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INTRODUCTION TO THE SPECIAL ISSUE ON

PRACTICAL ASPECTS OF HIGH-LEVEL PARALLEL PROGRAMMING

From smartphones to supercomputers, parallel architectures are nowadays pervasive. However parallel
programming is still reserved to experienced and trained programmers. The trend is towards the increase of
cores in processors and the number of processors in multiprocessor machines: The need for scalable computing
is everywhere. But parallel and distributed programming is still dominated by low-level techniques such as
send/receive message passing and POSIX threads. Thus high-level approaches should play a key role in the
shift to scalable computing in every computer and device.

Algorithmic skeletons (Google’s MapReduce being the most well-known skeletal parallelism approach),
parallel extensions of functional languages such as Haskell and ML, parallel logic and constraint programming,
parallel execution of declarative programs such as SQL queries, meta-programming in object-oriented languages,
etc. have produced methods and tools that improve the price/performance ratio of parallel software, and broaden
the range of target applications. Also, high level languages offer a high degree of abstraction which ease the
development of complex systems. Moreover, being based on formal semantics, it is possible to certify the
correctness of critical parts of the applications. The aim of all these languages and tools is to improve and ease
the development of applications.

The paper presented in this special issue are extended versions of papers presented at the Practical Aspects
of High-Level Parallel Programming (PAPP) workshop that was affiliated to the International Conference on
Computational Science (ICCS) from 2004 to 2012, and the Practical Aspects of High-Level Parallel Programming
(PAPP) track of the ACM Symposium on Applied Computing (SAC). It also features a paper written specifically
for this special issue.

While a lot of work in high-level approaches focus on regular data structures such as arrays and multi-
dimensional arrays, the papers of this issue consider more irregular data structures, in particular trees and
graphs.

Kaheki, Matsuzaki and Emoto present a new approach for parallel reduction on trees in a distributed
memory setting. Their algorithm is based on a suitable serialization of trees and its efficiency is shown for the
Bulk Synchronous Parallel (BSP) model. Matzusaki proposes a set of efficient skeletons on distributed trees:
their efficient implementation relies on the segmentation of trees based on the idea of m-bridges that ensures
high locality, and allows to represent local segments as serialized arrays for high sequential performance.

Dazzi, Carlini, Lulli and Ricci propose Telos, a high-level approach for large graphs processing based on
overlay networks, and an implementation on top of Apache Spark.

Hajibaba, Gorgin, and Sharifi present a sequence similarity parallelization technique in the context of
another Apache project: Storm a stream processing framework.

I wish to thank Anne Benôıt and Fré dé ric Gava, co-chairs of some the previous PAPP workshops and the
program committee members of the PAPP workshops and the PAPP ACM SAC track who reviewed the initial
papers and the revised versions of this special issue.

Frédéric Loulergue
Northern Arizona University
School of Informatics, Computing and Cyber Systems
Flagstaff, Arizona, USA
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EFFICIENT PARALLEL TREE REDUCTIONS

ON DISTRIBUTED MEMORY ENVIRONMENTS ∗

KAZUHIKO KAKEHI†, KIMINORI MATSUZAKI‡, AND KENTO EMOTO§

Abstract. A new approach for fast parallel reductions on trees over distributed memory environments is presented. The
start point of our approach is to employ the serialized representation of trees. Along this data representation with high memory
locality and ease of initial data representation, we developed an parallelized algorithm which shares the essence with the parallel
algorithm for parentheses matching problems. Our algorithm not only is proven to be theoretically efficient, but also has a fast
implementation in a BSP style.

Key words: Parallel tree reduction, parentheses matching, serialized representation, the tree contraction algorithm, Bulk
Synchronous Parallelism.

AMS subject classifications. 68W10, 05C05

1. Introduction. Research and development of parallelized algorithms have been intensively done toward
matrices or one dimensional arrays. Looking at recent trends in applications, another data structure has also
been calling for efficient parallel treatments: the tree structures. Emergence of XML as a universal data format,
which takes the form of a tree, has magnified the impact of parallel and distributed mechanisms toward trees
in order to reduce computation time and mitigate limitation of memory.

Consider, as a simple and our running example, a computation maxPath to find the maximum of the values
each of which is a sum of values in the nodes from the root to each leaf. When it is applied to the tree at the left
of Fig. 2.2, the result should be 12 contributed by the path of values 3, −5, 6 and 8 from the root. Recalling the
research on parallel treatments on trees, the parallel tree contractions algorithm, first proposed by Miller and
Reif [34], have been known as one of the most fundamental techniques to realize parallel computation over trees
efficiently. One attractive feature of parallel tree contractions is that no matter how imbalanced a tree is, the
tree can be reduced in parallel to a single node by repeatedly contracting edges and merging adjacent nodes.
This theoretical beauty, however, may not necessarily shine in practice, because of the following two source of
problems.

First, parallel tree contractions, originally being developed under the assumption of shared memory en-
vironments, have been intensively studied in the context of the PRAM model of parallel computation. This
assumption does not apply to the recent trends of popular PC clusters, a common and handy approach for
distributed memory environments, where the treatment and cost of data arrangement among processors need
taking into account. It should be noted that efficient tree contractions under PRAM model are realized by
assigning contractions to different processors each time.

Second, the parallel tree contractions algorithm assumes that the tree structures are kept as linked struc-
tures. Such representations using links are not suitable for fast execution, since linked structures often do not
fit in caching mechanism, and it is a big penalty on execution time under current processor architectures.

This paper gives a clear solution for parallel tree reductions with its start point to use serialized forms of

trees. Their notable examples are the serialized (streamed) representations of XML or parenthesized numeric
expressions which are obtained by tree traversals. The problems mentioned above are naturally resolved by this
choice, since distribution of serialized data among processors and realization of routines running over them with
high memory locality are much simpler than that of trees under linked structures.

Our algorithm over the serialized tree representations is developed along with the parentheses matching

∗An earlier version of this paper appeared in PAPP2007, part of ICCS2007[23].
†Academic Co-Innovation Division, UTokyo Innovation Platform Co., Ltd., 3–40–10 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan

(k.kakehi@utokyo-ipc.co.jp)
‡School of Information, Kochi University of Technology, 185 Tosayamadacho-Miyanokuchi, Kami, Kochi 782–8502 Japan

(matsuzaki.kiminori@kochi-tech.ac.jp)
§Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-

8502, Japan (emoto@ai.kyutech.ac.jp)
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Fig. 2.1. A rose tree (left), and the rose tree representation of [[1, 2], [3, 4, 5], [6]] (right)

problems. As instances of serialized trees, parallelization of parentheses matching problems, which figures out
correspondence between brackets, have plenty of work ([4, 36, 13, 25, 21] for example). Our algorithm, with
good resemblance to the one under BSP [43], also has a BSP implementation with three supersteps.

The contributions of our work are briefly summarized as follows:
• A New viewpoint at the parallel tree contractions algorithm—connection to parentheses matching : We
cast a different view on computing tree structures in parallel. The employed data representation, a
serialized form of trees by tree traversals, has massive advantages in the current computational environ-
ments: namely XML as popular data representations, cache effects in current processor architectures,
and ease in data distribution among popular PC clusters. Tree computations over its serialized rep-
resentation has much in common with parentheses matching. It is common to see that this problem
has connection with trees, like binary tree reconstruction or computation-tree generation, but to the
best of our knowledge we are the first to apply the idea of parentheses matching toward parallel tree
reductions, and to prove its success.

• Theoretical and practical efficiency : The previous work of parallel tree contractions on distributed
memory environments, namely hypercube [32] or BSP [16], both of which require O(n/p log p) execution
time. Contrasting to other work, our approach employs serialized tree representations. As a result, we
realized an O(n/p+ p) algorithm.

This paper is organized as follows. After this Introduction Sect. 2 observes our tree representations and
tree reductions. Section 3 explains an additional condition which enables efficient parallelization. We show
that this condition is equivalent to that of the parallel tree contractions algorithm. Section 4 develops the
parallelized algorithm. Our algorithm consists of three phases, where the first two perform computation along
with parentheses matching, and the last reduces a tree of size less than twice of the number of processors.
Section 5 supports our claims by some experiments. They demonstrate good scalability in computation. On
the other hand, we also observe fluctuation of data transactions. We discuss the related work in Sect. 6. Finally
we conclude this paper in Sect. 7 with mentioning future directions.

2. Preliminaries. This section defines the target of our parallelization, namely tree structures and their
serialized form, and tree homomorphism.

2.1. Trees and their serialized representation. We treat trees with unbound degree (trees whose nodes
can have an arbitrary number of subtrees), which is often referred as “rose trees” in functional programming
communities.

Definition 2.1. A data structure RTree is called rose tree defined as follows.

RTree α = Node α [Rtree α]

Fig. 2.1 shows examples of rose trees The left tree is set to be used as our running example. Rose trees are
general enough to represent nested lists; the right part of Fig. 2.1 is what [[1, 2], [3, 4, 5], [6]] is formatted into
a rose tree, whose internal nodes do not have their value. Binary trees are also covered by limiting degrees of
each node to be either zero or two.

As was explained in Introduction, our internal representation is to keep tree-structured data in a serialized
manner like XML. For example, if we are to deal with a tree with just two nodes, parent a and its child b,
the serialized equivalent is a list of four elements [<a>,<b>,</b>,</a>] . This is a combination of a preorder
traversal (for producing the open tag <a> and then <b>) and a postorder traversal (for producing the close tag
</b> and </a> afterwards). This representation has information enough to obtain back the original tree. In
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Fig. 2.2. A rose tree (upper left), its serialized representation as a sequence of pairs (middle) and another representation

according to the depth (lower)

this paper we treat only well-formed serialized representation, which is guaranteed to be parsed into trees. To
make such serialized representation easy to observe, we assume (1) to ignore information in the closing tag, and
(2) to assign the information about the depth in the tree instead. We therefore assume to deal with a list of
pairs [(0,a), (1,b), (1,/), (0,/)], where / denotes closing tags. The associated depth information can be easily
obtained by prefix sum computation [5].

The sequence of the middle in Fig. 2.2 is our internal representation of the example tree. We later see the
information of depth helps us to have insight for deriving parallelized algorithms. Following these figures, list
elements describing the entrance (which corresponds to open tags) are called open, and ones describing the exit
(close tags) are called close. These close elements without any value can be soon wiped away when we perform
computation.

2.2. Tree homomorphism. Algorithms are often tightly connected with the data structure. A general
recursive form naturally arises here, which we call tree homomorphism [42].

Definition 2.2. A function h defined as follows over rose trees is called tree homomorphism.

h( Node a [t1, . . . , tn] ) = a⊕ ( h(t1)⊗ · · · ⊗ h(tn) )
h( Leaf a ) = h′(a)

We assume the above operator ⊗ is associative and has its unit ι⊗.

This definition consists of a function h′ for leaves, and two kinds of computation for internal nodes: ⊗
to reduce recursive results from subtrees into one, and ⊕ to apply the result to the internal node. For later
convenience, we define ⊖ as (a, b, c)⊖e = a⊕(b⊗e⊗c), and we call (a, b, c) appearing at the left of ⊖ a “triple”.
The computation maxPath mentioned in Introduction is also a tree homomorphism.

maxPath( Node a [t1, . . . , tn] ) = a+ ( maxPath(t1) ↑ · · · ↑ maxPath(tn) )
maxPath( Leaf a ) = id(a)

= a

Here, id is the identify function, and ↑ returns the bigger of two numbers whose unit is −∞. When it is applied
to the tree in Fig. 2.2, the result should be 12 = 3 + (−5) + 6 + 8. For other examples please see [27].

3. Parallelization Condition. When we develop parallel implementations we often utilize associativity of
computations, in order to change the order of computation with guaranteeing the same result. The framework
of tree homomorphism only requires the condition that the operator ⊗ is associative. This property of the
horizontal directions is indeed necessary for parallelization, but not yet sufficient: we currently lack the effective
measure toward computation of the vertical directions.
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(au, bu, cu) ⊖ ((al, bl, cl) ⊖ e) = (a′, b′, c′) ⊖ e(a, b, c) ⊖ e = a ⊕ (b ⊗ e ⊗ c)

Fig. 3.1. A triple (left) and extended distributivity (right)

Before we start algorithm development, this section observes an additional property. What we use is known
as extended distributivity [27]. This property is explained using the operator ⊖ as follows.

Definition 3.1. The operator ⊗ is said extended distributive over ⊕ when the following equation holds

for any au, bu, cu, al, bl, cl, and e:

(au, bu, cu)⊖ ((al, bl, cl)⊖ e) = au ⊕ (bu ⊗ (al ⊕ (bl ⊗ e⊗ cl))⊗ cu)
= a′ ⊕ (b′ ⊗ e⊗ c′)
= (a′, b′, c′)⊖ e

with appropriate functions pa, pb and pc which calculate

a′ = pa(au, bu, cu, al, bl, cl) ,
b′ = pb(au, bu, cu, al, bl, cl) , and

c′ = pc(au, bu, cu, al, bl, cl) .

Efficient parallel tree reductions require these properties as well as ⊗ and ⊕ to be constant-time. Our
running example satisfies them, implicitly with its characteristic functions a′ = au + al, b′ = bu − al ↑ bl,
c′ = cl ↑ cu − al, as the following calculation shows.

(au, bu, cu)⊖ ( (al, bl, cl)⊖ e )
= au + (bu ↑ (al + (bl ↑ e ↑ cl)) ↑ cu)
= (au + al) + ((−al + bu ↑ bl) ↑ e ↑ (cl ↑ −al + cu))
= ( (au + al), (−al + bu ↑ bl), (cl ↑ −al + cu) )⊖ e

The triple and extended distributivity from the viewpoint of their tree structures are depicted in Fig. 3.1.
We show the property of extended distributivity is equivalent to the condition for realizing the parallel tree
contractions algorithm with respect to rose trees. Parallel tree contractions require two operations rake and
compress are efficiently computed. The operation rake is to contract an edge between a leaf node and its parent
internal node; the other operation compress is to contract the last remaining edge of an internal node. Once
these treatments are possible, tree computations are performed in parallel (see Fig. 3.2).

Theorem 3.2. Assume computation of ⊕ and ⊗ requires constant time. Extended distributivity is equivalent

to the conditions for parallel tree contractions with respect to rose trees.

Proof. [⇐] We are treating rose trees whose nodes have unbound degree. We assume leaves from outer
positions into inner positions are gradually raked. A node with its value a can be regarded as (a, ι⊗, ι⊗) . Take
its leftmost subtree. Let b be its computed value, and y the computed value of the remaining siblings appearing
on its right. The reduced value of the subtrees under a is therefore b ⊗ y . The rake operation is to merge
(a, ι⊗, ι⊗) with b, and returns (a, b, ι⊗) using associativity of the operator ⊗ .

(a, ι⊗, ι⊗)⊖ (b⊗ y) = a⊕ (ι⊗(b⊗ y)⊗ ι⊗)
= a⊕ (b⊗ y ⊗ ι⊗)
= (a, b, ι⊗)⊖ y
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Routine 4.1. First phase applied to each fragment

Input: Sequence (d0, a0), . . . , (dn−1, an−1) (n ≥ 1).
Variables: Arrays as, bs, cs (behaving as stacks growing from left to right), an integer d, and a value t.

(1) Set d← d0. If a0 is “/” then cs← [ι⊗, ι⊗], as← [ ], bs← [ ]; else cs← [ι⊗], as← [a0], bs← [ι⊗].
(2) For each i in {1, . . . , n− 1}

(2-a) if ai is not “/” (namely a value), then push ai to as and ι⊗ to bs;
(2-b) else if as is empty, then push ι⊗ to cs, and set d← di;
(2-c) else pop a′ from as and b′ from bs.

if b′ = ι⊗ (implying a′ is a leaf) then t← h′(a′); else t← a′ ⊗ b′;
if bs is not empty, then pop b′′ from bs and push b′′ ⊗ t to bs; else pop c′′ from cs and push c′′ ⊗ t to cs.

(3) If p ̸= 1 then remove ι⊗ at the bottom of cs0 and csp−1.

In terms of the value c of its rightmost leaf, the rake operation similarly succeeds to produce (a, ι⊗, c) . The
same arguments apply to the cases in which there are already raked values, namely (a, b, c) in general.

The compress operation is to merge a node (au, bu, cu) with its subtree whose computed value can be
written as (al, bl, cl)⊖ e . This is what extended distributivity deals with, and we successfully have (a′, b′, c′) =
(au, bu, cu)⊖ ((al, bl, cl)⊖ e) .

[⇒] When extended distributivity holds, we have the implementation of the tree homomorphism based on
tree contractions over a binary tree representation of rose trees [27].

4. Parallelized Algorithm. This section develops a parallel algorithm for tree homomorphism which
satisfies extended distributivity. Our algorithm consists of three phases: (1) the first phase applies tree ho-
momorphism toward segments (consecutive subsequences) as much as possible which is distributed to each
processor; (2) after communications among processors the second phase performs further reduction using ex-
tended distributivity, producing a binary tree as a result whose internal nodes are specified as triples, and size
is less than twice of the number of processors; finally (3) the third phase reduces the binary tree into a single
value.

As was used in Introduction, we set to use n to denote the number of nodes in the tree we apply computations
to, and p the number of available processors. The serialized representation has therefore 2n elements. During
the explanation we assume p = 4. Each processor is assumed to have O(n/p) local memory, and to be connected
by a router that can send messages in a point-to-point manner. Our algorithm developed here involves all-to-all
transactions; such a mechanism is available in MPI on many PC clusters. We assume BSP model [43, 33].

4.1. First phase. Each processor applies tree homomorphism to its given segment of size 2n/p. The
process is summarized as Routine 4.1. This process leaves fragments of results, in arrays asi, bsi, csi and an
integer di for each processor number i. The array asi is to keep the open elements without their corresponding
close element. Each element of asi can have subtrees before the next one in asi, and their reduced values are kept
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cs0 = [ ] cs1 = [−∞, 8] cs2 = [−∞,−∞, 1,−∞] cs3 = [−∞,−4]
as0 = [3,−5, 6, 2] as1 = [−1] as2 = [5] as3 = [ ]
bs0 = [4,−∞,−∞,−∞] bs1 = [4] bs2 = [−∞] bs2 = [ ]
d0 = 0 d1 = 3 d2 = 1 d3 = 0

Fig. 4.2. The results by First phase (upper: illustration, lower: data)

in bsi. Similar treatments are done to unmatched close elements, leaving values in csi (we remove unmatched
close elements thanks to the absence of values). The integer di denotes the shallowest depth in processor i.
While both of elements in asi and bsi are listed in a descending manner, those of csi are in ascending manner;
the initial elements of asi and bsi and the last one of csi are at height di (except for cs0 and csp−1 whose last
element at depth 0 is always ι⊗ and therefore is set to be eliminated).

In Fig. 4.1 we show a case of the illustrating segment from the 10th element (3,−1) to the 21st (2,−6) of
the sequence in Fig. 2.2. We have, as depicted:

cs = [−1 + id(4), id(1), id(5)] as = [2,−6], d = 1.
= [3, 1, 5], bs = [−∞,−∞],

Please note that we regard absence of subtrees as an empty forest to which the tree homomorphism returns
−∞, the unit of ↑ (at depth 2 and 3 kept in bs). When we distribute the whole sequence in Fig. 2.2 evenly
among four processors (6 elements for each), the results by this phase is shown in Fig. 4.2.

4.2. Second phase. The second phase matches data fragments kept in each processor into triples (a, b, c)
using communication between processors. Later, we reduce consecutive occurrences of triples into a value, or
into one triple by extended distributivity.

When we look carefully at Fig. 4.3, we notice that 3 in as0 at depth 0 now has five parts at depth 1 as its
children: the value 4 in bs0, a subtree spanning from processors 0 to 2 whose root is −5 in as0, the value −∞
in cs2, a subtree from processor 2 to 3 whose root is 5 in as2, and the value −4 in cs3. As these subtrees need
reducing separately, we focus on the leftmost and the rightmost values in bs0 and cs3 (we leave the value −∞
in cs2 for the time being). We notice that the group of the value 3 in as0 with these two values in processors 0
and 3 forms a triple (3, 4,−4).
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Fig. 4.3. Triples between two processors (left) and the resulting tree (right) after the second phase

Similarly, two elements in as0 at depth 1 and 2, with two elements each in bs0 and cs2 at depth 2 and 3,
respectively, form two triples (−5,−∞, 1) and (6,−∞,−∞). The former triple indicates a tree that awaits the
result of one subtree specified by the latter. This situation is what extended distributivity takes care of, and
we can merge two triples (a sequence of triples in general) into one:

(−5,−∞, 1)⊖ ( (6,−∞,−∞)⊖ e )
= ( (−5 + 6), (−6−∞ ↑ −∞), (−∞ ↑ −6 + 1) )⊖ e
= (1,−∞,−5)⊖ e

for any e. In this way, such groups of data fragments in two processors turn into one triple.
Groups from two adjacent processors are reduced into a single value without any missing subtrees in between.

Instead of treating using extended distributivity, the values −2 in as0 and −1 in as1 at depth 3, and 5 in
as2 at depth 2 with their corresponding values in bsi and csi+1 (i = 0, 1, 2) turn into values id(−2) = −2,
−1 + (4 ↑ −∞) = 3, id(5) = 5, respectively.

We state the following lemma to tell the number of resulting groups in total.

Lemma 4.1. Given p processors. The second phase produces groups of the number at most 2p− 3.
Proof. For simplicity we first assume the shallowest depths di for 0 < i < p− 1 are disjoint for each other

(both d0 and dp−1 are 0). Under this assumption the equality Rp = 2p−3 holds. Proof is given by mathematical
induction.

Consider the case p = 2. We immediately see that R2 = 1 = 2 · 2 − 3 . Assume Ri = 2i − 3 holds for
2 ≤ i < p, and we have p processors each of which holds the results by Routine 4.1. First, we need to observe
that d0 = dp−1 = 0 and d0 < di for 0 < i < p− 1, since we deal with well-formed trees only. By the assumption
of disjoint di we can find 0 < i < p such that di > dj for 0 < j < p, i ̸= j . Using the height di, we find a
group between processors 0 and p; we continue investigation of groups for each of i+ 1 processors (from 0 to i)
and p− i processors (from i to p− 1) with their initial height di instead of 0. Hence the following holds, using
induction hypothesis.

Rp = 1 +Ri+1 +Rp−1−i+1

= 1 + (2(i+ 1)− 3) + (2(p− i)− 3)
= 2p− 3

Inequality appears in case there appear the same shallowest depths. For example, assume there are four
processors, and processors 1 and 2 have the same peak depth, namely d1 = d2 > d0 = d3 = 0. In this case, the
groups are created between processors 0 and 3, 0 and 1, 1 and 2, 2 and 3. This partitioning produces 4 groups,
one smaller than 5 = 2 · 4− 3 . Generalization of this argument proves Rp ≤ 2p− 3 .

This lemma guarantees that, the number of groups this phase produces is less than twice of the number of
processors. Notice that the groups form a tree (Fig. 4.3, right). This observation enables us to have another
explanation on the number of groups. Given p processors, we soon notice that there exist groups between two
adjacent processors. They are regarded as leaves, without any missing subtrees in between. The number of
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Routine 4.2. Second phase computing groups among processors.

Input: Sequence (p, dp) is given in the ascending order of p.
Variables: A stack is used whose top is referred as (ps, ds).

(1) Push the first pair (0, 0) on a stack
(2) For each i in {1, . . . , p− 1}

(2-1) prepare a variable d←∞.
(2-2) while di < ds, produce Mps↔i

[ds,d]
, set d← ds and pop from the stack;

(2-3) if di = ds, then produce Mps↔i

[ds,d]
and M ↔

[di,ds]
, and pop from the stack; else produce Mps↔i

[di,d]
.

(2-4) push (i, di).
(3) Finally eliminate the last mating pair (that is M ↔

[0,0] ).

leaves are therefore one smaller than the processor numbers, namely p − 1. Other groups behave as internal

nodes which have two or more subtrees (otherwise we can simplify two groups of direct filiation into one group

using extended distributivity). In case the number of leaves are fixed, binary trees have the largest number of
internal nodes among trees in general. The number of internal nodes in a binary tree is one smaller than that
of leaves, and if there are p − 1 leaves we have p − 2 internal nodes. Hence the number of groups is no more
than 2p− 3 .

The Routine 4.2 figures out groups among processors. Mpl↔pr

[du,dl]
denotes a group between processors pl and

pr whose data fragments span from the depth du until dl (∞ in dl indicates “everything starting from du”).
This Routine inserts M ↔

[du,dl]
as a dummy group in case the same d appear among more than two consecutive

processors. It is assumed to be reduced into ι⊖, a virtual left unit of ⊖ (namely ι⊖ ⊖ e = e). This routine
produces 2p− 3 groups in the post-order traversal over the binary tree.

The remaining task in this phase is to perform data transactions of asi, bsi, csi among processors according
to the groups information Mpl↔pr

[du,dl]
, and apply further computation toward each group. There can be a couple of

approaches of data transaction. One simple idea is to transfer fragments of csi to their corresponding processors.
When we apply computation for each group, the computed value at the shallowest depth dp in each processor
are associated to the group on their right for later computation by ⊗ (8 in cs1, −∞ in cs2; see Fig. 4.3).

4.3. Third phase. This last phase compiles obtained triples or values and reduce them into a single
value. As Fig. 4.3 shows, the obtained triples and values in the previous phase form a binary tree of size 2p− 3
(including dummies by M ↔

[0,0] ). We collect triples or values in one processor, and apply tree reduction in O(p)
time.

4.4. Cost estimation. The whole procedures are summarized as Algorithm 4.1. As the summary of this
section, we estimate the cost of this algorithm.

Ch, Ced, and Ct are, respectively, the computational cost of tree homomorphism (using h′, ⊗ and ⊕), that
of merging two triples into one by extended distributivity using its characteristic functions, and that of groups
generation by Routine 4.2. The length of an array xs is written as |xs| . The cost ratio of communication
compared to computation is written as g, and L is the time required for barrier synchronization among all
processors.

The cost is summarized in Table 4.1. Step (1) takes time linear to the data size in each processor. The
memory requirement of this sequential procedure (Routine 4.1) is O(n/p) as well. The worst case in terms of
the size of the results occurs when an sequence of only open (or close) elements is given, resulting in two arrays
asi and bsi (or csi) of the length 2n/p for each. Step (2-2) takes O(p) time and space.

Step (2-3) requires detailed analysis. The cost depends on how each processor sends out its fragment of
data. This depends on the size of csi, namely |csi| . When we analyze the worst case, it is possible that a
processor sends out all of its csi whose size can be at most 2n/p . Therefore the worst cost is estimated as
g · 2n/p, and this is O(n/p).

Similar analysis applies to Step (2-4), by changing the viewpoint from the transmitter to the receiver. It is
often the case that the computational cost Ced is heavier than Ch. The worst case occurs when the length of
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Algorithm 4.1. The whole procedure of tree reduction.

Input: Assume the serialized representation of a tree of size n (the length of the list is 2n) is partitioned into p sublists,
which are distributed among processors 0, . . . , p− 1 .

First phase:

(1) Each processor sequentially performs tree computation using Routine 4.1, and produces arrays asi, bsi, csi and
the shallowest depth di .

Second phase:

(2-1) All values of di are shared through global communication using all-to-all transactions.

(2-2) Each processor performs Routine 4.2 to figure out the structures groups have.

(2-3) Each processor transmits fragments of csi to their corresponding processor according to the information obtained
in Step (2-2).

(2-4) Each processor reduces groups into single values or single triples.

Third phase:

(3-1) Values and triples obtained in Step (2-4) are collected to processor 0.

(3-2) Processor 0 reduces the binary tree into the result.

Table 4.1

Cost estimation of our algorithm under BSP

Step computation communication synch.

(1) C1 · 2n/p

(2-1) g · p L

(2-2) C3 · p

(2-3) maxi{g · |csi|} L

(2-4) ≤ Ced ·maxi{|asi|}

(3-1) ≤ g · p L

(3-2) Ch · ( (2p− 3)− 1 )

asi is 2n/p, and when the groups in that processor behave as internal nodes, requiring computation of extended
distributivity.

After Step (2-4) we have a binary tree of size 2p− 3 whose nodes are distributed among p processors. The
processor 0 collects these results and applies the final final reduction. The cost for the final computation (3-2)
is therefore O(p).

We conclude this section by stating the following theorem.

Theorem 4.2. Tree homomorphism with extended distributivity has a BSP implementation with three

supersteps of at most O(p+ n/p) communication cost for each.

5. Experiments. We performed experiments using our implementation using C++ and MPI. The envi-
ronment we used was semi-uniform PC clusters which consist of 2.4GHz or 2.8GHz processors with 2GB memory
each and are connected with Gigabit Ethernet. The compiler and MPI library are gcc 4.1.1 and MPICH 1.2.7.
We tested the efficacy of our algorithm using two kinds of experiments. The first is a querying operations over
given trees. These computations are specified as a tree homomorphism using operations over matrices of size
10 × 10. The second is what we have seen as the running example, namely maxPath. The former examines
the cases where heavy computation is involved, while the latter with simple computations will exhibit the com-
munication costs which our algorithm introduces. We prepared trees of size 1,000,000 in three types, namely
(F) a flat tree, (M) a monadic tree, and (R) 10 examples of randomly generated trees. A flat tree of size n is
a tree with n − 1 leaves just below the root. A monadic tree is a tree-view of a list, and has internal nodes
with just one subtree for each. We executed the program over each type using 2i processors (i = 0, . . . , 6). We



10 K. Kakehi, K. Matsuzaki and K. Emoto

Table 5.1

Execution times of the first experiments (querying, time in seconds)

Random Trees (R) Flat (F) Monadic (M)
p dist. comp. min. max. dist. comp. dist. comp.

1 0.088 5.546 5.494 5.613 0.090 3.833 0.109 11.924
2 0.210 2.814 2.753 2.892 0.208 1.886 N.A. N.A.
4 0.252 1.493 1.469 1.527 0.250 1.037 0.248 12.474
8 0.308 0.751 0.736 0.762 0.301 0.529 0.301 6.810

16 0.339 0.377 0.367 0.381 0.354 0.287 0.332 3.939
32 0.375 0.191 0.188 0.196 0.366 0.138 0.395 2.057
64 0.447 0.101 0.097 0.105 0.459 0.070 0.422 1.587
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Fig. 5.1. Plots of Table 5.1 by total execution time (left) and by speedups of computation time (right)

repeated the same experiments five times, and their average times of the initial data distribution and of the
computation itself (“dist.” and “comp.”, respectively) are summarized in the following tables (measurement in
second). Randomly shaped trees (R) has various shapes and their computation time can naturally vary. The
minimum and maximum are also put in Tables (“min.” and “max.”, respectively).

Table 5.1 shows the results of the first experiments of querying operations. As their plots in the left of
Fig. 5.1 indicates, our algorithm exhibited good scalability. Results of (M) fell behind the other two. We can
point out three reasons. The first reason is failure to use caches effectively. Routine 1 in (1) which uses arrays
in a stack-like manner can enjoy caching effects when the corresponding open and close elements are located
closely. The serialized representation of monadic trees is a sequence of open elements and a sequence of close
elements afterwards. This hampers locality, and we can observe the penalties of high cache misses under a single
processor p = 1 where no parallelization is taken place. The second reason is communication and computation
cost in Steps (2-3) and (2-4). We cannot apply any computation with monadic trees at (1), and this step
has to leave asi, bsi and csj intact with their length 2n/p (0 ≤ i < p/2, p/2 ≤ j < p). The third reason
is communication anomalies when larger data are passed at Step (2-3). We will analyze this using the next
experiments.

The results of the second experiments using our running example maxPath appear in Table 5.2. Since
the required computations are quite cheap, improvements by parallelization are limited, and it does not pay
off to perform parallelization for this data size. Instead, these experiments exhibit the cost of parallelization,
especially that of data transactions. We make two notes on anomalies of communications. The first is that
the variance of execution time becomes large as the number of processors increases. We observed that there
were at large 10 msecs difference in execution time under p = 64. The flat trees has least communication and
computation cost, but there appears inversion phenomena that our algorithm ran faster over random trees than
over a flat tree (p = 4, 8, 16). The second is about congestion of network, which apparently happens toward the
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Table 5.2

Execution times of the second experiments (maxPath, time in second)

Random Trees (R) Flat (F) Monadic (M)
p dist. comp. min. max. dist. comp. dist. comp.

1 0.088 0.055 0.054 0.058 0.086 0.044 0.086 0.086
2 0.207 0.028 0.027 0.032 0.226 0.022 0.210 0.170
4 0.252 0.016 0.014 0.019 0.248 0.018 0.250 0.086
8 0.309 0.013 0.007 0.016 0.306 0.016 0.301 0.049

16 0.342 0.010 0.005 0.012 0.355 0.011 0.333 0.031
32 0.375 0.013 0.004 0.028 0.397 0.011 0.366 0.022
64 0.450 0.019 0.007 0.033 0.456 0.007 0.490 0.139
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Fig. 5.2. Plots of Table 5.2 by total execution time (left) and by speedups of computation time (right)

monadic tree under p = 64. Monadic trees require Step (2-3) to transmit data of large size, but the amount
of whole transmitted data through network does not change as

∑
i |csi| = 2n/p + O(p) for any p ≥ 2. Our

algorithm with all-to-all transactions has to have vulnerability to the configuration and status of networks.
As a final note, it is natural that no difference existed in terms of costs of initial data distribution regardless

of the shape of the trees.

6. Related Work. This section compares our proposed framework with related work. It mainly spans
parallel tree contractions and list ranking algorithms, flattening transformation, parentheses matching, list
homomorphism, and MapReduce-based implementation.

6.1. Parallel tree contractions. The parallel tree contractions algorithm, first proposed by Miller and
Reif [34], are very important parallel algorithms for trees. Many researchers have devoted themselves to devel-
oping efficient implementations on various parallel models [18, 14, 1, 3, 31, 32, 16, 2]. Among researches based
on shared memory environments, Gibbons and Rytter developed an optimal algorithm on CREW PRAM [18];
Abrahamson et al. developed an optimal and efficient algorithm in O(n/p+ log p) on EREW PRAM [1].

Recently parallel tree contractions as well as list ranking, which serves the basis of parallel tree contractions,
have been analyzed under the assumption of distributed memory environments. Mayr and Werchner showed
O(⌈n/p⌉ log p) implementations on hypercubes or related hypercubic networks [31, 32]. Dehne et al. solved
list ranking and tree contractions on CGM/BSP using O(n/p log p) parallel time [16]. Sibeyn proposed a list
ranking algorithm which aimed at reduction of communication costs [40].

Our refined algorithm runs in O(n/p+ p) and is much improved result which comes close to the algorithms
under PRAMmodel. The advantage of our algorithm is not limited to the theoretical aspect. As our experiments
demonstrated, the data representation we employed suits current computer architectures which extensively relies
on caching mechanism for fast execution. Linked structures, namely dynamic data structures, involve pointers
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and their data fragments can scatter over the memory heap. Flexible though they are in terms of structure
manipulation like insertion and deletion, scattered data can easily lack locality.

The second advantage is the cost and concerns of data distribution. In case we have sophisticated distribu-
tion approaches of tree structures we can employ the EREW-PRAM parallel tree contraction algorithm. One
such technique is based on m-bridges [38]. This technique translates a binary tree into another binary tree in
each of whose nodes locates a subtrees of the original tree partitioned into almost the same size. Our group has
another implementation for parallel tree computation based on this approach [41, 29, 28, 26]. The drawback
of the approach using m-bridge is its cost. When trees are kept distributively among processors, the algorithm
for realizing m-bridges requires Euler tour and list ranking, which as a result spoils theoretical complexity
and running time in total. It should be noted that the parallelized algorithm presented in this paper runs in
O(n/p+ p). This cost is theoretically comparable to the EREW-PRAM parallel tree contractions algorithm,
using ignorable cost and troubles of initial data distribution.

6.2. Nested parallelism and flattening transformation. Blelloch’s nested parallelism and the lan-
guage NESL addresses the importance of data-parallel computation toward nested structures (often in the
form of nested lists), where the length of each list can differ [6]. The idea proposed is flattening of the struc-
tures [7]. The importance of this problem domain ignited a lot of researches afterwards, theoretically and in
real compilers [8, 39, 10].

Our idea presented in this paper is one instance of flattening transformation where segment descriptors are
diffused into the flattened data. To cope with irregularity of tree structures we format trees into its serialized
representation with an additional tags indicating the depth. The flattening of tree structures has already been
researched. Prins and Palmer developed data-parallel language Proteus, and nesting trees were treated [37, 35].
Chakravarty and Keller extended the structure to involve trees and recursive data structures in general [24, 9].
Their computation framework, however, stayed to treat horizontal computation in parallel. As far as we are
aware, this paper is the first to relate flattening transformations with the parallel tree contractions to derive
parallelism in the vertical direction.

6.3. Parentheses matching. The process of our algorithm development much resembles parentheses
matching algorithms, or the All Nearest Smaller Values Problems (often called ANSV for short). Their algo-
rithms have been analyzed under CRCW PRAM [4], EREW PRAM [36], hypercube [25] and BSP [21]. The
resemblance naturally comes from how tree structures are translated in sequence; the generation of groups in
Routine 2 follows the process to find matching of ANSV developed in [4]. We have made a step forward to
apply computation over the data structures. The implementation under BSP has complexity of O(n/p+ p).
Our algorithm naturally has complexity comparable to it.

He and Huang analyzed that the cost of data transaction becomes constant toward sequences of random
values [21]. Unfortunately this observation does not hold when we are to compute tree reductions. The first
reason is that we have to transmit not only the information of shallowest depth di, but the computed results
csi to realize reduction computations. Secondly, their style of analysis based on the assumption of random
input does not apply since the serialized representation of trees has certain properties. For example, given a
sequence A = a0, a1, . . . , a2n−1 which consists of open and close elements. In order to be a well-formed serialized
representation, A has exactly n open and n close elements, and the number of open elements in any subsequence
of A, namely a0, . . . ai (i < 2n), has to be no less than that of close elements. While we haven’t developed
qualitative analyses so far, the experiments using randomly generated trees in this paper indicates that the
communication cost stays in a reasonable amount.

6.4. List homomorphism. List homomorphism is a model that plays an important role for developing
efficient parallel programs [13, 19, 20, 22]. A function hL is a homomorphism if there exist an associative
operator ⊕ and a unary function g such that

hL(x++y) = hL x⊙ hL y ,
hL [a] = g a .

This function can be efficiently implemented in parallel since it ideally suits for divide-and-conquer, bottom-
up computation: a list is divided into two fragments x and y recursively, and the computations of hL x and
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hL y can be carried out in parallel. For instance, the function sum, which computes the sum of all the elements
in a list, is a homomorphism because the equations sum (x++y) = sum x+ sum y and sum [a] = a hold. This
indicates that we can reduce parallel programming into construction of list homomorphism.

In further detail, parallel environments for distributed lists evaluate list homomorphism in two phases after
distribution of data: (a) the local computation at each processor (using g and ⊙), and (b) the global computation
among processors (using ⊙). Assume the computation of g and ⊙ requires constant time. By evenly distributing
consecutive elements to processors, the phase (a) takes O(n/p) cost. The phase (b) reduces these p values into
a single value tree-recursively in log p iterations. The total cost is therefore estimated as O(n/p+ log p).

Tree-recursive data communication, which is the basis of efficient execution for list homomorphism, however,
seems restrictive for this problem. Its resulting complexity is, even with nested use of homomorphism, O(log2 n)
for abundance of processors. We made a test implementation for this approach, and we observed the scalability
was tamed much earlier: the speedup ratios from p = 16 to 32, and from 32 to 64 using the first experiments
of querying were, respectively, 1.81 and 1.26, and they did not catch up the respective ratios 1.97 and 1.89
obtained by the approach in this paper.

6.5. MapReduce-based Implementation. MapReduce is a framework for large-scale data processing
proposed by Google [15], and its open-source implementation in Hadoop [44] is now widely used. Though the
conventional programming model of MapReduce is for unordered data (sets), with some extension in Hadoop
MapReduce we can deal with ordered data including serialized representation of trees. Recently, dealing XML
documents on MapReduce has been studied actively. For example, Choi at al. developed an XML querying
system on Hadoop MapReduce [11]. They also proposed algorithms for labeling XML trees with MapReduce [12].
It is worth noting that the idea similar to parentheses matching was used in the latter to process unmatching
tags in XML fragments.

The serialized representation of trees and flexibility of partitioning in our approach is also suitable for the
implementation of tree manipulations on MapReduce. Based on the earlier version of this work, Emoto and
Imachi developed a MapReduce algorithm for tree reductions [17]. Furthermore, the algorithm was extended
to tree accumulations by Matsuzaki and Miyazaki [30], which can be implemented with two-round MapReduce
computation.

7. Concluding Remarks. In this paper we have developed a new approach for parallel tree reductions.
The essence of our approach is to make good use of the serialized representation of trees in terms of initial data
distribution and computation using high memory locality. The results by the local computation forms a binary
tree of size less than twice of the number of processors and each node has size O(n/p) . Our algorithm has a
BSP implementation with three supersteps. Our test implementation showed good scalability in general, but
we also observed network fluctuation under PC clusters.

This research will be improved in the following aspects. Our experiments exhibited good performance toward
random inputs. It is an interesting mathematical question how much amount of transactions and computation
we have to execute in Steps (2-3) and (2-4) in average. The flexibility in partitioning our representations will
be beneficial under heterogeneous environments with different processor ability. After the process of group

generation, data can be reallocated among processors, regardless of their computational power. Theoretical
support for these issues are needed.
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Abstract. Parallel tree skeletons are basic computational patterns that can be used to develop parallel programs for manipulat-
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1. Introduction. Parallel tree skeletons, first formalized by Skillicorn [33, 34], are basic computational
patterns of parallel programs manipulating trees. By using parallel tree skeletons, we can develop parallel
programs without considering low-level parallel implementation and details of parallel computers. There have
been several studies on the systematic methods of developing parallel programs by means of parallel tree
skeletons [6, 19, 21, 35, 36].

For efficient parallel tree manipulations, tree contraction algorithms have been intensively studied [1, 5, 24,
25, 38]. Many tree contraction algorithms were given on various parallel computational models, for instance,
EREW PRAM [1], Hypercubes [24], and BSP/CGM [5]. Several parallel tree manipulations were developed
based on the tree contraction algorithms [1, 7]. For tree skeletons, Gibbons et al. [11] developed an implemen-
tation algorithm based on tree contraction algorithms.

In this paper, we propose an efficient implementation of parallel tree skeletons for binary trees on distributed-
memory parallel computers. Compared with the implementations so far, our implementation has three new
features.

First, it has less overheads of parallelism. Locality is one of the most important properties in developing
efficient parallel programs especially for distributed-memory computers. We adopt the technique ofm-bridges [8,
30] in the basic graph theory to divide binary trees into segments with high locality.

Second, it has high sequential performance. The performance of sequential computation parts is as impor-
tant as that of the communication parts. We represent a local segment as a serialized array and implement
local computation in tree skeletons with loops rather than recursive functions.

Third, it has a cost model. We formalize a cost model of our parallel implementation. The cost model helps
us to divide binary trees with good load balance.

We have implemented tree skeletons in C++ and MPI, and they are available as part of the skeleton library
SkeTo [22]. We confirm the efficacy of our implementation of tree skeletons with several experiments.

This paper is organized as follows. In the following Sect. 2, we introduce parallel tree skeletons with two
examples. In Sect. 3, we discuss the division of binary trees and representation of divided trees. In Sect. 4,
we develop an efficient implementation and a cost model of tree skeletons on distributed-memory parallel
computers. Based on this cost model, we discuss the optimal division of binary trees in Sect. 5. We then show
several experiment results in Sect. 6. We review related work in Sect. 7, and make concluding remarks in Sect. 8.

2. Parallel Tree Skeletons.
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map :: (α→ γ, β → δ,BTree⟨α, β⟩)→ BTree⟨γ, δ⟩
map(kl, kn,BLeaf (a)) = BLeaf (kl(a))
map(kl, kn,BNode(l, b, r)) = BNode(map(kl, kn, l), kn(b),map(kl, kn, r))

reduce :: ((α, β, α)→ α,BTree⟨α, β⟩)→ α

reduce(k,BLeaf (a)) = a

reduce(k,BNode(l, b, r)) = k(reduce(k, l), b, reduce(k, r))

uAcc :: ((α, β, α)→ α,BTree⟨α, β⟩)→ BTree⟨α, α⟩
uAcc(k,BLeaf (a)) = BLeaf (a)
uAcc(k,BNode(l, b, r)) = let b′ = reduce(k,BNode(l, b, r))

in BNode(uAcc(k, l), b′, uAcc(k, r))

dAcc :: ((γ, β)→ γ, (γ, β)→ γ, γ,BTree⟨α, β⟩)→ BTree⟨γ, γ⟩
dAcc(gl, gr, c,BLeaf (a)) = BLeaf (c)
dAcc(gl, gr, c,BNode(l, b, r)) = let l′ = dAcc(gl, gr, gl(c, b), l)

r′ = dAcc(gl, gr, gr(c, b), r)
in BNode(l′, c, r′)

Fig. 2.1. Definition of parallel tree skeletons.

2.1. Binary Trees. Binary trees are trees whose internal nodes have exactly two children. In this paper,
leaves and internal nodes of a binary tree may have different types. The datatype of binary trees whose leaves
have values of type α and internal nodes have values of type β is defined as follows.

data BTree⟨α, β⟩ = BLeaf (α)
| BNode(BTree⟨α, β⟩, β,BTree⟨α, β⟩)

Functions that manipulate binary trees can be defined by pattern matching. For example, function root that
returns the value of the root node is as follows.

root :: BTree⟨α, α⟩ → α
root(BLeaf (a)) = a
root(BNode(l, b, r)) = b

2.2. Parallel Tree Skeletons. Parallel (binary-)tree skeletons are basic computational patterns ma-
nipulating binary trees in parallel. In this section, we introduce a set of basic tree skeletons proposed by
Skillicorn [33, 34] with minor modifications for later discussion of their implementation (Fig. 2.1).

The tree skeleton map takes two functions kl and kn and a binary tree, and applies kl to each leaf and kn
to each internal node. Though there are tree skeletons called zip or zipwith that take multiple trees of the same
shape, we omit discussing them since computation of them is almost the same as that of the map skeleton.

The parallel skeleton reduce takes a function k and a binary tree, and collapses the tree into a value by
applying the function k in a bottom-up manner. The parallel skeleton uAcc (upwards accumulate) is a shape-
preserving manipulation, which also takes a function k and a binary tree and computes (reduce k) for each
subtree.

The parallel skeleton dAcc (downwards accumulate) is another shape-preserving manipulation. This skeleton
takes two functions gl and gr, an accumulative parameter c and a binary tree, and computes a value for each
node by updating the accumulative parameter c in a top-down manner. The update is done by function gl for
the left child, and by function gr for the right child.

Since a straightforward divide-and-conquer computation according to the definition in Fig. 2.1 has compu-
tational cost linear to the height of the tree, it may be inefficient if the input tree is ill-balanced. To guarantee
existence of efficient parallel implementations, we impose some conditions on the parameter functions of tree
skeletons. The map skeleton requires no condition. For the reduce, uAcc and dAcc skeletons, we formalize the
conditions for parallel implementations as existence of auxiliary functions satisfying a certain closure property.
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The reduce and uAcc skeletons called with parameter function k require existence of four auxiliary functions
φ, ψn, ψl, and ψr satisfying the following equations.

a: k(l, b, r) = ψn(l, φ(b), r)

b: ψn(ψn(x, l, y), b, r) = ψn(x, ψl(l, b, r), y)(2.1)

c: ψn(l, b, ψn(x, r, y)) = ψn(x, ψr(l, b, r), y)

Equations (2.1.b) and (2.1.c) represent the closure property that functions ψn, ψl, and ψr should satisfy.
Function φ lifts the computation of function k to the domain with closure property as in Equation (2.1.a). We
denote the function k satisfying the condition as k = ⟨φ, ψn, ψl, ψr⟩u.

The dAcc skeleton called with parameter functions gl and gr requires existence of auxiliary functions φl,
φr, ψu, and ψd satisfying the following equations.

a: gl(c, b) = ψd(c, φl(b))

b: gr(c, b) = ψd c, φr(b))(2.2)

c: ψd(ψd(c, b), b
′) = ψd(c, ψu(b, b

′))

Equation (2.2.c) shows the closure property that functions ψd and ψu should satisfy. As shown in Equa-
tions (2.2.a) and (2.2.b), computations of gl and gr are lifted up to the domain with closure property by
functions φl and φr, respectively. We denote the pair of functions (gl, gr) satisfying the condition as (gl, gr) =
⟨φl, φr, ψu, ψd⟩d.

2.3. Examples. To see how we can develop parallel programs with these parallel tree skeletons, we consider
the following two problems.

Sum of Values. Consider computing the sum of node values of a binary tree. We can define function sum

for this problem simply by using the reduce skeleton.

sum t = reduce(add3 , t)
where add3 (l, b, r) = l + b+ r

In this case, since the operator used is only the associative operator +, we have add3 = ⟨id , add3 , add3 , add3 ⟩u,
where id is the identity function.

Prefix Numbering. Consider numbering the nodes of a binary tree in the prefix traversing order. We can
define function prefix for this problem by using the tree skeletons map, uAcc, and dAcc as follows. Note that
the result of the uAcc skeleton is a pair of number of nodes of left subtree and number of nodes for each node.

prefix t = let t′ = uAcc(k,map(f, id , t))
in dAcc(gl, gr, 0, t

′)
where f(a) = (0, 1)

k((ll, ls), b, (rl, rs)) = (ls, ls + 1 + rs)
gl(c, (bl, bs)) = c+ 1
gr(c, (bl, bs)) = c+ bl + 1

Similar to the case of sum, auxiliary functions for the functions gl and gr are simply given as (gl, gr) =
⟨λ(bl, bs).1, λ(bl, bs).bl + 1,+,+⟩d. For function k, auxiliary functions are given as follows by applying the
derivation technique discussed in [21].

k = ⟨φ, ψn, ψl, ψr⟩
where φ(b) = (1, 0, 0, 1)

ψn((ll, ls), (b0, b1, b2, b3), (rl, rs))
= (b0 × ls + b1 × (ls + 1 + rs) + b2, ls + 1 + rs + b3)

ψl((l0, l1, l2, l3), (b0, b1, b2, b3), (rl, rs))
= (0, b0 + b1, (b0 + b1)× l3 + b1 × (1 + rs) + b2, l3 + 1 + rs + b3)

ψr((ll, ls), (b0, b1, b2, b3, b), (r0, r1, r2, r3, r))
= (0, b1, b1 × r3 + b0 × ls + b1 × (1 + ls) + b2, r3 + 1 + ls + b3)
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Fig. 3.1. An example of m-critical nodes and m-bridges. Left: In this binary tree, there are three 4-critical nodes denoted by
the doubly-lined circles. The number in each node denotes the number of nodes in the subtree. Right: For the same tree there are
seven 4-bridges, (a)–(g), each of which is a set of connected nodes.

It is worth noting that the set of auxiliary functions is not unique. For example, we can define another set of
auxiliary functions in which an intermediate value has a flag and two values.

In general, auxiliary functions are more complicated than the original function as we have seen in this
example. This complexity of auxiliary functions would introduce overheads in the derived parallel algorithms.

3. Division of Binary Trees with High Locality. To develop efficient parallel programs on distributed-
memory parallel computers, we need to divide data into smaller parts and distribute them to the processors.
Here, the division of data should have the following two properties for efficiency of parallel programs. The first
property is locality. The data distributed to each processor should be adjacent. If two elements adjacent in the
original data are distributed to different processors, then we often need communications between the processors.
The second property is load balance. The number of elements distributed to each processor should be nearly
equal since the cost of local computation is often proportional to the number of elements.

It is easy to divide a list with these two properties, that is, for a given list of N elements we simply divide
the list into P sublists each having N/P elements. It is, however, difficult to divide a tree satisfying the two
properties due to the nonlinear and irregular structure of binary trees.

In this section, we introduce a division of binary trees based on the basic graph theory [8, 30], and show
how to represent the distributed tree structures for efficient implementation of tree skeletons.

3.1. Graph-Theoretic Results for Division of Binary Trees. We start by introducing some graph-
theoretic results [8, 30]. Let size(v) denote the number of nodes in the subtree rooted at node v.

Definition 3.1 (m-Critical Node). Let m be an integer. A node v is called an m-critical node, if
• v is an internal node, and

• for each child v′ of v inequality ⌈size(v)/m⌉ > ⌈size(v′)/m⌉ holds.

The m-critical nodes divide a tree into sets of adjacent nodes (m-bridges) as shown in Fig. 3.1.

Definition 3.2 (m-Bridge). Let m be an integer. An m-bridge is a set of adjacent nodes divided by

m-critical nodes, that is, a largest set of adjacent nodes in which m-critical nodes are only at the root or bottom.

In the following of this paper, we assume that each local segment given by dividing a tree is an m-bridge.
The global structure of m-bridges also forms a binary tree.

The m-critical nodes and the m-bridges have several important properties. The following two lemmas show
properties of the m-critical nodes and the m-bridges in terms of the global shape of them.

Lemma 3.3. If v1 and v2 are m-critical nodes then their least common ancestor is also an m-critical node.

Lemma 3.4. If B is an m-bridge of a tree then B has at most one m-critical node among the leaves of it.

The root node in each m-bridge, except the m-bridge that includes the global root node, is an m-critical
node. If we remove the root m-critical node if it exists, it follows from Lemma 3.4 and Definition 3.2 that the
m-bridge has at most one m-critical node at its bottom.
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Fig. 3.2. Array representation of divided binary trees. Each local segment of segs is assigned to one of processors and is not
shared. Labels L, N and C denote a leaf, a normal internal node, and an m-critical node, respectively. Each m-critical node is
included in the parent segment.

The following three lemmas are related to the number of nodes in an m-bridge and the number of m-bridges
in a tree. Note that the first two lemmas hold on general trees while the last lemma only holds on binary trees.

Lemma 3.5. The number of nodes in an m-bridge is at most m+ 1.

Lemma 3.6. Let N be the number of nodes in a tree then the number of m-critical nodes in the tree is at

most 2N/m− 1.

Lemma 3.7. Let N be the number of nodes in a binary tree then the number of m-critical nodes in the

binary tree is at least (N/m− 1)/2.

Let N be the number of nodes and P be the number of processors. In the previous studies [8, 18, 30], we
divided a tree into m-bridges using the parameter m given by m = 2N/P . Under this division we obtain at
most (2P − 1) m-bridges and thus each processor handles at most two m-bridges. Of course this division enjoys
high locality, but it has poor load balance since the maximum number of nodes passed to a processor may be
2N/P , which is twice of that for the best lead-balancing case.

In Sect. 5, we will adjust the value m for better division of binary trees based on the cost model of tree
skeletons. The idea is to divide a binary tree into more m-bridges using smaller m so that we obtain enough
load balance while keeping the overheads caused by loss of locality small.

3.2. Data Structure for Distributed Segments. The performance of the sequential computation parts
is as important as that of the communication parts.

Generally speaking, tree structures are often implemented using pointers or references. There are, however,
two problems in this implementation for large-scale tree applications. First, much memory is required for
pointers. Considering trees of integers or real numbers, for example, we can see that the pointers use as much
memory as the values do. Furthermore, if we allocate nodes one by one, more memory is consumed to enable
each of them to be deallocated. Second, locality is often lost. Recent computers have a cache hierarchy to bridge
the gap between the CPU speed and the memory speed, and cache misses greatly decrease the performance
especially in data-intensive applications. If we allocate nodes from here and there then the probability of cache
misses increases.

To resolve these problems, we represent a binary tree with arrays. We represent a tree divided by the
m-bridges using one array gt for the global structure and one array of arrays segs for the local segments,
each of which is given by serializing the tree in the order of prefix traversal. Note that arrays in segs are
distributed among processors, while each local segment exists in only one processor. Figure 3.2 illustrates the
array representation of a distributed tree. Since adjoining elements are aligned one next to another in this
representation, we can reduce cache misses.

We introduce some notations for the discussion of implementation algorithms in the next section. Some
values may be attached to the global structure, and we write gt [i] to access to the value attached to ith
element of global structure. If ith segment in segs is distributed on pth processor, we denote pr(i) = p. For a
given serialized array for a segment seg , we use seg [i] to denote the ith value in the serialized array, and use
isLeaf(seg [i]), isNode(seg [i]) and isCritical(seg [i]) to check whether the ith node is a leaf, an internal node, and
an m-critical node, respectively. Function isRoot(p) checks if the processor p is the root processor or not.
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Table 4.1
Parameters of the cost model.

tp(f) computational time of function f using p processors

N the number of nodes in the input tree

P the number of processors

m the parameter for m-critical nodes and m-bridges

M the number of segments given by division of trees

Li the number of nodes in the ith segment

Di the depth of the m-critical node in the ith segment

cα the time needed for communicating one data of type α

|α| the size of a value of type α

4. Implementation and Cost Model of Tree Skeletons. In this section, we show an implementation
and a cost model of the tree skeletons on distributed-memory parallel computers. We implement the local
computation in tree skeletons using loops and stacks on the serialized arrays, which play an important role in
reducing the cache misses and achieving high performance in the sequential computation parts.

We define several parameters for discussion of the cost model (Table 4.1). We assume a homogeneous
distributed-memory environments as the computation environment. The computational time of function f
executed with p processors is denoted by tp(f). In particular, t1(f) denotes the cost of sequential computation
of f . Parameter N denotes the number of nodes, and P denotes the number of processors. Parameter m is
used for m-critical nodes and m-bridges, and M denotes the number of segments after the division. For the ith
segment, in addition to the parameter of the number of nodes Li, we introduce parameter Di indicating the
depth of the critical node. Parameter cα denotes the communication time for a value of type α. The size of a
value of type α is denoted by |α|.

The cost of tree skeletons can be uniformly given as the sum of the maximum local-computation cost and
the global-computation cost as follows.

max
p

∑

pr(i)=p

(Li × tl +Di × td) +M × tm

In the expression of the cost,
∑

pr(i)=p denotes the summation of cost for local segments associated to processor
p. The parameter tl indicates the cost of computation that is applied to each node in a segment, the parameter
td indicates the cost of computation that is applied to the nodes on the path from the root to the m-critical
node, and the parameter tm denotes the communication cost required for each segment.

In fact, we can extend the implementation of tree skeletons and the cost model to the bulk-synchronous
parallel (BSP) model [37]. The cost of a BSP algorithm is given by the sum of costs of supersteps, which consists
of local computation followed by communication and barrier synchronization. The cost of a superstep is given
by an expression of the form w + hg + l where w is the maximum cost of local computation, h is the size of
messages, g is the cost of communicating a message of size one, and l is the cost of the barrier synchronization.
Note that for the parameter g we have cα = |α|g for any type α.

4.1. Map. Since there is no dependency among nodes in the computation of the map skeleton, we can
implement the map skeleton by applying function map local to each local segment, where the map local
function applies function kl to each leaf and function kn to each internal node and the m-critical node in a local
segment. The implementation of the map skeleton is given in Fig. 4.1.

In a local segment with Li nodes, the number of leaves is at most Li/2+1 and the number of internal nodes
including the m-critical node is at most Li/2 + 1. Ignoring small constants we can specify the computational
cost of the map local function as

t1(map local) =
Li

2
× t1(kl) +

Li

2
× t1(kn) .
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map(kl, kn, (gt , segs))
for i← 0 to gt .size − 1: begin

if pr(i) == p then segs ′[i]← map local(kl, kn, segs[i]); endif

end

return (gt , segs ′);

map local(kl, kn, seg)
for i← 0 to seg .size − 1: begin

if isLeaf(seg [i]) then seg ′[i]← kl(seg [i]); endif

if isNode(seg [i]) then seg ′[i]← kn(seg [i]); endif

if isCritical(seg [i]) then seg ′[i]← kn(seg [i]); endif

end

return seg ′;

Fig. 4.1. Implementation of map skeleton.

The cost of the map skeleton is as follows.

tP (map(kl, kn, t)) = max
p

∑

pr(i)=p

Li ×
t1(kl) + t1(kn)

2

On the BSP model, we can implement the map skeleton with a single superstep without communication.
Thus, the BSP cost is given as follows.

t
⟨BSP⟩
P (map(kl, kn, t)) = max

p

∑

pr(i)=p

Li ×
t1(kl) + t1(kn)

2
+ l

4.2. Reduce. We then show an implementation and its cost of the reduce skeleton called with function k
and auxiliary functions k = ⟨φ, ψn, ψl, ψr⟩u. Let the input binary tree have type BTree⟨α, β⟩ and intermediate
values for auxiliary functions have type γ. The implementation of the reduce skeleton is shown in Fig. 4.2.

Step 1. Local Reduction. The bottom-up computation of the reduce skeleton can be computed by
a traversal on the array from right to left using a stack for the intermediate results. Firstly we apply
reduce local function to each local segment to reduce it to a value. In the reduce local function,

• we apply functions φ and either ψl or ψr to the m-critical node and its ancestors, and
• we apply function k to the other internal nodes.

Here, applying the function k is cheaper than applying function φ and ψn, even though k(l, n, r) = ψn(l, φ(n), r)
holds with respect to the results of functions. To specify where the m-critical node or its ancestor is in the
stack, we use a variable d that indicates the position. Note that in the computation of the reduce local
function, at most one element in the stack has the value of the m-critical node or its ancestors.

In this step, functions φ and either ψl or ψr are applied to the m-critical node and its ancestors (Di nodes)
and function k is applied to the other internal nodes ((Mi/2−Di) nodes). Thus, the cost of reduce local is
given as follows.

t1(reduce local) = Di × (t1(φ) + max(t1(ψl), t1(ψr))) +

(

Li

2
−Di

)

× t1(k)

Step 2. Gathering Local Results to Root Processor. In the second step, we gather the local results
to the root processor. The communication cost is given by the number of leaf segments of type α and the
number of internal segments of type γ.

tP (Step 2) =
M

2
× cα +

M

2
× cγ

Let the gathered values be put in array gt on the root processor after this step.
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reduce(k, (gt , segs)) where k = ⟨φ, ψn, ψl, ψr⟩u
for i← 0 to gt .size − 1: begin

if pr(i) == p then gt [i]← reduce local(k, φ, ψl, ψr, segs[i]); endif

end

gather to root(gt);
if isRoot(p) then return reduce global(ψn, gt); endif

reduce local(k, φ, ψl, ψr, seg)
stack ← ∅; d← −∞;
for i← seg .size − 1 to 0: begin

if isLeaf(seg[i]) then stack ← seg[i]; d← d+ 1; endif

if isNode(seg[i]) then
lv ← stack ; rv ← stack ;
if d == 0 then stack ← ψl(lv , φ(seg[i]), rv);
else if d == 1 then stack ← ψr(lv , φ(seg[i]), rv); d← 0;
else stack ← k(lv , seg[i], rv); d← d− 1;
endif

if isCritical(seg[i]) then stack ← φ(seg[i]); d← 0; endif

end

top ← stack ; return top;

reduce global(ψn, gt)
stack ← ∅;
for i← gt .size − 1 to 0: begin

if isLeaf(gt[i]) then stack ← gt[i]; endif

if isNode(gt[i]) then lv ← stack ; rv ← stack ; stack ← ψn(lv , gt [i], rv); endif

end

top ← stack ; return top;

Fig. 4.2. Implementation of reduce skeleton

Step 3. Global Reduction on Root Processor. Finally, we compute the result of the reduce skeleton
by applying the reduce global function to the array of local results. This computation is performed on the
root processor. We compute the result by applying ψn for each internal node in a bottom-up manner, which is
implemented by a traversal with a stack on the array of the global structure from right to left.

In this step the function ψn is applied to each internal segment and the cost of reduce global is

t1(reduce global) =
M

2
× t1(ψn) .

In summary, the cost of the reduce skeleton is given as follows.

tP (reduce k)

= max
p

∑

pr(i)=p

t1(reduce local) + tP (Step 2) + t1(reduce global)

= max
p

∑

pr(i)=p

(

Li ×
t1(k)

2
+Di × (−t1(k) + t1(φ) + max(t1(ψl), t1(ψr)))

)

+M × cα + cγ + t1(ψn)

2

On the BSP model, we can implement the reduce skeleton with two supersteps: one consists of Steps 1 and
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2; the other consists of Step 3. Thus, the BSP cost is given as follows.

t
⟨BSP⟩
P (reduce k)

= max
p

∑

pr(i)=p

(

Li ×
t1(k)

2
+Di × (−t1(k) + t1(φ) + max(t1(ψl), t1(ψr)))

)

+M × t1(ψn)/2 +M × |α|+ |γ|
2

× g + 2l

4.3. Upwards Accumulate. Next, we develop an implementation of the uAcc skeleton called with func-
tion k and auxiliary functions k = ⟨φ, ψn, ψl, ψr⟩u. Similar to the reduce skeleton, let the type of input binary
tree be BTree⟨α, β⟩ and the type of intermediate values be γ. The implementation of the uAcc skeleton is shown
in Fig. 4.3.

Step 1. Local Upwards Accumulation. In the first step, we apply function uAcc local to each
segment and compute local upwards accumulation and reduction. This function puts the intermediate results
to array seg ′ if a node has no m-critical node as descendants, since the result value is indeed the result of the
uAcc skeleton. This function puts nothing to array seg ′ if a node is either the m-critical node or an ancestor of
the m-critical node. Returned values are the result of local reduction and the array seg ′.

In the computation of the uAcc local function, φ and either of ψl or ψr are applied to each node of the
m-critical node and its ancestors (Di nodes), and k is applied to the other internal nodes ((Li/2−Di) nodes).
We obtain the cost of the uAcc local function as

t1(uAcc local) = Di × (t1(φ) + max(t1(ψl), t1(ψr))) +

(

Li

2
−Di

)

× t1(k) .

Note that this cost is the same as that of reduce local function.

Step 2. Gathering Results of Local Reductions to Root Processor. In the second step, we gather
the results of the local reductions on the global structure gt of the root processor. From each leaf segment
a value of type α is transferred, and from each internal segment a value of type γ is transferred. Since the
number of leaf segments and the number of internal segments are M/2 respectively, the communication cost of
the second step is

tP (Step 2) =
M

2
× cα +

M

2
× cγ .

Step 3. Global Upward Accumulation on Root Processor. In the third step, we compute the
upwards accumulation for the global structure gt on the root processor. Function uAcc global performs
sequential upwards accumulation using function ψn. In uAcc global, we apply function ψn to each internal
segment of gt , and the cost of the third step is given as

t1(uAcc global) =
M

2
× t1(ψn) .

Step 4. Distributing Global Result. In the fourth step, we send the result of global upwards accu-
mulation to processors, where two values are sent to each internal segment and no values are sent to each leaf
segment. Since all the values have type α after the global upwards accumulation, the communication cost of
the fourth step is given as

tP (Step 4) =M × cα .

Step 5. Local Updates for Each Internal Segment. In the last step, we apply function uAcc update
to each internal segment. At the beginning of the function, the two values pushed in the previous step are pushed
to the stack. These two values correspond to the results of children of the m-critical node. Note that in the last
step we only compute the missing values in the segment seg ′, which is given in the local upwards accumulation
(Step 1).
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uAcc(k, (gt , segs)) where k = ⟨φ, ψn, ψl, ψr⟩u
for i← 0 to gt .size − 1: begin

if pr(i) == p then (gt [i], segs ′[i])← uAcc local(k, φ, ψl, ψr, segs[i]); endif

end

gather to root(gt)
if isRoot(p) then gt ′ ← uAcc global(ψn, gt); endif

distribute from root(gt ′)
for i← 0 to gt .size − 1: begin

if pr(i) == p ∧ isNode(gt ′[i]) then
segs ′[i]← uAcc update(k, segs[i], segs ′[i], gt ′[i]) endif

end

return (gt ′, segs ′)

uAcc local(k, φ, ψl, ψr, seg)
stack ← ∅; d← −∞;
for i← seg .size − 1 to 0: begin

if isLeaf(seg [i]) then seg ′[i]← seg [i]; stack ← seg ′[i]; d← d+ 1; endif

if isNode(seg [i]) then
lv ← stack ; rv ← stack ;
if d == 0 then stack ← ψl(lv, φ(seg [i]), rv); d← 0;
else if d == 1 then stack ← ψr(lv, φ(seg [i]), rv); d← 0;
else seg ′[i]← k(lv, seg [i], rv); stack ← seg ′[i]; d← d− 1; endif

endif

if isCritical(seg [i]) then stack ← φ(seg [i]); d← 0; endif

end

top ← stack ; return(top, seg ′);

uAcc global(ψn, gt)
stack ← ∅;
for i← gt .size − 1 to 0: begin

if isLeaf(gt [i]) then gt ′[i]← gt [i]; endif

if isNode(gt [i]) then lv ← stack ; rv ← stack ; gt ′[i]← ψn(lv, gt[i], rv); endif

stack ← gt ′[i];
end

return(gt ′);

uAcc update(k, seg , seg ′, (lc, rc))
stack ← ∅; stack ← rc; stack ← lc; d← −∞;
for i← seg .size − 1 to 0: begin

if isLeaf(seg [i]) then stack ← seg ′[i]; d← d+ 1; endif

if isNode(seg [i]) then
lv ← stack ; rv ← stack ;
if d == 0 then seg ′[i]← k(lv, seg [i], rv); stack ← seg ′[i];
else if d == 1 then seg ′[i]← k(lv, seg [i], rv); stack ← seg ′[i]; d← 0;
else stack ← seg ′[i]; d← d− 1; endif

if isCritical(seg [i]) then
lv ← stack ; rv ← stack ;
seg ′[i]← k(lv, seg [i], rv); stack ← seg ′[i]; d← 0;

endif

end

return(seg ′);

Fig. 4.3. Implementation of uAcc skeleton
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In this step, function k is applied to the nodes on the path from them-critical node to the root node for each
internal segment. Noting that the depth of the m-critical nodes is Di, we can give the cost of uAcc update as

t1(uAcc update) = Di × t1(k) .

In summary, using the functions defined so far, we can implement the uAcc skeleton. The cost of the uAcc

skeleton is given as follows.

tP (uAcc(k, t))

= max
p

∑

pr(i)=p

t1(uAcc local) + tP (Step 2) + t1(uAcc global)

+ tP (Step 4) + max
p

∑

pr(i)=p

t1(uAcc update)

= max
p

∑

pr(i)=p

(

Li ×
t1(k)

2
+Di × (t1(φ) + max(t1(ψl), t1(ψr)))

)

+M × (3cα + cγ + t1(ψn))/2

On the BSP model, we can implement the uAcc skeleton with three supersteps: the first one consists of Steps
1 and 2; the second one consists of Steps 3 and 4; the last one consists of Step 5. Thus, the BSP cost is given
as follows.

t
⟨BSP⟩
P (uAcc k)

= max
p

∑

pr(i)=p

(

Li ×
t1(k)

2
+Di × (t1(φ) + max(t1(ψl), t1(ψr)))

)

+M × t1(ψn)/2 +M × (3|α|+ |γ|)/2× g + 3l

4.4. Downwards Accumulate. Finally, we develop an implementation and the cost of the dAcc skeleton
called with a pair of functions (gl, gr) and auxiliary functions (gl, gr)= ⟨φl, φr, ψu, ψd⟩d. Let the input binary
tree have type BTree⟨α, β⟩, the accumulative parameter c have type γ, and the intermediate values for auxiliary
functions have type δ. The implementation of the dAcc skeleton is shown in Fig. 4.4.

Step 1. Computing Local Intermediate Values. In the first step, we compute for each internal
segment two local intermediate values, which are used in updating the accumulative parameter from the root
node to the both children of the m-critical node. To minimize the computation cost, we first find the m-critical
node and then compute two values only on the path from the root node to the m-critical node. We implement
this computation by function dAcc path, in which the computation is done by a traversal on the array from
right to left with an integer d instead of a stack. Two variables toL and toR are the intermediate values.

In this step we apply ψu twice and either φl or φr for each of the ancestors of the m-critical nodes (Di

nodes). Omitting some small constants, the cost of the dAcc path function is given as

t1(dAcc path) = Di × (max(t1(φl), t1(φr)) + 2t1(ψu)) .

Step 2. Gathering Local Results to Root Processor. In the second step, we gather the local results
of the internal segments to the root processor. Since the two intermediate values have type δ and the number
of internal segments is M/2, the communication cost in the second step is given as

tP (Step 2) =M × cδ .

The pair of local results from each internal segment is put to the array of the global tree structure gt .

Step 3. Global Downwards Accumulation. In the third step, we compute global downwards accumu-
lation on the root processor. We implement this global downwards accumulation dAcc global with a forward
traversal using a stack. Firstly, the initial value of accumulative parameter is pushed to the stack, and then the
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accumulative parameter in the stack is updated with the pair of local results given in the previous step. The
result of global accumulation is the accumulative parameter passed to the root node for each segment.

The dAcc global function applies function ψd twice for each internal segment in the global structure.
The computational cost of the dAcc global function is

t1(dAcc global) =M × t1(ψd) .

Step 4. Distributing Global Result. In the fourth step, we distribute the result of global downwards
accumulation to the corresponding processor. Since each result of global downwards accumulation has type γ,
the communication cost of the fourth step is

tP (step 4) =M × cγ .

Step 5. Local Downwards Accumulation. Finally, we compute local downwards accumulation for
each segment. The initial value c′ of the accumulative parameter is given in the previous step. Note that the
definition of dAcc local function is just the same as the sequential version of the downwards accumulation
on the serialized array if we assume the m-critical node as a leaf.

The local downwards accumulation applies functions gl and gr for each internal node. Since the number of
the internal nodes is Li/2, the computational cost of the dAcc local function is given as

t1(dAcc local) =
Li

2
× (t1(gl) + t1(gr)) .

Summarizing the discussion so far, the cost of the dAcc skeleton is given as follows.

tP (dAcc)

= max
p

∑

pr(i)=p

t1(dAcc path) + tP (Step 2) + t1(dAcc global)

+ tP (Step 4) + max
p

∑

pr(i)=p

t1(dAcc local)

= max
p

∑

pr(i)=p

(

Li ×
t1(gl) + t1(gr)

2
+Di × (max(t1(φl), t1(φr)) + 2t1(ψu))

)

+M × (cδ + t1(ψd) + cγ)

On the BSP model, we can implement the dAcc skeleton with three supersteps: the first one consists of Steps
1 and 2; the second one consists of Steps 3 and 4; the last one consists of Step 5. Thus, the BSP cost is given
as follows.

t
⟨BSP⟩
P (dAcc)

= max
p

∑

pr(i)=p

(

Li ×
t1(gl) + t1(gr)

2
+Di × (max(t1(φl), t1(φr)) + 2t1(ψu))

)

+M × t1(ψd) +M × (|δ|+ |γ|)× g + 3l

5. Optimal Division of Binary Trees Based on Cost Model. As we stated at the beginning of
Sect. 3, locality and load balance are two important issues in developing efficient parallel programs in particular
on distributed-memory parallel computers. When we divide and distribute a binary tree using the m-bridges,
we enjoy good locality with large m while we enjoy good load balance with small m. Therefore, we need to find
an appropriate value for m to achieve both good locality and good load balance.

First, we show relations among parameters of the cost model. From Lemma 3.5 and the representation of
local segments in Fig. 3.2, we have

Li ≤ m .(5.1)
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dAcc(gl, gr, c, (gt , segs)) where (gl, gr) = ⟨φl, φr, ψu, ψd⟩d
for i← 0 to gt .size − 1: begin

if pr(i) == p ∧ isNode(gt [i]) then
gt [i]← dAcc path(φl, φr, ψu, segs[i]); endif

end

gather to root(gt)
if isRoot(p) then gt ′ ← dAcc global(ψd, c, gt); endif

distribute from root(gt ′)
for i← 0 to gt .size − 1: begin

if pr(i) == p then segs ′[i]← dAcc local(gl, gr, gt
′[i], segs[i]); endif

end

return (gt ′, segs ′)

dAcc path(φl, φr, ψu, seg)
d← −∞;
for i← seg .size − 1 to 0: begin

if isLeaf(seg [i]) then d← d+ 1; endif

if isNode(seg [i]) then
if d == 0 then

toL← ψu(φl(seg [i]), toL); toR ← ψu(φl(seg [i]), toR);
else if d == 1 then

toL← ψu(φr(seg [i]), toL); toR ← ψu(φr(seg [i]), toR); d← 0;
else

d← d− 1;
endif

endif

if isCritical(seg [i]) then toL← φl(seg [i]); toR ← φr(seg [i]); d← 0; endif

end

return (toL, toR);

dAcc global(ψd, c, gt)
stack ← ∅; stack ← c;
for i← 0 to gt .size − 1: begin

if isLeaf(gt [i]) then gt ′[i]← stack ; endif

if isNode(gt [i]) then
gt ′[i]← stack ; (toL, toR)← gt[i];
stack ← ψd(gt

′[i], toR); stack ← ψd(gt
′[i], toL);

endif

end

return gt ′;

dAcc local(gl, gr, c
′, seg)

stack ← ∅; stack ← c′;
for i← 0 to seg .size − 1: begin

if isLeaf(seg [i]) then seg ′[i]← stack ; endif

if isNode(seg [i]) then
seg ′[i]← stack ; stack ← gr(seg

′[i], seg [i]); stack ← gl(seg
′[i], seg [i]); endif

if isCritical(seg [i]) then seg ′[i]← stack ; endif

end

return seg ′;

Fig. 4.4. Implementation of dAcc skeleton



30 K. Matsuzaki

Since the height of a tree is at least a half of the number of nodes, we obtain

Di ≤ Li/2 ≤ m/2 .(5.2)

From Lemmas 3.6 and 3.7, the number of local segments M is bound with the number N of nodes and the
parameter m as follows.

1

2

(

N

m
− 1

)

≤M ≤ 2N

m
− 1(5.3)

By inequality (5.2), the general form of the cost can be transformed into the following simpler form by considering
the worst case.

max
p

∑

pr(i)=p

(Li × tl +Di × td) +M × tm ≤ (max
p

∑

pr(i)=p

Li)×
(

tl +
td
2

)

+M × tm

We then bound the maximum number of nodes on a processor, maxp
∑

pr(i)=p Li. We distribute the local
segment to processors so as to obtain good load balance, and one easy way to implement the load balancing
is greedy distribution of the local segments from the largest one. By this greedy distribution, the difference
between the maximum number of nodes maxp

∑

pr(i)=p Li and the minimum number of nodes minp
∑

pr(i)=p Li

is less than or equal to the maximum number of nodes in a segment. Since the maximum number of nodes in a
local segment is m as stated in inequality (5.1) and the total number of nodes in the original binary tree is N ,
we can bound the maximum number of nodes distributed to a processor as follows:

max
p

∑

pr(i)=p

Li ≤
N

P
+m

where P denotes the number of processors. By substituting this inequality to the cost, we can bound the cost
of the worst case.

max
p

∑

pr(i)=p

(Li × tl +Di × td) +M × tm ≤
(

N

P
+m

)

×
(

tl +
td
2

)

+M × tm(5.4)

Now we want to minimize the worst-case cost given in the right-hand side of inequality (5.4). By substituting
the parameterM (inequality (5.3)), the worst-case cost is bound with respect tom. We can bound the worst-case
cost for smaller m as

(

N

P
+m

)

×
(

tl +
td
2

)

+M × tm ≤
(

N

P
+m

)

×
(

tl +
td
2

)

+
1

2

(

N

m
− 1

)

× tm ,

and we can bound the worst-case cost for larger m as

(

N

P
+m

)

×
(

tl +
td
2

)

+M × tm ≤
(

N

P
+m

)

×
(

tl +
td
2

)

+
2N

m
− 1× tm .

From these bounds, we can minimize the worst-case cost for some value m in the following range.

√

tm
2tl + td

√
N ≤ m ≤ 2

√

tm
2tl + td

√
N(5.5)

This range of the parameter m is much smaller than that used in the previous studies [8, 18, 30]. In Sect. 6,
we will show experiment results that support the range.
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Fig. 6.1. For the sum of node values, execution times and speedups against sequential program plotted to the number of
processors. The parameter m for the division of trees is m = 53,600.

6. Experiment Results. To confirm the efficiency of the implementation algorithm for binary-tree skele-
tons, we implemented binary tree skeletons in C++ and MPI and made several experiments. We used our
PC-cluster of uniform PCs with two Pentium 4 2.4-GHz CPUs (one CPU is used for each PC) and 2-GByte
memory connected with Gigabit Ethernet. The compiler and MPI library used are gcc 4.1.1 and MPICH 1.2.7,
respectively.

We used the skeletal parallel programs of the two examples in Sect. 2. The input trees are (1) a balanced
tree, (2) a randomly generated tree and (3) a fully ill-balanced tree, each having 16,777,215 (= 224 − 1) nodes.

Figures 6.1 and 6.2 show the general performance of tree skeletons. Each execution time excludes the initial
data distribution and final gathering. The speedups are plotted against the efficient sequential implementation
of the program, which is implemented on the array representing binary trees based on the same sequential
algorithm. As seen in these plots, our implementation shows good scalability even against the efficient sequential
programs. By the m-bridges, the balanced tree is divided into leaf segments of the same size and internal
segments consisting only of one node. Therefore, the overhead caused by parallelism is very small for the
balanced binary tree, and the implementation achieves almost linear speedups against the sequential program.
For the random tree, the average depth of the m-critical nodes is so small that the implementation achieves
good performance close to that for the balance tree. The fully ill-balanced tree, however, is divided into leaf
segments consisting of one node and internal segments with their m-critical node at the depth Di = Li/2. From
the cost model and its parameters, the skeletal parallel program has overheads caused by the factor of depth of
the m-critical nodes. In fact, the experimental results show that the skeletal parallel program runs slower for
the fully ill-balanced tree than for the other two inputs.

To analyze the cost model and the range of the parameter m more in detail, we made more experiments
for the randomly generated tree by changing the value of the parameter m. We measured the parameters tl, td,
and tm of the cost model with a small tree with 999,999 nodes, and estimated the value of them as tl = 0.057
µs, td = 0.03 µs, and tm = 71 µs. By substituting the parameters, we can expect good performance of the
skeletal program under the range 90,000 < m < 180,000. Figure 6.3 (left) plots the execution times to the
number of processors for three values of the parameter m. As we can see from this figure, the implementation
achieves good performance for a wide range of m. Figure 6.3 (right) plots the execution times to the parameter
m. This figure shows that the performance gets worse if the parameter m is too small (m < 5,000) or too
large (m > 200,000). For the parameter m in the range above the skeletal program achieves near the best
performance, and we conclude that the cost model and the estimation of the parameter m is useful for efficient
implementations.

7. Related Work. Tree contraction algorithms, whose idea was first proposed by Miller and Reif [25], are
very important parallel algorithms for efficient manipulations of trees. Many researchers have devoted themselves
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Fig. 6.2. For the prefix numbering problem, execution times and speedups against sequential program plotted to the number
of processors. The parameter m for the division of trees is m = 53,600.
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Fig. 6.3. For the prefix numbering problem, execution times plotted to the number of processors and to the parameter m. The
input trees are from the same randomly generated tree divided with different parameter m.

to developing efficient implementations of tree contraction algorithms on various parallel models [1, 2, 3, 4, 5,
9, 13, 23, 24, 38]. Among them, Gibbons and Rytter developed a cost-optimal algorithm on CREW PRAM [9];
Abrahamson et al. developed a cost-optimal and practical algorithm on EREW PRAM [1]; Miller and Reif
showed implementations on hypercubes or related networks [23, 24]; and recently more efficient implementations
are discussed [2, 38] for symmetric multiprocessors (SMP) and chip-level multiprocessing (CMP). A lot of tree
programs have been described by the tree contraction algorithms [3, 4, 9, 12, 17, 26, 27, 28, 29].

There have been several studies on the implementations of parallel tree skeletons [10, 11, 15, 18, 32, 33,
34]. Gibbons et al. [11, 33] have developed an implementation of tree skeletons based on tree contraction
algorithms. Their algorithm can be used on many parallel computers, due to various implementation algorithms
of tree contraction algorithms on various parallel computers. Skillicorn [34] and our previous paper [18] have
discussed implementations of tree skeletons based on the division of trees. Compared with these implementation
algorithms, our implementation is unique in terms of data structure of local segments for better sequential
performance and the cost model supporting good division of trees. As far as we are aware, we are the first who
implement tree skeletons as a parallel skeleton library. Our implementation of tree skeletons will be available as
a part of SkeTo library [22]. Based on the implementation of the earlier work, Sato and Matsuzaki [31] improved
its interface to support flexible manipulation of trees.
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In terms of manipulations of general trees, which are formalized as parallel rose-tree skeletons [20], some of
them are implemented efficiently in parallel [15, 32]. Sevilgen et al. [32] has shown an implementation algorithm
for tree accumulations on general trees where rather strict conditions are requested for efficient implementation.
Kakehi et al. [14] has developed an efficient implementation of tree reduction on general trees based on the
serialized representation like XML formats.

8. Conclusion. In this paper, we have developed an efficient implementation of parallel tree skeletons.
Not only our implementation shows good performance even against sequential programs, but also the cost model
of the implementation helps us to divide a tree into segments with good load balance. The implementation
is available as part of SkeTo library (http://sketo.ipl-lab.org/). One of our future work is to develop a
profiling system to determine the parameter m more accurately.
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Abstract. The recent years have been characterised by the production of a huge amount of data. As matter of fact, human
being, overall, is generating an unprecedented amount of data flowing in multiple and heterogeneous sources, ranging from scientific
devices, social network, business transactions, etc. Data that is usually represented as a graph, which, due to its size, is often
infeasible to process on a single machine. The direct consequence is the need for exploiting parallel and distributed computing
frameworks to face this problem. This paper proposes Telos, an high-level approach for large graphs processing. Our approach takes
inspiration from overlay networks, that is a widely adopted approach for information dissemination, aggregation and computing
orchestration in highly distributed systems. Telos consists of a programming framework supporting the definition of computations
on graphs as a composition of overlays, each devoted to a specific aim. The framework is implemented on the top of Apache Spark.
A set of experimental results is presented to give a clear evidence of the effectiveness of our approach.
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1. Introduction. Our world contains an unimaginably vast amount of digital information which is getting
ever vaster rapidly. In fact, the amount of data produced every day by human beings is far beyond what has
ever been experienced before. According to some statistics, the 90 percent of all the data in the world available
in May 2013 has been generated over 2012 and 2013. As a further example, in 2012 were created, every day, 2.5
exabytes (2.5× 1018) of data [33] which comes from multiple and heterogeneous sources, ranging from scientific
devices to business transactions. A significant part of this data is gathered and then modelled as a graph, such
as social network graphs, road networks and biological graphs.

A careful analysis and exploitation of the information expressed by this data makes it possible to perform
tasks that previously would be impossible to do: to detect business trends, to prevent diseases, to combat crime
and so on. If properly managed, data can be used to unlock new sources of economic value, provide fresh
insights into science and hold governments to account. However, the vastity of this data makes infeasible its
processing by exploiting the computational and memory capacity of a single machine. Indeed, a viable solution
to tackle its analysis relies on the exploitation of parallel and distributed computing solutions.

Many proposal for the parallel and distributed processing of large graphs have been designed so far. However,
most of the methodologies currently adopted fall in two main categories. On the one hand, the exploitation
of low-level techniques such as send/receive message passing or, equivalently, unstructured shared memory
mechanisms. This is the way traditionally adopted to process large dataset, usually with parallel machines or
clusters. Unfortunately, this approach leads to few issues. Low-level solutions are complex, error-prone, hard
to maintain and their tailored nature hinder their portability.

On the other hand, a wide use of the MapReduce paradigm [19] can be observed, which has been inspired by
the well-known map and reduce paradigms that is part of the algorithmic skeletons, which across the years have
been provided by a number of different frameworks [37, 32, 18, 4, 2, 3, 13]. MapReduce-based solutions often
exploit the MapReduce paradigm in a “off-label” fashion, i.e., in ways and contexts that are pretty different from
the ones it has been conceived to be used in. Some of the most notable implementations of such paradigm are
frequently used with algorithms which could be more fruitfully implemented with different parallel programming
paradigms or different ways to orchestrate their computation. This is especially true when dealing with large
graphs [29]. In spite of this, some MapReduce based frameworks achieved a wide diffusion due to their ease of
use, detailed documentation and very active communities of users.
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Recently, a few solutions have been proposed to let the MapReduce frameworks more suitable for performing
analysis on large graphs in a more natural way. Some of them have been inspired by the BSP bridging model [44]
that resulted in a good approach to implement certain algorithms whose MapReduce implementation would be
either too complex or counter-intuitive. Malewicz et al. presented this approach when proposing the Pregel
framework [29]. It provides the possibility to describe graph processing applications from the viewpoint of
a graph vertex, which processes independently and can only access its local state and is aware only of its
neighbourhood.

In this paper we propose Telos1, an approach to process graphs by leveraging the vertex-centric approach
to provide a solution that focuses on the orchestration of nodes and their interactions. Our approach takes
inspiration by the similarities existing between large graphs and massively distributed architectures, e.g., P2P
systems. In fact, many of these solutions orchestrate the computation and spread the information exploiting
overlay networks. Essentially, an overlay is a virtual network, built upon the existing physical network, connect-
ing nodes by means of logical links established according to a well-defined goal. The building blocks of overlays
match the key elements of graphs. Vertices can be seen as networked resources and edges as links.

We believe that by means of these similarities overlay-based solutions can be fruitfully ported and exploited
for graph processing. We already presented a first analysis about the applicability of Telos to solve graph
partitioning [8]; we also gave a brief description of its conceptual architecture [26] and its programming model [9].
This paper gives a consolidated presentation of Telos. Along with a more detailed description of the approach,
we present an advanced application scenario showing the advantages deriving from the exploitation of our
proposed approach. More in details, the contributions of this paper are the following:

• the definition of a high-level programming approach based on the composition of overlays, targeting
computations on large graphs;

• the presentation of our framework built on top of Apache Spark [50] providing both a high level API
to define custom layers and some built-in layers. This gives the possibility to dynamically define
graph topologies different from the original one, so enabling each vertex to choose the most promising
neighbours to speed-up the convergence of the distributed algorithm;

• an extensive proof-of-concept demonstrator to assess the feasibility of Telos;
• a case study where we show how to port a popular graph partitioning algorithm in Telos. In addition, we
enhanced such algorithm by means of the Telos’ layered architecture showing through an experimental
testbed the improvements on the quality of the obtained results.

The remainder of this paper is organised as follows. In Section 2 we discuss the current related work on
distributed graph processing framework, with a focus on those able to evolve the graph during the computation.
Section 3 presents the main design choices and the structure of Telos as well as its programming model and
architecture. We evaluate our approach in Section 4 by sketching the Telos implementation of an overlay
building protocol and a balanced graph partitioning case study. Finally, Section 5 reports some final remarks
and further ideas for future work.

2. Related Work. Comprehensive surveys of widely adopted distributed programming models targeting
graphs, and of the derived frameworks is presented in several survey contributions, such as by McCune et al. [34],
Kalavri et al. [21], Doekemeijer et al. [16]. Most of the current frameworks provide a set of basic features for
distributed graph processing, while several approaches have been developed with the goal of extending and/or
optimizing the basic frameworks. In this section we focus on the approaches that are closely related to our
work.

Among the several existing distributed programming frameworks focusing on graphs, a notable amount are
characterised by the vertex-centric programming model. However, not all of them allow graph mutation during
the execution, which is a core feature in our proposed approach.

Pregel [29] is the Google framework for distributed graph processing, and the one that de-facto defined the
vertex-centric model. Pregel has been inspired by the BSP model [44], in which computations are organised
in sequential supersteps; in Pregel, like in BSP, during each superstep each vertex executes a specific function.
Vertices communicate in a message-passing model, by sending and receiving messages from/to other vertices.

1https://github.com/hpclab/telos
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Apache Giraph [12] is another vertex-centric framework initially developed by Yahoo!. Conversely from Pregel,
Giraph is open-source and runs over Hadoop.

More recent solutions are aimed at optimising the basic vertex-centric model provided by Pregel. GPS [41]
provides a few interesting optimisations specifically targeted to vertex-centric graph processing. These solu-
tions include an adaptive rescheduling of the computation, essentially aimed at performing the computation
sequentially on the master node when the number of active nodes is below a given threshold. In such a case the
exploitation of parallelism is no longer justified but just became an overhead. Another optimisation consists in
merging several vertices together to form supervertices to reduce the communication cost. Both of these opti-
misations focus on reducing the completion time and the communication volume by instrumenting the support
with automated recognition features, activated to speed-up the computation.

Another interesting approach, which goes beyond classical vertex-centric solutions, has been proposed by
Tian et al. [43] and it is called as partition-centric. Their idea is to shift the reasoning from the single vertex
perspective to the viewpoint of a set of vertices aggregated into a partition, in order to reduce the inter-vertex
communication and to accelerate the convergence of vertex-centric programs. By means of such a change of
perspective they have been able, on selected problems, to yield a notable speeds-up in the computation. The
partition-centric model has been further specialized in other works, such as Simmhan et al. [42] and Yan et
al. [48]. These proposals and our approach are based on the idea of pushing, by design, a shift in the paradigm
that allows the implementation of more efficient solutions.

Distributed Graph Partitioning. Graph partitioning is an NP-Complete problem well known in graph theory.
Distributed graph partitioning assumes the impossibility to access the entire graph at once, with the graph
distributed among various workers nodes. In the context of a MapReduce computation, several approaches
have considered the problem of distributed graph partitioning.

JA-BE-JA [40] is a distributed approach based on iterations of local nodes swapping to obtain a partition
of the graph. Such an approach has been originally designed for extremely distributed graphs, in which a node
can be associated with a vertex of the graph, but can be ported to MapReduce platforms with some tweaking
[8]. Sheep [30] consists in a distributed graph partitioning algorithm that reduces the graph to an elimination
tree to minimizes the communication volume among the workers of the MapReduce computation. Spinner [31]
employs an heuristics based on the label propagation algorithm for distributed graph partitioning. A penalty
function is applied to discourage the movements of nodes toward larger partitions. Similarly, Meyerhenke et al.
[35] employs a size-constrained label propagation targeting heavily clustered and hierarchical complex networks,
such as social networks and web graphs.

3. From vertices to overlays. The vertex-centric approach, also known as Think Like A Vertex (TLAV),
is currently being exploited in several applications aimed at computing big data analysis involving large graphs,
and widely used by both academia and industry. Many popular implementations of the TLAV model [29, 12]
are based on a synchronized execution model according to the well-known BSP approach [44]. The core of BSP
computations consists of three main pillars:

• Concurrent computation: Every participating computing entity (a vertex in this case) may perform
local computations, i.e., computing by making use of values stored in the local memory/storage.

• Barrier synchronisation: After the termination of its local computation, every vertex is blocked until
all the other vertices composing the graph have reached the same stage.

• Communication: All the vertices exchange data between themselves, in a point-to-point fashion, after
they reach the synchronization barrier. Each message prepared during superstep S is received by the
recipient at superstep S + 1.

From an operative viewpoint, during a superstep, each vertex receives messages sent in the previous iteration
and executes a user-defined function that can modify its own state. Once the computation of such a function
has terminated, it is possible for the computing entity to send messages to other entities.

To orchestrate the computation, the BSP model relies on a synchronisation barriers occurring at the end
of every superstep. The same occurs in TLAV models, even if the vertex centric abstraction could, in principle,
be realized with other computation models that do not rely on a strong synchronisation. Indeed, the program-
ming approach that characterises the vertex-centric model, in which programmers are in charge of coding the
behaviour of each single element, which globally cooperates to contribute to the whole computation, is neither
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new nor exclusive of this kind of solutions. For instance, it is also the approach adopted in actor-based models.
The correspondence with the superstep defined by the BSP model is realized as the following. The com-

putation is described by the method compute() described in Section 3.1.1. Regarding the communication, the
messages are generated by the compute method. A message can be inter-vertex, intra-vertex or extra-protocol
as defined in Section 3.1.2. The actual communication is materialized in the reduce phase. The synchronisation
is enforced by the Spark framework, which assures that an iteration begins only when all nodes have executed
the reduce of previous iteration.

In some ways, programming according to the vertex-centric model also recalls the definition of epidemic
(or gossip) computing [5, 36, 15, 9, 17]. A widely used approach in massively distributed systems leading
nodes of a network to work independently but sharing a common, global, aim. Indeed, according to a common
strategy followed by many existing gossip protocol, nodes build logic network overlays to exploit for information
exchange. An overlay consists of a logical communication topology, built over an underlying network, which is
maintained and used by nodes. Across the years, several overlay-based protocols have been proposed for data
sharing, diffusion, aggregation and for computation orchestration, as well. Usually, these solutions are adopted
in highly distributed systems, e.g., massively multiplayer games [10], distributed replica management [22],
distributed resource discovery [14, 7], etc. Most of these overlay-oriented solutions are layered [24] and exploit
the different overlays to achieve very different tasks. Overlay-based algorithms are characterised by several
different interesting features:

• Local knowledge: algorithms for overlays are based on local knowledge. During the computation each
node relies only on its own data and the information received from its neighbours, resulting in a reduced
access to the network and consequently improving the scalability of the approach.

• Multiple views: multi-layer overlays have been a successful trend [20]. These approaches build a stack
of overlays, each organised accordingly to a specific goal. By means of their combination more complex
organisations can be achieved, fostering an efficient and highly targeted dissemination of information.

• Approximate solutions: since overlays are usually based on an approximated knowledge on the graph,
several algorithms designed for overlays are conceived to deal with approximated data. Usually, solutions
are achieved by these approaches in an incremental and iterative way, allowing to achieve in a flexible
way approximated solutions.

• Asynchronous approach: differently from vertex-centric algorithm, gossip-based approaches operate in
an unreliable, not synchronized environment, in which messages can be received later than expected
and their content be not consistent. Due to this, gossip protocols are able to work under the assumption
of approximate and incremental results.

Our approach is aimed at introducing techniques for large graph processing borrowed from solutions tar-
geting massively distributed systems, for instance solutions defined within the scope of Peer-to-peer computing
area, into large graph processing framework. We believe that this approach could be useful to support large
graph processing by means of the composition of solutions based on multiple-layer graphs, eventually combined
to define more effective graph processing algorithms.

3.1. Telos. Telos builds upon the overlay-based approach to provide a tool aimed at large graph processing
whose programming model is organised according to the vertex-centric approach for graph processing.

A set of protocols, one for each network overlay, is associated with each vertex. For each overlay, each vertex
maintains a local context and a neighbourhood. The former represents the “state” of the vertex w.r.t. a given
overlay, the latter represents the set of vertices that are exchanging messages with such a vertex by means of
that overlay, according to the associated protocol. Both the context and the neighbourhood can change during
the computation and across the supersteps, given the possibility of building evolving “graph overlays”.

Telos brings to the vertex-centric model many of the typical advantages of a layered architecture:
• modularity : protocols can be composed and additional functions can be obtained by stacking different
layers;

• isolation: changes occurring in a overlay, by means of a protocol, do not affect the other protocols;
• reusability : protocols can be reused for many and possibly different computations.

Telos supports programmers in combining different protocols. Each protocol is managed independently and all
the communications and the organisation of the records are all in charge of Telos.
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Plain Spark

Telos API
and functionalities

User defined protocols

Fig. 3.1. Telos integration with Spark

Table 3.1

The Protocol Interface

function description

getStartStep() : Int defines the first step on which compute() is called
getStepDelay() : Int defines the delay in terms of steps between two successive calls of

compute()

compute(ctx:Context,
mList:List[Message]) : (Con-
text, List[Message])

contains the business code of a protocol, e.g., message handling,
data precessing, etc.

In its current implementation, the Telos framework is built on top of Spark [50]. One of the key aspects of this
tool are the Resilient Distributed Dataset (RDD) [49], on top of which are natively defined collective operations
such as map, reduce and join. By relying on these operations, Telos provides its own TLAV abstraction. All
the tasks for managing RDDs are transparent to the programmers and managed by Telos.

Figure 3.1 shows the integration of the Telos framework with Spark. The framework coordinates the
protocols and masquerades the underlying support to ease the application development. The framework handles
all the burden required to create the initial set of vertices and messages and provides to each vertex the context
it requires for the computation. Communications are completely hidden to the programmers as well. Telos
handles data dispatch to the target vertices.

3.1.1. Protocols. Protocols are first-class entities in Telos. They are the abstractions that orchestrate the
computation and organise the topologies of each overlay. Protocols manage the context and the neighborhood
of all the vertices. In fact, each protocol is in charge of:

• modifying the state associated to each vertex;
• defining a representation describing the state of the vertices, which is eventually sent as messages to
the other vertices;

• defining custom messages aimed at supporting the overall orchestration of the nodes;

Table 3.1 describes the protocol interface, i.e., the main methods provided by the interface of a protocol
(for the full table please refer to our former papers focusing on the description of such an interface [26, 9]). In a
nutshell, the Protocol interface abstracts the structure of the computation running on each vertex. Basically, the
core logic of a Protocol is contained in the compute() method. Once called, say at superstep S, the compute()
method can access the whole state, associated to the vertex, and to the messages received by such vertex during
the step S - 1. The output of the compute() method is a new vertex context and a set of messages to be
dispatched to the target vertices.

The termination of a Protocol is coordinated by a “halt” vote. At the very end of its computation each
vertex votes to halt, and when all vertices voted to halt, the computation terminates.

The frequency at which a protocol is activated (w.r.t. the supersteps) is regulated by getStartStep()

and getStepDelay() methods. These methods are useful when a computation involves different protocols
characterised by different convergence time, i.e., the amount of steps it needs to converge to a useful result. By
means of these methods it is possible to regulate the activations of the protocols with respect to the amount of
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elapsed supersteps.

Figure 3.2 graphically depicts the behaviour of these methods. In the figure, Protocol A is activated at
each superstep, i.e., if invoked, its implementation of getStepDelay() method, will return 1, whereas the very
same call on Protocol B will return 2. In a pretty similar fashion the method getStartStep() drives the first
activation of a protocol. Going back to the aforementioned figure, when called on Protocol A it will return 0,
whereas it will return 1 if called on Protocol B.

3.1.2. Interactions. Telos enables three different types of interactions that involve the vertices belonging
to the graph.

• intra-vertex : the internal access made by a given vertex, when executing a certain protocol, to the
context associated at a different protocol.

• inter-vertex : the remote access made by a given vertex, when executing a certain protocol, to the
context of another vertex, associated to the same protocol.

• extra-protocol : the remote access made by a given vertex, when executing a certain protocol, to the
context of another vertex, associated to a different protocol.

Figure 3.3 shows an example of the aforementioned interactions. In the example, the Protocols A and B

of Node 1 have an inter-vertex interaction. Protocol A of Node 1 and the same protocol on Node 2 have a
inter-vertex interaction. Finally, Protocols A of Node 1 and protocol B of Node 2 have a inter-vertex interaction.

To summarise, the computation of TELOS is defined as the execution of a sequence of supersteps. At each
superstep, the messages from the previous superstep are collected, a subset of the protocols are executed and
both inter-vertex and extra protocol messages are sent, afterward the synchronisation barrier is executed.

3.1.3. Built-in Protocols. To evaluate the effectiveness of porting approaches from massively distributed
system into the distributed large graph analysis we developed two protocols with Telos, which we briefly present
in this section.

• Random protocol. The aim of this protocol is to provide to each vertex with a random vertex identifier
upon request. The vertex identifier must be taken uniformly and randomly in the space of identifiers
of graph vertices. It is implemented according to a random peer sampling approach [45]. From an
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operative viewpoint, the random peer sampling protocol requires that each vertex periodically shares
information about its neighbourhood with a random vertex, that will do the same. At the end, each
vertex remains with a neighbourhood composed by k vertices, with k size of the neighbourhood.

• Ranking-function protocol. Highly distributed solutions exploit ranking functions to create and manage
overlays built according to a specific topology [20, 46]. The ranking function determines the similarities
between two vertices and the topology is built accordingly. In Telos we implemented a generic ranking
protocol able to take as input the ranking function to realise the consequent topology.

4. Evaluation. To assess the evaluation of our approach we conducted several experiments. First, in
Section 4.1 we provide a proof-of-concept implementation that validates our framework by implementing a
stack composed by the two protocols, instantiating the random and the ranking-function protocols discussed
above. Then, in Section 4.3 we evaluate the scalability provided by our implementation of Telos.

All the experiments have been conducted on a cluster running Ubuntu Linux 12.04 consisting of 4 nodes (1
master and 3 slaves), each equipped with 16 Gbytes of RAM and 8-cores. The nodes are interconnected via a
1 Gbit Ethernet network.

4.1. A Proof of Concept Implementation. The aim of this experiment is to verify the correctness of
Telos when dealing with a layered composition of protocols. We built a two layered structure composed of a
random protocol layer and a ranking protocol layer. We generated a set of points in 3D space and we assigned
to each node a point. The points are generated in order to form a torus. Then, the neighborhood of each
node is randomly initialized and the execution started. By using the ranking protocol, we iteratively connect
nodes that are close to each other considering the euclidean distance. At the end of the execution, each node is
connected to the most similar nodes according to the euclidean distance forming a torus-shaped graph.

We tested the implementation on a graph made of 20K vertices. The results in Figure 4.1 show the evolution
of the graph in different iterations. Note, we plot the graphs using Gephi[6] and the default layout for placing
the nodes. Due to this, although the point assigned to a vertex does not change it may happen that the same
point is in different positions in the figures. The topology recalls the shape of a torus already at super-step
10. At super-step 20 no edges connect “distant” vertices in the torus. This experiment shows that, if properly
instrumented, Telos can correctly manage multiple layers to organize network overlays according to user-defined
ranking functions.

In the following, to have a deeper understanding of Telos, we present a pseudo-code implementation of
the protocols of this experiment. The pseudo-codes are inspired by the original Scala[38] implementation.
Code Fragment 1 presents the implementation of the random protocol. The idea is to randomly gener-
ate a number upon request on the method getVertexId(). The generated numbers must be in the range
[startRange, endRange]. Where, in general, startRange is equal to 0 and endRange is equal to the number
of nodes in the graph. The main issue is that each machine executing the protocol must be able to call such
method. To do this, in the initialization (init method) we create two broadcast variables initialized with the
values representing the required range. The RandomContext contains the logic to generate a random number
and it is initialized with the two broadcast variables. In this experiment we use the convention to set the ids of
the nodes in the range [1, 20000] without missing values. Finally, the random protocol is initialized with such
values and the ranking protocol makes use of the method getVertexId() to select a node identifier in order to
communicate with a different and random node in each iteration.

Instead, code Fragment 2 presents the pseudo-code of the implementation of the ranking protocol. The
implementations of beforeSuperstep, afterSuperstep, init and createInitMessage are not given because
not required for this kind of Protocol. Specifically, the RankingProtocol extends the Protocol interface described
in Table 3.1. We instruct the framework to start this protocol at the beginning of the computation with
getStartStep equals to 1 (Line 3) and to run in each step of the computation with getStepDelay (Line 4)
equals to 1. The createContext method (Line 6) is called at the beginning of the computation to initialize
the state on each vertex. The data returned can be any custom type to allow the definition of custom data
structures to record all the data needed by the protocols.

The ranking protocol uses the custom defined RankingContext to save the coordinate position of a point
represented by the vertex and the neighbourhood of the vertex. Recall that Telos calls, for the active protocols,
in each super-step the compute() method for each active vertex (Line 19) providing both a vertex context ctx
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Code Fragment 1: RandomProtocol extends Protocol

1 class RandomProtocol extends Protocol

2 {

3 def getStartStep() = return 1

4 def getStepDelay() = return 1

5

6 def init(sc:SparkContext) = {

7 startRangeBroadcast = sc.broadcast(startRange)

8 endRangeBroadcast = sc.broadcast(endRange)

9 }

10

11 def compute[RandomContext](ctx:RandomContext,

12 mList:List[Message]):(RandomContext, Message) = {

13 return (ctx, List())

14 }

15

16 def createContext[RandomContext](row:Array[String]):

17 RandomContext = {

18 return new RandomContext(startRangeBroadcast,

19 endRangeBroadcast)

20 }

21 }

22

23 class RandomContext(val startRngBrd: Broadcast[Long],

24 val endRngBrd:Broadcast[Long]) extends VertexContext {

25 def getVertexId(): Long = {

26 return (random.nextDouble() * (endRngBrd.value -

27 startRngBrd.value)).toLong+startRngBrd.value

28 }

29 }

and the messages received by the vertex mList. In this case, the vertex makes an intra-vertex communication
to access the context of a different protocol on the same vertex and retrieve the RandomContext. Such context
is used to choose randomly a counterpart to communicate with and exchange information. In addition, for each
message received the vertex prepares a response message. In the last part of the method the vertex orders all
the data received and keeps the vertices that are closer to the assigned 3D point. The value k is a custom
parameter and in this experiment it is initialized to 5. The value returned by the compute method is the new
vertex context and a list of messages to be dispatched by Telos to the specified vertices.

4.2. Case Study: Balanced Graph Partitioning. JA-BE-JA [40] is a distributed algorithm for com-
puting the balanced k-way graph partitioning problem and it works as follows. Initially, it creates k logical
partitions on the graph by randomly assigning colours to each vertex, with the number of colours equals to k.
Then, each vertex attempts to swap its own colour with another vertex according to the most dominant colour
among its neighbours, by: (i) selecting another vertex either from its neighbourhood or from a random sample,
and (ii) considering the “utility” of performing the colour swapping operation. If the colour swapping would
decrease the number of edges between vertices characterised by a different colour, then the two vertices swap
their colour; otherwise, they keep their own colours.

In a previous work [8] we presented an implementation of JA-BE-JA in Apache Spark outlining the adap-
tations that have been required in order to efficiently adapt the algorithm to match a BSP-like structure. In its
original formulation, JA-BE-JA assumes that each vertex has complete access to the context of its neighbours
and also their neighbourhood. To enforce this assumption, we initially introduced specific messages to retrieve
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Code Fragment 2: RankingProtocol extends Protocol

1 class RankingFunction extends Protocol

2 {

3 def getStartStep() = return 1

4 def getStepDelay() = return 1

5

6 def createContext[RankingContext](row: Array[String]) :

7 RankingContext = {

8 var context = new RankingContext

9 context.x = row(0)

10 context.y = row(1)

11

12 for (i <- 2 until row.length)

13 {

14 context.neighbour.add(row(i))

15 }

16 return context

17 }

18

19 def compute[RankingContext](ctx:RankingContext,

20 mList:List[Message]):(RankingContext,Message) = {

21 var message = List()

22 val randomContext = ctx.accessProtocol("RandomProtocol")

23 val rcpt = randomContext.getVertexId()

24 val buffer = ordByEucDis(rcpt, ctx.neighbour)

25 message = message ++ new Message(rcpt, getTopK(buffer))

26

27 var newData = List()

28 foreach(msg : mList)

29 {

30 newData = newData ++ msg.content

31 val buffer =

32 ordByEucDis(msg.sender,ctx.neighbour++msg.content)

33

34 message =

35 message ++ new Message(msg.sender,getTopK(buffer))

36 }

37

38 val myBuf = ordByEucDis(ctx.self,ctx.neighbour++newData)

39 return (new RankingContext(ctx.self, myBuf),message)

40 }

41 }

the neighbourhood of any vertex. However, we noticed that forcing a strong consistency of such information
slows down the performance too much. As a consequence, we provided an alternative implementation (called
gp-spark) that introduces a degree of approximation to accelerate the computation, in which vertices piggy-
back their neighbourhood information in other messages. This mechanism causes the vertices to apply the local
heuristics on possibly stale data, but increases the performance of the original approach providing a comparable
quality of results with respect to the original version.

The original gp-spark works with a two layered architecture composed as follows: (i) the colour swapping
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(a) Superstep 0 (b) Superstep 10 (c) Superstep 20

Fig. 4.1. Evolution of the torus overlay at different Supersteps

Fig. 4.2. Swap in the stain metaphor of the JA-BE-JA topology

protocol, that attempts the colour swapping targeting either a vertex from the local neighbourhood or from
the random sampling, and (ii) the random sampling protocol that provides some random vertices to the colour
swapping protocol. Here, we present gp-telos, an improved version of gp-spark that introduces a new layer
with the border ranking protocol aimed to boost the quality of results. The objective is to give to JA-BE-JA
the possibility to select from a better set of vertices when attempting colour swapping.

Recall, the layered approach exploits orchestration between several protocols relying over the intra-communi-
cation facility. gp-telos adds a new layer that interacts with the colour swapping one. First of all, the colour
swapping’s layer is initialized with the input graph topology. Then, we have a random layer to provide to each
vertex with some long range links that are created through the retrieve of a small sample of random nodes for
each vertex. This layer is refreshed with new vertices in each iteration.

As shown in Figure 4.2.a, the colour swapping layer could be thought as a set of stains which interact with
each other moving like fluids. In this metaphor, the long range links fold the stains in a N dimensional space,
where N is the number of links maintained in the random layer. Such links allow the interaction between areas
of the stains that are not topologically near each other in the color swapping layer. The JA-BE-JA algorithm
orchestrates those stains in order to minimize the edge-cut. Whenever a swap happens is like a stain flows
rolling to the neighbouring stain, as shown in Figure 4.2.b.

In gp-telos we introduce an additional layer of the ranking kind. This relies over the definition of a
ranking function. The idea is to abstract the property of borderness of each vertex in the color swapping layer.
Whenever 2 vertices are on the borders the swap could take place. Figuratively the vertices cross the boundaries
of the stain.
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Fig. 4.3. Example of an exchange colour using the ranking layer over the real JA-BE-JA coloured graph.

Table 4.1

Edge-cut value for gp-telos and gp-spark with the three datasets

K 3elt Vibrobox Facebook
gp-telos gp-spark gp-telos gp-spark gp-telos gp-spark

2 750 1,433 (+91%) 14,812 22,244 (+50%) 75,690 80,971 (+7%)
4 1,810 2,903 (+60%) 30,432 40,358 (+33%) 147,991 157,282 (+6%)
8 3,048 4,473 (+47%) 43,728 56,954 (+30%) 256,902 245,682 (-4%)
16 4,191 6,344 (+51%) 54,339 75,051 (+38%) 348,494 353,061 (+1%)
32 5,241 8,491 (+62%) 67,787 95,858 (+41%) 415,315 457,257 (+10%)
64 6,419 10,622 (+65%) 88,953 116,149 (+31%) 520,391 552,714 (+6%)

The ranking function between two nodes u and v is defined as follow:

H(z) =

∣

∣

∣

∣

|{q|q ∈ neighbor(z) ∧ color(q) ̸= color(z)}|

|neighbour(z)|

∣

∣

∣

∣

(4.1)

rankingFunction(u, v) =

{

+∞, if color(u) = color(v)

|H(u)−H(v)|, otherwise
(4.2)

Note, two peers u and v are more similar as the rankingFunction(u, v) → 0. The function ranks similar two
peers u and v that have the same amount of neighbours of different colour and u and v are coloured differently.
As a consequence, peers that are in the middle of a partition are similar to the ones that are in the middle of
another partition (i.e. a node u has all the neighbours of its very same color, H(u) = 1) and, more useful for
our purposes, vertices which are on the borders of a partition are similar to others that are also on the same
kind of border. For instance, a blue vertex having 5 neighbours with 3 coloured red would be ranked high from
a red vertex having 5 neighbours with 3 coloured blue. As a result, in a figurative way as shown in Figure 4.3,
the stains flow between each other like a liquid. In this way, the ranking layer keeps in the neighbourhood
of each vertex other vertices having high similarity according to rankingFunction. The aim is to retrieve a
better solution starting from the actual topology to another more accurate for the purpose. Moreover, such an
abstraction allows to find better candidates to exchange the colour with and to filter and organize the vertices
among their borderness property.

We compared the performance of gp-telos and gp-spark by means of the following metrics: (i) edge-
cut : the number of edges that cross the boundaries of each subgraph. This metrics gives an estimation about
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the quality of the cut, with lower values corresponding to a better cut, and (ii) convergence: the number of
supersteps required to achieve a substantially definitive edge-cut result. Our aim is to show that Telos does not
affect the performance in term of supersteps to find a solution with respect to the gp-spark implementation.

The experiments have been conducted on two datasets taken from the Walshaw archive [47] (3elt and
vibrobox) and from the Facebook social network2. Figure 4.4 shows the convergence time in term of supersteps
for the 3elt dataset with K = 2. Results with other datasets and different values of K are not included due
to space constraints but they exhibit similar trends. The results show evidence that convergence is similar
between gp-spark and gp-telos, as in both cases they achieve an almost-definitive edge-cut around the 400th
superstep. In particular, after the 400th superstep gp-telos is stable, whereas gp-spark is converging but it is
improving the result in every step marginally. Also, gp-telos yields a much better quality of results, achieving
half the edge-cut of gp-spark.

Table 4.1 presents the edge-cut obtained by gp-telos and gp-spark, averaging the results of 5 runs. We
executed multiple runs by varying the number of the graph partitions with the values K = {2, 4, 8, 16, 32, 64}.
It can be noticed that gp-telos obtains a better edge-cut in all the datasets and in all the configurations but
with the Facebook dataset and 8 partitions. However also in this configuration gp-telos provides an edge-
cut similar (just 4% less) to the one in the gp-spark version. Overall, the gp-telos version provides a value
between the 47% and the 91% better in the 3elt dataset and always better that the 30% in the Vibrobox dataset.
These results suggest that the new layer helps improving the results, and a layered vertex-centric approach can
be used to carry out graph processing computations.

4.3. Scalability. The aim of this experiment is to give a preliminary evaluation of Telos framework in
managing large input graphs varying the number of cores involved in the computation. To this end, we built two
Erdos-Renyi random graphs (1M vertices 5M edges the first, 500K vertices 1.5M edges the second) generated
with the Snap library [23]. It is worth to point out that the current implementation of Telos is prototypical,
thus our interest is more related to the viability of the approach than to the pure performance. To give this
evaluation, we run the torus overlay experiment described in the previous section on both graphs, measuring
the convergence time when a different amount of computing cores is used. We performed our experiments
using both these graphs, varying the number of cores in the following range: {8, 16, 24}. For the sake of the
presentation, values are normalised, independently for each graph, in the range [1 ; 100], with 100 being the
highest execution time. In addition, each value is the average of 3 independent runs. The results are presented
in Figure 4.5. With the graph composed of 500K vertices, our approach achieves only a little scalability and no
benefit is obtained when the total amount of computing elements is greater than 16. Instead, when considering
the larger graph our approach is able to achieve a decent scalability using up to 24 cores.

2http://socialnetworks.mpi-sws.org/
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Fig. 4.5. Scalability as a function of the number of cores

5. Conclusion. This paper presents the approach adopted by Telos for programming of computations on
large graphs. The aim of Telos is to propose an alternative to plain vertex-centric computations. The idea of
Telos is based on defining overlay networks collectively built and managed by the nodes of the graph. Each
overlay is specialised for a peculiar aim. The overlay-based approach takes inspiration from approaches that
have proved to be robust and efficient in massively distributed systems that, somehow, recalls the structure
of large graphs. We provided a detailed description of the concepts at the basis of Telos and its architecture,
as well. We presented the Telos API, which has been designed to ease the programming effort required to
program applications dealing with large graphs. In this way programmers can focus on the algorithm logic
and to leave all the other burdens to the framework. We conducted an experimental analysis to validate the
feasibility of the approach and showed its scalability with respect to the computational resources exploited. The
experiments demonstrated that dynamic topologies can be effectively exploited during the computation. We
believe that the ability of supporting multiple dynamic layers can be useful in many contexts, as for example
in Peer-to-Peer applications [10, 39, 11] or for classical graph analysis problems, such as connected components
[28, 25] and centrality measures [27]. As a future work we plan to conduct a comprehensive analysis of the
performance of the framework and a comparison with other approaches targeting large graph computation. We
also plan to implement Telos on top of different distributed frameworks (e.g., FastFlow [3], Akka [1]) to assess
the performance of our proposed approach regardless the performances provided by Apache Spark.
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SEQUENCE SIMILARITY PARALLELIZATION OVER HETEROGENEOUS COMPUTER
CLUSTERS USING DATA PARALLEL PROGRAMMING MODEL
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Abstract. Sequence similarity, as a special case of data intensive applications, is one of the neediest applications for paral-
lelization. Clustered commodity computers as a cost-effective platform for distributed and parallel processing, can be leveraged
to parallelize sequence similarity. However, manually designing and developing parallel programs on commodity computers is a
time-consuming, complex and error-prone process. In this paper, we present a sequence similarity parallelization technique using
the Apache Storm as a stream processing framework with a data parallel programming model. Storm automatically parallelizes
computations via a special user-defined topology that is represented as a directed acyclic graph. The proposed technique collects
streams of data from a disk and sends them sequence by sequence to clustered computers for parallel processing. We also present
a dispatching policy for balancing the cluster workload and managing the cluster heterogeneity to achieve more than 99 percent
parallelism. An alignment-free method, known as n-gram modeling, is used to calculate similarities between the sequences. To show
the cost-performance superiority of our method on clustered commodity computers over serial processing in powerful computers,
we simply use UniProtKB/SwissProt dataset for evaluation of the performance of sequence similarity as an interesting large-scale
Bioinformatics application.

Key words: commodity cluster, parallelization, sequence similarity, Apache Storm
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1. Introduction. As a result of increases in the size of available genome sequence data, the processing
and storage of such data have become one of the major challenges in modern genomic research. Bioinformatics
applications such as finding genes in DNA sequences, or aligning similar proteins, all need complex computations
and vast amounts of processing power beside massive memory capacity. Therefore, there is high demand for
faster algorithms and more powerful computers to reduce the execution time of these applications.

For Bioinformatics applications, the primary form of information are raw DNA and protein sequences.
Therefore, one of the first steps toward obtaining information about a new biological sequence is to compare
it with a set of known sequences in existing sequence databases [1]. The results of comparisons often suggest
functional, structural, or evolutionary analogies between sequences. For a given sequence, searching in sequences
of protein databases is one of the most fundamental and important tools for predicting the structural and
functional properties of uncharacterized proteins.

The similarity between two sequences (gene or protein) indicates that they may be derived from the same
ancestral sequence by an evolution. This evolutionary similarity is called homology and similar sequences are
known as homologous [2].

The most common metric showing the similarity between two instances is their distance. Computing
distances between sequences in large datasets is a computationally intensive task [1]. To handle the complexity
of this task,we can take advantage of parallelization techniques. Pairwise calculation provides a natural target
for parallelization because all elements of the distance matrix are independent [1].

Using network-attached workstations as a platform for distributed and parallel computing is becoming
more and more popular. This is due to the fact that todays desktop machines are extremely powerful as well
as affordable. In contrast, dedicated supercomputers are often very expensive, so most research groups have
only limited access to such machines. Commodity computers may be slower than commercial supercomputers,
but they are readily accessible and usable for many tasks. Small networks of commodity computers can be
used for coarse-grain parallelization of database searches. As a result, in response to the rapid increase in
the amount of data generated by the new technologies, such as next-generation sequencing (NGS), researchers
can use parallelization strategies and distributed systems on commodity clusters to accelerate the search in
such datasets. However, the users of Bioinformatics tools are typically unaware of the advantages of emerging
technologies in distributed computing. This is due to the difficulty of converting sequential jobs to distributed

∗Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology,
Tehran, Iran (hajibaba.m@irost.org, gorgin@irost.ir).

†School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran (msharifi@iust.ac.ir).

51



52 M. Hajibaba, S. Gorgin, M. Sharifi

ones and the challenge of understanding distributed technologies well enough to create and manage a distributed
environment [3]. Therefore, it can be useful to show how to parallelize Bioinformatics applications that can be
followed by Bioinformaticians.

A practical study on using parallel computing to speed up the Bioinformatics problems has different as-
pects. A rich and complex study of parallel computing techniques and technologies for solving Bioinformatics
problems has been explored in [1]. In this paper, we use sequence similarity as a case study of Bioinformatics
problems for applying parallelization strategy. But, we focus on alignment-free sequence similarity methods.
So, parallelization strategy for alignment-based methods such as BLAST [4, 5] is out of scope of this work.
On the other hand, we try to find a software parallel solution to sequence comparison, and hardware parallel
solutions are not in our scope. Various parallel architectures for sequence similarity search are compared in
[6]. Moreover, some researchers in this scope have used parallel technologies such as GPU to speed up the
sequence analysis algorithms [7, 8, 9]. In this paper, we concentrate on having applications that are run both
in parallel and in a distributed manner and ignore solutions that only consider running applications in parallel
like GPU solutions. We use commodity clustered computers to distribute sequence searches much the same
as other researches that have parallelized sequence searches on workstation clusters, such as the work in [10]
that uses an alignment-based method. There are also other works that emphasis on parallelization of sequence
similarity search [11, 12, 13, 14], but few works use streaming to overcome big data challenges [15, 16, 17]. For
example, [15] has proposed a stream-based approach for NGS read alignment based on the IBM InfoSphere
Streams computing platform deployed on Amazon EC2.

We also use stream processing for a data and compute-intensive scientific problem (i.e. DNA sequence
analysis). But, as a software solution, our strategy is based on a high-level parallel programming paradigm in
an open source stream processing framework named Apache Storm. In order to get an efficient use of Storm
on a heterogeneous commodity cluster, we have developed a scheduler to balance the workload on processing
nodes. The used similarity method, in our work, is based on n-gram that is derived from statistical language
modeling that uses the Markov chains representation together with cross-entropy from information theory to
get a measure of similarity between n-grams [18]. We use stream processing to overcome computation challenges
as well as memory challenges in this type of sequence similarity search method [19, 20].

More precisely, our contributions are as follows:
• We use protein-sequence streaming as a data partitioning strategy and utilize stream processing for
coarse-grain search in a large database. Using protein-sequence streaming instead of database parti-
tioning, we can reduce the cost of storage in some solutions such as in cloud computing.
• We build a task dispatching strategy (i.e., a weighted round-robin scheduler) to provide a balanced
workload among heterogeneous clustered computers. In this strategy, we dispatch tasks with corre-
sponding data to processing elements. So, each element takes proper sized subsets of the dataset,
according to its computing power.
• We deploy Apache Storm for parallelization of a word-based sequence similarity search method in a
semi-automatic programmer directed manner.

The rest of this paper is organized as follows. Section 2 outlines the scope of the work, the method used for
sequence similarity and the parallel framework used in this paper. Section 3 describes the parallelization concerns
of our work and used strategy to overcome these concerns in a real heterogeneous distributed environment.
Section 4 presents how we have evaluated the performance and effectiveness of our proposed strategy. Section 5
concludes the paper.

2. Background.

2.1. Sequence comparison. Sequence comparison is used to detect the similarity of proteins for explain-
ing phylogenetic relations between them. Existing sequence comparison methods can be classified into two main
categories:

1. Alignment-based methods.
2. Alignment-free methods.

Alignment-based methods [21, 22] use dynamic programming to find the optimal alignment. These methods
assign scores to different possible alignments and select the alignment with the highest score. The similarity
score between two sequences in alignment-based methods is measured by an alignment algorithm (e.g., BLAST



Sequence Similarity Parallelization over Heterogeneous Computer Clusters Using Data Parallel Programming Model 53

[23] or FASTA [24]). However, the alignment-based methods have computational limitations on large biological
databases and suffer from speed limitation [19, 25].

Alignment-free methods [26, 27] have been developed to alleviate the limitations of alignment-based methods
[20]. The similarity score of two sequences in an alignment-free method is measured by various distance metrics,
such as Euclidean distance or Kullback-Leibler divergence [28].

The alignment-free methods can be subdivided into three different classes: gene contents, data compression,
and word composition [19]. The latter that has received considerable attention counts the number of words
shared between a subject and a query sequence. Basically, in word-based methods, an optimal word length k is
chosen, and then the similarity of any two sequences is assessed by comparing the frequencies of all subsequences
of k adjacent letters (also called n-gram, k-mer, k-tuple or k-word) in sequences. High computing time and
memory usage are disadvantages of all these three methods [19, 20]. Nonetheless, word-based methods have
received credit in high-throughput classification of genome sequences and are deployed for diverse objectives in
genomics such as sequence clustering and word similarity searches [29].

Some of the word-based methods [30, 31], determine the similarity between sequences by using a Markov
model to estimate the probability that a sequence is relevant to a given query with respect to their word
frequencies. In this paper, we deploy a similar method to calculate similarities between sequences, which is
described in Section 2.2.

2.2. Similarity method. Amino acids consist of 20 different symbols that can be considered as the
alphabet of a hypothetical language. Protein sequences can also be treated as texts written in this language.
With this analogy, we can apply statistical language techniques in biological sequence analysis [18].

The unique order of amino acids in sequences affects the similarity of proteins. These orders can be obtained
by n-gram based modeling techniques and used in similarity methods with cross-entropy related measures [18].
In these techniques, a Markov chain is built for n-gram models. For example, in Drosophila gene eyeless sequence
[32], amino acids in the range of 30 to 40 are EAV EASTASH. Available tokens of this gene in 2-gram model
are continuous base pairs with length 2, which are {EA,AV, V E,EA,AS, ST, TA,AS, SH}, while in the 3-gram
model, are continuous base pairs with length 3, which are {EAV,AV E, V EA,EAS,AST, STA, TAS,ASH}.

The Shannon entropy [33] can be used to show how a sequence is fitted by an n-gram model, which is
estimated by equation 2.1 [34].
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∑

w∗

P (wn
i ) logP (wi+n−1|w

n−1
i )(2.1)

In equation 2.1, wn
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In equation 2.2, P (wi+n−1|w
n−1
i ) is the conditional probability of the nth word of a n-gram with respect

to the previous n− 1 words. Using the maximum likelihood estimation (MLE) [33], this term can be estimated
by using the n-gram frequencies:
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In equation 2.3, C(wn
i ) is the count of wn

i . For example, in the aforementioned Drosophila gene eyeless
sequence [32], the probability of bigram AS is:

P (A|S) =
C(AS)

C(A)
=

2

3
= 0.66

and its bigram model is illustrated in Figure 2.1, after calculating MLE for each token.
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Fig. 2.1. The bigram model of the sequence of EAVEASTASH

If equation 2.1 is applied to two different sequences X and Y , the outcomes show which sequence is better
fitted by the model, but cannot be used for their direct comparison. Thus, the similarity between two sequences
must be represented as equation 2.4.

H(x, y) = −
∑

w∗

PX(wn
i ) logPY (wi+n−1|w

n−1
i )(2.4)

In equation 2.4, PX(wn
i ) relates to the subject sequence X and PY (wi+n−1|w

n−1
i ) relates to the query

sequence Y whose model has to be estimated. Variable wn
i runs over all the words (or n-grams) of the query

protein sequence.
Now, if we let Sr be a subject sequence and S = S1, S2, . . . , SN be the target protein database, then we can

compute the similarity between them by using equation 2.4. The first step is the computation of reference score
for the subject protein by calculating H(Sr, Sr). Next, each sequence in the target database, Si(i = 1, . . . , N) is
given as the model sequence for calculatingH(Sr, Si). After these calculations, we can haveN dissimilarities that
are the absolute differences against the reference score D(Sr, Si) = |H(Sr, Si)−H(Sr, Sr)|, for all i = 1, . . . , N .
Finally, by ordering these N dissimilarity measures, we can simply find the most similar sequences with the
lowest distance to the subject sequence.

For protein coding genes, a tuple size of 3 can be a good choice [35] with less sensitivity and computation,
but for more accuracy in this paper, we have chosen n = 4.

2.3. Apache Storm. Apache Storm is a real-time stream processing framework built by Twitter that is
available as an Apache project [36]. After the batch processing became popular, it was realized that in many
cases, the turnaround time was unacceptable. Given the needs for low-latency asynchronous stream processing
solutions, Storm has tried to address these needs.

Storm is a scalable, fault-tolerant, distributed and real-time platform that provides distributed stream
processing in a cluster. The Storm programming paradigm consists of Streams, Spouts, Bolts, and Topology. A
Stream is a continuous unlimited sequence of data that can be processed in a parallel and distributed fashion.
A Spout acts as a source that Streams come from and a Bolt takes the input Streams, processes them and
produces new output Streams. The Spouts and Bolts are organized in a directed acyclic graph (DAG) called
a Topology (Figure 2.2). An application developer that uses Storm can define an ideal Topology to describe
communications between processing elements in his/her application and declare data dispatching mechanisms
between processing elements. In Storm, data placement and distribution are provided by this user-defined
Topology. Bolts and Spots in this topology are connected together with stream grouping. Stream grouping
defines how Streams should be distributed among the Bolt’s tasks. For example, in shuffle grouping, tuples are
randomly spread over the Bolt’s tasks such that each Bolt gets an equal number of tuples or in all grouping,
the Stream is replicated across all tasks of the Bolt. Storm does not use intermediate queues to pass Streams
between tasks. Instead, Streams are passed directly between tasks using batch messages at the network level to
achieve a good balance between latency and throughput. Storm employs a master-worker computational model
wherein the master is the main process that distributes tasks among the workers. Each worker process runs a
Java Virtual Machine (JVM), on which it runs one or more executors. An executor is a thread in the system
that is generated by a worker process and runs within the workers JVM. Executors are made of one or more
tasks. The actual work for a Bolt or a Spout is done with the task. A worker process executes a subsection of
a Topology on its own JVM.
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Fig. 2.2. An example of Storm topology (components with the same color have the same work)

Fig. 2.3. An example program in Storm

The Storm resource manager divides nodes into slots and for each worker node, the user configures how
many slots exist on that node. The Storm default scheduler uses a simple round-robin strategy [37]. When a
job is submitted to the master, the scheduler counts all available slots on the worker nodes and assigns worker
instances to nodes one by one in a round-robin manner. It deploys workers so that each node in a topology has
almost an equal number of worker instances. The scheduler gets a job and decomposes it into tasks based on
the topology, which can be delivered to slots.

Here are some reasons why Storm has been chosen as our choice for stream processing. Firstly, it is one of
the leading open source stream processing tools that guarantees scalable, reliable and fault-tolerant processing
of data. Secondly, compared with other leading open source tools such as Apache Spark, Storm processes
the incoming streams in real time without any intentional latency. Thirdly, Storm has an easy programming
paradigm (in contrast to map-reduce in Spark) and is usable with many programming languages (supports both
JVM and non-JVM languages) without requiring any additional new concepts (such as Resilient Distributed
Dataset (RDD) in Spark). Figure 2.3 shows a simple example Java code in Storm for the topology represented
by Figure 2.2.

At last, but not least, Storm can be deployed on clustered commodity computers with low memory (1GB)
and old architecture, while Spark needs high memory capacity for in-memory processing.

3. Distributed computation and parallelization. As mentioned in Section 1, Bioinformatics is con-
fronted with increasingly large datasets. Processing of these datasets takes unacceptably long time on a single
computer. Therefore, distributed computing on multiple computers is becoming an attractive approach to
achieve shorter execution times [3]. In this section, we describe how to distribute sequence comparison jobs
using a stream processing model on commodity computers to process large data in parallel.
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Sequence comparison tasks can run on parallel processors using either coarse-grain or fine-grain methods [6].
In a coarse-grain method, sequences are partitioned equally among the processing elements that are appropriate
for searches in a large database. So equal sized subsets of the database are assigned to processing elements,
one subset to one processing element. Then, each element performs sequence analyses independently on its
subset of the database. If there is a small number of sequences, coarse-grain parallelism may not be a good
method. In these cases, a fine-grain method can be used to get a better speedup [6]. In our work, in order to
evaluate the search in a huge database on a commodity cluster, we use coarse-grain parallelization to minimize
the interactions between parallel processes.

Manually developing parallel programs is a time consuming, complex and error-prone process. Up to
now, various tools have been available to assist programmers in converting serial programs into parallel ones.
Designing and developing parallel programs by these tools requires the use of a parallel programming model
such as a message passing or a data-parallel model. In distributed-memory parallel computation, a data-parallel
model does not need to pass messages and thus makes the programming easier. A well-known representation
of the data-parallel model is a Directed Acyclic Graph (DAG) in which nodes represent application tasks and
directed arcs represent inter-task dependencies. One such tool that offers semi-automatic parallelization and
follows the data-parallel model in a DAG is the Apache Storm that was described in Section 2.3.

The Storm programming model provides a distributed model for processing of streams on processing el-
ements, wherein each element processes the input stream. Since batch processing is a specialization of the
stream processing [38], we can use stream processing frameworks to do batch processing works. In this sense,
we can aggregate the streams arriving in a time period and pass the aggregate to a processing element. So,
Storm assumes the incoming streams as a batch and a set of batch tasks can be executed in parallel in a stream
processing framework. In this manner, each task takes a chain of inputs, processes them using a user-defined
function, and produces a result.

For sequence similarity, in this paper, a simple topology is used in Storm. In this topology, a Spout
receives data and constructs a sequence from character streams to prepare the data elements in protein-sequence
streaming. The Spout sends the result to main processing elements (i.e. Bolts) to compare them with the
subject sequence. It sends sequences asynchronously to Bolts via a queue channel, so Bolts have their input
data ready for execution. If the queue does not get empty during execution, with a sufficient number of Bolts,
we can fully utilize the CPU cycles of the nodes. The subject sequence can be retrieved from a distributed
coordination system such as Apache Zookeeper [39]. Sequences are sent from Spout to Bolts with a statically
balanced Weighted Round Robin method that is described later (Algorithm 2). This architecture is illustrated
in Figure 3.1.

For all schedulers in a distributed system, fairness is a critical feature to be considered. The round robin
strategy as the default Storm scheduler in a shared heterogeneous cluster, which has multiple nodes with different
hardware configurations, may not be fair. In default scheduling, although the processing is done in parallel, a
job waits for its slowest worker to finish.

To balance the workload, we must partition the database into a number of portions according to the
number and the power of processors allocated. To do this, our scheduling algorithm gets benchmarking data
(as described in Algorithm 1) and then dispatches data elements according to their class weights to balance the
workload of the cluster (as described in Algorithm 2).

By using the weights that are taken from benchmarks, the scheduling described in Algorithm 2 minimizes
the imbalance ratio in comparison to the default scheduler; the imbalance ratio is the ratio of largest and
smallest load on a processing instance, that we measure it in the next section.

In the next section, we compare the performances of the default scheduling and our proposed scheduling,
as well as the cost-adjusted-performance of the clustering.

4. Experiments and results. There are various ways to measure the performance of parallel codes. To
be rigorous, the speedup obtained by a parallel implementation should be compared with the best available
sequential code for that problem. Also of importance is the concept of efficiency, defined as the ratio of speedup to
the number of processors, and the computation to communication ratio. But the speedup is not quite calculable
due to heterogeneity of clustered computers. Also, sequence-search algorithms can be measured along many
dimensions such as execution time (or speed), millions of cell updates per second (MCUPS), deployment cost,
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Fig. 3.1. Sequence similarity distributed computing system overview

Algorithm 1 Prepare information for choosing tasks

Input: Benchmark is information receive from benchmarking phase
Output: WorkersMeta is a List of workers’ metadata
1: Info {

id, ◃ id of a worker that is running on a node
weight, ◃ class weight of the worker
counter ◃ the count of tasks must execute on the worker
};

2: cluster ← fetch running workers
3: for each worker ∈ cluster do
4: id← identification number of the worker
5: weight← derive the weight of node from Benchmark using GCD
6: counter ← weight ∗ factor ◃ factor used to round the weight to a proper counter

(normally is 10)
7: tmpInf ← (Info)[Id, weight, counter]
8: WorkersMeta.add(tmpInf)
9: end for

10: return WorkersMeta

and sensitivity [40]. In this section we measure the imbalance load ratio and the speedup of our solution.
At last, we investigate the cost-adjusted-performance that is the product of execution time multiplied by the
deployment cost.

For evaluation, the proposed method has been applied to publicly available protein database SWISS-PROT
[41] as the target database to compare with the genome HIV-gp120 as a query sequence [42]. The input data
(target and query) are all FASTA formatted sequence files. Characteristics of the target dataset and the query
sequence are shown in Tables 4.1 and 4.2 respectively.

The studied similarity method has been benchmarked on several testbed systems in an effort to characterize
their performance. We first present the performance on a commodity cluster with default Storm scheduler,
demonstrating a poor performance caused by heterogeneity. Our comparative study of the performance of our
proposed scheduling shows significant improvement in execution time.
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Algorithm 2 Choose worker for processing the sequence

Input: Task is a task for comparing two sequence,
WorkersMeta is a List of workers’ metadata

Output: worker is the id of a worker to running the task

1: Let n be the size of WorkersMeta List
2: Let workerInf [1 . . . n] be an Array of Info initiated from WorkersMeta

3: worker ← −1
4: Label : WorkerSelection

5: i← 0
6: while i < n do
7: counter ← workerInf [i].counter
8: if counter > 0 then
9: worker ← workerInf [i].id

10: counter ← counter − 1
11: break
12: end if
13: i← i+ 1
14: end while
15: if worker = −1 then
16: for all worker ∈ workerInf do
17: worker.counter ← worker.weight ∗ factor
18: end for
19: goto WorkerSelection

20: end if
21: return worker ◃Send Task to Worker

Table 4.1

SWISS-PROT dataset characteristics

Characteristic value
Name SWISS-PROT

Number of sequences 460,903
Shortest sequence 6
Longest sequence 35,213

Average nucleotides per sequence 374
Total number of nucleotides 172,370,171

Our test cluster had 10 compute nodes, each with 1GB memory and Intel processors with different archi-
tectures. Specifications of nodes deployed in the cluster, the execution time for each node to compare subject
sequence with previously known target sequences in the dataset, and the number of each node are stated in
Table 4.3. Compute nodes ran Apache Storm 0.9.3 under Ubuntu-12.04 to execute 1 or 2 workers per node
according to the number of cores.

To evaluate our cluster, lets consider a cluster wherein we are given m workers for scheduling that are
indexed by the set W = w1, .., wm. There are additional given n tasks for scheduling that are indexed by the set
T = t1, .., tn. Let Ti be the set of tasks scheduled on wi. Then, the load of the worker i (that is wi) is defined
by equation 4.1.

ℓi =
∑

ti∈T

Ci,j(4.1)

In equation 4.1, task tj takes C(i, j) units of time if it is scheduled on wi. The maximum load of scheduling
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Table 4.2

SHIV-gp120 characteristics

Characteristic value
Name HIV1 HXB2 GP120
Length 481
Residues 31-511

Table 4.3

Specifications of the cluster nodes

CPU Model
# of
Cores Price1

Single
Thread

Execution
Time

# of
Nodes

Intel Pentium Processor E2180
(1M Cache, 2.00GHz, FSB 800MHz) 2 $0.5 1h 15m 1

Intel Pentium Processor E2160
(1M Cache, 1.80 GHz, FSB 800MHz) 2 $0.01 2h 10m 2

Intel Pentium 4 Processor HT
(3.20GHz, 1M Cache, FSB 800MHz) 1 $2.2 1h 50m 3

Intel Pentium 4 Processor
(2.40GHz, 512K Cache, FSB 533MHz) 1 $1.99 3h 30m 3

Intel Celeron D Processor 336
(256K Cache, 2.80GHz, FSB 533MHz) 1 $2.95 4h 20m 1

is called the makespan of the schedule and is given by equation 4.2.

ℓmax = max
i∈{1,...,m}

ℓi(4.2)

In our test case, lets assume that T is the set of sequence comparison tasks that is submitted to the master.
Each task is composed of two subtasks ta and tb. ta is the task of constructing a sequence from Stream and tb
is the comparison of the sequence with the subject sequence. Since ta is a lightweight task with respect to tb,
i.e. tb ≫ ta, and ta always runs on a fixed node (Spout node), we can ignore it from calculations. In addition,
if we assume all sequences have the same length, so all tasks would be identical. In our dataset, the difference
between sequence lengths is not significant, so for simplicity in calculations, we can assume that all tasks are
identical. Sequence comparison tasks have also no data dependencies and are independent of each other in a
non-preemptive manner.

Our cluster of computers was composed of 7 one core PCs and 3 double core PCs. To achieve a high level of
parallelism, we used a fixed number of workers on each node according to its number of cores. Since we set cores
per node as computing resources, we had 13 workers. One worker was used as Spout to collect and dispatch
data sequentially. Therefore, twelve (m = 12) workers W = w1, w2, . . . , w12 were left for sequence comparison
in parallel. Scheduling was carried out at worker level and each worker used First-In, First-Out (FIFO) method
for performing the sequence comparison tasks.

By benchmarking, we estimated the time taken by each worker on a node to perform each task. The nodes
in the cluster were classified by system benchmarking before submitting a topology. In the benchmarking phase,
we ran several sequence comparisons on each node to get a task execution time. A task execution time was
measured based on the number of sequences processed in a time period. The benchmarking results are stated
in Table 4.4.

In this work, the workers are classified in p classes as G = {wg1 , wg2 , . . . , wgp} wherein gi is an index for
class i. So, the makespan will be ℓmax = maxi∈{1,...,p} ℓgi . Wherein ℓgi =

∑
tj∈Tgi

Cgi,j denotes the load of

1These prices are taken from online marketplaces such as Amazon and eBay
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Table 4.4

Execution time and performance on each type of node in the cluster testbed

Class
(p)

# of
Slots

Job
Completion

Time Sequences

Task
execution time

per
worker (core)

Performance
( sequence

second
)

1 2 75m = 4500s 460,903 0.0097 102
2 3 110m = 6600s 460,903 0.0143 70
3 4 130m = 7800s 460,903 0.0169 59
4 3 210m = 12600s 460,903 0.0273 36
5 1 260m = 15600s 460,903 0.0338 29

wgi , in which, task tj takes Cgi,j units of time if scheduled on a worker with class i, and Tgi denotes the set of
tasks scheduled on wgi .

The Storm default scheduler uses a simple round-robin strategy that grants the same number of tasks
( sizeofT

m
) to each worker. In our test case, each task is a sequence comparison from the dataset with the subject

sequence that is 460903 tasks of sequence comparison. Therefore, the makespan of the default scheduler at
Storm is the following:

ℓmax =
∑

tj∈Tg5

Cg5,j =
460903

12
× Cg5,j = 38409× 0.0338 ≈ 1, 298

in which,

Tg5 = {tk, tk+12, tk+(2×12), . . . , tk+(38408×12)} | 1 ≤ k ≤ 12, Cg5,j ≈ 0.0338

To efficiently use a parallel computer system, a balanced workload among the processors is required. To
compare the effectiveness of balancing the workload, the percentage of load imbalance (PLIB) [43] is defined by
equation 4.3.

PLIB =
ℓmax − ℓmin

ℓmax

× 100(4.3)

PLIB is the percentage of the overall processing time that the first finished processor must wait for the
last processor to finish. This number also indicates the degree of parallelism. For example, if PLIB is less than
one, we achieve over a 99 percent degree of parallelism. Therefore, a computational method with a lower PLIB

is more efficient than another one with a higher PLIB. The workload is perfectly balanced if PLIB is equal
to zero [43].

For default scheduler, PLIB is obtained as follows:

ℓmin =
∑

tj∈Tg1

Cg1,j =
460903

12
× Cg1,j = 38409× 0.0097 ≈ 373

PLIB =
ℓmax − ℓmin

ℓmax

× 100 =
1298− 373

1298
× 100 ≈ 71

Therefore, in this case, we have less than 29 percent parallelism. In this work, the goal is to minimize the
makespan, i.e. the completion time of the last tasks in the schedule. For this goal, we have to achieve ideal
workload balance, where PLIB = 0. In our proposed scheduling method, each worker gets tasks according to
its computation power (or weight). This means that ℓ1 ≈ ℓ2 ≈ . . . ≈ ℓ12.

To obtain the weight of each worker from the benchmark we calculate the greatest common divisor (GCD)
of task execution times on nodes and set weights accordingly. Assuming that the GCD of task execution times
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is d, then we can set the weight of workers as in equation 4.4.

Weightgi =

∑p

k=1

execution time of wgk

d

execution time of wgi

d

(4.4)

In our example d = 13 and we have

5∑

k=1

execution time of wgk

d
=

execution time of wg1

d
+

execution time of wg2

d
+

. . .+
execution time of wg5

d
= 7.5 + 11 + 13 + 21 + 26 = 78.5

So,

Weightg1 = 10.4,Weightg2 = 7.1,Weightg3 = 6,Weightg4 = 3.7,Weightg5 = 3

In our test case, Storm selects one slot of a node in class 3 as master process. So we have

Tgi =
460903

10.4× 2 + 7.1× 3 + 6× 3 + 3.7× 3 + 3
=

460903

74.2

ℓg1 =
∑

tj∈Tg1

Cg1,j = 6212× 10.4× 0.0097 ≈ 627

ℓg2 =
∑

tj∈Tg2

Cg2,j = 6212× 7.1× 0.0143 ≈ 631

ℓg3 =
∑

tj∈Tg3

Cg3,j = 6212× 6× 0.0169 ≈ 630

ℓg4 =
∑

tj∈Tg4

Cg4,j = 6212× 3.7× 0.0273 ≈ 627

ℓg5 =
∑

tj∈Tg5

Cg5,j = 6212× 3× 0.0338 ≈ 630

ℓmax = max ℓgi ≈ 631

Thus, we expect that our scheduler should perform twice better than the default scheduler (based on their
ℓmax, i.e. 631 compared to 1298), which is also shown by our experimental results in Figure 4.1.

Figure 4.1 shows the turnaround times under the default scheduler and our proposed scheduling method
according to the class of nodes in the cluster; the turnaround time includes time to load workers, submission
time of tasks to workers, scheduling time, synchronization time, inter-node communication time, and delays in
acknowledging.

Experimental results in Figure 4.1 show that our proposed method produces a smaller PLIB than the
default scheduler.

PLIB =
ℓmax − ℓmin

ℓmax

× 100 =
631− 627

631
× 100 ≈ 0.6

Our scheduling method also achieved more than 99 percent degree of parallelism.
Program speedup is another important measure of the performance of a parallel program. By conventional

definition of the speedup, if machine M1 can solve problem P in time T1 and machine M2 can solve the same
problem in time T2, the speedup of machine M1 over machine M2 on problem P is represented by equation 4.5.

SP =
T1

T2
(4.5)
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Fig. 4.1. Comparison of turnaround times for each class of physical nodes and the whole cluster

If machine M2 is composed of m identical instances of the base processor of M1, then we would expect
m processors to solve the solution m times faster than a single processor. But this expectation is used in
homogeneous clusters. For simple calculation of speedup in heterogeneous clusters, based on [44], if our cluster
is a set H = {M1,M2, . . . ,Mm} of m distinct machines, the speedup of a heterogeneous cluster C on problem
P is defined by equation 4.6.

SP =
min{TM1

P , TM2

P , . . . , TMm

P }

TC
P

(4.6)

In equation 4.6, TMk

P is the execution time on machine Mk to solve problem P . In other words, the fastest
machine is selected for comparison to the cluster. For our cluster with m = 13 based on equation 4.6 the
speedup is:

SP =
min{4500, 6600, 7800, 12600, 15600}

1170
=

4500

1170
= 3.8

But this is not a good measure of speedup for our heterogeneous system due to the difference in nodes
performance (slowest machine is 3.5 times slower than the fastest machine). An extension of the relative
speedup for heterogeneous systems has been presented in [45], which is proved to be an appropriate tool for the
evaluation of the speedup of parallel discrete event simulation in heterogeneous execution environments. So,
accordingly, the relative speedup in this paper is calculated by equation 4.7.

rP =
Ne

TC
P × Pc

(4.7)

In equation 4.7, Ne is the number of events in the system. The cumulative performance of the heterogeneous
system can this be defined by equation 4.8.

Pc =

NT∑

i=1

Pi ×Ni(4.8)

Let us denote the number of CPU types in a heterogeneous system by NT , the number and the performance
of CPU cores available from type i by Ni and Pi, respectively. Since our problem is near to discrete event
simulation, the relative speedup or efficiency of our cluster will be:

Pc = 2× 102 + 3× 70 + 4× 59 + 3× 36 + 1× 29 = 787
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Table 4.5

Cost and performance of the proposed method with other systems

System
# of
Cores Cost

Performance
(turnaround time)

Intel Core i7-3770 Processor
(8M Cache, up to 3.90GHz) 4 $344.99 26.5m

Intel Pentium G620
(3M Cache, 2.60GHz) 2 $78.12 40m
INTEL Xeon E5430

(12M Cache, 2.66GHz) 4 $40.0 48m
Proposed technique
over given cluster 13 $16.04 19.5m

rP =
460903

787× 1170
≈ %50

This value is not bad at all for such heterogeneous clusters [45] with low network bandwidths, especially
when the speedup is limited by the serial section (i.e. Spout) of the program.

Scalability becomes the basic need for distributed systems. Because of some problems such as heterogeneity
of our cluster and lack of more nodes, we cannot practically test the scalability of our solution. However, we
try to measure the scalability of our solutions compared to other similar works that scale well.

A similar work to ours is a streaming approach in a distributed architecture for scaling up natural language
processing methods [46] which also leverages Storm. This work describes a series of experiments carried out
with the goal of analyzing the scaling capabilities of the language processing. It shows that the use of Storm
is effective and efficient for scalable distributed language processing across multiple machines when processing
texts on a medium and large scale. Likewise, as mentioned earlier, the used similarity method in this work
is a form of natural language processing [31] and implemented using Storm in a heterogeneous distributed
environment. So, we can conclude our solution is scalable in nature and is efficient in the same environment.

Storm was originally aimed for processing twitter streams at scale [36]. The authors in [47] propose an
event detection approach using Apache Storm to detect events within social streams like Twitter that can scale
to thousands of posts every second. It is really a big challenge to analyze the bulk amount of tweets to get
relevant and different patterns of information on a timely manner. We observed that the sequence similarity
algorithm is an embarrassingly parallel problem that is highly parallel and can be deployed on a distributed
system. We can consider sequences as events and similarity of a sequence with the reference as a rule to detect
events. It has one Spout that reads events from document (dataset for our case) and a pipeline topology like
ours. So, through experimentation on a large Twitter dataset by mentioned paper, we can conclude that our
approach can scale to the equivalent size of data.

As a last example, the authors in [48], have addressed the problem of data stream clustering by developing
scalable distributed algorithms that run on the Apache Storm. They demonstrate experimentally that they are
able to gain close to linear scalability up to the number of physical machines. Likewise, our used similarity
method was applied to the clustering sequences, based on Markov chains representation known as n-gram in
statistical language modeling [18]. We used this sequence clustering strategy in a stream processing manner on
Storm. Therefore, with an optimistic attitude, we can conclude that our solution is scalable at the same level
as this work. However, there are some other works that can be used to inference the scalability of our solution
[49, 50, 51].

In order to evaluate the performance-per-cost, we just use CPU costs as an approximation of system cost.
In our test case, the relation between computer system prices and CPU prices is perfect. The modern and more
expensive CPUs need modern and more expensive motherboards, RAMs and also need more power consumption.
So we ignore these costs and simply compare CPU costs. The cost of the total cluster and other systems based
on the lowest prices (obtained from retail marketplaces) are shown in Table 4.5.

The ”cost-adjusted-performance” of the mentioned cluster running Storm with proposed methods, using
the multiplication of the runtime and the cost of the system, is compared with other systems in Figure 4.2. The
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Fig. 4.2. Comparison of Cost-adjusted-performance of our testbed with proposed method and other types of testbeds

results show that a commodity cluster with our proposed scheduling method has a better performance-per-cost
than other systems.

Although the proposed cluster has more cores, but it demonstrates the lowest cost-adjusted-performance
(or highest performance-per-cost) compared to other single systems. The relative importance of equipment cost
makes traditional server solutions less appealing for solving our problem because they increase performance,
but decrease the performance-per-cost.

5. Conclusions and future works. Clustered commodity computers have already experienced enormous
attention and used as a cost-effective platform for distributed and parallel processing of data/compute-intensive
applications, compared to more expensive dedicated supercomputers. In Bioinformatics, searching in a database
is the most widely used technique and is one of the most common targets to use parallelization in Bioinformatics.
In this work, for parallelize sequence similarity methods, we use Storm as a stream processing framework. The
Storm framework automatically provides some specifications for parallel computing, such as the scheduling,
synchronization, and inter-machine communication. But other specifications, especially partitioning the input
data and balancing the workload should be explicitly programmed using a given strategy such as the strategy
we have proposed in this paper. Streaming can be a good choice instead of database partitioning when the cost
of storage and/or bandwidth is important.

In a perfect world of parallelization, for n processors, the runtime should be n times faster than doing the
same work on one processor. However, in a real world, the performance of a parallelization is decreased due to the
interaction between processes and synchronization. Moreover, the heterogeneity affects the workload balancing;
dividing the jobs equally across machines in a heterogeneous cluster leads to load imbalance. So, efficient
scheduling of applications based on the characteristics of computing nodes can yield significant speedups. In
this paper, we tried to alleviate these obstacles by running coarse-grain CPU-intensive tasks on loosely-coupled
workers with the same workload according to their power.

In the first step to cut down parallelization costs, we diminish the process interactions via reducing the
number of tasks. In this work, we try to minimize process interaction by creating coarsely-grained tasks. In
the second step after minimizing interactions with proper granularity, communications will be addressed. In a
distributed memory fashion, inter-process communications is performed by sending messages over the network.
This message-passing paradigm forces programmers to deal with issues such as the location of the data, the
method of the communication, and the communication latencies. However, by using a data-parallel model as
an explicit programming paradigm for distributed-memory parallel computation that is followed by Storm, the
programmer is free from details of message passing. On the other hand, in heterogeneous environments, the
speedup suffers from unpredictable behavior that is due to diversities in the performance of CPUs. Getting
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a good performance in a heterogeneous distributed system by distributing tasks and dispatching data in such
manner that heterogeneity does not affect the speedup is a challenging problem. In this paper, we use an
approach that distributes tasks and balances the workload among nodes and provides twofold speedup on a
heterogeneous distributed environment.

It should be noted that parallelization strategies presented here would also benefit other commonly used
Bioinformatics tools. The alignment-based methods such as BLAST can also be parallelized using our proposed
method by streaming the query sequences. Consequently, other algorithms in computational biology may take
advantage of performance improvement by this method on cluster based implementations. By running parallel
applications on large commodity clusters with tens of nodes, researchers can cheaply perform analyses with
acceptable execution time. We are currently studying the potential parallelism of the algorithm, especially in
balancing the workload and also the programming paradigms of parallel systems such as MapReduce. In our
future work we are going to consider sequence lengths in calculating loads on each node and use a dynamic
workload balancer to avoid benchmarking.
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PVL: PARALLELIZATION AND VECTORIZATION OF AFFINE PERFECTLY

NESTED-LOOPS CONSIDERING DATA LOCALITY ON SHORT-VECTOR MULTICORE

PROCESSORS USING INTRINSIC VECTORIZATION

YOUSEF SEYFARI, SHAHRIAR LOTFI, AND JABER KARIMPOUR∗

Abstract. There is an urgent need for high-performance computations. Cores and Single Instruction Multiple Data (SIMD)
units are important resources of modern architectures to speed up the execution of programs. Also, the importance of the data
locality cannot be neglected in computations. Using cores, SIMD units, and data locality simultaneously is critical to gain peak
performance of the architecture. But, there are a few research efforts trying to consider these three resources at the same time.
There is a challenge in choosing loops which could be whether run on SIMD units or cores for vectorization and parallelization,
respectively. This paper proposes an approach, named PVL, for parallelization and vectorization of nested loops considering data
locality based on the polyhedral model on short-vector multicore processors. More precisely, PVL, tries to satisfy dependences in
the middle levels of nested loop (the levels between outermost and innermost levels) while trying to move dependence-free loops to
the outermost and innermost position in order to parallelize and vectorize them, respectively. The experimental results show that
the proposed approach, PVL, is significantly effective compared to the other approaches.

Key words: short-vector multicore processors, parallelization, vectorization, perfectly nested-loops
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1. Introduction.

1.1. Motivation. Since the computers have become publicly available, the demand for more increasingly
speed has not vanished. However, it becomes more difficult to speed up the processors by increasing the
frequency. Two major problems with speeding up the processors are overheating and power consumption [1, 2].
One of the proposed solutions to these barriers is multicore architecture. Nowadays, there is a growing trend in
processor industry towards multicore processors. This trend has involved two different areas: (1) ordinary users
and (2) supercomputers. Presently, typical users can get better response time in CPU-intensive applications
due to improved multitasking with the help of multicore processors. The appearance of multicore architecture
also has brought the supercomputing area into a new era. In fact, multicore processors have already been widely
used in parallel computing. Lei et al. [2], in 2007 reported that more than 20% of supercomputers processors
are multicore processors, but in the last report of Top500 supercomputer list published in November 2016,
there is no supercomputer with single core processor. In other words, 100% of processors of supercomputers are
multicore processors [3]. These facts accentuate the importance of effective use of multiple cores.

Besides executing different instructions on multiple processing units simultaneously, namely parallelism, an
alternative approach has been proposed which employs certain instructions called vector instructions [4]. Vector
instructions would initiate an element-wise operation on two vector quantities in vector registers which could
be loaded from memory in a single operation; these machines are called vector machines [5]. Since the late
90’s, specialized processing units called Single Instruction Multiple Data (SIMD) extensions have been included
in the instruction set architecture (ISA) of processors to exploit a similar kind of data parallelism as vector
machines [6]. However, since the width of these vector instructions is relatively small, they are also called short-
vectors [7]. But due to the growing demand for speed, the width of vector-SIMD instruction sets is constantly
increasing (for example, 128 bits in SSE [8], 256 bits in AVX [9] and 512 bits in LRBni [10]). According to
Cebrian et al. [11], in addition to the performance, vectorizing using short-vectors has also a great impact on
energy efficiency. These highlights the significance of the effective use of SIMD vectors. The problem gets more
complicated when both parallelization and vectorization are considered together.

1.2. The problem. Today, computations from complex scientific computations such as signal and image
processing demand high-performance computing to be solved faster. These problems are characterized by long
running computations with spending most of their running time in nested loops. Due to the long consumed

∗Department of Computer Science, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran (seyfari
@tabrizu.ac.ir, shahriar lotfi@tabrizu.ac.ir, karimpour@tabrizu.ac.ir).

67



68 Y. Seyfari, S. Lotfi, J. Karimpour

time in the loops, they are privileged candidates for parallel execution on both kinds of mentioned process-
ing resources: (1) multiple cores and (2) vector-SIMD. In order to fulfill the computing needs of scientific
computations, it is essential to use both multiple cores and vector-SIMD effectively.

Listing 1

The general form of the perfectly nested loops

for(i1 = L1; i1 <= U1; i1+ = T1){
for(i2 = L2; i2 <= U2; i2+ = T2){

...
for(in = Ln; in <= Un; in+ = Tn){

S1: A[f1(i1, i2, ..., in), f2(i1, i2, ..., in), ..., fm(i1, i2, ..., in)] = ...
S2: ... = A[g1(i1, i2, ..., in), g2(i1, i2, ..., in), ..., gm(i1, i2, ..., in)]

}
...

}
}

Listing 1, illustrates the general form of an n-dimensional perfectly nested loop with loop indices i1, i2, ..., in
from the outermost to the innermost loop respectively. Each loop with index k, in the loop nest has a lower
bound Lk, an upper bound Uk and a loop step of Tk. The body of the innermost loop in perfect loop nest
contains some statements that usually have some arithmetic calculation on arrays. The subscript of arrays is
an affine function (f, g) of loop indices [5].

In this paper, we consider the problem of parallelization and vectorization of perfectly nested loops with
dependences on modern architecture with cores and short-SIMD. With respect to the different sources for
parallel execution including multiple cores and vector-SIMD, there are two kinds of loops: (a) loops that do
not carry any dependences, that is, parallel loops which can be executed without any problem in different
cores, (b) loops that do carry dependences, that is, this loops have to be executed serially. Among two different
approaches for parallel execution namely cores and vector-SIMD, later one requires more constraints than cores.
In addition to not having dependence carried by the loop, in order to vectorize them effectively without any
overhead it is better the data to be contiguous in the memory. So, a few factors must be considered to run a
nested loop on modern architectures with two different sources for parallel execution including multiple cores
and vector-SIMD:

1. Multiple cores are used for coarse-grained parallelism, so having parallel loop at outermost level of
nested loop is required to get better performance. In case the parallel loop is not in the outermost
position, we have to move candidate parallel loop to the outermost level if possible;

2. In order to use vector-SIMD to execute different iterations of a loop in parallel, it is better the data
accessed by that loop be contiguous in the memory; in arrays, if it is row-major in memory, the
contiguous data is the data in the last dimension of the array, that is, rightmost subscript in the arrays.
Else, the contiguous data is the ones in the first dimension of the array, that is, leftmost subscript
in the arrays (so contiguous data can be packed in vector registers and can be operated on by vector
instructions);

3. Loops have to be dependence-free since our focus is on loops for executing in multiple cores or vector-
SIMD.

A number of transformations have to be applied to the original loop nests to change the execution order
such that the transformed loop nest can be parallelizable and vectorizable simultaneously. For our purpose, we
have used loop strip-mining and loop interchange transformations. However, the application of a transformation
on a loop nest is legal if it preserves the original data dependences in the loop nest. Polyhedral model is a
powerful abstraction model that can be used to model loop nests, so transformations on each loop nest can
be easily expressed. Also, the legality of transformation can be verified easily [12]. We have used Integer
Linear Programming (ILP) with an objective function and a built-in legality checking constraints to obtain
transformation. With this transformation, we try to move the best candidate vectorizable loop to the innermost
position and the best candidate parallelizable loop to the outermost position. However, there are some loop
nests that do not have one of these parallelizable/vectorizable candidate loops simultaneously. In this case, we
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perform a loop strip-mining transformation before using ILP. For further description see Sec. 3. After having a
parallel loop at the outermost position and vector loop at the innermost position, we generate intrinsic vector
codes for the innermost vector loop and its statements.

1.3. Contributions. The main contributions of this paper are as follows:
• We propose a unified approach for parallelizing and vectorizing perfectly nested loops simultaneously
with respect to the data locality.

• We use ILP with an objective function to get a proper transformation in order to parallelize, vectorize,
and improve data locality of the given nested loop at the same time.

• To vectorize innermost vectorizable loop, we propose to generate intrinsic vector code from binary
expression tree of the statements inside the loop body.

1.4. Paper outline. The remaining sections of this paper are organized as follows: after introduction,
Sec. 2 includes mathematical basic concepts and a brief review of some related works. Section 3 includes the
proposed approach. Section 4 includes evaluation and experimental results. Finally, Sec. 5 is dedicated to the
conclusions.

2. Polyhedral Model and Related Work. In this section, after introducing required concepts for the
polyhedral model, related works are presented.

2.1. Polyhedral Model. An important part of parallelizing/optimizing compilers is the transformation
of programs. In this paper, by program transformation we mean loop-restructuring transformation since we
focus on the loops. In order to apply transformations on loops easily and effectively, the abstract representation
model of the loops is required. Polyhedral model is a powerful and flexible mathematical framework used for
representing programs. It is based on a linear algebraic representation of programs [1, 13]. However, not all
loops can be represented by polyhedral model except static control parts (SCoPs) [13, 14]. A SCoP is defined
as a maximal set of consecutive statements, where loop bounds and conditionals are affine functions of the
surrounding loop indices and parameters. The majority of scientific and engineering calculation kernels belongs
to this class or can be re-expressed as SCoP [12].

The polyhedral model has four basic components to represent loops: (1) the iteration domain, (2) the access
function, (3) dependence polyhedral and (4) the transformation.

The iteration domain is used to represent the dynamic instances of each statement in the loop body
using a system of affine inequalities. The system of affine inequalities is derived from loop bounds enclosing
the statement. Each derived inequality has to be expressed in the Ax + b ≥ 0 form and iteration domain of a

statement is expressed in the D = {−→x |−→x ∈ Zn, A−→x +
−→
b ≥

−→
0 } form where −→x = (x1, x2, ..., xn)

T is the iteration
vector representing a loop nest with depth n and xk is the kth loop index in the loop nest. The possible value
for each loop index is an integer, so each entry of the iteration vector is the member of Z.

For instance, in Listing 2 , the iteration vector is −→x = (i, j)T and the iteration domain of statement S is
DS = {(i, j)|0 ≤ i ≤ N, 0 ≤ j ≤ M} and its matrix form is as (2.1).

Listing 2

The convolution kernel

for(i = 0; i <= N ; i++){
for(j = 0; j <= M ; j ++){

S: y[i] = y[i] + b[j]× x[i+ j]
}

}

DS =









1 0
−1 0
0 1
0 −1









(

i
j

)

+









0
N
0
M









≥
−→
0 (2.1)

The access function is used to represent an access from each statement within loop nest to the data space.
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There is an instance of memory reference for each point in the iteration domain of some statement like S. Each
instance of memory reference accesses a cell of array A that is shown by access function FS

A (−→x S).

The dependence polyhedral is used to represent the data dependences in the loop nest. There is a data
dependence between statements S1 and S2 if and only if both statements refer to the same memory location (that
is the same cell of array) and at least one of them is a write, the statement that executes first is the source and
the statement that executes later is the sink. The dependence polyhedral is essential in parallelizing/optimizing
loops since they determine the transformations that preserve the meaning of the program and it models the
dependences in the program using a set of equalities and inequalities. For example dependence polyhedral for
Listing 2 is DS,S = {(i, j, i′, j′)|0 ≤ i ≤ N, 0 ≤ j ≤ M, 0 ≤ i′ ≤ N, 0 ≤ j′ ≤ M, i = i′} and its matrix form is as
(2.2).

DS,S =





























1 0 1 0
1 0 0 0
−1 0 0 0
0 1 0 0
0 −1 0 0
0 0 1 0
0 0 −1 0
0 0 0 1
0 0 0 −1





































i
j
i′

j′









+





























0
0
N
0
M
0
N
0
M





























= 0

≥
−→
0

(2.2)

The transformations in the polyhedral model are used to change the iteration order of original loop
nests. A program transformation in the polyhedral model is represented by a function that determines the
logical order of statement instances based on surrounding loop indices of the corresponding statement, called
scheduling function [14, 15].

Loop transformations have been applied to improve instruction scheduling, register use and cache locality
and also to expose parallelism [16]. There are a lot of transformations such as loop reversal, loop interchange,
loop distribution, strip-mining and so on. Because some loop transformations only reorder the iterations of a loop
nest these are categorized into one group named Iteration-reordering transformations such as loop interchange
and strip-mining; in addition to iteration-reordering some other loop transformations also reorder statements,
statement instances and/or the operations within a statement such as loop distribution [16].

Some loop transformations can be represented using a scheduling matrix Θ. For example in loop iterators
(

i
j

)

of a 2-d loop nest, the loop interchange transformation can be shown by Θ

(

i
j

)

=

[

0 1
1 0

](

i
j

)

and loop

reversal transformation can be represented by Θ

(

i
j

)

=

[

−1 0
0 1

](

i
j

)

. Because the final aim of transformation

stage in this work is to expose hidden parallelism as a coarse-grained parallelization as well as a fine-grain
vectorization, the most useful transformations are the strip-mining and the loop interchange; however loop
strip-mining cannot be represented as a matrix.

Loop strip-mining is a transformation that can be applied to single loops and it has been applied successfully
in kernels to run on vector machine platforms [16, 17] and since in short-vector multicore processors architecture
there are also vector registers with the short length, loop strip-mining can be also applied. Listing 3 shows the
loop strip-mined version of Listing 2. P in Listing 3 is the number of available cores.
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Listing 3

The strip-mined convolution kernel

k=ceil(N/P);
for(I = 0; I <= N ; I+ = k){

for(i = I; i <= min(I + k − 1, N); i++){
for(j = 0; j <= M ; j ++){

S: y[i] = y[i] + b[j]× x[i+ j];
}

}
}

2.2. Legality of Transformations in Polyhedral Model. In order to parallelize/vectorize loops during
the process of loop transformation, the semantic of the program should not change, that is, transformed program
should generate the same outputs with the same order as the original program; otherwise, the transformation
is not legal. In order to have a legal transformation, it must satisfy (preserve) dependences in the program.
There are four kinds of data dependences: input-dependence, true-dependence, anti-dependence and output-
dependence [5]. However, violating the input-dependence does not affect the meaning of a program.

Given data dependence e between statements S and T , dependence e is said to be satisfied if for all pairs of

dependent instances ⟨
−→
XS ,

−→
XT ⟩ the source is executed before the sink. In other words, the schedule of the source

instance is smaller than the schedule of the sink instance, i.e., if Θ represents the scheduling of statements, for

all pairs of dependent instances: Θ(
−→
XS) < Θ(

−→
XT ) and for statements the schedule of source statement, S, is

smaller than the schedule of sink statement T : Θ(S) < Θ(T ). Applying a transformation Θ on a program is
legal if and only if (2.3) holds.

∀e ∈ E∀⟨
−→
XS ,

−→
XT ⟩ ∈ DS,TΘT (

−→
XT )−ΘS(

−→
XS) ≥ 0 (2.3)

where DS,T is dependence polyhedral of statements S and T .

2.3. Related Work. Parallelization and vectorization are two important techniques to execute different
iterations of loops simultaneously. However, most of the previous works have considered only one of them; while
in order to get better performance, parallelization and vectorization have to be considered together since modern
processors support both types of parallelization. Generally, works in loop optimization can be categorized into
three different fields: improving data locality with loop transformations, loop tiling, and data transformations.

Data locality is a very important factor in improving the performance of the programs and especially loops
[18, 19]. One of the important methods to deal with data locality is loop transformation such as loop fusion and
loop distribution and others. Naci in 2007 [20] tried to improve data locality of loops with loop transformations.
Ozturk in 2011 [21] presented a method based on constraint satisfaction problem (CSP) to handle data locality
and parallelizing of loop nests. Parsa et al. [22] proposed a method to expose coarse-grain parallelism by
reusing data to execute loops on multicore processors. They tried to find a scheduling function for nested loops
using a polyhedral model that makes iterations of outer loops independent and consequently parallel. To find
such a transformation (scheduling function), they tried to satisfy dependences in inner loops. Doing so, the
reuse distance of the data is reduced. It is notable to mention that making outer loops dependence-free and
moving dependencies to inner loops has achieved just by the only main idea: to satisfy dependencies at inner
loops. To use vector-SIMD units of processors, the innermost loops have to be dependence-free, that is, either
the innermost loop does not carry any dependences or if it carries some dependences, then another candidate
dependence-free loop should be moved to the innermost position if it is legal. However with their idea, they
make the innermost loops to carry dependencies and as a result, they miss vectorization chance. Not only they
have not considered the important technique of vectorization, but also their idea inhibits any next vectorization.

Tiling is a vital technique to gain both data locality and coarse-grained parallelization of loop nests [23, 24].
Parsa et al. [25] presented a genetic algorithm (GA) to tile the iteration space of the nested loops with more
than three dimensions. They tiled the iteration space in a way that each individual tile can be executed on
different processors simultaneously. Since the size and the shape of tiles are uniform, they just consider a tile
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in iteration space as a chromosome in GA. This method has some advantages including having no restrictions
on loop dimensions and also after tiling, nested-loops can be executed in parallel. However, vectorization is not
considered in this work. Krishnamoorthy et al. in 2007 [26] presented a method to tile loops for eliminating
pipelined start and drained finish of the tiles. With this method in addition to improving data locality and
gaining coarse-grained parallelization, they addressed the problem of unbalanced execution of tiles in multi-core
systems. Bondhugula et al. in 2008 [27] proposed an iteration space tiling method based on polyhedral to
execute on multicore processors. In this work, they presented a cost model to obtain parallelization and data
locality at the same time. The aims of this tiling are minimization of communications and increasing data reuse
in each processor. The advantage of this work is that it can be used on loops with any dimensions and the
disadvantages of this work are the delays of pipelined start-up and drain of tiles and also vectorization has not
been considered in this work. Bandishti et al. in 2012 [28] presented a new tiling method. This method was
replaced traditional parallelopiped tiling in Pluto compiler.

Data layout transformation is another technique that has been using for preparing loops both to enable
vectorization and also for improving data locality in the new architectures [29, 30]. Lu in 2009 [31] presented a
data layout transformation method for optimizing data locality in multi-processor architecture of Non-Uniform
Cache Architecture (NUMA). Jang et al. in 2010 [32] presented a mathematical model for acquiring access
patterns of data and then computing the most proper data transformation in order to vectorize loops.

A number of the works have addressed the problem of parallelization and vectorization of the programs,
however, they either focused on a very special kind of CPU like iPSC-VX or they tried to parallelize or vectorize
a special programs only. These works are reviewed in the following section.

Krechel et al. [33] investigated parallelization and vectorization strategies for the solution of large tridi-
agonal linear systems on MIMID computers which have vector processors. In their experiments, they try to
minimize communication on message-based computing systems and maximize the parallelism. In particular,
they presented a distribution of large tridiagonal systems across different processes on iPSC2-VX architecture.
Aykanat et al. [34] implemented Conjugate Gradient algorithm for exploiting both parallelization and vectoriza-
tion on iPSC-VX/d2 architectures with 2-dimensional hypercube and used it to solve large sparse linear systems
of equation. They achieve efficient parallelization by reducing communications and overlapping computations
on the vector processor with internode communication. Crawford et al. [35] proposed a vectorization and
parallelization approach for the application of the adiabatically-adjusting principal axes hyperspherical(APH)
Hamiltonian used in time-dependent quantum reactive scattering calculations. They separate Hamiltonians for
APH coordinates into its constituent parts and vectorize these to speedup computations required in matrix
multiplications and then parallelize.

3. The Proposed Approach. In this section, we propose an approach for parallelizing and vectorizing
perfectly nested loops with dependences on modern architecture with cores and short-SIMD.

There are two different cases in the original loop nest that have been dealt with in the proposed method.
In the first case, the original loop nest has more than one dependence-free loop one of whose has contiguous
data in the memory and in the second case the original loop nest has just one dependence-free loop whose data
is contiguous in the memory. In the first case, employing loop strip-mining is not required and it is sufficient to
use loop interchange transformation to move parallel/vector loop to proper positions.

Listing 4

The summation kernel, C=A+B

for(j = 0; j <= N ; j ++){
for(i = 0; i <= M ; i++){

S: C[i, j] = A[i, j] +B[i, j]
}

}

For example the loop nest in Listing 4 has two dependence-free loops but because the arrays are stored in
row-major, in order to enable vectorization, loop with j index has to be moved to the innermost position
(Listing 5).



PVL: Parallelization and Vectorization of Affine Perfectly Nested-Loops 73

Listing 5

The loop interchanged summation kernel, C=A+B

for(i = 0; i <= M ; i++){
for(j = 0; j <= N ; j ++){

S: C[i, j] = A[i, j] +B[i, j]
}

}

However, in the second case where there is just one dependence free loop, the usage of loop strip-mining is
unavoidable to have both parallel and vector loops. For example in order to parallelize and vectorize the loop
nest in Listing 2, since there is just one dependence-free loop, using loop strip mine with step sizes k on loop i
results two dependence-free loops I, and i (Listing 3) that loop i can be vectorized. In order to vectorize loop
i, it has to be moved to the innermost position by a proper transformation.

In addition to the cores and short-vectors, the data locality has a significant effect on the execution time of
the programs. So, besides parallelization and vectorization, we try to find a transformation that has improved
data locality according to the storage layout of the array whether it is row-major or column-major. In this
order, we have used an ILP-based method to obtain proper transformation.

3.1. ILP formulation. In this section, a new ILP based method, PVL, is proposed to obtain proper loop
interchange transformation that enables coarse-grained parallelism and fine-grained vectorization. Generally,
when formulating a problem in ILP, there is an objective function we want to maximize/minimize and some
constraints with respect to which the objective function has to be satisfied.

It has been shown [5] that cores are best suited to coarse-grained computations in new short-vector multicore
architectures and the computations of outer loops are more coarse-grained than inner loops in loop nests. Hence,
in the loop nest, it is better to move the parallel loop to the outermost position- that is, the outer the loop,
the more coarse-grained the computations. On the other hand, parallelism is fine-grained in the short-vectors.
Loops with contiguous data which are in the innermost position can be executed in short-vectors.

3.1.1. Formulating Objective Function. Loop interchange transformation is a square matrix n × n
which n is the dimension of the original loop nest and it can be represented as a matrix in which entries belong
to {0, 1}, such that there is just a single one in each row as well as each column; the original scheduling of
strip-mined convolution is as (3.1) where the iteration order of strip-mined convolution would not change by
this transformation.

Θ =





1 0 0
0 1 0
0 0 1



 (3.1)

Having just a single one in each row in loop interchange transformation, it can be formulated as a constraint
in ILP (3.2).

|dimensions|
∑

i=1

ci = 1 (3.2)

To obtain proper transformation using proposed ILP based method, transformation Θ will be produced row
by row. For a three-dimensional loop, each row of Θ in general, is denoted by (ci, cj , ck) such that each entry
has a value. Hence, in order to get proper values of ci, cj , and ck, the objective function of ILP has to be a
function of row’s entries such that it satisfies parallelization, vectorization, and data locality in the transformed
loop nest. In order to create the objective function, it is required to notice the behavior of the transformation
matrix. For a three-dimensional loop nest, given loop interchange transformation Θ is composed of three rows:

Θ =





c1i c1j c1k
c2i c2j c2k
c3i c3j c3k
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Table 3.1

Creating the objective function for a sample 3-dimensional loop

coefficients ci cj ck
P 1

3

1

3

1

3

V 1

3

1

3
3

l1
1

3

2

3

3

3

l2
1

3

2

3

3

3

l3
1

3

2

3

3

3

L =
∑

li
3

3

6

3

9

3

P + V + L 5

3

8

3

19

3

n× (P + V + L) 5 8 19
objective function min5ci + 8cj + 19ck

In this transformation, each row is dedicated to a loop through loop nest, and each column is representing
the position of the corresponding loop (row) in the loop nest, that is, if the first row of Θ is (0, 1, 0), it denotes
that the position of the first loop in transformed loop nest would be the second position. As explained so
far, with respect to the final aim of parallelization and vectorization at the same time in the loop nest, it is
required that first row and last row of the transformation Θ show the parallel and the vector loops, respectively.
However, since in the proposed method transformation Θ is obtained row by row from the outermost row to
the innermost row, it is clear that the parallel loop has to be selected at first and the vector loop has to be
selected at last. In the following transformation Θ, the row denoting parallel loop is highlighted as green (box
with dashed line) and the row denoting vector loop is highlighted as blue (box with dotted line).

With these explanations, in the objective function of the proposed method the priority of the parallel loop
is selected as the highest and the priority of vector loop is selected as the lowest. In the other hand, loop nests
may have some loops neither parallelizable nor vectorizable; these loops are the loops with dependence and
transformation Θ is legal if it satisfies all dependences in the loop nest. Since the first and last rows represent
parallel and vector loops respectively, so dependences have to be satisfied in the middle rows highlighted as red
(box with solid line) in the transformation, so the priority of loops with dependence is mid. By middle rows we
mean the rows of the transformation Θ that are between the first and the last rows. Because the formulated
ILP problem in Sec. 3.1.1 is a minimization problem, the loops with the highest priority (parallel loops) have
smallest coefficients and similarly the loops with the lowest priority (vector loops) have the highest coefficient.
Hence, the objective function of sample three-dimensional loop nest in Listing 6 is created according to the
Table 3.1.

Listing 6

Sample 3d-loop

for(k = 0; k <= 100; k ++){
for(j = 0; j <= 100; j ++){

for(i = 0; i <= 100; i++){
S: A[i, j, k] = A[i, j, k] +B[i, j, k];

}
}

}

In this loop nest, there are three parameters to make up an objective function: data locality, parallel, and
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vector which are described as follows:
Data locality in this paper means whether the arrays are stored in the memory as row-major or column-

major. There is a row (i.e. l1, l2, ...) in the table for each reference. The final locality, L, is defined as
L =

∑

li. Values of each li in the table is computed as follows: if arrays are stored as row-major in the memory,
li,j = j

dimensionloop
, where lij is the value in column cj of row li. If arrays are stored as column-major in

the memory, li,j =
dimensionloop−j+1

dimensionloop
. In this example, it is assumed that the arrays are stored as row-major.

So, the first row of data locality, l1, is for the first reference in the statement within loop nest i.e. A[i, j, k]
(left-hand-side). The values of this row are 1

3
, 2

3
, and 3

3
. In this example dimensionloop = 3 and because the

loop index i is the first subscript in the reference, so its value is 1

3
, and so on.

Parallel parameter denotes the loops which its iterations can be executed in parallel. Values of this row in
the table belong to {n, 1

n
} where n is the number of dimensions. The presence of n means that the iterations of

the corresponding loop can not be executed in parallel, and the presence of 1

n
means that the iterations of the

corresponding loop can be executed in parallel. In Listing 6, iterations of all loops can be executed in parallel,
so the values of all entries of this row are 1

n
.

Vector parameter denotes the loops with contiguous data which do not carry any dependence. Values
of this row in the table belong to {n, 1

n
}, where n is the number of dimensions. The presence of n means

that the corresponding loop can be vectorized and the presence of 1

n
means that the corresponding loop is not

vectorizable. In this example, the loop with index k can be vectorized. So in the table, vector parameter of this
loop is 1

3
(here n = 3) and other loops are 3.

Finally, the parameters of Table 3.1 is used as n × (P + V + L) to obtain the objective function, where n
is the number of dimensions and P , V , and L are parallel, vector and locality parameters, respectively.

3.1.2. Automatically Getting Objective Function from Data Dependences. In order to automat-
ically obtain objective function from data dependences, Algorithm 1 is proposed. As explained in the Sec.
3.1.1, the loops that could be executed in parallel will be run in the cores, because the formulated ILP problem
in the previous section is minimization, in step 1 the algorithm gives the lowest coefficient 1

n
for all of them,

denoting that one of these loops should be scheduled first. The loops that could be vectorized will be run in the
short-vectors within each core, so the algorithm gives the highest value n for them, denoting that one of these
loops should be scheduled last, where n is the number of dimensions. The arrays storage layout is used in the
algorithm to have better data locality. In step 2, the objective function is get by P + V +L and since all terms
of objective function have denominator n, the final objective function is get by n × (P + V + L) which omits
denominators.

3.2. Formulating Constraints. In the following subsections, constraints of the problem are formulated
for ILP

3.2.1. Legality of Transformation. One of the benefits of using polyhedral model is that legality of
the obtaining transformation can be verified with a built-in set of constraints obtained from Rel. 2.3 [36].
To create the set of semantic-preserving constraints using Rel. 2.3, for each dependence that is for every
dependent statements S and T , the obtained legality constraint from (2.3) is (3.3) and in the case of non-
uniform dependences, the obtained nonlinear constraint is converted to linear using Farkas lemma [1, 22, 37].

ΘT (
−→
XT )−ΘS(

−→
XS) ≥ 0 (3.3)

3.2.2. Linearly independence rows. After obtaining the transformation Θ, it is required to be applied

on the original polyhedron A−→x +
−→
b ≥

−→
0 defining the original loop nest. Scattering function leading to the

target index −→y = Θ−→x , the polyhedron of the transformed loop nest is defined by (3.4) [12, 15].

(AΘ−1)−→y +
−→
b ≥

−→
0 (3.4)

The transformation Θ is used as inverted (Θ−1) in the polyhedron of the transformed iteration space,
relation (3.4), so it is required to be invertible. On the other hand, transformation Θ is obtained row by row, so



76 Y. Seyfari, S. Lotfi, J. Karimpour

Algorithm 1 Automatically obtain objective function for ILP

Input: Data Dependence Matrix
Output: Objective Function

Step1: //for each loop in the loop nest fill the parallel and vector parameters of
//Objective Table (OT), Table 3.1 in the paper
n=number of dimensions
for loop index i=1 to number of dimensions do

//parallel
if (loop Li carries any dependences) then

OT [′parallel′, i] = n;
else

OT [′parallel′, i] = 1

n
;

end if

//vector
if (loop Li does not carry any dependences AND Loop index of Li has contiguous data in the memory)

then

OT [′vector′, i] = n;
else

OT [′vector′, i] = 1

n
;

end if

end for

//locality
for each reference within loop nest do

for loop index i=1 to number of dimensions do
if arrays are stored as row-major in the memory then

OT [′locality′, i]+ = j
dimensionloop

if this loop index, i, is the jth subscript of the array

else

OT [′locality′, i]+ = dimensiondata−j+1

dimensionloop
if this loop index, i, is the jth subscript of the array

end if

end for

end for

Step 2:

for loop index i=1 to number of dimensions do
for each of the parameters (parallel, vector, and locality) do

coefficient of the loop Li in the objective function, coefficienti =
n× (OT [′parallel′, i] +OT [′vector′, i] +OT [′locality′, i]);

end for

end for

in order to Θ be invertible, its rows have to be linearly independent. To this order, in the process of obtaining
Θ, after obtaining each row a new constraint is added to the set of the constraints of ILP formulation of new
row by (3.5) that ensures the solutions are linearly independent [1, 38, 39].

Θ⊥
S = I −ΘT

S (ΘSΘ
T
S )

−1ΘS (3.5)

∀i,Θi⊥
S θ∗S ≥ 0 ∧

∑

i

Θi⊥
S θ∗S ≥ 1 (3.6)
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In (3.5) and (3.6), ΘS is the obtained transformation for statement S so far, ΘT
S is the transposition of ΘS ,

I is the identity matrix and θ∗S is the next row to be found for statement S.

3.3. The Proposed Algorithm. Algorithm 2 is proposed to obtain the transformation used to parallelize
and vectorize nested loops simultaneously. In the first step, if there is not enough dependence-free loop for both
parallelization and vectorization, loop strip-mining transformation will be applied to have enough dependence-
free loops for both parallelization and vectorization. The constraints of ILP will be built in the steps 2 and 3.
In step 2, the loop interchange constraint will be built e.g. for a three-dimensional loop the loop interchange
constraint is as Rel. 3.2. In step 3, legality constraints will be built according to the data dependences of the
given loop nest using Rel. 3.3. The transformation matrix Θ (T in the algorithm) will be found in step 4. Step
4 is used in this algorithm to obtain objective function for each row in the transformation matrix Θ. In this
step, after finding each row of the transformation matrix, the linearly independence constraint is added to the
constraints set using Rels. 3.5 and 3.6.

Algorithm 2 PVL algorithm

Input: Data Dependence Graph (DDG), Dependence polyhedron (DS,T ) for each edge in DDG
Output: Transformation matrix T

Step 1:

if (there is not enough dependence-free loop) then
Apply loop strip-mining

end if

Step 2: //build loop interchange constraint

Add
∑

i=|dimensions|

ci = 1 to constraints-set

Step 3: //build legality constraints
for (each dependence e in DDG) do

Build legality constraints LCe and add to constraints-set
if (e is nonuniform) then

Apply Farkas lemma and get linearized constraints
end if

end for

Step 4: //obtain transformation matrix T using ILP formulation
for (each dimensions of original loop nest) do

//objective function:
obj fun = Get new objective function using Algorithm 1 (input:D)
r = ILP-SOLVE(obj fun, constraints-set)
Add row r to T
Eliminate satisfied dependences from D
Add linearly independent constraints to constraint-set

end for

3.4. Intrinsic Vector Code Generation. After applying the obtained transformation to the original
loop nest. OpenMP is used to parallelize the outermost parallel loop and the following intrinsic vectorization
approach is used for vectorizing the innermost vector loop. In this approach after determining loop index of the
innermost loop, a binary expression tree is created for each statement within the body of the innermost loop.
The binary expression tree is traversed as post order and for each leaf of the tree, an intrinsic load code and
for each non-leaf node of the tree corresponding intrinsic vector operation are generated. In order to vectorize
inner most vectorizable loop nest i, we want all operations as SIMD. Consider statement y[i]=y[i]+b[j]×x[i+j],
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Fig. 3.1. The binary expression tree of y[i] = y[i]+b[j]×x[i+j]

two states are possible. In the first state, the subscript of reference in the statement contains loop index i,
such as y[i] in this statement. In this state, the intrinsic vector load will load four contiguous elements y[i],
y[i+1], y[i+2] and y[i+3] of array y. In the second state, the subscript of reference in the statement does not
contain loop index i, such as b[j] in this statement. In this state, the corresponding register vector will load
the same element b[j] four times (b[j], b[j], b[j], and b[j]). For example if the statement of the innermost loop
is y[i]=y[i]+b[j]×x[i+j] and the loop index of the innermost loop is i, binary expression tree and corresponding
intrinsic vector codes are as Fig. 3.1 and Listing 7, respectively. If the current statement within loop nest
requires more vector registers than available vector registers in the underlying architecture, then we split that
statement into some sub-statements and store result of each sub-statement in a temporary vector register than
gather all temporary vector registers in order to make up the result of that statement.

Listing 7

Intrinsic vector code of Fig. 3.1

m128 y4= mm loadu ps(&y[i]);
m128 b4= mm set1 ps(b[j]);
m128 x4= mm loadu ps(&x[i+j]);

y4 = mm add ps( mm mul ps(b4, x4), y4);
mm storeu ps(&y[i], y4);

3.5. Example. In this section, Algorithm 1 and Algorithm 2 are used step by step in order to obtain a
proper transformation for following loop nest, which upper bound of loops, N, is divisible by four:

Listing 8

Example loop nest

for(i = 1; i < N ; i++){
for(j = 1; j < N ; j ++){

for(k = 0; k < N ; k ++){
for(l = 0; l < N ; l ++){

S: A[i, j, k, l] = A[i− 1, j − 1, k, l] +B[i− 1, j − 1, k, l];
}

}
}

}

The iteration domain polyhedron for statement S within the loop nest is:

DS = {(i, j, k, l)|1 ≤ i ≤ N − 1, 1 ≤ j ≤ N − 1, 0 ≤ k ≤ N − 1, 0 ≤ l ≤ N − 1}

The dependence polyhedron for flow dependence (RAW: read after write) from the write at A[i, j, k, l] to
the read at A[i− 1, j − 1, k, l] for any two iterations, I = (i, j, k, l) and I ′ = (i′, j′, k′, l′) is:

DS,S = {(i, j, k, l, i′, j′, k′, l′)|1 ≤ i ≤ N − 1, 1 ≤ j ≤ N − 1, 0 ≤ k ≤ N − 1, 0 ≤ l ≤ N − 1,

1 ≤ i′ ≤ N − 1, 1 ≤ j′ ≤ N − 1, 0 ≤ k′ ≤ N − 1, 0 ≤ l′ ≤ N − 1,

i′ = i− 1, j′ = j − 1, k′ = k, l′ = l}
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Table 3.2

Creating the objective function for the first row of the transformation matrix for the example loop nest

coefficients ci cj ck cl
P 4 4 1

4

1

4

V 1

4

1

4

1

4
4

l1
1

4

2

4

3

4

4

4

l2
1

4

2

4

3

4

4

4

l3
1

4

2

4

3

4

4

4

L =
∑

li
3

4

6

4

9

4

12

4

P + V + L 4 + 1

4
+ 3

4
4 + 1

4
+ 6

4

1

4
+ 1

4
+ 9

4

1

4
+ 4 + 12

4

n× (P + V + L) 20 23 11 29
objective function min 20ci + 23cj + 11ck + 29cl

Because this loop nest has two loops with independent iterations, so Step1 of the Algorithm 2 is not required.
The loop interchange constraint for this loop nest using Rel. 3.2 is:

ci + cj + ck + cl = 1

and the legality constraints for this dependence using Rel. 3.3 is as follows:

(ci, cj , ck, cl)× (i, j, k, l)T − (ci, cj , ck, cl)× (i′, j′, k′, l′)T ≥ 0

(ci, cj , ck, cl)× (i, j, k, l)T − (ci, cj , ck, cl)× (i− 1, j − 1, k, l)T ≥ 0

ci + cj ≥ 0

Now the constraints of ILP are determined. The objective function of the ILP is created according to
the Table 3.2. In this table, because the loops i and j carry dependence, the corresponding values for these
loops in row P (parallel parameter) are n and because the iterations of the loops k and l are independent the
corresponding values for these loops in row P are 1/n, which n is number of dimensions (n = 4). The values of
row V (vector parameter) corresponding with loops i and j are 1/n means they are not vectorizable because of
the dependence and the value of loop k is 1/n denoting that although iterations of this loop are independent
but the data corresponding with this loop in the arrays are not contiguous. Hence, the loop k is not preferred
to be vectorized. The value of the loop l is n, denotes that this loop is preferred to be vectorized (which n is the
number of dimensions, here n = 4). The locality parameter is the aggregation of the lis, the locality status of
each reference within the statement of the loop nest. Since in this example data layout is row-major, for each
reference the locality is calculated based on j

dimensionloop
, where j denotes that this loop index is jth subscript

in the reference from the left. The final objective function is min20ci+23cj +11ck +29cl. So, the ILP problem
for the first row of the transformation matrix is as follows:

min 20ci + 23cj + 11ck + 29cl s.t.
(1) ci + cj + ck + cl = 1;
(2) ci + cj ≥ 0;
(3) ci ≥ 0;
(4) cj ≥ 0;
(5) ck ≥ 0;
(6) cl ≥ 0;

The coefficients (ci, cj , ck, cl) of the first row of the transformation matrix obtained by solving above ILP
problem is (0, 0, 1, 0). This row of transformation matrix determines the position of the loop k. Since the RAW
dependence is not carried by this loop, after finding the position of this loop, the dependence graph does not
change so the objective function for the next row will not change. However, the linear independence constraint
will enforce ck = 0 for the next row of the transformation matrix. To obtain the next row of the transformation
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Table 3.3

Creating the objective function for the third row of the transformation matrix for the example loop nest

coefficients ci cj ck cl
P 4 1

4

1

4

1

4

V 1

4

1

4

1

4
4

l1
1

4

2

4

3

4

4

4

l2
1

4

2

4

3

4

4

4

l3
1

4

2

4

3

4

4

4

L =
∑

li
3

4

6

4

9

4

12

4

P + V + L 4 + 1

4
+ 3

4

1

4
+ 1

4
+ 6

4

1

4
+ 1

4
+ 9

4

1

4
+ 4 + 12

4

n× (P + V + L) 20 8 11 29
objective function min20ci + 8cj + 11ck + 29cl

matrix, the linear independence constraint is added to the constraints set according to the Rels. 3.5 and 3.6:

Θ⊥
S =









1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1









hence, the linear independence constraint ci + cj + cl ≥ 1 should be added to the constraints set.
The ILP formulation for obtaining the second row of the transformation matrix is as follows:

min 20ci + 23cj + 11ck + 29cl s.t.
(1) ci + cj + ck + cl = 1;
(2) ci + cj ≥ 0;
(3) ci ≥ 0;
(4) cj ≥ 0;
(5) ck ≥ 0;
(6) cl ≥ 0;
(7) ci + cj + cl ≥ 1;

The solution of the above ILP problem gives (1, 0, 0, 0) for the coefficients (ci, cj , ck, cl) of the second row
of the transformation matrix. This row of transformation matrix determines the position of the loop i. To
obtain the next solution for the third row, linear independence constraint cj + cl ≥ 1 should be added to the
constraints set. Because the RAW dependence is carried by this loop, after finding the position of this loop,
this dependence will be satisfied and therefore will be removed from the dependence graph and constraints set
(ci + cj ≥ 0). So, the objective function for the next row will change as Table 3.3. The positions of the loops
i and k are determined already. Therefore, because of linear independence constraint the values of coefficients
corresponding with the loops i and k in the next rows will be zero. Hence, their columns in the Table 3.3
will not have any effects on the solution of the next row. So, we do not change the values of these columns in
Table 3.3.

The ILP formulation for obtaining the third row of the transformation matrix is as follows:

min 20ci + 8cj + 11ck + 29cl s.t.
(1) ci + cj + ck + cl = 1;
(2) ci ≥ 0;
(3) cj ≥ 0;
(4) ck ≥ 0;
(5) cl ≥ 0;
(7) cj + cl ≥ 1;

The solution of the above ILP problem gives (0, 1, 0, 0) for the coefficients (ci, cj , ck, cl) of the third row of
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the transformation matrix. This row of transformation matrix determines the position of the loop j. To obtain
the next solution for the fourth row, linear independence constraint cl ≥ 1 should be added to the constraints
set. Because after finding the third row of the transformation matrix the dependence graph does not change,
so the objective function for the next row will not change.

The ILP formulation for obtaining the fourth row of the transformation matrix is as follows:

min 20ci + 8cj + 11ck + 29cl s.t.
(1) ci + cj + ck + cl = 1;
(2) ci ≥ 0;
(3) cj ≥ 0;
(4) ck ≥ 0;
(5) cl ≥ 0;
(7) cl ≥ 1;

The solution of the above ILP problem gives (0, 0, 0, 1) for the coefficients (ci, cj , ck, cl) of the fourth row
of the transformation matrix. Therefore, the final transformation matrix is as follows:

Θ =









0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1









Applying the transformation matrix Θ to the original loop nest moves the loop k to the outermost position as
a coarse-grained parallel loop and the loop l to the innermost position as a fine-grained vector loop. Listing 9
shows the resultant final loop nest after generating intrinsic vector code for the statement within the loop.

Listing 9

Final output code for example loop nest

#pragma omp parallel for schedule(static)
for(k = 0; k < N ; k ++){

for(i = 1; i < N ; i++){
for(j = 1; j < N ; j ++){

for(l = 0; l < N ; l+ = 4){
m128 a41= mm loadu ps(&A[i−1, j−1, k, l]);
m128 b4= mm loadu ps(B[i−1, j−1, k, l]);
m128 a42 = mm add ps(a41, b4);
mm storeu ps(&A[i, j, k, l], a42);

}
}

}
}

The final output code of PVL for one-dimensional convolution (Listing 2) is also represented in Listing 10.

4. Evaluation and Experimental Results. The effectiveness of the proposed method was experimen-
tally evaluated using execution on a hardware platform. The effectiveness of the proposed method was first
demonstrated using a set containing the benchmarks that usually have used in the field of parallelizing com-
pilers. In order to further study the effectiveness of the proposed method, another set of loop nests containing
four synthetic benchmarks are used. Each synthetic benchmark is designed to demonstrate the effectiveness
of the proposed method in a special case out of four cases that cover the majority of loop nests in scientific
computations. Each benchmark was run 10 times and the average execution time of 10 runs is reported in the
tables and figures. We compare the performance of the proposed method with the original programs and also
with previous state-of-the-art methods. The execution time test was evaluated using GCC 4.9.2.
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Listing 10

Final output code for one-dimensional convolution

int k=ceil(n/p);
int m=0;
#pragma omp parallel for schedule(static)
for (int I=0; I<n; I+=k){

m=min(I+k−1, n);
for (int j = 0; j<n; j++){

for(int i=I; i<m; i+=4){
m128 y4= mm loadu ps(&y[i]);
m128 b4= mm set1 ps(b[j]);
m128 x4= mm loadu ps(&x[i+j]);

y4 = mm add ps( mm mul ps(b4, x4), y4);
mm storeu ps(&y[i], y4);

}
}

}

4.1. Experimental Setup.

Hardware. The execution time tests were performed on two dual and quad core systems. Dual core
system is an Intel Dual Core CPU E2200 with a 2.20GHz frequency, 32KB L1 cache, 1024KB shared L2 cache,
3GBs RAM, and running Linux Ubuntu 12.04 and quad core system is an Intel Core2 Quad CPU Q6600 with
a 2.40GHz frequency, 32KB L1 cache, two 4096KB L2 caches, 2GBs RAM and running Linux Ubuntu 12.04.
CPU programs were compiled using GCC 4.9.2 with the ’-march=native -mtune=native -O3’ optimization flags
in order to generate the best code for underlying architecture.

Benchmarks. To test the effectiveness of the proposed parallelization and vectorization technique, we
use four data-intensive real benchmarks: matrix multiplication, one-dimensional convolution, two-dimensional
convolution, and Sobel filter. Matrix multiplication is the core mechanism in linear algebra applications such
as image processing, and physical or economic simulations, and improving it can be very useful in real life
applications. Both one and two-dimensional convolutions are very regular in Digital Signal Processing (DSP)
field and finally, Sobel filter is an application of two-dimensional convolution. The another set contains four
synthetic benchmarks covering four cases that are usual in the scientific applications. Table 4.3 demonstrate each
case and the synthetic benchmark covering it. This set of benchmarks is listed in Table 4.1. All the benchmarks
use single precision floating point operations. Table 4.2 shows problem sizes used in the benchmarks. All array
sizes used in the benchmarks were set to be significantly larger than last level cache of the hardware platform.

4.2. Experimental Results. For the given problem sizes in the Table 4.2, the parallelized and vectorized
codes are generated by the PVL method. The experimental evaluations in the follow show that, as theoretically

Table 4.1

The set two of benchmarks consisting four different synthetic benchmarks
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Table 4.2

The Problem sizes used in benchmarks

Real Benchmarks Problem size Synthetic Benchmarks Problem size
Convolution 1d 8192 B1 512
Convolution 2d 2048× 2048 B2 16777216

Sobel 4096× 4096 B3 1024× 1024
Matmul 768× 768 B4 8192× 8192

Table 4.3

Demonstration of the synthetic benchmarks

Benchmark Dimensions Has dependence? Description
B1 3 Yes A 3-d perfectly nested loop that carries a dependence.
B2 1 No A 1-d loop nest that does not carry any dependences.
B3 3 Yes A 3-d perfectly nested loop that carries a dependence.
B4 2 Yes A 2-d perfectly nested loop that carries a dependence.

expected, when benchmarks are parallelized and vectorized using PVL method, because the PVL attempts to
use both cores and SIMD short vectors to execute the benchmark, the execution time of the benchmarks reduce
significantly. As a result of using all available resources of the platform, the PVL could approach to the peak
performance of the underlying platform. Figures 4.1 and 4.2 show the gained speed up through the proposed
approach over the sequential execution of the original programs on both systems. The average speedup of the
proposed method on two and four threads (cores) is about 6.56 and 9.17, respectively. As it is clear in the
proposed method, the speedup is achieved not only by multiple cores, but (1) through parallelization using
multiple cores and (2) vectorization using short-vectors within each core and also (3) trying to optimize data
locality to reduce cache miss. Hence, the gained speedup usually is more than number of cores.

Figure 4.3 shows the execution time of the sequential, Pluto [40], Parsa et al. [22] method, and PVL
(proposed method) on both sets of benchmarks on two and four cores systems. We compiled the sequential
program and output of mentioned three methods using GCC compiler. Figures 4.3 (a) and 4.3 (c) are the
execution time of the real benchmarks on two cores and four cores systems, respectively. Figures 4.3 (b) and
4.3 (d) are the execution time of the synthetic benchmarks on two cores and four cores systems, respectively.
In all benchmarks, execution time of the PVL (proposed method) is much faster than the others.

4.3. Execution with -O3 flag. The underlying hardware architecture of the proposed method and both
compared methods are modern multi-core architectures with given sources for parallel and vector executions:
cores and short-vectors. However, both compared methods are giving priority to the cores and postponing
vectorization. We claim that in order to have best execution time, both cores and short-vectors have to be
given enough importance. So, we try to find loop transformation proper for both cores and short-vectors at the
same time. In order to demonstrate our claim, we have compared the proposed method with two main research
of the filed in two different scenarios: (1) at first, we have executed the results of the compared methods
without any changes on the given hardware. In this scenario both of the compared methods have used only
cores for execution of the benchmarks (Fig. 4.1 shows the execution times related to the this case), and (2) in
order to also use short-vectors as a postponed transformation (exactly as the original intention of the compared
methods), after getting results of compared methods, auto vectorization of the GCC compiler have enabled by
using -O3 flag. -O3 flag of GCC not only enables auto vectorization but also it enables the highest level of safe
optimizations in the compiler. By this way, both cores and short-vectors are used.

Figure 4.4 shows execution time of the real benchmarks with -O3 flag enabled. As it is obvious, again our
proposed method is far superior to sequential, Pluto and Parsa et al. methods which are optimized by -O3
flag. In all four scenarios of both real and synthetic benchmarks, the execution time of the proposed method is
less than the other methods. So, the experiments demonstrate that the PVL applies both parallelization and
vectorization better than others. Also, experiments support the claim that both cores and short-vectors have
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Fig. 4.1. Speedup of PVL (the proposed method) over sequential programs on Intel Dual Core CPU E2200 @ 2.20GHz CPU.

Fig. 4.2. Speedup of PVL (the proposed method) over sequential programs on Intel Core2 Quad CPU Q6600 @ 2.40GHz CPU.

to be given enough importance and also transforming schema of the PVL for modern multicore architectures is
better that Pluto, and Parsa et al. approach.

Figure 4.5 shows the speedup of the Pluto, Parsa et al. approach, and the PVL over sequential programs on
two different systems with/without -O3 flag of the GCC compiler. In both sets of real and synthetic benchmarks,
the speedup of the PVL is higher than the speed up of the Pluto, and Parsa et al. method. The average of
the achieved speedup for the PVL (proposed method), Pluto, and Parsa et al. method over sequential in two
systems with/without -O3 flag is as Table 4.4.

Figure 4.6 shows the improvement in execution time of the PVL (proposed method) over Pluto, and Parsa
et al. method. Average improvement percentage in execution time of PVL over Pluto, and Parsa et al. method
is as Table 4.5.

5. Conclusion. This paper discusses the idea of parallelizing and vectorizing nested loops on multicore
architectures. Because executing loops on cores and on SIMD units demand different necessities, at first, we
have described these characteristics and then, our proposed method tries to find proper loop transformation
using polyhedral model in order to achieve three objectives: (1) parallelize proper dependences-free loop in
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Fig. 4.3. Execution time of the sequential program, Pluto, the Parsa et al. method and the PVL (proposed method) on Intel
Dual Core CPU E2200 @ 2.20GHz and Intel Core2 Quad CPU Q6600 @ 2.40GHz systems. (a) Execution of benchmarks set
one on Intel Dual Core CPU E2200 @ 2.20GHz system, (b) Execution of benchmarks set two on Intel Dual Core CPU E2200 @
2.20GHz system, (c) Execution of benchmarks set one on Intel Core2 Quad CPU Q6600 @ 2.40GHz system, and (d) Execution
of benchmarks set two on Intel Core2 Quad CPU Q6600 @ 2.40GHz system

Table 4.4

The average speedup achieved by different methods

PVL (proposed method) Pluto Parsa et al. method
E2200 without -O3 6.7 2.0 1.3
E2200 with -O3 8.2 3.2 1.3
Q6600 without -O3 9.2 3.5 1.9
Q6600 with -O3 8.9 4.6 1.8

Table 4.5

The average improvement in execution time over Pluto, and Parsa et al. method

Improvement over Pluto(%) Improvement over Parsa et al. method (%)
E2200 without -O3 63.6 68.6
E2200 with -O3 61.3 64.8
Q6600 without -O3 57.8 68.8
Q6600 with -O3 52.3 62.7
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Fig. 4.4. Execution time of the sequential program, Pluto, the Parsa et al. method, and the PVL (proposed method) on Intel
Dual Core CPU E2200 @ 2.20GHz and Intel Core2 Quad CPU Q6600 @ 2.40GHz systems with -O3 flag enabled. (a) Execution
of benchmarks set one on Intel Dual Core CPU E2200 @ 2.20GHz system with -O flag enalbed, (b) Execution of benchmarks set
two on Intel Dual Core CPU E2200 @ 2.20GHz system with -O3 flag enabled, (c) Execution of benchmarks set one on Intel Core2
Quad CPU Q6600 @ 2.40GHz system with -O3 flag enabled, and (d) Execution of benchmarks set two on Intel Core2 Quad CPU
Q6600 @ 2.40GHz system with -O3 flag enabled

the cores, (2) vectorize dependence-free loop which has contiguous data in the memory in the short-vectors
within each core, and (3) improve data locality of the loops. After applying the transformation to the loop
nest, intrinsic vector codes are generated to the innermost vectorizable loop using the proposed approach. Since
data dependences are unavoidable in programs and they have to be satisfied as long as we want to preserve the
semantic of programs, while looking for proper transformation using proposed method, we try to satisfy data
dependences in the middle loops, as much as possible.

Finally, to achieve the peak performance of different hardware architectures, concentrating on both cores
(outer parallelization) and data locality is not sufficient. Nowadays, widely available vector units are critical
to achieving this peak performance in modern architectures. Thus, the vectorization stage should not be left
to the post-transformation stage and it should be used simultaneously beside outer parallelization and data
locality improvements. Although the result of the proposed method is significantly better than the state-of-the-
art compiler Pluto and also the result of Parsa et al. [22], the result can be improved further by using cache
configurations of the underlying system, loop tiling, and considering temporal locality.

Acknowledgments. We would thank Nasrin Nasrabadi and Ali A. Noroozi for their precious helps.
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Fig. 4.5. Speedup of Pluto, the Parsa et al. method and the PVL (proposed method) over sequential program on two core and
4 core systems. (a) Intel Dual Core CPU E2200 @ 2.20GHz system without -O3 flag, (b) Intel Dual Core CPU E2200 @ 2.20GHz
system with -O3 flag enabled, (c) Intel Core2 Quad CPU Q6600 @ 2.40GHz system without -O3 flag, and (d) Intel Core2 Quad
CPU Q6600 @ 2.40GHz system with -O3 flag enabled
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ENABLING AUTONOMIC COMPUTING SUPPORT FOR
THE JADE AGENT PLATFORM
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Abstract. Engineering complex distributed system is a real challenge documented in recent literature. Novel paradigms such
as Autonomic Computing (AC) approaches appear to be the fittest engineering model in order to face performance instabilities
of systems inserted in open and non-deterministic environments. To this purpose, the availability of appropriate development
environments will facilitate the design of such systems. Standard agent development platforms represent a good starting point,
but they generally lack of rigorous ways to define central AC-related concepts such as the prominent role of feedback loops and
knowledge integration in decision making processes: we therefore believe that Agent Oriented Software Engineering (AOSE) can
be substantially enriched by taking into account such concepts.

In this paper, a novel extension of the well-known JADE agent development environment is discussed. This extension enhances
JADE in order to address the engineering process with Autonomic Computing support. It is called “Autonomic Computing Enabled
JADE” or shortly ACE-JADE. The behavioral model of ACE-JADE will be thoroughly described in the context of a case study
(NASA ANTS project).
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1. Introduction. The complexity of information systems has grown dramatically in recent years. This
complexity, which is the result of several factors like advances in hardware and infrastructure technology,
the growth of Internet networks, etc., has inspired Autonomic Computing (AC) approaches, which enable
software components to go through runtime adaptation processes in order to react to changes of their execution
contexts [24, 22]. It is important to design software able to promptly react to these changes as unpredictable
dynamic environments pose threats to the stability and performance of the designed system. In order to
fully exploit the benefits of the mechanisms behind these adaptation processes, different architectures were
introduced [20, 36] and they all derive from the first work that introduced the concept of Autonomic Computing,
as described by IBM [22].

Autonomic Computing builds upon the concept of autonomous software entity and focuses on the interac-
tions between the decisional process within the software entity and its surrounding environment. The general
idea is to establish a feedback loop able to provide additional elements to be used in the decisional process
of each software entity and a well-known architectural design for these feedback controlled mechanisms is the
MAPE loop. This loop consists of four phases: Monitoring, Analyzing, Planning and Executing [24, 23]. During
the Monitor phase, the system component collects and correlates information from the environment; this data
collection phase is enabled through specific sensorial capabilities featured by the component. In the Analyze

phase, the component will analyze the variables observed during the Monitor phase, so to determine the type
and the magnitude of the needed reactions: this is instrumental to correctly respond to threatening environ-
mental changes. Passing the result of analyze phase into the Plan phase, the component will select and conclude
into more specific sub-set of actions to be performed in the environment to achieve a desired state. And at last,
in the Execute phase, the component will enact the selected actions through effectors. [12].

As mentioned in [33], feedback loops foster self-* properties within the software systems. These kinds of
capabilities are related to the awareness of a system about itself and its environment, hence the ability of a
system to autonomously react to environmental changes. There is no general agreement over these concepts
and the related terminology but there are main four properties (self-healing, self-protecting, self-optimizing and
self-configuring) usually categorized as self-* properties or simply summarized under the term self-managing [24].
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In this paper, we present how AC topics can seamlessly integrate within distributed system engineering
methodologies such as Agent Oriented Software Engineering (AOSE). Distributed system is considered as an-
other solution to large scale and complex problems, thanks to their high degree of scalability. Bringing more
resources together to satisfy needs for more coverage and computation is a solution, even if managing them
leads into another kind of complexity [37]. Having autonomous agents which can deal with changes by their
own is a way which can heal the complexity. Appropriate design and simulation frameworks for distributed
autonomous system are therefore valuable instruments for the system designer.

Multi-Agent Systems (MAS) is one of the main branches of distributed systems, enabling autonomous
components to carry out tasks in a decentralized way, supporting flexibility and scalability. MAS architectures
described in literature vary from abstract design methodologies to detailed engineering frameworks or platforms.
FIPA (Foundation of Intelligent Physical Agents) proposes a complete reference architecture for MAS [28].
JADE (Java Agent Development Environment) is a FIPA compliance agent development environments [5, 4],
which supports the development of multi-agent systems. Bringing AC into the JADE can enable the self-*
properties in MAS architectures.

The work presented in this paper aims at extending JADE to bring support for Autonomic Computing in
the JADE development environment. This idea has been preliminary discussed in [18] and in this paper we
provide much deeper analyses and discussions regarding our novel extension. Section 2 presents the background
and related work. Main elements of proposed architecture are discussed in Section 3. Section 4 will be about a
case study and implementing the presented extension in a scenario. Conclusion and future work are discussed
in Section 5.

2. Background and Related Work. In this section, background information about self-adaptation (and
autonomic computing in general) and related concepts are briefly presented, along with JADE as a development
environment. The previous researches about providing JADE extensions are also discussed.

2.1. Autonomic Computing in software development. In [17, 25] researchers tried to use component-
based approach to help the development of autonomic software. In [17] an infrastructure named AUTONOMIA
is presented, which foster engineering and deployment of autonomous applications. In [25] a framework for sup-
porting development of a component-based application (self-managed application) is presented. These solutions
represent proof-of-concepts in which we start to develop our extension.

In [7] a toolkit is presented (ABLE ) for building multi-agent autonomic systems. This toolkit provides a
lightweight Java agent framework with a set of beans able to support self-* properties development. This toolkit
focuses more on the development of agents’ self-* tasks rather than on characterizing the capabilities of multi-
agent system. Also, in [14], a framework based on component-based viewpoint is introduced. A conceptual
framework for designing autonomic components starting from the artificial immune system paradigm have been
proposed in [11]. It covers the self-expression aspect of system based on inspiration from the natural immune
system. Researches for bringing autonomic computing in system design and development are not bounded
to only high level concepts like framework. For instance a research provides a language (SCEL, Software
Component Ensemble Language) to be used in any framework for formally and rigorously describe coordination
patterns for autonomic agents and their interactions [10].

The novelty of our work consists in providing an actual implementation in the form of a JADE extension of
the topics explored as theoretical subjects by the cited articles described in this section. During the development
of this extension, we realized that many important engineering artifacts were missing, thus we integrated this
design effort with our own ideas.

2.2. JADE and its extensions. JADE (Java Agent Development Environment) is a development envi-
ronment which facilitates the process of multi-agent system development, providing a platform that supports
the agent design and execution. Multi-agent systems and especially agents themselves have many reference
architectures. JADE is compliant with FIPA agent architecture [5].

Adding AC (Autonomic Computing) ability to the agent development environment has been subject to
previous research. For instance, in [15] an architecture-based extension for supporting feedback loops in agents
has been discussed. In particular, authors [15] discussed the possibility of adding architectural patterns so to
have feedback loops in MAS.



Enabling Autonomic Computing Support for the JADE Agent Platform 93

Most of the JADE extensions that are related to AC concept are built upon the behaviour concept, which can
be considered as one of the JADE primary elements. In [8] JADE agent behaviour is extended in order to support
behaviour tree and flexible behaviour in JADE. Researches in [1] and [21] bring organization and role concepts
into JADE, but there is still no mention regarding control loops. Control loops have been exploited in the
form of coordination patterns into the software development process to have an autonomic computing enabled
development kit [30]. The idea of having a role-based design in multi-agent systems alongside coordination
mechanisms is able to provide a methodology which its output can be used to generate JADE agent classes.

Other examples of JADE extension in order to provide more formal ways to model adaptivity can be found
in [27], [9] and [26]. Also The idea about using JADE and MATLAB (Simulink) have been addressed in [32]
as a JADE extension called MACSimJX. This extension is about creating multi-agent control systems. Using
Simulink as a way to describe agents, MACSimJX enables in JADE to implement a multi-agent control system.
Using this idea in micro-grid environment is discussed in [31].

The common idea behind these extensions is to bring something new into JADE in order to add new
features or to exploit it in new application fields. Enhancing JADE with ACE-JADE will provide the ability
to facilitate the process of implementing AC enabled software in MAS environment. In [19] a preliminary idea
about bringing Autonomic Computing into JADE has been discussed and future challenges addressed. In this
paper, the idea of JADE extension will be discussed with more detail.

2.3. Agent Development Platforms. JADE is not the only FIPA-compliant agent platform. There are
some researches about self-* system development tools and frameworks (like [16] as a framework for multi-agent
systems development in IoT environment) which mostly are compliant with FIPA standards. Grasshopper is
presented in [2] as an agent development platform based on OMG MASIF and FIPA. A work-flow management
system alongside an intelligent system business is supported in [2]. Grasshopper, however, appears to be not
currently maintained, hence, in order to develop ACE-JADE, we decided to stick with JADE.

There are several development aspects related to ACE-JADE. In [6] researchers mention that knowledge
management is one of the critical parts of the proposed development environment. One of the targeted ways for
addressing this challenge is rule-based knowledge management. In distributed environment conflicts between
each agent’s knowledge and reasoning could be a problem. In [29] this challenge has been addressed. Also,
some other researches are taking place without tying themselves to FIPA standard. Jackal [13] is one of these
solutions. It presents a Java-based tool for development of agents. These kinds of solutions have a downside of
not getting the same level of attention and support as the other frameworks that comply with known standards.

The idea of having autonomic computing support in the JADE emerged after realizing that all of the
previously discussed existing research does not involve the implementation of tools and platform that can be
used by the system engineers. The popularity of JADE, due to its open source Java implementation on the
top of the FIPA standard, is the ideal starting point for such effort, that will build upon the findings of all the
previously cited papers.

3. AC Extension of JADE (ACE-JADE). A framework for MAS can be addressed from two aspects;
namely, (1) a structural aspect and (2) a behavioral aspect. Our MAS extension, therefore, will be discussed
considering both these aspects, i.e. extending the JADE java classes related to structural part and also extending
the behavior related classes.

More specifically, our AC enabled JADE extension is articulated in five points:
1. Providing adaptive agents. In MAS the central component is the agent. In order to have an autonomic

system, we exploit the concept of agent in terms of generic autonomous software component.
2. Implementing different feedback loops by extending the class Behaviour. Like the structural concept

of (Agent), there must be an extension of behavioural concepts in JADE (Behaviour) to enable the
response to environmental changes.

3. Adding Knowledge support in the adaptive agent. Data and knowledge is a vital concept in AC, therefore
it will be present in our JADE extension.

4. Support for Sensors and Effectors. Sensors and effectors are AC related concepts that deal with the
ability of an agent/software component to obtain information regarding the surrounding environment
and act on the same environment. Our extension will therefore model environment interactions through
Sensors and Effectors classes.
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Fig. 3.1. AdaptiveAgent class diagram.

5. Extending Message to support internal messages among different adaptive agents. JADE original
Message class cannot fulfill the need for information sharing in the AC, hence we had to provide
an added layer of complexity to the original Message related classes. More specifically, we later detail
how Sensors and Effectors will be implemented with a message passing interface.

The mentioned points are vital for making ACE-JADE. In the following sections, these five different aspects
will be discussed. Each aspect will be discussed by a class diagram and if the behavioural aspect is involved, it
will be analyzed though a sequence diagram. The class diagrams will explain parts that have been extended in
the JADE original structure and the sequence diagram will show the mechanisms that our novel extension will
provide in order to obtain the autonomic computing related features on top of JADE.

Starting from Fig. 3.1, all the subsequent class diagrams will use the following notation: in red, we indicate
the original classes already present in the JADE standard package, whereas yellow artifacts are actually related
to classes and interfaces provided by our extension.

3.1. Providing AdaptiveAgent. The AdaptiveAgent class (our implementation of autonomic software
component) keeps references to Sensor and Effector instances that characterize the components (see Fig. 3.1).
These agents are also composed by instances of Capabilities class, which define the list of acceptable param-

eters and list of feasible actions for such agents.

In addition to what can be seen in Fig. 3.1, we specify that for each AdaptiveAgent component, a set of
behaviours for adaptive tasks is provided (by means of the class AdaptiveBehaviourSet). It consists of a set
of AdaptiveBehaviours with a list of task priorities (BehaviourOrder). Also, there is another proposed class,
AdaptiveScheduler, in which resides the implementation of how different behaviours are arbitrated in terms of
ordering. This AdaptiveScheduler extends the Scheduler class of JADE. While there is not much to explain
with regards to the scheduler, the behaviours are the most important aspect of our work and they are detailed
in the next section.

3.2. Extending Behaviour. The most important aspect of AC is responding to changes in the environ-
ment in an autonomous and adaptive way. The reaction towards the dynamics of the environment is taken care
by the behavioural aspect of ACE-JADE.

Autonomic computing enabled through MAPE feedback loop is composed of four sequential actions (Moni-
tor, Analyze, Plan and Execute) and such actions involve the use of sensors and effectors. Each of these phases
can be composed by a plurality of steps. As mentioned in [23], we identify different levels of adaptation accord-
ing to whether all of these four phases are present: a distributed system with limited adaptation capabilities,
for instance, might feature a simplified control loop, in which just the Monitor and Execute phases are present.
By defining a control loop as a subset of combinations of the MAPE phases, ACE-JADE is therefore able to
model different adaptation capabilities.
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Fig. 3.2. SerialBehaviour, SequentialBehaviour and CompositeBehaviour relations

In ACE-JADE, MAPE control loops as a whole, their phases and each step for each phase is a JADE
behaviour. From the JADE original behaviour package, we infer the class diagram in Fig. 3.2. These are the
classes from which our custom control loops will be implemented, but also phases and single steps for each
constituent part of the feedback loop.

In order to implement different control loops with each having a different level of adaptation, we have five
different classes and they all extends the JADE original CompositeBehaviour class:

• class AutonomicBehaviour: which allows the implementation of all the MAPE four phases without
focusing on a complex Knowledge representation logic.

• class AdaptiveLoopBehaviour: which also allows the implementation of all the MAPE phases and
forces the user to implement specific Knowledge representation logic.

• class PredictiveLoopBehaviour: which allows the definition of simpler control loops, that just consider
Monitoring, Analyze and Execution phase.

• class ManagedLoopBehaviour: same as above, but focusing on Monitor, Execute and Knowledge rep-
resentation.

• class BasicLoopBehaviour: represents the simplest kind of feedback loop, as just Monitor and Execute
phase can be exploited from this class.

In other words, according to the level of desired self-adaptation, the user will select the appropriate class.
The selected class relates to specific admissible MAPE phases (detailed in the previous class list). Each of
these different classes are composed of one instance of each admissible phase state. A phase state is one of
MonitorState, AnalyzeState, PlanState and ExecuteState (see Fig. 3.3). Phase state classes are derived
from the JADE original class SequentialBehaviour.

Each phase state class is therefore composed of 1 to N corresponding steps (Monitor, Analyze, Plan and
Execute). A step class is derived from the SimpleBehaviour class out of the JADE original behaviour package.

This particular class hierarchy allows us not only to tune the self-adaptive capability of our system, but
also allows for implementing logic for each of the MAPE phase within an arbitrary complexity given by the
composition of several steps. This is visible in Fig. 3.4, in which, for brevity, just one of the adaptive level is
shown (AutonomicLoopBehaviour).

3.3. Introducing Knowledge. Another important requirement to introduce AC in JADE is to enable
agents to manage knowledge and information, so an appropriate implementation of these concepts has been
introduced in our extension of JADE. An interface named Knowledge is introduced, which mainly provides two
methods: toRule and fromRule. The first method defines a behaviour in response to a predicate; such resulting
behaviour will be inserted in a knowledge repository. Such knowledge repository can be queried with fromRule

method.
The Knowledge interface is implemented by a specific class for each message type (between each MAPE step).

SensorKnowledge and EffectorKnowledge are implemented to support the tasks of Sensor and Effector.
These classes, with the help of Capabilities, will define which parameters should be sensed and which actions

can be performed.
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Fig. 3.3. Behaviour class diagram.

Behaviour

CompositeBehaviour

SerialBehaviour ParallelBehaviour

SequentialBehaviour SimpleBehaviour

Monitor Analyze Plan ExecuteMonitorState AnalyzeState PlanState ExecuteState

AutonomicLoopBehaviour

Fig. 3.4. Holistic view of Class diagrams for Autonomic Loop Behaviour
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Fig. 3.5. Knowledge-related class diagram.

In [23] three levels of knowledge about the environment and reaction to the environment are presented.
Each level has its own abstraction and each of the five different kinds of control loop: BasicLevelKnowledge,
AdaptiveLevelKnowledge and AutonomicLevelKnowledge. The class diagram of the Knowledge-related class
can be seen in Fig. 3.5. According to the complexity of the knowledge repository, the user can select which class
to extend.

3.4. Support for Sensor and Effector. AdaptiveAgents will have to deal with Sensors and Effectors.
These are classes for implementing the logic in which the environment can be sensed and modified according
to the behavioural logic expressed by the implemented control loop. Such sensor might be further specified
with capabilities. For addressing the capabilities, a class named Capabilities that shows the incoming known
parameters and also the outgoing accessible parameters and their transformation function is introduced. The
transformation operation takes place whenever sensed data needs to be translated in a different format, as
different component of our system might implement different data representation schemes. This transformation
is performed by two JADE original classes: IncomingEncodingFilter and OutgoingEncodingFilter, which
will be discussed in next subsection. Effector is an extension of OutgoingEncodingFilter and translates in
a different representation scheme the modification to be enacted to the environment.

The agent knows about the environment in which it is situated. The environment is represented by
Environment, which is an interface that enables sensor and effector to know where they should get the data
from and what they should effect. AdaptiveAgent.environment can be accessed through the environment

variable in Sensor and Effector.

The class diagram of the Sensor and Effector class can be seen in Fig. 3.6.

3.5. Support for Internal Messaging. Passing information and data within the system needs an ap-
propriate messaging platform. JADE has its own messaging platform which is extended by ACE-JADE in order
to help in order to deal with sensors and actuators of each component of the system.

• The Sensor ACE-JADE class will use the original IncomingEncodingFilter class for translating the
data based on the data model which is presented by our added concept of SensorKnowledge. An
instance of IncomingEncodingFilter should be created by the developer based on his/her needs and
passed to the SensorKnowledge’s instance. The developer could translate the monitored parameters
from environment into a set of control signals. Filters are used to process only the relevant subsets of
information sensed from the environment.

• As far as effectors are concerned, filters are implemented through the original class OutgoingEncoding-
Filter. This class is therefore able to filter outgoing commands related to the encoding of ACL mes-
sages [3]. Filtering rules can be further tuned with the ACE-JADE specific class EffectorKnowledge.
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Fig. 3.6. Sensor and Effector class diagram.

Fig. 3.7. Self-optimizing scenario implementation class diagram
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Fig. 3.8. Sequence Diagram of a simple MAPE loop

3.6. Behavioural Analysis. While in the previous sections we addressed the structural aspect of our
extension, in this section we use sequence diagrams in order to better explain the behavioural aspects of ACE-
JADE.

In Fig. 3.8, a sequence diagram of a control flow for a simple MAPE loop is reported. The behaviour is
an active thread which, on a defined interval, starts to see if there is any new data available for the process as
obtained by a sensor. For this purpose, the component-agent sends a message to adaptiveAgent and it passes
the control to sensor in order to analyze the new data. Afterward, new data goes back to the adaptiveAgent
and after that to complexBehaviour. For analyzing the data with MAPE loop, complexBehaviour passes the
control through all the four steps of MAPE loop on after another. At last in this case, executablePlan as a
result of plan() is executed with the help of execute().

4. Implementing a Case Study. For better understanding the proposed AC extension to JADE, a simple
scenario about managing failure (self-healing property) in ruler components of the NASA ANTS project is
implemented. NASA ANTS is a new class mission from NASA [35]. NASA Autonomous Nano Technology
Swarm is a milestone for autonomic computing concept and because of its specification, it represents a useful
case study for autonomic computing distributed environment to be modeled with ACE-JADE. In the NASA
ANTS project thousands of tiny space-craft weighting less than 1.5 kg will work cooperatively to explore the
asteroid belt [35, 34]. In the project, three different kinds of space-crafts are working together to carry out the
project mission:

• Worker: the largest number of space-crafts are of worker kind (80%). They carry different instruments
for gathering data.

• Ruler: this kind of space-craft defines and update the rule of each space-craft in the team formation.
• Messenger: this kind of space-craft enables communication between workers, rules and the earth station.
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All of these space-crafts have a degree of autonomy and adaptation to perform necessary tasks.

4.1. Scenario. We chose a scenario that can be addressed by designing an internal MAPE loop for each
Messenger space-craft; each Messenger is therefore implmented by an instance of our AdaptiveAgent class, as
the concrete example of an autonomic component. In this scenario, both messengers and rulers can perform
a change in their states: the former by changing their location, the latter by updating their information about
new space-crafts. Rulers therefore are in charge of specifying to the messenger, which messages have to be
passed to the workers. The goal in this scenario is to enable self-optimization and self-protection for all these
space-crafts.

In order to foster self-optimization and self-protection, a messenger is enhanced with two MAPE control
loop. A first loop is defined to improve its positioning over time (as it can communicate within fixed ranges),
and a second loop is in charge of detecting the status of local established connections with the other space-crafts,
and react by changing the messenger direction of movement.

As far as the first MAPE loop is concerned, a messenger space-craft finds out that by changing to a given
location it can reach more space-crafts. It can do this by measuring the density of the space-crafts within its
range. This will represent the ability to self-optimize.

As far as the second loop is concerned, this loop which monitors the messenger special connections (such
as the one with the ruler agents) and when it detects the probability of losing these connections it reacts by
changing its movement direction in order not to get too far away from a ruler. This will represent the ability
to self-protect.

Self-optimization and self-protection are tied together in this scenario: the two MAPE loops are designed in
order to balance the goal of varying the position of the messenger so to have reach as many workers as possible,
but at the same time its average movement direction shall not bring the messenger itself too far from a ruler,
as this situation will threaten the ability of the system of propagating updated messages.

4.2. Implementation with ACE-JADE. We have implemented some new classes based on scenario
issues. The list of the newly extended classes for this scenario is:

• NasaAntsAgent: specialization of the Agent which is implemented and used in the NASA ANTS
project. Also, the Capabilities class is used to make differences between the three different kinds
of the agents in NASA ANTS mission. The textttNasaAntsAgent is therefore the messenger agent as
introduced in the previous section.

• SelfOptimizingBehaviour: the extra structure which is needed for an algorithm to deal with envi-
ronment and performing tasks for achieving self-optimizing is implemented in this class (first MAPE
loop).

• SelfProtectingBehaviour: another structure which contains the self-protecting algorithm to maintain
important connections of the messenger (second MAPE loop).

Also, besides the previous classes which have defined and instantiated in the system, the following classes
are used in the case study:

• AdaptiveLevelKnowledge

• Capabilities

• MonitorState

• AnalyzeState

• PlanState

• ExecuteState

• Sensor

• Effector

Based on the location where the NasaAntsAgent’s instance is, it counts its nearby neighbors (within its
range) in its monitoring phase and if the measured density is less than the defined density in the agent’s
knowledge (within the analyze knowledge, based on the planning knowledge, a random path will be picked and
applied within the execute phase. It will cause a change in the location of the agent. This cycle will continue
until the value of monitored neighbors exceeds the predefined number in analyze knowledge.

Simultaneously with the previous loop, another instance of a composite behaviour is running. This new
object is instantiated from an implementation which supports agent’s connectivity to important nodes. It will
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Fig. 4.1. Sequence diagram of the implemented case study

cover the self-protecting property and will go after being sure about continue connections which have been
flagged as important connections. After the creation of the loop (by means of the appropriate behaviour) every
defined period the behavior starts and measure the distance of the agent with flagged agents to be sure that
the distance is not getting near to the agent’s transmission rate. If so, it will start changing the speed of the
agent in order to be sure that the other agents are not going to be farther away.

For better understanding the implementation, the sequence diagram of a system run is provided (see
Fig. 4.1). The descriptions of objects are reported in the figure. In this sequence diagram two feedback
loops are described (self-optimizing and self-protecting, as mentioned previously). In the first round, there is
a run of the loop of complexB1, which is about the self-optimization. In this run, the result will be a set of
commands (decisions about changes in the location) to improve the number of covered nodes. While this loop is
running, another loop (complexB2) is called for running. The complexB2 is about the self-protection. Because
there was no change in the location, there is no result for that loop. But as it is reported in the diagram,
another run is scheduled for this loop for some time later. After implementing the changes of the complexB1

with the help of executor1, another round of complexB2 running is started. In this round, because of changes
in the location, the result is a correction of the location in order to be sure about being connected to important
nodes. Afterward, this decision is applied with the help of executor1.

Meanwhile there are not similar researches which can be examined to compare our presented extension, we
can compare the time and effort (number of classes) needed for implementing a system by standalone JADE
with the proposed extension. This can give a overall proof of applicability and usefulness about the presented
extension.
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A NASA ANTS case study was implemented with ACE-JADE and also with standalone JADE. The time
needed to implement the case-study with JADE was around 90 hours with 1 developer familiar with JADE. The
same case study was prepared in around 75 hours with 1 developer which was familiar with ACE-JADE. The
number of classes for JADE implementation was 16 classes and for ACE-JADE was 8. A point which should be
considered is that ACE-JADE has more than 20 pre-implemented (or at least semi-implemented) classes with
respect to JADE. Researchers think that with expanding the problems this improvement and time saving will
have a bigger gap with developing a problem which needs autonomic computing as a necessary aspect with bare
JADE.

5. Conclusion and Future Work. Having a multi-agent development environment that provides the
support for autonomic computing features makes ease the process of creating adaptive multi-agent system.
This support can shorten the development process and also can minimize the development expenses. Also,
like any other development environment, using autonomic enabled development environment will increase the
quality of the developed system.

An extension of JADE for having adaptive agents has been proposed in this paper. For this extension,
changes concern the introduction of AdaptiveAgent, Behaviour, Message classes; also the Sensor and Effector

classes are introduced as auxiliary classes to interact with the environment.
For a better explanation, a case study was introduced and implemented. NASA ANTS is a case study

that is suitable for examining concepts in adaptive systems in distributed environment. A scenario for self-
optimizing and self-protecting was implemented and explained in order to show the applicability of the JADE
extension. For better understanding the proposed extension, two sequence diagrams have been discussed: one
for describing the ordinary MAPE loop with details and another one is for describing the implemented case
study.

In this extension, some aspects are still to be defined in a precise way. One of these aspects is about the
usage of Knowledge. Besides the implementation of Knowledge class, further classes are needed to use it, for
instance a rule engine; moreover, a knowledge management and a knowledge reasoning should be implemented
by rules and rule engines in future work.

With regard to future work, we can sketch three directions. First, the introduction of more complex
classes for behaviours to support complex adaptive properties (like self-healing) more easily. Also, the explicit
implementation of the knowledge with well-known knowledge management framework for knowledge part in
MAPE-K loop. Finally, the addition of more configurable details in order to support domain specific needs (for
example, adapting this extension to Wireless Sensor Networks issues).

These kinds of extensions are important towards the definition of standards for AC in multi-agent systems.
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