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INTRODUCTION TO THE SPECIAL ISSUE ON
HIGH PERFORMANCE COMPUTING SOLUTIONS FOR COMPLEX PROBLEMS

PEDRO VALERO-LARA∗, MAWUSSI ZOUNON†, MAKSIMS ABALENKOVS‡, AND FERNANDO L. PELAYO§

Scientific and engineering problems are becoming increasingly complex. Such complex problems include
numerical simulations, molecular dynamics, computational fluid dynamics, bioinformatics, image processing,
and deep-learning, to name a few. In addition to these complexities, improvements in high performance com-
puting (HPC) compromise important modifications on computer architectures, bridging the gap gap between
the general scientific user community (in need of an easy access to efficient high performance computations) and
the HPC programmers community (in charge of the implementation of such a complex problems efficiently).

Today, HPC programmers and scientific applications have to deal with numerous computer architectures
details to take advantage of modern computing systems. Thus, strategies and tools that can help us to adapt
our codes over different computing architectures is of vital importance. However, previously, we must know and
identify what are the efficient programming strategies and architectonic features. This is a difficult task, as it
depends on the particular problem to be computed and the computational platform on which the problem must
be computed.

While only a few computational architectures were available during the last decade, today the diversity
of HPC systems is more extensive. This range from clusters of common processors to heterogeneous clusters
equipped with accelerators (GPU) co-processors. These platforms usually use their own compilers, languages,
etc., being the implementation of portable codes very complex.

This special issue provides several studies, which involve different applications and strategies to improve
performance and to achieve better usage of modern HPC systems. It is composed by five works.

The work “ARank: A Multi-Agent based Approach for Ranking of Cloud Computing Services” by A.
Jahani, F. Derakhsan, and L. Mohammad-Khanl, proposes a new multi-agent based method named ARank,
which is applied for ranking algorithm to reduce the waiting time of users. ARank method uses intelligent
agents which they choose some candidate services and rank these services based on the quality of service values.
Furthermore, the agents of ARank include the satisfaction rate of the earlier users in ranking process. The
results of this evaluation show reduction in the waiting time of the users using ARank method, compared to
the existing related work, Analatic Hierarchical Process (AHP) and Singular Value Decomposition (SVD).

The paper “Automatic Tuning on Many-Core Platform for Energy Efficiency via Support Vector Machine
Enhanced Differential Evolution” by Z. Yang, Z. I. Rauen, and C. Liu, proposes SVM-JADE, a machine learning
enhanced version of an adaptive differential evolution algorithm (JADE). They monitor the energy and EDP
values of different frequency and voltage combinations of the cores, or power islands, as the algorithm evolves
through generations. By adding a well-tuned support vector machine (SVM) to JADE, creating SVM-JADE,
they are able to achieve energy-aware computing on many-core platform when running multiple-program work-
loads. Their experimental results show that their algorithm can further improve the energy by 8.3% and further
improve EDP by 7.7% than JADE.

In the next study “Integrating Generic FEM Simulations into Complex Simulation Applications” by R.
Dietze, M. Hofmann, and G. Rünger, it is described the efforts for integrating alternative FEM codes into a
complex simulation application from the area of engineering optimisation. The application area, as well as
the software components, and their interactions are presented. The integration of two different FEM codes is
demonstrated based on a dedicated FEM data conversion component.

The work “SaaS for Energy Efficient Utilization of HPC Resources of Linear Algebra Calculations” by
H. Astsatryan and G. da Costa, focuses on one of the most important factor of High performance computing
(HPC) systems nowadays, that is to limit or decrease the power consumption while preserving a high utilization.
With the availability of alternative energy, which powers such systems, there is a need to maximize the usage of

∗Barcelona Supercomputing Center (BSC), Barcelona, Spain. (pedro.valero@bsc.es)
†The University of Manchester, Manchester, UK. (mawussi.zounon@manchester.ac.uk)
‡The University of Manchester, Manchester, UK. (m.abalenkovs@manchester.ac.uk)
§The University of Catilla La-Mancha, Albacete, Spain. (fernandol.pelayo@uclm.es)
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alternative energy over brown power. For now, the usage of alternative energy is varying in time due to different
factors such as sunny days, the wind, etc. and it is crucial to have an energy-aware algorithm to maximize
the usage of this energy. In this work, a SaaS service is presented to optimize a usage of alternative energy, to
reduce the power consumption and to preserve a best possible percentage of resource utilization.

Today one of the most important challenges in HPC is the development of computers with a low power
consumption. In this context, the paper “Towards HPC-Embedded. Case Study: Kalray and Message-Passing
on NoC” by P. Valero-Lara, E. Krishnasamy, and J. Jansson, analyses one of the new “low-cost” parallel com-
puters, Kalray. Unlike other many-core architectures, Kalray is not a co-processor (self-hosted). One interesting
feature of the Kalray architecture is the Network on Chip (NoC) connection. Habitually, the communication
in many-core architectures is carried out via shared memory. However, in Kalray, the communication among
processing elements can also be via Message-Passing on the NoC. One of the main motivations of this study is
to present the main constraints to deal with the Kalray architecture. In particular, memory management and
communication. They assess the use of NoC and shared memory on Kalray. Unlike shared memory, the imple-
mentation of Message-Passing on NoC is not transparent from programmer point of view. The synchronization
among processing elements and NoC is other of the challenges to deal with in the Karlay processor. Although
the synchronization using Message-Passing is more complex and consuming time than using shared memory,
it is achieved an overall speedup close to 6× when using Message-Passing on NoC with respect to the use of
shared memory. Additionally, we have measured the power consumption of both approaches. Despite of being
faster, the use of NoC presents a higher power consumption with respect to the approach that exploits shared
memory. This additional consumption in Watts is about a 50%.

Last, but not less, we would like to thank the editorial board of SCPE and reviewers for their effort and
time.
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ARANK: A MULTI-AGENT BASED APPROACH FOR RANKING OF CLOUD
COMPUTING SERVICES

AREZOO JAHANI, FARNAZ DERAKHSHAN, AND LEYLI MOHAMMAD KHANLI ∗

Abstract. Cloud computing enables access to computing, processing and storage resources as a service. These services offered
to users through internet and based on payment obligations. There are various service providers and services for users, so users
have the challenge of choosing appropriate service, matching their needs. Therefore, having a system which helps users to choose
the best service based on their need is very important. In this paper, we propose a new multi-agent based method named ARank,
which is applied for ranking algorithm to reduce the waiting time of users. ARank method uses intelligent agents which they choose
some candidate services and rank these services based on the quality of service values. Furthermore, the agents of ARank include
the satisfaction rate of the earlier users in ranking process. The results of our evaluation show reduction in the waiting time of
the users using ARank method, compared to the existing related work, Analytic Hierarchical Process (AHP) and Singular Value
Decomposition (SVD).

Key words: Cloud computing, Cloud services, Multi agent system (MAS), Ranking, Quality of service.

AMS subject classifications. 68M14, 68T42

1. Introduction. Cloud computing enables using different resources as a service [1]. While there are
various service providers with different services, the act of choosing one service from a set of services is a
challenge [2]-[4]. Because users have different requirements, therefore, reaching the highest performance with
the lowest cost depends on choosing an appropriate service. It can be said that if the best service is selected,
then we can use the total capacity of the provider [5], [6].

Cloud computing offers three types of services: Software as a Service (SaaS), Infrastructure as a Service
(IaaS) and Platform as a Service (PaaS). The difference of these services is the way they grant access of resources
and applications available to user. IaaS provides user with the highest level of flexibility and management control
over her/his IT resources [7], [8]. PaaS allowing customers to develop, run, and manage applications without the
complexity of building and maintaining the infrastructure typically associated with developing and launching an
app. In this type of service, user do not need to worry about resource procurement, capacity planning, software
maintenance, patching, or any of the other undifferentiated heavy lifting involved in running users application.
With a SaaS offered user do not have to think about how the service is maintained; user only need to think
about how she/he will use that particular software [9]. Each specific service from these services is selected based
on different attributes. For example, each service can be proposed with attributes like accountability, cost,
security and usability [2].

In cloud environment, users have different requirements and the services have many kinds of attributes with
variable quality. So selecting a service match with the requirement of users is difficult, and does not have a clear
solution. But we can find an answer near to optimum one [10]- [12]. In other words, it would be a repetitive
task to select some candidate services then compare them with users requirements to rank, while this task can
be done in parallel [13]. Therefore, it can be found that ranking services is a problem that can be solved with
the distributed problem solving. This kind of problems can be solved using evolutionary algorithms, parallel
algorithms and multi agent systems (MAS [14]).

The main challenge of this paper is to select some services based on the request of users, then ranking them.
Most existing ranking methods do not include all standard attributes, and they rank services based on some
limited attributes [14]- [16]. Some methods include all of the existing services in the ranking [17]- [19]; while it
is obvious that there is no need to rank all available services and in fact services with rank 100 and more are not
usable for users [20]. Therefore, it can be concluded that it is necessary to have a ranking method including all
attributes (or proposed methods must be flexible to add new attributes to it in the future). Also, such a system
is not required to rank all services, and one can choose some candidates in advance [21]- [23]. This paper try to
address all of these challenges.

∗Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran. (a.jahani@tabrizu.ac.ir, der-
akhshan@tabrizu.ac.ir, l-khanli@tabrizu.ac.ir)
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In this paper, we use multi-agent systems, and called our proposed method ARank (Agent Rank). In fact,
agents can do works in parallel and in distributed way. We use the concepts of cooperation and coordination
of agents in our system. In ARank, agents found some candidate services that can satisfy the requirements of
users. Then, after comparing the candidate services with requirements, rank the cloud computing services. The
ranking method in ARank has steps as follows: at the first step, ARank chooses multiple candidates services
that taking advantage of agents. Then, ranks the selected candidates based on quality of services and scores
that given by earlear users. As a result, ARank can achieve higher performance during candidate selection
phase, because of the cooperation and parallel operations of agents.

After this introduction, we continue this paper as follows: Section 2 reviews and analyses the related work.
Section 3 explores the attributes of services for cloud computing. In Section 4, we present our proposed method
and architecture for ranking cloud computing services using MASs which we called ARank. Section 5 introduces
the ranking phases of ARank and shows the cooperation and negotiation between agents, followed by Section 6
that offers the analyses results. Finally, Section 7 gives a conclusion and future work ideas.

2. Related work. During recent years, several methods have been proposed for ranking cloud computing
services. Most proposed methods included all the services in the ranking process [24]. Some of these methods
rank all services and show k top rankings to user at the end of ranking, however, ranking all services is not
needed. It is effective to choose the best choices of candidate services, in order to avoid ranking all of them. Our
proposed ARank method select some candidate services in parallel with ranking them using agents intelligence
and their ability in cooperation and coordination.

Chan and Chieu [25] proposed a data collection and analyses algorithm, based on Singular Value Decom-
position (SVD) [25]. This mechanism determines a service among all the services for a specific application with
a limited set of requirements with each runtime. The architecture of the proposed method is that a user enters
his/her requirements and the system finds a service provider using the proposed method and allocates the users
request to the service. So user does not interact with the service selection process, and all is done by the system.
This method is useful for those kinds of users which are unaware of service types and their attributes.

Choudhury et al. [26] proposed a method named Service Ranking Systems (SRS) for Cloud Vendors. This
method performs ranking in two ways: dynamic, and static. In static mode, SRS ranked all available services
in cloud market by not noticing to users requirements. But in dynamic mode, it ranked services according to
users requirements.

Zheng et al. [27] proposed a framework named QoS Ranking which ranks services by predicting quality of
services values and finding similar users to recall exact value of services and avoid time wastage.

Qu et al. [14] proposed a method which used two types of information for service ranking. The information
is gained by earlier users feedback from services and evaluating quality of services values or monitoring services.
This info is processed using fuzzy methods and various evaluation tools and then ranks services.

Rajkumar et al. [6] proposed a framework named SMICloud (Service Measurement Index) [30] to rank
services based on Analytic Hierarchical Process (AHP) [28] which ranks services in 4 phases: receiving users
requirements hierarchically, receiving weight of attributes, finding relations between attributes weight and cal-
culating decision number, and ranking services. SMICloud ranked services based on SMI (Service Measurement
Index) attributes [30] that presented by Cloud Service Measurement Index Consortium (CSMIC) and was
especially designed for evaluate and compare cloud computing services.

Jahani and Mohammad Khanli [29] (our earlier work) proposed a ranking system (NSGA SR) that can
select some candidate services and rank them based on multi-objective optimization problem. This method is
so useful and need less time than other methods in literature. However ARank improve NSGA SR; Similar
to NSGA SR, ARank selects some candidate services and ranks them based on users requirements, however
ARank perform these works in parallel by agents abilities that be more efficient than NSGA SR. NSGA SR
rank services based on all essential and non-essential requirements. But ARank uses only the requirements that
presented by users.

It can be seen that, except the approach offered by Rajkumar [6] and Jahani [29], other proposed methods
do ranking based on limited attributes and they do not consider SMI attributes, in their ranking approach.
In this way, user often searches for a service with special attributes which the ranking process do not perform
ranking based on those attributes. To have more information on SMI, SMI attributes will be explained in the
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next section.

3. Quality of service attributes . Each cloud service is identified by its quality attributes. Until 2012,
there were not any standard way to compare quality of attributes. In 2012, universal consortium CSMIC
announced a standard, named SMI (Service Measurement Index) attributes, for representing the quality of
service attributes [30]- [32]. After that, these attributes become the basis for evaluation and comparison of
cloud services.

SMI attributes are designed based on ISO standards and they are a standard method to compare cloud ser-
vices. Generally, there are seven main attributes defined in SMI. Accountability, agility, financial, performance,
assurance, security and privacy and usability, also these attributes include some sub-attributes. Each of these
attributes is given in the following [30]- [32]:

1. Accountability: If a system or a service does not have accountability, no one or organization will
attempt to use it, and they will not use these systems for assigning critical data. Because, it is possible
that they cannot access their critical data when they need. The sub-attributes of this attribute are:
audit, fill, data ownership and tolerability.

2. Agility: This attribute allows users to change or expand their service charge free. Compatibility,
capacity, elasticity and extensibility are some of its sub-attributes.

3. Financial: It is important for users to know that whether the charge that they pay for a service is cost
efficient or not. Pay as use is a sub-attribute of this one too.

4. Performance: Performance means the least time or energy use for the largest task done. This attribute
measures the usability of services to the request of users. Having performance attribute helps to find
the largest load that a system can resist against it. Accuracy and competency are the sub-attributes
of this one.

5. Assurance: Assurance shows the success or failure probability of a system or cluster completing its
tasks within a limited time without any system failure.

6. Security: The security of a system is depended by the protection of the data and creating security for
the transferred data to the system.

7. Usability: This attribute represents the fast compromise of cloud service with various requests and
different environment. This attribute allows users to use the service and easily delegate their tasks to
the system. Our proposed method, ARank, which will be explained in detail in the following, uses all
seven attributes and their sub-attributes for cloud service ranking.

4. Our Proposed Architecture. In this section, we present the architecture of our new proposal for
ranking cloud computing services. There are two main features for our method: First, it is based on multi-agent
system (MAS), so it takes the advantage of distribution of MASs. Second, our proposed method prevents to
rank all cloud computing services and the ranking is based on ranking of the candidate services. Thus, the
waiting time of users for ranking process will be decreased.

Our proposed method called ARank (Agent Rank), which is based on multi-agent systems and it uses
multiple agents which have cooperation and coordination with others. ARank avoids ranking all the services,
by choosing some candidates services based on the requirements of user. Then, it ranks candidate services.
This architecture contains three types of agents: user agent, manager agent and zone agent. These agents are
autonomous in the environment. The agents can negotiate with others when it is necessary, so they can rapidly
reach general goals of the system. The general goal of the system has been assigned to agents as a distributed
solvable problem for cloud services ranking. The architecture of ARank, which represents agents of the system
and the communications between them, is shown in Fig. 4.1.

User agent is an agent which is assigned to use ranking service by the user, as shown in Fig. 4.1. So
it is possible that some user agents exist simultaneously and they concurrently do their tasks for their users.
Manager agent acts as a central coordinator in the ranking system and coordinates agents to reach maximum
performance of the system. Zone agent has the specifications of service providers. These agents are able to
communicate with others, to perform parallel tasks and also to get the best result in the least possible time.
Each agent is described in detail as follows:

User agent: This agent is created when user requests for service ranking. So the number of this agent is
dynamic in the system, and it depends on the number of active users in the ranking system. This agent sends
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Fig. 4.1. Multi-agent architecture of proposed ARank method

user request to manager agent in the form of a message. User agent also has another important task: it asks
user to enter his/her degree of satisfaction from used service(s) as a score, after it gives the user the ranking
results. Then, user agent returns the scores to the zone agent related to each service. Because, the next levels
of ranking is the consideration of the user satisfaction feedbacks and involves them in the ranking. This method
makes a competition between service providers. Because, the scores are saved by zone agents (away from the
accessibility of service provider), which denotes the history of service provider and record of those services. It
is important that each request of the users includes some quality requirements of SMI attributes.

Manager Agent: This agent is responsible for the general coordination of the system. Manager agent
receives the requests from user agents, and then for each request, it sends a message (containing information
about the request) to every zone agent. In fact, it requests the zone agent to find some candidate for the received
message. In response to this message, zone agent sends the name and sum of the scores (collected from earlier
users) to manager agent.

Candidate services are chosen based on the quality of services that user requests. Therefore, all candidate
services chosen are good for user. To determine how good candidate services are, it is important to rank them.
Ranking the candidate services is a time-consuming task. Therefore, the manager agent creates a package,
named ′Computing Package′, which includes the data received from the zone agent, including the name of
candidate services and their scores. Ranking must be done based on the content of these packages.

In our proposed method, the manger agent selects one of the zone agents to compute the package and
takes the advantage of its computing capability. With this method, multiple computing packages are given
to the zone agents simultaneously. If multiple users use the ranking system concurrently, the system can
compute the computing package of each user simultaneously. One of the benefits of this method is the ability
of coordination between agents, which causes fast result in ranking the systems that provides better and more
accurate services to the users. In order to compute the computing packages for service ranking, we used the
concept of domination, which will be explained completely in Section 5.3.

Zone agent: Each zone agent contains some services from multiple providers. It is necessary for service
providers to register their services in zone agents to benefit the ranking system and introduce themselves to
the users. Each zone agent can determine the kind of services that users need. For example, some zone agents
only register PaaS type of services, some of them register only for SaaS or only for IaaS type of clouds. So, it is
obvious that if the ranking system can do its job perfect, more providers will register in the system. Therefore,
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the ranking system will be powerful enough to offer best choices for the requests of users.
The other task of zone agents is the duty of collecting the request of users, and generating candidate services

for each request. These agents send the value of attributes and scores of the chosen candidate services to the
manager agents. Their next task is receiving computing packages and sending them to manager agents. Every
zone agent can decide how to compute a computing package after receiving a compute message. If it is possible
for the zone agent to do the computing and sending the result of a computing package by itself, so does it.
However, if the zone agent cannot compute the package in the required time, the zone agent negotiates with
other zone agents and allows other zone agent calculate the package. The computing result is sent to the
manager agent. This agent also stores and uses scores given by user from the user agent. In the architecture,
each agent has some exploratory functions for completing task, negotiation and coordination with other agents.
Each of these functions are detailed in the next section.

5. Ranking with ARank. The architecture of our proposed method (ARank) is shown in Fig. 4.1. This
architecture includes the agents and all communications between them. The main purpose of this architecture is
to find some candidate service and ranking them based on users requests in the shortest time. Also the system
must have the ability to respond to more users in every time slot simultaneously.

5.1. Modeling the Input Variables of ARank. The inputs for ARank method are the requirements
of users on the basis of SMI, and also the priority of those attributes. According to Section 3, in SMI, there are
7 main attributes and some sub-attributes for recognizing each service. These attributes are classified into two
types. Within the first type, values are presented with one number, so the value of the attributes must be the
same with the users request.

However, the second type of values is presented with two numbers which are the upper bound and lower
bound values of a range. Our ranking system has offered a method which is adaptable with both kinds. The
system converts each single input into a two number range (with the starting and the ending of the range). For
example, if the assurance attribute value is 14, given by user, the system converts it into range [14,14]. The set
of requirements by the user is shown in Eq.(5.1).

Ru =< r1, r2, ..., ri, ..., rQ > u ∈ [1,m] (5.1)

In Eq. (5.1), Ru is an ordered pair of requirements of user which is shown with ri, and each ri is the
requirement for attribute i. Q is the number of all attributes. Variable u is the id number of system users,
while the maximum of users would be m.

Other input from the user is the priority of each attribute. Because from the viewpoint of the user, some
attributes are too important and they must be guaranteed at any cost. in cotrast, some attributes are not so
important. The user input values for each attribute ranging from 0 to 1. Attributes with priority 1 must be
guaranteed at highest quality by proposed services. The set of user priority is shown in Eq. (5.2).

Cu =< c1, c2, ..., ci, ..., cQ > u ∈ [1,m] (5.2)

As shown in Eq. (5.2), Cu is an ordered pair of priorities of user u which is shown by ci, each ci is the value
related to attribute i. Q shows the total quality attributes.

According to the presented architecture, service providers must register in zone agents and send them their
services information. The services information is shown by SMI attributes quality which is represented in Eq.
(5.3).

Sj =< q1, q2, ..., qi, ..., qQ > j ∈ [1, n] (5.3)

As shown in Eq. (5.3), Sj is the mark for service j which is represented by an ordered pair of quality values
qi. If the total number of quality attributes is Q, variable j describes the id of the services of the corresponding
zone agent. The number of services in each zone agent is equal to n. By the way, it is noticeable that the
qualities of services values are measured using network observers or by the ranking system itself, so that service
providers cannot violate registration phase.
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5.2. Supplement of Candidate Services in ARank. A message is sent to a manager agent when a
user agent gathered users required values. Following that, the manager agent sends the users required values to
all zone agents. Each zone agent starts searching for the services which satisfy users requirements in its set of
services after it receives the message from the manager agent. The search process is shown in Algorithm 1.

Algorithm 1 finding candidate services (by zone agents)

Require: Ru, Sj

Ensure: candidateservices, feedback;
1: for all Si do
2: if Si is in range of Ru then
3: add Si to candidate services
4: end if
5: end for
6: return candidate services to manager agent
7: return feedback for candidate services to manager agent

According to Algorithm 1, each service is analyzed by zone agent to find the matching services to users
requirements (lines 1 and 2). If a service matched the requirements, then it is added to the candidate services
set (line 3). At the end, zone agent returns the set of candidate services and scores of each service given by
earlier users as an output (line 6 and 7).

5.3. Cooperation Protocol in ARank. When candidate services are found and sent to manager agent,
in the next step, manager agent packs the list of candidate services and their scores (given from different zone
agents) into a message called computing package. The ranking result will be revealed when the contents of
computing package is computed.

Each manager agent is free to choose a zone agent as a destination of computing package and it is possible
to use different methods to send the message. It might send the message in circular way, or it decides based on
the load on each zone agent. But to be aware of other agents, it should always send a message to be informed
of agents status. Sending this message will increase the load on connections, and results in execs of messages
in inter-agent communications. So it is better to deal the problem like the load balancing problem in the cloud
computing environment and use methods presented for them in [21]- [22].

Load balancing is used in service providers unit. Service providers use servers which might be in different
geographical places. Each service provider tries to allocate each service to a low loaded server to increase quality
of service. This process improves the quality of service and called load balancing [21].

When load balancing is being processed in cloud computing environments, a dynamic method is used to
choose the best server for current requests of system [21]. The first allocation is done with random selection
method or in circular turns. After that to prevent the incrementing the load of servers, it is allowed to servers
that if they cannot handle the task, they search for a server with a lower load to autonomously assign the task
to them. In this case, the load on the central service provider is decreased, and this agent does not get busy
with complicated initial task allocation process [22].

Similarly, in order to decline the working load, manager agent get the task of computing the computing

package to each zone agent randomly, or in circular turn way. Following that, each zone agent autonomously
select to compute the computing package or assign it to another zone agent through negotiation. The protocol
of sending packages and also sending the user requirements to find candidate services is shown in Fig. 5.1.

As shown in Fig. 5.1, manager agent sends a message to zone agents with each request from user. Zone
agents choose some candidate services and send their name and scores to the manager agent. Followed by that,
the manager agent creates a package including quality attributes of services and their scores and sends it to a
zone agent using random algorithm or circular turn method. Next, the ranking result is given to the manager
agent, and this agent guides the user to the selected service. Ranking steps (computing the computing package)
and inter-agent negotiation protocol is described in the following.
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Fig. 5.1. Cooperation protocol between agents in ARank

5.4. Ranking Candidate Services (Computing Package). The computing package is sent by manager
agent. The content of this computing package is quality attributes and scores given by earlier users to the
service. Computing of rankings is assigned to one of the zone agents. If only quality attribute of the services
is received, ranking of services is done easily with sorting the services in anticlimactic order. But two types of
information (the quality of services attributes, and scores given by earlier users) exist. Use of these two types of
information is one of the main advantage of the proposed method. Ranking of the services must be done based
on these two goals. Eq. (5.4) and Eq. (5.5) present computing functions.

F1 =
7∑

i=1

ci × qi (5.4)

F2 =
7∑

i=1

ci × qi
feedback (5.5)

As shown in Eq. (5.4), function F1 shows the sum of quality attributes of each candidate service, variable
qi shows the ith quality attribute of each candidate service. According to Eq. (5.5), function F2 presents the
sum of users feedback or users scores for each quality attribute, variable presents the score given to each quality
attribute for attribute i of each candidate service. The input of computing package is a number of candidate
services with two goal functions. Input is shown in Fig. 5.2.

According to Fig. 5.2, the input of ranking algorithm is some candidate services found by zone agents.
Each candidate services are presented with two values, sum of quality of attributes values (F1), and sum of
scores given by previous users (F2).

Now, in order to compare services based on two separate goal functions, domination method is used. In the
domination method, services are compared pairwise. Service 1 dominates and wins over service 2, if values of
goal services are no worst (bigger, smaller, or any other comparing standard) then service 2, and is better from
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Fig. 5.2. Input of computing package

service 2 in one aspect at least. Number of goal functions is not important in domination method; this method
is accountable to number of goal functions. This paper has two goal functions F1 and F2. Therefore, these
two methods are compared in both services, and services dominate others will rank as first. The domination
method of two is shown in Eq. (5.6) and Eq. (5.7).

S1 ≫ S2 ⇒∀j ∈ [1, 2] FS1

j ≥ FS2

j (5.6)

∃j ∈ [1, 2] FS1

j > FS2

j (5.7)

In Eq. (5.6) and Eq. (5.7), ≫ means S1 dominates S2. and respectively show the value of jth function of
service 1 and value of jth function of service 2. So, for ranking candidate services using domination of services
(computing contents of computing package), algorithm 2 is presented.

Algorithm 2 Algorithm 2: Ranking candidate services (by zone agents)

Require: F1, F2

Ensure: Ranked services;
R=1;

2: while there is not-Ranked candidate services do
find all services that are dominated to other services and set there Rank to R

4: if there is not any service which dominated to others then
set the Rank of all services to R

6: end if
R=R+1;

8: end while
return the Rank of candidate services

As shown in Algorithm 2, the goal functions F1 and F2 are used as inputs to compute computing package.
The algorithm runs until there is no not-ranked services (line 2). Within each run, services which dominate
other services, but are similar to each other, are given a rank (line 3). If the algorithm could not find any
services that dominated to others, put all remained services in same rank (line 4). With each run, a unit is
added to rank given to services for the next session (line 7). As a result, rank of services is returned (line 9).

5.5. Inter-agent negotiations protocol. In the previous section, it is said that ranking is done based
on running some operations on computing package. And also each zone agent can choose between two options
when it receives a package. In the first option, it can take care of operations, start ranking services and return
the result to manager agent. Second option is that this agent for any reason (over load or busy ranking candidate
services) cannot perform ranking, therefore, convinces one of other zone agents by negotiating to rank services
and finally sends the computing package to that agent. Negotiation between each initial zone agent and others
is shown in Fig. 5.3.

According to Fig. 5.3, the zone agent is not capable of computing a computing package, and starts
negotiating with other zone agents by sending a message asking for computing the computing package. The
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Fig. 5.3. Inter-agent negotiations protocol

Fig. 5.4. An example with five services in service marketing

agents which are received the message respond by a bid message, if they can compute that message. Initial
zone agents choose one of proposes randomly, then sends it the computing package or sends bid rejection to
other agents. Any agent, which computes contents of the package, sends the result to manager agent, so that
manager agent sends it to user agent.

5.6. A Sample Scenario. This section investigates an example and shows the ranking process. Supouse
we have five services and only one active user in our ranking system. Each service has at least seven quality
attributes which can be as Fig. 5.4. The previous users feedback represented in Fig. 5.4 too.

As shown in Fig. 5.4, we have five services that shown with their quality attributes. It should be noted
that quality attributes for services measured by third section and we suppose these values as input our ARank
method. Also Fig. 5.4 shows the feedback of services that intered by previously users. Now suppose we have
one active user with inputs as follows:

R1 =≺ 3 4 1 0 0 0 0 ≻

C1 =≺ 0.5 0.1 1 0 0 0 0 ≻

The R1 shows user’s requirments and C1 shows user’s priorities. In ranking process, at first zone agents try
to found the services which can satisfy user’s requirements (candidated services). In this example, services S1,
S2 and S4 can satisfy user’s requirments. then the computing package includes only candidated services and
their feedback and also the active user’s inputs (requirments and priorities).

At the second step, one of the zone agents should calculate the computing package using Eq. 5.4 and 5.5
and make the results like Fig. 5.1. The result of computation will be as follow:

S1 ⇒ F1 = 6.4 and F2=0.7
S2 ⇒ F1=3.1 and F2=0.15
S4 ⇒ F1=4 and F2=0.35
In the end, Algorithm 2 should be run to Rank the Candidated services. In this Example, service S1



114 A. Jahani, F. Derakhshan, L. Mohammad Khanli

Fig. 6.1. Response time of system by increasing number of services

dominated to other two services and receives first rank. Service S4 received second rank and service S2 received
third rank. This example represented ranking process in ARank.

5.7. Implementation of ARank. The proposed method is implemented on a system with CPU Intel
Corei5 Duo 2.53 GHz, 4 GB of RAM, and Windows 7 x86 Enterprise OS using Jade Library (V. 4.3.3) along
with earlier methods. In implementing ARank method, we created one manager agent, one user agent, and
five zone agents. Values of user required attributes and also values of services attributes are 7 (SMI attributes
only). Selection of 7 attributes in implementation is for comparing of proposed method with earlier ones, and
also for the existence of 7 features in used dataset.

To analyze the propose method, ARank, version 2 of QWS [23] data set is used. Because QWS is a real
dataset, from more than 2,500 web services. This dataset is the only one which includes all 7 SMI attributes.
In addition, using these attributes help to rank and compare all proposed method with others.

6. Evaluation Analyses. This section analyzes the required time for getting suggestion from ranking
service. Our proposed method is compared with methods based on SVD (Singular Value Decomposition) [25]
and based on AHP (Analytic Hierarchical Problem) [28].

The experiment is based on response time of system by increasing number of services. Services are increased
from 1 to 12,000 with 1,000 jump. With each increment in number of services, response time from system is
measured. Experiment results are shown in Fig. 6.1. The methods based on SVD and based on AHP are
respectively shown as SVD Rank and AHP Rank.

As shown in Fig. 6.1, by increasing the number of services, SVD Rank method is capable of responding
up to 10,000 services, because it uses Singular Value Decomposition method. As SVD method uses serial and
central run, response time increases when the number of services increase. The AHP Rank also ranks all the
existing services; and this method also runs central and serialized. Therefore, it needs more time to respond. In
return, the ARank method runs distributed as it uses agents and their cooperation ability has lower response
time compared to previous methods.

7. Conclusion and Future Works. In this paper, we proposed a novel method for ranking cloud com-
puting services based on mutiagent systems called ARank. The aim of our system is to decrease user waiting
times to get a suggestion from ranking service. The ARank method prevented ranking all of services by choos-
ing candidate services, And it took the advantage of capabilities of agents, by choosing and ranking services in
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distributed way which resulted in lower ranking time.

Our proposed method, ARank, prevented ranking all services by choosing some candidate services with zone
agents simultaneously. And also this method could use all user requirements using the standard SMI attributes.
In addition, ARank is able to use the feedback of users along values for each attribute quality, which inspires a
competition between service providers.

For our future works, the requirements of users can be classified into essential and non-essential that will
be increased ranking accuracy. In addition, we can create some new services with service composition that are
more suitable for users requirements. Furthermore, it is possible to optimize the functions that are finding best
matching zone agents to calculate the computing package.
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AUTOMATIC TUNING ON MANY-CORE PLATFORM FOR ENERGY EFFICIENCY VIA

SUPPORT VECTOR MACHINE ENHANCED DIFFERENTIAL EVOLUTION
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Abstract. The modern era of computing involves increasing the core count of the processor, which in turn increases the
energy usage of the processor. How to identify the most energy-efficient way of running a multiple-program workload on a many-
core processor while still maintaining a satisfactory performance level is always a challenge. Automatic tuning on the voltage and
frequency level of a many-core processor is an effective method to aid solving this dilemma. The metrics we focus on optimizing
are energy usage and energy-delay product (EDP). To this end, we propose SVM-JADE, a machine learning enhanced version of
an adaptive differential evolution algorithm (JADE). We monitor the energy and EDP values of different voltage and frequency
combinations of the cores, or power islands, as the algorithm evolves through generations. By adding a well-tuned support vector
machine (SVM) to JADE, creating SVM-JADE, we are able to achieve energy-aware computing on many-core platform when
running multiple-program workloads. Our experimental results show that our algorithm can further improve the energy by 8.3%
and further improve EDP by 7.7% than JADE. Besides, in both EDP-based and energy-based fitness SVM-JADE converges faster
than JADE.

Key words: Machine learning, many-core processors, energy-aware computing
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1. Introduction. In the modern computing era, the core count of the processor has continuously being
on the rise in pursuit of higher computational throughput. One downside, however, is the increased power
consumption and energy cost associated with core count increase. There have been several different methods
to minimize the energy usage of the processor, one of the most popular options being dynamic voltage and
frequency scaling (DVFS). With DVFS, the voltage and frequency level of the cores can be changed in an effort
to reduce the overall energy usage. On the other hand, we can keep the cores running in a very low power
state in order to save energy. But this will result in a very poor user experience as the performance in terms
of computation speed is unsatisfactory. How to identify the most energy-efficient way of running the workload
while still maintaining a satisfactory performance level is always a challenge. When running multiple programs
on a many-core platform, one energy-aware approach is to use different voltage and frequency setting with
different number of cores related to the inherent property of the program. Since it is not always feasible to
search through all possible combinations of frequency, voltage, core count with a brute force method, automatic
tuning becomes an effective and promising method to aid solving this dilemma.

Several algorithms exist to accomplish the task of automatic tuning such as Genetic Algorithm (GA) and
Differential Evolution Algorithm (DE), which search for solution as the algorithm evolves through generations.
In evolutionary computation, all of the individuals in a single iteration are called a generation. Similar to the
evolution of living creatures, individuals in one generation can exchange their unique features, which provides
the possibility for generating better offspring. Standard differential evolution (DE) can provide a good solution
for auto-tuning [1], however, its convergence rate is still relatively slow. Convergence in a performance curve
is the point the performance stops to change obviously. Fast convergence rate means the algorithm reaches or
gets close to the optimal performance much faster. In the realm of auto-tuning for many-core platforms, there
have been other algorithms that attempt to converge faster than standard DE, one of which being the adaptive
differential evolution algorithm (JADE).

In [3], Jiang et al. did a comprehensive study between JADE and several other representative algorithms
such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and the β algorithm. In [3], JADE is
proven to converge faster than standard DE algorithm and still produce the best results among the comparable
approaches, making it the new benchmark for this type of algorithm.
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Although it converges quicker than the normal DE algorithm, JADE still requires several generations of
evolution that requires a large computation overhead. In order to decrease the overhead of JADE, we aim
to decrease the number of generations required to achieve convergence. As shown in [2], Machine Learning
Enhanced Differential Evolution (mDE) can result in a much quicker convergence. Since JADE is proven to
be more effective than DE in energy-aware automatic tuning on many-core processors, and mDE converges
quicker than JADE, we propose SVM-JADE, a new auto-tuning algorithm for fast DVFS auto-tuning, which
can identify the optimal settings and number of cores per program to minimize energy and energy-delay product
(EDP) while running multiple programs on many-core platforms.

The rest of the paper is organized as follows: A brief overview of background works can be found in Sect. 2,
followed by the methodology for our specific version of differential evolution in Sect. 3. The implementation of
scheme are introduced in Sect. 4 with the experimental results being discussed in Sect. 5. Our conclusions are
presented in Sect. 6.

2. Background. In this section we introduce the hardware platform we use to conduct this research, as
well as review some representative works on energy-aware auto-tuning.

2.1. Hardware Platform. The Single-chip Cloud Computer (SCC) [4] is an experimental processor cre-
ated by Intel Labs for many-core based research. The architecture of SCC is shown in Fig. 2.1 [6]. The SCC
has 48 Intel Pentium P54C cores and employs mesh communication across the entire core-set. These cores are
divided into 6 power domains consisting of 8 cores each. Each of these power domains can be set to different
voltage levels independent of one another. The individual cores are grouped into pairs within the power domain
yielding 4 pairs per power domain. These core pairs form frequency domains that can have their frequency
set individually, much like the voltage of the power domain. One example of these domains can be seen in
Fig. 2.1. Cores 32 through 35, and cores 44 through 47 all belong to the same power domain as seen by the box
encompassing them. The pairings of the cores seen within the power domain, such as cores 46 and 47, are all
individual frequency domains.

Due to these abilities, the SCC becomes an ideal testing platform for energy-related many-core research.
Also, due to the computing capability of the SCC, it is possible to deploy multiple programs to run on the SCC
simultaneously.

With these characteristics, it is possible to not only run multiple programs on the SCC, but run the programs
at different voltage and frequency levels. This allows for a dynamic and energy-aware system when running
computations. However, there are many gears to choose from for each program, where a gear is defined as a
specific voltage and frequency combination of the cores. Specifically on the SCC, the voltage of the core can
range from 0.7V to 1.3V and the frequency can range from 100MHz to 800MHz [5]. An exemplary gear would
be [1.1V, 800MHz] for a power domain of 8 cores. This leaves us an abundance of choices to choose from. As a
result, an automatic tuning method needs to be developed.

2.2. Related Works. Auto-tuning with specific algorithms is a promising method to reduce the energy
consumption of processors. Flautner et al. [7] applied the Differential Evolution algorithm to dynamic voltage
scaling problem of processor first. After that, Hsu et al. [8] worked out an algorithm named β algorithm which
focused on another power-aware run-time system. These two are early exploratory auto-tuning works. Some
auto-tuning works based on SCC platform have been carried out as well. Berry et al. [9] adopted a manual
approach to scale voltage and frequency levels on SCC. Later, Berry et al. [10] introduced the Differential
Evolution algorithm to solve SCC power-aware computation problem, where a large program with several
different phases was tested. Continuing the work on differential evolution, Roscoe et al. [1] expanded the
workload on SCC to 3 programs. Recently, Jiang et al. [3] found a better energy configuration with Adaptive
Differential Evolution Algorithm (JADE), with 4 programs being examined in their work. The results produced
by above researchers are solely relied on the evolution computation algorithm techniques. With respect to the
prediction ability of machine learning, we believe using machine learning techniques can enhance the searching
ability of the previous evolutionary related algorithms. Yan et al. [2] put forward a method to enhance the
DE algorithm by Adaptive LS-SVM method. Zhang et al. [11] performed a survey about machine learning
enhanced evolutionary computation.
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Fig. 2.1: Inner architecture of the SCC

3. Methodology. In order to achieve auto-tuning, the many-core platform needs to dynamically balance
voltage, frequency, core numbers occupied by each program. These different variants construct a huge search
space, which is difficult to deal with by manual or brute force methods. So the key aspect of finding the most
energy-aware way of running the workload is transformed to find the method or algorithm which could converge
in the least amount of searching time. In this work, a machine learning enhanced DE algorithm is adopted for
this purpose. Classical DE algorithms and our new algorithm are discussed in this section.

3.1. Differential Evolution. Differential Evolution (DE) algorithm is a parallel direct search method.
Fig. 3.1 [12] shows an example of the relationship between the searching space and searching vectors of DE.

This algorithm utilizes D-dimensional vectors, where NP vectors constitute the entire population in one
generation. In other words, NP stands for the size of the population. The algorithm flow of DE is shown in
Fig. 3.2.

The initial population vectors are:

xi,G, i = 1, 2, ..., NP (3.1)

Selecting one vector from current generation as target vector, randomly selecting other three vectors to
perform the arithmetic operation as shown in Fig. 3.2 to get mutated vector which is represented as:

vi,G+1, i = 1, 2, ..., NP (3.2)

The arithmetic operation is defined by:

vi,G+1 = xr1,G + F · (xr2,G − xr3,G), i = 1, 2, ..., NP (3.3)
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Fig. 3.1: Two-dimensional Function optimization showing contour line and its process for generating v[i, G+1]

Here, F is amplification value. Then randomly taking elements of target vector xi,G cross compare with
vi,G+1, determined by random-generated number and CR factor. This process simulated chromosomal crossover
in creature’s cell. After that, totally new vectors:

ui,G+1, i = 1, 2, ..., NP (3.4)

are generated, then these vectors get their fitness value by the evaluation process. In the context of genetic
algorithms, fitness is any arbitrary metric that rates the quality of any given candidate. In this work, the fitness
we use is energy and EDP. Finally, there is a selection between the parent and the offspring according to their
corresponding fitness values. The above process should be applied to each individual in the generation at one
time. In this way, the next generation:

xi,G+1, i = 1, 2, ..., NP (3.5)

is produced successfully.

3.2. JADE. Adaptive Differential Evolution Algorithm (JADE) [13] improved the performance of classical
DE algorithm mentioned above. JADE is a greedy algorithm whose mutation strategy is mutating the top p%
of current generation. So one difference between JADE and DE is that mutation operator is changed to:

vi,G+1 = xr1,G + Fi · (xp
best,G − xr1,G) + Fi · (xr2,G − xr3,G), i = 1, 2, ..., NP (3.6)

Amplification factor Fi is also changed. On the other hand, JADE changed its crossover factor into:

µCR = (1− c) · µCR + c ·meanA(SCR) (3.7)

CRi = randni(µCR, 0.1) (3.8)

where initial µCR is the mean of the normal distribution with 0.1 variance at first generation. c is a constant
to balance the proportions of two mean values. SCR is the set comprised by “successful” CR values of last
generation. It is neglected at first generation. The mean here is the arithmetic mean. In this way, JADE
introduces the experience from the previous successful generation. For example, classical DE algorithm only
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Fig. 3.2: Algorithm Flow of Differential Evolution

mutates one candidate, which is the best one in the generation including 40 candidates. JADE algorithm can
mutate top p% candidates. If p is equal to 20, then 8 candidates will be mutated in the generation including
40 candidates. And if constant c is set to 0.1, the µCR in (n + 1)th generation is made up by 90% µCR and
10% mean value of “successful” CR values in (n)th generation. And the general flow of JADE can be described
in the following pseudo code:

Algorithm 1 Classical DE Algorithm

1: function DE(Initial Candidates, NP, F, CR)
2: for (i to NP) do
3: P1, P2, ..., Pm← Candidate Randomly P icking

4: V ← P3 + Fi · (P1 + P2) + Fi · (P3 + P4) ◃ Mutation
5: CRi ←Mean values

6: U ← P5, M, CRi ◃ Crossover
7: f(U)← U

8: Compare f(U) with f(P6) ◃ Selection

9: return New Candidates

3.3. Support Vector Machines. Originally a lot of artificial intelligence algorithms were considered as
case-by-case method. They performed well on a certain problem, but when the input condition or applied
objects changed, the algorithm performed poorly. The creation of the Support Vector Machine (SVM) [14]
algorithm largely improved this kind of drawback. Initially, SVM method was mainly used for classification
problem. Later, it was extended to the case of regression. In our paper, we use the regression function of the
SVM, which could also be called Support Vector Regression (SVR). The input of the SVM algorithm is training
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data sets, which could be presented as n-dimensional vector x:

x = {xi}ni=1 (3.9)

and the classification function of the data set is:

f(x) =
n∑

i=1

wi⟨(xi), (x)⟩+ b (3.10)

Training data set could be mapped into another high-dimensional space by mapping kennel. The SVM
model in the high-dimensional space could be represented as follows:

f(x) =

n∑

i=1

wi⟨ϕ(xi), ϕ(x)⟩+ b (3.11)

Here, with respect to simplification of description, we use a 2-dimensional training data set example to
express the theory of mapping [17]. Assuming two 2-dimensional vectors x1 = (η1, η2) and x2 = (ξ1, ξ2), and
ϕ(·) is the mapping relationship from 2-dimension to 5-dimension. In this way:

⟨ϕ(xi), ϕ(x)⟩ = η1ξ1 + η21ξ
2
1 + η2ξ2 + η22ξ

2
2 + η1η2ξ1ξ2 (3.12)

In another point of view:

(⟨ϕ(xi), ϕ(x)⟩+ 1)2 = 2η1ξ1 + η21ξ
2
1 + 2η2ξ2 + η22ξ

2
2 + 2η1η2ξ1ξ2 + 1 (3.13)

Equation 3.12 and Equation 3.13 share the same shape. It is not hard to get the expression of ϕ(·), which
is:

ϕ(x1) = (
√
2η1, η

2
1 ,
√
2η2, η

2
2 ,
√
2η1η2, 1) (3.14)

Here, Equation 3.12 calculates in the high-dimension space, while Equation 3.13 calculates easily in the
low-dimension space and avoids to express the mapping relationship explicitly. The method of Equation 3.13 is
called kernel function method, which reduces the computation complexity by committing computation in the
high-dimensional space of problem.

3.4. SVM-JADE. When multiple programs are running simultaneously on the SCC, energy consumption
will differ by using different number of cores and gears of voltage and frequency. Among them, finding the con-
figuration vector xD which make SCC consume the lowest energy-delay product (EDP) or energy is meaningful.
The vector xD is made up of gears and number of cores. The Gi represent the gear level of ith program, and
the Ci represent the number of cores of ith program. Considering 4 programs are running at the same time in
our experiment, our xD could be represented as:

xD = (G1, G2, G3, G4, C1, C2, C3, C4)
T (3.15)

with constraints:

1. The total number of cores used by all 4 programs cannot exceed 48 at any time, which is the total
number of cores of the SCC platform.

2. One individual program must be run under one gear, even if it occupies more than one power domain.
3. Number of possible gears are regulated down to 5, one of which is an idle state to be used on a domain

when no cores from it are in use. The different gears can be seen in Table 3.1. This limitation on gears
means that each voltage level will be using the maximum possible frequency for that power level, which
allows no power to be wasted.
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Table 3.1: Different gear combinations in JADE

Gear Frequency Voltage

1 800 MHz 1.1 V
2 533 MHz 1.0 V
3 400 MHz 0.9 V
4 320 MHz 0.8 V

Idle 100 MHz 0.7 V

The third constraint reduces the search space for brute force searching to a certain degree, as it removes
some unnecessary state. But even under this scenario, assuming a 4-program case where each program has one
of 5 possible gears and is limited to a maximum of 8 cores, we still have a search space of size 2.56× 106. With
such a search space, brute force searching is still too labor intensive to be feasible.

Yan et al. [2] put forward a method to enhance the DE algorithm by Adaptive LS-SVM method. Synthe-
sizing the advantages of above-mentioned algorithm, we adopt a method named SVM-JADE to accelerate the
converge speed of finding optimum low-power combination in SCC auto-tuning system. The training set of this
problem could be presented as: {xi, f(xi)}ni=1. The flowchart of SVM-JADE is given in Fig. 3.3.

The SVM-JADE embedded an SVM prediction procedure after the selection procedure of each generation.
At the end of one generation, current population status is defined as:

si,G+1, i = 1, 2, ..., NP (3.16)

while selecting the n best individuals among Equation 3.16 and their corresponding fitness values as input into
SVM model to fit a regression hyper-plane for predicting Energy or EDP value of SCC platform. Next, using
regression hyper-plane performing the vicinity search around the best performance vector in Equation 3.16.
The vicinity method is shown in Fig. 3.4. Here, with respect to the difficulty in visualizing a D-dimensional
space when D > 3, we use 3-dimensional vector as an example to explain the search procedure.

With vicinity search, we obtain the optimum vector. Optimum vector is predicted by the SVM regression
model which compares across the fitness values of individual in current generation. Specially, the optimum
vector should be feasible, i.e., could be executed on the SCC platform. Then, the configuration of optimum
vector will be tested on the SCC to get the actual fitness value, being energy or EDP in our case. Finally,
compare the fitness of optimum vector with lowest fitness of vectors in Equation 3.16, the candidate with better
fitness value stays. Then we get the generation in Equation 3.5 of SVM-JADE. At the end of every generation,
repeat these procedures. The evolution is usually stopped either after a certain number of generations or by
reaching a specified threshold.

4. Implementation. The general diagram of the implementation of SVM-JADE is shown on Fig. 4.1.
Our initial approach in implementing our SVM was to test the SVM in MATLAB using the libSVM library [15]
as a quick prototyping environment. After each generation, a population of 40 individuals is generated. We
input them into SVM model with different size of data-sets, varying from D to NP . We find that the lowest
mean squared error (MSE) between actual value and regression value of individual is obtained when the size of
training set is D, which is 8 in this case. That is to say, the squared correlation coefficient is almost equal to
1.0 in this size of training data set.

Our implementation here used both the theories of JADE and SVM as discussed in Section 3. We started
with a base implementation of JADE as laid out in [3]. This implementation used the Inspyred [16] python
library to assist in the evolutionary computations. In accordance with the theory of JADE, a modified version
of the mutation and crossover steps were used in place of the standard DE versions. Other things we followed
were running four programs simultaneously and the same fitness tests. The two different fitness types used here
are energy and energy-delay product (EDP). Aside from adding an SVM portion to JADE, there were a few
other modifications made as well. SVM-JADE has an auto-initialization at the beginning to ensure that all tests
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Fig. 3.3: Algorithm Flow of SVM-JADE

begin with the same initial conditions. Another change is that the initial population can be predetermined,
which allows for more specific testing including continuing testing in the case of a failure during experiment.

The four programs used in our experiments are mmul, conv, cpi, and seqpi, respectively. mmul is a matrix
multiplication program which can be partially paralleled without error. conv is a program similar to mmul

by operating on matrices, however, conv finds the convolution of the two matrices which is much easier to
parallelize. cpi is a highly parallel program that calculates the value of π, stopping after a given number of
iterations. The iterations number used here is one billion, which is the same as used in JADE. Lastly, we have
seqpi which is a very sequential program. This accomplishes the same task as cpi but in sequential fashion. We
use these four programs to form our multi-program workload for the many-core processor, the same as described
in [3].

In order to add the SVM module into JADE, we again used the libSVM library [15]. However, this
time we used the python extensions to make combining the algorithms easier. This also made organizing our
implementation easier by designing our SVM as an object that is able to perform all necessary computations
on its own.
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Fig. 3.4: Demo of vicinity Search

Our SVM was inserted into the selection phase, being trained on the candidates of the current population
based on the current fitness. After being trained, the SVM then generates its own search space for both gears
and core count. The search space generated follows the algorithm laid out below:

Algorithm 2 Search Space Generation for Gears

1: function GearSpace(candidate, dimension)
2: value← candidate[dimension]
3: if value = 1 then

4: return [1, 2]
5: else if value ∈ [2, 3] then
6: return [value− 1, value, value+ 1]
7: else if value = 4 then

8: return [3, 4]

As can be determined from the algorithm, for the search space of gears we end up with a search size of 2
or 3. Similarly, when generating the search space for the core count, we end up with possible sizes of 3 and 5.
These are a bit larger because there is a larger set of values to choose from.

In summary, our algorithms form small search space around the best candidate of the offspring population
and uses the SVM decision function to predict the different fitness values for each candidate in the search
space. The smallest value is then chosen as the SVM predicted candidate, because we are trying to minimize
the fitness value, such as energy usage. This candidate is then evaluated against the worst candidate of the
offspring population, replacing it if the SVM prediction is better. This modified offspring population becomes
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Fig. 4.1: Implementation of SVM-JADE

Algorithm 3 Search Space Generation for Core Count

1: function CoreSpace(candidate, dimension, max)
2: value← candidate[dimension]
3: if value ∈ [1, 2] then
4: return [1, 2, 3, 4, 5]
5: else if 3 ≤ value ≤ max− 2 then

6: return [value− 1, value, value+ 1]
7: else if value] ∈ [max− 1,max] then
8: return [max− 4,max− 3,max− 2,max− 1,max]

the new population for the next generation and continues to follow DE’s flow of operations shown in Fig. 3.2.

5. Experimental Results. SVM-JADE described in Section 4 was implemented onto the SCC with the
Intel SCCkit v1.4.0. The controlling computer, the MCPC, runs Ubuntu 10.04 64-bit with 8GB of RAM. The
initial setup conditions for all the tests were that no single program could use more than 32 cores at any given
time. This limitation is in place to ensure each program has at least one power domain (group of 8 cores).
The SVM is trained on the top 8 candidates of the population as opposed to the entire population, and the
four programs are run simultaneously. As we mentioned previously, energy and energy-delay product (EDP)
are used as fitness values. EDP is a measure of both performance as well as energy as it takes both the energy
it takes to execute the program as well as the user response time, e.g., the time to execute the program into
consideration. The different fitness values were tested individually 3 times and the results are aggregated by
average value. Since SVM-JADE and JADE are based on DE, the important part of the data is the fitness
value of the single best candidate from each generation. This also corresponds to the data analysis performed
in [3]. In order to conduct a fair comparison between SVM-JADE and Jade, the random candidate generator
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for the initial generation (Generation 0) was fixed to the same seed.
Our first experiment was to use the EDP fitness type. The results are presented in Fig. 5.1, which represents

the EDP from the best single candidate of each generation averaged across all runs. It can demonstrate the
overall performance of SVM-JADE vs. Jade including the convergence rate.
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Fig. 5.1: Algorithms using EDP fitness

From Fig. 5.1, SVM-JADE achieved an EDP of 3024.499 Joule-seconds in Generation 9 while Jade ended
up only decreasing the EDP to 3277.522 Joule-seconds in Generation 9. SVM-JADE is able to further reduce
the EDP by 7.7% than JADE. Past Generation 6, SVM-JADE decreases by less than 1.5% showing convergence.
Jade, however, is still continuing to decrease even through Generation 9.

By evaluating the difference across generations, we find that SVM-JADE results in an EDP changing
rate at about −322.952 Joule-seconds per generation while Jade results an rate of −352.646 Joule-seconds on
average. This point can be exemplified through a linear regression across the convergence. That is to say
SVM-JADE should be regressed from Generations 0 to 6, while Jade should be regressed from Generations 0
to 9. The point of doing a linear regression across the convergence is to show the rate at which the algorithms
converged since they ideally converge before the end. The regressions shows that SVM-JADE has a trend of
EDP = −427.49X + 5963.4 and JADE has a trend of EDP = −339.42X + 6384.6. As can be seen from the
slopes, SVM-JADE decreased to its convergence point at a quicker rate than Jade. The actual values for both
SVM-JADE and JADE for EDP-based fitness can be seen in Table 5.1 with SVM-JADE in subtable (a) and
JADE in (b).

The best overall result using EDP fitness from a single run was with vector [4, 4, 4, 4, 11, 12, 23, 1] yielding
2997.477 Joule-seconds. This means that all four programs ran on Gear 4 and Programs 1 through 4 ran on
11, 12, 23, and 1 cores, respectively. Recall that the four programs used were mmul, conv, cpi, and seqpi.
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cpi, the most parallel of all the programs, used the most cores of 23. mmul and conv are both fairly parallel
programs and they used 11 and 12 cores, separately. The last program, seqpi, is a very sequential program and
consequently only used a single core, showing the effectiveness of our proposed approach.

Table 5.1: Tabular data for EDP based fitness

Generation EDP (J · s)
0 6 292.992
1 5 148.874
2 4 266.357
3 3 845.74
4 3 845.74
5 3 667.679
6 3 068.848
7 3 024.499
8 3 024.499
9 3 024.499

(a) SVM-JADE

Generation EDP (J · s)
0 6 451.335
1 5 983.302
2 5 339.798
3 4 479.627
4 4 270.295
5 4 270.295
6 4 004.921
7 3 569.608
8 3 531.114
9 3 277.522

(b) JADE

The next form of experiment was to use energy as the fitness metric in SVM-JADE and JADE. The results
for the energy fitness test are presented in Fig. 5.2.

We can see again that SVM-JADE stops significant changes in Generation 6. Jade, however, still continues
to decrease even through to Generation 9. SVM-JADE achieved an energy value of 392.945 Joules in Generation
9 while Jade ended up only decreasing the energy to 428.632 Joules in Generation 9. SVM-JADE is able to
reduce the energy consumption further by 8.3% than JADE. Past Generation 6, SVM-JADE continues to
improve at a slowed rate as before, but JADE does not converge even by Generation 9. In this case, we have
reached our near-ideal value very quickly.

Evaluating the difference across generations, we can find that SVM-JADE is changing at a rate about
−16.277 joules per generation while Jade results a rate of −17.658 joules per generation on average. This can
be shown via a linear regression across the convergence. That is to say SVM-JADE should be regressed from
Generations 0 to 6 while Jade should be regressed from Generations 0 to 9. The regressions shows that SVM-
JADE has a trend Energy = −22.349X + 550.6 and Jade has a trend Energy = −17.615X + 587.55. As can
be seen from the slopes, SVM-JADE decreased to its convergence point at a quicker rate than Jade. The actual
values for both SVM-JADE and JADE for energy-based fitness can be seen in Table 5.3 with SVM-JADE in
subtable a and JADE in b.

The best overall result using energy fitness from a single run was with vector [1, 4, 1, 1, 10, 10, 21, 1], yielding
an energy consumption of 399.753 Joules. This means that mmul, cpi, and seqpi all ran on Gear 1 and conv

ran on Gear 4. This is reasonable as conv is less sequentially heavy than programs such as mmul or cpi.
mmul and conv both ran on 10 cores as they are both mainly parallel programs. cpi, the most embarrassingly
parallel program, again has the highest core count of 21. Lastly, seqpi, the purely sequential program, was
again dedicated just a single core, as was the case with EDP-based fitness.

It is also useful to observe how the candidate evolves across generations based on our algorithms, mapping
to the program descriptions as seen in Sec. 4. Table 5.5 shows example candidates from a single run using
EDP-based Fitness.

Please note here each gear and core combination in the table lines up with the program mmul, conv, cpi
and seqpi respectively. Looking at Gear1 and Cores1, we can see that in the final generation it ends with 1
and 9 respectively. Using Gear 1 allows for heavy computations, and 9 cores allow for a semi-parallel program,
which matches the previous description. conv obtains a gear of 4 and 16 cores because the computations are
not too difficult, but the program runs much faster on multiple cores. cpi, a very parallel program ends with a
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Fig. 5.2: Algorithms using Energy fitness

gear of 1 and 17 cores. Gear 1 is caused by the complexity of the integral computation, and 17 cores because
the program is embarrassingly parallel. Finally, seqpi receives gear 1 and only 1 core. This is because it has
complex computations but is a very sequential program and cannot be easily run with multiple cores.

Lastly, it is important to see the savings provided by SVM-JADE over other algorithms such as Jade. In
terms of computation overhead, because SVM-JADE converges in Generation 6 as opposed to Generation 9 for
Jade, in practice we are able to save the calculation and testing of over 120 candidates. This results a reduction
in total computation overhead by one third.

6. Conclusions. Working in many-core computing adds great computational horsepower but also brings
in added energy consumption. How to identify the most energy-efficient way to run a specific workload while
still maintain a satisfactory performance level is always a challenge. The work we presented here shows that
a brute force search for an ideal DVFS configuration can be avoided by using an automatic tuning algorithm.
In this work, we were able to successfully apply Support Vector Machine (SVM) to an Adaptive Differential
Evolution algorithm (JADE), creating a new automatic tuning algorithm SVM-JADE. SVM-JADE is more
effective than JADE, as the final EDP value achieved by SVM-JADE is 7.7% less than that of JADE and
the final energy value achieved by SVM-JADE is 8.3% less than that of JADE, respectively, after running 10
generations. Besides, SVM-JADE, was able to minimized desired fitness levels quicker than JADE with faster
convergence speed. This is a significant improvement since each candidate from these generations gets mutated
and compared. The overhead brought by adding an SVM evaluation becomes negligible when considering the
potential savings in calculations and energy saving it provides. SVM-JADE is a step forward in DVFS automatic
tuning on many-core platforms by minimizing fitness values lower and quicker than a representative comparable
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Table 5.3: Tabular data for Energy based fitness

Generation Energy (J)

0 539.435
1 502.859
2 473.217
3 463.278
4 426.189
5 425.005
6 398.424
7 398.424
8 393.088
9 392.945

(a) SVM-JADE

Generation Energy (J)

0 587.553
1 561.293
2 546.062
3 500.576
4 475.089
5 464.496
6 464.496
7 442.984
8 437.675
9 428.632

(b) JADE

Table 5.5: Candidate examples from a single run

Generation Gear1 Gear2 Gear3 Gear4 Cores1 Cores2 Cores3 Cores4

0 1 3 1 1 10 11 11 11
1 1 3 1 2 8 8 12 9
2 1 3 1 2 8 8 12 9
3 1 1 1 1 14 11 18 5
4 1 1 1 1 14 11 18 5
5 1 1 1 1 14 11 18 5
6 1 1 1 1 12 11 18 6
7 1 4 1 1 9 16 17 1
8 1 4 1 1 9 16 17 1
9 1 4 1 1 9 16 17 1

algorithm JADE. Our future work includes adjusting our SVM, its training set, as well as the decision function
to continue improve the accuracy of support vector regression when selecting candidates.
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1. Introduction. The development of scientific applications for complex problems often leads to compli-
cated program codes that are hard to maintain and less portable in terms of their performance on different
hardware platforms. Component-based development approaches can provide means to handle this complexity,
especially if several independently developed application programs have to be integrated into a single com-
plex simulation [12]. Important aspects of these approaches are the implementation of new components or
the integration of existing components, the efficient data exchange between components based on various com-
munication methods, and the flexibly distributed execution of components on different hardware platforms.
A further major challenge is to ensure the interchangeability of specific components, for example, to perform
compute-intensive tasks, such as finite element method (FEM) simulations, with different application programs.

Having the ability to choose flexibly between different application programs provides several advantages.
Program codes with different application functionalities, for example, might provide alternative solution methods
that lead to different result precision or support specific simulation conditions. If the program codes provide
the same application functionality, then it might be preferable to use codes that reduce costs, for example,
in terms of execution time, hardware utilisation, or software licenses. The flexible integration of FEM codes
into a component-based scientific simulation needs support by a generic FEM simulation component that can
invoke different FEM codes. This approach would allow users of complex simulation applications, e.g. domain
specialists such as mechanical engineers, to focus on the design of their simulation problems and solution
methods. The usage and integration of specific program codes as well as their efficient execution on dedicated
platforms, such as high performance computing clusters, is then left to the application developers.

The complex simulation which we consider is an application from mechanical engineering for optimising
lightweight structures based on numerical simulations. This class of applications is extensively studied in the
research project MERGE1. The goal is to perform simulation-based optimisations of the design and the manu-
facturing of fibre-reinforced plastics [10]. The overall complex simulation application consists of various program
components, such as computationally intensive numerical simulations, control programs for implementing the
optimisation process as well as data-oriented programs for the generation, management, and visualisation of the
simulation data. FEM codes are used to simulate the cooling of the manufactured parts, which leads to residual
stresses and deformations, and for the characterisation of their mechanical properties with specific operating
load cases. To achieve an interchangeability of the FEM simulation component, it is required to implement
data conversions for the FEM input data formats and to utilise different FEM codes and their specific execution
platforms. The FEM input data formats are usually text-based and comprise information, such as the geometry
and the material properties of the part to be simulated and the boundary conditions of the desired solution.
The FEM codes range from open source codes to closed commercial or proprietary codes while as execution
platforms usually both Linux/Unix-based or Windows-based systems are used.

In this article, we present the integration of a generic FEM simulation component into a component-based
simulation application for the optimisation of lightweight structures. The main contributions are as follows:

†Department of Computer Science, Technische Universität Chemnitz, Chemnitz, Germany
1MERGE Technologies for Multifunctional Lightweight Structures, http://www.tu-chemnitz.de/merge
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Fig. 2.1. Overview of the coarse structure of the optimisation process for designing lightweight structures.

We describe the major components of the complex simulation application as well as the interactions between
these components based on a service-oriented approach. The integration of generic FEM simulations is mainly
achieved with a dedicated FEM data conversion component. We present the design of this conversion component
and describe its support for two different FEM input data formats. Finally, we describe the implementation
of the program components of the simulation-based optimisation application and their interactions based on
the Simulation Component and Data Coupling (SCDC) library [12]. The SCDC library supports different data
exchange methods, such as direct function calls, inter-process communication, and network communication.
Thus, using the SCDC library allows for a flexibly distributed execution of the program components among
different hardware platforms without requiring additional programming efforts.

The rest of this article is organised as follows. Section 2 gives an overview of the complex simulation
application for optimising lightweight structures. Section 3 presents the data conversion between different input
formats of FEM codes. Section 4 describes the component-based approach for implementing the distributed
execution of the program components of the complex simulation. Section 5 presents results for estimating the
overhead of the FEM data conversion in comparison to the execution of the FEM codes. Section 6 discusses
related work and Section 7 concludes the article.

2. A complex simulation application for the optimisation of lightweight structures. The optimi-
sation of lightweight structures to be developed in the project MERGE is performed with numerical simulations
for manufacturing and using fibre-reinforced plastics. The simulation-based approach and the component-based
implementation of the resulting complex simulation application is described in the following.

2.1. Optimising lightweight structures. The lightweight structures considered in the project MERGE
are plastic parts that are manufactured by injection moulding. Fillers, such as short glass or carbon fibres,
are mixed into the plastic to improve the mechanical properties of the parts. A computational fluid dynamics
(CFD) simulation is used to simulate the manufacturing process of injecting the molten plastic and the fibres
into a mould. The density and orientation of the fibres within the manufactured parts have a strong influence
on their mechanical properties. The results of the CFD simulation characterise the fibre distribution within the
parts and are used to model the material properties of such short fibre-reinforced plastics.

The CFD simulation is finished when the mould is filled with the molten material, thus leading also to a
temperature distribution within the manufactured part. A thermal analysis simulation uses the temperature
distribution as a starting point to simulate the cooling to room temperature. This cooling process can lead to
residual stresses in the solid material and to deformations of the manufactured part. The resulting information
about the geometrical and material properties of the manufactured part are finally used to simulate its behaviour
in different operating load cases using structural analysis simulations. Both thermal and structural analysis
(TSA) simulations are performed with finite element method (FEM) programs.

The overall goal of the complex simulation application is to optimise the properties of the lightweight
structures. Figure 2.1 shows a coarse overview of this optimisation process. Based on an optimisation problem
defined by the user of the complex simulation application, an optimisation method selects specific values for
the parameters to be optimised. For short-fibre reinforced plastics, material and manufacturing parameters,
such as the fibre percentage or the injection position, are varied. Each selected parameter configuration is then
used to simulate the manufacturing, the cooling, and the usage of the corresponding plastic part. In this step,
usually about 10–100 simulation tasks have to be computed with dedicated CFD and TSA simulation programs.
However, the specific number of tasks depends on the number of parameters to optimise, the utilised optimisation
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method, and the load cases to consider. The simulation results with the different parameter configurations are
then evaluated, such that the optimisation method can either select further parameter configurations to simulate
or finish with the optimised parameters. A Kriging metamodel approach is used for the global optimisation [13].
A more detailed overview of the simulation and optimisation approaches developed in the research project
MERGE is given in [8].

In this work, we concentrate on the utilisation of FEM codes for the simulation of operating load cases.
This can be used, for example, to perform parameter studies with successively changing loads or to compare
different solution methods supported by FEM programs. As a primary example of an FEM program, we use
an in-house adaptive FEM code called SPC-FEM [5] which has been further developed according to the needs
of the project MERGE. The input data for the FEM simulations to perform is generated in the custom data
format of the SPC-FEM code. Additional commercial FEM codes, such as ANSYS2, should be employed as
alternative or complementary FEM methods. Thus, it is required to integrate appropriate data conversions and
program executions into the complex simulation application.

2.2. Component-based application with generic FEM integration. The optimisation of lightweight
structures described in the previous section involves a variety of different application programs. To achieve a
sustainable solution that allows a continuous adaption to new usage scenarios and a flexible utilisation of
distributed execution platforms, the overall complex simulation application is separated into individual software
components as follows:

• The optimisation component contains the modelling of the optimisation problem with its parameters
as well as the optimisation method to be used. This component acts as a driver for the simulation
application and generates the input data for the FEM simulation tasks to be performed. The execution
is usually not computationally intensive and might be based on user interactions. The optimisation
component is thus executed on a desktop platform.

• Simulation components execute the FEM simulation tasks. Separate FEM components are available
to perform the simulations either with the SPC-FEM or the ANSYS-FEM code. For the integration of
a generic FEM simulation, an additional generic FEM component that invokes the application-specific
FEM components is provided. Since FEM simulations can be computationally intensive, it might be
advantageous to execute them on HPC platforms. However, the generic FEM component might also
be executed in close cooperation with the optimisation component on a desktop platform.

• Domain-specific problems that are not directly related to the simulation-based optimisation of light-
weight structures are solved by auxiliary components. This includes a dedicated scheduling component
that determines schedules for the efficient utilisation of HPC platforms. In [8], we have presented several
scheduling methods for assigning simulation tasks to compute resources of a heterogeneous compute
clusters such that the total time for executing all simulation tasks is minimised.

• The data conversion between different FEM input data formats is performed by a dedicated conversion
component. The input data formats used by the SPC-FEM and ANSYS-FEM codes and the imple-
mentation of the data conversion is described in Section 3. Both the scheduling and the conversion
component are mainly used by the generic FEM simulation component and, thus, are executed close to
their execution platform.

• A storage component provides separate locations for storing the input and output data of each FEM
simulation. This component remains passive and does not perform any computations. However, to
support high numbers of FEM simulations with large amounts of simulation data, the storage component
might be executed on a dedicated server with high storage capacities.

A service-oriented approach is used to model the interactions between the different components. Within
this model, each component can be both a client that accesses other service components and a service that is
accessed by other client components. Figure 2.2 illustrates the service-oriented implementation of the simulation
application for the optimisation of lightweight structures. The optimisation component is invoked by the user
of the simulation application and generates the FEM simulations to be performed. Thus, this component
represents a client that is activated first and then accesses other components. The execution of several FEM

2www.ansys.com
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Fig. 2.2. Overview of the components for the service-oriented implementation of the simulation application for lightweight
structures. The interactions (1)–(6) represent client accesses to services.

simulations (e. g., with different parameters, see Section 2.1) is then performed as follows:

• The input data of the FEM simulations is first transferred from the optimisation component to the
storage service (1) and then the FEM simulation tasks are submitted to the generic FEM service (2).

• The generic FEM service uses information about the FEM simulation tasks and the available compute
resources to set up a scheduling problem. Solving this problem is performed by a dedicated scheduling
service that is accessed by the FEM service (3).

• The generic FEM service retrieves the input data of each FEM simulation task from the storage service
(4) and performs the required data conversions by accessing the conversion service (5).

• The generic FEM service submits the FEM simulation tasks with its converted input data and the
scheduling information about the compute resources to be used to either the SPC-FEM (6a) or the
ANSYS-FEM (6b) service. The utilised service then executes its specific FEM code on the given
compute resources. The FEM simulation results are gathered by the generic FEM service and then
transferred to the storage service. After the generic FEM service finished all FEM simulation tasks, the
submission of the FEM simulation tasks performed by the optimisation component (2) is completed.

In [12], we have presented the SCDC library that is specifically designed for implementing complex simula-
tion applications with a component-based service-oriented approach as described in this subsection. The usage
of the SCDC library for implementing the simulation application for the optimisation of lightweight structures
including the flexible use of FEM codes introduced in this work is given in Section 4.

3. Data conversions for generic FEM simulations. The integration of generic FEM simulations into
the optimisation application for lightweight structures is based on a data conversion between different FEM
input data formats. In the following, a generic input data of FEM simulations as well as two specific data
formats of FEM codes are described. Furthermore, the conversion between the two specific formats and their
integration in a flexible conversion tool is presented.

3.1. Generic FEM input data. The FEM input data consists of three main parts: the geometry of the
structure to be simulated, its material properties, and the boundary conditions of the desired solution. The
geometry part describes the shape of the structure to be simulated and is assumed to be given as a mesh. The
smallest units of a mesh are nodes given by their coordinates in a three dimensional space. Pairs of nodes can
be connected to create edges. Multiple edges together form faces, e. g. four edges form a quadrilateral face. The
composition of multiple faces leads to elements. Finally, the whole structure is represented by a set of elements.

The material part of the FEM input data specifies the properties of the materials the structure to be
simulated consists of. Each material is described by a set of parameters of a corresponding material model.
Currently, a linear elastic model is supported and the elements of the structure can use different materials (i. e.,
with different sets of parameter). Simulating the behaviour of a structure requires to determine the solution of
an equation system that describes the state of the structure. The boundary conditions usually define constraints
that need to be fulfilled by the desired solution. For example, in the FEM input data, the boundary conditions
can be used to provide information about the occurring mechanical forces in an operating load case. In this
case, the FEM simulation can determine a solution that describes the resulting deformation of the structure.
Further boundary conditions can be set to prevent that specific parts are deformed, for example, to simulate a
clamped structure.
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Fig. 3.1. Geometry of an example structure for an FEM simulation where one side of the structure (green) is clamped and
on the opposite side (red) a load is applied.

Figure 3.1 illustrates an example structure consisting of two connected cuboids with different size in x-
direction. The corresponding mesh consists of 20 vertices, 36 edges, 21 faces and 4 elements. This example
structure is used in the following to demonstrate the different FEM data formats. The boundary conditions are
chosen such that one side of the structure (green) is clamped and on the opposite side of the structure (red) a
load is applied in z-direction.

3.2. SPC-FEM format. The SPC-FEM code [5] is an in-house development of an adaptive FEM solver.
The content of the corresponding input format can be separated into parts for geometry, material, and boundary
conditions. Furthermore, the SPC-FEM format contains a header with additional information, such as the
degrees of freedom to be used. In general, the format uses a # character followed by a keyword to start the
input data of the different parts.

The geometry part contains nodes, called vertices. After the line starting with the keyword VERTEX, each
vertex is given by an index and its coordinates in a three dimensional space. Edges are listed after the line
starting with the keyword EDGE. Each edge is given by an index, a type (e. g., a straight line), and the two
indices of the corresponding vertices. Faces are listed after the line starting with the keyword FACE. Each face
is given by an index, a type (e. g., a plane face), and the number of associated edges followed by the indices of
these edges. Elements, called solids, are listed after the line starting with the keyword SOLID. Each element is
given by an index, a type that specifies its material, and the number of associated faces followed by the indices
of these faces. Materials are defined after the line starting with the keyword MATERIAL. Each single material
definition comprises an index and the number of material parameters followed by the parameters to describe
the material.

The SPC-FEM format supports two different types of boundary conditions. The first type of boundary
conditions represents Dirichlet boundary conditions which are given after the keyword DIRICHLET. Dirichlet
boundary conditions can be used to pre-define some values of the solution, e. g. to fix the position of some
nodes. The second type of boundary conditions represents Neumann boundary conditions which are given after
the keyword NEUMANN. Neumann boundary conditions can be used, for example, to define loads on specific parts
of the structure. Each boundary condition refers to a face that is given by its index followed by one line for each
degree of freedom. Each of these lines contains a type that specifies how the boundary condition is represented
(e. g., with constant values) followed by the specific data of this representation.

Figure 3.2 (left) shows an example of FEM input data in the SPC-FEM format. The geometry part contains
vertices (i. e., nodes), edges, faces, and solids (i. e., elements) as shown for the example structure in Fig. 3.1.
The Dirichlet boundary conditions fix the coordinates of the faces of one side of the structure (e. g., face with
index 8) and the Neumann boundary conditions define a load in the z-direction on the face of the opposite side
of the structure (i. e., face with index 4).

3.3. MAPDL format. ANSYS is a commercial engineering analysis software including ANSYS Mechan-
ical, a tool for FEM analysis. The Mechanical ANSYS Parametric Design Language (MAPDL) [2] is a scripting
language that is used to describe the input data of ANSYS Mechanical. The MAPDL format can be used to
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#VERSION: 2.0

#DATE: Monday , December 19, 2016

#DIMENSION: 3D

#EQN_TYPE: any equation

#DEG_OF_FREE: 3

#HEADER: 9

20 36 21 4 0 3 1 1 0

#VERTEX: 20

1 0.5 0.0 0.0
...

20 0.375 0.0 0.2

#EDGE: 36

1 1 1 2
...

36 1 13 16

#FACE: 21

1 1 4 1 22 11 21
...

21 1 4 13 14 15 36

#SOLID: 4

1 1 6 1 2 11 10 14 18
...
4 1 6 3 4 5 12 17 21

#MATERIAL: 1

1 5 10000 0.30 0 0 0

#DIRICHLET: 3

8

1 0.0

1 0.0

1 0.0
...

#NEUMANN: 1

4

1 0.0

1 0.0

1 10.0

/prep7

et, 1, 185

mp, ex , 1, 10000

mp, prxy , 1, 0.3

n, 1, 0.5, 0.0, 0.0
...
n, 20, 0.375, 0.0, 0.2

e, 1, 2, 3, 10, 11, 12, 13, 20
...
e, 3, 4, 5, 6, 13, 14, 15, 16

d, 8, UX, 0.0

d, 8, UY, 0.0

d, 8, UZ, 0.0
...
d, 19, UX, 0.0

d, 19, UY, 0.0

d, 19, UZ, 0.0

f, 4, FZ , 10.0
...
f, 15, FZ, 10.0

/solu

solve

finish

Fig. 3.2. Example of FEM input data in the SPC-FEM format (left) and in the MAPDL format (right).

define the mesh of the structure to be simulated, the properties of the materials to be used, and the bound-
ary conditions for the desired solution. Additionally, instructions for preprocessing steps and for the solution
method can be given.

The mesh of the structure to be simulated can be described by nodes and elements. The ANSYS-FEM code
supports different types of elements with various shapes and material properties. The command et is used to
select the current element type that is used for all following definitions of elements. The material properties
of the elements are defined with the command mp followed by specific material parameters, such as the elastic
modulus ex and the Poisson ratio prxy. After the current element properties are defined, the mesh of the
structure is given as nodes and elements. A node is defined with the command n followed by an index and
its coordinates in a three dimensional space. Elements represent collections of nodes and are defined with the
command e followed by the indices of the nodes. With the MAPDL format, the boundary conditions can be
defined for nodes. The command d is used to define displacement constraints of nodes and the command f

is used to define force loads at nodes. Both commands require to specify the index of the node, a label that
identifies the degree of freedom, and the value to be set.

Figure 3.2 (right) shows an example of FEM input data in the MAPDL format that corresponds to the
FEM input data in the SPC-FEM format presented in Fig. 3.2 (left). The FEM input data begins by calling the
preprocessor. Afterwards, the element type and the material properties are set and the nodes and elements are
created. The boundary conditions are defined, by setting the displacement of the node with index 8 (and several
other nodes) and by setting a force load in the z-direction for the node with index 4 (and several other nodes).
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comment = Suppress(Literal ("##")+ restOfLine)

inum = Regex(r’-?\d+’)

fnum = Regex(r’-?\d+(\.\d*)?([eE]-?\d+)?’)

config_keys = oneOf(" VERSION DATE DIMENSION EQN_TYPE DEG_OF_FREE . . .")

config_info = Group(Suppress ("#")+ config_keys+Suppress (": ")

+restOfLine ). setParseAction(fill_info)

header_info = Group(Suppress ("#")+ Literal (" HEADER ")+ Suppress (": ")

+restOfLine ). setParseAction(fill_info)

header_data = Group(OneOrMore(inum )). setParseAction(fill_data_header)

vertex_info = Group(Suppress ("#")+ Literal (" VERTEX ")+ Suppress (": ")

+restOfLine ). setParseAction(fill_info)

vertex_data = Group(OneOrMore(fnum )). setParseAction(fill_data_vertex)

. . .

spc_data = OneOrMore(comment+lineEnd

|config_info+lineEnd

|header_info+lineEnd+LineStart ()+ header_data+lineEnd

|vertex_info+lineEnd+LineStart ()+ vertex_data+lineEnd

|. . .)

Fig. 3.3. Definition of the Pyparsing grammar for the SPC-FEM format.

Finally, the solver is started with the command solve and after finishing the computations, the ANSYS-FEM
code is terminated with the command finish.

3.4. SPC-FEM to MAPDL format conversion. For parsing the source format of the FEM input data,
we have used the Pyparsing library [16]. Pyparsing is an open source Python module for creating grammars and
parsing text according to those grammars. For each FEM data format, a separate grammar has to be created.
The given FEM input data is then parsed with the grammar of the source format.

Figure 3.3 shows a Python code example that defines the Pyparsing grammar for the SPC-FEM format. The
grammar is build up hierarchically by defining separate parsing objects for each entry of the SPC-FEM format.
Comment lines starting with the literal ## are matched as entries whose occurrence is ignored. Commonly
occurring entries, such as numbers, are defined once with a parsing object (e. g., inum and fnum) and then
used in the definition of further entries. The definition of each specific FEM data entry uses its keyword as
a literal and a corresponding parsing action that is executed when the entry is matched by the parser. The
utilised parsing actions (e. g. fill info or fill data vertex) store the parsed data in a dictionary-based data
structure. Finally, the entire grammar object spc data is defined by listing all previously defined entries that
can occur within the source format.

After parsing the FEM input data given in the SPC-FEM format, the corresponding MAPDL format has
to be generated. Since the two formats can use different representations for the mesh of the structure, an
appropriate data transformation has to be applied. For example, the MAPDL format defines elements as
collections of nodes, whereas the SPC-FEM format defines elements based on faces. Converting an element
from the SPC-FEM format into the MAPDL format thus requires to determine all nodes of the element. For
each element, the corresponding data transformation iterates over all participating faces, edges, and vertices to
build the required collection of nodes. The resulting information is also stored within the dictionary-based data
structure. After all data transformations are performed, the MAPDL format is generated by iterating over the
required entries of the dictionary-based data structure.

3.5. Flexible FEM data conversions. The conversion of FEM data formats described in the previous
subsections is closely tied to the SPC-FEM and MAPDL format. To provide a more flexible FEM data conversion
for the complex simulation application developed in Section 2, we design the FEM data conversion as follows.
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A dictionary-based data structure is used as a central data pool that stores all information involved in the
conversion. Strings are used as keys for the dictionary entries such that both format-independent and format-
specific data fields can be stored. In general, a data conversion is then performed by executing the following
operations:
Source format parsing: These operations import the given FEM input data and fill in the corresponding

data fields of the central data pool. For each supported FEM data format, a separate parser operation
is developed as demonstrated for the SPC-FEM format. Furthermore, parsing operations might also be
implemented for importing only specific parts of the FEM input data, such as the mesh of the structure.

Data transformation: These operations read the existing data fields of the central data pool, translate or
combine them into new information, and write them into the corresponding data fields of the central
data pool. For example, determining the nodes for each element as described for the SPC-FEM to
MAPDL format conversion is implemented as a transformation operation. A further example of a
transformation operation is the refinement of the given mesh of the structure by dividing each element
into several smaller elements.

Target format generation: These operations use the existing data fields of the central data pool and export
them with a specific data format. For each supported FEM data format, a separate generator operation
is developed as demonstrated for the MAPDL format. Furthermore, generator operations might also
be implemented for exporting only specific parts of the FEM input data, for example, to visualise the
mesh of the structure with separate tools.

Performing a specific FEM data conversion is achieved by flexibly composing the required operations. The
usage of a dictionary-based data structure avoids any limitations that might exist in specific FEM data formats.
Additional FEM data formats can be easily integrated by providing the implementations of the corresponding
parser or generator operations. The memory requirements of the conversion are mainly determined by the size
of the dictionary-based data structure where the geometry information usually represent the largest entries.
Currently, all operations of the conversion are performed sequentially and one after another. While parsing
the source format and generating the target format are inherently sequential operations, data transformations
might also be performed in parallel.

4. Component-based implementation for distributed systems. The individual software compo-
nents of the complex simulation application for the optimisation of lightweight structures need to be executed
on dedicated hardware platforms, such as desktop computers, HPC clusters, or storage servers. We utilise the
Simulation Component and Data Coupling (SCDC) library to implement the interactions between these com-
ponents. In the following, we give an overview of the SCDC library and describe their usage for implementing
the client and service components described in Section 2.2. A more detailed description of the SCDC library is
given in [12].

4.1. Simulation Component and Data Coupling (SCDC) library. The SCDC library is a program-
ming library that can be used by an application programmer to implement service-oriented interactions between
client and service components. In general, the interactions supported by the SCDC library are application-
independent and proceed according to the following scheme: A service component provides access to datasets

that are managed by data providers. A client component interacts with service components by executing com-

mands on their provided datasets. The execution of a command allows to transfer input data from the client
to the service and output data from the service to the client. The SCDC library provides a C and a Python
interface for its library functions. Service-side functions are used to set up the data providers, to configure the
data exchange methods to be used for data transfers, and to keep a service component running. Client-side
functions are used to execute commands on datasets.

The datasets of an SCDC service are identified with an URI-based addressing scheme. This address iden-
tifies the specific SCDC service to interact with, the data access method to be used for data exchanges, and
the specific dataset to be accessed. The following data exchange methods are supported: direct function calls
between components of a single process, inter-process communication with Unix Domain Sockets between com-
ponents in separate processes of a single host system, and network communication with TCP/IP sockets between
components in separate host systems. The implementation details of these different data access methods are
hidden in the SCDC library. Thus, an application can easily switch between different components and their
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specific data access methods without additional programming efforts.

The functionalities of datasets and commands depend on their specific data providers. The SCDC library
contains data providers with pre-defined functionalities as well as with functionalities that can be defined by
the programmer. In this work, the following data providers are used:

• The jobrun data provider implements a job-oriented execution of arbitrary programs. Datasets repre-
sent the jobs to be executed and commands are used to submit jobs with their input data as well as to
wait for the completion of jobs and to retrieve their output data. The program to be executed for each
job has to be defined by the programmer either as a shell command or as a handler function. A list of
hosts can be provided for executing the jobs. The assignment of jobs to hosts is either performed in a
round-robin way or according to a determined schedule.

• The store data provider implements a nonhierarchical folder-oriented storage within the local file
system. Datasets represent the folders and the commands are used to store and retrieve the data items
of the folders.

• The hook data provider implements a mechanism for executing arbitrary functions whenever a dataset
is accessed. All functionalities of datasets and commands have to be defined by the programmer. This
data provider represents a generic mechanism to set up a service with arbitrary functionality while the
accessibility to the service is still handled by the SCDC library.

4.2. Implementation of client and service components of the optimisation application. Each
software component of the complex simulation application for the optimisation of lightweight structures is im-
plemented in Python as a separate module. Thus, it is possible to execute the components flexibly combined, for
example, in a single Python program on one hardware platform or in separate Python programs on dedicated
hardware platforms. Since all interactions between the software components are performed with the SCDC
library, only the addresses used for accessing the service components have to be changed if their execution plat-
forms are changed. The software components and their interactions as described in Section 2.2 are implemented
with the SCDC library as follows:

• The optimisation component is implemented as a client that is started by the user of the simulation
application. The SCDC library is used to execute commands for storing the FEM input data of the
FEM simulation tasks on the storage component, for submitting FEM simulation tasks to the generic
FEM component, and for retrieving the result data of the FEM simulation tasks from the storage
component.

• The generic FEM component is implemented as both a service and a client. The SCDC library is
used to set up a jobrun data provider that executes the submitted FEM simulation tasks as jobs. The
program to be executed for each job is defined by a handler function that uses the SCDC library as
a client to execute further commands. These commands access the storage component to retrieve the
FEM input data, the conversion component to perform the conversion of the FEM data formats, and
the SPC-FEM or ANSYS-FEM component to execute the FEM simulation task with the requested
FEM code. Additionally, the SCDC library is also used as a client to execute commands that access
the scheduling component to determine a schedule for the execution of the FEM simulation tasks.

• The SPC-FEM and ANSYS-FEM components are both implemented as services. The SCDC library
is used to set them up with jobrun data providers that execute the submitted FEM simulation tasks as
jobs with the corresponding FEM code configured as a shell command.

• The scheduling component is implemented as a service. The SCDC library is used to set up a hook data
provider that computes a schedule when an accessing client requests it by executing a corresponding
command. Command parameters are used to select a specific scheduling method. The input data of
the command contains the information about the scheduling problem and the output data returns the
determined schedule.

• The conversion component is implemented as a service. The SCDC library is used to set up a hook
data provider that performs a data conversion when an accessing client requests it by executing a corre-
sponding command. Command parameters are used to select the specific parser, data transformation,
and generator operations as described in Section 3.5. The input data of the command contains the
FEM input data in the source format and the output data returns the converted result in the target
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Table 5.1

File sizes in KB for the FEM input data of the example structure with the SPC-FEM and ANSYS-FEM formats (without
multiple white spaces).

Number of elements SPC-FEM ANSYS-FEM
4 1.5 1.6
32 7.6 4.0
256 54.4 22.6
2048 454.4 175.8
16384 3969.3 1491.1

10−3

10−2

10−1

1

101

4 32 256 2048 16384
10−3

10−2

10−1

1

101

4 32 256 2048 16384

R
u
n
ti
m
e
[s
]

Number of solids

Parser
Generator

Number of solids

FEM data conversion
SPC-FEM
ANSYS-FEM

Fig. 5.1. Runtimes of the parser and the generator for the FEM data conversion (left). Runtimes of the FEM data conversion
and the SPC-FEM and ANSYS-FEM codes (right).

format.
• The storage component is implemented as a service. The SCDC library is used to set up a storage
data provider that stores the data within a configured folder of the local file system.

5. Performance results. In this section, we present performance results of the FEM data conversion
described in Section 3 and investigate the resulting overhead in comparison to the FEM codes.

5.1. Experimental setup. The measurements are performed on a single compute node with a 4-core
Intel Core i5-4440 processor with 3.10 GHz, 8 GB main memory, and a 240 GB solid-state drive. The FEM
data conversion is implemented as a Python module and uses files in the local file system for reading and
writing the FEM input data with the different data formats. The SPC-FEM code is an in-house FEM program
implemented in Fortran that performs adaptive mesh refinement based on residual type error indicators to
achieve high precision solutions. The ANSYS-FEM code is part of the commercial software package ANSYS
Workbench, version 16.2. Both FEM codes use multithreading to exploit the available cores of the compute
node. Thus, only shared-memory parallelism is used in the experiments. All software programs are executed
under the Scientific Linux 7 (64-bit) operating system and using Python interpreter of version 2.7.5.

5.2. Data conversion performance and overhead. The example structure shown in Section 3 is used
as FEM input data for the following benchmark measurements. The original mesh of the structure consists of
four elements. A refinement operation that subdivides each element into eight smaller elements has been used
to increase the data sizes. Thus, with four refinement steps, the original mesh with four elements is refined
into geometries with 32, 256, 2048, and 16384 elements. The data conversion is performed from the SPC-FEM
format to the ANSYS-FEM format. Table 5.1 lists the resulting file sizes with the two formats.

Figure 5.1 (left) shows runtimes for parsing the source format and generating the target format during the
FEM data conversion depending on the number of elements in the FEM input data. The results show that
parsing the source format requires significantly more runtime than generating the target format. The high
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computational costs of the Pyparsing module correspond to about 80–90% of the overall runtime for the FEM
data conversion. The runtimes of both operations depend on the size of the mesh and, thus, increase strongly
for increasing numbers of elements.

Figure 5.1 (right) shows runtimes for the FEM data conversion as well as for executing the SPC-FEM and
ANSYS-FEM codes depending on the number of elements in the FEM input data. The overhead of the FEM
data conversion in comparison to the FEM codes depends on the size of the mesh as well as on the specific
FEM code. Up to about 256 elements, the runtime of the FEM data conversion is significantly lower and
does not lead to a noticeable overhead. However, with 2048 and more elements, the runtime of the FEM data
conversion increases strongly and is about equal or even higher than the runtime of the ANSYS-FEM code.
As already shown, this high overhead is mainly caused by the parsing of the source format with the Pyparsing
module. A direct comparison of the runtimes of the two FEM codes demonstrates their different approaches:
The SPC-FEM code has a low overhead and is faster for small geometries. These are the preferred use cases,
because its adaptive method is designed for starting with a coarse mesh and then refining the mesh adaptively
where it is necessary. Results with 16384 elements could not be obtained for the SPC-FEM code, because an
initial mesh of this size is not supported.

6. Related work. In scientific computing, the interchangeability of single software components repre-
sents a widely used concept that is especially used for compute-intensive and numerical computations. Being
able to switch between different software components is used to achieve different goals. For standard libraries,
such as BLAS [6] or LAPACK [1] for linear algebra computations, various implementations that are specially
adapted to specific hardware platforms exist. These different implementations represent interchangeable soft-
ware components that can be used to achieve performance improvements. Domain-specific libraries, such as
the parallel graph algorithm library PT-SCOTCH [7] or the ScaFaCoS library for the computation of Coulomb
interactions [3], provide different solution methods. These different methods represent interchangeable software
components that can be used, for example, to exploit the properties of specific solution methods or to improve
the accuracy of the results. The flexibility achieved with these approaches is based on the fixed programming
interface of the software libraries and, thus, requires that the functional properties of all software components are
the same. The approach proposed in this work is not limited to such a fixed functionality, because the individual
composition of arbitrary transformation operations allows more flexible and extensible data conversions.

Environmental research is one of the most prominent areas for the development of complex simulation
applications, as it involves a variety of models from different disciplines, such as atmospheric sciences, hy-
drology, geology, chemistry, and ecology. These applications often consist of independently developed software
components for the different models. The interoperability and therefore also the interchangeability of the soft-
ware components is achieved through the usage of common frameworks and toolkits. For high performance
computing, this includes, for example, the Earth System Modelling Framework [11], the Common Compo-
nent Architecture [4], and the Model Coupling Toolkit [14]. These approaches require that all interchangeable
components implement the same interface, which often involves additional programming efforts as well as a
limitation of the component functionalities. In comparison, our component-based approach is less invasive to
existing application codes and allows to flexibly exploit the varying functionalities of different FEM codes.

Performing explicit data conversions as proposed in this work might also be achieved with dedicated data
conversion tools. However, these tools usually support only specific parts of FEM data formats, such as the
geometry of the structure. For example, the mesh generator Gmsh [9] supports the conversion between different
mesh formats. The parser codes of these tools are either manually constructed or automatically created with
parser generators, such as Lex and Yacc [15]. For standard formats, such as XML or VTK, existing programming
libraries, such as libxml [18] or the Visualization Toolkit [17], can be used for parsing the source format or
even for generating the target format. The proposed approach for the FEM data conversion can incorporate
these existing tools and libraries for the implementation of specific parser, data transformation, or generator
operations.

7. Conclusion. We have demonstrated that an integration of generic FEM simulations can be performed
with different FEM codes and built into a complex simulation application. A component-based approach
was presented to achieve a flexible implementation with interchangeable software components. A dedicated
conversion component was developed and the FEM data conversion between data formats of two specific FEM
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codes was shown. The proposed method allows a flexible data conversion based on the composition of individual
operations for parsing the source format, performing additional data transformations, and generating the target
format. We demonstrated the overall approach with a complex simulation application for the simulation-based
optimisation of lightweight structures. Performance results were shown to investigate the computational effort
for the FEM data conversion and to compare their overhead with the FEM codes. The results have shown that
especially the parsing of the source format can lead to a high overhead. Thus, it is highly required to provide
a flexible data conversion approach where single operations can be easily replaced or optimised.
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Abstract. The most important factor of High performance computing (HPC) systems nowadays is to limit or decrease the
power consumption while preserving a high utilization. And with the availability of alternative energy, which powers such systems,
there is a need to maximize the usage of alternative energy over brown power. For now, the usage of alternative energy is varying
in time due to different factors such as sunny days, the wind, etc. and it is crucial to have an energy-aware algorithm to maximize
the usage of this energy. In this paper a SaaS service is presented to optimize a usage of alternative energy, to reduce the power
consumption and to preserve a best possible percentage of resource utilization.
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1. Introduction. Over the past few years, resilience has become a major issue for HPC systems, especially
for large petascale and future exascale systems [1, 2], taking into account different challenges in this area varying
from the deployment, maintenance and the shifting of more heterogeneous resources to a public and private
cloud computing infrastructures. HPC infrastructures, such as HPC clusters, consume a lot of energy, not only
by their computing elements, but also for cooling, networking and other facilities. The power consumption of
data centers is increasing due to several aspects, such as increasing the data volume to deal with, the need for
more calculation facilities etc [3], which in its term leads to serious environmental issues (including e-waste and
CO2 emission). Thus, reducing the energy consumption of such HPC resources will play an important role to
decrease the total energy consumption of these centers.

Taking into account the vast number of applications running on these systems, it is crucial to optimize or find
ways to improve the energy efficiency for HPC applications and to build an automatic scheduling environment
for optimization of the usage of such infrastructures in the context of keeping the performance regardless of
energy consumption [4].

There has been a big amount of investigations and research to resolve these environmental challenges,
especially by adopting renewable energy supply techniques (such as solar panels), data centers partially powered
with green energy and it is very important to maximize the utilization of this energy when it is available [5]. In
this work, a SaaS service is introduced that consist of the following two steps to reduce the power consumption
of HPC clusters:

• To add more computing resources to the submitted jobs, if they are available.
• To suggest the usage of alternative energy period, which, in turn, will decrease the power consumption
cost, because the price of brown energy is much higher than the price of alternative energy.

The studies have been carried out in the domain of linear algebra simulations lying at the heart of most
calculations in scientific computing.

The remainder of this paper is divided into the following sections: section 2 is a related work, section 3
shows the methodology and the service, section 4 illustrates implemented experiments and their results, section
5 represents the case studies and, finally, section 6 is the conclusion.

2. Related work. The HPC clusters have crucial roles in the context of energy consumption because the
energy consumption of the networking, data and computational infrastructures increases exponentially over the
time. Therefore, it is important to study and analyze the power consumption of such infrastructures, as they
incur tremendous energy costs and CO2 emissions. For instance, the power consumption of U.S. data centers
is expected to grow to 140 billion kWh by 2020 [6].
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Several methods and techniques have been suggested and implemented to save energy at data centers and
HPC resources. At the hardware level, the Dynamic voltage and frequency scaling (DVFS) method mainly is
used, which is a well-known and efficient technique for reducing energy consumption in modern processors. For
instance, the paper [7] analyzes the impact on power consumption of two DVFS-control strategies when applied
to the execution of dense linear algebra operations on multi-core processors. Another example is to adopt DVFS
method to decrease a power consumption of an application without affecting the performance of HPC resources
[8, 9]. Reduces clock frequencies for MPI ranks that lack computational work, this technique showed an average
measured energy savings of 10.6% and a most of 21.0% over regular application runs [10].

There are several studies related to measuring and control of the power and energy consumption of HPC
systems by various components in the software stack [16, 12, 13]. In the cloud environments, the efficient
computing resource utilization, and power consumption reduction are being addressed through the intelligent
workload, server consolidation, and other mechanisms [14].

In recent years, significant amount of studies have been devoted to optimizing HPC applications for green
energy sources, which expose rapid changes in power’s availability due to the use of local renewable energy.
There are studies, for instance, that discuss the issue of how deploying a scheduler, which can predict available
renewable energy and can reschedule jobs preserving their deadlines [15], based on information gathered from the
HPC load offer power-aware scheduling [16]. Our approach is to focus on combining the energy consumption of a
real scientific application running on HPC production system by not only scheduling the jobs during alternative
energy period, but also increasing more computational resources to the jobs in term of CPU cores. These
approaches have been taken into account in the SaaS service for a maximum utilization of resources.

3. Service and Methodology. Nowadays, it is a challenge to balance the use and performance of HPC
systems. In the meantime, periodical increase of energy costs is forcing infrastructure providers to operate the
resources within an energy budget or to decrease energy usage. Therefore, resource management in the context
of HPC refers to the process of assigning and scheduling workloads to resources. In the case of alternative
energy sources, it is a necessity to maximize the utilization of alternative energy over brown energy.

Brown energy is energy that comes from conventional fossil fuels, such as oil or coal. The combustion of
these fuels releases harmful emissions into the environment. Renewable or “green” energy comes from clean
sources such as the wind, the solar cell that are more sustainable and are better for the environment.

The provided service or the scheduler is considered as a SaaS or “software as a Service” because it provides
an easy way to handle job submission into Linux cluster, SaaS can be considered as a thin client model for
software provision, where it is providing the user a point of access to software running on servers.

The total power consumption of HPC cluster is given by the following equation, where Te is the total energy
consumption of the system

Te =
n∑

i=1

Ei (3.1)

where Ei is the energy consumption per each job; n is the number of jobs completed per unit time. We consider
two prices of the electricity: one is for the brown power and the second one is for the alternative energy. The
energy consumption of each job is given by the following equation:

Ei = Timei · Pricei ·Nodesi (3.2)

The T imei is given in seconds; the Pricei is given for one watt and the Nodesi is a crucial factor, because,
depending on the number of nodes there are different numbers for power consumption.

There is a single restriction that the jobs must be completed during a single day, in other words, there is a
number of tasks, which need to be completed during a 24 hours time period. The ultimate goal of the work is
to reduce the total energy consumption Te by the suggested methodology (see Fig. 3.1).

The job script checks the number of idle nodes to decide the free resources, then, after the submission, the
script, based on the size of the job, allocates more resources, if they are available. The crucial factor is the job
priority and the resources available; in case the job has a higher priority, the script will automatically alerts
SLURM scheduler to pause the jobs on the required resources to run the higher priority job first. The “Period”
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Fig. 3.1. Schematic Illustration of Methodology.

word on the schematic illustration refers to the jobs, which are coming in the alternative energy period, so they
have priority to go first, the “Resources” on the other hand shows that during the brown energy period there is
a possibility to add more resources if they are available. The main drawback here is that when there are many
high priority jobs, the other jobs will get delayed for much longer than expected, but, as mentioned before, there
is a restriction of a quantity of completed jobs for each day, so, on average, the time of delay will be acceptable.

The command line interface is used by users to submit jobs, the small matrix indicate 4096 size matrix, the
medium 8192 size, and finally the large is 12288 size.

The following two scenarios are available after the submission:

• If the user chooses to submit a job during brown energy, the script automatically checks, if there are
any available computational resources and adds them to the job. If there are no resources, the job is
being executed as requested. This procedure is hidden from the user, so the user doesn’t know about
it.

• If the submission is selected to be done during the alternative energy period, the script checks the time
(there are two periods of alternative energy), if it is in those periods, the job will be executed at once,
and all other jobs on the selected computing element will be put on hold.

The above-mentioned results are accomplished by increasing the priority of the alternative energy queue to
be higher than the others. If the execution is not in the alternative energy period, the jobs stay on hold till that
time. The approach gives some benefits, such as to hide the complexity of creating scripts to submit jobs, to
increase the time execution, and to maximize the usage of alternative energy by finishing the maximum number
of jobs.

4. Experiments Results. Scientific computing [17] aims at constructing mathematical models and nu-
merical solution techniques for solving problems arising in science and engineering. The solution of linear system
of equations lies at the heart of most calculations in scientific computing. For the past twenty years, there has
been a great deal of activity in algorithms and software for solving linear algebra problems. For this reason, a
specific case of the linear algebra problems has been chosen, namely, the matrix multiplications.

The PBLAS library of ScaLAPACK (Scalable Linear Algebra PACKage) [18] package has been used in the
experiments, which is a library of high-performance linear algebra routines for distributed memory message-
passing computers and networks of workstations supporting Parallel Virtual Machine and/or Message Passing
Interface. PBLAS can be seen as a parallel version of the BLAS (Basic Linear Algebra Subprograms) [19].
Using the PBLAS, three separate levels of operations (vector-vector, matrix-vector and matrix-matrix) can be
performed in parallel, which is widely used by various scientific applications in the domain of High-performance
linear algebra. The PBLAS Level 3 routines, which are the most computing-intensive, perform distributed
matrix-matrix operations.

The PDGEMM double precision routine of the PBLAS is used for experiments, as it is one of the most
widely used layer three routine. The Linux cluster consists of a single controller node and four computational
nodes (each node has 2 CPU cores Intel Xeon E5420, 1 GB RAM, Ubuntu 14.04 X86 64 OS)is used as a testbed
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Fig. 4.1. Experiments results for small matrices

infrastructure for conducting the experiments. Taking into account the testbed infrastructure’s parameters
(mostly RAM), three different sizes of matrices are studied: small (4096×4096), medium (8192×8192) and
large (12288×12288). The Simple Linux Utility for Resource Management (Slurm) [21] used for jobs scheduling
which is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system both
for large scale and small Linux clusters. To ensure that the results were statistically sound and the value of the
execution time and power consumption of each matrix is reliable, for each random execution the experiment is
run ten times and the arithmetic mean is taken.

The results of the experiments are shown in the Figure 4.1.
The 12288 matrix is only fitted on the whole cluster, and the execution time is: 11 minutes, the power

consumption is: 191.8 W/h. Based on these results:
• For small size matrices, the power consumption is becoming almost the same if the number of nodes is
increased.

• For medium matrices, there is an execution time improvements in case of using four nodes, and the
power consumption remains almost the same.

• For large matrices, the best result is taken when the job is executed on four nodes in term of execution
time and power consumption.

5. Use Case. As a use case randomly generated jobs have been submitted received that were from two
different applications [22]. The power consumption of the server on the idle state has been measured in order
to check the power consumption during jobs execution, because the power meter is showing the overall power
consumption of the server. The total energy consumption for each hour on the idle state was 149 watt. The
total energy consumption obtained for a single day was about Te = 1385 kilowatt with the following breakdown
results:

• 168 small matrix jobs (mix on 2, 3 and 4 nodes).
• 167 medium matrix jobs (mix on 2, 3 and 4 nodes).
• 72 large matrix jobs.

The energy consumption costs per day were about 126.7e(the mentioned price is for the corresponding Kilowatt).
The same amount of jobs have been executed with the same node numbers and with the following scenarios in
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Fig. 4.2. Experiments results for medium matrices

order to study the effectiveness of the suggested model. In the case of only big matrix jobs are executed during
the alternative energy period, the total energy consumption was about 1039 kilowatt The price for this amount
is: Price = 87.7e (the mentioned price is for the corresponding KW), and the same number of jobs is executed
only in eighteen hours.

The same mix of matrices are executed during the alternative energy period and in this case, the total
energy consumption is the same: Te =1120e.

As stated from the suggested model there is a reasonable amount of reduced energy consumption and in
the meanwhile, the utilization of the resources is increased by cutting out the time for the same number of jobs
to be executed.

6. Conclusion. By using the suggested methodology there is an effective gain in two separate domains:
• The same amount of jobs can be run in a shorter time, which gives a possibility to increase the number
of completed jobs per day.

• The price of consumed electricity is less due to effective usage of alternative energy period.
For future work, it is planned to enhance the methodology by taking into account the weight of each

submitted job depending on several factors such as power consumption, time etc, which will give an opportunity
to deploy the mentioned methods for various scientific applications.
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TOWARDS HPC-EMBEDDED.
CASE STUDY: KALRAY AND MESSAGE-PASSING ON NOC

PEDRO VALERO-LARA∗, EZHILMATHI KRISHNASAMY†, AND JOHAN JANSSON ‡

Abstract. Today one of the most important challenges in HPC is the development of computers with a low power consumption.
In this context, recently, new embedded many-core systems have emerged. One of them is Kalray. Unlike other many-core
architectures, Kalray is not a co-processor (self-hosted). One interesting feature of the Kalray architecture is the Network on Chip
(NoC) connection. Habitually, the communication in many-core architectures is carried out via shared memory. However, in Kalray,
the communication among processing elements can also be via Message-Passing on the NoC. One of the main motivations of this
work is to present the main constraints to deal with the Kalray architecture. In particular, we focused on memory management
and communication. We assess the use of NoC and shared memory on Kalray. Unlike shared memory, the implementation of
Message-Passing on NoC is not transparent from programmer point of view. The synchronization among processing elements and
NoC is other of the challenges to deal with in the Karlay processor. Although the synchronization using Message-Passing is more
complex and consuming time than using shared memory, we obtain an overall speedup close to 6 when using Message-Passing
on NoC with respect to the use of shared memory. Additionally, we have measured the power consumption of both approaches.
Despite of being faster, the use of NoC presents a higher power consumption with respect to the approach that exploits shared
memory. This additional consumption in Watts is about a 50%. However, the reduction in time by using NoC has an important
impact on the overall power consumption as well.

Key words: Karlay, Embedded Architectures, High Performance Computing, Jacobi Method, OpenMP, Power Measurements.

AMS subject classifications. 15A15, 15A09, 15A23

1. Introduction. Advanced strategies for the efficient implementation of computationally intensive nu-
merical methods have a strong interest in industrial and academic community. In the last decade, we have lived
a spectacular growth in the use of many-core architectures for HPC applications [8, 14, 15, 9, 10]. However, the
appearance of other (low-power consumption) embedded many-core architectures such as Kalray [1] has created
new challenges and opportunities for performance optimization in multiple applications. In this work, we have
explored some of these new opportunities towards a supercomputing on a chip era.

Kalray integrates its own OS and is not in need of a co-processor as in the case of other many-core proces-
sors [4, 1]. In Karlay, highly expensive memory transfers from host main memory to co-processor memory are
not necessary, as in other architectures, such as NVIDIA GPUs [13] or Inel MIC [12]. Besides, this architecture
offers the possibility to communicate each of the processing elements via a Network on Chip (NoC) connection
composed by links and routers [4, 1]. Kalray has been previously used for video encoding and Monte Carlo
applications [2]. However, these works lack information of how to implement these applications and what are
the most efficient programming strategies and architectonic features to deal with our embedded processor. The
NoCs have been recently used as a level in-between the computing cores and shared memory [5, 17, 7]. The
NoCs in these systems can be configurable depending on the particular needs of the applications. However,
the NoC in Kalray is completely different. In Kalray, there are two different and independent inter-connectors,
one bus which connects each of the processing elements to shared memory and one NoC which connects the
different processing elements (clusters) among them.

We have chosen as a test case a widely known and extended problem, that is Jacobi method [16]. The main
motivation of this work is twofold. While, on one hand, this work presents the main challenges to deal with the
Kalray architecture. On the other hand, we present two different approaches to implement the communication
among the different processing elements of our Kalray processor, one based on using shared memory and other
based on using a Network on Chip, which works as interconnection among the set of processing cores. We
detail and analyze deeply each of the approaches, presenting theirs advantages and disadvantages. Moreover,
we include measurements for power consumption in both approaches.
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Fig. 2.1. Kalray MPPA many-core (left) and compute cluster (righ) architecture [2].

This paper is structured as follows. Section 2 briefly introduces the main features of the architecture at
hand, Kalray. Then, we detail the techniques performed for an efficient implementation of the Jacobi method
on Kalray processor in Section 3. Finally, In Section 4, it is carried out the performance analysis of the proposed
techniques in terms of consuming time, speed-up and power consumption. At the end of this work, we outline
some conclusions.

2. Kalray Architecture. Kalray architecture [2] is an embedded many-core processor. It integrates 288
cores on a single 28 nm CMOS chip with a low power consumption per operation. We have 256 cores divided
into 16 clusters which are composed by 16+1 cores each. 4 quad-core I/O subsystems (1 core per cluster)
are located at the periphery of the processing array (Figure 2.1-left). They are used as DDR controller for
accessing to up to 64GB of external DDR3-1600. These subsystems control a 8-lane Gen3 PCI Express for a
total peak throughput of 16GB/s full duplex. The 16 compute clusters and the 4 I/O subsystems are connected
by two explicitly addressed Network on Chip (NoC) with bi-directional links, one for data and the other for
control [2, 3]. NoC traffic does not interfere with the memory buses of the underlying I/O subsystem or compute
cluster. The NoC is implemented following a 2-D torus topology.

The compute cluster (Figure 2.1-right) is the basic processing unit of our architecture [2]. Each cluster
contains 16 processing cores (C0, C1, C2, . . . , C15 in Figure 2.1-right) and one resource management (Syst.
Core in Figure 2.1-right) core, a shared memory, a direct memory access (DMA) controller, a Debug & System
Unit (DSU), and two routers, one for data (D-NoC) and one for control (C-NoC). The DMA is responsible to
transfer data among shared and the NoC with a total throughput of 3.2GB/s in full duplex. The shared memory
compromises 2MB organized in 16 parallel banks, and with a bandwidth of 38.4 GB/s. The DSU supports the
debug and diagnosis of the compute cluster.

Each processing or resource management core is a 5-way VLIW processor with two arithmetic and logic
units, a multiply-accumulate & floating point unit, a load/store unit, and a branch & control unit [2]. It enables
up to 800MFLOPS at 400MHz, which supposes almost 13 GFLOPS per cluster and almost 205GFLOPS in total
by using the 16 clusters. These five execution units are connected to a shared register file which allows 11 reads
and 4 writes per cycle. Each core is connected to two (data & instruction) separate 2-way associate caches
(8KB each).

Kalray provides a software development kit, a GNU C/C++ & GDB development tool for compilation
and debugging. Two programming models are currently supported. A high level programming model based
on data-flow C language called

∑
C [6], where programmers do not care about communication, only data

dependencies must be expressed. The other programming model supported is a POSIX-Level programming
model [4, 1]. It distributes on I/O subsystems the sub-processes to be executed on the compute clusters and
pass arguments through the traditional argc, argv, and environ variables. Inside compute clusters, classic
shared memory programming models such as POSIX threads or OpenMP pragmas are supported to exploit
more than one processing core. Specific IPC takes advantage of the NoC connection. Unlike

∑
C, the POSIX-
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Algorithm 1 Jacobi OpenMP Algorithm.

1: jacobi(A,Anew,NX,NY )
2: float err;
3: #pragma omp parallel for
4: for int i = 1 → NY − 1 do

5: for int j = 1 → NX − 1 do

6: Anew[i ∗NX + j] = 0.25 ∗ (A[i ∗NX + (j − 1)] +A[i ∗NX + (j + 1)]
7: +A[(i− 1) ∗NX + j] +A[(i+ 1) ∗NX + j]);
8: err = maxf(err, fabs(Anew[i ∗NX + j]−A[i ∗NX + j]));
9: end for

10: end for

11: #pragma omp parallel for
12: for int i = 1 → NY − 1 do

13: for int j = 1 → NY − 1 do

14: A[i ∗NX + j] = Anew[i ∗NX + j];
15: end for

16: end for

Level programming model presents more important challenges from programmer side, however it allows us to
have more control on hardware and optimize both, communication and computation. In the present work, the
authors have followed the programming model based on POSIX.

3. Jacobi Method Implementation on Kalray. We have chosen as test case the Jacobi method [16].
This is a good example, which allows us to study and evaluate different strategies for communication. The
parallelization is implemented following a coarse-grained distribution of (adjacent) rows across all cores. This
implementation is relatively straightforward using a few OpenMP pragmas on the loops that iterate over the
rows of our matrix (see Algorithm 1).

One of the most important challenges in Kalray is the communication and memory management. To
address the particular features of Kalray architecture, we use the Operating System called NodeOs [1], provided
by Kalray. NodeOs implements the Asymmetric Multi-Processing (AMP) model. AMP takes advantage of the
asymmetry found in the clusters between the Resource Management Core (RMC) and the Processing Element
Cores (PEC). RMC runs the operating system (kernel and NoC routines) on the set of RM (single-core). PEC
are dedicated to run user threads, one thread per PEC. PEC can also call functions, such as syscall that are in
need of OS support, which are received and compute by RMC. When a PEC executes a syscall call, it sends
an event and it is locked until it receives an event from the RMC. This process is necessary to know that the
syscall has been processed. Data and parameters are exchanged using shared memory. We have two codes, one
executed by RMC (IO code) and other (cluster code) executed by PECs. The work is distributed following a
master/slave model that is well suited to Kalray architecture. The IO code is the master. It is in charge of
launching the code and sending data to be computed by slaves. Finally they wait for the final results. Otherwise,
the cluster code are the slaves. They wait for data to be computed and send results to IO cluster.

The POSIX-Level programming model of Kalray (NodeOs) allows us to implement the communication
among different clusters in two different ways. While shared memory (accessible by all clusters) is used for the
communication in the first approach (SM ), in the second approach (NoC ), we use channels (links) and routers.
For sake of clarify, we include several algorithms in which we detail the main steps of each of the approaches.
Algorithms 2 and 3 illustrate the IO and cluster pseudocodes for the SM approach and Algorithms 4 and 5 for
the NoC approach respectively.

The communication is implemented by using some specific objects and functions provided by NodeOS. Next,
we explain each of these objects and functions. The transfers from/to global/local memory are implemented via
portals. These portals must be initialized using specific paths (one path per cluster) as A portal in Algorithm 2.
Then, they must be opened (mppa open) and synchronized (mppa ioctl) before transferring (mppa pwrite in
Algorithm 2 and mppa aio read in Algorithm 3) data from/to global/local memory. The slaves are launched
from master via mppa spawn which include parameters and name of the function/s to be computed by cluster/s.
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Algorithm 2 Shared Memory I/O pseudocode.

1: const char ∗ cluster executable = ”mainCLUSTER”;
2: static float A[SIZE]; static float Anew[SIZE];
3: int mainIO(int argc , char ∗ argv[] )
4: long long dummy = 0; long long match = −(1 << CLUSTER COUNT );
5: const char ∗ root sync = ”/mppa/sync/128 : 1”;
6: const char ∗A portal = ”/mppa/portal/”CLUSTER RANGE” : 1”;
7: const char ∗Anew portal = ”/mppa/portal/128 : 3”;
8: //−−OPENING FILES−−//
9: int root sync fd = mppa open(root sync,O RDONLY );

10: int A portal fd = mppa open(A portal, O WRONLY );
11: int Anew portal fd = mppa open(Anew portal, O RDONLY );
12: //−−PREPARE FOR RESULT−−//
13: status| = mppa ioctl(root sync fd,MPPA RX SET MATCH,match);
14: mppa aiocb t Anew portal aiocb[1] = {MPPA AIOCB INITIALIZER

15: (Anew portal fd, Anew, sizeof(Anew[0]) ∗ SIZE)};
16: mppa aiocb set trigger(Anew portal aiocb, CLUSTER COUNT );
17: status| = mppa aio read(Anew portal aiocb);
18: //−−LAUNCHING SLAVES−−//
19: char arg0[10], arg1[10];
20: const char ∗ argv[] = arg0, root sync,A portal, Anew portal, 0;
21: for int rank = 1 → CLUSTER COUNT do

22: sprintf(arg0, ”%d”, rank);
23: status| = mppa spawn(rank,NULL, cluster executable, argv, 0);
24: end for

25: // Wait for the cluster portals to be initialized.
26: status| = mppa read(root sync fd,&dummy, sizeof(dummy));
27: // Distribute slices of array A over the clusters.
28: for int rank = 0 → CLUSTER COUNT do

29: status| = mppa ioctl(A portal fd,MPPA TX SET RX RANK, rank);
30: status| = mppa pwrite(A portal fd, (A+ rank ∗ SIZE LOCAL)− (NX LOCAL ∗ 2),
31: sizeof(float) ∗ SIZE LOCAL, 0);
32: end for

33: // Wait for the cluster contributions to arrive in array |Anew|.
34: status| = mppa aio wait(Anew portal aiocb);
35: return status < 0;

The communication among cluster via links (NoC ) is implemented by using of channel. Similar to the use of
portals, channels must be initialized using one path per channel (see C0 to C1 channel in Algorithm 2).

On the other hand, the synchronization is implemented by using of sync. They are used to guarantee that
some resources are ready to be used or cluster are ready to start computing (for instance, see mppa ioctl in
Algorithm 2, 3, 4 and 5).

In order to minimize the number of transfers among main and local memory (SM approach) as well as
among clusters through links (NoC approach), the matrix is divided into rectangular sub-blocks (Figures 3.1
and 3.2). In particular, the distribution of the workload and communication implemented in the NoC approach
avoid multi-level routing, connecting each of the cluster with its adjacent clusters via a direct link.

Although, the ghost cells strategy is usually used for communication in distributed memory systems [11],
we have used this strategy in Kalray processor to avoid race conditions among each of the sub-blocks assigned
to each clusters. The use of ghost cells consists of replicating the borders of all immediate neighbors blocks.
These ghost cells are not updated locally, but provide stencil values when updating the borders of local blocks.
Every ghost cell is a duplicate of a piece of memory located in neighbors nodes. To clarify, Figures 3.1 and 3.2
illustrate a simple scheme for our interpretation of the ghost cell strategy applied to both approaches, SM and
NoC, respectively.



Towards HPC-Embedded. Kalray and Message-Passing on NoC 155

Algorithm 3 Shared Memory CLUSTER pseudocode.

1: int mainCLUSTER(int argc, char ∗ argv[])
2: int i, j, status, rank = atoi(argv[0]);
3: const char ∗ root sync = argv[1], ∗A portal = argv[2], ∗Anew portal = argv[3];
4: float A[SIZE LOCAL], Anew[SIZE LOCAL]; long long slice offset;
5: slice offset = sizeof(float) ∗ (CHUNK ∗NX LOCAL+
6: ((rank − 1) ∗ (CHUNK − 1) ∗NX LOCAL));
7: // Each cluster contributes a different bit to the root sync mask.
8: long long mask = (long long)1 << rank;
9: //−−OPENING PORTAL−−//

10: int root sync fd = mppa open(root sync,O WRONLY );
11: int A portal fd = mppa open(A portal, O RDONLY );
12: int Anew portal fd = mppa open(Anew portal, O WRONLY );
13: //−−PREPARE FOR INPUT−−//
14: mppa aiocb tA portal aiocb[1] =
15: MPPA AIOCB INITIALIZER(A portal fd,A, sizeof(A));
16: status| = mppa aio read(A portal aiocb);
17: //−−UNLOCK MASTER−−//
18: status| = mppa write(root sync fd,&mask, sizeof(mask));
19: // Wait for notification of remote writes to local arrays |A|.
20: status| = mppa aio wait(A portal aiocb);
21: //−− JACOBIANCOMPUTE−−//
22: jacobi(A,Anew,NX LOCAL,NY LOCAL);
23: // Contribute back local array Anew into the portal of master array Anew.
24: status| = mppa pwrite(Anew portal fd,&Anew[NX LOCAL],
25: sizeof(Anew)− sizeof(float) ∗ 2 ∗NX LOCAL, slice offset);
26: mppa exit((status < 0)); return 0;

Figure 3.1 graphically illustrates the strategy followed by the SM approach. It consists of dividing the
matrix into equal blocks which are sent from main memory to local memory. To avoid race condition, each of
the blocks includes 2 additional rows (gray and white rows in Figure 3.1) which correspond to the upper and
lower adjacent rows of the block. These additional rows work as ghost-cell, which are only used in local memory.
The blocks transferred from local memory to global memory (Figure 3.1-right) do not include these additional
rows (ghost rows).

Fig. 3.1. Master (Global Memory) ↔ Slave (Local Memory) Communication.

Otherwise the communication among global and local memory is not necessary in the NoC approach. The
master (IO code) is only used for synchronizing. The synchronization is necessary at the beginning and at the
end of each Master code. I/O core and the rest of cores in each of the clusters must be also synchronized. In
particular the synchronization between IO core and computing cores (I/O− > C1 sync section in Algorithm 5)
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Algorithm 4 NoC I/O pseudocode.

1: const char ∗ global sync = ”/mppa/sync/128 : 1”;
2: const char ∗ IO to C0 sync = ”/mppa/sync/0 : 2”; . . .
3: const char ∗ C0 to C1 channel = ”/mppa/channel/1 : 1/0 : 1”; . . .
4: static const char ∗ exe[CLUSTER COUNT ] = {”mainCLUSTER0”,
5: ”mainCLUSTER1”, . . .};
6: int mainIO(int argc, const char ∗ argv[])
7: // Global sync.
8: int ret, global sync fd = mppa open(global sync,O RDONLY );
9: long long match = −(1 << CLUSTER COUNT );

10: mppa ioctl(global sync fd,MPPA RX SET MATCH,match));
11: //−−IO TO C# SYNC−−//
12: int IO to C0 sync fd = mppa open(IO to C0 sync,O WRONLY );
13: int IO to C1 sync fd = mppa open(IO to C1 sync,O WRONLY ); . . .
14: //−−LAUNCHING SLAVES−−//
15: for int i = 0 → CLUSTER COUNT do

16: mppa spawn(i, NULL, exe[i], argv, 0);
17: end for

18: // Wait for other clusters to be ready.
19: mppa read(global sync fd,NULL, 8);
20: // Write into I/O− > C# sync to unlock C# cluster.
21: mask = 1;mppa write(IO to C0 sync fd,&mask, sizeof(mask));
22: mppa write(IO to C1 sync fd,&mask, sizeof(mask)); . . .
23: //−−WAITING TO THE END OF CLUTERS EXECUTION−−//
24: for int i = 0 → CLUSTER COUNT do

25: ret = mppa waitpid(i,&status, 0);mppa exit(ret);
26: end for

is necessary to guarantee that there are no cluster reading into channels before the corresponding cluster has
opened the channel. After computing the Jacobi method in each of the clusters, some rows of the local blocks
must be transferred to/from adjacent clusters. The first row computed (white upper row C1 in Figure 3.2) must
be transferred to the upper adjacent cluster (C0) to be stored in the last row. Also, the last row computed
(gray lower row C1 in Figure 3.2) must be transfered to the lower adjacent cluster (C2) to be stored in the first
row. This pattern must be carried out in all clusters except the first and last clusters where a lower number of
data-transfers is necessary.

C0

C1

C2

C2(White)−>C1(Black)

C0(Black)−>C1(White)

C1(Black)−>C2(White)

C1(White)−>C0(Black)

Fig. 3.2. Pipeline (Bus) Communication.

4. Performance Study. In this section, we analyze deeply both approaches, SM and NoC, focusing on
communication, synchronization and computing separately. In order to find/focus on the performance of both
approaches, we have used a relatively small problem which can be fully stored in local memory.
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Algorithm 5 NoC CLUSTER pseudocode

1: int mainCLUSTER1(int argc, char ∗ argv[])
2: float A[SIZE LOCAL], Anew[SIZE LOCAL];
3: // Open all the resources needed for transfers.
4: //Global sync.
5: int global sync fd = mppa open(global sync,O WRONLY );
6: // C1− > C2 channel.
7: int channel0 fd = mppa open(C1 to C2 channel, O WRONLY );
8: // C2− > C1 channel.
9: int channel1 fd = mppa open(C2 to C1 channel, O RDONLY );

10: // C1− > C0 channel.
11: int channel2 fd = mppa open(C1 to C0 channel, O WRONLY );
12: // C0− > C1 channel.
13: int channel3 fd = mppa open(C0 to C1 channel, O RDONLY );
14: // I/O− > C1 sync.
15: int IO to C1 sync fd = mppa open(IO to C1 sync,O RDONLY );
16: long long match = −(1 << 1/ ∗ We sync only with I/O cluster ∗ /);
17: mppa ioctl(IO to C1 sync fd,MPPA RX SET MATCH,match)
18: // Write into global sync to unlock I/O cluster.
19: long long mask = 1 << mppa getpid();
20: mppa write(global sync fd,&mask, sizeof(mask))
21: //−−WAIT FOR IO TO C1 SYNC−−//
22: mppa read(IO to C1 sync fd,NULL, 8);
23: //−−CLUSTERS COMMUNICATION−−//
24: // Write data for cluster 0.
25: mppa write(channel0 fd,&A[NX LOCAL ∗ (NY LOCAL− 2)], sizeof(float) ∗NX LOCAL);
26: // Read data from C0.
27: mppa read(channel1 fd,A, sizeof(float) ∗NX LOCAL);
28: // Read data from C2.
29: mppa write(channel2 fd,&A[NX LOCAL], sizeof(float) ∗NX LOCAL);
30: // Write data for cluster 2.
31: mppa read(channel3 fd,&A[NX LOCAL ∗ (NY LOCAL− 1)], sizeof(float) ∗NX LOCAL);
32: mppa exit(0);

Next we present the commands used to compile and launch both approaches: Compiling lines:
k1− gcc −O3 −std = c99 −mos = rtems io.c −o io app −lmppaipc
k1− gcc −O3 −std = c99 −fopenmp −mos = nodeos cluster.c −o cluster −lmppaipc
k1− create−multibinary −− cluster cluster −− boot = io app −T multibin
Launching line:
k1− jtag − runner −−multibinary multibin −− exec−multibin = IODDR0 : io app

The communication among I/O and computing cores in the NoC approach is more complex and it is in
need of a higher number of synchronizations. This causes a higher execution time with respect to the SM

approach, being almost 2.5× bigger (Figures 4.1 and 4.2). Note that we use a different vertical scaling in
each of the graphics illustrated in Figures 4.1 and 4.2. Despite of the overhead caused by a higher number of
synchronizations, the use of the NoC interconnection makes the NoC approach (Figure 4.2) about 55× faster
than the SM approach.

As expected the time consumed for computing the Jacobi method is equivalent in both approaches. The
time consumed by synchronization, communication and computing in the NoC approach is more balanced than
in the SM approach. This can be beneficial for future improvements, such as asynchronous communication.

Finally, we analyse the performance in terms of GFLOPS. First, we compute the theoretical FLOPS for the
Jacobi computation. The variant used in this study performs six flops per update (Algorithm 1). Therefore,
the theoretical FLOPS is equal to the elements of our matrix multiplied by six.
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Fig. 4.1. Time consumption for the SM approach.
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Fig. 4.2. Time consumption for the NoC approach.

In order to evaluate the overhead of each of the strategies, first, we show the GFLOPS achieved by the Jacobi
computation without the influence of the synchronization and communication (see Jacobian in Figure 4.3). It
achieves almost the peak of performance of our platform (GFLOPS-Peak in Figure 4.3). The computation of
the Jacobian method is exactly the same in both approaches (SM and NoC ). Next, we include the overhead
of the communication. Although both approaches present a fall in performance when taking into account the
time consumed by the communication, the fall shown by the NoC approach is not so dramatic as the overhead
suffered by the SM approach (Figure 4.3).

The software development kit provided by Kalray allow us to measure the power consumption of our ap-
plications. This is done via this command:

k1− power −− k1− jtag − runner −−multibinary multibin −− exec−multibin = IODDR0 : io app

Executing our binary using k1-power we obtain the power achieved in terms of Watts. The average power
achieved by the NoC approach is about 8.508W , while the SM approach achieves an average of 5.778W in every
execution. This is almost a 50% more power when executing the NoC approach. However, the reduction in
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Fig. 4.3. GFLOPS achieved by both approaches.

execution time obtained by the NoC approach has an important impact on the overall power consumed. Joules
are computed by following the next expression:

Joules = Watts× T ime

obtaining an overall consumption about 0.0047J and 0.16J for the NoC and the SM approaches respectively.
This is a 96% less of power consumed by the NoC approach.

5. Conclusions and Future Work. Embedded many-core architectures such as Kalray have emerged as
a new HPC platform to deal with the problem of the excessive power consumption.

In this work, we have presented two different approaches to implement the communication among the
processing elements of the Kalray architecture. Both approaches implement a ghost-cell strategy to avoid race
conditions among the different blocks assigned to each of the processing elements (clusters). This strategy has
been adapted to the particular features of our embedded processor and approaches, SM and NoC, to minimize
the number of transfers.

Although the communication via shared memory is more habitual and easier to implement on many-core
architectures, the particular features of the Kalray architecture, in particular the communication via Message-
Passing on NoC connection, offers a much faster alternative. Although, the use of NoC consumes more power,
the reduction in time makes this approach more efficient in terms of power consumption.

We plan to investigate other problems and more efficient strategies for memory management and data
distribution, such as the overlapping of communication and computing via asynchronous transfers. In particular,
the NoC approach could take advantage of the asynchronous communication as the time consumed by its major
steps is balanced.
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Abstract. Nowadays, there is an increasing demand in the High-Performance Computing (HPC) community to make use
of different public cloud service provider. The question of which cloud provider is superior for a certain application and usage
configuration is very important for the successful deployment of HPC application on the cloud. In this paper, we evaluate the
performance of HPC applications on Microsoft Azure cloud platform using the well-known NAS parallel benchmarks. These
benchmarks are considered as examples of general scientific HPC applications to test the communication performance. Different
process allocation strategies are performed in terms of MOPS and Speedup. Our results show that allocating one process per instance
achieves higher scalability at the expense of the cost. The results compared with the same results with the same experiments in
Amazon platform. We found that Azure platform has better shared-memory communication performance than Amazon platform.
In contrast, Amazon is superior to Azure platform in terms of Ethernet bandwidth.

Key words: Cloud Computing, High Performance Computing, Message Passing Interface, Nas Parallel Benchmark
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1. Introduction. Cloud computing is a revolutionary technology based on sharing resources to provide
diverse types of e-services to end users. Cloud computing provisioning is basically based on virtualization
techniques to obtain an abstract view of physical resources with the same interfaces. It offers several benefits such
as the possibility of using same physical resources for different users and runtime environments simultaneously
[1]. Additionally, dealing with Virtual Machine (VM) is much easier in management, maintenance setup, and
administration. Moreover, its cost is optimized as payment is based on pay-as-you-go (PAYG) model. In PAYG
model, the charge is only calculated for the actual usage of the physical resources.

The cloud service models are categorized as (i) Software as a Service (SaaS), which completely deals with
applications such as iCloud. (ii) Platform as a Service (PaaS), which provides an environment for application
development framework such as operating Systems. (iii) Infrastructure as a Service (IaaS), which provides
the computing hardware virtual Infrastructure and virtual storage. Recently HPC as a Service (HPCaaS) is
considered as one of the promising services on the cloud. The cloud computing offers advantages to HPC
applications users including virtualization benefits, resources scalability, abstraction of cluster setup cost and
time, and energy consumption [1, 2].

Nevertheless, there are challenges for running HPC application on cloud because of the performance diversity
and poor network performance [2]. There are several IaaS public cloud Providers such as Amazon Elastic
Cloud Compute (EC2), Microsoft Windows Azure, and Rackspace. These clouds are suitable for running HPC
application on them [3]. Microsoft’s Azure cloud provides an amiable development environment (.NET, SQL
Server, and Visual Studio) with a wide group of capabilities for developers to construct robust applications over
those [4, 5]. It provides powerful storage and resources through hardware level virtualization. In addition, it
is possible to build virtual parallel clusters easily. This motivated us to study the performance of HPC on the
Microsoft Azure Cloud.

In our previous work [6], the Ethernet and shared memory communication were measured in terms of
bandwidth and latency on Azure platform. Furthermore, the scalability impact of running HPC applications
on Azure platform was assessed using up to 128 cores [6]. As an extension, the impact of different process
allocation strategies is studied in terms of performance and cost. The scalability is evaluated and assessed using
up to 512 cores as well.

Furthermore, this paper is aimed to assess the performance of running HPC applications on different types
of cloud platform, identify challenges that affect the performance, and presenting a set of possible solutions for
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performance improvement. Scalability is evaluated by NAS Parallel Benchmarks (NPB) kernels [7] in terms
of MOPS (millions operation per second) and Speedup, which is calculated by dividing serial over parallel
execution time. The experiments were performed on one cluster of virtual machines on Microsoft’s Azure cloud
(A10 size). A10 size has specifications close to one of Amazon Elastic Compute Cloud (EC2) specifications.
Then, the results are compared with the study performed on Amazon EC2 [8].

Intuitively, involving all the VM resources (virtual cores) to run a certain HPC process should result into the
best cost/performance scenario (value verses money). This is called normal process allocation strategy (NPAS).
However, this selection is not going to be constantly the best in terms of performance. So, this paper reveals
that the strategy of allocating one process per instance (1ppi) is significantly much more expensive. However,
it is able to achieve higher performance in several applications [8].

The NAS offers a set of HPC kernels, which varies in their types of being either communication or compu-
tation intensive. They also differ in several data types such as integer and floating point performance [3].

The rest of the paper is organized as follows: Section 2 shows the related work. Section 3 represents the
evaluation methodology, which contains experiments configurations. Section 4 analyzes the experimental result,
and compares between two process allocation strategies optimized for performance and cost. In addition, the
section discusses the obtained result. Finally, section 5 recapitulates the conclusion and represents future work.

2. Related Work. This section is oriented toward two dominant issues: (1) Performance evaluation
of running HPC on the public cloud providers using well-known benchmarks (2) The possibility of running
HPC applications using a virtualized cluster on cloud platforms and evaluating its performance compared with
traditional HPC platform.

Previous research of running HPC application on cloud platform focused on the performance of VM com-
pared to physical HPC cluster. The result was not useful because of poor network performance, multi-tenancy,
and resources disproportionate [2, 9, 10, 11]. Nevertheless, the performance improvement of running HPC ap-
plications on cloud is still a research target to get accepted performance compared to traditional HPC. In spite
of its performance, it is suitable for some applications, which required scale up/down resources and can easily
drop them out when the task is done at the end [12, 13, 14].

In general, several well-known benchmarks have been used to analyze the performance of parallel computing.
But in particular, they use their own applications to compare the performance between different techniques or
running in different infrastructures. NAS parallel benchmarks (NPB) was used in [2, 3, 6, 8, 15, 16] and High-
Performance Linpack benchmark (HPL) was used in [5, 16, 17] to compare between the performance of using
traditional HPC and of using HPC hosted on public or private cloud.

Akioka and Muraoka [15] used Amazon EC2 as an alternative to HPC environment using NPB benchmarks
and HPL benchmark. The performance and cost efficiency were evaluated. Then, a performance comparison
was performed between Amazon cloud instance and a physical machine with NPB benchmarks using the serial
version (NPB-SER). They found that running HPC on cloud is not suitable for some kinds of applications, such
as performance critical applications.

Gupta et al. [2] presented the performance analysis and the tradeoffs of cost for HPC applications
with/without virtualization using NPB benchmarks. They found that running HPC on the cloud is con-
sidered more cost-effective for non-communication-intensive applications such as embarrassingly parallel and
tree-structured computations over high processor count and for communication-intensive applications over low
processor count and HPC-optimized clusters are outstanding for the rest.

Roloff et al. [3] provided an inclusive analysis of three important phases of HPC on the cloud: deployment,
performance, and cost-efficiency. This study was performed on three public clouds, namely Amazon Elastic
Compute Cloud, Rackspace and Microsoft Azure, as well as a traditional cluster using NPB benchmark. They
showed that virtualized HPC had a better performance and cost efficiency than the cluster, up to 27% and 41%,
for several benchmarks.

Strazdins et al. [16] presented performance results for two benchmarks and two large scientific applications
running in private VM cluster, an Amazon HPC EC2 cluster and traditional HPC environment. They used
the MPI micro-benchmark, the NAS Parallel macro-benchmarks, the UK Met Office’s MetUM global climate
model and the chaste multi-scale computational biology code. They succeeded to build application codes in
a pure HPC environment and replicate these into VMs which ran on private VM cluster and on public HPC
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cluster running on Amazon’s EC2.

Expósito et al. [8] analyzed the major performance bottlenecks in HPC application running on Amazon
EC2 Cluster Computing platform. They compared between two flavors of instances CC1 and CC2. First, they
evaluated the communication performance on ten gigabits Ethernet network and shared memory using Intel
MPI Benchmarks suite (IMB) on three HPC message-passing middleware, namely MPICH2, OpenMPI, and
FastMPJ. They found that CC2 instances are somewhat better point-to-point communication performance and
provide more computational power. Second, they appraised the scalability of representative message-passing
codes using up to 512 cores using NAS Parallel Benchmarks (NPB) kernels. They found that CC2 instances
have poorer scalability than CC1 instances for communication-intensive applications and CC1 instances are
more effective than CC2 instances in terms of cost. Third, they achieved higher scalability using one process
per instance only. Finally, several levels of parallelism have been used to achieve most scalable and cost-effective
using hybrid technique between message-passing with multithreading.

Hassani et al. [12] implemented the MPI version for parallel Radix sort and evaluated its performance
on Amazon cloud infrastructure. Then, they compared the result with traditional HPC platform. Parallel
HPC applications use considerably Message Passing Interface (MPI) [18, 19, 20]. Previously, they implemented
parallel Radix sort programming using MPI, Pthreads, and OpenMP and evaluated the performance using
benchmarking test. Their experimental results proved that MPI is better than others at the time of parallel
sorting, so they implemented the parallel Radix sort on Cloud. They spotted considerable improvement in
speed up and scaled up for up to 8 virtual nodes. Cloud response rate was more 20 percent parallel efficiency
than the traditional HPC cluster.

Zhang et al. [5] implemented a virtual HPC environment on Azure cloud for hydrological applications.
They presented a case study on groundwater uncertainty analysis in Heihe River Basin. They proved that the
Azure cloud can outperform traditional HPC infrastructure and can be useful for hydrological researchers to
improve computing efficiency of the model.

Belgacem and Chopard [17] had successfully connected Amazon EC2 based cloud cluster situated in USA, to
a private HPC cluster (Scylla) located at their university in Switzerland. They ran a large distributed multiscale
application on this hybrid HPC infrastructure. They ran a distributed multiscale application using the software
developed in their MAPPER project [21]. They found that the distributed computing performance is less than
the monolithic one. Their analysis showed that this low performance because of the long-distance between the
two continents thus resulting in very poor network performance.

Hassan et al. [6] evaluated the performance of the HPC applications on Azure cloud in terms of MOPS and
Speedup. The performance was tested under several configurations of cluster sizes. In addition, the performance
of point-to-point communication between processes was assessed in terms of bandwidth and latency. They
found that the best performance was achieved using only a single VM (shared memory communication model),
especially with IS and FT NPB-kernels.

Cala et al. [13] presented their experience in porting a genomics data processing pipeline (Next-Generation
Sequencing Genetic test) from an existing scripted implementation deployed on a traditional HPC, to a workflow-
based design deployed on the Microsoft Azure public cloud. Most of HPC systems used sophisticated MPI-based
algorithms, but the current NGS tools do not require it. Rather an effective data splitting techniques are used
to convert the Big Data to an embarrassingly parallel problem. They found that using public cloud provided
several benefits such as speed, scalability, flexibility and cost-effectiveness for NGS Genetic test.

Mohrehkesh et al. [14] presented a feasibility study using cloud resources for Image Guided Neurosurgery
(IGNS). They computed the deformable registration or non-rigid registration (NRR) of brain MR images using
their local private cloud (Turing cluster) at Old Dominion University, as well as Microsoft Azure (Microsoft
HPC pack) [22]. Using these clusters, they analyzed more than 6TB of images. They evaluated the accuracy of
registration by speculative execution, the overhead time of running jobs on the Azure cloud and cost comparison
of running jobs on a private versus public cloud. Their results indicated that the public cloud provides practical
and cost-effective means for a hospital that supports IGNS solutions. Moreover, the accuracy of NRR could be
improved up to 57% using cloud resources.

This diversity of research efforts to run HPC systems on cloud computing using various types of applications,
benchmarks, and technologies. Table 2.1 summarizes the previous work of running HPC cluster on public cloud
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Table 2.1
The relevant related work.

Authors Name Benchmarks and HPC Libraries Platform Evaluated Metric Recommendation for
Applications Running HPC on Cloud

S. Akioka,
Y. Muraoka [15]

- NPB-MPI 3.3
(Class C)

- HPL 2.0
Benchmark

- MPICH2 1.2
- Amazon EC2
- Physical machine
(NPB-SER)

- Mops/second
- Gflops
- Cost

Not suitable
for performance
critical application

A. Gupta,
M. Dejan [2]

- NPB-MPI (Class B)
- NAMD
- NQueens

- MPI

- Open Cirrus
(Private cloud)

- Eucalyptus
(Private cloud)

- Taub
(Private HPC)

- Speedup
- Cost

Cost-effective for non-
communication-intensive
application up to high
processor count and for
communication-intensive
application up to low
processor count

E. Roloff,
M. Diener,
A. Carissimi,
P.O.A.Navaux[3]

- NPB-MPI 3.3.1
(Class B)

- MPI
- OpenMPI

- Amazon EC2
- Rackspace
- Microsoft Azure
- Traditional HPC
cluster

- Normalized
average
execution time

- Cost efficiency

Higher performance and
cost efficiency than the
cluster up to 27% and
41% respectively for
several benchmarks

P.E. Strazdins,
J. Cai, M. Atif,
J. Antony [16]

- MPI microbenchmark
- NPB-MPI 3.3
(Class B)

- memory intensive
simulationapplications
(Chaste 2.1 & UM 7.8)

- MPI

- Private VM cluster
- Amazon EC2
- Traditional HPC
cluster

- Bandwidth
(MB/s)

- Latency (s)
- Speedup

Ability to successfully
build large scale HPC
applications on Cloud

R.R. Expósito,
G.L. Taboada,
S. Ramos,
J. Tourio,
R. Doallo [8]

- IMB
- NPB-MPI 3.3
(Class C)

- NPB-MZ 3.3.1
(Class C)

- MPICH2
1.4.1

- OpenMPI
1.4.4

- Amazon EC2

- Bandwidth (Gbps)
- Latency (µs)
- MOPS
- Speedup
- Cost efficiency
(USD/GOPS)

Achieving higher sca-
lability using 1ppi and
using hybrid technique
between message-
passing with
multithreading

R. Hassani,
M. Aiatullah,
P. Luksch [12]

- parallel Radix sort
programming

- MPI
- Amazon EC2
- Dedicated HPC
platform

- Execution times
(sec)

MPI is better than others
at the time of parallel
sorting. Cloud response
rate was more 20 percent
parallel efficiency than
the pure HPC cluster
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Table 2.1 (continued)

Authors Name Benchmarks and HPC Libraries Platform Evaluated Metric Recommendation for
Applications Running HPC on Cloud

M.B. Belgacem,
B. Chopard [17]

- large distributed
multiscale application

- OpenMPI
1.4.5

- Hyprid Amazon EC2
cluster with private
HPC cluster (Scylla)

- Execution times
(sec)

The distributed
computing performance
is less than the
monolithic one

H.A. Hassan,
S.A. Mohamed,
W.M. Sheta [6]

- IMB
NPB-MPI 3.3
(Class C)

- MPICH2
1.4.1

- OpenMPI
1.4.4

- Microsoft Azure

- Bandwidth (Gbps)
- Latency (s)
- MOPS
- Speedup
- Cost efficiency
(USD/GOPS)

Achieving higher
performance when
running entirely on
a single VM (shared
memory communication
model), especially IS
kernel and FT kernel.

J. Caa,
E. Marei,
Y. Xu,
K. Takeda,
P. Missier [13]

- Workflow-based
application (Next-
Generation
Sequencing)

- local HPC cluster
- Microsoft Azure

- Response time
(Hours)

- Throughput
(samples/day)

- Relative processing
effectiveness (%)

- Cost per sample

Public cloud could
provide benefits such as
speed, flexibility,
scalability and cost-
effectiveness for NGS.

S. Mohrehkesh,
A. Fedorov,
A. B. Vishwanatha,
F. Drakopoulos,
R. Kikinis,
N. Chrisochoides [14]

- Image Guided
Neurosurgery
(IGNS)

- MPI
- Microsoft
MPI (built-in)

- private cloud
(Turing cluster)

- Microsoft Azure
(Microsoft HPC pack)

- Registration
accuracy (%)

- Azure overhead
time (s)

- Monthly Cost
(1000 US$)

Public cloud provides
practical and cost-
effective solution more
than private cluster.
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Table 3.1
Cloud instances Specifications [8, 23].

Cloud Platform Instance Size Cores CPU Type RAM RAM Type
Azure A10 8 Intel Xeon E5-2670 @ 2.6 GHz 56 GB DDR3-1600 MHz
Amazon cc1 8 Intel Xeon X5570 Nehalem @ 2.93 GHz 23 GB DDR3

providers. These publications are classified according to the benchmarks types, evaluated metrics, used libraries,
platform, and their main result. Concludes that the best cloud provider depends on the type and behavior of
the application, in addition to the intended usage scenario. In our experiments, HPC system is assessed on
Microsoft Azure Cloud using NAS Parallel Benchmarks (NPB) under different process allocation scenarios.

3. Evaluation Methodology. This section presents the used configurations and benchmarks for evalu-
ating the performance of using HPC on Azure platform.

3.1. Experimental Configuration. Two experiments are conducted to evaluate the performance of a
cluster of 64 VMs (512 cores) on Microsoft Windows Azure [23]. Table 3.1 shows the used Azure A10 instance
specifications. MPICH and OpenMPI are used as a standard implementations of the Message Passing Interface
(MPI) with GNU compiler. These two well-known implementations are used in our experiment with releases
MPICH2 1.4.1 [24] and OpenMPI 1.4.4 [25].

The performance is evaluated using the most communication-intensive kernels of the NPB benchmarks on
Azure platform (using 16 ’A10’ instances). The performance metrics are Million Operation Per Second (MOPS)
and Speedups.

There are two process allocation strategies in our experiments. The first one is called normal process
allocation strategy (NPAS). All cores in one instance must be used before extending the cluster with another
instance. In this case, we used 8 process per instance (8ppi). The number of used A10 instances is the total
number of cores divided by 8 cores per instance. For example, for 64 cores, eight instances were used.

On the other hand, the second process allocation is called expensive process allocation strategy (EPAS),
which is used to improve the performance of the previous configuration. The performance is evaluated using the
same kernels of NPB using only one process per instances (1ppi) until 64 cores (64 instances), then posteriorly
2, 4, and 8 processes per instance to reach 128, 256, and 512 cores (64 instances). For examples, 32 instances
are used for 32 cores using 1ppi and 64 instances are used for 128 cores using 2ppi. This because, there is a
limitation on the maximum used number of cores (512 cores).

For the two configurations, the cost is calculated to compare between them. The performance evaluated
using the two implementations of message passing interface MPI and OpenMPI. It is evaluated using the result
of NPB kernels as productivity in terms of USD per Giga Operations Per Second (USD/GOPS). In this paper,
the results are the average of 6 measurements for NPB kernels on the explained experiment configuration.
Finally, a comparison between our study and the previous study on Amazon platform [8] is performed taking
in account a comparable instances specifications as shown in Table 3.1.

3.2. NAS Parallel Benchmarks (NPB). NPB benchmarks are a well-accepted and well-known HPC
benchmark suites. In these experiments, the NPB-MPI version 3.3 [26] benchmarks are used to evaluate our
two process allocation strategies on Azure platform. Most communication-intensive kernels have been chosen,
namely CG, FT, IS and MG, with class C. Table 3.2 shows an overview of each used benchmark kernel [7, 26].

4. Experimental Results and Discussion. This section presents an analysis of the performance and
scalability of HPC NPB kernels on Azure platform under two different process allocation strategies, using the
selected benchmarks and their representative kernels, which were described before in sect. 3.2. In addition,
there is a subsection for comparing the results with Amazon platform.

4.1. Normal process allocation strategy (NPAS). Fig. 4.1 (dotted line) shows the performance of
CG, FT, IS and MG using up to 512 cores on Azure platform (hence, using 64 A10 Azure VMs). The used
performance metrics are MOPS (left graphs), and Speedup (right graphs). The used number of VMs is the
total number of cores divided by 8 cores (number of cores for A10 VM).
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Table 3.2
NAS Parallel Benchmarks used Kernels [26].

NPB Kernel Properties Problem Size Message Size
(Class C) (Class C)

CG (conjugate gradient) irregular memory access and communication 150000 146.5 Kbyte

FT (Fourier Transform)* discrete 3D fast Fourier Transform, all-to-all com-
munication

5123 128 Mbyte

IS (Integer Sort) random memory access 227 128 Mbyte

MG (Multi-Grid)** Multi-Grid on a sequence of meshes, long- and
short-distance communication, memory intensive

5123 128 Mbyte

*
denote the most communication-intensive

**
denote the least communication-intensive

The execution of CG kernel on different cluster configurations show that the maximum performance is
obtained by using four VMs (32 cores). The performance degrades significantly with the higher number of cores
due to the communication overhead in the virtual network. The performance can be improved significantly by
using a faster network such as InfiniBand and hardware based virtualization technology such as single-root I/O
virtualization SR-IOV [27, 28, 29].

An optimum performance of IS kernels is achieved with 8 cores (1 VM). FT kernels show similar maximum
performance with 8 cores (1 VM) and 128 cores (16 VMs). MG kernels have a maximum performance at a
cluster of 256 cores (32 VM) using OpenMPI. NPB kernels performance shows that the evaluated applications
obtain better results when running completely on only one VM (intra-communication) using up to eight cores,
because of the higher scalability and performance of shared memory communications. However, when using
greater than single VM, the kernels poorly perform, because of the network virtualization overhead. IS kernels
obtain the poorest scalability.

CG kernel is characterized by multiple point-to-point data movements. The best speedup value is 7.3,
which is achieved by using 4 VMs (32 cores). The performance is significantly dropped from that value on as
it has to depend on ten gigabits Ethernet communications, due to the network virtualization bottleneck. FT
kernel achieves a limited scalability on A10 VM. The best speedup value is approximately 5.6, which is achieved
by using 8 and 128 cores. IS kernel is a communication-intensive code whose scalability is greatly affected by
point-to-point communication start-up latency. Thus, this kernel obtains its highest results when using only
one VM due to the high performance of shared memory transfers. It suffers a critical slowdown when using a
cluster of VMs. Finally, MG kernel is a limited scalability. The speedup values are close to each other. The
best speedup value is approximately 10, which is achieved by using 256 cores for MPICH2.

4.2. Impact of expensive process allocation strategy (EPAS). This set of experiments aims to
analyze the impact of expensive process allocation strategy (1ppi) on HPC kernel performance. In the previous
experiments, 8 processes per instance strategy are used to maximize the CPU utilization as Azure type A10
instance has 8 cores. This intuitive assumption is not necessarily valid in the case of virtualization, as there
is a significant amount of CPU resources consumed to deal with the hypervisor and manage virtualized CPUs
according to the type of the hypervisor used. Therefore, we investigate how the number of allocated processes
will affect the overall performance in a virtualized HPC environment.

In this experiment, the performance of the NPB kernels using only one process per instance strategy (1ppi)
is compared with the normal process allocation strategy (8ppi). This layout can be expensive as we use only
one core per instance for each allocated process. For example, we use just 8 instances to allocate 8 processes on
the cluster, with each process running on one instance (1ppi). Hence, 32 VMs are used to provide 32 cores with
32 processes on the cluster instead of 256 processes in the normal setting of experiments as the case of sect. 3.
Two, four, and eight processes per instance are used to reach 128, 256, and 512 cores; respectively, because of
limited resources (64 instances).

Fig. 4.1 (solid line) shows a significant improvement of both MOPS and speedup for all the four kernels. CG
kernel’s speedup has increased to 8 times its corresponding value of NPAS in MPICH2 environment. Moreover,
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Fig. 4.1. NPB kernels performance and scalability on A10 Azure instances. For 1ppi: horizontal axis presents x/(z), where
x is number of cores and z is number of instances. For 8ppi: horizontal axis presents x, where x is number of cores (number of
instances=(number of cores/8))

the optimum configuration is achieved at 128 cores, i.e. a cluster of 64 instances running a total of 128 processes,
instead of (32 cores) a cluster of 4 instances running 32 processes. FT kernel’s speedup has improved to more
than 4 times compared with NPAS in OpenMPI environment with 128 processes. IS kernel has progressed in
MPICH2 more than OpenMPI environment. Its best speedup is achieved at 64 cores. MG kernel achieves a
considerable betterment using EPAS. Its best speedup value obtained 40 by using 64 VMs (128 cores).

Fig. 4.2 compares the performance of NPB kernels using 8 cores on Azure platform using NPAS (hence, using
one A10 VM) and EPAS (hence, using 8 VMs). It’s clear to show that NPAS always gives better performance
than EPAS at 8 cores for CG, FT and IS kernels. That is because intra-VM communication (shared memory)
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Fig. 4.2. NPB kernels performance on A10 Azure instances for 8 Cores

Fig. 4.3. Point-to-point communication performance on Azure platform [6]

is better than inter-VM communication (Ethernet) on that level of the cluster as shown in Fig. 4.3. But as the
number of cores increases in the cluster using EPAS, its performance supersedes its corresponding NPAS. In
contrast, MG kernel achieves higher performance using EPAS, because MG is least communication-intensive as
mention in Table 3.2.

4.3. Cost Analysis. Using public cloud infrastructure like Azure, the cost has to be taken into account.
Fig. 4.4 and Fig. 4.5 present the productivity in terms of USD per GOPS (Giga Operations per Second) of
the already evaluated NPB kernels. This metric depends on the total number of used cores. The cost of each
instance is 1.16 $/hour for each A10 instance [23]. When the cost behavior of kernels is inversely proportional
to the cluster size, it means that it is better to use a large cluster rather than a small one from both perspectives
of performance and cost. On the other hand, if the cost behavior is directly proportional to the cluster size,
this indicates that the solution is getting expensive as the cluster is enlarged and therefore there is no need to
use a large cluster. An efficient operation cost is obtained at a minimal value of the productivity curve which



170 H. A. Hassan, A. I. Maiyza, W. M. Sheta

Fig. 4.4. NPB kernels productivity on Azure instances (Normal process allocation strategy).
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Fig. 4.5. NPB kernels productivity on Azure instances (Expensive process allocation strategy).

indicates a low cost per operation versus expensive operations at the maximum value of the curve.

Regarding the first strategy (NPAS), the cost behaviors of CG, IS, and MG kernels are directly proportional
to the cluster size as shown in Fig. 4.4. The only exception is valid for IS Kernel using 512 cores (MPICH2
Environment) and MG Kernel using 256 cores (OpenMPI Environment). The reason for these exceptions is the
performances of these two configurations, in terms of MOPS and Speedup, increase as shown in Fig. 4.1.

Fig. 4.5 shows the cost behavior in USD/GOPS for EPAS. An optimum value of the productivity curve of
FT and MG kernels are achieved at 128 cores which are compatible with the results obtained from Fig. 4.1.
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Fig. 4.6. NPB kernels performance and scalability on A10 Azure instances and cc1 Amazon instances [8]. For 1ppi: horizontal
axis presents x/(z), where x is number of cores and z is number of instances. For 8ppi: horizontal axis presents x, where x is
number of cores (number of instances=(number of cores/8))

Then, they dramatically increase using 512 cores, because MOPS and Speedup decrease with the same cluster
size (64 instances). For IS kernel, the optimum solution can be achieved at 64 cores with MPICH2, because the
cost increases and the performance decreases when the number of cores increases more than 64 cores as shown
in Fig. 4.5.

4.4. Comparison between Azure and Amazon Performance. This section compares between the
performance of our evaluated experiments on Azure platform and Amazon platform [8] using two different
libraries, namely MPICH2 and OpenMPI.

Fig. 4.6 shows the performance of NPB kernels using up to 512 cores on Azure and Amazon platform
(hence, using 64 of A10 instances in Azure and using 64 of cc1 instances on Amazon). The performance metric
is MOPS only, which is available in the compared paper. The left and right graphs figure out the performance
with MPICH2 and OpenMPI libraries, respectively. Dotted and solid lines show the improvements of process
allocation strategy from NPAS (8ppi) to EPAS (1ppi), respectively.
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Fig. 4.7. Point-to-point communication performance on Azure [6] and Amazon instances [8].

4.4.1. Normal process allocation performance comparison (NPAS). For 8ppi, the overall perfor-
mance is better in Amazon than Azure platform for all evaluated kernels except using 8 cores. This variance
could be due to the different hypervisors which used in the two platforms. Amazon platform uses Xen para-
virtualization guests for improving network and disk performance [8], whereas Azure platform uses Hyper-V
virtual environments [30].

Fig. 4.7 compares between the bandwidth of Amazon and Azure platform. The bandwidth results of Azure
[6] and Amazon [8] platform are performed with the same instance configurations using the same HPC messaging
middleware such as MPICH2 1.4.1 [24] and OpenMPI 1.4.4 [25]. A communication is performed through an
Ethernet network link using a ping-pong test. It is clear to see that the bandwidth of Amazon platform is better
than Azure platform whether MPICH2 or OpenMPI. This observation considers another reason explaining why
the overall performance of Amazon platform is better than Azure platform.

In contrast, the only configuration that gives better performance in Azure than Amazon platform is achieved
using 8 cores allocated in one instance for all kernels.

Fig.4.8 compares the point-to-point performance of message-passing transfers in the intra-communication
between Azure [6] and Amazon [8] platform, where data transfers are implemented on shared memory (hence,
without accessing the network hardware). These results obtained with the Intel MPI Benchmarks suite (IMB).
Table 3.2 shows the message size of the four evaluated kernels. For CG kernel, the shared memory message-
passing communication performance is better using Azure platform over Amazon platform by 1 and 7 Gbps
using MPICH2 and OpenMPI, respectively, where the message size for CG kernel is 146.5 Kbytes approximately
for C class as mentioned in Table 3. For the three other kernels, the message size is 128 Mbytes. Unfortunately,
the measured shared memory performance was performed in [8] and [6] up to 64 Mbytes message size. So,
extrapolation is calculated to expect a value for intra-communication performance for this message size. The
approximated shared memory communication performance is better using Azure platform over Amazon platform
by 14 and 21 Gbps using MPICH2 and OpenMPI, respectively. These results explain why the performance is
better using one Azure instance than Amazon instance for the four evaluated kernels with 8 core configuration.

4.4.2. Expensive process allocation performance comparison (EPAS). For EPAS, the most con-
figurations using Amazon give better performance than Azure platform, nevertheless the overall improvement
(from using NPAS to EPAS) is greater in Azure for CG and MG kernels than Amazon platform. That is because
these two kernels are the least communication-intensive kernels. Amazon has the best performance, except for
CG and MG kernels using 128 and 256 cores, FT kernels using 128 cores (OpenMPI), and IS kernels using 256
cores (MPICH2).

There is another important observation appears in Fig. 4.6, all the performance results drop as the number
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Fig. 4.8. Point-to-point shared memory communication performance on Azure [6] and Amazon instances [8].

of cores increase after using 64 or 128 cores. That is because 64 instances are used for 64, 128, 256 and 512
cores using 1, 2, 4, 8 processes per instances, respectively. These configurations are performed whether using
Azure or Amazon platform. The performance degradation using Amazon platform is more than using Azure
platform, because the shared memory bandwidth is better for Azure as previously explained in Fig. 4.6.

5. Conclusion and Future Work. The research and industry community would highly benefit from
using HPC on the cloud. There is a high potential of running HPC on the cloud due to the capability of
running large applications on powerful, scalable hardware without the need to physically have or maintain this
hardware. Actually, there are several types of public cloud providers, allowing users to select the best provider
for their needs. The best configuration for a certain application depends on its type and behavior, in addition to
the usage scenario. In this paper, the performance of using HPC on Microsoft Azure cloud service is evaluated
through NAS Parallel benchmarks. The scalability is assessed for representative message-passing kernels (NPB)
using up to 512 cores for communication-intensive HPC application. Allocating only one process per instance
helps HPC applications that are hosted on the cloud to get higher performance at the expense of cost.

This study helps HPC users to determine their own optimum configuration. HPC user could classify his
application according to the presented NPB kernels, and then select the cluster size according to his budget
and the nature of his application. In addition, it will be easy to select between Azure Cloud and Amazon EC2
platform depending on the deployed application.

For the future, it’s intended to execute real HPC applications on Azure platform. The performance of
another cloud platform could be compared with Azure and Amazon cloud too. Different process allocation
strategies (2ppi and 4ppi) could be tested. Moreover, cost analysis could be performed using expensive process
allocation strategy (EPAS) with Amazon platform. As a result, a comprehensive study could be presented in
terms of performance and cost analysis between Azure and Amazon platform.
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DR-SWDF: A DYNAMICALLY RECONFIGURABLE FRAMEWORK
FOR SCIENTIFIC WORKFLOWS DEPLOYMENT IN THE CLOUD
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Abstract. Workflows management systems (WfMS) are aimed for designing, scheduling, executing, reusing, and sharing
workflows in distributed environments like the Cloud computing. With the emergence of e-science workflows, which are used in
different domains like astronomy, life science, and physics, to model and execute vast series of dependents functionalities and a large
amount of manipulated data, the workflow management systems are required to provide customizable programming environments
to ease the programming effort required by scientists to orchestrate a computational science experiment. A key issue for e-science
WfMS is how to deal with the change of the execution environment constraints and the variability and confliction of end users
and cloud providers objectives for the execution of the same workflow or sub-workflow. They have to customize their management
processes to insure the adaptability of the execution environment to the scientific workflows specificities, especially when dealing
with large-scale (data, computing, I/O)-intensive workflows. In this paper, we propose a dynamically re-configurable framework for
the deployment of scientific workflows in the Cloud (called DR-SWDF) that allows customizing the workflow deployment process
according to a set of objectives and constraints of end users or cloud providers defined differently for the tasks or partitions of
the same workflow. The DR-SWDF framework offers a K-means based algorithm that allows dynamically clustering the input
workflows or sub-workflows in order to identify the most convenient techniques or algorithms to be applied for their scheduling and
deployment in the cloud. The simulations results run on three examples large-scale scientific workflows show that our proposed
framework can achieve better results than the use of a generic purpose approach.

Key words: workflow management system, scheduling, partitioning, provisioning, configuration, cloud computing, scientific
workflows, K-means.

1. Introduction. The Cloud Computing environment offers multiple advantages for hosting and executing
complex applications such as scientific workflows. The elasticity asset of the Cloud Computing resources helps
such workflows to dynamically provision their compute and storage resources. Scientific workflows (called also
e-Science workflows) are used in different domains such as astronomy, life science, physics, to model and execute
vast series of dependents functionalities and a large amount of manipulated data [6]. Scientific workflow is a
formal specification of a scientific process, which represents, streamlines, and automates the steps from dataset
selection and integration, computation and analysis, to final data product presentation and visualization [16].

According to [17], the e-science workflow lifecycle, like traditional workflows, is defined by four phases,
namely: the workflow composition and representation, the mapping of tasks to resources, the execution of
the workflow and finally the recoding of metadata and provenance. These phases are usually included in a
Scientific Workflow Management System (SWfMS) like Triana [24], Pegasus [25], and Taverna [23]. The goal of
e-science workflow management systems is to provide a specialized programming environment to simplify the
programming effort required by scientists to orchestrate a computational science experiment [17]. The SWfMS
system supports the specification, modification, run, re-run, and monitoring of a scientific workflow using the
workflow logic to control the order of executing workflow tasks [16].

A critical challenge of SWfMS for executing Scientific Workflows on the Cloud is how to efficiently allocate
Cloud resources to the workflow tasks in order to optimize a predefined set of objectives. To do this, application
schedulers employ different policies that vary according to the objective function: minimize the execution time,
minimize cost, minimize the energy consumption, balance the load on resources used while meeting a fixed
deadline or user budget constraints of the application, etc. In the Cloud Computing environment, the overall
objective of task scheduling strategy is to guarantee the service-level agreements (SLAs) of allocated resources
to make cost-efficient decisions for workload placement. Since task scheduling problem on Cloud Computing
environments is NP-complete [19], several heuristics have been proposed to solve using Genetic Algorithms [38],
Particle Swarm Optimization [39], Ant Colony Optimization [40], and Cat Swarm Optimization [5][6]. However,
the problem is still challenging due to the dynamic nature of the Cloud Computing environment and to the
variability and confliction of the defined scheduling objectives.
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The scheduling is particularly more challenging for large-scale scientific workflows as they may have thou-
sands of tasks and data dependencies. Among the solutions, workflow partitioning is an approach to divide a
workflow into several sub-workflows and then submit these sub-workflows to different execution sites (virtual
clusters) [44]. Indeed, partitioning the original workflow into several fine-grained sub-workflows can ease the
complexity of the workflow and increase its performances according to the partitioning objectives. The parti-
tioning objectives can be varied and conflicting such as: optimizing the overall execution time of the workflow,
minimizing the dependencies between the workflow partitions, minimizing the number of allocated resources,
etc. For this reason, the problem of partitioning scientific workflows in the cloud computing environment is
still an open research issue. Several approaches were proposed in the literature to partition scientific workflows
according to one or multiple conflicting objectives [6][10][44].

Therefore, a major concern for a SWfMS is to be able to adapt his proposed features such as: the definition,
scheduling, and resource provisioning to the scientific workflow’s characteristics (computing, data or I/O inten-
siveness, number of tasks, input and output data size, etc.) and to the end users requirements and constraints
(predefined deadline or budget, quality of service preferences, data placement constraints, etc.). The concept of
adaptability has been introduced in the late 1990s and with the emergence of Adaptive Process Management
(APM) systems. APM constitutes an evolutionary extension of the production workflow paradigm which in-
tends to remedy the deficiencies related to dynamic process change [18]. According to [20], the adaptability
of SWfMS can be defined at different layers, namely: the business context layer (defines the adaptability to
a changing business context), the process layer (deals with changes to workflow models and their constituent
workflow tasks), the resource layer (data model and organization changing) and the infrastructure layer (in case
of system modifications or new technical settings).

In this work, we are interested in adaptable WfMS to the context modification as the scientific workflow
can be considered as specific very complex workflows that are more difficult to be managed than traditional
ones. Integrating a general-purpose WfMS in a specific business and organization context needs adaptation and
reconciliation from both sides [20]. Dealing with context-different workflows with different requirements can
impact the application performances of a workflow system. Thus, workflow systems should be prepared to adapt
themselves to a range of different business and organization settings and also to a changing context [20]. Several
SWfMS systems proposed in literature [23][24][25][26] offer adaptive management processes for the management
and execution of scientific workflows in the Cloud by integrating the possibility of configuring these processes
according to the user’s requirements or the workflow’s properties. However, local adjustments concerning a
single task or a workflow partition are often neglected. Such local adjustments are very useful for a user to
situate his/her work environment, including making decision in response to a special situation and on the basis
of a variety of choices, reporting exceptional cases that are out of his/her responsibility, and so on [20]. More
precisely, our research issue in this paper aims to dynamically configuring the workflow deployment process
according to specific requirements of end users or cloud providers. We propose a dynamically configurable
framework for the deployment of scientific workflows in the Cloud Computing environment inspired from the
architecture of DR-FPGA (Dynamic Reconfigurable Field Programmable Gate Arrays) [8]. In our framework,
we propose a K-means based algorithm that allows dynamically clustering the input scientific workflows in order
to identify the most convenient techniques to apply for its deployment in the cloud. The proposed framework
allows personalizing the deployment of the workflow at a fine-grained level (for specific tasks or partitions of
the workflow) using different techniques at runtime and according to the input workflow’s parameters, the
user’s requirements and the cloud provider’s objectives. For instance, we consider only workflow partitioning,
scheduling and resource provisioning as the main features of the SWfMS that can be dynamically configured;
however, our framework is general purpose and can be extended to include more features.

This paper is an extension of the works originally reported in [5] and [6]. We use our proposed partitioning
algorithm in [6] for the partitioning of scientific workflows and our proposed scheduling algorithm in [5] for their
scheduling in the cloud.

The reminder of this paper is organized as follows. In Section 2, we present our mathematical model for
scientific workflows deployment and, we introduce briefly the Dynamic Reconfigurable FPGA architecture. In
Section 3, we present our proposed dynamic reconfigurable framework for scientific workflows deployment in
the cloud. In Section 4, we exhibit our experimental setting and results. In Section 5, we present related works
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and finally in section 6. we conclude.

2. Background. In this section, we will present the problem formulation for scientific workflows schedul-
ing and deployment in the cloud. Then, we will present briefly the Dynamic Reconfigurable FPGAs as the
architecture of our proposed framework in this paper is inspired from it.

2.1. Problem statement. In this section we will focus on modeling the scientific workflows in the Cloud
computing environment guided. We will start by modeling the execution environment of the Cloud, modeling
scientific workflows, characterizing QoS metrics and their evaluation techniques for workflows, defining and
assessing the energy consumption of the Workflow. Finally, we will formulate our configurable optimization
problem of workflows scheduling in the Cloud that we will use when scheduling the workflow in our proposed
approach.

2.1.1. Modeling the execution environment. For the execution environment, we use the same mod-
eling as proposed in our previous paper [6]. Indeed, the execution environment of scientific workflows can be
organized as following: We dispose of a set of t data servers S = {Si|i = 1, ..., t} from the Cloud Comput-
ing environment. Each data server Si is composed of m computing resources (Virtual machines or VM) such
as Si = {VMk

i |k = 1, ...,m}. The Cloud providers offer different kinds of VM instances, adapted to differ-
ent types of tasks (I/O, intensive computing, memory). We define a virtual machine VMi by the quadruplet
(Ri, Ci, Qi, Pi) where:

• Ri = {Rk
i |k = 1, ..., d} is the vector of types of resources of a virtual machine VMi such as the processor,

the internal memory SSD, the network device ... with d the maximum number of resource types of
VMi .

• Ci = {Ck
i |k = 1, ..., d} is the vector of capacities of the resources of the virtual machine VMi.

• Qi = (Texe, C,A,R...) is the vector of the metrics of quality of service used to evaluate the performance

of VMi, such as Texe =
∑k

i=1 Dtini
∗Tu, where Tu is the time needed to process an input data of a unit

task. C = Texe ∗ Cu where Cu represents the cost per time unit incurred by using the virtual machine
VMi . A is the availability rate of VMi and R its reliability value.

• Pi =
∑d

k=1 P
k
i represents the energy consumption of the virtual machine (in Watts), defined according

to its resource types where P k
i defines the energy consumed by a resource type Rk

i of the VM for the
execution of a unit task T per unit of time per unit data.

2.1.2. Modeling scientific workflows. As described in [6], we model a scientific workflow as a directed
acyclic graph DAG which can be defined by the couple G = (V, E), where V={T1, ..., Tn} is the vector repre-
senting the tasks of the workflow, with n the total number of tasks. E represents the functional links between
tasks, and more specifically, the data dependencies between them, such as (Ti, Tj) ∈ E if the output data of the
task i are required for the execution of the task j. A workflow task is defined by the triplet T= (D,Dtin, Dtout)
with:

• Dtin = {Dtin|i = 1, ..., k} represents the amounts of data to be processed by each task of the workflow
with k is the number of input datasets of the task, each dataset Dtini

need a minimum time Ti to be
processed.

• D = {Di|i = 1, ..., d} is the vector of demands of the task in terms of resource capacities with Di is
the minimum capacity required of the resource type i to process the task and d the number of resource
types required.

• Dtout = {Dtout|i = 1, ..., s} represents the amounts of data generated after the completion of the
workflow task.

2.1.3. Modeling the energy consumption of a workflow. Workflows execution in the Cloud involves
allocating computing, network and storage resources used respectively for the execution of tasks, the transfer
of data between dependent tasks and the storage of input or generated data [6]. The energy consumed by
these allocated Cloud resources could then be divided into three components, namely: the processing energy,
the storage energy and the data communication energy [6]. The processing energy is the energy consumed
by the virtual machine to execute a specific task. This energy depends essentially on the virtual machine’s
configuration (processors number and capacities, memory, etc.), the time Texe needed to execute a unit task
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per unit data, the amount of data to be treated [6]. In this paper, we use the formula (2.1) proposed in [6] for
the assessment of the processing energy of a virtual machine VMi for the execution of a unit task Tj :

Pexeij = Texei ∗ Pi ∗Dtinj
(2.1)

with Pi is the VM’s power consumed for the execution of a unit task per unit time per unit input data and Dtin
is the data amount to be treated by the VM for the execution of the task Tj . The storage energy represents the
energy needed to store data on a permanent storage device (disk memory) [6]. This type of energy is usually
negligible compared to the processor’s energy [7].

The communication energy is the energy rate needed to transfer data from a virtual machine to another one
using a network bandwidth [6]. The communication energy includes the data access energy (read/write) from
DIMM memory (dual in-line memory modules) in source and destination VMs and the network power needed
to transfer the data from one network to another Eij [6]. Thus, we consider the formula (2.2) proposed in [6]
to assess the energy consumed to transfer an amount of data Dtouti from a VMi to a VMj .

Ptransfer = (Dtouti ∗ Eij)/dij(2.2)

where dij is the bandwidth rate between the source and destination machines.
In summary, the energy consumed for the execution of a workflow Pw is the sum of its total processing and

data communication energy. This energy is described by the formula (2.3) used in our previous work [6]:

Pw =
n
∑

(i=1)

m
∑

(j=1)

xij ∗ (Pij +
n
∑

(k=i+1)

yij ∗Dtouti ∗ Eik/dik)(2.3)

where: n is the total number of tasks of the workflow, m is the total number of VMs and xij is a boolean
variable that is equal to 1 if the task i is assigned to the VM j and to 0 otherwise. yij is a boolean variable
that is equal to 1 if there is a dependency between tasks i and j and to 0 if there is not.

2.1.4. Modeling and assessing the quality of service of a workflow. For the the modeling and the
assessment of the quality of service of a workflow, we refer to our proposed formalism in our previous paper
[5]. Indeed, we consider four quality metrics that can represent to our understanding the overall performances
of the workflows, namely: the execution time, cost, resources availability and reliability. In the rest of this
section we will detail the used equations for the assessment of the quality metrics for the workflow as well as
its overall quality of service as described previously in [5]. As a workflow is composed of a set of tasks and
data interdependencies between them, we consider that its execution time can be assessed by summing up the
execution time of tasks and the data transfer time between them using the formula (2.4).

Tw = Texecution + TdataTransfer(2.4)

Likewise, as the Cloud providers (as Amazon or Google for example) fix a price for each of their basic services
like executing a single operation on a specific computing resource or transferring a certain amount of data over
network devices, we consider that the economic cost of executing a workflow can be assessed as the sum of the
execution cost of the workflow tasks and the data transfer cost between dependent tasks using communication
networks, as illustrated by the equation (2.5).

Cw = Cexecution + CdataTransfer(2.5)

To assess the global values of the quality metrics of the workflow during its execution, we use aggregation
functions for the different considered quality metrics. The formulas used for these aggregation functions are
described in our previous work [5].

Once the quality metrics are assessed, we use the Simple Additive Weighting (SAW) normalization method,
as in [5], to determine the value of the overall quality of service of the workflow. This latter Qw can be evaluated
via the equation (2.6).

Qw =

K
∑

i=1

wi ∗ qi(2.6)
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where K is the number of considered quality metrics, qi is one quality metric value assessed for the overall
workflow (i.e. the execution time of the workflow) and wi is the importance weight accorded to each quality
metric with the sum of all importance weights is equal to one.

2.1.5. Configurable Scheduling model. Our ultimate objective in this work is to offer a personalized
deployment process for each task or set of tasks of the workflow. This includes configuring the scheduling
model of workflow to be adapted to the personalized scheduling objectives of its tasks, which implies defining
multiple scheduling models for the same workflow. In this case we define a parameterized scheduling model that
includes multiple scheduling objectives of both end users and cloud providers and to which we can add specific
parameters to adapt it to a specific task or workflow.

The considered objectives in our configurable scheduling problem are: optimizing the quality of services
described via the metrics of time, availability, and reliability, minimizing the cost (of execution and data
transfer), and minimizing the energy consumption of the workflow, meeting a certain deadline, respecting a
specific user budget. These metrics are conflicted for the following reasons:

• To execute quickly a workflow task, we should better use high performance Cloud resources (i.e. virtual
machines) which are more expensive than others.

• High performance virtual machines use more resources (CPU, memory ) which means that they consume
more energy.

• Highly available and reliable resources are usually more expansive than others.
Thus, we modeled the workflows scheduling problem in the Cloud as a multi-objective optimization problem
using the following linear representation:







Energy : minimize w1Pw

Quality : maximize w2Qw

Cost : minimize w3Cw

(2.7)

where: w1 , w2 and w3 define respectively the importance weights of the energy consumption rate, the overall
quality of service of the workflow and its overall cost to be defined when configuring the workflow scheduling.
The quality of the workflow is, in turn defined to be configurable, by using a set of importance weights as
illustrated by the equation (2.6). We can thus consider only the quality metrics that we want optimize.

2.2. Dynamic Reconfigurable FPGA (DR-FPGA). Field Programmable Gate Arrays (FPGAs) are
one of the fastest growing parts of the digital integrated circuit market in recent times. They can be configured
to implement complex hardware architectures. FPGA reconfiguration typically requires the whole chip to be
reprogrammed even for the slightest circuit change [7]. The basic architecture of FPGA is based on an array of
logic blocks connected through programmable interconnections as illustrated by the figure 2.1.

Dynamic reconfiguration means modifying the system when it is under operation. Reconfigurable com-
puting utilizes hardware that can be adapted at run-time to facilitate greater flexibility without compromising
performance. Reconfigurable architectures can exploit fine grain and coarse grain parallelism available in the
application because of the adaptability [8].

Dynamically reconfigurable FPGA (DRFPGAs) systems can adapt to various computational tasks through
hardware reuse [7]. Currently there are very large capacity DRFPGAs which contain many highly parallel fine
grain parallel processing power, and the ability to define high bandwidth custom memory hierarchies offers a
compelling combination of flexibility and performance. In addition FPGAs are able to adapt to a real-time
processing. We can integrate functional improvements without wasting time receiving hardware or modifying
the layout of the circuit. The exploitation of parallelism provides performance advantage over conventional
microprocessors [8]. As illustrated by the figure 2.1, the red and the green solid lines represent an example
of two kinds of connection ways respectively that allow processing differently the same input data to generate
different outputs. The definition of the connection path to be performed can be done in real time according to
a certain number of parameters (input data, output data, performance preferences, etc).

The granularity of the reconfigurable logic of FPGA is defined as the size of the smallest functional unit
(configurable logic block, CLB) that is addressed by the mapping tools [8]. High granularity, which can also
be known as fine-grained, often implies a greater flexibility when implementing algorithms into the hardware.
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Fig. 2.1. Architecture of DR-FPGA

However, there is a penalty associated with this in terms of increased power, area and delay due to greater
quantity of routing required per computation [8]. In the contrary, small granularity on coarse-grained architec-
tures are intended for the implementation of algorithms needing word-width data paths. As their functional
blocks are optimized for large computations and typically comprise worldwide arithmetic logic units, they will
perform these computations more quickly and with more power efficiency than a set of interconnected smaller
functional units.

3. DR-SWDF: Dynamic Reconfigurable Scientific Workflows Deployment Framework. In this
section, we describe our proposed dynamic reconfigurable framework for scientific workflows deployment that
allows dynamically configuring and executing these workflows in the Cloud environment. The main advan-
tage of our proposal is that, for the same input workflow, we can apply different scheduling, partitioning or
resource provisioning techniques to each sub-group of interdependent tasks of the workflow at design time and
at runtime. We consider that each portion of tasks the workflow can have different characteristics (such as the
tasks types, input and output datasets, etc), different scheduling objectives (prefixed budget, deadline, perfor-
mance constraints, energy consumption rate, etc) and other constraints (such as the placement of input/output
data). These characteristics can be defined during the configuration of the workflow before its deployment. Our
framework allows also dynamically clustering the input workflow or sub-workflow according to its description
by using a K-means clustering algorithm in order to identify the most convenient techniques to be applied for
its deployment in the cloud.

The main components of our workflows deployment framework are, namely: the configuration, partitioning,
scheduling, provisioning, and the deployment component. Each of the offered components can implement dif-
ferent algorithms and/or techniques. Each algorithm is better suited to the requirements of a specific category
of scientific workflows. The figure 3.1 illustrates the main functional components of our proposed DR-SWDF.
We inspired the architecture of our framework from that of the DR-FPGA presented in the previous section
by replacing each logic bloc by a software component (algorithm, technique, tool, etc). Like DR-FPGAs, the
execution process of a scientific workflow using our proposal follows a directed path relying different compo-
nents starting from the configuration step to the deployment of the workflow. More specifically, the DR-SWDF
framework allow to redefine the processing path for a specific partition of the workflow at design time or at
runtime in order to use more suitable algorithms to the sub-workflow’s characteristics (tasks type, scheduling
constraints, input/output data size, etc) for its partitioning, scheduling or provisioning. As an example, the
paths illustrated by red and green solid lines in the figure 3.2 represent two different processes to be applied
when executing a scientific workflow for two of its partitions. The dynamic reconfiguration step can be per-
formed dynamically before the execution of each partition of the workflow by examining its characteristics and
considering personalized techniques for its processing which allow improving the performances of the overall
workflow. We consider that the reconfiguration step can be performed without affecting the performances of
the overall workflow execution as it can be planned well in advance.

As illustrated by the figure 3.2, the functional process of our proposed framework follows a directed path. For
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Fig. 3.1. Overview of our proposed DR-SWDF framework

Fig. 3.2. Functional overview of DR-SWDF framework

a specific input workflow, the DR-SWDF precedes to the configuration of the workflow deployment by defining,
firstly, the workflow type (as computing, I/O or memory intensive) using a K-means clustering algorithm.
Based on the workflow type, number of tasks and the number of available resources, the configuration algorithm
determines the most convenient partitioning, scheduling and provisioning techniques or algorithms to apply if it’s
possible. After the partitioning step, if the dynamic reconfiguration option is active (which is active by default),
the set of generated workflow partitions are returned to the configuration step to be dynamically reconfigured
as distinct workflows with their own characteristics and input/output data. If the dynamic reconfiguration
option is not active (which means that the workflow is sufficiently fine grained to be processed at once), the
deployment process moves to the scheduling and provisioning of the workflow using the selected techniques
during the configuration step.

The framework design is generic and can be extended by adding others components and/or algorithms
for the deployment of workflows in the Cloud environment like data reuse, data cleanup and fault tolerance
optimization. For instance, we consider only partitioning, scheduling and provisioning of scientific workflows
with using two different algorithms for each function to illustrate the advantages of our approach. In the
following, we will detail the role of each component and the used algorithms or techniques for each one.

3.1. Workflow Configuration and Dynamic Reconfiguration. The configuration is a key feature
of our approach. It allows defining the techniques or strategies to be used for the deployment of the input
workflows. As in some cases sub-parts of the workflow might present different characteristics from the overall
workflow [41], it is critical then reconsider these parts as separate workflows that requisite different techniques
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to be deployed in the cloud, and here where the dynamic reconfiguration is needed.
The dynamic reconfiguration can be performed for the overall scientific workflow at once if all its parts

have the same characteristics or for a specific partition of the workflow. Its main objective is to reconsider
the characteristics of the input sub-workflow for the choice of the most suitable algorithms or strategies to be
used for its deployment in the cloud. These characteristics include the following metrics: the workflow type
(computing intensive, memory intensive, I/O intensive or a combination of these types), the number of tasks,
the estimated makespan and energy consumption of each one, the quality constraints of end users (budget,
makespan, etc), the cloud provider’s constraints (limited number of VMs, storage memory, etc), and the input
and the output data sizes.

Based on the workflow size, model and structure, we defined a set of metrics to initially classify the input
workflow or sub-workflow of our framework as computing intensive or data intensive or I/O intensive, etc. Then,
we used a clustering algorithm to be able to automatically classify the input workflows, especially those which
include different types of sub-workflows.

For instance, we consider the equation (3.1) to identify whether the input workflow is data intensive or not.

n
∑

i=1

(Di
in +Di

out)

n
≥ LimitdataSize(3.1)

where: n is the overall number of tasks, Di
in is the input data size of the task i and Di

out is its output data
size which is not an input data for another task. LimitdataSize is the threshold of data size beyond it we can
consider the workflow as data intensive.

We can identify also a computing intensive workflow by the fact that its tasks need a long time to be
processed. Hence, we defined the equation (3.2) to automatically define a computing intensive workflow.

max
1≤i≤j

texei
k

≥ Tlimit(3.2)

where: k is the number of the workflow tasks that should be performed sequentially, j is the number of tasks
that can be executed in parallel, texei is the estimated execution time of the task i and Tlimit is the execution
time threshold beyond it a workflow can be considered as computing intensive. As it is one of the most popular
clustering algorithms, we opted for the K-means clustering algorithm [42] to classify the input workflows or
sub-workflows and map them to the most relevant partitioning, scheduling and provisioning techniques that fit
their characteristics. K-means aims to partition an input set of N points into K clusters by finding a partition
such that the squared error between the empirical mean of a cluster and the points in the cluster is minimized.
The squared error metric and more details about the K-means algorithm could be found in [42].

The main steps of K-means algorithm are as follows [42]:
1. Select an initial partition with K clusters; repeat steps 2 and 3 until cluster membership stabilizes.
2. Generate a new partition by assigning each pattern to its closest cluster center.
3. Compute new cluster centers.

The K-means algorithm requires three user-specified parameters: number of clusters K, cluster initialization,
and distance metric. The number of clusters in this work is limited to three defining the type of the workflow
intensity (I/O, memory, computing). The definition of initial clusters is accomplished using the equations (3.1)
and (3.2) determining a first classification of the workflows. Then, we use the graph distance measure defined
in [55] to evaluate the similarity degree between the DAG graphs of the input workflows. In fact, the distance
of two non-empty graphs G1 and G2 can be defined by the equation (3.3) [55]. Intuitively, the larger distance
of two graphs is, the more similar the two graphs are. The use of this similarity metric for the clustering of
scientific workflows is more convenient as it is able to capture the (structural) difference between the workflows
more than other vector space based distances such as the Euclidian distance.

d(G1, G2) = 1−
|mcs(G1, G2)|

max(|G1|, |G2|)
(3.3)

where mcs(G1, G2) denotes the maximal common subgraph of two graphs G1 and G2 and |Gi| is the number of
arcs in the graph Gi. The algorithm 1 describes the steps of the dynamic re-configuration algorithm proposed
for our DR-SWDF framework.
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Algorithm 1: Workflow Dynamic Re-configuration Algorithm
input : Var w; ◃ the input workflow

Var budget; ◃ The end user’s budget constraint
Var makespan; ◃ The workflow completion time constraint
Var vm− number; ◃ number of available VMs
Var memory − limit; ◃ The cloud provider’s constraint for maximum storage memory
Var cpu− limit; ◃ The cloud provider’s constraint for cpu capacity limit
Var dynamic− reconfiguration− option; ◃ (0: not active, 1: active)

output: Var P ; ◃ The index of the partitioning algorithm ’P’
Var S; ◃ The index of the scheduling algorithm ’S’
Var Pr; ◃ The index of the provisioning algorithm ’Pr’

begin

dynamic− reconfiguration− option = 1;
◃ set the dynamic-reconfiguration-option to active by default

intworkflow − type = K −means− cluster(W );
◃ define the type of the workflow by applying the K-means algorithm

intp− tasks = count− parallel − tasks(W );
◃ determine the number of tasks that may run in parallel

if p− tasks ≤ vm− number then

dynamic− reconfiguration− option = 0;
◃ disable the dynamic reconfiguration option

else

P = partitioning − technique− choice(workflow − type);
◃ set the partitioning technique corresponding to the workflow type

if dynamic− reconfiguration− option == 1 then

partitions[] = workflow − partition(P,W );
◃ apply the partitioning algorithm and get partitions

forall the workflow − partition ∈ partitions[] do
Workflow −Dynamic−Re− configuration−Algorithm(workflow − partition);

◃ for each workflow partition, re-apply the algorithm from the beginning

else

S = scheduling − technique− choice(workflow − type);
◃ set the convenant scheduling technique

set− objective− function(S, String[]parameters);
◃ Set the objective function parameters such as the Budget and Makespan

set− provisioning − constaints(vm− number,memory − limit, cpu− limit);
◃ set the provisioning constraints

Pr = scheduling − technique− choice(workflow − type);
◃ set the convenant provisioning technique

The configuration component should, also, insure the planning of the deployment order of the workflow
partitions and their input/output data sets, and handle errors or execution problems. It should be able to
decide if the execution process should be reprogrammed or canceled in case of error.

3.2. Workflow Partitioning. The partitioning function aims to split the workflow composed of a large
number of tasks into several sub-workflows in order to achieve a high level of parallelism for the execution of
the workflow. Many algorithms were proposed in literature for workflows partitioning such as [6][9][10]. Each
algorithm can have a different partitioning objective such as minimizing the overall cost of the workflow (by
minimizing the data transfer rate between distant resources) or minimizing its makespan (by maximizing the
number of tasks that can be performed in parallel). These two last objectives are conflicting because minimizing
the data transfer rate implies fostering the use of the same cloud resources or those situated in the same server,
while optimizing the makespan implies using powerful and highly available cloud resources regardless of their
location. To determine which algorithm is more suitable to a specific workflow or sub-workflow, we consider
the following characteristics: the workflow type, its tasks number and their estimated execution time, with the
input and output data sizes. Our DR-SWDF framework analyses these data and chooses the most convenient
technique to be considered at the configuration step.

For example, for the Montage workflow [2], which is a computing and data intensive workflow designed
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to manage science-grade mosaics of the sky, we can foster a partitioning technique that allow to minimize the
data movement between partitions for the overall workflow at the configuration step such as in [6]. But at the
dynamic reconfiguration of the workflow partitions we can opt for the optimization of its processing time by
using a partitioning algorithm that insures a high level of parallelism such as in [9]. Hence, we can optimize the
makespan of the workflow and minimize its cost (through minimizing the data transfer rate over communication
networks) thanks to the use of two different partitioning techniques for the same input workflow.

In our previous work [6], we proposed a Workflow Partitioning for Energy minimization (WPEM) algorithm
that allows reducing the network energy consumption of the workflow and the total amount of data commu-
nication while achieving a high degree of parallelism. The main idea of the WPEM algorithm is to apply the
technique of max flow/min-cut to recursively partition the workflow into two sub-workflows such as the data
communication amount between them is minimal. The experimental results show that WPEM allows reduc-
ing remarkably the network energy consumption of both the memory and data intensive workflows, however
it doesn’t perform better than the [9] for computing intensive workflows [6]. In [9], the authors propose a
new algorithm WPRC (Workflow Partition Resource Clusters) for scheduling Scientific Workflows in the Cloud
environment. The WPRC algorithm partitions the workflow in order to achieve the highest level of parallelism
and thus, optimizing the cost and time of execution of the workflow and the tasks of each partition are, then,
assigned to the cluster selected according to their execution priority.

Hence to cover computing, data and memory intensive workflows, we will consider only the partitioning
algorithms in [6] and [9] as they offer promoting results, each for a specific kind of workflows. However, our
framework is flexible and can integrate other partitioning algorithms.

3.3. Workflow Scheduling. The third function of our proposed framework is the scheduling of the
input workflow or sub-workflow according to predefined objectives (such as optimizing the cost and/or the
makespan of the workflow, optimizing the QoS of the involved Cloud resources or minimizing their energy
consumption rate, etc) as illustrated in the section 2.5. The scheduling of a workflow tasks consists to affect
every generated sub-workflow (or workflow partition) from the partitioning step to a Cloud data server and
schedule the partition tasks using its virtual machines. The workflow scheduling problem is to carry out a
mapping of these tasks to VMs that optimizes its scheduling objectives and constraints. These objectives can
be defined at the configuration step for the overall workflow or personalized at the dynamic reconfiguration
of the workflow partitions. The utility of defining different scheduling objectives for some partitions of the
workflow can be explained by the fact that the tasks of these partitions may be more important than others or
manipulate critical data that should be placed within certain constraints.

Being an NP-complete problem, several optimization algorithms were proposed in literature to deal with
the issue of multi-objective scheduling of workflows like [5][11][12]. In this context, we implement among others
our proposed optimization algorithm (EPCSO) in a previous work [5] which is an enhancement of the Parallel
Cat Swarm Optimization algorithm [21]. This algorithm allows resolving the multi-objective optimization
problem corresponding to the scheduling objectives of the workflow’s user and offers betters results compared
to others optimization heuristics such as [11][12]. EPCSO allows optimizing the overall QoS of the workflow
by considering one or more metrics like the execution time, the data transmission time, and the cost of the
workflow, the cloud resources availability, reliability and the data placement constraints. A second optimization
algorithm considered by our framework is that proposed in [12], the authors propose a new PSO-based algorithm
to solve the scheduling problem of workflows in Cloud Computing environments. The objective of the scheduling
problem is to optimize the makespan and the cost of the workflow. The results of the proposed algorithm show
its ability to reduce the overall cost of the workflow and maintain an even distribution of work packages among
the allocated resources. We consider for this moment only these two optimization algorithms as they cover the
most conflicting scheduling objectives that a user of a scientific workflow can express but it remains possible to
add other heuristics in the future.

3.4. Resources Provisioning. Resource provisioning is a key step of the workflow deployment process.
It aims to insure efficient use of the Cloud resources which is a common goal for both workflow users and cloud
providers. The efficiency in virtual resource provisioning has direct influence on the Quality of Service (QoS)
of IaaS clouds [13]. For end users, using the right resources for the right tasks will allow saving their time
and money by applying the ’pay-what-you-go’ model of the Cloud Computing. For Cloud providers, resource
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provisioning is finality in itself and an important way to save the energy consumption of their cloud resources.
The strategy to be used for resources provisioning depends on several factors such as the type of the workflow
(computing or data or I/O intensive, etc), its tasks number and their characteristics (the required software
configuration, the estimated execution time, the input/output data, etc), and the needed or generated data size
and placement constraints. These factors can be different for some tasks of same workflow, thus, our proposed
DR-SWDF offers the possibility to consider a different provisioning strategies for each workflow partition at the
dynamic reconfiguration step.

In this scope, we implemented two different provisioning techniques from literature: the first one is designed
to the provisioning of VMs [14] and the second one is focalized on the provisioning of storage resources [15].
We have chosen these two techniques as they insure the provisioning of both types of involved cloud resources
in the process of scientific workflow execution in the cloud. The goal of VM provisioning is to provide sufficient
resources to meet the level of QoS expected by end-users. For this purpose, most cloud provides deliver a set
of general-purpose VM instances with different resource configurations. For example, Amazon EC2 provides
a variety of VM instance types with different amounts of resources. In [14], Jing et al. modified the genetic
algorithm with a fuzzy multi-objective evaluation in order to search for a large solution space by considering the
conflicting objectives such as power consumption minimization, total resource wastage, and thermal dissipation
costs. The authors designed, also, a genetic algorithm for VM placement. The simulation results show that
the algorithm outperforms existing traditional greedy approaches in terms of the number of utilized hosts and
performance degradations.

Otherwise, as scientific workflows can be very complex, one task might require many datasets for execution;
furthermore, one dataset might also be required by many tasks. If some datasets are always used together
by many tasks, we say that these datasets are dependents on each other [15]. The goal of storage resources
provisioning is to insure an efficient use of the available storage resources in terms of cost and energy consumption
by avoiding excessive data access. To do this, we used our proposed algorithm in [5], in which, we modeled
the problem of storage resources selection in the cloud as a multi-objective optimization problem based on
the criteria of: availability, cost and their approximation to the virtual machines on which the tasks will be
executed.

3.5. Workflow deployment. The workflow deployment is not the final step of the workflow management
process according to our proposal. It becomes a central component to which the workflow partitions or tasks
ready to be executed are submitted. The execution process is started once the process of dynamic reconfig-
uration is achieved. To do this, after the partitioning of each workflow or sub-workflow that should respect
the execution order of the workflow tasks, every partition follows its own process including task scheduling,
resources provisioning, before its submission to the workflow deployment engine as an autonomous workflow
with its own input datasets, allocated resources, start time and deadline if defined. If the deployment of a
specific partition fails due to a specific reason such as unavailable resource or input dataset access failure, a
notification should be sent to the configuration component. In this case, the configuration component should
decide according to the failure reason whether it will reprogram the execution of the workflow partition or cancel
the overall workflow execution. The monitoring of the whole execution process of the workflow is insured by the
configuration component which centralizes all information about the workflow (partitions, input/output data,
execution result, resources available, etc).

4. Simulations results. We use the WorkflowSim [35] simulation environment, on which we implemented
our proposed framework. WorkflowSim extends the CloudSim [36] simulation toolkit by introducing the support
of workflow preparation and execution with an implementation of a stack of workflow parser, workflow engine
and job scheduler. It supports a multi-layered model of failures and delays occurring in the various levels of the
workflow management systems.

We consider three workflows that we configured to be computing and data intensive workflows, notably
the Montage [2], Cybershake [3] and Epigenomics [4] workflows. These workflows were chosen because they
represent a wide range of application domains and a variety of resource requirements [37]. The Montage project
is an astronomy application that delivers science-grade mosaics of the sky [2]. The Montage workflow is I/O
intensive and the figure 4.1 illustrates a simplified structure of it. We used the Montage Workflow with 4006
tasks as in [6]. The CyberShake workflow is used to calculate Probabilistic Seismic Hazard curves for several
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Fig. 4.1. A simplified representation of the Epigenomics, Cybershake and Montage Wokflows respectively

geographic sites in the Southern California area [3]. The CyberShake workflow is memory intensive. A portion of
this workflow is illustrated by the figure 4.1 containing 2252 tasks. Finally, the Epigenomics project maps short
DNA segments collected with high-throughput gene sequencing machines to a previously structured reference
genome [4]. The Epigenomics workflow is CPU intensive. A simplified structure of this workflow is described
by the figure 4.1. The used Epigenomics Workflow contains 4000 tasks. We used the execution traces of the
considered workflows from [1] to generate the values of unitary task’s execution time and data communication
amounts between dependents tasks of these workflows.

As we don’t have enough informations about the different techniques offered by the studied SWfMS like
the partitioning algorithm type and objective, we compared our proposed approach to a ”generic” one. The
”generic” approach corresponds to the use of one technique of partitioning, scheduling and provisioning for the
overall workflow among those implemented in our framework and that for all the considered workflows. We
use the same simulation environment for the ”generic” approach as in our proposed framework. We run four
scenarios with different conflicting scheduling objectives:

1. Scenario 1: optimizing both the makespan and the energy consumption
2. Scenario 2: optimizing both the energy consumption and the cost,
3. Scenario 3: optimizing both the cost and the makespan,
4. Scenario 4: optimizing the energy consumption and the overall quality of service of the workflow.

In each scenario, we compare the use of our approach to the generic approach for which we use the most
appropriate techniques among those implemented in our framework to apply for the overall workflow. The
results of our simulations are detailed below.

For the scenario 1, the overall objective is optimizing the makespan and the energy consumption of the
workflow. To satisfy this objective using the generic approach, we used our proposed partitioning algorithm in
[6], the scheduling algorithm in [5] and the provisioning strategy of [14]. For our proposed approach, we used
for each partition different techniques among those implemented in our framework that corresponds more to
the partition type.

The simulation results in figure 4.2 show that our proposed approach allows reducing both the makespan
and the energy consumption of all the tested workflows compared to the generic approach. This reduction is due
to the use of techniques that are more suited to the workflow tasks/partition rather than the overall workflow.

In the same way, our proposed approach offers better results than the generic one for the second scenario
by allowing reducing both the cost and the energy consumption of the tested workflows as illustrated by the
figure 4.3.

For the scenario 3, our objective is to minimize both the cost and the makespan of the workflow which
depicts the most important objectives of end users. By using our proposed approach, we can achieve better
values than using the generic approach designed for all workflow without considering their type and tasks
particularities (see figure 4.4).

In the final scenario, our objective is to optimize the overall quality of service of the workflow and its energy
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Fig. 4.2. Simulation results for the scenario 1

Fig. 4.3. Simulation results for the scenario 2

consumption. We assessed the overall quality of service of the workflow by using the metrics of time, availability,
and reliability of all the resources involved in the workflow execution. Thus, the considered objectives are
conflicting as a high highly available resource is a resource that consumes more energy. The figure 4.5 illustrates
the simulation results of our proposed approach compared to the generic approach and confirms that our
approach offers better quality of service rate while using less energy than the generic one for all the tested
workflows and thus due to the use of more adaptable scheduling objectives for each partition of the workflow,
in addition to the use of multiple provisioning and partitioning algorithms for the same workflow. In summary,
our proposed framework offers to the end users and cloud providers the occasion to personalize the process
of workflow deployment in the cloud by dynamically reconfiguring the partitions or tasks of the workflow as
independent workflow and using different techniques for their deployment and conserving the data dependency
between them. Our simulation results show that this approach can achieve better results than the use of a
generic one within the considered scheduling as in the tested scenarios.

5. Related works. Many SWfMS were proposed in literature, such as Kepler [22], Taverna [23], Triana
[24], Pegasus [25], ASKALON [26], SWIFT [27] have demonstrated their ability to help domain scientists on
scientific computing problems by synthesizing data, application and computing resources [28]. Other research
works that dealt with the scientific workflows deployment in the Cloud proposed their systems as ”Software as
a service” such as in [31][30][29]. The challenges dealt with in the e-science workflows systems/works can be
categorized into three aspects: composition, execution and the workflow composition and learn. The workflow
composition aspect involves the features of workflow definition, medialization, usability, etc. The execution as-
pect includes workflow scheduling, partitioning, resource provisioning, optimization, and workflow adaptability.
Finally, the learn aspect includes analyzing the data provenance and results of the workflow execution in order
to enhance knowledge learn and the workflow performances.

In this paper, we focus on the execution aspect of the SWfMS, and more precisely on the problems related
to adaptability of the execution process to the change of the business context of the scientific workflows. The
execution process of such workflows includes the following aspects: the partitioning, scheduling, deployment,
resource provisioning, and data storage management especially for data intensive workflows.



190 K. Bousselmi, Z. Brahmi, M.M. Gammoudi

Fig. 4.4. Simulation results for the scenario 3

Fig. 4.5. Simulation results for the scenario 4

Most of the proposed SWfMS include the data driven adaptability (they deal with the workflow’s data
changing during the execution process). For example, Triana uses Aspect Oriented Programming (AOP) tech-
niques to perform the workflow rewriting, effectively creating sub-workflows that execute and feed back into
the main workflow in order to allow dealing with newly integrated or modified datasets. Pegasus, also, allows,
redefining the workflow during the execution by changing the input data or the resources to be used. Likewise,
Kepler workflows can modify themselves during execution. Another aspect of adaptability of workflow systems
is computation unfolding, one task or sub-workflow could actually need to be iterated or parallelized during the
execution based on different conditions. To enable this adaptation aspect, some workflow systems like Pegasus
and Swift support abstract workflows [17].

For data intensive workflows, the overall objective of SWfMS is to optimize the data manipulation, transfer
and storage within the minimum cost and time. For example, Pegasus technique consists to move data to local
or remote locations where scientific applications employed in the workflows will be deployed. If one workflow
contains applications deployed on different sites, there have to be multiple data movements during the workflow
execution [28]. This technique allows optimizing the overall makespan of the workflow but when the data sizes
are very large, times for data movements will be significant and result in very inefficient workflow execution
time and cost since data transfer in the cloud is paying. In Triana, in the case of task-based workflow, the user
can designate portions of the workflow as compute intensive and Triana will send the tasks to the available
distributed resources for execution.

The capability of a SWfMS to allow defining different scheduling objectives and applying multiple techniques
for the tasks of the same workflow according to the importance of these tasks or to other parameters (like task
type, input/output data size, etc.) is another important feature that SWfMS should consider especially in the
era of Big Data emergence. In this context, Pegasus performs a mapping of the entire workflow, portions of the
workflow, or individual tasks onto the available resources executed and provides an interface to a user defined
scheduler limited to some feature such as the makespan and the execution cost and includes four basic scheduling
algorithms, namely: HEFT [33], min-min, round-robin, and random. The Askalon system, designed to support
task-level workflows, has a rich environment for mapping workflows onto resources. However, its scheduler



DR-SWDF: A Dynamically Reconfigurable Framework for Scientific Workflows Deployment in the Cloud 191

makes full-graph scheduling of scientific workflows, using one of the implemented scheduling algorithms such as
HEFT.

Resource provisioning adaption is another crucial requirement for SWfMS. Provisioning is slightly more
complex than queuing in that it requires users to make more sophisticated resource allocation decisions [34].
Existing provisioning strategies could be classified into two kinds: static and dynamic and are mainly cost or
deadline-constrained. In static provisioning the application allocates all resources required for the computation
before any jobs are submitted, and releases the resources after all the jobs have finished [34]. In dynamic
provisioning resources are allocated by the system at runtime. This allows the pool of available resources to
grow and shrink according to the changing needs of the application [34]. Pegasus implements both static and
dynamic provisioning to allow cost and deadline-constrained scientific workflows deployment in the Cloud [32].
Other SWfMS like Taverna and Triana include dynamic provisioning algorithms that are applicable for the
overall resources implied for the workflow execution. None of the existing SWfMS does offer customizable
resource provisioning techniques that correspond to different types of workflows.

6. Conclusions. In this paper, our research objective is to dynamically cluster scientific workflows and
ensure their scheduling and deployment according to the specific requirements of end users or cloud providers.
To do this, we consider each single partition or task of the workflow as a separate workflow and define a specific
execution process for it. We propose DR-SWDF, a dynamically configurable framework for the deployment
of scientific workflows in the Cloud that allows using different techniques at runtime according to the input
workflow’s parameters, the user’s requirements and the cloud provider’s objectives. The simulations results run
on three examples of data and computing intensive workflows show that our proposed framework can achieve
better results than the use of a generic one within different conflicting scheduling objectives such as optimizing
the energy consumption, the cost or the makespan of the workflow.

In the future, we expect to extend our framework in order to implement more techniques for the considered
features and include new features like the data provenance management, data reuse, data cleanup and fault
tolerance optimization.
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