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INTRODUCTION TO THE SPECIAL ISSUE ON INFRASTRUCTURES AND
ALGORITHMS FOR SCALABLE COMPUTING

We are happy to present this special issue of the scientific journal Scalable Computing: Practice and
Experience. In this special issue on Infrastructures and Algorithms for Scalable Computing (Volume 19, No 3
June 2018), we have selected four papers out of submitted nine, which gone through a peer review according to
the journal policy. All papers represent novel results in the fields of distributed algorithms and infrastructures
for scalable computing.

The first paper presents present a novel approach for efficient data placement, which improves the perfor-
mance of workflow execution in distributed datacenters. The greedy heuristic algorithm, which is based on a
network flow optimization framework, minimizes the total storage cost, including efforts to move and store the
data from different source locations and dependencies. The second paper evaluated the significance of different
clustering techniques viz. k-means, Hierarchical Agglomerative Clustering and Markov Clustering in grouping-
aware data placement for data-intensive applications with interest locality. The evaluation in Azure reported
that Markov Clustering-based data placement strategy improves the local map execution and reduces the exe-
cution time compared to Hadoops Default Data Placement Strategy and other evaluated clustering techniques.
This is more emphasized for data-intensive applications that have interest locality. The third paper presents
an experimental evaluation of the openMP thread-mapping strategies in different hardware environments (Intel
Xeon Phi coprocessor and hybrid CPU-MIC platforms). The paper shows the optimal choice of thread affinity,
the number of threads and the execution mode that can provide optimal performance of the LU factorization. In
the fourth paper, the authors study the amount of memory occupied by sparse matrices split up into same-size
blocks. The paper considers and statistically evaluates four popular storage formats and combinations among
them. The conclusion is that block-based storage formats may significantly reduce memory footprints of sparse
matrices arising from a wide range of application domains.

We use this opportunity to thank all contributors to this Special Issue: all authors who submitted the
results of their latest research and all reviewers for their valuable comments and suggestions for improvement.
We would like to express our special gratitude for the Editor-in-Chief, Professor Dana Petcu, for her constant
support during the whole process of this Special Issue.

Sasko Ristov, University of Innsbruck, Austria
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EXACT AND HEURISTIC DATA WORKFLOW PLACEMENT ALGORITHMS FOR BIG
DATA COMPUTING IN CLOUD DATACENTERS

SONIA IKKEN∗, ERIC RENAULT†, ABDELKAMEL TARI‡, AND M. TAHAR KECHADI§

Abstract. Several big data-driven applications are currently carried out in collaboration using distributed infrastructure.
These data-driven applications usually deal with experiments at massive scale. Data generated by such experiments are huge
and stored at multiple geographic locations for reuse. Workflow systems, composed of jobs using collaborative task-based models,
present new dependency and data exchange needs. This gives rise to new issues when selecting distributed data and storage
resources so that the execution of applications is on time, and resource usage-cost-efficient. In this paper, we present an efficient
data placement approach to improve the performance of workflow processing in distributed datacenters. The proposed approach
involves two types of data: splittable and unsplittable intermediate data. Moreover, we place intermediate data by considering not
only their source location but also their dependencies. The main objective is to minimise the total storage cost, including the effort
for transferring, storing, and moving that data according to the applications needs. We first propose an exact algorithm which
takes into account the intra-job dependencies, and we show that the optimal fractional intermediate data placement problem is
NP-hard. To solve the problem of unsplittable intermediate data placement, we propose a greedy heuristic algorithm based on a
network flow optimization framework. The experimental results show that the performance of our approach is very promising.

Key words: Big data placement, Data workflow management, Dataflow model, Distributed datacenters, Storage cost mini-
mization, Scalable storage and computing

AMS subject classifications. 15A15, 15A09, 15A23

1. Introduction. This study addresses the problem of intermediate data placement in big data-driven ap-
plications. These data are usually stored in multiple cloud datacentres. The main goal is to be able to efficiently
process and share them between a set of tasks (jobs or services) according to their needs, dependencies, and their
resource requirements. In other words, the problem is how to efficiently store and access the intermediate data
taking into account the inter- and intra-job (process) dependencies. These jobs can be any traditional process
at the level of the operating system or services at the application level. Because of the popularity of the service
delivery model, the cloud consists of a set of services that should be provided to the clients. At a very large
scale (cloud scale), a huge number of activities coexist generating or consuming huge amount of intermediate
data, which are stored in the form of files, called temporary files, in datacentres. From the point of view of
data usage, this follows a workflow depending on the dynamic nature the execution of these services. These
dependencies are of very high importance for the correct execution of the services that were provided to the
clients. Each workflow has different requirements not only in the dependencies of its intermediate data files but
also their sizes and types. Moreover, these services (jobs or set of tasks) can be initiated remotely from different
geographic locations, which adds a level of complexity of how these data can be accessed without putting a
significant stress on the cloud resources (bottlenecks, long waiting queues, etc.). Therefore, the way that these
intermediate data files should be manipulated and managed must take into account their near future usage
(frequency of use, life cycle, etc.). Accordingly, their management (storage, movement, processing, etc.) should
be derived from the workflow of the jobs and services that are using them, which is called ”Data Workflow”.

This paper proposes a new approach that takes into account the types of dependencies and accesses to the
intermediate data, as these are the key factors for improving big data-driven applications while leveraging cloud
resources among the clients in an efficient and scalable manner. We start by formulating the intermediate data
placement dependencies derived from multiple workflows running on distributed cloud datacenters. Then we
model the whole system as a constrained optimization problem, where constraints represent the dependencies
derived from the running workflows. The derived constrained optimization problem that includes storage cost
is very complex. Two types of data are considered; the intermediate data that are used by the same job with

∗Faculty of Exact Sciences, University of Bejaia, 06000 Bejaia, Algeria, and Telecom SudParis, Samovar-UMR 5157 CNRS,
University of Paris-Saclay, France (sonia.ikken@telecom-sudparis.eu, sonia.ikken@gmail.com).

†Telecom SudParis, Samovar-UMR 5157 CNRS, University of Paris-Saclay, France (eric.renault@telecom-sudparis.eu).
‡Faculty of Exact Sciences, University of Bejaia, 06000 Bejaia, Algeria (tarikamel59@gmail.com).
§UCD School of Computer Science and Informatics, Dublin, Ireland (tahar.kechadi@ucd.ie).
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their intra-dependencies from multiple tasks and intermediate data that are used by different jobs with their
inter-job dependencies. Since intra-job dependencies can be split partially and placed on different locations (as
in MapReduce), the problem is called minimum cost multiple-sources multicommodity flow problem (MCMF).
Intermediate data dependencies that are used by different tasks (of a single job) can be split and kept in
the same datacenter and preferably at the location of the task. We formulate the problem with these data
as splittable demands which can be solved with an exact algorithm to obtain an optimal fractional solution.
However, as most of these problems are NP-hard, it is difficult to obtain an optimal solution using exact methods
for the variant that deals with unsplittable intermediate data from inter-job dependencies. Greedy approaches
implement simple algorithms but effective for unsplittable flow problem [1, 2, 3, 4, 5], and they scale linearly
with the number of instances. Their resolution techniques are adaptable to our intermediate data placement
problem that the present paper deals with. Experimental results show that the proposed techniques are very
promising for storage cost minimisation.

The rest of the paper is organized as follows: Section 2 summaries the related work. Section 3 introduces
the system model and problem definition according to the cloud computing environment and data models.
The proposed techniques for the optimal intermediate data dependencies placement are presented in Section 4.
Section 5 discusses the performance evaluation and the simulation results. We conclude and give some future
directions in Section 6.

2. Related works. We have thoroughly investigated recent research works on cloud ressource scheduling in
the literature [31, 32, 33]. These works focus primarily on resource sharing and provisioning problems in order
to either save energy consumption or reduce its costs by providing efficient application processing. Authors
in [31], addressed the power consumption problem and network performance degradation by relying on an
optimization model that is based on sliding-scheduled tenant request. The latter allows to manage application
execution time as well as their resources for efficient placement and routing. Authors in [32], proposed a
genetic algorithmic based heuristic methods to schedule tasks across limited resources, but restricted to use
one global cost and time for multiple tasks execution. More recently, authors in [33], addressed the problem
of resource scheduling of scientific workflow applications in cloud. They focus on reducing the cost of the
communications and the information exchange time across a management framework of multiple-site awareness
data administration. Nevertheless, these works did not address the problem of data workflow placement and
the dependencies between resources.

Workflow scheduling problems [35, 36] in cloud environments are considered to be very challenging. Many
strategies based-heuristic were proposed to solve the tasks scheduling problem without considering the data
that are generated by these tasks. Authors in [35], proposed a meta-heuristic approach, called Hybrid GA-
PSO (Genetic Algorithm-Particle Swarm Optimization), to solve the workflow tasks scheduling problem. The
Hybrid GA-PSO algorithm returns a balanced solution for tasks distribution among different virtual machines
in a cloud environment by considering both the total monetary cost and the execution makespan. While the
PSO-based algorithm converges quickly to a local optimal solution, this can be far from the global optimal
solution. In the same context, authors in [36] proposed a metaheuristic-based algorithm, called Hybrid Bio-
inspired Metaheuristic for Multi-objective Optimization (HBMMO), to solve the multiple conflicting objectives
optimization problem. The authors considered in their optimization some important requirements of the users
or the providers, such as makespan, cost, and load balancing among virtual machines. The proposed HBMMO
method optimizes the scheduling of tasks workflow in the cloud environment by considering a non-dominant
sorting strategy which is a hybridization of the list-based heuristic algorithm PEFT (Predict Earliest Finish
Time) [37] and the discrete version of the metaheuristic algorithm SOS (Symbiotic Organisms Search) [38].

Many researchers [34, 6, 7, 8, 9] have focused on the big data placement optimization problem in distributed
system environments. However, most of these studies did not include the dependencies between data workflows.
In addition, these solutions did not take into consideration the dependency type constraint for making interme-
diate data placement decision. Authors in [34], defined an optimization problem based on a greedy heuristic for
simultaneous placement of virtual machines and data blocks. A greedy heuristic allows to place on-demand ap-
plication components by localising network traffic in interconnected datacenters, and therefore, reducing packet
transmission delays, increasing network performance, and minimizing the energy consumption of datacenter
network infrastructure. Nevertheless, the efficiency of multi-tier application processing through the data com-
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munication and correlation is not considered. Authors in [6], proposed a strategy placement for large-volume
user’s data while minimizing their operational costs of accommodating various social networks. The relation
between the user community and dynamic maintenance of the placed user data in an evolving social network
are considered, but the use of the data dependency aspects is not explored. In [7], the big data placement
problem from a collaborative-aware environment that continuously generates data from different geographical
locations has been studied. The authors developed a solution to save the high cost incurring when managing the
distributed big data, and they proposed an approximation algorithm by reducing the data placement problem
to the minimum cost multicommodity flow problem. Their solution addressed a data placement respecting a
fair usage of the cloud services like the quality of service (QoS) requirement of cloud provider while savings
computation and bandwidth costs. The solution is closely similar to our context but differs mainly on the con-
ditions and characteristics of data workflow aspects and by no means disclosing intermediate data dependencies.
They focused more on maximizing the system throughput in terms of data volume to be placed while saving the
computing/storage and communication costs in the distributed datacenters. Sharing intermediate data from
computation produced between different workflow MapReduce jobs is studied in [8]. The authors presented a
scheduling technique for data-driven jobs sharing opportunities that involves the scan of the input file with the
goal of maximizing the likelihood of sharing scans. A similar optimization approach is presented in [9]. A cost
model is presented saving processing time and money for MapReduce jobs in order to define an optimization
problem that finds an optimal grouping of set of queries and solves it using a dynamic programming approach.
These works present a data-driven job scheduling issue which is not exactly the same as the data placement
problem. These do not focus on the intermediate data scheduling optimization as well as the incurred storage
cost.

Workflow scheduling problems [35, 36] in cloud environments are considered to be very challenging. Many
strategies based-heuristic were proposed to solve the tasks scheduling problem without considering the data
that are generated by these tasks. Authors in [35], proposed a meta-heuristic approach, called Hybrid GA-
PSO (Genetic Algorithm-Particle Swarm Optimization), to solve the workflow tasks scheduling problem. The
Hybrid GA-PSO algorithm returns a balanced solution for tasks distribution among different virtual machines
in a cloud environment by considering both the total monetary cost and the execution makespan. While the
PSO-based algorithm converges quickly to a local optimal solution, this can be far from the global optimal
solution. In the same context, authors in [36] proposed a metaheuristic-based algorithm, called Hybrid Bio-
inspired Metaheuristic for Multi-objective Optimization (HBMMO), to solve the multiple conflicting objectives
optimization problem. The authors considered in their optimization some important requirements of the users
or the providers, such as makespan, cost, and load balancing among virtual machines. The proposed HBMMO
method optimizes the scheduling of tasks workflow in the cloud environment by considering a non-dominant
sorting strategy which is a hybridization of the list-based heuristic algorithm PEFT (Predict Earliest Finish
Time) [37] and the discrete version of the metaheuristic algorithm SOS (Symbiotic Organisms Search) [38].

The research works that considered data workflow features are presented in [10, 11, 12, 13, 14]. Nevertheless,
the dynamic variation of inter and intra-jobs dependencies from the generated intermediate data was not
addressed with the same focus. In [10], an adaptive data-task placement approach is proposed that reflects
asynchronous coupling among tasks in order to reduce execution time and data movement overhead. The authors
in [11] have dealt with improving the data workflow’s execution by clustering the interdependent datasets and
distribute them intelligently onto the same datacenters to reduce data transfers. In [14], the authors established
a data placement algorithm based on data dependency clustering and recursive partitioning. The aims of
the algorithm are to reduce the amount of transmitted data and the time consumption during data-intensive
application execution. The pursued strategy is extended with a heuristic to make frequent data movements
occuring on high-bandwidth channels of the entire cloud system.

3. System model.

3.1. Cloud storage infrastructure and assumptions. For the intra- and inter-job data workflow place-
ment problem depicted in Fig. 3.1, the objective is to route and store a set of intermediate data considering
their dependencies generated by a collaborative tasks1 from multiple physical sites while saving their opera-

1Tasks are launched and executed from an environment where scientific users collaborate and conduct their research together.
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Fig. 3.1. The system architecture.

tional costs. Without loss of generality, we assume that the collaborative tasks, which process and generate new
intermediate data files, are previously assigned to the cloud infrastructure (model task assignment offered by a
cloud infrastructure). Since the intermediate data dependency placements are our most significant concern, we
assume that the tasks were assigned to computing nodes following some simple model. The problem of placing
the intermediate data files is close to the well-known MCMF problem; an optimization problem described in
[15] that involves simultaneously shipping multiple commodities through a single graph, so the total flow obeys
the arc capacity constraints by optimizing the cost.

The modeling starts by considering a set of geographically distributed datacenters2 as a directed graph-
based model G = (DC ∪ A,E). It forms a cloud infrastructure and constructs a shared computation and
storage limited to a set of resources for processing and storing the data workflow. Users, such as enterprises,
institutions or researchers, that own and share a cloud infrastructure issued from providers, have an access to
the distributed datacenters (DC) to process multiple collaborative tasks into multiple processing phases. The
distributed datacenters known as storage containers cohabit with collaborative task A through one or multiple
jobs r running in parallel [16]. A set of tasks are collocated on multiple source datacenters, and each task
ari ∈ A from job r is assigned to source datacenter dci. Let {ei,j , ej,j′} ∈ E be the intermediate data transfer
and movement (initial and dynamic intermediate data routing respectively) links between source datacenter dci
and destination datacenter dcj and between destination datacenters dcj and another destination datacenter dcj′ ,
which are geographically interconnected via the Internet. The placement of the intermediate data dependencies
to the set of datacenter destinations dcj ∈ DC is considered at the beginning of each phase.

3.2. Intermediate data dependency model. Placing intermediate data with the same correlation to a
single destination datacenter can significantly decrease the amount of data dependency movements [17]. This
leads to consider a vector of all intermediate data files denoted by ΦM and |ΦM | its size, representing the

2The security and communication management aspects in a collaborative processing are supposed to be covered by the cloud
SLA policy in a cloud environment.
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correlations among them that are generated during the workflow phases divided into equal period of time t.
These correlations, which reflect the intra- and inter-job dependencies from a set of intermediate data files, are
recovered into dependency component m ∈M . M contains all the different components of dependency that are
modeled by a Directed Acyclic Graph (DAG) which takes the advantage of a topology ordering, thus defining
relations among nodes [18, 19]. The DAG represents a set of intermediate data files ϕm

ar
i
(t). Let |ϕm

ar
i
(t)| be

their respective sizes. These data files have unavoidable complex dependencies that are generated by single
task ari ∈ A from job r at source datacenter dci. In DAG, set of files ϕm

ar
i
(t), from the inter-job dependencies,

are atomic and must be synchronized for their processing. By contrast, for the intra-job dependencies, these
files are deduced from a partial correlation with an asynchronous processing [10]. Let ϕm(t) and ϕm

i (t) be the
intermediate data of a single dependency component m generated at multiple datacenters and the single home
datacenter dci respectively and, |ϕm(t)| and |ϕm

i (t)| be their respective sizes. At the end of each workflow phase,
generated intermediate data file ϕm

i (t) ∈ Φm must be outsourced and placed through data transfer link ei,j ∈ E
from datacenter dci to dcj for persistent storing or future reuse [20, 21]. It is important to note that the set of
dependency components M and the related type are a predetermined value given by scientific user that can be
obtained through the data analysis clustering method [22]. We assume that the intermediate data dependencies
clustering is given a priori and is beyond the scope of the present work.

3.3. Capacity and cost model. To come up with an intermediate data dependency placement from
the collaborative task workflow execution in cloud datacenters, we take into consideration the fact that all
datacenters and network resources are limited [23, 24]. Thus, let Sj be the storage capacity of datacenter
destination dcj ∈ DC, and Wi,j , Wj,j′ be the bandwidth capacities of the data file transfer and movement
links ei,j , ej,j′ ∈ E respectively. In order to manage and transfer these files, a data bandwidth denoted wϕ

is assigned for one unit of intermediate data file. During a run-time phase, the available amount of storage
capacity in datacenter dcj , when transferring an amount of intermediate data files ϕm

i (t), is denoted by savaili,j (t).

Let wavail
i,j (t), wavail

j,j′ (t) be the available capacities of a data transfer and movement of links ei,j , ej,j′ ∈ E. In
addition, transferring and storing the intermediate data dependencies from source datacenter dci into destination
datacenter dcj are facing in both storage resource cost and scale. However, they usually consume high costs in
a cloud infrastructure due to an inefficient utilization of the resources [25]. In practice, these resource demands
are leading to operational cost specifically for data transfers and storage costs (measured per one unit in GB)
that embrace the usage-based pricing policy [9]. Moreover, reused intermediate data dependencies that are not
locally stored but remotely served on data demands are led to an additional cost, as movement cost, which
is deducted from their migration among datacenter destinations [14]. In fact, these operational storage costs
are related to the size of the intermediate data files that are transferred, stored and moved among distributed
datacenters according to their correlation during each run-time phase. Moreover, each datacenter destination
dcj ∈ DC is preserved to the geographical area where it is located [26], thus holding a storage cost noted csj . The
proportion of intermediate data dependencies ϕm of a single dependency component generated from multiple
source datacenters and placed separately into different locations dcj and dcj′ are led to a potential dependency
movement cost. For clear differentiation from the transfer cost, we assume that the cost of intermediate data
movement is proportional to the number of intermediate data dependency files transmitted between datacenter
destinations. Therefore, the movement cost is defined as the amount of data moved among two or multiple
destination datacenters. Hence, each link ei,j , ej,j′ ∈ E entry faces data bandwidth cost cwϕ

.

For the sake of easier reading, Table 3.1 summarizes the notations used in the present work.

4. Placement algorithms. From the intermediate data dependency placement issue that reduced to an
MCMF problem inG, two variants are materialized. In fact, in the case of intra-job dependency type, the routing
of intermediate data dependencies can be performed using multiple links. When this assumption is omitted,
i.e. when splittable flow routing can be used, variable of the optimization problem becomes continuous and as
a consequence the considered problem becomes easier to solve. In contrast, in the case of inter-job dependency
type, the routing of intermediate data dependencies in G cannot be fractionated. Thus, the MCMF problem
seems to be hard to solve. For this aim, we formulate the intra-job splittable dependency placement based on
a Linear Program (LP) approach, and a heuristic approach is proposed in this section as an approximation
algorithm for the intra-job unsplittable dependency placement.
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Table 3.1
Symbols for the model

Notation Description
G The cloud infrastructure (provider)
DC A set of distributed datacenters in cloud infrastructure G
t The run-time window which represents the homogeneous discrete time

slot from generated collaborative data-tasks workflow processing
A The set of collaborative tasks in distributed datacenter DC
E The set of links among distributed datacenter DC
i, j, j′ Indices used to designate distributed datacenters. i belongs to source

datacenter dci, while j and j′ belong to different destination datacenters
(dcj and dcj′)

ei,j Data transfer link between source datacenter dci and destination data-
center dcj

r Workflow job in the system
ari The collocated task in source datacenter dci
dci A source datacenter temporarily storing generated intermediate data

from collocated task ari of job r ∈ R
dcj A datacenter destination where the intermediate data files are to be

placed
M The set of dependency components in the system including correlation

among generated intermediate data
ϕm(t) The intermediate data files of a single dependency component m gener-

ated in multiple datacenters at time slot t, and |ϕm(t)| its size
ϕm
i (t) The intermediate data files generated in datacenter dci from dependency

component m ∈M at time slot t, and |ϕm
i (t)| its size

ϕm
ar
i
(t) The intermediate data files generated by task air of dependency compo-

nent m at time slot t, and |ϕm
ar
i
(t)| its size

ΦM All generated intermediate data files in the system, and |ΦM | its size
Lϕ The vector list of intermediate data of all dependency components m ∈

M,m = 1, ..., k
wϕ The data bandwidth assigned to one unit of intermediate data file ϕm

ar
i
(t)

Wi,j The data bandwidth capacity of movement link ei,j ∈ E
wavail

i,j (t) The available amount of data transfer link ei,j ∈ E at time slot t

Wj,j′ A data bandwidth capacity of movement link ej,j′ ∈ E
wavail

j,j′ (t) The available amount of data transfer link ej,j′ ∈ E at time slot t

savaili,j (t) The available amount of storage space when transferring an amount of
intermediate data files from source datacenter dci to destination data-
center dcj at time slot t.

Sj The data storage capacity of destination datacenter dcj ∈ DC
xm
i,j(t) A decision variable reflecting the amount of intermediate data flow mov-

ing from source datacenter dci of dependency component m to destina-
tion datacenter dcj ∈ DC at time slot t.

xm
j,j′(t) A decision variable reflecting the amount of intermediate data depen-

dency component m moving between destination datacenters dcj , dcj′ ∈
DC at time slot t

csj The storage cost of one unit of intermediate data in datacenter destina-
tion dcj ∈ DC

cwϕ
The data bandwidth cost of one unit of intermediate data

f(ϕm
ar
i
) A dependency component flows in graph Gp

f(ϕm) All flows from a single dependency component in graph Gp

ShPϕ The shortest path from ssource to ssink in Gp
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4.1. Exact algorithm. This section presents an exact analytical algorithm for splittable variant of the
intermediate data dependency placement problem from multiple datacenters in cloud infrastructure G. The
exact algorithm is an LP model with the inclusion of valid conditions expressed in the form of constraints or
inequalities. Through the constraints of the problem, the intermediate data placement in a directed graph
G = (DC ∪ A,E) at time slot t is to route and place intermediate data dependencies ϕm(t) ∈ ΦM that are
considered as continuous commodity flows of dependency component m from multiple source datacenters to
one or multiple destination datacenters while saving their transfer, storage and movement costs. A number of
decision variables and valid inequalities (as listed for convenience in Table 3.1) are thus defined as follows:

1) Decision variables: Let xm
i,j(t) ∈ R be the intermediate data of one dependency component m standing

for the amount of intermediate data dependency flows transferring from source datacenter dci at time slot t
to destination datacenter dcj at time slot t + 1 on link ei,j ∈ G. In order to take into account the amount
of intermediate data dependencies that are moved among different destination datacenters dcj , dcj′ , we add
variable xm

j,j′(t) ∈ R.
2) Flow conservation constraint: One typical constraint or requirement is to ensure that at all time,

every flow through directed graph G is physically possible. First, we enforce flow continuity by making sure
that the sum of intermediate data dependency flows leaving from source datacenter dci at time slot t − 1 is
equal to ϕm

i (t) which is the sum of flows arriving from the same datacenter dci that are considering the same
dependency component m at time slot t. Formally:∑

j∈DC

xm
i,j(t)−

∑
j∈DC

xm
j,i(t− 1) = ϕm

i (t) ∀m, t, i. (4.1)

3) Capacity constraint of intermediate data flows: Each intermediate data dependency flow xm
i,j(t)

may have its own individual capacity constraint which represents a lower bound on dependency component
commodity m through link ei,j . This ensures the atomicity of lower bound ϕm

ar
i
(t) on xm

i,j(t) of which all these

flows take a same link ei,j , hence:

0 ≤ ϕm
ar
i
(t) ≤ xm

i,j(t) ∀i, j, ari ,m, t. (4.2)

4) Capacity constraint of data transfer links: In G, each link ei,j may have a capacity constraint like
the data bandwidth routing constraint. Equation (4.3) ensures that the routing of aggregate intermediate data
dependencies is limited by the available amount of data bandwidth allocated on link ei,j at time slot t:∑

m∈M

wϕ · |ϕm
i (t)| · xm

i,j(t) ≤ wavail
i,j (t) ∀i, j, t. (4.3)

Additionally, link ei,j is bounded by the data bandwidth capacity at all system execution time, hence:∑
m∈M

∑
t∈T

wϕ · |ϕm
i (t)| · xm

i,j(t) ≤Wi,j ∀i, j. (4.4)

5) Capacity constraint of data movement links: In G, each link ej,j′ may have a capacity constraint
like the data bandwidth routing constraint. Equation (4.5) ensures that moving intermediate data dependencies
is limited by the available amount of data bandwidth allocated on link ej,j′ at time slot t:∑

m∈M

∑
ar
i
∈A

wϕ · |ϕm(t)− ϕm
ar
i
(t)| · xm

j,j′(t) ≤ wavail
j,j′ (t) ∀j, j′, t. (4.5)

Additionally, the link ej,j′ is bounded by the data bandwidth capacity at all system execution time, hence:∑
m∈M

∑
ar
i
∈A

∑
t∈T

wϕ · |ϕm(t)− ϕm
ar
i
(t)| · xm

j,j′(t) ≤Wj,j′ ∀j, j′. (4.6)
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6) Capacity constraint of dependency component: A uniqueness constraint is used to ensure that the
routed intermediate data dependency flows do not exceed the dependency corresponding component capacity.
Formally: ∑

i∈DC

xm
i,j(t) ≤ ϕm

i (t) ∀j,m, t. (4.7)

7) Storage capacity constraint: Each destination datacenter has a limited amount of storage space
available to share across all the intermediate data placement demands. This allows to host only a limited
amount of intermediate data dependencies from source datacenter dci to destination datacenter dcj . Formally:∑

m∈M

|ϕm
i (t)| · xm

i,j(t) ≤ savaili,j (t) ∀i, j, t. (4.8)

For any intermediate data placement demands, the data routing must not exceed the total storage capacity at
all system execution time. Formally: ∑

m∈M

∑
t∈T

|ϕm
i (t)| · xm

i,j(t) ≤ Sj ∀i, j. (4.9)

8) Balancing constraint: Since the collaborative tasks in the workflow processing generate the inter-
mediate data dependencies in multiple phases, these latter may vary over time in the distributed datacenter
environment. In other words, the flow sequence of generated intermediate data dependencies changes as com-
modity changes. Thus, the flows among the distributed datacenters must be balanced. Hence, source and sink
nodes ssource and ssink are respectively introduced in graph G. Source node ssource is connected to every source
datacenter dci, and sink node ssink is connected to every destination datacenter dcj . Source and sink nodes
are also subject to a constraint that enforces all the intermediate data dependency flows starting on ssource to
ending at ssink. Formally:

∑
i∈DC

xm
ssource,i =

∑
j∈DC

xm
j,ssink

∀m ∈M (4.10)

9) Data transfer cost: Equation (4.11) denotes the data transfer cost on link ei,j which intermediate
data dependency flows are routed.

C(wi,j) =
∑
i∈DC

∑
j∈DC

∑
m∈M

∑
t∈T

|ϕm
i (t)| · xm

i,j(t) · wϕ · cwϕ
(4.11)

10) Storage cost: Equation (4.12) denotes the storage cost of destination datacenter dcj which interme-
diate data dependency flows are routed. Formally:

C(sj) =
∑
i∈DC

∑
j∈DC

∑
m∈M

∑
t∈T

|ϕm
i (t)| · xm

i,j(t) · csj (4.12)

11) Data movement cost: The proportions of intermediate data ϕm from one dependency component
that are stored separately into different locations dcj and dcj′ are led to potential intermediate data dependency
movement cost. With no loss of generality, it is assumed here that the amount of intermediate data that moves
from dcj to dcj′ is defined as the set of intermediate data of a single dependency componentm that is fractionated
from the set of atomic ϕm

ar
i
(t). Formally:

C(wj,j′) =
∑
i∈DC

j ̸=j′∑
j,j′∈DC

∑
m∈M

∑
t∈T

|ϕm(t)− ϕm
ar
i
(t)| · xm

j,j′(t) · wϕ · cwϕ
(4.13)
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12) Objective function: The objective of the intermediate data placement problem is to find, for a
given set of dependency flows xm

i,j(t), a set of destination datacenters that can place them to minimize the
aggregate cost of transferring, storing and moving intermediate data dependencies. This can be expressed using
the following expression:

Minimize (C(wi,j) + C(sj) + C(wj,j′)) (4.14)

Under the formulation listed above, the LP model is polynomial. However, the optimization is carried out
with respect to flows xm

i,j(t) that are bounded and constrained as a result of the amount of intermediate data
dependencies ϕm

ar
i
(t) generated by a single task ari . This converges the exact algorithm into a non-polynomial

time regarding to size |ϕm
ar
i
(t)| on very large instances when the splitting of flows xm

i,j(t) becomes marginal.

Since a dependency component cannot start before the intermediate data dependencies of their predecessors are
materialized, the unsplittable version of the intermediate data placement problem considering all flows for each
dependency component from inter-job must be sent along a single link, making the problem NP-hard [15]. Due
to the intractability of the problem, a heuristic is presented to address larger scale instances in a reasonable
time.

4.2. Heuristic approach. The intra-job dependency placement solution is compared to the solution
of the exact approach and requires the placement of the amount of intermediate data dependencies into a
single destination datacenter. Thus, a naive greedy solution considers an integer commodity of dependency
component m from different sources as a single source flow unlike the exact approach that tolerates multiple
source of dependency component m independently when solving the problem. Under the unsplittable solution, a
commodity is never split along multiple paths during the placement decision. Furthermore, the greedy approach
applies a routine procedure in specific graph Gp, and assume that the minimum demands are less than or equal
to the maximum capacity of the nodes in graph Gp [15]. The latter involving less connection, the local search
of the optimum on a specific optimized graph that reduces the search space accelerates the execution time of
greedy solutions.

4.2.1. The greedy optimization framework. The basic idea behind the proposed framework is to
reduce the problem to a minimum cost unsplittable multicommodity flow problem with multiple dependency
component sources in specific directed flow network graph Gp = (DCp ∪ Ap;Ep;u; c), and deals with a cost
function c: E → R and capacity function u: E → R

The first part of the construction of the network flow graph Gp concerns the assignment of the input flows
from multiple sources. For each collocated task ari ∈ A that generates intermediate data ϕm

ar
i
(t) in the same

source datacenter dci, there is a virtual source datacenter node dci(ϕ
m
ar
i
)p in DCp. For all generated intermediate

data ϕm(t) from multiple collocated tasks belonging to the same dependency component m ∈ M , there is a
virtual dependency source datacenter node dci(ϕ

m)p representing those intermediate data dependencies for
different tasks. For all generated intermediate data dependency components ϕm(t) hosted in a multiple source
datacenter in G, there is a virtual dependency component node dc(ϕm)p which corresponds to a virtual location
of distributed source datacenter dci(ϕ

m)p hosting intermediate data of dependency component ϕm(t). The
dci(ϕ

m
ar
i
)p, dci(ϕ

m)p and dc(ϕm)p are added in graph Gp.

In network flow graph Gp, a virtual source node ssource is added and represents the source of all intermediate
data dependencies

∑
m∈M

∑
ar
i
∈A

ϕm
ar
i
(t) hosted in the different virtual source datacenter nodes dci(ϕ

m
ar
i
)p. Source

node ssource is connected with a link (ssource, dci(ϕ
m
ar
i
)p) in Ep to each dci(ϕ

m
ar
i
)p. Also, from this latter to

dci(ϕ
m)p represented by link (dci(ϕ

m
ar
i
))p, dci(ϕ

m)p), involving cost c(ssource, dci(ϕ
m
ar
i
)p) = 0, as well as a link

capacity demand that is assigned as the set of intermediate data dependencies ϕm
ar
i
(t) generated from each

collocated task in the source datacenter at time slot t, i.e:

u(ssource, dci(ϕ
m
ar
i
)p) = u(dci(ϕ

m
ar
i
)p, dci(ϕ

m)p) = |ϕm
ar
i
(t)|. (4.15)

A link (dci(ϕ
m)p, dc(ϕ

m)p) is added to Gp from each virtual dependency source datacenter node dci(ϕ
m)p

to the corresponding virtual dependency component node dc(ϕm)p within the same dependency component
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m ∈ M . The corresponding cost is c(dci(ϕ
m)p, dc(ϕ

m)p) = 0, and the capacity is an amount of dependency
component from all source datacenters that temporarily store them, i.e:

u(dci(ϕ
m)p, dc(ϕ

m)p) =
∑
ar
i
∈A

|ϕm
ar
i
(t)| = |ϕm

i (t)|. (4.16)

The second part of the optimization framework deals with the identification of potential links for rout-
ing intermediate data dependencies to the destination datacenter. For each destination datacenter dcj in G,
there is a virtual destination datacenter node dcjp which hosts all intermediate data dependencies for one or
multiple dependency components ϕm. Each virtual destination datacenter node dcjp is added to Gp. The ob-
vious no-bottleneck assumption which was made throughout an unsplittable version of the greedy optimization
framework is that a virtual destination datacenter node dcjp in a network flow graph Gp has enough capacity
to satisfy all dependency components ϕm individually, but not necessarily all commodities. Thus, in graph
G, destination datacenters that do not have available storage capacity to accommodate each dependency com-
ponent are excluded from Gp. Hence, from each virtual dependency component node dc(ϕm)p there is a link
(dc(ϕm)p, dcjp) to each destination datacenter dcjp that is added to graph Gp. All these links are connected to
each virtual destination datacenter node dcjp that satisfies the placement of an integer dependency component
ϕm. A positive cost c(dc(ϕm)p, dcjp) is assigned along a link (dc(ϕm)p, dcjp) from the virtual dependency com-
ponent to the destination datacenter node. The corresponding total storage cost represents the sum of the data
transfer cost cwϕ

(dc(ϕm)p, dcjp) and the storage cost csj (dc(ϕ
m)p, dcjp) to host one unit of intermediate data

dependency ϕm
ar
i
, i.e:

c(dc(ϕm)p, dcjp) = cwϕ
(dc(ϕm)p, dcjp) + csj (dc(ϕ

m)p, dcjp). (4.17)

In addition to the cost of a virtual link (dc(ϕm)p, dcjp), a capacity u(dc(ϕm)p, dcjp) is assigned, which is
the amount of intermediate data ϕm

ar
i
(t) that can be routed along a virtual link with an available bandwidth

capacity upon routing integer dependency component ϕm. The capacity of the bandwidth is shared between
each routing unit of a dependency component at time slot t. Since, the storage capacity constraint is raised
when a link (dc(ϕm)p, dcjp) is created in graph Gp, the routing of the intermediate data dependency component
ϕm(t) considers only the available amount of a data bandwidth ct(dc(ϕ

m)p, dcjp) on each corresponding link
(dc(ϕm)p, dcjp) to different virtual destination datacenters dcjp at time slot t , i.e:

u(dc(ϕm)p, dcjp) =
wavail

dc(ϕm)p,j
(t)

wϕ · |ϕm
ar
i
(t)|

. (4.18)

A virtual destination node ssink is finally added to a flow graph Gp from each virtual destination datacenter
node dcjp . A virtual link (dcjp , ssink) is added between them. A zero cost is assigned to each virtual movement
link (dcjp , ssink). A capacity u(dcjp , ssink) for each link (dcjp , ssink) is the available amount of storage space in
each one upon storing an integer dependency component ϕm at time slot t, i.e:

u(dcjp , ssink) = savaildcjp
(t)− |ϕm(t)| (4.19)

Figure 4.1 shows the representation of the generated directed flow graph Gp = (DCp ∪Ap;Ep;u; c)

4.2.2. Greedy heuristic algorithm. A greedy heuristic algorithm has been developed for the minimum
cost inter-job intermediate data dependency placement problem through the reduction to the minimum cost of
unsplittable multicommodity flow with multiple dependency component sources in flow graph Gp.

Let Sdcj ,min be the minimum storage capacity of a destination datacenter dcjp on a network flow graph
Gp, and ϕm

max the largest dependency component generated from virtual source datacenter node dc(ϕm)p. As
storage resources are scalable in a flow graph Gp acting as a cloud environment, it is realistic to assume that
|ϕm

max| ≤ Sdcj ,min from the construction of the flow graph Gp. Since the splittable exact algorithm is a relaxation
of the unsplittable heuristic algorithm, a feasible solution is assumed for the splittable exact algorithm which
is fractional feasible flow f0 that satisfies all demands of dependency component ϕm. Since all dependency
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Fig. 4.1. The generated directed flow graph Gp = (DCp ∪Ap;Ep;u; c).

components are known a priori, so is their generation order. Hence, the greedy heuristic algorithm adopts an
orderly greedy method and starts with the initial placement and works in steps. At the end of each step, it
outputs a set of destination datacenters and transfers intermediate data dependencies to that destination data-
centers, considering a minimum transfer and storage cost. As the greedy algorithm gives sequential placement
solutions, there is no congestion problem on the different dependency components sharing links. Therefore, the
greedy algorithm just takes care of the integer dependency component placement (bandwidth capacity is shared
between the flows of a single dependency component at time slot t) to their destination. The greedy heuristic
algorithm execution on a network flow graph Gp is provided in the following steps:

Step 1. Let f(ϕm) be the dependency component flow for all dependency intermediate data-task flows∑
ar
i
∈A

f(ϕm
ar
i
) with the minimum total storage cost from ssource to ssink. Flows f(ϕ

m) route dependency compo-

nent commodities ϕm
ar
i
from different virtual source datacenter nodes connected from source node ssource to their

destination datacenter nodes dcj(ϕ
m)p, the latter being connected with destination node ssink. A set of depen-

dency component commodities
∑

m∈M ϕm are routed to ssink in graph Gp according to the ascending order of

their respective size as dependency component demands: |ϕ1|, |ϕ2|, ..., |ϕk|, with ϕ1 ≥ ϕ2 ≥ ϕ3 ≥ ... ≥ ϕk. Let
Lϕ = (ϕ1, ϕ2, ..., ϕk) be the dependency component list.

Step 2. Start with the first dependency component by selecting it from list Lϕ. The algorithm scans
each dependency component value ϕm

ar
i
(t) in Gp to find the possible path which routes the selected dependency

component flow f(ϕm) along each link (dc(ϕm)p, dcjp) inGp that satisfies the flow conservation inGp i.e from any
nodes dcp, dc(0)p ∈ DCp \ {ssource, ssink}, there is

∑
dc(0)p∈DCp

f(dcp, dc(0)p) =
∑

dc(0)p∈DCp
f(dc(0)p, dcp).

Step 3. For each solution of dependency component flow f(ϕm), find the shortest path noted ShPϕ from
ssource to ssink in Gp according to the total minimum storage cost, i.e., c(ShPϕ) =min(dc(ϕm)p,dcjp )∈Ep

c(dc(ϕm)p,

dcjp). Once the shortest path ShPϕ is found, set f(ShPϕ) = ϕm and delete iteratively its flow value f(ϕm
ar
i
).

Define residual capacity ures(ssource, ssink) from ssource to ssink in order to decrease the routed flows in graph
Gp, i.e., ures(ssource, ssink) = u(ssource, ssink) - f(ShPϕ). Delete the routed dependency component ϕm from
list Lϕ and repeat the sub-procedure of step 2 until all flow values f(ϕm

ar
i
) are scanned.

Step 4. Repeat the sub-procedure of step 3 until Lϕ ←− ∅ and carry the largest flow values iteratively.
Then, restore these shortest paths including the optimal cost and denote for each ShPϕ the pair < ϕm, dcj >
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corresponding to graph G.

4.2.3. Time complexity. To build a network flow graph Gp for the greedy framework optimization, two
steps are needed. The first one consists in assigning each source datacenter dcj ∈ DC hosting intermediate data
to its dependency component node m ∈M , and the second one to each destination datacenter dcj ∈ DC which
is capable of accommodating. The construction of Gp takes O(M + |DC|) for the first step and O(M2+ |DC|2)
for the second one. Finally, we analyze the time complexity of the greedy solution which considers mostly the
shortest path computing step and the sorting of the list of dependency components. The worst complexity
of the sorting computation has a fundamental requirement of O(M2). The shortest path computation step
is more complex and requires computing the distance between all intermediate data dependency components
and datacenter destinations. This leads to O(M2 × |DC|2) time complexity to consider all combinations or
couples. In summary, the average computational complexity of the proposed greedy heuristic algorithm is
O(2M2 + |DC|2 × (M2 + 1) +M + |DC|) in the worst case.

5. Performance evaluation. This section gives an overview of the simulation, evaluation conditions
and settings of the proposed algorithms. A dedicated simulation program has been developed to conduct
the performance assessments of the heuristic and compare it with the exact algorithm, random and uniform
strategies, named random heuristic and uniform heuristic respectively. The random heuristic strategy randomly
selects a datacenter to host the intermediate data until its capacity is exhausted and then selects another one
as in default Hadoop scheduler [30] (random capacities and random costs). The uniform heuristic strategy
is based on the uniform storage capacity of the distributed datacenter upon intermediate data dependency
placement decision (balanced capacities and variable costs). This data placement strategy excludes the storage
requirements as in [27, 28, 29, 11]. Subsequently, the performance evaluation overall intends to present relevant
comparisons between the solutions found by the greedy heuristic algorithm with the optimal ones found by the
exact algorithm in terms of performance metrics like optimality, scalability and convergence time.

5.1. Simulation environment. The heuristic is evaluated through a C++ language implementation.
The exact algorithm is implemented with IBM ILOG AMPL and solved optimally using CPLEX. The objective
of a numerical evaluation is to quantify the amount of total storage cost saving (objective function) that
can be expected when routing intermediate data dependencies through cloud storage infrastructures using the
greedy heuristic and exact algorithms. The evaluation also reflects particularly the influence of the number of
datacenters, the amount of the routed intermediate data and the dependency parameters on the performance
metrics.

The assessment scenarios correspond to a cloud infrastructure consisting of 50 distributed datacenters
including source and destination datacenters which are connected to each other randomly. We run the simulation
program for 20 random tasks, each one including an amount of a random intermediate data generated per one
hour time slot in random adjacency matrix-based DAG, each one having a size ranging from 10 GB to 100 GB
[12], including their dependencies that are generated randomly as correlation links in DAG from input to output
intermediate data. The latter are assigned randomly to the set of source datacenters in charge of temporarily
storing them.

The intra-job dependency is described by a dependency parameter value α generated randomly from range
[0, 1] and belonging to each intermediate data-task in the DAG. Value 1 corresponds to a splitting rate of an
intermediate data file (a fraction of 1 GB splitting for each file from partial correlation), and the opposite case
is represented by value 0. A dependency parameter value β is given also that is generated randomly from range
[1, 20] which represents the number of clusters randomly grouping intermediate data-tasks. For the inter-job
dependency, we set the value of α to 0 from full correlation coupled with dependency parameter value β (the
case of inter-job dependency is intrinsically related to the intra-job dependency case when the α value of the
latter converges to 0 and has the same dependency value β). On all the carried out experiments, the case when
α = 1 and β = 20 are excluded which means that the intermediate data are completely independent. The
same dependency parameter value β is assigned to both intra- and inter-job dependencies according to each
experiment.

The storage space capacity is considered for the datacenters as randomly set from range [10 GB, 1000 GB]
[12]. The transfer link capacity of one unit of intermediate data transmission between distributed datacenters
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Fig. 5.1. The total storage cost of algorithms exact, greedy, random and uniform heuristics while varying the intermediate
data size when the number of datacenters is set to 50.

are randomly drawn from range [1, 10] Gbps [7] with a random transfer cost (in $) ranging from 0 to 0.09. Both
storage and transaction costs (in $) of one unit of intermediate data dependency are set within [0.02, 0.04] and
[0, 0.09] respectively, in relation to the typical charges in Amazon S3 3.

5.2. Simulation results. To present the performance of the proposed algorithms regarding their effec-
tiveness against comparison strategies solutions, we study the optimality of the exact and greedy heuristic
algorithms in terms of the total storage cost ratio, and the results of the scalability and the convergence are
reported below.

5.2.1. Impact of the amount of routed intermediate data on algorithms performance. For the
specific needs of the simulation, a variation of the amount of intermediate data must be placed from 100 to
1000 GB with an increment of 100 while the number of datacenters DC is set to 50.

To continue to appropriately analyze the simulation, we reflect the concerns of dependency parameter values
on the algorithms performance. In this case, each solution found from the execution algorithms is a mean of
the results obtained by varying dependency parameters α and β from range [0, 1] and [1, 20] respectively.

Figure 5.1 depicts the curves of total storage cost delivered by the proposed algorithms and the two other
strategies. The figure shows that both greedy heuristic and exact algorithms outperform random heuristic and
uniform heuristic strategies in terms of cost. The optimal result obtained by the exact solution reaches a cost
of $125 when the amount of placed intermediate data achieves 1000 GB, and the greedy heuristic algorithm
achieves a nearly optimal storage cost of $160, which is lower than the costs of the random heuristic and uniform
heuristic algorithms (43% and 12% respectively). Clearly, the gap between greedy heuristic and uniform heuristic
algorithms is very small since the uniform heuristic is independent of the capacity of the cloud infrastructure,
so the cost within the datacenters contrast on the placement decision.

Figure 5.2 depicts the curves of the total storage costs of the algorithms by increasing the simulation time.
In this instance, the obtained result of the total storage cost is the aggregation of the previously calculated
costs during the same simulation (continuous placement). In addition, the simulation test is conducted for 48h
in order to validate the need of the greedy heuristic algorithm and to estimate the probability to have good
solutions. The lengthening of simulation at time slot 48 while the number of datacenters DC is set to 50 makes
the total storage cost of algorithms greedy heuristic, exact, random heuristic and uniform heuristic to $4900,
$3300, $7000 and $5400 respectively. Typically, this means that the cost of greedy heuristic is 10% and 42%
less than those of uniform heuristic and random heuristic algorithms, while the result of the exact algorithm

3https://aws.amazon.com/fr/s3/pricing/
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Fig. 5.2. Total storage cost of algorithm exact, greedy, random and uniform heuristics when the simulation time is extended
to 48h, while the number of datacenters is set to 50.

Fig. 5.3. The amount of intermediate data accumulated per time slot for the proposed algorithms while the number of
datacenter ranges from 5 to 50.

as expected remains the best total storage cost. These results show that the uniform capacity constraint
on the intermediate data growth directly affects their placement cost as in the case of the uniform heuristic
algorithm. In the case of random heuristic algorithm, some datacenters offering the lowest cost are not involved
unintentionally (random selection) or of the causes of inability to host data.

The aim of the performed simulation as depicted in Fig. 5.3 is to quantify the amount of intermediate
data placed continuously by varying the number of datacenters from 5 to 50 according to capacities. The
accumulated intermediate data placement increases with the increase of the number of datacenters for both
algorithms, and begins to be stable when cloud infrastructure handles 25 datacenters. Moreover, the amount of
intermediate data accumulated by greedy heuristic algorithm is very important over all variations of datacenter
instances, more importantly, from 25 to 50, due to the abundance of the cloud infrastructure capacity, i.e. more
intermediate data can be placed in the cloud infrastructure. The decline of intermediate data placement from 25
to 50 is due to the fact that the intermediate data routing is limited by data bandwidth wavail

i,j (t) and wavail
j,j′ (t)
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since the bandwidth capacity is shared by all dependency components in the exact algorithm. In contrast,
in the greedy heuristic algorithm, the data bandwidth capacity is shared by a single dependency component.
However, in the exact algorithm, the amount of placed intermediate data is less in comparison with the greedy
solution, because it expands the search space for the exact solution since it is based on the simplex method.
Thus, the greedy heuristic algorithm responds well to large datacenter instances for which the exact algorithm
has more difficulty to find solutions.

5.2.2. Impact of dependency parameters on the algorithms performance. This section studies
the impact of the dependency parameters α and β on the algorithms performance in terms of optimal cost. Since
the behavior of the proposed execution algorithms regarding dependency type that are processed are different,
a need of a variation of quantitative values is experienced for achieving a useful analysis and allowing optimal
cost to the unsplittable placement solutions to be more efficiently identified. On the one hand, interval values
are considered to align the types of dependency. On the other hand, values are considered when dependency
types diverge. In the following, the assessment scenarios correspond to varying dependency parameters (α, β)
pair values. Then, simulation results correspond to pair ranges from (α, β)= (0.1, 18), (0.3, 14), (0.5, 10),
(0.7, 6), (0.9, 2). These results are reported on figures below keeping the value of α to 0 and with the same
dependency values β for the greedy heuristic algorithm while the number of datacenters is set to 50.

Fig. 5.4. Greedy heuristic versus exact solutions for the total storage cost when α = 0.1 and β = 18.

Figure 5.4 depicts the best optimal cost achieved by the objective function for exact and heuristic solutions.
The greedy heuristic algorithm performs very well close to the optimal one and achieves a cost of $3000 at
time slot 48 that is near to the optimal result of $2400 for the exact algorithm. This is due to the fact that
the behavior of the two algorithms have to deal with the aligned correlation α = 0.1 (practically, no amount
of intermediate data is splitted with exact, and 0 defaults to the heuristic) with β = 18. Therefore, this has a
direct impact on the reduction of the transfer, storage and movement costs for both algorithms.

Figures 5.5 and 5.6 depict the second best-case results for the total storage cost which does not exceed
$2800, $3000 for the exact algorithm, and $4000, $4500 for the greedy heuristic algorithm at time slot 48.
Since, the amount of the dependency movements are marginal to half (α = (0.3, 0.5)) in the exact algorithm,
the movement cost is reduced, which reflects the total storage cost. In addition, the heuristic algorithm processes
less intermediate data dependencies (10 to 14 clusters). Therefore, it has more chance to find datacenters that
have the capacity to allocate those clusters and at the same time offer a better cost.

Fig. 5.7 shows the case when the amount of dependency movements increase more than half (α = 0.7) with
the growth of the intermediate data dependency volume (β = 6). This gives a total storage cost of $3800 and
$5800 respectively for exact and greedy heuristic algorithms. It can be seen that the total storage cost of the
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Fig. 5.5. Greedy heuristic versus exact solutions for the total storage cost when α = 0.3 and β = 14.

Fig. 5.6. Greedy heuristic versus exact solutions for the total storage cost when α = 0.5 and β = 10.

two algorithms dependents on the amount of intermediate data dependencies. This validates our analysis for
the results discussed above (Fig. 5.4, 5.5 and 5.6).

Fig. 5.8 shows the worst case when the highest total storage cost is found for both algorithms. The total
storage cost reaches $4200 and $7200 for exact and greedy heuristic algorithms respectively at time slot 48 since
the amount of intermediate data dependencies that transit between destination datacenters are significant (α =
0.9) for the exact algorithm (defined by variable xm

j,j′(t)). In contrast, the heuristic processes more dependencies
grouped onto two clusters. In addition, the same capacity values were considered for each solution reached with
the different values of α and β. Therefore, it has less opportunity to find datacenters than the capacity to
allocate those large clusters, and at the same time it offers a better cost. This influences considerably the search
for the optimal result which is a real compromise for both algorithms.

The performance of the greedy heuristic algorithm as compared to the exact fractional optimal solutions in
terms of total storage cost are represented as a cost ratio between the cost delivered by the heuristic algorithm
HEUR which is a greedy approximation approach for the unsplittable intermediate data dependency placement
problem, and the fractional optimal solution FRAC OPT provided by the simplex method to the problem of
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Fig. 5.7. Greedy heuristic versus exact solutions for the total storage cost when α = 0.7 and β = 6.

Fig. 5.8. Greedy heuristic versus exact solutions for the total storage cost when α = 0.9 and β = 2.

splittable variant of the placement. The cost ratio of the heuristic HEUR is ϵ = HEUR
FRAC OPT . The cost ratio of

the different curves above (Fig. 5.4 to 5.8 ) is reported in Table 5.2 when the number of datacenters varies from
5 to 50.

One can be see that the cost ratio of the greedy heuristic algorithm is no more than 1.85. Indeed, for
simulated instances in the range from 5 to 50 datacenters when dependency parameter pairs (α, β) = {(0.1, 18);
(0.3, 14), (0.5, 10)}, the cost ratio of the greedy heuristic algorithm performs closer to the optimal solution and
does not exceed 1.25, 1.42 and 1.52 respectively for each pair in fairly adverse conditions.

However, in the range from 5 to 50 datacenters when dependency parameter pairs (α, β) = (0.7, 6), the
greedy heuristic encounters some difficulties in finding an optimal solution. Thus, the cost ratio of greedy
algorithm reaches 1.81. Note that, in the greedy algorithm, the feasibility of the solution is assumed by scaling
datacenter capacities. Thus, there is a solution to the problem when β = 2. The cost ratio of the greedy
algorithm in this case reaches 1.85, which diverges considerably from the optimal solution, as a condition for
finding any solutions that matches the optimal ones when α ≤ 0.5 and β ≥ 10. Even as well, if dependency
types are well identified, it is more difficult in these cases to find the best cost ratio meeting the dependency
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Table 5.1
Gaps between the greedy heuristic and the exact algorithms in terms of cost ratio.

DC
(α; β)

(0-0.1, 18) (0-0.3, 14) (0-0.5, 10) (0-0.7, 6) (0-0.9, 2)

5 1.255 1.410 1.510 1.819 1.858
10 1.253 1.422 1.509 1.820 1.859
15 1.249 1.413 1.511 1.809 1.857
20 1.248 1.401 1.512 1.809 1.856
25 1.245 1.402 1.509 1.808 1.856
30 1.239 1.402 1.513 1.810 1.851
35 1.241 1.411 1.520 1.810 1.851
40 1.241 1.411 1.520 1.819 1.850
45 1.250 1.420 1.519 1.819 1.849
50 1.249 1.419 1.519 1.819 1.850

restrictions. Indeed, each proposed algorithm responds differently to the dependency requirements as well.

A special cases are also considered which are not reported on Table 5.2, when dependency parameter pairs
are set from a range of (α, β) = (0.1, 1), (0.1, 2), (0.9, 19), (0.9, 18). These parameter values are the most
extreme and contradictory cases, in the sense that for dependency pairs (0.1, 1) and (0.1, 2), the exact algorithm
finds a solution with an adjustment of time (beyond the days) but could not find an optimal solution, and for
the latter cases (0.9, 19) and (0.9, 18), this does not reflect the correlation-type of intra-job dependency.

We conclude that the cost ratio of the greedy algorithm depends on the value of the dependency parameters
and the amount of intermediate data that increase at each time slot. In the two cases, where the dependency
parameters nearly correlate (α, β) = {(0.1, 18); (0.3, 14), (0.5, 10)}, the cost ratio is more profitable. This
means that the two proposed algorithms reacted well to these dependency value requirements. However, the
cost ratio of the greedy algorithm that is reported in Table 5.2 increases as dependency parameters deviate
(α, β) = {(0.7, 6); (0.9, 2)}.

5.2.3. Convergence time of the proposed algorithms. To pursue the extensive experiments, we
evaluate the effectiveness of the proposed algorithms and compare them in terms of scalability and convergence
time from input parameters. For the comparison, we extend the simulation by varying the number of datacenters
from 10 to 100 and by setting the amount of routed intermediate data from 100 GB to 1000 GB. Obviously, the
values of the dependency parameters must also vary in order to better understand the behavior of the execution
time of the proposed algorithms as regard to the dependencies. Thus, the value of dependency parameters is
set as specified in Sec. 5.2.2. Algorithm running times are recorded as follows.

First, the execution time of the greedy algorithm solves the placement problem one to four orders of mag-
nitude faster than the exact solution. However, the exact algorithm solves the NP-hard problem in exponential
time for large instances since a part to solve the simplex-based LP method takes much time, particularly for
α values between 0.1 and 0.5 because the intermediate data splitting parameters are less tolerated throughout
their placement. Furthermore, the values of dependency parameters correlate with the continuous amount of
intermediate data bounded by a discrete quantity. Not surprisingly, greedy heuristic is much easier to solve
than the exact algorithm.

Indeed, Fig. 5.9 shows the best convergence time for each of the proposed algorithms.

The time needed to find an optimal solution when the amount of intermediate data to be hosted is 100
GB remains very satisfactory for datacenter sizes below 10, with less than 0.075 and 0.7 seconds for greedy
heuristic and exact algorithms respectively. For datacenter sizes below 50, the convergence time remains fairly
reasonable too, with less than 0.15 and 1.05 seconds for greedy heuristic and exact algorithms respectively. For
the latter, it slightly increases when the number of datacenters is beyond 100 (about 5 seconds). In fact, the
exact algorithm performance gradually degrades with input network topology and exponentially grows for wide
range (not shown in Fig. 5.4). The following figures (Fig. 5.10 and 5.11) show these behaviors.
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Fig. 5.9. Time execution comparison between greedy heuristic and exact algorithms for different datacenter size when varying
the amount of generated intermediate data (|ΦM |= 100 GB).

Fig. 5.10. Time execution comparison between greedy heuristic and exact algorithms for different datacenter size when varying
the amount of generated intermediate data (|ΦM |= 500 GB).

Figures 5.10 and 5.11 show the worst cases for the exact algorithm. Then, the time needed for convergence
grows mainly for an amount of placed intermediate data. These amount varies between 500 GB and 1000 GB
for the simulated scenarios from 50 to 100 datacenters while the time running the greedy heuristic remains very
fast to find solutions with a convergence time improvement ratio in range [101,103] as compared to the exact
algorithm. Although dependency parameter values vary, the number of routing β from 2 to 18 commodities, the
heuristic algorithm scales better already for these large instances and it is more robust in ensuing scenarios and
simulations. By contrast, the exact algorithm performance reacts poorly to dependency parameter variations.
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Fig. 5.11. Time execution comparison between greedy heuristic and exact algorithms for different datacenter size when varying
the amount of generated intermediate data (|ΦM |= 1000 GB).

Particularly, this corresponds to values of α that vary from 0.1 to 0.5, where the exact algorithm exceeds a
running time of one minute as shown in Fig. 5.10.

The convergence time increases with the number of datacenters as well as slightly less with the amount of
intermediate data (see Fig. 5.11). As a matter of fact, the capacity of bandwidth is limited to 10 GB for data
transfer, but with more transfer links through the growth of the number of datacenters.

The gap between the algorithms is in range [102,104] with an improvement factor in favor of the greedy
heuristic.

As expected for the exact algorithm that was built upon the simplex method (which is based on the number
of intermediate data to be fractionated and this is done for each iteration as the scale of the datacenter and
links between them, meaning that the separation procedure is generally not polynomial) and even with the use
of a set of dependency constraint values to limit the convex hull problem to find the optimal solution faster that
goes beyond 500 GB for100 datacenters, the convergence time remains widely slow at about 7 minutes.

In conclusion, the execution time of the proposed algorithms depends mostly on the cloud infrastructure
topology, and slightly less on the amount of intermediate data dependencies for the exact algorithm. Besides,
the change in dependency parameter values influences largely the exact algorithm performance and much less
the greedy heuristic. This validates the motivation for the use of a heuristic approach to find solutions faster
even if there are bound to be approximated (as reported in Table 5.2).

6. Conclusion. In this work, we have studied the problem of intermediate data dependency placement.
We presented and evaluated an exact model, as well as a greedy heuristic. Our proposed solutions try to save
the total storage cost for an economical and efficient task workflow processing across distributed datacenters.
The presented solutions take into consideration both intra- and inter-job dependencies including fractional and
atomic demands respectively. The exact algorithm based on the LP model introduces new locality constraints
on the optimal placement of intermediate data dependencies. The latter can be fractionated and routed in the
same physical datacenter or assigned to different destinations. In addition, the exact model is generic enough to
optimize the data placement for task workflow processing in cloud environment thanks to the use of a generic
objective function that combines multiple criteria such as data bandwidth and storage capability, as well as data
movement optimization with an approved scalability for medium instances. Despite our formulation for the LP
model, the number of datacenters and the variation of intermediate data dependency parameters makes it only
solvable for medium instances. In order to ensure the placement of inter-job dependency-based intermediate
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data for larger instances, we developed a heuristic based on a greedy optimization framework, this, solves the
problem in very fast time, making an assumption of an optimal fractional solution. The evaluation tests show
that the greedy heuristic algorithm performs closer to the exact formulation solution (in the case of converged
correlations), and boots higher performance as compare to other state of the art strategies. We evaluated also
the convergence time of the proposed algorithms. It is improved by several orders of magnitude for the greedy
heuristic algorithm compared to the exact algorithm, while making possible to solve large cloud infrastructures
in a reasonable time.
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SIGNIFICANCE OF HIERARCHICAL AND MARKOV CLUSTERING IN
GROUPING-AWARE DATA PLACEMENT FOR DATA INTENSIVE APPLICATIONS

WITH INTEREST LOCALITY ∗
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Abstract. During the execution of complex queries, the execution time increases exponentially, resulting in more waiting time
for the user, which may sometimes extend to hours or even days in the worst cases. By virtue of their parallel and distributed
computing capability, Hadoop and Spark are considered as an ideal solution for such complex query processing. Even though
they are considered as an efficient solution for complex query processing, they have their own limitations when the data to be
processed exhibits interest locality (i.e.) the data required for any query execution follows grouping behaviour wherein only a part
of the BigData is accessed frequently. Since the data placement provided by these frameworks does not consider interest locality,
it is possible that the dependent blocks required for execution will be concentrated within fewer computing nodes, resulting in
several lacunas such as underutilisation of resources, and increased query execution time. Hence this paper proposes an Optimal
Data Placement (ODP) Strategy based on grouping semantics. The significance of different clustering techniques viz. k-means,
Hierarchical Agglomerative Clustering (HAC) and Markov Clustering (MCL), in grouping-aware data placement for data intensive
applications with interest locality has been examined in this paper. Initially, the user access pattern is identified by dynamically
analysing the history log. Then, clustering techniques (k-means, HAC and MCL) are separately applied over the access pattern to
obtain independent clusters. These clusters are interpreted and validated to extract the Optimal Data Groupings (ODG). Finally,
the proposed strategy reorganises the default data layouts in Hadoop Distributed File System (HDFS) based on ODG to achieve
maximum parallel execution per group subjective to Load Balancer and Rack Awareness. Our proposed strategy is tested in 10
node cluster placed in a multi-rack with Hadoop installed in every node deployed in the cloud platform. The proposed strategy
reduces the query execution time, significantly improves the data locality and CPU utilisation, and is proved to be more efficient for
massive dataset processing in a heterogeneous distributed environment. In addition, MCL shows a marginal improved performance
over HAC and k-means for queries exhibiting interest localities.

Key words: BigData, Storage and Compute Infrastructure, Interest Locality, Data Placement, Hierarchical Agglomerative
Clustering, Markov Clustering, Heterogeneous Hadoop Cluster, Cloud
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1. Introduction. In the current data era, massive volumes of data are being generated every second in
a variety of domains such as geosciences, the social web, finance, e-commerce, healthcare, climate modelling,
physics, astronomy, government sectors etc. BigData is the term applied to such large volumes of datasets
whose size is beyond the ability of the commonly used software tools to capture, manage, and process within
a tolerable elapsed time [1, 2]. By virtue of their parallel and distributed computing capability, Hadoop and
Spark [3, 4, 5] are considered ideal solutions to analyse and gain insights from BigData and are well-recognised
as de facto BigData processing platforms in the cloud; they have been adopted extensively and are currently
used widely in many application domains. Apache Hadoop [1, 6] facilitates the distributed processing of large
datasets across clusters of commodity hardware using simple programming models. Here, local storage and
computation are achieved through the two major components namely Hadoop Distributed File System (HDFS)
and MapReduce (MR). The fundamental concept of HDFS [7] and MR [8] is to distribute data among nodes
and process them in parallel. HDFS is a distributed file system capable of storing large files across multiple
nodes. It follows a master-slave architecture, consisting of one NameNode and multiple DataNodes. When a
file is dumped into HDFS, it is broken into fixed-size blocks and stored on multiple DataNodes. The DataNodes
periodically report the blocks stored in them to the NameNode, thereby updating the metadata. When a query
is executed from a client, it will reach out to the NameNode to retrieve the metadata, and then reach out to
the DataNodes to retrieve the data blocks.

The major challenge in processing BigData in HDFS is faced during query execution, since the time taken
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Fig. 1.1. Various stages of clustered graph by applying clustering algorithm

to execute a query and return the results increases exponentially as the amount of data increases, leading
to a long waiting time for the user [9]. Sometimes, the waiting times could range from minutes, to hours,
to days in the worst cases. During query execution, it is commonly observed that most of the data-intensive
applications exhibit interest locality [10]. It may be different for different domain analysts based on geographical
location, time, person etc. (i.e. domain scientists are only interested in a subset of the whole dataset, and are
likely to access one subset more frequently than others. For example, in the bioinformatics domain, X and Y
chromosomes are related to the offsprings gender. Both chromosomes are often analysed together in generic
research rather than all 24 human chromosomes). Mostly, for query execution, only a part of such BigData
sets is utilised. The detailed analysis of various query executions clearly shows a significant similarity in the
data required to execute the query during a set of time intervals. These data blocks will then have the highest
frequency of being accessed as a group during executions. Data grouping is then formally defined as grouping
semantics to represent the possibility of two or more data being accessed as a group. In Hadoops Default
Data Placement Strategy (HDDPS), the data blocks are placed randomly across the cluster of nodes without
considering the nature of queries likely to be executed in the system. Due to such non- consideration of interest
locality, it is possible for the required data blocks to be concentrated within fewer computing nodes, which,
in turn, results in an increase in query execution time, query latency etc. In this paper, an Optimal Data
Placement (ODP) Strategy based on grouping semantics is proposed. The natural behavioural groupings in the
dataset are identified by applying clustering algorithms and the data-placement decision is taken based on the
observed grouping behaviour. Clustering is the task of grouping a set of objects in such a way that objects in
the same group are more similar to each other than to those in other groups [11, 12].

In this paper, we experiment the significance of different clustering techniques viz. k-means [13], Hierarchical
Agglomerative Clustering (HAC) [14] and Markov Clustering (MCL) [15] in grouping-aware data placement for
data-intensive applications with interest locality. It has been proved in a heterogeneous distributed environment
for the e-commerce dataset [16, 17]. The results show that queries are solved by the domain analyst at the
earliest possible time to enable quick decisions, as well as deriving maximum utilisation of resources. Fig.1.1
shows the various stages in MCL for an input dataset. Fig.1.1(a) shows the various stages in HAC for an input
dataset. The clustered matrix obtained by applying the HAC is shown in Fig.1.1(b). The visualisation of matrix
clustering by k-means and HAC methods is depicted in Fig.1.1(c) and Fig.1.1(d) respectively.

2. Related Works. Several works were carried out in data placement for massive datasets in some specific
ways to support high-performance data accesses. ODP strategy, which focuses on reducing energy consumption
and resource utilisation, was proposed by Ashwin Kumar et al. (2013) [18] and Wu et al. (2017) [19]. They
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proposed ODP by locating the related data blocks together. However, the major drawback in this area of focus
is the increased query execution time. Here, the focus is on reducing the utilisation of resources, but this cannot
be considered as a viable solution, since the real objective of processing BigData is achieving timely results.

Some significant works have also been carried out on data placement to achieve a reduced query execution
time. Lee et al. (2014)(2014) [20] proposed an ODP by taking into account the computing capacity of a data
node so that faster computing nodes are allocated with more data. This reduces the overall query execution time
and provides high throughput of data. However there is no mechanism to ensure that the data blocks which are
required for execution are proportionately present in those nodes since the grouping semantics of the dataset
is not taken into account. Xiong et.al (2015) [21] proposes a heterogeneity aware data placement algorithm
which initially groups the Data-Nodes as several virtual storage tiers (VST). The data blocks are placed across
the nodes in each VST circuitously according to the hotness of data. This strategy shows an improved MR
performance with reduced disk space utilization. However the individual requirements of data blocks are only
assessed for measuring the hotness. But the relative dependency among various blocks for the different task
executionsis not considered, which may lead to concentration of popular data within a node leading to reduced
parallel execution.

ODP to reduce query execution time based on grouping semantics by applying clustering algorithms is
also discussed by few researchers. Wang et al. (2014) [10] and Wu, w et al. (2016) [22] proposed an ODP
algorithm based on grouping semantics, which reduces the query execution time and improves the data locality.
It improves the parallel execution of datasets with interest locality. This ODP strategy use the Bond energy
algorithm (BEA) to cluster the dependency matrix, which leads to a higher execution time. This is due to the
time complexity in BEA for finding the permutations of all rows. In addition, for further execution of any new
task, all iterations of BEA must be repeated.

Liao et al. (2016) [23] focus on optimising resource utilisation using a novel scheduling algorithm. Simi-
larly, Shivaswamy et al.(2017) [24] suggest scheduling the work flow of jobs during concurrent executions for
optimal resource utilisation. However, in both cases, the existence of a general behaviour pattern among the
tasks executed during a period of time is not considered. Hence, these queries with interest locality require fur-
ther consideration. Some studies elucidate that some significant clustering techniques [13, 14, 15] are available
that can be applied to find the natural groupings in a dataset with reduced computations without compro-
mising the clustering performance. We harness these clustering approaches in large-scale data management to
achieve improved performance in terms of reduced execution time, through ODP, especially when data-intensive
applications exhibit interest locality.

3. CORE-Optimal Data Placement Strategy. An ODP strategy based on grouping semantics is
proposed in this paper. The entire workflow diagram is shown in Fig. 3.1. The different steps involved in the
proposed strategy are detailed below.

Step 1: Analysing User History Log The meta-information and user history log will be the input for
this step. Analysing the characteristics of the cluster from the user history log for various workloads is the key
for making an optimal placement decisions. These log files are voluminous and varied (semi-structured). All
MapReduce applications executed in the cluster save the task execution details as a log file, which consists of
two files (i) the Job Configuration file and (ii) the Job Status file - for each job executed in the machine.

Step 2: Tracing Network Topology NameNode contains meta-data from which the network topology
is constructed to identify the different DataNodes present in the cluster and the data blocks present in each
DataNode.

Step 3: Building Task Frequency Table Using these logs as input, the task frequency table is con-
structed, which contains different tasks, the frequency of each task, and the blocks required for each task.

Step 4: Constructing Task Execution Graph The computations of parallel processing can be solved
efficiently, only if the task executions and the blocks required are depicted as a graph. The task execution graph
shown in Fig.3.2 is obtained by analysing the task frequency table using the iGraph network analysis tool [25].
The task execution graph is an unordered pair GTex = (B, T ), where B represents a set of vertices as blocks
and T represents a set of edges as tasks executed. GTex is undirected and may hold parallel edges since some
sets of blocks (B′ ⊆ B) may be required for different task executions Ti.

Step 4a: Clustered Task Execution Graph (CGTex) The task execution graph (GTex) is then
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Fig. 3.1. Workflow diagram for the proposed work

Fig. 3.2. Task execution graph for sample graph consisting of 10 blocks and 4 tasks

converted into a clustered task execution graph (CGTex) by applying the graph clustering algorithm [15].
The normal representation of the graph may not reveal any natural cluster characteristics. When a uniformly
distributed graph is applied with a clustering algorithm, the graph will be arbitrarily grouped into clusters
based on the similarity metric. To identify the natural groupings in the graph, MCL algorithm, fast, scalable,
and unsupervised algorithm, is applied over the GTex and the various stages of the clustered graph obtained
are shown in Fig.3.3.

Step 5a: Group Identification The clusters obtained from the clustered task execution graph (CGTex)
are separated into various groups. A subset of vertices can be said to form a good cluster if sub-graphs are
dense with more connections within the group and only a very few connections exist from the group to the rest
of graph. Accordingly, each group in the cluster will have individual characteristics showing high intra-cluster
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Fig. 3.3. Various stages of clustered graph by applying MCL algorithm

and low inter-cluster density (refer eqns 3.1 and 3.2). Based on the grouping behaviour, the associated clusters
are grouped together by applying MCL.

Intra cluster density δint(c) =
|{{v, u}|v ∈ C, u ∈ C}|

|C|(|C| − 1)
(3.1)

Inter cluster density δint(G|C1, ...., Ck) =
1

k

k∑
i=1

δint(ci) (3.2)

Step 4b: Constructing Dependency Matrix (DM) From the task execution graph (GTex) and the
information available from the task frequency table, the dependency matrix (DM) is constructed. DM is a
symmetric matrix of order nxn, where n is the number of blocks present in the cluster. DM exhibits the degree
of dependency between various blocks during simultaneous execution of tasks. The diagonal elements of the
DM represent the number of tasks for which the corresponding block is required. Any other element in DMij

will show the number of tasks for which one block bi will be accessed along with the block bj for execution.
Step 5b: Determining optimal no. of clusters - Gap Statistics (GS) The gap statistic method can

be used to calculate the optimal number of clusters for the given dataset. The gap statistic compares the total
within intra-cluster variation (wk, wk) for different values of k with their expected values under null reference
distribution of the data. The gap statistic for a given k is defined as follows:

Gapn(k) = E∗
n{log(Wk)} − log(wk) (3.3)

Gapn(k) = En ∗ log(Wk)− log(Wk) (3.4)

The standard deviation (sdk sdk) of log(W ∗
k )log(Wk∗) is also computed in order to define the standard

error (Sk sk) of the simulation as follows.

sk = sdk ∗
√
1 +

1

B
(3.5)

sk = sdk ∗ 1 + 1/B (3.6)

Finally, a more robust approach is to choose the optimal number of clusters K as the smaller k, such that:

Gap(k) ≥ Gap(k + 1)− sk+1 (3.7)

The smallest value of k is chosen so that the gap statistics is within one standard deviation of the gap at k+1.
Based on this, we can calculate the optimal number of clusters for a given dataset.
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Fig. 3.4. (a) Clustered correlation matrix and (b) Dendogram for hierarchical clusters

Step 6b: Clustered Dependency Matrix (CDM) The dependency matrix (DM) is then converted
into a clustered dependency matrix (CDM) by applying the matrix clustering algorithm. In this paper, HAC
is used to cluster the matrix into groups. The application of HAC technique is examined for the proposed work
and is explained below. In the HAC method, a hierarchy of clusters is formed to identify the natural groupings
in the dataset. A bottom-up approach is used in this algorithm. Initially, HAC considers each data block as
a single entity, then it combines the blocks with most similar blocks to form a bigger cluster. The iteration is
then repeated, with further merging of the clusters with the output obtained earlier. Once all the blocks are
merged into the required number of clusters derived from the gap statistics in step 5b, the algorithm ends.

The clusters obtained are merged based on similarity/dissimilarity measures. The Euclidean distance is
used to measure the distance between each pair of data blocks (di, dj) from the dataset D ((di, dj) ⊆ D).

Disteq(di, dj) =
√
(xdi − xdj )

2 + (ydi − ydj )
2 (3.8)

To merge two blocks in a cluster, linkage methods can be used to decide the neighbouring pair of blocks to
be merged. In this paper, a single linkage method is adopted. It computes all pairwise dissimilarities between
the elements in cluster 1 and the elements in cluster 2, and considers the smallest of these dissimilarities as a
linkage criterion.

X1, X2, ..., Xk = Observations from Cluster1,
Y1, Y2, ..., Yk = Observations from Cluster2,
d(x, y) = Distance between observation vector X with Y .

SingleLinkage : d12 = mini,j d(Xi, Yj) (3.9)

The reason for the use of HAC is due to its flexibility, versatility and, mostly, its lower computational
complexity. The HAC algorithm clusters the highly associated data together based on the grouping behaviour
and generates data groupings as shown in Fig.3.4. Initially, each data is considered as a cluster. Computing
the distances between all pairs of data blocks takes O(m2) computation. Then, the data is sorted to find the
smallest, which takes O(m2 log m) time. The closest pair are then merged and all the distance pairs are again
recomputed with the new cluster, which takes O(m log m). The iteration process continues (m−1) times until all
the data merges to form a single cluster, which takes (m−1)∗O(m log m). Hence, the computational complexity
for HAC to find the natural groupings of data blocks in the dataset takes O(m2 log m)+(m−1)∗O(m log m) =
O(m2 log m).

Step 7: Extracting ODG Then, both the HAC and MCL algorithms with the optimal number of clusters
are independently applied over the history log. The resulting output of each method will be a unique set of
data groupings. It is confirmed that each grouping obtained is conceptually distinguishable by validating and
interpreting each obtained group.
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Fig. 4.1. Schematic diagram for execution framework

Step 8: Interpreting and validating ODG Then, the extracted data groupings must be interpreted and
analysed to find how well the obtained groupings fit the data without reference to external attributes. Then, the
data groupings obtained from the two different sets of cluster analysis are compared to determine the optimal
data groupings using the silhouette method. We can separately execute and test the validated groupings for
local map tasks in distributed settings.

Step 9: Reorganising HDFS data layout The implementation of our proposed strategy will dynamically
reorganise the HDFS data layout in order to achieve an optimal data placement for improved execution; this
program for proposed work is launched as a utility to be executed manually as and when required. The execution
of this utility modifies the machine instruction, which is a triplet < Bid, SN,DN >, where Bid is the Block ID,
SN is the Source Node, and DN is the Destination Node. If SN and DN are different, then the reorganisation
has been carried out considering the rack topology and the load balancer.

Step10: Achieving optimal data layout After reorganisation of the default data layouts in HDFS, our
proposed work achieved an optimal data layout that ensures maximum parallel execution per group. It does
not guarantee 100% local map task execution every time, but it will always produce an improved result over the
naive data placement strategy, which is tested with the production cluster (explained in detail in the subsequent
section).

4. Experimental Results and Analysis. The experiments were tested in a cloud platform, since the
cloud is emerging as a preferred paradigm to deploy highly available and scalable systems for the processing of
BigData [27]. It is also a reliable, fault-tolerant, flexible, and low-cost environment. Microsoft Azure provides
a platform to collect, store, process, analyse, and visualise BigData in the cloud.

In order to carry out the experiments, 10 node heterogeneous clusters, deployed in a multi-rack environment,
with every node having Hadoop, were established in the Azure cloud. The cluster was configured with one Master
(NameNode) and nine Slaves (DataNodes). In order to have a heterogeneous environment, the DataNodes were
chosen with varied configurations. Table 4.1 and Table 4.2 depicts the detailed cluster configuration, file system
configuration respectively. The clusters were provisioned, managed, and monitored using Apache Ambari. The
schematic diagram for the execution framework is shown in Fig. 4.1.

To evaluate the performance of MR, we experimented with an Amazon product review dataset [28] consisting
of product reviews from Amazon, spanning approximately 18 years (1996-2014). This dataset covers reviews
of multiple products such as Books, Baby products, Electronics, Kindle store, Movies and TV, Health and
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Table 4.1
Cluster configuration

Property
NameNode- 1 DataNode- 9

NN- 1 DN- 2 DN- 3 DN- 4
Instance Type DS5 v2 DS4 v2 DS3 v2 DS2 v2

vCPU 16 8 4 2
RAM 56 GB 28 GB 14 GB 8 GB

Processor Intel Xeon E5-2673@2.4 GHz
OS CentOS 7.3

Hadoop Version Hadoop 2.7.2 (Stable Version)

personal care etc. This dataset (size 19.5GB) is freely available to download from Stanford Network Analysis
Project (SNAP). Each of the reviews will contain the following information (ProductID, Title, UserID, Price,
Helpfulness, ProfileName, Score, Time, Summary).

Table 4.2
Data, distributed file system and cluster - configuration parameters

HDFS Status : Healthy
Total Size 19651541778 B
Total files 5
Average block size 66390343 B
Total blocks (validated) 296
Default replication factor 1
Number of DataNodes 9
Number of racks 3

Table 4.3
Data relating to interest domain

Name Size Block Size No. of Records
Reviews Baby.json 580.22 MB 64 MB 915446
Reviews Books.json 13.74 GB 64 MB 16302134
Reviews Electronics.json 1.38 GB 64 MB 1689188
Reviews Kindle Store.json 789.46 MB 64 MB 982619
Reviews Movies and TV.json 1.85 GB 64 MB 1697533

During the execution of interest-based queries, it is observed that there is a severe drag in MR performance.
In the business forecasting domain [16, 17] in particular, to predict future product demand/sales of particular
products, the reviews in respective categories alone need to be analysed rather than sweeping through the reviews
in all categories. The data relating to the interest domain in the Amazon review data is shown in Table.4.3.
When this data relating to the interest domain is uploaded in HDFS, the data splits into even-sized data blocks
and distributed randomly across the DataNodesThe data are placed without any consideration of the nature of
the queries likely to be executed. Due to this, it is possible that dependent blocks required for execution will be
concentrated within fewer computing nodes, resulting in several lacunas such as underutilisation of resources
and increased query execution time.

To prove the significance of clustering in data placement, several experiments were conducted by executing
various interest-based queries (Join and Aggregate) related to business analytics (e-commerce dataset). The
tasks were chosen in such a way that they had specific dependent blocks and were executable only within a
subset of the whole dataset. Application benchmark performance was also executed for the evaluation, e.g.
different tasks related to prediction modelling (regression) for different products was executed for evaluation.
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Fig. 4.2. Graphs showing the performance improvement in local map task execution

Other join and aggregate queries were also taken into consideration, e.g. finding an electronic product with a
higher rating during a specific period, finding a book that has been reviewed more, finding the usefulness of a
Kindle product during 2006 to 2007etc.

The join and aggregate queries on e-commerce were written using PIG scripts and executed in a TEZ
execution engine. The prediction modelling for business analytics was written using Mahout, a scalable ma-
chine learning library, and executed in the MR execution engine. The output metrics were collected using
Ambari monitoring tool, deployed in the HDP platform. These applications were executed in real time and the
performance was compared with existing data placements such as HDDPS, load balancer, and proposed data
placement with different clustering algorithms (k-means, HAC, MCL). The output presented in Table 4.4 shows
an interesting result, with improved local map task and reduced execution time. Fig. 4.2 and 4.3 depict the
graphical representations.

From Table 4.5, with a maximum of 296 maps required for execution, HDDPS has 186 data local maps (i.e.
62.8%), whereas as MCL has 251 local maps (i.e. 84.7%), showing an improvement of 34.9% ((251-186)/186) of
local map executions. Similarly, the execution time was also decreased from 18,879 secs to 13,762 secs, thereby
showing an overall improvement of 27.1% ((18879-13762)/18879). In addition, the data placement based on
MCL shows an improved performance (5.9% in data locality, 4.3% in execution time) over HAC and an improved
performance (9.1% in data locality, 12.5% in execution time) over data placement based on k-means for queries
exhibiting interest localities.
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Fig. 4.3. Graphs showing the performance improvement in execution time

Data placement based on Markov clustering shows improved performance, especially when data-intensive
applications have interest locality. This is because the natural clusters obtained through MCL exhibit higher
utilisation of resources with less complexity. The reduced execution time is due to the significant improvement
achieved in CPU utilisation through Markov clustering. The CPU utilisation of each node and every node in the
cluster is improved. Also, the average CPU utilisation of the cluster increased from 55.2% to 81.3%, showing
an improvement of 26.1%, as depicted in Fig.4.4. When tested in the worst case, where any interest locality
does not exist, i.e. all data blocks are required to be accessed for execution, the proposed strategy shows the
same efficiency as default.

5. Conclusion and Future Work. Optimal Data Placement (ODP) Strategy based on grouping seman-
tics is proposed in this paper. The significance of different clustering techniques viz. k-means, Hierarchical
Agglomerative Clustering (HAC) and Markov Clustering (MCL) in grouping-aware data placement for data-
intensive applications with interest locality has been tested. The experiments were carried out in a 10-node
cluster placed in a multi-rack environment deployed in the Azure cloud. The results conclude that the MCL-
based data placement strategy improves the local map execution by 34.5% and reduces the execution time by
27.8% compared to Hadoops Default Data Placement Strategy (HDDPS). In addition, it can be inferred that
the MCL-based data placement strategy shows an improved performance (5.9% in local map execution, 4.3%
in execution time) over HAC (9.1% in local map execution, 12.5% in execution time) and over data placement
based on k-means for queries exhibiting interest localities. The results strengthen the proposed work and prove
to be more efficient for massive datasets processing in a distributed environment.
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Table 4.4
Performance improvement in local maps and execution time - for various interest domains

Amazon Review Product Dataset - SNAP (20 GB)

Data
Placement

Interest
Domain

Books
(T1)

Baby
(T2)

Electronic
(T3)

Kindle
(T4)

Movies
(T5)

Total maps
(nos)

220 9 22 13 30

Default
Local maps

(%)
64.5 66.6 54.5 53.8 63.3

Exe. time
(secs)

14168 533 1422 753 2003

Load Balancer
Local maps

(%)
66.8 77.7 63.6 69.2 63.3

Exe. time
(secs)

12224 533 1640 753 2202

K-means
Local maps

(%)
79.0 88.8 72.2 84.6 70.0

Exe. time
(secs)

11882 472 1216 557 1602

Hierarchical
Local maps

(%)
80.9 88.8 77.2 100 70

Exe. time
(secs)

10877 464 1057 557 1440

Markov
Local maps

(%)
85.4 88.8 81.8 100 83.3

Exe. time
(secs)

10520 457 963 557 1265

Table 4.5
Overall comparison of proposed strategy with existing data placement policies

Total maps
(nos)

Local maps
(nos)

Local maps
(%)

Exe. time
(secs)

Default 186 62.8 18879
Load Balancer 196 66.2 17352
k-means 296 230 77.7 15729
Hierarchical 237 80.0 14395
Markov 251 84.7 13762

Even though the results are very optimistic, there is still scope for improvement, since the layout obtained
in the proposed work considers only the horizontal relationships among the data. Hence, an Optimal Data
Placement (ODP) Algorithm considering inter-relationships (vertical) among the blocks can be proposed in
the additional data groupings obtained, which could further improve the performance during the execution of
simultaneous map tasks.
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Fig. 4.4. Graphs showing the performance improvement in CPU utilization of each DataNode
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Abstract. Efficient thread mapping relies upon matching the behaviour of the application with system characteristics. The
main aim of this paper is to evaluate the influence of the OpenMP thread mapping on the computation performance of the matrix
factorisations on Intel Xeon Phi coprocessor and hybrid CPU-MIC platforms. The authors consider parallel LU factorisations with
and without pivoting as well as parallel QR and Cholesky factorizations — all from MKL (Math Kernel Library) library. The
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1. Introduction. Modern computing platforms are getting more and more efficient, but it comes with a
price — computer architectures are getting more and more complicated. There are a lot of low-level details
of machine architecture which have to be considered by HPC programmers and scientists to benefit from the
promised performance. Thus, the efficient HPC software development is getting harder despite more and more
capable hardware. Therefore, we have to identify and know well the existing software tools and their weak
and strong points on hybrid platforms — as the one used in this paper, namely Intel Xeon CPU coupled with
Intel Xeon Phi (called here a hybrid CPU-MIC platform). Such hybrid architectures add another layer of the
complexity and thus, an effective level of parallelism is difficult to achieve in heterogeneous architectures —
especially, when both such different units are to perform computing-intensive parts of the algorithm. This
causes more and more difficulties in the optimisation of the code. One of the techniques for optimising the code
in order to effectively exploit the potential of the coprocessors and the hybrid CPU-MIC platform is the thread
mapping.

However, the hybrid nature of the hardware hinders the efficient use of the thread mapping in practice.
There is a similar problem with the proper choice of number of threads and the prospective use of various
modes (native and automatic offload). Our goal is to experimentally answer these questions. The objects of
our study are some well-known and widely used algorithms, namely the LU (without and with pivoting), QR
and Cholesky factorisations. We investigate the practical use of the thread mapping for different modes and
the number of threads.

Operating systems on Intel Xeon Phi and on the hybrid CPU-MIC platform run numerous software threads
and these threads share a complex hierarchical memory. Since the architecture consists of many processing
units, these software threads have to be assigned to appropriate processing units (that is, hardware threads).
Such an assignment is called thread mapping [5]. This assignment should be used to efficiently exploit the
potential of modern multiprocessors. Efficient parallel numerical algorithms and their implementations on
different contemporary parallel machines are crucial for engineering applications and computational science.

Determining the efficiency of the thread mapping depends on the machine and the application. There is
not a single thread mapping strategy that suits all the applications. We studied the OpenMP thread mapping
strategies for matrix decompositions on multicore architectures in our work [3]. The results showed that the
choice of thread affinity has the measurable impact on the executed time of the matrix factorisations. Here, we
extend this investigation by an experimental evaluation of the OpenMP thread mapping for the LU (without
and with pivoting), QR and Cholesky factorisations from MKL library (Math Kernel Library) [15] on the Intel
Xeon Phi coprocessor and on the hybrid CPU-MIC platform. While the determining of the OpenMP thread
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mapping on Intel Xeon Phi is not very difficult, the same task on a hybrid CPU-MIC platform remains a
challenging issue. The contribution of this paper to areas of the scalable algorithms on coprocessors and hybrid
platform is an experimental evaluation of the LU factorisations, QR and Cholesky factorizations from MKL
library in two modes, namely native on coprocessor and automatic offload on the hybrid CPU-MIC platform.
This assessment takes into account the performance for the different settings of the OpenMP thread mapping
and for the different number of threads on coprocessor and the different matrix size.

The rest of this paper is organised as follows. Section 2 describes related works regarding the thread mapping
and the LU factorisation. Section 3 reviews the matrix decomposition, namely the block LU factorisation with
and without pivoting, QR and Cholesky factorisations. Section 4 contains the overview of Intel Xeon Phi and
an introduction to the programming model on Intel Xeon Phi and the hybrid CPU-MIC platform. Section 5
presents different thread mapping strategies on Intel Xeon Phi and the hybrid CPU-MIC platform. Section 6
shows the results of numerical experiments carried out on Intel Xeon Phi and on the hybrid CPU-MIC platform
for the LU factorisation with and without pivoting, QR and Cholesky factorisations and Section 7 contains some
considerations about the impact of various factors on the algorithms’ performance. Finally, Section 8 concludes
our research and presents the future plans.

2. Related work.

2.1. Thread Affinity. In the last years, the issue of the thread mapping control in OpenMP on different
parallel architectures for different applications has been researched. The authors of [14] investigated the possi-
bilities to improve thread mapping in OpenMP programs for several simple applications (for example, SpMV
— sparse matrix-vector multiplication — and Jacobi solver) and presented the ways to apply this knowledge to
larger application codes on ccNUMA and multicore architecture. In the work [10], a solution to control thread
mapping in OpenMP programs was presented and shown to be compatible with MPI in hybrid use cases. The
authors of [12] discussed effective thread mapping strategies through comparing the computing performance
and analysing the performance differences between various mapping methods using the k-means application
program to fully exploit the computing potential of the MIC (Many Integrated Core) coprocessor, as well as the
hybrid system consisting of MIC and a traditional multicore CPU. Results of these papers showed that there is
no single thread mapping strategy adapted for all the applications.

2.2. Factorisation. Recently, several groups have been working on the efficient parallel linear algebra
libraries, particularly the Gaussian elimination. The Gaussian elimination on multicore and manycore archi-
tectures was studied, among others, in works [9], [2], [6] and [8]. In the work [9] the authors investigated the
parallelization of sub-cubic Gaussian elimination. They focused on the parallelization of three subroutines,
namely, the matrix multiplication, the triangular equation solver and the LU factorisation with pivoting. In [2],
a class of parallel tiled linear algebra algorithms for multicore architectures is presented, the LU factorisation
with pivoting, Cholesky among others. The article [6] describes recent developments in parallel implementa-
tions of Gaussian elimination for shared memory architecture. Four different approaches to pivot in the LU
factorisation are investigated — partial pivoting among others, and all approaches were compared with the
implementation of the LU without pivoting. The comparison given in that article gives a good insight into
the performance properties of the different LU factorisation algorithms using relatively large shared memory
systems. In the work [8] the design and implementation of several fundamental dense linear algebra (DLA)
algorithms for multicore with Intel Xeon Phi coprocessors were presented. In particular, algorithms for solving
linear systems were considered, namely the LU factorisation with pivoting. The research by Intel [11] shows a
great performance of LINPACK benchmark. In this work, we research the LU factorisation, QR and Cholesky
factorisations implementation from a vendor library, namely MKL.

3. Factorisations. The LU decomposition with pivoting factorises a matrix into matrices, namely a lower
triangular matrix L, an upper triangular matrix U and a permutation matrix P. It has the following form:

PA = LU

For improving computing performance on the contemporary computer architecture, a block version of the LU
decomposition is applied. The block LU decomposition is a matrix decomposition of a block matrix into a lower
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block triangular matrix L, an upper block triangular matrix U and block permutation matrix P. The block
version of the LU decomposition is implemented in LAPACK [1]. That implementation is based on BLAS. The
parallelism of that block version of the LU factorisation arises from the use of a multithreaded BLAS. The MKL
library provides exactly this kind of implementation of BLAS and exactly this kind of parallel version of the
block LU decomposition. The block LU algorithm is described in detail in [4]. The LAPACK LU algorithm is
described in the following steps:

• A panel of b columns is factorised along with creation of a pivoting pattern (DGETF2 routine).
• Panel factorisation gives elementary transformations which are performed as block operations in the
rest of the matrix — some rows are swapped correspondingly to the pivoting pattern (DLASWP) and
top b rows are treated with the triangular solver (DTRSM).
• A matrix factorisation is performed (DGEMM) — the square remainder of the matrix is updated with
the product of the panel (without top b rows) and the top b rows without the panel items.

The LU decomposition without pivoting factorises a matrix into two matrices, namely a lower triangular
matrix L and an upper triangular matrix U. It has the following form:

A = LU

The implementation of LU without pivoting can be carried out very rarely in practice without risking serious
numerical consequences. The LU without pivoting exists if the matrix A has a strict dominant diagonal.
Giving up the pivoting improves performance — because we get rid of the rows swapping and because the panel
operations can be easily parallelized now.

The total number of floating point operations (add, multiply, divide) for the LU factorisations without and
with pivoting are the same and equal approximately 2

3n
3. The number of the floating point comparisons for the

LU factorisation with pivoting equals approximately 1
2n

2 and for the LU factorisation without pivoting equals
zero. Flops measurement gives only an approximated performance — because of the differences in kernels and
dynamic of the parallelism. Section 6 shows the experiments which give a better comparison.

In this work, we investigate the LAPACK implementation of the LU factorisation from MKL library, namely
dgetrf (LU with pivoting) and dgetrfnpi (LU without pivoting) routines.

The QR factorisation is a decomposition of a form A = QR, where R is a usual upper triangular matrix,
and Q is an orthogonal matrix (that is, QTQ = QQT = I). It is used to solve least square problems and
eigenvalues problems. The number of floating-point operations in the QR factorisation is 4

3n
3 + o(n2) for a

given matrix A of the size n×n. Here, we use and study the LAPACK implementation of the QR factorisation
from MKL library (dgeqrf).

The Cholesky factorisation is a decomposition of a form A = LLT , where L is a lower triangular matrix —
and it is defined only for A being Hermitian and positive-definite. The number of floating-point operations in
the Cholesky factorisation is 1

3n
3 + o(n2) for a given matrix A of the size n × n. Here, we use and study the

LAPACK implementation of the Cholesky factorisation from MKL library (dpotrf).

4. Intel Xeon Phi and its programming models. Intel Xeon Phi coprocessors [13] are multicore
coprocessors designed on the basis of Intel MIC (Many Integrated Cores) architecture, where more than 50
redesigned Intel CPU cores are connected. The cores allow running up to 4 hardware threads per each core.
The cores ensure hardware support for the FMA (Fused Multiply-Add) instruction and also have their own
vector processing unit (VPU). Additionally, the cores are enriched with 64-bit service instructions and a cache
memory. In this work, we address the first generation of Intel Xeon Phi devices known as Knight Corner (KNC).
KNC is connected to CPU through the PCIe bus. Contrary, the second generation call Knight Landing (KNL)
is a separate processor.

MIC provides a general-purpose programming environment similar to that provided for CPUs. It supports
the source-code portability between coprocessor and CPU allowing running the same code using CPU or MIC.
The Intel company offers a set of programming tools assisting programming process — such as compilers,
debuggers, libraries that allow creating parallel applications (e.g. OpenMP, Intel TBB) and different kinds of
mathematical libraries (e.g. Intel MKL) similarly to conventional multicore CPUs.

The MKL library on MIC can be used in two ways: native and offload. The native mode does not require
changing the multithreaded code, but only adding the -mmic option during compilation. In the native mode,
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Table 5.1
Number of Intel Xeon Phi cores used for various affinity settings

number cores used in the affinity setting
of threads compact balanced scatter

60 15 (4 thr./core) 60 (1 thr./core) 60 (1 thr./core)
120 30 (4 thr./core) 60 (2 thr./core) 60 (2 thr./core)
180 45 (4 thr./core) 60 (3 thr./core) 60 (3 thr./core)
240 60 (4 thr./core) 60 (4 thr./core) 60 (4 thr./core)

the MKL routines are called from the program which runs directly on the coprocessor, treated as a separate
processor.

In the offload mode, the indicated parts are executed on the coprocessor and the rest on CPU and thus, this
platform is treated as a hybrid CPU-MIC computing platform. Typically, the CPU controls the code execution
and the data transfer between the CPU and MIC. The programmer can indicate by himself which part of the
program will be executed on the coprocessor with the use of suitable pragmas or using the automatic offload
version of the MKL library (which is studied in this work). Only some computationally intensive level 3 BLAS
routines (GEMM, TRSM) and LAPACK functions (for example dgetrf and dgetrfnpi routine) can be called in
the automatic offload mode.

To obtain the good performance for these routines we need to use square matrices of the huge size. In the
automatic offload mode, the runtime system is responsible for workload division between the host (CPU) and
coprocessor (MIC). Moreover, it sends data between processing units. The programmer must only make some
alternations in the code. Calls to the mkl mic enable() routines in the code enable switching on the automatic
offload mode of the MKL library and switching off this mode is realised by mkl mic disable(). The programmer
may set the percentage of workload between the host and coprocessor by calling mkl mic set workdivision()

with proper parameters. In our code, we use MKL MIC AUTO WORKDIVISION which indicates that division of
workload between the host and coprocessor will be determined by the runtime system.

5. Thread Mapping. In this section, we briefly describe the thread mapping on MIC and on a hybrid
CPU-MIC platform. The thread mapping (which is included in the Intel runtime library) provides different
ways to bind the OpenMP threads to the hardware threads (we have 2 hardware threads per core on CPU
and 4 hardware threads per core on MIC). On CPU, there are three types, and on MIC, there are four types
of distribution of the OpenMP threads between hardware threads. The first one is compact type: threads
sequentially bound (one after another) to successive hardware threads. A single core is filled by two OpenMP
threads on CPU and four ones on MIC. The second type scatter: threads are bound sequentially to the
successive cores as evenly as possible across the entire system. Scatter is the opposite of compact. The third
type is balanced: threads are bound evenly to the successive hardware threads, which are the neighbouring
threads; this type does not exist on CPU. Using the fourth type, none, we leave out the order in which threads
are bound to the operating system.

In this research, we control the thread affinity using the environment variable KMP AFFINITY on CPU and
PHI KMP AFFINITY on MIC. We studied the OpenMP thread mapping strategies for matrix decompositions on
multicore architectures in our work [3]. The results showed that the choice of scatter has the measurable
impact on the executed time of the matrix factorisations on CPU. Thus, we set scatter for CPUs and change
only the value of the environment variable PHI KMP AFFINITY. To avoid threads migration between cores we set
the value granularity=thread for both the environment variables.

Table 5.1 shows the usage of the system with different affinity settings. We can see that for compact affinity,
the load balance is only ensured for 240 threads. For scatter and balanced settings, the load is always the
same, although the thread arrangement is different. We can also observe that the balanced with 60 threads
should be equivalent to scatter with 60 threads, and the balanced with 240 threads should be equivalent to
compact with 240 threads. It is because the threads in balanced mode are put on cores in sequence (e.g. for
120 threads — first and second on the first core etc.), and in scatter mode they are put in a round robin



An Experimental Evaluation of the OpenMP Thread Mapping for Some Factorisations on Xeon Phi Coprocessor 263

Table 6.1
Hardware and software used in the experiments

CPU MIC
2 × Intel Xeon E5-2670 v.3 Intel Xeon Phi 7120

(Haswell) (Knights Corner)

# cores 24 (12 per socket) 61
# threads 48 (2 per core) 244 (4 per core)
clock 2.30 GHz 1.24 GHz
level 1 instruction cache 32 kB per core 32 kB per core
level 1 data cache 32 kB per core 32 kB per core
level 2 cache 256 kB per core 512 kB per core
level 3 cache 30 MB —
SIMD register size 256 b 512 b
compiler Intel ICC 16.0.0 Intel ICC 16.0.0
BLAS/LAPACK libraries MKL 2016.0.109 MKL 2016.0.109

fashion (first on the first core, second on the second one etc.). Hence, the access to the memory is different.
We can see that some combinations can be eliminated at sight (like compact with 60 threads), because only
a part of the system works. Moreover, we should expect the best results for the full workload, that is for
240 threads. However, the scatter mode is not equivalent to compact and balanced. Thus, we expect it to
behave poorer because scatter is less cache-friendly and the threads in the tested algorithms prefer access to
neighbouring memory areas. On the other hand, the balanced mode reduces the data flow between caches of
different cores what gives a higher throughput and lower latency. So, the balanced mode should give the best
results, regardless of the number of threads.

6. Numerical Experiments. We tested the performance of two matrix factorisations, namely the block
LU factorisation with and without pivoting from the MKL library on Intel Xeon Phi using native mode and on
hybrid CPU-MIC platform using automatic offload mode. We compared four implementations:

• an optimised multithreaded implementation of the dgetrfnpi routine from the MKL library, which
computes the complete LU factorisation of a general matrix without pivoting. In our case, the matrices
are square, diagonally dominant and their size is n×n. In the implementation of the dgetrfnpi routine,
the panel factorisation (factorisation of a block of columns) is used, as well as the level 3 BLAS routines
(DTRSM and DGEMM). We denoted this LU factorisation implementation by LU without piv.
• an optimised multithreaded implementation of the dgetrf routine from the MKL library, which com-
putes the complete LU factorisation of a general matrix with pivoting. We denoted this LU factorisation
implementation by LU with piv.
• an optimised multithreaded implementation of the dgeqrf routine from the MKL library, which com-
putes the QR factorisation of a general matrix with pivoting. We denoted this QR factorisation imple-
mentation by QR.
• an optimised multithreaded implementation of the dpotrf routine from the MKL library, which com-
putes the Cholesky factorisation of a symetric positive-definite matrix. We denoted this Cholesky
factorisation implementation by Cholesky.

Table 6.1 shows details of the specification of the hardware and software used in the numerical experiments.
All the experiments reported below were performed with the use of the double-precision arithmetic. In the
automatic offload mode, we used all available cores on CPU and thus the number of threads was set to 24, and
we changed only the number of threads on the coprocessor.

6.1. LU factorisation without pivoting. Figure 6.1 presents the performance of the LU factorisa-
tion without pivoting in the function of matrix size on Intel Xeon Phi in native mode for the four values of
PHI KMP AFFINITY for a different number of the threads. For the native mode, we achieved the best performance
for the scatter value of this environment variable for 120 threads or the compact value for 240 threads. All the



264 B. Bylina, J. Bylina

 0

 100

 200

 300

 400

 500

 8192  10240  12288  14336  16384  18432  20480

G
lo

p
s

matrix size

Native, MKL LU without piv., PHI_KMP_AFFINITY=balanced

number of threads = 60
number of threads = 120
number of threads = 180
number of threads = 240

 0

 100

 200

 300

 400

 500

 8192  10240  12288  14336  16384  18432  20480

G
lo

p
s

matrix size

Native, MKL LU without piv., PHI_KMP_AFFINITY=compact

number of threads = 60
number of threads = 120
number of threads = 180
number of threads = 240

 0

 100

 200

 300

 400

 500

 8192  10240  12288  14336  16384  18432  20480

G
lo

p
s

matrix size

Native, MKL LU without piv., PHI_KMP_AFFINITY=scatter

number of threads = 60
number of threads = 120
number of threads = 180
number of threads = 240

 0

 100

 200

 300

 400

 500

 8192  10240  12288  14336  16384  18432  20480

G
lo

p
s

matrix size

Native, MKL LU without piv., PHI_KMP_AFFINITY=none

number of threads = 60
number of threads = 120
number of threads = 180
number of threads = 240

Fig. 6.1. The performance of the LU factorisation without pivoting (MKL library’s implementation) in the native mode on
Intel Xeon Phi — for different matrix sizes, number of the threads, and the thread mapping settings.

results are expected from Sect. 5 — besides balance with 240 threads (it should be the same as compact with
240 threads). The algorithm scales well with respect to the matrix size — except at the size of 16384. However,
when we consider scaling with respect to the number of the threads, it is only the case for the compact affinity;
other values give poor scalability with respect to the number of the threads. When we choose the none value
of the affinity settings, the performance is chaotic and the scalability is poor both with respect to the size and
to the threads — it is caused by the fact that the thread affinity is controlled by the operating system which
makes decisions about it not suitable for computing. The last issue demanding an explanation is a sudden drop
in performance at the size of 16384 = 214. It seems to be caused by the cache size — for the matrix size of
16384 the blocks fit in cache ideally and there is no room for other data.

Figure 6.2 presents the performance of the LU factorisation without pivoting in the function of matrix size
on hybrid CPU-MIC platform (with AO — automatic offload). In Fig. 6.2 (as well as in Figs. 6.3, 6.5 and 6.6),
cpu aff/mic aff denotes the affinity settings both for CPU (the first value) and for coprocessor (the second
value). The run-time reports say that the algorithm works exclusively on CPU up to the size of 14336 (the
run-time systems believes that including MIC cannot improve the performance for such small data), so there is
a poor scalability here. For bigger matrices, there is a performance drop, because the MIC gets some work and
it is somewhat slower then sole CPU; however, after that, the performance grows almost up to the earlier level.

Table 6.2 shows the percentage work division between CPU and MIC for the LU decomposition without
pivoting (for 24 threads on CPU and 240 threads on MIC). It is hard to determine the best number of threads
because the computations — even for big matrices — are performed mainly on CPU. Thus, all the sizes except
14336 perform similarly (with the performance of about 600 Gflops) — the matrix size and the Xeon Phi settings
(the number of threads and the affinity) matter little.

Figure 6.3 shows the performance of the LU factorisation in the function of the number of the threads for
the matrix size of 19456 on Intel Xeon Phi in native mode and on the hybrid CPU-MIC platform in automatic
offload mode for KMP AFFINITY=scatter on CPU and the different values for PHI KMP AFFINITY. We can see
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Fig. 6.2. The performance of the LU factorisation without pivoting (MKL library’s implementation) in the automatic offload
mode — for different matrix sizes, number of the threads, and the thread mapping settings.

Table 6.2
An exemplary percentage work division between CPU and MIC for the LU decomposition for the automatic offload

matrix DTRSM DGEMM

size CPU MIC CPU MIC

15360 91% 9% 97% 3%
74% 26% 84% 16%

16384 89% 11% 93% 7%
75% 25% 83% 17%

17408 97% 3% 92% 8%
93% 7% 83% 17%

19456 93% 7% 90% 10%
83% 17% 82% 18%

that the performance is better for the AO mode than the native mode. It is caused by the fact that our CPU
is generally faster than the Intel Xeon Phi and even employing both of them (as in AO mode), it is not easy to
boost the efficiency.

6.2. LU factorisation with pivoting. Figure 6.4 presents the performance of the LU factorisation with
pivoting in the function of matrix size on Intel Xeon Phi in native mode for the four values of PHI KMP AFFINITY

for a different number of the threads. For the native mode, we achieved the best performance for the balanced
and compact values of this environment variable (both for 240 threads). These were expected from the analysis
from Sect. 5. For the balanced and compact affinities, the algorithm scales very well with respect to both the
size of the matrix and the number of threads. The scatter affinity gives quite a nice scalability only up to the
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Fig. 6.3. The performance of the LU factorisation without pivoting (MKL library’s implementation) for the matrix size of
19456 on Intel Xeon Phi in the native mode (left) and on the hybrid CPU-MIC platform in the automatic offload mode (right).
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Fig. 6.4. The performance of the LU factorisation with pivoting (MKL library’s implementation) in the native mode on Intel
Xeon Phi — for different matrix sizes, number of the threads, and the thread mapping settings.

size 14336. The none affinity scales poor and is chaotic — just like for the version without pivoting, and for the
same reason. For all affinity settings, we can see a saw shape of the chart — these spikes and drops are results
of the relationship between the cache size and the size of the matrix.

Figure 6.5 presents the performance of the LU factorisation with pivoting in the function of matrix size on
the hybrid CPU-MIC platform (with AO) for KMP AFFINITY=scatter and 24 threads on CPU and the different
values of PHI KMP AFFINITY on MIC. The algorithm scales very well with respect to both the size of the matrix
and the number of threads. It seems that a lot of work is done on CPU (the report for this routine does not
show the percentage work division, although, it shows the time used by both parts of the hybrid system — see
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Fig. 6.5. The performance of the LU factorisation with pivoting (MKL library’s implementation) in the automatic offload
mode — for different matrix sizes, number of the threads, and the thread mapping settings.
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Fig. 6.6. The performance of the LU factorisation with pivoting (MKL library’s implementation) for the matrix size of 19456
on Intel Xeon Phi in the native mode (left) and on hybrid CPU-MIC Platforms in the automatic offload mode (right).

Fig. 6.7; the time on CPU is much bigger).

Figure 6.6 shows the performance of the LU factorisation with pivoting in the function of the number of
the threads for the matrix size of 19456 on Intel Xeon Phi in native mode and on hybrid CPU-MIC platform
in automatic offload mode for KMP AFFINITY=scatter on CPU and different values of PHI KMP AFFINITY. As
we can see, the native mode version achieves the better performance than the automatic offload mode one. It
seems that the former is very well optimised: it scales well with respect to both the number of threads and the
matrix size. The AO version demands some more development, because (potentially) it could achieve even 1000
Gflops — taking into account combined forces of both the processing units.
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[MKL] [MIC --] [AO Function] DGEMM

[MKL] [MIC --] [AO DGEMM Workdivision] 0.91 0.09

[MKL] [MIC 00] [AO DGEMM CPU Time] 0.275540 seconds

[MKL] [MIC 00] [AO DGEMM MIC Time] 0.170474 seconds

[MKL] [MIC 00] [AO DGEMM CPU->MIC Data] 33423360 bytes

[MKL] [MIC 00] [AO DGEMM MIC->CPU Data] 3932160 bytes

[MKL] [MIC --] [AO Function] DTRSM

[MKL] [MIC --] [AO DTRSM Workdivision] 0.97 0.03

[MKL] [MIC 00] [AO DTRSM CPU Time] 0.277691 seconds

[MKL] [MIC 00] [AO DTRSM MIC Time] 0.041793 seconds

[MKL] [MIC 00] [AO DTRSM CPU->MIC Data] 125829120 bytes

[MKL] [MIC 00] [AO DTRSM MIC->CPU Data] 7864320 bytes

[...9 analogous calls hidden...]

[MKL] [MIC --] [AO Function] DGEMM

[MKL] [MIC --] [AO DGEMM Workdivision] 0.91 0.09

[MKL] [MIC 00] [AO DGEMM CPU Time] 0.066654 seconds

[MKL] [MIC 00] [AO DGEMM MIC Time] 0.044188 seconds

[MKL] [MIC 00] [AO DGEMM CPU->MIC Data] 33423360 bytes

[MKL] [MIC 00] [AO DGEMM MIC->CPU Data] 3932160 bytes

[MKL] [MIC --] [AO Function] DGETRF

[MKL] [MIC --] [AO DGETRF Workdivision] -1.00 -1.00

[MKL] [MIC 00] [AO DGETRF CPU Time] 4.737727 seconds

[MKL] [MIC 00] [AO DGETRF MIC Time] 3.010779 seconds

[MKL] [MIC 00] [AO DGETRF CPU->MIC Data] 2796011520 bytes

[MKL] [MIC 00] [AO DGETRF MIC->CPU Data] 1242562560 bytes

Fig. 6.7. Automatic offload reports generated by MKL’s LU factorisation routines for the matrix size 15360 — without pivoting
(top; fragments) and with pivoting (bottom; whole). The reports for MKL’s QR and Cholesky factorisations are analogous to the
one for MKL’s LU factorisation with pivoting (bottom).

6.3. Comparison of the pivot and non-pivot version. The peak performance of the AO mode is
about 600 Gflops — the same for LU without pivoting and LU with pivoting. It arises from the fact that much
more computations are performed on CPU (see Fig. 6.7) and both CPU versions seems equally optimised.
However, in the native mode, LU without pivoting performs much worse (about 400 Gflops) than LU with
pivoting (about 650 Gflops) — which is very surprising. Moreover, if we expected any differences, they would
be in favour of the version without pivoting. However, from Fig. 6.7 we can see that the implementations of
both factorisations are substantially different. It seems that they are very various algorithms, the pivot one
being an implementation of the original LAPACK algorithm. Also, [16] says that this algorithm uses Intel
Threaded Building Blocks and nothing like that is said about the non-pivot routine.

6.4. QR and Cholesky factorisations. Figures 6.8 and 6.9 present the performance of the QR and
Cholesky factorisations in the function of matrix size on Intel Xeon Phi in native mode for the four values of
PHI KMP AFFINITY for a different number of the threads.

Figures 6.10 nad 6.11 present the performance of the QR and Cholesky factorizationthe function of matrix
size on the hybrid CPU-MIC platform (with AO) for KMP AFFINITY=scatter and 24 threads on CPU and the
different values of PHI KMP AFFINITY on MIC.

Figures 6.12 and 6.13 show the performance of the QR and Cholesky factorisations in the function of
the number of the threads for the matrix size of 19456 on Intel Xeon Phi in native mode and on hybrid
CPU-MIC platform in automatic offload mode for KMP AFFINITY=scatter on CPU and different values of
PHI KMP AFFINITY.

The performance results of the QR and Cholesky factorisations are consistent with the results of the LU
factorisation with pivoting.
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Fig. 6.8. The performance of the QR factorisation (MKL library’s implementation) in the native mode on Intel Xeon Phi —
for different matrix sizes, number of the threads, and the thread mapping settings.
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Fig. 6.9. The performance of the Cholesky factorisation (MKL library’s implementation) in the native mode on Intel Xeon
Phi — for different matrix sizes, number of the threads, and the thread mapping settings.
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Fig. 6.10. The performance of the QR factorisation with pivoting (MKL library’s implementation) in the automatic offload
mode — for different matrix sizes, number of the threads, and the thread mapping settings.
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Fig. 6.11. The performance of the Cholesky factorisation with pivoting (MKL library’s implementation) in the automatic
offload mode — for different matrix sizes, number of the threads, and the thread mapping settings.
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Fig. 6.12. The performance of the QR factorisation (MKL library’s implementation) for the matrix size of 19456 on Intel
Xeon Phi in the native mode (left) and on hybrid CPU-MIC Platforms in the automatic offload mode (right).
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Fig. 6.13. The performance of the Cholesky factorisation (MKL library’s implementation) for the matrix size of 19456 on
Intel Xeon Phi in the native mode (left) and on hybrid CPU-MIC Platforms in the automatic offload mode (right).

7. Discussion.

7.1. Thread Mapping. It is obvious from the experiments that the proper setting of the thread mapping
improves the performance. Moreover, the performance of the three factorisations is sensitive to the thread
mapping. The best setting is balanced (see also Sect. 5), for all the tested number of threads and modes.
The balanced thread affinity is the best because it uses well the system computing power and the cache at
the same time. The none setting is the worst and largely unpredictable (because all the decisions are passed
to the operating system and the threads can wonder freely between cores) and it should not be used in serious
computational applications. The scatter affinity gives the second worst performance. All the performance
results of the LU factorisation with pivoting, as well as QR and Cholesky facorisations (especially in native
mode) confirm our analysis from Sect. 5.

7.2. Number of threads. All the factorisations effectively utilize a large number of cores in the native
mode. Thus, it is the best to use all the cores with hyperthreading (that gives 240 threads, that is, 4 threads
per core). That way, we use the computing power of the Intel Xeon Phi the most efficiently. On the other hand,
the number of the threads has no impact on the performance in the automatic offload mode at all — the AO
mode is controlled by the library.

7.3. Mode. If we can afford the native mode, we should rather use it — the native mode is better optimised
than the automatic offload for the LU and Cholesky factorisations with pivoting. On the contrary, the AO is
better than the native mode for the QR factorisation. It shows that this factorisation could be more optimised
for the MAC architecture.
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Fig. 7.1. The performance of the LU factorisation without pivoting (MKL library’s implementation) in the native mode on
Intel Xeon Phi — for different matrix sizes, number of the threads, and the balanced thread mapping setting (cache associativity).
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Fig. 7.2. The performance of the LU factorisation with pivoting (MKL library’s implementation) in the native mode (left)
and in the automatic offload mode (right) on Intel Xeon Phi — for different matrix sizes, number of the threads, and the balanced

thread mapping setting (cache associativity).

The LU factorisation with pivoting is the most highly optimised of these three factorizations in native mode.
On the other hand, the LU factorisation without pivoting performs completely differently than three other

factorisations — and it is caused by the fact that it works (and was written) completely differently — which is
proven by Fig. 6.7.

7.4. Cache associativity. To test the influence of the cache associativity on the performance we should
investigate the behaviour of the subject algorithms for the matrix of the size around 8192 × 8192 — because
8192 double-precision floats occupies 32 kB which is the size of the L1 cache. However, for this size, the
algorithms do not utilize all the computing power (they enter the automatic offload mode only for significantly
larger matrices). On the other hand, we got some performance drop around the size 16384× 16384 (and 16384
double-precision floats is twice the size of the L1 cache), and that is why we decided to take a look at sizes
around this number. In this manner we can investigate the cache associativity.

All the tests for cache associativity were performed only for the balanced thread affinity, as it proved the
best for tested algorithms.

7.4.1. LU without pivoting. Figure 7.1 shows the performance of the LU facorisation without pivoting
for the matrix sizes about 16384. We present only the native mode, because — as we see in Figure 6.2 —
in the automatic offload mode, there is no efficiency drop around this size. The figure shows that there is
a performance drop around 16384 (although the number itself is a weak local maximum). The performance
minimum does not have to be precisely at the multiple of cache size, because there are some more auxiliary
variables, but it is clearly visible for all the thread mappings.



An Experimental Evaluation of the OpenMP Thread Mapping for Some Factorisations on Xeon Phi Coprocessor 273

 0

 100

 200

 300

 400

 500

 600

 700

 800

 16380  16382  16384  16386  16388  16390

G
lo

p
s

matrix size

Native, MKL QR, PHI_KMP_AFFINITY=balanced

number of threads = 60
number of threads = 120
number of threads = 180
number of threads = 240

 0

 100

 200

 300

 400

 500

 600

 700

 800

 16380  16382  16384  16386  16388  16390

G
lo

p
s

matrix size

Automatic Offload, MKL QR, PHI_KMP_AFFINITY=balanced

number of threads = 60
number of threads = 120
number of threads = 180
number of threads = 240

Fig. 7.3. The performance of the QR factorisation (MKL library’s implementation) in the native mode on Intel Xeon Phi
(left) and in the automatic offload mode (right) — for different matrix sizes, number of the threads, and the balanced thread
mapping setting (cache associativity).
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Fig. 7.4. The performance of the Choleski factorisation (MKL library’s implementation) in the native mode on Intel Xeon
Phi (left) and in the automatic offload mode (right) — for different matrix sizes, number of the threads, and the balanced thread
mapping setting (cache associativity).

7.4.2. LU with pivoting. Figure 7.2 shows the performance of the LU facorisation with pivoting for the
matrix sizes about 16384. However, here we present both the native mode and the automatic offload mode. In
the native mode, there is an efficiency drop around 16384, but again, in the 16384 we have a clear although
local maximum. On the other hand, in the automatic offload mode we can see almost a flat line around 16384,
which is lower than the neighbourhood. Again, all the thread mappings behave similarly.

7.4.3. QR and Cholesky. Figures 7.3 and 7.4 show the behaviour of the QR and Cholesky (respectively)
factorisations around the size 16384 in both modes (left: native, right: automatic offload). The plots are quite
similar to the respective plots for the LU factorisation with pivoting, although the local maximum in 16384 in
the native mode is very slight. So, the cache associativity is shown in both modes, independent of the thread
mapping.

8. Conclusion. The paper reports the effect of thread-mapping for the LU (without and with pivoting),
QR and Cholesky factorisations from MKL library on Intel Xeon Phi and the hybrid CPU-MIC platform. Our
results showed that there is one thread mapping strategy adapted for all optimised factorisation on Xeon Phi,
namely balanced. Determining the most efficient OpenMP thread mapping depends highly on the number of
thread and it sets the system load. It is surprised that the performance of MKL’s dgetrf (LU factorisation with
pivoting) is much better than MKL’s dgetrfnpi (LU factorisation without pivoting) on KNC in native mode.
This situation indicates that Intel does not optimise dgetrfnpi for KNC. However, it should be very easy for
them to make optimised dgetrfnpi, by just removing the pivoting code from dgetrf. In the native mode,
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the LU with pivoting, QR and Cholesky factorisations are scalable on Intel Xeon Phi but the LU factorisation
without pivoting is not. The comparison given here gives good insight into the performance properties of
the different factorisation algorithms on Intel Xeon Phi and hybrid CPU-MIC platform. These results can be
generalised as the paper gives the performance analysis of some other similar algorithms (namely, the QR and
Cholesky factorisations). In future works, the authors plan to research the impact of the thread mapping on
the performance and the energy saving for other applications from the domain of the dense linear algebra on
shared memory multicore and manycore architectures and to compare it with the results obtained in this work.
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Abstract. The presented study analyses memory footprints of 563 representative benchmark sparse matrices with respect to
their partitioning into uniformly-sized blocks. Different block sizes and different ways of storing blocks in memory are considered
and statistically evaluated. Memory footprints of partitioned matrices are then compared with their lower bounds and CSR, index-
compressed CSR, and EBF storage formats. The results show that block-based storage formats may significantly reduce memory
footprints of sparse matrices arising from a wide range of application domains. Additionally, measured consistency of results is
presented and discussed, benefits of individual formats for storing blocks are evaluated, and an analysis of best-case and worst-case
matrices is provided for in-depth understanding of causes of memory savings of block-based formats.
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1. Introduction. The way how sparse matrices are stored in a computer memory may have a significant
impact on the required memory space, i.e., on the matrix memory footprints. Reduction of matrix memory
footprints may positively influence related computations and executions of corresponding programs [14, 23, 20,
21]. One way of reducing memory footprints of sparse matrices is their partitioning into blocks. Much has been
written about block processing of sparse matrices, frequently in the context of memory-bounded character of
sparse matrix-vector multiplication (SpMV) [3, 4, 5, 6, 7, 8, 9, 10, 13, 16, 17, 18, 19, 24, 25, 27, 28, 30, 29, 31,
32, 33, 34, 35]. In this article, we address the problem of minimizing memory footprints of sparse matrices by
their partitioning into uniformly-sized blocks. Its solution raises two essential questions:

1. How to choose a suitable block size?
2. How to store resulting nonzero blocks in a computer memory?

These questions form a multi-dimensional optimization problem that needs to be solved prior to the partitioning
itself. We refer to both these problems—optimization and partitioning—as (block) preprocessing.

The above introduced optimization problem raises another question: How to specify the optimization space,
i.e., the space of tested configurations? Intuitively, the larger the optimization space is, the lower matrix memory
footprint can be found, however, at a price of longer preprocessing runtime. To amortize block processing of
a sparse matrix, the optimization space thus need to be chosen wisely in a form of a trade-off: we want it to
be small enough to ensure its fast exploration but also large enough to contain the optimal or nearly-optimal
configuration generally for any sparse matrix.

We present a study that analyses memory footprints of 563 representative sparse matrices from the Uni-
versity of Florida Sparse Matrix Collection (UFSMC) [11] with respect to their partitioning into uniformly
sized blocks. These matrices arose from a large variety of applications of multiple problem types and thus have
highly diverse structural and numerical properties. Our goal is to minimize memory footprints of matrices and
we consider an optimization space that consists of different block sizes and different ways of storing blocks in
memory. Based on the obtained results, we finally provide suggestions for both efficient and effective block
preprocessing of sparse matrices in general.

This article is an extended version of our conference paper [21]. It recapitulates main contributions of the
paper and adds new material, which mainly covers following subjects:

1. To assess representativeness of benchmark matrices, we measured the consistency of results across
randomly selected subsets of these matrices (see Section 3.5).
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2. We investigated influence of individual storage formats to the results and show that there is practically
no reason to use the CSR storage format for storing blocks (see Section 3.6).

3. Originally, memory footprints of matrices were compared with their lower bounds and with 32-bit
indexed CSR storage format (CSR32), which is the most commonly used format in practice. However,
in our block-based approach, we assume index compression. It makes therefore sense to compare
memory footprints of matrices also with index-compressed implementation of CSR (see Section 3.8).

4. We show that the lower bound for matrix memory footprint is the amount of memory required to store
the values of matrix nonzero elements [25, 21]. However, in practice, we can approach this lower bound
only if we make some assumptions about a matrix structure. Without such assumptions, i.e., in generic
cases, we can define another lower bound for memory footprints of sparse matrices that stems from
compression of data about matrix nonzero structure. This concept is used by so-called entropy-based
format (EBF) and within this article, we present memory footprints of matrices compared to EBF as
well (see Section 3.9).

5. We provide statistical analysis of measured memory footprints with respect to CSR32 as a function
of some of their characteristics, namely their application domain, density of nonzero elements, and
deviation of number of nonzero elements per rows (see Section 3.7).

6. We provide in-depth analysis of best-case and worse-case matrices, which are matrices most suitable
and unsuitable for block processing, respectively. This analysis allows better understanding of our
block-based concepts and may clarify some of their aspects (see Section 3.11).

Some parts of the original paper were shortened or omitted.

2. Methodology. In Section 1, we referred to a matrix memory footprint as to an amount of memory
space required to store a given matrix in a computer memory. More precisely, we can define it as a number
of bits (or bytes) that is needed to store the values of the nonzero elements of a given matrix together with
the information about their structure, i.e., their row and column positions. The ways how sparse matrices are
stored in a computer memory are generally called sparse matrix storage formats; we call them formats only if
the context is clear. Matrix memory footprint is thus a function of a given matrix and a used format (memory
footprints for the same matrix but distinct formats may differ considerably).

2.1. Block Storage Schemes. In case of partitioned sparse matrices, their nonzero blocks represent
individual submatrices that can be treated separately. In practice, well-proven formats used for nonzero blocks
of sparse matrices are:

• The coordinate (COO) format, which stores values of block nonzero elements together with their row
and column indices [6, 24, 30].
• The compressed sparse row (CSR) format, which stores values and column indices of lexicographically
ordered block nonzero elements together with the information about which values / column indices
belongs to which block row [24, 27, 28, 30].
• The bitmap format, which stores values of block nonzero elements in some prescribed order and encodes
their row and column indices in a bit array [7, 18, 24].
• The dense format, which stores values of both nonzero and zero block elements in a dense array (row
and column indices of nonzero elements are thus effectively determined by positions of their values
within this array) [2, 16, 17, 24].

Considering these formats, we have 6 options how to store nonzero blocks of a sparse matrix in memory:
1. store all the blocks in the COO format,
2. store all the blocks in the CSR format,
3. store all the blocks in the bitmap format,
4. store all the blocks in the dense format,
5. store all the blocks in the same format such that the format minimizes the memory footprint of a given

matrix (we refer to this option as min-fixed),
6. store each block generally in a different format such that the format minimizes the contribution of this

block to the memory footprint of a given matrix (we refer to this option as adaptive).
We call these options block storage schemes, or shortly schemes only. Since the first 4 schemes prescribe a fixed
format for all the blocks, we call them fixed-format schemes.
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For the min-fixed and adaptive schemes, we consider formats for nonzero blocks to be chosen from COO,
CSR, bitmap, and dense. In case of the min-fixed scheme, the matrix memory footprint thus contains 2
additional bits for storing the information about the format used for all the nonzero blocks. In case of the
adaptive scheme, the matrix memory footprint contains 2 additional bits for each nonzero block to store the
information about its format.

2.2. Block Sizes. To evaluate memory footprints of a given matrix for different schemes and some par-
ticular tested block size, we need information about numbers of nonzero elements of all nonzero blocks [24].
In the end, this information must be obtained for each distinct block size from the optimization space, which
represents the most demanding part of the whole optimization process [22]. The block preprocessing runtime is
thus approximately proportional to the number of distinct tested block sizes. Consequently, the lower is their
count, the higher are the chances that the partitioning will be profitable at all.

Generally, there is O(m×n) ways how to set a block size for anm×nmatrix, but for fast block preprocessing,
we need to choose only few of them.1 One possible approach is to consider only block sizes

2k × 2ℓ, where 1 ≤ k ≤ K and 1 ≤ ℓ ≤ L, (2.1)

which reduces the number of tested block sizes to K × L. The rationale behind such a choice consists, e.g., of
much faster block preprocessing, full employment of bits for storing in-block row and column indices, higher
utilization of caches, and possible storage of block elements in Z-Morton order [26] (for detailed explanation of
these aspects, see [21]).

Within the presented study, we consider block sizes (2.1) and set K = L = 8. The choice of these upper
bounds stemmed from our auxiliary experiments which showed that space-optimal block sizes have mostly less
than 64 rows/columns. Taking into account block sizes with up to 256 rows/columns should cover even the
remaining corner cases.

Consequently, each m × n matrix is further treated as a set of block matrices of sizes ⌈m/2k⌉ × ⌈n/2ℓ⌉,
where 1 ≤ k, ℓ ≤ 8.

2.3. Optimization Space. In the summary, our optimization space is initially defined by S6×B64, where
S6 denotes a set of selected block storage schemes:

S6 =
{
COO,CSR, bitmap, dense,min-fixed, adaptive

}
(2.2)

and B64 denotes a set of selected block sizes:

B64 =
{
2k × 2ℓ : 1 ≤ k, ℓ ≤ 8

}
. (2.3)

2.4. Additional Considerations. Additionally, when measuring matrix memory footprints, we need to
decide how to represent information about nonzero blocks and how to represent indices. In the presented study,
we assume:

1. nonzero blocks stored in memory in the lexicographical order;
2. explicit storage of block column index for each nonzero block;
3. storage of the number of nonzero blocks for each block row;
4. a minimum possible number of bits, i.e., ⌈log2 n⌉ bits, to store an index related to n entities (such an

approach is in the literature sometimes referred to as index compression).

2.5. Benchmark Matrices. Sparse matrices are often divided into two main categories—high perfor-
mance computing (HPC) matrices and graph matrices, the latter being binary matrices for unweighted graphs.
Efficient processing of graph matrices is generally governed by special rules that are different from those being
effective for HPC matrices [1, 8, 36] (e.g., higher matrix memory footprints in some cases lead to higher perfor-
mance of computations and graph matrices are also typically not suitable for simple block processing mainly due

1In addition to multiplication and Cartesian product, we also use the multiplication sign “×” to specify matrix/block sizes. In
such cases, m × n does not denote multiplication, but a matrix/block size of height m and width n (i.e., having m rows ans n
columns).
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Table 2.1
Counts of tested matrices falling under particular problem types (referred to as “kinds” in the UFSMC).

Problem Matrices

2D/3D 36
acoustics 4
chemical process simulation 25
circuit simulationi 41
computational fluid dynamics 47
computer graphics/vision 8
counter-example 2
duplicate model reduction 5
economic 24
eigenvalue/model reduction 2
electromagnetics 11
frequency-domain circuit sim. 4

Problem Matrices

least squares 7
linear programming 51
materials 15
model reduction 11
optimization 66
power network 35
semiconductor device 16
statistical/mathematical 1
structural 82
theoretical/quantum chem. 42
thermal 11
weighted graph 17

to emergence of hypersparse blocks [7, 8]). Within this work, we focused mainly (but not exclusively) on HPC
matrices. Particularly, for experiments, we took real matrices from the UFSMC that contained more than 105

nonzero elements and that exhibited a unique structure of nonzero elements.2 This way, we obtained 563 sparse
matrices arising from different application problems (see Table 2.1) and thus having different structural (and
numerical) properties; we denote these matrices by A1, . . . , A563. Of these matrices, 281 were square symmetric
and the remaining 282 were either rectangular or square unsymmetric.

For symmetric matrices, we always assume storage only of their single triangular parts in memory, which
is a common practice. When referring to the number of nonzero elements of a matrix, we thus generally need
to distinguish between the number of all nonzero elements and the number of elements that are assumed to be
stored in a computer memory. While measuring memory footprints of sparse matrices, we take into account the
latter one.

2.6. Matrix Memory Footprint. According to the text above, a matrix memory footprint for a sparse
matrix Ak partitioned into uniformly-sized blocks is a function of the following parameters:

1. a sparse matrix itself (Ak),
2. a block storage scheme s ∈ S6,
3. a block size h× w ∈ B64,
4. a number of bits b required to store a value of a single matrix nonzero element.

We denote this function by MMF�(Ak, s, w×h, b). We further assume storing values of matrix nonzero elements
in either single or double precision IEEE floating-point format [15], which implies b = 32 or b = 64, respectively,
in case of real matrices. We refer to such a floating-point precision as precision only.

We say that a matrix memory footprint for a given matrix A and a given precision determined by b is
optimal (with respect to our work) if it equals

min
{
MMF�(A, s, h× w, b) : s ∈ S6, h× w ∈ B64

}
. (2.4)

We call the corresponding block storage scheme and block size optimal as well.

2.7. Optimization Subspaces. Let S ⊆ S6 and B ⊆ B64. S×B thus define a subspace of the optimization
space S6 × B64. Let

∆b
S,B(k) =

(
min

{
MMF�(Ak, s, h× w, b) : s ∈ S, h× w ∈ B

}
min

{
MMF�(Ak, s, h× w, b) : s ∈ S6, h× w ∈ B64

} − 1

)
× 100. (2.5)

2As for April, 2016.
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Table 3.1
Minimum, average and maximum values of Ub

s,B64
(in percents).

Single precision (b = 32) Double precision (b = 64)

Scheme (s) Minimum Average Maximum Minimum Average Maximum

COO 0.00 4.78 15.27 0.00 2.52 7.67
CSR 0.73 6.84 19.13 0.41 3.74 11.05
bitmap 0.00 3.13 22.01 0.00 1.75 12.38
dense 0.00 84.61 217.04 0.00 92.40 249.02
min-fixed 0.00 1.19 5.41 0.00 0.64 2.94
adaptive 0.00 0.10 2.24 0.00 0.05 1.30

This function expresses of how much percent is the minimal memory footprint of Ak from S ×B higher (worse)
than its optimal memory footprint. To assess the subspace S × B, we define the following parametrized set

Ub
S,B =

{
∆b

S,B(k) : 1 ≤ k ≤ 563
}
. (2.6)

The minimum, mean (average; µ), and maximum of Ub
S,B then reflect the best, average, and worst cases,

respectively, for S ×B across the tested matrices. If S or B consists of a single element only, we omit the curly
braces in the subscript of U for the sake of readability; e.g., we write Ub

s,B64
and Ub

S6,h×w instead of Ub
{s},B64

and

Ub
S6,{h×w}.

3. Results and Discussion.

3.1. Block Storage Schemes. First, we assessed block storage schemes. Complete statistics of Ub
s,B64

are presented in Table 3.1 and lead to the following observations:
• No fixed-format scheme minimized matrix memory footprints in comparison with the others. Bitmap
was the best in average, however, it was inferior to both COO and CSR in worst cases.
• Dense provided extremely high matrix memory footprints in average and worst cases. Due to the
explicit storage of zero elements, this scheme is suitable only for kinds of matrices that contain highly
dense blocks; obviously, there were only few such matrices in our tested suite.
• The lowest memory footprints were provided by the min-fixed and adaptive schemes; their numbers are
considerably lower in comparison with the fixed-format schemes.

3.2. Block Sizes. Similarly as block storage schemes, we assessed block sizes. Figure 3.1 shows for how
many tested matrices were individual block sizes optimal in case of double precision measurements; for single
precision, the results differed only for 2 matrices. We may observe that some block sizes were especially
favourable. The 8× 8 block size was optimal for 257 matrices, which corresponds to 45.6% of their total count.
Together with 4 × 4 and 16 × 16, these 3 block sizes were optimal for 65.2% of tested matrices. However,
the numbers from Figure 3.1 reflect only best cases. To find out how much were particular block sizes better
than the others in average and for their worst-cases matrices, we present the average and maximum values of
Ub
S6,h×w in Tables 3.2 and 3.3 for single and double precision, respectively. According to these results, some

blocks sizes—especially 8× 8—provided alone average matrix memory footprints close to their optimal values.
However, there was not a single block size that would yield the same outcome for all the tested matrices; the
maxima were for all the block sizes relatively high.

3.3. Subsets of Block Sizes. Let us remind that one of our goals is a possible reduction of the number
of block sizes in the optimization test space. The question thus is whether there is some subset B ⊂ B64 that
would, at the same time:

1. significantly reduce the number of block sizes (|B|),
2. provide matrix memory footprints close to their optimal values for most of the tested matrices (average

of Ub
S6,B

close to zero),

3. provide low matrix memory footprints for all the tested matrices (low maximum of Ub
S6,B

).
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Fig. 3.1. Numbers of tested matrices for which are block sizes optimal, measured for double precision; block size 8 × 8 was
optimal for 257 matrices.

Table 3.2
Average and maximum values of U32

S6,h×w (in percents), sorted by average.

.
Rank h× w Avg. Max.

1 8×8 1.23 18.36
2 8×16 2.14 19.35
3 16×8 2.26 21.41
4 4×8 2.32 17.31
5 8×4 2.38 19.52
6 16×16 2.56 21.82
7 4×4 2.92 21.94
8 4×16 2.99 16.51
9 16×4 3.23 20.44
10 8×32 3.65 21.26

Rank h× w Avg. Max.

11 16×32 4.03 23.75
12 32×8 4.13 23.97
13 4×32 4.36 18.71
14 32×16 4.53 24.45
15 32×4 4.87 23.60
16 32×32 5.20 26.50
. . . . . . . . . . . .
62 256×2 14.44 37.33
63 256×128 14.61 38.32
64 256×256 14.65 35.42

Based on the analysis presented in detail in [21], we propose the following reduced sets of block sizes:

B8 =
{
2k × 2k : 1 ≤ k ≤ 8

}
, (3.1)

B14 = B8 ∪
{
2k × 2ℓ : 2 ≤ k, ℓ ≤ 4

}
, (3.2)

B20 = B8 ∪
{
2k × 2ℓ : 2 ≤ k, ℓ ≤ 5

}
. (3.3)

A subscript i in Bi expresses the number of its block sizes, i.e., |Bi| = i.
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Table 3.3
Average and maximum values of U64

S6,h×w (in percents), sorted by average.

.
Rank h× w Avg. Max.

1 8×8 0.69 11.07
2 8×16 1.18 11.67
3 16×8 1.25 12.91
4 4×8 1.30 9.74
5 8×4 1.33 10.98
6 16×16 1.40 13.16
7 4×4 1.63 12.34
8 4×16 1.66 9.96
9 16×4 1.79 12.32
10 8×32 1.99 11.97

Rank h× w Avg. Max.

11 16×32 2.19 12.84
12 32×8 2.26 14.45
13 4×32 2.40 10.56
14 32×16 2.47 14.04
15 32×4 2.68 14.23
16 32×32 2.82 14.18
. . . . . . . . . . . .
62 256×2 7.88 21.59
63 256×128 7.92 19.56
64 256×256 7.93 18.96

Table 3.4
Average and maximum values of Ub

s,Bj
(in percents) for j ∈ {64, 20, 14, 8}.

(a) Single precision (b = 32)
s = min-fixed s = adaptive

Block sizes Average Maximum Average Maximum

B64 1.19 5.41 0.10 2.24
B20 1.32 6.23 0.22 4.21
B14 1.35 6.89 0.28 6.81
B8 1.51 10.06 0.51 11.07

(b) Double precision (b = 64)
s = min-fixed s = adaptive

Block sizes Average Maximum Average Maximum

B64 0.64 2.94 0.05 1.30
B20 0.71 3.52 0.12 2.37
B14 0.73 3.77 0.16 3.83
B8 0.81 5.34 0.28 5.88

3.4. Reduced Optimization Subspaces. Table 3.1 revealed that to minimize memory footprints of (all)
the tested matrices, we had to use either the min-fixed or the adaptive block storage scheme. To reduce the
block preprocessing overhead, we now proposed several reduced sets of block sizes. Let us now assess these
options together. We measured the statistics of Ub

s,Bj
for all the combinations of s ∈ {min-fixed, adaptive} and

j ∈ {64, 20, 14, 8}; the results are presented in Table 3.4. The average matrix memory footprints were in all
cases close to their optimal values.

3.5. Consistency. Up to now, we have presented measurements conducted for all 563 tested matrices. To
assess their “representativeness”, we measured the consistency of memory footprints statistics across randomly
selected subsets of these matrices. Such an experiment should reveal to which extent are our measurements
sensitive to the set of input matrices.

Let R(i)
n denote an ith set of n randomly selected tested matrices; different i thus allows us to distinguish

different random selections. Let K(i)
n denote a set of matrix indices from R(i)

n , thus R(i)
n =

{
Ak : k ∈ K(i)

n

}
. Let

Vb,(i)
s,Bj ,n

=
{
∆b

s,Bj
(k) : k ∈ K(i)

n

}
. (3.4)



282 D. Langr, I. Šimeček

Table 3.5
Standard deviations of avgVb,(i)

s,Bj ,200
and maxVb,(i)

s,Bj ,200
(in percents) for 1 ≤ i ≤ 50.

(a) Single precision (b = 32)
s = min-fixed s = adaptive

Block sizes Average Maximum Average Maximum

B64 0.06 0.33 0.02 0.24
B20 0.07 0.37 0.03 0.64
B14 0.08 0.42 0.04 1.41
B8 0.09 0.86 0.07 1.40

(b) Double precision (b = 64)
s = min-fixed s = adaptive

Block sizes Average Maximum Average Maximum

B64 0.03 0.19 0.01 0.14
B20 0.04 0.23 0.02 0.29
B14 0.04 0.22 0.02 0.82
B8 0.05 0.50 0.04 0.61

Vb,(i)
s,Bj ,n

thus expresses of how much percents are memory footprints of matrices from R(i)
n —measured for scheme

s, a set of block sizes Bj , and a precision given by b—higher than their optimal memory footprints. Similarly

as before, we were interested in average and maximum values of Vb,(i)
s,Bj ,n

; let them denote by avgVb,(i)
s,Bj ,n

and

maxVb,(i)
s,Bj ,n

, respectively. To assess the consistency introduced above, we measured standard deviations of these
metrics for 50 sets of 200 randomly selected tested matrices, i.e., standard deviations of the following sets:{

avgVb,(i)
s,Bj ,200

: 1 ≤ i ≤ 50
}

and
{
maxVb,(i)

s,Bj ,200
: 1 ≤ i ≤ 50

}
. (3.5)

The results obtained for the min-fixed and adaptive schemes, sets of blocks sizes B64,B20,B14,B8, and both
precisions are shown in Table 3.5.

The measured standard deviations are of 1 to 2 orders of magnitude lower than the corresponding numbers
from Table 3.4. By normalizing the standard deviations (with respect to Table 3.4), we found out that the
standard deviations ranged from 5.16 to 9.28 percents for the min-fixed scheme and from 10.30 to 21.33 percents
for the adaptive scheme. Seemingly, the min-fixed scheme provides more consistent relative memory footprints
of matrices with respect to their optimal values, while the adaptive scheme is more sensitive to the selection of
matrices. Note, however, that the measured standard deviations were according to Table 3.5 in all cases relatively
small with the maximum value 1.41; recall that these numbers are relative differences in percents between optimal
matrix memory footprints and those measured for particular tested configurations. Especially, the standard
deviations for average metrics are practically negligible, which manifests high level of representativeness of the
tested matrices.

3.6. Block Storage Schemes Without CSR. We have defined the min-fixed and adaptive block storage
schemes such that the format used for storing blocks is selected—from COO, CSR, bitmap, and dense—either
for all blocks collectively or for each block separately; the corresponding results were presented by Table 3.4.
However, we were also interested in how these results would change if we modified the min-fixed and adaptive
schemes by excluding individual formats. We carried out such measurements and their results revealed that:

1. without the COO or bitmap format, the memory footprints of matrices grew significantly;
2. without the CSR or dense formats, the memory footprints of matrices grew negligibly;
3. without both the CSR and dense formats, the memory footprints of matrices grew negligibly as well.

The question therefore is whether the CSR and dense formats are at all useful for storing blocks. Based on
our knowledge and experience, we would not suggest to exclude the dense format. Though this format is optimal
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Table 3.6
Average and maximum values of Ub

s,Bk
(in percents) for k ∈ {64, 20, 14, 8} with excluded CSR.

(a) Single precision (b = 32)
s = min-fixed-w/o-CSR s = adaptive-w/o-CSR

Block sizes Average Maximum Average Maximum

B64 1.20 5.55 0.15 2.24
B20 1.32 6.44 0.26 4.22
B14 1.35 6.89 0.31 6.82
B8 1.51 10.06 0.54 11.07

(b) Double precision (b = 64)
s = min-fixed-w/o-CSR s = adaptive-w/o-CSR

Block sizes Average Maximum Average Maximum

B64 0.65 3.01 0.09 1.30
B20 0.71 3.52 0.15 2.37
B14 0.73 3.77 0.18 3.84
B8 0.82 5.34 0.30 5.88

in rare cases only, it is likely the most efficient format for matrix computations. For example, multiplication of
a block stored in the dense format with a corresponding vector part can be performed by invoking a relevant
operation from some dense linear algebra library, such as BLAS [12]. In practice, every HPC system provides
at least one optimized implementation of such a library that is highly-tuned for a given hardware architecture
(e.g., ATLAS, BLIS, Cray LibSci, IBM ESSL, Intel MKL, OpenBLAS, etc.).

On the contrary, CSR does not provide the same benefits as the dense format, especially when it is im-
plemented together with index compression. Moreover, CSR is the only considered format that prescribes a
fixed order of nonzero elements; consequently, it does not allow to store them in an order that might be com-
putationally more efficient, such as the Z-Morton order. One therefore might consider excluding CSR from the
min-fixed and adaptive schemes to simplify related algorithms and their implementations. We call such modified
schemes min-fixed-w/o-CSR and adaptive-w/o-CSR and present the results for them in Table 3.6. Obviously,
the numbers are either the same or only slightly higher than those measured for the original min-fixed and
adaptive schemes; see Table 3.4.

3.7. Memory Savings Against CSR32. Likely the most widely-used storage format for sparse matrices
in practice is CSR, which is supported by vast majority of software tools and libraries that work with sparse
matrices. To distinguish between CSR used for blocks of partitioned matrices and CSR used for whole (not-
partitioned) matrices, we call the latter CSR32, since it is typically implemented with 32-bit indices. Researchers
frequently demonstrate the superiority of their algorithms and data structures (formats) by comparison with
CSR32, which have become de facto an etalon in sparse-matrix research [25].

Comparison of memory footprints of sparse matrices partitioned into blocks and the same matrices stored
in CSR32 allows us to assess our block approach. Let MMFCSR32(A, b) denote a memory footprint of a matrix
A stored in memory in CSR32 with respect to a precision given by b. The function

Λb(k) =

(
1−

min
{
MMF�(Ak, s, h× w, b) : s ∈ S6, h× w ∈ B64

}
MMFCSR32(Ak, b)

)
× 100 (3.6)

then expresses how much memory in percents we would save if we stored the tested matrix Ak in its optimal
block configuration instead of in CSR32. We measured these memory savings for all the tested matrices and
processed them statistically; the results are presented by Table 3.7. The obtained numbers speaks strongly
in favour of partitioning of sparse matrices in general. Even in worst cases, our block approach reduced the
memory footprints of matrices of 25.46% and 17.08% for single and double precision, respectively. In average,
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Table 3.7
Statistics of Λb(k), i.e., memory savings of optimal block configurations against CSR32 in percents, across the tested matrices.

Statistics Single precision Double precision

Minimum 25.46 17.08
Average 42.29 28.67
Maximum 50.21 35.86

the savings were 42.29% and 28.67%, which significantly reduces the amount of data that needs to be transferred
between memory and processors during computations.

Table 3.7 shows the statistics of memory savings across all the tested matrices. However, we also wanted
to find out which matrices were especially suitable/unsuitable for partitioning in general. For this reason, we
measured the memory saving against CSR32 also as a function the following criteria, which are commonly used
to distinguish/quantify different types of sparse matrices:

1. application problem type,
2. relative count of matrix nonzero elements (their density),
3. uniformity of the distribution of matrix nonzero elements across its rows.

The application problem types were introduced by Table 2.1. As for the second criterion, we define the density
of nonzero elements for an m×n matrix A with nnz nonzero elements in percents as ϱ(A) = nnz/(m×n)×100.
Its values thus ranges from 0 for an empty matrix to 100 to a fully dense matrix.

Let rnnz (i) denote a number of nonzero elements of ith row of A; rnnz (i) thus ranges from 0 for empty rows
to n for fully dense rows. To allow a collective evaluation of matrices with different row lengths, we transform
rnnz (i) into relative counts in percents as follows: prnnz (i) = rnnz (i)/n × 100. The standard deviation of
prnnz (i) for i = 1, . . . ,m then represents an inverse measure of the above introduced third criterion for A. Zero
standard deviation of prnnz (i) then implies a matrix whose all rows have exactly the same number of nonzero
elements.

Recall that in Section 2 we defined two kinds of the numbers of nonzero elements, counting either all of
them or just those stored in a computer memory (for unsymmetric matrices, these numbers would be equal).
Accordingly, we can quantify the above introduced second and third matrix criteria in two ways; we further
show results for both of them.

The measurements for the first criterion and double precision are presented by Table 3.2; the results for
single precision are practically the same, just scaled accordingly. We need to be careful when making general
conclusions based on these results, since for some problem types, our tested suite of matrices contain only few
representatives. However, we may observe that the memory savings against CSR32 were relatively consistent
across problem types; there was no problem type that would provide much better or much worse savings than
the others, including even the graph matrices.

The measurements for the second and third criteria are presented by the top and bottom parts of Table
3.3, respectively. Again, we show results only for double precision for the same reason as above. Seemingly
(and maybe interestingly), there is no obvious correlation between the memory savings of partitioned matrices
against CSR32 and the density of nonzero elements of matrices / uniformity of their distribution across matrix
rows.

In summary, the obtained results support the potential profitability of partitioning of sparse matrices in
general.

3.8. Memory Savings Against Index-Compressed CSR. Recall that within our block approach we
assumed index compression, i.e., a minimum amount of bits to be used for all indices (Table 2.4). However,
for CSR32, we considered all indices to occupy 32 bits each, since this is the most common implementation of
CSR in practice. To provide fair comparison with CSR, we therefore also considered storage of matrices in the
implementation of CSR with indexed compressed indices; we call such a variant CSRic.

Let MMFCSRic(A, b) denote a memory footprint of a matrix A stored in memory in CSRic with respect to
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Fig. 3.2. Statistics of relative memory savings against CSR32 in percents across the tested matrices grouped by individual
problem types, measured for double precision. Circles represent average values, the extents from minimal to maximal values are
indicated by bars.

Table 3.8
Statistics of Ωb(k), i.e., memory savings of optimal block configurations against CSRic in percents, across the tested matrices.

Statistics Single precision Double precision

Minimum 1.41 0.84
Average 22.43 13.70
Maximum 35.63 22.43

a precision given by b. The function

Ωb(k) =

(
1−

min
{
MMF�(Ak, s, h× w, b) : s ∈ S6, h× w ∈ B64

}
MMFCSRic(Ak, b)

)
× 100 (3.7)

then expresses how much memory in percents we would save if we stored the tested matrix Ak in its optimal
block configuration instead of in CSRic. We measured these memory savings for all the tested matrices and
processed them statistically; the results are presented by Table 3.8. Memory footprints of matrices stored in
CSRic are either the same or more likely lower than memory footprints of matrices stored in CSR32. Therefore,
memory savings Ωb(k) are lower than Λb(k). However, even when compared to CSRic, our block approach
still reduces memory footprints of matrices in average by 22.43% and 13.70% for single and double precision,
respectively, which represents significant memory savings.

3.9. Memory Savings Against EBF. If the structure of a sparse matrix is completely known (such as
in case of tridiagonal matrices), the amount of memory required to store the information about its structure
is effectively zero. Many sparse matrix storage formats are based on assumptions that matrices (more or less)
match some particular structure of nonzero elements. For instance, block-based formats work best for matrices,
that has nonzero elements clustered in dense blocks.
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Fig. 3.3. Relative memory savings against CSR32 in percents as a function of ϱ ( above) and the standard deviation of prnnz
(below) measured for the tested matrices and double precision considering both all/stored nonzero elements.

On the contrary, if we do not assume any particular structure of nonzero elements, we can find an amount
of memory required to store the information about matrix nonzero structure as follows: nnz nonzero elements
can be placed to m× n positions in C(mn,nnz ) different ways, where

C(mn,nnz ) =
(mn)!

(mn− nnz )! · nnz !
. (3.8)

To distinguish between them, we thus need log2 C(mn,nnz ) bits. Such an approach is employed by so-called
Entropy based format (EBF) [30], which is rather a theoretical concept and establishes a lower bound for generic
memory footprints of sparse matrices in cases where no assumptions about their structures are made.

Let MMFEBF(A, b) denote a memory footprint of a matrix A stored in memory in EBF with respect to a
precision given by b. The function

Θb(k) =

(
1−

min
{
MMF�(Ak, s, h× w, b) : s ∈ S6, h× w ∈ B64

}
MMFEBF(Ak, b)

)
× 100 (3.9)

then expresses how much memory in percents we would save if we stored the tested matrix Ak in its optimal
block configuration instead of in EBF. We measured these memory savings for all the tested matrices and
processed them statistically; the results are presented by Table 3.9. For worst-case matrices, EBF required less
memory. However, our block approach still reduced memory footprints of matrices in average by 12.63% and
7.36% for single and double precision, respectively. These results indicate that the nonzero structure of the
majority of matrices from our highly diverse benchmark suite have some kind of a block character.

3.10. Memory Footprints Compared with Lower Bounds. Another object of our concern within
this study was of how much are the memory footprints of the tested matrices higher than their potential minima,
i.e., their lower bounds. We further do not consider compression of the values of matrix nonzero elements, since
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Table 3.9
Statistics of Θb(k), i.e., memory savings of optimal block configurations against EBF in percents, across the tested matrices.

Statistics Single precision Double precision

Minimum −9.43 −5.75
Average 12.63 7.36
Maximum 28.25 17.16

it is generally worth applying only for special kinds of matrices where nonzero elements contain few unique
numbers. To store nnz nonzero elements of a matrix A in memory with respect to a precision given by b, we
thus need nnz × b bits to store their values and some additional space to store the information about their
structure. The lower bound for the latter for any particular structure of nonzero elements is 1 bit, since it is
sufficient for distinguishing whether or not a matrix has that particular structure. For instance, we can use
this bit to indicate whether a matrix is tridiagonal. If it is, the bit would be set and we can store the values
of nonzero elements in a dense array; their row and column indices can then be derived from the positions of
values in this array. Such an approach can be generally applied for any particular structure of matrix nonzero
elements.

In practice, we would need to store in memory also some additional information about a matrix, such as its
dimensions or its number of nonzero elements. However, for large matrices such as those from our tested suite,
this additional data require a negligible amount of memory, therefore we define a lower bound for a matrix
memory footprint simply as MMFlb(A, b) = nnz × b.

Let

Γb
�(k) =

(
min

{
MMF�(Ak, s, h× w, b) : s ∈ S6, h× w ∈ B64

}
MMFlb(Ak, b)

− 1

)
× 100. (3.10)

Γb
�(k) thus expresses of how much percents is the memory footprint of Ak stored in an optimal block way higher

than its lower bound. For comparison purposes, we define corresponding metrics also for CSR32, CSRic, and
EBF denoted by Γb

CSR32(k), Γ
b
CSRic(k), and Γb

EBF(k), respectively:

Γb
CSR32(k) =

(
MMFCSR32(Ak, b)

MMFlb(Ak, b)
− 1

)
× 100, (3.11)

Γb
CSRic(k) =

(
MMFCSRic(Ak, b)

MMFlb(Ak, b)
− 1

)
× 100, (3.12)

Γb
EBF(k) =

(
MMFEBF(Ak, b)

MMFlb(Ak, b)
− 1

)
× 100. (3.13)

The measured statistics of Γb
�(k), Γ

b
CSR32(k), Γ

b
CSRic(k), and Γb

EBF(k) for the tested matrices are shown in
Table 3.10. Memory footprints of partitioned sparse matrices were obviously much closer to the lower bounds
than memory footprints of matrices stored in CSR32 and CSRic. Namely, they were 5 times closer in average
and 2 times in worst cases than CSR32. In best and average cases, they were even significantly closer to the lower
bounds than EBF. In best cases, partitioned matrices almost reached their lower-bound memory footprints. For
instance, in double precision, 7, 26, and 120 matrices out of 563 provided memory footprints up to 1, 2, and 5
percents above their lower bounds, respectively.

3.11. Best-Case and Worst-Case Matrices. We define a best-case matrix and a worst-case matrix to
be a matrix Ak with the lowest and highest value of Γb

�(k), respectively.

3.11.1. Best-Case Matrix. In our benchmark suite, the best-case matrix was A180 called exdata 1 in
the UFSMC. It is a square symmetric matrix with 6001 rows/columns, 2269500 nonzero elements in total, and
1137750 nonzero elements in a single triangular part. Its density ρ(A180) = 6.30% considering all the elements.
A visual representation of nonzero pattern of this matrix is shown in Figure 3.4.a.
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Table 3.10
Statistics of Γb

�(k), Γb
CSR32(k), Γ

b
CSRic(k), and Γb

EBF(k) (in percents) for the tested matrices.

Single precision Double precision

Statistics Blk.-opt. CSR32 CSRic EBF Blk.-opt. CSR32 CSRic EBF

Minimum 0.63 100.02 34.52 6.37 0.31 50.01 17.26 3.18
Average 21.85 111.03 57.22 39.58 10.93 55.51 28.61 19.79
Maximum 71.31 152.39 93.19 67.15 35.66 76.19 46.60 33.58

(a) exdata 1 (b) patents main

Fig. 3.4. Visualization of nonzero patterns of the best case ( left) and worst case ( right) matrices obtained from the UFSMC.

Relative memory footprints for this matrix are shown in Table 3.11. In case of blocking, the memory
footprint of this matrix is of only 0.63% higher than its lower bound. In absolute numbers, the lower bound for
single precision is 36408000 bits, while the memory footprint for optimal block configuration is 36637064 bits.

The optimal block size for this matrix is 16 × 16, which results in 5592 nonzero blocks, out of which 4278
blocks are fully dense (have all 256 elements nonzero). Vast majority of the matrix nonzero elements (namely
96.26%) are thus stored in dense blocks, which makes the block approach for storage of this matrix such superior
in comparison with other formats. Figure 3.4.a shows that this matrix contains one large dense block where
most of its nonzero elements are located.

The optimal block scheme for this matrix is adaptive. The second lowest scheme is bitmap, which provides
memory footprint 37890016 bits, i.e., 1.03% higher than the optimum.

3.11.2. Worst-Case Matrix. The worst-case matrix in our benchmark suite was A385 called patents main
in the UFSMC. It is a square unsymmetric matrix with 240547 rows/columns and 560943 nonzero elements.
Its density ρ(A385) = 9.69e − 4%, thus this matrix is of 4 orders of magnitude more sparse than the best-case
matrix exdata 1. A visual representation of the matrix is shown in Figure 3.4.b.

Relative memory footprint for this matrix are shown in Table 3.11. In case of blocking, it is significantly
higher than the lower bound. In absolute numbers, the lower bound for single precision is 17950176 bits, while
the memory footprint for optimal block configuration is 30750736 bits.

The optimal block size for this matrix is 256 × 256, which results in 146772 nonzero blocks. Out of them,
36003 blocks have only a single nonzero element, 111957 blocks have less than 6 nonzero elements, and no block
has more than 22 nonzero elements. Nonzero elements are thus spread all over the matrix and not clustered in
dense blocks, which hinders low memory footprints for our block approach. Note, however, that in spite of this
is the optimal block memory footprint for this matrix only half of that of CSR32 and lower than that of CSRic.

The optimal block scheme for this matrix is COO. The second lowest scheme is adaptive, which provides
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Table 3.11
Relative memory footprints of the best case and worst case matrices in percents with respect to their lower bounds, measured

for single precision.

Format exdata 1 (k = 180) patents main (k = 385)

Γ32
� (k) 0.63 71.31

Γ32
CSR32(k) 100.53 142.88

Γ32
CSRic(k) 40.97 83.05

Γ32
EBF(k) 16.81 56.55

memory footprint 31044280, i.e., 9.5e-3% higher than the optimum.

4. Conclusions. Within this study, we analyzed memory footprints of 563 representative sparse matrices
with respect to their partitioning into uniformly sized blocks. We considered different block sizes and different
ways of storing blocks in a computer memory. The obtained results led us to the following conclusions:

1. Partitioning of sparse matrices substantially reduces memory footprints of sparse matrices when com-
pared to the most-commonly used storage format CSR32. The average observed memory savings in
case of single and double precision were 42.3 and 28.7 percents of memory space, respectively. The
corresponding worst-case savings were 25.5 and 17.1 percents.

2. The corresponding memory savings with respect to index-compressed implementation of CSR, i.e.,
CSRic, were in case of single and double precision 22.4 and 13.7 percents in average, respectively. The
same metric with respect to EBF were 12.6 and 7.4 percents, respectively.

3. Partitioning of sparse matrices provides memory footprints much closer to their lower bounds than
CSR32. In average, the measured memory footprints for optimal block configurations were of only 21.9
and 10.9 percents higher than the lower bounds, while the corresponding memory footprints for CSR32
were higher of 111.0 and 55.5 percents. Moreover, the memory footprints of matrices most suitable for
block processing approach the lower bounds; the amount of memory required for storing information
about the structure of nonzero elements of such matrices is relatively negligible.

4. Partitioning of sparse matrices generally provides memory footprints closer to their lower bound than
CSRic and even than EBF. Many sparse matrices in real world contain such form of a structure of
nonzero elements that is suitable for block processing.

5. For minimization of memory footprints of partitioned sparse matrices, we cannot consider only a single
format for storing blocks. Instead, we need to choose a format according to the structure of matrix
nonzero elements either for all its blocks collectively (min-fixed scheme) or for each block separately
(adaptive scheme). The latter approach mostly yields lower memory footprints.

6. For minimization of memory footprints of partitioned sparse matrices, we cannot consider only a single
block size. However, we can substantially reduce the set of block sizes in the optimization space and
still obtain memory footprints close to their optima. In average, the measured memory footprints for
the proposed reduced sets of block sizes B20, B14, and B8 and the min-fixed/adaptive schemes were
at most of only 1.51 percents higher than the optimal values. Even considering square blocks only is
thus generally sufficient for minimization of memory footprints of sparse matrices. However, there exist
matrices for which the corresponding metrics are significantly higher and are inversely proportional to
the number of tested block sizes. One should thus be aware of whether or not his/her matrices fall into
this category and if yes, he/she might consider using larger sets of block sizes.

7. The obtained results seem to be consistent across a wide range of real-world matrices arising from
multiple applications problems.

8. There is seemingly no advantage for storing blocks in CSR; without considering this format for blocks,
the memory footprints of matrices grow only slightly or not at all. The COO and bitmap formats
themselves minimize memory footprints of partitioned sparse matrices, while the dense format is likely
the most efficient for related computations.
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9. We measured memory savings of partitioned sparse matrices against CSR32 as a function of the following
criteria, which are frequently used in the literature: the application problem type, the density of matrix
nonzero elements, and the standard deviation of the number of nonzero elements across matrix rows.
To our best, we did not find any correlation between the memory savings and these criteria; the block
approach thus seems reduce memory footprints of sparse matrices in general.

Our findings are encouraging since they show that memory footprints of partitioned sparse matrices can
be substantially reduced even when a relatively small block preprocessing optimization space is considered.
Whether or not will such a reduction pay off in practice depends on the objective one wants to achieve. A big
challenge is to improve the performance of memory-bounded sparse matrix operations due to the reduction of
memory footprints of matrices. Within our future work, we plan to face this problem at least partially—we will
focus on the development of scalable efficient block preprocessing and SpMV algorithms for the min-fixed and
adaptive block storage schemes, and we will evaluate them experimentally on mainstream HPC architectures.
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Abstract. In this work, we consider the scheduling problem of a set of periodic implicit-deadline and synchronous tasks, on a real-time mul-
tiprocessor composed of m identical processors. It is known that the cost of migrations and preemptions has significant influence on global system
performances. The EKG algorithm can generate a great number of migrant tasks, but it has the advantage that each migrant task migrates between two
processors only. Later, the EDHS algorithm has been proposed in order to minimize the number of migrant tasks of EKG. Although EDHS minimizes
the number of migration compared to EKG, its drawback is the generation of additional preemptions caused by the migrations on several processors.
In this paper we propose a new tasks allocation algorithm that aims to combine the advantages of EKG (migrations between two processors only) and
those of EDHS (reduction of number of migrations).
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1. Introduction. There are two basic approaches for scheduling real-time tasks on multiprocessor / multi-core plat-
forms: global and partitioned scheduling. In partitioned scheduling, tasks are organized in groups, and each task group is
assigned to a specific processor. After their allocation to processors, the tasks are not allowed to migrate from one proces-
sor to another. When selected for execution, a task can only be dispatched to its assigned processor. On each processor the
tasks are scheduled using standard known uniprocessor algorithms e.g. RM (Rate-Monotonic) or EDF (Earliest-Deadline-
First) [1]. The main disadvantage of the partitioning approach is that the tasks allocation problem is analogous to the bin
packing problem which is known to be NP-Hard [2]. So a task cannot be assigned to any of the processors even if the
total available capacity of the whole system is still large. When the individual task utilization is high, this waste could be
significant, and in the worst-case only half of the system resource can be used. The alternative to partitioned scheduling is
global scheduling in which there is a single queue for tasks that are ready to run. At each time, the m highest priority tasks
are dispatched to any available processor according to a global priority scheme. The tasks can migrate from one processor
to another which makes it possible to achieve a better use of the platform. Partitioned scheduling has gaps due to the
absence of task migration from one processor to another. It is shown that a non schedulable system under partitioned
policy can be scheduled if given the opportunity to unassigned tasks to run on multiple processors in global scheduling
assuming that the cost of preemptions and migrations is neglected. This assumption is not realistic since this cost has
an influence on global system performance. Several works have been proposed in the literature to reduce the number of
preemptions and migrations [3, 4, 5].

To overcome the problem of the partitioned approach and increase the utilization rate of the system, recent works
[6, 7, 8, 9, 10] have introduced the semi-partitioning scheduling in which most of tasks are assigned to particular processors
as the partitioned scheduling, but the remaining tasks (unasigned tasks) are allowed to migrate between processors. In
other words, each remaining task is splitted into a set of sub-tasks and each one of them is affected to a processor. This
approach allows migration but reduces the number of migrant tasks compared to the global approach.

The Semi-partitioning algorithm EKG [11] cuts the set of processors into groups each one is composed of k processors
and limits migration within the same group. In addition, a task can migrate between two processors only. Note that EKG
allows to schedule optimally a set of periodic implicit tasks on m processors when k = m (EKG with one group). Since
EKG allocates migrant and non-migrant tasks simultaneously, this can generate a great number of migrant tasks.

Kato et al. [12] have proposed the EDHS algorithm which improves the EKG algorithm. It proceeds into two separate
steps to allocate the tasks: during the first one, the tasks are assigned according to a given partitioning algorithm in order
to minimize the number of migrant tasks generated by the EKG algorithm. The second one consists in allocating migrant
tasks on multiple processors according to a second algorithm.

Our contribution aims to combine the advantages of the EKG (migration between two processors only) and those of
EDHS (reduction of migrant tasks). We proceed also into two steps to allocate the tasks: the first step is similar to the
EDHS one, so we generate the same number of migrations as EDHS algorithm. In order to ensure the schedulability as
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EKG algorithm, our proposed algorithm avoid that a task migrates between more than two processors during the second
step of the algorithm. In order to achieve this goal, our key idea consists in reassigning the first allocated task of processors
involved by migrations. In this case our algorithm achieves the optimality like EKG for k = m.

The remainder of this paper is organized as follows: in Section 2 we present EKG and EDHS algorithms. Section 3
is devoted to present our proposed algorithm. In Section 4 we present experimental simulations and finally we give the
conclusion.

2. Presentation of the EKG algorithm. The system is composed of n periodic, implicit-deadline and synchronous
tasks noted τ1, τ2, ..., τn and m identical processors P1,P2,...,Pm. All the tasks cannot be executed in parallel and are
independent. Each processor can’t execute more than one task at any time. Each task τi has a period Ti (that is also the
implicit deadline) and an execution time Ci. The ratio Ci/Ti =U(τi) defines the utilization rate of the task τi.

The EKG algorithm [11] cut the set of processors into groups each one is composed of k processors and limits
migration within the same group. In addition, a task can migrate between two processors only. It allows scheduling
optimally a set of periodic tasks with implicit deadline on m processors, when setting the parameter k equal to the number
of processors (k = m).

Basic principle: Unlike partitioned algorithms, EKG allows tasks to run on two different processors (at different
times, without parallelism). The algorithm is divided into two stages:

• Tasks allocation (offline): each task is assigned to one or two processors. The algorithm treats heavy and light
tasks differently. A task τi is heavy if Ci/Ti > SEP, otherwise it is light where SEP is calculated as follows:

SEP =

{
1, i f k = m
k/(k+1), i f k < m

First, the algorithm assigns one heavy tasks to one processor where one processor is dedicated for one heavy
(one per task). Then the lighter tasks are assigned to the remaining processors where several light tasks may be
assigned to the same processor. To obtain a processor load of 1, some tasks can be split to run on two different
processors (migrant task) belonging the same group. If a task is attempted to be assigned to the last processor in
a group and it fails, then it is not split, but it is simply assigned to the first processor in a new group. This ensures
that tasks in a group do not interact with tasks in another group.
• Tasks scheduling on processors (online): For each group, cutting the time into EKG intervals. An EKG interval

is defined by two successive wake-up dates of tasks in the same group. It is similar to slots in the DP-Fair
terminology [13], but limited to the tasks of the same group. Similar to DP-Fair, the work of migrant tasks
should run for a time proportional to their utilization rate and duration of an interval [t0,t1] where t0 denotes the
time when a task arrives, and t1 denotes the time when any task in that group arrives next. On an interval [t0,t1],
if a task τi migrate between processors Pj and Pj+1, it will be splitted into subtasks τ11 and τ12 as shown on
Figure 2.1. At t0 it runs on Pj for U(τi1) ∗ (t1− t0) time units and ends its execution at timea. Towards the end
of the interval at timeb, the execution of the task restarts on Pj+1 for a time duration of U(τi2) ∗ (t1− t0) units
and ends its execution at t1. The non migrant tasks are scheduled according to EDF on ]timea, timeb[. After
assignment of tasks, at runtime, our algorithm uses the same technique as the EKG algorithm to execute them on
each processor.

Reducing the number of preemption by mirroring: The mirror technique called (Mirroring) can be easily implemented
by inverting simply τi1 and τi2. This halves the number of preemptions. Figure 2.2 shows an execution with this technique.
Note that it can be reused for other scheduling policies; it is the case for example DP-WRAP [11].

3. Presentation of EDHS Algorithm. EKG assigns migrant and non-migrant tasks simultaneously. This assign-
ment produces several migrant tasks. To minimize the number of migrant tasks Kato et al. [12] have proposed the EDHS
algorithm which proceeds into two separate steps: during the first one, the tasks are assigned according to a given parti-
tioning algorithm in order to minimize the number of migrant tasks. The second step consists in allocating, on multiple
processors, migrant tasks (tasks that have not been allocated during the first step), according to a second algorithm, as
shown on Figure 3.1 .

At runtime, the non-migrant tasks run according to EDF but migrant tasks run with high priority without overlap in
time. When migrant task has exhausted its running time on a processor, it continues its execution immediately on the next
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FIG. 2.1. Migration of the task τ11 between processors Pj and Pj+1

FIG. 2.2. The execution with mirroring technique

FIG. 3.1. Allocation of migrant tasks with EDHS algorithm

processor and preempts the current task as shown on Figure 3.2. Although EDHS minimizes the number of migration
compared to EKG, its drawback is the generation of additional preemptions caused by the high priority of migrant tasks
on several processors.

4. The proposed processor allocation heuristic. The system τ = {τ1,τ2, . . . ,τn} is composed of a periodic, implicit
deadline and synchronous tasks. We assume that ∑U(τi)≤m and U(τ1)≥U(τ2)≥ . . .≥U(τn). The following notations
are used in the remaining of the paper :

• M : denotes the set of the not allocated tasks. Initially M = τ .
• τ[ j]: denotes the set of allocated tasks to the jth processor of the list of processors denoted by Pj, for 1≤ j ≤ m.
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FIG. 3.2. Execution of migrant tasks with EDHS algorithm

Initially, τ[ j] = /0, for all j.
• U [ j]: denotes the sum of the utilization rates of all tasks allocated to processor Pj.
• A processor Pj is full if U [ j] = 1.
• cap[ j] = 1−U [ j]: denotes the remaining capacity of processor Pj

In order to reduce the number of migrant tasks generated by the EKG algorithm, we proceed into two phases for
allocating tasks to processors:

4.1. First phase. During the first phase, the allocation of tasks is done by applying one of the most known heuristics
based on bin packing problem [14] as EDHS algorithm, namely First-Fit Decreasing, Best-Fit Decreasing and Worst-Fit
Decreasing. These algorithms allocate the tasks by sorting them according to their utilization rates in the decreasing order.
After this phase, a set of tasks remain still not allocated (the set of migrant tasks). Algorithm 1 describes the First-Fit
Decreasing heuristic.

Algorithm 1 First-Fit Decreasing heuristic
for each τi in M do

j← 1
affecter← 1
while ( U[j] + U( τi ) > 1) and affecter = 1 do

j← j+1
if j > m then

affecter← 0
end if

end while
if affecter=1 then

τ[ j]← τ[ j]
∪
{τi ; }

U[j]← U[j] + U(τi);
M←M\{τi } ;

end if
end for

4.1.1. Examples.
• Example 1: In the following example, we consider the tasks system τ = (τ1,τ2,τ3,τ4,τ5,τ6) with U(τ1)=0.7,

U(τ2) =0.6, U(τ3) =0.6, U(τ4) =0.4, U(τ5) =0.4 and U(τ6) =0.3. Figure 4.1 shows that the allocation of tasks
using EKG algorithm gives rise to two migrant tasks τ2 (τ21 and τ22) and τ4(τ41 and τ42), but with the First-Fit
Decreasing heuristic, there is no migrant task.
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FIG. 4.1. Allocation with EKG and First Fit Decreasing heuristic on three processors

• Example 2: In the following example we will show that even if we apply the heuristics based on the bin packing
problem, we cannot avoid the migration of the tasks. We consider the system τ = (τ1,τ2,τ3,τ4,τ5,τ6,τ7) with
U(τ1)=0.9; U(τ2)=0.8; U(τ3)=0.5; U(τ4)=0.3; U(τ5)=0.3; U(τ6)=0.15 and U(τ7)=0.04). In Figure 4.2, it is clear
that the First-Fit Decreasing heuristic could not affect the task τ5, so it must migrate on processors P1, P2 and P3.

FIG. 4.2. Allocation with the First Fit Decreasing heuristic on three processors

4.1.2. Experimentations. In Figure 4.3 [5] we compare the number of migrations obtained with the EKG and the
proposed algorithms by using the heuristics First-Fit, Best-Fit, Worst-Fit. For simulations, we have considered 10000 task
systems and we have calculated the average of the number of migrations in a given interval, for each heuristic. The tasks
are randomly generated with the respect of the schedulability condition that is ∑U(τi) ≤ m. Experimental results show
that the heuristics First-Fit, Best-Fit, Worst-Fit reduce significantly the number of migrations. The reduction can reach
60% with the Best Fit and the First Fit heuristics.

4.2. Second phase. The second phase consists in allocating the set of remaining tasks (set of migrant tasks). Note
that, by construction, the sum of utilization rates of migrant tasks is lower or equal to the sum of remaining processor
capacities. Assume that, processors are sorted by decreasing order according to their remaining capacities, cap[1] ≥
cap[2] ≥ . . . ≥ cap[m] and task τk can migrate on processors P1,P2, . . . ,Ph which means that cap[1] + cap[2] + · · ·+
cap[h]≥U(τk) and cap[1]+ cap[2]+ · · ·+ cap[h−1]<U(τk). the width of a time interval is denoted L.

Note that according to the first phase of the heuristic, the first task of each processor Pj, for 2 ≤ j ≤ h, noted ρ j,
verifies U(ρ j)≥U(τk). The basic idea is to increase recursively the remaining processor capacities as follows:

• Subdividing the task ρ2 into two subtasks ρ21 and ρ22, such that U(ρ22) = cap[1] and U( ρ21) = U(P2[1])-cap[1]
• Assigning ρ22 to P1. In this case P1 becomes full and the capacity of P2 is increased with U( ρ22) (cap[2]=

cap[2]+ U( ρ22).) Thus, task ρ21 becomes a migrant task on processors P1 and P2. At runtime:
– Processor P2 starts its execution by task P2[1] during U( ρ21)*L.
– Processor P1 ends its execution by task P2[1] during U( ρ22)*L.

• Recursively, the same process is repeated between processors Pj−1 and Pj, for 2 < j < h, where the task ρ j is
subdivided into two subtasks ρ j1 et ρ j2, such that U( ρ j2) = cap[j-1]. In this case cap[j]= cap[j]+ U( ρ j2). At
runtime:
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FIG. 4.3. Number of migration generated by each heuristic

– Processor Pj starts its execution by task ρ j during U(ρ j1)*L.
– Processor Pj−1 ends its execution by task ρ j during U(ρ j2)*L.

• After this process, cap[h− 1] < U(τk) and cap[h] + cap[h− 1] ≥ U(τk), then task τk migrates only between
processors Ph−1 and Ph in the following manner: τk is subdivided into two subtasks τk1 and τk2, such that U(τk1)
= cap[h-1] and U(τk2) = U(τk) - U(τk1). Ph−1 starts its execution by task τk1 during U(τk1)*L and Ph ends its
execution by task τk2 during U(τk2)*L.

With this reallocation, the number of migrations is still the same and each migrant task, migrates between two processors
only. In this case our proposed algorithm generates lower migrant tasks than EKG.

Algorithm 2 allocation of migrant tasks
for each τk in M do

sort in decreasing order the list of processors according to their remaining capacities
calculate h such as cap[1]+ . . .+ cap[h]≥U(τk) and cap[1]+ . . .+ cap[h−1]<U(τk).
j← 1
while j < h−1 do

Subdivide ρ j+1 into tow subtasks ρ( j+1)1 and ρ( j+1)2 such that U(ρ( j+1)2) = cap[ j] and U(ρ( j+1)1) =U(ρ j+1)−
cap[ j]
Assign ρ( j+1)2 to Pj then cap[ j+1] = cap[ j+1]+ cap[ j] and Pj becomes full.
Processor Pj+1 starts its execution by executing task ρ j+1 during U(ρ( j+1)1)∗L
Processor Pj ends its execution by executing task ρ j+1 during U(ρ( j+1)2)∗L.
j← j+1

end while
/* τk migrates only between Ph−1 and Ph. */
Subdivide τk into two subtasks τk1 and τk2, such that U(τk1) = cap[h−1] and U(τk2) =U(τk)−U(τk1).
Assign τk1 to Ph−1 and τk2 to Ph
Processor Ph−1 starts its execution by task τk1 during U(τk1)∗L
Processor Ph ends its execution by task τk2 during U(τk2)∗L.

end for

In Figure 4.4 we show the steps of the algorithm in order to allocate a migrant task τk to two processors only instead
to allocate it to four processors.

5. Conclusion. In this work we have proposed a new semi-partitioned algorithm that reduces the number of migra-
tions like EDHS and limits migrations between two processors only like EKG. The proposed algorithm is designed into
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FIG. 4.4. Allocation of the migrant task τk with our proposed algorithm for h=4

two steps. During the first step we used the well-known bin packing heuristics [14] (the First Fit Decreasing, the Best Fit
Decreasing and the Worst fit Decreasing). This step is similar to the first step of the EDHS and it consists in reducing
the number of migrant tasks compared to EKG. During the second step of the algorithm, we proposed a new technique
that allocates the migrant tasks. Our key idea consists in increasing the number of migrant tasks, each one migrates on
two processors, while keeping the same number of migrations: instead to migrate a task between h processors (h-1 mi-
grations), we migrate (h-1) tasks each one between two processors. This reallocation has the advantage that we remain
in the same condition of optimality of the EKG for m=k. Experimental simulations show that the number of migrations,
compared to EKG, is significantly reduced. This reduction can reach 60%.
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Abstract. The aim of this paper is to present a method based on the isoefficiency model for assessing the scalability in big data environments. The
programs word count and sort were implemented and compared in Hadoop and Spark. The results confirm that isoefficiency presented a linear growth as
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was obtained. This paper discusses how scalability in big data is governed by a constant of scalability (β ).
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1. Introduction. The amount of data created globally is increasing sharply. Every day 2.5 Exabytes of data are
generated [23]. Big data refers to data sets that cannot be managed using traditional database systems and techniques.
This data may come from diverse sources, such as; emails, videos, images, logs, online transactions, search queries, health
records or social networking interactions [17, 23, 6]. Moreover, the Internet of Things (IoT) technology has promoted
the creation of several systems that generate enormous quantities of data such as smartphones and sensors. Big data
has received increased attention in recent years from researchers and industrial community. This term has five defining
characteristics: volume, variety, velocity, veracity and value [6]. Volume refers to the magnitude of data sets (multiple
terabytes and petabytes) [6]. Variety refers to the structural heterogeneity in a data set (structured, semi-structured, and
unstructured data). Text, images, audio, and video are examples of unstructured data, which do not have the structure
required to be analyzed by traditional database systems. Velocity refers to the rate at which data is generated and the
speed at which it should be analyzed. As mentioned above, the proliferation of digital devices, such as, smartphones and
sensors has led to an unprecedented rate of data creation and is driving a growing need for real-time analytics. Veracity is
linked to the unreliability inherent in some sources of data. For example, user feelings in social media are uncertain since
they pertain to human judgment. Value is the importance of information extracted from data. The value obtained from big
data sets can contribute to improving productivity and competitiveness and create enormous benefits for consumers [2].

The characteristics of big data increase the complexity of storing, processing and analyzing information and pose
challenges for obtaining the real value of big data. Several technologies have been proposed for addressing this complexity,
such as MapReduce, Hadoop and Spark. MapReduce is a paradigm that parallelizes and executes a program on different
machines [4]. Hadoop and Spark are frameworks for non-relational storage and distributed processing. These technologies
enable processing semi-structured and unstructured data. Large data sets can be stored and processed in a distributed
way [3].

In this scenario, some desirable characteristics of big data environments are scalability, high performance, parallel
processing, high fault tolerance and low cost. The scalability is associated with the efficient management of resources and
measures the ability of a system to react and adapt to changes in the volume of data without degrading its performance
[1]. For example, for opinion mining in twitter, it may be necessary to add new resources continuously, as the number
of tweets increases. The models and technologies developed for big data environments have so far been shown to be
scalable. Nevertheless, some questions are still only partially answered. How should scalability in big data environments
be measured? Is it possible to build a mathematical model of scalability of the big data environment?

In this work, Isoefficiency is introduced as a standard measure of scalability. A model for the evaluation of the
scalability of big data environments is also presented. This model was validated using Hadoop and Spark frameworks,
for this purpose. Wordcount and Sort programs were developed following the MapReduce paradigm. The experimental
evaluation was carried out using data sets whose sizes range from 1Mb to 30Gb (10 data sets). The results show that
the Isoefficiency model for each framework is linear and for each program, the growth behavior is sublinear. Thus, the
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isoefficiency increases as the size of the data set increases, but the isoefficiency growth is low while the file size growth is
accelerated. The results show that the tested frameworks are scalable and follow the sublinear behavior of the Isoefficiency
function, Y (s) = βX(s) where β ≈ [0.47−0.85]< 1. Furthermore, scalability is governed by a constant of scalability β .

The paper proceeds as follows. The next section describes related works. Section 3 discusses the experimental
calculation of Isoefficiency, as well as the proposed model. Section 4 discusses the results of the evaluation and section 5
provides a conclusion.

2. Related work. Related works are organized into two groups: Isoefficiency based measures and comparison of big
data frameworks. Regarding Isoefficiency based measures, several studies have been carried out in different distributed
and parallel systems [24, 21, 27]. Moreover, other measures based on Isoefficiency have been proposed for the analysis of
the scalability. Firstly, E-differentiation is a measure of scalability in parallel systems, which analyzes the change in the
efficiency of a system based on two variables; workload and processors [15]. This measure makes it possible to analyze
scalability based on the workload and not only on the number of processors, as is the case in Isoefficiency. Secondly,
the Isoefficiency maps allow us to understand the performance of parallel systems, and the measurement is based on
techniques such as temperature maps and pressure maps. Isoefficiency maps include several parameters of the parallel
performance in two-dimensional planes, which allows considering additional parameters, such as, the communication
between parallel processes [5].

Regarding the comparison of frameworks, the infrastructure, workload and information type are usually analyzed [4].
In some approaches, a single cluster configuration is implemented, and the size of the data set varies (this latter approach
is used on the present study). This group of studies aims to measure the performance of the framework for large data sets
based on the runtime [25, 4, 14].

On the other hand, some studies perform the comparison between structured and unstructured data sets [14], while
other authors compare the performance between Spark and Hadoop, using different algorithms [11, 13]. In [25] a com-
parison of 5 frameworks was carried out. To this end, different SQL queries were executed, and some measures such as
response time and fault tolerance were analyzed during the query. Conversely, [9] evaluates the scalability of Hadoop and
Spark frameworks based on execution time with relatively small data sets (less than 1.5Gb).

The work shown in [19] presents an Isoefficiency study in the context of big Data. In this work the Isoefficiency
is theoretically analyzed. Some variables, such as, calculation costs, synchronization and communication are studied
in MapReduce applications, modeled as bulk synchronous parallel tasks. The experimental evaluation shows that the
speedup follows a linear trend (100TB data set on 10,000 machines). Finally, other works are devoted to evaluating
pattern recognition algorithms based on the MapReduce paradigm [16, 20, 12].

None of the studies reviewed above develop a mathematical model that describes the scalability of big data Systems,
nor do they describe the behavior of the relationship between Isoefficiency and workload. Neither of the works is focused
on identifying a constant of Isoefficiency that describes the behavior of the scalability in a System. Finally, the model
proposed here can be applied to other experimental evaluations (frameworks, programs and data sizes) due to its three
layer architecture (processing, storage, and evaluation), seen in Fig. 2.1.

3. Proposed method for measuring the scalability of big data environments. Algorithms are described based
on the MapReduce paradigm. Isoefficiency is then calculated according to the size of the data set. Lastly, a model is
developed, and the β constant is computed.

3.1. Modeling of the programs Word Count and Sort. The MapReduce model consists of two functions, Map and
Reduce. Map receives a series of key/value pairs and generates a new intermediate pair key/value that is sent to the Reduce
function. Reduce function combines all the values according to the key [4]. To describe an algorithm using MapReduce,
it is necessary to define the Map and Reduce functions. However, there are few models, guidelines or methods that can be
found to translate algorithms to the MapReduce paradigm. Therefore, some examples of the programs Word Count and
Sort are presented below.

The Word Count program evaluates the number of appearances of each word in a data set. The map function receives
a set of key/value pairs, where the key is the name of the document to be processed, and the value is the content of the
document. For each word found in the content, a key/value pair is returned, where the key is the word, and the value is
1. The Reduce function receives this list and iterates on each element of the list of ones, adding each element. Finally, a
key/value pair is returned with the word and the total number of appearances for each word.
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FIG. 2.1. Architecture for the Proposed Method of the Measuring the Scalability in Big Data Environments

The Sort program computes a sorted list in alphabetical order of the words from data sets. The map function receives
a list of key/value pairs, where the key is the name of the document to be processed, and the value is the content of the
document. For each word in the content, a key/value pair is returned, where the key is the word, and the value is 1. The
Reduce function receives a list of key/value pairs and returns the received key, the value is not taken into account in the
sort program.

3.2. Measuring the Isoefficiency. The measurement is carried out according to the size of the data set and the
consumed resources. Figure 2.1 shows the architecture of the approach that consists of 3 layers; processing, storage,
and evaluation. The input is a set of flat files stored in HDFS(Hadoop Distributed File System). The processing layer
includes the MapReduce based algorithm for evaluation. The storage layer consists of the distributed file system of the
framework to be analyzed (Hadoop and Spark), and the local file system. The distributed file system stores the input data,
and the data returned by the algorithms in the processing layer. The local file system stores the logs generated by the
frameworks during the processing. The logs’ files contain data on the processing time, read data, returned data, and used
resources among others. Finally, in the evaluation layer, the logs’ files are used to calculate all measurements defined for
the evaluation. A report is also created to display the results of each algorithm for the data set’s different sizes.

The Evaluation was carried out using the following three steps: experimental design, configuration of the framework’s
infrastructure, and definition of the metrics.

3.2.1. Experimental design. Two algorithms (Word Count and Sort) are translated to the MapReduce model to run
in Hadoop and Spark frameworks on a cluster with four virtual machines. The efficiency and speedup are used to calculate
the Isoefficiency.

3.2.2. Configuration of the framework infrastructure. Hadoop is a framework for storing and processing large
data sets. Hadoop is based on a master multislave architecture. The main component of Hadoop is the Hadoop distributed
file system (HDFS). HDFS stores large data sets in distributed nodes, offering data redundancy and high-performance
access. Another component is YARN that manages the resources and the MapReduce tasks. Hadoop also has a library to
implement applications following the MapReduce model [18, 22, 26].

For its part, Spark is a fast and general-purpose framework for processing large amounts of data. The main feature
of Spark is its memory processing. Spark is a flexible framework that can be integrated with various data storage tools,
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TABLE 3.1
Hardware Description Nodes

Hardware
Processors number 8
Processors model Intel Xeon E5540 2.53 Ghz
Cache size 8 Mb
RAM 8 Gb
Hard drive size 200 Gb

Software
Operating system Ubuntu 16.04.1 LTS
Big data frameworks Spark 2.0.2, Hadoop 2.7.3
Others Java 8

such as, Hadoop, Cassandra, HBase, among others. Additionally, Spark can be integrated with resource managers, such
as, YARN and Apache Mesos [28, 29, 30].

For the experiments, a cluster with four virtual machines connected to the same network was deployed. The cluster
consists of a master node and three slave nodes. Each node has the hardware and software specifications shown in
Table 3.1.

Figure 3.1 depicts the cluster architecture. The data set includes scientific papers from the ISI Web of Knowledge.
The data set contains metadata, including title, abstract, authors, etc. However, the analysis was done on the complete
paper. The data set is composed of flat files with a total size of 15 Gb. Different samples were taken with different sizes:
100Kb, 1Mb, 13Mb, 100Mb, 512Mb, 1Gb, 5Gb, 10Gb, 20Gb, 30Gb. These data sets were stored in HDFS, and also in a
Google Drive repository, available at:
https://drive.google.com/drive/folders/0B0Zl7SmxErLNMm4tZVdyRG8ya1E?usp=sha

3.2.3. Definition of the Metrics. Execution time (T ) measures the time required to run a program in parallel. T is
calculated as T = T F−T I, T F is the time when the program ends, and T I the time when the program starts [7].

Speedup (S) measures the performance gain obtained by running a program in parallel, compared to the sequential
execution. This metric is defined as the ratio between the time used to solve a problem in a single processor, and the
time necessary to solve the same problem in a parallel system with p identical processors. Thus, T S is the runtime of
the program executed sequentially, and T the runtime of the program executed in parallel [7]. Speedup is defined by
S = T S/T .

Efficiency is defined as the ratio between Speedup (S) and the number of processors P [7], mathematically it is
defined as E = S/P. Furthermore, efficiency is the fraction of the time that each processor is used. In an ideal scenario,
the speedup (S) is equal to the number of processors and the efficiency is equal to 1, but generally, the speedup is less
than the number of processors and efficiency is between 0 and 1.

Isoefficiency (W ) is a measure of the scalability in parallel systems. W measures the relationship between the work-
load and the number of processors. Here the Isoefficiency is defined by Eq. 3.1 as the rate at which the number of

FIG. 3.1. Hardware Architecture for the experiments
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processors must increase in order to keep the efficiency fixed as the workload increases [8, 10].

W = K ∗T0(w,P) (3.1)

where K = E/1−E, that is the scalability constant, and T0 ≈ T ∗ (P− s) which is calculated experimentally.

3.3. The Isoefficiency model. The Isoefficiency of two programs executed in two different frameworks is calculated.
This Isoefficiency is evaluated for different data set sizes(sd). Equation 3.2 represents the fit equation and is computed
through the method of least squares.

Y (sd) = βX(sd) (3.2)

where Y (sd) is the Isoefficiency, X(sd) is the data size evaluated in each experiment. β is the system scalability coefficient,
which is estimated by linear regression. The model is represented by a linear equation, where the least squares adjust
model parameters β to get a best fit. Therefore, the model constructs a model with a structure that fits the yi for successive
x values, using the parameters β ; For the property RSquared, the computation of the total sum of squares is mean adjusted,
other properties related to the sum of squared errors are included such as Standard error, T-statistic and P-value. The model
was implemented in the Mathematica software package.

To study the relationship between the program input and the Isoefficiency, a model based on Eq. (3.2) was built.
In each case, β represents the proportion in which the Isoefficiency grows according to the input. This linear function
represents the scalability of the system. In most cases β grows sub-linearly depending on the data size (sd). The positive
slope β less than 1 means sub-linear behavior, that is, the value on the x-axis is higher than the value on the y-axis. Thus,
the sublinear growth in the Isoefficiency indicates that the system is scalable since the increase of the resources is less
than the increase of the workload.

4. Results. Table 4.1 shows the experimental results. Blue displays the experimental data, and green the calculated
Isoefficiency of Hadoop and Spark frameworks (for Word Count and Sort programs). It can be seen that for a particular
size of data set, the Isoefficiency values are similar for both frameworks. The behavior is the same when the size of the
data set is less than 1 Gb. On the other hand, when the size of the data sets is greater than 5 Gb, the behavior is different.
The Word Count scalability is less than Sort scalability due to the higher consumption of resources.

Table 4.2 shows the statistical model obtained from the experimental evaluation of the two programs. The table
presents the isoefficiency function (m(x)+ b), the function slope (m estimate), the standard error and the p-value, and
the R2.

The results show that, the standard error values and the t-statistics are similar for both programs. A minimum square
error of statistical significance 99% is also achieved. It can be inferred that the results provide reliability in the adjustment
of the model. In this sense, the results are confirmed because the positive slope less than 1 indicates a sub-linear behavior.
This means, that the distance between each point on the x-axis is higher than the distance between each point on the
y-axis. The sub-linear growth of the Isoefficiency indicates that the system is scalable, since the Isoefficiency increases
less than the workload (size of the data set) [8]. Thus, it is confirmed that the frameworks are scalable (for the word count
and sort programs) since a slight increase in resources is required to keep the efficiency.

5. Conclusions and Future works. An experimental evaluation of the Isoefficiency was carried out to analyze the
scalability of two big data frameworks: Hadoop and Spark. The function of Isoefficiency has been obtained according to
the size of the data sets for two MapReduce programs (Wordcount and Sort). The function regulates the Isoefficiency as
a linear function. It was shown that the Isoefficiency of the two frameworks was the same when executing the programs
based on the MapReduce paradigm. From the Isoefficiency function, a sublinear growth of the Isoefficiency associated
with an increase of the data size was evidenced. That is to say, as the data size increases the Isoefficiency of the frameworks
increase in smaller proportion. The experiments show that Hadoop and Spark are an excellent choice to store and process
large data sets, since the results obtained from Isoefficiency are similar. A future project might implement a MapReduce
program for indexing scientific unstructured data using Hadoop, Spark, and Elasticsearch.
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TABLE 4.1
Results of Scalability Experimintation and Proposed Model evaluation.

WORDCOUNT SORT
Mb Hadoop Spark Hadoop Spark

1.0∗10−1 1.88∗10−2 1.88∗10−2 6.64∗10−2 6.64∗10−2

1.0∗100 1.57∗10−1 1.57∗10−1 3.45∗10−1 3.45∗10−1

1.3∗101 1.20∗100 1.20∗100 2.56∗100 2.56∗100

1.0∗102 9.43∗100 9.43∗100 1.26∗101 1.26∗101

5.12∗102 4.27∗101 4.27∗101 4.08∗101 4.08∗101

1.02∗103 8.77∗101 8.77∗101 8.30∗101 8.30∗101

5.12∗103 4.17∗102 4.17∗102 3.33∗102 3.33∗102

1.02∗104 9.22∗102 9.22∗102 6.17∗102 6.17∗102

2.05∗104 1.71∗103 1.71∗103 1.02∗103 1.02∗103

3.07∗104 2.65∗103 2.65∗103 1.45∗103 1.45∗103

5.12∗104 4.38∗103 4.38∗103 2.48∗103 2.48∗103

6.14∗104 5.25∗103 5.25∗103 2.97∗103 2.97∗103

7.17∗104 6.13∗103 6.13∗103 3.46∗103 3.46∗103

8.19∗104 7.0∗103 7.0∗103 3.95∗103 3.95∗103

9.22∗104 7.88∗103 7.88∗103 4.44∗103 4.44∗103

1.02∗105 8.75∗103 8.75∗103 4.93∗103 4.93∗103

1.05∗106 8.97∗104 8.97∗104 5.03∗104 5.03∗104

1.07∗109 9.18∗107 9.18∗107 5.14∗107 5.14∗107

1.10∗1012 9.40∗1010 9.40∗1010 5.27∗1010 5.27∗1010

1.13∗1015 9.63∗1013 9.63∗1013 5.39∗1013 5.39∗1013

1.15∗1018 9.86∗1016 9.86∗1016 5.52∗1016 5.52∗1016

TABLE 4.2
Statistical Model for Scalability

Program/
framework

Equation
Y (t) = βX(t)

β
estimated

Standard
error

T-statistic P-value R2

Wordcount
Hadoop 0.0855x - 0.2874 0.0855 0.0008 110.858 4.8987∗10−14 0.99

Wordcount
Spark 0.0855x - 0.2874 0.0855 0.0008 110.858 4.8987∗10−14 0.99

Sort
Hadoop 0.0479x + 29.4126 0.0479 0.0015 32.2172 9.3867∗10−10 0.99

Sort
Spark 0.0479x + 29.4126 0.0479 0.0015 32.2172 9.3867∗10−10 0.99
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