
Scalable Computing:
Practice and Experience

Scientific International Journal
for Parallel and Distributed Computing

ISSN: 1895-1767

⑦⑦
⑦
⑦

⑦
⑦

t

Volume 17(1) March 2016

Editor-in-Chief

Dana Petcu

Computer Science Department
West University of Timisoara
and Institute e-Austria Timisoara
B-dul Vasile Parvan 4, 300223
Timisoara, Romania
petcu@info.uvt.ro

Managinig and

TEXnical Editor

Marc Eduard Fr̂ıncu

Computer Science Department
West University of Timisoara
and Institute e-Austria Timisoara
B-dul Vasile Parvan 4, 300223
Timisoara, Romania
mfrincu@info.uvt.ro

Book Review Editor

Shahram Rahimi

Department of Computer Science
Southern Illinois University
Mailcode 4511, Carbondale
Illinois 62901-4511
rahimi@cs.siu.edu

Software Review Editor

Hong Shen

School of Computer Science
The University of Adelaide
Adelaide, SA 5005
Australia
hong@cs.adelaide.edu.au

Domenico Talia

DEIS
University of Calabria
Via P. Bucci 41c
87036 Rende, Italy
talia@deis.unical.it

Editorial Board

Peter Arbenz, Swiss Federal Institute of Technology, Zürich,
arbenz@inf.ethz.ch

Dorothy Bollman, University of Puerto Rico,
bollman@cs.uprm.edu

Luigi Brugnano, Università di Firenze,
brugnano@math.unifi.it

Giacomo Cabri, University of Modena and Reggio Emilia,
giacomo.cabri@unimore.it

Bogdan Czejdo, Fayetteville State University,
bczejdo@uncfsu.edu

Frederic Desprez, LIP ENS Lyon, frederic.desprez@inria.fr

Yakov Fet, Novosibirsk Computing Center, fet@ssd.sscc.ru

Giancarlo Fortino, University of Calabria,
g.fortino@unical.it

Andrzej Goscinski, Deakin University, ang@deakin.edu.au

Frederic Loulergue, Orleans University,
frederic.loulergue@univ-orleans.fr

Thomas Ludwig, German Climate Computing Center and Uni-
versity of Hamburg, t.ludwig@computer.org

Svetozar D. Margenov, Institute for Parallel Processing and
Bulgarian Academy of Science, margenov@parallel.bas.bg

Viorel Negru, West University of Timisoara,
vnegru@info.uvt.ro

Moussa Ouedraogo, CRP Henri Tudor Luxembourg,
moussa.ouedraogo@tudor.lu

Marcin Paprzycki, Systems Research Institute of the Polish
Academy of Sciences, marcin.paprzycki@ibspan.waw.pl

Roman Trobec, Jozef Stefan Institute, roman.trobec@ijs.si

Marian Vajtersic, University of Salzburg,
marian@cosy.sbg.ac.at

Lonnie R. Welch, Ohio University, welch@ohio.edu

Janusz Zalewski, Florida Gulf Coast University,
zalewski@fgcu.edu

SUBSCRIPTION INFORMATION: please visit http://www.scpe.org

Scalable Computing: Practice and Experience

Volume 17, Number 1, March 2016

TABLE OF CONTENTS

Special Issue on High Performance Computing Solutions

for Complex Problems:

Introduction to the Special Issue iii

Performance Optimizations for an Automatic Target Generation

Process in Hyperspectral Analysis 1

Fernando Sierra-Pajuelo, Abel Paz-Gallardo, Antonio Plaza

Using Computational Geometry to Improve Process Rescheduling on

Round-Based Parallel Applications 13

Rodrigo da Rosa Righi, Vladimir Magalhães Guerreiro, Gustavo

Rostirolla, Vinicius Facco Rodrigues, Cristiano André da Costa, Leonardo

Dagnino Chiwiacowsky

Many-Task Computing on Many-Core Architectures 33

Pedro Valero-Lara, Poornima Nookala, Fernando L. Pelayo, Johan

Jansson, Serapheim Dimitropoulos, Ioan Raicu

Regular Papers:

Sensitivity Study of Input Parameters for Seepage Flow Simulations

using Parallel Computers 47

Fred T. Tracy, Lucas A. Walshire, Maureen K. Corcoran

c⃝ SCPE, Timişoara 2016

Scalable Computing: Practice and Experience

Volume 17, Number 1, pp. iii–iv. http://www.scpe.org

DOI 10.12694/scpe.v17i1.1145
ISSN 1895-1767
c⃝ 2016 SCPE

INTRODUCTION TO THE SPECIAL ISSUE ON

HIGH PERFORMANCE COMPUTING SOLUTIONS FOR COMPLEX PROBLEMS

In the last decades, the complexity of the current and upcoming scientific/engineering problems has in-
creased considerably. Computations involved in numerical simulations, molecular dynamics, computational
fluid dynamics, bio-informatics, image processing, linear algebra, deep-learning, information retrieval, or big-
data computing are just a few examples of such problems.

At the same time, improvements in high performance computing (HPC) systems are mainly associated with
an important increasing in the complexity of computer architectures, making difficult the code optimization.
This results in a greater gap between the general scientific / engineering user community (in need of easy access
to efficient high performance computations) and the HPC programmers community (who design codes for narrow
sub-classes of problems). The development of user-friendly codes for non-HPC-trained user community becomes
a big challenge. As consequence, effective use of HPC centers requires specialized / individual training for each
user group.

Today, programmers of HPC or/and scientific applications have to deal with numerous details regarding
computer architectures at low level to take advantage of the last features of the current and upcoming computing
systems. It makes difficult the efficient and optimized software development. Thus, strategies and tools that can
help us to adapt our codes over different computing architectures is of vital importance. However, previously,
we must know and identify what are most efficient programming strategies and architectonic features. This is
a difficult task as both, strategies and features, depend on the particular problem to be dealt. Portability is
other important issue today. Multiples kind of processors have arisen in the last years. Most of these current
platforms use their own compilers, languages, etc., being a very complex task to implement portable codes.

This special issue provides several studies, which involve different applications and strategies to improve
performance and to achieve better usage of current computing systems. It is composed by three works.

The work “Performance Optimizations for an Automatic Target Generation Process in Hyperspectral Anal-
ysis” by Fernando Sierra-Pajuelo, Abel Paz-Gallardo, and Antonio Plaza presents several optimizations for
hyperspectral image processing algorithms intended to detect targets in hyperspectral images. The algorithm
used is the automated target generation process (ATGP) and the optimizations comprise parallel versions of
the algorithm developed using open multi-processing (OpenMP, including Intel Xeon Phi) and message passing
interface (MPI).

The study “Using Computational Geometry to Improve Process Rescheduling on Round-Based Parallel
Applications” by R. da Rosa-Righi, V. Magalhaes-Guerreiro, G. Rostirolla, V. Facco-Rodrigues, C. Andre da
Costa, and L. Dagnino-Chiwiacowsky, proposes two novel heuristics applied to process rescheduling, named
MigCube and MigHull, to choose the candidate processes for migration and their destination. Both heuristics
consider the use of computational geometry for plotting computation, communication and migration costs
metrics in a 3D graph without any user intervention.

Finally, the work “Many-Task Computing on Many-Core Architectures” by Pedro Valero-Lara, Poorima
Nookala, Fernando L. Pelayo, Johan Jansoon, Serapheim Dimitropoulos, and Ioan Raicu, studies what are the
Many-Task Computing (MTC) programming mechanisms to take advantages of the massively parallel features of
current hardware accelerators for the particular target of MTC. Also, the hardware features of the two dominant
many-core platforms (NVIDIAs GPUs and Intel Xeon Phi) are also analyzed for our specific framework. This
study consisted of comparing the time consumed for computing in parallel several tasks one by one (the whole
computational resources are used just to compute one task at a time) with the time consumed for computing
in parallel the same set of tasks simultaneously (the whole computational resources are used for computing the
set of tasks at very same time). Finally, both software-hardware scenarios were compared to identify the most
relevant computer features in each of our many-core architectures.

We would like to thank the editorial board of SCPE and reviewers for their effort and time, which is very
appreciated.

Dr. Pedro Valero Lara, The University of Manchester, UK.
Prof. Dr. Fernando L. Pelayo, University of Castilla-La Mancha, Spain.
Prof. Dr. Johan Jansson, Basque Center for Applied Mathematics (BCAM), Bilbao, Spain and KTH,
Royal Institute of Technology, Stockholm, Sweden.

iii

Scalable Computing: Practice and Experience

Volume 17, Number 1, pp. 1–11. http://www.scpe.org

DOI 10.12694/scpe.v17i1.1146
ISSN 1895-1767
c⃝ 2016 SCPE

PERFORMANCE OPTIMIZATIONS FOR AN AUTOMATIC TARGET GENERATION
PROCESS IN HYPERSPECTRAL ANALYSIS

FERNANDO SIERRA-PAJUELO, ABEL PAZ-GALLARDO∗AND ANTONIO PLAZA†

Abstract. Hyperspectral sensors acquire images with hundreds of spectral channels. These images have a lot of information
in both spectral and spatial domain, and with this kind of information different research studies can be accomplished. In this work,
we present several optimizations for hyperspectral image processing algorithms intended to detect targets in hyperspectral images.
The hyperspectral image selected for our study was collected by the NASAs Airborne Visible Infra-Red Imaging Spectrometer
(AVIRIS) over the World Trade Center (WTC) in New York, five days after September 11th attack. The algorithm used in our
experiments is the automated target generation process (ATGP) and our optimizations comprise parallel versions of the algorithm
developed using open multi-processing (OpenMP) and message passing interface (MPI). Our experiments indicate that the ATGP
can be successfully implemented in parallel in multicore and cluster computing architectures, including Intel Xeon Phi.

Key words: Hyperspectral imaging, automatic target generation process (ATGP), open multi-processing (OpenMP), message
passing interface (MPI), Xeon Phi

AMS subject classifications. 15A15, 15A09, 15A23

1. Introduction. Hyperspectral imaging [1] is concerned with the analysis and interpretation of spectra
acquired form a given scene (or specific object) by an airborne or satellite sensor [2]. Instruments such as the
Airborne Visible Infrared Imaging Spectrometer (AVIRIS) [3] are able to record the visible and near-infrared
spectrum of the reflected light using 224 spectral bands. As shown in Fig. 1.1, the resulting “image cube” is a
stack of images in which each pixel has an associated spectral signature or fingerprint that uniquely characterizes
the underlying objects [4]. The resulting data volume typically comprises several GBs per flight [5].

The special properties of hyperspectral data have significantly expanded the domain of many analysis
techniques, including (supervised and unsupervised) classification, spectral unmixing, compression, target, and
anomaly detection [6, 7, 8, 9, 10]. Specifically, the automatic detection of targets and anomalies is highly
relevant in many application domains, like fire control in forests or detect deposit of minerals, including those
addressed in Fig. 1.2 [11, 12, 13].

The automatic detection of targets and anomalies in hyperspectral images is highly relevant in many appli-
cations and it is particularly important for defense and security applications [14, 15], as well as for rare mineral
detection in geology [16] or location of infected trees in forestry. In this paper, we developed and compared
several efficient parallel versions of the automatic target generation process (ATGP) algorithm [4]. This algo-
rithm was designed to find spectral signatures with orthogonal projections. The considered method includes the
spectral angle distance (SAD) and the parallel versions are developed with open multi-processing (OpenMP)
and message passing interface (MPI). They are focused on identifying thermal hot spots in a complex urban
background, using AVIRIS hyperspectral data collected over the World Trade Center in New York just five days
after the terrorist attack of September 11th, 2001.

2. Methods. In this section, we will describe the target detection algorithm that will be efficiently im-
plemented in parallel: the ATGP algorithm [4], it was created to find spectral signatures using orthogonal
projections. The starting point of the algorithm is the brightest pixel in the image, similar to other existing
measures, it is possible to use different starting points instead of the brightest pixel. But, in these cases, it has
been experimentally verified that the pixel is always detected in a small number of iterations if not chosen as
a point starting [17]. Therefore, it seems reasonable to use as a starting condition. Next, we show a detailed
algorithmic description of the classical version of this algorithm. It begins by an orthogonal subspace projector
specified by the following expression:

P⊥

U
= I−U(UTU)−1UT (2.1)

∗Centro Extremeño de Tecnoloǵıas Avanzadas, Trujillo, Cáceres, Spain (fernando.sierra@externos.ciemat.es,
abelfrancisco.paz@ ciemat.es).

†Hyperspectral Computing Laboratory, University of Extremadura, Politécnica de Cáceres, Cáceres, Spain (aplaza@unex.es)

1

2 F. Sierra-Pajuelo, A. Paz-Gallardo, A. Plaza

Fig. 1.1: Hyperspectral imaging concept. The reflectance and wavelength of pure pixels and mixed pixels are
described in the figure. They are different and unique for each kind of pixel.

Fig. 1.2: Applications of target and anomaly detection. Detect targets in a war, humanity missions or you could
use this to find mines and deactivate it.

where U is a matrix of spectral signatures, UT is the transpose of the matrix and I is the identity matrix.
ATGP algorithm uses the orthogonal projection of the equation 2.1 in each iteration to find a number of pixels
or bands vectors from an initial pixel that is passed to the algorithm as ATGP value and which is usually the
brightest pixel. This algorithm performs the following steps:

1. Calculate t0, the brightest pixel of the hyperspectral image, using equation 2.2, where F(x,y) is the pixel
(vector) at coordinates (x, y) in the image. The brightest pixel is that with greater value performing

Performance Optimizations for an Automatic Target Generation Process in Hyperspectral Analysis 3

the vector product between the associated vector with that pixel and its transposed F(x, y)T .

t0 = arg{max(x,y)[F(x, y)
T · F(x, y)]} (2.2)

2. Apply an orthogonal projection operator tagged as P⊥

U
, using the expression 2.1, with U = t0. This

operator is applied to all pixels of the hyperspectral image.
3. Then, the algorithm finds a new target named as t1 with the greater value in the complementary space

< t0 >⊥, orthogonal to t0, using equation 2.3. In other words, the algorithm finds the pixel with higher
orthogonality respect to t0.

t1 = arg{max(x,y)[P
⊥

U
· F(x, y)]T · [P⊥

U
· F(x, y)]} (2.3)

4. The next step is to modify the U matrix and adding the new target found, that is U = [t0t1].
5. The algorithm finds a new target named t2 with the highest complementary space < t0, t1 >⊥ ,

orthogonal to t0 and t1, using the expression 2.4. At this point, the orthogonal projector is based on a
matrix U = [t0t1] and the orthogonally concept is different.

t2 = arg{max(x,y)[P
⊥

U
· F(x, y)]T · [P⊥

U
· F(x, y)]} (2.4)

6. The process is repeated iteratively, to find a third target, t3, a fourth target t4, until a certain condition
satisfies the termination for the algorithm. The termination condition considered in this paper is to
achieve a number of targets p that is determined as an input parameter to the algorithm.

3. Parallel Implementations. Partitioning or data division prior to processing of the hyperspectral
image can be done essentially by using two different strategies [18]:

• Spectral partitioning considers that different parallel architecture processors may contain non-overlap-
ping parts of the same spectral signature (pixel). This schema has the disadvantage that, considering
the spectral signature (vector) as a minimum unit for processing algorithms, it would be necessary
to include more communication operations for each calculation of the metric that is used. From the
viewpoint of the parallelization of the algorithm, which is based on applying repetitive computations,
this type of partitioning means a huge cost in terms of communication operations. Clusters of computers
are made up of different processing units interconnected via a communication network [19]. In previous
works, it has been reported that data-parallel approaches, in which the hyperspectral data is partitioned
among different processing units, are particularly effective for parallel processing in this type of high-
performance computing systems [5, 20].
• Spatial partitioning considers that the same spectral signature or pixel cannot be partitioned in different
units of the parallel processing architecture. We can work locally with the image on each processor,
eliminating much of the communication load of the algorithm. In this way, we just need to make global
communications to synchronize processes or get results in each iteration of the algorithm [25].

Our parallel implementation uses spatial partitioning so that each node carries a certain portion of the image,
which can be managed easily indicating each participant node from where to start reading and the number of
lines associated with the node. Besides, another reason for selecting spatial versus spectral partitioning is that,
with spatial partitioning, each pixel vector (spectral signature) remains in the same processing unit. As the
spectral signature is the minimum unit of computation in most hyperspectral imaging algorithms, keeping the
spectral signatures in the same processor reduces drastically the amount of inter-processor communications. A
comparison between spatial versus spectral partitioning for parallel hyperspectral algorithms has been reported
in [21]. The parallelization by spatial decomposition adopted by our implementation is described graphically
in Fig. 3.1. We opted for a spatial partitioning for that reason and other that we describe below:

• The spatial partitioning is a natural alternative to parallelize algorithms based on a processing by
window, such as algorithms for detect anomalies and target detection.
• Another reason to select the spatial partitioning versus spectral is that the spatial partitioning allows
to reduce communications between processors of the parallel architecture significantly. The most part
of hyperspectral analysis algorithms consider the spectral signature as the minimum processing unit
and, therefore, spectral partitioning involve inter-processor communications on pixel level increasing

4 F. Sierra-Pajuelo, A. Paz-Gallardo, A. Plaza

Fig. 3.1: Spatial-domain decomposition of a hyperspectral data set.

Table 4.1: Hyperspectral Image Features that we use.

Lines 614
Samples 512

Spectral Bands 224
Spectral Range 0,4 - 2,5 µm

Spatial Resolution 1.7 metres/pixel

the associated communications costs. The result of this is a lower parallel performance and scalability
issues when the processor number increases.
• The last reason to select spatial partitioning is the ability to reuse code and improve the portability of
parallel algorithms developed to different architectures. Is highly desirable to reuse serial code when
we are developing parallel version due to the complexity of some analysis techniques. The spatial
partitioning allows parallelism of fine-grained to make easier to use a parallel algorithm to different
portions of data in which all spectral information is saved, allowing the transformation of the serial
code to parallel code easier than applying a spectral partitioning.

This parallel scheme preserves in any case the sequential algorithm functionality of ATGP, except that in
this case a matrix of intermediate values is calculated in each of the nodes and then an update is performed
globally to share which node has the maximum value.

4. Experimental Results. In this section, we evaluate the parallel performance of the implementation
introduced in the previous section.

Hyperspectral image considered. The image to be processed (AVIRIS World Trade Center) was taken
five days after September 11th attacks. The main features of the image are in the Table 4.1. Note that the spatial
resolution of the image is very high for what is usually in AVIRIS. This is because the image corresponds to a
low altitude flight in which this flight pretended to obtain the highest possible spatial resolution. Therefore,the
impact of mixed pixels is much smaller than we would expect and it is possible to do an study more focused on

Performance Optimizations for an Automatic Target Generation Process in Hyperspectral Analysis 5

Table 4.2: RGB Spectral Bands used for Fig. 4.1.

Color Band
Red 1682
Green 1107
Blue 655

Fig. 4.1: WTC Hyperspectral image with RGB Colors.

detecting anomalies (fires).
We make a fake color composition in RGB with three bands (see Table 4.2) and we could see the vegetation

in green color and the fires in gray hue. The smoke has the source in the red square (WTC Area) and its going
to the south of the island, with a blue hue because the smoke has a high reflectance in the 655µm wavelength.

As we could see in the Fig. 4.1, it should be pointed out that the automatic detection of fires in the WTC
is a very complex problem, due to the diversity of the urban environment in which fires are located. This
complicates the discrimination between points of interest (fires) and background due to the complexity of the
background, that has many different spectral substances as expected in a urban landscape.

4.1. Sequential. For comparison we use the ATGP sequential version and run this code on a computer
with an 2x Intel Xeon processors model E5649 at 2.53 GHz with 6 cores and 24 GB of DDR3 memory. The
experimental results show the time to load and process the image completely. We calculated the average of five
executions for each result. The time spent by the sequential version of the algorithm in the considered platform
was 18.42 seconds with a standard deviation of 0.21 seconds.

4.2. Performance optimizations with OpenMP. In this section, we evaluate the performance opti-
mizations with OpenMP. The test-bed was performed in two different platforms:

• s6030: NUMA (Non-Uniform Memory Access) shared memory platform with 64 cores, 8x Intel Xeon
X7550 at 2.00 GHz and 1 Terabyte of memory.
• Computational node: 2x Intel Xeon processors model E5649 at 2.53 GHz with 6 cores and 24 GB of
DDR3 memory.

The most important part of the algorithm is the ATGP method. As we have seen in Section 2, it’s a highly
iterative algorithm with three for loops to scroll the image and perform operations. In these loops we will
do the study using OpenMP. Before we start to get the optimal results, we have performed various tests to
find the optimal state of OpenMP code.To make easier the understanding, we include 2 different pseudo-codes

6 F. Sierra-Pajuelo, A. Paz-Gallardo, A. Plaza

Algorithm 1 ATGP algorithm pseudo-code

Input: ImageFile ImageHeader Targets
1: Read header information.
2: Read Header(ImageHeader)→bands,lines,samples
3:

4: Inicialize Matrix and Vectors
5: iV ector[targets][2]←0
6:

7: Load image into an array
8: Load Image(ImageFile, iVector)
9:

10: Pixel more brilliant to start.
11: Get Max Bright()→iVector
12:

13: Calculate targets
14: for i =0,i <targets do
15: max atgp =ATGP(iVector,lines,samples)
16: Save the coordinates P[i][0] and P[i][1]
17: end for
18: Return the results P[targets][2]

Algorithm 2 ATGP method pseudo-code

Input: iVector imageLines imageSamples
Output: maxValue
1: Compare the image pixels
2: Where n and n2 are values for lines and samples, respectively.
3: pragma omp parallel for num threads(n) private(i)
4: for i =0,i <lines do
5: pragma omp parallel for num threads(n2) private(Values,k)
6: for k =0,k <samples do
7: Calculate de maximum distance
8: for j =0,j <bands do
9: Get vector for compare

10: vector[j]←iVector[j*lines]
11: end for
12: Calulate de Spectral Angle Distance
13: maxV alue←Distance(vector[j],bands)
14: end for
15: end for
16: Return maxValue

(Algorithm 1 and 2). It can help to reproduce the code. In Algorithm 2 we use two openmp pragma to
distribute block of data on cores and nodes. While n is used to select the lines, n2 is used for the samples.
According to our experiments, the optimal n and n2 are 16 and 32, respectively.

After performing various executions we reached the optimal solution for each machine, s6030 and computa-
tional node. We run our optimized OpenMP code in the computational node with 2, 4 and 8 cores. We always
try to use the thread-to-core binding with 1-1 ratio to be more efficient. If we evaluate the results obtained (see
Table 4.3), we could see that the s6030 environment is faster than the computational environment, as Fig. 4.2
shows.

Performance Optimizations for an Automatic Target Generation Process in Hyperspectral Analysis 7

Table 4.3: Multicore scalability study with OpenMP code optimizations (Time in seconds) with five execu-
tions.In s6030 with same cores is faster because is a shared memory machine and OpenMP code take advantage
of this.

Computational Node Speed-up s6030 Speed-up
2 Cores 2,4868 s 7,4071 1,5246 s 12,0818
4 Cores 2,3790 s 7,7427 1,4953 s 12,3185
8 Cores 2,1709 s 8,4849 1,4926 s 12.3408

Fig. 4.2: Multicore scalability study in the two environments (Time in seconds) with five executions.It’s clearly
how the multicore scalability is faster in a shared memory machine (s6030).

Besides the ATGP method, we parallelized using OpenMP other loops into the code and we always make a
study of the optimal number of threads for each loop. We are compiling it with using the icc compiler (version
14.0.2) with -openmp and -O3 flags.

The obtained results are expected, because the s6030 environment is a system designed for computing codes
like this one. The next performance results were obtained using 16, 32 and 64 cores on s6030 environment and
the best result were obtained using 64 cores (see Table 4.4), as we can see in Fig. 4.3.

4.3. Performance optimizations with MPI. We performed several optimizations in our sequential
code using MPI. In this subsection, we considered up to 16 computational nodes composed by the resources
previously described each, where we do many test until find the best option for this algorithm. For all executions
we used the maximum time in each node and then calculate the average. We will select the worst time from
each test to calculate the average time.

All our tests were conducted using MPI with 2, 4, 8 and 10 nodes and 1 thread in each node. Besides, we
have tested using MPI with 12, 14 and 16 nodes, the maximum number of nodes that we could use at cluster,
but the results that we obtained are worse and we see no need to include these in this results.

So we tried to find which are the best results by combining any number of nodes with any number of
threads. Specifically, we calculated the results, and after different tests we could guarantee that the best result
is achieved using one node and ten threads (see Table 4.5). In that case, we have tried various combinations
with nodes and threads and we dont have used these results because the values obtained are worse than others.

We considered important to get two new times for the MPI implementation, in order to obtain a more reliable
comparative evaluating the time spent in communication. We calculate the average send time (Broadcast) with
the worst time that we get in total send communications. Moreover, we estimate the time of receive (Gather)
and calculate the average using the worst time that we get in total receive communications.

We believe that the best result in that case is using one node because when running the code within the
same node does not suffer delay by MPIBroadcast or MPIGather calls. We use MPI variables within the code

8 F. Sierra-Pajuelo, A. Paz-Gallardo, A. Plaza

Table 4.4: Multicore scalability on a shared memory machine (Time in seconds) with five executions. The total
time in a shared memory machine is improvement when we use more cores,the scalability is normal and the
time improvement is small because the algorithm is highly iterative with data dependencies.

OpenMP Total time(s) Speed-up
16 Cores 1,4834 12,4174
32 Cores 1,4502 12,7016
64 Cores 1,3858 13,2919

Fig. 4.3: Multicore scalability on a shared memory machine with five executions. The progress is bigger with
64cores because OpenMp use the strength of the shared memory machine.

and we are compiling it using the mpicc compiler(version 14.0.2) and -lpmi and -O3 compilation flags. It can
be seen that the scalability study with the best results in Fig. 4.4. Also, we obtained send and receive times
from all tests and compared them in Fig. 4.5.

As we could see, with 4, 8 and 10 nodes the results that we obtain are highly similar and this is because
the ATGP algorithm is iterative and we think that we need to work with a larger volume of data. Maybe, the
size of our problem (this particular hyperspectral image) is small for a such distributed memory platform.

4.4. Performance optimizations over Intel Xeon PhiTM. We performed several optimizations in our
OpenMP code for Xeon Phi [22, 23]. In this subsection, we considered an Intel Xeon Phi node:

• 2x Intel Xeon CPU E5-2620 v2 @ 2.10 GHz with 6 cores and 32 GB of DDR3 memory.
• Xeon Phi Card 5110P with 8 GB of DDR3 memory and 60 cores.

The performance of the OpenMP runtime can be essential for the overall scalability of OpenMP codes.
In the experiments using Intel Xeon Phi we could distinguish two modes [24]:
• Offload Mode: The application starts the execution on the host. As the computation proceeds it can
decide to send data to the coprocessor and let that work on it and the host and the coprocessor may
or may not work in parallel.
• Native Mode: This execution environment allows the users to view the coprocessor as another compute
node. In order to run the code natively, an application has to be cross compiled for Phi operating
environment.

Many experiments were done using OpenMP with Xeon Phi directives until finding the best option for
this algorithm. All experiments were executed five times and the results are the average of all of them. The

Performance Optimizations for an Automatic Target Generation Process in Hyperspectral Analysis 9

Table 4.5: Total time using MPI in a cluster environment (Time in seconds) with five executions. Try to find
the harmony between send time and receive time.We suspect that the best time is with 1Node and 10Threads
because the receive time is minor.

MPI Total Send (s) Total Receive (s) Total Time (s) Speed-up
2 Nodes 0,0531 0,0404 4,0052 4,5990
4 Nodes 0,1050 0,0977 2,6626 6,9180
8 Nodes 0,1902 0,1645 2,5050 7,3532
10 nodes 0,1400 0,1161 2,3372 7,8812

1 Node 10 Threads 0,1558 0,0343 1,1002 16,7424

Fig. 4.4: Scalability study in a cluster environment using MPI with five executions. The total time is better in
a single node because the communications spend a lot of time.

executions were done using Xeon Phi offload and native mode and results are shown in Table 4.6.

As we can see, using offload the results that we obtain are faster than using native mode. This is obvious
because in native mode you need to communicate the results with the other coprocessor and work in parallel
with the host, and for nested parallel regions, the overhead is much larger on the Xeon Phi system. We use
OpenMP variables with Xeon Phi support within the code and we are compiling it using the mpicc compiler
(version 14.0.2) and -mmic, -openmp and -O3 compilation flags.

5. Conclusions. In this paper we did several performance optimizations for the automatic target detection
process (ATGP) algorithm for hyperspectral imaging. The results and parallel performance of the proposed
parallel implementations, conducted using OpenMP and MPI [26], have been presented and thoroughly discussed
in the context of a real defense and security application: the analysis of hyperspectral data collected by NASAs
AVIRIS instrument over the World Trade Center (WTC) in New York, five days after the terrorist attacks
that collapsed the two main towers in the WTC complex. From the results obtained we can conclude that the
best performance is obtained with 1 node and 10 threads, using MPI. This is also the result that we expected
because the ATGP algorithm is highly iterative and with high data dependency between iterations.

6. Future Research. Although the results reported in this work are very encouraging, further experiments
should be conducted in order to increase the parallel performance of other versions of the proposed parallel
algorithms and also optimizing the parallel design of the algorithms. We will do some research comparing this
results with accelerators like GPUs (using CUDA).

In addition, we could use a heavier image and compare if the results over MPI are better than with the

10 F. Sierra-Pajuelo, A. Paz-Gallardo, A. Plaza

Fig. 4.5: Comparative between send and receive times in each test using MPI with five executions.In this figure
we could see how the receive time is better in the same node and this is too relevant for the final total time.

Table 4.6: Total time using OpenMP over Intel Xeon Phi (Time in seconds) with five executions.

MODE Total Time (s) Speed-up
OFFLOAD 4,1322 4,4576
NATIVE 7,3886 2,4930

actual image.

Finally, new target detection and endmember extraction algorithms could be optimized and evaluated using
different multi-core and many-core architectures.

Acknowledgment. This work was partially supported by the computing facilities of Extremadura Re-
search Centre for Advanced Technologies (CETA-CIEMAT), funded by the European Regional Development
Fund (ERDF). CETA-CIEMAT belongs to CIEMAT and the Government of Spain.

REFERENCES

[1] A. F. H. Goetz, G. Vane, J.E. Solomon and B.N. Rock,Imaging spectrometry for Earth remote sensing, Science 228, pp.
1147-1153, 1985.

[2] A. Plaza, J.A. Benediktsson, J.Boardman, J.Brazile, L.Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P.

Gamba, J.Gualtieri, M. Marconcini, J.C Tilton and G. Trianni, Recent advances in techniques for hyperspectral
image processing, Remote Sensing of Environment 113, pp. 110-122, 2009.

[3] R. O. Green, M.L Eastwwod, C.M. Sarture, T.G. Chrien, M. Aronsson, J.Chippendale, J.A. Faust, B.E. Pavri,

C.J. Chovit, M. Solis, M.R. Olah and O. Williams, Imaging spectroscopy and the airborne visible/infrared imaging
spectrometer (AVIRIS), Remote Sensing of Environment 65, pp. 227-248, 1998.

[4] C.-I. Chang, Hyperspectral imaging: Techniques for spectral detection and classification, Kluwer Academic/Plenum Publishers:
New York, 2003.

[5] A. Plaza and C.-I. Chang, High Performance Computing in Remote Sensing, CRC Press: Boca Raton FL. Chapman & Hall,
2007.

[6] R. A. Schowengerdt, Remote Sensing: Models and Methods for Image Processing, Academic Press: London, 1997.
[7] D. A. Landgrebe, Signal Theory Methods in Multispectral Remote Sensing, John Wiley & Sons, New York, NY, USA, 2003.
[8] J. A. Richards and X. Jia, Remote Sensing Digital Image Analysis: An Introduction, Springer, 2006.
[9] C.-I.Chang, Recent Advances in Hyperspectral Signal and Image Processing, John Wiley & Sons, 2007.
[10] C.-I.Chang, Hyperspectral Data Exploitation: Theory and Applications, John Wiley & Sons, 2007.
[11] C.-I. Chang and H. Ren, An experiment-based quantitative and comparative analysis of target detection and image classifi-

cation algorithms for hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing 38.2, pp. 1044-1063,
2000.

Performance Optimizations for an Automatic Target Generation Process in Hyperspectral Analysis 11

[12] H. Ren and C-I.Chang, Automatic Spectral Target Recognition in Hyperespectral Imagery, IEEE Transactions on Aerospace
and Electronic Systems 39.4, pp. 1232-1249, 2003.

[13] D. Manolakis, D. Marden and G. A. Shaw, Hyperspectral image processing for automatic target detection applications,
MIT Lincoln Laboratory 14, pp. 79-116, 2003.

[14] A. Paz, A. Plaza and S. Blazquez, Parallel Implementation of Target Detection Algorithms for Hyperspectral Imagery,
International Geoscience and Remote Sensing Symposium 2, pp. 589-592, 2008.

[15] Y. Tarabalka, T.V. Haavardsholm, I. Kasen and T.Skauli, Real-time anomaly detection in hyperspectral images using
multivariate normal mixture models and gpu processing, Journal of Real-Time Image Processing 4, pp. 1-14, 2009.

[16] S. Sanchez, A.Plaza, G.Martin and A.Plaza, Parallel Unmixing of Remotely Sensed Hyperspectral Images on Commodity
Graphics Processing Units, Concurrency and Computation: Practice & Experience 23.13, pp. 1538-1557, 2011.

[17] A. Plaza and C.-I. Chang, Impact of initialization on design of endmember extraction algorithms, IEEE Transactions on
Geoscience and Remote Sensing 43.11, pp. 3397-3407, 2006.

[18] A. Plaza, J. Plaza, A. Paz and S. Sanchez, Parallel Hyperspectral Image and Signal Processing, IEEE Signal Processing
Magazine 28, pp. 119-126, 2011.

[19] R. Brightwell, L.Fisk, D. Greenberg, T. Hudson, M.Levenhagen, A. Maccabe and R. Riesen, Massively parallel
computing using commodity components, Parallel Computing 26, pp. 243-266. 2000.

[20] A.Plaza, J.Plaza and D.Valencia, Impact of Platform Heterogeneity on the Design of Parallel Algorithms for Morphological
Processing of High-Dimensional Image Data, The Journal of Supercomputing 40.1, pp. 81-107, 2007.

[21] A.Plaza, D.Valencia, J.Plaza and P.Martinez, Commodity Cluster-Based Parallel Processing of Hyperspectral Imagery,
Journal of Parallel and Distributed Computing 66.3, pp. 345-358, 2006.

[22] Schmidl et al. ,Assessing the Performance of OpenMP Programs on the Intel Xeon Phi, Euro-Par 2013 Parallel Processing,
p.12, 2013.

[23] C. Heirman et al., Automatic SMT threading for OpenMP applications on the Intel Xeon Phi co-processor, 4th International
Workshop on Runtime and Operating Systems for Supercomputers, Article No.7, ACM New York, NY, USA, 2014.

[24] M. Koesterke et al., Tutorial: Programming for the Intel Xeon Phi (MIC), IEEE Cluster 2013.
[25] A. Paz and A. Plaza, Clusters vs. GPUs for Parallel Automatic Target Detection in Hyperspectral Images, EURASIP Journal

of Advances in Signal Processing, 2010, Article ID 915639, 18 pages doi:10.1155/2010/915639.
[26] Y. He and Q.Ding, MPI and OpenMP Paradigms on Cluster of SMP Architectures: The Vacancy Tracking Algorithm for

Multi-Dimensional Array Transposition, Scalable Computing: Practice and Experience, Volume 5, No 2, 2002.

Edited by: Pedro Valero Lara
Received: Sept 28, 2015
Accepted: Febr 25, 2016

Scalable Computing: Practice and Experience

Volume 17, Number 1, pp. 13–32. http://www.scpe.org

DOI 10.12694/scpe.v17i1.1147
ISSN 1895-1767
c⃝ 2016 SCPE

USING COMPUTATIONAL GEOMETRY TO IMPROVE PROCESS RESCHEDULING ON

ROUND-BASED PARALLEL APPLICATIONS

RODRIGO DA ROSA RIGHI, VLADIMIR MAGALHÃES GUERREIRO, GUSTAVO ROSTIROLLA, VINICIUS FACCO

RODRIGUES, CRISTIANO ANDRÉ DA COSTA AND LEONARDO DAGNINO CHIWIACOWSKY ∗

Abstract. Process rescheduling is a known technique to face with system heterogeneity and dynamism, being especially
pertinent on Bulk Synchronous Parallel (BSP) programs. These programs are organized in a set of round-based supersteps, in
which the slowest process determines the moment of synchronization. This approach motivated us to develop a first model called
MigBSP, which combines computation, communication and migration costs metrics for process rescheduling decisions. MigBSP
originally employed an heuristic that could select either a single or a collection of process to migrate at each load balancing
invocation. The first proposal is not reactive, so you should manually setup a percentage of processes to be migrated as input
parameter for the load balancing model. In this work, two novel heuristics, named MigCube and MigHull, are proposed to choose
the candidate processes for migration and their destination. Both heuristics consider the use of computational geometry for plotting
computation, communication and migration costs metrics in a 3D graph, so both ‘which’ and ‘where’ load balancing questions can
be answered without any user intervention. We believe that the contribution is not only in the MigBSP landscape, but also for
the BSP community, who is trying to enhance performance in round-based applications in an effortless way. In addition to the
description of MigCube and MigHull, this article also presents their evaluations with performance gains of up to 42% when enabling
process migration over a subset of the Grid5000 infrastructure.

Key words: Computational Geometry, Process Migration, Performance, Dynamism, Grid Computing

AMS subject classifications. 15A15, 15A09, 15A23

1. Introduction. Process migration is a useful mechanism to offer runtime load balancing, mainly in
dynamic, complex and heterogeneous environments. Generally, process migration requires explicit rescheduling
calls within the application [11]. A different migration approach happens at middleware level, where changes
in the application code and previous knowledge about the system are usually not required. Considering this,
we have developed a process rescheduling model for grid computing architectures called MigBSP [28]. We
decided to work with round-based applications, such as those that follow the BSP (Bulk-Synchronous Parallel)
programming model [33]. Concerning the choose of migration processes, MigBSP creates a priority list based on
the highest Potential of Migration (PM) of each process. PM is a decision function that combines the migration
costs with data from computation and communication phases in order to create a unified scheduling metric.

Taking profit from the highest PM of each process, MigBSP could originally employ one of two methods to
select the candidate processes for migration. As illustrated in Figure 1.1, MigBSP can select one or a group of
processes located on the top of the list. The second case is viable thanks to a predefined percentage that acts over
the highest PM value. Although we achieved good results particularly with this second approach [28], we agree
that the use of another percentage value could eventually determine better migration results. Consequently,
a question arises: Using the PM idea, how can one reach an optimized percentage of migratable candidates on

dynamic environments? A solution involves the testing of several hand-tuned parameters for each new BSP
application and a comparison among the results.

After developing the first version of MigBSP, we focused our research on investigating new heuristics and
metaheuristics in order to fill the aforementioned gap. We followed this rationally because both scheduling and
rescheduling techniques are classified as NP-hard problems [15]. Taking into account metaheuristics, Genetic
Algorithms [14, 22, 26], Simulated Annealing [13, 34], Artificial Bee Algorithms [16, 3], Pareto Search [32] and
Hybrid Schemes [18] are commonly used for these tasks. Considering their iterative nature, they are known
by reaching high-quality solutions meanwhile paying a high-computational time for achieving optimal or near-
optimal solutions. On the other hand, heuristics are faster than metaheuristics, since they operate with mental
shortcuts to ease the cognitive load of making a decision [9]. Thus, heuristics such as min-min and max-min
operate by trading optimistically, completeness, accuracy, or precision for speed. When analyzing the state-of-
the-art on migration-aware BSP communication libraries [8, 19, 21, 24, 25, 28, 35], we still observe that both

∗Applied Computing Graduate Program, Universidade do Vale do Rio dos Sinos, São Leopoldo - Rio Grande do Sul - Postal
Code 93022-000 - Brazil (rrrighi@unisinos.br).

13

14 R. Righi, V.M. Guerreiro, G. Rostirolla, V.F. Rodrigues, C.A. da Costa, L.D. Chiwiacowski

PM(p7) = 21.3

PM(p3) = 19.5

PM(p4) = 17.1

PM(p10) = 16.2

PM(p1) = 14.3

PM(p6) = 13.1

PM(p11) = 10.4

PM(p8) = 9.4

PM(p9) = 8.9

PM(p5) = 7.6

PM(p2) = 7.0

* Heuristic 1 -
Select the
process on
the top

* Heuristic 2 -
Select the
processes based
on both the highest
value and a
predefined
percentage (here,
percentage = 80%)

Fig. 1.1: Current MigBSP’s methods for choosing the candidate processes for migration based on a decision
function named Potential of Migration (PM).

heuristics and metaheuristics techniques are not employed to offer rescheduling under the following constraints:
(i) combination of multiple metrics; (ii) automatic selection of candidate processes for migration without user
intervention.

When process (re)scheduling is considered, two timers are involved: calculus complexity and quality of the
mapping. Both measures are used in heuristics for optimizing the MigBSP’s initial approaches. In this regard,
we developed two novel heuristics named MigCube and MigHull for automatically selecting one or more
candidates for migration at each rescheduling attempt. They solve a 3D geometric query problem taking profit
from the computation, communication and migration costs metrics of the PM as the values for the x, y and
z axes. So, the scientific contribution of the article consists in exploring computational geometry concepts
to select the most suitable points arranged in a three-dimensional space, consequently indicating the processes
for migration, without needing any intervention when considering the user viewpoint. MigCube explores the
Euclidean distance [12] among the points while MigHull extends the idea of Convex Hull for a 3D setting [4].

This article presents the algorithms of MigCube and MigHull in detail, followed by their evaluation when
using two BSP scientific applications over a subset of the Grid5000 infrastructure1. Besides not needing a
particular parameter in the model at compilation time, the results also show the benefits of selecting a more
appropriate number of migratable processes instead of selecting just one or a percentage of them. The contri-
bution of both proposed heuristics does not appear only in the MigBSP scope, but also for the BSP community
who is interested in efficient migration process at middleware level in an effortless way.

The remainder of this article will first introduce the fundamental concepts in Section 2, explaining how
MigBSP works in detail. The main part of the paper belongs to Section 3, where both MigCube and MigHull
algorithms are proposed. Sections 4 and 5 show the employed methodology and the results, respectively. Related
work is discussed in Section 6. Finally, Section 7 emphasizes the scientific contribution of the work and notes
challenges that we can address in the future.

2. Fundamental Concepts. This section explains the functioning of MigBSP, emphasizing its rationales
and parameters. MigBSP is a rescheduling model that works over heterogeneous resources, joining the power
of clusters, supercomputers and local networks. The heterogeneity issue considers the processor’s clock (all
processors have the same set of instructions), as well as the network bandwidth. Such an architecture is
assembled with Sets (sites or clusters) and Set Managers. Set Managers are responsible for scheduling, capturing
data from a Set and exchanging it among other managers [28].

The decision for process remapping is taken at the end of a superstep. A BSP program has an arbitrary
number of supersteps, each one composed by a local computation phase on each process, a global and arbitrary
communication phase among the processes and a synchronization barrier [33]. Aiming at not trying to test
process rescheduling at each conclusion of superstep, we designed a parameter named α to control the interval
of supersteps between two consecutive attempts for process rescheduling. Thus, we applied two adaptations

1https://www.grid5000.fr/

Using Computational Geometry to Improve Process Rescheduling on Round-Based Parallel Applications 15

that control the value of the α (α ∈ N) in order to reduce the scheduling model intrusiveness: (i) to postpone
the rescheduling call if the processes are balanced or to turn it more frequent, otherwise; (ii) to delay this call if
a pattern without migrations on ω past calls is observed. Thus, α is automatically updated at each rescheduling
call and will indicate the interval for the next one (more details in [28]). A shorter initial value of α will bring
better reactivity on application reorganization, since process rescheduling will be evaluated as soon reaching the
αth superstep. So, this configuration implies on reconfiguring the application sooner, benefiting the remaining
of the execution with an optimized process-resources mapping. However, if process migration is inviable (due to
the large number of bytes to be transferred or a prohibitive network latency overhead, for example), a shorter
α will cause more overhead in the normal execution of the application. In this last case, process rescheduling is
tested more frequently, but no migrations take place actually.

The answer for ‘Which’ is solved through our decision function called Potential of Migration (PM). Each
process i computes n functions PM(i, j), where n is the number of Sets and j means a particular Set. The key
rationale consists in performing only a subset of the processes-resources tests at the rescheduling moment. The
value of PM(i, j) is found using Computation, Communication and Memory metrics as presented in Equations
2.1–2.4. A previous paper describes them in detail [28]. The greater the value of PM(i, j), the more prone the
processes will be to migrate.

Comp(i, j) = Pcomp(i)× CTPk+α−1(i)× ISetk+α−1(j); (2.1)

Comm(i, j) = Pcomm(i, j)×BTPk+α−1(i, j); (2.2)

Mem(i, j) = M(i)× T (i, j) +Mig(i, j); (2.3)

PM(i, j) = Comp(i, j) + Comm(i, j)−Mem(i, j). (2.4)

Computation metric Comp(i, j) considers a Computation Pattern Pcomp(i) that measures the stability
of a process i regarding the number of instructions at each superstep. This value is close to 1 if the process
is regular and close to 0 otherwise. Furthermore, we also have a computation time prediction CTP (i) for
process i based on all computation phases between two rescheduling activation. In this way, here k refers to
the index of the last call for process rescheduling and k + α − 1 means the interval of supersteps from the
last to the current rescheduling attempt. The metric Comp(i, j) also presents an index ISet(j) which informs
the average computation capacity of Set j. In the same way, Communication metric Comm(i, j) computes the
Communication Pattern Pcomm(i, j) between processes and Sets. Furthermore, this metric uses communication
time prediction BTP (i, j) considering data between two re-balancing activation. Comm(i, j) increases if process
i has a regular communication with processes from Set j and performs slower communication actions to this Set.
The metric Mem(i, j) considers process memory M(i), transferring rate T (i, j) between considered process i

and the manager of target Set j, as well as migration costs Mig(i, j). These costs are dependent of the operating
system, as well as the migration tool [28].

At each rescheduling call, each process passes its highest PM(i, j) to its Set Manager. This last entity
exchanges the PM of the processes with other managers. As described earlier, each manager creates a decreasing-
sorted list and selects either the process on the top or a percentage of them for testing the migration viability.
Here, besides using the abstraction of Set, this test also considers the following data: (i) the external load on
source and destination processors; (ii) the processes that both processors are executing; (iii) the simulation
of considered process running on a destination processor; (iv) the time of communication actions considering
local and destination processors; (v) migration costs. We used these five information to compute the migration
viability of each process through a relationship between two timers: t1 and t2. t1 means the superstep time of
process i in the current processor, while t2 encompasses its execution on the other processor and it includes the
migration costs. Process migration takes place if t1 > t2.

3. MigCube and MigHull: Proposal of Novel Heuristics to Select the Candidates for Migra-

tion. This article proposes MigCube and MigHull heuristics to improve efficiency on selecting process of BSP

16 R. Righi, V.M. Guerreiro, G. Rostirolla, V.F. Rodrigues, C.A. da Costa, L.D. Chiwiacowski

applications at the rescheduling moment. The main idea is to outperform the current MigBSP strategies for this
task, particularly without user intervention at editing or launching time to set model parameter for selection
purposes. At the application perspective, the use of a particular selection policy or even process rescheduling
facility is totally hidden from the user. Usually, for the submission of a BSP application in a grid, it is previously
compiled with a rescheduling-aware BSP library, informing an initial processes-nodes scheduling [38]. Figure 3.1
depicts the software stack when using MigBSP. The gray boxes represent the scope of this article.

Application

BSP Library

MigBSP Rescheduling Model

Process Selection

A Single
Process, the
Highest PM

Percentage of
Processes based on

the Highest PM

Arbitrary Number
of Processes:

MigCube

Arbitrary Number
of Processes:

MigHull

Communication Network

Rescheduling Activation

Process Migration Evaluation

Fig. 3.1: Software stack when using the novel heuristics for BSP process rescheduling

BSP applications have their performance always driven by the slowest process, so both heuristics try to
optimize the number and the selection of processes to eventually migrate so that the remaining supersteps
may run faster. Unlike previous approaches, MigCube and MigHull select an arbitrary number of processes
but also considering the list of the highest PM of each process. Figure 3.2 illustrates the rescheduling in a
BSP application. The mapping quality of MigCube or MigHull will impact the next value of α parameter. If
the system is classified as balanced, the value of α is increased in order to postpone the next call for process
rescheduling.

Both MigCube and MigHull take profit from the list of the highest PM of each process. Considering that
each PM identifies a process and a target Set, and since all the three assumed metrics are expressed in the same
data unit, we may plot them as a single point in a 3D setting. In this way, the proposed heuristics must answer
the following answer: Which points should be selected at each rescheduling call? To accomplish this, MigCube
and MigHull use computational geometry to analyze a set of points, in order to efficiently find which points
are close to the input query. At model level, each Set Manager compute the selected points locally, each one
referring to a particular process i that presents a PM(i, j). After that, only the source and the target Sets
(represented by j in the PM notation) are involved to transfer a process i actually. The destination Set informs
the source Set about which is the most suitable processor under its responsibility to receive the process.

Heuristic methods are employed because they are generally used to find a solution of a specific-domain
problem without exhaustively searching the entire solution space [36]. Thus, such algorithms can usually achieve
good solutions in a small computational time. This is special pertinent on our case, since we have to pay the
overhead inherent to the migration process. Nevertheless, we could use metaheuristic methods rather than
heuristic ones. However, metaheuristics represent more general approximate algorithms which are defined as
upper level techniques that guide strategies underlying heuristics to solve specific optimization problems [31]. For
this reason, metaheuristics sometimes require high processing time to attain near-optimal solutions, especially
for large-size problems. Anyway, both single solution-based or population-based metaheuristics could be used,

Using Computational Geometry to Improve Process Rescheduling on Round-Based Parallel Applications 17

1. superstep=total.

∝=param1

Begin

End

2. Executing parallel
computation and
communication

3. Barrier Call

4.
superstep

= 0

9. ∝ = ∝ - 1

5. superstep=
superstep - 1

8.∝ = 0

10. Rescheduling
Calculus and Process

Selection heuristic

11.Are
there

Migrations

12. Process
Replacement

13. Load the new

value of ∝

Yes

No

Yes

No

MigBSP Rescheduling Model

6. MigBSP Call

7. Save
scheduling data

Yes

No

Fig. 3.2: MigBSP flowchart, where the gray box represents the work of MigCube or MigHull.

18 R. Righi, V.M. Guerreiro, G. Rostirolla, V.F. Rodrigues, C.A. da Costa, L.D. Chiwiacowski

Cube

x

y
z

p1

p1 = Process with the
Largest PM

Remaining BSP
processes

Region indicating the
candidate processes
for migration

Fig. 3.3: Processes and cube representation in MigCube heuristic. Those processes that are located inside the
cube will be appointed as candidate processes for migration.

such as Simulated Annealing, Tabu Search, Genetic Algorithms and Swarm Intelligence Schemes, needing only
a given quality measurement to be performed.

3.1. Terminologies. Both MigCube and MigHull plot each process pi (i = 1, 2, . . . , n) as a point in the
3D Cartesian coordinate system where xi, yi and zi represent the coordinates of pi on each of the graph axes.
Here, xi, yi and zi also represent respectively, the computation, communication and memory metrics from the
largest PM of pi. In addition, a process pi can be also represented as pi = (xi, yi, zi).

3.2. MigCube Heuristic. MigCube uses the processes’ location to create a cube, so selecting as candi-
dates those processes inside it. The algorithm starts by selecting the central point of the cube, which refers to
the point that has the largest PM. Its notation is p1 and it represents the best candidate for migration. After
that, parameter △cube is computed in accordance with Equation 3.1 as an average of the distances from the
aforementioned point to the others. Equation 3.2 computes the distance between p1 and any point pi in the
3D coordinate system. Finally, △cube is used to situate the cube edges as defined in Equation 3.3.

△cube =
1

n− 1

n
∑

i=2

D(p1, pi) ; (3.1)

D(p1, pi) =
2

√

(x1 − xi)2 + (y1 − yi)2 + (z1 − zi)2 ; (3.2)

edge = 2△cube . (3.3)

Figure 3.3 depicts an example of the points and the cube, where p1 has the largest PM. Algorithm 1 presents
the pseudocode of MigCube heuristic for selecting the candidate process for migration. As mentioned earlier,
the idea is to select as candidates all processes inside the cube. MigCube will always select at least one process,
the one with the largest PM. After the heuristic sets which processes could migrate, the model follows its normal
processing, migrating or not the processes in accordance with the destination Set of each candidate process.
Each process pi has a PM(i, j) where i means the process index and j a target Set. So, the Manager of j−th Set
is asked about a resource and migration viability is computed as explained in Section 2 (more details in [28]).

Using Computational Geometry to Improve Process Rescheduling on Round-Based Parallel Applications 19

Algorithm 1: MigCube heuristic for selecting the candidate processes for migration.

Input: pm list receives a decreasing-sorted list of the n processes based on the PM values.
Output: candidate list with the candidate processes for migration

Set process p1 as the first element of pm list, being represented by (x1, y1, z1);
minorX = x1 −△cube;
majorX = x1 +△cube;
minorY = y1 −△cube;
majorY = y1 +△cube;
minorZ = z1 −△cube;
majorZ = z1 +△cube;
candidate list = p1;
for i = 2 to n do

if xi ≥ minorX and xi ≤ majorX then

if yi ≥ minorY and yi ≤ majorY then

if zi ≥ minorZ and zi ≤ majorZ then
candidate list += pi;

end if

end if

end if

end for

3.3. MigHull Heuristic. MigHull heuristic is a Convex Hull adaptation. In brief, the Convex Hull or
Convex Envelope of a set S of points in the Euclidean plane is the smallest convex set that contains S [6, 4]. It
can be seen as a convex polygon whose vertices are some of the points in the input set. MigHull employs the
Convex Hull ideas, but providing two adaptations: (i) three-dimensional space is split in three two-dimensional
planes; (ii) despite of selecting all processes, MigHull chooses only a part of them based on the two processes
with the highest PM values.

We are calculating three 2D hulls, considering a pair of coordinates of each point i at a time, as follows:
(i) xi and yi; (ii) xi and zi; and (iii) yi and zi. Figure 3.4 (a) illustrates this idea. Here, each process that
is inside each plane concomitantly is then selected as a candidate for migration. For the standard 2D Convex
Hull, the problem consists of finding the smallest convex polyhedron/polygon containing all the points. Thus,
the native Convex Hull always selects all the points, which would not make sense for migration decision-making.
In this way, we are adapting the QuickHull algorithm [5] to select processes. By default, QuickHull finds the
points with the minimum and maximum x coordinates and creates a line between them. The next step in the
QuickHull algorithm is the selection of the point with the maximum distance from the aforesaid line, so the two
points found before along with this one form a triangle. The points lying inside of that triangle cannot be part
of the convex hull and can therefore be ignored in the next steps. Discarding the tested point and the previous
ignored ones, the algorithm selects the next point with the maximum distance from the line and proceeds the
same calculus again.

MigHull changes QuickHull as follows. Considering the plane a− b, where a means the abscissa and b the
ordinate, we are considering the a-coordinate of the two points with the highest PM to draw a line segment
between them. After that, we calculate △Hull as the maximum distance of coverage from this line segment to
the other processes, so the processes inside this region are candidates to migrate in the scope of a − b plane.
Figure 3.4 (b) illustrates an example of this procedure for the x− y plane, but the same is evaluated for other
two planes: x− z and y− z. In other words, by substituting x− y plane by x− z and y− z the distance △Hull

is also calculated in the x − z and y − z planes, respectively. Finally, the processes that appear as candidates
concomitantly in the x− y, x− z and y − z planes are selected as final candidates to migrate according to the
MigHull algorithm.

△Hull = σ(x, y) = Max(σ(x), σ(y)) . (3.4)

Equation 3.4 shows how we are computing △Hull for the x− y plane. Each plane has its own value for this
metric. In this equation, σ(a) for a specific axis a is the standard deviation of all points (i.e. processes) when

20 R. Righi, V.M. Guerreiro, G. Rostirolla, V.F. Rodrigues, C.A. da Costa, L.D. Chiwiacowski

x-z

y-z

x-y

BSP Processes

(a)

(b)

Remaining
BSP Processes

x

y

Hull

p1 and p2: First and Second
BSP Process with the
Highest PM values

Region indicating the
candidates for migration
in the x-y plane

p1

p2

Fig. 3.4: Selection of candidate process for migration with MigHull: (a) Creating three planes (x-y, x-z and
y-z) from the three-dimensional space; (b) partially selecting the candidate process in the x-y plane. Those
processes that appear concomitantly in the yellow region of the three planes are chosen for the next rescheduling
step: the tests of migration viability.

considering the coordinate a. Using Figure 3.4 (b) as an example, we firstly take the value of the coordinate x

of all the 11 points, computing the standard deviation σ(x) of these respective values. The same calculation is
performed with respect to the y axis, so the greatest standard deviation is selected as △Hull for the x−y plane.
In order to identify the candidate processes for migration, the distance of any point pm to the line determined
by the points p1 and p2 over a specific plane (see Algorithm 2) is computed and denoted as d(pm, p1, p2, plane).
These last two points represent the processes with the highest PM. If x-coordinate of pm is lower or greater
than the x-coordinate of points used as limits of the line segment, we are computing the Euclidean distance
given by the Pythagorean formula [12]. Otherwise, we are using the perpendicular distance from a point to a
line determined by p1 and p2. Although Algorithm 2 was developed for the x-y plane, its use for x-z and y-z is
trivial and not explained here.

Figure 3.4 (b) depicts the MigHull ideas to create a region of candidate processes for migration. Contrary to
MigCube, MigHull always selects at least two processes as candidates for migration: p1 and p2. Independently of
the evaluated plane, these points always have the largest PM, so being always selected according to the MigHull
algorithm. Algorithm 3 shows all steps to compute MigHull, where the processes that appear as candidates
concomitantly in the x − y, x − z and y − z are candidates to be rescheduled. After MigHull presents the
candidates, MigBSP continues its normal execution investigating the migration feasibility for each candidate
through an interaction between the source and target Set Managers. MigBSP was presented in Section 2 and
detailed in [28].

Using Computational Geometry to Improve Process Rescheduling on Round-Based Parallel Applications 21

Algorithm 2: Calculating the distance d(pm, p1, p2, plane) from the point pm to the line segment created
by the points p1 and p2 in the x− y plane.

Input: p1 (x1, y1, z1) and p2 (x2, y2, z2) denote the two processes with the highest PM values. The point pm (xm, ym, zm)
refers to one of the remaining processes, where 3 ≤ m ≤ n.
Output: Distance d(pm, p1, p2, plane) from the point pm to the line created by p1 and p2 in the plane denoted by plane.

Denote ax + by + c as the line equation formed by the points p1 and p2, where the coefficients are defined as:
a = (y1 − y2), b = (x2 − x1) and c = (x1y2 − x2y1);
if xm < x1 then

d(pm, p1, p2, “x− y”) =
√

(x1 − xm)2 + (y1 − ym)2

end if

else if xm > x2 then

d(pm, p1, p2, “x− y”) =
√

(xm − x2)2 + (ym − y2)2

end if

else

d(pm, p1, p2, “x− y”) =
axm + bym + c√

a2 + b2

end if

Algorithm 3: MigHull heuristic for selecting the candidate processes for migration.

Input: pm list receives a decreasing-sorted list of the n processes based on the PM values.
Output: candidate list with the candidate processes for migration.

Set processes p1 and p2 as the first and the second elements of pm list, being represented by (x1, y1, z1) and (x2, y2, z2),
respectively;
candidate list = p1;
candidate list += p2;
candidatex-y = null;
candidatex-z = null;
candidatey-z = null;
for i = 3 to n do

if d(pi, p1, p2, “x− y”) ≤ △Hull then
candidatex-y += pi;

end if

end for

for i = 3 to n do

if d(pi, p1, p2, “x− z”) ≤ △Hull then
candidatex-z += pi;

end if

end for

for i = 3 to n do

if d(pi, p1, p2, “y − z”) ≤ △Hull then
candidatey-z += pi;

end if

end for

candidate list += {candidatex-y ∩ candidatex-z ∩ candidatey-z}

4. Evaluation Methodology. This section describes the evaluation methodology, presenting data about
the evaluation technique, MigBSP parameters, execution environment and tested application. Firstly, we are
using the SimGrid [2] simulator to assembly a grid computing infrastructure, because of it offers a framework
to evaluate message-passing applications with different scheduling algorithms and execution platforms. We did
not developed any extension to SimGrid, but only applications that use its native API (Application Program
Interface). Considering that SimGrid is deterministic, a single execution of each set of parameters was done.
Moreover, the number of supersteps is variable, as follows: 20, 40, 60, 80 and 100. The initial value of α is
selected among three numbers: 4, 8 and 16. We selected them because these values were used when evaluating
the first version of MigBSP [28], where significant impacts on performance and overhead were perceived when
changing from one value to another. Furthermore, as will be discussed in Subsection 5.4, we will present a

22 R. Righi, V.M. Guerreiro, G. Rostirolla, V.F. Rodrigues, C.A. da Costa, L.D. Chiwiacowski

p2 p3 p4 p5p6

p7

(a) Crescent

(b) Decrescent

(c) CPU

(d) Round-Robin

p1

p5 p6 p2 p3p1

p7

p4

p5p4

p2 p3p1p7

p6

p2 p3 p5 p6p4

p7

p1

Cluster A has 3 nodes,
each one with 500 MHz

A1

A1

A1

A1

A2 A3 B1 C1 C2

A2 A3 B1 C1 C2

A2 A3 B1 C1 C2

A2 A3 B1 C1 C2

Cluster B has 1 node
with 1.5 GHz

Cluster C has 2 nodes,
each one with 1.2 MHz

Fig. 4.1: Example of the four initial processes-resources scheduling employed in the tests using a hypothetical
grid infrastrucuture.

comparison study among MigCube, MigHull and the originals heuristics of MigBSP, so we can analyze the
impact of these values of α on different algorithms for process migration.

Since the MigBSP was designed for grid environments, we are testing it with the proposed heuristics over
the Grid5000 platform2. In fact, this platform is an XML file used by SimGrid, denoting machines, clusters and
network configurations. Besides the platform file, SimGrid also receives as input another XML file informing
the first scheduling (deployment). Particularly, we are using 45 nodes, distributed in 3 distinct sites, each one
offering here a single cluster. We are using the 10 nodes from cluster Chicon, 15 from cluster Capricorne and
15 nodes from cluster Suno. The hardware information is described as follow: (i) Chicon has AMD Opteron
2.6 GHz processors with 4GB of memory and a Gigabit Ethernet card; (ii) Capricorne has AMD Opteron
2.0GHz processors, with 2GB of memory and a Myrinet network card; (iii) Suno has Intel Xeon E5520 2.26GHz
processors with 32GB of memory and 2 Gigabit Ethernet cards. Considering the deployment file, we are
working with 60 processes that are launched in accordance with an initial process-scheduling mapping. We are
considering four of them, explained below and detailed in the example of Figure 4.1:

(a) Ascending: Processes are scheduled cyclically in Ascending order of nodes’ processing power;
(b) Descending: Same idea of the Ascending mapping, but in reverse order, where the nodes with the higher

2http://lists.gforge.inria.fr

Using Computational Geometry to Improve Process Rescheduling on Round-Based Parallel Applications 23

capacities are the first to receive processes;
(c) CPU: This mapping allocates each process to the resource that has the largest amount of free processing

power on that moment;
(d) Round-Robin: It allocates the processes cyclically without taking into account any characteristics of the

resources.
The initial mapping will influence the execution time directly, also influencing the rescheduling model in

the same way. For example, the CPU mapping implies on using load balancing in accordance with the CPU
power of the nodes, so this idea of equilibrium from the beginning tends to reduce the number of migrations at
runtime. On the other hand, for example, the scheduling of all process in a single node could compromise the
performance, imposing more rescheduling actions afterwards to spread them in the resource pool. Besides the
initial mappings and MigBSP parameters, the tests also consider three scenarios: (i) execution of the native
application, without MigBSP or proposed heuristics; (ii) the application runs with MigBSP, which performs the
heuristics calculus and message-passing, but does not migrate any processes actually; (iii) the application runs
with MigBSP and an heuristic to select the candidate processes for migration, enabling then any migration if it
was evaluated as viable. The main idea is to show the overhead impact of the heuristic execution (comparison
between scenarios (i) and (ii)) and performance impact when enabling migrations (comparison between scenarios
(i) and (iii)).

Regarding the BSP application, we developed an implementation of the Lattice-Boltzmann method [29] to
compute fluid dynamics. Technically, this method considers a typical volume of fluids composed of a collection of
particles, where a particle is represented by a distribution function for each fluid component at each grid point.
The data volume is divided into continuous blocks of equal size in accordance with the number of processes.
Each block is copied and runs in a BSP process. After the computation phase, each process sends data to its
right-sided neighbor. Finally, a synchronization barrier takes place and other superstep is computed afterwards.

5. Discussion of Results. The results consider the performance of MigCube and MigHull heuristics in
terms of application processing time in Subsections 5.1 and 5.2. In addition, we also present two subsections,
5.3 and 5.4, for comparison purposes; the first one analyzes MigCube against MigHull and the second one
compares both approaches with the standard process selection heuristics from MigBSP. We are using a BSP
implementation of the fluid dynamics application with variations in the following configurations: number of
supersteps; initial process-processor scheduling; the MigBSP’s parameter denoted α; and the aforementioned
evaluation scenarios.

5.1. MigCube Evaluation. Table 5.1 shows the test results with MigCube. Scenario (ii) always produces
a time larger than scenario (i), since the first adds the heuristic calculus and message passing. This overhead can
be considered as part of the heuristic execution cost. The mean overhead of MigCube is 3.21%. This overhead
also takes place when migration are enabled but any process replacement is viable during the application
execution. The effectiveness of MigCube appears when comparing scenarios (iii) and (i). The larger the number
of supersteps, the larger the gains with process migration. In other words, an application that migrates the
processes in the first supersteps presents better performance because of both it has more time to amortize
the penalties involved in process migration and more time to execute with an optimized configuration. The
highlighted fields show that only one migration happens when using 20 supersteps and α equal to 16. Although
achieving better results than scenario (i), the system remains unbalanced. This situation is only solved when
60 supersteps are performed.

Figure 5.1 shows the percentage of gain in execution time when analyzing scenarios (iii) and (i). It has been
calculated using the following equation:

Gain =
Scenario (i)− Scenario (iii)

Scenario (i)
× 100 . (5.1)

The parameter α equal to 8 was the responsible for the best results. A lower value of α implies in a greater
number of process rescheduling calls (recalling that each call encompasses scheduling calculus and message-
passing), while a larger value of α parameter postpones the calls being so less reactive for process migration.
When running a short number of supersteps, the configuration with α equal to 16 outperforms the other values

24 R. Righi, V.M. Guerreiro, G. Rostirolla, V.F. Rodrigues, C.A. da Costa, L.D. Chiwiacowski

Table 5.1: MigCube evaluation. The times are expressed in seconds. We are highlighting the execution of 20
supersteps with α=16, where a single process migration takes place.

Supersteps

Scenarios

i
ii iii ii iii ii iii

α = 4 α = 8 α = 16

Ascending

20 16.10 17.39 11.79 16.57 10.85 16.33 14.33

40 32.19 34.59 23.41 33.42 20.00 32.66 20.66

60 48.28 51.86 36.29 49.93 28.32 48.99 27.42

80 64.37 67.00 47.97 66.78 36.66 65.60 38.00

100 80.47 84.90 60.85 83.28 46.20 81.88 44.61

Descending

20 16.27 16.68 11.67 16.55 11.50 16.39 14.41

40 32.94 33.09 21.47 33.28 21.36 33.20 21.99

60 48.82 49.50 32.41 49.38 29.91 49.28 29.88

80 65.09 65.80 42.21 65.78 38.58 65.63 40.82

100 81.37 81.40 53.14 81.75 48.40 81.68 47.67

CPU

20 20.08 20.33 13.78 20.30 16.97 20.13 19.50

40 40.15 40.45 25.94 40.38 27.91 40.27 33.26

60 60.22 60.56 39.16 60.50 38.28 60.47 41.28

80 80.29 80.50 51.31 81.20 48.83 81.01 53.96

100 100.36 100.87 64.50 100.63 60.27 100.51 62.12

Round-Robin

20 16.16 17.11 10.73 16.42 10.95 16.30 14.28

40 32.33 34.12 20.30 33.01 20.45 32.49 20.89

60 48.46 51.13 30.94 49.29 29.38 48.68 27.73

80 65.56 66.20 39.94 65.89 38.19 65.73 40.00

100 80.66 83.50 49.99 82.17 48.00 81.20 47.09

of α: with α=4 or α=8 we have a higher number of migrations (with time penalization on each migration
activity) but not enough number of supersteps to amortize the investment in migrations. Figure 5.1 presents a
linear behavior when considering the execution with α equal to 4. In this case, process reorganization happens
earlier and then, the execution can proceed with an optimized process-resource mapping after passing the first
supersteps.

Figure 5.2 illustrates the number of migrations at each rescheduling call when considering α equal to 8.
Considering the CPU strategy for initial scheduling, we can observe that MigCube selects a large number of
processes to migrate at each attempt. The PM of the processes are closed to the largest PM , showing a large
number of migrations at each rescheduling call. After analyzing the log of operations, we can observe a principle
of hysteresis, i.e, several consecutive migrations in order to stabilize the behavior of the system. Moreover, in
the current implementation, the migration test of a candidate process does not take into account the previous
migration of other process to the same target (node or cluster), so contributing for the large number of observed
migrations. These ideas explain the performance of the CPU strategy when compared to the remaining ones.
Although obtaining good performance rates when comparing scenarios (i) and (iii), the CPU technique for
initial scheduling achieves the worst performance among the other ones.

5.2. MigHull Evaluation. Table 5.2 shows the MigHull results. A mean overhead of 3.45% in the
execution time was observed when comparing scenarios (i) and (ii). Considering scenario (iii), the same MigCube
performance panorama appears here in MigHull, where larger gains appear when enlarging the number of
supersteps. In particular, as presented in MigCube, the use of α equal to 16 was responsible for the best
performance values when executing a short number of supersteps. Table 5.2 highlights the large difference in
time when comparing the CPU initial mapping against the other three initial scheduling strategies. Although

Using Computational Geometry to Improve Process Rescheduling on Round-Based Parallel Applications 25

20 40 60 80 100

Number of Supersteps

0

10

20

30

40

50

G
a
in

 i
n
 P

e
rc

e
n
ta

g
e

 = 4

 = 8

 = 16

20 40 80 100
0

10

20

30

40

50

G
a
in

 i
n
 P

e
rc

e
n
ta

g
e

 = 4

 = 8

 = 16

20 40 60 80 100

Number of Supersteps

0

10

20

30

40

50

G
a
in

 i
n
 P

e
rc

e
n
ta

g
e

 = 4

 = 8

 = 16

20 40 60 80 100

Number of Supersteps

0

10

20

30

40

50

G
a
in

 i
n
 P

e
rc

e
n
ta

g
e

 = 4

 = 8

 = 16

(a) Ascending

60

Number of Supersteps
(b) Descending

(c) CPU (d) Round-Robin

∝
∝
∝

∝
∝
∝

∝
∝
∝

∝
∝
∝

 G

a
in

 (
%

)

 G

a
in

 (
%

)

 G

a
in

 (
%

)

 G

a
in

 (
%

)

Fig. 5.1: Percentage of gain in the execution time with MigCube-driven process rescheduling

20 40 60 80

Supersteps with Migrations

0

20

40

60

80

100

N
u

m
b

e
r

o
f

M
ig

ra
ti
o

n
s

Ascending

Descending

CPU

Round-Robin

Fig. 5.2: Number of migrations at each rescheduling call when using MigCube and α = 8.

efficient in the CPU perspective, the CPU initial mapping causes communication penalties because there are a
large number of inter-cluster communication.

Figure 5.3 shows the percentage of gain on the execution time when MigHull-driven migrations take place.
The results were calculated considering Equation 5.1 and data from scenarios (i) and (iii). Analyzing Table 5.2
and the graphs in Figure 5.3 using the MigHull, it is possible to verify that a value of α equal to 8 is the most
stable when considering the time gain. However, different from MigCube, a value of α equal to 16 does not
show a tendency of gain in performance. The use of MigHull tends to be more complex and increases the cost
of execution as increases the number of clusters, because each BSP process need to calculate the probability
of migration in each cluster; in this way, increasing the computation cost. Figure 5.4 depicts the number of
migrations at each rescheduling intervention when using α equal to 8 and the MigHull heuristic. Clearly, the

26 R. Righi, V.M. Guerreiro, G. Rostirolla, V.F. Rodrigues, C.A. da Costa, L.D. Chiwiacowski

Table 5.2: MigHull evaluation. The times are expressed in seconds. We are highlighting the performance of
scenario (i), where the CPU strategy for initial mapping presents large disparities

Supersteps

Scenarios

i
ii iii ii iii ii iii

α = 4 α = 8 α = 16

Ascending

20 16.10 17.33 11.75 16.57 11.89 16.33 14.56

40 32.19 34.59 21.52 33.42 21.95 32.66 23.04

60 48.28 51.56 32.20 49.93 30.93 48.99 31.57

80 64.37 67.04 42.07 66.78 39.91 64.60 42.39

100 80.47 84.48 52.85 83.28 49.90 81.88 49.96

Descending

20 16.27 16.68 12.15 16.60 11.99 16.39 14.31

40 32.54 33.09 21.53 33.01 22.15 32.95 23.32

60 48.82 49.50 32.27 49.38 31.12 49.25 32.12

80 65.09 65.38 41.97 65.25 40.21 65.15 42.71

100 81.37 81.70 53.11 81.65 50.22 81.53 51.37

CPU

20 20.08 20.33 14.47 20.31 15.72 20.13 17.46

40 40.15 40.45 27.04 40.37 27.05 40.29 28.46

60 60.22 60.56 38.87 60.51 37.07 60.49 40.91

80 80.29 81.10 51.84 81.02 47.37 80.95 55.03

100 100.36 101.13 63.67 100.94 56.57 100.77 67.51

Round-Robin

20 16.16 17.11 11.61 16.42 11.81 16.30 14.50

40 32.33 34.12 21.20 33.01 21.93 32.49 23.04

60 48.46 51.13 31.85 49.29 30.87 48.68 31.97

80 64.56 65.15 41.44 65.89 39.87 65.09 43.20

100 80.60 83.60 52.10 82.17 49.85 81.20 50.70

MigHull strategy of using an intersection of the three 2D planes is responsible for reducing the number of
migratable processes when compared to MigCube. Particularly, Figure 5.5 illustrates three moments of the
execution for the Ascending strategy, showing the division of the processes among the clusters. We can observe
the movement of the processes to take profit from the most powerful clusters, Chicon and Suno (see Section 4
for details regarding the subset of the Grid5000 infrastructure used in the tests).

5.3. MigCube and MigHull Comparative. Both MigCube and MigHull heuristics have the same
objective and make use of the same idea: computational geometry to select a portion of process to migrate.
Figure 5.6 illustrates the gains considering each initial scheduling and heuristic. The graph shows the mean
value of gain of scenario (iii) over scenario (i) when considering all set of supersteps and α values. MigCube
with the Ascending scheduling and α value equal to 4 achieved a gain of 25%, diverging significantly from the
other results. This divergence occurs due to a low α, which makes many processes to migrate, increasing the
communication between process and approximating metrics.

MigHull achieved up to 35% of gain in application execution time with process migration, while MigCube
obtained 42%. Figure 5.7 presents an analysis of the execution time of the supersteps at each migration call.
The time presented in the graph refers to the interval between two supersteps in which a migration call took
place. Particularly, we are considering 60 processes, 80 supersteps, α equal to 8 and the initial scheduling as
being Round-Robin. In this way, migrations are evaluated at supersteps 1, 8, 16, 24, 32, 40, 48, 56, 64, 72
and 80. In this figure, the label ‘Without Migration’ represents the execution of the application without any
migration, so the time is stable since the application performs the same number of computation activities at
each superstep. We can observe that the time on both MigCube and MigHull tends to stabilize after crossing the

Using Computational Geometry to Improve Process Rescheduling on Round-Based Parallel Applications 27

20 40 60 80 100

Number of Supersteps

0

10

20

30

40

50

G
a
in

 i
n
 P

e
rc

e
n
ta

g
e

 = 4

 = 8

 = 16

20 40 60 80 100

Number of Supersteps

0

10

20

30

40

50

G
a
in

 i
n
 P

e
rc

e
n
ta

g
e

 = 4

 = 8

 = 16

20 40 80 100
0

10

20

30

40

50

G
a
in

 i
n
 P

e
rc

e
n
ta

g
e

 = 4

 = 8

 = 16

20 40 60 80 100

Number of Supersteps

0

10

20

30

40

50

G
a
in

 i
n
 P

e
rc

e
n
ta

g
e

 = 4

 = 8

 = 16

(a) Ascending

60

Number of Supersteps
(b) Descending

(c) CPU (d) Round-Robin

∝
∝
∝

∝
∝
∝

∝
∝
∝

∝
∝
∝

 G

a
in

 (
%

)

 G

a
in

 (
%

)

 G

a
in

 (
%

)

 G

a
in

 (
%

)

Fig. 5.3: Percentage of gain in the execution time with MigHull-driven process rescheduling

20 40 60 80

Supersteps with Migrations

0

20

40

60

80

100

N
u

m
b

e
r

o
f

M
ig

ra
ti
o

n
s

Ascending

Descending

CPU

Round-Robin

Fig. 5.4: Number of migrations at each rescheduling call when using MigHull and α = 8.

fourth migration call. Furthermore, we can observe that they achieved the main idea with process migration:
to reduce the time of a superstep, so minimizing the application time as a whole.

5.4. Comparing MigCube and MigHull Against the Original Heuristics of MigBSP. Here, we
intend to compare the proposed heuristics with the original ones, all developed for the scope of MigBSP. Up to
the moment of MigCube and MigHull proposals, MigBSP offers two heuristics to select the candidate processes
for migration, both of them based on the descending-sorted list of the highest PM of each process: (i) we can
select the top of the list or; (ii) use a percentage to select a number of processes based on the value belonging
to the top. While the first is not reactive, the second needs the user intervention to set a particular percentage
for the application and execution environment duet. This last task is not trivial, mainly when dealing with
heterogeneous and/or dynamic applications or parallel machines. Concerning this panorama, MigCube and

28 R. Righi, V.M. Guerreiro, G. Rostirolla, V.F. Rodrigues, C.A. da Costa, L.D. Chiwiacowski

Mapping at the begging
of the execution

Mapping at superstep
number 40

Mapping at the end
of the execution

Fig. 5.5: Different moments of processes-clusters mappings when executing MigCube with the Ascending strat-
egy for initial scheduling, 80 supersteps and α = 8.

5 10 15 20 25

Supersteps with Migrations

20

25

30

35

40

45

G
a

in
 i
n

 P
e

rc
e

n
ta

g
e

MigCube-Ascending

MigCube-Descending

MigCube-CPU

MigCube-Round-Robin

MigHull-Ascending

MigHull-Descending

MigHull-CPU

MigHull-Round-Robin

 G
a

in
 (

%
)

Fig. 5.6: Comparative involving MigCube and MigHull when varying the value of α

MigHull come to fill the gap on process selection re-activity, not needing any intervention from the user nor
previous knowledge about the BSP application.

Figure 5.8 shows a performance graph when considering the four aforementioned heuristics. This graph
depicts, for each value of α, a mean value of the executions with the four initial scheduling. The gain refers to
the performance of scenarios (i) and (iii). As expected, the heuristic that selects only one process obtained the
worst results. The heuristic of percentage selection, that is using a 20% selection from the top PM has similar
results to MigCube and MigHull. This happens because the percentage heuristic can select more process at
each execution, providing a fast rescheduling of processes. The MigCube and MigHull achieve the best results
due its analysis of each metric and the use of geometrical space.

6. Related Work. Today, BSP represents the most used programming model to write successful parallel
programs that exhibit phase-based computational behaviors. Thus, despite being proposed more than two
decades ago by Leslie Valiant [33], several initiatives offer this model together with load balancing techniques
and/or to treat particular parallel platforms [1, 8, 7, 37, 19, 21, 24, 27]. HAMA [1] is a cluster-driven library,
particularly suitable for heterogeneous systems. It runs on top of the HDFS (Hadoop Distributed File System)
in order to integrate BSP and iterative Map-Reduce applications. PUB [8, 7] is a C library that offers both

Using Computational Geometry to Improve Process Rescheduling on Round-Based Parallel Applications 29

20 40 60 80

Number of Supersteps

0

2

4

6

8

10

12

14

T
im

e
 B

e
tw

e
e

n
 S

u
p

e
rs

te
p

s

Without Migration

Migration with MigCube

Migration with MigHull

Fig. 5.7: Time between two supersteps in which migration calls took place.

0

10

20

30

40

P
e

rc
e

n
ta

g
e

 o
f
G

a
in

∝= 4 ∝= 8 ∝= 16

 G

a
in

 (
%

)

MigCube

MigHull

Standard: 1 process

Standard: Percentage

Fig. 5.8: Comparing MigCube and MigHull with the standard MigBSP (approaches to select the migratable
processes: only the process in the top of the PM list and a percentage of processes based on the top value of
this list).

centralized and distributed strategies for load balancing. In the first one, all nodes send data about their CPU
power and load to a master node. The master verifies the least and the most loaded node and migrates one
process between them. In distributed approaches, every node chooses c (PUB parameter) other nodes randomly
and asks them for their load. One process is migrated if the minimum load of c analyzed nodes is smaller than
own load of the node that is performing the test.

Mizan [19] monitors run-time characteristics of all processes (i.e., their execution time and incoming and
outgoing messages). Using these measurements, at the end of every superstep, Mizan constructs a migration plan
that minimizes the variations across workers by identifying which vertices to migrate and where to migrate them.
BSPCloud [21] can make full use of multi-core clusters and has the advantage of performance predictability. Its
target architecture are clusters, which are offered by cloud computing virtual machines. Pregel.NET [27] is based
on Google’s Pregel [23], offering distributed graph programming on the Azure Cloud using Bulk Synchronous
Parallel model. It works with partitioning and scheduling of activities to workers in a Cloud environment,
making use of the elasticity of virtual machines. Mansouri et al. [24] proposed task migration of a DSP (Digital

30 R. Righi, V.M. Guerreiro, G. Rostirolla, V.F. Rodrigues, C.A. da Costa, L.D. Chiwiacowski

Table 6.1: Related work comparison: F1 - Changing the application code; F2 - Platform: Grid or Cluster; F3
- Automatic selection of migratable processes, i.e., without user intervention; F4 - Use of computation metric
(CPU load, CPU time or processing time) for load balancing; F5 - Use of communication data for load balancing;
F6 - Use of migration costs for load balancing; F7 - Combination of metrics for load balancing purposes; F8 -
Support for BSP applications; F9 - Support of any kind of adaptivity on dynamic environments; F10 - Support
for heterogeneous systems; F11 - Process migration capability

Proposal
Features

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

MigBSP [28] No All No• Yes Yes Yes Yes Yes Yes Yes Yes
HAMA [1] HDFS Cluster No No No No No Yes No Yes Yes
PUB [7] No All Yes No No No Yes Yes Yes Yes Yes
MulticoreBSP [37] Yes No NA† No No NA† No Yes No⋆ No⋆ No
Mizan [19] No Cluster Yes No No No Yes Yes Yes Yes Yes
BSPCloud [21] No Cluster No No No No Yes Yes Yes No Yes
DistPM [20] No All Yes No No No Yes No Yes Yes Yes
Pregel.NET [27] Yes Cloud Yes No No No No Yes Yes Yes Yes
CPU-GPU cluster [24] Yes Cluster Yes No No No No Yes Yes Yes Yes
References: • Depends on user definition at the beginning of the application; ⋆ Unknown; † Not Applicable.

Signal Processing) application implemented with the BSP computing model on a CPU-GPU cluster. During
the processing phase of a BSP superstep, instead of moving the heavily loaded processes to another CPU,
part of the load is divided to run in different GPUs. In this way, this middleware avoids network interaction,
saving time on such operation. Unlike distributed systems, MulticoreBSP [37] library targets shared-memory
computing employing thread-based parallelization. Finally, DistPM [20] is a library particularly developed to
support process migration in grid computing. DistPM manages the network communication to avoid high data
interaction between different clusters.

Table 6.1 summarizes the analysis of the aforementioned systems. We observe that our previous work
named MigBSP is competitive among the BSP libraries regarding the load balancing perspective. Only MigBSP
combines computation, communication and migration costs metrics for migration decision-making. Although
having a process running in a slow processor that has a communication consistent pattern with a specific
cluster, the migration penalties can act against migration viability, being dependent of process’ size and network
characteristics. The MigBSP’s drawback considers how it selects the migratable processes, where now needs the
intervention of user. In this way, both MigCube and MigHull proposed in this article seek to fill the MigBSP’s
gap, which is being used today to run BSP-based weather forecast and oil prospection applications in the south
of Brazil [30].

7. Conclusion. Considering that the bulk synchronous style is a common organization on writing success-
ful parallel programs [7, 10, 17], MigCube and MigHull emerge as alternatives for selecting their processes for
running on more suitable resources without interference from the users. The key contribution of the proposed
heuristics is the efficient use of computation, communication and migration costs metrics as axes values in the
computational geometry for process migration decision-making. As mentioned above, MigCube and MigHull
are not restricted to the MigBSP’s scope, being employed to manage both heterogeneity and dynamism with
process migration effortlessly at middleware level. Many data analysis techniques, such as machine learning
and graph algorithms, require iterative computations and this is where Bulk Synchronous Parallel model can be
more effective than MapReduce or Divide-and-Conquer strategies. The results showed gains larger than 40%
when using MigCube or MigHull to decide process rescheduling in a subset of the Grid5000 environment. In
addition, we also demonstrated a mean overhead close to 3% when employing the heuristics, but not perform-
ing any migrations. The evaluation emphasized the capacity of both proposed heuristics with different initial
processes-processors mappings over an heterogeneous cluster-based grid.

Thus, future work includes the use of dynamism at resource and network usage levels to analyze MigCube
and MigHull reactivity and overhead. The Lattice-Boltzmann application was very useful to present the benefits
of the aforementioned heuristics in front of the originals presented in MigBSP, but we plan to evaluate the new

Using Computational Geometry to Improve Process Rescheduling on Round-Based Parallel Applications 31

proposals on new complex applications including weather prediction and DNA sequencing [30]. Moreover, the
use of a simulator was very convenient to evaluate the MigCube and MigHull feasibility. In this way, also as
future work, we are analyzing communication libraries such as ProActive3 and AMPI4 to implement MigBSP
and the proposed heuristics. Consequently, real tests in the Grid5000 infrastructure will be conducted and
compared with data obtained at simulation level.

Acknowledgements. This work was partially supported by the following Brazilian Agencies: CAPES,
FAPERGS and CNPq.

REFERENCES

[1] Hama, June 2013. Available at: http://hama.apache.org/. Access: Jun. 2013.
[2] Simgrid, June 2013. Available at: http://simgrid.gforge.inria.fr/. Access: Jun. 2013.
[3] V. Arabnejad, A. Moeini, and N. Moghadam, Using bee colony optimization to solve the task scheduling problem in

homogenous systems, International Journal of Computer Science Issues, 8 (2011), pp. 348–353.
[4] S. Bandyapadhyay, S. Bhowmick, and K. Varadarajan, Approximation schemes for partitioning: Convex decomposition

and surface approximation, in Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’15, SIAM, 2015, pp. 1457–1470.

[5] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, The quickhull algorithm for convex hulls, ACM Trans. Math. Softw., 22
(1996), pp. 469–483.

[6] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars, Computational Geometry: Algorithms and Applications,
Springer-Verlag TELOS, Santa Clara, CA, USA, 3rd ed., 2008.

[7] O. Bonorden, Load Balancing in the Bulk-Synchronous-Parallel Setting using Process Migrations, 2007 IEEE International
Parallel and Distributed Processing Symposium, (2007), pp. 1–9.

[8] O. Bonorden, B. Juurlink, I. von Otte, and I. Rieping, The paderborn university bsp (pub) library, Parallel Comput.,
29 (2003), pp. 187–207.

[9] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys,

B. Yao, D. Hensgen, and R. F. Freund, A comparison of eleven static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing systems, J. Parallel Distrib. Comput., 61 (2001), pp. 810–837.

[10] R. E. De Grande and A. Boukerche, Dynamic balancing of communication and computation load for hla-based simulations
on large-scale distributed systems, J. Parallel Distrib. Comput., 71 (2011), pp. 40–52.

[11] G. El Kabbany, N. Wanas, N. Hegazi, and S. Shaheen, A dynamic load balancing framework for real-time applications
in message passing systems, International Journal of Parallel Programming, 39 (2011), pp. 143–182.

[12] R. Fabbri, L. D. F. Costa, J. C. Torelli, and O. M. Bruno, 2d euclidean distance transform algorithms: A comparative
survey, ACM Comput. Surv., 40 (2008), pp. 2:1–2:44.

[13] Z. Fan, H. Shen, Y. Wu, and Y. Li, Simulated-annealing load balancing for resource allocation in cloud environments, in
Proceedings of the 14th International Conference on Parallel and Distributed Computing, Applications and Technologies
(PDCAT’13), New York, NY, USA, 2013, IEEE, pp. 1–6.

[14] V. Gaba and A. Prashar, Comparison of processor scheduling algorithms using genetic approach, International Journal of
Advanced Research in Computer Science and Software Engineering, 2 (2012), pp. 37–45.

[15] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the Theory of NP-Completeness, W. H. Freeman
& Co., New York, NY, USA, 1990.

[16] S. Hashemi and A. Hanani, Solving the scheduling problem in computational grid using artificial bee colony algorithm,
Advances in Computer Science: an International Journal, 2 (2013), pp. 37–41.

[17] B. Hendrickson, Computational science: Emerging opportunities and challenges, Journal of Physics: Conference Series, 180
(2009), p. 012013.

[18] S. Kardani-Moghaddam, F. Khodadadi, R. Entezari-Maleki, and A. Movagha, A hybrid genetic algorithm and variable
neighborhood search for task scheduling problem in grid environment, Procedia Engineering, 29 (2012), pp. 3808–3814.

[19] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and P. Kalnis, Mizan: a system for dynamic load
balancing in large-scale graph processing, in Proceedings of the 8th ACM European Conference on Computer Systems,
EuroSys ’13, New York, NY, USA, 2013, ACM, pp. 169–182.

[20] Y. Li and Z. Lan, A novel workload migration scheme for heterogeneous distributed computing, in Cluster Computing and
the Grid, 2005. CCGrid 2005. IEEE International Symposium on, vol. 2, 2005, pp. 1055–1062.

[21] X. Liu, W. Tong, and Y. Hou, BSPCloud: A Programming Model for Cloud Computing, 2012 IEEE 12th International
Conference on Computer and Information Technology, (2012), pp. 1109–1113.

[22] A. Madureira, F. Santos, and I. Pereira, Self-managing agents for dynamic scheduling in manufacturing, in GECCO
’08: Proceedings of the 2008 GECCO conference companion on Genetic and evolutionary computation, New York, NY,
USA, 2008, ACM, pp. 2187–2192.

[23] G. Malewicz, M. Austern, and A. Bik, Pregel: a system for large-scale graph processing, Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data, (2010), pp. 135–145.

3http://proactive.activeeon.com
4http://charm.cs.illinois.edu/research/ampi

32 R. Righi, V.M. Guerreiro, G. Rostirolla, V.F. Rodrigues, C.A. da Costa, L.D. Chiwiacowski

[24] F. Mansouri, S. Huet, V. Fristot, and D. Houzet, Task migration of DSP application specified with a DFG and imple-
mented with the BSP computing model on a CPU-GPU cluster, Proccedings of the 2013 Conf. on Design and Architectures
for Signal and Image Processing (DASIP), IEEE, 2013, pp. 326-333.

[25] M. F. Pace, BSP vs mapreduce, Procedia Computer Science, 9 (2012), pp. 246 – 255. Proceedings of the International
Conference on Computational Science, ICCS 2012.

[26] J. Pecero and P. Bouvry, An improved genetic algorithm for efficient scheduling on distributed memory parallel systems,
in Proceedings of the International Conference on Computer Systems and Applications (AICCSA), New York, NY, USA,
2010, IEEE, pp. 1–8.

[27] M. Redekopp, Y. Simmhan, and V. Prasanna, Optimizations and analysis of bsp graph processing models on public clouds,
in Parallel Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on, 2013, pp. 203–214.

[28] R. d. R. Righi, L. Graebin, and C. A. da Costa, On the replacement of objects from round-based applications over
heterogeneous environments, Software: Practice and Experience, (2015), v. 45, n. 5, pp. 633-656.

[29] C. Schepke and N. Maillard, Performance improvement of the parallel lattice boltzmann method through blocked data
distributions, in Computer Architecture and High Performance Computing, 2007. SBAC-PAD 2007. 19th International
Symposium on, Oct 2007, pp. 71–78.

[30] J. Schneider, J. Gehr, H.-U. Heiss, T. Ferreto, C. De Rose, R. Righi, E. Rodrigues, N. Maillard, and P. Navaux, De-
sign of a grid workflow for a climate application, in Computers and Communications, 2009. ISCC 2009. IEEE Symposium
on, pp. 793–799.

[31] E.-G. Talbi, Metaheuristics : from design to implementation, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2009.
[32] H. Tang, Y. Zhou, X. Huang, and G. Rong, Does pareto’s law apply to evidence distribution in software engineering?

an initial report, in Proceedings of the 3rd International Workshop on Evidential Assessment of Software Technologies,
EAST 2014, New York, NY, USA, 2014, ACM, pp. 9–16.

[33] L. G. Valiant, A bridging model for parallel computation, Commun. ACM, 33 (1990), pp. 103–111.
[34] H. Wu and C. Nie, An overview of search based combinatorial testing, in Proceedings of the 7th International Workshop on

Search-Based Software Testing, SBST 2014, New York, NY, USA, 2014, ACM, pp. 27–30.
[35] A. Yzelman, R. Bisseling, D. Roose, and K. Meerbergen, Multicorebsp for c: A high-performance library for shared-

memory parallel programming, International Journal of Parallel Programming, (2013), pp. 1–24.
[36] K. Ponnavaikko and J. Dharanipragada, Wide Area Distributed Filesystems - A Scalability and Performance Survey,

Scalable Computing: Practice and Experience (SCPE), v.11, n.3, (2010), pp. 305-325.
[37] A. Yzelman and R. H. Bisseling, An object-oriented bulk synchronous parallel library for multicore programming, Concur-

rency and Computation: Practice and Experience, 24 (2012), pp. 533–553.
[38] E. Cesario and D. Talia, Using Grids for Exploiting the Abundance of Data in Science, Scalable Computing: Practice and

Experience (SCPE), v.11, n.3, (2010), pp. 251-261.

Edited by: Pedro Valero Lara
Received: Sept 9, 2015
Accepted: March 2, 2016

Scalable Computing: Practice and Experience

Volume 17, Number 1, pp. 33–46. http://www.scpe.org

DOI 10.12694/scpe.v17i1.1148
ISSN 1895-1767
c⃝ 2016 SCPE

MANY-TASK COMPUTING ON MANY-CORE ARCHITECTURES

PEDRO VALERO-LARA∗, POORNIMA NOOKALA†, FERNANDO L. PELAYO‡, JOHAN JANSSON §, SERAPHEIM

DIMITROPOULOS¶, AND IOAN RAICU∥

Abstract. Many-Task Computing (MTC) is a common scenario for multiple parallel systems, such as cluster, grids, cloud and
supercomputers, but it is not so popular in shared memory parallel processors. In this sense and given the spectacular growth in
performance and in number of cores integrated in many-core architectures, the study of MTC on such architectures is becoming
more and more relevant. In this paper, authors present what are those programming mechanisms to take advantages of such
massively parallel features for the particular target of MTC. Also, the hardware features of the two dominant many-core platforms
(NVIDIA’s GPUs and Intel Xeon Phi) are also analyzed for our specific framework. Given the important differences in terms
of hardware and software in our two many-core platforms, we have considered different strategies based on CUDA (for GPUs)
and OpenMP (for Intel Xeon Phi). We carried out several test cases based on an appropriate and widely studied problem for
benchmarking as matrix multiplication. Essentially, this study consisted of comparing the time consumed for computing in parallel
several tasks one by one (the whole computational resources are used just to compute one task at a time) with the time consumed
for computing in parallel the same set of tasks simultaneously (the whole computational resources are used for computing the set of
tasks at very same time). Finally, we compared both software-hardware scenarios to identify the most relevant computer features
in each of our many-core architectures.

Key words: Parallel Computing, Multi-Task Computing, Many-Core, GPU, Intel Xeon Phi, CUDA, OpenMP

AMS subject classifications. 15A15, 15A09, 15A23

1. Introduction. Many-Task Computing (MTC), the execution of multiple tasks on one particular par-
allel platform at very same time, is historically dominated by some parallel platforms such as clusters, grids,
and supercomputers. However, the advances in hardware, in particular in many-core architectures, for MTC
applications is a relevant topic. Again, the main problem is at the software side. Programmers need to address
the challenge of analyzing and studying the different hardware features to efficiently map the MTC applications
in order to achieve the best performance on such architectures.

The main contribution of the present work is twofold. While, on one hand the first motivation consists
of presenting those approaches and mechanisms to efficiently exploit Multi-Task Computing applications on
current many-core architectures. Secondly, but not least important, authors provide a study to clarify what are
the most amenable features of the two dominant many-core systems today, these are NVIDIA GPUs and Intel
Xeon Phi, for the specific target of MTC.

In the last years, the use of scheduler based on many-core or heterogeneous architectures for general or for
specific applications has been widely studied [26, 48]. S. Yamagiwa et al. [48] propose a GPGPU streaming
based on distributed computing environment; S. Nakagawa et al. [26] provide a new middleware capable of out-
of-order execution of works and data transfers using stream processing. Other works [12, 46] follow a similar
strategy based on streaming to minimize data transfers overhead. S. Kato et al. [21] introduce TimeGraph, a
GPU scheduler composed by two different GPU scheduling policies which allow to interrupt the low priority
tasks execution in order to execute higher priority tasks within a real-time multi-tasking environments for video
applications. Similar to the previously mentioned works and considering that the GPUs in a cluster are not
usually fully utilized, Duato et al. [9] present their rCUDA, a middleware that enables CUDA remoting over
a commodity network by allowing to use CUDA-compatible GPUs installed in a remote computer, as, they
were installed in the computer where the application is being executed. Also, V. J. Jiménez et al. [19] present
a sort of predictive runtime scheduling which supports several scheduling algorithms in order to choose the
appropriate platform (Multicore, GPU, etc.) in which the algorithm would be better executed, resulting in

∗Univeristy of Manchester, UK, and Basque Center for Applied Mathematics (BCAM), Bilbao, Spain (pvalero@bcamath.org).
†Illinois Institute of Technology (IIT), Chicago, USA (pnookala@hawk.iit.edu.)
‡University of Castilla-La Mancha (UCLM), Albacete, Spain (fernandol.pelayo@uclm.es.)
§Basque Center for Applied Mathematics (BCAM), Bilbao, Spain, and KTH Royal Institute of Technology, Stockholm, Sweden

(jjansson@bcamath.org).
¶Illinois Institute of Technology (IIT), Chicago, USA (sdimitro@hawk.iit.edu.)
∥Illinois Institute of Technology (IIT), Chicago, USA (iraicu@cs.iit.edu.)

33

34 P. V. Lara, P. Nookala, F. L. Pelayo, J. Jansson, S. Dimitropoulos and I. Raicu

almost fully usage of CPU/GPU-like systems, with a peak time reduction of 40% with respect to only using the
GPU. Basically most the aforementioned works take advantage of overlapping memory transfers among CPU
and GPU memories with single kernel executions.

With the aim of exploiting MTC on many-core, other authors [23, 25] have studied the efficiency of this
new feature. Batched task, maybe the first MTC approach on GPUs, allows us to run several independent
kernels over the same GPU simultaneously. It was presented by M. Guevara et al. [14] and P. Valero-Lara et
al. [41]. Posteriorly, C. Gregg et al. [13] and K. Zhang et al. [49] included a scheduler which can select the best
matching among tasks before running. Additionally, P. Valero-Lara et al. [42] applied this strategy to different
GPU architectures to obtain the most convenient architectural features for running concurrent kernels. After
that, in [40], it is proposed a new heterogeneous (CPU-GPU) scheduler in which groups of independent blocks
of tasks were efficiently managed to fully use CPU-GPU and reduce the overhead of memory transfers. More
recently, S. Krieder et al. [24] presented GeMTC, a CUDA based framework which allows MTC workloads to
run efficiently on NVIDIA’s GPUs. Posteriorly P. Nookala et al. [27] adapted this framework (GeMTC) to
efficiently use the particular features of Intel Xeon Phi and evaluate MTC applications on Intel accelerators.
In fact, we can now find some applications which takes advantage of MTC on hardware accelerators. One of
these applications was presented by P. Valero-Lara et al. [43, 44], in which multiples tridiagonal problems are
efficiently executed on the same NVIDIA’s GPU simultaneously. Other examples consist of computing several
relatively small Linear Algebra problems [16, 15, 17], multiple range queries in metric spaces [2, 1] or multiple
string matching [22].

This work is structured as follows: Section 2 introduces the main features of many-core architectures con-
sidered (NVIDIA GPUs and Intel Xeon Phi), then in Section 3, authors briefly outline the different mechanisms
for MTC on both many-core architectures. After that, both platforms and the MTC mechanisms are deeply
analyzed and studied. Finally, Section 5 concludes summarizing the most relevant results.

2. Many-Core Architectures. Today, the increase in performance for single-threaded processor has come
to an end due to the limitation of the current Very Large Scale Integration (VLSI) technology. In response, most
hardware companies are designing and developing new parallel architectures [11]. Programs will only increase
in performance if they use and exploit the new parallel characteristics of new architectures. On the other
hand, multicore designs are also encountering scaling problems, notably the “Dark Silicon” phenomenon [10].
Power and cooling concerns suggest the number of dynamically active transistors on a single die may be greatly
constrained in the near future. In other words, even if the number of transistors per chip continues to follow
Moore’s law, we will not be able to use all of them simultaneously. This problem may lead to scenarios in which
only a small percentage of the chip’s transistors can be “on” at a time [34]. Given the limitations of current
CMOS technology and the excessive power consumption reached by current platforms, it is necessary a renewal
of hardware design.

In this context, many-core architectures may be an answer to these challenges. These new massively parallel
platforms offer a high ratio performance/cost and an efficient power consumption design [39, 38, 37]. They are
also widely used on high performance computing, including systems ranging from cluster of personal computers,
to large scale supercomputers.

Most processors for high-performance computing (HPC) are still multi-core. However, as we can see in Top
500 list [36], many of the most powerful supercomputers today are based on platforms that combine multicore
processors with data parallel accelerators. The fastest system, which is currenlty the Tianhe-2 supercomputer
from China, uses Intel’s Xeon Phi coprocessors and its runnerup, which is the Titan supercomputer from the
Oak Ridge National Laboratory, uses NVIDIA GPUs.

2.1. Graphic Processing Units (GPUs). GPUs are traditionally used for interactive applications, and
are designed to achieve high rasterization performance however, their characteristics have allowed the oppor-
tunity to other more general applications to be accelerated in GPU-based platforms. This trend is now called
General Purpose Computing on GPU (GPGPU) [31], or what is the same, the usage of GPUs for applications
for which they were not originally designed. These general applications must have parallel characteristics and
an intense computational load to obtain a good performance.

The main feature of these devices is a large number of processing elements integrated into a single chip at
the expense of a significant reduction in cache memory. These processing elements are arranged on memory

Many-Task Computing on Many-Core Architectures 35

Warp Scheduler Warp Scheduler

Core Core Core DP
Unit

DP
Unit

Core Core Core DP
Unit

DP
Unit

..
.

... ...

...

... ...

Register File (65,536 x 32 bit)

48KB Read−Only Data Cache

64KB Shared Memory / L1 Cache

Multiprocessor ...
GPU

L2 Cache

...

Global Memory

Memory Controller Memory Controller

Fig. 2.1: NVIDIA GPU (Kepler) architecture [45].

cards that have a local high-speed external DRAM and are connected to the computer through a high-speed
I/O interface (PCI Express).

Figure 2.1 shows an abstract block diagram of NVIDIA’s (Kepler) GPU [45]. The GPU is organized
into several multiprocessors, which in turn are composed of various simple processors (cores) that operates in
SIMD fashion. The multiprocessors have fine grain multithreading capabilities, which means that they support
hundreds of threads in-fly. Every multiprocessor switches to a different set of threads every clock cycle, which
helps to maximize computational resources and hide the long latency memory accesses to a share GPU main
memory.

The GPU main memory, usually called “global memory”, is banked, which allows the hardware to coalesce
several simultaneous memory accesses to adjacent positions into a single memory transaction. In addition,
each multiprocessor contains a large set of registers and an on-chip SRAM scratchpad memory, i.e., a software
controlled cache, to speed up data access. In more recent GPUs (starting from NVIDIA’s Fermi architecture) the
SRAM can be configured either as scratchpad or as cache memory and the user decide, with certain restrictions,
the size of both memories. These newer GPUs also incorporate a L2 cache common to all multiprocessors. The
access to the global memory can also be performed through special read-only two level hierarchy of so called
texture caches, that are optimized to capture 2D access patterns [47].

2.2. Intel Xeon Phi. GPUs have a very restrictive programming model, but provide at least an order of
magnitude better throughput for applications painstakingly coded to that model. To program GPUs, typically
there is a need to learn another programming language such as CUDA (NVIDIA) or OpenCL (AMD). As

36 P. V. Lara, P. Nookala, F. L. Pelayo, J. Jansson, S. Dimitropoulos and I. Raicu

4 Threads
In−Order

uCode

Pipe 0 Pipe 1

VPU RF X87 RF

X87VPU
512b SIMD

ALU0 ALU1

L
2

C
o
n
tr

o
ll

er

512KB
L2 Cache

T0
T1
T2
T3

32KB Code
Chache

L1 TLB

Decode

Scalar RF

L1 TLB 32KB
Data Cache

TLB Miss
Handler

L2 TLB

TLB Miss

T
L

B
 M

is
s

Core
Code Miss

Data Miss

Fig. 2.2: Architecture of a single Intel Xeon Phi Core [18].

a result, existing vendors must spend extra time and effort to modify or rewrite parts of their codebase to
take advantage of the new capabilities provided by General Purpose GPUs (GPGPUs). Besides that, barely
rewriting an application just to offload computations to a GPU rarely works well. Because of the architecture
of most GPUs out there, applications must be tailored from the ground up to follow the rules of the restrictive
programming model of GPUs, otherwise they may suffer from severe performance penalties. Because of that,
interested vendors cannot afford to go through the effort involved. Finally, while GPUs are great for massively
parallel applications with thread- switching that comes almost at no cost, their performance can take a large hit
when executing programs with complex logic (like complicated branching and looping for example). Therefore
they may be unsuitable for certain applications of MTC. The Intel Xeon Phi is a new family of processors based
on the Intel MIC Architecture [18] that incorporates earlier work on the Larrabee architecture [33]. It follows
an alternative programming model that, although may not provide the same level of parallelism, provides more
flexibility and therefore can be more suitable for certain application of MTC that GPUs are not suited for.
The reason is that the Xeon Phi has x86 cores that are more capable (can handle complex branching and
looping) than most GPU cores. Another advantage of having x86 cores is that programming the coprocessor
minimizes the amount of work that needs to be done in order to integrate a Xeon Phi to an existing system.
That is because the Phi does not require being programmed in any specific framework and it can natively run
applications written in C with Pthreads or OpenMP. All of the above facts were enough to motivate us to work
on this project. We have used the 22nm Knights Corner chip graphically described in Figures 2.2 and 2.3, which
was the first commercial product from this family.

The Corner is a PCIe vector co-processor with integrates up to 61 in-order dual issue x86 cores, which
trace some history to the original Pentium core, like the Larrabee predecessor. Among other enhancements,
the Corner’s cores are augmented with 64-bit support, 4 hardware threads per core (resulting in more than
200 hardware threads available on a single device) and 512-bit SIMD instructions [18]. Each core has a 512KB

Many-Task Computing on Many-Core Architectures 37

Vector
Core

Vector
Core

Vector
Core

Vector
Core

Coherent
Cache

Coherent
Cache

Coherent
Cache

Coherent
Cache

Coherent
Cache

Coherent
Cache

Coherent
Cache

Coherent
Cache

G
D

D
R

C
o
n
tr

o
ll

er

M
er

m
o
ry

G
D

D
R

C
o
n
tr

o
ll

er

M
er

m
o
ry

Vector
Core

Vector
Core

Vector
Core

Vector
Core

...
V

ecto
r

C
o
re

V
ecto

r
C

o
re

V
ecto

r
C

o
re

V
ecto

r
C

o
re

G
D

D
R

C
o
n
tro

ller

M
erm

o
ry

G
D

D
R

C
o
n
tro

ller

M
erm

o
ry

Interprocessor Network

Interprocessor Network

...

...

...

PCIe
Client
Logic

F
ix

ed
 F

u
n
ct

io
n
 L

o
g
ic

...

Fig. 2.3: Micro-architecture of the Entire MIC coprocessor [18].

L2 cache locally but has also access to all other L2 caches in the system through a high-speed bidirectional
ring [18]. Unlike previous GPUs, the L2 cache is kept fully coherent by a global-distributed tag directory.

The performance achieved by Knight Corner chips is usually outperformed by NVIDIA’s counterparts [29].
However, last year Intel announced the Knight Landing processor [35] that should significantly improve MIC
performance.

3. Multi-Task Computing (MTC). Although, the dominant choice to compute MTC problems con-
tinues being distributed memory architectures, the impressive growth in performance of current parallel shared
memory architectures makes possible to compute a considerable high number of independent tasks over this
kind of computational platforms.

In this regard, this section introduces some of the most extended and known approaches for computing MTC
over many-core architectures (NVIDIA GPUs and Intel Xeon Phi). Essentially, each of these approaches share
the same major steps (Figure 3.1). These consist of performing memory transfers (communication) sequentially,
then the set of independent tasks are executed on many-core platform.

3.1. MTC on GPU. This subsection introduces 3 different approaches for MTC running on NVIDIA’s
GPUs. To clarify, we include some pseudocodes which can help us to understand the differences among them
and the particular features (advantages and disadvantages) of every of them.

Batched Task, several authors [13, 14, 41, 42] proposed this strategy to fully utilize the GPU by running
multiple tasks (kernels) simultaneously on the same GPU. Basically, all of them include a single pass compiler
which is able to create the batched task source code by renaming the variables, by adding the if-else control flow,
and by adding indexing in the independent task that is executed by blocks that are offset from blockId. The set
of tasks are mapped either on one or on a set of blocks of threads. In this case, the number of threads launched
must be equal than the sum of all threads required by all tasks. Also, all parameters must be included in the
same call. We would like to point out that this strategy can be carried out on all CUDA GPUs architectures.
Algorithm 1 illustrates a simple scheme of this strategy.

NVIDIA proposed a new approach [5, 40] called Concurrent Kernels which allows to execute a set of
independent tasks (kernels) on the same GPU by means of streams. It only can be used over FERMI architecture
forward. Using different streams for CUDA kernels makes the concurrent execution being possible. Therefore
n kernels on n streams could theoretically run concurrently if they are fitted into the hardware. This approach
allows to execute up to 16 different kernels at the very same time. A scheme of this approach is shown in
Algorithm 2, where two kernels are used in such way.

Recently, NVIDIA has introduced a new feature compatible for the KEPLER CUDA architecture (Dy-

38 P. V. Lara, P. Nookala, F. L. Pelayo, J. Jansson, S. Dimitropoulos and I. Raicu

��
��
��
��

��
��
��
��

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

��������
��������
��������
��������

��������
��������
��������
��������

������
������
������

������
������
������

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

��
��
��

��
��
��

���
���
���
���

���
���
���
������
���
���
���
���
���

���
���
���
���
���
���

Size of MC resources

Alloc−Init MC Mem

CPU Mem−>MC Mem

Idle MC resources

MC Mem−>CPU Mem

Task 2

Task 1

Fig. 3.1: Basic scheme for MTC on Many-Core (MC) architectures. Allocation and Initialization of MC memory
(Alloc-Init MC Mem). Data transfer (input) from CPU memory to MC memory (CPU Mem → MC mem).
MC executions (Task 1 and Task 2). Idle cores in MC (Idle MC resources). Data transfer (output) from MC
memory to CPU mem (MC Mem → CPU Mem).

Algorithm 1 Batched Task.
BatchedTaskCPU

1: CPUMemAllocate(ACPU ,BCPU ,CCPU ,DCPU)
2: GPUMemAllocate(AGPU ,BGPU ,CGPU ,DGPU)
3: CPU->GPUMemTransfer(ACPU ,AGPU)
4: CPU->GPUMemTransfer(CCPU ,CGPU)
5: CPU->GPUMemTransfer(DCPU ,DGPU)
6: BatchedTask<THREADS1+THREADS2> (AGPU ,BGPU ,CGPU ,DGPU)
7: GPU->CPUMemTransfer(BGPU ,BCPU)
8: GPU->CPUMemTransfer(DGPU ,DCPU)

BatchedTaskGPU(A,B,C,D)

9: i = index of thread
10: j = index of block
11: if j = 0 then ◃ kernel1
12: B[i] = A[i] + 100
13: else if j = 1 then ◃ kernel2
14: D[i] = C[i] × D[i]
15: end if

namic Parallelism [6]) which allows to manage multiple tasks inside GPU. It is supported via an extension
of the CUDA programming model that enables a CUDA kernel to create and to synchronize new nested work.
CUDA kernel can consume the output from the other kernels (childs) without CPU involvement. It requires at
least two-level task running (parent-child).

3.2. MTC on Intel Xeon Phi. Due to the foundations of Intel architecture, the coprocessor can be
programmed in several different ways [32]. Here we introduce two different approaches, one using OpenMP
and one using SCIF (Intel’s Symmetric Communication Interface). OpenMP implementation uses offloading
approach for offloading computations from host to the accelerator. The SCIF implementation runs natively

Many-Task Computing on Many-Core Architectures 39

Algorithm 2 Concurrent kernels.
ConcurrentKernelsCPU

1: CUDAStream Stream[2]
2: CPUMemAllocate(ACPU ,BCPU ,CCPU ,DCPU)
3: CPU->GPUMemTransfer(ACPU ,AGPU)
4: CPU->GPUMemTransfer(CCPU ,CGPU)
5: CPU->GPUMemTransfer(DCPU ,DGPU)
6: for i = 1 → 2 do
7: StreamCreate(Stream[i])
8: end for
9: Kernel1<THREADS1>(AGPU ,BGPU ,Stream[1])

10: Kernel2<THREADS2>(CGPU ,DGPU ,Stream[2])
11: for i = 1 → 2 do
12: StreamDestroy(Stream[i])
13: end for
14: GPU->CPUMemTransfer(BGPU ,BCPU)
15: GPU->CPUMemTransfer(DGPU ,DCPU)

Algorithm 3 Dynamic parallelism.
DynamicParallelismCPU

1: CPUMemAllocate(ACPU ,BCPU ,CCPU ,DCPU)
2: GPUMemAllocate(AGPU ,BGPU ,CGPU ,DGPU)
3: CPU->GPUMemTransfer(ACPU ,AGPU)
4: CPU->GPUMemTransfer(CCPU ,CGPU)
5: CPU->GPUMemTransfer(DCPU ,DGPU)
6: DynamicParallelismKernel<1> (AGPU ,BGPU ,CGPU ,DGPU)
7: GPU->CPUMemTransfer(BGPU ,BCPU)
8: GPU->CPUMemTransfer(DGPU ,DCPU)

DynamicParallelismKernel(A,B,C,D)

9: Kernel1<THREADS1>(AGPU ,BGPU)
10: Kernel2<THREADS2>(CGPU ,DGPU)
11: SyncronizeThreads

on the accelerator and accepts jobs from Clients running on the host. There are several advantages and
disadvantages between the two methods. The major advantage of native execution coupled with SCIF over
offloading is that the developer gets more control overall in the configuration and the architecture of their
design in order to maximize performance. Computation does not necessarily have to be transferred back to to
the CPU. In addition, different MIC cards can communicate directly with each other basically making certain
designs more efficient.

Finally, frameworks that use offloading mode (OpenMP), do not necessarily take advantage of the DMA-
features of the hardware they run on while on SCIF you are guaranteed that if you are using Remote Memory
Access (RMA). That is not to say that OpenMP does not come with any advantages over SCIF. Quite the
opposite, the advantages of offloading are pretty significant for the framework that was implemented for this
project. The low-level C code needed for the SCIF implementation is relatively a lot more complex when
compared with pragma directives provided by OpenMP. In addition, using SCIF implies that the framework
must have at least one of its parts running natively on the Phi as the endpoint. In order to do that the developer
needs to set up an application to run natively on the Phi and involves a lot of configuration. Using OpenMP
with the offloading capabilities provided by the MIC, all this configuration is taken care of.

OpenMP version (Figure 3.2) uses asynchronous offloading capabilities. We have employed a Producer-
Consumer architecture which communicates using shared memory for IPC (InterProcess Communication). The

40 P. V. Lara, P. Nookala, F. L. Pelayo, J. Jansson, S. Dimitropoulos and I. Raicu

Fig. 3.2: OpenMP-Phi diagram.

Consumer side hosts the framework which runs as a single thread and launches as many master processes on
the Xeon Phi as specified by the user [28]. The master processes use the shared memory space as a queue
structure, continuously accepting new tasks from producer processes. Likewise, the producer acts as a client
process which submits tasks to the queue via this shared memory pool. For testing this framework, we have
implemented two different types of applications: Sleep and Matrix Multiplication. Both were developed and
tested using the OpenMP approach of offloading tasks on to Xeon Phi. The master processes in our framework
read the tasks from shared memory location and based on the type of task, offload the computation part to
Xeon Phi. Asynchronous offloading is used to allow the framework to continue accepting tasks while other tasks
are running. The Phi sends a signal back to the master processes after job execution has completed. At this
point the output is sent back to the Client.

SCIF implementation employs a Client Server architecture [4] where clients send their tasks to the Phi from
the host and the server, which runs natively on the Phi, accepts the jobs. After submitting the job, the clients
can request the result and the server will deliver it to them when the task has finished processing and is placed
on the results queue of the framework. The whole procedure is non-blocking for the server who can handle
multiple requests and submissions at the same time. That functionality is implemented with epoll() [30] for
handling connections that are later passed to threads [20, 24] that push or dequeue tasks from the queues. The
SCIF socket-like API is used for communications between the server and the clients. It comes as a shared library
named *libmtcq [8]. This library includes all the functionality that handles incoming and outgoing queues of
tasks, pushing jobs and distributing tasks to workers. It is also completely parametrizable in terms of queue
sizes, worker threads, and application threads. Since the Xeon Phi does not have the hierarchical architecture
of SMXs and Warps nor the concept of application kernels that you generally see in GPGPUs, everything is
implemented with standard Pthreads. There is a parametrizable number of master threads that dequeues tasks
from the incoming queue. If the task is a parallel application, which is the case most of the time, then the
master thread will assign the task to the specified number of worker threads. Else if it is sequential only one
thread will be assigned and the master thread will go back to dequeue more jobs. Each queue is implemented as
a finite buffer from the Producer-Consumer model which means that it uses a single mutex and two semaphores
to ensure that no deadlocks or data-races arise.

4. Performance Evaluation. This section presents a performance study to test and obtain what are
the most relevant programming and hardware features for MTC. Each of the programming approaches and
many-core architectures are analysed in deep.

4.1. NVIDIA GPUs. Taking into account that most many-core accelerators, especially GPUs, reach their
optimum performance over problems having a high level of data parallelism together with a fine granularity,
we have planned a set of tests over one suitable problem (in the previous sense) as matrices multiplication.
The implementation used is an optimization of SGEMM method on GPU presented in [3] which incorporates

Many-Task Computing on Many-Core Architectures 41

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 500 1000 1500 2000 2500 3000 3500 4000

S
p

e
e

d
u

p

Matrices Size

FERMI-Concurrent
FERMI-Batched
TESLA-Batched

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 500 1000 1500 2000 2500 3000 3500 4000

S
p

e
e

d
u

p

Matrices Size

FERMI-Concurrent
FERMI-Batched
TESLA-Batched

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 500 1000 1500 2000 2500 3000 3500 4000

S
p

e
e

d
u

p

Matrices Size

FERMI-Concurrent
FERMI-Batched
TESLA-Batched

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 500 1000 1500 2000 2500 3000 3500 4000

S
p

e
e

d
u

p

Matrices Size

FERMI-Concurrent
FERMI-Batched
TESLA-Batched

Fig. 4.1: Performance (speedup) achieved by the Batched (TESLA and FERMI architectures) and Concurrent
(FERMI architecture) approaches.

several optimizations for NVIDA’s GPUs, such as coalescing memory accesses and shared memory exploitation.
Besides, we have considered the best choice concern with the size of threads blocks.

Four different test cases have been carried out which consist of computing 2, 4, 8 and 16 tasks (maximum
number of tasks for FERMI architecture) in parallel on the same GPU. The size of matrices is increased in
order to show the impact on performance by increasing memory requirements. Results are shown in terms of
speedup (Figures 4.1 and 4.2), which is the ratio between the execution time when running (one by one) several
tasks (matrix multiplication), and, the execution time when computing all multiplications (MTC approach) on
the same GPU in parallel (Figure 3.1) according to each approach, Dynamic, Concurrent and Batched. Due to
the memory capacity of TESLA and FERMI, some tests carried out in the first graph (Figure 3.1-Top) could
not be included in the rest.

We have considered three different NVIDIA GPU architectures which we have re-called as TESLA (GT
200), FERMI (GF 100) and KEPLER (GK 110). Although, all of them share the major components, we
can find important differences (Table 4.1). As we see later, these differences have important consequences
in performance. Each of the CUDA-compatible MTC approaches (subsection 3.1) have been tested on our
three GPU architectures, when it is possible. The study carried out in this subsection is an extension of the
work previously presented in [41]. We include additional results using new MTC approaches on new GPU
architectures. We evaluate the Batched and Concurrent approaches on our FERMI, as the Dynamic one is not
compatible with this architecture. Otherwise, we can analyze all approaches on KEPLER GPU, as it is one of

42 P. V. Lara, P. Nookala, F. L. Pelayo, J. Jansson, S. Dimitropoulos and I. Raicu

0 500 1000 1500 2000 2500 3000 3500 4000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Matrices Size

S
p

e
e

d
u

p

Concurrent

Batched

Dynamic

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

Matrices Size

S
p

e
e

d
u

p

Concurrent

Batched

Dynamic

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

Matrices Size

S
p

e
e

d
u

p

Concurrent

Batched

Dynamic

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

Matrices Size

S
p

e
e

d
u

p

Concurrent

Batched

Dynamic

Fig. 4.2: Performance (speedup) achieved by each of the approaches (Batched, Concurrent and Dynamic) over
KEPLER GPU architecture.

the newest NVIDIA GPUs. However, our TESLA GPU is only compatible with the Batched approach, as it is
oldest architecture included in our study.

From the results obtained (Figures 4.1 and 4.2), we highlight several conclusions comparing each of the
MTC approaches over each of the architectures. On FERMI both approaches, Batched and Concurrent, achieve
a similar result, being faster the Concurrent one. Although the Dynamic scheduler is an easy to implement
approach from programmer point of view, it does not show any benefit on KEPLER. In contrast, a better
scalability is reached by using the other two approaches. The Batched approach presents a good scaling for
small matrix sizes, however, it turns to be inefficient for bigger sizes. Otherwise, the best scaling is obtained by
the Concurrent approach, even for medium matrix sizes.

Both approaches, Batched and Concurrent, share a similar trend on each of the architectures. First, we
focus on the impact of matrix size in performance. In this regard, the best performance is reached in the first
tests (small matrices). Obviously, the performance achieved on the first tests is degraded by increasing matrix
what implies to increase also the number of threads per CUDA block. As consequence, the GPU resources
(multiprocessors) are saturated so that a higher degree of parallelism can not be efficiently exploited. Second,
we focus on analysing the trend in performance by increasing the number of tasks. Unlike the results achieved
by increasing the matrix size, in which we appreciate an important fall in performance, we see the opposite
scenario, that is the performance achieved is higher by increasing the number of tasks, at least for small matrix
sizes.

Although all architectures are similar and share the major components, the most relevant variance among

Many-Task Computing on Many-Core Architectures 43

Table 4.1: GTX 285, GTX 480 and K 20c hardware.

GTX 285 GTX 480 K 20c

Code Name GT 200(TESLA) GF 100(FERMI) GK 110 (KEPLER)
Multiprocess. (MP) 30 15 13

Cores/MP 8 32 192
Cores 240 480 2496

Core Clock 648 Mhz 1401 Mhz 706 Mhz
Mem. Clock 1242 Mhz 1848 Mhz 2600 Mhz

Mem. Capacity 1 GB 1.5 GB 5 GB
On-chip Mem.
SM (per MP) - 16/48 KB 16/48 KB
L1 (per MP) - 48/16 KB 48/16 KB
L2 (unified) - 768 KB 768 KB
Mem. Bus 512 bits 384 bits 320 bits
Bandwidth 159 GB/s 177.4 GB/s 208 GB/s

Gigaflops (SP) 708 1344.96 4577

Table 4.2: Intel Xeon Phi hardware.

Intel Xeon Phi

Code Name 5110P (PHI)
Cores 60

Core Clock 1053 Mhz
Mem. Capacity 8 GB
On-chip Mem.
L1 (per core) 32 KB
L2 (per core) 256 KB
L2 (coherent) 30 MB
Bandwidth 320 GB/s

Gigaflops (DP) 2022

them is found in the number of multiprocessors (Table 4.1). While KEPLER is composed by 13 multiprocessors,
TESLA is composed by 30. Given these results, we can assume that this factor has a great influence in
performance. Although the number of cores in KEPLER is more than 10× than in TESLA, it is remarkable,
that the speedup reached by TESLA is up to almost 2× bigger than the speedup obtained by KEPLER.
In this regard, the number of cores is not as relevant as the number of multiprocessors, at least in a MTC
framework, since every core into one multiprocessor shares the same control component. As consequence, a
greater number of small multiprocessors (TESLA) allows us to reach a better performance than a lower number
of big multiprocessors (FERMI and KEPLER).

4.2. Intel Xeon Phi. All of our experiments were ran on the MidWay High- Performance Computing
Cluster at University of Chicago. Our testing host is an Intel SandyBridge with 16 cores at 2.6 Ghz and 32
GB of RAM. It has 2 Xeon Phis attached to it (Table 4.2). In this subsection, we focused on analyzing the
Matrix Multiplication tasks by using the OpenMP approach (Figure 3.2), as the SCIF implementation is under
development and work is being carried out to run some experiments using Sleep and Matrix Multiplication tasks
to measure the performance of the framework.

In order to assess the real-world performance of the Xeon Phi [7], we developed a matrix multiplication
application to show how well it performed for various task sizes and levels of concurrency. It should be noted
that the work performed is exponentially greater than the matrix size, since a naive matrix multiplication

44 P. V. Lara, P. Nookala, F. L. Pelayo, J. Jansson, S. Dimitropoulos and I. Raicu

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000 3500 4000

S
p
e
e
d
u
p

Matrices Size

OpenMP-Phi

Fig. 4.3: Performance (speedup) achieved by each Intel Xeon Phi by using the OpenMP approach.

algorithm of O(n3) was used.
We used the same speedup used previously for the GPUs analysis, time consumed computing a set of tasks

one by one over the time consumed by computing the same set of tasks in parallel at very same time. In
particular for our MTC approach and ensuring full utilization of Xeon Phi, we use blocks of 60 tasks. Each of
the tasks is mapped on one Phi-core in which we use 4 hardware-threads, 60 × 4 = 240 total threads). When
one task completes, we send another until 600 tasks are computed. Speedup was calculated by varying the
matrix sizes, number of threads and also by varying the level of concurrency of tasks. It was observed (Figure
4.3) that higher performance is achieved with very granular tasks, but the gain reduces as problem scales up
to higher matrix sizes. This clearly shows that overhead of data transfer from CPU to MIC is high, which
can be mitigated by employing techniques such as allocation a block of memory during the initialization of the
framework and reusing the memory blocks for data transfer. Also, performance of sleep jobs was analyzed to
assess the ideal performance of Xeon Phi with very short length tasks. It was observed that efficiency in higher
90s could be achieved with tasks lasting as short as 640 microseconds.

5. Conclusions. At the beginning of this work, we described a set of approaches for dealing with MTC
over two different many-core architectures, NVIDIA’s GPU and Intel Xeon Phi. Also, the main features of both
hardware-accelerators were briefly introduced. After that, we analyzed each of the software-hardware approaches
individually. In particular, for NVIDIA’s GPUs three programming approaches, Batched, Concurrent and
Dynamic, were tested on three GPU architectures re-called as TESLA, FERMI and KEPLER. Batched and
Concurrent approaches shown the highest scaling. The overall performance suffers a dramatic fall in performance
by increasing the memory requirements and the number of threads, reaching only a good performance over
those scenarios with a small demand of memory. Regarding GPUs architecture, we proven that the number of
multiprocessor is more relevant that the number of cores to reach a good scaling, at least for our target problem.
In this regard, the TESLA architecture (30 multiprocessor and 240 cores) shown a better performance against
the KEPLER architecture (13 multiprocessor and 2496 cores). Unlike NVIDIA’s GPUs, Intel Xeon Phi turned
to be a more appropriate many-core architecture for MTC using an OpenMP approach. We obtain a similar
trend than obtained in GPUs, the peak performance is reached on very granular tasks, the gain reduces as
problem scales up to higher matrix sizes. However, the fall in performance is not so dramatic as in GPUs, and
the number of tasks to be efficiently executed is considerable higher than GPUs. Also the peak in performance
is much higher, 24 against 9.

Acknowledgments. This research has been supported by EU-FET grant EUNISON 308874, the Basque
Excellence Research Center (BERC 2014-2017) program by the Basque Government, the Spanish Ministry of
Economy and Competitiveness MINECO: BCAM Severo Ochoa accreditation SEV-2013-0323 and the Project of

Many-Task Computing on Many-Core Architectures 45

the Spanish Ministry of Economy and Competitiveness with reference MTM2013-40824.We also thank the sup-
port of the computing facilities of Extremadura Research Centre for Advanced Technologies (CETA-CIEMAT)
and NVIDIA GPU Research Center program for the provided resources.

REFERENCES

[1] R.J. Barrientos, J.I. Gómez, C. Tenllado, M.Piedro-Matias, and P. Zezula, Multi-level Clustering on Metric Spaces
Using a Multi-GPU Platform, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 216–228.

[2] R.J. Barrientos, J. I. Gómez, C. Tenllado, M. Piedro-Matias, and M. Marin, knn query processing in metric spaces
using gpus, in Euro-Par 2011 Parallel Processing, Springer Berlin Heidelberg, 2011, pp. 380–392.

[3] S. Chien, Hand-tuned sgemm on gt200 gpu, Technical Report, Tsing Hua university, R.O.C. (Taiwan), (2010).
[4] Intel Corp., Intel many integrated core symmetric communications interface (scif) user guide, (2012).
[5] NVIDIA Corp., Nvidia cuda compute unified device architecture-programming guide, version 5, (2012).
[6] Nvidia Corp., Dynamic parallelism in cuda - nvidia technical report, (2013).
[7] T. Cramer, D. Schmidl, M. Klemm, and D. an Mey, Openmp programming on intel xeon phi coprocessors: An early

performance comparison, in Proceedings of the Many-core Applications Research Community (MARC) Symposium at
RWTH Aachen University, November 2012, pp. 38–44.

[8] S. Dimitropoulos, Gemtc-scif source code repository, https://github.com/sdimitro/scif-modules/tree/ master/scif-sc.
[9] J. Duato, J. Pena, F. Silla, R. Mayo, and E. S. Quintana-Orti, Performance of cuda virtualized remote gpus in high

performance cluster, the 40st International Conference on Parallel Processing (ICPP), (2011), pp. 365–374.
[10] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, Dark silicon and the end of multicore

scaling, in Proceedings of the 38th Annual International Symposium on Computer Architecture, ISCA ’11, New York,
NY, USA, 2011, ACM, pp. 365–376.

[11] D. Geer, Industry trends: Chip makers turn to multicore processors, Computer, 38 (2005), pp. 11–13.
[12] J. Gómez-Luna, J.M. González-Linares, J. I. Benavides, and N. Guil, Performance models for cuda streams on nvidia

geforce series, J. Parallel Distrib. Comput., 72 (2012), pp. 1117–1126.
[13] C. Gregg, J. Dorn, K. Hazelwood, and K. Skadron, Fine-grained resource sharing for concurrent gpgpu kernels, In

Proceedings of the 4th USENIX Workshop on Hot Topics in Parallelism (HotPar), (2012).
[14] M. A. Guevera, C. Gregg, K. Hazelwood, and K. Skadron, Enabling task parallelism in the cuda scheduler, In

Proceedings of the Workshop on Programming Models for Emerging Architectures (PMEA), in conjunction with the
ACM/IEEE/IFIP International Conference on Parallel Architectures and Compilation Techniques (PACT), (2009).

[15] A. Haidar, T. Dong, P. Luszczek, S. Tomov, and J.J. Dongarra, Optimization for performance and energy for
batched matrix computations on gpus, in Proceedings of the 8th Workshop on General Purpose Processing using GPUs,
GPGPU@PPoPP 2015, San Francisco, CA, USA, February 7, 2015, 2015, pp. 59–69.

[16] A. Haidar, T. Dong, P. Luszczek, S. Tomov, and J. J. Dongarra, Batched matrix computations on hardware accelerators
based on gpus, IJHPCA, 29 (2015), pp. 193–208.

[17] , Towards batched linear solvers on accelerated hardware platforms, in Proceedings of the 20th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP 2015, San Francisco, CA, USA, February 7-11, 2015,
2015, pp. 261–262.

[18] J. Jeffers and J. Reinders, Intel Xeon Phi Coprocessor High Performance Programming, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1st ed., 2013.

[19] V. J. Jiménez, LL. Vilanova, I. Gelado, G. Fursin M. Gil, and N. Navarro, Predictive runtime code scheduling for het-
erogeneous architectures, the 4th International Conference on High Performance Embedded Architectures and Compilers
(HiPEAC), (2009), pp. 19–33.

[20] Jeffrey Johnson, Scott J Krieder, Benjamin Grimmer, Justin M Wozniak, Michael Wilde, and Ioan Raicu, Under-
standing the costs of many-task computing workloads on intel xeon phi coprocessors, 2nd Greater Chicago Area System
Research Workshop (GCASR), (2013).

[21] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, Timegraph: Gpu scheduling for real-time multi-tasking envi-
ronments, In Proceedings of the 2011 USENIX Annual Technical Conference (USENIX ATC’11), (2011).

[22] C. S. Kouzinopoulos, P. D. Michailidis, and K. G. Margaritis, Multiple string matching on a GPU using cudas, Scalable
Computing: Practice and Experience, 16 (2015).

[23] J. Kreutz, Dgemm-tiled matrix multiplication with cuda, Jülich Forchungszentrum, (2013).
[24] S. J. Krieder, J.M. Wozniak, T. Armstrong, M. Wildel, D. S. Katz, B. Grimmer, I.T. Foster, and I. Raicu, Design

and evaluation of the gemtc framework for gpu-enabled many-task computing, in Proceedings of the 23rd International
Symposium on High-performance Parallel and Distributed Computing, HPDC ’14, New York, NY, USA, 2014, ACM,
pp. 153–164.

[25] J. Lima, T. Gautier, N. Maillard, and V. Danjean, Exploiting concurrent gpu operations for efficient work stealing on
multi-gpus, 24rd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD),
(2012), pp. 75–82.

[26] S. Nakagawa, F. Ino, and K. Hagihara, A middleware for efficient stream processing in cuda, Computer Science - Research
and Development, 16 (2010), pp. 197–204.

[27] P. Nookala, S. Dimitropoulos, K. Stough, and I. Raicu, Evaluating the support of mtc applications on intel xeon phi
many-core accelerators, in International Conference on Cluster Computing, CLUSTER ’15, 2015.

46 P. V. Lara, P. Nookala, F. L. Pelayo, J. Jansson, S. Dimitropoulos and I. Raicu

[28] P. Nookala and K. Stough, Gemtc-openmp source code repository, https://github.com/pnookala/ mic openmp gemtc.
[29] nVidia Corp., Just the facts, Nvidia. Retrieved, (2013).
[30] B. O’Hallaron, Using blocking to increase temporal locality, http://csapp.cs.cmu.edu/2e/waside/wasideblocking.pdf, (2013).
[31] GPGPU. General purpose computation using graphics hardware, http://www.gpgpu.org.
[32] D. Schmidl, T. Cramer, S. Wienke, C. Terboven, and M. S. Müller, Assessing the performance of openmp programs

on the intel xeon phi, in Euro-Par 2013 Parallel Processing, Felix Wolf, Bernd Mohr, and Dieter an Mey, eds., vol. 8097
of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2013, pp. 547–558.

[33] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin,

R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan, Larrabee: A many-core x86 architecture for visual computing,
in ACM SIGGRAPH 2008 Papers, SIGGRAPH ’08, New York, NY, USA, 2008, ACM, pp. 18:1–18:15.

[34] M. Själander, M. Martonosi, and S. Kaxiras, Power-Efficient Computer Architectures: Recent Advances, Synthesis
Lectures on Computer Architecture, Morgan and Claypool Publishers, Dec. 2014.

[35] R. Smith, Intel’s knights landing xeon phi coprocessor detailed, June 2014.
[36] TOP500.org, TOP500 List June 2015.
[37] P. Valero, J.L. Sánchez, D. Cazorla, and E. Arias, A gpu-based implementation of the mrf algorithm in itk package,

The Journal of Supercomputing, 58 (2011), pp. 403–410.
[38] P. Valero-Lara, A gpu approach for accelerating 3d deformable registration (dartel) on brain biomedical images, in Pro-

ceedings of the 20th European MPI Users’ Group Meeting, EuroMPI ’13, New York, NY, USA, 2013, ACM, pp. 187–192.
[39] P. Valero-Lara, Multi-gpu acceleration of dartel (early detection of alzheimer), in Cluster Computing (CLUSTER), 2014

IEEE International Conference on, Sept 2014, pp. 346–354.
[40] P. Valero-Lara and F.L. Pelayo, Full-overlapped concurrent kernels, in Architecture of Computing Systems. Proceedings,

ARCS 2015-The 28th International Conference on, VDE, 2015, pp. 1–8.
[41] P. Valero-Lara and F. L. Pelayo, Towards a more efficient use of gpus, Computational Science and Its Applications

(ICCSA) Workshops, (2011), pp. 3–9.
[42] P. Valero-Lara and Fernando L. Pelayo, Analysis in performance and new model for multiple kernels executions on

many-core architectures, IEEE International Conference on Cognitive Informatics (ICCI*CC), (2013), pp. 189–194.
[43] P. Valero-Lara, A. Pinelli, J. Favier, and M. Piedro-Matias, Block tridiagonal solvers on heterogeneous architectures,

in Proceedings of the 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications,
ISPA ’12, Washington, DC, USA, 2012, IEEE Computer Society, pp. 609–616.

[44] P. Valero-Lara, A. Pinelli, and M. Prieto-Matias, Fast finite difference poisson solvers on heterogeneous architectures,
Computer Physics Communications, 185 (2014), pp. 1265 – 1272.

[45] J. van Oosten, Introduction to cuda 5.0, nVidia, (2014).
[46] B. van Werkhoven, J. Maassen, F.J. Seinstra, and H.E. Bal, Performance models for cpu-gpu data transfers, CCGRID,

(2014), pp. 11–20.
[47] S. Verdoolaege, J. C. Juega, A. Cohen, J. I. Gómez, C. Tenllado, and F. Catthoor, Polyhedral parallel code generation

for cuda, ACM Trans. Archit. Code Optim., 9 (2013), pp. 54:1–54:23.
[48] S. Yamagiva and L. Sousa, Design and implementation of a stream-based distributed computing platform using graphics

processing units, 4th Int. Conf. Computing Frontiers (CF’07), (2007), pp. 197–204.
[49] K. Zhang and B. Wu, Task scheduling greedy heuristic for gpu heterogeneous cluster involving the weights of the processor,

International Symposium o Parallel & Distributed Processing Workshops (IPDPSW), (2012), pp. 1817–1827.

Edited by: Dana Petcu
Received: Sept 30, 2016
Accepted: March 9, 2016

Scalable Computing: Practice and Experience
Volume 17, Number 1, pp. 47–60. http://www.scpe.org

DOI 10.12694/scpe.v17i1.1149
ISSN 1895-1767
c⃝ 2016 SCPE

SENSITIVITY STUDY OF INPUT PARAMETERS FOR SEEPAGE FLOW SIMULATIONS

USING PARALLEL COMPUTERS∗

FRED T. TRACY†, LUCAS A. WALSHIRE‡, AND MAUREEN K. CORCORAN§

Abstract. This paper describes a comprehensive sensitivity study that was performed using high performance parallel com-
puters to understand the importance of input parameters to a transient partially saturated finite element seepage analysis for a
levee with separate soil layers of sand, silty sand, and clay. Seepage flow in this paper refers to the type of flow of water that
occurred through the failed levees in New Orleans, Louisiana, USA, as a result of Hurricane Katrina. The input parameters tested
were saturated hydraulic conductivity, volumetric compressibility, residual moisture content, saturated moisture content, and two
van Genuchten unsaturated flow parameters. The output data compiled to show the sensitivity of the input parameters were the
simulation times (days) to achieve 25%, 50%, and 75% of the steady-state values of pore pressure at the toe of the levee beneath its
blanket, flow rate through the landside flux section, and the level of saturation in the levee. The use of high performance parallel
computers enabled the running of thousands of scenarios using different values for the input variables. A sensitivity investigation
of this magnitude has not been previously performed.

The results of this investigation indicated that the more sensitive soil parameters were the saturated hydraulic conductivity and
the volumetric compressibility. The unsaturated van Genuchten parameters of the landside blanket had a larger than anticipated
impact on the duration of time to achieve steady state. This practical example is an excellent success story for high performance
computing in that running a given simulation for a couple of hours on thousands of processors in parallel replaced over a year’s
work using a PC.

Key words: high performance computing, sensitivity analysis, finite element method, seepage flow modeling

AMS subject classifications. 35J66, 65Y05, 76S05

1. Introduction. Historically, the majority of practicing engineers have used two-dimensional (2-D) steady
state analyses to design and analyze levees. Finite element programs such as SEEP2D [1,2] in the Groundwater
Modeling System (GMS) [3,4] and SEEP/W [5] with excellent graphical user interfaces have greatly aided these
design and analysis processes. However, using only steady-state analyses leads to the most conservative and
therefore, the most expensive design. With the ability to now do a transient seepage analysis on a computer,
key questions are when should a design be based on a transient analysis instead of a steady-state analysis, what
soil parameters are important in the transient analysis, and how reliable are the transient simulation results.

One traditional analytical tool used in determining the relative importance of the various input parameters is
a sensitivity study. Some sensitivity analyses have been historically too compute-intensive to perform. However,
with the availability of high performance, parallel computing, thousands of scenarios can be run at once, allowing
for the testing of a greater number of input parameters than was previously possible.

The purpose of this research was to perform a comprehensive sensitivity study of input soil parameters
needed for a transient finite element seepage analysis as measured by the response of key output variables. A
generic levee common to the southeastern United States was selected for the analysis. To perform the analysis, a
parallel program was created such that from a set of data describing the levee cross section, a finite element mesh
was generated, initial and boundary conditions were applied, both steady-state and transient seepage analyses
were performed, and key data were stored for future analysis. This was all done in the context of parallel
computing where thousands of scenarios could be computed simultaneously. A feature of the groundwater
modeling program used in the study is that the time needed to achieve a certain percentage of the steady-state
value of a given output variable can be computed and stored for future analysis. This is possible because a
steady-state solution is computed before the transient solution is performed. This modified parallel groundwater
modeling program made this research possible. Because of all the obstacles, very few sensitivity studies of this
magnitude have been completed with no known studies performed on this magnitude for transient seepage.

∗This work was supported in part by a grant of computer time from the Department of Defense High Performance Computing
Modernization Program (HPCMP).

†Information Technology Laboratory, Engineer Research and Development Center (ERDC), Vicksburg, MS, USA.
‡Geotechnical and Structures Laboratory (GSL), ERDC, Vicksburg, MS, USA.
§GSL, ERDC, Vicksburg, MS, USA.

47

48 F. T. Tracy, L.A. Walshire, M.K. Corcoran

2. Measuring sensitivity. There are many ways to measure sensitivity of an output variable to an input
parameter, and an excellent description of them is given in [6]. This information will not be repeated here but
rather some key methods of doing sensitivity studies for numerically intensive applications are highlighted. The
method of slopes and the method of ranges were used in this investigation.

2.1. Method of slopes. Changing only one input parameter while holding all the others constant and
measuring the output to obtain the slope of the output variable versus the varied input parameter curve is
the simplest way of doing a sensitivity analysis [6]. The slope, m, for a given output value (Y) versus input
parameter (X) curve is simply the partial derivative,

m =
∂Y

∂X
(2.1)

This curve can be determined by using different values of X, running the transient seepage program, and then
recording the resulting Y output values. Because this slope was determined numerically, it was approximated
as follows:

m ≈
∆Y

∆X
(2.2)

where ∆X is a small increment of input parameter, and ∆Y is the resulting small change in the output value.
Only one type of output parameter was considered in this study, but several input parameters varying over

several orders of magnitude were considered. Therefore, a sensitivity coefficient, sm, fashioned after [7] was
implemented. Defining Y (X) as the output, Y , as a function of the input parameter, X, sm is

sm =
Y
(

X + p
100

X
)

− Y (X)

p
(2.3)

where p is a percentage of a given input parameter. Because of the highly nonlinear nature of the governing
partial differential equation where repeated Picard or Newton iterations [8] are needed, a value of p = 10 was
selected. The sensitivity coefficient, sm, can be computed for different values of the input parameters to obtain
an overall view of the nonlinear behavior.

2.2. Method of ranges. The method of ranges is useful when the output can be sampled over the entire
range of the respective input parameters. This method compares how much the output variable changes when
the different input parameters are varied. A sensitivity coefficient based on ranges is now defined, which is an
extension of previous work [9]. The case where there are i = 1, 2, 3, . . . ,M scenarios of the j = 1, 2, 3, . . . , N
input parameters was considered. Defining Kj as the number of different values of the jth input parameter, M
in this research becomes

M = K1K2K3 · · ·KN =
N
∏

j=1

Kj (2.4)

Eq. 2.4 is rearranged to isolate the jth input parameter as follows:

M =

N
∏

i=1,i ̸=j

Ki

Kj = MjKj (2.5)

where Mj is the number of combinations of all the input parameters except the jth one. For each of these
m = 1, 2, 3, . . . ,Mj combinations, the results of varying the jth input parameter over its range while holding
the other input parameters constant are used to define a sensitivity coefficient based on the range of the output
values. The sensitivity coefficient for this mth scenario while changing only the jth input parameter is defined
as follows:

sjrm =
(Ymax)mj − (Ymin)mj

Ymax − Ymin

(2.6)

Sensitivity study of input parameters for seepage flow simulations using parallel computers 49

where

(Ymin)mj = minimum value of output, Y , when varying the jth input parameter and holding the others

constant for the mth combination
(Ymax)mj = maximum value of output, Y , when varying the jth input parameter and holding the others

constant for the mth combination
Ymin = overall minimum value of the output variable, Y
Ymax = overall maximum value of the output variable, Y

The overall sensitivity coefficient for the jth input parameter is computed by taking the maximum value of the
sjrm values over the Mj combinations. That is,

sjr =
Mj

max
m=1

(

sjrm
)

(2.7)

2.3. Statistical methods. There are many statistical methods for calculating sensitivity. One of the
simplest methods that uses simple correlation coefficients was derived from Monte Carlo simulations [10]. Here,
Pearson’s product moment correlation coefficient [11] was employed. The case that is now considered is where
M output values are computed from M values of an input parameter, X. Pearson’s product moment correlation
coefficient is given by

r =

∑M

i=1

(

Xi − X̄
) (

Yi − Ȳ
)

√

[

∑M

i=1

(

Xi − X̄
)2
] [

∑M

i=1

(

Yi − Ȳ
)2
]

(2.8)

X̄ =
1

M

M
∑

i=1

Xi (2.9)

Ȳ =
1

M

M
∑

i=1

Yi (2.10)

The larger the r value, the stronger the reaction of the output to the input [12]. This works best when the
relationship between input parameter and output variable is linear. However, the application presented in this
paper is highly nonlinear.

3. Levee. Eqs. 2.3 and 2.7 were applied to a generic levee. The geometry, material properties, initial
conditions, boundary conditions, and hydrograph of the river are provided in the following subsections. Detail
is provided for those practicing geotechnical engineers who find such information important.

3.1. Generic levee cross section. A 2-D finite element model of a generic levee cross section represen-
tative of the southeastern United States is shown in Fig. 3.1 (this section is further described in [13]). This
model was used to perform computations and to do the sensitivity study described in this paper.

3.2. Riverside and landside water elevation. The initial river elevation was set to -5 ft. An initial
water elevation below the ground surface is the most interesting case because the water must rise through two of
the three soil layers as it reaches its maximum height. The river elevation advanced at 2 ft/day until it reached
17.5 ft where it was held constant indefinitely. This is illustrated in the hydrograph shown in Fig. 3.2 where
the time for the hydrograph is plotted for only 30 days but extends indefinitely.

4. Input parameters selected for the sensitivity study. Table 4.1 gives the input parameters and
respective descriptions selected for variation in the sensitivity study. The first case considered was a homoge-
neous levee and foundation section where the levee and foundation are all assigned one set of values. In the next
case, different material properties were assigned to three layers: levee, blanket, and aquifer. With reference to
Fig. 3.1, the levee material would be a lean clay, the blanket would be the silty sand, and the aquifer would be
the clean sand. The geometry of the cross section remained constant throughout the study.

50 F. T. Tracy, L.A. Walshire, M.K. Corcoran

Fig. 3.1: Generic levee cross section showing three separate layers of sand, silty sand, and clay.

Fig. 3.2: Hydrograph that starts at -5 ft and then goes up 2 ft/day until 17.5 ft is reached and then remains
constant indefinitely.

Table 4.1: Parameters used in the levee system study.

Name Symbol
Saturated hydraulic conductivity (ft/day) ks

Residual volumetric water content (unitless) θr

Saturated volumetric water content (unitless) θs

First van Genuchten parameter (1/ft) α

Second van Genuchten parameter (unitless) n

Volumetric compressibility(1/psf) mv

5. Output variables selected for the sensitivity study. The output variables selected for this research
are the simulation time in days to achieve 25%, 50%, and 75% of the steady-state values of the following three
quantities:

• The pore pressure (psf) at the toe of the levee beneath the blanket (coordinates 132, -10 in Fig. 3.1).
• The flow rate per unit length (ft3/day/ft) of water leaving the flux section, (132, 0) to (632, 0) to (632,
-90) in Fig. 3.1.

• Levee saturation coefficient.

The levee saturation coefficient is defined as

SL =

∫ ∫

A
θ (x, y, t) dxdy −

∫ ∫

A
θ (x, y, 0) dxdy

∫ ∫

A
θ (x, y,∞) dxdy −

∫ ∫

A
θ (x, y, 0) dxdy

(5.1)

Sensitivity study of input parameters for seepage flow simulations using parallel computers 51

Table 6.1: Values of input parameters used in the homogeneous case.

Parameter Value
θr 0.034
θs 0.46
α 0.488 ft−1

n 1.37
mv 1.0× 10−5 psf−1

where

A = area of the levee

θ (x, y, t) = volumetric moisture content of an (x, y) point in the levee at time, t

θ (x, y, 0) = volumetric moisture content of an (x, y) point in the levee at t = 0

θ (x, y,∞) = volumetric moisture content of an (x, y) point in the levee at steady state

It is important to note that 0 ≤ SL ≤ 1 since SL = 0 at initial conditions, and SL = 1 at steady state.

6. Homogeneous case. In the first case, the aquifer, confining blanket, and levee materials were assigned
identical soil properties.

6.1. Varying only the saturated hydraulic conductivity. The approach used in this research was
to start with the simplest case and build on that effort with more complicated scenarios. In this initial run,
only saturated hydraulic conductivity was varied with values, 0.001, 0.01, 0.1, 1.0, 10.0, and 100.0 ft/day
(3.528× 10−7, 3.528× 10−6, 3.528× 10−5, 3.528× 10−4, 3.528× 10−3, and 3.528× 10−2 cm/sec, respectively).
The hydraulic conductivity values correspond to the following material types: clay, silt, silty sand, fine sand,
and coarse sand, respectively [14]. Table 6.1 gives the values of the other input parameters used for these
runs. Figs. 6.1, 6.2, and 6.3 show the times to achieve 25, 50, and 75% of the respective steady-state values of
the pore pressure at the toe of the levee beneath the blanket, the flow rate through the flux section, and the
levee saturation coefficient, respectively. The computer runs were terminated after 1000 days, so in the cases
where more than 1000 days are needed to achieve the given percentages of steady state, no values are plotted.
Observations are as follows:

• The saturated hydraulic conductivity has a significant impact on results.
• For hydraulic conductivity values of 0.001 ft/day and 0.01 ft/day, none of the given percentages of the
steady-state values of the pore pressure beneath the blanket at the toe and the flow rate through the
flux section can develop within 1000 days.

• The same basic trend occurs in each plot with only the separation among curves varying.

6.2. Varying the saturated hydraulic conductivity and volumetric compressibility. Once it was
found that the magnitude of the hydraulic conductivity value had a significant impact on the results of a
transient analysis, other parameters were varied in conjunction with the hydraulic conductivity. Here, both ks
and mv were varied and results collected for the same times to percentage of steady state as before. mv values
of 1.0 × 10−3, 1.0 × 10−5, and 1.0 × 10−7 psf−1 were used with the same ks values as before. The results are
given in Figs. 6.4, 6.5, and 6.6. It is important to note that all combinations of ks and mv are not what a
practicing engineer may choose. However, to maintain continuity of trends, they are kept in the plots. The
method of ranges (Eq. 2.7) was applied to these results, and the result of this computation is provided in Table
6.2. For all computations in this paper where Eq. 2.7 is used, Ymax = 1000. Observations from these results
are:

• mv has a significant impact on results but slightly less influence than ks.
• Pore pressure, flow rate, and levee saturation coefficient have the same basic trend.
• The greater the hydraulic conductivity, the less time it takes to achieve steady state.
• The greater the volumetric compressibility, the more time it takes to achieve steady state.

52 F. T. Tracy, L.A. Walshire, M.K. Corcoran

Hydraulic Conductivity (ft/day)

T
im

e
(d

a
y

s
)

to
%

S
te

a
d

y
S

ta
te

10
-2

10
-1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

25 % Steady State
50 % Steady State

75 % Steady State

Pore Pressure

Fig. 6.1: Plot of times to percentage of steady state for pore pressure.

Hydraulic Conductivity (ft/day)

T
im

e
(d

a
y

s
)

to
%

S
te

a
d

y
S

ta
te

10
-2

10
-1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

25 % Steady State

50 % Steady State

75 % Steady State

Flow Rate

Fig. 6.2: Plot of times to percentage of steady state for flow rate through the flux section.

6.3. Varying all input parameters except volumetric compressibility. The next analysis was per-
formed with all input parameters being varied except mv, and sr was computed as before using Eq. 2.7. The
values of the parameters used in this analysis are given in Table 6.3. There are two reasons why only mv =
0.00001 psf−1 was used, and they are as follows: (1) When mv was set to 0.001, 0.00001, and 0.0000001 psf−1

as before, all the sr values were 0.99. Thus, no separation of importance was possible. (2) mv = 0.00001 psf−1

is often selected by practicing engineers as a default option. Observations are as follows:

Sensitivity study of input parameters for seepage flow simulations using parallel computers 53

Hydraulic Conductivity (ft/day)

T
im

e
(d

a
y

s
)

to
%

S
te

a
d

y
S

ta
te

10
-2

10
-1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

25 % Steady State

50 % Steady State
75 % Steady State

Levee Saturation Coefficient

Fig. 6.3: Plot of times to percentage of steady state for levee saturation coefficient.

Hydraulic Conductivity (ft/day)

T
im

e
(d

a
y

s
)

to
%

S
te

a
d

y
S

ta
te

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
310

0

10
1

10
2

10
3

25 % SS, m
v

1E-3
50 % SS, m

v
1E-3

75 % SS, m
v

1E-3
25 % SS, m

v
1E-5

50 % SS, m
v

1E-5
75 % SS, m

v
1E-5

25 % SS, m
v

1E-7
50 % SS, m

v
1E-7

75 % SS, m
v

1E-7

Pore Pressure

Fig. 6.4: Plot of times to percentage of steady state for pore pressure for ks and mv combinations.

• The saturated hydraulic conductivity was shown to be the most sensitive input variable.
• The other input parameters of θr, θs, α, and n all have significant influence on results.
• α and n are the most sensitive of the unsaturated flow parameters.

7. Heterogeneous Case. A final experiment involved a more realistic scenario in which the three different
layers of levee, blanket, and aquifer in Fig. 3.1 were each assigned different material properties. Table 7.1 gives

54 F. T. Tracy, L.A. Walshire, M.K. Corcoran

Hydraulic Conductivity (ft/day)

T
im

e
(d

a
y

s
)

to
%

S
te

a
d

y
S

ta
te

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
310

0

10
1

10
2

10
3

25 % SS, m
v

1E-3
50 % SS, m

v
1E-3

75 % SS, m
v

1E-3
25 % SS, m

v
1E-5

50 % SS, m
v

1E-5
75 % SS, m

v
1E-5

25 % SS, m
v

1E-7
50 % SS, m

v
1E-7

75 % SS, m
v

1E-7

Flow Rate

Fig. 6.5: Plot of times to percentage of steady state for flow rate through the flux section for ks and mv

combinations.

Hydraulic Conductivity (ft/day)

T
im

e
(d

a
y

s
)

to
%

S
te

a
d

y
S

ta
te

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
310

0

10
1

10
2

10
3

25 % SS, m
v

1E-3
50 % SS, m

v
1E-3

75 % SS, m
v

1E-3
25 % SS, m

v
1E-5

50 % SS, m
v

1E-5
75 % SS, m

v
1E-5

25 % SS, m
v

1E-7
50 % SS, m

v
1E-7

75 % SS, m
v

1E-7

Levee Saturation Coefficient

Fig. 6.6: Plot of times to percentage of steady state for levee saturation coefficient for ks and mv combinations.

the variation of soil types in the three layers, and Table 7.2 gives the values of soil properties used. The 14
allowable combinations of saturated hydraulic conductivity for the levee and blanket are given in Table 7.3.
Saturated hydraulic conductivity values considered for the aquifer are ks,aquifer = 10 and 100 ft/day.

Because ks, mv, θr, θs, α, and n are considered for sensitivity for both the levee and blanket, over one
million scenarios would be needed to use the sensitivity method of ranges. Thus, the sensitivity method of

Sensitivity study of input parameters for seepage flow simulations using parallel computers 55

Table 6.2: Sensitivity coefficient, sr, values for ks and mv for the times to different percentages of steady state
for pore pressure, flow rate, and levee saturation coefficient.

sr for pore pressure
Percent of steady state

Input parameter 25 50 75
ks 0.9973 0.9967 0.9950
mv 0.9696 0.9415 0.9148

sr for flow rate
Percent of steady state

Input parameter 25 50 75
ks 0.9945 0.9922 0.9901
mv 0.9065 0.8605 0.9686
sr for levee saturation coefficient

Percent of steady state
Input parameter 25 50 75

ks 0.9964 0.9944 0.9916
mv 0.2010 0.4863 0.8255

Table 6.3: Range of input parameters.

Material Property Range of Values Investigated
ks (ft/day) 0.001, 0.01, 0.1, 1, 10, 100
mv (1/psf) 1.0× 10−5

θr 0.05, 0.1, 0.15
θs 0.40, 0.45, 0.5

α (1/ft) 0.2, 0.4, 0.6
n 1.25, 1.75, 2.25

Table 6.4: Sensitivity coefficient, sr, values for ks, θr, θs, α, and n for the times to different percentages of
steady state for pore pressure, flow rate, and levee saturation coefficient.

sr for pore pressure
Percent of steady state

Input parameter 25 50 75
ks 0.9969 0.9969 0.9951
θr 0.1459 0.1486 0.1287
θs 0.1459 0.1486 0.1287
α 0.3154 0.3048 0.2591
n 0.4503 0.4046 0.3186

sr for flow rate
Percent of steady state

Input parameter 25 50 75
ks 0.9945 0.9922 0.9901
θr 0.0961 0.0672 0.1146
θs 0.0961 0.0672 0.1146
α 0.1874 0.1637 0.3257
n 0.1874 0.1767 0.3072

sr for levee saturation coefficient
Percent of steady state

Input parameter 25 50 75
ks 0.9968 0.9957 0.9926
θr 0.2585 0.2206 0.1620
θs 0.2585 0.2206 0.1620
α 0.4692 0.5659 0.2966
n 0.2263 0.3417 0.2905

56 F. T. Tracy, L.A. Walshire, M.K. Corcoran

Table 7.1: Description of soils in levee layers.

Layer Material variation
Levee Clay to gravelly sand
Blanket Clay to sandy silt
Aquifer Sand to gravelly sand

Table 7.2: Soil property data for selected soils.

Soil classification ks (ft/day) θr θs α (1/ft) n mv (1/psf)
Clay 0.001 0.05 0.50 0.076, 0.137 1.05 5× 10−5

Lean clay 0.01 0.045 0.45 0.152, 0.228 1.1, 1.15 1× 10−5

Silt 0.1 0.04 0.40 0.243, 0.610 1.2, 1.35 5× 10−6

Silty sand/sandy silt 1 0.035 0.35 0.762, 1.829 1.4, 1.6 1× 10−6

Sand 10 0.03 0.30 2.286, 4.420 1.9, 2.7 5× 10−7

Gravelly sand 100 Not used 1× 10−7

Table 7.3: Hydraulic conductivity (ft/day) combinations for levee, blanket, and aquifer layers. The check marks
indicate the allowable combinations.

ks,blanket ks,levee

0.001 0.01 0.1 1 10
0.001

√ √ √

0.01
√ √ √ √

0.1
√ √ √ √

1
√ √ √

Percent of Steady State

A
v
e

ra
g

e
S

e
n

s
it

iv
it

y
C

o
e

ff
ic

ie
n

t
(d

a
y
s

/%
)

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

k
s,blanket

m
v,blanket

θ
r,blanket

θ
s,blanket

α
blanket

n
blanket

k
s,levee

m
v,levee

θ
r,levee

θ
s,levee

α
levee

n
levee

Pore Pressure
k

s,aquifer
= 10 ft/day

Fig. 7.1: Plot of average sm for pore pressure for ks,aquifer = 10 ft/day.

slopes given by Eq. 2.3 was used. Another disadvantage of the method of ranges approach used thus far is
that some combinations of the input parameters would not be used by practicing engineers. Thus, the material
property data were restricted to the allowable combinations given in Table 7.3 and values given in Table 7.2.

Sensitivity study of input parameters for seepage flow simulations using parallel computers 57

Percent of Steady State

A
v
e

ra
g

e
S

e
n

s
it

iv
it

y
C

o
e

ff
ic

ie
n

t
(d

a
y
s

/%
)

0 20 40 60 80 100
0

0.002

0.004

0.006

0.008

k
s,blanket

m
v,blanket

θ
r,blanket

θ
s,blanket

α
blanket

n
blanket

k
s,levee

m
v,levee

θ
r,levee

θ
s,levee

α
levee

n
levee

Pore Pressure
k

s,aquifer
= 100 ft/day

Fig. 7.2: Plot of average sm for pore pressure for ks,aquifer = 100 ft/day.

Percent of Steady State

A
v
e

ra
g

e
S

e
n

s
it

iv
it

y
C

o
e

ff
ic

ie
n

t
(d

a
y
s

/%
)

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

k
s,blanket

m
v,blanket

θ
r,blanket

θ
s,blanket

α
blanket

n
blanket

k
s,levee

m
v,levee

θ
r,levee

θ
s,levee

α
levee

n
levee

Flow Rate
k

s,aquifer
= 10 ft/day

Fig. 7.3: Plot of average sm for flow rate for ks,aquifer = 10 ft/day.

When Eq. 2.3 was used in the sensitivity analysis, the allowable combinations described above were all
considered. For a given scenario, the six soil parameters, ks, mv, θr, θs, α, and n, for both the levee and blanket
(12 parameters) were varied slightly in succession, leaving all the other input parameters constant when a given
parameter was varied. This required that for each valid set of soil values or scenario, 13 simulations were needed
(the original run plus 12 variations). Two separate parallel high performance computing runs were made, one

58 F. T. Tracy, L.A. Walshire, M.K. Corcoran

Percent of Steady State

A
v
e

ra
g

e
S

e
n

s
it

iv
it

y
C

o
e

ff
ic

ie
n

t
(d

a
y
s

/%
)

0 20 40 60 80 100
0

0.002

0.004

0.006

0.008

0.01

k
s,blanket

m
v,blanket

θ
r,blanket

θ
s,blanket

α
blanket

n
blanket

k
s,levee

m
v,levee

θ
r,levee

θ
s,levee

α
levee

n
levee

Flow Rate
k

s,aquifer
= 100 ft/day

Fig. 7.4: Plot of average sm for flow rate for ks,aquifer = 100 ft/day.

Percent of Steady State

A
v
e

ra
g

e
S

e
n

s
it

iv
it

y
C

o
e

ff
ic

ie
n

t
(d

a
y
s

/%
)

0 20 40 60 80 100
0

1

2

3

4

k
s,blanket

m
v,blanket

θ
r,blanket

θ
s,blanket

α
blanket

n
blanket

k
s,levee

m
v,levee

θ
r,levee

θ
s,levee

α
levee

n
levee

Levee Saturation Coefficient
k

s,aquifer
= 10 ft/day

Fig. 7.5: Plot of average sm for levee saturation coefficient for ks,aquifer = 10 ft/day.

with ks,aquifer = 10 ft/day, and another with ks,aquifer = 100 ft/day. Thus, two sets of 2444 simulations each
were needed. All 2444 simulations for a given ks,aquifer value were accomplished with a parallel MPI job using
2444 processes and taking approximately 1.5 hours.

The sensitivity coefficient, sm, from Eq. 2.3 was computed for all the valid combinations for time to achieve
25, 50, and 75% of the respective steady-state value of pore pressure, flow rate, and levee saturation coefficient,

Sensitivity study of input parameters for seepage flow simulations using parallel computers 59

Percent of Steady State

A
v
e

ra
g

e
S

e
n

s
it

iv
it

y
C

o
e

ff
ic

ie
n

t
(d

a
y
s

/%
)

0 20 40 60 80 100
0

1

2

3

4

5

k
s,blanket

m
v,blanket

θ
r,blanket

θ
s,blanket

α
blanket

n
blanket

k
s,levee

m
v,levee

θ
r,levee

θ
s,levee

α
levee

n
levee

Levee Saturation Coefficient
k

s,aquifer
= 100 ft/day

Fig. 7.6: Plot of average sm for levee saturation coefficient for ks,aquifer = 100 ft/day.

and the average value of sm over these valid combinations for each input parameter was tabulated. Both runs
for ks,aquifer = 10 and 100 ft/day were done, and the results are given in Figs. 7.1, 7.2, 7.3, 7.4, 7.5, and 7.6.
Observations are as follows:

• Pore pressure at the toe of the levee and flow rate are 2-3 orders of magnitude less sensitive to the input
parameters than is the levee saturation coefficient.

• The input parameters for both the blanket and the levee are important.
• The second van Genuchten unsaturated flow parameter, n, is the most sensitive input variable for most
of the scenarios analyzed.

• The sensitivity coefficients for pore pressure and flow rate are approximately an order of magnitude less
when ks,aquifer = 100 ft/day as compared to ks,aquifer = 10 ft/day.

8. Conclusions. This sensitivity study considered a large number of scenarios and was made feasible only
through the use of high performance, parallel computers. This is especially true because the scenarios can be
run independently without any communication among MPI processes. The results of the study indicate the
need to obtain all the input parameters (saturated hydraulic conductivity, volumetric compressibility, residual
moisture content, saturated moisture content, and the two van Genuchten parameters) as accurately as possible
since the output quantities of interest show a significant sensitivity to each parameter for at least some of the
scenarios analyzed. The volumetric compressibility had a dominant effect on output values in the homogeneous
case but ranked near the bottom of the list in the case where all three layers had different material properties.
The second van Genuchten parameter ranked low in sensitivity in the homogeneous case for pore pressure and
flow rate but ranked very high when all three layers had different material properties. When all three layers had
different material properties, the van Genuchten unsaturated flow parameters for the blanket often dominated
for pore pressure and flow rate, whereas the unsaturated flow parameters for the levee dominated for levee
saturation coefficient.

Many of the sensitivity analyses assume that the relationship between input parameters and output variables
is linear. The application of unsaturated transient flow is highly nonlinear, so these analyses are of limited value.
The method of slopes is suitable for a nonlinear application, but it is very compute-intensive. However, with
high performance, parallel computing, this obstacle can be easily overcome since the computation involved for
different scenarios is an embarrassingly parallel task. A disadvantage of the method of slopes is that it gives

60 F. T. Tracy, L.A. Walshire, M.K. Corcoran

a local value that varies greatly over the different scenarios. A simple average of the results over the different
scenarios as presented here could be improved with a more sophisticated analysis. This is a topic of future
research.

The method of ranges is acceptable for the application presented in this paper, but it has the disadvantage
that many scenarios are needed to explore a full range of input parameters and thus to obtain comprehensive
results. However, the number of combinations of input parameters can be reduced by limiting the scenarios to
only those of interest to practicing engineers.

REFERENCES

[1] F. T. Tracy, User’s guide for a plane and axisymmetric finite element program for steady state seepage problems, Instruction
Report IR K-83-4, U.S. Army Engineer Research and Development Center, Vicksburg, MS, 1983.

[2] N. L. Jones, SEEP2D primer, GMS documentation, Environmental Modeling Research Laboratory, Brigham Young Univer-
sity, Provo, Utah, 1999.

[3] GMS, Groundwater Modeling System, commercial version, www.aquaveo.com/GMS, 2016.
[4] GMS, Groundwater Modeling System, government version, http://chl.erdc.usace.army.mil/gms, 2016.
[5] Geo-Slope, Seepage modeling with SEEP/W, Calgary, Alberta, Canada, 2012.
[6] D. M. Hamby, A review of techniques for parameter sensitivity analysis of environmental models, Environmental Monitoring

and Assessment, 32 (1994), pp. 135-154.
[7] R. W. Atherton, R. B. Schainker, and E. R. Ducot, On the statistical sensitivity analysis of models for chemical kinetics,

AIChE, 21 (1975), pp. 441-448.
[8] S. Mehl, Use of Picard and Newton iteration for solving nonlinear ground water flow equations, Ground Water, 44 (2006),

pp. 583-594.
[9] F. O. Hoffman and R. H. Gardner, Evaluation of uncertainties in environmental radiological assessment models, In: J. E.

Till and H. R. Meyer (eds.), Radiological Assessments: a Textbook on Environmental Dose Assessment, Report No.
NUREG/CR-3332, U.S. Nuclear Regulatory Commission, Washington, DC, 1983.

[10] R. H. Gardner, R. V. O’Neill, J. B. Mankin, and J. H. Carney, A comparison of sensitivity analysis and error analysis
based on a stream ecosystem model, Ecol. Modelling, 12 (1981), pp. 173-190.

[11] W. J. Conover, Practical Nonparametric Statistics, 2nd edition, Oxford University Press, John Wiley & Sons, New York,
1980.

[12] International Atomic Energy Agency (IAEA), Evaluating the reliability of predictions made using environmental transfer
models, Safety Series No. 100, Report No. STI/PUB/835, Vienna, Austria, pp. 1-106, 1989.

[13] F. T. Tracy, T. L. Brandon, and M. K. Corcoran, Transient seepage analyses in levee engineering practice, In review,
U.S. Army Engineer Research and Development Center, Vicksburg, MS, 2016.

[14] K. Terzaghi, B. Peck, and G. Mesr, Soil Mechanics in Engineering Practice, John Wiley & Sons, New York, 1996.

Edited by: Dana Petcu
Received: Dec 18, 2015
Accepted: Mar 8, 2016

AIMS AND SCOPE

The area of scalable computing has matured and reached a point where new issues and trends require a pro-
fessional forum. SCPE will provide this avenue by publishing original refereed papers that address the present
as well as the future of parallel and distributed computing. The journal will focus on algorithm development,
implementation and execution on real-world parallel architectures, and application of parallel and distributed
computing to the solution of real-life problems. Of particular interest are:

Expressiveness:

• high level languages,
• object oriented techniques,
• compiler technology for parallel computing,
• implementation techniques and their effi-
ciency.

System engineering:

• programming environments,
• debugging tools,
• software libraries.

Performance:

• performance measurement: metrics, evalua-
tion, visualization,

• performance improvement: resource allocation
and scheduling, I/O, network throughput.

Applications:

• database,

• control systems,

• embedded systems,

• fault tolerance,

• industrial and business,

• real-time,

• scientific computing,

• visualization.

Future:

• limitations of current approaches,

• engineering trends and their consequences,

• novel parallel architectures.

Taking into account the extremely rapid pace of changes in the field SCPE is committed to fast turnaround
of papers and a short publication time of accepted papers.

INSTRUCTIONS FOR CONTRIBUTORS

Proposals of Special Issues should be submitted to the editor-in-chief.
The language of the journal is English. SCPE publishes three categories of papers: overview papers,

research papers and short communications. Electronic submissions are preferred. Overview papers and short
communications should be submitted to the editor-in-chief. Research papers should be submitted to the editor
whose research interests match the subject of the paper most closely. The list of editors’ research interests can
be found at the journal WWW site (http://www.scpe.org). Each paper appropriate to the journal will be
refereed by a minimum of two referees.

There is no a priori limit on the length of overview papers. Research papers should be limited to approx-
imately 20 pages, while short communications should not exceed 5 pages. A 50–100 word abstract should be
included.

Upon acceptance the authors will be asked to transfer copyright of the article to the publisher. The
authors will be required to prepare the text in LATEX2ε using the journal document class file (based on the
SIAM’s siamltex.clo document class, available at the journal WWW site). Figures must be prepared in
encapsulated PostScript and appropriately incorporated into the text. The bibliography should be formatted
using the SIAM convention. Detailed instructions for the Authors are available on the SCPE WWW site at
http://www.scpe.org.

Contributions are accepted for review on the understanding that the same work has not been published
and that it is not being considered for publication elsewhere. Technical reports can be submitted. Substantially
revised versions of papers published in not easily accessible conference proceedings can also be submitted. The
editor-in-chief should be notified at the time of submission and the author is responsible for obtaining the
necessary copyright releases for all copyrighted material.

