
Scalable Computing:
Practice and Experience

Scientific International Journal
for Parallel and Distributed Computing

ISSN: 1895-1767

⑦⑦
⑦
⑦

⑦
⑦

t

Volume 17(4) December 2016

Editor-in-Chief

Dana Petcu

Computer Science Department

West University of Timisoara

and Institute e-Austria Timisoara

B-dul Vasile Parvan 4, 300223

Timisoara, Romania

Dana.Petcu@e-uvt.ro

Managinig and

TEXnical Editor

Silviu Panica

Computer Science Department

West University of Timisoara

and Institute e-Austria Timisoara

B-dul Vasile Parvan 4, 300223

Timisoara, Romania

Silviu.Panica@e-uvt.ro

Book Review Editor

Shahram Rahimi

Department of Computer Science

Southern Illinois University

Mailcode 4511, Carbondale

Illinois 62901-4511

rahimi@cs.siu.edu

Software Review Editor

Hong Shen

School of Computer Science

The University of Adelaide

Adelaide, SA 5005

Australia

hong@cs.adelaide.edu.au

Domenico Talia

DEIS

University of Calabria

Via P. Bucci 41c

87036 Rende, Italy

talia@deis.unical.it

Editorial Board

Peter Arbenz, Swiss Federal Institute of Technology, Zürich,

arbenz@inf.ethz.ch

Dorothy Bollman, University of Puerto Rico,

bollman@cs.uprm.edu

Luigi Brugnano, Università di Firenze,

brugnano@math.unifi.it

Giacomo Cabri, University of Modena and Reggio Emilia,

giacomo.cabri@unimore.it

Bogdan Czejdo, Fayetteville State University,

bczejdo@uncfsu.edu

Frederic Desprez, LIP ENS Lyon, frederic.desprez@inria.fr

Yakov Fet, Novosibirsk Computing Center, fet@ssd.sscc.ru

Giancarlo Fortino, University of Calabria,

g.fortino@unical.it

Andrzej Goscinski, Deakin University, ang@deakin.edu.au

Frederic Loulergue, Orleans University,

frederic.loulergue@univ-orleans.fr

Thomas Ludwig, German Climate Computing Center and Uni-

versity of Hamburg, t.ludwig@computer.org

Svetozar D. Margenov, Institute for Parallel Processing and

Bulgarian Academy of Science, margenov@parallel.bas.bg

Viorel Negru, West University of Timisoara,

Viorel.Negru@e-uvt.ro

Moussa Ouedraogo, CRP Henri Tudor Luxembourg,

moussa.ouedraogo@tudor.lu

Marcin Paprzycki, Systems Research Institute of the Polish

Academy of Sciences, marcin.paprzycki@ibspan.waw.pl

Roman Trobec, Jozef Stefan Institute, roman.trobec@ijs.si

Marian Vajtersic, University of Salzburg,

marian@cosy.sbg.ac.at

Lonnie R. Welch, Ohio University, welch@ohio.edu

Janusz Zalewski, Florida Gulf Coast University,

zalewski@fgcu.edu

SUBSCRIPTION INFORMATION: please visit http://www.scpe.org

Scalable Computing: Practice and Experience

Volume 17, Number 4, December 2016

TABLE OF CONTENTS

Special Issue on New Approaches for Infrastructure Services:

Introduction to the Special Issue iii

SLA-based Secure Cloud Application Development 271

Valentina Casola, Alessandra De Benedictis, Massimiliano Rak, Umberto

Villano

Impact of Single Parameter Changes on Ceph Cloud Storage

Performance 285

Stefan Meyer, John P. Morrison

Multi-objective Middleware for Distributed VMI Repositories in

Federated Cloud Environment 299

Dragi Kimovski, Nishant Saurabh, Vlado Stankovski, Radu Prodan

Architecture of a Scalable Platform for Monitoring Multiple Big Data

Frameworks 313

Gabriel Iuhasz, Daniel Pop, Ioan Drăgan

Exposing HPC services in the Cloud: the CloudLightning Approach 323

Ioan Drăgan, Teodor-Florin Fortiş, Marian Neagul

Regular Papers:

Tiling and Scheduling of Three-level Perfectly Nested Loops with

Dependencies on Heterogeneous Systems 331

Ebrahim Zarei Zefreh, Shahriar Lotfi, Leyli Mohammad Khanli, Jaber

Karimpour

A Self-healing Architecture based on RAINBOW for Industrial Usage 351

Ali Farahani, Eslam Nazemi, Giacomo Cabri

AQsort: Scalable Multi-Array In-Place Sorting with OpenMP 369

Daniel Langr, Pavel Tvrd́ık, Ivan Šimeček

c⃝ SCPE, Timişoara 2016

Scalable Computing: Practice and Experience
Volume 17, Number 4, pp. iii–iv. http://www.scpe.org

DOI 10.12694/scpe.v17i4.1199
ISSN 1895-1767
c⃝ 2016 SCPE

INTRODUCTION TO THE SPECIAL ISSUE ON
NEW APPROACHES FOR INFRASTRUCTURE SERVICES

The special issue is dedicated to the current research and innovation challenges encountered at infrastructure
-as-a-service level generated by the desire to improve the user experiences and the efficient use of the available
resources. The current trends are including the integration of special devices from high performance computing
ones to mobile devices, the design of decentralised service-oriented systems, the improvement of the virtualization
technologies, the overcome of portability and interoperability issues, or the automation the organisation and
management of the back-end resources. Cloud-based applications from the fields of Internet-of-Things and Big
Data are expected to challenge the new services.

The first paper, entitled ”SLA-based Secure Cloud Application Development” reports an implementation of
the concept of security service level agreements (Security SLAs) and presents a framework that allows application
developers to intervine in the secure provisioning of cloud resources and services.

The second paper, with the title ”Impact of Single Parameter Changes on Ceph Cloud Storage Performance”,
shows how a change of a global parameter of Ceph distributed file system can effect the performance for a range
of access patterns when tested with an OpenStack cloud system.

The third paper, entitled ”Multi-objective middleware for distributed VMI repositories in federated Cloud
environment”, explains the design of easy-to-use interface capable of receiving unmodified and functionally
complete virtual machine images from its users, as well as of a system that transparently distribute them to a
specific Cloud infrastructure in a federation achieving an improved quality of service.

The fourth paper, with the title ”Architecture of a Scalable Platform for Monitoring Multiple Big Data
Frameworks” is dedicated to a new, distributed, scalable software platform able to collect, store, query and
process monitoring data obtained from multiple Big Data frameworks.

The fifth paper, entitled ”Exposing HPC services in the Cloud: the CloudLightning Approach”, refers to
a novel a self-organizing and self-managing cloud service delivery system with capabilities to deliver dynamic
and tailored services offered by coalitions of heterogeneous cloud resources.

Prof. Dana Petcu, West University of Timisoara

iii

Scalable Computing: Practice and Experience
Volume 17, Number 4, pp. 271–283. http://www.scpe.org

DOI 10.12694/scpe.v17i4.1200
ISSN 1895-1767
c⃝ 2016 SCPE

SLA-BASED SECURE CLOUD APPLICATION DEVELOPMENT

VALENTINA CASOLA∗, ALESSANDRA DE BENEDICTIS†, MASSIMILIANO RAK‡, AND UMBERTO VILLANO§

Abstract. The perception of lack of control over resources deployed in the cloud may represent one of the critical factors for an
organization to decide to cloudify or not its own services. The flat security features offered by commercial cloud providers to every
customer, from simple practitioners to managers of huge amounts of sensitive data and services, is an additional problem. In recent
years, the concept of Security Service Level Agreements (Security SLAs) is assuming a key role for the secure provisioning of cloud
resources and services. This paper illustrates how to develop cloud applications that deliver services covered by Security SLAs by
means of the services and tools provided by the SPECS framework, developed in the context of the SPECS (Secure Provisioning
of Cloud Services based on SLA Management) European Project. The whole (SPECS) application’s life cycle is dealt with, in
order to give a comprehensive view of the different parties involved and of the processes needed to offer security guarantees on
top of cloud services. The discussed development process is exemplified by means of a real-world case study consisting in a cloud
application offering a secure web container service.

Key words: Secure cloud applications, Security Service Level Agreements, Automatic Enforcement of Security

AMS subject classifications. 68M14, 68Q85

1. Introduction. Nowadays, the adoption of the cloud computing paradigm is steadily spreading. The
final step to convince the skeptics is the provision of solid security solutions for cloud applications and data. As
a matter of fact, cloud resources are not permanently assigned to users and are not under the control of user
software; they are just acquired on-demand. This is perceived as a security loss by some users, accustomed to
have full control over all the resources involved in service delivery.

In the case of public clouds, the lack of full user control over resources is not the only security issue.
Currently Cloud Service Providers (CSPs), who are the actual owners of the physical computing, storage and
network resources hosted in their huge data centers, administer security according to common best-practice
rules. Independently of the type of Cloud Service Customer (CSCs), they provide exactly the same security
features. Most often, these features are simply the best they can offer. The very basic security guarantees offered
are undoubtedly sufficient for a private computing practitioner, but surely not adequate for small enterprises or
for publicly funded organizations managing, for example, healthcare and Personal Information (PI) data to be
protected with specific security and privacy requirements.

The real problem is that security has a non-negligible cost, and so CSPs have no interest in offering such
features to every CSC. To differentiate security features on a customer-by-customer basis is difficult, if not
unfeasible. Currently there is actually a gap between CSCs, which look for “tailored” security features, possibly
offered on-demand and as-a-service, exactly as other cloud resources, and CSPs, which offer security as-a-whole,
integrated in the cloud services and transparently granted in the same way for all customers.

We deem that Security Service Level Agreements (SLAs) can play a key role for cloud security assessment, as
they allow to declare clearly the security level granted by providers to customers, as well as the constraints posed
to both parties (providers and customers). However, despite the strong interest recently shown in Security SLAs
in the context of both academical research and industry and government-driven initiatives, their widespread
adoption is not yet a reality. In 2011, ENISA published a report analyzing the use of security parameters
in Cloud SLAs (mostly focused on the EC public sector) [1]. The report pointed out that, although security
was considered by most respondents as a top concern, existing SLAs addressed only availability and other
performance-related parameters, while security-related parameters were not taken into account. Since then the
situation has not changed significantly, and Security SLAs are still far from being adopted by existing CSPs.

The framework developed in the context of the SPECS project [2] aims to promote the adoption of Security
SLAs, by making it possible to develop applications offering cloud services controlled by such contracts. With

∗DIETI, University of Naples Federico II, Napoli, Italy (casolav@unina.it)
†DIETI, University of Naples Federico II, Napoli, Italy (alessandra.debenedictis@unina.it)
‡DIII, Second University of Naples, Aversa, Italy (massiliano.rak@unina2.it)
§DING, University of Sannio, Benevento, Italy (villano@unisannio.it)

271

272 V,. Casola, A. De Benedictis, M. Rak, U. Villano

Fig. 2.1. Overview of the SPECS solution

SPECS, every cloud service is covered by a Security SLA that specifies the security grants offered, to be nego-
tiated before cloud service delivery. Security features are automatically implemented by the SPECS framework
according to the agreed SLA, and can be continuously monitored to verify that the SLA terms are actually
respected.

The development of secure cloud applications by exploiting the SPECS framework was sketched in a previous
paper [33]. In this paper, we provide a more comprehensive view of the SPECS applications’ life cycle and discuss
some of the tools that were developed to support it. Our exposition will go on as follows. In Sect. 2, we briefly
introduce the SPECS framework and in Sect. 3 we describe the adopted Security SLA model. Sect. 4 illustrates
the complete life cycle of a SPECS application, by discussing the methodology and tools adopted to enable the
provisioning of secure cloud services based on SLAs. Sect. 5 discusses the introduced process with respect to
a concrete example. Finally, Sect. 6 presents some related work and Sect. 7 reports our conclusions and plans
for future work.

2. The SPECS framework. The SPECS project aims at designing and implementing a framework for
the management of the whole Service Level Agreement life cycle, intended to build applications (SPECS appli-
cations) whose security features are stated in and granted by a Security SLA [3, 4].

The SPECS framework provides techniques and tools for: a) enabling user-centric negotiation of security
parameters to be included in a Security SLA; b) enforcing an agreed Security SLA by automatically putting
in place all security features needed to meet user requirements; c) monitoring in real-time the fulfillment of
Security SLAs and notifying both users and CSPs of possible violations; d) reacting and adapting in real-time
to fluctuations in the provided level of security (e.g., by applying proper countermeasures in case of an SLA
violation).

As represented in Fig.2.1, the SPECS operation scenario involves four main parties:

• A Customer of the cloud services, offered by SPECS and covered by Security SLAs;
• The SPECS Owner, a provider of cloud services covered by Security SLAs;
• An (External) CSP, an independent (typically public) cloud service provider, which is unaware of
the SLAs and offers just basic cloud resources and infrastructural services;

• A Developer, a cloud service partner that supports the SPECS Owner in the development and delivery
of security-enhanced cloud services.

The Customer negotiates his/her security requirements with the SPECS Owner, who acts as a broker by
acquiring resources from External CSPs and by reconfiguring/enriching them in order to fulfill the Customer’s
requests. This is accomplished by the activation and configuration of suitable software mechanisms and tools,
provided in an as-a-service mode by SPECS. These mechanisms are automatically enforced on top of acquired
resources, according to what has been agreed in a Security SLA. In the above process, the security-enhanced

SLA-based Secure Cloud Application Development 273

services are delivered to end-users by a SPECS application, developed and deployed by exploiting the SPECS
framework services, depicted in Fig. 2.2.

Fig. 2.2. The SPECS framework

A SPECS application orchestrates the SPECS Core services dedicated to SLA Negotiation, Enforcement
and Monitoring, respectively, to provide the desired service (referred to as “Target Service”) to the SPECS
Customer (i.e., to the End-user). The Core services run on top of the SPECS Platform, which provides all the
functionalities related to the management of Security SLA life cycle and needed to enable the communication
among Core modules. In addition to this functionalities, referred to as “SLA Platform services”, the SPECS
Platform also provides support for developing, deploying, running and managing all SPECS services and related
components [4]. These services are referred to as “Enabling Platform services”.

3. The Security SLA model. As discussed in the previous section, the SPECS approach for Security-

as-a-Service provisioning relies upon the idea that each cloud service is covered by a Security SLA, specifying
related security-oriented terms and conditions, and that the cloud service delivery is controlled by the Security
SLA life cycle. The Security SLA life cycle adopted in SPECS founds on and extends current standards on cloud
SLAs (WS-Agreement [5], ISO19086 [6]) and consists of five phases: Negotiation, Implementation, Monitoring,
Remediation and Renegotiation.

During the Negotiation phase, a cloud service customer and a cloud service provider carry out a (possibly)
iterative process aimed at finding an agreement that defines their relationship as regards the delivery of a
service. During the Implementation, the CSP provisions and operates the cloud service, but also sets up the
processes needed for the management and monitoring of the cloud service, the report of possible failures and
the claim of remedies. After the implementation of an SLA, the Monitoring phase takes place, where the service
is continuously monitored to verify whether the SLA terms are respected. The Monitoring phase has also the
responsibility of preventing, when possible, the violations, by rising alerts in presence of specific events. Alerts
can be managed, during the Remediation phase, by reconfiguring the service while preserving the agreement, in
order to avoid actual violations. If any SLA violation occurs, the cloud service customer may be entitled to a
remedy (Remediation phase), which may take different forms, such as refunds on charges, free services or other
forms of compensation. Finally, at any moment after implementation, either the cloud service customer or the
cloud service provider may require a Re-negotiation of the SLA, aimed at changing any of its terms. The life
cycle discussed above makes it possible to control cloud services according to SLA phases (and states). The
interested readers are referred to [7] for a deeper analysis of the SLA life cycle and the description of a REST
API for its management developed within the SPECS project, and to [8] for an illustration of some of the tools
used in SPECS to monitor the SLA during the execution of a cloud service.

The negotiation, enforcement and monitoring of security-related terms are enabled by the adoption of a

274 V,. Casola, A. De Benedictis, M. Rak, U. Villano

Fig. 3.1. The SPECS Security SLA model

novel Security SLA model, introduced in [32], which extends the WS-Agreement standard to include security
concepts by taking into account both the End-user requirements and the technical offers from the providers’
point of view.

The SPECS Security SLA model is depicted in Fig. 3.1, which shows more in general the SPECS domain

model. In accordance with the WSAG standard, a Security SLA is compliant with a template (Security SLA

Template). The template summarizes the available (and negotiable) offers and is used as a guideline during the
negotiation of a Target Service. The whole process of the Target Service acquisition is managed by a SPECS

Application, which is configured based on the template.
As depicted in Figure 3.1, a Security SLA (and the related template) consists of a declarative part and

a measurable part. The former includes all the concepts that describe the service being delivered, both in
functional and in non-functional terms. In particular, it reports the information regarding:

• the cloud resources used to build the Target Service. Note that, in SPECS, only Infrastructure-as-a-
Service (IaaS) cloud resources are used (i.e., Virtual Machines, VMs), and the Target Service is built
by properly deploying and configuring software components on the acquired VMs. For this reason, the
SLA must contain the reference to the considered Resource Provider(s), and the related offered VMs;

• the Security Capabilities [9] offered/required on top of the service covered by the agreement, each
defined in terms of related security controls belonging to a Security Control Framework (NIST’s Con-
trol Framework [9] and Cloud Security Alliance’s Cloud Control Matrix [10] are currently supported);

• the Security Metrics that can be used to enforce (i.e., configure) and monitor different aspects of the
declared security capabilities. Security metrics are specified in the SPECS Security Metric Catalogue

and used to define security-related guarantees.
The measurable part of a Security SLA includes the specification of the guarantees expressed on the Target

Service, represented by a set of Service Level Objectives (SLOs) built on top of the security metrics declared
above. During negotiation, through the SPECS application, the End-user selects a subset of the available
security capabilities, chooses the metrics of interest and defines SLOs on top of them.

The enforcement of security capabilities and the monitoring of related security metrics (as specified in the
SLOs) is performed by software tools called Security Mechanisms: they are selected, deployed and configured
during the Implementation phase. The Service Manager maintains all the information associated with available
security mechanisms that are needed to automate their deployment and execution together with the Target
Services.

4. Life cycle of a SPECS application. As discussed, a SPECS application enables an End-user to
acquire an up-and-running secure cloud service after a negotiation process based on a pre-defined Security SLA
template. The cloud service is delivered with specific security guarantees, which can be verified by the End-user

SLA-based Secure Cloud Application Development 275

through monitoring functionalities, also made available by the SPECS platform.
In [33] we briefly illustrated the process of developing a SPECS application. In this paper, we aim at

providing a more comprehensive view of the SPECS applications’ life cycle that, at current state, is more
mature and is supported by several tools. Like for any application, the SPECS application life cycle consists
of three phases, i.e., (i) development, (ii) deployment, and (iii) execution. The actors involved in the first two
phases are the SPECS Owner, who acquires the SPECS framework and uses it to offer secure services to his/her
End-users, and the developer, at the service of the SPECS Owner, who is responsible for the implementation
of the software tools needed to build secure services. The execution phase involves the interaction between the
application and the End-users during the negotiation, enforcement and monitoring phases.

In the following, we discuss in detail the SPECS application’s life cycle, with the aim of providing the reader
with a deep understanding of the steps and tools needed to deliver secure services based on Security SLAs.

4.1. Development of a SPECS application. In order to support the development process, the SPECS
framework provides a default SPECS application in the form of servlets for Apache Tomcat, which includes
the basic functionalities to orchestrate the SPECS core services and enable the negotiation, enforcement and
monitoring of an SLA, independently of the service to offer. To provide a specific Target Service, the developer
must customize the default application by configuring a set of additional services that implement both the
functionalities (e.g., a web container service, a database service) and the security features that the SPECS
Owner is willing to offer. In order to automatize the deployment of such mechanisms, SPECS uses a cloud
automation technology, represented by the Chef deployment solution [12], which automates the process of
building, deploying, and managing software over ICT infrastructures. With Chef, it is possible to automate
the deployment and configuration of a given software component on a resource such as a VM by specifying the
operations to perform inside a recipe. Recipes are collected in cookbooks and stored in a Chef Server, which is
responsible for launching their execution on specific nodes (hosting a Chef Client) in order to configure them.
The SPECS Enforcement module includes a Chef Server, which is responsible for the set-up, at run time and
based on an SLA, of all the software components needed to deliver a negotiated cloud service along with required
security and monitoring mechanisms. Hence, customizing the SPECS default application implies supplying to
the Enforcement module the needed cookbooks for each mechanism to support, and providing it with all the
information needed to automatically configure the mechanism during the SLA implementation phase (i.e., the
mechanism descriptor, described later).

Fig. 4.1. SPECS application development process

The whole development process is depicted in Fig. 4.1. It consists in the following steps:
1. Cloud Service Definition: the developer identifies the functionalities that should be offered by the

application (e.g., web containers, databases) and implements (or retrieves, if already available) the
software mechanisms that provide them as-a-service. Moreover, for these mechanisms, the developer
prepares related cookbooks.

2. Security Mechanisms Definition: the developer identifies the security capabilities that should be
offered by the application over the cloud services defined at the previous step, and implements (or
retrieves, if already available) the related security mechanisms. Afterward, the developer prepares the
mechanisms’ cookbooks. Moreover, for each mechanism, the developer has to prepare a mechanism

descriptor that specifies:
• the granted security capabilities (and related security controls);
• the enforceable/monitorable security metrics (and related measurements, representing the actual
parameters gathered to check the identified metrics);

276 V,. Casola, A. De Benedictis, M. Rak, U. Villano

• the monitoring events associated with reported measurements, used by the Enforcement module
(Diagnosis component) to detect violations or alerts related to an SLA;

• the mechanism’s metadata, which includes information on the software components implementing
the mechanism and on respective deployment constraints (e.g., incompatibility or dependency of
software components implementing the mechanism, used during the mechanism’s deployment).

This information is used during the whole SLA life-cycle, since it enables to negotiate capabilities, select
available metrics, configure and monitor related mechanisms and detect and manage related alerts or
violations.

3. Security SLA Template Preparation: once all the mechanisms needed to build the target cloud
service have been defined and set-up, the developer prepares an SLA template, compliant with the
model discussed in Sect. 3, which summarizes all available features.

It is worth noticing that the SPECS application development mainly focuses on the development of ad-hoc
Chef cookbooks for the security mechanisms to be offered. When cookbooks are already available (there are
many archives of already-developed cookbooks), the only additional work consists in the preparation of the
metadata and SLA templates used to automate the SLA implementation.

4.2. Deployment of a SPECS application. The deployment of a SPECS application is performed
through the SPECS Platform Interface, publicly available at [34]. The functionalities available to the SPECS
Owner by means of the Platform Interface are reported in the Use Case diagram of Fig. 4.2.

Fig. 4.2. SPECS Owner use case diagram

By selecting the “SPECS Services management” tab (see Fig. 4.3), the application allows the SPECS
Owner to manage all the available (secure) services, along with related capabilities and security mechanisms.
As discussed before, each Security Service is identified by an SLA template, prepared by the developer during
the application development phase. At deployment time, the SPECS Owner must provide the template to
the Negotiation module via the interface offered by the dashboard. It will be used during negotiation for the
generation of the SLA Offers and during enforcement for the configuration of the Monitoring module based
on included SLOs. Moreover, at deployment time, the SPECS Owner has to provide the Enforcement module
with the cookbooks previously prepared for all supported mechanisms and with related artifacts. Finally, the
SPECS Owner has to make available the mechanisms’ descriptors to the SLA Platform, in order to enable their
automatic deployment and configuration based on an SLA.

4.3. Execution of a SPECS application. A running SPECS application comes in form of a wizard that
enables the End-user to negotiate, implement and monitor an SLA (cf. Fig. 4.4).

First, the negotiation wizard allows the End-user to select the security capabilities to activate. Related to
these capabilities, the subsequent steps require the selection of the security metrics of interest and the definition

SLA-based Secure Cloud Application Development 277

Fig. 4.3. SPECS platform interface

Fig. 4.4. End-user use case diagram

of the SLOs. Currently the negotiation focuses only on the SPECS-supported Security SLOs. However, it is
possible to extend it to other non-functional SLOs. At the end of this process, the End-user can formally accept
the SLA (i.e., sign it) and proceed with its implementation.

During implementation, the SPECS application orchestrates the Enforcement module’s services to acquire
the needed resources from external providers and to configure them with (i) the security mechanisms that
implement the security capabilities included in the SLA and with (ii) the monitoring systems able to monitor
the metrics reported there.

After the implementation, the SPECS application provides the End-user with a monitoring dashboard,

278 V,. Casola, A. De Benedictis, M. Rak, U. Villano

through which he can verify the values of the metrics and check the correct fulfillment of the SLA.
In the following section, we will illustrate the above discussed process with respect to a concrete application

offering a secure web container.

5. A secure web container service. As an example of cloud service that may be enhanced through
SPECS, let us consider a web container solution. An example of such a solution is Amazon AWS Elastic
Beanstalk [35], which allows to quickly deploy and manage applications in the AWS cloud infrastructure.
This solution, which is very complex indeed, provides support for different programming languages and web
containers, and comes with dedicated security management tools developed by Amazon.

When considering smaller providers, it is reasonable to suppose that they would offer more simple platforms
for web applications management, with very limited security features. A web developer targeting such providers
but with specific security requirements should get on all the responsibility of managing them by developing and
integrating ad-hoc software tools inside his/her applications.

It should be noticed that, at the state of the art, existing appliances offer predefined services (for example, a
pre-configured web server), but checking and comparing the security features offered by different CSPs is not an
easy task. The web developer has to (i) manually find the security features provided by each CSP, (ii) evaluate
and compare existing offers, (iii) apply a suitable configuration, if not natively supported, and (iv) implement
a monitoring solution to verify at runtime the respect of the security features.

The SPECS ecosystem provides a turnkey solution to the above issues, as it (i) offers a single interface
to choose among multiple offerings on multiple providers, (ii) enables the web developer to specify explicitly
the needed security capabilities on the target web container, (iii) automatically configures the VMs in order
to enforce the security controls requested, (iv) offers a set of security metrics to monitor the respect of the
security features requested, (v) enables continuous monitoring of the security metrics negotiated, and (vi) can
automatically remediate to (some of the) alerts and violations that may occur to the SLA associated to the web
container.

Below we will present the development of the secure web container as a SPECS application, following the
steps dealt with in the previous section.

5.1. Cloud Service Definition. The main goal of this case study is to deliver web containers that an
end-user can acquire by negotiating his/her desired security features. To this aim, we developed a mechanism
named WebContainerPool (WEBPOOL) that not only provides the web container as a cloud service but also
offers some basic security-hardening features on top of it. In particular, the mechanism allows to acquire a pool
of virtual machines and to configure them with several replicas of the web container with different software
solutions (e.g., Apache Tomcat, NGINX, Jetty), in order to ensure resiliency to failures through sw diversity
and redundancy. Moreover, the mechanism enables to configure such replicas each with a different software
solution, and to randomize the handling of incoming requests among the available replicas.

In practice, the WebContainerPool mechanism has been developed as a security mechanism, but it is
mandatory for the set-up of the web container service delivered by the application. The information related to
the mechanism has been included in the WEBPOOL mechanism descriptor, which specifies:

• the capability provided (Web Resilience),
• the metrics associated ((i) LevelofRedundancy and (ii) LevelofDiversity),
• the monitoring events that can be detected by the Monitoring module and handled by the Enforcement
module for remediation activities (e.g., a web container replica is down),

• the actions to perform to prevent and manage violations (e.g., acquire and configure a new machine),
and

• the mechanisms’ metadata including the software components that implement it (i.e., Apache and Ngnix
web containers and a load balancer based on HAProxy) and their deployment contraints (e.g., the load
balancer must be hosted by a separate machine).

The Chef cookbook associated to the WebContainerPool mechanism can be used also independently of the
SPECS framework and is available at [36]. It is worth pointing out that, if the aim is to apply the same process
to a different cloud service (e.g., a Secure CMS), it is first necessary to develop a Cloud service cookbook
dedicated to offer the CMS, and later on to select the security mechanisms that can be offered for it, possibly
developing custom ones.

SLA-based Secure Cloud Application Development 279

5.2. Security Mechanisms Definition. The proposed service (web container), as outlined above, relies
on (a pool of) virtual machines, hosting synchronized web servers. The service offers some integrated security
features (redundancy and diversity), but a lot of additional security capabilities can be provided. In SPECS,
three main security mechanisms are already available to enhance the web container service:

• TLS: it is a preconfigured TLS server, configured according to security best practices.
• SVA (Software Vulnerability Assessment): it regularly performs vulnerability assessment over
the virtual machines, through software version checking and penetration tests.

• DoSprotection: it consists of a solution for denial of service attacks detection and mitigation based
on the OSSEC tool.

The main role of the developer is to select the mechanisms to be provided together with the WEBPOOL
mechanism from the catalogue of available security mechanisms (mantained by the SPECS Service Manager).
If the developer is interested in offering additional security mechanisms, and/or in enforcing security metrics
and capabilities not yet supported in SPECS, he has to implement the mechanism by releasing related artifacts,
to prepare a mechanism’s descriptor in the proper format and to develop a cookbook for it. Let us assume that
the SVA and DoSprotection mechanisms are to be offered. The main information related to these mechanisms is
provided in Table 5.1 and in Table 5.2, which respectively report the security controls and the metrics associated
with them, these can be offered and guaranteed in the SLA. Moreover, Table 5.1 reports also the information
that the WEBPOOL mechanism is required for the set-up of the service, while the others are optional. Table
5.2 reports the measurable information associated with the three mechanisms that will be offered in the SLA
during the negotiation phase. For the sake of brevity, we do not report here all the information included in the
mechanisms’ descriptors. The interested reader is referred to the SPECS Bitbucket repository [15] for all the
details.

Table 5.1
Definition of the capabilities to offer with the web container

ID Name Description Req. Controls

WEBPOOL
Web
Resilience

Capability of surviving to
security incidents involving a
web server, by implementing
proper strategies aimed at
preserving business continuity,
achieved through redundancy
and diversity

yes

CONTINGENCY PLAN - CP-2

HETEROGENEITY - SC-29

DISTRIBUTED PROCESSING AND STORAGE
- SC-36

DENIAL OF SERVICE PROTECTION - SC-5

OSSEC

DOS
Detection
and
Mitigation

Capability of detecting and
reacting to security attacks
aimed at disrupting a system’s
availability

no

DENIAL OF SERVICE PROTECTION - SC-5

DENIAL OF SERVICE PROTECTION - SC-5(3)

CONTINUOUS MONITORING - CA-7

INFORMATION SYSTEM MONITORING - SI-4

SVA

Software
Vulnerability
Assessment

Capability of detecting and
mitigating vulnerabilities no

CONTINUOUS MONITORING - CA-7

CONTINUOUS MONITORING — TREND
ANALYSES - CA-7(3)

PENETRATION TESTING - CA-8

VULNERABILITY SCANNING - RA-5

VULNERABILITY SCANNING — UPDATE BY
FREQUENCY - RA-5(1)

5.3. Security SLA Template Preparation. This is the main developer task, as it summarizes all the
possible offers to the End-user. Once the template is available, the SPECS application execution is fully
automated. WS-Agreement templates are written according to the SLA model proposed in Section 3, following
the WS-Agreement schema and the SPECS security extensions. The XML schema corresponding to our Security
SLA model is available at [13], while the complete SLA template for the SPECS Web Container application is
available at [37].

5.4. Application deployment. To complete the deployment of the case study application, the security
mechanisms and the template have to be deployed.

280 V,. Casola, A. De Benedictis, M. Rak, U. Villano

Table 5.2
Definition of the security metrics associated with the mechanisms

Name Unit Value

Type

Metric

Type

Description

Level of Redundancy n/a integer Quantitative/
Ratio

Number of replicas of a software component that are set-up
and kept active during system operation

Level of Diversity n/a integer Quantitative/
Ratio

Number of different versions of a software component that
are set-up and kept active at the same time during system
operation

Scanning Frequency -
Basic scan

hours integer Quantitative/
Ratio

Frequency of the basic software vulnerability scanning.

Age of scanning report
- Basic scan

hours integer Quantitative/
Ratio

Age of the scanning report (basic scan)

Vulnerability list avail-
ability

n/a yes/no Qualitative/
Nominal

Availability of the vulnerability list

Scanners availability n/a yes/no Qualitative/
Nominal

Availability of the installed scanners

List Update Frequency hours integer Quantitative/
Ratio

Frequency of updates of the list of known/disclosed vulnera-
bilities from OVAL/NVD databases

Age of vulnerability list hours integer Quantitative/
Ratio

Age of the vulnerability list

Vulnerability reposi-
tory availability

n/a yes/no Qualitative/
Nominal

Availability of the vulnerability repository

Scanning Frequency -
Extended Scan

hours integer Quantitative/
Ratio

Frequency of the extended software vulnerability scanning.
Scanning is performed with two scanners and both scanning
reports are joint

Age of scanning report
- Extended Scan

hours integer Quantitative/
Ratio

Age of the scanning report (extended scan)

Up Report Frequency hours integer Quantitative/
Ratio

Frequency of checks for updates and upgrades of vulnerable
installed libraries.

Age of the update/up-
grade report

hours integer Quantitative/
Ratio

Age of the update/upgrade report

Availability of the
scanning report

n/a yes/no Qualitative/
Nominal

Availability of the scanning report

Availability of the up-
date/upgrade report

n/a yes/no Qualitative/
Nominal

Availability of the update/upgrade report

Penetration Testing
Activated

n/a yes/no Qualitative/
Nominal

Activation of the penetration testing activity

DDoS Attack Detec-
tion Scan Frequency

hours integer Quantitative/
Ratio

Frequency of the dDoS attack report generation

Age of dDoS report hours integer Quant/Ratio Age of the dDoS attack scanning report

As said, this operation is accomplished by the SPECS Owner through the Platform Interface and entails
that:

• All cookbooks of the chosen security mechanisms are added to the Chef repository associated to SPECS
implementation component.

• All cookbook metadata are made available on the SLA Platform, which offers a simple REST API to
upload such data and check them.

• The application template is uploaded to the Negotiation module.
The above example is available online as demonstrator application at [14].

6. Related Work. The large adoption of cloud computing solutions in a wide variety of domains opens
several security issues: customers must often face the loss of control over their data and have to trust that
their applications are securely executed on providers’ resources. As pointed out in [16], many ad hoc security
solutions have been proposed to cope with these issues, but they are often not portable and even not useful in
different contexts.

SLA-based Secure Cloud Application Development 281

Recent approaches are trying to address security problems from the start, i.e., at application design time,
since it is hard (and ineffective sometimes) to add security features to an existing application a posteriori.
Mohammadi et al. are working on the development of applications that can provide trustworthiness (the
assurance that the system will perform as expected [17]) by design [18, 19]. The idea is to design the software
in a way so that there will be mechanisms to ensure, evaluate and monitor trustworthiness, relying on reusable
development process building blocks, consisting of method descriptions (guidelines, patterns and check-lists)
ensuring that the right mechanisms are put in place to ensure trustworthiness.

However, as discussed previously in this paper, effective solutions exist that enable to profitably enhance
the level of security of a cloud application by adopting a Security-as-a-service approach. In particular, the FP7-
ICT Programme project SPECS addressed cloud security and proposed an open source development framework
and a running platform dedicated to offer Security-as-a-Service using an SLA-based approach, by enabling
negotiation, continuous monitoring and enforcement of security [3, 4].

As said, SPECS strongly relies upon Security SLAs. The definition of Service Level Agreement is an active
topic for standardization bodies, because they are at the interface between cloud user needs and the services
and features that cloud service providers (CSPs) are able to offer. The European Commission has set up a
dedicated Working Group (CSIG-SLA) to cope with the definition and usage of SLAs, whose first result was a
guideline for standardization bodies; a more advanced state of SLA standardization is offered by ISO 19086 [6],
which proposes a standard for SLAs in clouds. However, standards for the definition of the security terms in
an SLA are still lacking, even if there is currently a lot of ongoing work by dedicated groups (as the CSIG itself
and the CSCC SLA group [20]) and research projects (see CUMULUS [21], A4Cloud [22], and SPECS [3]) on
the topic.

Despite the strong impact that the introduction of Security SLAs may have on providers’ profit, the main
commercial IaaS providers (Amazon, Rackspace, GoGRID, etc.) currently still do not offer negotiable Security
SLAs (see [28] for a survey of the SLAs offered by commercial cloud providers).

Regarding the configuration of security requirements specified through SLA documents, a few proposal exist.
Karjoth et al. [29] introduce the concept of Service-Oriented Assurance (SOAS). SOAS adds security providing
assurances (an assurance is a statement about the properties of a component or service) as part of the SLA
negotiation process. Smith et al. [30] present a WS-Agreement approach for a fine-grained security configuration
mechanism to allow an optimization of application performance based on specific security requirements. Brandic
et al. [31] present advanced QoS methods for meta-negotiations and SLA-mappings in Grid workflows.

7. Conclusions and Future Work. In this paper, we illustrated a solution to develop cloud applications
offering secure services covered by Security SLAs. The proposed solution relies upon a framework of services
and tools released in the context of the SPECS EU Project and founds on the adoption of a novel Security SLA
model, based on WS-Agreement standard and compliant with current standards and guidelines provided by the
NIST and by CSA.

The paper provided a detailed discussion of the methodology followed in SPECS to build secure cloud
applications and of the tools introduced and leveraged to support their life cycle. The discussion was also
supported by the application of the proposed methodology to a real-world case study, for which a prototype
implementation is available.

Our plans for future research include the development of new security mechanisms to enhance existing cloud
services and the support for a wider set of cloud service types (at current state, only storage and web container
services are considered). Moreover, we plan to include more sophisticated functionalities in the SPECS default
application, such as the reasoning on the security level associated with different SLA offers, in order to enable
customers to make a selection among different possible offers.

The SPECS applications may be deployed and offered by Cloud Service Providers, in order to define and
agree on SLAs with their customers, but even by third-party providers that can act as brokers of services to
enrich security capabilities of larger providers. This last delivery model may open new business opportunities,
especially in those contexts (i.e., public sectors) where security represents the key factor to decide to cloudify a
service.

Acknowledgments. This work has been partially supported by the FP7-ICT-2013-10-610795 (SPECS).

282 V,. Casola, A. De Benedictis, M. Rak, U. Villano

REFERENCES

[1] M. Dekker and G. Hogben, Survey and analysis of security parameters in cloud SLAs across the european public sector,
Technical report. European Network and Information Security Agency, 2011.

[2] SPECS Consortium, SPECS Project Web Site. [Online]. Available: http://www.specs-project.eu
[3] M. Rak, N. Suri, J. Luna, D. Petcu, V. Casola, and U. Villano, Security as a service using an SLA-based approach via

SPECS, in Proc. of the 2013 IEEE 5th International Conference on Cloud Computing Technology and Science (CloudCom
2013), 2013, pp. 1–6.

[4] V. Casola, A. De Benedictis, M. Rak, and U. Villano, Preliminary design of a platform-as-a-service to provide security
in cloud, in Proc. of the 4th International Conference on Cloud Computing and Services Science (CLOSER 2014), 2014,
pp. 752–757.

[5] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke, and
M. Xu, Web services agreement specification (WS-Agreement), The Global Grid Forum (GGF), 2004.

[6] International Organization for Standardization, ISO/IEC NP 19086-1. Information Technology – Cloud Computing
– Service Level Agreement (SLA) Framework and Technology – Part 1: Overview and Concepts, 2014.

[7] A. De Benedictis, M. Rak, M. Turtur, and U. Villano, REST-based SLA Management for Cloud Applications, in Proc.
of the 2015 IEEE 24th International Conference on Enabling Technologies: Infrastructures for Collaborative Enterprises
(WETICE 2015), 2015, pp. 93–98.

[8] V. Casola, A. De Benedictis, and M. Rak, Security monitoring in the cloud: an SLA-based approach, in Proc. of the 2015
10th International Conference on Availability, Reliability and Security (ARES 2015), 2015, pp.749–755.

[9] NIST, NIST Special Publication 800-53 Revision 4: Security and Privacy Controls for Federal Information Systems and
Organizations, 2013.

[10] Cloud Security Alliance, Cloud Control Matrix v3.0, https://cloudsecurityalliance.org/download/cloud-controls-matrix-
v3/

[11] NIST, NIST Special Publication 500-307 Draft: Cloud Computing Service Metrics Description, 2015.
[12] Chef, Chef Tool Web Site. [Online]. Available: http://www.chef.io/chef/
[13] SPECS Consortium, SPECS Security SLA Model. [Online]. Available: http://www.specs-project.eu/schema
[14] SPECS Consortium, SPECS Web Container Demo Application. [Online]. Available: http://apps.specs-project.eu/specs-

app-webcontainer-demo CCM/
[15] SPECS Consortium, SPECS Bitbucket Repository. [Online]. Available: https://bitbucket.org/specs-team/
[16] C. A. Ardagna, R. Asal, E. Damiani, and Q. H. Vu, From security to assurance in the cloud: a survey, in ACM Computer

Survey, vol. 48, no. 1, pp. 2:1–2:50, Jul. 2015.
[17] A. Aviienis, J.-C. Laprie, B. Randell, and C. Landwehr, Basic concepts and taxonomy of dependable and secure com-

puting, in IEEE Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.
[18] F. Di Cerbo, P. Bisson, A. Hartman, S. Keller, P. Meland, M. Moffie, N. Mohammadi, S. Paulus, and S. Short,

Towards trustworthiness assurance in the cloud, in Cyber Security and Privacy, ser. Communications in Computer and
Information Science, M. Felici, Ed. Springer Berlin Heidelberg, 2013, vol. 182, pp. 3–15.

[19] N. Mohammadi, T. Bandyszak, S. Paulus, P. Meland, T. Weyer, and K. Pohl, Extending software development method-
ologies to support trustworthiness-by-design, in Proc. of the CAiSE 2015 Forum co-located with 27th International Con-
ference on Advanced Information Systems Engineering (CAiSE 2015), 2015, pp. 213–220.

[20] CSCC, The CSCC practical guide to cloud service level agreements, Technical report, 2012. [Online]. Available:
http://www.cloudstandardscustomercouncil.org/webSLA-download.htm

[21] A. Pannetrat, G. Hogben, S. Katopodis, G. Spanoudakis, and C. Cazorla, D2.1: Security-aware SLA specification
language and cloud security dependency model. Technical report, Certification Infrastructure for Multi-Layer Cloud
Services (CUMULUS), 2013.

[22] S. Pearson, Toward accountability in the cloud, in Internet Computing, IEEE, vol. 15, no. 4, pp. 64–69, July 2011.
[23] Contrail Consortium, Contrail Project Web Site. [Online]. Available: http://www.contrail-project.eu
[24] mOSAIC Consortium, mOSAIC Project Web Site. [Online]. Available: http://www.mosaic-cloud.eu
[25] Optimis Consortium, Optimis Project Web Site. [Online]. Available: http://www.optimis-project.eu
[26] PaaSage Consortium, PaaSage Project Web Site. [Online]. Available: http://www.paasage.eu
[27] R. Kübert, G. Katsaros, and T. Wang, A RESTful implementation of the WS-Agreement specification, in Proceedings of

the Second International Workshop on RESTful Design (WS-REST ’11) ACM, 2011, pp. 67–72.
[28] L. Wu and R. Buyya, Service Level Agreement (SLA) in Utility Computing Systems, in Performance and Dependability in

Service Computing: Concepts, Techniques and Research Directions, IGI Global, USA, 2011, pp. 1–25.
[29] G. Karjoth, B. Pfitzmann, M. Schunter, and M. Waidner, Service-oriented assurance, comprehensive security by explicit

assurances, in Quality of Protection, ser. Advances in Information Security, D. Gollmann, F. Massacci, and A. Yaut-
siukhin, Eds., vol. 23. Springer US, 2006, pp. 13–24.

[30] M. Smith, M. Schmidt, N. Fallenbeck, C. Schridde, and B. Freisleben, Optimising Security Configurations with Service
Level Agreements, in Proc. of the 7th International Conference on Optimization: Techniques and Applications (ICOTA
2007).IEEE Press, 2007, pp. 367–381.

[31] I. Brandic, D. Music, S. Dustdar, S. Venugopal, and R. Buyya, Advanced QoS methods for Grid workflows based on
meta-negotiations and SLA-mappings, in Proc. of the 2008 Third Workshop on Workflows in Support of LargeScale
Science, 2008, pp. 1–10.

[32] V. Casola, A. De Benedictis, M. Rak, J. Modic, and M. Erascu, Automatically enforcing Security SLAs in the Cloud,
in IEEE Transactions on Services Computing, 2016, PrePrints: doi:10.1109/TSC.2016.2540630.

SLA-based Secure Cloud Application Development 283

[33] V. Casola, A. De Benedictis, M. Rak and U. Villano, SLA-Based Secure Cloud Application Development: The SPECS
Framework, in Proc. of the 2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), 2015, pp. 337–344.

[34] SPECS Consortium, The SPECS Platform Interface. [Online]. Available: http://apps.specs-project.eu:8080/platform-
interface/.

[35] Amazon, Amazon AWS Elastic Beanstalk Home Page. [Online]. Available: https://aws.amazon.com/it/documentation/elas-
tic-beanstalk/.

[36] SPECS Consortium, The WEBPOOL mechanism cookbook. [Online]. Available: https://bitbucket.org/specs-team/specs-
mechanism-enforcement-webpool.

[37] SPECS Consortium, The SPECS Secure Web Container Application Template. [Online]. Available: https://
bitbucket.org/specs-team/specs-utility-xml-sla-framework.

Edited by: Dana Petcu
Received: May 10, 2016
Accepted: July 17, 2016

Scalable Computing: Practice and Experience
Volume 17, Number 4, pp. 285–298. http://www.scpe.org

DOI 10.12694/scpe.v17i4.1201
ISSN 1895-1767
c⃝ 2016 SCPE

IMPACT OF SINGLE PARAMETER CHANGES
ON CEPH CLOUD STORAGE PERFORMANCE

STEFAN MEYER AND JOHN P. MORRISON ∗

Abstract. In a general purpose cloud system efficiencies are yet to be had from supporting diverse applications and their
requirements within a storage system used for a private cloud. Supporting such diverse requirements poses a significant challenge
in a storage system that supports fine grained configuration on a variety of parameters.

This paper uses the Ceph distributed file system, and in particular its global parameters, to show how a single changed parameter
can effect the performance for a range of access patterns when tested with an OpenStack cloud system.

Key words: Ceph, Cloud Storage, File systems.

AMS subject classifications. 68M14, 68P20

1. Introduction. Cloud systems are becoming more and more complex and can be adopted to suit various
types of use cases and users make use of cloud resources in very distinct ways. Their requirements change
depending on the workload, which include services such as web-, database-, email- or directory-servers, but they
can also be used for other purposes, such as virtual desktops, rendering or genome sequencing. The requirements
of these services vary not only in the component of the system that is used the most, such as the CPU, memory
system or networking, but also the characteristics of it.

When looking at storage systems the requirements of services vary greatly. Access patterns consist of a
mixture of reads and/or writes, in sequential and/or random fashion, with varying block sizes. Depending on
the application the metric with the highest importance might be the throughput, the average or maximum
latency or a mixture of both. The prime motivation for the technical solution here is an attempt to answer the
question of how a cloud operator can change the storage configuration to better support these specific access
patterns.

The most popular open source cloud stack is the very actively developed OpenStack. In the development of
the Kilo release there were 148 contributing organizations plus many independent developers [11] making over
19.000 commits [7]. It is highly customizable and supports many implementations as a back-end for the different
storage services. Due to the popularity and interest in the system many companies offer solutions or interfaces
that hooks into their own systems, which can be seen in the supported storage or networking back-ends. The
storage back-end that will be looked at in this paper for improving performance under specific loads is the open
source distributed file system Ceph1, which was acquired by RedHat in 2014.

The options this combination offers will be subject of this paper. In Section 2 the general idea of offering
distinct storage solutions will be explained. In Section 3 the OpenStack storage components will be introduced,
followed by an introduction to Ceph in Section 4 and the integration of both and the offered options for
performance optimizations. Section 5 is showing the results when the cluster is using different configurations.
The conclusion of the experiments is presented in Section 6.

2. Motivation. OpenStack offers the option to set quotas for the I/O system of the VMs. Limits can be
set for the amount of read/write/total bytes per second (B/s) or the same categories for the operations per
second (IOPS). This allows fine grained limits that can limit the throughput effectively for small file (via IOPS)
and large file (via B/s) access patterns at the same time.

With these quotas it is not possible to create flavours that fit a specific workload, as some important
characteristics, such as latency, cannot be captured by those limiting parameters. It is therefore necessary to
be able to offer storage options that can be more targeted to the use case. This ranges from using different
technologies, such as conventional slow and fast spinning hard drives to solid state drives. These drives in
return can be used in many different configurations that influence the respective performance. The configuration
options include, among others, the storage I/O scheduler and the file system. It becomes even more challenging

∗University College Cork, Ireland ({s.meyer, j.morrison}@cs.ucc.ie).
1http://ceph.com

285

286 S. Meyer, J.P. Morrison

when used in combination with a distributed file system, which seems to be the most common storage back-end
used for OpenStack according to [10].

In our previous paper [14] we looked at the option of offering distinct storage pools using different file
systems. In this paper we extend this work and look at the impact of changing a single parameter in the Ceph
configuration on the performance when tested through an OpenStack cloud deployment using block storage
devices. The OpenStack storage components will be described in Section 3 followed by an overview of the
distributed file system Ceph in 4.

3. OpenStack Storage Components. OpenStack has three different storage services: Glance, Cinder
and Swift. They cover three very different areas. The OpenStack image service Glance is an essential component
in OpenStack as it serves and manages the virtual machine images that are central to Infrastructure-as-a-Service
(IaaS). It offers an RESTful API that can be used by end users and OpenStack internal components to request
virtual machine images or metadata associated with them, such as the image owner, creation date, public
visibility or image tags.

Using the tags of the images should allow an automatic selection of the best storage back-end for an individ-
ual VM. When an image is tagged with an database tag the storage scheduler should be able to automatically
select the appropriate pool to host the VM, like it does for other components, like the amount of CPU core or
the memory capacity. In case the tag is absent the image will be hosted on the fall-back back-end, which uses a
standard or non-targeted configuration that is used for general purpose scenarios. When users use the correct
tag they will benefit from it and the operator will potentially be able to increase the number of users that he
can host without risking overall storage performance degradation and different billing rates, as they are optimal
solutions for specific workloads (value added features).

The OpenStack object storage service Swift offers access to binary objects through an RESTful API. It is
therefore very similar to the Amazon S3 object storage. Swift is a scalable storage system that has been in use
in production for many years at Rackspace2 and has become a part of OpenStack. It is highly scalable and
capable to manage petabytes of storage. Swift comes with its own replication and distribution scheme and does
not rely on special RAID controllers to achieve fault tolerance and resilient storage. It can also be used to host
the cloud images for the image service Glance.

The third storage system of OpenStack is the block storage service Cinder. Cinder is used to either create
volumes that are attached to virtual machines for extra capacity that show up as a separate drive within the VM,
but it can also be used directly as the boot device. In that case the image from Glance will be converted/copied
into a Cinder volume. After it has been flagged as bootable it can be used as the root disk of the VM. The
back-ends for Cinder cover a great variety of systems [4], including proprietary storage systems such as Dell
EqualLogic or EMC VNX Direct, distributed file systems, such as Ceph or GlusterFS, and network shares using
Server Message Block (SMB) or NFS.

Normally it would be necessary to have at least two dedicated storage systems available when all three
storage services are desired. This does not allow the flexibility to deal with extra capacity demands on individual
services as the hardware has to be partitioned when the system is rolled out. Currently there are two storage
back-ends available that can be used for all three services within one system with the support for file-level
storage, which is required for supporting live-migration between compute hosts. These are Ceph (see Section 4)
and GlusterFS 3. By using one of these storage back-ends it is possible to consolidate the three services on
a single storage cluster and keeping them separated through logical pools. According to the OpenStack user
survey in 2014 [10] Ceph has currently the highest popularity as a storage back-end, which will be looked at in
more detail in the following section.

4. Introduction to Ceph. Ceph [16] has been designed under the assumption that a large peta-scale
storage system is an incremental growing system, where the failure of components are not the exception but
rather the norm, and where workloads are constantly changing. At the same time the storage system has to be
able to handle thousands of user requests and deliver high throughput [17]. The system replaces the traditional
interface to disks or RAIDs with object storage devices that integrate intelligence to handle specific operations

2www.rackspace.com
3www.gluster.org

Impact of Single Parameter Changes on Ceph Cloud Storage Performance 287

themselves. Clients interact with the metadata server to perform operations, such as open and rename, while
communicating directly with the OSDs for I/O operations. The algorithm that is used to spread the data over
the available OSDs is called CRUSH [18]. From a high level, Ceph clients and metadata servers view the object
storage cluster, that consists of possibly tens or hundreds of thousands of OSDs, as a single logical object store
and namespace. Ceph’s Reliable Autonomic Distributed Object Store (RADOS) [19] achieves linear scaling in
both capacity and aggregate performance by delegating management of object replication, cluster expansion,
failure detection and recovery to OSDs in a distributed fashion. The following list shows again the individual
components and their role and function:

OSDs: A Ceph OSD Daemon (OSD) stores data, handles data replication, recovery, backfilling, rebalancing,
and provides some monitoring information to Ceph Monitors by checking other Ceph OSD Daemons for
a heartbeat. A Ceph Storage Cluster requires at least two Ceph OSD Daemons to achieve an active

+ clean state when the cluster makes two copies of your data (Ceph makes 2 copies by default, but it
is adjustable).

Monitors: A Ceph Monitor maintains maps of the cluster state, including the monitor map, the OSD map,
the Placement Group (PG) map, and the CRUSH map. Ceph maintains a history (called an ”epoch”)
of each state change in the Ceph Monitors, Ceph OSD Daemons, and PGs.

MDSs: A Ceph Metadata Server (MDS) stores metadata on behalf of the Ceph Filesystem (i.e., Ceph Block
Devices and Ceph Object Storage do not use MDS). Ceph Metadata Servers make it feasible for POSIX
file system users to execute basic commands like ls, find, etc. without placing an enormous burden
on the Ceph Storage Cluster.

Ceph is also highly customizable and offers many ways to change the configuration of the cluster. This is not
just limited to the number of placement groups per pool (pgp), but spans more than 600 parameters. The value
of these parameters will result in many cases from the use case, such as the number of replicas. Furthermore
the storage system relies on components that are not part of Ceph directly, like the Kernel I/O scheduler and
the corresponding queue length, that have an impact on the performance. How these can be used to support
discrete storage pools will be discussed in Section 4.2 to 4.4.

4.1. OpenStack and Ceph. Creating pools within the cluster is necessary to allow access to the storage.
These pools can in return be used for the OpenStack services Glance and Cinder. Running Swift with Ceph is
also possible through the Rados gateway, which is part of Ceph, that offers a RESTful API to the objects in the
cluster. As Glance is only hosting the images for the VMs it does not have any real performance requirements,
especially when Cinder is used for actually running the VMs by choosing the copy to volume option when
creating VMs. Furthermore, even though it is possible to just use Glance without Cinder and use it for booting
the images, it does not offer the option to use multiple back-ends at the same time. It is a requested feature4,
but currently it is not available.

Cinder supports multiple back-ends that are attached at the same time. This offers the possibility to create
different Cinder Tiers that are connected to different back-end systems with varying capabilities or features,
such as having one proprietary storage system and a network share set up as the back-ends or to use different
pools from Ceph or completely different Ceph clusters. In the first case the Ceph configuration file is identical
and only the Ceph pool are different. In the second case it is necessary to provide multiple Ceph configurations
that point to the different clusters, as the Ceph monitors will be running on separate hosts. This might be used
to offer low specification versions that offer no resilience to failures for low cost solutions or high cost solid state
drive solutions.

4.2. Optimization on a Cluster Level. Tuning the distributed file system on a cluster level gives access
to whole range of parameters [3] of Ceph and the underlying components, such as the caching size, recovery
settings, journal settings or logging. This allows for perfect adoption to a specific workload, but in contrast
does not allow for differentiation and therefore multiple workloads in one cluster. When a decision is made it
affects the overall system and can only be slightly tweaked by the parameters that are accessible through the
pools (see 4.3).

4https://blueprints.launchpad.net/glance/+spec/multi-store

288 S. Meyer, J.P. Morrison

To offer distinct storage variants, the whole storage cluster has to be partitioned and multiple clusters have
to be created. It is possible to run multiple clusters on individual hosts, but it has to be guaranteed that the
services have unique IP and port combinations. Copying data from one cluster to the other cannot be achieved
very easily on the Ceph level, but within OpenStack it is supported with specific limitations. It is not possible
to migrate volumes that have snapshots.

4.3. Optimization using Pools and Tiering. When optimizing on a Ceph pool level without changing
the Crushmap, the parameters that can be changed is limited in comparison to the options that are available
when optimizing on a cluster level. In total there are 19 parameters (full list available at [13]) that change the
characteristics of the pool.

Some of these parameters have a direct effect on the performance and behaviour of a storage pool, as
they directly influence the pool characteristics. Parameters such as size, min size, pgp num, crush ruleset,
hashpspool and crash replay interval have a significant impact on how the pool distributes the data across
the OSDs and how many copies are stored. They also directly influence reliability, stability and recovery.

Ceph offers the option to add a cache Tier to a pool. Adding fast expensive drives for highly frequented
objects with slower cheaper disks that are acting as cold or slower storage. Such tiered systems are very common
in enterprise storage systems, e.g. Dell Compellent [6], and is now available in software solutions, such as Ceph,
as well. Changing the pool parameters effects the movement of the objects between the cache and normal Tier
and the used caching algorithm.

The using a cache Tier it is necessary to select one of two operation modes. When using the writeback
mode the client will write the data directly to the fast cache tier and will receive an acknowledgement when the
request has been finished. Over time the data will be send to the storage tier and potentially flushed out of the
cache tier. When a client requests data that does not reside within the cache, the data is transferred first to
the cache tier and then served to the client. This mode is best used for data that is changeable, such as video,
photo and transactional data.

When using read-only mode the cache will only be used for read access, where it will copy the data from
the storage tier to server the read requests. Write access will be sent directly to the storage tier. This operation
mode is best used for immutable, such as images and videos for webservices, DNA sequences or radiology
images, as reading data from a cache pool that might contain out-of-date data provides weak consistency. For
that reason it should not be used for mutable data.

Using pools for differentiation still relies on the underlying configurations, such as disk scheduler or OSD file
system settings. All pools will share the same general settings with specific configuration changes for replication
count or distribution enhancements. Therefore a pure pool based approach does not offer the best way to make
significantly different storage configurations accessible. On the other hand, pools are a good way to partition
the storage and to expose it to different users/services through the access control mechanisms of Ceph.

4.4. Heterogeneous Pools. The term heterogeneous pools in this case is used for pools that have different
underlying components, such as the I/O scheduler or the file system. The I/O scheduler is set in the operating
system for a specific block device, such as /dev/sdb and cannot be set for a specific partition. The scheduler
comes along with it own settings, such as the scheduler type and the queue depth. Changing these can have a
substantial influence on the performance of the file system under specific workloads [15].

The other component that has an impact on performance is the file system. Besides the different function-
alities that they offer, they handle some patterns much better than others due to their internal design. Both of
these aspect of a heterogeneous cluster configuration have been shown in our previous paper [14].

5. Experimental results. The experiments are focused on changing the whole storage cluster configura-
tion. The storage pools used by OpenStack were deployed on the same hardware and software configuration.
By changing the storage cluster configuration for each individual benchmark run shows the impact of each one
of those individual changes in comparison to the default configuration.

5.1. Testbed. The configuration used for the practical evaluation consists of three Dell R610 servers
connected to a directly attached storage expansion tray through an LSI SAS3444E SAS controller using SAS
multi-lane cables, each. Each server is equipped with an Intel Xeon E5603 quad core processor with 1.6 GHz
clock speed, 16 GB DDR3 memory and 8 Gigabit Ethernet ports. Each storage tray consists of twelve 1 TB

Impact of Single Parameter Changes on Ceph Cloud Storage Performance 289

harddrives (Ultrastar A7K1000 [8], Barracuda ES.2 [2], Western Digital RE4 WD1003FBYX [12]), of which
only four of each tray will be used for the experiment, but all disks are part of the cluster. The Ceph cluster
network uses NIC bonding (IEEE 802.3ad [9]) with four network links for increased bandwidth. The Ceph
public network uses three links in the same way. The operating system used for the testbed is Ubuntu 14.04
LTS with the 14.04.2 hardware enablement stack (Ubuntu Utopic) which uses Linux kernel version 3.16, which
includes many patches for BTRFS and XFS. The mounting options used for both file systems were the default
settings of Ceph. The mounting settings can have an influence on the performance of a file system, but they
are not in the focus for this paper.

To run the benchmarks against the Ceph cluster an OpenStack cloud (version Kilo) is used. The OpenStack
cloud consists of a dedicated cloud controller and of three Dell R710 servers with two Intel Xeon E5645 hexa
cores with 2.4 GHz clock speed and Intel Hyper Threading enabled acting as compute nodes. Each server is
connected to the Ceph public network with three bonded Gigabit Ethernet links. The used switch is a Dell
PowerConnect 6248 [5]. Jumbo frames were enabled on the switch and all Ethernet links.

The network bandwidth between the nodes is measured using iperf. The results are shown in Table 5.1
with the Storage network representing the Ceph cluster network and the Management network being the Ceph
public network. The 2 bonded port configuration is used on the controller to access the Ceph cluster for handling
the Cinder and Glance volumes and images whereas the 3 bonded ports are used on the compute nodes to run
the virtual machines directly off the Cinder volumes.

5.2. Cluster configuration. The Ceph cluster is configured to host multiple pools, pinned to different
drives. The pool used for the benchmarks is isolated on the 12 Western Digital RE4 drives. To reduce the
impact of the cluster network bandwidth limitation of about 3 Gb/s shown in Table 5.1 the replication count
is set to 2. This ensures that each block is transferred only once through the cluster network for replication.
With a replication count of three the file would be written to two other hosts which would double the network
traffic and therefore reduce the write performance. In a bigger cluster the load from replication is spread and
therefore the network bandwidth dependency will be less crucial overall, but in a small cluster it is a limiting
factor.

The Ceph configuration for these experiments is left to the default settings and the parameters that are set
can be seen in the following configuration snippet. It has the debugging and reporting function on the OSD
and Monitors disabled and uses CephX for authentication.

[global]

osd_pool_default_pgp_num = 1024

osd_pool_default_pg_num = 1024

osd_pool_default_size = 2

osd_pool_default_min_size = 2

[client]

rbd_cache = false

[osd]

debug ms = 0

debug osd = 0

debug filestore = 0

debug journal = 0

debug monc = 0

[mon]

debug ms = 0

debug mon = 0

debug paxos = 0

debug auth = 0

The specific cluster wide parameters tested differ from the default configurations in exactly one parameter.
This allows to detect parameters being harmful or beneficial for specific workloads. The tested parameters are
listed in Table 5.2.

The selected parameters are all for settings related to the OSDs and the filestore. Using Ceph in combination

290 S. Meyer, J.P. Morrison

Table 5.1
Measured (iperf) bandwidth on the different networks.

Network Storage Management
Bonded Ports 4 2 3
Bandwidth 3.08 Gb/s 1.96 Gb/s 2.50 Gb/s

Table 5.2
Tested parameter values and their default configuration.

Parameter Default Tested
osd op threads 2 1 (B), 4 (C), 8 (D)
osd disk threads 1 2 (E), 4 (F), 8 (G)
filestore op threads 2 1 (H), 4 (I), 8 (J)
filestore wbthrottle xfs bytes start flusher 41943040 4194304 (K), 419430400 (L)
filestore wbthrottle xfs ios start flusher 500 5000 (M), 50 (N)
filestore wbthrottle xfs inodes start flusher 500 5000 (O), 50 (P)
filestore queue max bytes 104857600 1048576000 (Q), 10485760 (R)
filestore queue committing max bytes 104857600 1048576000 (S), 10485760 (T)
objecter inflight op bytes 104857600 1048576000 (U), 10485760 (V)
objecter inflight ops 1024 8192 (W), 128 (X)

with OpenStack Cinder and Glance does not require using components such as the RADOS Gateway, which
would be necessary when using OpenStack Swift, or the metadata server (MDS).

The osd op threads parameter sets number of threads to service Ceph OSD Daemon operations. When
set to 0 it will disable multi-threading. Increasing the number may increase the request processing rate. Ceph
uses a 30 seconds timeout for the requests. So it depends on the used hardware if altering the parameter has a
positive or a negative effect.

osd disk threads sets the number of disk threads, which are used to perform background disk intensive
OSD operations. These include scrubbing, which is analogous to fsck on the object storage layer, and snapshot
handling. This can effect the performance when the scrubbing process happens while there is concurrent data
access. Otherwise only one operation can be worked on at one time.

filestore op threads sets the number of file system operation threads that execute in parallel.

filestore wbthrottle xfs bytes start flusher, filestore wbthrottle xfs ios start flusher and
filestore wbthrottle xfs inodes start flusher configure the filestore flusher that forces data from large
writes to be written out before the sync in order to (hopefully) reduce the cost of the eventual sync. Previously,
the filestore had a problem when handling large numbers of small ios. Ceph throttles dirty data implicitely
via the journal, but a large number of inodes can be dirtied without filling the journal resulting in a very long
sync time when the sync finally does happen. The flusher was not an adequate solution to this problem since
it forced writeback of small writes too eagerly killing performance.

filestore queue max bytes and filestore queue committing max bytes set the size of the filestore
queue and the amount of data that can be commited in one operation.

objecter inflight op bytes and objecter inflight opsmodify the Ceph objecter, which handles where
to place the objects within the cluster.

5.3. Performance evaluation. To evaluate the impact of the different configurations the Ceph cluster
is exercised using the OpenStack cloud system described in Section 5.1. As the benchmark the tool fio [1] is
used. The benchmark settings are set to 300 seconds runtime and a 10GB testsize. The IO engine is set to
sync, which uses fseek to position the I/O location. Access is set to direct and buffering is disabled. For each
run there is a start and a ramp delay of 15 seconds. Random and sequential access patterns are tested for
both reads and writes. Block sizes to test are 4k, 128k, 1MB and 32MB. A total of 9 runs for each benchmark
configuration is executed to achieve a representative average over multiple runs.

Impact of Single Parameter Changes on Ceph Cloud Storage Performance 291

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

A
(2

1
2
)

B
(1

5
9
)

C
(1

9
7
.5

)

D
(1

9
9
)

E
(2

1
3
.5

)

F
(1

9
9
)

G
(1

8
5
.5

)

H
(2

0
0
)

I(1
9
9
.5

)

J(1
9
0
.5

)

K
(1

9
6
)

L
(1

9
7
.5

)

M
(1

9
2
.5

)

N
(2

0
1
.5

)

O
(1

9
6
)

P
(1

9
5
)

Q
(2

1
2
)

R
(2

1
0
.5

)

S
(1

9
0
.5

)

T
(1

9
7
)

U
(1

9
5
.5

)

V
(2

0
3
)

W
(1

9
3
)

X
(1

8
9
.5

)

IO
P
S

Runs A-X with median speed in parentheses

Fig. 5.1. FIO random read 4k.

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 14

A
(1

2
)

B
(1

0
)

C
(1

1
)

D
(1

2
)

E
(1

1
)

F
(1

1
)

G
(1

0
)

H
(1

1
)

I(1
1
)

J(1
0
)

K
(1

2
)

L
(1

0
)

M
(1

1
)

N
(1

1
)

O
(1

1
)

P
(1

1
.5

)

Q
(1

1
.5

)

R
(1

2
)

S
(1

2
)

T
(1

3
)

U
(1

1
)

V
(1

2
)

W
(1

1
)

X
(1

3
)

IO
P
S

Runs A-X with median speed in parentheses

Fig. 5.2. FIO random write 4k.

A total of 12 virtual machines, equally distributed across the three compute hosts, is used to stress the
system. Each VM is set to use 4 cores and 4GB of memory. The virtual disk is set to use a 100GB Cinder
volume. Rados Block Device (RBD) caching is disabled on the Ceph storage nodes and on the compute hosts in
the QEMU/KVM hypervisor settings. The diagrams show the mean value across all 12 VMs and their 9 runs.

5.3.1. 4k. The smallest file block size tested is 4k. The performance of mechanical hard drives suffers
quite a lot under such loads, whereas SSDs perform much better well under such loads. The unit used to in
these graph is IOPS (Input/Output Operations Per Second).

Figure 5.1 and 5.2 show the performance under random access workloads for reading and writing. Under
random read workloads the most disruptive configuration is with osd op threads=1 (B) with 159 IOPS. In
comparison to the other configurations that achieve between 189 (X) and 213.5 (E) IOPS this configuration
performs 15% lower than the second lowest and 25% less than the default configuration. In comparison to
the default configuration the performance can only be matched, but not be surpassed. For random writes the
performance is more even with a difference of 3 IOPS between the best and the worst performing configuration.

292 S. Meyer, J.P. Morrison

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

A
(7

3
6
)

B
(4

9
0
)

C
(5

2
7
)

D
(3

7
4
)

E
(6

4
9
)

F
(3

5
7
.5

)

G
(3

8
9
)

H
(3

7
5
.5

)

I(3
8
4
.5

)

J(3
9
8
)

K
(3

6
6
)

L
(3

6
1
.5

)

M
(3

6
8
.5

)

N
(6

3
1
)

O
(3

7
5
.5

)

P
(3

6
1
.5

)

Q
(6

8
3
)

R
(4

4
4
.5

)

S
(4

2
0
.5

)

T
(3

9
0
)

U
(3

7
9
.5

)

V
(4

3
6
)

W
(3

6
1
)

X
(3

9
2
)

IO
P
S

Runs A-X with median speed in parentheses

Fig. 5.3. FIO sequential read 4k.

 25

 30

 35

 40

 45

 50

A
(4

1
.5

)

B
(3

9
)

C
(4

0
)

D
(4

0
.5

)

E
(4

1
.5

)

F
(4

0
)

G
(3

9
.5

)

H
(4

0
)

I(4
1
)

J(4
0
)

K
(4

0
.5

)

L
(4

1
)

M
(4

2
)

N
(3

0
)

O
(3

9
)

P
(3

9
)

Q
(4

1
)

R
(3

8
.5

)

S
(3

9
)

T
(3

8
)

U
(3

8
)

V
(4

0
)

W
(3

9
)

X
(3

8
.5

)

IO
P
S

Runs A-X with median speed in parentheses

Fig. 5.4. FIO sequential write 4k.

Due to the low number of IOPS there can’t be any real conclusions about the impact of the parameters.

When the storage system is tested against 4k sequential read access (see Figure 5.3), the difference between
the lowest performing configuration (osd disk thread=4 (F)) and the highest (default configuration (A)) is over
105% or 378 IOPS. Well performing configurations, but worse than the default, are filestore queue max bytes

=1048576000 (Q), osd disk threads=2 (E) and filestore wbthrottle xfs ios start flusher=50 (N). For
writing (see Figure 5.4) the results are very even again, except for configuration N, that scores well for read
accesses. When this configuration is used the performance drops by 25% in comparison to the others. This
means when writing small blocks the small flusher threshold is harmful, whereas it is beneficial when used for
reading.

5.3.2. 128k. When using 128k block sizes for random read accesses (see Figures 5.5) all but two configura-
tion (B and N) achieve gains over the default configuration. A maximum gain of 8% is observed for configuration
K. When writing random blocks with the same block size the difference is much more significant with K being
14% faster than the default. The performance difference between filestore wbthrottle xfs bytes start

Impact of Single Parameter Changes on Ceph Cloud Storage Performance 293

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

A
(7

.8
3
5
)

B
(7

.7
8
)

C
(8

.3
2
)

D
(8

.4
4
)

E
(8

.3
1
)

F
(8

.1
8
)

G
(8

.1
6
5
)

H
(8

.3
)

I(8
.3

8
5
)

J(8
.1

2
)

K
(8

.4
8
5
)

L
(8

.2
6
5
)

M
(8

.4
5
5
)

N
(7

.6
6
5
)

O
(8

.2
2
5
)

P
(8

.3
1
)

Q
(8

.3
1
)

R
(8

.2
3
)

S
(8

.3
1
5
)

T
(8

.4
2
)

U
(8

.1
8
5
)

V
(8

.2
5
5
)

W
(8

.3
4
)

X
(8

.3
3
5
)

M
B

/s

Runs A-X with median speed in parentheses

Fig. 5.5. FIO random read 128k.

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

A
(1

.2
6
)

B
(1

.1
5
)

C
(1

.2
1
)

D
(1

.2
3
)

E
(1

.1
9
)

F
(1

.1
6
)

G
(1

.1
3
)

H
(1

.1
8
5
)

I(1
.2

3
5
)

J(1
.1

7
)

K
(1

.4
4
)

L
(1

.1
1
)

M
(1

.1
6
5
)

N
(1

.3
4
)

O
(1

.1
7
)

P
(1

.3
3
)

Q
(1

.2
1
)

R
(1

.3
3
)

S
(1

.2
2
)

T
(1

.3
9
)

U
(1

.2
2
)

V
(1

.2
8
5
)

W
(1

.2
2
)

X
(1

.3
8
)

M
B

/s

Runs A-X with median speed in parentheses

Fig. 5.6. FIO random write 128k.

flusher being 4194304 (K) and 419430400 (L) is almost 30%. The interesting part is that it is the same
parameter with different values that changes the behaviour. A similar behaviour can be observed for the pairs
M to X where the smaller value performs better than the larger. The default configurations performance for
these runs is always in between the lower and higher configurations.

For sequential read access (Figure 5.7) the performance is very even with a difference of 9% between
configuration O (lowest) and Q (highest). The default configuration is surpassed by only four configurations.
For sequential write access (Figure 5.8) configurations N and K are the most disruptive, with K performing
16.5% lower than the default configuration. Gains are not observed under this workload.

5.3.3. 1MB. For random 1MB block access (Figure 5.9) disk threads=4 (F), filestore queue max

bytes equals 10485760 (R) and 1048576000 (Q) perform better than the rest. Configuration F is able to improve
performance by 10% over the default. The most disruptive configuration is filestore op threads=8 (J) that
reduces performance by 13%. For random write access (Figure 5.10) configuration filestore wbthrottle xfs

bytes start flusher=4194304 (K) improves the performance by 44.5% over the default configuration. Only
configuration Q shows reduced performance. All other configurations improve performance.

294 S. Meyer, J.P. Morrison

 11

 12

 13

 14

 15

 16

 17

 18

A
(1

3
.8

3
)

B
(1

3
.7

2
5
)

C
(1

2
.8

8
)

D
(1

3
.2

1
)

E
(1

3
.1

8
)

F
(1

3
.4

1
5
)

G
(1

3
.6

4
5
)

H
(1

3
.4

2
)

I(1
3
.2

9
5
)

J(1
3
.4

2
5
)

K
(1

3
.1

8
5
)

L
(1

3
.0

8
)

M
(1

3
.3

3
)

N
(1

3
.9

0
5
)

O
(1

2
.7

5
5
)

P
(1

3
.4

7
)

Q
(1

3
.9

9
5
)

R
(1

3
.9

5
)

S
(1

3
.6

6
)

T
(1

2
.8

2
)

U
(1

3
.3

2
)

V
(1

3
.6

9
)

W
(1

3
.2

1
)

X
(1

3
.9

8
)

M
B

/s

Runs A-X with median speed in parentheses

Fig. 5.7. FIO sequential read 128k.

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

A
(3

.3
)

B
(3

.1
9
)

C
(3

.2
1
5
)

D
(3

.2
6
5
)

E
(3

.1
6
)

F
(3

.1
2
5
)

G
(3

.2
3
5
)

H
(3

.2
5
5
)

I(3
.1

6
5
)

J(3
.2

)

K
(2

.7
6
5
)

L
(3

.1
6
5
)

M
(3

.1
6
)

N
(2

.9
5
5
)

O
(3

.2
3
)

P
(3

.1
9
5
)

Q
(3

.1
7
5
)

R
(3

.2
4
)

S
(3

.1
9
)

T
(3

.1
7
)

U
(3

.1
6
)

V
(3

.2
6
)

W
(3

.1
3
5
)

X
(3

.2
5
5
)

M
B

/s

Runs A-X with median speed in parentheses

Fig. 5.8. FIO sequential write 128k.

Under sequential 1MB read workloads (Figure 5.11) there is no configuration that improves performance.
The maximum regression observed is 8% (W). For writing (Figure 5.12) configuration K show the highest gains
of 28%.

5.3.4. 32MB. In random 32MB read and write access loads, see Figures 5.13 and 5.14, configuration
filestore queue max bytes=1048576000 (Q) are able to improve performance over the default configuration.
For random writes the same parameter with a hundred times smaller queue size (R) is able to surpass it,
but not for random reads. Configuration filestore wbthrottle xfs inodes start flusher=5000 (O) is the
most disruptive for random reads, reducing performance by more than 2 MB/s in comparison to the default
configuration. For random writes multiple configurations (E, H, O) have a strong negative impact. In comparison
to the default configuration changing the parameters for 32MB random access workloads is more harmful than
useful.

For sequential 32MB read access (see Figure 5.15) all configurations that deviate from the default reduce
the performance by up to 14% (C) or 2.2 MB/s. Configurations B and Q reduce performance the least. With

Impact of Single Parameter Changes on Ceph Cloud Storage Performance 295

 11

 12

 13

 14

 15

 16

 17

 18

 19

A
(1

3
.0

6
)

B
(1

1
.7

1
)

C
(1

1
.4

3
)

D
(1

1
.6

2
5
)

E
(1

2
.1

9
)

F
(1

4
.4

1
5
)

G
(1

1
.5

0
5
)

H
(1

1
.5

8
)

I(1
1
.5

1
)

J(1
1
.4

)

K
(1

1
.5

5
5
)

L
(1

1
.6

)

M
(1

1
.5

6
5
)

N
(1

2
.0

3
)

O
(1

1
.4

3
5
)

P
(1

1
.5

2
5
)

Q
(1

3
.8

7
)

R
(1

4
.2

3
)

S
(1

1
.6

5
)

T
(1

1
.7

6
5
)

U
(1

1
.5

9
5
)

V
(1

1
.6

)

W
(1

1
.4

8
)

X
(1

1
.7

6
5
)

M
B

/s

Runs A-X with median speed in parentheses

Fig. 5.9. FIO random read 1MB.

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

A
(4

.8
3
5
)

B
(5

.2
3
)

C
(5

.2
7
5
)

D
(5

.4
9
5
)

E
(5

.4
6
)

F
(5

.0
5
5
)

G
(5

.0
1
)

H
(5

.3
1
)

I(5
.2

3
5
)

J(5
.1

6
)

K
(6

.9
9
)

L
(4

.9
3
)

M
(5

.3
8
)

N
(5

.1
9
)

O
(5

.4
)

P
(5

.2
2
)

Q
(4

.7
6
5
)

R
(4

.9
1
)

S
(5

)

T
(5

.3
7
)

U
(5

.1
)

V
(4

.8
6
)

W
(5

.2
2
5
)

X
(5

.1
4
)

M
B

/s

Runs A-X with median speed in parentheses

Fig. 5.10. FIO random write 1MB.

sequential writes (see 5.16) the results look a bit different. Configuration R can improve performance by 6%,
whereas the other configurations reduce performance by up to 14.5% (L).

6. Conclusion. The experiments show that changing a single parameter of a Ceph cluster configuration
can have a significant impact on performance when used as a storage back-end for virtual machines. Under
specific workloads an improvement of up to 44.5% was observed. In other access patterns the improvement is
not that significant, but still an improvement over the default configuration.

Configurations that showed performance degradations of up to 50% under certain workloads have also
been observed. The severity of losses in comparison to the default configuration are heavily depending on the
workload.

Overall the performance of the default configuration is well balanced. The other configurations were not
always able to achieve better performing. Only with some access patterns the majority of the tested configu-
rations was able to improve performance. This shows that with the used hardware configuration the default
settings are working well, but leave room for improvement and are not the best possible.

296 S. Meyer, J.P. Morrison

 13

 14

 15

 16

 17

 18

 19

A
(1

5
.1

1
5
)

B
(1

4
.2

8
5
)

C
(1

4
.0

6
5
)

D
(1

4
.3

7
)

E
(1

4
.1

2
5
)

F
(1

4
.2

6
5
)

G
(1

4
.2

6
)

H
(1

4
.5

3
5
)

I(1
4
.4

3
5
)

J(1
4
.3

2
)

K
(1

4
.5

8
)

L
(1

4
.2

6
)

M
(1

4
.3

3
5
)

N
(1

4
.4

9
5
)

O
(1

4
.2

7
)

P
(1

4
.4

)

Q
(1

5
.0

2
)

R
(1

4
.8

9
)

S
(1

4
.7

5
)

T
(1

4
.4

1
)

U
(1

4
.4

1
5
)

V
(1

4
.5

9
5
)

W
(1

3
.9

4
)

X
(1

4
.6

5
5
)

M
B

/s

Runs A-X with median speed in parentheses

Fig. 5.11. FIO sequential read 1MB.

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

A
(6

.5
0
5
)

B
(7

.3
7
5
)

C
(7

.0
5
)

D
(7

.4
2
5
)

E
(7

.1
6
5
)

F
(7

.1
3
5
)

G
(7

.2
9
)

H
(7

.4
4
)

I(7
.1

2
)

J(7
.3

1
)

K
(8

.3
4
5
)

L
(6

.8
2
)

M
(7

.3
6
5
)

N
(7

.2
2
5
)

O
(7

.4
)

P
(7

.4
0
5
)

Q
(6

.8
7
)

R
(6

.8
7
)

S
(6

.5
5
5
)

T
(6

.8
0
5
)

U
(6

.4
4
)

V
(6

.9
4
)

W
(6

.9
0
5
)

X
(7

.2
1
)

M
B

/s

Runs A-X with median speed in parentheses

Fig. 5.12. FIO sequential write 1MB.

7. Acknowledgement. The research of the first author is supported by the enterprise partnership grant
EPSPG/2012/480 from IRCSET and Intel Ireland Ltd.

The research of the second author is supported by the CloudLightning project, which has received funding
from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 643946.

REFERENCES

[1] axboe/fio GitHub, https://github.com/axboe/fio (accessed 2015-12-14).
[2] Barracuda ES.2 serial ATA, http://www.seagate.com/staticfiles/support/disc/manuals/NL35%20Series%20&%20BC%20ES%

20Series/Barracuda%20ES.2%20Series/100468393f.pdf(accessed 2015-02-11).
[3] ceph/config opts.h, https://github.com/ceph/ceph (accessed 2015-01-09).
[4] CinderSupportMatrix OpenStack, https://wiki.openstack.org/wiki/CinderSupportMatrix (accessed 2014-02-12).
[5] Dell PowerConnect 6200 series switches, http://www.dell.com/downloads/emea/products/pwcn/PowerConnect 6200 spec

sheet new.pdf (accessed 2015-03-18).
[6] Dell storage SC series, http://www.dell.com/us/business/p/dell-compellent (accessed 2015-05-25).

Impact of Single Parameter Changes on Ceph Cloud Storage Performance 297

 12

 14

 16

 18

 20

 22

 24

A
(1

5
.8

7
5
)

B
(1

5
.3

2
)

C
(1

4
.2

1
5
)

D
(1

4
.0

2
)

E
(1

4
.0

8
)

F
(1

4
.9

2
)

G
(1

4
.0

4
5
)

H
(1

3
.9

1
)

I(1
3
.6

6
5
)

J(1
3
.7

3
)

K
(1

4
.0

1
)

L
(1

3
.6

6
)

M
(1

3
.9

8
)

N
(1

4
.5

2
)

O
(1

3
.5

1
5
)

P
(1

3
.8

9
)

Q
(1

5
.9

5
)

R
(1

5
.3

5
)

S
(1

5
.0

1
5
)

T
(1

4
.8

7
5
)

U
(1

4
.8

7
5
)

V
(1

4
.7

2
5
)

W
(1

4
.4

7
)

X
(1

4
.9

3
)

M
B

/s

Runs A-X with median speed in parentheses

Fig. 5.13. FIO random read 32MB.

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 14

 14.5

 15

A
(1

2
.9

9
5
)

B
(1

1
.9

)

C
(1

1
.3

4
)

D
(1

1
.5

7
)

E
(1

1
.0

2
)

F
(1

1
.5

8
5
)

G
(1

1
.4

4
5
)

H
(1

1
.0

3
5
)

I(1
2
.1

4
)

J(1
1
.9

4
)

K
(1

1
.4

5
)

L
(1

1
.3

7
5
)

M
(1

1
.4

7
)

N
(1

1
.2

8
)

O
(1

1
.1

3
5
)

P
(1

1
.5

2
)

Q
(1

2
.9

7
5
)

R
(1

3
.4

5
)

S
(1

2
.3

3
5
)

T
(1

2
.1

2
5
)

U
(1

2
.1

1
)

V
(1

2
.2

7
)

W
(1

1
.8

2
5
)

X
(1

2
.3

3
)

M
B

/s

Runs A-X with median speed in parentheses

Fig. 5.14. FIO random write 32MB.

[7] A guide to the OpenStack kilo release, https://developer.ibm.com/opentech/2015/04/30/a-guide-to-the-openstack-

kilo-release/ (accessed 2015-07-01).
[8] HitachiUltrastar a7k1000, http://www.hgst.com/tech/techlib.nsf/techdocs/DF2EF568E18716F5862572C20067A757/\$file/

Ultrastar A7K1000 final DS.pdf (accessed 2015-02-11).
[9] IEEE standard for local and metropolitan area networks–link aggregation, pp. 1–163, http://dx.doi.org/10.1109/IEEESTD.

2008.4668665 doi:10.1109/IEEESTD.2008.4668665.
[10] OpenStack user survey insights: November 2014, http://superuser.openstack.org/articles/openstack-user-survey-

insights-november-2014 (accessed 2015-03-03).
[11] Stackalytics | OpenStack community contribution in kilo release, http://stackalytics.com/?release=kilo (accessed 2015-

07-01).
[12] WD RE4 series disti spec sheet - 2879-701338.pdf, http://www.wdc.com/wdproducts/library/SpecSheet/ENG/2879-701338.

pdf (accessed 2015-12-17).
[13] I. Inktank Storage and contributors, Pools ceph documentation, http://docs.ceph.com/docs/master/rados/

operations/pools/ (accessed 2015-07-07).
[14] S. Meyer and J. P. Morrison, Supporting heterogeneous pools in a single ceph storage cluster, in 2015 17th International

Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp. 352–359, http://dx.doi.
org/10.1109/SYNASC.2015.61 doi:10.1109/SYNASC.2015.61.

[15] S. Pratt and D. A. Heger, Workload dependent performance evaluation of the linux 2.6 i/o schedulers, in 2004 Linux

298 S. Meyer, J.P. Morrison

 14

 16

 18

 20

 22

 24

 26

 28

A
(1

7
.1

7
5
)

B
(1

6
.4

8
)

C
(1

4
.9

1
5
)

D
(1

5
.2

0
5
)

E
(1

4
.9

6
5
)

F
(1

5
.3

5
)

G
(1

5
.2

6
)

H
(1

5
.5

6
)

I(1
5
.1

4
)

J(1
5
.4

1
5
)

K
(1

5
.2

0
5
)

L
(1

5
.2

1
)

M
(1

5
.4

)

N
(1

6
.0

5
5
)

O
(1

5
.3

3
)

P
(1

5
.4

7
5
)

Q
(1

6
.5

1
5
)

R
(1

6
.2

2
5
)

S
(1

5
.9

5
)

T
(1

5
.0

6
5
)

U
(1

5
.2

8
5
)

V
(1

5
.9

7
5
)

W
(1

5
.1

3
5
)

X
(1

5
.8

1
)

M
B

/s

Runs A-X with median speed in parentheses

Fig. 5.15. FIO sequential read 32MB.

 11

 11.5

 12

 12.5

 13

 13.5

 14

 14.5

 15

 15.5

 16

A
(1

3
.9

6
5
)

B
(1

2
.7

5
)

C
(1

2
.0

7
5
)

D
(1

2
.5

7
5
)

E
(1

2
.0

7
)

F
(1

2
.3

7
5
)

G
(1

2
.3

5
)

H
(1

2
.1

8
5
)

I(1
2
.8

8
5
)

J(1
2
.7

5
)

K
(1

2
.4

6
5
)

L
(1

1
.9

4
)

M
(1

2
.4

6
)

N
(1

2
.0

8
5
)

O
(1

2
.4

1
5
)

P
(1

2
.2

2
)

Q
(1

3
.4

8
)

R
(1

4
.7

9
5
)

S
(1

2
.9

4
)

T
(1

2
.7

1
)

U
(1

2
.4

6
5
)

V
(1

2
.9

7
)

W
(1

2
.6

6
)

X
(1

3
.1

5
5
)

M
B

/s

Runs A-X with median speed in parentheses

Fig. 5.16. FIO sequential write 32MB.

Symposium, http://landley.net/kdocs/mirror/ols2004v2.pdf#page=139 (accessed 2015-06-30).
[16] S. A. Weil, Ceph: Reliable, scalable, and high-performance distributed storage, 2007, http://pdf-release.net/external/

4047524/pdf-release-dot-net-weil-thesis.pdf (accessed 2014-03-26).
[17] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn, Ceph: A scalable, high-performance distributed

file system, in Proceedings of the 7th symposium on Operating systems design and implementation, USENIX Association,
2006, pp. 307–320, http://dl.acm.org/citation.cfm?id=1298485 (accessed 2014-03-26).

[18] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, CRUSH: controlled, scalable, decentralized placement of
replicated data, in Proceedings of the 2006 ACM/IEEE conference on Supercomputing, ACM, 2006, p. 122, http://dl.
acm.org/citation.cfm?id=1188582 (accessed 2014-03-26).

[19] S. A. Weil, A. W. Leung, S. A. Brandt, and C. Maltzahn, Rados: a scalable, reliable storage service for petabyte-scale
storage clusters, in Proceedings of the 2nd international workshop on Petascale data storage: held in conjunction with
Supercomputing’07, ACM, 2007, pp. 35–44, http://dl.acm.org/citation.cfm?id=1374606 (accessed 2014-03-26).

Edited by: Dana Petcu
Received: May 11, 2016
Accepted: July 17, 2016

Scalable Computing: Practice and Experience
Volume 17, Number 4, pp. 299–312. http://www.scpe.org

DOI 10.12694/scpe.v17i4.1202
ISSN 1895-1767
c⃝ 2016 SCPE

MULTI-OBJECTIVE MIDDLEWARE FOR DISTRIBUTED VMI REPOSITORIES
IN FEDERATED CLOUD ENVIRONMENT

DRAGI KIMOVSKI ∗, NISHANT SAURABH *, VLADO STANKOVSKI †, AND RADU PRODAN *

Abstract. Virtualization represents an essential technology in Cloud computing, which allows virtual machines (VM) to be
executed within their own environment on top of physical hardware. The modern methods for software delivery are utilizing the
concept of Vitual Machine as a efficient tool for software packaging. Typically, VMs are created using specific templates that
are stored in proprietary repositories, thus leading to provider lock-in and reduced portability in the cases of simultaneous usage
of multiple federated Clouds. Unfortunately, the current state-of-the-art does not provide any efficient means for streamlined
management of VM images across multiple repositories, especially within federated Cloud environments. In this paper we present
a novel multi-objective middleware for distributed VMI repositories in federated Cloud environment. The middleware has been
designed to provide easy to use interface capable of receiving unmodified and functionally complete VM images from its users,
and transparently distribute them to a specific Cloud infrastructure in a federation with respect to their size, configuration, and
geographical distribution, such that they are loaded, delivered, and executed faster and with improved QoS compared to their
current behaviour.

Key words: Distributed Repositories, Cloud Federation, Multi-Objective optimization

AMS subject classifications. 68M14, 90C26

1. Introduction. Virtualization represents an essential technology in Cloud computing, which allows
virtual machines (VM) to be executed within their own environment on top of physical hardware [14]. The
modern methods for software delivery are utilizing the concept of Vitual Machine as a efficient tool for software
packaging. The exploiting of this concept enables efficient scaling of applications by providing elastic on-
demand provisioning of VMs in response to their variable load, thus increasing the utilization efficiency at
a lower financial cost [4]. Typically, VMs are created using specific templates that are stored in proprietary
repositories, thus leading to provider lock-in and reduced portability in the cases of simultaneous usage of
multiple Clouds [8, 15, 10].

Unfortunately, the current state-of-the-art does not provide any efficient means for streamlined management
of VM images (VMI) across multiple repositories within federated Cloud environments [cite cloud federation].
In such environments, the VMIs are currently stored by Cloud providers in proprietary centralised repositories
without considering application characteristics and their runtime requirements, causing high deployment and
instantiation overheads. Moreover, users are expected to manually manage the VMI storage, which is tedious,
error-prone and time-consuming process, especially if working with multiple Cloud providers. Furthermore,
each Cloud provider utilizes different type of storage technique and implements different interfaces for accessing
it, thus reducing the usability even further. In this paper we present a novel Multi-objective middleware for
management of VMIs in federated Cloud repositories, which has been developed as an essential part of the H2020
ENTICE project 1. The middleware has been designed to provide easy to use interface capable of receiving
unmodified and functionally complete VM images from its users, and transparently distribute them to a specific
Cloud infrastructure in a federation with respect to their size, configuration, and geographical distribution,
such that they are loaded, delivered, and executed faster and with improved QoS compared to their current
behaviour. The proposed middleware has been focused towards overcoming the barriers that prevent the wide
usage of distributed VMI repositories in federated Cloud environment and it aims to: (i) automatically distribute
VM images based on multi-objective optimisation to meet application runtime requirements; and (ii) provide
interface which enables users to manage their VM images in federated Cloud infrastructures without provider
lock-in.

The paper is structured as follows. In Section 2 we present the basic concepts of the ENTICE environment.
In Section 3 we introduce the ENTICE functional and non-functional requirements and how those affect the
middleware functionality. Furthermore, a detailed overview of the middleware and all provided services is

∗University of Innsbruck, dragi@dps.uibk.ac.at
†University of Ljubljana,
1http://www.entice-project.eu/

299

300 D. Kimovski, N. Saurabh, V. Stankovski, R. Prodan

Fig. 2.1. Top level view of the ENTICE environment

presented in Section 4. Then we proceed by presenting the developed multi-objective framework for VMI re-
distribution. Further to this, we present details of the implementation of the framework and it’s integration
within the middleware. Section 7 summarizes the main results, their impact and future work.

2. ENTICE environment for efficient and transparent virtual machine operations in dis-
tributed Cloud repositories. The ENTICE project aims on development of an dynamic environment capable
of receiving unmodified and functionally complete VM images from users, and transparently tailor and optimise
them for specific Cloud infrastructures with respect to their size, configuration, and geographical distribution,
such that they are loaded, delivered, and executed faster and with improved QoS compared to their current
behaviour. ENTICE gradually stores information about the VMI and fragments in a knowledge base that is
used for interoperability, integration, reasoning and optimisation purposes.

VM images management is supported by ENTICE at an abstract level, independent of the middleware
technology supported by the underlying Cloud computing infrastructure. To further shield the users from the
complexity of underlying Cloud technologies and simplify the development and the execution of complex use
cases, ENTICE focuses on providing the flexibility for tailoring the VM images to specific Cloud infrastructures.

The ENTICE repository includes, among other features, techniques to optimise the size of VM images while
maintaining their functionality, automatically share images (or parts of the images) among repositories (even in
multiple administrative domains or cloud infrastructures), and optimally deploy them in response to application
and data centre requirements.

The ENTICE environment, depicted in Figure 2.1, aims to prove a universal backbone and middleware for
IaaS VM management operations, which accommodate the needs for different use cases with dynamic resource
and other QoS requirements. The ENTICE technology is completely decoupled from the applications and their
specific runtime environments, but continuously supports them through optimised VM image creation, assembly,
migration and storage.

Within the ENTICE environment, the Multi-objective middleware for distributed VMI repositories has

Multi-objective Middleware for Distributed VMI Repositories in Federated Cloud Environment 301

Fig. 2.2. Top level view of the Multi-objective middleware for distributed VMI repositories

been layered in multiple modules. To be more concrete, the middleware is composed of VM image distribution
module, online VM image assembly module and multi-objective optimization framework. All components
interact by using service based API interfaces, thus allowing independent integration of the middleware in
various distributied VMI repository architectures. The top level view of the middleware, as an independed fully
integrated module, is presented in Figure 2.2.

3. Functional requirements. As discussed in Section 1, in order to overcome the barriers that limit the
possibilities for Cloud federation, we present a specific use-case scenario, which is highly relevant for proper
definition of the middleware interface that ENTICE environment has to offer. Furthermore, based on these
requirements, we list down the imminent functionalities specific to relevant components of the ENTICE envi-
ronment.

The use-case of ENTICE environment at the outset, typically initiates with the Application Provider
uploading VM Image encompassed with appropriate application functionalities. Henceforth, an easy interface
to the user which integrates to the funtionalities including image optimization, storage and the knowledge
oriented image portal with enhanced reasoning based module for easy access of services (example: upload,
download, update, optimize etc.) and VM image management is required. In general, user specific images are
large sized comprising of redundant functionalities incurring high storage cost resulting to image distribution
and instantiation overheads. Henceforth, the splitting of an image into multiple fragments serving common
functionality and storing them only once is necessitated to reduce the redundancy. Furthermore, the repository
optimization with regards to the storage location of images evaluating performance metrics of each attached
repository medium is imminent for faster VMI distribution across multiple clouds. Based on these factors,
we identify the generalized requirements for the ENTICE environment. Hence, we divide the ENTICE design
requirements in the following broad categories: (i) Application data-related requirements, (ii) Security-related
requirements, (iii) VMI and fragment management-related, (iv) Information and metadata management-related
requirements, and (v) QoS metrics-related.

The Application-data related requirements encompass the delivery of various content alongside the VM
image, for the efficient execution of the corresponding application. To this extent, the ENTICE environment
provides a functional descriptions tool that contains references to the additional VM image content and evaluate
its presence in terms of files, folders, sizes, distribution and etc.

Furthermore, the ENTICE environment needs to address various security measures, to prevent unauthorized

302 D. Kimovski, N. Saurabh, V. Stankovski, R. Prodan

access of VMIs. For this purpose, the repository must support content delivery through encrypted channels.
Moreover, the analysis methods for VMIs of the ENTICE environment should not compromise the privacy and
security of the Cloud application owners and should not expose any user data, which should be securely stored
in the knowledge base.

One of the requirements that ENTICE repository holds is to provide fast VM image delivery, hence iden-
tify the VMIs and fragment management-related requirements. The management module requires efficient
integration of specific modules for VM image and meta-data delivery, with the a Multi-objective optimization
framework for online and offline distribution of the data. In addition, the ENTICE environment needs emphasis
to support the delivery of data in the form of files or folders containing user specifications, thus requiring relevant
informations and metadata management. In such cases, ENTICE must provide appropriate storage and data
delivery mechanism together with the VMIs. Further, the data needs to be indexed, so that the appropriate
distribution techniques allow efficient delivery to relevant geographical locations. Hence, it is required to mi-
antain index hashing of VMIs and correspondin fragments. The semantic model represented in the Knowledge
Base requires to store information about the VMIs and their functionality, the geographic location, the URI,
and other details for the search facility.

Lastly, monitoring of QoS metrics is necessary to be able to observe the time needed to move VMIs and/or
fragments among repository locations and to deploy a VMI needed by a particular Cloud application. A further
requirement is to monitor the infrastructure on which the ENTICE repository is deployed to ensure that the
scaling and speed of operation is adequate.

Hence, based on the discussed requirements, we list down the important use-case functionalities for the
Multi-objective VMI repository as a federation middleware:

• Upload of unoptimised images to S3 storage

• Upload of optimised images to S3 storage

• VM Image download via URI

• VM Image location tracking

• Upload of VM Image directly to Image Server of Cloud provider for deployment

• Upload of VM Image to the image server of specific Cloud provider from S3

• Storage redistribution of VM Images stored within S3 based VMI repository

Furthermore, for the optimization framework we have identified and implemented the following use-case
functions:

• Applying Multi-objective Optimization for distribution of the VM Images and fragments across dis-

tributed storage sites

• Optimized extraction of fragments, based on functionality, for assembly of the VM Images during the

deployment stage

• Movement of VM image from one storage location to another

• Location Tracking of each VM Image to enhance storage and distribution

• VMI conversion from one provider specific template to another to achieve interoperability over multiple

cloud

4. VMI repository as a federation middleware. The ENTICE VMI storage repository evolves from
the typical storage systems[13] providing general storage services, and instead focuses to act as a middleware
corresponding to specific Virtual Machine operations regading the storage, deployment and interoperability of
VMI over multiple clouds. These middleware services enhances flexibility of user with respect to maintaining
VMI accomplished with user-specific funtionalities and applications and hence surpasses the manual error-
prone VM oeprations performed by the users in a federated cloud model. The ENTICE federation middleware
is attached to storage systems of varying cloud providers(currently supports S3 object storage) accompanied
with the Multi-objective optimization service, providing enhanced availability and hence optimizing the VMI
distribution time with enhanced deployment.

In general, individual cloud providers constitute of centralized image repositories with services specific to
their environment. ENTICE recognizes the limitations including the interoperability of VMI and and hence
intializes a middleware API with a number of services corresponding to storage of VMI across federated multiple
clouds[11] with enhanced Quality of service[2] with regard to VM provisioning and deployment. This enables

Multi-objective Middleware for Distributed VMI Repositories in Federated Cloud Environment 303

the user to have flexible usage of Cloud Infrastructure as a Service as a global paradigm[9]. Henceforth, in this
section, we identify the following middleware services provided by ENTICE satisfying the use case functionality
defined in the previous section and explain the requirements and service it holds.

4.1. Upload of Un-optimized VMI to S3 Storage. This functionality services the storage of unop-
timized images to ENTICE S3 repository. The un-optimized images basically refer to the initial version of
user-specific images without any optimizations performed with respect to size and application functionality it
provides. This image version is often termed as master copy consisting of all the user built applications. The
ENTICE middleware API intiates the storage of such images onto the corresponding S3 repository with return
values namely, VMI name, identifier, S3 storage repository location and Unique resource identifier(URI) of the
VMI. The return values are transmitted onto the ENTICE knowledge base for future reference by the user.

4.2. Upload of Optimized VMI to S3 Storage. The stored master copy of VMI onto S3 often consists
of unused libraries and functionalities. Henceforth, any optimization performed over the VMI by the user by
pruning the images, reduces the size of image allowing enhanced provisioning and faster deployment. The
upload request of such optimized image is serviced by uploading the latest optimized version along side the
master copy of the image. However, the master copy of the image is not deprecated from S3 repository with a
view to safeguard the requirement of the user to restore the initial version consisting of complete user specific
applications at any point of time. The API return field values namely, name of VMI master copy, name of
opimized VMI, storage location, optimized image version and its corresponding URI. These field values allows
to maintain the versioning tree for image and its optimizations.

4.3. Upload of VMI to Image Store directly. In general, cloud providers have centralized image store
which allows the upload and registry of images suitable to the corresponding cloud infrastructure. The image
store is basically attached to varying storage sites differing from one cloud provider to another. For example,
Amazon enables the bridging of the S3 storage with the image store, allowing upload of registry of VMI to S3
following a set of rules separating from other content related files and data. The ENTICE middleware provides
the flexibility to the user to upload their image directly to the image store of their favaorable cloud provider
region. As discussed earlier, the upload functionality to S3 is used in the case where decision improbability
surfaces within the user about the cloud provider and the region, where VMI has to be deployed. In this
functionality, user can choose the image store of the specific cloud provider and corresponding region. The
return values of this service provide field values with respect to VMI name, VMI unique identifer, size of the
image onto the image store, cloud provider identifier and the corresponding zone identifier.

4.4. Upload of VMI to image store from S3 storage. The ENTICE API providing the service
enables the transfer of un-optimized or optimized images from S3 repository to the image store of the chosen
cloud provider, where it can be registered as an instance and hence deployed. As dicussed earlier, S3 storage
is used as a back-up to enhance availability of images specifically in the case of indecision related to the cloud
provider and region for the deployment of virtual machine(VM). Once the user is decided over the region in
which VM has to be deployed, the API service distributes the image to the corresponding destined image store.
Henceforth, the field values namely, VMI name, VMI unique identifer, size of the image onto the image store,
cloud provider identifier and the corresponding zone identifier are returned and stored in the knowledge base of
future reference.

4.5. VMI Location Tracking. The API service tracks the location of stored and instantiated VMI for
every user to return the filed values namely, cloud provider identifier and zones where a specific user usually
instantiates or store the image. These image specific details allow the Multi-objective optimization module as
discussed in next section, to analyse the popularity of cloud provider and zones for varrying users.

4.6. Redistribution of VMI over storage sites. This service corresponds to the Multi-objective opti-
mization service and is performed internally without the interference of the user. The decision making module
provides the input parameters for redistribution of the stored images onto the various repository sites corre-
sponding to the user related Quality of service metrics. This services is likely to enhance the distribution of
VMI onto the cloud provider, further improving the deployment time and elatic auto-scaling of VM.

304 D. Kimovski, N. Saurabh, V. Stankovski, R. Prodan

4.7. Download via URI. As defined earlier, each stored VMI onto S3 repository returns a URI allowing
users to download images from the ENTICE environment to their private virtualized cloud infrastructure.
Hence, in such case the image is stored at a repository site closer to user location enabling faster download.

4.8. VMI Interoperability. The varying Cloud providers allow specific image formats to be instantiated
as VM over their corresponding infrastruture. For example, Amazon require specific Amazon Machine Im-
ages(AMI). Hence, this hinders the federated Infrastruture as a Service model[11] leading to vendor lock-in[12]
and promotes the manual conversion of images to suit the respected cloud provider to make the process more
error-prone. This unique funtionality of ENTICE enables interoperability of any stored images onto S3 over
multiple clouds by converting to the image format as per the suitability of the user defined cloud infrastructure
irrespective of the user provided image format.

5. Multi-objective Optimization Framework for VM image re-distribution. In this section a
detailed description of the multi-objective optimization framework for VMI distribution in Federated Cloud
repositories will be presented. The optimization framework is capable of directly interacting with the middleware
module and has been applied on two distinctive application levels: (i) initial VMI distribution, (ii) offline VM
image redistribution and (iii) online VM image redistribution.

5.1. Framework description. The framework is encompassed around unified multi-objective optimiza-
tion module, which can be utilized for multiple different optimization purposes. Internally, the optimization
module is branched in two distinctive sub-modules. Each of the sub-modules has been tailored specifically for
a given task. The Initial Distribution sub-module covers the multi-criteria evaluation of the possible repository
sites where the VMIs or associated data sets can be initially stored. Afterwards, the Offline VMI Redistribution
sub-module encapsulates the optimization of the VM images distribution within the federated repository sites.
By taking into account the VMIs usage patterns, the algorithm is capable of providing multiple trade-off so-
lutions, where each solution represents a possible mapping between the stored images and available repository
sites. The Online VM image Redistribution sub-module aims on dynamical redistribution of particular VM
images/fragments during particular application execution. This sub-module is only applied for users specific
VM images and in accordance with the technicalities of the application that is being executed. The framework
is dependent on the repositorys usage patterns to properly optimize the distribution of the VM images. To this
aim a specific module is required to store information on the previous transfers within the federation and to
provide the collected data in a proper format. The module has been realized as an ontology-based knowledge
base [1]. The framework has been designed to acquire input data from the knowledge base, and also to return
the output results there. Moreover, a specific monitoring agent is required for proper documentation of the
data transfers. The monitoring tool itself can be realized in multiple different manners, and it is dependent on
the specifics of the Cloud infrastructure.

Furthermore, the framework provides a service based API, through which the Decision Maker (DM) can
access the list of optimal Pareto solutions in a guided manner, thus reducing the complexity of the VMI storage
management process.The high level structure of the optimization framework is presented on Figure 5.1.

5.2. Initial VM image upload. It is of paramount importance to properly store new VMIs and related
data sets in federated Cloud repositories. In this section we introduce concepts from the field of Multiple-criteria
decision making, to assist image providers and users to efficiently store new VMIs in accordance with their needs
and repository characteristics [3]. The described module, provides a tool which mitigates the process of initial
VMI upload, when the available storage sites possibilities are so large that can overwhelm the user during the
decision process.

The problem of initial VM image upload consist of a finite number of combinatorial alternatives, which are
explicitly known in the beginning of the solving process. In this case, each alternative solution represents one
storage site in the federated repository, where the image or data-sets can be stored. Every solution is evaluated
on the basis of two conflicting objectives. For the specific problem, the following objectives have been defined:

f(P) = Br(5.1)

f(C) = Cst + Ctr(5.2)

Multi-objective Middleware for Distributed VMI Repositories in Federated Cloud Environment 305

Fig. 5.1. Top level view of the Multi-objective Optimization Framework for VM Image distribution

where Br represents the maximal theoretical performance of the interconnections of the repository, while Cst is
the cost for storing data on the given repository and Ctr is the cost for transfer. Based on the given objectives,
all possible storage sites in the repository, are then evaluated. It is important to be noted, that the evaluation
is performed only on the feasible solutions, i.e only on the list of available repository sites. This means that
prior to evaluation, all constraints for storing the VMI are taken into account. Afterwards, by introducing the
concept of domination all evaluated solutions are sorted. The solutions which are non-dominated by any other
solution are presented to the user in the form of Pareto front. In a sense, those solutions represent multiple
optimal storage sites for storing a single VM image within the federated repository. Next, the user, as a decision
maker, can choose where to initially store its own images.

It also worth mentioning, that due to the static nature, this type of evaluation should only be performed
when new storage sites have been added or removed from the federated repository. Afterwards, if there are no
changes in the structure of the federated repository, the evaluation data can be used for selecting the appropriate
storage site for every VM image that might be uploaded in future.

5.3. Offline VM image redistribution. Unlike the initial image upload, the problem of offline VMI
redistribution consist of a finite, but very large, number of combinatorial alternatives, which are not known
in the beginning of the solving process. The optimization process is conducted by utilizing two conflicting
objectives: cost for storing and transferring of the data, which we simply call Cost objective and Performance
objective. This process is performed by analyzing the repositories usage patterns, and results in optimized
distribution of the VMIs and the associated data-sets across the federated environment. In what follows the
exact sequence of steps of the offline VMI redistribution sub-module is presented.

5.3.1. Objective functions modeling. The cost model is described around the notion of the financial
expenses which are needed to store a unit of data in a given repository site Cst and the economical burden for
transferring the data from the initial to the optimal site Ctrnew. The exact values of the financial expenses for

306 D. Kimovski, N. Saurabh, V. Stankovski, R. Prodan

Fig. 5.2. An example of a neighbouring sub-graph in a structure with 3 repository sites and 4 different cloud providers

data storage and transfers should be provisioned by all Cloud providers within the federation. For each VM
image the cost objective can be calculated by using the formula below:

f(C) = Cst + Ctrnew(5.3)

The performance model includes much more complex reasoning behind it. It is based on the VM image
usage patterns and it requires proper monitoring tool for efficient execution. The raw theoretical throughput of
the interconnecting structure within a Cloud federation does not properly describe the factual communication
performance, as it is difficult to predict the actual route the packets may take to reach the destination and
the load on the intermediate communication channels. Opportunely, it is possible to leverage the data from
the frameworks monitoring module to perform a coarse but sufficient estimation on the actual throughput
between any pair of end points in the federation. In this way, if there is a sufficient information on the previous
transfers among the repository sites and the Cloud computing instances, a direct virtual links between the above
mentioned entities can be abstracted over the physical network and their bandwidth can be estimated.

Furthermore, it is possible to model an undirected weighted graph, where the vertices correspond to either
a repository site or a computational Cloud instance and the edges of the graph are represented by the virtual
links. The weighted graph actually enclosed a union of multiple neighboring subgraphs, where each storage site
vertex, as direct neighbor, is linked to all known computational cloud vertices. The weights of the edges in the
graph are determined by leveraging the estimated average bandwidth Brci on the corresponding virtual links.
The weights are calculated dynamically, based the VMI distribution that is being considered. To properly model
the weight of the edges, we introduce weight function, which considers the total number of downloads of the
VMI to all neighbours Gtv and the number of downloads to particular Cloud neighbor Gi. The ratio of those
two values is then multiplied with the estimated bandwidth of the particular virtual link to provide the final
value of the edges weight. The structure of the neighbouring sub-graph has been represented on Figure 5.2.

Subsequently, for modeling of the performance objective, the sum of the weights of the edges in the neigh-
bouring subgraph is exploited, thus the performance can be described as:

f(P) =
n
∑

i=1

Brci(
Gi

Gtv

)(5.4)

Multi-objective Middleware for Distributed VMI Repositories in Federated Cloud Environment 307

Fig. 5.3. An example individual represented as a solution vector

5.3.2. Search Algorithm and Decision Making. The core of the offline VMI redistribution sub-module
is constructed over the NSGA-II multi-objective optimization algorithm [5]. As with any population based
genetic heuristic the basic entity is the individual. Within the given problem description the individual has
been represented as vector with a size equal to the number of stored VMIs. The value kept in every element of
the vector corresponds to a single storage repository where a particular VMI can be stored. For accomplishing
the above statement, within the proposed framework, each VMI is assigned with a unique ID value, which
correspond to the index of the vector element. Respectively, all storage sites in the federation are also assigned
with unique IDs that are parallel to the appropriate values saved in the vector elements. In such way, each
individual corresponds to a solution vector that represents unique global mapping of all VMIs to storage sites
in the federated repository.

Afterwards, multiple solutions vectors are created and then randomly populated with values in the range
from one to the number of available storage sites, thus creating the initial population. Every single individual
represents one possible distribution solution that has to be evaluated. Then, the evaluation of each individual
is performed by reading the values stored in the vector fields. Based on those values, starting from every
element in the vector, a neighboring subgraph is constructed and the appropriate objective functions are applied.
Those values are then grouped together and the median value is selected as the overall fitness of the given
individual. An example of a single individual that correspond to a solution vector for mapping 9 VMIs to 3
storage repository sites in a given federation is presented on Figure 5.3. When all individuals in the initial
population have been successfully evaluated, the proper mutation and crossover operators are applied to create
the children population. Then, the parents and children populations are grouped together and sorted according
to dominance. Afterwards, only the best solution of the newly formed group are selected for the next iteration.
This process is then repeated for a predefined number of iterations. The solutions which have been acquired
after the last iteration are sorted based on the dominance. The non-dominated solutions are then presented to
the administrative entity of the federation, which acts as a DM, and should select the most appropriate solution
based on the pre-defined decision making policy.

Decision making on the alternatives discovered by the optimization algorithm requires an explicit model of
the decision maker preferences. For the case of offline VMI redistribution the DM model will depend on the
implementation of the federated infrastructure. As the offline image redistribution envelops federation wide
distribution of the VMIs we envision that the DM will be an administration entity, which will implement the
federation storage policy based on the decision making model. Based on the decision done by the DM entity
the storage redistribution sub-module would be capable to transparently moving all affected VMIs in the more
optimal position.

5.4. Online VMI redistribution. One very important aspect that should be considered in federated
cloud environment and repositories is the optimization of specific users VM images and corresponding data sets
while correlated applications are being executed. Even though the offline VM image redistribution should place

308 D. Kimovski, N. Saurabh, V. Stankovski, R. Prodan

the VM images in the optimal storage site, there might be cases where the optimization is required only locally,
for some particular images or data sets. For example, if a user continuously deploys particular VM image within
a short period of time, the position where that image is stored can be additionally optimized based on the newly
available data. Consequently, the image can temporarily be transferred to the more optimal solution for the
given scenario. The same principle can be applied to the associated datasets, which can be redistributed closer
to the physical machines where the VM images are deployed.

By using the same methods implemented in the offline VM image redistribution, the online VM image
provisioning can be managed. As both processes are analogous, the only difference comes from the scope
and the time interval in which the optimization is performed. With the online VM image redistribution, the
optimization is only executed by users request, and only on its own images. When the user ask for optimization
of the VM images storage position while deployment, the algorithm is initiated with a limited scope. The
input data of the optimization module is only narrowed to the user images and the optimization only takes
into account the users usage patterns in a previously set time interval. In this way it becomes possible to
further optimize the position of VM images in the cases when they are frequently deployed in a short intervals
of time. In a sense it can be commenced, that the offline VM image storage optimization is coarse grained and
infrequently applied on all VM images and datasets stored in the federated repository. Contrary, the online VM
image optimization is fine grained, and it involves only a users specific VM images that are frequently deployed
in a given time interval.

From an algorithmic point of view, the cost and performance objectives are modeled in the same way. The
only difference are the input parameters, which in the case of online VM image optimization only involves few
VM images, and the output solution vector is also limited only to the images that need to be transferred to
more optimal place. As this process only involves fraction of the images stored in the federated repository it
can be performed more frequently with reduced computational penalty.

6. Evaluation. In this section, the efficiency of the Multi-objective middleware has been experimentally
evaluated based on a synthetic set of benchmark data. As our research deals with the implementation of a
combinatorial multi-objective problem in federated Cloud environment, we present an experimental results that
demonstrate the ability of our approach to provide an adequate VMI distribution across federated repositories.

With respect to the different application levels of the middleware and the multi-objective optimization
framework overall, distinctive set of experiments were conducted. The initial VMI upload module has been
evaluated on the basis of the degree of scalability, while the behaviour of the redistribution module has been
examined from multiple aspects, such as accuracy, scalability and computational performance.

The simulation experiments on the middleware and Multi-objective optimization framework were conducted
on a standalone Linux based machine with an Intel core i7-3770K processor (4 cores and 2 threads per core)
working at 3.5 GHz with a 16 GB of RAM. Furthermore, the functionality and behavior of the middleware
ware tested in a distributed VMI repository, composed of three storage sites located in Austria, Slovenia and
Hungary. In order to guarantee efficient integration and platform independency, all software modules were
developed in Java. For the purpose of multi-objective optimization we have leveraged the jMetal optimization
library [6].

To begin with, the scalability and computational performance of the initial VMI upload module have been
evaluated by varying the number of repository sites in the federation from 10 up to 10000 sites. Figure 6.1
shows the correlation between the average execution time and the number of storage sites in the federation. It
is evident that the module can be lightly scaled up to large sizes. For relatively small federations the module
can be invoked at each VMI upload, as it requires only few milliseconds to be executed.

On the other hand, the VMI redistribution module encloses diverse operations that can affect its behavior
to a various degree. Due to the nature of the algorithm it is not adequate to evaluate it’s computational
performance based on the number of repositories in the federation. Increasing the number of storage sites,
influences on the number of possibilities where to store a single VMI image, which translates into reduced
quality of the proposed solutions, but relatively constant execution time. For example, on Figure 6.2 a scenario
in which the vector size (number of fragments) and number of evaluations have been kept constant, while the
number of available repositories has been increased from 10(blue) to 100 (red), is presented. The Pareto fronts
from both executions have been plotted together to show the difference in quality of the final solutions. The

Multi-objective Middleware for Distributed VMI Repositories in Federated Cloud Environment 309

Fig. 6.1. Correlation between the execution time and the
number of storage sites in the case of initial distribution

Fig. 6.2. Comparison of two Pareto fronts during redis-
tribution with varying storage sites

Fig. 6.3. Influence of the number of evaluations over the
execution time during offline redistribution

Fig. 6.4. Influence of the solution vector size over the exe-
cution time during offline redistribution

experimental scenario clearly shows that if we increase the number of storage sites, while maintaining constant
number of evaluations, the quality of the solutions will decrease.

Furthermore, on Figure 6.3 and Figure 6.4, respectively, the influence that the number of evaluations and
the size of the solution vector have on the computational performance is presented. In both cases, the number
of associated cloud computing instances and storage sites were maintained constant; only the corresponding
parameters were increased gradually. The presented results support the assumption of satisfactory scalability,
both in a sense of increased number of stored VMIs and number of iterations needed to provide mapping
solutions with good quality.

Moreover, on Figure 6.5, the influence of the number of known computational Cloud instances over the

310 D. Kimovski, N. Saurabh, V. Stankovski, R. Prodan

Fig. 6.5. Influence of the number of known computational Cloud instances over the computational performance of the
optimization framework during offline redistribution

computational performance of the optimization framework is presented. During execution, the number of known
computational Clouds was linearly increased, thus inducing higher execution times. The evaluation results are
clearly supporting the assumption that the proposed framework scales-up very well with the increment of the
problem complexity.

Lastly, Figures 6.6 and 6.7 provide a comparison of the quality values for the conflicting objectives considered
in this work. The values for the cost objective have been calculated based on the publicly provided price
list for storing data in the Cloud by Amazon. The performance objective has been modelled based on the
reported communication performance measures for 10Gbit and 1Gbit Ethernet [7]. For readability reasons, the
bandwidth values, were converted to delivery time needed for 1Mbit of data to be transferred from the source
to the destination.

With respect to the parameters of the evolutionary algorithms, we have used a population of 1000 indi-
viduals, that iterates from 1 to 100 generations across populations. Every single individual(solution vector)
is comprised of 1000 chromosomes, thus inducing mapping solutions for 1000 VMIs. Taking into account the
results obtained in preliminary experiments, we have used simulated single point crossover with a crossover prob-
ability of 0.9, a mutation probability equal to 1/n (n is the number of decision variables). The results indicate
very high efficiency of the redistribution module, as it can provide better quality mapping solutions, especially
in regards with the performance objective. It can be concluded that in the cases where public Cloud providers,
such as Amazon, are being used, it is possible to decrease the delivery time by 143%, while maintaining lower
price for storing the VM images.

7. Conclusion. In this paper a novel Multi-objective middleware for management of VMIs across dis-
tributed repositories in federated Cloud environment has been proposed. The research work has resulted in
development of a optimization framework that exploits multiple different factors, such as communication per-
formance requirements, VMI use patterns, and structure of images, in order to optimize the distribution and
placement of VMI across distributed repositories and to significantly lower their provisioning time for complex
resource requests and for executing the user applications. Furthermore, streamlined interface that implements
a wide array of behavioural functions beyond the typical storage has been provided. The middleware interface
offers complex functionalists, such as:

Multi-objective Middleware for Distributed VMI Repositories in Federated Cloud Environment 311

Fig. 6.6. Average quality values of the Cost objective in
comparison with the total number of evaluations

Fig. 6.7. Average quality values of the Performance objec-
tive in comparison with the total number of evaluations

• Upload of unoptimised images to S3 storage

• Upload of optimised images to S3 storage

• VM Image download via URI

• VM Image location tracking

• Upload of VM Image directly to Image Server of Cloud provider for deployment

• Upload of VM Image to the image server of specific Cloud provider from S3

• Storage redistribution of VM Images stored within S3 based VMI repository

The optimization framework, and the middleware overall, have been evaluated based on synthetic simulation
benchmark. As our research deals with the implementation of a combinatorial multi-objective problem, where
the main incentive is to find the proper mapping of VMIs across storage sites, we present an experimental
results that demonstrate the ability of our approach to provide an adequate VMI distribution across federated
repositories.

This research area still poses multitude new challenges that urge additional efforts for the accomplishment
of the ultimate goal, effortless management of VM images and associated meta-data in federated Cloud envi-
ronments. In near future, we plan to introduce more complex reasoning and decision making mechanisms, to
further improve the multi-objective optimization framework with support for automated creation of VM images
in multiple different formats by utilizing virtual machine management templates, and to provide more efficient
user interface.

Acknowledgments. This work is being accomplished as a part of project ENTICE: ”dEcentralised repos-

itories for traNsparent and efficienT vIrtual maChine opErations”, funded by the European Unions Horizon
2020 research and innovation programme under grant agreement No 644179.

REFERENCES

[1] S. Abburu. A Survey on Ontology Reasoners and Comparison. International Journal of Computer Applications (0975 8887),
Volume 57 No.17, November 2012.

312 D. Kimovski, N. Saurabh, V. Stankovski, R. Prodan

[2] A. K. Bardsiri and S. M. Hashemi. Qos metrics for cloud computing services evaluation. International Journal of Intelligent
Systems and Applications (IJISA), 2014.

[3] J. Branke et al., eds. Multiobjective optimization: interactive and evolutionary approaches. Vol. 5252. Springer, 2008.
[4] P. C. Brebner, ”Is your cloud elastic enough?: Performance modelling the elasticity of infrastructure as a service (iaas)

cloud applications”. In Proceedings of the 3rd ACM/SPEC International Conference on Performance Engineering (ICPE),
2012, ACM, 263266.

[5] K. Deb, A. Pratap, S. Agarwal and T. A. M. T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Transactions on Evolutionary Computation 6(2), 2002, 182-197.

[6] J.J. Durillo and A. J. Nebro. jMetal: A Java framework for multi-objective optimization. Advances in Engineering Software
42(10), 2011, 760-771.

[7] W. C. Feng, P. Balaji, C. Baron, L.N. Bhuyan, and D.K. Panda. Performance characterization of a 10-Gigabit Ethernet
TOE. In 13th Symposium on High Performance Interconnects, IEEE, 2005, 58-63.

[8] I. Goiri, J. Guitart and J. Torres. Characterizing cloud federation for enhancing providers’ profit. In 2010 IEEE 3rd
International Conference on Cloud Computing (CLOUD), 2010, 123-130.

[9] A. Iosup, R. Prodan and D. Epema. IaaS Cloud Benchmarking: Approaches, Challenges, and Experience. In Proc. of 5th
Workshop on Many-Task Computing on Grids and Supercomputers (MTAGS), 2012.

[10] K. Kaya, Kamer. Heuristics for scheduling file-sharing tasks on heterogeneous systems with distributed repositories. Journal
of Parallel and Distributed Computing 67 (3), 2007, 271-285.

[11] G. Kecskemeti, A. Kertesz and Z. Nemeth. Developing Interoperable and Federated Cloud Architecture. IGI Global, 2016,
1-398.

[12] J. Opara-Martins, R. Sahandi and F. Tian. Critical analysis of vendor lock-in and its impact on cloud computing migration:
a business perspective. J. Cloud Comput. 5 (1), 2016, Article 54.

[13] M. Placek and R. Buyya, A Taxonomy of Distributed Storage Systems, www.cloudbus.org/reports/DistributedStorage
Taxonomy.pdf.

[14] K. Razavi and T. Kielmann, ”Scalable virtual machine deployment using vm image caches”. In Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Storage and Analysis, SC 2013, ACM, 65:165:12.

[15] D. Villegas, N. Bobroff, I. Rodero, J. Delgado, Y. Liu, A. Devarakonda and M. Parashar. Cloud federation in a
layered service model. Journal of Computer and System Sciences, 78(5), 2012, 1330-1344.

Edited by: Dana Petcu
Received: June 27, 2016
Accepted: August 16, 2016

Scalable Computing: Practice and Experience
Volume 17, Number 4, pp. 313–321. http://www.scpe.org

DOI 10.12694/scpe.v17i4.1203
ISSN 1895-1767
c⃝ 2016 SCPE

ARCHITECTURE OF A SCALABLE PLATFORM
FOR MONITORING MULTIPLE BIG DATA FRAMEWORKS

GABRIEL IUHASZ∗, DANIEL POP†, AND IOAN DRĂGAN‡

Abstract. Latest advances in information technology and the widespread growth in different areas are producing large amounts
of data. Consequently, in the past decade a large number of distributed platforms for storing and processing large datasets have
been proposed. Whether in development or in production, monitoring applications running on these platforms is not an easy task
and dedicated tools and platforms were proposed for this scope. In this paper we present a distributed, scalable, highly available
platform able to collect, store, query and process monitoring data obtained from multiple Big Data frameworks. We present its
architecture and initial results obtained.

Key words: Big Data, monitoring, scalability

AMS subject classifications. 68M14, 62-07

1. Introduction. Big Data technologies have become a more present topic in both academia and industrial
worlds. These technologies enable businesses to extract valuable insight from their available data, hence a large
number of SMEs are showing increasing interest in using these types of technologies. Distributed frameworks
for processing large amounts of data, such as Apache Hadoop 1, Spark 2 [18], or Storm 3 gained in popularity
and applications developed on top of them are widely accepted [15]. However, developing software that meets
the high-quality standards expected for business-critical Cloud applications remains a challenge for SMEs. In
this case model-driven development (MDD) paradigm and popular standards such as UML, MARTE, TOSCA
hold strong promises to tackle this challenge [4].

During the development of Big Data applications it is important to monitor the performance of each version
of the application, so that software architects and developers can track how their application evolves over time.
It is also useful in determining the main factors that impact the quality of the different application versions [3].
Throughout the development stage, running applications tend to be more verbose in terms of logged information
so that developers can get information they need, hence data-intensive applications produce large amounts of
monitoring data, which need to be collected, pre-processed, stored and made available for high-level queries and
visualization.

This paper introduces, for the first time, a scalable, highly available and easy deployable platform for
monitoring multiple Big Data frameworks. It currently integrates resource-level metrics, such as CPU, memory,
disk or network, together with framework level metrics collected from Apache HDFS, YARN, Spark and Storm.
The platform is easily extensible to other Big Data frameworks, or NoSQL / relational database systems.

The paper is structured as follows: next section introduces the design drivers for our platform, presents the
overall architecture of the distributed monitoring platform and details its services. Section 3 presents initial
validation results obtained against Apache Hadoop, Storm and Cloudera’s Oryx frameworks. Section 4 contrasts
our approach to similar tools and frameworks. Finally, we conclude with a discussion of ongoing and future
work in Section 5.

2. Platform Architecture. This section presents the architecture of the DICE Monitoring platform
(DMon). The platform draws its name from the EC-funded DICE project [4]4 The monitoring platforms
provides both historical and near real-time performance data for other tools of the DICE ecosystem.

∗West University of Timisoara and Institute e-Austria Timisoara Romania, (iuhasz.gabriel@e-uvt.ro).
†West University of Timisoara and Institute e-Austria Timisoara Romania, (daniel.pop@e-uvt.ro).
‡“Victor Babes” University of Medicine and Pharmacy and Institute e-Austria Timisoara Romania, (idragan@ieat.ro).
1http://hadoop.apache.org/
2http://spark.apache.org/
3http://storm.apache.org/
4Developing Data-Intensive Cloud Applications with Iterative Quality Enhancements (DICE) aims at providing a toolchain that

makes the task of developing Big Data applications less daunting. It provides a set of artifacts (tools, models, methodology) that
support software engineers in the process of designing and tuning data intensive applications.

313

314 G. Iuhasz, D. Pop, I. Drăgan

In a nutshell, DMon is designed as a web service that enables the deployment and management of several
subcomponents. Each of the subcomponents are responsible for enabling the monitoring of Big Data applications
and frameworks. In contrast to other monitoring solutions [1, 2], DMon aims at providing the user with as
much data as possible about the current status for the Big Data subcomponents. By doing so a wide range of
new technical challenges arise. Due to the fact that DMon is serving near real-time fine grained metrics it must
exhibit high availability and easy scalability.

DMon provides a distributed, high availability monitoring service. It is tailor made for Big Data technologies
and is easily extendible to collect metrics from a wide range of platforms. Big data service integration/monitoring
into monitoring platforms is still an open issue. The ingestion of large amounts of data in a timely manner is
also an open question. During production only warning or error level logs and metrics are important. However,
during development this level of detail is not sufficient. Consumption and most importantly presentation in
a useful manner of collected metrics in near real time represents one of the key problems addressed by our
approach. This is the main rationale behind the new distributed monitoring solution for Big Data technologies
presented here.

Traditionally, web services have been build using a monolithic architecture where almost all components
of a system run in a single process, usually a Java Virtual Machine (JVM). In case of this architecture type
there are major advantages when it comes to deployment and networking. On the other hand scaling of such a
system is a highly non-trivial task which requires running several instances of the service behind a load-balancer
instance.

Although the monolithic approach seems the way to go when deploying monitoring platforms, there are
some severe limitations to it. Changes to one component can have an unforeseen impact on seemingly unrelated
area of the application. Thus, adding new features to the platform can be potentially really expensive both
in terms of time and resources. Secondly, individual components cannot be deployed independently. That is,
partial functionality cannot be achieved in those systems. Using such solutions it is likely to partially loose
reusability of the entire platform. This issue can be addressed at design time by creating reusable components.
In practice we observe that it is not always the case that reusability is a major concern for developers, but
rather the focus is on readability of code resulting in some of the cases in side effects like loss of performance.

Taking into consideration both the pluses and the limitations exposed by a monolithic design for a monitor-
ing platform, we decided to use another fundamentally different approach for DMon. That is, we are deploying
a widely used approach in the Internet companies [6], the so called microservice architecture [13]. By using
this architecture we replace the monolithic service with a distributed system of lightweight services. Each of
the services are by design independent and narrowly focused. This approach allows us to deploy, upgrade and
scale individual services rather than entire monolithic components. Because of the loosely coupled manner of
microservices, code reusability is much easier and changes made to individual services do not necessarily require
changes in other ones. In the microservice architecture, integration and communication between services should
be done either by using HTTP (REST APIs) or using RPC requests. The use of microservice architecture
allows as to group related behaviours into separate services, thus enabling us to easily modify the overall system
without the hustle for editing of multiple services.

DMon uses REST APIs for communication between different services with request payload encoded as
JSON messages. This makes the creation of synchronous or asynchronous messages much easier.

Figure 2.1 shows the overall architecture of the DMon platform. The context in which DMon is developed
is relying on the so called lambda architecture [11] . As defined the lambda architecture consists of three
layers: speed, batch and serving layer. In order to follow this guidelines DMon is using Elasticsearch as serving
layer responsible for loading batch views of the collected monitoring data and enabling other tools/layers to do
random reads on it. The speed layer will be used to look at recent data and represent it in a query function.
In the case of anomaly detection, it will require the use of unsupervised learning techniques or pre-trained
models from the batch layer. The batch layer needs to compute arbitrary functions on large sections of the
dataset stored in Elasticsearch. That is, running long-running jobs to train predictive models that than can be
instantiated on the speed layer. All trained models will then be stored inside the serving layer and accessed via
DMon queries.

Core components of the platform are Elasticsearch, for storing and indexing of collected data, and Logstash

Architecture of a Scalable Platform for Monitoring Multiple Big Data Frameworks 315

Fig. 2.1. DMon architecture

for gathering and processing logfile data. Kibana server provides a user-friendly graphical user interface. The
main services composing DMon are the following: dmon-controller, dmon-agent, dmon-shipper, dmon-indexer,

dmon-wui and dmon-mas. Each of these services will be used to control both the core and node-level components.

2.1. Core components. As the name suggests the core components are the backbone of the entire mon-
itoring platform. They are used for collecting, processing, aggregating and transforming all the incoming mon-
itoring data. One of the most essential features that is common for these components is ease of configuration,
scalability and support for high throughput.

Elasticsearch [7] is an open-source, RESTful search engine based on top of Apache Lucene [12]. It is an
inherently (horizontally) scalable solution which can perform near real-time processing with up to five-second
latency. It also provides support for multi-tenancy, streamlined backup procedures as well as insuring data
integrity. One of the most important capabilities of Elasticsearch is its ability to handle high throughput of
tens or even hundred thousands of messages per second.

Logstash [17] is a tool developed in order to collect, process and forward events and log messages. Basically,
it handles Extract, Transform and Load (ETL) operations. It uses configurable plugins for input-output and
filters in order to collect, process and load data. The input plugins can be configured to accept a wide range
of inputs starting from TCP/UDP to Kafka [10] topics. Input plugins send the data for processing to the
filter worker plugins. Finally, the processed data is routed to one or more output plugins such as Elasticsearch,
Kafka, InfluxDB etc. Logstasg has the important property of being essentially stateless thus making it extremely
scalable. For example it is possible for two Logstash instances to serve the same Elasticsearch endpoint.

DMon does not provide its own metrics visualization widgets, rather it leverages on Kibana server to create
customizable dashboards for any number of metrics. Kibana [7] serves the role of browser based analytics and
search interface for Elasticsearch. DMon platform includes support to graphically represent CPU, Memory and
Network loads, as well as Big Data specific metrics in customizable Kibana dashboards. These visualizations are
based on Elasticsearch queries and can be aggregated and plotted using a histogram based on their timestamps.
Some of these visualizations are automatically created by dmon-controller service and saved into a dedicated
index in Elasticsearch. It is possible to add additional visualizations manually to fit the needs of any developer.

All of the above mentioned components are part of the so called Elasticsearch ELK stack. This setup
provides a very robust base for DMon and will be used as a proof-of-concept implementation.

316 G. Iuhasz, D. Pop, I. Drăgan

2.2. Node-level components. DMon has to monitor a wide range of Big Data technologies each of which
have different metrics and metrics systems. Because of these constraints we had to choose collectors that are
flexible enough to accommodate a wide variety of technologies. Besides input restrictions the collectors must
have a small computational footprint. By taking into account all the previous restrictions we limit the amount of
“noise” produced by the presence of different collectors. Another critical feature that all the deployed collectors
must obey is easiness of deployments. That is, it should be easy to deploy and configure them for thousands of
physical and virtual machines.

Collectd 5 is an open-source POSIX daemon that collects, transfers and stores performance and network
related data. Being a wide used tool, collectd provides the users with a great palette of options for collector
plugins. This tool is used in DMon to collect system metrics, such as CPU utilization or memory / disk /
networking load and throughput.

As previously presented the Logstash server is able to collect metrics and log files directly from the machine
it is installed on. In this particular case it would mean that we need to have a Logstash instance on each of
the monitored nodes. In the DICE context, this approach is not feasible especially because Logstash has a
substantial computational footprint when using specialized filters such as grok6. Instead, we decided to use
logstash-forwarder 7 to do the job of metrics forwarding. logstash-forwarder is designed for the purpose of log
forwarding to one or more logstash server instances. By using this approach inside DMon we are eliminating
node-level side effects caused by local processing of logs.

At this point it is important to note that there are several alternatives to logstash-forwarder and even
collectd. Most notably there are the Beats 8 data shippers for Elasticsearch. Although Beats represents today
an interesting alternative, this solution was not available at the design and implementation time of the DMon
prototype.

Since most of Big Data frameworks are Java tools, we can use Java Management Extensions (JMX) to
extract valuable metrics related to the JVM. In fact, a large number of Big Data frameworks already support
exporting metrics via JMX. Thus, jmxtrans 9 tool is used in our architecture to collect attributes exported at
JVM level. It’s worth mentioning that both the core and node-level components of DMon may not be final and
other solutions might be integrated. For example, it is possible to use rsyslog 10 instead of Logstash to process
and load data into Elasticsearch. There are alternatives to Elasticsearch as well, such as NoSQL databases
that support handling of time series data, such as InfluxDB 11 which is an emerging technology. Of particular
interest is the collection of JMX metrics using collectd via a plugin. Although there are some available collectd
plugins 12 that are able to accomplish this task, they have proven to be either slow or very resource hungry in
preliminary tests.

2.3. Platform services. All components described in the previous sections have to be deployed and
configured. The steps for configuration and deployment are accomplished by a number of Web services wrapping
the core and the node-level components. The rest of this section details each of the wrapping services.

2.3.1. Core-level services. There are in total three core services: dmon-controller, dmon-shipper and
dmon-indexer. All have been implemented using the Python programming language. Specifically with the Flask
microframework [8]. The interface used by the services to communicate with each other takes the form of JSON
encoded messages.

The dmon-controller service is essentially the service with which all other components communicate. It
is in fact the main point of integration with the rest of the DICE solution. In particular, it will be used by
all DICE components that require monitoring data. The REST API is split into two main parts: Monitoring
Management API and Monitoring Query API. A swagger 13 based web UI is used for all developed services for

5https://collectd.org/
6https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
7https://github.com/elastic/logstash-forwarder
8https://www.elastic.co/products/beats
9http://www.jmxtrans.org/

10http://www.rsyslog.com/
11https://influxdata.com/
12https://collectd.org/wiki/index.php/Plugin:GenericJMX
13http://swagger.io/

Architecture of a Scalable Platform for Monitoring Multiple Big Data Frameworks 317

{

‘‘DMON ’’:{

‘‘query ’’:{

‘‘size ’’:’’<SIZEinINT >’’,

‘‘index ’’:’’<indexname >’’,

‘‘ordering ’’:’’<asc|desc >’’,

‘‘queryString ’’:’’<query >’’,

‘‘tstart ’’:’’<startDate >’’,

‘‘tstop ’’:’’<stopDate >’’

}

}

}

Fig. 2.2. Example of query (JSON format)

easy of use and a form of interactive documentation of all REST APIs.

The Monitoring Management API, namely Overlord, is used to register nodes, change configuration param-
eters and current status of all node-level components. It can also be used to deploy and configure node-level
metrics on to registered nodes. Because of this, when registering nodes it is required that credentials for each
node be supplied (username, password or key). If node-level components and services have already been de-
ployed by other tools they only have to register the already deployed node-level service endpoints. In this
scenario credentials are not needed.

Long term storage of metrics is of course a problem that has to be dealt with in all data warehousing
solutions. In the case of DMon one may use the management API to create new indexes which store monitoring
data. We can also export these indexes or even dump the entire dataset into a different format. By default,
DMon creates an index every 24 hours. These indexes can be queried either on at a time or all at once. The
exported indexes can be at any given time be reloaded into DMon or into a different Elasticsearch deployment
for offline processing.

Metrics version annotation is also supported by the dmon-controller. By this we mean that metrics per-
taining to a specific application version can be annotated using tags. This way we can easily query, aggregate
or even compare metrics of the application. Creation of a separate index for each application version is also
possible. However, it is not as versatile a solution and makes comparison of different application version per-
formance more difficult. The dmon-controller is also responsible for generating and enacting configurations for
all core components (Elasticsearch, Logstash and Kibana). The configuration is largely dependent on the data
provided during the registration of each node. This data is then used to configure each component of DMon.

As already mentioned, the type of node-level component needed for monitoring is based on the Big Data
service that run on each machine. During registration a list of services that are deployed on each node can be
defined which are then used to setup and manage node-level services and components. Querying DMon is done
using theMonitoring Query API, namely Observer. In contrast to the Management API, this one doesn’t require
authentication. A query example is included in Figure 2.2, showing attributes that can be specified: the size of
the returned response, its ordering, or start and stop dates (in UTC). The queryString, which follows the same
format and rules as Kibana queries, actually defines the predicate to be run on the Elasticsearch and can be used
to aggregate data, or perform additional operations on the stored data [7]. Query’s response may be returned
in several formats, currently supported are: CSV, JSON, or plain text. Support for RDF+XML encoding using
OSLC Perf. Mon 2.0 vocabulary [9] was also developed but only system metrics are curently exportable using
this format. The CSV and RDF+XML query responses are generated using the dmon-controller service, which
takes the JSON response from ElastiSearch and converts it to the target format.

The dmon-shipper microservice is meant to deploy, manage and configure logstash instances. In contrast
to dmon-controller service, this service has to be located on the same machine with the controller logstash
instance is located. This service is not meant to be used by external tools and services, being an internal
component of DMon platform. The dmon-indexer microservice is used to control nodes comprising the
Elasticsearch cluster.

318 G. Iuhasz, D. Pop, I. Drăgan

Splitting the control of various core and node-level components into microservices we can easily separate the
application logic of DMon from the code that actually drives and enacts them. Another important point is that
all services besides the dmon-controller are essentially stateless. For example neither service stores the current
state of the components it controls, rather it has to poll the status of the component. The dmon-controller
stores some basic state and node-level information inside a relational database, which can be exported, imported,
versioned or even backed up.

2.3.2. Auxiliary platform services. These are optional services that add support for scalability, avail-
ability and ease of usage of the platform. At the time of writing of this paper, these services are under
development and they have not been validated yet.

Queuing service. In some instances of DMon platform, metrics that are sent by the node-level components
might exceed the capabilities of Logstash to process them effectively. This might lead to data loss. There are
ways to mitigate this problem. First, we could increase the number of workers assigned to the filter plugin. In
the Logstash documentation it is specified that some filters (specifically grok) might cause slowdown in metrics
ingestion. Second, if increasing the number of workers is not an option we could create a second instance of
Logstash which can handle some of the load. The exact way Logstash would behave in these scenarios is still
under investigation since Logstash and elasticsearch configurations are automatically generated and controlled
by DMon. Because of this future work will involve creating performance models of all core components.

The third variant is to use a queuing service that receives all metrics and from which the Logstash instances
can consume data. Certainly, this will mitigate the data loss problem but could potentially increase the time
it takes for a specific metrics reading to be processed and indexed inside elasticsearch. This service is pictured
in Figure 2.1, possible candidates for its implementation ranging from Kafka or Redis to a combination of
MongoDB [5] and RabbitMQ [16]. The full technical stack is still an open question and will be addressed in
future versions of DMon.

DMon’s dmon-wui is a user-friendly web user interface that gives end-users an easy access to management
operations of the platform. It will also include an overview of the metrics collected from the current Big Data
deployment. The dmon-controller service is able to generate a dashboard definition file for Kibana [7] engine
containing both system metrics (CPU, memory, network etc.) and the most popular metrics for supported Big
Data frameworks.

Automatic scaling and management of the DMon platform is going to be possible using the envisioned
dmon-mas service (DMon multi-agent service). The service is based on a multi-agent system architecture with
scaling and management capabilities in mind. For achieving these goals it relies on monitoring data for the
currently deployed monitoring solution so that scaling of various components and services are going to happen
based on the platforms performance. By using this approach we intend in improving overall performance and
resilience to the system by enhancing the DMon platform with self-healing capabilities.

Being a multi-agent system, dmon-mas, is going to use a variety of specialized agents. Some of the agents
are going to be in charge of monitoring the current deployment, while others will be in charge of reasoning
on the gathered data. Besides these two types of agents another category will comprise agents responsible of
enacting the changes imposed by the performance analysis agents. Provisioning agents will be added to the
platform in order to facilitate provisioning of new Virtual Machines (VMs) on a wide variety of cloud platforms
like Flexiant Cloud Orchestrator (FCO), Amazon or OpenStack.

Most of the configuration and management task needed will be accomplished using the dmon-controller
service. Due to the clear separation of roles between individual components, we mention that the dmon-mas
service is not being part of the core services. Hence it is not mandatory, but rather recommended in order
to improve performance, to start the dmon-mas in order to obtain correct functionality of the overall DMon.
Currently the dmon-mas service is under investigation and a concrete working solution for the service is being
implemented.

2.3.3. Node-level Services. The dmon-agent service is used to manage and configure all node-level
components. Similarly to the dmon-shipper and dmon-indexer services, it is also stateless. The dmon-controller
service issues request to each dmon-agent service with a JSON payload that contains all required information
for controlling the node-level components. Each monitored node has to have a dmon-agent instance running on
it.

Architecture of a Scalable Platform for Monitoring Multiple Big Data Frameworks 319

As of writing this paper, the dmon-agent supports collectd, logstash-forwarder and jmxtrans as metrics
collecting components. It is able to install all of these supported components. The installation is based on the
type of big data services and the roles assigned to the node where the dmon-agent service is installed. The
dmon-controller is not responsible for picking what component each dmon-agent is deploying and managing, it
only sends the list of roles each node has. It is also able to interact with Hadoop, Spark and Storm deployments.
This interaction is required to change or activate the metrics system for the supported big data services.

3. Initial Validation. This section details the Cloud deployments and reports on initial validation results
of the platform against Oryx2 and Storm frameworks.

3.1. Cloud deployment. In order to validate the deployment of the platform in Cloud environments,
we selected two setups: one public Cloud provider (namely Flexiant Cloud Orchestrator) and one private,
OpenStack powered, Cloud environment hosted by West University of Timisoara. The deployment on Flexiant
Cloud Orchestrator used one VM with 4 vCPUs, 8 GB RAM and 250GB hard disk.

The current version of the monitoring platforms installation procedure requires the use of aptitude14 package
management system present in Debian based Linux distributions. However, it can run on any POSIX compliant
operating system as long as all dependencies have been installed manually.

For future development we are considering Chef recipes for deployment.

3.2. Deployment using Vagrant. For development purposes, Vagrant [14] deployment scripts for DMon,
CDH and Storm were also created. The first script installs and configure a distribution of DMon where all core
components and services are collocated on the same VM. The second vagrant script provisions 4 VMs on which
it installs the newest version of the CDH together with a version of Oryx 2 toy application. The usage of all
Vagrant scripts documentation can be found in the Github repository 15. Using these scripts anyone can create
a standard development/demo environment, which contains not only the latest version of DMon. All VMs are
provisioned with 2 CPUs, 4 GB RAM and a HDD of 50 GB.

3.3. DMon validation against Oryx2 and Storm. In order to validate the platform against state-of-
the-art Big Data technologies, we have deployed Cloudera Distribution for Hadoop (CDH) 5.4.7 and Oryx 2 on
a cluster of 14 nodes on FCO as well. All VMs have the same specifications as the monitoring VM described
in section 3.1. For this first round of validation we assume a worse case scenario in the sense that all DMon
services and core components are collocated on the same VM sharing a common resource pool. Although, tests
were done on a fully distributed deployment the majority of the testing and development was done on a single
VM.

It is important to note that Oryx 2 is treated in this setup as a collection of different Big Data services not
as a Big Data service. This means that Oryx2 metrics are comprised of metrics from HDFS, Yarn, Spark and
Kafka (Kafka monitoring is still in early development). No Oryx 2 specific metrics are monitored.

Each time a new node is added to the DMon platform for monitoring, the platform automatically installs the
monitoring agent on it. The monitoring agents collect the data from the local files and sends the data to DMon.
Currently, metrics for the following technologies are collected: Apache YARN and Apache Spark [18]. System
metrics (CPU, memory, network, disk, etc.) are also collected using collectd plugins. These technologies are
used by Oryx 2 for both the batch and speed layer. All metrics are sent to a logstash server instance which uses
the custom filters generated by DMon to transform and then load the metrics into the elasticsearch instance.
During a one hour period DMon was able to collect extract the monitoring data and index it into elastic search
over 337,200 events of which more than half are Big Data service specific. All metrics have been collected at
a 10 second interval. Each event contains information extracted from the Big Data metrics systems and can
contain as much as 20 different key value pairs.

Another set of empirical validation has been run on a smaller deployment for Apache Storm. This deploy-
ment consisted on 4 VMs with the same setup as before. A demo topology was loaded consisting of 1 spout and
two bolts. DMon was able to automatically detect the running topology and dynamically adjust the mapping
of pertinent metrics to each bolt and spout. The automatic topology detection is accomplished via the scanning

14https://wiki.debian.org/Aptitude
15https://github.com/dice-project/DICE-Monitoring/blob/master/src/

320 G. Iuhasz, D. Pop, I. Drăgan

Table 4.1
Comparison of tools

Nagios Ganglia SequenceIQ Apache Chukwa Sematex DataDog DMon
Scalability Manual Manual - Manual Yes - Self-scaling
Elasticity None None - None Yes - Yes

Deployment Model VM On-premise Service On-premise On-premise Service On-premise
Service Service

Installation - Manual - Manual - - Service via REST API
Big Data frameworks support Poor Poor Hadoop 2.x Hadoop 2.x Good Good Good and Extensible

Visualization User Defined Predefined Predefined Predefined User-defined User-defined User-defined
Analytics Alerts - ML Support Anomaly detection Alerts Alerts, correlation Anomaly Detection

Real-time data support Yes Yes Yes No Yes Yes Yes
Licensing Freemium BSD Commercial Apache 2 Freemium Freemium Apache 2

for the Storm REST API. Once this is found the description of the current topology is used for the automatic
mapping. In a one hour timespan DMon collected over 84,600 events.

4. Similar tools. The section presents a brief overview of different monitoring solutions that can be
applied to Big Data frameworks. Some of most popular open-source and commercial solutions are contrasted
to DMon on different dimensions in table 4.1.

In the context of monitoring tools, scalability is key as Big Data deployments may include thousands
of nodes. Although the selected technologies (ELK stack) easily support horizontal scalability, sometimes the
throughout of generated monitoring data may exceed Logstash’s processing capacity. In order to cope with this,
a message queue should be employed ’in front’ of Logstash server(s). In our case, Kafka provides a distributed
backbone and data pipeline that enables the integration into the DICE monitoring.

Elasticity, the ability to adapt to data throughput is another key design driver for our platform. DMon
multi-agent (dmon-mas) service provides up/down scaling of the platform based on observed data throughput.

In terms of deployment and installation approaches, platforms may be either installed manually or automat-
ically deployed using specialized software infrastructure, namely content management systems. The reviewed
platforms all require manual installation, whereas DMon provides scripts for node provision and configuration.
These may be included in orchestration frameworks. The node components are transparently installed upon
node addition by the DMon controller service, thus requiring no specialised skills nor personnel.

Extensibility of the platform, i.e. easy integration of new frameworks, was central to our design. The
platform provides a uniform interface to a number of Big Data frameworks. Including support for a new Big
Data frameworks requires proper configuration of nodes’ roles and adaptation of Logstash parsers. In this way,
not only Big Data frameworks can ingest data to our platform, but we can also collect log data produced by
any custom data intensive application.

In most of reviewed platforms, analytics against collected monitoring data is handled via user-defined alerts.
Although these provide valuable data for Ops teams, they do not provide the level of insight required by Dev
teams for optimization and validation purposes. More sophisticated, contextualized methods and tools are
required. The DICE Anomaly Detection component is able to detect such anomalies and with the help of the
DICE Enhancement tools will feedback this information into design-time models.

5. Conclusions and Future Work. This paper presents the architecture and initial validation of the
DICE Monitoring platform, which is a distributed, highly available platform for monitoring Big Data technolo-
gies. The goal of the initial version of the platform is to demonstrate a working Proof-of-Concept that collects,
stores and processes monitoring data from multiple Big Data technologies, currently supported frameworks
being Apache HDFS, YARN and Spark. Designed using a microservices architecture, the platform is easy to
deploy, and operate on heterogeneous distributed Cloud environments. We reported successful deployments on
Flexiant Cloud Orchestrator and OpenStack using Vagrant scripts.

We are planning to extend the platform to better support scalability and elasticity in Cloud environments
(e.g., Queuing service, dmon multi-agent service) and to offer a more intuitive and user-friendly Web interface
(e.g., metrics visualization UI, customizable dashboard). Research-wise we will be investigating the integration
of the platform with design-time artifacts, such as UML modes, meta-models and profiles in order to allow
software engineers and designers to define the required metrics in their models and then propagate them along

Architecture of a Scalable Platform for Monitoring Multiple Big Data Frameworks 321

the deployment pipeline down to DMon configuration files. Streamlining the deployment of the platform by
integrating it with DevOps oriented tools, such as Cloudify and/or Chef, is going to be addressed in the future.

Acknowledgment. This work was partially funded by the European Union’s Horizon 2020 Research
and Innovation Programme through the DICE action (http://www.dice-h2020.eu) under Grant Agreement
Number 643946.

REFERENCES

[1] G. Aceto, A. Botta, W. de Donato, and A. Pescapè. Cloud monitoring: A survey. Computer Networks, 57(9):2093–2115,
2013.

[2] K. Alhamazani, R. Ranjan, K. Mitra, F. A. Rabhi, P. P. Jayaraman, S. U. Khan, A. Guabtni, and V. Bhatnagar. An
overview of the commercial cloud monitoring tools: research dimensions, design issues, and state-of-the-art. Computing,
97(4):357–377, 2015.

[3] L. E. Bautista Villalpando, A. April, and A. Abran. Performance analysis model for big data applications in cloud
computing. Journal of Cloud Computing, 3(1):1–20, 2014.

[4] G. Casale, D. Ardagna, M. Artac, F. Barbier, E. D. Nitto, A. Henry, G. Iuhasz, C. Joubert, J. Merseguer,
V. I. Munteanu, J. F. Perez, D. Petcu, M. Rossi, C. Sheridan, I. Spais, and D. Vladuic. Dice: Quality-driven
development of data-intensive cloud applications. In 7th IEEE/ACM International Workshop on Modeling in Software
Engineering, MiSE 2015, Florence, Italy, May 16-17, 2015, pages 78–83, 2015.

[5] K. Chodorow and M. Dirolf. MongoDB: The Definitive Guide: Powerful and Scalable Data Storage. O’Reilly Media,
2010.

[6] M. Fowler. Microservice overview, Guide. Available at http://martinfowler.com/microservices/, Jan. 2016.
[7] C. Gormley and Z. Tong. Elasticsearch: The Definitive Guide. O’Reilly Media, 2015.
[8] M. Grinberg. Flask Web Development: Developing Web Applications with Python. O’Reilly Media, Inc., 1st edition, 2014.
[9] S. Kennedy and L. Jiu. Facilitating collaboration and interaction across the enterprise with oslc. In Proceedings of the

2013 Conference of the Center for Advanced Studies on Collaborative Research, CASCON ’13, pages 374–375, Riverton,
NJ, USA, 2013. IBM Corp.

[10] J. Kreps, N. Narkhede, and J. Rao. Kafka: A distributed messaging system for log processing. In Proceedings of 6th
International Workshop on Networking Meets Databases (NetDB), Athens, Greece, 2011.

[11] N. Marz and J. Warren. Big Data: Principles and Best Practices of Scalable Realtime Data Systems. Manning Publications,
2015.

[12] M. McCandless, E. Hatcher, and O. Gospodnetić. Lucene in Action. Manning Pubs Co Series. Manning, 2010.
[13] S. Newman. Building Microservices: Designing fine-grained Systems. O’Reilly Media, Incorporated, 2015.
[14] M. Peacock. Creating Development Environments with Vagrant. Community experience distilled. Packt Publishing, 2013.
[15] D. Pop. Machine learning and cloud computing: Survey of distributed and saas solutions. Technical Report 2012-1, Institute

e-Austria Timisoara, December 2012.
[16] G. Santomaggio and S. Boschi. RabbitMQ cookbook. Packt Publ., Birmingham, 2013.
[17] J. Turnbull. The Logstash Book:. James Turnbull, 2013.
[18] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster computing with working sets.

In Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10, pages 10–10, Berkeley,
CA, USA, 2010. USENIX Association.

Edited by: Viorel Negru
Received: June 15, 2016
Accepted: October 5, 2016

Scalable Computing: Practice and Experience
Volume 17, Number 4, pp. 323–330. http://www.scpe.org

DOI 10.12694/scpe.v17i4.1204
ISSN 1895-1767
c⃝ 2016 SCPE

EXPOSING HPC SERVICES IN THE CLOUD: THE CLOUDLIGHTNING APPROACH

IOAN DRĂGAN∗, TEODOR-FLORIN FORTIŞ†, AND MARIAN NEAGUL‡

Abstract. Nowadays we are noticing important changes in the way High Performance Computing (HPC) providers are
dealing with the demand. The growing requirements of modern data- and compute-intensive applications ask for new models for
their development, deployment and execution. New approaches related with Big Data, peta- and exa-scale computing are going
to dramatically change the design, development and exploitation of highly demanding applications, such as the HPC ones. Due
to the increased complexity of these applications and their outstanding requirements which cannot be supported by the classical
centralized cloud models, novel approaches, inspired by autonomic computing, are investigated as an alternative. In this paper,
we offer an overview of such an approach, undertaken by the CloudLightning initiative [9]. In this context, a novel cloud delivery
model that offers the capabilities to describe and deliver dynamic and tailored services is being considered. This new delivery
model, based on a self-organizing and self-managing approach, will allow provisioning and delivery of coalitions of heterogeneous
cloud resources, built on top of the resources hosted by a cloud service provider.

Key words: autonomic computing; cloud computing; HPC as a service; resource modeling; service description language

AMS subject classifications. 68M14, 68Q10

1. Introduction. With the continuous development of cloud computing, and the integration of new re-
source types, novel methods are considered for application development. The diversity of available resources,
coupled with the convergence of the different approaches (like fog and edge computing, Internet of Things and
cloud of things, bare-metal clouds, and others), are moving the focus towards building of more complex and
demanding applications, for which the classical centralized cloud approach – where a full set of information is
made available to support decisions – is not enough anymore.

A different approach can be built in relation with the generic principles of autonomic computing [7] and
which is centered around self-organization and management [10] to enable the construction of systems which
are tailored to customers’ needs. With such an approach one can equally serve the outstanding requirements of
modern, large-scale distributed applications, as well as the needs of the specialized ones.

Inspired from the set of four major self-* principles (self-configuration, self-healing, self-optimization and
self-protection [7]), the approach considered in the context of the CloudLightning project is primarily focused
on self-configuration and self-optimization in order to organize and deliver coalitions of heterogeneous resources.
The implied self-organization of resources imposes extensions to the notion of resource, by using the mechanisms
of organization for ’basic’ heterogeneous resources in order to offer so called ’mega-resources’ (i.e., CloudLight-
ning coalitions), which are then able to respond to the management requirements of a diversity of large scale
applications – like commissioning, deployment or execution –, tailored for high-performance computing.

The remainder of this paper is organized as follows: section 2 offers an overview of the CloudLightning ini-
tiative, its approach, objectives and considered use cases. Section 3 offers a description of the major components
of the CloudLightning architecture. Conclusions and future work description are formulated in Section 4.

2. The CloudLightning initiative.

2.1. Concept. The CloudLightning initiative intends to offer a new delivery model that will go beyond the
currently used centralized management approach. An Intersect360 report identifies “provider capability to meet
performance and capacity requirements” as being one of the barriers faced by High Performance Computing
(HPC) to adopting cloud computing [18]. The new delivery model developed by CloudLightning will allow to
make important steps in dealing with this barrier, by allowing to provision and deliver heterogeneous cloud
resources in order to be consumed by HPC applications, by the means of a specialized, but still extensible
description language.

CloudLightning service descriptions enables services and resources discovery – represented by the resources
which are hosted by the cloud service provider –, and decomposition mechanisms which are triggering, in

∗“Victor Babes” University of Medicine and Pharmacy and Institute e-Austria Timisoara Romania, (idragan@ieat.ro).
†West University of Timisoara and Institute e-Austria Timisoara Romania, (florin.fortis@e-uvt.ro).
‡West University of Timisoara and Institute e-Austria Timisoara Romania, (marian.neagul@ieat.ro).

323

324 I. Drăgan, T.-F. Fortiş, M. Neagul

turn, a response from the infrastructure services resulting in a proposition of some resource gatherings (the
CloudLightning coalitions) capable to cover the requirements of customers’ services. Heterogeneous by their
nature, the CloudLightning coalitions are composed of heterogeneous components chosen to offer a better
quality of service.

Self-organization and self-management are key techniques used to discover, build and propose coalitions
with minimal effort related to low-level service provisioning, and to support the automation of the cloud service
lifecycle. Their successful adoption limit the over-provisioning of resources [5], currently used for high demanding
services, while avoiding under-provisioning of resources and enabling important savings, both on cloud provider
and cloud service consumer sides.

2.2. The main components of the solution. The CloudLightning approach is based on three major
components, which are further used to build the supporting use-cases [9]. Although most of these components
have been extensively researched in previous projects, it is still an outstanding challenge to implement all of
them in close relation to each other.

2.2.1. The declarative approach to service provisioning. The first component of the project’s ap-
proach is built in relation to some concepts coming from cloud service brokers (defined as entities which “con-
centrate on the negotiation of relationships between consumers and providers without owning or managing the
whole cloud infrastructure” [3] and can build and offer some services created over a PaaS or IaaS support).
Still, the CloudLightning approach is different, as it is based on the idea that one cannot make any assumptions
about the number, type and availability of resources when self-management is in action.

With this assumption, the necessity of a CloudLightning-specific service description language (CL-SDL)
was identified, such that a clear separation between the declaration on what services are required and how these
services are provided can be clearly realized. This clear separation allows a high level description of requested
services while the resources hosted by the cloud service provider have the capability to organize themselves and
respond with several offerings, if any, based on current availabilities. The CL-SDL, which is compatible with
OASIS TOSCA [14], allows users to create complex solutions that are further deployed in the CloudLightning
system, and provides a detailed description of the identified SDL [19].

2.2.2. Decentralized self-management. Traditionally cloud computing was based on a centralized ap-
proach, where full information about the system and its components were made available for further decisions.
Once we get more diversity and increased complexity in the cloud computing landscape, new approaches to
cloud management must be considered: for example, in the case of edge computing, it “is pushing comput-
ing applications, data, and services away from centralized cloud data centre architectures to the edges of the
underlying network” [4, 13].

Such an approach, which is highly relevant for the case of CloudLightning self-management, will also expose
an increased complexity of the problem whilst offering support for cloud management at a greater scale than
in the case of the traditional, centralized approach. In order to deal with this complexity, self-organizing
is considered together with the self-management component, as similarly with the “biological self-organizing
system, the global goals of the system are expected to emerge from local actions” [2, 10].

2.2.3. Exposure of heterogeneous resources. HPC relevant resource types, such as GPU and GPGPU,
MIC, FPGA, programmable network routers, and others, are offering promising options for cloud computing de-
ployments whenever compute- or data-intensive applications are expected to be deployed in a cloud environment
[4, 12]. While the heterogeneity of resources may be relevant for both the loosely coupled cloud deployments
(e.g., the Nebula system [4]) and the tightly coupled ones (like in the case of the HARNESS project uses-cases
[6]), the self-organizing and self-management approach from CloudLightning builds a distinct approach, in order
to get improved efficiency and simplified implementations regardless of the range of locally available resources
or their distribution. The declarative approach to service provisioning is thus enriched with resource discov-
ery mechanisms allowing easier incorporation, identification and consumption of a variety of heterogeneous
resources.

2.3. Use-cases. Several use cases applications, data- or compute-intensive, are considered to demonstrate
the benefits of the previously mentioned self-organizing and self-management approach and the usability of

Exposing HPC services in the Cloud: the CloudLightning Approach 325

its components. The considered use cases are HPC applications, which expose outstanding requirements in
compute processing power and/or data processing capabilities. They are inspired by 1. genomics, where the
computational cost is still an important barrier; 2. fluid dynamics (applied in oil and gas explorations), where
large scale simulation currently require dedicated and highly expensive clusters; 3. ray tracing, where important
steps are being made towards interactive visualizations; 4. self-optimized scientific libraries, where increased
performance for several compute-intensive libraries of scientific functions (such as BLAS/MKL, cudaFFT, or
FFTW) will be supported by the specificities of the underlying heterogeneous resources. A detailed description
of the currently tackled use cases can be found in [1].

2.3.1. Genome processing. The genome processing problem that CloudLightning intends to exploit in
this first use-case arises from the human gene sequencing. Set in the context of the central dogma of molecular
biology (“DNA makes RNA makes proteins”), and considering the huge amount of data involved in the encoding
of human DNA (approximately 3 billions base pairs, a total amount of data of up to 750MB), the problem of
gene sequencing becomes highly demanding in what regards computational and storage resources. In fact, as
specified in [17], “genomics is a Big Data science which is going to get much bigger”.

CloudLightning intends to support this topic by demonstrating how to enable some genomics-oriented
systems in a CloudLightning-enabled platform, and to benchmark their performance in the context of our
approaches.

2.3.2. Fluid simulations. Sophisticated models for modeling the underground basins that store natural
resources of oil and gas were developed for the industry of oil & gas exploration and exploitation. These models
are based on readings coming from both seismic surveys and other means of survey. A recent interest exists in
multiphase flow of fluids in porous media, typically rock formations. However, as current simulations are based
on in-house solutions (workstations/clusters) that are usually used under their computing capacity, their total
cost is growing.

Cost reduction is an important issue for this type of applications, and it can be addressed by parallel com-
puting approaches. According to the study from [16], only parallelization cannot offer an alternative as I/O
operations become a bottleneck, due to the huge amount of processed data and the dynamics of complex fluid
simulations. An approach based on heterogeneous resources and cloud-specific developments becomes thus a
promising alternative. By considering this use-case, in the context of the CloudLightning project will be iden-
tified best practices required for migrating such a demanding application type to a tailored cloud environment,
while keeping costs under control.

2.3.3. Ray tracing. Ray tracing is heavily used in various industries or research areas where a photore-
alistic preview may offer valuable information. Once the realism of the rendered scene increases, the incurred
computational costs of the ray tracing process becomes extremely large. Moreover, as the process is also time
consuming, it is rather performed offline, leading to important issues related to under- and over-utilization of
dedicated equipments.

There are promising experiments in using heterogeneous resources in order to deliver ray tracing in real-time
[8, 15]. Thus, by migrating such a problem to a self-organizing, self-management cloud environment, it will
be possible to create an environment where a tailored approach, exploiting heterogeneous resources, is being
offered to fully support its timely execution.

3. The architecture of the CloudLightning solution. As identified in Section 2, CloudLightning is
intended to provide customers with the possibility of deploying complex applications on a coalition of heteroge-
neous resources by using a declarative approach to service provisioning. In order to achieve this, the principles
of self-organization and self-management are applied in a decentralized way, which allows achieving the goal of
optimizing resource utilization and, as a consequence, energy consumption.

Based on the declarative approach to service provisioning, a set of design requirements were identified,
such as: 1. lower service cost; 2. optimize utilization/multi-tenancy and reduce operational overhead by au-
tomation; 3. provide faster service provisioning and better performance; 4. supporting dynamic workload and
resource management; 5. offering service placement optimization [11]. Based on these requirements, a succinct
presentation of the core components of the CloudLightning architecture is realized in what follows.

326 I. Drăgan, T.-F. Fortiş, M. Neagul

Developer

BluePrint
Creator

Artefact
Repository

Gateway
Service

Service
Catalog

Resource Manager

Self Organising System Resources

Deployed Services

Fig. 3.1. General overview of the CloudLightning components grouped as layers

3.1. The layered architecture. The architecture of CloudLightning can be viewed as a three layered
architecture, as depicted in Figure 3.1. Its first layer, which is represented by the Developer, is in charge of
creating and designing application requirements that can be understood by the CloudLightning system by the
means of the CL-Blueprints, as a representation of the CloudLightning declarative approach to service provi-

sioning. Individualized blueprints are required for the deployment of different applications, and the developer

will have to interact with components from the second layer of the architecture in order to provide such an
individualization of blueprints.

The second layer of the architecture is constituted from a set of major components, namely the Blueprint

Creator, Gateway Service and Artefact Repository, each having specific functionalities. The interactions from
first level happens via the Artefact Repository, when a blueprint was already defined and its reuse is considered,
or via the Blueprint Creator, when a new valid blueprint is required. In the latter case, the blueprint will be
added to the repository prior to resource acquisition and application deployment. When an application is fully
specified by its blueprint, it will be submitted to the Gateway Service, which acts as an entry point to the third
layer of the architecture.

The Self-organizing and Self-managing level is at the core of the third level of CloudLightning architecture.
At this level the system will trigger the self-organizing mechanisms to the adequate resources based on appli-
cations’ requirements. Additionally, the system will provide some deployment options and will keep track of
resource utilization and deployed applications, eventually by using additional repositories.

3.2. CloudLightning’s architectural components. The Blueprint is at the heart of the CloudLight-
ning architecture. It represents a formal description of the intended application, with some relevant annotations.
Conceptually, a blueprint is usually a meaningful composition of several atomic services, a service being atomic
if it cannot be decomposed into smaller services. However, a blueprint can also be imagined as a composition
of both complex and atomic services.

From a technical point of view, inside CloudLightning a Blueprint is fully compatible OASIS TOSCA and
fully supports Apache Brooklyn1 blueprints, and includes information regarding topology, deployment and even
scaling. Moreover, the Blueprint enables interactions between the different CloudLightning components, as they
were identified in Figure 3.1, and drafted in Figure 3.2.

A sample blueprint description. Typical descriptions of CloudLightning blueprints are realized in YAML2.
As a sample blueprint, we can consider the YAML description of a deployment scenario for a simple ray tracing
application (see Section 2.3.3), which is composed of three basic components (as described in Listing 1):

• The ray tracing compute service, which will provide the required computing services;
• The controller for managing ray tracing services;
• A web portal, supporting client’s access to computing services.

1https://brooklyn.incubator.apache.org
2http://www.yaml.org/spec/1.2/spec.html

Exposing HPC services in the Cloud: the CloudLightning Approach 327

Self Organising System

R
e
s
o
u
rc

e A
llocation & Deployment

P
ro

vis
ion Resources

Developer

Gateway Service Blueprint Creator

A
rt

e
fa

c
t

R
e
p

o
s
it
o

ry

Upload artifa
c
t

A
rt

e
fa

ct
 L

o
o
ku

p

User designs b
lu

e
p

rin
t

Service Catalog

Q
u
e
ry

 S
e
rv

ic
e
s

R
eq

ue
st

 B
lu

e
p

ri
n

t
D

e
p
lo

ym
ent

P
re

se
n
t
D

e
p
lo

y
m

e
n
t

O
p

ti
o

n
s

D
e
p

lo
y
 B

lu
e
p

ri
n
t

R
e
s
o

u
rc

e
 M

a
n

a
g

e
r

Wareshouse Scale Computer

Resource

Resource

Resource

Resource

D
e
p

lo
y
e
d

 S
e
rv

ic
e
s

Resource

Resource

Service Definition Lookup

Fig. 3.2. General overview of the CloudLightning components interactions

For each of these components an identification, some Brooklyn configuration details, and a service type
description is offered. The service type description will offer to the CloudLightning platform some additional
information necessary for self-* activities, such as: the exact type of virtual machine or container that should
be instantiated, and the configuration management rules to be applied.

Additionally, the blueprint specification offers the required details on components’ relationships. In our
sample blueprint, the jetty server references the rt ctr component which, in turn, references the rt cs component.
The latter component has some specific information: it has an abstract service type, which will serve as input for
creating requests for tenders that are submitted by the service gateway to the self organizing meta-component
of the CloudLightning system, thus triggering the autonomic capacities of the platform.

3.2.1. The Blueprint Creator. Acts as the component that empowers developers to easily create com-
plex blueprints. Individual service description and definition is retrieved from a Service Catalog where they
are defined. When some of the services needed are not defined, it provides the user with a concrete way of
adding them to the Service Catalog. This component will also allow developers to load and reuse already de-
fined blueprints from the previously identified Artefact Repository. One can view this component as being the
liaison between the CloudLightning service description language (CL-SDL) and the internal components of the
CloudLightning system.

3.2.2. The Service Catalog. Represents a core component of the CloudLightning architecture which is
in charge of storing service definitions that can be eventually used for blueprint creation. This component is
tightly connected with most of other major components of the CloudLightning architecture. Its major goal is

328 I. Drăgan, T.-F. Fortiş, M. Neagul

l o c a t i o n : i e a t −comput e : t i m i s o a r a
name: S amp l e R a y t r a c i n g S e r v i c e
s e r v i c e s :

- type : i o . c l . e n t i t y . meta . R a yT r a c i n gC ompu t e S e r v i c e
id : r t c s
brooklyn . c on f i g :

c l . soso . min performance : " 100 g f l o p s "

c l . c on f i g :
h in t s :

pr e f e r : [’ GPU ’ , " FPGA " , " CPU "]
- type : i o . c l . e n t i t y . meta . r a y t r a c i n g . c o n t r o l l e r

id : r t c t r
brooklyn . c on f i g :

l s f c l u s t e r . head node : $ b r o o k l y n : c omponen t (" rt_cs ")
- type : i o . c l . e n t i t y . j a v a . j e t t y . web−p o r t a l −1

id : j e t t y s e r v e r
brooklyn . c on f i g :

r ay t r a c ing . c o n t r o l l e r : $ b r o o k l y n : c omponen t (" r t _ c t r ")

Listing 1
Sample YAML description of a blueprint

to provide an easy to use component that keeps track of previously defined services that are made available
for composing complex blueprints tailored for different applications. As previously specified, one can view the
services as atomic components that can be interchanged between various users of the CloudLightning system.
By doing so the process of creating custom blueprints for individual applications becomes a much easier task.

More precisely, in order to use a new service, the developer must add the atomic service(s) to the catalog
such that they can be later used for blueprint creation. Additionally, the service catalog is used by the Gateway

Service in order to decompose a blueprint in atomic services. The Self Organizing System will also interact with
the Service Catalog in order to provide the Resource Manager with the formal description of the individual
services.

3.2.3. The Resource Manager. This component is in charge with the management of the available
underlying resources. Its responsibilities are related to resource reservation, provisioning, discovery and moni-
toring. The process of resource reservation is one of the core functionalities of the resource management system.
Through this functionality, as soon as the Self Organizing System provides the user with a suitable set of
resources to deploy its application the intended resources are reserved for this purpose and marked as being
busy. An initial approach to the process of resource reservation is to reserve the resources as soon as they are
presented to the user as a solution to the blueprint request. Besides reservation of resources, it is also in charge
of discovering newly added resources to the infrastructure. The information about available and used resources
are then aggregated and sent to the Self Organizing System so that they can be further used in the process of
coalition formation for individual blueprints. During the deployment step, the Resource Management plays a
crucial role by providing the means of interaction between physical resources and the CloudLightning system.

3.2.4. The Deployment Service. Represents the core component in charge of deploying an application
on the reserved resources. Besides deployment of applications on readily provided coalitions the deployment
service also takes care of monitoring the status of both the deployed application and of the underlying architec-
ture. The collected monitoring information is aggregated and sent to the Self Organizing System where together
with the information received from the Resource Management assists the underlying decision making of the Self
Organizing System.

3.2.5. The Gateway Service. This component is in charge of creating the link between the outside world
and the Self Organizing System from behind the scenes of CloudLightning. One of the core features that this
component exposes is resource brokering and reservation. For achieving this the Gateway Service is exposing

Exposing HPC services in the Cloud: the CloudLightning Approach 329

a set of application programming interfaces (APIs) allowing the interaction between the outside world and the
inner components of CloudLightning.

As a primary input the Gateway Service will receive a user defined Application Blueprint, based on which
the Gateway service will call the decomposition engine in order to transform the user defined blueprint into a
blueprint containing only atomic services. This step is required, as in the application Blueprint the developer
may compose complex services in order to describe its application. The newly created blueprint is then sent to
the Self Organizing System in order to provide with a coalition of resources meeting the requirements described
in the decomposed blueprint. Once the Self Organizing System identifies the needed resources it will transmit
them back to the Gateway Service which, in turn, provides them to the developer. Also, the Gateway Service
provides a set of API’s intended for controlling the deployed services and managing the commissioned resources.

3.2.6. The Self Organizing System. Finally, this system can be viewed as a meta-component which
deals with the creation and management of coalitions where different applications run, and running at the core
of the entire system. Being one of the core components of CloudLightning architecture, it is tightly coupled
with other components in order to provide with adequate solutions for different application requests and it
enables the decentralized self management approach and the self-organization mechanisms. The Self Organizing

System communicates by the Resource Manager with individual resources in order to provide with answers to
the independent application requests that arrive as blueprints in the system. It keeps a tight connection with
the Deployment component so that it can integrate the information about already deployed services as respond
to individual requests.

4. Conclusion and future work. We have shortly presented the approach and architecture of the Cloud-
Lightning system under development. The CloudLightning approach is built over a set of three central principles:
(a) a declarative approach to service provisioning; (b) a decentralized, self-management approach; (c) integration
of heterogeneous resources. The major components that are exposed by the CloudLightning architecture are
constructed around the Self Organizing System and the CloudLightning service description language (CL-SDL),
which offer important links with the other components of the system.

While the requirements and initial development of the CL-SDL were already delivered, the language is
continually evolving to reflect the development of the Gateway Service. Additionally, it will support the core
information required to build the various catalogues, as they are required by the CloudLightning system.

Acknowledgment. This work was partially funded by the European Union’s Horizon 2020 Research and
Innovation Programme through the CloudLightning action (http://www.cloudlightning.eu) under Grant
Agreement Number 644869.

REFERENCES

[1] T. Becker, G. Gaydadjiev, P. Kuppuudaiyar, A.C. Elster, M.M. Khan, G. Gravvanis, C. Papadopoulos, T. Lynn,
and D. Kenny. D2.1.1: Use case requirements report. Deliverable, CloudLightning Project Consortium, 2015.

[2] B.A. Caprarescu, N.M. Calcavecchia, E. Di Nitto, and D. J. Dubois. SOS cloud: Self-organizing services in the cloud.
In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, pages
48–55. Springer Science + Business Media, 2012.

[3] J. Cave, N. Robinson, S. Kobzar, and H. R. Schindler. Regulating the cloud: more, less or different regulation and
competing agendas. Less or Different Regulation and Competing Agendas (March 30, 2012), 2012.

[4] A. Chandra, J. Weissman, and B. Heintz. Decentralized edge clouds. IEEE Internet Computing, 17(5):70–73, September
2013.

[5] C. Delimitrou and C. Kozyrakis. Hcloud: Resource-efficient provisioning in shared cloud systems. SIGPLAN Not.,
51(4):473–488, March 2016.

[6] O. Pell (editor). D2.3: Validation plan. Deliverable, HARNESS project, 2013.
[7] M.C. Huebscher and J.A. McCann. A survey of autonomic computing: Degrees, models, and applications. ACM Comput.

Surv., 40(3):7:1–7:28, August 2008.
[8] A. Keller, T. Karras, I. Wald, T. Aila, S. Laine, J. Bikker, C. Gribble, W.-J. Lee, and J. McCombe. Ray tracing

is the future and ever will be... ACM SIGGRAPH 2013 Courses on - SIGGRAPH 13, 2013.
[9] T. Lynn, H. Xiong, D. Dong, B. Momani, G. Gravvanis, C.F. Papadopoulos, A.C. Elster, M.M. Zaki Murtaza Khan,

D. Tzovaras, K. Giannoutakis, D. Petcu, M. Neagul, I. Dragan, P. Kuppudayar, S. Natarajan, M. McGrath,
G. Gaydadjiev, T. Becker, A. Gourinovitch, D. Kenny, and J. Morrison. CLOUDLIGHTNING: A framework

330 I. Drăgan, T.-F. Fortiş, M. Neagul

for a self-organising and self-managing heterogeneous cloud. In 6th International Conference on Cloud Computing and
Services Science, CLOSER 2016, 2016.

[10] D.C. Marinescu, J.P. Morrison, and A. Paya. Is cloud self-organization feasible? In Adaptive Resource Management and
Scheduling for Cloud Computing: Second International Workshop, ARMS-CC 2015, pages 119–127. Springer International
Publishing, 2015.

[11] J. Morrison, H. Xiong, D. Dong, and B. Momani. D3.1.2: Architecture. Deliverable, CloudLightning Project Consortium,
2016.

[12] K. C. Nunna, F. Mehdipour, A. Trouvé, and K. J. Murakami. A survey on big data processing infrastructure: evolving
role of FPGA. International Journal of Big Data Intelligence, 2(3):145, 2015.

[13] C. Pahl and B. Lee. Containers and clusters for edge cloud architectures – a technology review. In Proc. 3rd Int Future
Internet of Things and Cloud (FiCloud) Conf, pages 379–386, August 2015.

[14] D. Palma and T. Spatzier. Topology and orchestration specification for cloud applications version 1.0, 2013.
[15] D. Pohl. Experimental cloud-based ray tracing using intel mic architecture for highly parallel visual processing. Intel Software

Network Article, 21, 2011.
[16] E Rodrigues, JM Segura, P Vargas Mendoza, R Ausas, K Das, U Mello, MR Lakshmikantha, et al. Exploring

efficient alternatives for high performance computing requirements in coupled fluid-flow and stress simulations for the
oil & gas industry. In SPE Large Scale Computing and Big Data Challenges in Reservoir Simulation Conference and
Exhibition. Society of Petroleum Engineers, 2014.

[17] Z.D. Stephens, S.Y. Lee, F. Faghri, R.H. Campbell, C. Zhai, M.J. Efron, R. Iyer, M.C. Schatz, S. Sinha, and G.E.
Robinson. Big data: Astronomical or genomical? PLoS Biol, 13(7):e1002195, Jul 2015.

[18] Christopher G. Willard, Addison Snell, Sue Gouws Korn, and Laura Segervall. Cloud computing in HPC: Barriers
to adoption. Research report, Intersect360 Research, 2011.

[19] H. Xiong, D. Dong, J. Morrison, I. Antoniadis, M. Neagul, K. Giannoutakis, T.-F. Fortiş, and I. Drăgan. D5.1.1:
Service description format specification. Deliverable, CloudLightning Project Consortium, 2016.

Edited by: Viorel Negru
Received: June 15, 2016
Accepted: October 5, 2016

Scalable Computing: Practice and Experience
Volume 17, Number 4, pp. 331–349. http://www.scpe.org

DOI 10.12694/scpe.v17i4.1205
ISSN 1895-1767
c⃝ 2016 SCPE

TILING AND SCHEDULING OF THREE-LEVEL PERFECTLY NESTED LOOPS WITH
DEPENDENCIES ON HETEROGENEOUS SYSTEMS

EBRAHIM ZAREI ZEFREH∗, SHAHRIAR LOTFI†, LEYLI MOHAMMAD KHANLI‡, AND JABER KARIMPOUR§

Abstract. Nested loops are one of the most time-consuming parts and the largest sources of parallelism in many scientific
applications. In this paper, we address the problem of 3-dimensional tiling and scheduling of three-level perfectly nested loops
with dependencies on heterogeneous systems. To exploit the parallelism, we tile and schedule nested loops with dependencies by
awareness of computational power of the processing nodes and execute them in pipeline mode. The tile size plays an important
role to improve the parallel execution time of nested loops. We develop and evaluate a theoretical model to estimate the parallel
execution time of tilled nested loops. Also, we propose a tiling genetic algorithm that used the proposed model to find the near-
optimal tile size, minimizing the parallel execution time of dependence nested loops. We demonstrate the accuracy of theoretical
model and effectiveness of the proposed tiling genetic algorithm by several experiments on heterogeneous systems. The 3D tiling
reduces the parallel execution time by a factor of 1.2× to 2× over the 2D tiling, while parallelizing 3D heat equation as a benchmark.

Key words: Dependence loop, tiling, load balancing, communication, heterogeneous system

AMS subject classifications. 65Y05, 68M14

1. Introduction. Today, there are so many scientific applications in various fields such as meteorology,
biology, medical research, signal and image processing, military industry, etc. that need high performance
computing to be solved. These problems are either computationally intensive, or working on large-scale multi-
dimensional data or both [1, 2]. Nested loops are one of the most time-consuming parts and the largest sources
of parallelism in these problems [3, 4]. In order to meet the ever-increasing computing requirement of scientific
applications, it is necessary to use high-level computational capacity and optimization techniques.

A heterogeneous computing system is a set of multiple computing nodes connected via a high-speed network
interconnection, used for executing parallel and distributed scientific applications [5, 6, 7]. A homogeneous
computing system is a special case of a heterogeneous computing system, in which all computing nodes have
the same computing capabilities [5]. There are several ways to enhance the computational capacity of parallel
computing systems such as (1) scaling up by adding more processing nodes, (2) replacement of all processing
nodes with newer, faster ones, (3) upgrading computing systems by adding newer, faster nodes, (4) combing
multiple clusters into a bigger computational system, known as multi-cluster systems, (5) using hybrid CPU-
GPU architectures, etc. [8, 9, 10, 11]. In cases 1 and 2, the computing system remains homogeneous, but it
can be very costly. In other cases, the computing system becomes heterogeneous. According to the Top500
list (http://www.top500.org), we could witness an increasing trend to heterogeneous computing systems from
a 3.4% to 18.0% between June 2010 and June 2015 [12]. Hence, heterogeneity is one of the most important and
challenging issues in parallel computing systems [13].

Loop optimization and parallelization have always been an important role to achieve higher performance [4].
A lot of loop optimization techniques have been developed to decrease the execution time of the nested loops and
improve the performance. Loop tiling is an important loop optimization technique in scientific applications,
used to improve data locality, expose fine-grained and coarse-grained parallelism, enhance cache reuse, etc.
[14, 15, 16, 17, 18, 19].

In this paper, we consider the parallelization problem of perfectly nested loops with dependencies on het-
erogeneous systems. In order to achieve the maximum performance of nested loops with dependencies on
heterogeneous systems, two issues must be adequately addressed:

• Load balancing: it is a technique that tries to distribute the data and computation across the computing
resources of the parallel machine so that all tasks terminate at approximately the same time. In fact,

∗Department of Computer Science, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran (zarei@tabrizu.ac.ir).
†Department of Computer Science, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran (shahriar lotfi

@tabrizu.ac.ir).
‡Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran (l-khanli@tabrizu.ac.ir).
§Department of Computer Science, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran (karimpour

@tabrizu.ac.ir).

331

332 E. Zarei Zefreh, S. Lotfi, L. Mohammad Khanli, J. Karimpour

the goals of load balancing are optimization of resource utilization, maximization of throughput and
minimization of response time [17, 20]. Processing nodes of heterogeneous systems may have different
computational powers that depend on CPU speed, cache size, RAM size etc. So, load balancing is an
important concept in heterogeneous systems that guarantees the amount of data and computation of
any processing node correspond to their computational power [21].

• Communication: In a distributed-memory parallel architectures, each processing node has its own
memory and nodes communicate together to exchanging data during program execution. Since accessing
to the local memory is much faster than the remote memory, the cost of intra-node communication is
much less than inter-node communication. Due to network latency of inter-node communication, data
should place as close as possible to computation, referred to as the data locality [20, 22, 23, 24]. So,
data and computation can be partitioned into blocks and distributed across the processing node to
improve data locality and reduce communications during program execution.

In order to parallelize perfectly nested loops with dependencies on heterogeneous systems, the loop’s iter-
ation space partitioned into a series of small chunks of given tile size, executed one after another in pipeline
mode. At the runtime, processing nodes communicate each other to exchange data while executing tiles. The
number of inter-node communication (or tiles communication) is corresponding to the inter-tile dependency.
Since communication is one of the most important reasons for performance degradation of the parallelized
loops with data dependencies on heterogeneous systems, inter-tile dependency should be minimize as much as
possible. To overcome communication overhead and improve the pipeline parallelism, we should determine the
optimal tile size. The problem of determining the optimal tile size is NP-Hard [25]. There are many approaches
that attempt to determine the near-optimal tile size in homogeneous platforms such as analytical, auto-tuning
and evolutionary approaches [25, 26]. In heterogeneous platforms, tile size determined by the computational
power awareness of the processing nodes [21, 27, 28]. The 3D tiling of the nested loop with dependencies for
heterogeneous systems has not been given enough attention so far.

We believe that the use of 3D tiling and scheduling of perfectly nested loops with dependencies and taking
into account the characteristics of heterogeneity in heterogeneous systems can enhance the execution time of the
scientific applications. For this purpose, we first calculate the computational power of the processing nodes by
running 3D benchmarks. Then, with computational power awareness of the processing nodes, we tile and sched-
ule perfectly nested loops with data dependencies. Therefore, loop tiling combined with heterogeneity feature
and a pipeline-like execution could help to decrees the execution time and improve efficiency of computation on
heterogeneous computing systems.

In this paper, we propose a 3D tiling and scheduling approach for three-level perfectly nested loops with
data dependencies on heterogeneous systems using the computational power awareness of the processing nodes.
Our idea is to exploit the computational power of the processing nodes of heterogeneous platforms in order
to achieve higher computing power for executing nested loops. In addition, we use loop tiling to partition the
iteration space into chunks and subchunks with equal and unequal size such that the load balancing between the
computational nodes increases and the internode communication is minimized as much as possible. Then, we
use pipeline approaches to achieve the maximum degree of potential parallelism and consequently, the improved
execution time of programs. We provide a theoretical model to estimate the parallel execution time of nested
loop with dependencies and propose a tiling genetic algorithm to determine the near-optimal tile size.

The main contributions of our paper are as follows:
• We propose a 3D tiling and scheduling approach for three-level perfectly nested loops with dependencies
on heterogeneous systems.

• We develop a theoretical model to estimate the parallel execution time.
• We propose a tiling genetic algorithm to determine the near-optimal tile size.

The rest of the paper is organized as follows. Section 2 describes the program model and notation and
discusses an overview of related works. Section 3 describes the proposed method. Section 4 is concerned with
simulations and experimental results. Finally, Section 5 is conclusions and future works.

2. Background and related work.

2.1. Program model and notation. An n-nested loop, a nested loop of depth n, is defined as a set of n
loops where each loop is contained in its previous loops. If all statements are nested inside the innermost loop,

Tiling and Scheduling of Three-level Perfectly Nested Loops with Dependencies on Heterogeneous Systems 333

then it is called perfectly nested loop. Each iteration of n-nested loop is represented as J = (j1, j2, · · · , jn) ∈ Zn.
When a data dependency exists in a nested loop, the result of one loop iteration affects the results of other
loop iterations. In fact, dependencies impose precedence constraints in the execution order of loops iterations
[29]. In an n-nested loop, data dependencies are denoted by a distance dependence vector. Suppose that the
matrix D = [dij]n×m shows the m dependency vectors of the n-nested loop. Intra-iteration dependence occurs
in the same iteration between the statements of nested loop while inter-iteration dependence occurs in different
iterations [30]. Figure 2.1(a) illustrates a three-level perfectly nested loop and its iteration space denoted by
J = {(j1, j2, j3)|1 ≤ j1 ≤ N1, 1 ≤ j2 ≤ N2, 1 ≤ j3 ≤ N3}. Figure 2.1 (b), (c) and (d) illustrate the iteration
space, the intra-iteration and inter-iteration dependencies and the dependency matrix for the following nested
loop. Nested loops categories in parallel and dependence loops. If there are no inter-iteration dependence among
their loops iterations, the nested loop is called a parallel loop otherwise the nested loop is called a dependence
loop [21, 31].

One of the most important of loop optimization techniques is loop tiling that could improve data locality
and expose parallelism. Loop tiling decomposes an n-nested loop into a 2n-nested loop where the outer n loops
move between tiles and the inner n loops traverse iteration within a tile. Suppose that the H ∈ Qn×n be the
tiling matrix that each row is a normal vector and shows the edges of the tile. Vcomp expresses the number of
iterations within a tile and Vcomm expresses the number of iterations that need to send data to the neighboring
tiles (the number of dependences exit from the tile). Vcomp and Vcomm are calculated by the following formulas
[25, 27, 32]:

Vcomp(H) =
1

|det(H)|
(2.1)

Vcomm(H) =
1

|det(H)|

n
∑

i=1

n
∑

k=1

m
∑

j=1

hi,kdk,j(2.2)

Figure 2.1(e) shows the code after loop tiling transform. Figure 2.1(f) shows a 2× 2× 2 parallelepiped tiling of
the 3-nested loop and Fig. 2.1(g) illustrates the tiling matrix H for the parallelepiped tiling in Fig. 2.1(f). So,
Vcomp(H) = 8 and Vcomm(H) = 12.

Pipeline parallelism can improve the efficiency of the nested loop with dependencies. In pipeline parallelism,
each node performs its tasks, then passes its set of data along to the next node and receives the next set of
data from the previous node [17]. In distributed-memory parallel systems, communication and synchronization
overhead between the nodes are the important reasons of the performance degradation when running dependence
loops. So, we use coarse-grain pipeline parallelism to balance trade-offs between parallelization, communication
and synchronization overhead [20, 33].

2.2. Related work. There are a lot of research efforts on determining the optimal partitioning (tiling)
of nested loops without dependencies on heterogeneous systems ([34, 35, 36] and references therein). However,
there are a few research efforts targeting tiling problem for nested loops with dependencies on heterogeneous
systems. Most of these works are bounded into 2D tiling.

Boulet et al. [37, 38] used loop tiling on heterogeneous systems for the first time. Iteration space is divided
into tiles with same size and assigned column blocks with more tiles to the faster node. Then nodes execute the
tiles in a row-wise order within each block to minimize latency between starting of blocks. The authors target
fully permutable 2-nested loops with horizontal and vertical dependencies.

Chen and Xue [27] proposed the 2D partitioning and scheduling loops for a network of heterogeneous
workstations (NOWs). As shown in Fig. 2.2, to consider heterogeneously of NOWs, the iteration space is
partitioned into 2D tiles of the same shape and different sizes according to computational powers of theirs
workstations. The same colored tiles can be executed simultaneously. The authors consider the doubly nested
loop or two adjacent loops of nested loop with constant data dependency.

Ciorba et al. [31, 39] proposed enhancing self-scheduling algorithm for loops with dependencies on hetero-
geneous systems. The self-scheduling algorithms such as chunk self-scheduling, guided self-scheduling, trapezoid
self-scheduling and factoring self-scheduling are dynamic scheduling algorithms that are used to schedule nested

334 E. Zarei Zefreh, S. Lotfi, L. Mohammad Khanli, J. Karimpour

Fig. 2.1. (a) Three-level perfectly nested loop, (b) iteration space and dependencies between iterations, (c) the intra-iteration
and inter-iteration dependencies, (d) dependency matrix, (e) the tiled perfectly nested loop, (f) 3D tiling and (g) the tiling matrix

Fig. 2.2. (a) Iteration space of nested loop with two constant data dependency, (b) 2D heterogeneous tiling and (c) paral-
lelization strategy [27]

loops without dependencies on homogeneous systems. They enhance self-scheduling algorithm to handle nested
loops with dependencies by inserting synchronization points to enable inter-node communication. They also con-
sider a weighted mechanism for self-scheduling algorithms to improve the performance and make them suitable
for heterogeneous systems. Therefore, the iteration space is divided into chunks according to the computational
power of nodes.

Andronikos et al. [21, 33, 40] claimed that the problem of finding the optimal partitioning of nested loops

Tiling and Scheduling of Three-level Perfectly Nested Loops with Dependencies on Heterogeneous Systems 335

Fig. 2.3. Tiling of a 2-nested loop with dependencies on a homogeneous system [21]

Fig. 2.4. (a) Iteration space and data dependencies of three-level nested loop, (b) and (c) partitioning and scheduling of
nested loop with proposed methods in [21, 33, 40] on homogeneous and heterogeneous systems, respectively. The tiles with the
same number can be executed simultaneously.

with dependencies for heterogeneous systems has not been given enough attention. Therefore, they proposed a
theoretical model to estimate parallel execution time as a function of the synchronization frequency for nested
loops with dependencies on heterogeneous systems. As shown in Fig. 2.3, the iteration space partitioned into
chunks along chunk/scheduling dimension based on the computational powers of nodes using self-scheduling
schema. The chunks are divided into subchunks along synchronization dimension by inserting synchronization
points. They find the optimal subchunk size based on the theoretical model. This paper targets n-nested loops
(n >= 2) with dependencies where the outer loop is considered as synchronization dimension and another loop as
scheduling dimension. Figure 2.4 shows how to use this method for three-level nested loop with dependencies on
homogeneous and heterogeneous systems. In this case, the uc-dimension partitioned into chunks corresponding
to the computational power of the processing nodes, the us1 -dimension partitioned into subchunks and the
us2 -dimension executed as serial. Then subchunks are executed in a wavefront fashion to exploit the potential
parallelism.

As mentioned above, these works are generally focused on 2D tiling of the nested loop with dependencies
on heterogeneous systems. The 3D tiling of the nested loop with dependencies for heterogeneous systems has
not been given enough attention so far. In this paper, we address this issue.

3. Proposed methods. In this section, we propose an approach to 3D tiling and scheduling of three-level
perfectly nested loops with dependencies on heterogeneous systems. In the paper, we use the notation in [21, 33],
indicated in Table 3.1. Algorithm 1 outlines the main steps of proposed method.

336 E. Zarei Zefreh, S. Lotfi, L. Mohammad Khanli, J. Karimpour

Table 3.1
Notations used within the proposed method

Parameter Description
P The number of processing nodes
pi The ith processing node
N = Uc × Us1 × Us2 The size of iteration space
Uc The upper bound of uc dimension
Us1 The upper bound of us1 dimension
Us2 The upper bound of us2 dimension
vpi The computational power of ith processing node
Vi The size of chunk i in the uc dimension
h1 and h2 The size of tile in the us1 and us2 dimensions
cpi

The execution cost per iteration of ith processing node
tpi

The computation time of a tile in node i

cd The start-up latency cost
cc The transfer cost per unit of data
ts The send time of message between a pair of nodes
tr The receive time of message between a pair of nodes

Algorithm1: 3D tiling and scheduling
Input:

A heterogeneous system consist of P nodes p1, . . . , pP with computational powers vp1, . . . , vpP
cp: The execution cost per iteration of nodes
cc and cd: Communication parameter
Uc × Us1 × Us2 : The size of iteration space

• Sorting computational power of nodes such that vp1 ≥ vp2 ≥ . . . ≥ vpP
• Partitioning the uc scheduling dimension into chunks of given size Vi by Vi = Uc × vpi

(Figs. 3.1(b) and 3.2(b))
• Partitioning each chunk into subchunks with unknown sizes h1 and h2 along the us1 and

us2 synchronization dimensions (Figs. 3.1(c) and 3.2(c))
• Calculating the computation time of a tile by tp = Vih1h2cp
• Calculating the communication time of a tile by ts = tr = cd + h1h2cc
• Estimation the parallel execution time, TP (h1, h2), based on parallel execution flow of subchunks

with unknown sizes h1 and h2 (Fig. 3.3)

TP (h1, h2) = (tp + ts) +
(

∑P−1

i=2
(tr + tp + ts)

)

+
Us1

Us2

h1h2

(tr + tp) +
(

Us1
Us2

h1h2

− 1
)

tidle + Twa

• Formulate the problem of finding the optimal tiling as follows (Eq. 3.5):
Minimize TP (h1, h2)
Subject to Vih1h2 ≤ CacheSizei, i = 1, 2, . . . , P

h1 and h2 are integer

1 ≤ h1 ≤ Us1

1 ≤ h2 ≤ Us2

• Solving the above optimization problem using:
1- NOMAD (Nonlinear Optimization using the MADS Algorithm)
2- The proposed tiling genetic algorithm

Output: optimal tile sizes

Tiling and Scheduling of Three-level Perfectly Nested Loops with Dependencies on Heterogeneous Systems 337

Fig. 3.1. (a) Iteration space and dependencies vectors, (b) partitioning iteration space into three equal chunks in a homo-
geneous system (c) partitioning each chunk into subchunks, (d) to (k) the execution process of tiles in node 1, 2 and 3, and (l)
pipelined execution of tiles in time

Suppose, there exists P processing nodes p1, p2, · · ·, pP of the computational powers vp1, vp2, · · ·, vpP in the
heterogeneous system such that

∑P
i=1

vpi = 1 and vp1 ≥ vp2 ≥ · · · ≥ vpP . In this paper, we consider the three-
level perfectly nested loops with uniform dependencies in three dimensions. We partition the iteration space
into chunks along one dimension by using self-scheduling algorithms. This dimension is called the scheduling
dimension and is denoted by uc. Let Vi be the size of the chunk i in the uc dimension assigned to ith processing
node of the heterogeneous system. It should be noted that the size of each chucks is corresponding to the
computational power of the processing nodes. If the distributed system has homogeneous nodes, then the sizes
of chunks are equal (see Fig. 3.1(b)), otherwise the sizes of chunks are unequal (see Fig. 3.2(b)). The two other
dimensions are denoted by us1 and us2 consider as synchronization dimensions. Each chunk is partitioned into
subchunks with setting synchronization points along us1 and us2 dimensions (see Fig. 3.1(c) and Fig. 3.2(c)).
Each of 3D boxes of points in the iteration space is considered as a tile.

In the execution flow, the tile first receives the needed data from other tiles, then does computation and

338 E. Zarei Zefreh, S. Lotfi, L. Mohammad Khanli, J. Karimpour

Fig. 3.2. (a) Iteration space and dependencies vectors, (b) partitioning iteration space into three unequal chunks in a het-
erogeneous system, (c) partitioning each chunk to subchunks, (d) to (k) the execution process of tiles in node 1, 2 and 3, and (l)
pipelined execution of tiles in time

finally sends data to other tiles that needed it. Due to the presence of dependencies, no nodes can start the
execution at the same time and we should consider a precedence order. Notice that according to the partitioning
of the iteration space, dependencies (0, 1, 0)T and (0, 0, 1)T occur in each node and the dependency (1, 0, 0)T

occurs between two neighboring nodes. As shown in Fig. 3.1(d), node 1 runs tile (1,1,1) and then sends necessary
data to tile (2,1,1) that schedule on node 2. Then node 1 and node 2 simultaneously run tiles (1,1,2) and (2,1,1)
respectively, as shown in Fig. 3.1(e). After that node 1, node 2 and node 3 simultaneously runs tiles (1,1,3),
(2,1,2) and (3,1,1) respectively, as shown in Fig. 3.1(f). This process continues until the node 3 runs tile (3,2,3).
Actually, the tiles establish a communication and synchronization mechanism between the processing nodes.

Idle time is an important factor that affects the execution time in the tiled loop. At any time during the
execution of the tiled nested loops, some nodes are active and some are idle. Idle time represents the time when
the node is in idle mode during the execution of the tiled iteration space. The idle time can arise due to two
reasons: (1) because of the presence of dependence, a node may have to wait for the necessary data from other

Tiling and Scheduling of Three-level Perfectly Nested Loops with Dependencies on Heterogeneous Systems 339

nodes; (2) some nodes may have completed their works and are waiting for the last node to finish its work
[41]. In homogeneous platforms, the size of tiles is the same, so choosing the shape of tiles is very important
to reduce the idle time in the parallel execution. However, in heterogeneous platforms, both size and shape of
the tiles have significant effect to reduce the idle time. Load balancing can reduce the idle time and guarantee
that the amount of workloads of any processing node corresponds to its computational power. Therefore, in
heterogeneous platforms, we use tiles with the same shape and different sizes such that nodes complete the
execution of their tiles at the same time. Figure 3.2 shows the heterogeneous tiling for a heterogeneous platform
with normalized computational powers V P = {0.5, 0.33, 0.17}.

To estimate the parallel execution time of nested loops with dependencies on heterogeneous systems, we
need a communication and computation cost model. We use the notations in [21] and extend them.

3.1. Computation cost model. The computation time of a tile in node i is defined as a function of
the number of iterations within a tile, Vcomp(H), multiplied by the execution cost per iteration, cpi

. We can
calculate it as follows:

tpi
= Vcomp(H)× cpi

(3.1)

3.2. Communication cost model. We consider heterogeneous computing systems of P processing nodes
p1, p2, · · ·, pP that is connected with homogeneous communication links. In this work, we use the one-port
model as the communication cost model to quantify the communication overhead between the processing nodes.
In one-port model, a node can either send or receive a message at each time step and distinct node pairs
communicate simultaneously. There are two different costs to transfer a message from one node to another:
(1) the start-up latency cost between a pair of nodes, cd; (2) the transfer cost per unit of data between a pair
of nodes, cc [17, 21]. We suppose that the send (ts) and receive (tr) times of a message between each pairs of
nodes are equal since the number of message elements are the same in the process of sending and receiving. The
communication time of a tile is defined as a function of the start-up latency cost and the number of iterations
that need to send data to the neighboring tiles and the transfer cost per unit of data as follows:

ts = tr = cd + Vcomm(H)× cc(3.2)

3.3. The proposed theoretical model. In this paper, we consider parallelizing the three-level perfectly
nested loops with dependencies in three dimensions on heterogeneous computing systems. We tile and schedule
these loops with the computational power awareness of the processing nodes and execute them in pipeline mode.
To estimate the parallel execution time of nested loops, we build a theoretical model as a function of tile sizes.

As shown in Figs. 3.1 and 3.2, we partition the iteration space of nested loop into 3D tiles. Let Vi be the size
of one side of the tile (i, j, k) along the uc dimension assigned to ith processing node. To satisfy load balancing,
we calculate Vi as a function of the computational power of processing node by Vi = Uc × vpi. Suppose that
h1 and h2 are the size of other sides of the tile along the synchronization dimensions us1 and us2 . h1 and h2

are the same for all tiles. So, the computation time of a tile in node i is calculated by tpi
= Vih1h2cpi

and the
communication time of a tile in node i is calculated by ts = tr = cd+h1h2cc because only dependency (1, 0, 0)T

occurs between two neighboring nodes.
Figure 3.3 shows the parallel execution flow of tiled nested loops on homogeneous and heterogeneous plat-

forms for Figs. 3.1 and 3.2. In the following, we consider the parallel execution flow and construct a formula to
estimate the parallel execution time. Here, we use the master-worker model. The processing nodes (or workers)
send a request message for assigning the work to the master. Master, that has all the information about the
nodes, receives the requests, calculates the chunk sizes and assigns them to the processing nodes. The duration
between sending a request and assigning a chunk to nodes is considered as the work assignment time and is
denoted by Twa. The nodes are responsible for executing the assigned chunk. Node 1 starts the execution of
the tile (1, 1, 1). Due to the presence of dependence, node 2 should be expected to receive data from node 1.
This is the idle time and is shown by white strip in Fig. 3.3. Node 1 completes the execution of the tile (1, 1, 1),
sends the necessary data to node 2 and starts the execution of tile (1, 1, 2). Node 2 after receiving the necessary
data from node 1 executes tile (2, 1, 1) and sends the necessary data to node 3. Node 3 is the last node and
does not need to send data. Node 3 should be expected to receive data from node 2, so there is an idle time
between the operations of execution and receiving.

340 E. Zarei Zefreh, S. Lotfi, L. Mohammad Khanli, J. Karimpour

Fig. 3.3. Parallel execution flow for three nodes

Suppose that the theoretical parallel time, TP (h1, h2), is the parallel execution time of the last tile that is
carry out by node P . All nodes have to receive, compute and send except for the first and last nodes. Node
1 only computes and sends data. So, the time required to compute each tile in node 1 and send the necessary
data to node 2 is tp1

+ ts. The time needed to receive data, compute and send data of the first tile in node

2, 3, · · · , P − 1 is
∑P−1

i=2
(tr + tpi

+ ts). The last node, node P , only receives data and computes. So, the time

needed to receive the necessary data from node P −1 and compute all tiles in node P is
Us1

Us2

h1h2

(tr + tpP
). Node

P also spent (
Us1

Us2

h1h2

− 1)tidle idle time for receiving data from node P − 1. tidle approximately equals to ts.
Therefore, the total parallel execution time is

TP (h1, h2) = (tp1
+ ts) +

(

P−1
∑

i=2

(tr + tpi
+ ts)

)

+
Us1Us2

h1h2

(tr + tpP
) +

(

Us1Us2

h1h2

− 1

)

tidle + Twa(3.3)

Since the processing nodes of homogeneous computing systems have the same computational power, Vi and
cpi

are the equivalent for all nodes. In the heterogeneous computing systems, processing nodes have different
computational power. Therefore, the execution costs per iteration cpi

of nodes are different. According to
load balancing, the best state is when all nodes execute their assigned tiles at the same time, in the other
words tp1

= tp2
= · · · = tpi

= · · · = tpP
. It is noticed that a perfect load balancing is not always possible.

In this case, we want that all nodes execute their tiles at approximately the same time as much as possible
tp1

∼= tp2

∼= · · · ∼= tpi ∼= · · · ∼= tpP
. When running multiple tiles in parallel, maybe a node, which finishes the

execution of its tile, has to wait for the other one to complete its execution before they could exchange data.
To control the situation in heterogeneous systems, we consider tp = max (tp1

, tp2
, . . . , tpi

, . . . , tpP
). Therefore,

we have

TP (h1, h2) = (tp + ts) +

(

P−1
∑

i=2

(tr + tp + ts)

)

+
Us1Us2

h1h2

(tr + tp) +

(

Us1Us2

h1h2

− 1

)

tidle + Twa(3.4)

h1 and h2 require fine-tuning so that nodes can start their computation as soon as possible and achieve
minimum parallel execution time. We also consider two constrains:

1. If we want to improve data locality in each node, then data items should stay in the cache between
successive uses. In order to get a good performance, tile sizes are better to fit in the cache of nodes.

2. Since the sides of the tile are positive integer, we need integer solutions for h1 and h2.
Considering these observations, we have a nonlinear pure integer-programming problem (NLIP) as follow:

Minimize TP (h1, h2)

Subject to Vih1h2 ≤ CacheSizei, i = 1, 2, . . . , P(3.5)

1 ≤ h1 ≤ Us1 , 1 ≤ h2 ≤ Us2 , h1 and h2 are integer

Tiling and Scheduling of Three-level Perfectly Nested Loops with Dependencies on Heterogeneous Systems 341

Nonlinear integer programming problems are NP-complete. These problems can solve using nonlinear inte-
ger programming solvers or evolutionary approaches. In this paper, we use the NOMAD (Nonlinear Optimiza-
tion using the MADS Algorithm) [42] as a nonlinear integer programming solver and proposed an evolutionary
approach based on the genetic algorithm to find a near-optimal solution that minimize TP (h1, h2).

3.4. The proposed tiling genetic algorithm. In this section, we use Genetic Algorithm (GA) to solve
the nonlinear integer-programming problem, Eq. 3.5, derived from the 3D tiling of nested loops with dependen-
cies on heterogeneous systems.

The GA is a population-based heuristic search that follows an iterative process toward better solutions. The
GA begins with an initial random population of the problem solution, called chromosomes. In each iteration, the
fitness of every chromosome in the population is evaluated by using objective function. The fitter chromosomes
are stochastically selected and then evolutionary operators such as crossover and mutation are used to generate
new population. The GA is terminated for a maximum number of generations [25, 43].

Problem encoding. Each problem solution is represented by a chromosome. Here, chromosome is specified
as a pair of integer number ⟨h1, h2⟩ where 1 ≤ h1 ≤ Us1 and 1 ≤ h2 ≤ Us2 .

Initial population. We use a random integer number generator to create the initial population of
chromosomes. To generate a chromosome, the h1 and h2 are defined randomly by using formulas h1 =
Round (1 + Us1 ×Rand()) and h2 = Round (1 + Us2 ×Rand()) where Us1 and Us2 are the upper bound of
h1 and h2, respectively. The function Rand() returns standard uniform distribution on the interval (0, 1) and
the function Round(x) returns rounding of the elements of x to the nearest integer. So, hi = Round(1 + Usi×
Rand()) generates integer values from the uniform distribution on the interval [1, Usi] for i = 1, 2.

Fitness function. The main objective is to find integer values h1 and h2 such that the parallel execution
time TP (h1, h2) of the heterogeneous system with P processing nodes is minimized. In addition, we have a
constraint to fit the tiles into the cache memory of the processing nodes of the heterogeneous system. When the
requiring space for the iteration points within tiles is not exceed the cache size of the processing nodes, the tiles
are feasible (on the other hand, the chromosomes are feasible). According to Eq. 3.6, we consider the objective
function as a summation of two positive numbers, the parallel execution time and the penalty value computed
for the chromosomes. We use a constant value for penalty which is zero for feasible chromosomes and c > 0 for
an infeasible one.

Objective(⟨h1, h2⟩) = TP (⟨h1, h2⟩) + Penalty(⟨h1, h2⟩,M)

M = mini=1,...,P

Cache size of node i in byte

Vi × (#Byte of data type)
(3.6)

Penalty(⟨h1, h2⟩,M) = {
0 ifh1 × h2 ≤ M

c ifh1 × h2 > M

We assign a fitness value to each chromosome in the population, calculated by Eq. 3.7. The better chromo-
some, the bigger fitness value.

Fitness(⟨h1, h2⟩) =
1

Objective(⟨h1, h2⟩) + 1
(3.7)

Selection, crossover and mutation operators. After assigning the fitness value to each chromosome in
the current population, the roulette wheel selection method is used to choose a couple of parent chromosomes
for the crossing over operation. The bigger the fitness value of chromosomes are, the more chances to be chosen
they have. Crossover and mutation are two important genetic operators. Crossover is an exploitation operator
that is used to create new population by combining a couple of parent chromosomes. Mutation is an exploration
operator that is used to maintain diversity in the new population [43]. Here, the crossover operator is applied
to the selected parent chromosomes using an arithmetic crossover. The crossover operator is done with the
combined probability, PCrossover, as follows:

0 ≤ λ ≤ 1 is chosen randomly
If Rand() ≤ PCrossover

342 E. Zarei Zefreh, S. Lotfi, L. Mohammad Khanli, J. Karimpour

ChildChromosome1 = λ× ParentChromosome1 + (1− λ)× ParentChromosome2
ChildChromosome2 = (1− λ)× ParentChromosome1 + λ× ParentChromosome2

else
ChildChromosome1 =ParentChromosome1
ChildChromosome2 =ParentChromosome2

end

After applying the crossover operator, the mutation operator with the probability, PMutation, is applied to
newly generated chromosomes. It replaced the value of the chosen chromosomes, ⟨h1, h2⟩, with integer values
from the uniform distribution between the upper and lower bounds of h1 and h2.

Replacement Scheme. After generating the new population using selection, crossover and mutation
operations, the GA replaces the current population with the new one. We use elitism in the replacement
scheme. If the fittest chromosome in the current population is better than the fittest chromosome in the new
population, then it is moved to the next population directly. Elitism is important since it allows preserving the
fittest chromosome over the time.

4. Experiments and results. In this section, our simulation and experimental results are presented.
We evaluate the performance of the proposed theoretical model and tiling genetic algorithm by using the 3D
heat equation, three-level perfectly nested loops with dependencies, as a benchmark. Table 4.1 shows the
specifications of nine classes of processing nodes used in experiments. They are multi-core processors. A 100
Mbits/s fast Ethernet network is used to interconnect processing nodes. The benchmark is implemented in C
using OpenMP for intra-node communication and MPI for inter-node communication.

Table 4.1
Specifications of processing nodes

Processing nodes
1 2 3 4 5 6 7 8 9

Name of processors Intel
Core
2 Duo
T5870

Intel
Pen-
tium
E5300

Intel
Core
2 Duo
E7500

Intel
Core i3
2350M

Intel
Pen-
tium
G620

Intel
Pen-
tium
G2020

Intel
Core i5
2410M

Intel
Pen-
tium
G2030

Intel
Core i7
4710HQ

#Processors 1 1 1 1 1 1 1 1 1
CPU Speed (GHz) 2.00 2.60 2.93 2.30 2.60 2.90 2.30 3.00 2.50
#Cores 2 2 2 2 2 2 2 2 4
L1 Cache (KB) 2 x 32 2 x 32 2 x 32 2 x 32 2 x 32 2 x 32 2 x 32 2 x 32 4 x 32
L2 Cache (KB) 2048 2048 3072 2 x 256 2 x 256 2 x 256 2 x 256 2 x 256 4 x 256
L3 Cache (MB) - - - 3 3 3 3 3 6
Memory type DDR2 DDR2 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3 DDR3
RAM (GB) 4 2 2 4 2 4 4 4 8
Normalized Compu-
tational Power for
3D Heat Equation

0.0529 0.0531 0.0920 0.1029 0.1197 0.1383 0.1405 0.1438 0.1568

We use hierarchical tiling to exploit the computational power of all cores in multi-core nodes. For this
purpose, we first partition the iteration space of nested loops with dependencies into chunks and assign each
chunk to each node. Due to the dependence, each assigned chunk is partitioned to subchunks and run in pipeline
mode to achieve the maximum degree of parallelism between nodes of a heterogeneous system. In multi-core
node, the subchunk is tiled again and assign to their cores. Figures 4.1(a) and (b) show the pseudo code of
a subchunk of size ni × nj × nk of the 3D heat equation and the wavefront-parallel 3D heat equation for a
subchunk of size ni × nj × nk, respectively [44].

We execute the 3D heat equation on each node several times, measure the average execution time and
calculate the computational power of the processing nodes. These values, which are used as weights that scale

Tiling and Scheduling of Three-level Perfectly Nested Loops with Dependencies on Heterogeneous Systems 343

Fig. 4.1. (a) Pseudo code of 3D heat equation and (b) the wavefront-parallel 3D heat equation [44]

Table 4.2
Specifications of experiments

Experiment Node type
#1 1 1 1 1 1 1 1 1 - - - -
#2 3 3 3 3 1 1 1 1 - - - -
#3 8 8 8 8 1 1 1 1 - - - -
#4 7 7 7 7 4 4 4 4 1 1 1 1
#5 9 8 7 6 5 4 3 2 1 - - -

the size of each chunks assigned to each processing node, are normalized and showed in the last row of Table 4.1.

Simulations and experimental results are presented for one homogeneous and several heterogeneous comput-
ing systems to evaluate the performance of the proposed theoretical model for estimating the parallel execution
time and the tiling genetic algorithm for finding the near-optimal tiling. Table 4.2 describes the specification
of experiments.

All nodes of computing systems connected together with homogeneous communication links. An MPI
program in C used to exchange data with different sizes between every pair of processing nodes. We measured
the average time to send and receive messages. The estimated value of the start-up latency, cd, and the transfer
cost per unit of data, cc, between each pairs of nodes are 300e-06 and 0.80e-06, respectively.

We approximate the execution cost per iteration of each node as a function of tile size (namely, the constant
value Vi and variable integer values h1 and h2) to consider processor heterogeneity, the heterogeneity in memory
structure, and the effect of paging [45]. To do so, we run the benchmark for several integer values h1 and h2,
then the execution cost for all integer values of 1 ≤ h1 ≤ Us1 and 1 ≤ h2 ≤ Us2 was predicted using bilinear
interpolation methods. The execution time of each tile is measured once and is used several times in practice.
So, the cost of calculating the execution time of each tile will be amortized on the total execution time. Since
intra-node communication cost is negligible compared to inter-node communication cost, we did not directly
consider intra-node communication cost in Eq. 3.4. In fact, intra-node communication cost indirectly have
regarded in cpi

parameter.

4.1. Evaluation of the theoretical model. In this section, we evaluate the proposed theoretical model
for estimating the parallel execution time and genetic tiling algorithm for finding near-optimal tiling. In ex-
periment 1, we consider a homogeneous computing system consists of eight same processing nodes of type 1 as
mentioned in Table 4.2. First, the computational powers of these nodes are normalized such that the summation
of them equals one. The size of the iteration space is Uc×Us1×Us2 = 1024×1024×1024. The size of the assigned

344 E. Zarei Zefreh, S. Lotfi, L. Mohammad Khanli, J. Karimpour

Fig. 4.2. Parallel execution time for different tile sizes in experiment 1

chunk to the respective nodes in the uc dimension is Vi = Uc × vpi = 1024× 0.125 = 128 for i = 1, . . . , 8. Now,
we can determine the optimal size of other sides of 3D tile, h1 and h2, along the synchronization dimensions
us1 and us2 . Figure 4.2 shows the parallel execution time for various tile sizes (the Vi, h1 and h2). By searching
the entire space of solutions of h1 and h2, the optimal value of ⟨h1, h2⟩ are ⟨128, 16⟩. As theoretically expected,
when the tile sizes fit into the cache of nodes, the cache utilization and data locality maximize and it would
lead to improvement in the parallel execution time.

It is to be noted that searching the entire solution space of tile sizes can be very time consuming, especially
in the large solution space. So, we use proposed tiling genetic algorithm and the nonlinear integer programming
solver, NOMAD, to find the near-optimal value of h1 and h2 from the theoretical model, Eq. 3.5. Table 4.3
shows the results of 30 runs of the tiling genetic algorithm and NOMAD to solve Eq. 3.5 in experiment 1. The

comparison of the average and standard deviation of |AT−OPT |
OPT

indicate that the reliability of the proposed
tiling genetic algorithm to find the near-optimal value of h1 and h2 is better than NOMAD algorithm. On the
other hand, the accuracy of value ⟨h1, h2⟩ of the tiling genetic algorithm and NOMAD is achieved by the error
less than 0.0055 and 0.0248 in 30 runs, respectively.

4.2. Comparison of 3D and 2D Tiling. As mentioned in the related work, the proposed methods in
[21, 33, 40] could find the near-optimal partitioning of 3-nested loop with dependencies for homogeneous/hetero-
geneous computing systems. It targets two loops of the nested loop and considers the outer loop as synchro-
nization dimension and another loop as scheduling dimension. We refer to this work as the 2D tiling. In the
following, we compare the proposed 3D tiling with the 2D tiling for the 3-nested loop with dependencies on
homogeneous/heterogeneous computing systems. We find the near-optimal 3D tiling and 2D tiling for one
homogeneous and several heterogeneous computing systems. Table 4.4 shows the near-optimal tile sizes of 2D
and 3D tiling with/without considering heterogeneity feature and Fig. 4.3 plots their corresponding execution
time. The results presented in Tables 4.5 and 4.6 show the speedup of execution time for the 3D tiling versus

Tiling and Scheduling of Three-level Perfectly Nested Loops with Dependencies on Heterogeneous Systems 345

Table 4.3
The results of 30 runs of the tiling genetic algorithm and NOMAD Algorithm in experiment 1

Run
NOMAD Algorithm Genetic Tiling Algorithm

h1 h2 TT AT |AT−OPT |
OPT

Generation h1 h2 TT AT |AT−OPT |
OPT

1 128 16 6.0560 6.0643 0.0000 68 128 16 6.0560 6.0643 0.0000

2 227 9 6.3812 6.3904 0.0538 97 128 16 6.0560 6.0643 0.0000

3 136 15 6.2110 6.2199 0.0257 500 128 15 6.2429 6.2518 0.0309

4 128 16 6.0560 6.0643 0.0000 225 128 16 6.0560 6.0643 0.0000

5 256 8 6.2871 6.2954 0.0381 522 128 16 6.0560 6.0643 0.0000

6 127 16 6.1178 6.1271 0.0104 494 128 16 6.0560 6.0643 0.0000

7 255 8 6.3724 6.3828 0.0525 109 128 16 6.0560 6.0643 0.0000

8 135 15 6.2147 6.2237 0.0263 173 128 16 6.0560 6.0643 0.0000

9 128 16 6.0560 6.0643 0.0000 422 128 16 6.0560 6.0643 0.0000

10 256 8 6.2871 6.2954 0.0381 500 127 16 6.1178 6.1271 0.0104

11 127 16 6.1178 6.1271 0.0104 389 128 16 6.0560 6.0643 0.0000

12 128 16 6.0560 6.0643 0.0000 398 128 16 6.0560 6.0643 0.0000

13 64 32 6.3656 6.3739 0.0511 239 128 16 6.0560 6.0643 0.0000

14 146 14 6.3077 6.3172 0.0417 67 128 16 6.0560 6.0643 0.0000

15 128 16 6.0560 6.0643 0.0000 288 128 16 6.0560 6.0643 0.0000

16 128 16 6.0560 6.0643 0.0000 473 128 16 6.0560 6.0643 0.0000

17 156 13 6.3014 6.3104 0.0406 500 128 15 6.2429 6.2518 0.0309

18 227 9 6.3812 6.3904 0.0538 500 128 16 6.0560 6.0643 0.0000

19 136 15 6.2110 6.2199 0.0257 500 129 15 6.2387 6.2476 0.0302

20 128 16 6.0560 6.0643 0.0000 79 128 16 6.0560 6.0643 0.0000

21 136 15 6.2110 6.2199 0.0257 112 128 16 6.0560 6.0643 0.0000

22 128 16 6.0560 6.0643 0.0000 500 128 15 6.2429 6.2518 0.0309

23 128 16 6.0560 6.0643 0.0000 500 129 15 6.2387 6.2476 0.3022

24 128 15 6.2429 6.2518 0.0309 121 128 16 6.0560 6.0643 0.0000

25 227 9 6.3812 6.3904 0.0538 152 128 16 6.0560 6.0643 0.0000

26 128 16 6.0560 6.0643 0.0000 168 128 16 6.0560 6.0643 0.0000

27 63 32 6.4037 6.4125 0.0574 206 128 16 6.0560 6.0643 0.0000

28 119 16 6.2917 6.3011 0.0390 224 128 16 6.0560 6.0643 0.0000

29 136 15 6.2110 6.2199 0.0257 178 128 16 6.0560 6.0643 0.0000

30 145 14 6.3114 6.3210 0.0423 453 128 16 6.0560 6.0643 0.0000

Average of |AT−OPT |
OPT

=0.0248 Average of |AT−OPT |
OPT

=0.0055

Standard Deviation of |AT−OPT |
OPT

=0.0212 Standard Deviation of |AT−OPT |
OPT

=0.0114

Comment:
TT is the Theoretical Time for ⟨h1, h2⟩.
AT is the Actual Time for ⟨h1, h2⟩.
OPT is the Optimal Time for ⟨h1, h2⟩.
Optimal values for ⟨h1, h2⟩ via searching the entire space of feasible solutions is ⟨128, 16⟩ with the actual time 6.0643

2D tiling with/without considering heterogeneity feature.

In experiment 1, the homogeneous computing system consists of eight similar nodes of type 1. So, the parallel
execution time in 2D tiling with and without considering heterogeneity feature is the same and similarly for 3D
tiling. In this case, the 3D tiling achieves 1.65× speedup of execution time compared to the 2D tiling.

In experiment 2, the heterogeneous computing system consists of eight processing nodes, four nodes of type
1 and four nodes of type 3, as mentioned in Table 4.2. Since nodes 1 and 3 have the computational power close
to each other, the resulting speedup of execution time is almost close to experiment 1.

In experiment 3, the heterogeneous computing system consists of eight processing nodes, four nodes of type
1 and four nodes of type 8, as mentioned in Table 4.2. The nodes 1 and 8 have the computational power very
different from each other. In this case, the 3D tiling achieves 1.74× speedup of execution time compared to the

346 E. Zarei Zefreh, S. Lotfi, L. Mohammad Khanli, J. Karimpour

Table 4.4
Near-optimal tile sizes of 2D and 3D tiling with/without considering heterogeneity feature

Exp
The sides
of the tile

Without considering heterogeneity With considering heterogeneity
2D Tiling 3D Tiling 2D Tiling 3D Tiling

Exp.1
Vi { 128,128,128,128,128,128,128,128 } { 128,128,128,128,128,128,128,128}
h1 135 128 135 128
h2 1024 16 1024 16

Exp.2
Vi { 128,128,128,128,128,128,128,128 } { 163,163,163,163,93,93,93,93}
h1 135 128 150 74
h2 1024 16 1024 32

Exp.3
Vi { 128, 128, 128, 128, 128, 128, 128, 128 } { 188, 188, 188, 188, 68, 68, 68, 68}
h1 135 128 165 82
h2 1024 16 1024 25

Exp.4
Vi { 86,86,86,86,85,85,85,85,85,85,85,85 } { 122,122,122,122,89,89,89,89,45,45,45,45}
h1 140 192 144 84
h2 1024 16 1024 38

Exp.5
Vi { 114,114,114,114,114,114,114,113,113 } { 161,148,144,142,122,105,94,54,54}
h1 132 32 152 147
h2 1024 64 1024 18

Exp.6
Vi { 114,114,114,114,114,114,114,113,113 } { 152,152,152,152,152,66,66,66,66 }
h1 132 32 156 128
h2 1024 64 1024 20

Exp.7
Vi { 114,114,114,114,114,114,114,113,113 } { 152,152,152,152,101,101,100,57,57 }
h1 132 32 162 80
h2 1024 64 1024 32

Fig. 4.3. Comparison of 3D tiling and 2D tiling

Table 4.5
The speedup of execution time of 3D tiling vs 2D tiling without considering heterogeneity feature

2D Tiling-Heterogeneity
Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 Exp.7

3D Tiling-Heterogeneity 1.65 1.52 1.45 1.89 1.43 1.43 1.43

Tiling and Scheduling of Three-level Perfectly Nested Loops with Dependencies on Heterogeneous Systems 347

Table 4.6
The speedup of execution time of 3D tiling vs 2D tiling with considering heterogeneity feature

2D Tiling+Heterogeneity
Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6 Exp.7

3D Tiling+Heterogeneity 1.65 1.67 1.74 2.08 1.76 1.81 1.86

Table 4.7
Partitioning nodes in experiment 5 into two or three groups of similar performance

Computational power of nodes Group 1 Group 2 Group 3
0.1568, 0.1438, 0.1405, 0.1383,
0.1197, 0.1029, 0.0920, 0.0531,
0.0529

0.1568, 0.1438, 0.1405,
0.1383, 0.1197

0.1029, 0.0920,
0.0531, 0.0529

-

0.1568, 0.1438, 0.1405
0.1383

0.1197, 0.1029,
0.0920

0.0531, 0.0529

2D tiling with considering heterogeneity feature.
In experiment 4, the heterogeneous computing system consists of 12 processing nodes of three types 1, 4

and 7 as mentioned in Table 4.2. In this case, the 3D tiling can achieve 1.89× and 2.08× speedup of execution
time compared to the 2D tiling without and with considering heterogeneity feature, respectively.

In experiment 5, the heterogeneous computing system consists of nine nodes of fully different computational
powers as mentioned in Table 4.2. In this case, the 3D tiling can achieve 1.43× and 1.76× speedup of execution
time compared to the 2D tiling without and with considering heterogeneity feature, respectively.

The heterogeneity is an important feature in parallel and distributed computing systems but considering
fully heterogeneity in practice is very difficult. Therefore, we partition nodes of experiment 5 into two or three
groups of almost similar performance in terms of their computational power and consider the weakest node
in each group as the representative. Table 4.7 show the results of the grouping that was done with fastclus

procedure on SAS software. The weakest node in each group is bold. The parallel execution times in experiment
6 and 7 are very close to experiment 5.

According to the experimental results, the parallel execution time of the 2D tiling and 3D tiling with
considering heterogeneity feature is less than the 2D tiling and 3D tiling without considering heterogeneity
feature. Therefore, loop tiling combined with the heterogeneity feature could help to improve the efficiency of
computation on heterogeneous systems. Overall, the results show the minimum parallel execution time for the
3D tiling with considering heterogeneity feature in all experiments.

As already mentioned, Fig. 4.3 shows the cost to implement the obtained solution for 2D and 3D tiling.
The proposed genetic tiling algorithm takes, on average, less than one second to find a solution. Therefore, the
cost to obtain the solution for 3D tiling using the genetic algorithm is higher than 2D tiling, because it involves
the cost of the evolutionary process. However, the results presented in Fig. 4.3 shows that the 3D tiling might
lead to a more parsimonious solution in terms of implementation cost.

5. Conclusions and future work. This paper addresses the problem of 3D tiling and scheduling when
parallelizing three-level perfectly nested loop with dependencies on heterogeneous systems. The tile size plays
an important role to improve the parallel execution time of nested loops. Searching the entire feasible solution
space of tile size can be very time consuming, especially in cases where the solution space is large. We build
a theoretical model to estimate the parallel execution time with the computational power awareness of the
nodes of computing systems. We use the proposed tiling genetic algorithm and nonlinear integer programming
solvers, NOMAD, to find the near-optimal value of tile size from the theoretical model. Experiment results
by 3D heat equation on heterogeneous systems show the accuracy and efficiency of the proposed theoretical
model and the tiling genetic algorithm in estimating the parallel execution time and finding the near-optimal
3D tiling. Furthermore, we show that the 3D tiling combined with heterogeneity feature and a pipeline-like
execution could exploit the potential parallelism and improve the parallel execution time of perfectly nested
loop with dependencies on heterogeneous systems.

The plans for future work include: (i) extend the 3D tiling algorithm for the imperfectly nested loops with

348 E. Zarei Zefreh, S. Lotfi, L. Mohammad Khanli, J. Karimpour

dependencies on heterogeneous computing systems; and (ii) extend the 3D tiling algorithm to handle partially
connected network.

Acknowledgments. The authors would like to thanks the editor and the reviewers for their helpful and
constructive suggestions, which considerably improved the quality of the paper. They would also like to thanks
Nasrin Nasrabadi and Fateme Karimi, PhD Students, for all very valuable comments.

REFERENCES

[1] S. Fide and S. Jenks, A middleware approach for pipelining communications in clusters, Cluster Computing, 10 (2007), pp.
409-424.

[2] I. Riakiotakis and P. Tsanakas, Dynamic scheduling of nested loops with uniform dependencies in heterogeneous networks
of workstations, 8th International Symposium on Parallel Architectures, Algorithms and Network, ISPAN 2005, 2005.

[3] R. L. Cariño and I. Banicescu, A load balancing tool for distributed parallel loops, Cluster Computing, 8 (2005), pp. 313-321.
[4] X. Zhou, M. J. Garzarán, and D. A. Padua , Optimal parallelogram selection for hierarchical tiling, ACM Transactions

on Architecture and Code Optimization, 11 (2015), pp. 1-23.
[5] M. I. Daoud and N. Kharma, An efficient genetic algorithm for task scheduling in heterogeneous distributed computing

systems, IEEE Congress on Evolutionary Computation, CEC, pp. 3258-3265, 2006.
[6] G. Wang, Y. Wang, H. Liu, and H. Guo, HSIP: A Novel Task Scheduling Algorithm for Heterogeneous Computing, Scientific

Programming, 2016 (2016), pp. 1-11.
[7] K. Qinma and H. He, Honeybee mating optimization algorithm for task assignment in heterogeneous computing systems,

Intelligent Automation & Soft Computing, 19 (2013), pp. 69-84.
[8] C.-T. Yang and L.-H. Cheng, Implementation of a performance-based loop scheduling on heterogeneous clusters, Algorithms

and Architectures for Parallel Processing, Springer, pp. 44-54, 2009.
[9] J. Dongarra and A. L. Lastovetsky, High performance heterogeneous computing, John Wiley & Sons, 2009.

[10] K. Hwang, J. Dongarra, and G. C. Fox, Distributed and cloud computing: from parallel processing to the internet of thing,
Morgan Kaufmann, 2013.

[11] R. Bleuse, S. KedadSidhoum, F. Monna, G. Mounié, and D. Trystram, Scheduling independent tasks on multicores with
GPU accelerators, Concurrency and Computation: Practice and Experience, 27 (2015), pp. 1625-1638.

[12] M. G. Lopez, J. Young, J. S. Meredith, P. C. Roth, M. Horton, and J. S. Vetter, Examining recent many-core
architectures and programming models using SHOC, Proceedings of the 6th International Workshop on Performance
Modeling, Benchmarking, and Simulation of High Performance Computing Systems, 2015.

[13] P. A. La Fratta and P. M. Kogge, Heterogeneity in parallel and distributed computing, Journal of Parallel and Distributed
Computing, 73 (2013), pp. 1523-1524.

[14] M. E. Wolf and M. S. Lam, A data locality optimizing algorithm, ACM Sigplan Notices, pp. 30-44, 1991.
[15] G. Rivera and C.-W. Tseng, Tiling optimizations for 3D scientific computations, ACM/IEEE Conference in Supercomput-

ing, pp. 32-32, 2000.
[16] M. E. Wolf and M. S. Lam, A loop transformation theory and an algorithm to maximize parallelism, IEEE Transactions

on Parallel and Distributed Systems, 2(1991), pp. 452-471.
[17] D. Padua, Encyclopedia of parallel computing , Springer Science & Business Media, 2011.
[18] M. Kowarschik and C. Weib, An overview of cache optimization techniques and cache-aware numerical algorithms, Algo-

rithms for Memory Hierarchies, LNCS 2625, Springer, pp. 213-232, 2003.
[19] S. Parsa and M. Hamzei, Locality-Conscious Nested-Loops Parallelization, ETRI Journal, 36 (2014), pp. 124-133.
[20] I. Riakiotakis, F. M. Ciorba, T. Andronikos, and G. Papakonstantinou, Distributed dynamic load balancing for pipelined

computations on heterogeneous systems, Parallel Computing, 37 (2011), pp. 713-729.
[21] T. Andronikos, F. M. Ciorba, I. Riakiotakis, G. Papakonstantinou, and A. T. Chronopoulos, Studying the impact of

synchronization frequency on scheduling tasks with dependencies in heterogeneous systems, Performance Evaluation, 67
(2010), pp. 1324-1339.

[22] U. Bondhugula, Compiling affine loop nests for distributed-memory parallel architectures, International Conference in High
Performance Computing, Networking, Storage and Analysis (SC), pp. 1-12, 2013.

[23] H. El-Rewini and M. Abd-El-Barr, Advanced computer architecture and parallel processing, John Wiley & Sons, 2005.
[24] C. L. Abad, Y. Lu, and R. H. Campbell, DARE: Adaptive data replication for efficient cluster scheduling, International

Conference on Cluster Computing (CLUSTER), IEEE, pp. 159-168, 2011.
[25] S. Parsa and S. Lotfi, A new genetic algorithm for loop tiling, The Journal of Supercomputing, 37 (2006), pp. 249-269.
[26] S. Mehta, G. Beeraka, and P.-C. Yew, Tile size selection revisited, ACM Transactions on Architecture and Code Opti-

mization, 10 (2013).
[27] S. Chen and J. Xue, Partitioning and scheduling loops on NOWs, Computer Communications, 22 (1999), pp. 1017-1033.
[28] F. M. Ciorba, I. Riakiotakis, G. K. Papakonstantinou, T. Andronikos, and A. T. Chronopoulos, Studying the impact

of synchronization frequency on scheduling tasks with dependencies in heterogeneous systems, PACT, 2007.
[29] J. Ramanujam and P. Sadayappan, Nested loop tiling for distributed memory machines, Proceedings of the Fifth Conference

in Distributed Memory Computing, pp. 1088-1096, 1990.
[30] D. Liu, Y. Wang, Z. Shao, M. Guo, and J. Xue, Optimally maximizing iteration-level loop parallelism, IEEE Transactions

on Parallel and Distributed Systems, 23(2012), pp. 564-572.

Tiling and Scheduling of Three-level Perfectly Nested Loops with Dependencies on Heterogeneous Systems 349

[31] F. M. Ciorba, I. Riakiotakis, T. Andronikos, G. Papakonstantinou, and A. T. Chronopoulos, Enhancing self-
scheduling algorithms via synchronization and weighting, Journal of Parallel and Distributed Computing, 68 (2008),
pp. 246-264.

[32] J. Xue, Communication-minimal tiling of uniform dependence loops, Journal of Parallel and Distributed Computing, 42
(1997), pp. 42-59.

[33] I. Riakiotakis, F. M. Ciorba, T. Andronikos, G. Papakonstantinou, and A. T. Chronopoulos, Towards the opti-
mal synchronization granularity for dynamic scheduling of pipelined computations on heterogeneous computing systems,
Concurrency and Computation: Practice and Experience, 24 (2012), pp. 2302-2327.

[34] P. Crandall , M. J. Quinn, Three-Dimensional Grid Partitioning for Network Parallel Processing, ACM Conference on
Computer Science. Citeseer, pp. 210-217, 1994.

[35] O. Beaumont, V. Boudet, F. Rastello and Y. Robert, Matrix multiplication on heterogeneous platforms, IEEE Trans-
actions on Parallel and Distributed Systems, 12 (2001), 1033-1051.

[36] E. Z. Zefreh, S. Lotfi, L. M. Khanli, and J. Karimpour, 3D data partitioning for three-level perfectly nested loops on
heterogeneous distributed systems, Concurrency and Computation: Practice and Experience, accepted, 2016.

[37] P. Boulet, J. Dongarra, F. Rastello, Y. Robert, and F. Vivien, Algorithmic issues on heterogeneous computing
platforms, Parallel processing letters, 9 (1999), pp. 197-213.

[38] P. Boulet, J. Dongarra, Y. Robert, and F. Vivien, Static tiling for heterogeneous computing platforms, Parallel Com-
puting, 25 (1999), pp. 547-568.

[39] F. M. Ciorba, T. Andronikos, I. Riakiotakis, A. T. Chronopoulos, and G. Papakonstantinou, Dynamic multi phase
scheduling for heterogeneous clusters, 20th International in Parallel and Distributed Processing Symposium, IPDPS, 2006.

[40] F. M. Ciorba, I. Riakiotakis, T. Andronikos, A. T. Chronopoulos, and G. Papakonstantinou, Optimal synchronization
frequency for dynamic pipelined computations on heterogeneous systems, International Conference on Cluster Computing,
IEEE, pp. 410-415, 2007.

[41] F. Desprez, J. Dongarra, F. Rastello, and Y. Robert, Determining the idle time of a tiling: new results, International
Conference on Parallel Architectures and Compilation Techniques, pp. 307-317, 1997.

[42] S. Le Digabel, NOMAD: Nonlinear optimization with the MADS algorithm, ACM Transactions on Mathematical Software
(TOMS), 37 (2011).

[43] M. Gen and R. Cheng, Genetic algorithms and engineering optimization, John Wiley & Sons, 2000.
[44] G. Hager and G. Wellein, Introduction to high performance computing for scientists and engineers, CRC Press, 2010.
[45] A. Lastovetsky and R. Reddy, Data partitioning with a functional performance model of heterogeneous processors, Inter-

national Journal of High Performance Computing Applications, 21 (2007), pp. 76-90.

Edited by: Dana Petcu
Received: May 28, 2016
Accepted: August 2, 2016

Scalable Computing: Practice and Experience
Volume 17, Number 4, pp. 351–368. http://www.scpe.org

DOI 10.12694/scpe.v17i4.1206
ISSN 1895-1767
c⃝ 2016 SCPE

A SELF-HEALING ARCHITECTURE BASED ON RAINBOW FOR INDUSTRIAL USAGE

ALI FARAHANI*, ESLAM NAZEMI∗AND GIACOMO CABRI†

Abstract. Over recent decades computer and software systems become more and more complex because of the applications’
and user’s requirements. The complexity makes the software systems more vulnerable to the error and bugs. Also, environmental
situations affect software systems which do not react to the environmental activities. Self-healing architectures have been proposed
in order to make systems defeat these problems and to make systems capable of reacting to the environmental activity. Hence,
these architectures help system to become dynamic and more robust, but finding a proper architecture which can support and
cover system’s requirements is an issue. This is particularly true in industrial environments, which consist of some known and some
unknown parameters.

This paper presents an architecture that can be used in some industrial environment to facilitate the process of adapting
the system to unpredicted situations. This architecture has been developed over the base of RAINBOW infrastructure and it is
compliant to the MAPE control loop (Autonomic Computing control loop). The paper reports also about the practical experience
of implementing this architecture for a painter robot in an automotive factory, which deals with problems in painted part by itself.
The proposed architecture uses rule-based reasoning and it actualizes the method of environmental modeling by using a rule-based
system as the model extractor. The results of the implementation shows huge benefits in reusability and even in the quality of
painting process.

Key words: Self-healing, RAINBOW infrastructure, Rule-Based

AMS subject classifications. 68M14, 68N19

1. Introduction. Computer systems play an unavoidable role in every field. In this paper, we focus
on industrial environments, where they are widely exploited. Industrial environments have a unique property
which makes it different from other environments: they have so many parameters and the value of some of
them could not even be defined. Dealing with this kind of situations needs a software system that can manage
the unpredicted situations. The main goal of the research experience presented in this paper is to propose
an architecture and its implementation for industrial applications, which is able to adapt to environmental
unpredicted situations by means of the self-healing property.

As mentioned in [1], to face the size and complexity of software systems, design has become more important
than algorithms and data structures. In this context, defining an architecture is necessary for developing
software systems. Another issue which should be considered is addressing failures [2]. Fault management can
be considered and categorized with following reasons and cases:

• The scope of the systems could change during the process and also changes in system’s specification
will occur because of early system’s requirements analyzing.

• Because of the system’s environment characteristics, the system could face changes when executing in
a non deterministic environment.

• Failures in system’s part could occur.
Systems having unknown, incorrect and/or improvable behavior are not used by any developer and user of

computer systems, because of their unreliability in covering the users’ needs [2].
Starting from these considerations, our aim is to propose an architecture to react to failures in an industrial

system. Previous study in fault management considered fault management as gathering and analyzing alerts
and failures in a service [3]. According to the explanation in [3], “service” means tasks and functions presented
by an industrial IT system, although this definition can be considered for the usage of any other software systems
as well.

The main steps in fault management process are described as below [4]:
• Detect
• Diagnose
• Decide

∗Computer Science and Engineering Faculty, Shahid Beheshti University, Tehran, Iran ({a farahani,nazemi}@sbu.ac.ir)
†Department of Physics, Informatics and Mathematics, Università di Modena e Reggio Emilia Modena, Italy

(giacomo.cabri@unimore.it)

351

352 A. Farahani, E. Nazemi, G. Cabri

• Respond

Beside this viewpoint for remediating the systems from fault state, there are several solutions for fault
management and responding to failure in the software systems context. Similar to [3], we are looking for the
capability of adapting the system to the environment. For a long time, self-adaptation property’s implementa-
tions were used in computer systems and it was blended with other system functionalities. In fact, a part of the
system is usually responsible for responding to events (e.g. failure) but not separately from the part respon-
sible for the main system functions. As also proposed in software engineering, it is better to have separation
of concerns. For supporting this separation, it has to be applied in both system design and implementation.
Separation is mentioned as one of the views in [6]. If the change and fault management functionality domain
remains at the code level (high coupling), the domain of changes detection and responding to changes will be
small and inadequate, introducing another weakness.

The solution and approach that can be conceived to face these problems, also emphasized in [7], is to address
the response to changes and failures at the architecture level. In another word, the architecture of the system
should be designed for reacting against failures and changes.

In the case of lack of an architecture, the developed system will no longer carry the benefits of an architec-
tural approach to systems development. Some of these benefits are [8]:

• reusability : reusing developed modules;
• easy improvement : continuous and simple improvement of each section;
• extendibility : simple extension capability;
• changeability : ability to make simple changes to different parts of the system.

Various architectures have been presented for supporting the reacting to changes. One of these architectures
is derived from Autonomic Computing (AC), which is described in [9, 10]. Also, architectural solutions for fault-
management are used for confronting and reacting against failures. Examples of these researches are mentioned
in [11]. The main feature of the architecture in [11] is that it supports responding to changes at the architecture
level. Also, self-healing is one of the properties and capabilities supported by the architecture presented in [11].
In [11] the task for self-healing is to recover the system from errors and responding to failures. Self-healing is
defined as “To discover, diagnose and react to disruptions” in [10]. As it is clear, the viewpoint of this feature
is aligned with the fault-management approach and both seek to react to events that take the system out of
a correct state. By having in mind the researches mentioned in this section, it could be an option to consider
self-healing and fault-management as two features that have similar goals and they are trying to reach their
goals with different views and paths.

For achieving a system capable of managing and responding to changes and failures, self-healing should
be considered as an architectural aspect is systems architecture [5]. In order to implement an autonomic
architecture for self-healing a model of failure must exist [7]. So there will be a knowledge about states in
which failures can happen in the system. Also, there should be the information about which state requires
responding and which does not. Due to the differences between architecture and implementation abstraction
level, a solution is needed for realizing architecture level views in the implementation. Thus, an architecture
should be implemented which supports the AC at the architectural level.

Another research field in AC which can have benefit in fault management is policy-based autonomic systems,
which are mentioned as a solution for making systems react to the changes [12]. For implementing a policy-based
autonomic system, there is an approach that uses a rule-based viewpoint to make a rule-based engine for systems’
reaction task [13]. The rule-based approach is mentioned as a type of policy-based system implementation and
also rule-based reasoning as a solution for defining policies [14]. Humans are also reasoning in the way rule-
based systems reason. This could facilitate the process of using the self-healing systems (rule-based self-healing
systems) for humans (system’s user).

The contribution of this paper is to present a self-healing architecture in the industrial environment, which
takes inspiration from the fault management view and based on Autonomic Computing. In this architecture, the
reason of using rule-based approaches is to achieve a more specific architecture definition and also to facilitate
the process of human dealing with systems specification and implementation.

There are some general proposed architectures that can be found in self-healing software, self-healing systems
and autonomic systems research fields. The proposed architectures have been used to facilitate the adaptation

A Self-healing Architecture based on RAINBOW for Industrial Usage 353

of a robot’s software system to its new task. The architecture presented in this paper does not rely on any
specific platforms or implementation’s language. This architecture can be used in a wide range of software
systems.

Another contribution of this research is that the prosed architecture is integrated for all phases in the
software development (from designing a general architecture to its implementation). Namely, it could cover the
process from the high-level architecture development step (like AC architecture) to deciding about the imple-
mentation solution (like policy-based system) and implementation algorithm (like rule-based implementation).

By presenting the literature and previous work in Section 2, we become familiar with achievements in
this field and we can define our architecture. Section 3 introduces a real-life case study that has been used
for explaining and also examining the architecture implementation. In Section 4 the proposed architecture is
presented. In Section 5 the results of implementation and examination is reported and Section 6 discusses the
conclusions and further work.

2. Related Work. The previous researches which are related to architectures of reacting systems in the
industrial usage (based on the knowledge from software engineering, Autonomic Computing and fault-tolerant)
will be presented in different three categories:

• Autonomic Computing and self-healing systems;
• Fault-management with self-healing viewpoint;
• RAINBOW architecture [1] as a base for proposed architecture.

According to the literature, there are papers including the combination of more than one of these categories
which will be discussed in detail in the following.

2.1. Autonomic Computing and Self-healing Systems. In [21], entitled Towards architecture-based

self-healing systems, the goal is presenting an architecture with a self-healing capability in order to execute
repair system in running time and without human interference. In order to reach this goal, different concepts
and tools are used which are mentioned in the following:

• Elements of this architecture are formed by components and connectors between them; this makes
performing fault management changes in the architecture very flexible, because of the loosely coupled
connection point feature.

• Connections between these components are established through “independent messages or events” in-
stead of “shared memory between components”. Moreover, benefiting from the events will provide the
possibility to separate components from each other and eventually it will provide the system with the
ability to remove, add or replace the components easily in run time without changing the code.

• In order to obtain a vast range of applications supporting specific types of repairs, domains, or imple-
mentation platforms, middleware, and languages, it is necessary to use a general architecture description
language (such as xADL 2.0 in this work).

The software architecture description is the basis of the system implementation, in other words, the com-
ponents are located and loaded (also generating of links and connector) based on implementation knowledge
contained in the architecture description. In the situation that a fault happened and there is a need to perform
some reactions, there is an engine that takes the description of two xADL 2.0 architecture described (the first
is the current architecture, and the second is the architecture proposed as a remediation) as input and tries to
extract the difference between them and gives a new architecture description as an output. In another part, this
new architecture, which is derived from the differences, will be analyzed. After deciding that is a good solution
for the system, it can be executed.

From these explanations, it is obvious that infrastructures that do not support adding or removing com-
ponents in a software system are unsuitable for this approach. Also, we know that although this policy is not
sufficient for all types of repair, it is suitable for many applications, like those with no strict timing constraints.
But considering software architecture descriptions as integral parts of the deployed software system described
by them is an incomparable aspect of the approach given here.

As it is obvious, discussed research in [21] is carried out at the architecture level and it tries to support
healing by changing the architecture (without interfering the change ability inside the system implementation).
Also, the detail level remains at the architecture level. As mentioned, this solution is not applicable in a wide
range of systems.

354 A. Farahani, E. Nazemi, G. Cabri

Being the change in management part outside the system implementation (except for changes in relationships
and architectural order), the ability to change the implementation will be taken away from the system. This
point questions the self-healing capability.

In [22], easing the self-healing in software based on software control principle is discussed. It focuses on
remediation of failures in software based on reacting to the failure with the help of non-internal component of the
system. It prepares Final State Machine for software and inserts remediation states into the software execution
flow. This research adds some states in order to control the failure in the system. This research does not
interfere in the main system architecture and just tries to remediate failure with adding some remediation state.
By the way, interfering the architecture could improve the result of remediation but it has more difficulties.

Another research brings architectural patterns to support self-adaptation in architectural level (SimSOTA)
[23]. SimSOTA is an integrated Eclipse plugin that brings self-adaptation into the system based on a feedback
loop. It uses model-driven viewpoint and implemented by a case study in the cooperative electric vehicle. It does
not deal with software architecture in requirement analysis or design phase. Need for a reference architecture
for easier implementation of the self-adaptive system in industrial usage is not covered by this research.

2.2. Fault-management with Self-healing. As mentioned in [16], autonomic fault management can
be done with the usage of IBM’s reference architecture for AC. This architecture is mentioned in the previous
section. This article tries to show this that in order to create an automatic fault management system it is
necessary that the knowledge capable of reasoning exists in all steps from detection to response to the fault.

This research in [16] provides an engineering process in service level for fault management. But this
technique only applies to the service oriented systems. Also, there is no detail on the system architecture and
how components are placed in the system and the internal system architecture in [16]. In another research [20],
an investigation is done for solutions of self-healing in software systems. Here it is indicated that one of the
solutions in this field is obtaining knowledge from the environment based on the model. Meaning that, the
method presented in this paper for identifying and understanding the environment is carried out by creating
and processing the model using the environment and its conditions. But in this research details and specifications
about the system architecture and also the implementation and the solution to fulfill it, are not given. As it
will be mentioned in future papers of this research, a possible alternative could be investigating first for more
intelligent repair policy mechanisms. It means what the structure basics and building blocks of the self-healing
capability implementation are.

Also in a fault management viewpoint, a structure for fault-management systems is presented in a mentioned
architecture and commercial used in [20]. This structure is used for fault management systems in network
management systems. It includes a few elements provided generally in all systems; Modeling event/alerts,
Parsing, Correlation, Validation rules & Filters, Fault DB.

These sections’ function provides input to enter the parse procedure. In the parse and its internals
information is extracted (for example information are placed in a structure like XML and need parsing for
recovery). Now this information is correlated and handed over to Modeling event/alert in order to draw the
current system condition model. This model is checked considering all rules and filters and its required decision
is extracted and the decision is executed by Action. This isolation that which models require a response and
which do not be stored in fault database (DB). Information about conditions which must be assumed as a fault
by the system is stored in this database.

The architecture in [20] was presented with enough information about the details of implementation of each
components and internal modules. However, it does not mention how the knowledge is maintained and checked
the models based on knowledge. Also, this architecture is designed for a specific area of systems (network
management). This architecture requires implementing conditions and environment policies.

2.3. RAINBOW Architecture. In [15], RAINBOW as a framework/infrastructure is presented includ-
ing a structure capable of being reused and also solutions for applying it. RAINBOW infrastructure gives the
executor the capability of explaining necessary motivations and performing the suitable instructions. On the
other hand, this presented structure in [15] generates the ability for reusing solutions and methods (codes and
implemented system) which are prepared in the first place.

This generation is formed by two main modules, adaptation infrastructure and system layer. The system
layer indicates a running system (without change capability) to which self-adaptive property must be added.

A Self-healing Architecture based on RAINBOW for Industrial Usage 355

This task which will be inserted into the system will be done by adaptation infrastructure. RAINBOW frame-
work also includes translation and architecture parts in infrastructure module. The translation module is used
for transforming the structure of the information that comes from the environment into the information which
can be understood by another part of self-healing architecture. This transformation of information is the reason
of RAINBOW framework reusability feature. In architecture module, there are four main elements; Model man-
ager, constraint evaluator, adaptation engine and adaptation executor. The required knowledge for changing
the system is known as system specific knowledge; Using this knowledge and also defining mappings, types and
properties, rules, strategies and tactics and operators will make the system capable of responding to the case[15].
This information and data are necessary to this system and could be considered as knowledge. In RAINBOW
architecture, after detecting information and conditions according to resources by the probe, they are reported
to the architecture layer by knowledge and resource discoveries and in between; transforming this information
into comprehensible information for the architecture layer is carried out using existing rules in mapping mod-
ule. Then, information is aggregated by gauges and is transformed to the environment model by the model
manager. Next, limitations are checked by the analyzer and if necessary, it will send an adaptation request
to the adaptation manager and after explaining the adaptation strategy, adaptation manager will provide the
strategy to the change executer. The applied result to the system layer will be translated into the system level
by the translator and then it will be sent.

Clearly, in RAINBOW framework few features are emphasized:
• Reusability: having the ability to use some implemented part in future;
• Specified architecture: defining an architecture and roadmap for creating a system;
• Based on a reference architecture: being based on a well-known control loop (MAPE loop);
• General propose: not being domain specific.

But besides these features, there could be different ways to implement the knowledge detection method and
also knowledge levels, system details and controlling details and the system implementation. These kinds of
information about implementation of RAINBOW architecture/infrastructure have been introduced in [17, 18].

The architecture presented in [17, 18], considers AC and self-adaptation generally, and could be specialized
for special-purpose functions and attributes, like self-healing in order to gain more performance and reusability
in that domains.

Similar to RAINBOW, there is a research [19] that also takes decisions on the base of known probability of
a failure. It provides failure avoidance based on changing systems component (services) based on scenarios and
situations. The cost of each change in system and failure rate of each service is calculated for each scenario and
adaptation plan.

According to these researches and our aim of having a self-healing architecture for industrial usage, the
following issues must be considered in our work:

• The RAINBOW framework includes reusability and also other capabilities for having an architecture
for a system and we can guarantee these abilities by underlying on it. Furthermore, this framework is
based on the AC presented by IBM and this point is an acknowledgment to the performance and the
verification of this framework and adaptive architectures based on this framework.

• In order to obtain a usable architecture as mentioned in [15] the solution for implementing the archi-
tecture must be considered in the architecture itself.

• As given in [9], including knowledge about the environment and the system also knowledge on adaptation
in architecture is necessary. In addition, as in [16], reasoning from the knowledge base on the situation
should be considered, and also how the knowledge is implemented must be provided as other elements
of the architecture.

Considering these aspects, in the next section we introduce a real case study and then we will present our
architecture and prove this architecture by referring to previous works.

3. Case Study. To explain our approaches we introduce a real case study, which is taken from an industrial
project about using a robot for painting automotive parts. This robot had been programmed to paint a specific
automotive part. The software consists of a program P that was written in C# language. The program P can
run a software code G that was written in G-code; the execution happens on the robot through an API. G-code
is also known as RS-274, which is the common name for numerical code (NC) programming language. The

356 A. Farahani, E. Nazemi, G. Cabri

main usage of the G-code is in the industries that use computer-aided robots. An example of a G-code for our
robot and its description from starting the painting process is the following (code descriptions will follow ‘#’):

version

3

title

first side buck

Start Delay

36.5

60

VerticalOffset

0

#iteration delay

6

#GUN Mult

0.75

#GEAR Mult

1.0

COMMAND

delay action [data]

delay can be a double number represent an absolute delay passed from start delay

delay can be as this format: $index,offset == index*iterationDelay + offset

examples :

0.1 HOMINGHEAD

$1,0.5 MOVE 1 0.5 0.5

#

delay MOVE vertical gear gun

0.2 MOVE 10.3 0.5 0.5

#

delay COLOR vertical gear gun sprayStartDelay sprayDuration

0.5 COLOR 20.5 0.5 0.5 0.1 1.8

#

delay COLORPOS vertical gear gun

-2.5 MOVE -3 0.15 0.55

$0,0 COLOR 120 0.15 0.40 0.200 1.600

&0.1 COLOR -3 0.16 0.63 0.050 1.700

&3.8 COLOR 120 0.15 0.30 0.000 1.300

&0.5 HOMINGHEAD

Fig. 3.1 shows the robot. The robot consists of 5 main parts:

1. the body which the hand is installed on;
2. the hand which carries the wrist;
3. the wrist which controls the nozzle;
4. the nozzle;
5. the camera which can capture the state of the painting position on the automotive part.

The body can lift up and put down the hand which carries the wrist. The wrist is the most important part.
It has 2-dimensional freedom degree for changing the position of the nozzle (this grants the robot 3 type of
different movements) and of the camera, which takes the picture from the painting position on the automotive
part.

A Self-healing Architecture based on RAINBOW for Industrial Usage 357

Fig. 3.1. Painter Robot

The automotive part to be painted is chained into the conveyor and comes from one side and goes to another
side. The speed of the conveyors could be considered slow. The actual speed in the factory is 20 cm per minute.
The robot control code (G) was written based on a best practice, which states that the painting is better to
be in not all time slots. This means that, for example, it is better to start painting in t=0s and in t=10s the
painting stop. After 30 seconds of pause, another 10-second painting slot is started.

Stops between each painting slot make the robot capable of remedying the painting process that has had
faults: the corrections are provided in between two painting slots. To remedy the painting processes there must
be a feedback from the painting process so the remediation program for those slots is going to be prepared. This
process needs some heuristics from humans that are familiar with G-codes and know the object to be painted
and the environment and also know about constraints in the painting process. For this purpose, the painting of
an object ran so many times and the images had been processed by computer for colorless spots. The experts
introduce some remediation in the code G for each situation that shows that the system did not do its job well
enough after analyzing the situation (for example a problem on the color density of some automotive parts).

The main problem is that changing this G-codes for programming and remediation is a heavyweight process
and task for software developers and will cost so much resource for the project. Any kind of enhancement in
this area could be considered as a huge benefit for the company.

This real case study is going to be used to present the proposed architecture.

4. Proposed Architecture. In this section, a self-healing architecture is proposed to address fault man-
agement introduced in the previous sections, by means of self-healing. This architecture passed through two
phases of improvement. The first phase is going to reduce the time for changing the software for different
situations and tasks; the second one is to even make it easier to change and also more general to use.

We did not start our work from scratch, instead we take inspiration from the RAINBOW architecture
previously presented. However, some issues drove us to propose a new architecture based on RAINBOW; the
main needs can be summarized in the following reasons:

• No need for online feedback: differently from the RAINBOW architecture which supports online feed-
back, in our architecture we do not need online feedback because of the environment and problems
nature. In industrial usage, not all the factors that are going to influence the process are known and
this will make the online feedback not only unnecessary but also misleading for the context. Knowing
the cause of the fault in nondeterministic environment (such as industrial usage) is impossible (even
implicit cause) and grabbing the result, analyzing the data and importing it into the knowledge could
be a bad idea.

358 A. Farahani, E. Nazemi, G. Cabri

• Nondeterministic environment: there will be so many unknown situations and parameters in industrial
usage. The example in this paper is one of them. In this kind of environment, presenting the probability
function for each action and also knowing the result set o the environmental variable is not doable. So,
simplifying the architecture will help the modeling of the problem.

The following architecture will address the industrial problem easier with less complexity and in an enough
complete way rather than the RAINBOW architectural-based solution.

Starting from the existing implementation, we report the improvement we applied to it in two phases,
detailed in the next subsections.

4.1. Phase 1. As mentioned before, we aim at proposing an architecture for software systems that can
heal themselves against faults and keep achieving their tasks. Considering the case study, an example of the
fault is when a small portion of automotive parts has some areas which have oil drop on it so there will be the
need for repainting those areas. The robot should recognize these situations and perform a sequence of tasks
in order to repaint the unpainted areas. This remediation is going to be the self-healing part for the first phase
of the proposed architecture. Besides the functional requirements as the example mentioned above, below we
mention some non-functional requirements that have led our work:

• Being general-purpose. Meaning that it is not developed for a specific application.
• It must be developed based on reference architectures or best practice; this will help the architecture
and so the system to have the benefits of those best practice or reference architecture in them.

• User of this proposed architecture must be supported in all phases of system development, from strategy
to design. Meaning that when creating a macro design, detailed designing, and implementation methods
must be considered.

• Bringing the benefits of the architecture for the software system (for instance, reusability).
The first idea that comes to mind about proposing the architecture is to go with best practice and well-known

architecture. There are so many works that adopt the feedback loop, but the general purpose and the most well-
known reference architecture is the Monitor-Analyze-Plan-Execute (MAPE-K) loop which was introduced by
IBM [9]. This control loop is known thanks to its properties: it is a general purpose architecture for supporting
all the AC properties (like self-adaptation, self-configuration and so on), it also supports self-healing as one of
the four main self-managing properties.

There are some works that introduce an architecture or extension of architecture over the MAPE-K loop,
the most well-known is the RAINBOW architecture [1]. It actualizes the MAPE-K loop with a model-based
viewpoint.

As presented in the Section 2, the RAINBOW architecture can support the capabilities and advantages of
using an architectural approach for the developed system. Also, this architecture is based on the AC architecture
reference model (MAPE-K loop) presented by IBM in [9]. Hence, it can guarantee the accuracy and solidity of
the proposed architecture based on this framework. Our architecture also inherits the mentioned characteristics.
Our architecture is based on the RAINBOW framework and adopts the four main phases in the mentioned
framework. We remark that the fact that our architecture is based on RAINBOW can grant reusability to the
elements of the developed system based on our architecture. In addition, our architecture is based on the AC
reference architecture.

Fig. 4.1 shows the proposed conceptual architecture. In this architecture, we have four main components
(Model Manager, Model Analyzer, Self-healing Engine and Executor) similar to the RAINBOW and IBM’s
MAPE loop. A knowledge-base component supports these four components and all the data that are supposed
to be transferred in or out of the system should pass through the Environment Adaptor, which enables the
interactions between the environment and the self-adaptation parts of the system.

An aspect of the RAINBOW framework that must be considered is the needed knowledge and information for
reacting to the environment. In the RAINBOW framework, this information is seen as part of the architecture
puzzle which is added to each part when needed. It means that each module of the architecture somehow
maintains and uses its specific knowledge and attributes. This technique in RAINBOW is different from the
MAPE-K IBM reference architecture, where an integrated database is used for maintaining knowledge of all
modules. In our architecture, we spent an effort in committing to the information and knowledge described
in each RAINBOW framework module, but in order to simplify the implementation further and also to use a

A Self-healing Architecture based on RAINBOW for Industrial Usage 359

Fig. 4.1. Self-healing architecture (Abstract view)

knowledge structure for the all of the system’s component, we use a centralized database in our architecture.
Using the same knowledge structure throughout the whole architecture can help us in implementing the system
easier and it will not carry on different and sometimes inconsistent methods for storing, recovering and using
knowledge.

The mentioned knowledge component includes a reasoning capability for managing the knowledge at the
run time. Decision making based on this knowledge needs knowledge management capabilities. Hence, the
mentioned knowledge component must be able to inference. The existing method for storing, recovering and
using the knowledge also having the ability of inference is called “rule-based knowledge” and the “rule-based
knowledge base” in [24]. So, in the proposed architecture the knowledge is maintained in a centralized manner
in a rule-based type knowledge base and inferences are done based on this type of knowledge.

After the definition of this conceptual architecture, the program P for running the painter robot went
through a refactoring process and the new project can count on six main packages:

• ModelExtractor: represents Model Manager in the self-healing architecture in the refactored code.
• ModelAnalyzer: represents Model Analyzer in the self-healing architecture in the refactored code.
• SelfHealingEngine: represents Self-healing Engine in the self-healing architecture in the refactored
code.

• Executor: represents Self-healing Engine in the self-healing architecture in the refactored code.
• Knowledge: represents Knowledge Engine in the self-healing architecture in the refactored code.
• Main System: represents Environment which self-healing Architecture deals with.

As mentioned in the packages’ presentation, these packages are derived from the component in the pro-
posed architecture (Figure 4.1). Also, having Model Extractor, Environmental Adapter, and Self-healing

Engine in the proposed architecture are similar to monitoring, interpretation, resolution and adaptation

which are mentioned in [25]. This similarity could be considered as compliance of the proposed architecture
with previous works.

In the following, we are going to explain the classes and their relationships.

4.1.1. Model Extractor. This package extracts some models from the environmental situations and
reports them to next packages. This package consists of the following classes:

• PainterSensor: This class is an implementation of a Sensor interfaces. It senses the environment
(through the Main System) and extracts data from robot position, robot occupancy, and automotive
part position. Also, it uses CameraImageProcessing for knowing about the unpainted areas of auto-
motive parts.

• CameraImageProcessing: This class processes the images from the area of painting and find out about

360 A. Farahani, E. Nazemi, G. Cabri

Fig. 4.2. Class diagram of Phase1’s system implementation

the unpainted areas in the automotive parts.
• Model: This class represents the object model in the system. It contains information about the situation
which is detected. For example, recognizing the spot with bad painting could be a model.

• ModelExtractorEngine: This class based on the information from a sensor and also knowledge from
Knowledge package, concludes about the models that can fully or even partly represent the current
environment and robot states.

4.1.2. Model Analyzer. This package analyzes the situations of the environment and the robot. Suitable
actions for each model are the results of the model analyzing the process. The classes in this package are:

• ModelActionList: This class represents the list of actions that are concluded for the extracted models
or situations.

• ModelAction: It represents the action which could be mapped into a model. For example spraying
color from above can be an action.

• ModelActionRelation: This class represents the relationship between ModelAction and Model.
• ActionFinder: This class creates instances of ModelActionRelation between each ModelAction’s
instances and Model’s instances.

• DecisionMaker: This class decides about what action should be performed for each model. This class
uses the knowledge from the Knowledge package. For example, DecisionMaker takes decision about
repainting the area changing the nozzle angle.

4.1.3. Self-healing Engine. This package will analyze and combine (if needed) the actions for reacting
to models. This package will consider the impact and the influence of each action on the robot and environment
for combining and scheduling the actions. Also, refinement for actions is applied for action to prepare the
applicable and understandable actions for the robot.

• ExecutableAction: This class implements the Action interface. It represents the action to be executed.
For example, changing the nozzle angle in X axle of +22 degrees is an executable action.

• ExecutableActionList: This class represents the list of ExtecutableAction. For example, a list

A Self-healing Architecture based on RAINBOW for Industrial Usage 361

consist of these 3 actions are a ExecutableAction list: 1) change the nozzle angle in X axle to +22
degree, 2) spray color for two seconds and 3) change the nozzle angle to 0 degree.

• ActionMixerRefiner: Some actions are going to be mixed based on their impact and influence and
these actions also should be refined into some fine-grain actions. These tasks are implemented by
an ActionMixerRefiner class’s instance. For example, changing the nozzle direction in X axle of +22
degrees and after that reversing it and after that changing the nozzle direction in X axle for +10 degrees
and reversing it could be optimized: first changing direction to +10 degrees and after that +12 degrees
more and returning the nozzle to +0 in X-axle.

4.1.4. Executor. This package provides a doable action list and workflow and sends it to the executor for
applying the actions to the environment (MainSystem). It contains the following classes:

• Executor: Instance of this class will execute all the actions (from the ActionQueue’s instance) on the
environment (Main System). This class contains the business logic for executing the actions.

• WorkflowMaker: Maybe some actions and some tasks need some prerequisite or maybe it is better to
perform them in a specific order. This class will take care of ordering and timing of actions. This class
uses the Knowledge package and also the DecisionMaker class to carry out its tasks. Making a set of
changing of robot’s position with better efficiency is a goal for this class.

• ActionQueue: This queue contains the tasks and actions that can be enacted in the environment.

4.1.5. Knowledge. This package responds to the request (questions and queries) of other packages (ac-
tually of their classes). It responds to the queries based on the knowledge that is hard-coded in it. The classes
are:

• Judge: This interface is implemented by each of the four main components of the control loop (Model
Extractor, Model Analyzer, Self-healing Engine and Executor). These classes will answer to the
Deduction’s instance in order to make it able of deducting about situations and models.

• Deduction: This class will answer to the query about situations and models which come from any of
four main components of the control loop.

4.1.6. Main System. This package contains the rest of system, which works and paint automotive parts
based on its simple work-chain. The other packages see this package as Environment and Main system.

The improvements applied in this first phase reduced the time for preparing the robot for another automotive
part painting. Results are discussed in Implementation and Experimentation section.

4.2. Phase 2. The proposed architecture is abstract and conceptual; in order to make it more concrete,
each of the architecture elements will be discussed with more details. This explanation should be based on four
main RAINBOW framework phases and the IBM reference architecture. These internal elements should be
general purpose and not only applicable to one solution. So these elements differ from the packages and classes
in the 4.1.

Because the implemented system (which is implemented based on presented abstract architecture in phase
1) and the detailed architecture (which is presented in phase 2) derive from one source, the implemented system
in Section 4.1 should be able to fit into the detailed architecture. Based on the related work (RAINBOW,
self-healing architecture, fault-tolerant system architecture, etc.) elements in the proposed architecture will be
explained with more detailed. Because of that, our architecture must tend to a self-healing architecture based
on fault managing. Hence we have used pure fault management architecture, derived elements and details are
adapted to our problem’s context.

According to these descriptions, we detail our architecture elements. For a better explanation, we are going
to continue using the example as a tool for description and clarification of the research.

The detailed architecture could be found in Fig. 4.3. The description and specification of the components
are presented in the following subsections , referring to the case study.

4.3. Model Manager. In this phase, input information from the environment is transformed into a model
of the current environment situation using the related knowledge about the system state and input data. It
means that the raw input data is separated, verified and aggregated. The information is given to the Rule-Based
Situation Monitor module based on the rules. Situations resulted from the rules are transformed into a model

362 A. Farahani, E. Nazemi, G. Cabri

Fig. 4.3. Self-healing Architecture (Detailed View)

by the Model Extractor. The management of input data is in charge of the Data Aggregator, which is composed
of the following parts:

• Parser : input data from the environment are different depending on context and data structures. Using
a parser (which can be inside the Sensor), data within these data structures are extracted and changed
into a predefined data structure. The Parser is implemented by “regular expression matcher” in the
case study.

• Validation Engine: in case input data are inconsistent with the primary assumptions, the Validation

Engine will make decisions about these situations (dismissing the data, some changes into the data).
For example, in the painting problem, if the position of the area which was not painted correctly is
calculated outside the painting area, this information will be ignored. This module examines primary
assumptions. This module is implemented as a code execution engine which runs a predefined code on
the data in order to validate the data.

• Correlation Engine: data received from different elements are aggregated and packed based on their
relationship with each other. Data will be correlated with each other in order to construct a more
abstracted data (which is usable for understanding the situation) and will cover the details which are
not important for the problem. In the example, correlating the four different data about the locations
of the body, hand, wrist and the nozzle into a single data structure (which is called position).

Others components of the Model Manager are:

• Rule-based Situation Monitor : This module is responsible for checking if the information can trigger
some rules existing in the database. These rules determine the state according to the input data. In
the case study, this module is implemented as a procedure that queries the knowledge base. Query
consist of data such as success position (robot and automotive’s part position) and failure positions in
the painting process.

A Self-healing Architecture based on RAINBOW for Industrial Usage 363

• Model Extractor : Extracted states are examined and the environment model is extracted based on these
states. This step integrates and combines extracted situations from the Rule-based module into a set of
models. In the case study, failure in past cycle painting (position 0,0), robot’s position (50,10,10) and
automotive part’s position (-90) produce the model (0,0,50,10,10, need to reposition(true,true,true))
The model is translated into the following call:
method signature:

model (failure’s position X, failure’s position X, robot’s hand

position, robot writ’s angle in X direction, robot writ’s angle

in Y direction need to reposition(hand’s position (true/false),

wrist’s position (true/false), nozzle’s position (true/false)))

4.4. Model Analyzer. In Model Analyzer subsystem, first models are handed over to the system as
inputs. It must be determined whether, based on these models that describe states of the system, any event
has occurred which requires a reaction. Hence, the existing model in the KB (Knowledge Base) is searched for
and checked using inference methods so similar models to the current one are extracted.

In the case study, extracted situations and models will be examined and the suitable actions for these
situations and model will be extracted for responding to situations and models. Also, if it is possible, these
actions will be merged together.

The modules are the following:
• Model Matcher In this module models and situations which are reported by Model Manager are exam-
ined with the knowledge in the KB and if there is an exact or even similar situation reported in the
KB would be found. In the example examining the (0,0,50,10,10,need to reposition(true,true,

true)) will match bad painting near position.
• Action Finder : This component will use the knowledge in KB and also the model in order to find
appropriate set of actions for the situation. This set of actions could be extracted from different knowl-
edge in the KB. In the Example for previous situation based on knowledge (because the area is in the
center not in the corner, maybe the area is not flat and needs to be painted from above and beyond)
will result this action sets.
paint (repaint, from above, 0,0,-10), paint (repaint, from beyond, 0,0, -10)

the description of paint procedure is as follows:
paint (repaint/first time paint/paint over paint, direction of painting (from above/

from beyond/front/back), position X, position Y, position in Z)

These two modules together are called Rule-Based Reasoner.
• Action Correlation Engine: This module, if there is an option available for correlating some actions
with each other, it will reduce the actions set. In the case study, if action set is like this: paint

(repaint, from above, 0,0,-10), paint (repaint, from above, 0,-10,-10) it will change into
paint (repaint, from above, 0,0,-10,-10) because these two procedures have so many similar
moves in themselves. This mixed data will be refined in the next component.

After preparing the action sets, these action sets can be called “decisions”. These decisions are entered the
Self-healing Engine module.

4.5. Self-healing Engine. Responding to the changes by performing doable decisions is the goal of the
architecture presented in this paper. In order to prepare doable decisions from the system’s knowledge, it is
necessary to first determine the relationships and dependencies between the decisions and the required resources
for the decisions using an inference engine and existing knowledge in action detailer. After refining actions into
detailed actions (i.e., a set of detailed actions could be extracted from an action) and extracting the relation
between decisions and required resources for each detailed actions, these data will be used in the process of
dependency and impact checking. Afterward, the list of doable actions will take places as the result of this
module.

• Action Refinement : In this module, overall decisions of the previous phase are transformed to refined
and precise decisions applicable to environment using the existing knowledge in the Knowledge Base
and logical rules. In the case study, the action set paint (repaint, from above, 0, 0, -10, -10)

is translated into this set of actions:

364 A. Farahani, E. Nazemi, G. Cabri

1. go(0,-10,0)

2. shoot(1000)

3. go(0,-10,-5)

4. shoot(1200)

• Dependency and Impact Predictor : In this module the impact and influence of each step are gathered
and, if there is a conflict, this module will take decision about doing one of these three options for those
actions: 1) stop both of them, 2) stop the second one, 3) run both of them accepting the risk.
The work of this module is similar to that in RAINBOW that defines a utility function for knowing
about the future impact of each decision on the adaptation goal [17]. In the case study, if the time slot
is free for 3 seconds and if action 1+2+3+4 are going to take more than 3 seconds, the action 3 and 4
will be eliminated. This decision making is stored in the knowledge base in a simple rule form.

These resulting decisions are sent to the Executor.

4.6. Executor. In order to be executed, decisions must include a priority planning and a scheduling, and
then they can be executed. The responsibility for scheduling the priority of these decisions and with which
precedence they are executed is of the Workflow Definer module. Also, planning and determining schedules for
these decisions is done by the Scheduler module. After scheduling, based on the knowledge, the outputs are
transformed from these actions to a series of instructions in system level. This task is carried out by the Action
to Instruction Transformer module. These instructions are executed in a row by the Instruction Executer and
the help of the Effector.

As happens in the RAINBOW framework, for separating internal system knowledge from the system which
adaptive section affects, there is an Environment Adaptor with knowledge about translating events and inputs.
This module translates the instruction to applicable instructions and also as a part for importing data to the
presented adaptive loop, it will translate the information and inputs into comprehensible information into the
understandable information for Model Manager. This task gives the possibility to reuse the developed system
in different applications. For example, if there is another production line with different products, different
robots with different tasks (for example welding instead of painting), the Self-healing Engine module could
be informed of the changes by making a change in the Knowledge. The self-healing section of the system
will start to act properly in a new situation. This is possible by translating the environment state into an
understandable language for the self-healer section of the system. For example, if robot’s location is (-10,10,0)
and the automotive part’s location is -90 so the distance will be translated from these data as -A (70≤A≤80).

The modules in this subsystem are:

• Scheduler : This module will do the scheduling based on the knowledge in the KB. In the case study,
painting the location which is far from the nozzle sooner than another location is an example of the
knowledge in the KB. Results will be like the following.
1. go(0,-10,-5)

2. shoot(1200)

3. go(0,-10,0)

4. shoot(1000)

• Workflow Definer : This component will decide about the order and timing of the tasks that are going
to be done based on the knowledge in the KB. In the case study, the following tasks will be the results.
1’’ -> go(0,-10,-5)

5.5’’ -> shoot(1200)

7’’ -> go(0,-10,0)

10’’ -> shoot(1000)

• Action to Instruction Translator : Translations of the instructions from high-level instructions into the
understandable instructions for robot will be done in this module. After this translation, the instruc-
tions are handed over to the Effector and will be execute. In the case study, the previous four tasks
are translated into the following G-code, based on the knowledge in the KB.

COMMAND

1.0 MOVE 0 -10 0

A Self-healing Architecture based on RAINBOW for Industrial Usage 365

#(absolute delay) (command) (x) (y) (z) (pre_delay) (task_time)

5.5 COLOR 0 -10 0 0.000 1.200

#(absolute delay) (command) (x) (y) (z)

7.0 MOVE 0 -10 -5

#(absolute delay) (command) (x) (y) (z) (pre_delay) (task_time)

10.0 COLOR 0 -10 -5 0.000 1.000

END COMMAND

• Instruction Executer : This module will take responsibility for running prepared instruction on the
environment.

4.7. Environmental Adaptor. In this module, if there are any changes (for better understanding or
unification of data models) needed, these modifications will be applied. For example, if the idle situation of
the robot is called (-10,0,0) in the system and we know that the robot needs floating point number for input
(-10.00, 0.00, 0.00) output data will be change into floating point type. Input data from the environment are
also comprehended by the Sensor and after applying necessary changes will be sensed by a virtual sensor and
they enter the Model Manager module.

In the case study, the previous four tasks are translated into the following G-code, based on the knowledge
in the KB.

Given these explanations and getting familiar with the presented architecture, in the next section, the
results of the implementation of the case study with the proposed architecture will be discussed.

5. Implementation and Experimentation (Evaluation and Measurement). In this section all the
results from the implementation of the painter robot system will be discussed in two phases, corresponding to
the two main improvements we made starting from the original system. Also, for each phase, some implemented
module will be discussed. We report the results of the experiments in Fig. 5.1, 5.3 and 5.2; in all figures, the
first three items are from the phase 0 (system without improvement), the second three items are from phase 1
and the other items (the last four items) are from phase 2.

5.1. Phase 1. For phase 1 the code had been refactored in order to obey the architecture of a self-adaptive
system. The architecture has derived from the RAINBOW architecture. Refactoring procedure took 14 days
and after that period refactored code become capable of being adapted easily to the changes and able to support
new automotive part easily.

Fig. 5.1 reports the time for preparing the code for each automotive part which this robot supports. Fig. 5.1
shows that the preparation time for changing the code in order to support a new automotive part has been
significantly reduced from phase 0 to phase 1, from 1 person for a month to 6 days of a person’s time. The
reduction in preparation time also will be discussed in next section for phase 2.

Hence, the reduction in preparation time was the main improvement project goal, other improvements also
came up from the code refactoring. As it is shown in the Fig. 5.2, the quality of painting after refactoring has
seen an improvement. It is because that remediation of known problems in painting becomes easier by just
calling some predefined procedures. For example, by running the robot for a new automotive part and finding
the area that needs more painting, the predefined procedure for repainting the area (in robot’s free time slot)
could be exploited easily so the robot paints a larger area and the quality of the painting improves.

As it could be guessed, these improvements will consume some other resources. As it is obvious from Fig. 5.3,
the portion of the time slot in which the robot is moving and painting increased after the code refactoring (phase
1). Having predefined procedure for remediation of the painting problems makes preparing of the remediation
code much easier and this will lead into more remediation per time slot. Also, this predefined procedure will
increase the time of the remediation (even the same remediation) because of eliminating the ability to optimize
the path and painting of the robot by integrating two or more predefined procedures in one set of actions.

5.2. Phase 2. In phase 2 the refactored code had faced a significant change. The code’s architecture
changed into a more mature architecture. The deduction and conclusion which before were taken on the base of
if-then-else code changed into a set of knowledge which is implemented in the packages related to the deduction.
Also, data and information that traverse through the system were unified into predefined information. These

366 A. Farahani, E. Nazemi, G. Cabri

Fig. 5.1. Preparation time for each automotive part

Fig. 5.2. Quality of painting

A Self-healing Architecture based on RAINBOW for Industrial Usage 367

Fig. 5.3. Robot’s time occupancy (percentage of time)

changes influence the time that is needed for preparing the system for new automotive parts, making it adaptable
in a faster way. The time percentage of four automotive parts that had been painted in phase 2 can be seen
in the figures. Times for these four parts painting had a significant reduction even compared to phase 1. For
example, the first automotive parts (front and rear spoiler) took 1 and 1.2 person months in phase 0, while
after the refactoring and implementation in phase 2 they took only 2 days. Also, as it is reported in Fig. 5.2
the quality of painting of these two parts were improved from around 80% to around 90%.

As mentioned before, these improvements imply some costs. The amount of occupied time slots of the robot
increased from phase 0 to phase 2. In phase 0 it was around 10-15% and phase 1 has increased to around 15%,
while in phase 2 it was increased to around 35%.

6. Conclusion. Computer systems are required to face new and often unpredicted situations during their
execution. To react to the faults or to the changes in the environment they must exhibit the self-healing
property, introduced in the context of AC, which enables the system to recognize incorrect results and to
provide a remediation, by modifying its behaviour. This is true in particular in industrial environments, where
the physical part of the systems are subject to faults and variation in the behaviour.

In this paper, we have reported an experience in the field of automotive, in particular, a system to paint
parts in an automatic way. We have presented the previous version of the system, which was quite rigid and
required a significant effort to repair faults and to be adapted to new parts. We have proposed a self-healing
architecture to overcome these limitations.

A case study shows the applicability of the proposed architecture. This case study has been exploited to
make some experiments in order to present the improvements in painting quality besides the reduction in time
of preparation of the system for a new task. The cost of the improvements is more robot’s time occupancy.

In the future works, this architecture could be checked for conflict and error by formal methods and also
by software architecture evaluation methods such as ATAM [26] and CBAM [27]. In addition, the proposed
architecture will be exploited in other case studies, to verify its generality.

368 A. Farahani, E. Nazemi, G. Cabri

REFERENCES

[1] D. Garlan and M. Shaw, An Introduction to Software Architecture ,Addison-Wesley, 1994.
[2] R. Isermann, Fault-diagnosis systems: an introduction from fault detection to fault tolerance., Springer, 2005.
[3] S. Armando and G. Betancur, Fault management in TELCO platforms using Autonomic Computing and Mobile Agents,

2011.
[4] N. Technical, Fault management handbook, 2012.
[5] D. Garlan and B. Schmerl, Model-based adaptation for self-healing systems, Proceedings of the first workshop on Self-

healing systems - WOSS 02, p. 27, 2002.
[6] S. Bouchenak, F. Boyer, D. Hagimont, S. Krakowiak, A. Mos, N. D. Palma, V. Quema, and J. Stefani,Architecture-

Based Autonomous Repair Management: An Application to J2EE Clusters, pp. 120.
[7] D. Garlan and B. Schmerl, Model-based adaptation for self-healing systems, Proceedings of the first workshop on Self-

healing systems - WOSS 02, p. 27, 2002.
[8] P. Eeles and P. Cripps, The process of software architecting, Pearson Education, 2009.
[9] J. O. Kephart and D. M. Chess, The vision of autonomic computing, Computer, vol. 36, no. 1, pp. 4150, 2003.

[10] A. Computing, An architectural blueprint for autonomic computing, IBM White Paper, no. April, 2003.
[11] D. W. Cheun and S. D. Kim, An Engineering Process for Autonomous Fault Management in Service-Oriented Systems,

2010 IEEE/ACIS 9th International Conference on Computer and Information Science, pp. 901 906, Aug. 2010.
[12] R. Sterritt, Autonomic computing, Innovations in Systems and Software Engineering, vol. 1, no. 1, pp. 7988, Mar. 2005.
[13] Y. Qun, Y. X. XU, and X. Man-wu, A Framework for Dynamic Software Architecture-based Selfhealing.
[14] G. Antoniou, M. Baldoni, W. Nejdl, and D. Olmedilla, Chapter 1 RULE-BASED POLICY SPECIFICATION,
[15] D. Garlan, S. Cheng, and A. Huang, Rainbow: Architecture-based selfadaptation with reusable infrastructure, Computer,

pp. 4654, 2004.
[16] D. W. Cheun and S. D. Kim, An Engineering Process for Autonomous Fault Management in ServiceOriented Systems, 2010

IEEE/ACIS 9th International Conference on Computer and Information Science, pp. 901 906, Aug. 2010.
[17] B. Schmerl, J. Cámara, J. Gennari, D. Garlan, P. Casanova,G. A. Moreno, J. M. Barnes, Architecture-based self-

protection: Composing and reasoning about denial-of-service mitigations, ACM International Conference Proceeding
Series, 2014

[18] J. Camara, P. Correia, D. Lemos, D. Garlan, P. Gomes, B. Schmerl, R. Ventura, Evolving an Adaptive Industrial Soft-
ware System to Use Architecture-based Self-Adaptation, Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2013 ICSE Workshop on, 1322

[19] R. Mirandola, P. Potena, A QOS-based Framework for the Adaptation of Service-based Systems, SCPE, 2011
[20] E. Wegner,WebNMS Framework: A Complete EMS Framework,White Paper, 2012, www.webnms.com.
[21] E. M. Dashofy, A. van der Hoek, and R. N. Taylor, Towards architecture-based self-healing systems, Proceedings of the

first workshop on Selfhealing systems - WOSS 02, p. 21, 2002.
[22] B. Gaudin, M. H. Hinchey, E. Vassev, J. Garcia, W. Coelho Maalej, FASTFIX: A Control Theoretic View of Self-healing

for Automatic Corrective Software Maintenance, SCPE, 2012
[23] D. B. Abeywickrama, N. Hoch, F. Zambonelli, Engineering and Implementing Software Architectural Patterns Based on

Feddback Loops, SCPE, 2014
[24] S. Myat, M. Soe, M. Paing, P. Zaw, , Design and Implementation of Rule-based Expert System for Fault Management,

World Academy of Science, Engineering and Technology, 3439, 2008
[25] D. Garlan, B. Schmerl, Using Architectural Models at Runtime: Research Challenges, EWSA Workshop, 2004
[26] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, K. Lipson, J. Carriere, The architecture tradeoff analysis method,

Sei - Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Institute, 1998
[27] R. L. Nord, M. Barbacci, P. Clements, R. Kazman, M. Klein, L. O’Brien, J. E. Tomayko, Integrating the Architecture

Tradeoff Analysis Method (ATAM) with the cost benefit analysis method (CBAM), Sei - Carnegie-Mellon Univ Pittsburgh
Pa Software Engineering Institute, 2003

Edited by: Dana Petcu
Received: July 13, 2016
Accepted: August 18, 2016

Scalable Computing: Practice and Experience
Volume 17, Number 4, pp. 369–391. http://www.scpe.org

DOI 10.12694/scpe.v17i4.1207
ISSN 1895-1767
c⃝ 2016 SCPE

AQSORT: SCALABLE MULTI-ARRAY IN-PLACE SORTING WITH OPENMP

DANIEL LANGR, PAVEL TVRDÍK AND IVAN ŠIMEČEK ∗

Abstract. A new multi-threaded variant of the quicksort algorithm called AQsort and its C++/OpenMP implementation are
presented. AQsort operates in place and was primarily designed for high-performance computing (HPC) runtime environments.
It can work with multiple arrays at once; such a functionality is frequently required in HPC and cannot be accomplished with
standard C pointer-based or C++ iterator-based approach. An extensive study is provided that evaluates AQsort experimentally
and compares its performance with modern multi-threaded implementations of in-place and out-of-place sorting algorithms based
on OpenMP, Cilk Plus, and Intel TBB. The measurements were conducted on several leading-edge HPC architectures, namely Cray
XE6 nodes with AMD Bulldozer CPUs, Cray XC40 nodes with Intel Hasswell CPUs, IBM BlueGene/Q nodes, and Intel Xeon Phi
coprocessors. The obtained results show that AQsort provides good scalability and sorting performance generally comparable to
its competitors. In particular cases, the performance of AQsort may be slightly lower, which is the price for its universality and
ability to work with substantially larger amounts of data.

Key words: C++, high performance computing, in-place sorting, many-core, multi-array sorting, multi-core, multi-threaded
algorithm, OpenMP, parallel partitioning, parallel sorting

AMS subject classifications. 68P10, 68W10

1. Introduction. The demand for sorting multiple arrays at once emerges not only in high-performance
computing (HPC) codes. Such codes are mostly written in C/C++ and Fortran, however, common imple-
mentations of sorting algorithms in these languages do not support multi-array sorting. Pointer-based sorting
routines—such as qsort from the C standard library [10, §7.20.5.2]—and their iterator-based generalizations—
such as std::sort from the C++ standard library [11, §25.4.1.1]—can operate on a single array only. The
Boost library [28] has introduced so-called zip iterators that can work with multiple arrays at once; however,
Boost zip iterators are read-only iterators and therefore do not provide a solution for multi-array sorting. Gen-
erally, it is not feasible to create a portable standard-compliant implementation of zip iterators that can modify
underlying arrays.1

The multi-array sorting problem has been frequently addressed by developers; numerous threads of C/C++
mailing lists and web forums have been devoted to this topic.2 The suggested solution is practically always the
same—to transform the structure of arrays (SoA) into a single array of structures (AoS), then perform sorting,
and finally copy data back from AoS to SoA. Such a solution has the following drawbacks:

1. There must be enough free memory to perform the SoA-to-AoS transformation. Namely, the amount of
free memory must be at least the same as the amount of memory occupied by the data that need to be
sorted. Such a constraint might be inconvenient especially in HPC, where not the computational power
but the amount of memory often limits the sizes of problems being solved. Users of HPC programs
thus might in practice need to work with multi-array data structures that occupy more than the half
of available memory, e.g., with representations of sparse matrices or meshes for spatial discretization
of PDEs. Sorting/reordering of these data structures via SoA-to-AoS transformation would be not
possible under such conditions.

2. The SoA-to-AoS and back AoS-to-SoA transformations imposes into programs a runtime overhead.
Sorting algorithms can be classified as being either in-place or out-of-place. We define an out-of-place/not-

in-place sorting algorithm as an algorithm that requires Ω(n) extra space for auxiliary data structures, where
n denotes the number of sorted elements; for a multi-array sorting problem, n denotes the number of sorted
elements of each of the arrays. On the contrary, we define an in-place sorting algorithm as an algorithm that
needs o(n) extra space. Out-of-place sorting algorithms, such as mergesort, have typically the same amortized
memory requirements as the SoA-to-AoS transformation. That is, the amount of free memory must be at

∗Department of Computer Systems, Faculty of Information Technology, Czech Technical University in Prague, Thákurova 9,
160 00, Praha, Czech Republic (langrd@fit.cvut.cz).

1The problem stems from the fact that it is not possible to create a pointer or a C++ reference to multiple data entities. For
example, the following code is perfectly valid for an implementation of a sorting algorithm in C++: auto& next elem = *(iter +

1); next elem = std::move(...);. But in case of multiple arrays, there does not exist any entity that next elem could reference.
A detailed discussion about this problem is beyond the scope of this text.

2Look, e.g., for posts regarding multiple arrays/vectors sorting in C/C++ on the Stack Overflow community developer site
(http://stackoverflow.com).

369

370 D. Langr, P. Tvrd́ık, I. Šimeček

least the same as is occupied by the sorted data. Within this article, we primarily address multi-array sorting
problems where such an amount of free memory is not available. Therefore, for the solution of these problems,
neither the SoA-to-AoS transformation nor the out-of-place sorting can be used.

Growing capacities of shared memories of computer hardware architectures and growing numbers of their
computational cores have raised the demand for parallel/multi-threaded algorithms; we do not consider distribu-
ted-memory parallelism in this text, therefore, we use the terms parallel and multi-threaded as synonyms. In
HPC, the utilization of shared memories via hybrid parallel paradigms, such as the combination of MPI and
OpenMP, often outperforms distributed-memory implementations (pure MPI). However, the amount of data
that fit shared memories might become so large that their sequential sorting would introduce into applications
significant hotspots. For illustration, sorting of an array of 6.4 billions of integers, which fit 64 GB of memory,
with sequential std::sort took in our measurements over 18 minutes on a contemporary CPU-based system.
Using parallel in-place sorting algorithms, we were able to reduce the sorting time to less than 2.5 minutes
(speedup 7.5) utilizing all 16 system cores. Similarly, we observed the reduction of runtime from 12 minutes
to less than 24 seconds (speedup over 30) when sorting 1.6 billions of integers on an Intel Xeon Phi many-core
coprocessor.

Available parallel C/C++ implementations of sorting algorithms usually adopt the pointer-/iterator-based
approach of their sequential counterparts. Consequently, they are not able to work with multiple arrays at
once. In this article, we present a new parallel variant of the in-place quicksort algorithm called AQsort that
does not impose such a constraint. Instead of pointers/iterators, AQsort works with user-provided routines for
comparing and swapping sorted data. The drawback of this approach is that it hinders some possibilities to
optimize and tune resulting programs by developers and compilers (see Sect. 6 for details). One of the purpose
of the presented experimental study is therefore to evaluate the effects of such a restriction.

The structure of this article is as follows. Section 2 introduces the state-of-the-art implementations of
parallel sorting algorithms. Sections 3 and 4 describe the AQsort algorithm itself and its C++/OpenMP
implementation, respectively. Section 5 presents a study that evaluates AQsort experimentally on modern
HPC architectures and compares its performance with its not-multi-array competitors. Section 6 discusses
the problem of choosing the most suitable sorting solution according to user’s needs and constraints. Finally,
Section 7 summarizes our work and concludes the article.

1.1. Motivation. Our research is tightly connected to sparse-matrix computations, mainly to sparse ma-
trix storage formats. These formats determine the way how matrix nonzero elements are stored in computer
memory. The simplest format is so-called coordinate storage format (COO) [1, 27] that consists of three ar-
rays containing row indexes, column indexes, and values of matrix nonzero elements. COO does not prescribe
any order of the elements in these arrays and it is the most suitable format for assembling sparse matrices—
generated nonzero elements are simply to the arrays appended. However, COO has high memory requirements;
it is therefore not a suitable format for sparse-matrix computations, which are generally bound in performance
by memory bandwidth [14,35].

In practice, likely the most commonly-used format for sparse matrix computations is the compressed sparse

row format (CSR, CRS), together with its compressed sparse column (CSC, CCS) counterpart [1, 27]. The
conversion of sparse matrices from COO to CSR consists of two steps: First, the nonzero elements in COO
arrays are sorted lexicographically, which represents a multi-array sorting problem. Then, the array of row
indexes is substituted by an (hopefully much smaller) array that indicates how many nonzero elements are in
each row and where their column indexes and values can be found.

Numerous other formats have been developed in the past that were shown to provide high performance of
sparse matrix computations on modern multi-core and many-core architectures, typically in comparison with
CSR. Generally, these formats have two common features: (1) they store matrix nonzero elements in memory
in some particular order, and (2) they are more or less parametrized. Finding (pseudo)optimal parameters
for a given matrix and transforming this matrix into a given format typically involves multiple sorting of the
COO arrays. For example, uniformly-blocking formats are parametrized by the block size [13]. To find an
optimal block size, matrix nonzero elements need to be sorted repeatedly with respect to different tested block
sizes [12, 29].

To amortize the usage of a given format in subsequent matrix-related computations, we thus need a fast
scalable sorting algorithm. To allow users to work in their HPC programs with large matrices that occupy more
than a half of available memory and thus effectively allow them to solve correspondingly large computational

AQsort: Scalable Multi-Array In-Place Sorting with OpenMP 371

problems, we need this algorithm to be in-place. Finally, to allow developers to integrate such an algorithm into
their codes, we need its efficient portable OpenMP implementation, since the OpenMP threading paradigm [5]
prevails in sparse matrix-related and HPC codes in general. All of these requirements AQsort fulfils.

2. Related Work. Many C/C++ implementations of parallel sorting algorithms have been developed in
the past. To our best knowledge, we have not found any one capable of generic multi-array in-place sorting.
To evaluate AQsort, we therefore compared its performance with the performance of iterator-based sorting
functions from forefront libraries provided by GNU, Nvidia, and Intel.

GNU implements parallel sorting algorithms in the scope of its parallel version of the C++ Standard
Library, namely the GNU Libstdc++ Parallel Mode [30]. It provides functions for both in-place and out-of-
place sorting; the former implements the parallel quicksort algorithm proposed by Tsigas and Zhang [34], the
latter implements a parallel multi-way mergesort. Moreover, the parallel quicksort exists in the library in a
balanced and an unbalanced variant, which differ in the way of assigning threads to partitions of unequal sizes.
The library uses the OpenMP threading paradigm and was originally developed as a standalone software project
called the Multi-Core Standard Template Library (MCSTL) [31]. At the time of writing this article, the GNU
Libstdc++ Parallel Mode was referred to as “an experimental parallel implementation of many C++ Standard
Library algorithms”.

Nvidia provides parallel sorting functions in the scope of its library called Thrust. The documentation does
not discuss the implementation in detail, but according to the source code, the functions seemingly implement an
out-of-place parallel mergesort. Thrust was primarily designed for GPGPU programming, but it also supports
OpenMP as an underlying threading paradigm [3].

Intel provides parallel sorting functions for their own threading paradigms/frameworks Cilk Plus [26] and
Thread Building Blocks (TBB) [24]. Cilkpub—a library of community-contributed Cilk Plus code—contains
functions that implement both a parallel in-place quicksort and a parallel out-of-place samplesort. Intel TBB
contains an implementation of an in-place parallel quicksort. Some details of these functions are provided by
McCool et al. [18].

We have chosen the above mentioned (iterator-based) implementations since, thanks to their providers, we
presumed highly efficient and optimized codes targeting modern hardware architectures. However, note that
there are numerous other parallel implementations of sorting algorithms as well, available either in the form
of standalone codes or within some more generic libraries/frameworks. These include, e.g., Intel PSS [25],
OMPTL [2], Parallel STL [19], ParallelSort [21], psort [16], STAPL [33], and STXXL [7].

2.1. Parallel Quicksort. Current implementations of generic in-place sorting algorithms are mostly based
on quicksort [8,9]. Quicksort partitions sorted data according to a so-called pivot element and then recursively
calls itself for both resulting parts. In multi-threaded environments, the recursive calls are natural candidates
for task parallelism, which is available, e.g., in OpenMP since version 3.0, Intel TBB, and Intel Cilk Plus.
However, partitioning needs to be parallelized as well; sequential partitioning at top levels of recursion would
significantly hinder the scalability of parallel quicksort.

Tsigas and Zhang [34] proposed a parallel quicksort with efficient parallel partitioning that is widely used in
practice and frequently mentioned in literature. Alternative solutions and their comparison has been presented
by Pasetto and Akhriev [22,23]. Within they work, they also proposed a new approach to parallel partitioning,
however, they defined it only by words and did not provide a corresponding algorithm [23, Section 2.4].

Another parallel quicksort have been proposed by Mahafzah [15], however, he does not provide experimental
comparison with other solutions. Moreover, he presents results only for small data up to 80 MB of memory
footprint and small number of threads up to 8. Süs and Leopold [32] compared several parallel implementations
of quicksort based on OpenMP and POSIX threads (Pthreads).

In practice, efficient implementations frequently combine quicksort with other sorting algorithms. One
reason is the quicksort’s worst-case complexity O(n2). To deal with the worst cases, such implementations
allow the recursive process happen only to some maximum depth, commonly set to ⌊2 log

2
n⌋. If it is exceeded,

the quicksort is abandoned and the rest of the not-yet sorted data is processed by another sorting algorithm with
the O(n log n) worst-case complexity, typically by heapsort [6]; such a combination of quicksort and heapsort
is referred to as introspective sort or shortly introsort [20]. Another reason for combining quicksort with other
algorithms is that applying quicksort to very small partitions might be inefficient; recursive calls are relatively
expensive here. When partitions of sizes below some cutoff parameter are reached, they are thus usually sorted
with some simple O(n2) algorithm, typically with insertion sort [6].

372 D. Langr, P. Tvrd́ık, I. Šimeček

3. Algorithm Design. Available iterator-based C++ sorting functions—both sequential and parallel—
typically adhere to the following declaration pattern:

template <class RandomAccessIterator, class Compare>

void sort(RandomAccessIterator first, RandomAccessIterator last, Compare comp);

The first and last parameters represent random-access iterators that determine data to be sorted. The
comp binary function decides whether its first argument should appear before the second in the sorted data.
Unfortunately, there is no portable way how to construct writable random-access iterators for multiple arrays.
To solve the in-place multi-array sorting problem, we thus need to give up the iterator-based approach.

Let us introduce some terminology used in the text below. Up to now, we have spoken about multi-array
sorting, i.e., sorting of multiple arrays at once. However, by the term array, we generally mean any sequence
of data, i.e., any data structure that contains multiple elements accessible via indexes; in C++, such data
structures can be represented, e.g., by the std::vector and std::array STL containers, or ordinary C-style
one-dimensional arrays. We assume that all the arrays have n elements indexed from 0 to n − 1. We refer to
the elements with the same index in all these arrays as to a multielement.

In a multi-array sorting problem, we thus want to sort n multielements according to some order given
by sorting keys that can be derived from multielements data. We say that a multielement Mi is less than

another multielement Mj if Mi should take place before Mj in the sorted arrays, according to their sorting keys.
Otherwise, we say that Mi is greater than or equal to Mj .

Let us consider reordering of sparse matrix nonzero elements; a multielement is then represented by a
single matrix nonzero element, i.e., by its row index, column index, and value. If we want to sort matrix
nonzero elements, e.g., lexicographically (such as for conversion to CSR), we might define sorting keys for the
ith multielement as

std::size_t key(std::size_t i) { return rows[i] * n_cols + cols[i]; }

where n cols equals the number of matrix columns and the arrays rows/cols contain row/column indexes of
matrix nonzero elements.

The AQsort implementation declares sorting functions as follows:

template <typename Comp, typename Swap>

void sort(std::size_t length, Comp* const comp, Swap* const swap);

The parameter length represents the number of multielements that need to be sorted, i.e., n. The parameter
comp is a pointer to a binary function that takes two arguments and returns true if the multielement indexed by
the first argument is less than the multielement indexed by the second argument; otherwise, it returns false.
Finally, the parameter swap is a pointer to a function that takes two arguments and swaps multielements indexed
by these arguments.

Thanks to this approach, AQsort has no information about data being sorted. The algorithm does not
know how many arrays are sorted at once, it cannot recognize the types of the elements in these arrays, and
there is no way how it could access these elements. It also does not work with sorting keys, only indirectly
through the comp function. This function needs to derive sorting keys for both indexed multielements, compare
them, and return the appropriate binary value. It is up to AQsort users to provide the expected functionality
of comp and swap over the sorted arrays.

Let us now present the AQsort algorithm itself. Parallel quicksort is carried out by the ParallelQuickSort
procedure presented by Algorithm 1. Its input consists of the following parameters:

1. n: total number of sorted multielements,
2. numthreads: total number of threads,
3. start : index of the first multielement to be sorted by this call,
4. count : number of multielements to be sorted by this call,
5. Comp: reference to a binary function that compares multielements with two different indexes and returns

true if the first multielement is less than the second one; otherwise returns false,
6. Swap: reference to a procedure that swaps multielements with two different indexes,
7. level : auxiliary parameter for preventing quicksort worst case complexity O(n2).

Initially, ParallelQuickSort is called from a single thread with the following arguments:

start = 0, count = n, level = 2 ·
⌊

log
2
(n)

⌋

, (3.1)

AQsort: Scalable Multi-Array In-Place Sorting with OpenMP 373

Algorithm 1 Main recursive procedure of AQsort

1: procedure ParallelQuickSort(n, numthreads, start , count , Comp, Swap, level)
2: while true do

3: if level = 0 then

4: SequentialSort(start , count , Comp, Swap, level)
5: return

6: end if

7: level ← level − 1
8: T ← ⌊numthreads × count/n⌋
9: end while

10: if T < 2 then

11: SequentialSort(start , count , Comp, Swap, level)
12: return

13: end if

14: pivot ← SelectPivotMoM(start , count , Comp)
15: Swap(pivot , start + count − 1)
16: pivot ← start + count − 1
17: lessthan ← ParallelPartition(start , count , pivot , Comp, Swap, T)
18: Swap(start+ lessthan, pivot)
19: greaterthan ← count − lessthan − 1
20: while greaterthan > 0 and Comp(start+ lessthan, start+count−greaterthan) = false and Comp(start+

count − greaterthan, start + lessthan) = false do

21: greaterthan ← greaterthan − 1
22: end while

23: if lessthan > greaterthan then

24: run ParallelQuickSort(n, numthreads, start + count − greaterthan, greaterthan, Comp, Swap, level)
in a new parallel task

25: count ← lessthan

26: else

27: run ParallelQuickSort(n, numthreads, start , lessthan, Comp, Swap, level) in a new parallel task
28: start ← start + count − greaterthan

29: count ← greaterthan

30: end if

31: end procedure

and numthreads set to the number of threads that a user wants to use for parallel sorting.
The ParallelQuickSort procedure works as follows:
1. If the maximum allowable depth of recursion is reached, SequentialSort is called, which further

immediately proceeds to heapsort.
2. The number of threads that proportionally falls on the number of multielements processed by this

call (count) is calculated and stored in T ; the total number of threads as well as the total number of
multielements therefore need to be passed to ParallelQuickSort as arguments. When T drops below
2, the processed multielements are sorted sequentially by calling the SequentialSort procedure.

3. Otherwise, a pivot multielement is selected and the processed multielements are partitioned with respect
to this pivot using T threads by calling the ParallelPartition function.

4. In ParallelQuickSort, the pivot is chosen using the median of medians (MoM) strategy referred also
to as ninther, which is usually recommended for large arrays; see, e.g., [4]. The MoM pivot selection is
represented by the SelectPivotMoM function.

5. After parallel partitioning, multielements that lays behind the pivot and are equal to it are excluded
from further processing, since they are already at their final positions. This might considerably improve
the algorithm efficiency in cases when sorted arrays contain only few unique sorting keys.

6. So-called tail call elimination is applied to reduce the required call stack space (see, e.g., [6, Sect. 7-4]).
ParallelQuickSort thus recursively calls itself only once instead of twice, and uses a while loop to

374 D. Langr, P. Tvrd́ık, I. Šimeček

Algorithm 2 Parallel partitioning—Part 1

1: function ParallelPartition(start , count , pivot , Comp, Swap, T)
2: m← ⌊count/PBS⌋
3: tleft []← integer array of size T
4: tstart []← integer array of size T + 1
5: for t = 0 to T − 1 do

6: tstart [t]← start + PBS × ⌊t×m/T ⌋
7: end for

8: tstart [T]← start + PBS ×m
9: for T threads do in parallel

10: t← actual thread number
11: left ← tstart [t]
12: right ← tstart [t+ 1]− 1
13: tleft [t]← left+ SequentialPartition(left , right − left + 1, pivot , Comp, Swap)
14: perform parallel barrier synchronization
15: end for

16: i← 0
17: j ← T − 1
18: while i < j do

19: imod ← (tleft [i]− start) mod PBS

20: jmod ← (tleft [j]− start) mod PBS

21: if imod = 0 then

22: i← i+ 1
23: continue

24: end if

25: if jmod = 0 then

26: j ← j − 1
27: continue

28: end if

29: ilast ← tleft [i]− imod + PBS − 1
30: jfirst ← tleft [j]− jmod

31: while tleft [i] ≤ ilast and tleft [j]− 1 ≥ jfirst do

32: Swap(tleft [i], tleft [j]− 1)
33: tleft [i]← tleft [i] + 1
34: tleft [j]← tleft [j]− 1
35: end while

36: end while

process the second partition. The recursive call is always performed for the smaller partition.
The key for the good scalability of AQsort is efficient parallel partitioning at the high levels of the quicksort’s

recursive process accomplished by the ParallelPartition function. Its functionality stems from the solution
described by Pasetto and Akhriev that was introduced in Section 2.1. We elaborated their concept into an
fully-defined efficient blocking-based algorithm that is introduced by Algorithm 1.

The ParallelPartition function takes the following arguments:
1. start : index of the first multielement to be partitioned,
2. count : number of multielements to be partitioned,
3. pivot : index of a pivot multielement,
4. Comp, Swap: see Algorithm 1,
5. T : number of threads to be used for partitioning,

and returns the number of multielements that are less than the pivot. The functionality of ParallelPartition
is as follows: It first splits the processed multielements into T parts of the same size, where T is the number
of threads that are required to participate in parallel partitioning (lines 2–8). Each part is then independently
partitioned by a single thread with respect to the pivot by calling the SequentialPartition function (lines 9–

AQsort: Scalable Multi-Array In-Place Sorting with OpenMP 375

Algorithm 3 Parallel partitioning—Part 2

37: lessthan ← 0
38: for k ← 0 to T − 1 do

39: lessthan ← lessthan + tleft [k]− tstart [k]
40: end for

41: temp ← (tleft [i]− start) mod PBS

42: if temp ̸= 0 and (start + lessthan < tleft [i]− temp or start + lessthan ≥ tleft [i]− temp + PBS) then
43: if Comp(start + lessthan, pivot) then

44: q ← PBS − temp

45: while q > 0 do

46: Swap(tleft [i], start + lessthan + q − 1)
47: tleft [i]← tleft [i] + 1
48: q ← q − 1
49: end while

50: else

51: q ← temp

52: while q > 0 do

53: Swap(tleft [i]− 1, start + lessthan − q)
54: tleft [i]← tleft [i]− 1
55: q ← q − 1
56: end while

57: end if

58: end if

59: lthread ← 0
60: rthread ← T − 1
61: gleft ← tleft [0]
62: gright ← tleft [T − 1]

15), which represents a standard sequential partitioning algorithm. For efficiency, multielements are processed
in blocks, and the size of blocks represents a global AQsort parameter called PBS ; such a blocking approach
is inevitable for multi-core and many-core environments to avoid cache contention. The size of split parts is
chosen to be an exact multiple of the block size.

We further distinguish 3 different types of blocks. A block is called black if all its multielements are less
than the pivot. A block is called white if all its multielements are greater than or equal to the pivot. A block is
called grey if it contains multielements of both types and the multielements less than the pivot are placed on its
left side, thus have lower indexes, than the multielements greater than or equal to the pivot. After performing
SequentialPartition by each thread, the corresponding part of multielements contains at most one grey block;
the other blocks are either black or white. The next step is to “neutralize” these at most T grey blocks by
swapping their multielements such that as a result, either only one or no grey block exists (lines 16–36). If it
does, it is placed to its final position, which is already known (lines 37–58). The neutralization of grey blocks is
performed sequentially; this step is very fast and there would be only little or no benefit from its parallelization.

After neutralization of the grey blocks—up to at most the single one—all black and white blocks are swapped
in parallel so that all black blocks are finally placed left from white blocks (lines 59–105). Thought the most of
the pseudocode of this step consists of a critical section, the most runtime is spent outside of it (lines 100–102).

In the end, ParallelPartition needs to process multielements that did not fit the blocking scheme. This
consists of placing the remaining not-yet-processed multielements that are less than the pivot to the left side of
the position where the pivot finally belongs (lines 106–111). This last step is performed sequentially (again, it
is very fast and there would be only little or no benefit from its parallelization).

Now, it remains to show how sequential sorting is performed. AQsort uses the combination of quicksort,
insertion sort, and heapsort. Heapsort is conditionally applied to prevent quicksort’s worst case complexity
O(n2). Insertion sort is applied to partitions smaller than a threshold given by an AQsort global parameter
called IST . The SequentialSort procedure therefore first checks the number of multielements to be sorted.
If it is greater than IST , it calls the SequentialQuickSort procedure, which performs a standard recursive

376 D. Langr, P. Tvrd́ık, I. Šimeček

Algorithm 4 Parallel partitioning—Part 3

63: for T threads do in parallel

64: done ← false
65: while true do

66: enter critical section

67: if gleft ≥ gright or gleft ≥ start + lessthan or gleft − PBS < start + lessthan then

68: done ← true
69: break

70: end if

71: while gleft ≥ tstart [lthread + 1] do
72: lthread ← lthread + 1
73: if lthread ≥ T then

74: done ← true
75: break

76: end if

77: gleft ← tleft [lthread]
78: end while

79: myleft ← gleft

80: gleft ← gleft + PBS

81: while gright > PBS and gright − PBS < tstart [rthread] do
82: if rthread = 0 then

83: done ← true
84: break

85: end if

86: rthread ← rthread − 1
87: gright ← tleft [rthread]
88: end while

89: if gright ≤ PBS then

90: done ← true
91: break

92: end if

93: myright← gright − PBS

94: gright← gright− PBS

95: exit critical section

96: if done = true then

97: break

98: end if

99: if myleft < myright then

100: for k ← 0 to PBS − 1 do

101: Swap(myleft + k, myright + k)
102: end for

103: end if

104: end while

105: end for

quicksort. Then, insertion sort is executed to finally sort multielements not sorted by quicksort.

The SequentialQuickSort procedure works as follows:

1. If the maximum allowable depth of recursion is reached, the quicksort is abandoned and the processed
multielements are sorted with the HeapSort procedure.

2. Otherwise, a pivot multielement is selected and the processed multielements are partitioned with respect
to this pivot by calling the SequentialPartition function.

3. The pivot is chosen using so-called median of three (Mo3) strategy, which is faster than MoM.
4. As in ParallelQuickSort, after partitioning, multielements that are equal to the pivot are excluded

AQsort: Scalable Multi-Array In-Place Sorting with OpenMP 377

Algorithm 5 Parallel partitioning—Part 4

106: for k ← tstart [T] to start + count do

107: if Comp(k, pivot) then

108: Swap(k, start + lessthan)

109: lessthan ← lessthan + 1
110: end if

111: end for

112: return lessthan

113: end function

from further processing.
5. As in ParallelQuickSort, the tail call elimination is applied to reduce the required call stack space.
6. Quicksort is performed only for partitions with sizes greater than IST . Smaller partitions are left to

be sorted by insertion sort.

4. Implementation. We provide an AQsort implementation in the form of an open-source GitHub
project3. It is written in C++ and uses OpenMP as a threading paradigm; OpenMP version 3.0 or higher
is required because of task parallelism. Its usage consists of:

1. including the main AQsort header file aqsort.h,
2. defining functions for comparing and swapping multielements,
3. calling one of the provided sorting functions.

The contents of aqsort.h is shown in Figure 4.1.
There are three sorting functions defined, all within the aqsort namespace. The first function called

parallel sort performs sorting in parallel by using OpenMP. The second function called sequential sort

performs sequential sorting. The third function called sort is a simple “switch” that proceeds to parallel sort

if OpenMP is available and to sequential sort otherwise. Note that parallel sort is accessible only if the
OPENMP preprocessor macro is defined. This macro is typically provided automatically by compilers in case that
OpenMP threading is activated (as, e.g., when the -fopenmp command line argument is passed to the GNU
C/C++ compilers).

The sequential sort function can be employed in codes where OpenMP threading is not available, such
as sequential programs. In HPC, these may also be pure MPI-based programs; their MPI processes are typically
mapped to all available system cores and, consequently, there is no room for shared-memory parallelism.

Both parallel sort and sequential sort functions are only simple wrappers. The implementation of
sorting algorithms defined in Section 3 is hidden in the aqsort::impl namespace and the corresponding codes
are stored in the impl subdirectory. There is no need for building and linking the AQsort library; its functionality
is provided purely in the form of C++ header files.

In Section 3, we introduced two AQsort global algorithm parameters, namely PBS and IST . These pa-
rameters are represented within the implementation by preprocessor macros called AQSORT PARALLEL PARTI-

TION BLOCK SIZE and AQSORT INSERTION SORT THRESHOLD, respectively. If users want to change their default
values for their codes, they need to define these macros before the aqsort.h header file is included.

Let us now show how to define comparison and swapping functions for AQsort. Primarily, we can define
them either as function objects, or as lambda functions, which were introduced by the C++11 standard. Both
options are illustrated by Figures 4.2 and 4.3, respectively; note that the latter is considerably clearer and more
concise. These example codes show how to sort nonzero elements of a sparse matrix A, where:

A =

1 0 0 2
0 3 0 0
0 0 4 0
5 0 0 6

and n = 6. (4.1)

Note that it would have no sense to perform such sorting in parallel; multi-threaded functionality of AQsort
was designed for very large arrays. The reasonable condition for efficient parallel sorting with AQsort is

n≫ PBS × numthreads, (4.2)

3https://github.com/DanielLangr/AQsort

378 D. Langr, P. Tvrd́ık, I. Šimeček

#ifndef AQSORT_INSERTION_SORT_THRESHOLD

#define AQSORT_INSERTION_SORT_THRESHOLD 16

#endif

#include "impl/sequential_sort.h"

#ifdef _OPENMP

#ifndef AQSORT_PARALLEL_PARTITION_BLOCK_SIZE

#define AQSORT_PARALLEL_PARTITION_BLOCK_SIZE 1024

#endif

#include "impl/parallel_sort.h"

#endif

namespace aqsort

{

#ifdef _OPENMP

template <typename Comp, typename Swap>

inline void parallel_sort(std::size_t length, Comp* const comp, Swap* const swap)

{

impl::parallel_sort(length, comp, swap);

}

#endif

template <typename Comp, typename Swap>

inline void sequential_sort(std::size_t length,

Comp* const comp, Swap* const swap)

{

impl::sequential_sort(length, comp, swap);

}

template <typename Comp, typename Swap>

inline void sort(std::size_t length, Comp* const comp, Swap* const swap)

{

#ifdef _OPENMP

parallel_sort(length, comp, swap);

#else

sequential_sort(length, comp, swap);

#endif

}

}

Fig. 4.1: Contents of the AQsort main header file aqsort.h. Comments and some unimportant preprocessor
directives are omitted.

where numthreads denotes the number of utilized OpenMP threads.

5. Experiments. We have conducted an extensive experimental study to evaluate the performance and
scalability of AQsort and to compare it with existing forefront implementations of parallel sorting algorithms.
Measurements were run on modern HPC hardware architectures, namely 3 types of multi-core computational
nodes of large-scale HPC systems and a many-core Intel Xeon Phi coprocessor/accelerator; see Table 5.1 for
details.

The utilized Intel Xeon processors of the Cray XC40 system supported hyper-threading, i.e., running two
threads per a single physical core. However, within preliminary test measurements, hyper-threading brought

4Formerly known as Hornet (the system was renamed/upgraded during our work).
5High Performance Computing Center Stuttgart, University of Stuttgart, Stuttgart, Germany.
6National Center for Supercomputing Applications, University of Illinois, Urbana-Champaign, USA.
7Faculty of Information Technology, Czech Technical University in Prague, Prague, Czech Republic.
8Jülich Supercomputing Centre, Institute for Advanced Simulation, Jülich, Germany.
9Non-uniform memory access.

10Symmetric multiprocessing.

AQsort: Scalable Multi-Array In-Place Sorting with OpenMP 379

#include <algorithm>

#include <vector>

#include <aqsort.h>

template <typename T> struct Comp {

Comp(std::vector<T>& rows, std::vector<T>& cols) : rows_(rows), cols_(cols) { }

inline bool operator()(std::size_t i, std::size_t j) const {

// lexicographical ordering:
if (rows_[i] < rows_[j]) return true;

if ((rows_[i] == rows_[j]) && (cols_[i] < cols_[j])) return true;

return false;

}

/∗ private: ∗/ std::vector<T> &rows_, &cols_;

};

template <typename T, typename U> struct Swap {

Swap(std::vector<T>& rows, std::vector<T>& cols, std::vector<U>& vals)

: rows_(rows), cols_(cols), vals_(vals) { }

inline void operator()(std::size_t i, std::size_t j) {

std::swap(rows_[i], rows_[j]);

std::swap(cols_[i], cols_[j]);

std::swap(vals_[i], vals_[j]);

}

/∗ private: ∗/ std::vector<T> &rows_, &cols_;

/∗ private: ∗/ std::vector<U> &vals_;

};

int main() {

typedef unsigned int uint32_t;

// sparse matrix in COO
std::vector<uint32_t> rows, cols;

std::vector<double> vals;

// matrix assembly in reverese lexicographical order
rows.push_back(0); cols.push_back(0); vals.push_back(1.0);

rows.push_back(3); cols.push_back(0); vals.push_back(5.0);

rows.push_back(1); cols.push_back(1); vals.push_back(3.0);

rows.push_back(2); cols.push_back(2); vals.push_back(4.0);

rows.push_back(0); cols.push_back(3); vals.push_back(2.0);

rows.push_back(3); cols.push_back(3); vals.push_back(6.0);

// sorting in lexicographical order:
Comp<uint32_t> comp(rows, cols);

Swap<uint32_t, double> swap(rows, cols, vals);

aqsort::sort(rows.size(), &comp, &swap);

// matrix elements are now sorted lexicographically
}

Fig. 4.2: Custom reordering of sparse matrix nonzero elements with AQsort using function objects.

no speedup in comparison with a default single-thread-per-core configuration. The AMD Opteron processors of
the Cray XE6 system did not support hyper-threading. Therefore, within the presented study, we did not use
more than a single thread per core on these architectures. On the contrary, on IBM BlueGene/Q (BG/Q) nodes
and Intel Xeon Phi coprocessors, we usually achieved the highest sorting performance when running multiple
threads per a single core. Both IBM BG/Q and Intel Xeon Phi support up to 4 simultaneously running threads

380 D. Langr, P. Tvrd́ık, I. Šimeček

#include <cstdint>

#include <utility>

#include <vector>

#include <aqsort.h>

int main() {

// sparse matrix in COO, matrix elements in reverese lexicographical order
std::vector<uint32_t> rows { 0, 3, 1, 2, 0, 3 };

std::vector<uint32_t> cols { 0, 0, 1, 2, 3, 3 };

std::vector<double> vals { 1.0, 5.0, 3.0, 4.0, 2.0, 6.0 };

// sorting in lexicographical order:
auto comp = [&rows, &cols] (std::size_t i, std::size_t j) /∗ −> bool ∗/ {

if (rows[i] < rows[j]) return true;

if ((rows[i] == rows[j]) && (cols[i] < cols[j])) return true;

return false;

};

auto swap = [&rows, &cols, &vals] (std::size_t i, std::size_t j) {

std::swap(rows[i], rows[j]);

std::swap(cols[i], cols[j]);

std::swap(vals[i], vals[j]);

};

aqsort::sort(rows.size(), &comp, &swap);

// matrix elements are now sorted lexicographically
}

Fig. 4.3: Custom reordering of sparse matrix nonzero elements with AQsort in C++11 using lambda functions.

Table 5.1: Configurations of HPC systems and their run-time environments used for experiments.

Architecture: Cray XC40 Cray XE6 Intel Xeon Phi IBM BlueGene/Q

System: Hazel Hen4 Blue Waters Star Juqueen
Provider: HLRS5 NCSA6 CTU7 JSC8

Processor: Intel Xeon E5-2680 v3 AMD Opteron 6276 Xeon Phi 7120P IBM PowerPC A2
Frequency: 2.5 GHz 2.3 GHz 1.238 GHz 1.6 GHz
Cores per node: 24 16 61 16
Node memory: 128 GB 64 GB 16 GB 16 GB
Memory access: NUMA9 NUMA SMP10 SMP
Used compilers: GNU g++ 4.9.2 GNU g++ 4.8.2 Intel icpc 15.0.2 GNU g++ 4.8.1

Intel icpc 15.0.2 Intel icpc 15.0.3

per core, therefore, we present measurements for up to 64 and 244 threads for these architectures, respectively.
All the measurements on Intel Xeon Phi were performed in the native mode, i.e., test programs were run directly
on the coprocessor.

Please note that we do not provide results of all the measurements for IBM BG/Q, since the Juqueen’s
runtime environment was not intended for such types of experiments. There was neither a possibility to obtain
an interactive access to computational nodes nor a possibility to use a single node only. The smallest allocation
unit for a job consisted of 32 nodes and such an allocation had wall clock time limited to 30 minutes. We
therefore performed only selected experiments on IBM BG/Q.

Within measurements, we used 3 types of data sets for sorting:
1. integer numbers (IN) represented with the 64-bit unsigned integer data type,
2. binary numbers (BN) represented with the 8-bit unsigned integer data type,
3. sparse matrix nonzero elements (SM) in the COO format represented with the 32-bit unsigned integer

indexes and double-precision 64-bit values.
Characteristics of these data sets and experiments performed with them are shown in Table 5.2. Although

AQsort: Scalable Multi-Array In-Place Sorting with OpenMP 381

Table 5.2: Characteristics of data sets and experiments performed with them.

Data: IN BN SM

Number of arrays: 1 1 3
(Multi)element memory footprint: 8 bytes 1 byte 2 · 4 + 8 = 16 bytes
Data generation: random random random
Random distribution: uniform uniform uniform
Initial ordering: none none reverse lexicographical
Final ordering: natural natural lexicographical

AQsort is primarily intended for multi-array sorting, we chose the IN and BN single-array sorting problems for
this study since it allowed us to directly compare AQsort with its iterator-based competitors. In case of the SM
data sets, such a comparison had to be performed indirectly by running the SoA-to-AoS and back AoS-to-SoA
transformations.

For sake of readability, we generally refer to the elements of IN and BN arrays as to multielements, even
though they are in fact “single elements” only. For all types of data sets, multielements were generated randomly;
we used the implementation of the Mersene Twister pseudorandom number generator [17] provided by C++11
and Boost. In the IN and BN cases, data were sorted directly, which corresponded to sorting of randomly shuffled
integer/binary numbers. The matrix nonzero elements (SM) were first sorted in the reverse lexicographical order
and the measurements were performed while sorting them in the lexicographical order.

Each particular measurement within this study can be characterized by the following input parameters:
1. the algorithm/its implementation used for sorting,
2. the utilized hardware architecture,
3. the type of sorted data (IN, BN, SM),
4. the number of sorted multielements (n),
5. the number of utilized threads.

Due to the randomness in the input data, sorting times generally differ for the same input parameters
across different algorithm runs. Let algorithm’s performance stability denote a degree of its ability to sort data
with the same input parameters in the same runtime; we call it stability only if the context is clear. (We could
quantify stability, e.g., as an inverse of the standard deviation of the sorting time from multiple algorithm runs.
Note that the defined stability has nothing to do with sorting algorithms being either stable or unstable in the
sense of preserving the order of elements with equal keys. Quicksort, and therefore AQsort as well, in inherently
unstable in this sense.) The reported results represent average sorting times from multiple measurements.
Typically, we used between 6 and 12 measurements for the same input parameters, depending mostly on the
algorithm’s stability and required computational resources.

The multielements of the IN, BN, and SM data sets have different memory footprints. Their different counts
thus fit memories of the architectures presented by Table 5.1. For instance, 230 ≈ 1.07 · 109 SM elements can
be stored in a memory of an Intel Xeon Phi coprocessor or an IBM BG/Q node. However, we could not work
with such large data sets, since even in-place variants of quicksort require some call stack space to perform
the recursion. Moreover, there has to be some amount of memory reserved for system processes. We therefore
decided to work within our measurements with data sets of sizes n = 2k · 108, where k ∈ Z. Such a choice
allowed us to cover a wide range of data set sizes and also guaranteed enough memory for system processes
and the call stack. On Intel Xeon Phi coprocessors and IBM BG/Q nodes, we thus sorted at most 8 · 108 SM
multielements. However, AQsort was the only implementation that was able to sort such an amount. If the
SoA-to-AoS transformation and/or out-of-place sorting was performed, the maximum number of sorted SM
multielements was only 4 · 108.

All the presented results were obtained for default values of the AQsort parameters, i.e., IST = 16 and
PBS = 1024 (see Figure 4.1), if not specified otherwise.

5.1. Evaluation of AQsort. First, we measured the strong scalability of AQsort, i.e., the response of
the sorting time to a different number of OpenMP threads with constant n. Results of these experiments are
shown in Figure 5.1. Due to different memory footprints of multielements, we set different n for different types
of sorted data (IN, BN, SM). However, for each particular type, n was fixed for all the considered architectures
to allow their mutual comparison with respect to AQsort performance.

382 D. Langr, P. Tvrd́ık, I. Šimeček

Table 5.3: Maximum measured speedup of parallel AQsort with respect to std::sort (left) and sequential
AQsort (right).

Speedup with respect to
std::sort sequential AQsort

Architecture IN BN SM IN BN SM

Cray XC40 8.8 20.4 8.8 9.9 6.5 8.8
Cray XE6 5.2 17.6 4.6 6.9 3.8 5.2
Intel Xeon Phi 30.7 16.5 28.1 41.8 4.1 41.3
IBM BG/Q 11.8 36.9 14.3 15.6 5.6 16.2

To illustrate the benefits of parallel sorting, Figure 5.1 also shows sorting times for the sequential std::sort
function from the C++ Standard Library. Clearly, AQsort reduced these sorting times in all cases considerably.
The maximum obtained speedup with respect to std::sort, and also with respect to the sequential version of
AQsort, are shown in Table 5.3.

The results for the IN and SM data sets are similar—the maximum obtained speedup with respect to
std::sort falls between about 1/4 and 1/3 of the number of threads. The BN case is specific—the total memory
footprint of the data being sorted was the same as in the IN case, but the number of sorted multielements was
8 times higher, which caused much longer sorting times of std::sort. On the contrary, sorting times of the
sequential version of AQsort were actually lower in the BN case than in the IN case. The speedup of parallel
AQsort with respect to sequential AQsort was relatively low in the BN case, especially on Intel Xeon Phi and
IBM BG/Q. We attribute this effect to the saturation of the memory subsystems; on all utilized architectures,
the number of memory controllers/channels was much lower than the number of their computational cores.

Note that for AMD and Intel CPU-based nodes, the lowest sorting times were always obtained when the
number of OpenMP threads equaled the number of node cores (one-thread-per-core configuration). For Intel
Xeon Phi and IBM BlueGene/Q, the lowest sorting times mostly occurred for the two-threads-per-core config-
uration, and, even if not, the differences were minimal. We can thus generally recommend these configurations
for AQsort maximum speedup on given architectures.

Second, we measured the relation between AQsort sorting times and the number of sorted multielements n;
results are shown in Figure 5.2. On all architectures, we performed experiments up to the maximum number of
multielements that fitted the available memory. The number of threads was always set to a value that provided
highest speedup within the strong scalability results. The results show that the sorting time grew linearly with
n and that the rate of this growth was close to 1 in all cases. Such a growth clearly does not correspond to a
quicksort complexity O(n · log n). In auxiliary measurements, we have observed similar linear growth with all
the considered implementations of sorting algorithms, including std::sort.

The third experiment evaluated the dependence of AQsort sorting time on the algorithm global parameter
PBS ; results are presented in Figure 5.3. They show that, as might have been expected, small block sizes
provided low algorithm performance. As the block size grew, the sorting time decreased accordingly. At some
point sorting time established and no longer improved with higher block sizes; small variances in sorting times
were caused by the instability of the algorithm. Generally, setting a higher block size is seemingly preferable.
However, users need to be sure that there is enough data to be sorted efficiently according to condition (4.2).

The fourth experiment evaluated the dependence of AQsort sorting time on the second algorithm global
parameter IST ; results are presented in Figure 5.4 (for space reasons, we show the measurements for the IN
data sets only). According to these results, users should not set too high values of the threshold for insertion
sort; again, small variances in sorting times were caused by the instability of the algorithm.

The last experiment evaluated the stability of AQsort. We performed 200 runs of the algorithm with each
particular set of input parameters and processed the results statistically, see Table 5.4. For easier comparison, we
show relative sorting times that are sorting times in percents normalized by the their average values. Obviously,
the sorting times can vary significantly in practice, especially for the BN data sets. However, standard deviations
reveal that typical sorting times might be expected much closer to the average than the measured extrema.

For the above described experiments, we build test programs with the GNU C++ compiler for both AQsort
and std::sort, with the exception of Intel Xeon Phi, where we used the Intel C++ compiler.

AQsort: Scalable Multi-Array In-Place Sorting with OpenMP 383

1 2 4 8 16 32 64 128 256
16

32

64

128

256

512

1024

2048

Number of threads

S
o
rt

in
g

ti
m

e
[s

]

Cray XC40

Cray XE6

Intel Xeon Phi

IBM BG/Q

(a) integer numbers (IN), n = 1.6 · 109

1 2 4 8 16 32 64 128 256
8

16

32

64

128

256

512

1024

2048

4096

8192

Number of threads

S
o
rt

in
g

ti
m

e
[s

]

Cray XC40

Cray XE6

Intel Xeon Phi

IBM BG/Q

(b) binary numbers (BN), n = 12.8 · 109

1 2 4 8 16 32 64 128 256
4

8

16

32

64

128

256

512

1024

Number of threads

S
o
rt

in
g

ti
m

e
[s

]

Cray XC40

Cray XE6

Intel Xeon Phi

IBM BG/Q

(c) sparse matrix nonzero elements (SM), n = 0.4 · 109

Fig. 5.1: Strong scalability of AQsort measured on different architectures. Dashed lines show the sorting times
of the sequential std::sort function.

384 D. Langr, P. Tvrd́ık, I. Šimeček

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8
1

2

4

8

16

32

64

128

256

Number of sorted multielements in billions

S
o
rt

in
g

ti
m

e
[s

]

Cray XC40 (24)

Cray XE6 (16)

Intel Xeon Phi (122)

IBM BG/Q (32)

(a) integer numbers (IN)

0.8 1.6 3.2 6.4 12.8 25.6 51.2 102.4
0.5

1

2

4

8

16

32

64

128

256

Number of sorted multielements in billions

S
o
rt

in
g

ti
m

e
[s

]

Cray XC40 (24)

Cray XE6 (16)

Intel Xeon Phi (61)

IBM BG/Q (64)

(b) binary numbers (BN)

0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.4
0.5

1

2

4

8

16

32

64

128

256

Number of sorted multielements in billions

S
o
rt

in
g

ti
m

e
[s

]

Cray XC40 (24)

Cray XE6 (16)

Intel Xeon Phi (122)

IBM BG/Q (32)

(c) sparse matrix nonzero elements (SM)

Fig. 5.2: Relation between AQsort sorting times and the number of multilements n, measured on different
architectures. Numbers in parentheses in the legend denote the number of utilized OpenMP threads.

AQsort: Scalable Multi-Array In-Place Sorting with OpenMP 385

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

16

32

64

128

256

512

Block size (PARTITION_BLOCK_SIZE)

S
or

ti
n
g

ti
m

e
[s

]

Cray XC40 (24)

Cray XE6 (16)

Intel Xeon Phi (122)

(a) integer numbers (IN), n = 1.6 · 109

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

8

16

32

64

128

256

512

1024

Block size (PARTITION_BLOCK_SIZE)

S
or

ti
n
g

ti
m

e
[s

]

Cray XC40 (24)

Cray XE6 (16)

Intel Xeon Phi (61)

(b) binary numbers (BN), n = 12.8 · 109

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

4

8

16

32

64

128

Block size (PARTITION_BLOCK_SIZE)

S
or

ti
n
g

ti
m

e
[s

]

Cray XC40 (24)

Cray XE6 (16)

Intel Xeon Phi (122)

(c) sparse matrix nonzero elements (SM), n = 0.4 · 109

Fig. 5.3: AQsort sorting times for different partitioning block sizes (parameter PBS) measured on different
architectures. Numbers in parentheses in the legend denote the number of utilized OpenMP threads.

386 D. Langr, P. Tvrd́ık, I. Šimeček

2 4 8 16 32 64 128 256 512
16

32

64

128

Insertion sort threshold (INSERTION_SORT_THRESHOLD)

S
or

ti
n
g

ti
m

e
[s

]

Cray XC40 (24)

Cray XE6 (16)

Intel Xeon Phi (122)

Fig. 5.4: AQsort runtimes for different values of the insertion sort threshold (parameter IST) measured with
the IN data sets on different architectures. Numbers in parentheses in the legend denote the number of utilized
OpenMP threads.

Table 5.4: Statistical values for 200 sorting times of parallel AQsort in percents normalized by their average
values. The number in parentheses denote the number of utilized OpenMP threads.

Cray XC40 (24) Cray XE6 (16) Intel Xeon Phi (122)
Statistics IN BN SM IN BN SM IN BN SM

Minimum 87.0 77.6 90.9 87.8 80.9 88.2 94.0 93.1 92.1
Average 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Maximum 108.4 135.7 108.9 110.6 129.9 112.6 109.6 110.0 116.7
Stddev 4.7 6.6 3.8 4.7 7.9 5.2 2.6 4.8 3.5

5.2. Comparison of AQsort with Modern Implementations of Sorting Algorithms. In this sec-
tion, we show the results of experiments that were designed to compare the performance of AQsort and modern
implementations of sorting algorithms introduced in Section 2. Namely, we considered the following parallel
solutions:

1. in-place std:: parallel::sort(..., quicksort tag()) function from GNU Libstdc++ Parallel
Mode (further referred to as GNU-QS),

2. in-place std:: parallel::sort(..., balanced quicksort tag()) function from GNU Libstdc++
Parallel Mode (GNU-BQS),

3. out-of-place std:: parallel::sort(..., multiway mergesort tag()) function from GNU Libstd-
c++ Parallel Mode (GNU-MWMS),

4. in-place tbb::parallel sort function from Intel TBB (TBB),
5. in-place cilkpub::cilk sort in place function from Cilkpub (CP-IP),
6. out-of-place cilkpub::cilk sort function from Cilkpub (CP-OoP),
7. out-of-place thrust::sort function from Nvidia Thrust (Thrust).

The cilkpub::cilk sort function calls cilkpub::cilk sort in place if there is not enough memory to per-
form out-of-place sorting; we avoided this approach within our study. Cp-OoP thus always refer to the out-of-
place sorting.

To evaluate the benefits of parallel sorting, we show the sorting times for the sequential std::sort function
as well. The version of GNU Libstdc++ was given by the version of the GNU C++ compiler, see Table 5.1. As
for other libraries, we compiled test programs against Intel TBB version 4.3 Update 4, Cilkpub version 1.05,
and Nvidia Thrust version 1.8.0.

AQsort was the only implementation that could sort multiple arrays. To compare its performance with
other implementations, we thus either measured runtime of sorting single arrays (the IN and BN cases), or we
had to encapsulate sorting with the SoA-to-AoS and back AoS-to-SoA transformations (the SM case). Presented
measurements were on all architectures made over the largest possible data sets, i.e., data sets that fitted the half

AQsort: Scalable Multi-Array In-Place Sorting with OpenMP 387

N
/
A

N
/
A

N
/
A

N
/
A

N
/
A

N
/
A

F
A
IL

E
D

Cray XC40, n = 6.4 · 10
9 Cray XE6, n = 3.2 · 10

9 Xeon Phi, n = 0.8 · 10
9 IBM BG/Q, n = 0.8 · 10

9

0

50

100

150

200

6
9
9
.2

5
1
8
.1

3
4
3
.4

4
0
0
.5

8
3
.0

8
8
.2

1
1
.3

3
2
.6

7
7
.7

7
6
.1

3
1
.2

7
8
.1

7
3
.5

3
6
.94
8
.0

5
1
.6

8
.9

8
2
.3

9
2
.1

1
4
.0

5
9
.4

6
4
.6

1
2
.9

4
9
.5

7
8
.8

1
1
.9

1
5
4
.5

1
6
0
.8

5
7
.5

S
o
rt

in
g

ti
m

e
[s

]

std::sort AQsort TBB CP-IP CP-OoP

GNU-QS GNU-BQS GNU-MWMS Thrust

Fig. 5.5: Comparison of sorting times for different implementations of sorting algorithms for IN data sets.

N
/
A

N
/
A

F
A
IL

E
D

F
A
IL

E
D

F
A
IL

E
D

N
/
A

N
/
A

N
/
A

N
/
A

F
A
IL

E
D

Cray XC40, n = 51.2 · 10
9 Cray XE6, n = 25.6 · 10

9 Xeon Phi, n = 6.4 · 10
9 IBM BG/Q, n = 6.4 · 10

9

0

200

400

600

800

1
1
9
1
.4

1
1
4
7
.6

1
7
2
1
.9

1
9
7
7
.1

5
4
.1

6
4
.7

1
0
5
.9

5
8
.2

3
7
7
.1

3
1
7
.3

2
5
4
.2

2
5
4
.8

1
8
3
.0

2
1
5
.6

0
.0

6
8
3
.3

1
0
3
1
.8

1
8
3
5
.4

2
1
2
.3

2
1
2
.1

1
6
1
.1

8
5
.8 1
6
2
.7

7
0
.5

4
3
7
.3

1
9
9
.2 2
9
1
.5

S
o
rt

in
g

ti
m

e
[s

]

std::sort AQsort TBB CP-IP CP-OoP

GNU-QS GNU-BQS GNU-MWMS Thrust

Fig. 5.6: Comparison of sorting times for different implementations of sorting algorithms for BN data sets.

of the available memory because of either out-of-place sorting and/or the SoA-to-AoS transformation. When
both the SoA-to-AoS transformation and out-of-place sorting took place, the memory of the original arrays had
to be released before sorting and reallocated afterwards.

All the mentioned implementations were available in the runtime environments of Cray XC40 and Cray XE6
nodes. The runtime environment of available Intel Xeon Phi accelerator did not contain the GNU Libstdc++
Parallel Mode functionality (GNU-QS, GNU-BQS, GNU-MWMS). The runtime environment of IBM BG/Q did
not contain solutions provided by Intel (TBB, CP-IP, CP-OoP).

For experiments run on Intel Xeon Phi, we used exclusively the Intel C++ compiler. Otherwise, we used
the GNU C++ compiler for std::sort, AQsort, GNU-QS, GNU-BQS, GNU-MWMS, and Thrust; and the
Intel C++ compiler for TBB, CP-IP, and CP-OoP.

The obtained results are shown in Figures 5.5–5.7. The “N/A” labels denote an absence of a given imple-
mentation on a given architecture. The “FAILED” labels denote measurements that were repeatedly terminated
due to runtime errors, typically segmentation faults; we have not performed analyses of these errors. Based on
these results, we can make the following observations:

1. All the parallel solutions considerably reduced sorting times in comparison with sequential std::sort.

388 D. Langr, P. Tvrd́ık, I. Šimeček

N
/
A

N
/
A

N
/
A

N
/
A

N
/
A

N
/
A

F
A
IL

E
D

Cray XC40, n = 3.2 · 10
9 Cray XE6, n = 1.6 · 10

9 Xeon Phi, n = 0.4 · 10
9 IBM BG/Q, n = 0.4 · 10

9

0

50

100

4
3
0
.6

3
6
2
.4

2
8
1
.7

3
5
1
.0

5
2
.5

7
1
.5

1
4
.4

2
7
.9

3
0
.6

5
7
.9

2
0
.13
1
.3

4
4
.3

1
8
.9

3
3
.1 4
0
.3

6
.4

5
0
.9

7
6
.3

1
2
.1

3
4
.6

6
3
.8

1
1
.2

3
3
.5

4
8
.6

1
7
9
.9

1
8
7
.8

7
6
.9

5
8
.5

S
o
rt

in
g

ti
m

e
[s

]

std::sort AQsort TBB CP-IP CP-OoP

GNU-QS GNU-BQS GNU-MWMS Thrust

Fig. 5.7: Comparison of sorting times for different implementations of sorting algorithms for SM data sets.

An exception was only GNU-QS in combination with the BN data sets.
2. Thrust performed poorly in comparison with other parallel solutions. Recall that though Thrust sup-

ports OpenMP, it was primarily designed as a library for Nvidia GPU accelerators. It thus seems that
the optimization level for OpenMP is in Thrust relatively low, at least for its sorting functionality.

3. The other out-of-place sorting implementations, i.e., CP-OoP and GNU-MWMS, mostly, but not always,
provided the lowest sorting times.

4. GNU-BQS always outperformed GNU-QS.
5. AQsort outperformed for BN data sets all other implementations—even the out-of-place ones—on all

architectures.
6. For IN and SM data sets, AQsort run slowly on IBM BG/Q in comparison with GNU-QS, GNU-BQS,

and GNU-MWMS. This might have been caused by not-so-well optimized OpenMP environment for
task-based parallelism on this architecture; AQsort was the only implementation build upon OpenMP
tasks.

7. AQsort provided lowest sorting times of all in-place sorting implementations on Intel Xeon Phi.
8. For IN data sets and Cray architectures, AQsort performed slightly worse than its in-place competitors

(TBB, CP-IP, GNU-QS, and GNU-BQS).
9. For SM data sets, AQsort provided higher sorting times than most of other implementations. How-

ever, these sorting times do not include the overhead given by the SoA-to-AoS and back AoS-to-SoA
transformations; see Section 5.3 for details.

5.3. SoA-to-AoS and AoS-to-SoA Transformations. The reason why we did not include the SoA-
to-AoS and AoS-to-SoA transformations in measurements presented by Figure 5.7 was that the performance
and efficiency of theses transformations are highly implementation-dependent. For illustration, consider the
following C++ solution for the SoA-to-AoS transformation that we used within our codes:

// sparse matrix in COO
std::vector<uint32_t> rows, cols;

std::vector<double> vals;

...

struct element_t {

uint32_t row, col;

double val;

};

const std::size_t n = rows.size();

std::vector<element_t> elements(n);

#pragma omp parallel for

for (std::size_t k = 0; k < n; k++) { elements[k].row = rows[k]; ... }

AQsort: Scalable Multi-Array In-Place Sorting with OpenMP 389

Profiling of this code on a Cray XC40 node for n = 3.2 · 109 and 24 threads revealed that the parallel for
loop took only 1.58 seconds, while the initialization of the elements vector took 23.15 seconds (subsequent
sorting with GNU-MWMS took 32.75 seconds). A similar problem arose in the case of out-of-place sorting,
where memory occupied by the rows, cols, and vals arrays had to be released prior to sorting and reallocated
afterwards. This consisted of 3 calls of the std::vector::resize function, which took in this experiment 24.61
seconds, while the final parallel AoS-to-SoA transformation took only 2.13 seconds. A detailed analysis of this
problem is beyond the scope of this article. Let us just note that it is caused by so-called zero-initialization of
elements during resizing of C++ std::vectors, which is inherently carried out sequentially.

6. Discussion. A straightforward conclusion of our work is that though speedups are far from being
linear, parallel/multi-threaded sorting considerably reduces sorting times on modern multi-core and many-core
hardware architectures. The question that remains to be answered is which implementation to choose for
particular sorting problems.

If we need to sort multiple arrays at once and suppose that there might not be enough available memory
for the SoA-to-AoS transformation, then AQsort is the only option of all the considered solutions. This might
happen, e.g., when developing scientific or engineering applications where multi-array sorting is required for
possibly very large data, such as large sparse matrices or discretization meshes. In such cases, we do not want
to limit the sizes of users’ problems being solved just because of sorting. AQsort is the only implementation
that does not need to run the SoA-to-AoS transformation. Therefore, it is the only implementation that can
be straightforwardly applied to multiple arrays large enough to fill more than the half of the available memory.

On the contrary, if we certainly know that there is enough memory available, there will be no simple
answer. Generic sorting of a single array with a lot of distinct sorting keys would be likely most efficient with
some parallel out-of-place implementation. However, one might need to implement the SoA-to-AoS and back
AoS-to-SoA transformations carefully to prevent its large runtime overhead.

Another aspects that play a crucial role in the selection of sorting implementation are threading paradigms
and portability. Generally, OpenMP prevails in the domains of HPC, mathematical, scientific, and engineering
software. Of all the considered implementations, only AQsort and Nvidia Thrust provide portable OpenMP
solutions. GNU Libstdc++ Parallel Mode implementations are tightly bound to the GNU C++ compiler;
except of this compiler, we succeeded in compiling programs that called the GNU Libstdc++ Parallel Mode
sorting functions only with the newest versions of the Intel C++ compiler, namely versions 14 and 15. PGI,
Cray, IBM, and older versions of Intel C++ compilers failed in such a compilation. The portability of sorting
implementations based on Intel TBB and Intel Cilk Plus is relatively low in comparison with OpenMP. Moreover,
though it is technically possible to integrate TBB or Cilk Plus routines into OpenMP code, such a combination
of threading paradigms might result in malformed parallelism; we encountered such a behavior in the Cray
runtime environments. Generally, it is not recommended to combine multiple threading paradigms within a
single code.

Moreover, the interface of AQsort allows its integration with C and Fortran codes through explicit instan-
tiation of its sorting functions with fixed footprints of comparison and swapping functions. Such an option is
not feasible with other iterator-based sorting solutions.

AQsort generally seems to provide somewhat longer sorting times when compared with the sorting imple-
mentation that is most suitable for each particular case. We attribute this fact to the AQsort’s universality
represented by the usage of user-provided compare and swap functions. Recall that within AQsort implemen-
tation, we cannot directly touch sorted data. We therefore cannot optimize and tune the code with respect
to cache subsystems, which is a common practice, e.g., in the form of software prefetching, vectorization, or
accessing data with respect to their alignment. Or, for instance, we cannot store a pivot during partitioning
in a temporary variable, which might cause its storage in registers during runtime for suitable types of data.
Moreover, calling compare and swap functions via pointers might generally hinder many optimizations carried
out by compilers on a regular basis. Users/developers therefore need to decide themselves whether they require
maximum sorting performance with all that restrictions given by current implementations or whether they are
willing to abandon a bit of performance for the possibility to work with larger data sets in a fully portable way.

7. Conclusions. The contribution of this article is a new parallel/multi-threaded version of the quicksort
sorting algorithm and its implementation called AQsort. This implementation, written in C++ and using
OpenMP, is available in the form of an open-source software project. It is primarily intended to be integrated into
scientific and engineering HPC codes that operate in modern multi-core and many-core runtime environments

390 D. Langr, P. Tvrd́ık, I. Šimeček

where OpenMP parallel paradigm is dominant.

AQsort fills some gaps in modern implementations of parallel sorting algorithms. Moreover, it provides also
sequential sorting functionality that can be exploited either in sequential codes or in HPC codes based on pure
MPI parallelism.

The main features of AQsort are:

1. Generality—it works with user-provided functions for comparing and swapping sorted data. Con-
sequently, in contrast to pointer-based/iterator-based sorting functions, it can directly sort multiple
arrays at once (see Section 3).

2. Space-efficiency—it operates in place and for multiple arrays it does not require the SoA-to-AoS and
back AoS-to-SoA transformations. Therefore, it is the only implementation that can be straighforwardly
applied to multiple arrays large enough to fill more than the half of the available memory (see Section 1).

3. Scalability—it considerably reduces sorting time with respect to optimized implementations of sequential
sorting algorithms and it efficiently utilizes all the cores of modern multi-core and many-core hardware
architectures (see Section 5.1).

4. Portability—it is implemented with standard OpenMP pragmas and functions. It is build upon the
combination of nested parallelism and tasking, which are supported by majority of modern C++ com-
pilers (see Section 4). Moreover, AQsort allows to create wrappers for C and Fortran programming
languages. Of all the considered parallel implementations, only AQsort and Thrust were available on
all the tested architectures. In comparison with AQsort, Thrust provided longer runtimes in all mea-
surements and required more memory due to the implementation of an out-of-place sorting algorithm
(see Section 5.2).

5. Efficiency—its performance is generally comparable with modern implementations of sorting algorithms
when running on forefront HPC hardware architectures (see Section 5.2). It seems to be especially
suitable for Xeon Phi coprocessors and for data that contain only few distinct sorting keys. In other
cases, AQsort might be outperformed by its competitors, which is a price for its universality (see
Section 6).

In addition to the presentation of AQsort, this article also:

1. serves as a brief updated survey of existing implementations of parallel sorting algorithms and their ex-
perimental comparison on leading-edge shared-memory hardware architectures (see Sections 2 and 5.2),

2. presents a parallel partitioning algorithm briefly proposed by Pasetto and Akhriev [23] in terms of
detailed pseudocode (see Section 3),

3. generally evaluates the universal approach to parallel sorting that uses custom compare and swap
functions with traditional solutions (see Section 6).

Acknowledgements. The authors would like to thank T. Dytrych of the Louisiana State University for
providing an access to the Blue Waters system. The authors would like to thank M. Václav́ık of the Czech
Technical University in Prague for providing an access to the Star university cluster. The authors acknowledges
support from M. Pajr of CQK Holding and International HPC Initiative.

We acknowledge PRACE for awarding us access to resource JUQUEEN based in Germany at the Gauss
Center for Supercomputing. We acknowledge PRACE for awarding us access to resource Hornet based in
Germany at the High Performance Computing Center Stuttgart. This research is part of the Blue Waters
sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-
0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at
Urbana-Champaign and its National Center for Supercomputing Applications.

REFERENCES

[1] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V.
der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia,
PA, 2nd ed., 1994.

[2] F. Beekhof, OMPTL: OpenMP multi-threaded template library, 2012. Accessed July 17, 2015 at
http://tech.unige.ch/omptl/.

[3] N. Bell and J. Hoberock, Thrust: A productivity-oriented library for CUDA, in GPU Computing GEMs: Jade Edition,
W.-M. Hwu, ed., Morgan Kaufmann, 2011.

[4] J. L. Bentley and M. D. McIlroy, Engineering a sort function, Software: Practice and Experience, 23 (1993), pp. 1249–1265.

AQsort: Scalable Multi-Array In-Place Sorting with OpenMP 391

[5] B. Chapman, G. Jost, and R. v. d. Pas, Using OpenMP: Portable Shared Memory Parallel Programming (Scientific and
Engineering Computation), The MIT Press, 2007.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, Third Edition, The MIT Press,
Cambridge, Massachusetts, USA, 3rd ed., 2009.

[7] R. Dementiev, L. Kettner, and P. Sanders, STXXL: standard template library for XXL data sets, Software: Practice
and Experience, 38 (2008), pp. 589–637.

[8] C. Hoare, Algorithm 64: Quicksort, Communications of the ACM, 4 (1961), pp. 321–322.
[9] , Quicksort, The Computer Journal, 5 (1962), pp. 10–16.

[10] ISO/IEC, ISO/IEC 9899:1999: Information Technology — Programming languages — C, 1999.
[11] , ISO/IEC 14882:2011: Information Technology — Programming languages — C++, 2011.
[12] D. Langr, I. Šimeček, and T. Dytrych, Block iterators for sparse matrices, in Proceedings of the Federated Conference on

Computer Science and Information Systems (FedCSIS 2016), IEEE Xplore Digital Library, 2016. Accepted for publication.
[13] D. Langr, I. Šimeček, P. Tvrd́ık, T. Dytrych, and J. P. Draayer, Adaptive-blocking hierarchical storage format for

sparse matrices, in Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS
2012), IEEE Xplore Digital Library, 2012, pp. 545–551.

[14] D. Langr and P. Tvrd́ık, Evaluation criteria for sparse matrix storage formats, IEEE Transactions on Parallel and
Distributed Systems, 27 (2016), pp. 428–440.

[15] B. A. Mahafzah, Performance assessment of multithreaded quicksort algorithm on simultaneous multithreaded architecture,
The Journal of Supercomputing, 66 (2013), pp. 339–363.

[16] D. Man, Y. Ito, and K. Nakano, An efficient parallel sorting compatible with the standard qsort, International Journal of
Foundations of Computer Science, 22 (2011), pp. 1057–1071.

[17] M. Matsumoto and T. Nishimura, Mersenne Twister: a 623-dimensionally equidistributed uniform pseudo-random number
generator, ACM Transactions on Modeling and Computer Simultaion, 8 (1998), pp. 3–30.

[18] M. McCool, R. A. D., and R. James, Structured Parallel Programming: Patterns for Efficient Computation, Morgan
Kaufmann, 2012.

[19] Microsoft, Parallel STL, 2014. Accessed July 17, 2015 at https://parallelstl.codeplex.com/.
[20] D. R. Musser, Introspective sorting and selection algorithms, Software: Practice and Experience, 27 (1997), pp. 983–993.
[21] R. Nair, ParallelSort: Parallel sorting algorithm using OpenMP, 2014. Accessed July 17, 2015 at

https://github.com/rsnair2/ParallelSort.
[22] D. Pasetto and A. Akhriev, A comparative study of parallel sort algorithms, in Proceedings of the ACM International

Conference Companion on Object Oriented Programming Systems Languages and Applications Companion, OOPSLA
’11, New York, NY, USA, 2011, ACM, pp. 203–204.

[23] , A comparative study of parallel sort algorithms. Accessed July 17, 2015 at http://researcher.watson.ibm.com/files/ie-
albert akhriev/sort2011-full.pdf, 2011.

[24] J. Reinders, Intel Threading Building Blocks, O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2007.
[25] A. D. Robinson, A parallel stable sort using C++11 for TBB, Cilk Plus, and OpenMP, 2014. Accessed July 17, 2015 at

https://software.intel.com/en-us/articles/a-parallel-stable-sort-using-c11-for-tbb-cilk-plus-and-openmp.
[26] A. Robison, Composable parallel patterns with Intel Cilk Plus, Computing in Science Engineering, 15 (2013), pp. 66–71.
[27] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, Philadelphia, PA,

USA, 2nd ed., 2003.
[28] B. Schäling, The Boost C++ Libraries, XML Press, 2nd ed., 2014.
[29] I. Šimeček and D. Langr, Efficient parallel evaluation of block properties of sparse matrices, in Proceedings of the

Federated Conference on Computer Science and Information Systems (FedCSIS 2016), IEEE Xplore Digital Library,
2016. Accepted for publication.

[30] J. Singler and B. Konsik, The gnu libstdc++ parallel mode: Software engineering considerations, in Proceedings of the 1st
International Workshop on Multicore Software Engineering, IWMSE ’08, New York, NY, USA, 2008, ACM, pp. 15–22.

[31] J. Singler, P. Sanders, and F. Putze, MCSTL: The multi-core standard template library, in Proceedings of the Euro-Par
2007 Parallel Processing, vol. 4641 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2007, pp. 682–694.

[32] M. Süs and C. Leopold, A user’s experience with parallel sorting and OpenMP, in Proceedings of the Sixth European
Workshop on OpenMP, EWOMP’04, 2004, pp. 23–28.

[33] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Amato, and L. Rauchwerger, A framework for adaptive
algorithm selection in STAPL, in Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’05, New York, NY, USA, 2005, ACM, pp. 277–288.

[34] P. Tsigas and Y. Zhang, A simple, fast parallel implementation of Quicksort and its performance evaluation on SUN
Enterprise 10000, in Proceedings of the 11th Euromicro Conference on Parallel, Distributed and Network-Based
Processing (PDP 2003), 2003, pp. 372–381.

[35] S. Williams, A. Waterman, and D. Patterson, Roofline: An insightful visual performance model for multicore
architectures, Commun. ACM, 52 (2009), pp. 65–76.

Edited by: Dana Petcu
Received: July 22, 2016
Accepted: August 31, 2016

AIMS AND SCOPE

The area of scalable computing has matured and reached a point where new issues and trends require a pro-
fessional forum. SCPE will provide this avenue by publishing original refereed papers that address the present
as well as the future of parallel and distributed computing. The journal will focus on algorithm development,
implementation and execution on real-world parallel architectures, and application of parallel and distributed
computing to the solution of real-life problems. Of particular interest are:

Expressiveness:

• high level languages,
• object oriented techniques,
• compiler technology for parallel computing,
• implementation techniques and their effi-
ciency.

System engineering:

• programming environments,
• debugging tools,
• software libraries.

Performance:

• performance measurement: metrics, evalua-
tion, visualization,

• performance improvement: resource allocation
and scheduling, I/O, network throughput.

Applications:

• database,

• control systems,

• embedded systems,

• fault tolerance,

• industrial and business,

• real-time,

• scientific computing,

• visualization.

Future:

• limitations of current approaches,

• engineering trends and their consequences,

• novel parallel architectures.

Taking into account the extremely rapid pace of changes in the field SCPE is committed to fast turnaround
of papers and a short publication time of accepted papers.

INSTRUCTIONS FOR CONTRIBUTORS

Proposals of Special Issues should be submitted to the editor-in-chief.
The language of the journal is English. SCPE publishes three categories of papers: overview papers,

research papers and short communications. Electronic submissions are preferred. Overview papers and short
communications should be submitted to the editor-in-chief. Research papers should be submitted to the editor
whose research interests match the subject of the paper most closely. The list of editors’ research interests can
be found at the journal WWW site (http://www.scpe.org). Each paper appropriate to the journal will be
refereed by a minimum of two referees.

There is no a priori limit on the length of overview papers. Research papers should be limited to approx-
imately 20 pages, while short communications should not exceed 5 pages. A 50–100 word abstract should be
included.

Upon acceptance the authors will be asked to transfer copyright of the article to the publisher. The
authors will be required to prepare the text in LATEX2ε using the journal document class file (based on the
SIAM’s siamltex.clo document class, available at the journal WWW site). Figures must be prepared in
encapsulated PostScript and appropriately incorporated into the text. The bibliography should be formatted
using the SIAM convention. Detailed instructions for the Authors are available on the SCPE WWW site at
http://www.scpe.org.

Contributions are accepted for review on the understanding that the same work has not been published
and that it is not being considered for publication elsewhere. Technical reports can be submitted. Substantially
revised versions of papers published in not easily accessible conference proceedings can also be submitted. The
editor-in-chief should be notified at the time of submission and the author is responsible for obtaining the
necessary copyright releases for all copyrighted material.

