all cases, the application (BWA) was
run single-threaded. Since many sequencing pipelines involve large amounts of data, it is not uncommon for
users to run alignment and variant calling applications single-threaded and parallelise across datasets (e.g., to
parallelise across chromosomes when mapping an entire genome). Here, we see that LXC’s performance closely
matches that of the physical server, but Xen and KVM have significant overhead. We reiterate that these
results are consistent across runs on both of the servers with Machine 1’s hardware configuration. However,
when considering the performance on Machine 2 (cf. Fig. 5.1.b), one can see a stark difference from Machine 1.
In particular, Xen exhibits a much larger overhead for Machine 1. This difference will be investigated in Sect.
5.2.2.

5.1.2. Novoalign. Novoalign was run on the same input data as BWA was, and the mean runtime and
confidence intervals were obtained (cf. Fig. 5.2). Again, the application executions were single threaded compu-
tations with one VM running at a time. Note that the scales on the y-axis of the plots in Fig. 5.2 are significantly
smaller than those of BWA. One can see that for Machine 1, KVM is now on par with the physical server, and
Xen exhibits very low overhead.

5.2. Improvements from Tuning. Default configurations are generally designed to balance reasonable
performance with power efficiency and resource sharing for a wide variety of machines. However, optimum
performance can usually be obtained only by tuning various parameters and system behaviour, which are often
highly specific to the system of interest. In this Subsection, we describe how we tuned each hypervisor to obtain
performance as close as possible to that of running on a physical machine. For KVM, we followed best practices
when it comes to tuning for memory and I/O throughput. In Xen, we found that the version has a strong
impact, and we attribute that impact to vCPU scheduling improvements.

5.2.1. KVM Tuning. In all of the above runtimes for both BWA and Novoalign, KVM demonstrated
the largest measured performance overhead: roughly 20% for both machines when running BWA. Since KVM
is widely considered the de facto choice for Linux virtualisation, that high performance cost warranted further
investigation. We start with recommended tuning practices and explaining the effect they have on the applica-
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Fig. 5.2. Results from 30 samples (10 on Machine 2) of running Novoalign on simulated paired-end Chromosome 1 reads on
one virtual machine with the hypervisors in the default configuration for Ubuntu 12.04. The error bars indicate the 95% confidence
interval. (a) Machine 1 (Sandy Bridge R720), for which the physical server (PHY) took a mean of 4533 seconds to complete the
alignment. (b) Machine 2 (Westemere workstation), for which PHY took a mean of 5736 seconds to complete.

tions studied [29]. When tuning, we chose to focus on using BWA, since it had a shorter run time (allowing for
more efficient experimentation), but it also consistently presented a high overhead with KVM. The results of
KVM tuning are summarised in Fig. 5.3. As both sequence aligners used in this work are memory-intensive ap-
plications (in that they operate on relatively large in-memory datasets), improving memory performance should
have a positive effect on application performance. In that respect, we investigate different virtual memory and
NUMA configurations. Since BWA and Novoalign can work with large files, we also investigate parameters for
tuning disk performance.

One way to improve memory performance is to reduce the number and cost of page faults by using ‘huge’
pages, or memory pages larger than the system’s default. Traditionally, huge pages would need to be reserved
by the operating system at boot time, but transparent huge pages (THP) can be dynamically assigned to
anonymous memory regions (e.g., heap and stack space). libvirt supports the use of THP for KVM guest
memory, and all data points designated with ‘THP’ (cf. Fig. 5.3) had THP enabled.

Though the para-virtualised virtio drivers were used with raw VM image file-backed virtual disks, there
was still room to tune disk I/O parameters. The libvirt API defaults to using QEMU worker threads for
asynchronous I/O (AIO). Another option is to use native Linux asynchronous I/O.6 Experiments with native
AI/O are designated by ‘aio’ in Fig. 5.3. We see that native AI/O is helpful in reducing the mean time on
both machines. We also tested different caching strategies, but we found the default cache=‘none’ (chosen by
OpenStack when creating the VM image), which bypasses the host OS’s buffer cache, to be the best-performing
strategy.

As mentioned in Sect. 3, modern CPUs (sockets) have asymmetric memory access times to different mem-
ory regions. That asymmetric memory speed is also referred to as Non-Uniform Memory Access (as defined
previously), and, in keeping with standard terminology, we will refer to a specific region of memory (e.g., mem-
ory associated with CPU socket 0) as a NUMA node. In our experiments, we observed that in the default
configuration, roughly half of a VM’s pages resided on one NUMA node while the other half resided on the
other node. (Both types of machines we used had two CPU sockets and therefore two NUMA nodes.) In order
to prevent processors from accessing memory non-local to their NUMA node, one can restrict virtual CPUs to
a set of physical CPUs. In Fig. 5.3, the ‘pin’ data points refer to runs in which vCPUs were manually pinned
to specific NUMA nodes.

6http://www.linux-kvm.org/page/Virtio/Block/Latency
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Fig. 5.3. Results from 10 samples of running BWA on the chr1 dataset using the KVM hypervisor with various tuning
options (cf. 5.2.1 for more details). The error bars indicate the 95% confidence interval. ‘PHY’ indicates the physical server and
‘KVM’ indicates KVM with a ‘default’ configuration. ‘THP’ means that the hypervisor had Transparent Huge Pages enabled, ‘aio’
indicates that the VM was using Linux native asynchronous I/O and ‘pin’ indicates that the VM was pinned to CPUs on the same
NUMA node. (a) Machine 1 (Sandy Bridge R720), for which the physical server (PHY) took a mean of 1955 seconds to complete
the alignment. (b) Machine 2 (Westemere workstation), for which PHY took a mean of 2460 seconds to complete.

5.2.2. Xen Version. When examining the performance of each VMM in its respective default configu-
ration, we can see that relative VMM runtime completion is not consistent across machines (cf. Fig. 5.1 and
5.2). Specifically, Xen-pv exhibits a runtime that is (statistically) equivalent to that of the physical server for
Machine 2, but the runtime for Machine 1 exhibits approximately a 9% overhead.

To further investigate those differences, we ran the low-level CacheBench benchmark both in and out of the
Xen VMs to characterise the memory performance of each machine [23]. The results are displayed in Fig. 5.4.
Inspection of Figs. 5.4.a and 5.4.b reveals that Machine 1 exhibits a performance degradation of roughly 10%,
whereas Machine 2 has nearly identical memory performance under Xen 4.1. That disparity is also reflected in
Figs. 5.1 and 5.2, which show that the Xen VM experienced performance overhead in Machine 1 (also close to
10%), but not in Machine 2.

While investigating the cause for the disparity in Xen performance across machine types, we experimented
with different versions of Xen. After upgrading to Xen 4.4, we reran CacheBench, and the results for Machine
1 demonstrated no overhead. The CacheBench experiments were repeated for all minor versions of Xen, and it
was confirmed that the performance on Machine 1 changed with version 4.3; the results are presented in Fig.
5.5. Contrasting the axes with those of Fig. 5.4, it is apparent that Xen 4.3 now matches the physical server
performance (as Machine 2 did in Figs. 5.4.c and 5.4.d).

The 4.3 version of Xen included many performance enhancements, but the most notable is the more NUMA-
aware scheduler it introduced.7 Since forcing appropriate NUMA placement results in large improvements to
applications running in KVM, it is not surprising that a more NUMA-aware scheduler would be helpful for a
two-CPU-socket machine running Xen.

5.2.3. Overall Runtime after Tuning. Fig. 5.6 shows the relative (to the physical server) performance
of BWA and Novoalign on all platforms after tuning. The tuning included NUMA node pinning for the physical
server and LXC. As can be seen, performance ordering is now consistent across both machine types, and all
VMs have single-digit percent overheads.

7http://wiki.xenproject.org/wiki/Xen_Project_Release_Features
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Fig. 5.4. Results from CacheBench of llcbench run on Machines 1 (Sandy Bridge) and 2 (Westmere). Figs. (a) and (b) are
from Machine 1, and Figs. (c) and (d) are from Machine 2. While (a) and (b) may appear to be identical, note the difference in
y-axis scales, representing a roughly 10% performance difference. Error bars indicate the 95% confidence interval calculated over
30 independent runs of the benchmark.

5.3. Execution Statistics. To better understand the characteristics of each application, we ran collectl8

during the execution of a single instance of each application on Machine 1 (physical). Collectl is a utility that
collects OS statistics about a running system, such as CPU load and memory usage. We chose to measure
CPU, memory and disk usage over time. The outputs from collectl during the execution of each application are
graphed in Figs. 5.7.a and 5.7.b. The execution pattern in Fig. 5.7.a is consistent with the execution of BWA
commands. As can be seen in Fig. 5.7.b, the first aln command finished at roughly 40% of the total runtime
and the SAM output is generated when sampe starts at roughly 90%, initiating the heavy disk activity. Fig.
5.7.b shows that Novoalign reads the input files all at once and performs its operations in-memory.

6. Analysis and Discussion. Analysing the data presented earlier, we make the following observations:

6.1. CPU pinning can be effective for managing resource contention. One surprising observation
was that while modern OS schedulers (the Linux task scheduler schedules KVM vCPUs) are NUMA-aware
and should attempt to keep processes running on the same CPU to avoid cache thrashing, we were still able
to gain a considerable performance increase by manually placing vCPUs/processes. It should be noted that

8http://collectl.sourceforge.net/



Performance Comparison and Tuning of Virtual Machines for Sequence Alignment Software 79

10^2 10^3 10^4 10^5 10^6 10^7 10^8 10^9
Vector Length

0k

10k

20k

30k

40k

50k

60k

70k

80k

90k

M
B/
Se
c

Memory Hierarchy Performance of Machine 1
memset
memcpy
read
write
rmw
handread
handwrite
handrmw

10^2 10^3 10^4 10^5 10^6 10^7 10^8 10^9
Vector Length

0k

10k

20k

30k

40k

50k

60k

70k

80k

90k

M
B/
Se
c

Memory Hierarchy Performance of Xen 4.3 on Machine 1
memset
memcpy
read
write
rmw
handread
handwrite
handrmw

(a) (b)

Fig. 5.5. Results from CacheBench of llcbench run on Machine 1 with Xen 4.3. (a) shows the physical server and (b) shows
llcbench run under Xen 4.3, which alleviates the overhead seen in Figs. 5.4.a and 5.4.b. Error bars indicate the 95% confidence
interval calculated over 30 independent runs of the benchmark

.

the machines were not maximally utilised in our studies, and more intensive workloads would likely exacerbate
the performance loss of poorly placed processes. For the proper Xen versions, Xen did quite well in matching
physical machine performance, and we attribute that to a more NUMA-aware scheduler.

6.2. Despite having a similar objective, alignment programs can utilise system resources in
very different ways. Figs. 5.7.a and 5.7.b allow us to compare how the two alignment applications differ in
their use of system resources. BWA periodically reads from the disk, while Novoalign reads all of its input in
one shot. However, we expect that behaviour to change with datasets larger than system memory, and further
experimentation is required. The applications’ differing behaviour provides evidence contrary to our hypothesis
in Sect. 2.1 that alignment programs should utilise resources similarly. Therefore, users and system integrators
should be careful to observe how their chosen application performs in a given environment.

6.3. Novoalign is efficient with system resources. Based on our observation of how the applications
use resources, while Novoalign takes more than twice the time BWA does to finish execution on both systems,
Novoalign is more efficient with system resources. One must remember that though the objective of these
applications is the same, their outputs from the same input data are different. Fig. 5.7.a shows that BWA has
a more bursty read/write pattern. It could fill caches and cause the application to block on I/O bandwidth. In
Fig. 5.7.b, Novoalign can be seen to make many small writes (as is also evident from the constant steep increase
of the buffer cache size). In addition to the battery-backed write cache on Machine 1’s RAID controllers, modern
filesystems (e.g., the ext4 [21] filesystem used on both machines) have a delayed allocation cache strategy, and
the many small writes that Novoalign performs would likely be more amenable to this strategy than to bursts
of larger writes.

6.4. Performance for a given VMM is dependent on the application being executed. In
Fig. 5.1.a, one can see that KVM performs the worst for BWA on Machine 1, but in Fig. 5.2.a, Xen per-
forms worse for Novoalign (although the difference is small). We note that those results are for an ‘improper’
version of Xen before performance enhancements. If one observes similar behaviour where application perfor-
mance is different for different VMMs, it may be indicative of an issue like the one we faced with Xen 4.1 on
Machine 1. Also, this observation reveals that the behaviour of one application on a particular VMM may not
be fully indicative of how another application would behave on the same VMM, or how that same application
would perform on a different VMM.
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Fig. 5.6. Results from 10 samples of running BWA on simulated paired-end Chromosome 1 reads with the hypervisors tuned
for performance (see 5.2 for more details). The values indicate performance relative to a physical machine running on identical
hardware with NUMA-aware CPU pinning. The error bars indicate the 95% confidence interval. (a) Machine 1 (Sandy Bridge
R720), with a physical server runtime of 1954.93 (b) Machine 2 (Westemere workstation), with a physical server runtime of
2460.09. (c) and (d) show data for the same systems as (a) and (b) (respectively), but with Novoalign instead of BWA. For
Novoalign, Machine 1 had a physical server runtime of 4212.19, and Machine 2 had a runtime of 5714.91. While KVM had no
measurable overhead in the default configuration with Novoalign, when both PHY and KVM were tuned for NUMA, we observed
a drop in the relative performance for KVM, even though it completes in 94% of the time of the original PHY measurement.

6.5. After tuning, performance ordering is the same across machine types. Keeping in mind
the above observation and considering Figs. 5.1.a and 5.2.a, we see that in one case KVM is the slowest,
and in the other case, Xen is the slowest. After VMMs were tuned, performance ranking became consistent
across applications and machine types. It would take a more detailed study to confirm the generality of this
observation.

6.6. The extent to which huge pages are beneficial is machine-dependent. In Fig. 5.3, one can
see that Machine 2 benefits noticeably more than Machine 1 from using THP. Machine 1 has a larger cache size
than Machine 2, so TLB misses are likely less expensive on Machine 1, as page table entries are more likely to
reside in a lower-level cache on Machine 1.

6.7. CPU-bound applications run at near-baremetal speeds in virtualised environments. This
was an expected result, as virtual machines should run unprivileged operations at native speeds. This is helpful
information for bioinformaticians whose workloads may be largely CPU-bound. Furthermore, when considering
performance, it appears that as long as a task behaves in that way, the choice of VMM is less important.
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Fig. 5.7. Output from running collectl during a single-threaded execution of BWA (a) and Novoalign (b) on Machine 1.
CPU, memory and disk statistics were sampled and collected once per second. The CPU data were normalised to the number of
available processing threads the system had, and ‘User’ refers to the time the CPU spends in userspace, ‘System’ refers to the
time the CPU spends performing OS tasks. For memory, ‘Used’ refers to the percentage of system memory used by applications;
‘Cache’ corresponds to the amount used by the buffer cache (cleared immediately before each run), and ‘Mapped’ corresponds to
the amount of memory used for memory-mapped files. The last plot in each set corresponds to disk I/O and shows the read/write
throughput of the disks at each point in time. We remind the reader that the disk controller used on Machine 1 has an external
1GiB battery-backed cache.

As discussed in 6.2, Novoalign and BWA have different disk access patterns. We believe that Novoalign’s disk
access pattern contributes to its having a smaller virtualisation performance cost than BWA. That access pattern
causes Novoalign to become CPU/memory-bound after application start-up, and to be overall less sensitive to
VMM hardware emulation overhead.

6.8. Linux Containers have near-zero performance overhead. Based on our data, it is clear that
if one wishes to build a cloud computing environment with performance as the paramount concern, a cloud
built using Linux Containers would be the best choice amongst the options presented here. That conclusion
was expected, but the intention of performing the experiments with LXC was to demonstrate and quantify
the performance improvement for a bioinformatics workload. But, anyone choosing to adopt a container-based
solution should be aware that there are certain drawbacks. We tested with a newer version of libvirt (1.1.1),
and the LXC driver still did not support vCPU pinning without manual modification of cgroups. Also, some
cloud adopters see the ability to choose one’s entire software stack (including the OS kernel, especially if the
users are interested in a particular version or tuning parameters) as an advantage of cloud computing, and it
is impossible to do so when using LXC unless one has control over the host OS (which is not likely in a cloud
scenario).

6.9. Paravirtualised Xen has extremely low overhead. After the appropriate version of Xen was
chosen, it did exhibit an extremely small overhead. Xen has nearly the same performance as LXC, but with a
much more robust isolation method.

7. Related Work. Cloud computing services have been available for quite some time now, and as these
technologies have matured, more users are porting their workloads to cloud environments. Many studies have
focused on quantifying the impacts of cloud computing’s underlining technologies, particularly virtualisation,
to user applications. The results of these studies play an important role in guiding users to selecting or building
the most suitable cloud for their workload.

Many independent studies have been conducted to quantitatively compare the performance among open
source hypervisors [5, 28] and among commercial hypervisors [31, 24]. The authors of study [5] compared the
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KVM and Xen hypervisors in three aspects, namely overall performance, performance isolation and scalability
(i.e., the ability to add virtual machines without losing performance). Based on standard benchmarks, such
as Linux kernel compilation and IOzone, they did not reach a general conclusion as to whether KVM or
Xen is better because the performance results are application-dependent. In the performance isolation test,
KVM outperformed Xen. Meanwhile, Xen was demonstrated to be more scalable than KVM. Coming from a
commercial landscape, both studies [24] and [31] compared the performance of XenEnterprise and VMWare ESX
by using a set of industry-standard performance benchmarks, such as SPECcpu2000Integer, Passmark, Netperf
and SPECjbb2005. The two studies presented an interesting competition between the two popular commercial
offerings of hypervisors. In the first study [24], VMWare ESX 3.0.1 noticeably outperformed XenEnterprise 3.0.3
in majority of the tests. Interestingly, the second study [31] showed that XenEnterprise version 3.2 matched
VMWare ESX 3.0.1 in most tests, with some exceptions where Xen performed better.

The traditional High Performance Computing (HPC) community has expressed their interest in cloud com-
puting through many studies comparing HPC workloads on different types of VMMs. The common perception
is that the expected performance overhead of ∼10% is acceptable for these applications when not running tightly
coupled MPI-style computations [9]. To put that number in perspective, however, for a sequencing workload
that could take e.g. 1000 CPU Hours to complete, 10% would be equivalent to roughly 4 CPU days. The
authors in [13] ran tightly coupled MPI-based applications and observed significantly degraded performance
(6-20x) on EC2. In a study closer to what was done in this work, the author in [10] used WCD EST, an EST
assembler (contrasted with the whole genome assemblers used here) to measure the performance of EC2 for
scientific workloads. The author focused on scalability and variability, and showed that EC2 can achieve accept-
able scalability. This work also highlighted many qualitative benefits of moving to the cloud vs. participating
in a typical shared computing cluster.

A recent study investigated the potential use of container-based virtualisation in HPC [30]. However, that
study focused on HPC benchmarks, whereas the work presented in this paper evaluates actual application
performance. That work also demonstrated that LXC and a physical server have near-identical performance,
but found that Xen was slower than LXC and the physical server by roughly a factor of 2. It is difficult to
determine the cause of the stark difference between their results and those presented in this paper, but the
version of Xen was similar (4.1.2 in the other work and 4.1.5 as we initially tested here). As presented in Sect.
5.2.2, future versions of Xen may yield significantly better results. Additionally, the operating system used in
that study was Ubuntu 10.04 and potentially had less efficient para-virtualisation drivers.

In a similar effort, study [8] presented a performance comparison of KVM and Docker [12], which is built
using Linux Containers. This study demonstrated that Docker’s performance is equal or better than KVM in
most tests. In addition, the authors showed that there are opportunities for performance tuning in both KVM
and Docker. Our study again confirmed this conclusion in the domain of the genomics software.

Our study focuses on comparing three popular open-sourced VMMs, which cover all three major virtuali-
sation technologies, namely Type I hypervisors, Type II hypervisors and light-weight containers. Furthermore,
we specifically tuned these virtualisation platforms for genomic workloads, and showed that this is a worthwhile
effort.

8. Conclusions. The results presented here are useful for genomics researchers and clinicians who are
considering adopting a cloud based solution, particularly those who elect to explore the option of building a
private cloud. As expected, when workloads became more CPU intensive and less I/O bound, performance
inside a VM is practically indistinguishable from a physical server. We have demonstrated that Novoalign falls
strongly into this class of software and is amenable to virtualisation. After proper tuning, BWA essentially
exhibits similar behaviour. This means that these applications are ideal for use in a cloud setting, but one
must either build a private cloud or work with the cloud provider to ensure proper tuning has taken place as an
‘out-of-the-box’ solution may fall very short of the full potential of the system. From a performance perspective,
We believe that the small overhead introduced by virtualisation leaves IaaS cloud computing as a viable solution
for genomics workloads that have traditionally been run inside data centres.
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EXTENDING XNAT TOWARDS A CLOUD-BASED QUALITY ASSESSMENT PLATFORM
FOR RETINAL OPTICAL COHERENCE TOMOGRAPHIES∗
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Abstract. Neuroscientific research is increasingly based on image analysis methods. Among them, optical coherence tomog-
raphy (OCT) allows for non-invasive visualisation of anatomical structures on a micrometer scale. The platform presented in this
paper is designed for automatic quality assessment of retinal OCTs. It extends the image management platform XNAT by services
to calculate and store quality measures. It is also extensible regarding new quality measure algorithms, allowing the developer to
upload, compile and test code for the system’s architecture. The processing tools are provided as a cloud-based service employing
OpenStack. Different approaches using fully equipped virtual machines and Docker containers are investigated and compared
regarding security and performance aspects.
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1. Introduction. Modern neuroscience research is increasingly using imaging techniques such as magnetic
resonance imaging (MRI) and computed tomography (CT). Among these techniques, optical coherence tomog-
raphy (OCT) utilizes the characteristic refractivity of different tissue for non-invasive visualisation of anatomical
structures on micrometer scale. Becoming a standard diagnostic tool in ophthalmology, it is of rising interest
for investigation of multiple sclerosis, as correlation between retinal changes and the patient’s symptoms could
be found [1, 2].

1.1. Image Quality. Virtually all data processing relies on sufficient data quality, but few tools inherently
validate the quality of the input data. In today’s complex image processing, as for example the FreeSurfer
pipeline for segmentation of anatomical brain MRI, it is difficult to manually evaluate in advance, if a certain
image’s quality is sufficient for the envisioned processing [3]. Information about input data requirements are
often only given in the software documentation and it is left to the user to use appropriate input data [4].
Today this issue is addressed by offering a visual inspection and interactive correction of intermediate results.
This is a feasible approach if there are few datasets, but with increasing numbers of datasets and patients in
clinical research, manual processing of the images becomes hardly manageable. Furthermore, the evaluation
of the appropriateness of an image for a certain analysis method may require a high level of expertise and
experience. Therefore, automatic in-advance quality validation, as known from commercial online photo print
services, would help the researcher to avoid quality-related result errors. In this paper, a platform specifically
designed for Quality Management for Retinal Optical Coherence Tomography (QMROCT) is presented. At least
for the most commonly used type of retinal OCT scan, the so-called ring scan, quality criteria are specified,
known as OSCAR-IB criteria [5]. The criteria are categorized into the groups “(O) obvious problems, (S) poor
signal strength, (C) centration of scan, (A) algorithm failure, (R) retinal pathology other than MS related, (I)
illumination and (B) beam placement”. Some of these features – for example the signal strength – are easily
evaluated automatically, while others, such as the correct position, might require more complex image analysis
including certain segmentation and image registration tasks itself.

1.2. Research Platform. Medical image data management for research requires further functionalities
than classical picture archiving and communication systems (PACS) used in daily care. Additional features
are for example the grouping of data into different clinical trials, storage and management of non-DICOM
data and fine-grained access control [6]. An increasingly used open source platform supporting such features is
the “Extensible Neuroimaging Archive Toolkit” (XNAT) [7]. In conjunction with several collaborative groups
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around the world, the INCF Task Force has also started work on several tools to ease and eventually automate
the practice of data sharing in field of neuroimaging [8]. The goal is to allow researchers to easily share raw,
processed, and derived neuroimaging data and improving the reproducibility of neuroimaging studies.

1.3. Cloud infrastructures for medical imaging. Medical image processing methods for post-proces-
sing and analysis to study the normal and pathological brain structure and function often have high demands on
computing power and memory. The resulting requirements on data and computing availability and reliability are
specifically addressed by cloud infrastructures. Cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources (e.g. networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal management effort or
service provider interaction [14]. Common cloud platforms are Microsoft Azure [10], Amazon EC2 [11], Google
Cloud Platform [12] and the open source platform OpenStack [13]. Recently, research projects have been started
to implement cloud-based neuroimaging applications. The German part of the EASI-CLOUDS [20] project
implements a cloud-based neuroradiologic analysis platform to process compute-intensive clinical examinations.
The project focuses on Service Oriented Architecture (SOA) and Service Level Agreement (SLA) management
for several applications. The NeCTAR group is working on providing cloud-based image analysis and processing
software packages [21] for research communities via remotely accessible user-interfaces. This project focuses on
processing large image data sets in a cloud environment. To control the processing, a workflow management is
integrated and used as the user interface. To improve performance in large medical image access and processing,
a cloud-based multi-agent system is built for image retrieval by Alonso-Calvo and others [22]. Here, single images
are divided so that the resultant sub-images are stored and managed separately by different agents distributed
within the cloud. Da Mota and co-workers [23] are using Microsoft Azure to apply machine learning algorithms
to functional Magnetic Resonance Imaging (fMRI) data in a MapReduce approach. They are mainly focusing
on algorithms, as well as efficient and stable processing. R & D Cloud CEIB [24] is a bioimaging project
developing a modular cloud software for classification purposes. This team also extends XNAT for their needs
in bioimaging by using its generic DICOM and XML data types. Furthermore, many solutions developed
for grid-based neuroimage processing can be adopted to cloud infrastructures. For example, web-based Grid
portals such as the Charité Grid portal [15] and the WS-PGRADE portal [16] provide components and services
(e.g. Grid Security Infrastructure (GSI) [17] based authentication and authorization, workflow management,
pseudonymisation service especially for patient data and secure data transfer) which can also be used in cloud-
based neuroimage processing. As an additional feature for applications with user interaction, the visualisation
of intermediate results can also be integrated into neuroimage applications [19].

2. Requirements. The overall goal of the presented platform is to facilitate state-of-the-art image quality
assessment. This implies dynamically growing image data and quality measures. New images are created by the
scientists performing clinical trials. The image data is assumed to be acquired in intermittent bursts, whenever
a clinical trial is in its patient recruiting phase. In contrast, new quality measures are expected to be developed
continuously but in a much larger time-scale. From the scientist’s perspective, the system must provide the
following features:

1. Whenever an image is stored in the platform, the currently available quality measures are calculated.
2. The calculated quality measures are accessible in the context of the image.
3. For manual inspection, a visual representation of the calculated quality features is accessible in the

context of the images.
4. Whenever a new quality measure is integrated into the system, it is automatically calculated for all

stored images.
5. Whenever a quality measure is updated, the new version is calculated for all images, and the former

values are archived.

2.1. Users. Two abstract types of users are identified: The clinical researcher, who manages his or her
medical images and studies within the platform; and the computer scientist, who develops new automated
quality measure methods and integrates them into the platform. All interfaces of the platform to the clinical
researcher should be integrated into his or her daily working environment, whereas the algorithm developer
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must not have access to the medical data stored within the system, except authorized test data. It is possible to
subdivide the two types further, for example by setting up different projects for different medical teams in the
research platform. The development process of the algorithms themselves is not part of the platform. Developers
prefer to use their own personalized environment for code development, in our case Matlab. It implies that an
interface to integrate new methods must be provided for the developer. In particular, the developer needs to
be able to control the reliability of the code on the platform, so he or she must be able to run the code on the
platform with test data and confirm the intended behaviour of the integrated software.

2.2. Resources. Regarding resource consumption, we expect constantly growing storage and strongly
varying computing power requirements. Whenever new data or new processing methods are integrated into
the platform, image processing is necessary. Each new image will be analysed with all currently available
methods and each new algorithm will be applied to all currently available images. Such a scenario with strongly
varying resource requirements might strongly benefit from scalable computing resources, as provided by cloud
infrastructures. As the processing of the individual images and algorithms are independent from each other,
they can be executed simultaneously in a distributed environment. As a possible drawback, data transfer might
be a significant factor for the total processing time in distributed environments, as image processing is in most
cases data-intensive. So besides scalable computing resources, broadband network capabilities might also be
crucial for performance earnings.

2.3. Security. There are several security requirements regarding the envisioned platform, from medical
data protection to malicious code execution.

Medical data protection. As medical images are stored and processed, personal data protection must be
ensured. While the retina of the eye is known to be unique in every human individual, the OCT data implicitly
contain reidentification potential. On the other hand, reidentification based on the OCT data is only possible,
if the attacker already has access to the subject’s data. In contrast to e.g. reconstructed 3D-MRT of a head,
the identification features of the OCT are not observable by everyone. The envisioned platform will be used
by a clinical trials unit of the university clinics, which implies, that the data is specifically acquired for study
purposes and not for patient care. The image metadata do not contain the patient’s name but a pseudonym that
is managed locally within the clinical trials unit. The only identifying information found in the metadata is the
patient’s birthday, which is automatically changed to the year of birth in a preprocessing step before entering
the platform. We assume that strong data protection measures like file-based encryption are not required in
the current setting.

Confidentiality of the research topic. As neuroscience research is a very active and competitive field, scien-
tists are very careful in exposing their ongoing research projects and their data in advance. So weakness in the
platform security might discourage usage.

Availability of the system. As the system is envisioned to be integrated into the scientist’s daily working
environment, it must not interfere with other tasks the user is performing within the system. In particular,
temporary load peaks on memory and the CPUs due to image processing may slow down other applications.

Integrity of the system. As image processing methods are subject to current research, the system is explicitly
laid out for integration of new methods without any need to alter the system itself. It implies that the system
must be open in the sense that arbitrary code can be executed in the system. This is a high security risk, as
malicious or unstable code may affect the system’s integrity and stability. Code may delete or modify important
system data or serve as an information leak. So security measures against these system vulnerabilities must be
taken.

3. Methods. This section explains the components of the research infrastructure and the applied security
measures.

3.1. Components. The two main components in the system are the research platform and the cloud
infrastructure. To keep the different concerns of the two user groups – clinical researcher and computer scientist
– well separated, we decided to integrate separated components for code and job management. As a design
principle, the components are loosely coupled and use standard tools and protocols wherever possible. The
system encompasses different aspects of services: The underlying resources are provided as infrastructure as a
service (IaaS), the deployment of new algorithms is managed by platform as a service (PaaS) and the actual
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Fig. 3.1. QMROCT components and their service categories.

quality assessment is implemented as software as a service (SaaS). Different components of the system contribute
to the different service models (cf. Fig. 3.1).

3.1.1. Infrastructure as a Service.

OpenStack. OpenStack is an Infrastructure-as-a-Service platform. It allows for on-demand creation and
utilization of virtual servers, storage and network. It incorporates the management in form of multiple APIs with
overall user and role management. OpenStack provides both command line tools as well as a web interface to ease
the use of the REST API, that allows for managing users, projects, virtual servers, network and storage. Cloud
infrastructure components dedicated for computing purposes (so called compute nodes) provide the resources
(CPU and memory) to execute virtual environments that are tailored for their computation task. Load can be
balanced throughout the system and therefore peaks in the required computational power can be handled. The
system scales horizontally by adding additional compute nodes which will enhance the systems total memory
capacity and processing power. A crucial part in this scenario, where computing resources can be created on
demand and required data storage capabilities are assigned on runtime, is the network infrastructure, which is
responsible for this high dynamic processing. All compute nodes are connected through a management IPv4
network, which enables communication with the control components. Everything regarding dynamic storage
and computation is handled in virtual networks on top of a physical tunneling network. It connects the compute
nodes with a dedicated network node. The network node creates internal bridges that will virtually route traffic
through the physical network and deliver it to the virtual environment’s network port that is handled entirely
inside the compute node. For securing the virtual networks, Linux iptables are used. The current prototype
uses OpenStack Juno on Ubuntu 14.04 servers. All management services are installed on the control node,
except the compute services and the network service, that run on dedicated servers. To date, one control node,
one network node and four compute nodes are provided. OpenStack provides two built-in mechanisms for load
balancing. The Nova Scheduler handles hardware resources provided by the connected compute nodes and
uses filter rules to decide which node is chosen to run a virtual server. The second mechanism is the Heat
API, integrated into OpenStack since the Havana release1. Heat is able to run a stack of one or more virtual
servers for a given application, based on a configuration file. If the load on one virtual server is too high,
Heat can start a second machine to split up the load. Since OpenStack is designed for huge corporate clouds,
both mechanisms assume that the infrastructure provides unlimited resources. In particular in private clouds,
as employed in the presented platform, resources are often limited. A request to start a new virtual server
fails and produces an error message, if there are not enough physical resources available. Virtual computation
instances that can be launched by the cloud customer are referred to as virtual servers in this manuscript.
We distinguish regular virtual machines from Docker containers, which can both be used as virtual servers in
OpenStack. For testing new features, a test environment using Devstack is employed [38]. Devstack provides
an install script for deployment of a complete OpenStack cloud infrastructure on a single physical or virtual
machine. A Vagrant-based automated install script for virtual Devstack instances with Docker integration has
been created for easy reproducibility and is available on GitHub [39, 40].

Docker. The employment of full virtual machines has considerable performance drawbacks in the given use
case, as is shown in the results in Sect. 4.4. Successors of that approach are Docker [27] based Linux containers.
They have been shown to perform better than other virtualisation concepts by Estrada and others as well as
Felter and coworkers [28, 29]. Docker is a fairly new technology – the first release was March 2013 – but is
based on the much older concept of operating system-level virtualisation. This special type of virtualisation is

1https://wiki.openstack.org/wiki/Heat
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Table 3.1

Structure of the CMS API.

Method Path Description
GET /files Lists all files
GET . . . /matlabs Lists all Matlab files

POST . . . /matlabs Adds a new Matlab file
GET . . . /file.m?compile Compiles the specific Matlab file

DELETE . . . /file.m Deletes the specific file
GET . . . /dicoms Lists all DICOM files
GET . . . /executables Lists all executables
GET . . . /binary?execute Executes the specific binary

possible in Linux systems providing the Kernel features control groups and namespaces [30]. Both features are
part of the Linux Kernel since 2008 and can be regarded as stable [31, 32]. Docker uses the term container for
isolated environments, i.e. a control group with a namespace. A container has its own process tree, network
interface (and so an own IP, routing table and iptables rules), file system and resources, such as memory, CPU
and I/O. Docker adds some useful features to Linux containers: Dockerfiles holding a sequence of instructions
to assemble a container image, versioning of images, a REST API, and in particular a driver for OpenStack.

Since the Havana release, OpenStack provides a hypervisor driver for Docker that is expected to be fully
integrated into Kilo, the next major OpenStack version [34]. With this driver, Nova treats Docker containers
like virtual machines, making it possible to use them in the same way as regular virtual machines.

3.1.2. Platform as a Service.
Code Management Service. The Code management service (CMS) is the main interface for the algorithm

developer to upload, test and provide their Matlab code as stand-alone executables. The graphical user interface
is implemented as a single page web application which is loosely coupled to a RESTful web service in the back
end. This API offers basic file management, such as to read, delete or create files, as well as to compile and
execute them. The whole functionality of the code management service is given in Table 3.1. The services are
implemented as a PHP application that runs on an Apache Webserver, secured by password based authentication
and HTTPS.

3.1.3. Software as a Service. The execution of the quality assessment analysis is managed by different
services and components within the system.

XNAT. The main entry point for the clinical researcher is XNAT, where he or she can upload image
data and start the quality assessment analysis. XNAT is implemented as a Java Enterprise web application,
employing PostgreSQL as database system. The experiments presented in this paper are carried out on an
XNAT 1.6.2.1 instance, using Apache Tomcat 7, Oracle JDK 1.6 and PostgreSQL 9.1 on a Debian 6.0 server
instance. The data structures are designed to support typical research collaborations: researchers, projects,
subjects, experiments etc. Data may be shared between different projects, and users can be assigned to the
project with fine grained access rights. While especially supporting DICOM images and reports, all kinds of
data types can be stored as freely definable key-value pairs (where the key is a name and the value a number),
which is used in this project to implement the different quality management parameters. New parameters can
be added at any time.

Besides the graphical user interface, a built-in DICOM interface and a comprehensive REST API [25] are
provided. XNAT provides a pipeline engine, that can execute external applications and shell scripts. It may
pass all required parameters to the application to allow for download the data, process it and upload the
results back to XNAT. The pipeline engine is used within the presented infrastructure to initiate cloud-based
processing. However, due to certain limitations of the built-in pipeline engine, in particular sequential processing
of pipelines, the actual monitoring and scheduling of the cloud job is taken over by a dedicated cloud-aware job
management service.

Image Upload. To ease the image upload for the clinical researcher, a dedicated image gateway is installed
within the clinics. It receives images from the OCT scanner, blurs some patient related metadata of the OCT
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images to minimize the reidentification potential, compresses the images and sends them via the REST interface
to the external XNAT instance. Once the images are received by XNAT, it extracts the data and stores them
in the prearchive. Two further steps are automatically executed: (1) The images must be marked as “ready”
for archiving, before they are moved from the prearchive into the archive; (2) Once arrived at the archive, the
images can be processed.

Job Management Service. The execution of the cloud-based image analysis methods is carried out by the
job management service (JMS). It launches virtual servers depending on hardware availability, initiate job
execution and terminate the servers when the job is finished. A particular feature is resource-aware scheduling.
Because the built-in OpenStack tools do not provide functionality to resolve issues with limited resources, a
lightweight Python-based cloud scheduler has been developed. It provides a REST API to enqueue incoming
jobs and processes them whenever there are free resources. The scheduler is also able to limit the amount of
virtual servers running simultaneously and to reuse them several times for different jobs if needed.

QMROCT VM image and Docker container. The quality assessment software itself is delivered within
specifically configured virtual servers. In particular, the Matlab Compiler Runtime 2013b and the currently
provided Matlab executables themselves are installed. We would like to emphasise, that the usage of Matlab
standalone applications, i.e. compiled Matlab code, allows to deploy the code multiple times even in public
clouds without licensing issues, as the free-of-charge Matlab Compiler Runtime is used. Furthermore, SSH is
used to access the server. The QMROCT VM image is based on the official Ubuntu 14.04 cloud image [36]. It
incorporates the Cloud-Init package [37], providing a lot of functionality to OpenStack, like resizing the image
partition and inserting a public key for SSH authentication. On the downside, this results in a slower boot
process for the virtual machine.

The QMROCT Docker container is based on a standard Ubuntu 12.04 image. It also contains the Matlab
Compiler Runtime and executables, but not the Cloud-Init package, because a Docker container does not need
features like repartitioning. Therefore the Docker container only runs an SSH daemon. A public key for
authentication cannot be copied to the instance on start-up without Cloud-Init. To overcome this issue Docker
is configured to initialize a key, when building the container image.

3.2. Security measures. The security assessment of the system follows the so-called IT-Grundschutz (IT
basic protection) methodology of the Federal Office for Information Security (BSI Standard 100-2) [41], which
interprets the requirements of the ISO Standards of the ISO 2700x family [42]. The basic idea of IT-Grundschutz
is, that most IT systems can be modelled as a combination of well-known building blocks like servers, clients,
network components and applications. For each of these building blocks, there exist typical security risks and
organizational and technical security recommendations, that are collected in the IT-Grundschutz catalogues.
The first step in such a security assessment is the analysis and documentation of the addressed business processes,
encompassing the involved data, human actors and applications. The information processed is then categorized
in different protection levels, depending on the possible harm due to loss of confidentiality, integrity or availability
of the respective information. Now the related IT components are identified and are mapped on the existing
building blocks. A subsequent basic security check compares the target and current state of the system regarding
the security recommendations. A work plan is then defined to efficiently implement higher levels of information
security.

4. Results. The resulting quality assessment platform provides a separated environment for clinical re-
searchers and code developers. It is analysed in terms of functionality, usability, security and performance.

4.1. Functionality. Both the OCT quality assessment initialized by the clinical researcher as well as the
integration of new image processing methods by the computer scientist were successfully implemented. An
overview of the architecture is given in Figure 4.1. The so-called QMROCT Gateway is the central component
to link XNAT to OpenStack through the JMS service. It also provides the code developer interface. The
system’s functionality is described along the two user scenarios, the quality assessment and the code upload.

4.1.1. Quality Assessment. The process of quality assessment on new images is shown in Figure 4.2.
The clinical researcher uploads new images to XNAT. XNAT can be configured to trigger the quality assessment
pipeline automatically, whenever new images have been uploaded, or to start the pipeline only on user inter-
action. XNAT’s built-in pipeline system calls a small program, which sends the corresponding XNAT session
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Fig. 4.1. Architecture of the QMROCT infrastructure.

Fig. 4.2. Process of the clinical researcher scenario: Quality assessment of new OCT images.

parameters as JSON object to the JMS. The JMS handles the further job processing with the resources provided
by OpenStack. After launching a virtual server, the QMROCT shell script is copied to the server and is exe-
cuted with the given pipeline parameters via the SSH interface. The QMROCT shell script then connects to the
XNAT server specified in the pipeline parameters and downloads the OCT images. These images are processed
with the MATLAB executables present on the virtual server; and the results encompassing the numeric Key
Quality Indicators and a DICOM result image are uploaded to the corresponding XNAT image session. When
the processing is finished, the script terminates and the JMS shuts down the virtual server.

4.1.2. Code Upload. The process of uploading and testing code is shown in Figure 4.3. The software
developer uploads new Matlab scripts to the CMS using the web interface, that is shown in Figure 4.4. Single
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Fig. 4.3. Process of the algorithm developer scenario: Compilation and testing of new Matlab code.

scripts or zip-archived folders containing script collections are supported. These scripts are then stored in a
local Git repository for version control. He or she may then select a script for compilation. When successfully
compiled, the executables are added to the executable archive on the gateway, and a Matlab-generated run
script for the new executable is shown in the list of available methods. Every algorithm needs to be tested
before it can be used for quality assessment: The user selects a run script, chooses – depending on the method
– one or more test images and further parameters and starts the execution manually. Then the new method is
executed on the server and results or possible errors are displayed in the user interface. Key quality indicators
are shown in the user-interface, the DICOM result image can be downloaded following the given link. When no
errors occurred and the results are identical to those in the local environment, the developer may confirm the
results, and the new method is integrated into the QMROCT virtual server.

4.2. Usability. The user interaction within the QMROCT platform is designed to be very simple. Within
XNAT, the cloud-based processing is completely transparent and appears to be a standard XNAT pipeline.
The clinical researcher accesses the cloud services and resources within his or her daily working environment.
The only step that users need to do is selecting the image data to be processed and then submit the job, which
will automatically start in the background. No use of command-line based tools, no manual installation and
configuration of software clients or even complicated input of technical configuration data are needed by the
clinical researcher.

With the CMS, several scripts can be uploaded simultaneously by simply dragging and dropping them onto
the upload area. Timestamps are added to the scripts and executables to give the user an overview of the
status of the uploaded code. The only convention, the developer has to follow, is to add a specified signature
line to the Matlab script that includes the name of the function and – based on a mutually agreed list – the
type of every parameter. The signature line is parsed by the upload tool to offer the user – after he or she
selected an executable – a list of all available parameters, pre-filled with data based on an educated guess, e.g.
a list of test DICOM images or the default DICOM dictionary file. The results of the code execution will be
displayed directly in the web interface and can be compared to the local reference data. If a developer deems an
algorithm mature, he or she can approve it for production usage. The whole process is completely independent
from XNAT and does not interfere with the work of the clinical researchers.

Regarding the extensibility of the platform for the system developers, the strict service oriented architecture
(SOA) offers an easy-to-use solution to add new services into the system, for example further user interfaces or
additional cloud services.
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Fig. 4.4. CMS Web Interface to upload and test new Matlab code.

4.3. Security. Following the IT-Grundschutz methodology, the processes and involved systems are iden-
tified as described in this manuscript (cf. Sect. 3.2). The different user roles identified within this system
are shown in Table 4.1. The processed information includes possible metadata, code, and user activities. The
confidentiality level is medium, rather than high, as the image data are pseudonymised. The same holds for
the availability level and the integrity level. To mitigate the consequences of a system breakdown, all image
data processed within the system are also stored locally in the researcher’s PACS and the source code is also
available in the developer’s local environment. So typical security measures are supposed to be sufficient for
the system.

4.3.1. Confidentiality. As mentioned before, all communication through the internet is encrypted via
TLS, encompassing user and machine access. Within the OpenStack infrastructure, no component is directly
connected to the internet. In particular, the virtual servers run in their private network and may connect to
the internet via a virtual router on the network node and a subsequent router on the QMROCT gateway. The
so-called “floating IP” address, which is assigned to a virtual server, can only be accessed from the QMROCT
gateway. An OpenStack security group restricts this access to allow only SSH. Any virtual machine or container
can initialize an internet communication with XNAT, but they cannot be called from outside. Due to usability
reasons, PKI-based user authentication and authorisation is not employed. As cloud infrastructures are designed
for multi-tenant use rather than collaborative resource sharing, the separation between different users is much
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stronger than in typical academic Grid infrastructures, lowering the risk of information leaks. All code is
executed within the virtual environments which are always instantiated for one specific task and terminated
afterwards, so no information about former activities is stored there. From a security perspective, the Docker
containers behave similar to virtual machines, as they shield different instances from each other. A container can
not manipulate another, because it only knows about it if declared explicitly a priori, i.e. by linking containers.
As of now there is no known way for a process to break out of a Docker container, but a potential risk is posed
by the Docker daemon as it has to run with root privileges. There is work in progress to change namespaces
to run a container as an unprivileged user [33], lowering the mentioned risk. On XNAT and OpenStack, the
built-in password-based authentication and role-based access control methods are used (cf. Table 4.1).

4.3.2. Integrity. The risk of malicious manipulation of data can be regarded as comparatively low. As
data transfer is encrypted, man-in-the-middle attacks are difficult, and all user activity on the different compo-
nents – the XNAT and the CMS/JMS services – are logged. A higher risk might be the unintended assignment
of image data and results to a wrong subject. As the virtual servers processing the image data only know the
parameters of the assigned pipeline, it has no information about other resources from XNAT. Therefore it is
very unlikely, that QM results are stored along the wrong subject or image data. In case a mismatch would
occur, it can be identified by the overview image that is also provided as result. The code, the results and the
virtual machine snapshots are under version control, so in case of undesired modification, a former version can
be reconstructed.

4.3.3. Availability. Main risks for availability are network interruptions and server failures. The pro-
duction network infrastructures of the participating institutions are employed, leading to very few network
problems. To avoid availability issues because of the code execution – may it be due to high CPU load or due to
malicious or unstable code – all processing steps are transferred to the cloud environment. In addition, the use
of virtual servers increases the stability of applications, since the system’s configuration is largely independent
from the host system of the cloud provider. In case of a successful attack on a virtual server, it is hardly
possible to get access to the host system, so there is very low risk that the platform and application availability
is affected. To account for possible data-loss, the XNAT platform is integrated into the institution’s backup
system, while the code stored on the QMROCT gateway is duplicated in the QMROCT VM and Docker images.

4.4. Performance. Performance tests have been carried along the typical clinical researcher’s use-case of
the infrastructure: At the end of an examination day, the images are uploaded to the infrastructure and are
processed. The tests are performed with 12 OCT image sets. Each image set consists of an optical overview
image and a tomographic scan of the retina. The overview images have always a size of 580 kB, the tomographies’
sizes range from 14 MB to 27 MB; adding up to 294 MB for the full dataset.

Currently, three quality assessment methods are implemented within the infrastructure, encompassing poor
signal strength and centration of the scan. We would like to emphasise that the algorithms are not developed by
the authors but by the project partners (cf. 6). Method 1 and method 3 each provide a result image visualising
the regarding quality indicators, method 1 and method 2 provide key image indicators in form of key-value
pairs. The result images’ sizes range from 700 KB to 2 MB, the key quality indicators are written in a text
file, encompassing few bytes. Each full processing from pseudonymisation of the image to quality assessment
result storage back to XNAT has been performed ten times. As the quality assessment pipeline could not be
started remotely via the REST API, the tests are subdivided into the upload process and the quality assessment
process.

Image Upload Process. The image upload process encompasses five different steps (cf. 3.1.3). The duration
of the different steps are given in Figure 4.5.

The whole image upload process requires less than 2 minutes in all runs, with an average runtime of (94
± 6) seconds. The main contributions are the data compression and transfer. Interestingly, decompression on
the XNAT server is much faster. The data transfer took in average (65 ± 6) seconds, giving a data transfer
rate about 4.33 MB/s. Compared to other modalities, OCT images are small, so data transfer from the clinics
to the quality assessment infrastructure will not be a severe performance issue. But with an estimated data
transfer of about 350 GB per day, the current setup does not support medical imaging methods that generate
data in a magnitude of terabytes.



Extending XNAT towards a Cloud-based Quality Assessment Platform for Retinal OCT 95

Table 4.1

Defined user roles with their permission in the QMROCT infrastructure.

Role Rights Data Access

End User

Clinical
Researcher

Can upload images, execute
analysis jobs and search images
via XNAT web portal

Images inside her or his project
and analysis results

Computer
Scientist

Can upload new image analysis
algorithms via gateway server

Source code and compiled code
on the QMROCT gateway

Administration

XNAT
Administrator

Can change configuration of
XNAT and activate/deactivate
XNAT and user access to fix
bugs or improve system safety

Log files of the application,
configuration data, data of
portal users, no access to ap-
plication data

Server
Administrator

Can update and reboot the
server and services

Information about users, pro-
cesses and images stored on the
file system

Application
Administrator

Can change application con-
figuration, activate/deactivate
components of the application

Log files of the application,
configuration data, no user
data

Cloud
Administrator

Can change cloud components
and user management and de-
activate/start cloud services to
fix bugs and improve system
safety

Log files of component configu-
ration data, data of user man-
agement, no access to appli-
cation data and configuration
data (image data) of cloud ser-
vices

Development

JMS/CMS
Developer

Can change code and job man-
agement services and user in-
terface to fix bugs or improve
performance of the application

Data necessary for the execu-
tion of application functional-
ity, possibly log files, access to
user data or image data stored
within the service

XNAT
Developer

Can change the application
code to fix bugs or improve
performance of the application

Log files of the application,
configuration files, possibly
data contents related to ap-
plication performance, no per-
sonal data access

Cloud Service
Developer

Can change services and up-
date libraries to fix bugs or im-
prove performance of the ser-
vices

Log files of the service, con-
figuration files, possibly data
contents related to application
performance, no personal data
access, boot access to hardware

Quality Assessment Process. The quality assessment process is realised using two OpenStack compute nodes
with Intel(R) Core2 Duo (3 GHz) CPUs. One compute node is equipped with 8 GB RAM, the other one with
4 GB RAM. The VMs described in paragraph 3.1.3 are instantiated with 2 GB of RAM. The JMS is configured
to allow a maximum of four VMs at a time. We would like to emphasise that overloading the compute nodes
is possible, but the current bottleneck is the provision of floating IPs, which may fail if more than four IPs are
requested at the same time. The overall runtime of the quality assessment process is shown in Figure 4.6.

The whole quality assessment process requires in all runs less than 16 minutes, with an average runtime
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Fig. 4.5. Runtime of the image upload process of 12 image sets with a total size of 294 MB.
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Fig. 4.6. Runtime of the quality assessment process of 12 image sets with a total size of 294 MB and three image processing
methods.

of 14.6 minutes, or (880 ± 30) seconds. So the whole image pipeline from pseudonymisation to result storage
requires less than 20 minutes for all 12 images.

To get a closer look into the execution times of the different processing steps, Figure 4.7 shows the runtimes
of all individual quality assessments.

The quality assessment for a single image set requires always less than 13 minutes, in average about 5 minutes
or ((280 ± 46) s). Compared to the average runtime of the complete set of 12 image sets, the distributed system
provides a speed-up of factor 3.1 compared to sequential processing. A maximum limit of 4 is given by the
current settings of the scheduler. The processing itself with an average of (190 ± 34) s takes the main part of
the overall runtime, followed by the instantiation of the VM ((76 ± 18) s). The data transfer within the system
requires an average of (12 ± 5) s for each individual image set. Figure 4.8 shows the mean runtimes for the
individual image sets.

The differences in runtime might on one hand be caused by image properties, like the image size, which
would effect the data transfer and possibly the execution times of the quality assessment methods; or intrinsic
image features like the signal-to-noise-ratio, which might affect the execution times of one or more quality
assessment methods. Table 4.2 shows the different image sizes of the processed images.

As can be seen by comparison with Figure 4.8, there is no obvious correlation between the image size and
the data transfer time. On the other hand the runtime might be influenced by the availability of cloud resources.
In particular, we see an increasing prolongation of the runtime for images 2, 3, and 4. We assume, that this is
caused by the simultaneous start of the first four virtual machines. Later, due to differences in the execution
times of the quality assessments, the resource allocation is desynchronized for the four concurrent processes, so
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Fig. 4.7. Runtimes of the individual quality assessments for single image sets.
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Fig. 4.8. Average runtimes for the quality assessment of the different image sets.

VM instantiation and data transfer is better spread in time.

Docker containers. While performance optimisation of the algorithms is up to the algorithm developers,
on the system side the starting of the virtual machines takes the main part of the management overhead. This
performance could be significantly increased by using Docker containers. To compare the performance of Docker
containers and virtual machines, additional tests have been realised. These performance tests have been carried
out within a single virtual Ubuntu 14.04 Devstack machine equipped with 8 GB RAM and four virtual CPUs
assigned. The OpenStack version used with Devstack is Icehouse, the last release before Juno. For each test, ten
strongly simplified data processing pipelines are scheduled at once. They are then processed in sequential or in
parallel mode. Parallel mode schedules the pipelines up to a fixed number of two simultaneously running jobs.
As the focus of this test was on the mangement overhead, no data transfer nor image processing was included,
but a test script writing a string to a file was employed. For each pipeline a virtual server is booted and a small
test script, which only writes a string to a file, is copied to this server and then executed. For every test the
total time for processing all ten pipelines and the time each virtual server is running have been measured. The
virtual server runtime is measured from booting the server until the test pipeline script has been executed and
terminates. Every test is carried out five times. The results are given in Figures 4.9 and 4.10. We would like
to emphasise, that the results cannot be compared directly with the performance tests above. As the Docker
support in OpenStack is still in active development, we performed these tests in a test environment.

As can be seen in Figure 4.9, the system scales well, but not linearly. While the average total time for a
sequential execution of ten runs with regular virtual machines is about 47 minutes, parallel execution reduces
the execution time to 27 minutes (about 60%). Using Docker, the average total time is close to 5 minutes
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Table 4.2

Image sizes of the tomographic images.

Image 1 2 3 4 5 6 7 8 9 10 11 12
Size [MB] 27 23 23 23 27 27 23 14 23 27 23 23
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Fig. 4.9. Performance tests comparing the average total time of executing 10 pipelines in virtual machines and Docker
containers, each in sequential and in parallel mode.

in sequential and about 2.6 minutes in parallel mode, requiring about 10% of the time with respect to the
respective tests using virtual machines.

The average runtime for each virtual server is shown in Figure 4.10. For both, virtual machine and Docker
container, the runtime is slightly longer in parallel mode compared to sequential execution. This measurement
correlates with the results from Figure 4.9, where the parallel execution requires slightly more than 50% of the
sequential execution. It can be explained by the inherent resource sharing: The parallel execution uses more
computing capacities, which results in a slightly slower execution of an individual run.

5. Conclusion and Outlook. The envisioned quality assessment platform for OCT images has been
set up successfully. The system is currently used by the clinical researchers from the local university clinics
participating in the QMROCT project. In order to increase functionality and usability and to minimize specific
security problems of the neuroimage processing, we have integrated existing and newly developed platforms and
components to the QMROCT environment. Both the image processing pipeline as well as the test execution
of new code requires only few interaction steps with the user: The quality assessment requires the data and
pipeline selection, the code testing requires code and data selection and optional parameter settings, the results
are automatically transferred to the respective target component and user interface. The QMROCT platform
has been analysed with respect to IT security and many recommendations from the IT-Grundschutz catalogue
have been implemented. However, as the specific applications cannot be modelled with standard building blocks,
and as new security vulnerabilities in underlying services and tools are reported regularly, system security is a
continuous process. Anyhow, the most vulnerable step regarding patient data protection, the automatic upload
of image data from the clinical environment is not yet fully employed and is ongoing work.

According to the performance results, the quality assessment of a typical examination day can be processed
within 20 minutes. Currently, three quality assessment methods are available. However, as new methods are
continuously integrated, the processing time will eventually increase. On the infrastructure, the instantiation of
the virtual machines takes the largest share of the management overhead. The employment of Docker containers
significantly reduces the management overhead to about 10% with respect to virtual machines. Reuse of virtual
servers in large-scale image processing is envisioned, but is to be examined regarding confidentiality, as it would
violate the disposable-virtual-server approach, that currently wipes any image-specific information from the
cloud infrastructure directly after job execution. The integration of Docker into the production environment
is currently realised, so full production-like performance tests need to prove these findings. Furthermore, the
employment of about 40 computers from student’s labs as OpenStack compute nodes is envisioned, allowing
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Fig. 4.10. Average launch time of each virtual server during the performance tests.

for faster processing of large data sets. While the JMS is capable of handling limited resources and common
errors, a descent workflow manager monitoring the jobs to give detailed information about process status,
cloud related errors or wrong usage of resources is to be implemented. Many workflow management tools
like Pegasus [43], MOTEUR [44], Taverna [45] or WS-PGRADE were developed for grid infrastructures and
are continuously supporting more and more cloud infrastructures. OpenStack itself recently published a new
workflow management service called Mistral [46], that we will evaluate. We would like to emphasise that the
QMROCT platform – except the XNAT extensions for the quality measure data – is not research-domain
specific. In particular, other science gateways might be connected to the JMS and CMS. Currently, further
neuroimage and biosignal processing scenarios are implemented using the same infrastructure.

6. Acknowledgements. We would like to thank all participants of the QMROCT project, in particular
Frank Haußer and Inge Beckers from Beuth University of Applied Sciences Berlin for leading the quality assess-
ment algorithm development and Alexander Brandt, Timm Oberwahrenbrock, Hannah Zimmermann and Ella
Kadas from the Neuroscience Research Center of Charité - Universitätsmedizin Berlin for providing the OCT
images and medical expertise.

7. Source Code. The developed components are open source projects and available on the QMROCT
GitHub page:

1. Pipeline-Scheduler [35] (GNU General Public License)
2. Vagrant Box including Devstack with Docker integration [40] (MIT License)
3. Docker Container including Matlab and an SSH daemon [47] (MIT License)
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Abstract. The X1.V1 platform is a service oriented architecture, deployed on a set of Virtual Machines, that integrates
services for managing fundamental activities in the ehealth scenario, such as Patient Identification, Clinical Document Repository,
Prescription, and many others. The efficient provisioning of such services to citizens and to health professionals requires the
adoption of increasingly powerful computing systems, in order to ensure that the growing number of service requests are served
in acceptable time, even in case of computational peaks. Porting the X1.V1 platform on the Cloud could address the problem
of the computational requirement mutability, since Cloud elasticity allows the reallocation of resources to Virtual Machines when
necessary. This paper proposes a framework for managing the execution of the X1.V1 platform on the Cloud. This framework
enables an easy, quick, and secure management of the Cloud resources allocation and reallocation to X1.V1 Virtual Machines, in
order to enhance the platform performances, optimize resource utilization and, consequently, reduce the whole services cost. The
design of the framework is focused on security aspects as well, because unauthorized accesses could lead to serious inefficiencies of the
ehealth services. Finally, besides describing the architecture design and implementation of the X1.V1 Cloud manager framework,
this paper also presents a set of experimental results which confirm the validity of the proposed approach to solve the X1.V1
platform performance issues in distinct reference scenarios.
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1. Introduction. The spreading of the Electronic Health Record (EHR) is changing the vision of the
European health systems, moving from a vertical approach to solutions able to organize and manage entire
healthcare processes based on the integration of care settings. In order to fully support this view, these infras-
tructures need to be oriented to support care policies expressed as effective clinical services to the citizen/patient,
both from a management and an optimization of resources standpoint. In fact, care and assistance needs are
changing today as a consequence of the social, economic and technological advancements occurred in the last
decade. Healthcare spending has strongly increased in all industrial countries, and in Europe it will potentially
climb up to about 15% of the GDP (Gross Domestic Product) by 2020. This growth is largely driven by the
increase in demand due to the average life expectancy and, as consequence, to the number of people affected
by chronic diseases which becomes more expressed with increasing age. This new situation has three different
but interconnected perspectives:

1. the clinical services managers are challenged to deliver effective healthcare services at reasonable costs;
2. the clinicians are interested to apply and improve the effectiveness of clinical guidelines, increasing the

emphasis on evidence-based medicine;
3. the citizens are increasingly demanding high quality and continuity of care, they are more aware of

clinical risk management and are claiming more efficient healthcare services, with reduction of waiting
times and a better utilization of resources.

In an increasingly digital economy, in order to face these challenges, the healthcare cannot continue to be a
service where the user is passive. This trend is reflected in EHR infrastructures which are becoming increasingly
arranged and enriched so that the citizen/patient can be more involved in her/his own care, gradually moving
away from a passive role. At the same time, in order to guarantee continuity of care across different care
settings it is necessary to provide healthcare operators with an integrated set of services and facilities for
defining, monitoring, evaluating and fine-tuning personalized care programmes.

In order to make this transition technically and economically viable it is necessary to consider a definitive
move towards new organizational models able to govern seamless integration across government, community and
private information systems (EHRs, Personal Health Records PHRs, Telecare centres). Such models must be
supported by distributed architectures where users, systems, applications, and devices are able to collaborate.
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Service oriented architectures (SOAs), based upon largely accepted standards, allow heterogeneous systems that
support different care environments interacting and combining personal, social and environmental issues that
affect the citizen/patient’s healthcare processes.

This scenario will progressively push the healthcare organizations to adopt more and more powerful com-
puting systems to cope with the increasing workload related to the management of the new ehealth services.
Moreover, huge repositories are required for managing the very large and continuously increasing number of
clinical documents. In addition, as a consequence of the availability of more and more complex services, the
computational requirements can change significantly from one service to another, or they can even change dur-
ing time. For example, the computational requirement of the prescription process, starting from the General
Practitioner (GP) that prescribes a drug or a treatment up to the drug delivery or administration, is likely to be
high during daytime, i.e., during working hours of the GPs, but most likely it is low during the night when only
emergency doctors use this service. As a counter example, services related to audit and control processes are
more likely to run during the night. By adopting Cloud-based paradigms, healthcare organizations as well as
complex systems could receive significant benefits from several points of view. In particular, one of the essential
characteristics of a Cloud system is the elasticity [14], that is defined by NIST as: “Capabilities can be elastically
provisioned and released, in some cases automatically, to scale rapidly outward and inward commensurate with
demand. To the consumer, the capabilities available for provisioning often appear to be unlimited and can be
appropriated in any quantity at any time” [20]. Cloud elasticity is a crucial feature in our scenario, since it can
help healthcare organizations to cope with the mutability of the computational and storage requirement of the
ehealth systems and services. With the main goal of validating the approach proposed in this paper, we have
taken into account a commercial platform, distributed by Dedalus SpA1 (an Italian company which is national
leader in healthcare software), aimed at guaranteeing the interoperability among the different interacting actors
of the healthcare scenario. The X1.V1 platform is a service oriented architecture, deployed on a set of Virtual
Machines (VMs), that integrates services for managing fundamental activities in the ehealth scenario, such as
Patient Identification, Clinical Document Repository, Operator Profiling, Access control and authorization, as
well as Prescription and Reporting processes.

This paper presents a Cloud Management System, named X1.V1 Cloud Manager, which allows the execution
and the management of the X1.V1 platform on a Cloud system through a simple graphic interface and is able
to change the allocation of the Cloud resources to the X1.V1 services in just one click in order to promptly
react to a computational peak, or according to a predefined scheduling to face a forthcoming expected overload.
These activities, in fact cannot be performed manually since it would be difficult, time consuming and error
prone for the system administrator. The X1.V1 Cloud manager is able to manage the VMs that composes
the X1.V1 platform and to change the overall resources allocation following some predefined configurations.
Each configuration represents the optimal allocation of the Cloud resources to obtain the best performances
of the platform in a specific usage scenario. Switching from one configuration to another has a great impact
on the X1.V1 platform performance, and switching to the wrong configuration could even result in a denial of
service in some critical situations. Hence, the access to the X1.V1 Cloud Manager must be protected to avoid
unauthorized and inappropriate reallocations of Cloud resources. In particular, at least two distinct access
levels must be defined: one that allows the system administrator to select a subset of the existing configurations
(e.g., the ones that do not involve additional costs for the customer), and another that allows the system
administrator to switch to any configuration, and to upload customized configuration to face with unusual or
emergency scenarios. Summarizing, the main feature of the X1.V1 Cloud manager is the easy exploitation of
the Cloud elasticity, while providing adequate security to protect the processes of the ehealth services.

This paper is organized as follows: Section 2 gives a brief overview of the X1.V1 platform, Section 3 describes
the main reasons for executing the X1.V1 on the Cloud, and Section 4 describes some related works. Section
5 describes the main features of the X1.V1 Cloud Manager, Section 6 gives some implementation details and
describes a set of experiments, and Section 7 concludes the paper.

2. The X1.V1 platform. In order to support the interoperability among the different care environments
(hospitals, primary care, homecare) and to provide the healthcare operators with mechanisms for implementing

1http://www.dedalus.eu/
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integrated care pathways, starting from 2005 Dedalus defined, designed and implemented the interoperability
platform, namely X1.V1 [18]. In particular, X1.V1 was designed to address the requirements of both national
or regional healthcare service models, when the territorial organization is divided into self-regulatory adminis-
trative regions or municipalities. From a functional point of view, the X1.V1 platform is the enabling tool for
implementing the EHR at regional and national level and the EPR (Electronic Patient Record), by supporting
healthcare and clinical processes at enterprise level. Moreover X1.V1 could be used for supporting pathologys
networks, second-opinion services and decision making processes with data collection and performance indicator
elaborations. The X1.V1 platform is currently adopted by several Italian healthcare organizations, such as the
Italian Regions Abruzzo, Umbria and Marche, for the EHR management. From a technological point of view,
it implements a federative architecture, based on the standard IHE (Integrating Healthcare Enterprises) XDS
(Cross Enterprises Document Sharing) integration profile. In particular, the X1.V1 platform follows a Service
oriented approach by virtualizing the following components:

• Single-Sign-On (SSO) module, for managing authorization and authentication functions;
• Master Patient Index (MPI) module, for supporting the unique identification of patients among the
different care environments;

• Master Code Index (MCI) module, for shared management of coding and terminologies;
• Document repositories, able to store all the managed clinical documents produced in the different care
environments;

• Document Registry, able to store the relevant metadata of the documents and to provide the index of
the documents stored in the repositories;

• Enterprise Service Bus (ESB) and a Workflow engine, for the orchestration of the clinical processes
implemented through the platform.

The main information systems interoperating with the platform are the EMRs (Electronic Medical Records)
of the General Practitioners, the Hospital Clinical Information Systems (HCIS), including EMRs, first aid and
operating theatres applications, the Laboratory and Radiology Information systems, as well as non-clinical
systems, such as booking systems, ADT. Moreover the platform is able to interoperate with the Pharmaceutical
information systems and end-users/citizens viewing interfaces. The platform is able to support among the others
the following activities:

• The eDocuments shared management, such as the publication and the accesses of the Patient Summary,
the Patient Care Coordination Report, the Medical reports produced by the HCIS;

• the ePrescription processes;
• integrated care pathways related to predefined care models (such as Chronic Care model);
• the eBooking of health services;
• the events related to health episodes.

The use of the X1.V1 solution therefore needs the deployment and the management of a very complicated
healthcare ecosystem, that requires an heterogeneous, time dependent and scalable allocation of resources.

3. Executing the X1.V1 Platform on the Cloud. The increasing popularity of Cloud systems [20] [30]
is mainly due to the possibility to exploit (virtualized) resources when users actually need them for executing
(parts of) their processes. Distinct Cloud service models have been defined [15], depending on the kind of
resources that are provided. The framework proposed in this paper exploits the Infrastructure as a Service
(IaaS) model, where the resources provided to users are computational infrastructures consisting of Virtual
Machines (VMs) connected by virtual networks. When requesting VMs, users can choose the most proper
network configuration, VM features (e.g., CPU count and memory space), VM images (i.e., the operating
system they need for their application) and they can install and run on their VMs the applications they need.
Once requested, the virtual computational infrastructure is available quickly and the number of machines and/or
their features can be increased or decreased by the users on demand during the computation and according
to their needs. Cloud users are charged by Cloud providers for resource usage, depending on the number of
machines, on their features, on the computational time used, etc..

Public IaaS Cloud facilities are currently provided by many big companies such as Amazon2 and Microsoft3,

2http://aws.amazon.com/ec2/
3http://www.microsoft.com/windowsazure/features/compute/
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and a number of frameworks, such as OpenNebula4, Eucalyptus5 or OpenStack6, are available to deploy Cloud
systems in users’ data centres (Private Clouds) [31] [33].

The X1.V1 platform provides a set of services concerning several aspects of the ehealth scenario, such as
Patient Identification, Clinical Document Repository, User Profiling, Prescription and others, and these services
are already deployed on a set of VMs. Hence, executing the X1.V1 platform on the Cloud is straightforward.
Allocating a static set of Cloud resources to each of these VMs could result in low performances as well as in
a waste of resources, since the computational load of the services is variable over time. We report here two
reference examples taken from the normal operation of the X1.V1 platform.

Example 1: The X1.V1 platform computes some statistics during the night, while the other services are
likely to be unused. This is a very heavy task, and sometimes the results are not ready before the day after
when daily services should start again. Hence, the load of the VMs involved in this task is very high during the
night, while it is negligible during the day. Consequently, during the night hours the VMs that perform this
task should have a large number of resources, while the VMs running the other services (such as the Booking
or the Prescription one) should have a reduced number of resources.

Example 2: The Prescription service is used mainly by GPs, Pharmacists and Specialists to perform the
ePrescription process. In fact, the GPs exploit the service to store the drugs and diagnostic exams prescriptions
for their patients, and the Pharmacists and Specialists use the same service to retrieve such prescriptions and
to update them according to drugs provided or exams executed. The Prescription service is likely to receive a
large number of service requests during the working hours of GPs, Pharmacists and Specialists. In particular,
there could be some computational peaks, i.e. a very large number of requests that are issued in a short period
of time. Consequently, since each request is issued by a person that is waiting for the answer, in order to serve
each request within a reasonable response time, the resources allocated to the VM(s) running the Prescription
service should be increased during the working hours of GPs, Pharmacists and Specialists.

The previous examples point out that the usual behaviour of the X1.V1 platform from the point of view
of resource requirements is known. In other words, during the daily operations there are predictable variations
of the computational load of the X1.V1 VMs. Hence, the execution of the X1.V1 platform on a IaaS Cloud
would greatly benefit from the Cloud elasticity in order to grant a given quality of service, i.e., to ensure an
upper bound to response time of the provided services [4]. As a matter of fact, the framework could increase
the resources assigned to a given VM, and hence to the services deployed on it, when a computational peak is
expected for this VM. Symmetrically, the framework could reduce the resources assigned to other VMs when a
low computational load is expected for these VMs. Performing the management and the update of the allocation
of the Cloud resources to the X1.V1 VMs manually is not convenient, because it requires the knowledge of the
allocation of the services to the VMs, it would be time consuming and error prone for the system administrator.
For this reason, this paper proposes a framework for the management of the allocation of the Cloud resources
to the VMs that compose the X1.V1 platform.

Besides the benefits previously described, the adoption of Cloud computing to perform critical tasks intro-
duces also security issues. These security issues are described by the European Network and Information Security
Agency (ENISA) in the report “Cloud Computing. Benefits, Risks and Recommendations for Information Se-
curity” [10], and by the Cloud Security Alliance (CSA) in the reports “The Notorius Nine. Cloud Computing
Top Threats in 2013” [8] and “Security Guidance for Critical Areas of Focus in Cloud Computing” [7].

4. Related Work. A number of works in the literature, such as the ones in [2], [6], [16], and [25] describe
some approaches for the design and implementation of several health related services (such as the EHR or health
monitoring systems) on the Cloud. Instead, the focus of this paper is different from these works because we
take for granted that the X1.V1 platform is already designed for being executed on the Cloud, and we focus
on the design, implementation and validation of a tool which eases the exploitation of the Cloud elasticity, in
order to allow the X1.V1 platform to take maximum benefit from the Cloud environment.

The authors of [3], instead, propose a tool, called Elastack, which is an automated monitoring and adaptive
system, generic enough to be applied to existing IaaS frameworks, and intended to provide elasticity to these

4http://opennebula.org
5http://www.eucalyptus.com
6http://www.openstack.org
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frameworks. As a matter of fact, the authors state that the elasticity support of the currently available Cloud
frameworks is quite immature, and they define their own tool to support elasticity in IaaS Clouds. Their
framework is based on the Serpentine middleware [19]. Elastack reacts to workload peaks by creating new
instances of VMs, and these instances receive some tasks to be performed. These new instances are then
destroyed when they are no longer necessary.

Roy et al. [26] describe a framework for efficient autoscaling in the Cloud, aiming at guarantee a given Quality
of Service (QoS) level. Their framework exploits a look-ahead resource allocation algorithm based on model-
predictive techniques for workload forecasting which allocates and deallocates VMs to the application trying to
optimize the amount of used resources while respecting the promised QoS and minimizing the operational cost.

The approach proposed in [1] defines two adaptive controllers which use both reactive and proactive controls
to dynamically change the number of VMs allocated to a service based on the current and on the predicted
future load of that service.

The previous approaches differ from the one proposed in this paper because they resolve performance issues
simply by allocating new VMs or deallocating existing ones, and this requires that multiple instances of the
applications deployed on the VMs can be run in parallel. The X1.V1 Cloud Manager, instead, does not simply
increase the number of the VMs of the system to react to a computation peak. In fact, the X1.V1 Cloud
Manager defines a set of configurations exploiting at best the Cloud resources assigned to the X1.V1 VMs in
some specific scenarios (such as the ones described in the two reference examples in Section 3). Hence, the
X1.V1 Cloud Manager could resolve a temporary performance issue due to the overloading of some services
even without increasing the total amount of resources assigned to the X1.V1 platform, but simply choosing a
different allocation of the same resources to the VMs of the X1.V1 framework.

CloudScale [29] is a prediction driven system that automates fine-grained elastic resource scaling for Cloud
infrastructures. CloudScale does not assume any prior knowledge about the applications that are running on
the Cloud, and it exploits an online resource demand predictor, described in [13], that is application agnostic
and that achieves a good prediction accuracy for a range of real world applications. CloudScale also defines
two complementary handling schemes to be executed when the resource demand predictor underestimates the
resource requirement, to update the resource allocation thus avoiding the violation of the previously defined
service level objectives.

The main difference between the X1.V1 Cloud Manager and the approaches proposed in [26], [1], and [29]
is that they address two different problems: the X1.V1 Cloud Manager assumes a deep knowledge of the
application that is running on the Cloud, the X1.V1 platform (because the configurations that describe the
resource allocation are defined according to the usual application behaviour), while the other approaches do not
assume any knowledge of the applications that are running on the Cloud, and for this reason they are focused
on predicting the future resources requirement of these applications in order to promptly update the resources
allocation.

CloudScale7 is also a research project funded under the European FP7 programme. The main aim of the
project, introduced in [5], is to provide an engineering approach for building scalable cloud applications and
services based on the state of the art cloud technologies and software. The CloudScale approach will make
cloud systems scalable by design, i.e. they will fully exploit the cloud elasticity during their operations to
provide scalability, while minimizing the amount of computational resources used. One of the reference scenario
addressed by CloudScale will be the EHR one. Since [5] is a work-in-progress paper, it simply provides an overall
description of the Cloudscale approach, and it does not allow us to make a comparison with our approach.

A set of further works concerning other approaches to exploit Cloud elasticity are described in [12].

Finally, the difference between the X1.V1 Cloud Manager and the graphical tools provided by the main
Cloud frameworks (e.g., Sunstone and Horizon) is that the X1.V1 Cloud Manager allows to transparently manage
a number of distinct Cloud providers, which hosts the X1.V1 VMs, and the configurations are customized for
the computational requirements of the X1.V1 framework in several scenarios.

5. X1.V1 Cloud Manager. The X1.V1 Cloud manager is a framework meant to enable an easy, quick,
and secure management of the resources allocated to the X1.V1 platform in the Cloud environment, in order to

7www.cloudscale-project.eu
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enhance the platform performances, optimize resource utilization and, consequently, to reduce the whole cost of
the computation. In particular, the main aim of the X1.V1 Cloud Manager is to enable the system administrator
to easily deploy and manage the VMs that build up the X1.V1 platform in the Cloud environment, in order
to quickly react to computational peaks by properly updating the resources allocation to the X1.V1 VMs. In
fact, the X1.V1 Cloud Manager allows the system administrator to define a set of configurations, where each
configuration defines in details the resources to be allocated to each VM of the system (e.g., the number of
virtual CPUs or the size of the RAM memory) and other configuration details (e.g., the Cloud Provider on
which each VM will be deployed). In general, each configuration defines the best resource allocation to obtain
a good performance in a specific scenario, such as the GPs’ labs opening hours one. With reference to the
previous example, the system administrator could define the following configurations:

Normal: allocates the same amount of resources to all the VMs;
Interactive: allocates more resources to the VMs hosting the interactive services, i.e., the services which require

interactions with people (e.g., doctors, patients), such as the Prescription service, reducing the resources
allocated to the statistic service and or to other services;

Night: allocates a small amount of resources to the VMs that implement the interactive services, and reserves
high computational power and large memory space for the VMs responsible to perform statistical
analysis or data warehousing on the available data;

Power: allocates high computational power and a large memory space to all the VMs of the X1.V1 platform.

Many other configurations could be defined by the system administrator, to handle other possible situations
where a different allocation of the resources to the X1.V1 VMs could lead to better performances.

The X1.V1 Cloud Manager allows the management of distinct Cloud providers at the same time, even
running distinct Cloud softwares, such as OpenStack or OpenNebula. Hence, a configuration file could state
that some VMs of the X1.V1 platform can be deployed on a provider running OpenNebula and other VMs on
another one running OpenStack. Switching from a configuration to another, besides changing the allocation of
the resources to the VMs, could even migrate some of them from a Cloud provider to another.

Depending on the Cloud provider and on the related agreement, some configurations could result in addi-
tional costs. As an example, we could define the Normal, the Interactive, and the Night configurations in a way
such that they require the same amount of resources, i.e., they define three different ways of partitioning these
resources, while the Power configuration requires more resources than the others. We also suppose that the
Power configuration uses more resources than the ones agreed with the Cloud provider (or available in the user
data center in case of Private Cloud); hence the Power configuration could lead to additional cost for the Cloud
user. Hence, in order to reduce the cost of the computation, during the normal operation of the X1.V1 platform
the first three configurations should be used, while the Power configuration should be exploited only when it
is really necessary to guarantee a good service level. The X1.V1 Cloud manager represents the configurations
previously described through a OVF [9] file (with extensions).

When the system administrator selects a configuration, the X1.V1 Cloud Manager performs all the opera-
tions required to update the VMs according to the new configuration, such as changing the amount of memory
or the number of virtual CPUs allocated to the VMs or migrating the VMs from one Cloud Provider to another.

The X1.V1 Cloud Manager includes a monitor component that collects information from the running VMs,
such as the CPU workload, the amount of memory used and the network traffic. This information is elaborated
in order to provide aggregated data that could help the system administrator to decide whether the current
configuration is resulting in good performance or a more suitable configuration can be chosen.

We plan, as a future work, to provide the X1.V1 Cloud Manager of a further component which automatically
decides whether, in a given scenario, a new configuration should be adopted, i.e., whether another resource
allocation would result in better performance of the X1.V1 platform. This component will include a resource
demand predictor that will exploit the information collected by the monitor system in order to perform the
configuration switch before the actual change of the load of the X1.V1 VMs and only if the time spent to
perform the configuration switch is paid by better performance.

The X1.V1 Cloud Manager has been designed to provide an adequate security level for the processes and
data involved in the X1.V1 platform. In particular, this paper is focused on the security of the X1.V1 Cloud
Manager, in order to prevent unauthorized users to change the current configuration. As a matter of fact,
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adopting the wrong configuration could lead to a significant degradation of the performance of some X1.V1
services, thus causing a denial of service. Instead, this paper does not cover the security issues specific of the
X1.V1 platform because it assumes that the X1.V1 platform already provides an adequate level of security.

The security support of the X1.V1 Cloud Manager includes the authentication and the authorization phase.
The authentication phase exploits the LDAP certificate-based authentication method [28], [32], which provides
an adequate security level for the critical applications such as the X1.V1 platform. Each entry of the LDAP
directory represents a X1.V1 administrator, i.e., a subject who has some rights concerning the management
of the X1.V1 platform on the Cloud, and include a set of attributes that are paired with the corresponding
X1.V1 administrator, that will be used in the authorization phase for evaluating the access control policy. The
role is an example such attributes. Other attributes (static or even dynamic, i.e., that change over time) could
be introduced in order to define complex access control policies. The authorization component is aimed at
checking that the user that authenticated herself/himself on the Dashboard really holds the right to perform
the operation she/he requests, because distinct sets of rights are assigned to distinct (classes of) users. To design
both the architecture of the authorization system and the security policy language, we rely on the XACML
standard [23] developed by the OASIS consortium, because it is well known, widespread, and supported both
by academic (and, consequently, free and open source) such as WSO2 Balana, and by commercial tools, such as
the Axiomatics authorization framework [11]. The XACML standard naturally allows to implement the Role
Based Access Control (RBAC) model [27], [22], i.e., to define a set of roles and to pair a set of rights to each
of the roles. In our scenario we could have (at least) two roles, ADMIN and SUPERADMIN. The role ADMIN
will have the right to select a subset of the existing configurations only, i.e., the ones that do not require to pay
an additional fee to the Cloud Providers, while the role SUPERADMIN will have the right to select any of the
existing configurations and even to load a new and customized configuration written for the specific situation
she/he is coping with. For what concerns the interactions with the Cloud Providers, instead, we exploit at
best the security mechanisms they provide for the authentication on the Cloud platform and for securing the
communications between the X1.V1 Cloud Manager and the Cloud platform.

5.1. Architecture. The architecture of X1.V1 Cloud Manager is shown in Figure 5.1, and consists of the
following components.

Web Dashboard. It is a web application providing a graphical interface which allows to easily manage
the configuration of the cloud services that build up the X1.V1 platform. All the configurations stored in
the repository are listed in the dashboard, and the administrators can switch from the current configuration
to another one in just one click, i.e., simply pushing the related button, provided that they hold the proper
right. Authorized administrators could also upload customized configurations to deal with special or emergency
situations. The Switch Configuration Command (SCC) is sent to the Configuration Engine. This interface also
allows to monitor the resource usage of the VMs of the X1.V1 cloud system, properly represented through a
set of graphs. Figure 5.2 shows the dashboard interface that allows the configuration switch, while Figure 5.3
shows the dashboard page that represents the resource usage of each VM.

Configuration Engine. This component is the core of X1.V1 Cloud Manager. This module receives the
Switch Configuration Commands (SCC) from the dashboard, processes and executes them on the Cloud
Providers that host the final services. Each SCC requires to change the Cloud resource allocation accord-
ing to the related configuration file. The directives listed in the configuration file need to be mapped into a set
of specific commands to be sent to the Cloud Providers to perform the required resource reallocation. For this
reason, a specific driver for each Cloud Provider has been included in the architecture, to translate the SCC
into a set of commands that can be executed by the Cloud Provider. Finally, the Configuration Engine embeds
the Policy Enforcement Point (PEP) that triggers the authorization process.

Security Manager. It provides a cross support for the authentication and authorization of users accessing
the X1.V1 Cloud Manager. The authentication system is based on a LDAP server that is invoked by the web
dashboard. After a successful login, the authentication system also returns a set of user attributes, such as the
user ID and Role, that are necessary to perform the authorization process. The authorization process is triggered
by the Policy Enforcement Point embedded in the Configuration Engine, which invokes the authorization system
to check the authorization policies every time it receives a SCC. The access control policies are written in XACML
language, a widely used standard developed by OASIS consortium. In the reference scenario, the policy exploits
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the Role Based Access Control (RBAC) model, where a set of roles are defined and a set of rights is paired to
each of these roles. One (or more) role is assigned to each user, thus determining the users rights. However, the
XACML language is very expressive, and allows to write more complex security policies than the pure RBAC
one. As a matter of fact, besides the role, other attributes can be stored in the LDAP server and exploited in
the access control policy for the authorization decision process.

Driver for Cloud providers. The drivers are in charge of the communications with the Cloud Providers,
i.e., of customizing the commands defined by the Configuration Engine for the specific Cloud Provider these
commands are to be sent. Hence, a specific driver must be instantiated for each distinct Cloud provider exploited
for the execution of the X1.V1 VMs. In general, a driver could also be instantiated to exploit a Public Cloud,
such as Amazon EC2, for the execution of some of the VMs. The drivers also manage the channels used for
the request/response to the Cloud Providers and the channels used for the monitoring communications (data
and alert). The channel for the request/response is a simple OCCI interface common to all the Cloud drivers
present in the system. The drivers also manage the security of the interactions with the Cloud Providers. In
particular, a set of local users is statically defined on each Cloud Provider, and each driver exploits the right
user to interact with each Cloud Provider. Secure communications must be exploited with the Cloud Providers
that support them.
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Monitoring System. For each of the VMs running on the Cloud Providers, the monitoring system collects a
set of usage parameters, such as the CPU and RAM utilization and network statistics. The monitoring system
also allows to set some alarms when a metric exceeds a threshold. The alarms have two level of emergency:
WARNING and FAILURE. When a VM notifies the violation of a threshold the system forwards the notification
to the dashboard, in a way such that the administrator can change the current configuration. The monitoring
information is sent from the Cloud Provider to a collector module present in the Cloud Manager. This module
collects both the statistics and the alarms coming from the Cloud Provider, and it passes these data to a
Monitoring aggregator that splits the hardware statistics and the alarms. Finally, the monitoring information
are displayed in the monitoring section of the Web dashboard in a proper graphical format, that also provides
a clear visualization of the alarms (Figure 5.3).

Fig. 5.2. Dashboard Configuration Switch page

6. Prototype. This section describes the main features of the prototype we developed, that implements
most of the functionalities of the architecture described above, and presents a set of experimental results.

6.1. Implementation Details. The X1.V1 Cloud Manager core is mainly developed in Java EE under
Apache Tomcat web server. The Web dashboard uses the typical Java EE tools like a JSP and Servlet. Ajax
and the Highcharts library have been used to display graphs.

The authentication system exploits the certificate-based authentication method provided by the LDAP
protocol. In particular, we exploited LDAP over SSL (LDAPS), which allows to use a secure channel to
communicate the credential in the authentication phase instead of a plain one. We added custom attributes
in posixAccount to retrieve credentials to communicate with OpenStack. Once retrieved, these values are used
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Fig. 5.3. Dashboard Monitoring page

once for the initial authentication on OpenStack, and they are not saved anywhere. Our implementation expoits
the OpenLDAP8 software to set up both the LDAP server and the client within the dashboard.

The authorization system is based on the WSO2 Balana9 XACML engine, which is an open source software
for evaluating access control policies written in XACML v3.0. An alternative XACML engine that could be
adopted is the one released by SUN10. However, SUN’s engine supports XACML v2.0 only, it is no longer
maintained and it is considerably slower than the WSO2 Balana engine. Another XACML engine is the one
developed by Axiomatics, which is a commercial product11. In particular, a significant advantage is that
Axiomatics provides an authorization framework covering all the phases of the authorization process, such as
policy writing, enforcing and tuning.

The communications among the Configuration Engine and the XACML authorization system follows the
SAML protocol [21] and the opensaml library is exploited.

The current version of our prototype implements one Cloud Provider driver only, i.e., the OpenStack one,

8http://www.openldap.org/
9http://xacmlinfo.org/category/balana/

10http://sunxacml.sourceforge.net
11http://www.axiomatics.com/solutions/products.html



A Tool for Managing the X1.V1 Platform on the Cloud 113

because OpenStack is a widely used open source software for setting up private Clouds, and it is the one we
used for our experiments. OpenStack does not require to shutdown the VMs to change their resource allocation.
Hence, the X1.V1 services are simply suspended when a configuration switch is performed, and they are available
again right after the resource reallocation. For the Cloud Provider installation we chose the OpenStack Havana
release with the fundamental modules installed on two distinct nodes: the Controller Node and the Compute
Nodes. The Controller Node hosts Keystone (Security manager), Glance (Image manager) and Nova (VM
manager), and it manages all the request from the X1.V1 Cloud Manager. The Compute Nodes host only
the compute agent for Nova and the network module. These nodes receive the requests from the Controller
Node and manage the execution of VMs. In our prototype the network communications are managed through
nova-network without the specific module Neutron.

As far as concerns the authentication on the Cloud providers, OpenStack provides a token system to
allow interactions through its API calls. When the user successfully performs the initial authentication phase,
Keystone assigns a temporary token, and this token can be used by the OpenStack driver to send commands
to the Cloud provider. The token expiration is setted to 24h, but this parameter is configurable by OpenStack.
The initial authentication on each Cloud provider is executed when the user performs the authentication on
the X1.V1 Cloud Manager. In particular, a PKI infrastructure is used to authenticate on OpenStack, and the
required key is stored in a password protected Keystore, that is opened by the user at authentication time.
This credential allows the OpenStack driver to perform the initial authentication phase on the Cloud provider
and to obtain the authentication token required to invoke the subsequent commands to manage the Cloud
resource allocation. For this reason we have a secure channel to communicate among X1.V1 Cloud Manager
and OpenStack Cloud provider.

The monitoring system exploits Collectd12 to retrieve the usage information from the VMs. There is a
client on each VM in the cloud that retrieve the statistics of CPU usage and RAM utilization. These data
are sent to a collector daemon in each cluster that redirect the statistics to X1.V1 Cloud Manager. The data
collected are analyzed and visualized on the web dashboard.

6.2. Experimental Results. In order to validate the proposed framework, we performed a set of experi-
ments to evaluate the time required to switch from one configuration to another varying the number of VMs in
the system. In particular, we measure the time from the moment when we press the switch configuration button
on the X1.V1 Cloud Manager interface to the moment when all the VMs of the system are again in active state.
The aim of these experiments is to evaluate whether the proposed framework could be successfully adopted to
increase the performances of the X1.V1 platform on the Cloud, e.g., by addressing the issues described by the
two reference examples presented in Section 3.

In general, we can say that the porting of the X1.V1 platform on the Cloud through the proposed framework
is beneficial when the time required to perform the switch between two configurations is low enough to be
compensated by the better system performance due to the new configuration. In particular, to address the
issue described in Example 1, the time required to switch to a configuration which allocates more resources to
the VM(s) that performs the statistics should be compensated by a faster execution of the statistics procedure.
In other words, the time TN required to carry out the statistic task exploiting the new configuration should
be lower than the sum of time TI required to carry out the same task exploiting the initial configuration and
twice the time TS required to perform the configuration switch (TN + 2TS < TI). We consider twice the time
required to perform the configuration switch (2TS) because we take into account also the time to restore the
initial configuration, since the new configuration could be inadequate for the daily operation of the system,
supposing that the two configuration switches take the same time. To address the issue described in Example 2,
instead, the time required to switch to a configuration which allocates more resource to the VM(s) running the
Prescription service should be reasonably low in order to give a prompt response to users (GPs, Pharmacists,
Specialists and, overall, the patients) that are waiting for service completion.

The physical testbed where we performed the first set of experiments consists of one machine equipped with
a Intel i7 2600 3.4 Ghz CPU with 8 cores and 8GB of RAM memory which hosts the Controller Node, and one
machine equipped with an AMD Opteron 6380 2.5 Ghz CPU with 16 cores and 32 GB of RAM memory, which

12http://collectd.org/
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hosts the compute node. The operating system installed on these machines is Linux Ubuntu 12.04 LTS (Precise
Pangolin), with 3.11.0-26-generic 64bit kernel. The OpenStack version used is Havana with the components
Keystone (Security manager), Glance (Image manager) and Nova (VM manager). The Controller node hosts the
following modules: keystone, glance-registry, glance-api, nova-api, nova-cert, nova-consoleauth, nova-scheduler,
nova-conductor, nova-novncproxy. The Compute nodes host nova-compute and nova-network.

The allocation of the resources to the VMs is defined by the following three VM flavors:

• Small (1 VCPU, 1GB RAM)
• Medium (1 VCPU, 1,5GB RAM)
• Large (1 VCPU, 2GB RAM)

Although our architecture states that the configuration files follow the OVF standard, we found out that the
current release of OpenStack does not provide a stable support for OVF yet. Hence, the current implementation
adopts a custom format to represent the configuration files, which will be replaced by a customization of the
OVF format as soon as possible. The custom format used for the experiments has a XML structure with the
essential information for each VM.

To perform our tests we defined four distinct configurations: Normal, Interactive, Night, and Power which
differ one from another for the flavors choosen for each VM of the system. In fact, in the Normal configuration
the flavor of all the VMs is Medium, while in the Power configuration, all the VMs are Large. Moreover,
supposing to have N VMs, in the Interactive (respectively, Night) configuration, the flavor of the first N/2 VMs
is Large (respectively, Small) and the flavor of the remaining VMs is Small (respectively, Large). Table 6.1
reports these configurations in case of 4 VMs.

Table 6.1

Configurations in case of 4 VMs

Normal Interactive Night Power
VM1 Medium Large Small Large
VM2 Medium Large Small Large
VM3 Medium Small Large Large
VM4 Medium Small Large Large

The full amount of resources required by the Normal, Interactive, and Night configurations is the same
(4 VCPUs and 6GB of RAM memory in the example of Table 6.1), while the Power configuration requires
more resources (4 VCPUs and 8GB of RAM memory in the same example). Figures 6.1 and 6.2 show the time
required to switch from one of the four configurations to another for each couple of them, varying the total
number of VMs of the system. The VM image we used for this set of experiments is the Ubuntu Cloud image,
which is “a pre-installed disk image that has been customized by Ubuntu engineering to run on cloud-platforms
such as OpenStack” equipped with an Ubuntu Server 12.04 LTS (Precise Pangolin)13. The Ubuntu Cloud image
size is 248MB.

The results in Figures 6.1 and 6.2 clearly show that the time required to switch from one configuration
to another depends on the number of VMs whose flavor is changed. In particular, Figure 6.1 shows the time
required to switch from a configuration to another in those cases where this switch requires to change the flavor
of half of the VMs of the system. As an example, in the case of 8 VMs the switch from the Interactive to the
Power configuration requires to change the flavor of 4 VMs from Small to Large. Figure 6.2, instead, shows the
time required to switch from a configuration to another in those cases where this switch requires to change the
flavor of all the VMs of the system. As an example, in the case of 8 VMs the switch from the Normal to the
Power configuration requires to change the flavor of 8 VMs from Medium to Large.

For any number of VMs, we notice that the time to perform the configuration switchs requiring to change
the flavor of half of the VMs (Figure 6.1) is considerably less than the time to perform the configuration switches
that require to change the flavor of all the VMs (Figure 6.2). For example, in the case of 8 VMs, the time
to switch from the Interactive configuration to the Power one is about 20 seconds, while the time to switch

13https://cloud-images.ubuntu.com/precise
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Fig. 6.1. Time to perform a switch involving half of the VMs (Ubuntu Cloud image)

from the Normal to Power one is about 31 seconds. Moreover, we also notice that increasing the number of
VMs, the time required to perform any kind of switch increases. In particular, we notice that, doubling the
number of VMs whose flavor is changed (either doubling the number of the VMs of the system or performing a
configuration switch that require to change the flavor of all the VMs instead of half of them), the time required
to perform the whole switch procedure is considerably higher, although the switch procedure does not take
twice the time. For example, the time to perform the switch from the Normal configuration to the Power one
in case of 4 VMs is about 19 seconds, and in case of 8 VMs is about 31 seconds. We estimated that, on average,
the time required to change the flavor of N VMs is 156% the time required to change the flavor of N/2 VMs.

Furthermore, we notice that the maximum switch time in case of 4 VMs is about 20 seconds, while in case
12 VMs is about 47 seconds. This means that switching from a configuration that is not suitable to perform a
given task to one that is more suitable for this task is convenient when the second configuration allows to save
at least 20 seconds in case of 4 VMs and 47 seconds in case of 12 VMs. However, if the second configuration is
not suitable for the normal operation of the system, we should consider twice the switch time i.e., respectively,
40 and 94 seconds, because we need to restore the initial configuration.

The results in Figure 6.3 show the time to perform a configuration switch exploiting another VM image,
i.e., Ubuntu 12.04 Desktop image, whose size is 1.4GB. The figure shows the time required to perform both the
configuration switches that involve half the VMs of the system and all the VMs of the system. We notice that
the results in Figure 6.3 confirm the comments we made for Figures 6.1 and 6.2, and that, in the worst case,
the time required for a configuration switch is about 20 seconds on 4 VMs and less than 50 seconds on 12 VMs.
Since the previous set of experiments has been executed exploiting one compute node only, no VM migration
occurred.

Hence, we performed another set of experiments on a different testbed, which consists of four machines.
This testbed includes one machine equipped with a Intel i7 2600 3.4 Ghz CPU with 8 cores and 8GB of RAM
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Fig. 6.2. Time to perform a switch involving all of the VMs (Ubuntu Cloud image)

memory which hosts the Controller Node, and three machines which are exploited as compute nodes: the first
machine (A) is equipped with an AMD Opteron 6380 2.5 Ghz CPU with 16 cores and 32 GB of RAM memory,
the second machine (B) is equipped with an Intel i5 750 2,66 Ghz CPU with 4 core and 8 GB of RAM memory,
and the third machine (C) is equipped with Intel i5 760 2,8 Ghz CPU with 4 core and 8 GB of RAM memory.
The operating system installed on all these machines is Linux Ubuntu 12.04 LTS (Precise Pangolin), with
3.11.0-26-generic 64bit kernel. These experiments also consider a different allocation of the resources for the
three VM flavors:

• Small (1 VCPU, 1GB RAM)
• Medium (2 VCPU, 1,5GB RAM)
• Large (4 VCPU, 3GB RAM)

Moreover, the VM image we exploited for all the VMs is Ubuntu Server 12.04 LTS (Precise Pangolin), and the
image size is 3GB.

Figure 6.4 shows the time required to perform the configuration switch from the Interactive to the Power
configuration, which changes the flavor of half the VMs of the system, and the time required to switch from the
Normal configuration to the Power one, which involves all the VMs of the system. When the system consists of
4 VMs, the time to switch from the Interactive to the Power configuration is about 17 seconds, while the time
to switch from the Normal to the Power configuration is about 28 seconds and the VMs, that before the switch
were running on machine A, did not migrate on other machines. The results for 4 VMS are slightly greater
with respect to the ones obtained from the previous set of experiments. We think that this could be due to the
fact that the flavour used in the second set of experiments exploits a larger set of resources (VCPUs and RAM
memory).

Instead, when the system consists of 8 VMs, the switch from the Interactive to the Power configuration,
on average, takes about 156 seconds. This time is considerably larger with respect to the one in Figure 6.3,
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Fig. 6.3. Time to perform a switch (Ubuntu Desktop image)

and the main reason is that, on average, about 2 VMs (2,15) migrated from one compute node to another. In
particular, taking into account one specific experiment, before the switch 5 VMs were running on machine A,
2 VMs were running on machine B, and 1 VM was running on machine C. The switch caused the migration
of 3 VMs, and after the switch all the VMs were running on machine A. The time required for this specific
experiment was 222 seconds. In another experiment, 6 VMs were allocated on machine A and 2 VMs were
allocated on machine B before the switch. The switch involved the migration of 2 VMs, and took about 137
seconds. After the switch all the VMs were allocated on machine A. In a further experiment, before the switch
all the VMs were running on machine A, and after the switch all the VMs were still running on machine A. In
this case, the time required to perform the switch was about 32 seconds. As far as concerns the switch from
the Normal to the Power configuration, the average execution time is almost the same, i.e., about 158 seconds,
and the average number of migrated VMs is about 2 (2,21). Finally, the results of the experiments performed
with 12 VMs show that the Interactive to Power configuration switch requires, on average, 358 seconds and
involves the migration of 5 VMs, while changing the configuration from Normal to Power requires 378 seconds
and involves the migration of 6 VMs.

These results show that, in case of migration, the time required to perform the configuration switch mainly
depends on the number of VMs that are migrated, and the number of VMs whose flavor is changed is not impor-
tant in this case. In turn, the number of VMs that are migrated from one physical machine to another depends
on the original allocation of the VMs to the physical machines, and on the allocation policy of OpenStack. This
explains, for instance, why the time required for the configuration switch in case of 8 VMs is almost the same
in the case where the flavor of 4 VMS is changed and in the case where the flavor of 8 VMs is changed, i.e.,
because the average number of migrated VMs is almost the same. Moreover, we performed a further set of
experiments on 4 VMs exploiting the same VM image described previously and the following flavors:

• Small (1 VCPU, 1GB RAM)
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Fig. 6.4. Time to perform a switch (Ubuntu Server image)

• Medium (4 VCPU, 4GB RAM)
• Large (6 VCPU, 6GB RAM)

The average switching time was 148 seconds and, on average, the number of migrated VMs was 2 (1,9). This
result confirms that the switching time mainly depends on the number of VMs that are migrated. As a matter
of fact, the switching time of this experiment is almost the same as the one obtained in the previous set of
experiments with 8 VMs (156 seconds) because the number of VMs that migrated is almost the same (about
2) in the two experiments.

7. Conclusion. This paper proposed a tool, the X1.V1 Cloud Manager, which optimizes the resource
utilization for the execution of the X1.V1 platform on the Cloud by easing the exploitation of the Cloud
elasticity. In fact, the X1.V1 Cloud Manager allows to change the allocation of the Cloud resources to the
VMs according to some predefined configurations, in order to reduce the response time of the X1.V1 services
in case of computational peaks, to reduce the completion time of some heavy computational tasks, and to save
resources when the overall load of the platform is low. Since the resource requirements of the X1.V1 platform
is known, the configuration switch to be performed during the daily operations can be planned in advance.
However, some configuration switches can be manually initiated by the administrators to resolve unexpected
computational peaks. Moreover, as a future work, we plan to integrate a further component in our framework
in order to deal with unpredictable variation of the computational load of the VMs, i.e., to automatically detect,
or even predict, when a new configuration should be adopted to achieve better performance.

The X1.V1 Cloud Manager security support includes proper authentication and authorization mechanisms,
in order to avoid that unauthorized subjects change the Cloud resource allocation, since this could reduce the
performance of the X1.V1 platform, increase the cost of the computation, and could even result in a Denial
of Service. The paper presented two sets of experimental results which prove that, when no VM is migrated
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from one compute node to another, the time required to perform a configuration switch is quite low, even in
case of a large number of VMs. When some VMs are migrated from one compute node to another, instead,
the configuration switch time increases considerably. Since the VMs migration affects the configuration switch
time, which depends on the size of the VMs that are migrated, the X1.V1 Cloud manager will be configured
in a way such that only the VMs with small images are migrated. Hence, the VMs storing the EHR data are
not be migrated, while the VMs implementing some of the services provided by the X1.V1 platform could be
migrated.

As ongoing work, we are deploying our framework in the main data center of the Dedalus SpA company
(which is located in Avellino, Italy) in order to perform some simulations in a real scenario, trying also to
evaluate the benefits resulting from changing configuration in some specific load distribution.

As future work, we plan to study the adoption of an advanced authorization model, the Usage Control
Model [24] to regulate the usage of the X1.V1 VMs, as described in [34], [17]. As an example, the usage control
authorization system could restore the previous (or a standard) configuration when the administrator that
updated the resource allocation with a new configuration loses the right required to perform this switch. This
policy could be adopted when the new configuration involves additional costs for the user.
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