
Scalable Computing:
Practice and Experience

Scientific International Journal
for Parallel and Distributed Computing

ISSN: 1895-1767

⑦⑦
⑦
⑦

⑦
⑦

t

Volume 19(4) December 2018

Editor-in-Chief

Dana Petcu
Computer Science Department
West University of Timisoara
and Institute e-Austria Timisoara
B-dul Vasile Parvan 4, 300223
Timisoara, Romania
Dana.Petcu@e-uvt.ro

Managinig and

TEXnical Editor

Silviu Panica
Computer Science Department
West University of Timisoara
and Institute e-Austria Timisoara
B-dul Vasile Parvan 4, 300223
Timisoara, Romania
Silviu.Panica@e-uvt.ro

Book Review Editor

Shahram Rahimi
Department of Computer Science
Southern Illinois University
Mailcode 4511, Carbondale
Illinois 62901-4511
rahimi@cs.siu.edu

Software Review Editor

Hong Shen
School of Computer Science
The University of Adelaide
Adelaide, SA 5005
Australia
hong@cs.adelaide.edu.au

Domenico Talia
DEIS
University of Calabria
Via P. Bucci 41c
87036 Rende, Italy
talia@deis.unical.it

Editorial Board

Peter Arbenz, Swiss Federal Institute of Technology, Zürich,
arbenz@inf.ethz.ch

Dorothy Bollman, University of Puerto Rico,
bollman@cs.uprm.edu

Luigi Brugnano, Università di Firenze,
brugnano@math.unifi.it

Giacomo Cabri, University of Modena and Reggio Emilia,
giacomo.cabri@unimore.it

Bogdan Czejdo, Fayetteville State University,
bczejdo@uncfsu.edu

Frederic Desprez, LIP ENS Lyon, frederic.desprez@inria.fr

Yakov Fet, Novosibirsk Computing Center, fet@ssd.sscc.ru

Giancarlo Fortino, University of Calabria,
g.fortino@unical.it

Andrzej Goscinski, Deakin University, ang@deakin.edu.au

Frederic Loulergue, Northern Arizona University,
Frederic.Loulergue@nau.edu

Thomas Ludwig, German Climate Computing Center and Uni-
versity of Hamburg, t.ludwig@computer.org

Svetozar Margenov, Institute for Parallel Processing and Bul-
garian Academy of Science, margenov@parallel.bas.bg

Viorel Negru, West University of Timisoara,
Viorel.Negru@e-uvt.ro

Moussa Ouedraogo, CRP Henri Tudor Luxembourg,
moussa.ouedraogo@tudor.lu

Marcin Paprzycki, Systems Research Institute of the Polish
Academy of Sciences, marcin.paprzycki@ibspan.waw.pl

Roman Trobec, Jozef Stefan Institute, roman.trobec@ijs.si

Marian Vajtersic, University of Salzburg,
marian@cosy.sbg.ac.at

Lonnie R. Welch, Ohio University, welch@ohio.edu

Janusz Zalewski, Florida Gulf Coast University,
zalewski@fgcu.edu

SUBSCRIPTION INFORMATION: please visit http://www.scpe.org

Scalable Computing: Practice and Experience

Volume 19, Number 4, December 2018

TABLE OF CONTENTS

Special Issue on Mobile Cloud Applications and Challenges:

Introduction to the Special Issue iii

A Survey on Mobile Cloud Computing: Mobile Computing + Cloud
Computing (MCC = MC + CC) 309

Ramasubbareddy Somula, Sasikala R.

Execution Analysis of Spatial Data Storage Indexing on Cloud
Environment 339

Karthi S., Prabu S.

Enhanced Data Security for Public Cloud Environment with Secured
Hybrid Encryption Authentication Mechanisms 351

Prabu S., Gopinath Ganapathy, Ranjan Goyal

Cloud based Dynamic Course Selection Framework using Network
Graphs with Term Difficulty Estimation 361

Jasem M. Alostad

Parallel Seed Selection Method for Overlapping Community Detection
in Social Network 375

Belfin R.V., E. Grace Mary Kanaga

Regular Papers:

Energy-Efficient Real-Time Scheduling Algorithm for Fault-Tolerant
Autonomous Systems 387

Hussein EL Ghor, Julia Hage, Nizar Hamadeh, Rafic Hage Chehade

Modelling and Simulation of GPU Processing in the MERPSYS
Environment 401

Tomasz Gajger, Pawe l Czarnul

A Comparison of Message Passing Interface (MPI) and Co-array
FORTRAN for Large Finite Element Variably Saturated Flow
Simulations 423

Fred T. Tracy, Thomas C. Oppe, Maureen K. Corcoran

c⃝ SCPE, Timişoara 2018

Scalable Computing: Practice and Experience

Volume 19, Number 4, pp. iii–iv. http://www.scpe.org

DOI 10.12694/scpe.v19i4.1499
ISSN 1895-1767
c⃝ 2018 SCPE

INTRODUCTION TO THE SPECIAL ISSUE ON MOBILE CLOUD APPLICATIONS AND
CHALLENGES

We are happy to present this special issue of thee Scientific Journal Scalable Computing: Practice and
Experience. In this special issue on Mobile Cloud Applications and Challenges (Volume 19 No 4 December
2018), we have selected five papers, which gone through a peer review according to the journal policy. All the
papers represents novel results in the field of Mobile and Cloud Applications.

The first paper presents overview of mobile cloud computing, cloudlet technology, security and privacy
issues and limitations of mobile cloud commuting. The second paper presents a spatial partition, global index
and map reduce operation were studied. The trail results that the proposed indexing cloud framework performs
improved results. The third paper proposes an authentication model along with data security in a public
cloud storage environment which successful detects the unauthenticated access or any anomaly in data. The
fourth paper analyses the student success ratio which uses a cloud based technology to implement and design
SaaS. Graph based complex network are used for analysing the course. The fifth paper presents Overlapping
community detection in social networks. The proposed algorithm uses parallel processing engine to resolve the
delay problem.

We use this opportunity to thank all the contributors to this special issue. We would like to express our
special gratitude for the Editor-in-chief, Professor Dana Petcu for her constant support for carrying this special
issue.

Rajkumar Rajasekaran, Vellore Institute of Technology, India

iii

Scalable Computing: Practice and Experience

Volume 19, Number 4, pp. 309–337. http://www.scpe.org

DOI 10.12694/scpe.v19i4.1411
ISSN 1895-1767
c⃝ 2018 SCPE

A SURVEY ON MOBILE CLOUD COMPUTING: MOBILE COMPUTING + CLOUD
COMPUTING (MCC = MC + CC)

RAMASUBBAREDDY SOMULA∗AND SASIKALA R†

Abstract. In recent years, the mobile devices become popular for communication and running advanced real time applications
such as face reorganization and online games. Although, mobile devices advanced for providing significant benefits for mobile users.
But still, these devices suffers with limited recourses such as computation power, battery and storage space due to the portable
size. However, The Cloud Technology overcome the limitations of mobile computing with better performance and recourses. The
cloud technology provides enough computing recourses to run mobile applications as storage computing power on cloud platform.
Therefore, the novel technology called mobile cloud computing (MCC) is introduced by integrating two technologies (Mobile
Computing, Cloud Computing) in order to overcome the limitations(such as Battery life, Storage capacity, Processing capacity) of
Mobile Devices by offloading application to recourse rich Remote server. This paper presents an overview of MCC, the advantages
of MCC, the related concepts and the technology beyond various offloading frameworks, the architecture of the MCC, Cloudlet
technology, security and privacy issues and limitations of mobile cloud computing. Finally, we conclude with feature research
directions in MCC.

Key words: Mobile Computing, Cloud Computing, Mobile Cloud Computing, Cloudlet Selection, Computation offloading,
Edge Computing, security.

AMS subject classifications. 15A15, 15A09, 15A23

1. Introduction. Over the past few decades, mobile devices have been playing an important role in
our modern and virtual lifestyle. For instance, according to the survey by International Data Corporation
(IDC) in 2016, the usage of mobile devices and tablets was increased by 1.6 billion units exponentially [1]. In
recent years, mobile applications became popular in various categories such as news, entertainment, health,
business and social networks. The mobile computing allows users to access all necessary applications from
application centres such as Android play store and Apple iTunes etc., irrespective of location. Even mobile
cloud computing provides high-end features for running various real time applications but still users demand
for more computing resources. For mobile computing, the mobile devices are designed with limited battery
life, storage capacity, processing capacity and communication capabilities. Mobility is important feature on
pervasive computing environment where the user is able to perform his work without any interruption. The
cloud computing is emerging technology which is formed with amalgamation of various technologies such as
virtualization, distributed computing, SOA, web services etc. Cloud computing provides massive computing
resources (such as hardware, software, storage) in order to improve the performance of application as well as
reducing processing cost. It allows users to access data from any location on demand basis. The mobile device
will perform high computational tasks on cloud platform which require more computing resources. The cloud
computing paradigm can be represented through three different service models. Platform as a service (paas),
Infrastructure as a service (Iaas), software as a service (saas) as shown in Fig 1.1The author in [2], presented
the annual growth rate of cloud service models, Iaas is 41%, paas holds 26.6% and Saas holds 17.4%. The
emerging technology, Mobile Cloud Computing has been introduced to overcome limitations of mobile devices.
Recently, the mobile users demand for computing is being increased due to the development in mobile computing
technology. Various studies define the importance and benefit of mobile cloud computing for mobile users and
enterprisers. For example, according to the ABI, the usage of mobile devices reached to 280 million by 2015,
the revenue of Mobile cloud computing reached to $ 5.2 billion [3]. Currently the growth of advanced mobile
devices developed rapidly with sufficient resources such as battery life, storage, processing power. Nonetheless,
it is still suffering from processing real time application such as image recognition,video streaming, language
translation. Mobile devices are less compared to server systems and desktop computers in terms of computing
power and storage. When mobile device runs resource intensive task put heavy load on processor and reduce
battery life.

∗School of Computer Science and Engineering (SCOPE), VIT University, Vellore, India (svramasubbareddy1219@gmail.com).
†School of Computer Science and Engineering (SCOPE), VIT University, Vellore,India.(sasikala.ra@vit.ac.in)

309

310 Ramasubbareddy Somula and Sasikala R

Fig. 1.1. Cloud Computing Services

Nowadays, the research work on cloud computing is aiming to enhance computing capabilities of mobile
devices by allowing Mobile users to access various service based models such as software, infrastructure and
computing services. Amazon is one of the cloud service provider which provides security to user personal data
by various storage service models (S3) [4]. MCC promises to improve performance of the mobile application
beyond mobile computing, with the help of cloud computing [5] [6]. Most of the data generated by the mobile
device will be video content which is over 78% by 2021 forecast by cisco [7]. The concept of offloading fully
or part of the application into remote cloud environment to address limitations of mobile computing through
service providers other than the mobile can deploy application on cloud where both storage and computation
can happen out of mobile device is known as Mobile Cloud.

In this paper, we aim to discuss Various categories of research areas in Mobile Cloud Computing such as
computation offloading, cloudlet selection (or) edge computing, resource provisioning, security, privacy issues
and VM migration techniques. Furthermore, we plan to discuss proposed research works and also upcoming
novel solution for addressing Mobile Cloud Computing issues.

2. Mobile Cloud Computing Overview.

2.1. Definition of Mobile Cloud Computing. MCC is an emerging technology where it fill gap between
limited resources of Mobile devices as well as resource intensive applications required to run a resource rich
environment computing. According to the MCC forum definition: the execution of mobile application will
happen outside of mobile device. The computation power and storage of mobile application more to cloud
environment for processing. The MCC allows mobile users to access computing services, it is not restricted to
particular mobile users [3]. In the second definition [8] [9]. The mobile cloud computing provides computing
resources for mobile devices remotely. In the third destination [10] [11], the cloud server does not need to act as
powerful server. But enhancing mobile devices configuration setup in terms of storage and processing capacity.

2.2. Related concepts and technology.

2.2.1. Mobile Computing. Nowadays, Mobile Devices (MD) became an essential equipment for commu-
nication in everyone life. Even though mobile devices are able to support real time resource hungry applications
but still they are limited in terms of storage, processor and power consumption. In order to address this issues,

A Survey on Mobile Cloud Computing: Mobile Computing + Cloud Computing (MCC = MC + CC) 311

the emerging cloud computing technology provides enough resources to optimize performance of the mobile ap-
plications. Generally, mobile computing is a process of executing applications in mobile device and transferring
result to one (or) more devices. Mobile communication is able to make use of centrally located application (or)
data with help of small (or) little portable computing devices. This technology make every application to be
executed in single devices. The usage of mobile devices is increasing day by day, the requirement is to provide
better services for low cost and power consumption also increases. The list of issues in mobile computing is
represented in following Fig 2.1.

2.2.2. Mobile Network Architecture. The classification of mobile network can be represented as fol-
lowing Fig 2.2.

2.2.3. Cellular Architecture. Earlier, the mobile networks were intended to cover huge geographical
area by using single transmitter with high power consumption. Even conventional architecture covers huge
geographical area, but it does not support frequency reuse technology.

In order to facilitate frequency reuse as well as large coverage, the cellular architecture was brought into
mobile networks. This cellular architecture replaces high power consumption transmitter with low power trans-
mitters. The large geographical area splits into number of hexagonal cells which are served by base station.

Each cell in cellular network is surrounded by number of independent cell. Each adjacent cell boundary
touches each other. The hexagonal cell covers certain area in geographical location. Each cell is served by nearby
base station. The base station which serves each cell is allotted with certain portion of frequency. The base
station of adjacent cell is allotted with different frequency ranges to overcome interruptions in communication.

The following formula depicts the frequency reuse distance:

d = r
√

(3 ∗ n)(2.1)

Here, r represents distance between cell center and cell boundary
n represents adjacent cells around concerned cell

2.2.4. Mobile Ad Hoc Network Architecture (MANET). In MANET’s network, nodes, routers and
switches position are not fixed. It consists of mobile devices which communicate with each other through wireless
network. In such network, the node is able to service and send or receive response from nearby neighboring
node. The positions of nodes in MANET can organize the network.

The following Fig 2.3 illustrates the behavior of the MANET architecture. It consists of 5 nodes, two are
mobile nodes (mobile node 1& mobile node 2). One is to handle pc and the other is sensor node. The base
station acts as a router which routes messages to all involved nodes to MANET network.

Each node in MANET behaves like router to communicate with other neighboring nodes. It is also known
as self-organized network [12].

2.2.5. Mobile Wireless Sensor Network Architecture (MWSN). MWSN is similar to the MANET
network, except sensor nodes involvement. In MWSN, the sensor nodes having computing and communication
abilities [12].

In MWSN, the sensor nodes acts as routes to pass messages to neighbour nodes as well as to communicate
with other networks such as MANET, cellular network Fig 2.4 depicts the MWSN architecture.

The main advantage of MWSN over static sensor network is the expansion of no. of applications. It is used
in many real time applications such as health care to monitor blood pressure and heart rate [12].

2.3. Cloud Computing. Cloud Computing (CC) is an advanced technology that provides computing
resources for Information Technology (IT) to increase capability and capacity over network [6]. Cloud is a
collection of virtualized computers which provides resources dynamically on basis of pay as you go (or) pay-per
use model [12]. Cloud computing allows users to access application (or) data anytime from anywhere on demand
basis [6]. It is mainly focusing on development of advanced applications, computing models and using existing
services for developing new software [13]. Cloud computing technology is composed of various technologies such
as grid computing, SOA, virtualization, web services.

Various applications with client as a model. We can say Amazon web services (AWS) and Microsoft Azure
cloud as example of public cloud. Azure cloud open and provide services to build, deploy and run applications

312 Ramasubbareddy Somula and Sasikala R

Fig. 2.1. Mobile Computing Challenges

A Survey on Mobile Cloud Computing: Mobile Computing + Cloud Computing (MCC = MC + CC) 313

Fig. 2.2. Classification of Mobile Network

Fig. 2.3. Architecture of MANET

Fig. 2.4. Wireless Sensor Network Architecture

314 Ramasubbareddy Somula and Sasikala R

on servicers [4]. AWS cloud provides services via two models, Infrastructure as a Service (Iaas) and software as
a service (saas). The client can directly access applications without installing any software’s in local system [14].

2.3.1. Characteristics of cloud computing.

On demand self-service. Whenever user client require services such as virtual machine for processing
and storage is being leveraged without any interaction between users and service providers.

Broad Network Access. Client can access services at anytime from anywhere through powerful devices
such as laptops, smart phones and tablets.

Resource Polling. Multiple users can access computing resources (processing power, storage, bandwidth,
memory) in multi-tenancy model. The user have no information about from where the services are provided by
service provider.

Rapid Elasticity. Based on subscriber demand, the resources are rapidly increased Automatically. The
user thinks that cloud resources are limited and scalable at any time.

Measured Services. The service provider offer resources on pay-per-use Manner. the transparency is to
be maintained between users and service providers.

2.4. Cloud Computing Deployment Models. Cloud models can be used to deploy cloud services. The
deployment models are classified into four types [15] [14] [16].
1. Private cloud;
2. Public cloud;
3. Hybrid cloud;
4. Community cloud.

Private Cloud. In this model, data center is owned by particular organization and managed by either
organization or third party. Private cloud is restricted to particular users [17].

Public cloud. Public cloud is not restricted to particular user. It can be used by all kinds of cloud users
such as Research, Industry and Company [17].

Hybrid cloud. In this model, one or more deployment models are integrated to design single data centre.
This model can be used to overcome issues arises by private cloud during accessing [14] [18] [19] [16] [17].

Community cloud. In this model, the data centre is owned by one or more organizations and managed
either by third party or only one of the community organization.

2.5. Architecture of Mobile cloud computing. Nowadays mobile devices became part of our daily
life style and can be connected to any cloud server at anytime from anywhere via wireless infrastructure.
Cloud computing introduced concept: Bring Your Own Device(BYOD), which allows employees to leverage
privileged organization content and applications deployed in cloud server. The virtualization technology in
cloud computing enables multiple VMs (Virtual Machines) or operating systems to run on smart phone devices
including tablets, smart devices and laptops. That is cloud computing provides services in multi-tenant manner
to subscribers via mobile virtualization. The cloud computing offers task oriented services with virtualization
on mobile devices to provide unlimited computing power and storage on demand basis. Cloud computing build
MCC applications which are enhanced in terms of computing power and storage comparing with traditional
mobile computing applications.

Limited Battery Life. The battery capacity of mobile device is limited to run high-end application. It
is not possible to depend on other external power sources while moving (mobility). The charge of battery will
be lost in few hours.

Limited storage capacity. Every smart phone or mobile device is configured with 8 GB and laptop is
configured with 500 GB. It can be expanded with external memory. It cannot support more than configured
storage, when back is required.

Limited processing capacity. The smart phone having ARM processor, it can only run small and very
few applications. In case of laptops with various processor (i3, i5 and i7) are available but not affordable due
to high cost. The processor in mobile device cannot be upgraded if anyone want to upgrade.

A Survey on Mobile Cloud Computing: Mobile Computing + Cloud Computing (MCC = MC + CC) 315

Fig. 2.5. Architecture of MCC

Low Bandwidth. The conventional technologies such as EDGE, GPRS and GSM provide low bandwidth.
The advanced technologies 3G and 4G provides high bandwidth, but they are available only in developed
cities/towns. Fig 2.5 depicts the architecture of MCC which is categorized into three different layers:
1. User layer;
2. Network layer;
3. Service provider layer.

2.6. Benefits of Mobile Cloud Computing.

2.6.1. Extended battery lifetime. Battery consumption became a serious issue in mobile computing.
There have been many proposed models in order to address battery issue. But they are focused on hardware
design. MCC provided solution for preserving battery life by offloading resource intensive applications onto
cloud and then the entire process will be done at cloud side after that result is sent back to mobile device.

2.6.2. Data Storage. According to user perspective, MCC provides unlimited storage on demand basis.
Cloud storage permits users to store and access data from anywhere at any time. The data stored in cloud
could be any multimedia data. The cloud storage stores data in an encryption format if any change causes to
mobile, the data will remain safe in cloud as a backup.

2.6.3. Increasing processing power. The computing power could be saved in mobile device by pro-
cessing applications on cloud and result depicted in device. The mobile user does not feel of having limited
processing power because cloud provides unlimited resources. the MCC allows users run complex resource
intensive applications without any resource restrictions.

316 Ramasubbareddy Somula and Sasikala R

2.6.4. Dynamic provisioning. Mobile users can access required resources on demand basis, dynamic
provisioning that permits users to have access resources without any advanced reservation by creating virtual
machines (VMs) with appropriate configuration. Whenever user occurs cloud services, the no. of CPU cores and
storage dynamically increased based on requirement. The self service provisioning is more beneficial compared
to hardware configuration enhancement.

2.6.5. Scalability. Scalability is one of the significant characteristics of cloud computing. The resources
allocated to user will be increased or decreased based on user requirement. The cloud service provider ensure
to manage resource requirement of mobile application.

2.6.6. Reliability. Cloud is always reliable compared to mobile device. Cloud renders provide security
application such as virus scanning and malicious code detection being executed in cloud. In order to save user
from installing in local systems, MCC provides various authentication mechanisms for preventing unauthorized
user from access cloud resources or confidential data.

2.6.7. Ease of integration. In mobile computing environment, the user cannot access resources or ser-
vices. In MCC, the user can access all kind of services due to integration of various services into cloud. The
emerging advanced technologies such as Big Data and IOT can be easily integrated with MCC technology to
enhance the Quality of Services (QOS).

3. Offloading Approach. The concept of offloading can be done by offloading resource intensive applica-
tion partly or fully from mobile device (MD) to cloud. Offloading classified into two ways namely code offloading
and state offloading. Code offloading is achieved through sending part of the application to remote cloud for
executing. On other hand, state offloading means transferring entire application to remote cloud. The process
of offloading can be achieved by following three steps:
1. Partitioning
2. Preparation
3. Offloading decision

Partitioning. Partition of an application is an initial step in which the entire application is divided into
various components. These components are affordable and non-affordable which means the components run on
local device or run at remote cloud server. Based on different information the component can be considered either
affordable or non-affordable. While designing application the programmer annotate local or remote execution
through an API as affordable. The intensive part of application can be identified through code analysis and
performance prediction (application profiling). It is not efficient approach partitioning application at designing
time, because both techniques are not considering real-time execution context. So that the accuracy is very
less.

Preparation. In this step, the actions which are required for execution of mobile application at remote
server. This action may be selection of server, installation of code and execution on account of mobile device.
Both data and code needed for remote execution.

Offloading decision. This is final step in offloading, before offloading component onto remote server.
When mobile device uses offloading component then it is not necessarily to depend on execution. The decision
is based on run time, then the real time information available such as battery consumption for sending data to
remote server, wireless connection strength. Comparatively the runtime includes more overhead than decision
during design time.

3.1. Types of Frameworks. The offloading frameworks can be classified into two categories. The first
category is static offloading frameworks. In which all discussed steps in above section can be achieved at design
time on other hand, the dynamic offloading framework can be achieved at runtime. It means the decision is
taken at runtime whether to offload or not.

3.2. Offloading Mechanism. There have been various proposed works on offloading mechanism for of-
floading resource intensive application into cloud. This can be classified into two offloading mechanisms:
1. VMs offloading
2. Code offloading

A Survey on Mobile Cloud Computing: Mobile Computing + Cloud Computing (MCC = MC + CC) 317

In code offloading, the computational intensive component is sent to remote server by invoking Remote Proce-
dure Call (RPC) with the help of notations, compilers and binary code modifiers where as VMs offloading can
be achieved capturing mobile state and storing into cloud. During offloading the execution is stopped at mobile
device and VM clone sends to cloud.

3.3. Comparison among various offloading mechanisms in MCC. The existing popular offloading
mechanisms would be discussed in this section. Each mechanism properties and offloading process concludes at
end of the section [20].

3.3.1. Clonecloud Framework. The motivation behind clone cloud [21] is to reducing power consump-
tion on mobile device by offloading computation intensive application into remote server. In clone cloud, the
application partitioning can be achieved by integrating program profile with program partitioning in order to
obtain constrains, for example the component which depends on local mobile device integrates parts like sensor
, camera and speakers can be executed locally. The clone cloud mechanism will use threads functionalities at
application portioning. The programming analysis aim to obtain possible migration points, in other hand the
profile is aimed to produce cost of migrating and processing at server.

In preparation step, the application of the mobile device is captured and stored in cloud server.
In decision step, the decision is taken place at runtime which means all running threads on mobile device

are suspended and transferred to cloud server then all threads resumed in clone cloud to offload computation.
The execution process in clone cloud is to create duplicate mobile software in cloud server. Then computation
is offloaded to server and result s back later once the execution process is done. The distributed mechanism in
clone cloud aims to implement partitioning process for given application in application layer virtual machine
(VM).

The author Chan et al [21], tested clone cloud with different applications such as virus scanner, image
search and privacy preserving applications in various scenarios for example, clone cloud with Wi-Fi and clone
cloud with 3G environment.

3.3.2. MAUI Framework. The MAUI [21]framework focusing on energy optimization by executing
complex components at server in cloud. The execution of components in MAUI is done dynamically because
continuous profiling process. The MAUI tries to hide the difficulties of execution at remote server from mobile
user in order to make an impression that the entire application execution is done at local device. The developer
of application can decide the annotations which component is to execute in mobile device or which is to execute
at remote server.

In order to achieve MAUI partitioning framework the following conditions must be installed in both mobile
device and remote server side. One is application binaries and other one is proxies, profilers and solvers.

The profile maintain information about network conditions which is helpful for MAUI to take appropriate
decision otherwise leads to wrong decision. The profiler keep on updating the information during whole execution
of the application.

In MAUI, the profiler will collect information and gives it to the MAUI solver which can make decision
at runtime whether to offload or run it locally. Author has conducted various experiments using three various
applications such as face recognition, chess and video. In first comparison, the author has composed energy
consumption of application on stand-alone mobile device and with MAUI framework. The energy consumption
is optimized with MAUI framework by offload nearby server. On other hand, the energy consumption is reduced
by executing chess and video game respectively 45% and 25% with MAUI framework by offloading to nearby
server.

3.3.3. Cloudlet Framework. Offloading mechanism is not always optimum solution because of network
failure and long processing delay. The cloudlet is a cloud in box, which is situated nearby mobile device. We
can say that cloudlet brings cloud closer to mobile devices.

The cloudlet reduces response time in milliseconds by executing application in nearby cloudlet that is
comparatively better than executing on remote cloud server. Satyanarayan et al in [22], introduced VM based
cloudlet framework in which, cloudlet for hosting offloaded task that is run on remote server for storage and
processing purpose the cloudlet is not as same as cloud and any other parallel system. The cloudlet based VM
supports scalability, mobility and elasticity.

318 Ramasubbareddy Somula and Sasikala R

In preparation step, the cloudlet framework require mobile device application processing environment at
remote server then offload complete application to remote server through VM which is based on dynamic VM
synthesis. The mobile device act as interface and the entire application execution can be achieved at cloudlet
infrastructure. The user mobility is a primary challenge while processing application in cloudlet.

The cloudlets are distributed in geographical area, the users can easily access storage resources and com-
puting cycles via internet infrastructure. In order to avoid long delays, generally cloudlets located at population
areas such as bus stops, coffee shops and colleges. Users can access distant cloud via cloudlet if the user must
offload resource intensive application, then the application has to discover and send application to cloudlet [22],
otherwise the application can select optimal cloudlet based on network status.

3.3.4. Jade Framework. Jade framework [23] is similar to other framework, but different perspective. In
jade, the system consider both application and device status to make appropriate decision where the application
must be executed. This framework aims to reduce energy consumption for mobile devices as well as minimize
burden on application developer.

The application is partitioned into various classes based on available information. In partition step, the
system verifies both application and device status through other information such as load variation, energy level
communication cost. The jade designed with enough number of APIS, this minimize the burden on developer
to control the partition of application and remote server interact with local code.

In jade, the offloading decision is taken at run time whether to execute locally or remote server. Jade can
be performed on two different servers.
1. Android server
2. Non-android server
The non-android server must maintain installation of java platform. Jade runs as normal java program at non-
android server. The decision of offloading can be changed based on device status in result, energy consumption
is reduced. Jade can easily transform computational task from mobile device to available remote server to
optimize energy consumption.

The author conducted experiment using face recognition application. The experiment was done on 50
pictures each with 200 kb size. In result, jade has outperformed on existing frameworks by reducing 34%
average power consumption.

3.3.5. Mirror Server Framework. This mirror framework [24] use Telecommunication Service Provider
(TSP) at remote server. TSP would provide services to landline mobile users. The mirror server can advance
the mobile devices by providing required resources storage, computation offloading and security on computation
infrastructure. The mirror server can maintain VM instances for various mobile devices. In mirror framework,
the entire application is offloaded to remote server so the partition of application not necessary.

In preparation step, the new virtual machines (VMs) created, this VMs are managed and deployed by
Mirror server. The application execution is done at Mirror VM instance under control of mirror server. Mirror
server optimize offload mechanism.

The mirror server is not specially designed for data analysis and provide limited services (i.e. file sharing
and file scanning) are included. The author conducted experiments by installation of file scanner at mirror
server. The applications are trying to access mirror. The energy is reduced considerably, execution time also
increased running scanner on mirrors.

3.3.6. Cuckoo Framework. The author in [25], has introduced new framework called as cuckoo, which
offload resource-intensive code to remote server for mobile device. In this model, offloading can be achieved
through java stub model. Cuckoo was designed to advances the performance and reduce battery utilization. The
partition of application is adapted from existing android model, which separates affordable and non-affordable
components of the application. This process represents through user interface. The affordable components are
offloaded into any JVM resource. In preparation step, the application developer is required to write code two
times, one for local execution and other is for remote execution. For this the require programming model which
is useful when connection is dropped support execution. This both codes combined to form single package.
Cuckoo framework is dynamic offloading model and offload only well-identified components of application. If
remote resource is not available for offloading task then execution will takes place in local device.

A Survey on Mobile Cloud Computing: Mobile Computing + Cloud Computing (MCC = MC + CC) 319

3.3.7. Phone2cloud Framework. In phone2cloud [26], the author has focused on energy efficiency and
application performance by conducting quantitative experiments on various scenarios. This framework is not
fully automatic offloading framework, if application needs to be executed over cloud then it requires to modify
manually at preparation stage. The delay-tolerance threshold and static analysis are required to make offloading
decision. This threshold can be formed based on prediction of time taken for transferring data to remote cloud
via Wi-Fi network. This framework waits until Wi-Fi available rather than sending data directly.

The phone2cloud framework aimed to reduce power consumption and execution time while offloading. It was
implemented on Android and Hadoop environment to analysis experiment results. There are various components
involved in phone 2cloud framework, which would be helpful to make appropriate offloading decision to run
either locally or remotely. Components like bandwidth monitor, resource monitor, offload decision manager,
remote execution manager, offloading predictor, local execution manager and offloading proxy.

The framework consider two parameters before offloading takes place. First one is execution time of appli-
cation on mobile device and delay tolerance threshold. Second one is power consumption of application to run
on both mobile device as well as cloud environment. If the user waiting time is (delay tolerance threshold) is
less than average execution time on mobile device then application offload to cloud. The power consumption is
also considered as another constrain before application is offloaded to cloud. If power consumption is less for
executing in mobile device, then application run locally.

The author examined phone2cloud by conducting experiments with various applications such as word count,
path finder and sort application. In result, framework reduced energy consumption, improves preference of
application and experience of the user.

3.3.8. Thinkair Framework. ThinkAir framework aims to address issues raised by existing frameworks
such as MAUI does not address issue of scalability while executing application over cloud. The clonecloud
framework tries to extend binary pieces of process to make overall execution faster on cloud.

However, this approach will not support if any drastically changes happen to input or execution environment.
In order to address these two challenges such as elasticity or scalability and power consumption in mobile device,
the author in [27] introduced thinkair framework.

In preparation step, the methods are annotated as remote which are received to offload cloud server.
Thinkair approach provide simple programmer API to reduce burden on application developers. The execution
component can detect whether method is affordable or not and handle all other necessary tasks such as decision
making and communication with remote server without developer involvement.

The execution encounter makes decision for the first method based on environment parameters such as
Wi-Fi signal, available sources. For example if the Wi-Fi signal is good then the method offloads to remote
cloud otherwise executes on local mobile device. In profiling step, thinkair aims to predict make more accurate
decision with the help of variant profilers such as hardware profiler, software profiler and network profiler. These
three profilers together feed to estimate power consumption more accurately.

Hardware profiler.
• The hardware profiler collects information related to hardware such as CPU, screen, 3G and Wi-Fi
interface.
• The CPU utilization is measured from 1 to 100 in different frequencies.
• Screen can be measured through brightness from 0 to 255.
• The power consumption of Wi-Fi interface either low or high.
• The 3G interface is either idle on shared with other channel.

Software profiler. The software profile collects information related to execution of program. This profile
record following information:

• The total time required for executing method.
• The total CPU time of the method.
• No. of statements exist in method.
• No. of times the method invokes.
• The size of the thread.

Network profiler. Network profile involves overhead because it considers other profiles and parameters as
well. In previous model, we used to consider only RTT on network. Now, thinkair brings other parameters such

320 Ramasubbareddy Somula and Sasikala R

as number of packets sent/received per second, other parameters related to 3G/Wi-Fi interface, for example
uplink and downlink rate for transferring and receiving data. These all measurements feeds to achieve better
estimation in offloading method.

In thinkair, the partition is done manually by providing programmer API. The offloading decision can be
made by considering variant profiles data. The author evaluated thinkair framework using four different applica-
tions such as face detection, N-queens Problem, virus scanning application and image merging application. The
thinkair outperform in each experiment and reduced energy consumption and improved application performance
using accurate prediction model.

3.4. Comparison Table among Different Offloading Frameworks. Table 5.1 presents our compari-
son between different offloading frameworks.

4. Cloudlet: Bringing cloud closer [28]. Nowadays mobile devices gaining popularity for computation
and storage capabilities. The applications on mobile devices require more resources to process, but mobile
devices due to lack of resources unable to provide required resources for resource-intensive applications. In
Mobile Cloud Computing (MCC), computing offloading mechanism address resource hungry application by
executing partly or entire application on remote cloud server. The offloading approach also faces challenge
such as low bandwidth and high latencies. The computation offloading approach is not appropriate for real-
time application such as face recognition, navigation and online video games. When network connectivity
is poor then performance of application is affected. In order to address this problem, the cloudlet concept
has been proposed by satyanarayan [22] [29] [30]. Cloudlet aims to bring cloud closer to mobile users [31].
Cloudlet is a sort of mini cloud which is formed by connecting various nearby mobile devices via Wi-Fi or
Bluetooth. The mobile devices which are involved in cloudlet termed as cloudlet nodes. The cloudlet nodes
could be laptops, mobile devices, PDAs, tablets and palmtops. Cloudlet allows nearby mobile users to leverage
available computational resources via Wi-Fi network. Therefore, the execution time of application is reduced
to milliseconds comparatively less execution on remote cloud server. The cloudlet is dynamic in nature, it can
move and join at any point of time from network [32].

Nearby mobile users leverage cloudlet resources by running all resource-rich application and reduces end-
to-end response time [33]. Cloudlet can act as static cloudlet and dynamic cloudlet. The static cloud is termed
as cooperative cloudlet because established by cooperative organization. Besides, cloudlet can be formed with
nearby mobile devices such as device connected each other in railway station. Cloudlet is a novel emerging
technology for latency-sensitive application and computation intensive application to improve application per-
formance and user experience with application [34] [35]. Fig 4.1 represents basic process of cloudlet concept.

4.1. Cloudlet characteristic. The purpose of mobile cloud is discussed in above section that brings
cloud resources close to mobile users. The functioning of cloudlet can be represented through following four
characteristics briefly.

Soft-state. Generally, soft state is represented for efficiency in computer science, which can be replaced
at any point of time. Soft-state is self-managing. It is completely different from hard-stated and holds catch
state for cloud. Soft state store all mobile users data in buffer for security concerns before transmitting to
remote cloud. Soft-state implementation is much more efficient in network environment when compared with
hard-state.

Close at hand. Cloudlet is available very close to mobile users in order to provide high bandwidth and
low latency in network.

Well Connected. Mobile Cloud Computing enhance battery power utilization by providing sufficient
computational resources to processor offloaded resource rich mobile application over cloud.

Cloud Standards. Cloudlet functions as similar as remote cloud. The only difference is in bringing cloud
resources to mobile user for reducing battery consumption and high latency issues. The offloaded task is
executed on VMs running in cloud infrastructure.

4.2. Classification of cloudlet. Cloudlet can be classified into two types:
1. Ad-hoc cloudlet;
2. Elastic cloudlet.

A Survey on Mobile Cloud Computing: Mobile Computing + Cloud Computing (MCC = MC + CC) 321

T
a
b
l
e
3
.1

C
o
m
pa

riso
n
T
a
ble

a
m
o
n
g
D
iff
eren

t
O
ffl
oa

d
in
g
F
ra
m
ew

o
rks

F
ra

m
e
w
o
rk

P
a
rtitio

n
in
g

P
re

p
a
ra

tio
n

O
ffl
o
a
d
in
g

D
e
c
isio

n
O
b
je
c
tiv

e
P
a
rtly

/
E
n
tire

A
p
p

M
e
ch

a
n
i-

z
a
tio

n

V
M

C
lou

d
let

T
h
e
E
n
tire

A
p
p
lication

is
offl

oad
ed

in
th
e
form

of
im

age

M
ob

ile
d
ev
ice

p
ro
ces-

sin
g
E
n
v
iron

m
en
t
is

re-
q
u
ired

at
rem

ote
serv

er
N
O

D
ecision

C
lou

d
let-B

a
sed

M
ob

ile
C
lou

d
C
om

p
u
tin

g
E
n
tire

A
p
p
li-

ca
tion

N
ot

A
vail-

ab
le

P
h
on

e2C
lou

d
P
artly

/E
n
tire

A
p
p
lication

C
an

H
ap

p
en

T
h
e
D
ev
elop

er
h
as

to
an

n
otate

ap
p
lication

to
E
x
ecu

te
in

clou
d
.

S
tatic

R
ed

u
cin

g
P
ow

er
C
on

su
m
p
tion

Im
p
rov

in
g
P
erfo

rm
an

ce
of

ap
p
lication

P
art/E

n
tire

A
p
p
lication

P
artly

M
ech

-
an

ization

M
A
U
I

E
ach

M
eth

o
d

L
ab

le
eith

er
L
o
cal

or
R
em

ote

E
ach

ap
p
lication

is
R
eq
u
ired

to
create

tw
ice,

on
e
is

for
M
ob

ile
an

d
an

oth
er

for
clou

d
.

D
y
n
am

ic
offl

oad
in
g
can

b
e

ach
ieved

b
ased

on
en

ergy
con

su
m
p
tio

n
.

M
eth

o
d

L
ev
el

M
a
n
u
a
l

M
irror

S
erv

er
T
h
e

en
tire

ap
p
lica-

tion
offl

oad
ed

M
irror

R
eq
u
ired

for
S
m
art

p
h
on

es
N
ot

A
vail-

ab
le

th
e
d
ev
elop

m
en
t

of
ap

p
lication

can
b
e
ach

ieved
easily

a
n
d
en

erg
y

con
su
m
p
tion

o
p
tim

ized

E
n
tire

A
p
p
li-

ca
tion

N
ot

A
vail-

ab
le

C
u
cko

o

P
artition

can
b
e

d
on

e
u
sin

g
ex
istin

g
activ

ity
m
o
d
el

in
an

d
roid

R
em

ote
S
erv

er
req

u
ire

J
ava

E
n
v
iron

m
en
t

to
ru
n
ap

p
lication

D
y
n
am

ic

R
ed

u
cin

g
P
ow

er
C
on

su
m
p
tion

In
creasin

g
sp
eed

of
d
y
n
am

ic
in
ten

siv
e

op
eration

M
eth

o
d

L
ev
el

M
a
n
u
a
l

C
lon

eC
lou

d

P
artition

is
d
on

e
u
sin

g
P
rogram

an
aly

sis
an

d
P
rofi

les

T
h
e
M
ob

ile
O
S

req
u
ires

to
h
ost

on
rem

ote
serv

er
D
y
n
am

ic

P
rov

id
in
g
R
eso

u
rces

on
d
em

an
d
b
asis

w
h
ile

ex
ecu

tin
g

ap
p
lica

tion
o
n
clou

d

T
h
read

A
u
tom

atic

J
ad

e
C
lass-lev

el
P
artition

in
g
is

d
on

e

it
con

sid
er

w
ork

load
,

com
m
u
n
ication

cost,
en
ergy

statu
s.

D
y
n
am

ic
en

ergy
con

su
m
p
tion

op
ti-

m
ized

C
lass

L
ev
el

A
u
tom

atic

T
h
in
k
A
ir

M
eth

o
d
-lev

el
P
artition

in
g
is

d
on

e

it
fo
cu
ses

on
h
ard

w
are,

softw
are

an
d
n
etw

ork
p
rofi

les
to

arch
ive

accu
rate

offl
oad

in
g,

D
y
n
am

ic

scalab
ility

o
f
clou

d
en

h
an

ces
p
ow

er
of

m
ob

ile
com

p
u
tin

g.
p
arallelizin

g
ex
ecu

te
ap

p
lica

tion
o
n
m
u
ltip

le
V
M
’s

con
cu
rren

tly,
on

-d
em

an
d
resou

rce
allo

cation
.

M
eth

o
d

L
ev
el

A
u
tom

atic

322 Ramasubbareddy Somula and Sasikala R

Fig. 4.1. Basic Cloudlet View

Ad-hoc cloudlet can be formed with accumulation of mobile node [36]. This mobile node can join and leave at
any point of time. All mobile nodes help to run agent, the agent is responsible for recreating migration and
deployment component whenever mobile nodes leave or join. Cloudlet helps to migrate a task from one cloudlet
to another cloudlet based on cloudlet configuration and vicinity in case of elastic cloudlet, the mobile nodes
are allowed to run on VMs in virtual environment. The node agent can perform dynamic spawing for mobile
nodes based on available resources. The concept of elastic cloudlet is comparable with the VM-based cloudlet
proposed by Sathyanarayan [22]. It solves the problem of lack of resources by offering pre-configured VM to
cloudlet. Elastic cloudlet is formed through public cloud. The only one difference is that makes the both models
different with extra layer, which exist in elastic cloudlet to handle mobile user applications.

4.3. Architecture of cloudlet. Cloudlet architecture Fig 4.2 formed with additional layer between mobile
devices and cloud. Cloudlets are distributed in geographical area as Wi-Fi access points. The performance of
the cloudlet can be calculated based on following three properties:
1. cloudlet size;
2. lifetime of cloudlet node;
3. reachable time.

Cloudlet size. The size of cloudlet is defined based on number of mobile nodes connected to that master
node (initiator).

Life-time of cloudlet node. The lifetime of cloudlet node can be calculated based on how much time
spent for processing task with initiator node.

Reachable time. The amount of time both mobile node and initiator (master node) in T. the cloudlet
architecture can be represented with combination of both Ad-hoc cloudlet and elastic cloudlet. The architecture

A Survey on Mobile Cloud Computing: Mobile Computing + Cloud Computing (MCC = MC + CC) 323

Fig. 4.2. Architecture of cloudlet

discuss about how mobile devices interact and communicate each other.
The architecture is categorized into three layers.

Component layer. In component layer, the number of components (mobile device) together can form
deployment environment. Every component is handled by execution environment(EE) which decides whether
the component is to run or stop. The components are distributed in area which can be facilitated by employing
more than one EE. Component can discover issues related to performance and disclose configuration details to
EE. The EE can detect performance issues and provide appropriate solutions such as resource provisioning for
offloaded resource hungry tasks.

Node layer. The cloud environment can be formed with no. of servers each server is partitioned by running
VMs operating system resides on each Virtual Machine. EE will hold more than one VM for execution. The
node can be formed with combination of both hardware and O.S. it is Node Agent [NA] responsibility to manage
and monitor all running nodes in cloudlet. NA will also take decision to start or stop any EE. The resource
provisioning among all nodes in cloudlet is done by node agent.

Cloudlet layer. The no. of nodes together can be formulated as cloudlet. The cloudlet agent (CA) is
responsible to manage all cloudlets and maintain communication with all node agents in cloudlet the node agent
of one cloudlet can communication with other cloudlet in order to migrate resource hungry task for execution.
The node can be set as cloudlet agent by considering maximum amount resources availability [37].

The following section describes briefly about categories of cloudlet. Fig 4.4 represents categories of cloudlet
architecture.

4.3.1. Network Based Architecture. The mobile devices can communicate with nearby cloudlet or
other devices with help of network enhance as which is being used among servers in cloud. Mobile devices
always connect to near cloudlet via popular networks 3G, 4G and Wi-Fi. The cloudlet distribute computational

324 Ramasubbareddy Somula and Sasikala R

Fig. 4.3. Classification of Cloudlet Architecture

tasks to available cloudlets for executing and send results back to them. The data among cloudlet can be sent
and received through routing algorithms.Two popular algorithms can be used to make communication among
cloudlet in network i.e. distributed routing algorithm and centralized routing algorithm.

The distributed scheme uses peer-to-peer communication among cloudlets. The cloudlet distributes its
present location to all nodes nearby, the node can receive and connect to the cloudlet. The mobile device
maintains cloudlet table for storing ID of cloudlet whenever it receives presence of cloudlet information for
future use. The cloudlet also maintain mobile table, which stores all mobile IDs that can be connected to
cloudlet. The cloudlet broadcast mobile IDs table to other cloudlet to know. Each cloudlet shares mobile node
information to ensure to make easy for resource allocation in future.

In centralized scheme, one server is established called as centralized server. The task of the centralized
server is to store IDs of all available cloudlet. The broadcasting is done once all cloudlet gets registered with
centralized server by sending cloudlet ID whenever the mobile node connects to cloudlet, the cloudlet has to
store ID of cloudlet and all attached mobile nodes of cloudlet. It is centralized server task to maintain huge
table for storing cloudlet IDs and mobile node IDs. Whenever mobile node wants communicate with other node
in another cloudlet, the cloudlet has to send details of cloudlet Id and mobile node Id. The server acts as proxy
between cloudlet to send and receive data from one cloudlet to another cloudlet.

4.3.2. Service based architecture. This architecture aims to disclose how data is managed and shared
among nodes in cloudlet and among cloudlet as well. The behaviour of service base architecture discussed
through following two services.

File editing.. The file can be edited directly in remote cloud otherwise the whole file can be downloaded
into local cloudlet where mobile users can edit it. Once the editing is done that file send back to cloud through
wireless network. It is cloudlet agent responsibility to maintain synchronization between cloud and cloudlet.
When multiple users are allowed to edit file in cloudlet [38].

The steps for file editing in service architecture are:
• The node looks for nearby cloudlet and connect to it after successful connections. The node would
calculate the round trip cost from its location.
• After successful connection with remote cloud server request for file editing then, node calculations the
round trip cost from its location.
• If the cost of the cloudlet file editing is less than remote cloud file editing, then file editing is done at
cloudlet itself, otherwise in remote cloud server.
• The cloudlet update file after successful editing.

Video streaming. The node does video streaming available in remote server by means of cloudlet nodes
to save time and energy instead of streaming directly from remote server.

The steps for video streaming in service architecture are:
• The node looks for nearby cloudlet and connects to it. After successful connections, the node calculates
round trip cost from its location.

A Survey on Mobile Cloud Computing: Mobile Computing + Cloud Computing (MCC = MC + CC) 325

Table 4.1

Mobile Configuration

Year Memory Device Type
2018 1TB High-end devices
2018 1TB Low-end devices

• After successful connection with remote servers the node requests for video streaming and then calcu-
lates the round trip cost from its place.
• If the round trip cost of cloudlet is less than remote server then video streaming would take place at
cloudlet otherwise from remote server.
• The synchronization concept is not here in video streaming unlike file editing, the video being while
downloading into cloudlet.

4.4. Pocket cloudlet. The development of internet has been raising from last few decades by introducing
various mobile devices such as smart phones, tablets and other PDAs. The mobile users are able to leverage
cloud services by means of advent of internet. The communication channels help to mobile devices to access
cloud services. These challenges serves request and bring issues such as energy overhead and latency issues.
Two major constrains are mainly raising from radio link i.e. network availability and energy consumption. The
mobile communication is not able to serve increasing demands of mobile users the mobile cloud computing
provides solutions to address issues. The configuration of mobile devices can be developed in terms of processor
and memory size. For example nowadays mobiles are manufactured with extension of memory about 64 GB of
non-volatile. The expansion of mobile storage with nominal restrictions can be observed by researches.

Mobile devices having enough storage to store large amount of data locally. The storage availability is
specified in Table 4.1. The advent feature hash technology provides more storage irrespective of local storage
of mobile device. Most of storage space in mobile devices remain unused. The availability of storage space in
mobile device can be used for storing some cloud services locally.

In cloud, specific services are being used often by mobile users. The major usage of specific resources causes
data to be downloaded over and over when user download data recursively which causes high latency and more
energy consumption. These problems can be solved by means of internal mobile storage to store cloud services
which are accessed often. The concept of pocket cloud is formed by storing frequently used data [39]. Pocket
cloud can reduce power consumption, high latency and other overhead issues. Storing part of service or entire
cloud services into mobile devices. By increasing storage capacity of mobile device, more number of cloud
services can be stored in device. The pocket cloud make mobile device more efficient in every possible way.

The pocket cloud provides advantages to mobile users are:

• Pocket cloud enhance user experience by storing cloud services locally.
• Mobile users can access data at any time without delay.
• Pocket cloudlet minimizes burden on cloud servers and radio links in network.
• Since every user have individual mobile device, it is easy to identify usage pattern, storing cloud services
in mobile devices on demand basis.
• Security levels has been enhanced for storing sensitive in mobile storage.

The data stored on mobile devices are updated in regular intervals sensitive data is updated frequently on
other hand less sensitive data are updated when resource is not constrained i.e. when mobile is getting charged,
when network connection is very high. Pocket cloud follows certain protocols before storing services:

• The size of storing data varies each service.
• Security mechanism should be followed before storing data.
• Efficient architecture should be used for storing and retrieving huge amount of data.
• Updating of data by means of proper mechanism on real-time basis.

4.4.1. Pocket cloud architecture (PCA). Pocket cloud architecture Fig 4.4 provides the way in which
cloud services are accessed by mobile devices. According to research study, more than 90% user visit less than
1000 URLs in the specific time period. Cloud services can be transferred from cloud to mobile devices by means

326 Ramasubbareddy Somula and Sasikala R

Fig. 4.4. Architecture of PCA

of 3G, 4G and Wi-Fi long range networks. Mobile devices store data for future use. Data can be classified into
two categories static data and dynamic data.

Static data is updated periodically whenever network availability is high with more battery life for example
at night time when mobile getting charged. Dynamic data is updated on real-time basis, which require high
network availability.

Mobile users access data stored in devices based on patterns which are formed by cloud. These patterns
also known as access pattern. Access pattern can be formed as personal model to maximize usage of cloud
services. By combining all individual personal models to be formed as community model.

4.5. Comparision between cloud and cloudlet. Many existing research work have mistaken by men-
tioning that both cloud & cloudlet are same. But, it is not true, each of them have their own architecture, nature
of functioning. There are various parameters to prove both technologies are different paradigms. Table 4.3 shows
comparison between cloud and cloudlet.

4.6. Summary of Literature Review on Cloudlet. Modh et al [40]have characterized the idea of
blending of two new technologies which are mobile computing and cloud computing into one known as Mobile
Cloud Computing (MCC). Mobile Cloud Computing (MCC) helps in providing rich benefits of both the com-
bined technologies. Cloud computing helps to overcome the problem of storage limit as well as increasing the
computational power, processing power and storage of various mobile applications. Mobile computing helps in
easy access and retrieval of any data stored in our mobile device. Still there are a few difficulties identified
with Mobile Cloud Computing. In this paper they have presented different difficulties of systems like Internet
availability, data transmission, dormancy, access speed and so on for MCC. They additionally discuss about the
one cloudlet solution system for the fundamental system issue of idleness that influences the upgrade of MCC.

As mobile devices are being used widely they are playing an significant role in every individuals life. In any

A Survey on Mobile Cloud Computing: Mobile Computing + Cloud Computing (MCC = MC + CC) 327

case, mobile devices have the limitations, for example, low computational power and quick depletion of power
from their batteries. Loai et al in [41], have found the solution that the services of mobile cloud computing can
be utilized to run specific assignments at the cloud and send the results to end user devices addition memory
and then handles the power. This model of mobile computing is effective with the view of cloudlet scheme.
This mobile cloud computing model reduces the expensive technologies such as Wi-Fi, 3G/4G, networks by
communicating with the cloudlet directly rather than being in contact with venture cloud server. In addition
to this model, a plan which involves the interaction of cloudlet with each other. This plan is certainly known
as ace cloudlet administration plan. Colleges, institutions and healthcare centre widely make use of effective
Mobile Cloud Computing (MCC) where it necessary to store and access the large amount of information. The
MCC model in which the results of non-cloudlet are outperformed is discussed in this model.

Mobile computing is restricted with limitations such as battery, memory and capacity etc. By overwhelming
these restrictions the Mobile Cloud Computing has become familiar by offloading the tasks that are beyond
the range of end user device capacity to the cloud and later processing the those tasks in cloud are sent back
to the user device. Utilization of mobile cloud computing tends to reduce the power consumption and time
consumption to process the tasks that are offloaded to the cloud. MCC can be utilized efficiently to reduce
the power consumption and time consumption with the help of cloudlet based MCC framework proposed by
Jaraweh et al in [42].Experiment outcomes have demonstrated that utilizing the proposed system lessens the
power utilization from the cell phone, in addition to decreasing the correspondence inactivity when the cell
phone asks a task to occur remotely while keeping high calibre of administration stander.

Offloading of tasks with high intensity in the mobile into the cloud server by rising innovation mobile cloud
computing. Raei et al in [42] proposed analytical based performance model to overcome the problems occurred
in expecting results due to the MCC attributes like portability, unsteadiness of 3G/Wi-Fi and virtualization
that cannot be predicted. A technique called fixed point iteration technique sets the cyclic reliance between
the problematic sub-models. Physical Machine (PM) acts as piece of cloudlet otherwise an open cloud when
virtual machine (VM) is maintained on physical machine. This type of MCC is executed based on parameters
like network failure and workload. The effects caused due to this parameters are measured based on two
measures: request dismissal likelihood and mean reaction delay. This model is understood by the use of
SHARPE programming bundle.

Although mobile devices are increasing rapidly in our day to day life. They are limited with certain
constraints. Assets in mobile device can be reduced by offloading the high intensity tasks into the nearby cloud
with the help of mobile distributed computing. Cloudlet is an essential part for the customer cloud system
in focalizing advancement in cloud registering and mobile computing. In this paper, Pang et al [43]exhibits
a broad review of examines on cloudlet based. They initially hindsight the development of cloudlet based
mobile computing. From that point forward, they audited the current research on the cloudlet based processing
offloading and information offloading. Two cases regarding the cloudlet are presented and examined the present
scenario, endeavours and upcoming bearings of this field.

According to Dinh et al in [3], MCC has been enlightened with the potential innovation for cloud adminis-
trators along with the increase in mobile application and cloud computing idea. Whenever the tasks received by
mobile cannot be processed by the mobile, MCC organizes the cloud computing into mobile condition such that
cloud computing process the task by overcoming the limitation of mobile device such as battery life, stockpiling
and transmission capacity including condition i.e. how heterogeneous, versable and accessible it is and security.
We discuss the basic outline of MCC with definition and how it is useful in engineering and its application.

Gai et al [44] stated that utilizing Mobile Cloud Computing (MCC) to empower cloud clients to procure
advantages of cloud computing by an ecological amicable technique is an effective procedure for taking care of
current modern requests. However, the limitations of remote data transmission and gadget limit have brought
different impediments, for example, additional vitality waste and idleness delay, while conveying MCC. A
dynamic energy aware cloudlet-based mobile cloud computing model (DECM) has been proposed to overcome
the limitation such as additional vitality waste and idleness of remote data transmission and device limit. This
model DECM makes use of extra vitality during the interchanging of remote data by dynamic cloudlet-based
model (DCL). In this paper, they inspect their model by a recreation of functional situation and give strong
outcomes to the assessments. The principle commitments of this paper are twofold. In the first place, this paper

328 Ramasubbareddy Somula and Sasikala R

is the primary investigation in taking care of vitality squander issues inside the dynamic systems administration
condition. Second, the proposed display furnishes future research with a rule and hypothetical backings.

According to Sanaei et al in [45], MCC is the resultant of rapid and repeated research exercises that are
performed in favour of increasing various mobile devices with the help of different cloud advantages. Encour-
agement if interoperability, transportability and incorporation between the different stages is important in the
middle of such different condition. The facilitators in MCC helps in examining the heterogeneity to under-
stand and also difficulties. The successful MCC undergoes literary struggles when cloud computing and cloud
figuring is integrated. In the present paper, we discuss about the characterization of MCC, how to illuminate
the important endeavours, testing diversification in figuring. Heterogeneity is classified as equipment, stage,
highlight, API and system after the base of heterogeneity is explored. The improvement of cross-stage cloud
applications is blocked due to the multi-dimensional heterogeneity in MCC which develops application and code
discontinuity issues. Difficulties due to the effects of diversification are recognized through the research and
we discuss about the methodologies like virtualization, middleware and service oriented architecture (SOA) is
taken care by overcoming heterogeneity.

The Table 4.2 points towards several papers on cloudlet.

5. Security, Privacy And Challenges In Mobile Cloud Computing (MCC).

5.1. Layers of cloud computing.

Data Centers Layer. It provides hardware facility and infrastructure for cloud. in which, numerous
servers are connect via internet to provide services to users [56].

Infrastructure as a Service (IaaS). It provides hardware, storage, servers, networking component for
users, and users will pay as you go [56].

Platform as a Service (PaaS). It provides advanced environment for application developing, deploying,
and testing [57].

Software as a Service (SaaS). It shares available applications and information remotely via internet
with multiple users and pay only for they use [57].

5.2. Security Breaches And Issues.

5.2.1. Data ownership. Cloud computing provide facility to user to store purchased data such as video
files, audio files, e-books remotely. There can be a chance that user will not be able to access bought data from
server and should be aware of access permission of bought data. Mobile cloud computing solve this kind of
breaches by using context information like location, capabilities of device, user profile [56].

5.2.2. Privacy. Privacy is one of the significant challenge in mobile cloud computing. Some mobile
applications store users personal data in cloud by hiring storage. Third party companies share users sensitive
data with government agencies without users permission [45].

5.2.3. Security Issues. Mobile devices are venerable to attacks and chances of stolen data because mobile
devices are unprotected. An unauthorized user easily gets access of authorized users. Few security issues
mentioned as follows [58]:

• Data loss from loss/stolen devices.
• Information stealing from mobile malware.
• Data leakage happens with untrusted third party.
• Insecure network access and unreliable access points.
• Vulnerabilities with in devices, operating system, design and third party application.
• Near field communication (NFC) proximity based hacking.

The concept of security breach is that the unauthorized user access sensitive data of other user without
corresponding user permission. Many organizations treat their data as voluble asset of their company. It is well
known fact that ever user knows that it is impossible to avoid loss of data in network world. There are many
ways that data could get lost [59].

A Survey on Mobile Cloud Computing: Mobile Computing + Cloud Computing (MCC = MC + CC) 329

Table 4.2

Summary of Literature Review on Cloudlet

Ref Cloud Cloudlet Problem Solution

[41] CL
Optimizing
power consumption
and high latency.

MCCSIM

[42] CL
Minimizing
power consumption and latency.

Cloudlet
based MCC

[46] CL

Optimizing
performance of cloudlet
by considering workload,
recourse capacity,
connection failure rate,
request rejection probability,
mean response delay.

Fixed-point
iteration algorithm

[47] CL
Optimizing
cloudlet selection and
resource provisioning.

Round
Robin with
load-degree algorithm.

[44] C CL
Reducing
power usage for cloud selection.

Dynamic
cloudlet
selection model

[48] C CL

Developing
hybrid application by
optimizing power and
latency issues.

Automation
Script with
Exhaustive Search algorithm

[49] C CL

Cloudlet
selection and processing
with low power consumption
and latency .

Recourse
allocation using centralized
proxy server.

[50] C CL

Optimizing
power consumption and latency
by distributing tasks
among cloudlets.

MILP
linear programming model

[51] C CL
Optimizing
bandwidth and resource
in cloudlet based MCC.

triple-stage Stackelberg game
using backward
method.

[52] C CL
Minimizing
CPU execution time
and memory usage.

Bee’s
life algorithm

[53] CL

Load
balancing among fog nodes
to optimize power and recourse
usage.

Optimal
Multi-User
Small Cell Clustering

[54] CL
Optimizing
user access mode selection.

Evolution
Algorithm.

[55] CL
Distribution
of load among nodes
to least latency.

Matching
theory.

330 Ramasubbareddy Somula and Sasikala R

Table 4.3

Comparision Between Cloud computing and cloudlet

Parameters Cloud Computing(CC) Cloudlet
State Hard and Soft State soft-state

Management
Professionally

Managed
Self Managed

Environment

Large space
Required

for maintaining
servers

Established at organization

ownership
Centralized
Management

Decentralized Management

Network Internet LAN

Sharing
Unlimited devices
Communicate and

share data

Limited Devices only
share data and
communicate

cost Investment is high Investment is Low
security More secure and Reliable Less secure

5.3. Mobile cloud computing suffers from following risks.
• User does not know where exactly mobile data is stored in mobile cloud computing environment which
leads user does not have control over stored data.
• Physical damage of cloud server, loss of encoding key and due to malicious insider, risk of data loss
may arise.
• Customer may intentionally plant virus of phishing attack in to cloud server which may lead to loss
of other users data, and cloud provide is unable to do anything because violation of privacy policy of
company.
• When cloud provider services number of users, flaw in encryption may lead to unauthorized encryption.
• As per service level agreement cloud provider should maintain security level Security risk may rise in
Iaas due to lack of isolation among hosted virtual machine in single server.
• Most users share their sensitive and personal data through mobile application for instance online trans-
action that can be attacker main target.

5.4. Security Issues of Mobile Cloud Computing. This section describe different possible attacks in
mobile cloud computing.

SQL Injection Attack. The attacker adds malicious code in standard SQL so that attacker get unauthorized
access of database, is able to access sensitive data [60].

Browser Security. Every user use browser to transmit data over network. Browser uses SSL technology to
provide protection to user authentication details. But attacker always tries to break user credentials by using
sniffing package which is installed on intermediary host.

Denial of service. The attacker prevents user accessing services from cloud [61].
Cookie poisoning. The attacker changes content of cookie to have illegal access of application [62].
Flooding attacks. Attacker continuously sends resource required request to cloud server so that cloud get

flooded with ample requests. cloud has feature called scalability based on number of requests given send by
users but intruder stop server from serving actual users by sending requests rapidly [63].

Incomplete data deletion. When data is deleted, it does not remove copy of that data from backup server
until the operation system of the server is commanded specially by network service provider. Precise data
deletion is impossible because replicas stored in backup server [63].

Usually user is able to connect cloud server by using web browser or web services [70]. Web service attacks
also effect cloud computing. In spite of cloud security uses XML signature for protecting an element name,
attribute, value from attackers.

A Survey on Mobile Cloud Computing: Mobile Computing + Cloud Computing (MCC = MC + CC) 331

T
ab

le
5.
1:

C
om

p
ar
is
on

am
on

g
d
iff
er
en
t
se
cu
ri
ty

m
o
d
el
s
of

ad
d
re
ss
-

in
g
se
cu

ri
ty

an
d
p
ri
va
cy

is
su
es

in
M
C
C

A
u
th

o
rs
/
y
e
a
r

A
p
p
ro

a
ch

T
ru

st
e
d

le
v
e
l

S
e
c
u
ri
ty

a
tt
ri
b
u
te

p
ro

v
id
e
d

B
e
n
e
fi
ts

D
ra

w
b
a
ck

s
C
o
n
c
lu
si
o
n

1
2

3
4

5
6

7

J
.O

b
er
h
ei
d
e
et

al
.

V
ir
tu
a
li
ze
d

in
-c
lo
u
d

se
cu

ri
ty

se
rv
ic
es

fo
r

m
ob

il
e
d
ev
ic
es

[6
2]

(2
00

8)

C
lo
u
d
A
V

F
u
ll
y
tr
u
st
ed

A
n
ti
v
ir
u
s,

S
ec
u
ri
ty

as
a

S
er
v
ic
e

R
ed

u
ce
d

O
n
D
ev
ic
e

so
ft
w
ar
e

co
m
p
le
x
it
y

an
d

p
ow

er
co
n
su
m
p
ti
on

D
is
co
n
n
ec
te
d

op
er
at
io
n

an
d

p
ri
va
cy

lo
ss

B
y
m
ov

in
g
th
e
d
et
ec
ti
on

ca
p
ab

il
it
ie
s
to

a
n
et
w
or
k

se
rv
ic
e,

w
e
ga

in
n
u
m
er
ou

s
b
en
efi

ts
in
cl
u
d
in
g
in
cr
ea
se
d

d
et
ec
ti
on

co
ve
ra
ge
,
le
ss

co
m
p
le
x
m
ob

il
e
so
ft
w
ar
e,

an
d
re
d
u
ce
d
re
so
u
rc
e

co
n
su
m
p
ti
on

.
Z
h
an

g
et

al
.

A
C
M

w
or
k
sh
op

on
C
lo
u
d

co
m
p
u
ti
n
g

se
cu

ri
ty

[6
4]

(2
00

9)

C
lo
u
d
le
t

S
em

i-
tr
u
st
ed

T
as
k

p
ar
ti
ti
on

in
g

G
o
o
d

tr
ad

eo
ff
s

b
et
w
ee
n

p
ro
ce
ss
in
g

ov
er
h
ea
d

an
d

co
m
m
u
n
ic
at
io
n
co
st

S
ec
u
ri
ty

of
W
eb
le
t

ca
n
b
e

im
p
ro
ve
d

w
it
h

ot
h
er

te
ch
n
iq
u
es
.su

p
p
or
t
fl
ex
ib
le

an
d

effi
ci
en
t
w
ay

s
to

au
gm

en
t
co
m
p
u
ti
n
g,

st
or
ag

e,
an

d
co
m
m
u
n
ic
at
io
n

ca
p
ab

il
it
ie
s
of

ap
p
li
ca
ti
on

s
fo
r
re
so
u
rc
e-
co
n
st
ra
in
ed

D
ev
ic
es
.

X
ia
o

an
d
G
on

g
et

a
l.

In
te
rn
at
io
n
al

C
on

fe
re
n
ce

on
M
o
b
il
e

D
at
a

M
an

ag
em

en
t
[6
5]

(2
01

0)

L
ig
h
tw

ei
gh

t
al
go

ri
th
m

S
em

i
tr
u
st
ed

A
u
th
or
iz
at
io
n

of u
se
rs

d
at
a
in

cl
ou

d

A
u
to
m
at
ic

D
y
n
am

ic
u
p
d
at
in
g

of
cr
ed
en
ti
al

in
fo
rm

at
io
n

M
or
e

p
ro
ce
ss
in
g

an
d

en
er
gy

b
u
rd
en

on
m
ob

il
e

d
ev
ic
e

m
er
it
of

d
y
n
am

ic
cr
ed
en
ti
al

is
th
at

th
e

at
ta
ck
er
s
d
iffi

cu
lt
y

to
fa
k
e
th
e
cr
ed
en
ti
al

gr
ow

s
w
it
h
ti
m
e.

332 Ramasubbareddy Somula and Sasikala R

1
2

3
4

5
6

7
W
an

g
an

d
W
an

g
et

al
.

11
th

In
te
rn
at
io
n
al

C
on

fe
re
n
ce

on M
ob

il
e

D
at
a

M
an

ag
em

en
t,

M
D
M

[6
6]

(2
01

1)

T
op

d
ow

n
sp
at
ia
l

cl
oa

k
in
g

D
is
tr
u
st
ed

P
ri
va
cy

p
re
se
rv
in
g

fr
am

ew
or
k

in lo
ca
ti
on

b
as
ed

S
ch
em

e

R
ed

u
ce
d

co
m
m
u
n
ic
at
io
n

co
st

b
y

d
oi
n
g
sp
at
ia
l

cl
oa

k
in
g

b
as
ed

on
th
e

h
is
to
ri
ca
l

d
at
a
in

cl
ou

d
.

M
or
e

en
er
gy

co
n
su
m
p
ti
on

an
d

p
ro
ce
ss
in
g

b
u
rd
en

on
m
ob

il
e
d
ev
ic
e

to
p
-d
ow

n
sp
at
ia
l
cl
oa

k
in
g

al
go

ri
th
m
,a
n
d
d
ev
is
ed

op
ti
m
iz
at
io
n
ar
e
p
ro
p
os
ed

to
re
d
u
ce

th
e
co
m
m
u
n
ic
at
io
n

co
st
.

H
u
an

g
et

al
.

M
ob

iC
lo
u
d
:

b
u
il
d
in
g

se
cu

re
cl
ou

d
fr
am

ew
or
k

fo
r
m
ob

il
e

co
m
p
u
ti
n
g

an
d

co
m
m
u
n
ic
at
io
n
[5
8]

(2
01

0)

M
ob

iC
lo
u
d

D
is
tr
u
st
ed

S
ec
u
ri
ty

in S
to
ra
ge

as
a

S
er
v
ic
e

in M
A
N
E
T

S
ec
u
re
d

d
at
a
w
h
il
e

u
si
n
g
P
u
b
li
c
C
lo
u
d

In
cr
ea
se
d

co
st

d
u
e

to
tw

o
cl
ou

d
p
ro
v
id
er
s

T
h
e
m
ob

ic
lo
u
d
fr
am

ew
or
k

w
il
l
en
h
an

ce
co
m
m
u
n
ic
at
io
n

b
y
ad

d
re
ss
in
g
tr
u
st

m
an

ag
em

en
t,

se
cu
re

ro
u
ti
n
g,

ri
sk

m
an

ag
em

en
t
is
su
es

in
n
et
w
or
k
.

G
.
P
or
to
ka
li
d
is

et
al
.

A
n
n
u
al

C
o
m
p
u
te
r

S
ec
u
ri
ty

A
p
p
li
ca
ti
o
n

C
on

fe
re
n
ce

(A
C
S
A
C
)
[6
7]

(2
01

0)

T
h
re
at

d
et
ec
ti
on

in S
m
ar
tp
h
on

e
b
as
ed

on C
lo
u
d
A
V

F
u
ll
y
tr
u
st
ed

S
ec
u
ri
ty

as
a

S
er
v
ic
e

R
ed

u
ce
d

tr
an

sm
is
si
on

ov
er
h
ea
d
an

d
en
er
gy

co
n
su
m
p
ti
on

M
or
e

C
lo
u
d
u
sa
ge

co
st
.

b
at
te
ry

li
fe

is
co
n
su
m
ed

m
or
e.

it
off

er
s
m
or
e
co
m
p
re
h
en

si
v
e

se
cu
ri
ty

th
an

p
os
si
b
le

w
it
h

al
te
rn
at
iv
e
m
o
d
el
s.

A Survey on Mobile Cloud Computing: Mobile Computing + Cloud Computing (MCC = MC + CC) 333

1
2

3
4

5
6

7
R
.C
h
ow

et
al
.

A
C
M

C
lo
u
d

C
om

p
u
ti
n
g

S
ec
u
ri
ty

W
or
k
sh
op

[6
8]
(2
01

0)

P
ol
ic
y

b
as
ed

cl
ou

d
au

th
en
ti
ca
ti
on

p
la
tf
or
m

F
u
ll
y

T
ru
st
ed

A
u
th
en
ti
ca
ti
on

of u
se
r.

A
u
th
en
ti
ca
ti
on

b
as
ed

on b
eh
av

io
ra
l
d
at
a
of

u
se
r

P
ri
va
cy

th
re
at

ou
r
p
ro
p
os
ed

au
th
en
ti
ca
ti
on

ap
p
ro
ac
h
p
ot
en
ti
al
ly

im
p
ro
ve
s

se
cu
ri
ty

an
d
u
sa
b
il
it
y.

J
ia

et
al
.

IE
E
E

C
on

fe
re
n
ce

on
C
om

p
u
te
r

C
om

m
u
n
ic
at
io
n
s

W
or
k
sh
op

s,
IN

F
O
C
O
M

W
K
S
H
P
S

[5
9]
(2
01

1)

P
ro
x
y

re
en

cr
y
p
ti
on

(P
R
E
)

sc
h
em

e
an

d
Id
en
ti
ty

b
as
ed

en
cr
y
p
ti
o
n

(I
D
E
)

sc
h
em

e

S
em

i
tr
u
st
ed

S
ec
u
re

d
at
a

S
er
v
ic
e

R
ed

u
ce
d

co
st

of
u
p
d
at
in
g

of
ac
ce
ss

p
ol
ic
y

an
d

co
m
m
u
n
ic
at
io
n

co
st

R
ed

u
ce
d

co
st

of
u
p
d
at
in
g

of
ac
ce
ss

p
ol
ic
y

an
d

co
m
m
u
n
ic
at
io
n

co
st

id
en
ti
ty

b
as
ed

p
ro
x
y

re
-e
n
cr
y
p
ti
on

sc
h
em

e
to

m
ak

e
m
ob

il
e
u
se
rs

ea
si
ly

im
p
le
m
en
t

fi
n
e-
gr
ai
n
ed

ac
ce
ss

co
n
tr
ol

of
d
at
a
an

d
al
so

gu
ar
an

te
e
th
e

d
at
a
p
ri
va
cy

in
th
e
cl
ou

d

Y
an

g
et

al
.

P
ro
va
b
le

d
at
a

p
os
se
ss
io
n

of re
so
u
rc
e

co
n
st
ra
in
ed

m
ob

il
e

d
ev
ic
es

in
cl
ou

d
co
m
p
u
ti
n
g

[6
9]

(2
01

1)

ex
te
n
d
ed

th
e

p
u
b
li
c

p
ro
va
b
le

d
at
a

p
os
se
ss
io
n

sc
h
em

e

D
is
tr
u
st
ed

en
su
re
s

p
ri
va
cy
,

co
n
fi
d
en
ti
al
it
y

an
d

in
te
gr
it
y
of

u
se
r

d
at
a
st
or
ed

on cl
ou

d

R
ed

u
ce
d

en
er
gy

an
d

p
ro
ce
ss
in
g

re
q
u
ir
em

en
t

on m
ob

il
e

d
ev
ic
e

D
eg
ra
d
at
io
n

of p
er
fo
rm

an
ce

w
it
h

th
e

in
cr
ea
se

in
n
o.

of u
se
rs

in
T
ru
st
ed

P
ar
ty

A
ge
n
t

(T
P
A
).

C
os
t

al
so

in
cr
ea
se
s

d
u
e
to

tw
o

cl
ou

d
se
rv
ic
e

p
ro
v
id
er
s.

334 Ramasubbareddy Somula and Sasikala R

1
2

3
4

5
6

7

S
am

an
Z
on

ou
z
et

al
.

S
ci
en

ce
D
ir
ec
t

jo
u
rn
al

of
C
om

p
u
te
rs

an
d

se
cu

ri
ty

[6
3]

(2
01

3)

S
ec
lo
u
d

fo
r

S
m
ar
t

p
h
o
n
es

T
ru
st
ed

cl
ou

d
b
as
ed

co
m
p
re
h
en
si
v
e

an
d

li
gh

tw
ei
gh

t
se
cu

ri
ty

fo
r

sm
ar
t

p
h
on

es

R
ed

u
ce
d

en
er
gy

an
d

p
ro
ce
ss
in
g

re
q
u
ir
em

en
t

on m
ob

il
e

d
ev
ic
e
fo
r

p
ro
v
id
in
g

se
cu
ri
ty

in
m
ob

il
e

d
ev
ic
e

C
lo
u
d

as
su
m
es

to
b
e

fu
ll
y
tr
u
st
ed

w
h
ic
h

n
ee
d
s
to

b
e

re
co
n
si
d
er
ed
.

T
h
e

p
er
so
n
al

d
at
a
of

u
se
rs

ac
ce
ss
ed

to
th
e

cl
ou

d
ca
n

aff
ec
t

th
e
p
ri
va
cy

is
su
es

S
ec
lo
u
d
p
ro
v
id
es

a
p
ow

er
fu
l,

y
et

re
so
u
rc
e-
fr
ie
n
d
ly
,

p
ro
te
ct
io
n
fo
r
sm

ar
t

p
h
on

es
b
y
p
er
fo
rm

in
g

th
e
se
cu
ri
ty

an
al
y
si
s

on
an

em
u
la
te
d
v
er
si
on

of
th
e
d
ev
ic
es
,

ru
n
n
in
g
in
si
d
e
a
cl
ou

d

V
ij
ay

V
ar
ad

h
a
ra
ja
n
et

al
.

IE
E
E

T
ra
n
sa
ct
io
n
s

O
n

N
et
w
o
rk

an
d

S
er
v
ic
e

M
an

ag
em

en
t

[7
0]
(2
01

4)

S
ec
u
ri
ty

as
a

S
er
v
ic
e

M
o
d
el

T
ru
st
ed

V
ir
tu
al
iz
at
io
n

te
ch
n
ol
og

y
an

d
V
M
M

se
cu

ri
ty

fu
n
ct
io
n
al
it
ie
s

O
ff
er
s

a
b
as
el
in
e

se
cu
ri
ty

to
th
e

p
ro
v
id
er

to
p
ro
te
ct

it
s

ow
n

cl
ou

d
in
fr
as
tr
u
ct
u
re

In
si
d
er

at
ta
ck

fr
om

T
en
an

t
D
om

ai
n

an
d

C
lo
u
d

S
er
v
ic
e

P
ro
v
id
er

se
cu
ri
ty

as
a
se
rv
ic
e

m
o
d
el

th
at

a
cl
ou

d
p
ro
v
id
er

ca
n
off

er
to

it
s
m
u
lt
ip
le

te
n
an

ts
an

d
cu
st
om

er
s

of
it
s
te
n
an

ts

Q
ia
o

Y
an

an
d
F
.

R
ic
h
ar
d

Y
u
et

al
.

IE
E
E

C
om

m
u
n
ic
at
io
n
s

S
u
rv
ey
s

&
T
u
to
ri
al
s

[6
1]
(2
01

6)

S
of
tw

ar
ed

efi
n
ed

n
et
w
or
k
in
g

(S
D
N
)

T
ru
st
ed

N
et
w
or
k
in
g-
as
a-

se
rv
ic
e

(N
aa

S
),

co
n
tr
ol

an
d

d
at
a
p
la
n
es

ar
e

d
ec
ou

p
le
d

so
ft
w
ar
e-
b
as
ed

tr
affi

c
an

al
y
si
s,

ce
n
tr
al
iz
ed

co
n
tr
ol
,

gl
ob

al
v
ie
w

of
th
e

n
et
w
or
k
,

d
y
n
am

ic
u
p
d
at
in
g
of

fo
rw

ar
d
in
g

ru
le
s

S
ec
u
ri
ty

of
S
D
N

it
se
lf

re
m
ai
n
s
to

b
e

ad
d
re
ss
ed

an
d

p
ot
en
ti
al

D
D
oS

v
u
ln
er
ab

il
it
ie
s

ex
is
t

ac
ro
ss

S
D
N

p
la
tf
or
m
s

D
ef
en
d
in
g
D
D
O
S
at
ta
ck

b
y
m
ak

in
g
fu
ll
u
se

of
S
D
N
-b
as
e
cl
ou

d
ad

va
n
ta
ge
s
in

cl
ou

d
en
v
ir
on

m
en
t.

A Survey on Mobile Cloud Computing: Mobile Computing + Cloud Computing (MCC = MC + CC) 335

6. Conclusion. In this article, we have discussed about various concepts in mobile cloud computing:
(1) Mobile computing, (2) cloud computing, (3) mobile cloud computing,(4) offloading approach, (5) cloudlet
approach and (6)security and privacy. We have given extensive survey on existing frameworks on computation
offloading. Even through, there are various frameworks presented, but the objective of each framework is to
improving mobile performance by reducing energy consumption and response time.

We have provided a survey on emerging cloudlet technology and challenges. the concept of cloudlet aims
to address high latency and response time issues by brining cloud recourses closer to mobile user. We have
analyzed comparison among popular cloudlet architecture and selection techniques; the secure routing protocol
used to protect communication channel between devices and cloud as well as need to be addressed several issues
such as data integrity, authentication, authorization and access control. We believe that by introducing edge
computing architecture for optimizing mobile performance in MCC will take place in near feature.

REFERENCES

[1] R. Meulen, “Gartner Says Global Smartphone Sales to Only Grow 7 Per Cent in 2016.”
[2] B. Butler, “Gartner: Cloud Putting Crimp in Traditional Software, Hardware Sales,” Network World, 2012.
[3] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud computing: architecture, applications, and approaches,”

Wireless communications and mobile computing, vol. 13, no. 18, pp. 1587–1611, 2013.
[4] M. Tulloch, Introducing Windows Azure for IT Professionals. Microsoft Press, 2013.
[5] R. Buyya, “Introduction to the ieee transactions on cloud computing,” IEEE Transactions on Cloud Computing, vol. 1, no. 1,

pp. 3–21, 2013.
[6] P. Mell, T. Grance, and Others, “The NIST definition of cloud computing,” 2011.
[7] C. V. N. Index, “Global mobile data traffic forecast update 2014–2019 white paper, feb 2015,” See: http://www. cisco.

com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white paper c11-520862. html, 2015.
[8] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework for partitioning and execution of data stream applications

in mobile cloud computing,” ACM SIGMETRICS Performance Evaluation Review, vol. 40, no. 4, pp. 23–32, 2013.
[9] A. Klein, C. Mannweiler, J. Schneider, and H. D. Schotten, “Access schemes for mobile cloud computing,” in Mobile Data

Management (MDM), 2010 Eleventh International Conference on. IEEE, 2010, pp. 387–392.
[10] P. Bahl, R. Y. Han, L. E. Li, and M. Satyanarayanan, “Advancing the state of mobile cloud computing,” in Proceedings of

the third ACM workshop on Mobile cloud computing and services. ACM, 2012, pp. 21–28.
[11] E. Miluzzo, R. Cáceres, and Y.-F. Chen, “Vision: mClouds-computing on clouds of mobile devices,” in Proceedings of the

third ACM workshop on Mobile cloud computing and services. ACM, 2012, pp. 9–14.
[12] R. Kamal, Mobile Computing. Oxford University Press, Inc., 2008.
[13] L. S. Ashiho, “Mobile technology: Evolution from 1G to 4G,” Electronics for you, pp. 94–98, 2003.
[14] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and

Others, “A view of cloud computing,” Communications of the ACM, vol. 53, no. 4, pp. 50–58, 2010.
[15] R. Buyya, J. Broberg, and A. M. Goscinski, Cloud computing: Principles and paradigms. John Wiley & Sons, 2010, vol. 87.
[16] D. Durkee, “Why cloud computing will never be free,” Queue, vol. 8, no. 4, p. 20, 2010.
[17] M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali, “Cloud computing: Distributed internet computing for IT

and scientific research,” IEEE Internet computing, vol. 13, no. 5, 2009.
[18] K. Chard, S. Caton, O. Rana, and K. Bubendorfer, “Social cloud: Cloud computing in social networks,” in Cloud Computing

(CLOUD), 2010 IEEE 3rd International Conference on. IEEE, 2010, pp. 99–106.
[19] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: elastic execution between mobile device and cloud,”

in Proceedings of the sixth conference on Computer systems. ACM, 2011, pp. 301–314.
[20] K. Akherfi, M. Gerndt, and H. Harroud, “Mobile cloud computing for computation offloading: Issues and challenges,” Applied

Computing and Informatics, 2016.
[21] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and P. Bahl, “MAUI: making smartphones

last longer with code offload,” in Proceedings of the 8th international conference on Mobile systems, applications, and
services. ACM, 2010, pp. 49–62.

[22] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based cloudlets in mobile computing,” IEEE
pervasive Computing, vol. 8, no. 4, 2009.

[23] H. Qian and D. Andresen, “Jade: Reducing energy consumption of android app,” the International Journal of Networked
and Distributed Computing (IJNDC), Atlantis press, vol. 3, no. 3, pp. 150–158, 2015.

[24] B. Zhao, Z. Xu, C. Chi, S. Zhu, and G. Cao, “Mirroring smartphones for good: A feasibility study,” in International
Conference on Mobile and Ubiquitous Systems: Computing, Networking, and Services. Springer, 2010, pp. 26–38.

[25] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: a computation offloading framework for smartphones,” in Interna-
tional Conference on Mobile Computing, Applications, and Services. Springer, 2010, pp. 59–79.

[26] F. Xia, F. Ding, J. Li, X. Kong, L. T. Yang, and J. Ma, “Phone2Cloud: Exploiting computation offloading for energy saving
on smartphones in mobile cloud computing,” Information Systems Frontiers, vol. 16, no. 1, pp. 95–111, 2014.

[27] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair: Dynamic resource allocation and parallel execution in
the cloud for mobile code offloading,” in Infocom, 2012 Proceedings IEEE. IEEE, 2012, pp. 945–953.

336 Ramasubbareddy Somula and Sasikala R

[28] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets: Bringing the cloud to the mobile user,” in Proceedings of
the third ACM workshop on Mobile cloud computing and services. ACM, 2012, pp. 29–36.

[29] M. Satyanarayanan, Z. Chen, K. Ha, W. Hu, W. Richter, and P. Pillai, “Cloudlets: at the leading edge of mobile-cloud
convergence,” in Mobile Computing, Applications and Services (MobiCASE), 2014 6th International Conference on.
IEEE, 2014, pp. 1–9.

[30] S. Simanta, K. Ha, G. Lewis, E. Morris, and M. Satyanarayanan, “A reference architecture for mobile code offload in hostile
environments,” in International Conference on Mobile Computing, Applications, and Services. Springer, 2012, pp.
274–293.

[31] S. Clinch, J. Harkes, A. Friday, N. Davies, and M. Satyanarayanan, “How close is close enough? Understanding the role of
cloudlets in supporting display appropriation by mobile users,” in Pervasive Computing and Communications (PerCom),
2012 IEEE International Conference on. IEEE, 2012, pp. 122–127.

[32] Z. Dou, “Benefits of utilizing an edge server (cloudlet) in the mocha architecture,” Ph.D. dissertation, University of Rochester.
Department of Electrical and Computer Engineering, 2013.

[33] D. Fesehaye, Y. Gao, K. Nahrstedt, and G. Wang, “Impact of cloudlets on interactive mobile cloud applications,” in Enterprise
Distributed Object Computing Conference (EDOC), 2012 IEEE 16th International. IEEE, 2012, pp. 123–132.

[34] Y. Li and W. Wang, “Can mobile cloudlets support mobile applications?” in Infocom, 2014 proceedings ieee. IEEE, 2014,
pp. 1060–1068.

[35] J. Flinn and M. Satyanarayanan, Energy-aware adaptation for mobile applications. ACM, 1999, vol. 33, no. 5.
[36] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm problem in a mobile ad hoc network,” Wireless

networks, vol. 8, no. 2-3, pp. 153–167, 2002.
[37] H. Wang, “Accelerating mobile-cloud computing using a cloudlet,” Ph.D. dissertation, University of Rochester. Department

of Electrical and Computer Engineering, 2013.
[38] J. Wu and H. Li, “On calculating connected dominating set for efficient routing in ad hoc wireless networks,” in Proceedings of

the 3rd international workshop on Discrete algorithms and methods for mobile computing and communications. ACM,
1999, pp. 7–14.

[39] E. Koukoumidis, D. Lymberopoulos, K. Strauss, J. Liu, and D. Burger, “Pocket cloudlets,” in ACM SIGPLAN Notices,
vol. 46, no. 3. ACM, 2011, pp. 171–184.

[40] R. M. Modh and J. M. Patel, “A study on improving challenges of network with cloudlets for mobile cloud computing,”
International Journal of Global Research in Computer Science (UGC Approved Journal), vol. 4, no. 4, pp. 143–146,
2013.

[41] A. T. Lo’ai, W. Bakheder, and H. Song, “A mobile cloud computing model using the cloudlet scheme for big data applications,”
in Connected Health: Applications, Systems and Engineering Technologies (CHASE), 2016 IEEE First International
Conference on, 2016, pp. 73–77.

[42] Y. Jararweh, L. Tawalbeh, F. Ababneh, and F. Dosari, “Resource efficient mobile computing using cloudlet infrastructure,” in
Mobile Ad-hoc and Sensor Networks (MSN), 2013 IEEE Ninth International Conference on. IEEE, 2013, pp. 373–377.

[43] Z. Pang, L. Sun, Z. Wang, E. Tian, and S. Yang, “A survey of cloudlet based mobile computing,” in Cloud Computing and
Big Data (CCBD), 2015 International Conference on. IEEE, 2015, pp. 268–275.

[44] K. Gai, M. Qiu, H. Zhao, L. Tao, and Z. Zong, “Dynamic energy-aware cloudlet-based mobile cloud computing model for
green computing,” Journal of Network and Computer Applications, vol. 59, pp. 46–54, 2016.

[45] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in mobile cloud computing: taxonomy and open challenges,”
IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 369–392, 2014.

[46] H. Raei, N. Yazdani, and R. Shojaee, “Modeling and performance analysis of cloudlet in Mobile Cloud Computing,” Perfor-
mance Evaluation, vol. 107, pp. 34–53, 2017.

[47] R. Somula and R. Sasikala, “Round robin with load degree: An algorithm for optimal cloudlet discovery in mobile cloud
computing,” Scalable Computing: Practice and Experience, vol. 19, no. 1, pp. 39–52, 2018.

[48] A. Akbar and P. R. Lewis, “Towards the optimization of power and bandwidth consumption in mobile-cloud hybrid appli-
cations,” in Fog and Mobile Edge Computing (FMEC), 2017 Second International Conference on. IEEE, 2017, pp.
213–218.

[49] A. Mukherjee, D. De, and D. G. Roy, “A power and latency aware cloudlet selection strategy for multi-cloudlet environment,”
IEEE Transactions on Cloud Computing, 2016.

[50] Y. Jararweh, M. Al-Ayyoub, M. Al-Quraan, A. T. Loai, and E. Benkhelifa, “Delay-aware power optimization model for mobile
edge computing systems,” Personal and Ubiquitous Computing, vol. 21, no. 6, pp. 1067–1077, 2017.

[51] S. Meng, Y. Wang, Z. Miao, and K. Sun, “Joint optimization of wireless bandwidth and computing resource in cloudlet-based
mobile cloud computing environment,” Peer-to-Peer Networking and Applications, vol. 11, no. 3, pp. 462–472, 2018.

[52] S. Bitam, S. Zeadally, and A. Mellouk, “Fog computing job scheduling optimization based on bees swarm,” Enterprise
Information Systems, vol. 12, no. 4, pp. 373–397, 2018.

[53] J. Oueis, E. C. Strinati, and S. Barbarossa, “The fog balancing: Load distribution for small cell cloud computing,” in Vehicular
Technology Conference (VTC Spring), 2015 IEEE 81st. IEEE, 2015, pp. 1–6.

[54] S. Yan, M. Peng, M. A. Abana, and W. Wang, “An evolutionary game for user access mode selection in fog radio access
networks,” IEEE Access, vol. 5, pp. 2200–2210, 2017.

[55] M. S. Elbamby, M. Bennis, and W. Saad, “Proactive edge computing in latency-constrained fog networks,” in Networks and
Communications (EuCNC), 2017 European Conference on. IEEE, 2017, pp. 1–6.

[56] H. Wang, S. Wu, M. Chen, and W. Wang, “Security protection between users and the mobile media cloud,” IEEE Commu-
nications Magazine, vol. 52, no. 3, pp. 73–79, 2014.

[57] D. Dev and K. L. Baishnab, “Notice of Violation of IEEE Publication Principles A Review and Research Towards Mobile

A Survey on Mobile Cloud Computing: Mobile Computing + Cloud Computing (MCC = MC + CC) 337

Cloud Computing,” in Mobile Cloud Computing, Services, and Engineering (MobileCloud), 2014 2nd IEEE International
Conference on. IEEE, 2014, pp. 252–256.

[58] D. Huang, X. Zhang, M. Kang, and J. Luo, “MobiCloud: building secure cloud framework for mobile computing and commu-
nication,” in Service Oriented System Engineering (SOSE), 2010 Fifth IEEE International Symposium on. Ieee, 2010,
pp. 27–34.

[59] W. Jia, H. Zhu, Z. Cao, L. Wei, and X. Lin, “SDSM: a secure data service mechanism in mobile cloud computing,” in Computer
Communications Workshops (INFOCOM WKSHPS), 2011 IEEE Conference on. IEEE, 2011, pp. 1060–1065.

[60] P. Garg and V. Sharma, “An efficient and secure data storage in Mobile Cloud Computing through RSA and Hash function,”
in Issues and Challenges in Intelligent Computing Techniques (ICICT), 2014 International Conference on. IEEE, 2014,
pp. 334–339.

[61] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking (SDN) and distributed denial of service (DDoS) attacks
in cloud computing environments: A survey, some research issues, and challenges,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 602–622, 2016.

[62] J. Oberheide, K. Veeraraghavan, E. Cooke, J. Flinn, and F. Jahanian, “Virtualized in-cloud security services for mobile
devices,” in Proceedings of the first workshop on virtualization in mobile computing. ACM, 2008, pp. 31–35.

[63] S. Zonouz, A. Houmansadr, R. Berthier, N. Borisov, and W. Sanders, “Secloud: A cloud-based comprehensive and lightweight
security solution for smartphones,” Computers & Security, vol. 37, pp. 215–227, 2013.

[64] X. Zhang, J. Schiffman, S. Gibbs, A. Kunjithapatham, and S. Jeong, “Securing elastic applications on mobile devices for
cloud computing,” in Proceedings of the 2009 ACM workshop on Cloud computing security. ACM, 2009, pp. 127–134.

[65] S. Xiao and W. Gong, “Mobility can help: protect user identity with dynamic credential,” in Mobile Data Management
(MDM), 2010 Eleventh International Conference on. IEEE, 2010, pp. 378–380.

[66] S. Wang and X. S. Wang, “In-device spatial cloaking for mobile user privacy assisted by the cloud,” in Mobile Data Manage-
ment (MDM), 2010 Eleventh International Conference on. IEEE, 2010, pp. 381–386.

[67] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid android: versatile protection for smartphones,” in
Proceedings of the 26th Annual Computer Security Applications Conference. ACM, 2010, pp. 347–356.

[68] R. Chow, M. Jakobsson, R. Masuoka, J. Molina, Y. Niu, E. Shi, and Z. Song, “Authentication in the clouds: a framework
and its application to mobile users,” in Proceedings of the 2010 ACM workshop on Cloud computing security workshop.
ACM, 2010, pp. 1–6.

[69] J. Yang, H. Wang, J. Wang, C. Tan, and D. Yu, “Provable data possession of resource-constrained mobile devices in cloud
computing.” JNW, vol. 6, no. 7, pp. 1033–1040, 2011.

[70] V. Varadharajan and U. Tupakula, “Security as a service model for cloud environment,” ieee transactions on network and
service management, vol. 11, no. 1, pp. 60–75, 2014.

Edited by: Rajkumar Rajasekaran
Received: Jun 29, 2018
Accepted: Oct 25, 2018

Scalable Computing: Practice and Experience

Volume 19, Number 4, pp. 339–349. http://www.scpe.org

DOI 10.12694/scpe.v19i4.1421
ISSN 1895-1767
c⃝ 2018 SCPE

EXECUTION ANALYSIS OF SPATIAL DATA STORAGE INDEXING ON CLOUD
ENVIRONMENT

KARTHI S∗AND PRABU S†

Abstract. Cloud computing overcome the GIS issues are huge storage, computing and reliability. Cloud computing with
SpatialHadoop framework gives high performance in GIS. This paper presents spatial partition, global index and map reduce
operations were studied and described in detail. Bloom filter R-tree index in the Map-reduce for providing more efficiency than
the existing approaches. The BR-tree index on Map-Reduce is implemented in SpatialHadoop process that reduces intermediate
data access time. Global index decreases the number of data accesses for range queries and thus improves efficiency. It is observed
through experimental results that the proposed index along cloud environment performs better than existing techniques.

Key words: Spatialhadoop, BR-tree Index, Global Index, Map Reduce, Cloud Computing

AMS subject classifications. 68M14, 97R50

1. Introduction. Geographical Information System (GIS) presently we have accumulated huge geospatial
data which are expanding and updating every day. GIS is utilized to catch, store, and process, analyze and
display the present geospatial data. A fruitful GIS stage is not just ready to deal with vast data with complex
properties, additionally gives huge data process and execution, and other computational issues. The GI [26]
confront challenges in computing intensity, data intensity and concurrent access intensity. These difficulties
require the preparation of a figuring framework that can better bolster revelation, give scalable and concurrent
access. The cloud environment gives possible and flexible solution for the GIS issues.

A Spatial database remains as databank, and it is enhanced to keep and question information this is
associated with objects in area, which includes factors, traces, polygons etc..,. Though normal databases is
detain to diverse numeric and personality kinds of statistics, supplementary functionality desires to be delivered
for records to system latitudinal statistics types. Spatial facts stand the numerical connection between people,
region, and activities. This facts can explicitly illustrate what’s taking place (in which, why and how) to show
the perception and effect of the beyond, the present and the (probable) destiny [1]. The proliferation of cellular
programs and the huge of hardware sensing devices boom the streamed information towards the web hosting
statistics-centers. This boom reasons a flooding of records. Taking blessings from these big dataset stores is
a key point in growing deep insights for analysts for you to beautify gadget productiveness and to capture
new commercial enterprise opportunities. Spatial analysis the crux of GIS as it includes all the alterations,
manipulations, and strategies that may be carried out to geographic statistics to add fee to them, to aid
decisions, and to show patterns and anomalies that aren’t at once obvious. Spatial evaluation is the technique
via which we flip uncooked data into beneficial information. The time period analytical cartography is now and
again used to refer to methods of analysis that may be carried out to maps to make them more beneficial and
informative. There are masses of approaches spatial facts can help and aide in the regular lives of all of us. The
utilization of spatial information is indexed as underneath:

1. Satellite pix deliver daily weather reviews and provide farmers with facts for precision agriculture
2. Convert the integral to a linear combination of integrals of products of B-splines and provide a recur-

rence for integrating the product of a pair of B-splines.
3. Airborne infra-red scanners tune our bushfires
4. Ambulance message services
5. Global positioning structures divulge the region of hundreds of vans and taxis
6. Real estate income use geographic records systems
7. All styles of mapping.

The spatial information enterprise is a component of the broader facts technology sector [3] and has scientific and
technical hyperlinks to all different disciplines along with environmental technology, engineering, pc technology,

∗School of Computer Science and Engineering, VIT University, Vellore, TN, India
†School of Computer Science and Engineering, VIT University, Vellore, TN, India

339

340 Karthi S and Prabu S

fitness shipping, logistics, planning, useful resource control and electronics.

1.1. Data categories in spatial warehouse. The maximum recycled the classification to signify the
issues of spatial enquiry consider three sorts of statistics:

Points or Events Occurrences expressed via single value identified as factors in zone, denominated theme
tactics. Some samples are: sickness occurrences, crime spots, and the localization of botanical species.

Constant surfaces predicted can be beginning a hard and fast of vicinity examples which are regularly
or erratically disbursed. Typically, this kind of statistics consequences from herbal sources studies, which
incorporates topographical, biological, phytogeography, environmental and pedagogical charts. Zones with
Calculations and Aggregation Tolls - it includes information linked to population studies, like census and fitness
information [10], and which is probably initially mentioned to people located in precise elements in universe.
For secrecy motives those information are aggregated in analysis gadgets, usually enclosed thru locked polygons
(postal addressing zones, census tracts, municipalities). The symmetrical representations used consist of the
subsequent alternatives: 2D Points: It is a well-ordered pair of x, y values of three-dimensional directs. A factor
suggests that vicinity of incidence of an occasion, like in the case of mortality via the use of outside causes.
Polygons: It is a hard and fast of methodical pairs values that indicates x, y values of three-dimensional directs,
in this type of method that the ultimate opinion is same to the prime for this reason forming closed vicinity
within the aircraft. In the most effective situation, every polygon delimits a person item within the most famous
case; a man or woman area of interest may be delimited via numerous polygons [11, 14, 15]. Samples: encompass
with ordered pairs of x, y, and z values in which contains the x, y pairs mean the physical coordinates and then z
suggests that the price of the premeditated singularity aimed at that location of zones. Typically the examples
are related to area of studies, collectively with geochemical, oceanographic and then geo-physical records. The
idea of a example can be widespread to the event of numerous dimensions on the identical area. Regular Grid:
It is an environment in which every part is related towards a numeric rate. In this matrix, we can calculate
the points which associated with a place on the ground floor. Preliminary from a initial coordinates typically
noted the inferior left corner of the 10X30 matrix, and using spacing in equally to the straight and vertical
directions. Image: It is in the form of matrix in which every detail is related to a numeral value (commonly
from 0 to 255 variety), recycled for conception [14]. This type of condition is used to the photo presentation
of a normal grid. The statistical standards in the network are ascended in shape with the production variety
of the image; the superior values stand to be proven in sunnier gray shades, and then decrease in duskier gray
qualities. Maximum of the geographical information systems provide the ability of providing a fixed grid in the
system of a picture (popular shades or in black & white), through a conversion that may remain computerized
or measured via purchaser. Three essential shapes of spatial facts is proven in Fig. 1.1.

Database systems exercise directories to unexpectedly analyze look of values and the manner that most
databases index records isn’t always maximum fulfilling for latitudinal queries. Instead, three-dimensional
databases practice a spatial catalog to hurry up database processes. Spatial directories are used by spatial
record to enhance spatial queries [17]. Directories used by non-spatial records cannot efficaciously cope with
landscapes consisting of how a protracted manner factors varies and whether or not and also points collapse
inside a longitudinal vicinity of interest.

2. Related Work. Analyzed indexing and question processing in spatial statistics. Indexing strategies are
used to boom the velocity of the information retrieval. In the spatio-temporal area the information continuously
increases over a time and transferring item dispatched their positions. The principal drawback of spatio-temporal
processing is maintaining all of the updates are not possible. The maximum of the indexing methods [1] are best
supports few queries and beyond, present and destiny indexing methods shape are very complicated because
it is integrated exclusive indexing methods. Interval bushes aren’t in particular designed for handling unsure
statistics; however one-dimensional uncertain items may be treated as durations by way of using their PDF
endpoints. Both indices use a number one tree for layout and secondary structures to save the gadgets at
each node, but one has a dynamic number one tree as opposed to a static one. However, the downfall of each
interval indices is that if many uncertainty periods overlap with the question intervals endpoints, then few
gadgets are pruned from the quest, and a number of times are wasted in calculating chances. The shape of
the indexing strategies are very complex so performance is decreased and principal expectation of real time
utility is concurrent updation, it isn’t supported with the aid of maximum of the indexing strategies. Real time

Execution Analysis of Spatial Data Storage Indexing on Cloud Environment 341

Fig. 1.1. Shapes of Spatial data

application are need comparable object locate and grouping this is also now not possible in exiting indexing
techniques and eventually however now not least all of the query processing techniques aren’t helps to all the
kinds of indexing strategies and queries.

Analyzed spatial statistics control in cloud environments. Principal use an R +-tree [3] to share the facts
and the frames inside with go away nodes of the graphic index are preserved as active grids. First, may want
to get stability among the grid scopes and then the instances of grid entrees by regulating the 2 limitations, N
besides n, contains of the R+-tree. Additional, in comparison through different variations with the R-tree, the
leaf nodes ensure that which is not overlay every feature, and consequently it’s distant a assistance as there is
no repeated recovery of the equal statistics from special solutions and it remains simple to outline distinctive
sources for every rectangle of a leaf child. Moreover, the one task is the manner to layout the vital thing terms
of these networks to help effectual inquiries on BigTable manipulates schemes. We positioned the developments
of CDMs equally follows: which consumes a quick (key,value) are looking for and it remains to be rapid with
Image keys and it can be ordered thru a dictionary format. Based on those traits, we recommend a method to
define the critical factor call of a network to help effective queries.

Presented polygon based spatial statistics assessment with map reduce. Geographic Information System
which is an expedient intended to seizure, save, work, examine, manipulate, and gift completely styles of
topographical facts. Spatial evaluation is a terrific function that is combining with GIS. By way of one vital
process in three-dimensional evaluation, polygon overlap, that’s a complex geometric set of regulations, combines
the spatial and characteristic statistics of dual enter map covers [2]. In such a process, every polygon of a cover
is blended with some other layer in couple to reap the cease end result. Classically, particular thematic covers
of the identical location are occupied and covered any on pinnacle with opportunity to yield an outcome
layer. Increasingly, the dimensions range, and replace charge of a few longitudinal datasets surpasses the
ability of three-dimensional computing generation. In a diffusion of times, overlap assessment will become a
inefficient venture as commerce with big dimensions of three-dimensional statistics is needed. The computer
GIS software normally takes times to perform overlap of this large spatial informations. Such consumption on
time is undesirable for lots packages, specifically for actual time coverage choices which encompass predicting
which homes would be broken through manner of a transcontinental storm.

Analyzed spatial facts processing using Map-Reduce which is a programming version and computing plat-
form well ideal for parallel computation. In Map Reduce, a application includes a map feature and a reduce
function that are consumer-described. The input facts layout is software particular, and is designated by way of
the consumer [5]. At first, spatial splitting is adopted to distribute information to all nodes as even as possible,

342 Karthi S and Prabu S

and then strip-based two path sweeping set of rules can accelerate the computation instead of spatial index in
conventional spatial packages. Finally, pending documents and redundant statistics are used to deal with the
relationship between the spatial items. And adopted Map Reduce to process megastar catalog cross certification
in astronomical discipline. In order to take full use of the Map Reduce platform, it’s far better to make complete
issues of parallel algorithm plant. In this section, Map Reduce is carried out to pass-certification, and then in
comparison with conventional PostgreSQL DBMS. As a simple and quintessential step, the astronomical cross
certification is facing a data avalanche. With the of entirety of latest sky survey tasks and effective telescopes,
present day go-certification methods cannot be done on call for large scale astronomical information units. In
this paper, Map Reduce framework is delivered to clear up this trouble. The mapping of move-certification
algorithm on Map and Reduce phases is carefully taken into consideration. Performance assessment has shown
that the Map Reduce-based totally move-certification can outperform the conventional one on PostgreSQL. As
our expertise, it is the first attempt to undertake Map Reduce for astronomical go-certification problem.

Implemented partition techniques in spatial hadoop. SpatialHadoop [4] offers a prevalent indexing set of
regulations which grow to be recycled to implement network, R-tree, and R+-tree primarily founded for parti-
tioning. This paper spreads preceding observe by way of manner of introducing 4 new partitioning strategies,
Hilbert curve, Z-curve, K-d tree and Quad tree and have a look at entirely the seven strategies. The partitioning
section of the indexing procedure turns in three steps, in which the initial step is regular and then closing dual
steps are custom designed for every partitioning methods. The initial step calculates amount of favorite dividers
n based totally mostly on record length and the HDFS chunk functionality which may be each fixed for complete
partitioning techniques. The distribution technique allocates an item to precisely one overlying cell and then the
cellular desires to stand increased to surround all controlled statistics. The repetition method eludes growing
cells with the useful resource of replicating every data to all overlying cells and query processor consumes to
lease a reproduction evading approach to explanation for simulated facts. While range query executed similarly
on all of them, we showed that they will be tuned with device parameters which encompass block period in line
with the question paintings load. We additionally confirmed the overall performance of spatial be a part of is
strongly correlated with the fee of Q1 (average region of partitions) and placed that Quad tree outperformed
unique techniques being experimented.

3. Existing Methodologies. The amount of data in spatial databases is developing as greater records are
made to be had. Spatial databases in particular store distinct varieties of facts: raster records (satellite/aerial
virtual pictures), and vector information (factors, polygons, lines). The complexity and environment of three-
dimensional databases types them first-class for smearing similar processing [20]. The cutting-edge methods are
managing Map-Reduce framework in indexing systems like as R tree. There are different variation in R-tree
that is used of static databases and another one for dynamic databases. The overall performance of R-wood
relies upon at the exceptional of the set of rules that groups the data frames on a node.

3.1. Constructing R-Tree with Map Reduce. Let D be a spatial data set composed of devices. Each
item i has attributes ¡i.Id,i.P¿, in which i.Id is referred as the items particular identifier and i.P is also known as
objects region in particular three-dimensional domain; different features are possible, but we can supply interest
to those quality for R-Tree production cause. R-Tree is consist of minimum bounding rectangles (MBRs) that
are created primarily founded on the devices spatial characteristic of i.P. i.Id is used as references to items
saved within the RTree in form of leaves. In a main, the spatial objects are divided into nodes. Then, each leaf
is processed to generate a minor R-Tree. Finally, the minor R-Trees are combined into the last R-Tree. The
principal degrees are carried out in Map Reduce, at the equal time because the remaining segment does not
involve large number of computational steps, therefore it is far implemented consecutively out of entries in the
cluster [17]. The levels in R tree index with Map-Reduce are shown in Fig. 3.1. The Major disadvantage with
R tree with Map-reduce is aid only variety queries for future data retrieval in spatial records processing.

3.2. Hillbert R-Tree with Map Reduce. The basic presentation of R-tree relies upon at the great set
of rules that groups the frames on a node, at the identical as Hilbert curve [23] which contains the quality of
spatial cluster belongings. Hilbert R-tree is extension of Hilbert space-filling-curves approach and in particular
the Hilbert value to execute a linear ordering on the information rectangles; then, it negotiates the sorted
listing, assigning each set of values at the equal node [20] in the linear ordering, and maximum likely in the

Execution Analysis of Spatial Data Storage Indexing on Cloud Environment 343

Fig. 3.1. Phases in R-tree indexing in Map-Reduce framework

neighborhood area; therefore, the following R-tree nodes could have the slighter regions. The Hilbert R-tree
consists of following structure.

The algorithm of build Hilbert R-tree is given as follows:

• Step 1 Compute the Hilbert cost for each nodes in database.
• Step 2 Categorize statistics data and align as ascending Hilbert values.
• Step 3 Build the R-tree from bottom to up recursively in step with the directive of Hilbert values

The assumption of the algorithm is that the data are static or the frequency of amendment is short. The
approach is an easy heuristic for building an R-tree with 100 place of utilization, which at the equal time could
have as proper reaction time as viable [18]. In precise, the set of guidelines might be very suitable for parallel
bulk-loading processing.

Preliminaries of Hilbert Cost: The Hilbert cost of a node is described due to the fact the Hilbert fee of its
center. The manner of calculating the Hilbert value for a data rectangle is split into two steps:

• Step 1 Compute the grid cell that the intermediate of a data are plotted in area
• Step 2 Compute the Hilbert value of the every grid area

Figure 3.2 demonstrates some nodes ordered in a Hilbert R-tree which has the following structure. The
Hilbert values of the facilities are the records near the x symbols (proven simplest for the determine node II).
The LHVs are in [brackets].A leaf node contains a most Cl entries each of the shape (R, obj id) in which Cl
is the potential of the leaf, R is the MBR of the real object (xlow, xhigh, ylow, yhigh) and obj-identity is a
pointer to the item description document. The vital distinction between the Hilbert R-tree and the R*-tree is
that non-leaf nodes also include facts about the LHVs (Largest Hilbert Value). Thus, a non-leaf node in the
Hilbert R-tree contains a most Cn entries of the form (R, ptr, LHV) in which Cn is the capacity of a non-leaf
node, R is the MBR that encloses all of the kids of that node, ptr is a pointer to the kid node, and LHV is the

344 Karthi S and Prabu S

Fig. 3.2. Hilbert R tree structure

largest Hilbert price the various facts rectangles enclosed by means of using R. Notice that because the non-leaf
node alternatives one of the Hilbert values of the children to be the price of its non-public LHV, there isn’t
extra rate for calculating the Hilbert values of the MBR of non-leaf nodes.

4. Rapid Indexing Scheme for Spatial Data Processing in Cloud Enviroment. This work inte-
grates a BR-tree index in MapReduce that results in a parallel B-Tree index. The significance of MapReduce-
Hadoop and indexing in the Hadoop is described below.

4.1. Map Reduce. Large extent of facts has led to adoption of parallel processing. It provides a green
processing over a fixed of participating pc machines. It changed into expected that parallel processing might
offer new ways of thinking about the prevailing concept of programming language, working machine and storage
system for massive dispensed systems. Parallel processing is complex, however many frameworks have evolved
that offer parallel processing the use of abstraction to simplify matters. Hadoop, a Java implementation of
Map Reduce, has emerged as one such framework. It works on key-price storage concept and has specifically
two components, Map Reduce and HDFS. Map Reduce part of the Hadoop encapsulates all info of parallel
processing from customers and they get a totally simplified framework for programming. Map Reduce has come
to be very famous for parallel dispensation of subjective information. It is mechanism and consists of divide
and-conquers technique and pauses a calculation into sub-calculations over established of computer systems in
a group that featured as equivalent. Every smaller calculation is dealt with independently and the cease result
of the calculation is lower back lower again at a vital issue. A Map Reduce application takes information in the
key-cost shape from HDFS and techniques it. It works through well-known features: map and decrease. The
map feature accepts input statistics inside the key-price shape and produces a few intermediate facts. Once
the map characteristic is completed, reduce feature starts off evolved. The reduce characteristic takes as input
the intermediate facts having identical key and produces output facts that is written returned to HDFS. Many
map and reduce functions paintings concurrently on one of a kind splits of the enter dataset in HDFS. A huge
amount of records switch takes place among the map and decrease features whilst intermediate records are
produced. A combiner function can be used to lessen intermediate facts and statistics transfers with the aid of
aggregating information on the premise of intermediate key.

4.2. Indexing Scheme With Mpa-Reduce. Initially, MapReduce has been used for large scale records
in depth packages for records retrieval from semistructured and unstructured facts. The MR-LSI algorithm
retrieves scalable statistics from the unstructured files quite effectively. It has been used correctly in the area
of based statistics for expressing queries. Hadoop by default shops facts in key-price form and distribution of

Execution Analysis of Spatial Data Storage Indexing on Cloud Environment 345

Fig. 4.1. Bloom filter Framework

data over computing nodes takes region via a hash function implemented on keys. The hash feature acts as the
primary index for speedy accessing records. However, search over non-key records calls for a secondary index for
immediate gaining access to. In the absence of a right secondary index, map tasks are wasted on the undesired
dataset. A proper indexing over the input dataset higher organizes the dataset, and minimizes computation. It
utilizes map duties for only the desired and filtered dataset, and therefore, improves query resource time and
saves machine assets.

4.3. Constructing BR-Tree Indexing in Data Node. Bloom filters base R-tree (BR-tree) in which
bloom filter out is integrated to R-tree node. BR-tree is basically R-tree shape for assisting dynamic indexing.
In it each node maintains range index to indicate characteristic of gift object. Range query and cowl question
supported as it shop object and form of it together. A Bloom clean out is a area-green statistics shape to shop an
index of an object and may represent a hard and fast of items as a piece array the usage of numerous impartial
hash abilities. BR-tree node is combination of R-tree node and Bloom clean out. BR-tree is likewise loading
balanced tree. Overloaded bloom clears out produce excessive duplicate effective probabilities. It reconfigures
the multidimensional variety using bounding boxes to cowl item. BR-tree help bound question the first index
structure to speak about the certain question. Bound query result into range information of multidimensional
function of a queried object. It is not trivial due to the fact BR-tree maintains benefit of Bloom clean out
and R-tree each. It mixes the queries like bound question and range question after thing question end result is
incredible. BR-tree continues consistency between queried records and the characteristic sure in an integrated
shape so that fast point question and accurate sure question viable. The number one format of Bloom clear out
is tested in Fig 4.1.

Bloom filters are area-green probabilistic data systems to begin with idea to test whether or not or now
not an detail is member of a set or not. Bloom filters have a one hundred keep in mind charge, because faux
remarkable suits are viable, whereas fake horrible fits are not possible. It has been validated that Bloom filters
are very useful gear within Map Reduce obligations, thinking about that, given the truth that they keep away

346 Karthi S and Prabu S

from fake negatives, they allow for doing away with beside the point facts at some point of map levels of Map
Reduce duties, as a result configuring themselves as a very dependable area-green answer for Map Reduce. The
gain of Bloom clean out is space overall performance. The length of the Bloom clear out is constant nevertheless
of the variety of the features n, however there may be a tradeoff among m and the false high pleasant opportunity
p. The opportunity of a fake high great after placing n factors can be intended as follows:

p = (1− (1− 1/n)km)k ≈ (1− e(km/n))k—– Eqn(1)

4.4. Execution of proposed work.

1. Job suggestion. If an activity is acquiesced, m1 is the map task for R, m2 is map task for S, and r reduce
duties are created. A task contains all crucial data to be track on a task tracker which incorporates the
attention formation and the area of the matching input/output records.

2. First map phase. Activity tracker allocates the m1 map obligations or the reduce duties to lazy assign-
ment trackers. The map task tracker reads the entire data and split it for the assignment, converts it
to key or value pairs, and then performs the map feature for the every input dataset.

3. Local filter construction. The in-between pairs comprised of the map function are separated into r
spilts, which may be dispatched to r project trackers respectively. Moreover, Bloom filters are built
at the bases in every partition and referred as filters in the name of community filters due to the fact
they may be constructed for simplest the in-between effects in a sole undertaking tracker. If a venture
tracker runs more than one map duties, it merges the close by filters of every assignment and then
continues merely r filters.

4. Global filter merging. After all m1 map obligations are whole, the process tracker indicators all challenge
trackers to ship the nearby filters through heartbeat messages. Then, all assignment trackers send their
community filters to the process tracker, and then process tracker concepts the overall filters to the
dataset R. Next, the process tracker sends the overall filters to all project trackers. Until constructing
and transmitting the global filters that are whole, the map tasks to the dataset S aren’t allocated.

5. Additional map segment. Then job tracker allocates the m2 map duties or the enduring lessens duties
with task trackers. Task trackers track the allotted project with the established international filters.
The enter key or cost pairs cant be set inside the global filters for filtered out.

6. Reduce segment. This step is the same as the lessen section in Hadoop. A reduce task tracker reads
the corresponding intermediate pairs from all map task trackers the usage of far flung system calls. It
kinds the all intermediary pairs and runs the lessen characteristic. Final output outcomes are written
inside the given output course. We have made modifications to the layout of Hadoop. First, we includes
map task inside the instruction of the information. Second, include assemble Bloom filters at the build
enter in allotted fashion to clear out the probe enter. The proposed format is shown in Fig.4.2.

The procedure of MR-BR-Tree takes inputs as various data types and produce output as spatial index. The
pseudo code of procedure is described as follows:

Algorithm 1: Rapid Indexing for Spatial Data (RISD)
Input: Spatial Data points or Lines or Polygons D= {d1, d2, ..., dn}
Output: Index tree IE
Step 1: for all data types (d) in D do
Step 2: spilt data into partitions Pi

Step 3: Normalize di
Step 4: Compute (key,value) c of Pi using BR tree and add C
Step 5: end for
Step 6: I=BuildBRtree() as Eqn(2)
Step 7: Send Index IE to admin

In this partition algorithm, we can read the spatial datasets as input they can be as many types.

Execution Analysis of Spatial Data Storage Indexing on Cloud Environment 347

Fig. 4.2. Proposed Framework

Algorithm 2: Partitioning algorithm
Input: Spatial points D
for all object Obj in mapper phase do
if (D[i− 1] < Obj.V alue ≤ D[i])
Send Obj to reducer i
end for

This guarantees that the result of reducer i is less than the result of reducer i+1. Formerly, every reducer
categories each map records directly and writes them into single partition task, the ones looked after partition
documents shape a globally taken care of document. Each spatial statistics factor di in D is normalized to [0, 1].

4.5. Build Bloom filter R Tree:. While a task tracker runs a map undertaking of the build the data
and send this data as input, and it makes the Bloom filters as intermediate records made out of the challenge.
A Bloom filter is shaped for every map output partition allocated for each reduce assignment, and therefore the
general wide variety of the Bloom filters is the amount of lessen obligations. When more than one map duties
are run on a undertaking tracker, the challenge tracker merges each Bloom filters from the responsibilities
to keeps simplest unique kind of Bloom filters. And call this traditional of Bloom filters as close by filters.
When complete map tasks aimed at the construct input are comprehensive, the pastime tracker has to fold all
neighborhood filters to collect the global filters. And upload Task Tracker Action lessons, known as Local Filter
approach and Receive Global Filter Action, for the Global filter approach.

The task tracker shows the Local filter action is in the form of heartbeat reaction to entire challenge
trackers, and that they direct the task tracker their native filters. The activity tracker joins all of the nearby
strainers to construct the worldwide sifters the usage of bitwise OR processes, and mentions the action as
Receive Global Filter Action by means of the global filters in the heartbeat message towards total task trackers.
The conversation price aimed at the filter for analyzed Cf is

Cf = 2ct · n · re · tk—– Eqn(2)

wherein ct is the amount to allocation data from single node to another, n remains the dimensions of Bloom
filter, re is the wide variety of lessen tasks, and tk is the amount of challenge trackers. The coefficient 2 is
accelerated for the reason that neighborhood filters and with the global filters are transmitted among the task
tracker and the project trackers. Our proposed structure significantly improves the execution time of queries.

348 Karthi S and Prabu S

Fig. 5.1. Performance chart

5. Experimental Results. Experiments are carried out for performance evaluation of search query on
MR-BR-Tree indexed MapReduce The search query execution time of the R, Hilbert R and RISD Index on
spatial data. The time taken to distribute the partitioned data onto cluster nodes and managing a global index
of the master node is almost similar in all the three approaches. The query execution time shrinkages as the size
of cluster upsurges. It remains due to parallelization of query. The query completing time is composed of the
amount of time elapsed in map and reduce phases. The search query is decomposed into sub-queries that run
in parallel, and consequently, execution time decreases. Initially, there is a small rise in execution time when
second and third node is added to the cluster. It is due to increased sorting and shuffling in intermediate stages
that overcomes the gain in performance due to fast computation achieved with parallelization. But later on, the
performance gain achieved with parallel computation exceeds the burden of sorting and shuffling. Consequently,
execution time decreases gradually with the addition of nodes in the cluster. In our proposed RISD framework,
the index is built only one time on the complete dataset and only range search queries execute on the index.
The indexing of the data reduces query execution time. The Performance chart is shown in Fig 5.1. The RISD
performs almost better than the B-Tree and Hilbert R tree in spatial datasets.

6. Conclusion. In this work we studied and implemented the performance of bloom filter R-Tree in cloud
platform. The results show that when using an instance with greater resources a better performance will be
gained. The Map-Reduce technology has proved very effective for large scale structured, semi-structured and
unstructured data, for information processing and retrieval. In this connection, a B-Tree index, in a chained-
MapReduce process, is designed and implemented. The proposed work compares various indexed data structures
that include RISD, R, Hibert R of Hadoop, for range search queries. It is observed that a significant amount of
time is less to build indexes in proposed system than the existing system.

Execution Analysis of Spatial Data Storage Indexing on Cloud Environment 349

REFERENCES

[1] John, A., M, Sugumaran and R. S. Rajesh, Indexing and Query Pprocessing Techniques in Spatio-Temporal Data, ICTACT
Journal on Soft Computing 6.3, 2016.

[2] Wang, Kai, Jizhong Han, Bibo Tu, Jiao Dai, Wei Zhou, and Xuan Song, Accelerating spatial data processing with
mapreduce, Parallel and Distributed Systems (ICPADS), 2010 IEEE 16th International Conference on. IEEE, 2010.

[3] Eldawy, Ahmed, Louai Alarabi, and Mohamed F. Mokbel, Spatial partitioning techniques in SpatialHadoop, Proceedings
of the VLDB Endowment 8.12 ,1602-1605,2015.

[4] Wang, Yong, Zhenling Liu, Hongyan Liao, and Chengjun Li, Improving the performance of GIS polygon overlay com-
putation with MapReduce for spatial big data processing., Cluster Computing 18.2, 507-516, 2015.

[5] Wei, Ling-Yin, Ya-Ting Hsu, Wen-Chih Peng, and Wang-Chien Lee, LU-Indexing spatial data in cloud data manage-
ments, Pervasive and Mobile Computing 15 (2014): 48-616.

[6] Rajashekhar M. Arasanal and Daanish U. Rumani, Improving MapReduce Performance through Complexity and Per-
formance Based Data Placement in Heterogeneous Hadoop Clusters, Distributed Computing and Internet Technology,
Lecture Notes in Computer Science Volume 7753, 2013, pp. 115-125, 2013.

[7] Performance Measurement of a Hadoop Cluster, , http://www.acma.com/acma/pdfs/AMAX Emulex Hadoop Whitepa-
per.pdf (Accessed on December 20, 2015.

[8] Jeffrey Dean and Sanjay Ghemawat, MapReduce: SimplifiedDataProcessing on Large Clusters, Magazine Communications
of the ACM - 50th anniversary issue: 1958 2008, Vol. 51 Iss. 1, pp. 107-113, 2008.

[9] http://sortbenchmark.org/Yahoo2009.pdf (April 2009) (Accessed on February 22, 2016).
[10] M.K. Aguilera, W. Golab, and M.A. Shah, A practical scalable distributed b-tree, PVLDB, Vol. 1, Iss. 1, pp. 598-609,

2008.
[11] Burhan UI. Islam Khan, Rashidah F. Olanrewaju, Hunain Altaf and Asadullah Shah, Critical insight for MapReduce

optimization in Hadoop, International Journal of Computer Science and Control Engineering, Vol. 2, Iss. 1, pp. 1-7, 2014.
[12] Matei Zaharia, Andy Konwinski, Anthony D. Joseph Randy Katz and Ion Stoica, Improving MapReduce Perfor-

mance in Heterogeneous Environments, In Proceedings of the 8th USENIX conference on Operating systems design and
implementation, pp. 29-42, USENIX Association Berkeley, CA, USA 2008.

[13] Jimmy Lin and Alek Kolcz, Large-scale machine learning at Twitter, Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, Scottsdale, AZ, USA, pp. 793 804, 2012

[14] Fan Zhang, Junwei Cao, Samee U. Khan, Keqin. Li and Kai Hwang, A task-level adaptive MapReduce framework for
real-time streaming data in healthcare applications, Future Generation Computer System, Vol. 43 44, pp. 149 160, 2015.

[15] David A. Patterson, Technical perspective: the data center is the computer, Communications of the ACM, Vol. 51, Iss.1,
pp. 105-105, 2008.

[16] Eric Anderson and Joseph Tucek, Efficiency matters!. , ACM SIGPOS Operating Systems Review, Vol. 44, Iss. 1, pp.
40-45, 2010.

[17] Feng Li, Beng Chin Ooi, M. Tamer Ozsu and Sai Wu, Distributed Data Management Using MapReduce, ACM Computing
Surveys, Vol. 46, Iss. 3, Article No. 31, 2014.

[18] H.V. Jagdish, B.C. Ooi, and Q.H. Vu. BATON, A balanced tree structure for peer-to-peer networks, In Proceedings of the
31st International Conference on Very large data bases, VLDB Endowment, pp. 661-672, 2005.

[19] F.N. Aftari and J.D Ullman, Optimizing joins in a MapReduce environment, In Proceedings of the 13th International
Conference on Extending Database Technology, EDBT, pp. 99-110, 2010.

[20] Sai Wu, Dawei Jiang, Beng Chin Ooi, and Kun-Lung Wu, Efficient b-tree based indexing for cloud data processing,
Proceedings of VLDB Endowment,Vol. 3, Iss. 1, pp. 1207-1218, 2010.

[21] Ian H. Witten, Alistair Moffat, and Timothy C, Bell. Managing Gigabytes: Compressing and Indexing Documents and
Images, Morgan Kaufmann, ISBN 1558605703, 1999.

[22] Steffen Heinz and Justin Zobel, Efficient single-pass index construction for text databases, JASIST, Vol. 54, Iss. 8, pp.
713-729, 2003.

[23] Anthony Tomasic and Hector Garcia-Molina, Performance of inverted indices in shared-nothing distributed text docu-
ment information retrieval systems, Proceedings of PDIS, pp. 8-17, 1993.

[24] Mike Cafarella and Doug Cutting, Building Nutch: Open source search, ACM Queue, Vol. 2, Iss. 2, pp. 54-61, 2004.
[25] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay Deolalikar, Greg Trezise and Peter Camble, Sparse

indexing: large scale, inline deduplication using sampling and locality, In proceedings of USENIX Conference - File and
Storage Technologies (FAST), pp. 111-123, February 2009.

[26] Yang, Chaowei, Michael Goodchild, Qunying Huang, Doug Nebert, Robert Raskin, Yan Xu, Myra Bambacus, and

Daniel Fay, Spatial cloud computing: how can the geospatial sciences use and help shape cloud computing?, International
Journal of Digital Earth. 4(4) pp. 305-329, 2011.

Edited by: Rajkumar Rajasekaran
Received: Jul 24, 2018
Accepted: Dec 14, 2018

Scalable Computing: Practice and Experience

Volume 19, Number 4, pp. 351–360. http://www.scpe.org

DOI 10.12694/scpe.v19i4.1422
ISSN 1895-1767
c⃝ 2018 SCPE

ENHANCED DATA SECURITY FOR PUBLIC CLOUD ENVIRONMENT WITH SECURED
HYBRID ENCRYPTION AUTHENTICATION MECHANISMS

PRABU S∗, GOPINATH GANAPATHY†, AND RANJAN GOYAL‡

Abstract. Cloud computing is an evolving computing technology that provides many services such as software and storage.
With the introduction of cloud storage, the security of outsourced data has become a major issue in cloud computing. Data storage
in cloud computing environment needs to be secured in order to provide a safe and foolproof security for data outsourcing of the
cloud service users. This paper presents a model for security of data in public cloud storage environment which successfully detects
the unauthenticated access or any anomaly in the data. The proposed authentication model along with the data security model
presented in this paper shows that this model is the best model suitable for securing the data in cloud computing environment.

Key words: Cloud Computing; Data Outsourcing; Data Security; Encryption model; Data Storage.

AMS subject classifications. 68M14, 68P25, 68P20

1. Inntroduction. Cloud Computing is an internet based computing technology that provides many
services to the users including cloud storage. The cloud storage is a kind of cloud computing service that
provides storage of data in logical pools, that is, the data is actually stored in some physical data centers
present in some other location, but the user can access the data anywhere and on any device. The cloud
computing is actually not a new technology, rather it is evolved from many existing technologies including
grid computing, utility computing, parallel computing, distributed computing and virtualization. The cloud
computing is a very powerful environment having pool of thousands of connected servers [1].

The cloud computing environment can be deployed as public, private, community or hybrid model. The
public cloud deployment model is openly accessible to the public. The use of public deployment model can help
in reducing computing costs making it economically inexpensive and efficient. The private cloud deployment
model is generally used by private organizations. This model utilizes the VPN (Virtual Private Network)
which makes it more secure from outside intrusion as compared to public cloud model. The community cloud
deployment model is shared by several organizations that leads to formation of a community. This model is
only suitable for the organizations working on the similar projects. The hybrid model can be a combination of
public, private or community models. Here, it is a notable point that among all the deployment models, the
public cloud model is most insecure and generic model. The public model can be used by anyone irrespective
of the fact whether the use is a part of organization or community thus making it a generic cloud model. Thus,
data security to the public cloud model is required to be provided in order to secure the outsourced data of the
users.

This paper presents a model for enhanced data security for public cloud environment. The paper provides
the description of model and its analysis which shows that the proposed model is suitable for enhanced security of
data in public cloud environment. Rest of the paper is organized as follows: Section 2 provides the description of
the cloud security with respect to attacks and security issues, fraud detection and different security mechanisms.
Section 3 provides a discussion on related works based on the data security issues and reviews of cloud storage
environment. Section 4 provides detailed discussion on the existing security mechanisms used for proposing
the hybrid model. Section 5 provides the proposed model for enhanced security in (public) cloud environment.
Section 6 provides an analysis on the proposed model followed by the conclusion in Section 7.

2. Cloud Security. Cloud Computing though being a powerful architecture, is vulnerable to many security
issues and attacks. A discussion on the attacks, fraud detection and security mechanisms are provided below.

2.1. Attacks and Security Issues. There are several number of possible attacks to which the cloud
storage is vulnerable. The attack can be a physical or a network based. The physical attack can be the attack
from an unauthorized person, trying to access the data in cloud storage by breaking into the authentication

∗School of Computer Science, Engineering and Applications, Bharathidasan University, Tiruchirappalli, India
†School of Computer Science, Engineering and Applications, Bharathidasan University, Tiruchirappalli, India
‡School of Computing Science and Engineering, Vellore Institute of Technology, Vellore, India

351

352 Prabu S, Gopinath Ganapathy and Ranjan Goyal

mechanisms. The network based attacks are the attacks from a system or a network of systems that are
controlled by an attacker in order to break into the storage system or to disrupt the service. The most common
among the network based attacks are Distributed Denial of Service (DDoS), Man-in-the-Middle (MITM) attack.
In DDoS attack, the attacker sends too many meaningless packets or requests which the system fails to handle
and the service gets disrupted [2]. In case of MITM attack, the attacker sits between two parties and tries to
acquire the information or data being exchanged [3]. This creates a major security issue for data outsourcing.

2.2. Fraud Detection. The detection of any fraud or attack is an important factor deciding the level
of security in the system. The data outsourced should be kept into an environment equipped with a fraud
detection mechanism. The detection can help in taking further actions to prevent any theft or loss of data.
The mechanism of fraud detection may have several factors such as usual locations of login and possible places
the user can login in a particular time duration. For example, one user logging in from New York cannot login
just after 10 minutes from Hong Kong. Nonetheless, there can be a verification process initiated in that case.
Further, the usual activities of a user activities can help in the prediction of fraud [4]. The work does not
consider the fraud detection in terms of the example given above as the model proposed in the paper eliminated
such scenario from getting executed.

2.3. Security Mechanisms. There are many possible mechanisms for security of data in public cloud.
The cryptography algorithms can be used for encryption of the data and sensitive information. The cryptography
is a technique which can be used to securely transfer the information between two parties. The data can be
encrypted with the use of algorithms, so the attacker cannot read the actual data even in case the attacker
acquires the data. There can be a private and public key which can be used to decrypt the data on successful
transmission [5].

3. Related Works. Sugumar et al. [6] provided a detailed demonstration about the security issues,
characteristics and its importance in public cloud storage environment. The two models proposed were based
on the owners and users of the service. In case of any sensitive data stored, the owner and the users are treated
as different, otherwise as same. The security issues and requirements addressed in the paper suggested that
there is a need of new mechanism for ensuring of outsourced data. Singla et al. [7] explored the security of data
and data at moving. The paper proposed an authentication protocol mechanism that was based on a 3-step
process and a block cipher based encryption algorithm was proposed in the paper to prevent against known
attacks. The first step in the 3-step in the authentication protocol mechanism is sending the message to the
client on demand. The second step involves the client responding to the message with a value that is calculated
using a one-way hash function. The third step involves authentication by verification of the response value
against its own calculated hash value. In case of a match, the cloud service will be offered by to the client,
otherwise the connection will be terminated

Masala et al. [8] presented a cloud platform that was designed to provide secure access to the data stored
in the cloud. The cloud platform was built using open stack architecture and the authentication was done
using biometric fingerprint and face recognition. Kaaniche et al. [9] provided a review of data security and
privacy preservation in cloud storage environment using cryptographic mechanisms. The comparative analysis
of different cryptography based defense mechanisms and the work done in the paper shows that the there are
high security and privacy challenges that are required to be solved with evolving cloud infrastructure. A survey
of security issues for cloud computing presented by Khan [10], analyzed and categorized the working mechanisms
of possible security issues and its surveyed some of its possible solutions. The paper also provided a survey
on intrusion detection and prevention systems and analyzed the effectiveness of the system. The literature
suggested countermeasures to deal with the security issues discussed in the paper.

The literature survey of the related works showed that the public cloud environment is vulnerable to many
network-based attacks and there is high need to solve this issue by providing a foolproof authentication protocol
and encryption mechanism for proper authentication and authorization of users. Thus, this paper provides a
hybrid authentication mechanism which on analysis shows that the mechanism is highly secured from severe
network-based attacks. Further, the model proposed in this paper, secures the data in rest and data in transit
by making it highly tough for the attacker to enter into the environment and remain into the environment.

Enhanced Data Security for Public Cloud Environment with Secured Hybrid Encryption Authentication Mechanisms 353

Fig. 4.1. PAP 2-way handshake mechanism

4. Existing Mechanisms. The existing mechanisms for authentication and encryption are discussed as
follows:

4.1. Authentication Protocols. There are several existing authentication protocols proposed by re-
searchers and scientists. The most common among them used to build the proposed mechanism includes
Password Authentication Protocol (PAP), Secure Socket Layer (SSL) and Challenge Handshake Authentication
Protocol (CHAP). This paper only focuses on these methods to provide a multi-layered hybrid authentication
protocol.

The PAP is a password based authentication protocol that provides two-way handshake mechanism. In this
protocol, the client sends the details such as username and password to the server which gets verified on the
server side. In case the credentials match with the data present on the server-side database, the server sends
an acceptance acknowledgement to the client and a connection is established. In case of no match, the client
request is rejected and the connection request is terminated. Fig. 4.1 visualizes the PAP mechanism.

The issue in this protocol is that this protocol is highly vulnerable to network attacks such as Man-In-The-
Middle Attack (MITM) which can lead to account hijacking and unauthorized access. This issue occurs in the
case of PAP as the credentials sent by the client are in clear or plain text, i.e. not encrypted. This issue is fixed
up to some extent by encrypting the credentials with some cryptographic algorithm. Nonetheless, there is still
a chance that the attacker can decrypt the credentials making it still vulnerable to the MITM attacks.

The Secure Socket Layer (SSL) is a protocol used to establish a secure connection between the server and
the browser of the client by the use of encrypted links to make the transactions private. The SSL uses a public
and private key. The public key is used for asymmetric encryption and private key is used for symmetric
encryption. The use of asymmetric key provides better authentication and the use of symmetric key provides
faster authentication. A SSL certificate is required to establish a SSL connection for which the submission of
Certificate Signing Request (CSR) is required to be done to the Certification Authority (CA). The CSR contains
the details and identity of the website along with the private key. The CA then validates the data and issues a
SSL certificate which matches with the private key. Thus, the SSL is based on mutual authentication i.e. the
digital certificates verify the web servers and client identity before the establishment of the connection. If the
web page is SSL secured, then the web address will begin with HTTPS instead of HTTP and a lock icon with
appear which contains the details of the website certificate. Also, if the SSL is having Extended Validation
(EV) certification then a green address bar will appear instead of the usual address bar. The use of SSL can
prevent fraud and hijacking as it relies on encryption and the originality of the website is also verified up to some
extent but it may cause a slowdown in the performance. Thus, the SSL can be used along with the proposed
model but the model did not consider the use of SSL. Another protocol is Extensible Authentication Protocol
(EAP). EAP is an authentication framework. The EAS was originally an extension for Point-to-Point (PPP)
authentication. EAP framework supports multiple authentication mechanisms. This framework can also be
used but the proposed model did not consider the complete use of this framework.

Another method of authentication is Challenge Handshake Authentication Protocol (CHAP). It is an in-
ternet standard that uses one-way MD5 hash function. The CHAP is based on a 3-way handshake mechanism
[11]. In this type of authentication, instead of the actual password, the transmission of the hash result is per-
formed over the network. As the password in this case, does not get transferred over the network, it cannot be
captured during the transmission. Also, the hash function generates the random string in such a manner that
the operation cannot be reverse engineered to obtain the original password. Nonetheless, this method is vul-
nerable to remote server impersonation. This vulnerability can be prevented by using a two-way authentication

354 Prabu S, Gopinath Ganapathy and Ranjan Goyal

Fig. 4.2. CHAP 3-way handshake mechanism

using separate keys for transmitted and received data to identity server as well as client. This concept is used
in MS-CHAP in which the challenge is sent repeatedly during the connection. Fig. 4.2 visualizes the CHAP
mechanism.

4.2. Data Security. There are several existing algorithms proposed by researchers and scientists. The
most suitable is discussed in this paper that is used in proposing the encryption model, i.e. Advanced Encryption
Standard (AES). The AES is an encryption standard that is actually the 128-bit based symmetric block cipher
algorithm known as Rijndael algorithm [13-15]. The AES is being used worldwide and is the most secure
standard at present. The AES is the successor of Data Encryption Standard (DES) [16]. The AES is faster and
more secure than DES. The Rijndael algorithm was based on 128, 192 and 256-bits block size but for the AES,
only 128-bit block size was accepted. The AES thus have the block size of 128-bits and key size of 128, 192
and 256-bits. The algorithm is based on combination of substitutions and permutations. It operates on a 4 by
4 column major order matrix. There are 10 rounds for 128-bits key, 12 rounds for 192-bits key and 14 rounds
for 256-bits keys. Thus, the data-in-rest and data-in-transit can be handled securely using this algorithm. The
data here refers to the plain text which on encryption becomes cipher text. The cipher text can be converted
back to plain text with the help of decryption. In symmetric encryption, the same key is used for encryption
and decryption. Fig. 3 depicts the AES encryption and decryption operations.

Fig. 4.3. AES Encryption and Decryption

Enhanced Data Security for Public Cloud Environment with Secured Hybrid Encryption Authentication Mechanisms 355

Fig. 5.1. Proposed Client-Side Authentication Mechanism

5. Proposed Method. The paper focuses on securing data present in the public cloud computing envi-
ronment by providing a more secure hybrid of authentication and encryption mechanisms. The two mechanisms
are discussed as follows:

5.1. Authentication Mechanism. The authentication protocol proposed in this paper, works on the idea
of the PAP and CHAP mechanisms along with TLS. The client-side mechanism for the proposed authentication
protocol is depicted in the Fig. 5.1. The client sends a challenge to the server and waits for the response. After
the response is received, the response is verified and is either accepted or rejected. If the response is accepted
then the client sends the username in encrypted format and waits for the challenge. In case of rejection, the
connection is terminated. When the challenge is received, the response is generated and is sent to the server
and the client waits for the acceptance of response from the server. Upon Acceptance, a timed connection is
established. In case of rejection, the connection request is terminated. Upon connection time-out, the client
waits for the challenge from the server and same procedure is repeated until the connection gets established
again. During the connection, any terminate request if given, terminates the connection.

The server-side mechanism depicted in Fig. 5.2, shows the authentication procedure from the server side.
Initially, the server waits for the challenge from the client. When the challenge is received, a response a
generated and sent to the client. If the response is accepted by the client, the server waits for the client to send

356 Prabu S, Gopinath Ganapathy and Ranjan Goyal

Fig. 5.2. Proposed Server-Side Authentication Mechanism

the username. When the client sends the username, the server verifies the username by decrypting encrypted
using and matching it in the database. If the username is successfully verified, the server sends a challenge to
the client and waits for the response. When the response is received, it is verified and on acceptance of response,
a timed connection is established. The mechanism leads to termination in the case of rejection of response,
rejection of username or any termination request.

The combined Client-Server Authentication Mechanism is depicted in Fig. 5.3. The mechanism depicted
in the figure is based on the interactions of the client and server that does not show the time of propagation
and delay. This proposed mechanism is named as Improved Hybrid Authentication Mechanism (IHAP).

5.2. Data Security. The paper proposes the encryption mechanism using the AES algorithm. There are
several attacks that AES can handle including brute force and biclique attack due to high time complexity.
Nonetheless, the poor key management can compromise the data. Thus, there is a need to deal with this
problem by using separate key management technique. For this, the paper suggests to use the algorithm known
as Secure Hash Algorithm 3 (SHA-3). This paper presents the key management using the SHA3-256 that have
the attack resistance of 2128. Fig. 7 depicts the data security proposed model using AES encryption and SHA-3

Enhanced Data Security for Public Cloud Environment with Secured Hybrid Encryption Authentication Mechanisms 357

Fig. 5.3. Proposed Client-Server Authentication

Fig. 5.4. Data Security Proposed Model using AES and SHA-3

hashing technique. The key used in AES for ciphering the text is of 256-bit. The size of block for SHA-3 is 256
bits. The data securing is done by first encrypting the plain text of 128-bit block using a secret key [17]. The
cipher text obtained on encryption is the required encrypted data. Now, for key management, the secret key is
hashed using the SHA-3 and the hashed key is obtained [18]. In recovering process, the original secret key that
client is having, is hashed using the SHA-3. Then the hash value of that key is matched with the hashed value
received from the server. In case of match, the key can now be used to decrypt the cipher text using the AES
algorithm and the cipher text can be converted back into plain text.

6. Analysis. The proposed model for authentication for client and server side can be analyzed based on
the possible common network attacks. The possible common network attacks in this scenario are MITM, DoS
and DDoS Attacks. Let us consider the more powerful attack DDoS alone among DoS and DDoS as the DDoS

358 Prabu S, Gopinath Ganapathy and Ranjan Goyal

is the distributed attack scenario of DoS attack. Therefore, considering the MITM and DDoS attack possibility
at every point of exchange of information, the authentication mechanism procedure is analyzed as follows:

Challenge and Response (Client and Server): In the case of DDoS attack, the attacker may try to send
meaningless or irrelevant responses for the challenge. But this makes it impossible to continue the attack as the
requests will be dropped after the limit is crossed. The limit is set for requests as it is impossible to receive a
large number of requests from a client in a particular time limit. Thus, this point is safe from DDoS attack. In
case of MITM attack, the attacker clones the client and tries to capture the response sent. Thereafter, there is a
possibility that the attacker clones the server and sends the response to the client. But in this at the connection
cannot be established as the username step involves encryption that makes it hard to perform MITM as the
cloning of client and server along with decryption of username without knowing the actual algorithm and key
is a complex process in real life scenario and hard to be implemented due to very high time complexity. As
the time is limited for authentication, the attacker fails to perform the attack due to all this complex process.
Also, there is a possibility that the attacker tries to fetch the challenge and solve it. In that case, the attacker
may get the information of challenge that contains some random string along with hash of password. As the
irreversible process is followed, the attacker cannot reverse engineer it, making it impossible to find the actual
response value for that challenge thus making it highly safe from MITM attack at these points.

Username: In case of MITM attack, as the username sent is encrypted, so even if the attacker succeeds
in capturing the username, it is hard to decrypt it without knowing the encryption algorithm and the value of
key. Considering the worst-case scenario, the attacker successfully decrypts the username but in this case, the
time limit by that time is already crossed and the process is already completed thereby making it meaningless
to decrypt the username. Also, DDoS attack again becomes irrelevant at this point as the meaningless requests
sent at this point will not be accepted thus making it highly safe from DDoS and MITM attack at this point.

Established Connection: In case of MITM attack, considering the only possibility that the attacker succeeds
in bypassing authentication by somehow cloning the client successfully and establishes connection to server.
Nonetheless, the attacker though gets the connection but as the connection is actually a timed connection, thus
it will make it impossible to remain into the system after the time gets expired as the challenge and response
process is further continued after time gets expired. Also, in case of DDoS attack at the time of established
connection, no meaningless request is accepted from client and server side thus making it safe from MITM and
DDoS attack at this point.

Thus, this proposed authentication mechanism is highly secure from common network attacks, MITM and
DDoS attack. Considering the case of other attacks like phishing and sniffing attack etc., these attacks either
comes under these MITM attacks which makes shows that this mechanism is secured from all these attacks.
Consider an example of sniffing attack, where the attacker captures the packets being sent. As here the username
sent is encrypted so it makes it safe from sniffing attack. Also, as the web page is SSL secured, it makes the
webpage safe from phishing attack. Therefore, the mechanism is safe from many network attacks including the
most common ones, MITM and DDoS attack.

Now, for the proposed data security model, the securing and recovering mechanism was implemented using
the python program and the simulation was done on the system having specifications as: 16GB RAM and Intel
i7, 7th Generation Processor on the Windows 10 environment. The simulation results were received for 1 MB,
10 MB, 100MB, 1GB and 10 GB file sizes and the running time for the securing and recovering process was
recorded. The observed values for the proposed model of recovering and securing process is given in the Table
I. Also, the graph depicting the securing and recovering time is shown in the Fig. 6.2. The securing process
contains the results for running time that involves the encryption using AES 256-bit key and the generation of
the hash value using the SHA-3 256-bit for that key after the encryption process is completed. The recovery
process contains the results for the running time that involves generation of hash value for the clients key and
matching this hash value with the received hash value from the server followed by decryption of the data using
the clients key if the hash value of the clients key matches with the hash value received from the server.

Therefore, the proposed model for securing the data using AES and SHA-3 is safe from most of the known
attacks including the password cracking brute force attack, birthday attack, biclique attack, timing attacks etc.
as the AES is found to be safe from all these attacks. The only possible vulnerability was that the poor key
management can compromise the data encryption. This problem is also solved by the proposed mechanism as

Enhanced Data Security for Public Cloud Environment with Secured Hybrid Encryption Authentication Mechanisms 359

Fig. 6.1. Observed running time values for proposed model

Fig. 6.2. Graph depicting Securing and Recovering Time

the mechanism hashes the key with the help of SHA-3. So, overall the security get user enhanced in terms
of authenticity and data security. Thus, due to highly enhanced security during authentication and during
accessing the data, it becomes almost impossible for the intruder to fool the security mechanism to get access
to the resources and steal information and kept data in the cloud environment.

7. Conclusion. In this paper, a model for security of data in cloud computing environment is proposed
that provides a detailed visualization of the security mechanism. The work done in this paper contributes in
providing the highest possible security mechanism suitable for public cloud storage with the use of authentication
and encryption mechanisms. The proposed model uses the hybrid approach from the existing mechanisms that
helps in achieving the highly enhanced security. Future work is to implement further authentication mechanisms
such as biometric authentication that includes fingerprint, iris and face recognition techniques as multilevel
authentication mechanism. The biometric technique is currently not cost effective considering the cost of highly
accurate iris and face recognition. Hence, this paper may also provide a scope for the integration of the biometric
authentication into the cloud security mechanism along with the use of proposed authentication mechanism.

360 Prabu S, Gopinath Ganapathy and Ranjan Goyal

REFERENCES

[1] M.G. Avram, Advantages and challenges of adopting cloud computing from an enterprise perspective, 7th International
Conference Interdisciplinarity in Engineering (INTER-ENG 2013), Volume 12, pp. 529-534, 2014.

[2] Rashmi V. Deshmukh and Kailas K. Devadkar, Understanding DDoS Attack and Its Effect In Cloud Environment,
Procedia Computer Science (2015), Vol. 49, pp. 202-210, 2015.

[3] S. Subashini and V. Kavitha, A survey on security issues in service delivery models of cloud computing, Journal of Network
and Computer Applications, Volume 34, pp. 1-11, July 2010.

[4] Md. Tanzim Khorshed, A.B.M. Shawkat Ali and Saleh A. Wasimi, A survey on gaps, threat remediation challenges and
some thoughts for proactive attack detection in cloud computing.

[5] Madhuri B. Shinde, Design and Implementation of Asymmetric Cryptography Using AES Algorithm, IJARIIE-ISSN(O)-
2395-4396, Vol-1 Issue-4, pp. 371-378, 2015.

[6] Dr. Ramalingam Sugumar and Sharmila Banu Sheik Imam, Data Security in Public Cloud Storage Environment, In-
ternational Journal of Engineering Research and Technology (IJERT), ISSN: 2278-0181, Vol. 4 Issue 06, pp. 101-105,
June-2015.

[7] Sanjoli Singla and Jasmeet Singh, Survey on Enhancing Cloud Data Security using EAP with Rijndael Encryption
Algorithm, Global Journal of Computer Science and Technology Software and Data Engineering, Volume 13, Issue 5,
2013.

[8] G.L. Masala, P. Ruiu, A. Brunetti, O. Terzo and E. Grosso, Biometric Authentication and Data Security in Cloud
Computing, Int’l Conf. Security and Management, SAM’15, pp. 9-15.

[9] Nesrine Kaaniche and Maryline Laurent, Data Security and privacy preservations in cloud storage environments based
on cryptographic mechanisms, Computer Commincations (2017) Vol. 111, pp. 120-141, October 2017.

[10] Minhaj Ahmad Khan, A survey on security issues for cloud computing, Journal of Network and Computer Applications
(2016), Vol. 71, pp. 11-29, August 2016.

[11] Sadia Marium, Qamar Nazir , Aftab Ahmed, Saira Ahthasham and Mirza Aamir Mehmood, Implementation of EAP
with RSA for Enhancing The Security of Cloud Computing, International Journal of Basic and Applied Sciences , Volume
1, Issue 3, pp. 177-183, 2012.

[12] Atewologun Olumide, Abeer Alsadoon, P.W.C. Prasad and Linh Pham, A Hybrid Encryption model for Secure Cloud
Computing, 2015 Thirteenth International Conference on ICT and Knowledge Engineering, pp. 24-32, November 2015.

[13] Babitha M.P and K.R. Remesh Babu, Secure Cloud Storage Using AES Encryption, 2016 International Conference on
Automatic Control and Dynamic Optimization Techniques (ICACDOT), pp. 859-864, September 2016.

[14] Sanjoli Singla and Jasmeet Singh, Cloud Data Security using Authentication and Encryption Technique, International
Journal of Advanced Research in Computer Engineering and Technology (IJARCET), Volume 2, Issue 7, pp. 2232-2235,
July 2013.

[15] Mrs. S. M. Barhate and Dr. M. P. Dhore, User Authentication Issues In Cloud Computing,, IOSR Journal of Computer
Engineering (IOSR-JCE), Volume 4, pp. 30-35, 2016.

[16] Shakeeba S. Khan and R.R. Tuteja, Security in Cloud Computing using Cryptographic Algorithms, International Journal
of Innovative Research in Computer and Communication Engineering, Volume 3, Issue 1, pp. 148-154, January 2015.

[17] Zaid Kartit, Applying Encryption Algorithm to Enhance Data Security in Cloud Storage, Advances in Ubiquitous Network-
ing. Lecture Notes in Electrical Engineering, Vol 366, pp. 141-154, Springer, Singapore.

[18] J R Ngnie Sighom, Pin Zhing and Lin You, Security Enhancement for Data Migration in the Cloud, Future Internet,
Volume 9, Issue 3, pp. 1-13, June 2017.

Edited by: Rajkumar Rajasekaran
Received: Jul 24, 2018
Accepted: Dec 4, 2018

Scalable Computing: Practice and Experience

Volume 19, Number 4, pp. 361–373. http://www.scpe.org

DOI 10.12694/scpe.v19i4.1425
ISSN 1895-1767
c⃝ 2018 SCPE

CLOUD BASED DYNAMIC COURSE SELECTION FRAMEWORK USING NETWORK
GRAPHS WITH TERM DIFFICULTY ESTIMATION∗

JASEM M. ALOSTAD †

Abstract. The system developed in this paper uses a cloud based technology to implement and design a software as a service
(SAAS) application for adaptive course selection and term difficulty estimation for a networked curriculum. The choice of courses
in every term is completely in the hands of the students who enroll for a particular program in Universities. The order of courses
taken in every term is ad hoc due to different factors like student interests, uncertainty about the student pass rates, frequent
changes in admission policies and curriculum requirements. However, this choice of course plays a vital role in students graduating
in time from the university. In this paper, we analyze student success ratios in terms of time to graduation. To illustrate the
designed models, data from different colleges of the Public Authority of Applied Education and Training (PAAET), Kuwait, is
used. Graph-based complex networks are used for analyzing the courses and how crucial they are. The difficulty levels of courses
are estimated based on the institutional data from spring 2013 to fall 2016 and term difficulties are estimated based on the courses
chosen. This work presents a robust framework which is adaptable to the courses chosen by the students and the ease of flow of
students through the curriculum with the aim of improving the universitys graduation rate.

Key words: Parallel processing, Data Analytics, Cloud computing, Graph Theory, Student Success Ratio, Time to Graduation,
Course Cruciality, Course Difficulty

AMS subject classifications. 68M14, 90C35

1. Introduction.

1.1. Background. Prediction and investigations on academic performance and the factors affecting stu-
dent success and the endurance of students are topics of utmost importance in higher education [18]. Academic
performance is a crucial factor in analyzing higher education levels and predicting other important job outcomes
like performance in the job hired for and salary predictions [19]. The success ratio is an important metric for
the students and the university. The success of a student has many definitions, varying from the grades to
self-improvement[7, 8]. Most of the studies from the literature indicate student graduation in time as the most
important success metric. From the perspective of the university, and especially for public universities, factors
like graduation, student retention rate and time to degree are essential for the so called performance funding of
the universities from the state. Generally, the final grades obtained by the student are used for analyzing the
performance of a student.

The graduation rate of students depends on two factors: institutional and pre-institutional factors [11,
12]. The students perspective on the graduation rate depends on pre-institutional factors like High school
performance, the demographic status of the students, socio-economic data and some of the institutional factors
include the guidelines and policies of the university, tutoring, advisory arrangements and the competence of the
instructors [13, 14]. The success framework of students is shown in Fig.1.1 as discussed in [10]. Prediction and
progression results are used in [17] educational data mining to analyze student performance.

In this paper we are considering the optimal course choice models for The Public Authority of Applied
Education and Training (PAAET), a higher education institute in Kuwait, offering a range of programs through
its various colleges across the country. There are five different colleges and two campuses differentiated gender
wise, for each college. PAAET is considered as one of the largest institutes in the Middle East, taking student
enrollment as a factor in the measurement. Every term approximately 40000 students are admitted to different
colleges in PAAET. There are 5 different colleges, namely College of Basic Education, College of Business
Studies, College of Health Sciences, College of Nursing and College of Technological Studies under PAAET. Of
all the colleges, the College of Basic Education has more number of students enrolled each term. BA0106, a four
year degree program of the college of Basic Education, PAAET, is considered for further processing, analysis
and discussion in this paper.

∗This work was supported by The Public Authority of Applied Education and Training, Kuwait.
†College of Basic Education, The Public Authority of Applied Education and Training (PAAET),

Kuwait,(jm.alostad@paaet.edu.kw).

361

362 J.M. Alostad

Fig. 1.1. Student success framework.

1.2. Problem Statement. Student graduation rate is one of the most important metric in evaluating
the rank of a College or University. Universities where the success ratio is large, has largest enrollments in
years to come. E-Advisor is a web based application providing online guidance to the students of PAAET. Here
guidelines are given in the direction of finding appropriate disciplines so they can succeed by graduating in-time.
The e-advisor system provides the detailed information of the different colleges in PAAET, their major courses,
the success rate in each of the course in the previous years and the rules and regulations of the Authority. The
current system lacks options for guiding student about the subjects that has to be chosen in future semesters.
Hence, for the objective of increasing the Graduation rate of the student, choice of courses in every term is
taken into consideration in this work. The proposed solution acts as an advising system for the students. This
solution helps students who are below average and who are unaware of being expelled from college for reaching
the maximum allowed semesters in their period of graduation. They system alerts the students as early in
his/her 3 rd semester about his delay in graduation and time to graduation.

1.3. Proposed Solution. A critical institutional factor that is often glossed over is the order of course
choices every term i.e. the structure of the curriculum, which is linked with the program which a student has
selected. This is one of the most relevant perspectives in understanding the academic performance of a student.
Hence, in this paper we analyze the course choices in every term and identify the most crucial courses in the
curriculum. The key point is failure in such crucial courses or if the courses are not taken according to schedule
this will directly lead to delay in graduation. This analysis is carried out program wise. In this process we
developed an adaptable framework which is used to guide the student on choosing courses every term so that
he is not delayed in graduation.

Contributions: In this paper the problem of student success ratio is addressed in terms of his/her graduation
in-time from the university. The proposed algorithm incorporates the following unique features

1. A network graph for the entire courses in a particular program is constructed for the algorithm imple-
mentation.

2. Course prerequisites, co requisites and level of the courses are taken into consideration.
3. An important feature for student success; choice of courses in every allowed term by students in order

to identify their time to graduation is considered. As an advisory system, our algorithm gives an optimal set of
courses for a student for a term in order to graduate in time.

4. A dynamic course selection algorithm is developed which displays the optimal choice and allows a stu-
dent to decide the courses on his own. Depending on the courses chosen; the algorithm dynamically recomputes
the optimal choice of courses from the next term and an alert is generated if the student is expected to exceed
the number of allowed terms.

5. The difficulty of every course in the program is identified using the institutional data from the years

Cloud based Dynamic Course Selection Framework using Network Graphs with Term Difficulty Estimation 363

2013 to 2016.
6. With the calculated course difficulty, term difficulty is computed and future term difficulty is also

predicted with the current selection of courses.
Organization: The rest of the paper is organized as follows. Section 2 gives a brief review of the literature
considering the work done earlier in this field. In section 3 the proposed adaptive course selection framework is
presented in detail, considering the static and dynamic selections. Section 4 presents details about the difficulty
analysis of every course in the chosen program. Section 5 discusses the numerical results obtained with the
sample data and Section 6 concludes the work.

2. Related Works. A student performance analysis system presented in [1] uses students’ grades to
classify students into different clusters. The performance of a student on a particular course is analyzed and
predicted using data mining techniques. A case study on the Educational data mining techniques is presented
in [2], where classification based data mining algorithms are presented for analyzing the student performance.
Similarly in an exhaustive study in the field of educational data mining [3], the prediction algorithms used for
student performance analysis and their comparison is presented.

Abeer and Elaraby [4] used the demographic information about students, including their behaviour and
activities, with rules for classification and predicted the performance of students. The approximate grades of
the students are predicted, which helped in improving the student performance on future courses.

An association rule based performance prediction and improvement in higher education is proposed in
[6]. The work presented in [5] is based on knowledge mining from the educational data using a decision
tree and identifying the students with low performance ranges and it suggests improvements in their learning
methodology.

In [15] different metrics for measuring student success are analyzed. The five most important metrics
included in the discussion are: retention rates, graduation rates, time to completion, academic performance,
and tracking educational goals. The graduation rate and the retention rate are closely related and the factors
affecting both the metrics are almost the same. The most important factor to be considered in these two
metrics is the unpredictability in students’ paths. A prediction model for identifying the social, economic and
psychological factors a student is facing in his adolescence is analyzed in [16]. The model takes data balancing,
dimensionality reduction, discretization and normalization to pre process the data and predictor construction.

In all the work proposed in the literature in the direction of analysis of student success or performance
analysis recent data mining techniques have been used to analyze the performance of the students and identify
good or bad performance, enabling the teacher and the student himself to explore different ways to improve
performance in future terms. We recognize an important factor in student success as the courses taken during
his period of study. Difficulty analysis is done for different courses in [22], where different data such as high
school GPA, ICT scores, demographic data and the grades obtained by the students in the previous years are
taken into consideration. The institutional data plays a major role in deciding the difficulty of the courses
conducted in the university. Hence, in this work we build upon this to identify the static and dynamic term
difficulty as a warning or information for students, providing awareness about the level of his course. Curriculum
design patterns and applications are explained in detail in [20, 21], which is the basis of the work presented in
this paper. The difficulty level and how crucial courses are considered to be should be known before choosing a
course. Hence, in this work we present a framework for providing an optimal choice of courses for a particular
term for a student so that the success rate of the student increases, enabling a high graduation rate from the
university.

3. Adaptive Course Selection Framework. The proposed course selection framework is explained in
detail in what follows. The network construction of courses in the curriculum of a program is described first
and the algorithm for deciding the optimal course choice is discussed later.

3.1. Course Network Construction. As a measure of a students success, graduating in time from the
university is considered as an important institutional factor. For a student to graduate in time the requirement
is completion of the courses and earning the required credits. The order of course choice plays an important role
in time to graduation as the courses in the curriculum are sometimes not dependent but some of the courses
has pre-requisites which have to be completed before taking them up. Hence, in this paper the curriculum

364 J.M. Alostad

associated with a particular degree program is taken and the choice of courses in different terms is identified
using the course selection algorithm. Due to the nature of course networks, graph theory and complex network
analysis is used to find out the most crucial courses in the curriculum mathematically. This calculation of how
crucial a course is can guide the student in deciding when to choose a particular course in order to avoid delay
in graduation.

The curriculum graphs are constructed using graph theory. Here the courses in the curriculum are rep-
resented as the nodes and two nodes are connected if the course has a direct prerequisite. Hence, the course
network is represented as an NxN adjacency matrix M, where N is the number of courses in a program. If
there is a vertex between two nodes the corresponding entry in the adjacency matrix Mij = 1, 0 otherwise .

We define two properties, the Delay factor and blocking factor for each course. The Delay and Blocking
factor is 0 for courses that are independent, i.e courses without any prerequisites. Hence, for the courses with
prerequisites the length of the longest path from a node to its leaf node is the delay factorDfi. The delay factor
identifies courses that drive a student to being at risk if it is not finished on time. Connectivity of a node is
considered in calculating the blocking factor of the node Bfi. The Blocking factor identifies the courses that are
prerequisites for a large number of courses. If such a course is not completed at the right time a student may
be blocked from the follow-on courses, which means negative progress towards graduation. The total number
of nodes connected to a particular node gives Bfi of a node. Bfi is defined by equation 3.1:

Bfi =
∑

j

nij(3.1)

where nij = 1 if there is a path from i to j , 0 otherwise. Cruciality of a node is calculated as the sum of the
blocking factor and the delay factor. Cruciality Ci is given in equation 3.2:

Ci = Bfi +Dfi(3.2)

Hence cruciality factor of a course plays a vital role in deciding when to take a particular course. Since delay
and blocking both are taken into consideration, a high crucial course implies that the course has to be given
preference and taken in appropriate time failing which results in delay in graduation.

3.2. Static Course Preference Algorithm. The Algorithm for course selection is given in Fig.3.1. Let
Cr be the number of courses in the curriculum, T be the number of terms, assign the credit points to all the

Algorithm 1 Static Course Preference

Let N be number of courses in each term
Initialize t = 1
while Cr is not empty and t < T do

1. Calculate the cruciality of the courses listed in the curriculum
2. Sort the list of courses in ascending order of course levels and descending
order of the cruciality factor
3. Select the first N courses from the list so as to satisfy the limits in the sum
of credits that can be registered.
4. Select the courses such that there are no prerequisites.
5. Check if any of the selected coursehas co-requisites. if true the co-requisites
and its corresponding prerequisites if any has to be processed first.
6. These courses will fill term .
7. Remove the selected courses
from Cr and M
8. t = t+ 1

end while

Fig. 3.1. Course Preference algorithm

Cloud based Dynamic Course Selection Framework using Network Graphs with Term Difficulty Estimation 365

Algorithm 2 Dynamic Course Preference

Let N be number of courses in each term
Initialize t = 1
Read student input
while input is not empty do

Update the courses already chosen by the student in the selected array
Update term t if necessary
Remove the selected courses from Cr and M

end while
while Cr is not empty and t < T do

Calculate the cruciality of the courses listed in the curriculum
Sort the list of courses in ascending order of course levels and descending
order of the cruciality factor
Select the first N courses from the list so as to satisfy the limits in the sum
of credits that can be registered.
Select the courses such that there are no prerequisites.
Check if any of the selected course has co-requisites. if true the co-requisites
and its corresponding prerequisites if any has to be processed first.
These courses will fill term .
Remove the selected courses
from Cr and M
t = t+ 1

end while

Fig. 3.2. Dynamic Course Preference algorithm

terms as mentioned, and let M be the adjacency matrix representing the course and the prerequisite relation.
The algorithm generates an ordered list of courses term-wise for the student, so that he can graduate in time
within the allowed terms.

3.3. Dynamic Course Preference algorithm. The Dynamic course preference algorithm allows a stu-
dent to choose a course on his own (which may or may not be from the output of the static algorithm), and
for the rest of the terms the ordered courses list is displayed to the student. The number of terms required to
graduate with the current choice of courses is also displayed in the output of the algorithm. The algorithm is
shown in Fig. 3.2.

4. Course Difficulty: Institutional Data Analysis. Institutional Data for 8 terms from spring 2013
to fall 2016 are analyzed to identify the difficulty of courses. The difficulty estimations are done based on the
previous grades. Mean and standard deviations are calculated for the grade distributions for all the courses for
each of the 8 terms. Some of the courses are not taught in some terms and, hence, the means of the courses for
those particular terms are not available. The rank for each course in each term is calculated and as a sample
the ranks of 25 courses are shown in Table 4.1. The ranks indicate there is a considerable amount of variation
in grade distribution in every term.

In order to ensure stability of course difficulty over time, mean of the grade values are ranked. In spite
of ranking the mean of the grade values there are difference in some mean grades because not all the courses
are taught in all the semesters, it depends on the choice of the students. To analyze these variations further,
correlation among the 8 terms are calculated using pearson’s R method. On examining the correlation coefficients
supports the general idea that the grade distributions are consistent across several semesters. The calculated
correlations are plotted in the correlation plot shown in Fig.4.1. The correlation matrix is shown table 4.2. The
minimum correlation exists between the terms Spring2016 and Fall 2016, on examining the mean grade values
of these terms reveals that several courses had their extreme values in these semesters. The correlation graph

366 J.M. Alostad

Table 4.1

Rank of Courses (mean grades) in Various Terms

Courses S13 F13 S14 F14 S15 F15 S16 F16
X101.102 5 6 6 29 47 9 1 NA
X102.101 3 3 2 1 6 2 4 13
X102.102 4 5 4 6 10 3 8 7
X103.105 1 1 3 4 5 5 2 3
X103.115 2 2 1 2 3 1 3 4
X106.101 9 13 11 12 14 4 13 11
X106.104 10 4 5 11 7 7 10 8
X107.104 55 10 48 25 54 51 40 45
X107.121 54 54 52 50 46 46 38 46
X107.124 39 35 39 36 20 32 35 38
X107.131 42 41 50 47 31 34 31 20
X107.134 51 16 18 22 8 37 22 26
X107.154 26 32 35 32 18 8 42 12
X107.161 45 33 43 31 36 36 30 47
X107.171 52 47 45 33 41 40 29 35
X107.194 41 27 26 35 13 21 5 32
X107.214 33 38 46 45 23 30 39 17
X107.244 28 34 41 38 19 24 25 25
X107.251 48 48 54 26 21 22 37 30
X107.254 35 36 22 43 22 42 6 48
X107.264 50 42 21 42 26 23 9 44
X107.331 53 51 53 51 51 49 48 31
X107.341 49 53 42 46 43 33 32 43
X107.342 43 40 40 49 37 48 45 40
X107.372 44 52 44 18 27 20 43 23

Table 4.2

Correlation of mean grades for 8 terms

S13 F13 S14 F14 S15 F15 S16 F16
S13 1.0000000 0.77334600 0.86108600 0.7729660 0.6197429 0.7623634 0.6105081 0.6783107
F13 0.7733460 1.00000000 0.85515533 0.8075693 0.6784647 0.7075601 0.6590922 0.6438203
S14 0.8610860 0.85515533 1.00000000 0.8437116 0.7005898 0.7777775 0.6910246 0.6487445
F14 0.7729660 0.80756928 0.84371157 1.0000000 0.6835913 0.8127427 0.6042601 0.7371457
S15 0.6197429 0.67846468 0.70058981 0.6835913 1.0000000 0.6993695 0.7079145 0.5426127
F15 0.7623634 0.70756014 0.77777746 0.8127427 0.6993695 1.0000000 0.5991665 0.7315858
S16 0.6105081 0.65909216 0.69102459 0.6042601 0.7079145 0.5991665 1.0000000 0.5144824
F16 0.6783107 0.64382030 0.64874449 0.7371457 0.5426127 0.7315858 0.5144824 1.0000000

indicates that there is no correlation in the opposite direction. Deviations from normality are also identified
using the Shapiro-Wilk’s test. The sample normality plots for fall 2014 and spring 2016 shown in Fig.4.2 show
no traces of lack of normality. The p values range from 0.1895 to 0.9958.

5. Numerical Results and Discussions.

5.1. Static Course Choices. To showcase the above mentioned process we have selected the courses of
the BA0106 program of the College of Basic Education, PAAET. There are 90 courses in total and these are
categorized as mandatory courses for the Major, Elective courses, and General courses. Of the three categories
the student has to choose courses totaling 130 credits in 4 years to graduate. The number of credits a student
can register for a term is restricted to 18 in fall and spring and 7 in summer. The summer terms are optional
for the students. The entire set of courses in the program is represented as the network shown in Fig.5.1. The
nodes in the network represent the courses. Courses are named as a combination of the department id and the
course id. The courses without any prerequisites are represented as nodes without any edges and the courses
connected by prerequisites have edges between them.

The cruciality factor is calculated for the courses in the program according to equation 3.1. The most

Cloud based Dynamic Course Selection Framework using Network Graphs with Term Difficulty Estimation 367

Fig. 4.1. Correlation among the 8 terms

(a) Case I (b) Case II

Fig. 4.2. Sample normality plots for Fall 2014 and Spring 2016

crucial 10 courses are shown in Table 5.1.
The static course preference algorithm is executed on the network constructed. The different courses that a

student has to choose in order to graduate in time are the output generated from the algorithm. These lists of
courses are shown in Table 5.2. The co-requisites and prerequisites are handled optimally and the course levels
are also taken into consideration. The total number of credits earned is 130.

5.2. Adaptive course choices. The actual choice of courses is in the hands of the students. Hence, we
have also presented a dynamic version of the algorithm which initially displays the optimal choice of courses
and reads the input file containing the actual courses chosen by the student and, based on the courses chosen;
the set of optimal choices for the upcoming terms is displayed to the student. The algorithm also displays the
number of terms a student will actually need for graduation with his current choice of courses. Based on the
output the student may choose to take one or more summer terms as per his requirements. As an illustration

368 J.M. Alostad

Fig. 5.1. Course Network Structure of courses and Prerequisite courses

Table 5.1

10 Most crucial courses in the Curriculum

Course Connectivity Delay Cruciality C
X114.492 6 3 9
X115.114 5 3 8l
X109.112 2 4 6
X109.212 2 4 6
X114.304 2 4 6
X114.362 2 4 6
X114.384 1 4 5
X115.154 1 4 5
X115.254 1 4 5
X115.424 1 4 5

of the dynamic course selection algorithm, for the above mentioned program BA0106, the courses chosen by
a student as shown in Table 5.3 is given as the input. For the given input the choice of courses to be chosen
is given in Table 5.4. It can be observed from Table 5.4 that the first two term data is given from the actual
courses chosen by the student and for the rest of the terms the courses to be chosen are displayed in Table 5.4.
The number of terms in Table 5.4 is given as 9, hence, the student is expected to exceed one term over the
allotted number of terms. The student can plan for a summer term in order to graduate in time.

Fig. 5.2 shows the dynamic course network that adapts to the courses chosen by the student. The 8 sub-
figures of Fig.5.2 present the structure of the network after choosing the courses. It represents the remaining
courses in the curriculum of the program after every term. It can be observed from the figure that the remaining
courses in Fig.5.2.(h) are the courses chosen in the 9th term by the student as shown in Table 5.4. It can also
be inferred from Table 5.4, that the course levels are not maintained in the dynamic selection. The reason is
the input decided by the student is random without considering the course levels, with the random input the
cruciality, co-requisites and prerequisites are considered since the input does not follow the level.

5.3. Difficulty Estimation for Courses. The course difficulties are estimated based on the institutional
data, i.e the grade distributions. The careful examination of the correlation coefficients supports the general
perception that the distribution of grades is highly consistent across semesters. The Shapiro-Wilk’s test and the

Cloud based Dynamic Course Selection Framework using Network Graphs with Term Difficulty Estimation 369

Table 5.2

Term wise courses

Term 1 X130.99 X102.101 X106.101 X102.102 X101.102 X114.103 X114.104 X106.104
Term 2 X107.104 X103.105 X109.112 X112.112 X115.114 X103.115 X107.121
Term 3 X112.122 X107.124 X107.131 X112.132 X107.134 X112.147 X115.154 X107.154
Term 4 X130.161 X107.161 X114.164 X107.171 X107.194 X108.197 X109.212 X115.214
Term 5 X107.214 X112.222 X112.232 X107.244 X107.251 X115.254 X107.254 X112.257
Term 6 X130.261 X107.264 X114.284 X112.302 X114.304 X107.331 X107.341
Term 7 X112.307 X107.342 X114.344 X114.362 X107.372 X114.384 X114.464
Term 8 X114.492 X114.495 X107.482 X107.452

Table 5.3

Student Course Choice input

Term Dept code Course Number
1 114 384
1 103 105
1 115 114
2 114 284
2 101 102
2 114 304
2 108 197

Pearson’s coefficients determine the stability of average grades. It appears to be a reasonable assertion that the
grade distribution of individual courses does not change considerably from term to term. To be certain some
variations indeed do occur in a minimal number of courses.

Nevertheless, the average grades appear to be stable enough to be used for estimating course difficulties.
Hence, the eight term grade distributions are combined into one set of 57 grade distributions. Hence, average
grades and their standard deviation are calculated, a sample of the first 25 courses is shown in Table 5.5 and
these means are ranked in ascending order to identify the most difficult course.

The difficulty levels of the courses are represented in a heat map in Fig. 5.3. The colors vary from dark red
to yellow for courses that are more difficult to easy.

With these course difficulty levels we also calculate the term difficulty by averaging the difficulty level of
courses chosen for a particular term. Term difficulty is calculated both for the static course choices as in Fig.
5.4.(a) and dynamic course choices as in Fig. 5.4.(b). In the dynamic algorithm the term difficulty of the future
terms is also predicted. This is given as advice to the student so that the courses can be chosen according to
his convenience.

In another direction, this dynamic course preference algorithm can be used for identifying the students who
will not graduate with the maximum allowed terms for graduation. Every program has the designated number
of terms for a student to graduate in-time from the university. There is also a maximum allowed term for
graduation beyond which a student can never graduate. Such a category of student who is anticipated not to
graduate is identified early by the proposed algorithm, so that the management can decide upon such students
in their early terms instead of allowing them for the maximum terms and terminating them from the university.
On the other hand, a student is also given an opportunity to decide on his future in his early college life.

The cruciality analysis for different courses can be expanded department-wise and college-wise in order to
identify the department with more crucial courses and the college with the most crucial departments. This
data can be used further in allotting grade ranges for different subjects. The future direction of this work is
allocating grade ranges for subjects within the curriculum. The grade ranges may vary based on the cruciality
of the course. Less crucial courses have different ranges of values for grades compared to more crucial courses.
The outcome GPA, which counts in factors like employment and higher education, will there for be fair to all
students, be it a student who graduated studying less crucial courses or more crucial courses.

6. Conclusion and future enhancement. In this paper, network analysis and graph theory have been
used to propose a framework to understand the structure of University courses by calculating the cruciality
factor. Using this framework, the course selection algorithm shows the optimal choice of courses to be selected

370 J.M. Alostad

Table 5.4

Student Course Choice input

1 X114.384 X103.105 X115.114
2 X114.284 X101.102 X114.304 X108.197
3 X109.112 X114.362 X112.147 X115.154 X115.254 X107.134 X107.154 X114.104
4 X109.212 X107.244 X107.264 X115.214 X112.222 X112.257 X112.302 X114.344
5 X114.492 X114.495 X107.372 X107.342 X112.307 NA NA NA
6 X107.452 X107.482 X130.99 X107.121 X107.131 X107.161 X107.171 X107.251
7 X130.161 X112.112 X107.331 X107.341 X107.124 X107.194 X107.214 X107.254
8 X130.261 X102.102 X106.104 X103.115 X112.132 X114.164 X112.232 NA
9 X102.101 X106.101 X114.264 X105.102 X112.122 X103.109 NA NA

(a) Case I (b) Case II

(c) Case III (d) Case IV

(e) Case V (f) Case VI

(g) Case VII (h) Case VIII

Fig. 5.2. Structure of the course network after removing courses every term

by a student in order to graduate in time. This choice of courses keeps track of his time to graduation. The
dynamic course preference algorithm takes the student decision and based on the decision his courses and
number of terms required to graduation is presented which enables the student to plan for extra courses in the
upcoming terms and supports him in deciding on the summer term. The framework can be extended to trace
the progress of the students based on the grades obtained and the number of courses chosen along with the
cruciality factor to have a positive impact on the graduation rates. The difficulty analysis helps in maintaining

Cloud based Dynamic Course Selection Framework using Network Graphs with Term Difficulty Estimation 371

Table 5.5

Mean Grades indicating the course difficulty

Courses Mean grades SD
X103.115 1.287398716 0.222689073
X103.105 1.394775842 0.276204191
X102.101 1.555222426 0.356798592
X102.102 1.819692206 0.203383015
X106.104 2.016552526 0.210480467
X114.344 2.164735106 0.51446792
X101.102 2.206264413 0.69981009
X106.101 2.235902851 0.249309948
X114.284 2.30080383 0.502985535
X115.214 2.328451714 0.595838926
X109.112 2.410101831 0.316662409
X114.104 2.449580312 0.41757027
X114.164 2.506503807 0.791445629
X114.304 2.524069967 0.82630547
X112.147 2.547242765 0.341405059
X114.384 2.594689678 0.654464115
X115.254 2.623985029 0.672616448
X115.154 2.634053128 0.324480842
X130.261 2.636714159 0.318058341
X112.232 2.654884638 0.416786992
X107.194 2.704502393 0.590925762
X115.114 2.716668919 0.314458112
X130.161 2.764785793 0.561615129
X112.112 2.768196564 0.4150545
X107.154 2.771499036 0.468601654

Fig. 5.3. Difficulty level of all courses in the network.

372 J.M. Alostad

(a) Case I (b) Case II

Fig. 5.4. Difficulty level of terms (a) static term difficulty (b) Dynamic term difficulty

a medium hard semester for the student. The student can decide for himself the hardness of a term based on
his personal conditions. The entire system is provided as software as service application in the cloud and enable
student to register for course from any where irrespective of his location.

REFERENCES

[1] C. L. Sa, D. H. B. Abang Ibrahim, E. Dahliana Hossain, M. Bin Hossin, ”Student performance analysis system (SPAS),
Information and Communication Technology for The Muslim World (ICT4M) 2014 The 5th International Conference on,
pp. 1-6, 2014.

[2] Kundariya, Daxa and Vaseem, ,A Case Study For Student Performance Analysis Based On Educational Data Mining
(Edm), (2016), 10.5281/zenodo.168107.

[3] Pooja Thakar, Anil Mehta, Manisha ,Performance Analysis and Prediction in Educational Data Mining: A Research
Travelogue, International Journal of Computer Applications (0975 8887) Volume 110 No. 15, January 2015

[4] Ahmed, A.B.E.D. and Elaraby, I.S.,Data Mining: A prediction for Students Performance Using Classification Method,
World Journal of Computer Application and Technology, 2014 2(2), pp.43-47.

[5] Al-Radaideh, Q., Al-Shawakfa, E. and Al-Najjar, M., Mining Student Data Using Decision Trees, The 2006 International
Arab Conference on Information Technology(ACIT2006),2006, Conference Proceedings.

[6] Zhu, Li, Yanli Li, and Xiang Li,Research on EarlyWarning Model of Students Academic Records Based on Association
Rules, Computer Science and Information Engineering, 2009 WRI World Congress on. Vol. 4. IEEE, 2009.

[7] G. D. Kuh, J. Kinzie, J. A. Buckley, B. K. Bridges, and J. C. Hayek,What matters to student success: A review of the
literature, National Postsecondary Education Cooperative, U.S. Department of Education, Commissioned Report for the
National Symposium on PostsecondaryStudent Success: Spearheading a Dialog on Student Success, Tech. Rep.,2006

[8] G. D. Kuh, J. Kinzie, J. H. Schuh, and E. J. Whitt,Student Success in College: Creating Conditions That Matter, San
Francisco, CA: Jossey- Bass, 2010.

[9] Ahmad Slim, Jarred Kozlick, Gregory L. Heileman, Jeff Wigdahl and Chaouki T. Abdallah,Network Analysis of
University Courses, International World Wide Web Conference Committee (IW3C2), WWW14 Companion, April 7-11,
2014, Seoul, Korea. ACM 978-1-4503-2745-9/14/04.

[10] Tushar Ojha, Prediction of Graduation Delay Based on Student Characteristics and Performance, University of New Mexico,
UNM Digital Repository, Electrical and Computer Engineering ETDs 2017.

[11] Vincent Tinto, Dropout from higher education: A theoretical synthesis of recent research, Review of Educational Research,
1(45):89-125, 1975.

[12] George D. Kuh, Jillian Kinzie, John H. Schuh, and Elizabeth J. Whitt. Stu- dent Success in College: Creating

Conditions That Matter,Jossey-Bass, San Francisco, CA, 2010.
[13] Ahmad Slim, Jarred Kozlick, Gregory L. Heileman, and Chaouki T.Abdallah, The complexity of university curricula

according to course cruciality, In Proceed ings of the 8th International Conference on Complex, Intelligent, and Software
Intensive Systems, Birmingham City University, Birmingham, UK, 2014. IEEE.

[14] Ahmad Slim, Jarred Kozlick, Gregory L. Heileman, Jeo Wigdahl, and Chaouki T. Abdallah. Network analysis of
university courses. In Proceedings of the 6th Annual Workshop on Simplifying Complex Networks for Practitioners, Seoul,
Korea, 2014. ACM.

Cloud based Dynamic Course Selection Framework using Network Graphs with Term Difficulty Estimation 373

[15] Jonathan Kim, The 5 Most Commonly Found Metrics for Student Success, Envisions resources, 2017.
[16] A. T. M. Shakil Ahamed, Navid Tanzeem Mahmood and Rashedur M Rahman, An intelligent system to predict academic

performance based on different factors during adolescence, Journal of Information and Telecommunication,(2017) 1:2,
155-175, DOI: 10.1080/24751839.2017.1323488

[17] RaheelaAsif, Agathe Merceron, Syed AbbasAli and Najmi Ghani- Haider, Analyzing undergraduate students perfor-
mance using educational data mining, Computers & Education, Volume 113, October 2017, pp. 177-194.

[18] Ruban, L. M., McCoach, D. B.,Gender differences in explaining grades using structural equation modelling, Review of
Higher Education 28475502 2005.

[19] Kuncel, N. R., Crede, M., Thomas, L. L., The validity of selfreported grade point averages, class ranks, and test scores:
A meta analysis and review of the literature, Review of Educational Research 75 1 6382 2005.

[20] A. Slim.,Curricular Analytics in Higher Education. PhD thesis, University of New Mexico, 2016
[21] J. Wigdahl, G. L. Heileman, A. Slim, and C. T. Abdallah, Curricular efficiency: What role does it play in student

success?, In 2014 ASEE Annual Conference & Exposition, Indianapolis, Indiana, June 2014. ASEE Conferences.
[22] Daniel James Mundfrom, Estimating course difficulty, IOWA State University, Digital repository, 1991.

Edited by: Rajkumar Rajasekaran
Received: Jul 29, 2018
Accepted: Dec 3, 2018

Scalable Computing: Practice and Experience

Volume 19, Number 4, pp. 375–385. http://www.scpe.org

DOI 10.12694/scpe.v19i4.1429
ISSN 1895-1767
c⃝ 2018 SCPE

PARALLEL SEED SELECTION METHOD FOR OVERLAPPING COMMUNITY
DETECTION IN SOCIAL NETWORK

BELFIN R.V.& E. GRACE MARY KANAGA∗

Abstract. Social network analysis is one of the key areas of research during modern times. The social network is growing
with more users and the ties between them day by day. This reason brings out many research queries and new conclusions from
this area. Overlapping community detection in the social network is one such research problem which has acquired interest among
researchers nowadays. Earlier, the investigation was in finding out algorithms to detect communities in the network sequentially.
There are many distinguished findings toward overlapping community detection. Due to the velocity of data in the current era, the
available algorithms will be a bit sluggish in processing the data. The proposed algorithm uses parallel processing engine to resolve
this delay problem in the current scenario. The algorithm in parallel finds out the superior seed set in the network and expands it
in parallel to find out the community. The work shows amazing improvement in the runtime and also detects quality groups in the
network.

Key words: Overlapping community detection, Seed selection, Graph parallel processing, seed expansion

AMS subject classifications. 65Y05, 68R10, 91D30

1. Introduction. Complex networks are commonly utilized for modeling the synergies in real-world sys-
tems in various areas, such as sociology, biology, knowledge dispersion and many different fields. One important
feature of this complex network is that the nodes are tightly connected with each other in groups and in turn,
the groups will be loosely connected to each other. The tightly connected groups are called as communities.
The communities usually have common properties. Therefore, finding the communities from a complex network
could give many insights about the network. The community detection can be done in two different ways:
Firstly, the network partition can be calculated to cut the graph into partitions. Secondly, the selection of seed
nodes will be done and the local communities will be centered around these seeds.

The proposed work is of the latter category where, the most important nodes in the community will be
identified using a parallel superior seed set selection (P4S) algorithm. The identified superior seeds will be ex-
panded by their neighborhood till it reaches the next seed. Since the algorithm expands using the neighborhood,
it will form the closely knitted group around the seed nodes.

Seed selection process is an important process in the field of network science. Usually, the measures for
calculating the important nodes from the target network is named as centrality measures [24, 25]. There are
many centrality measures, to name a few, Degree [31], Betweenness [34], Closeness [18], Eigen vector [35], Page
Rank [32] and so on. These seed nodes play an important role in finding a good community in community
detection problem and fast spreading in information diffusion application.

2. Related Works. Data nowadays is huge and need to be processed as fast as possible. There is a
need of parallel algorithms to process the volume of data which comes in high velocity. Processing the data in
the faster may fetch the organizations a good profit. There are lots of seed selection algorithms available for
different applications. Each application might have to adopt different seed selection algorithms which match the
application requirement. For example, if the application is a marketing application, the out-degree centrality
or the page rank centrality may be used for the seed selection process. So, each centrality measures[9, 10, 2]
will have their own limitations with various applications. The proposed method finds out a generic seed by
combining various centralities.

There are some related works available in the literature. There are some diffusion models [40, 28, 21, 7]
and community detection algorithms [36, 3, 26, 14, 11] which will have a seed selection part in their model
[22, 12, 27, 6]. Some of the algorithms selects the seeds in random and optimize its result at the end of the
process [15]. There is a excellent study on seed nodes in [13]. Evolutionary algorithms are used to find out the
seed nodes in some cases [34].

∗Department of Computer Science and Engineering, Karunya institute of technology and sciences, Coimbatore, Tamilnadu,
India. (belfin@karunya.edu, grace@karunya.edu).

375

376 Belfin R.V. and E. Grace Mary Kanaga

There are several graph computations algorithm available for large-scale graphs, various parallel modules
have been developed, e.g., Pregel [20], GraphLab [19] Giraph++ [8], GraphX [37], GRACE [30], GPS [23] and
Blogel [38] ,based on MapReduce [5] and BSP (Bulk Synchronous Parallel) models [29].

The proposed algorithm uses GraphX to process the graph in parallel. Our previous work Superior seed
set selection algorithm (4S) [1] was extended to parallel processing in this article. The experiment result proves
that the proposed parallel algorithm can find out the good clusters fastest then the available algorithms.

3. Problem Statement. Some of the seed selection algorithms which are already available are using
random nodes for selecting the seed node. The selection of a seed node or a seed set is really important in the
algorithms which use seeds to find out communities. Since, the community detection algorithm needs to work in
unsupervised way the seeds should be excellent to obtain a perfect local community. The selection of excellent
seeds will reduce the number iterations in the community detection algorithm.

Nowadays the data need to be processed is large because of the growing use of internet and social media.
Reducing iterations will not be enough to make the algorithm work faster. There is a need of parallel algorithms
which can process the data in a synchronized manner. Parallel processing algorithms are modern nowadays.
The uses of these kinds of algorithms will be fast and effective.

4. Problem Formulation. Assuming an undirected graph G = (V,E). The nodes of the graph G be
n = |V | nodes and the edges of the graph G be m = |E|. The overlapping community detection algorithm is used
to determine the community C = C1,, Cx of all the nodes of G. |C| be the number of communities identified.
In the proposed work, |C| is the number of seed node selected from parallel superior seed set selection algorithm.

Various centrality measures µi for a node i can be calculated which will be the importance measure of
node i. Let us assume the graph to be undirected. The traditional methods uses any one of the centrality
measures with respect to the use case, to define its seed set S(G) = si, sj , . . . , sκ where si, sj , . . . , sκ ∈ V .
Some models pick seed set randomly and gets the parameter κ as input, to decide the number of seeds in
the set. The difficulty in the conventional methods is that, the seed set need to be adjusted according to the
circumstances of the problem. The proposed parallel, unified model determines the superior seed set S(G) from
the centrality measures collectively. This article introduces a threshold value τ , which limits the number of seed
nodes selected for the S(G).

A community may be basically described as a collection of nodes that may share common features, or engage
in similar roles in the network. Also, it is tightly knitted groups with a high density of inter community ties and
a low density of intra-community ties. The proposed algorithm produces results that are composed of one of
two types of assignments, crisp assignment of nodes or fuzzy assignment of nodes. With crisp assignment, the
relationship between a node and a cluster is binary. That is, a node i either belongs to community C or does
not. With fuzzy assignment, each node is associated with two or more communities. Throughout the article,
the terms set, cluster, and community are used interchangeably.

5. Proposed work. The main idea of this work is to use the parallel processing architecture to find out
the best seeds and subsequently the best seeds from P4S algorithm will be used to find out the communities
hidden in the network. The work has been done with GraphX a module in spark parallel processing engine.
The algorithms for the Parallel seed selection and parallel community detection has been explained below in
the following sections. The parallel community detection framework is depicted in the Fig 5.1. The input of the
algorithm will be the unlabeled network, for example, social graph or collaboration networks or the network of
web pages. The output of the work will be the expanded communities from the selected seeds. The goodness of
the communities is tested by comparing the inter-density and intra-density of the communities along with the
graph density. The algorithm for the P4S has been given in the Algorithm 1. Algorithm 2 shows the parallel
seed set expansion algorithm which finds out the communities.

GraphX is the Apache Spark ingredient for graph-parallel calculations, developed upon a division of math-
ematics called graph theory. It is a distributed graph processing framework that lies on top of the Spark core.
GraphX inherits the Spark RDD with a Resilient Distributed Property Graph. The property graph is a di-
rected multi-graph. The multiple edges it has will be parallel. The parallel edges permit multiple relationships
between the same vertices. The Fig. 5.2 shows the architecture of the parallel 4S and parallel community
detection implemented in the spark.

Parallel seed selection method for overlapping community detection in social network 377

Fig. 5.1. Parallel community detection framework

Algorithm 1 Parallel Superior Seed Set Selection Algorithm (P4S)

1: procedure P4S(g, τ) ◃ Parallel Superior Seed set selection(P4S)
2: READ graph G(V,E)
3: COMPUTE
4: degree centrality d
5: eigen value centrality e
6: local clustering coefficient l
7: page rank centrality p ◃ Parallel
8: SORT d, e, l, p
9: for δ do ◃ Parallel

10: Threshold τ ← vertex count/δ
11: Fetch τ count of top nodes from list of d, e, l, p
12: Intersect (d, e, l, p)

13: return SuperiorSeedsSet S(g) ◃ top seeds

Algorithm 2 Parallel community detection using neighborhood expansion

1: procedure SeedExpansion(g, S(g)) ◃ Parallel Seed Expansion
2: COMPUTE
3: DistanceMatrix/S(g)
4: MaximumExpansionThreshold ExMax

τ

5: for S(g) do ◃ Parallel
6: while (do!ExMax

τ)
7: NeighbourhoodExpansion

8: DETERMINE nor selected nodes V φ
9: for V φ do ◃ Parallel

10: DETERMINE Neighbors of V φ−NeiV φ
11: Degree NeiV φ
12: Assign node to the max degree nodes community

13: return SuperiorSeedsSetS(g) ◃ top seeds

378 Belfin R.V. and E. Grace Mary Kanaga

Fig. 5.2. Implementation of Parallel 4S and Parallel community detection algorithm in Spark architecture

The GraphX processors will be used to compute the superior seed set and the seed expansion of the node
to form community in parallel. Three node clusters was used for computing the communities in parallel.

5.1. Parallel Superior Seed Set Selection (P4S). Parallel superior seed set selection algorithm ex-
tracts the very important nodes in the input graph. The input data will be stored in the distributed file system
for further processing. Centrality measures are used to coin out the important nodes in the network. Each
centrality measure will have its own importance and use cases to work on. Combining these centrality measures
can identify good seeds across all the centrality measures. For the experiment done for this work Page rank,
Degree, Eigen value, Local clustering coefficient centralities was used. The centralities measure calculation will
automatically run in parallel when GraphX is used. Sorting according to the centrality ranks will be done for
all centrality measures used. A threshold value will be used to split the top ranks for all measures. Finally, set
intersection of the top nodes from each centrality measure will be done to get the superior seed set. Fig. 5.3
depicts the process of finding the superior seed set.

5.2. Parallel Community Detection. Community detection from seed by expanding greedily through
neighbors is a classical process. The proposed work is the modified version of the seed expansion in a parallel
way. Since we have multiple seeds the algorithm will expand in parallel from the seeds till it reaches the next
seed and stops expanding. The distance between the seeds will be calculated by the distance matrix. The
ExMax

τ defined in the Algorithm 2 is the maximum expansion limit. The nodes which are not selected in the
first iteration will be picked and added to its neighbors community. In case of more than one neighbor the
highest degree node will add the ungrouped node to its community.

6. Experiment. The real-world datasets used for the experiments are from [17]. All the datasets are
connected, undirected graphs. The datasets are from various categories like collaboration networks and product
networks. The detailed information about the datasets is given in the Table 6.1.

Collaboration networks. In a collaboration network, vertices denote authors, and edges denote co-
authorship. If authors u and v are co-authors, they will be connected by an edge. So, if an article is written

Parallel seed selection method for overlapping community detection in social network 379

Fig. 5.3. Parallel 4S algorithm for finding top seed set

Table 6.1

Summary of real-world networks used

Graph
No. of
Vertices

No. of
edges

Max.
Deg

Avg.
Deg

Avg. CC
Ground-
truth

HepPh 11,204 117,619 491 21.00 0.6216 N/A
AstroPh 17,903 196,972 504 22.00 0.6328 N/A
CondMat 21,363 91,286 279 8.50 0.6417 N/A
DBLP 317,080 1,049,866 343 6.60 0.6324 Yes
Amazon 334,863 925,872 549 5.50 0.3967 Yes
Orkut 731,332 21,992,171 6933 60.10 0.2468 Yes

by n authors, then their relationship will be represented as a clique in the network. HepPh, AstroPh, and
CondMat networks are formed based on the journal submitted to High Energy Physics (Phenomenology) group,
Astrophysics group, and Condensed Matter Physics group under the arXiv e-print service, respectively. The
DBLP network is formed based on the DBLP computer science bibliography website.

Product network. In the Amazon product network, vertices denote products and edges denote co-
purchasing information. If products u and v are frequently co-purchased, then there will be an undirected
edge between them.

Social networks. In a social network, vertices denote users of the social network and the edges denote
social communications between them. Users can construct a friendship relationship with each other in this web
application.

7. Community Evaluation.

7.1. Intra-Density, Inter-Density and Graph Density. The cohesiveness of the edges in a graph G
can be readily attained by calculating the graph density ρ.

ρ =
|E|

n(n− 1)/2
(7.1)

where n is the count of nodes in the network and n(n − 1)/2 is the maximum possible edges and |E| is the
number of edges in graph G.

380 Belfin R.V. and E. Grace Mary Kanaga

Consider c is a community in the given network G where |G| = n and |c| = nc. Internal edges are edges
which have it both sides situated inside the community c and the external edges of community c refer to the
edges which connect a vertex in c to the rest of the graph. The internal degree of vertex v in community c is
denoted by kintv is the number of edges connecting v to other vertices in c and the external degree of v denoted as
kextv is the number of edges connecting v to the rest of the graph. The intra cluster density δi(c) of a community
c is the ratio between the number of internal edges of c and the number of all possible internal edges:

δi(C) =
|Ei|

nc(nc − 1)/2
(7.2)

where |Ei| is the count of internal edges in the community.
Similarly, the inter-cluster density δe(c) is the ratio between the number of inter-cluster edges of c and the

number of all possible inter-cluster edges:

δe(C) =
|Ee|

nc(n− nc)
(7.3)

where|Ee| is the count of inter community edges in the community.
The proposed parallel seed set selection algorithm has been implemented in the real-world datasets and has

given a better result. The goodness of the community has been tested with the inter-cluster and intra-cluster
density. Usually For overlapping communities, internal and external metric values will be used. Because,
combination metrics and modularity scores will result in confusing values that should be inconsistent[15]. The
goodness of the community using graph density ρ, intra-cluster density δi(c) and inter cluster density δe(c) can
be given as:

δi(C) > ρ > δe(C)(7.4)

The comparison of inter-cluster density, intra-cluster density and graph density of the real datasets are
plotted in the result and discussion section. The experiment was done for the seed sizes 71, 84, 114, 128, 152,
172, 207, 240 and 270.

7.2. Clustering Coefficient. A clustering coefficient is a measure of the degree to which nodes in a
graph are inclined to tie together. Research results suggests that in most real-world networks, and in some
social networks, nodes are likely to create tightly connected groups characterized by a pretty high density of
ties; this likelihood will greater than the average probability of a connection randomly established between two
nodes [33].

The local clustering coefficient li for a vertex i is then given by the ratio of links between the nodes within
its neighbors divided by the number of edges possible between them. The local clustering coefficient for an
undirected graph is given as:

Ci =
2|ej,nei : vj , vnei ∈ Ni, ej,nei ∈ E|

neii(neii − 1)/2
(7.5)

where vertex vj , has neii neighbors, neii(neii−1)
2 edges will be the maximum possible edges exist among the

vertices within the neighborhood.

8. Result and discussion. The problem of community assessment is still an open and difficult problem
in spite of huge sum of work addressing this topic [13]. The experiment done on the real-world datasets are
given on the summary Table 6.1. The values of inter-density, intra-density and graph density are compared to
find the goodness of the cluster. The result from the six real-world datasets specified in Table 6.1 has been
plotted in the Fig 8.1. Every dataset used for the experiment passes the test and it goes hand in hand with the
Eq. (7.4). In all cases the intra-cluster density δi(c) from Eq. (7.2) of all the communities identified is greater
than the graph density ρ and the inter-cluster density δe(c) from Eq. 7.3 of nodes after finding communities is
lesser then the graph density ρ from Eq. 7.1.

Parallel seed selection method for overlapping community detection in social network 381

Fig. 8.1. Data comparison between the inter-cluster density, intra-cluster density and graph density: (a) Amazon dataset (b)
AstroPh (c) CondMat (d) DBLP (e) HepPh (f) Orkut

The clustering coefficient can be a measure to find out the closely connected groups. The clustering coeffi-
cient equation is given the Eq. 7.5. The comparisons of clustering coefficient with the number of communities
are given in the Fig. 8.2. The clustering coefficient of two datasets namely Amazon Fig. 8.2a and AstroPh
Fig. 8.2b are shown. The result shows an increasing trend in the clustering coefficient as the number of seeds
increases. This shows that the larger the seed set higher the density of the community. Fig. 8.3 shows the
comparison of clustering coefficient and number of nodes in each community. The result of comparison of av-
erage clustering coefficient of the entire network and the average community clustering coefficient is compared
in the Fig. 8.4a and the comparison of average degree of the entire graph and the average degree of all the
communities detected are shown as a bar plot in Fig. 8.4b. The plots clearly show that the density of the sub
graphs increases after the community detection.

The running time factor is one of the important problems in community detection algorithms. When the
input graph becomes larger the operations in graph will become complex and operations on it will be costly.
The running time of the algorithm was compared with five important algorithms from the literature shown in

382 Belfin R.V. and E. Grace Mary Kanaga

Fig. 8.2. Number of communities VS Clustering Coefficient (a) Amazon (b)AstroPh

Fig. 8.3. Number of nodes in the community VS Clustering Coefficient (a) Amazon (b)AstroPh

the Table 8.1. OSLOM [16], DEMON [4], Big Clam [39], nise-sph-fppr and nise-grc-fppr from [35].
As it can be clearly seen in the Table 8.1 the proposed P4S algorithm with seed expansion algorithm works

faster than the other algorithms compared. Since it is parallel execution, the algorithm finishes its execution
faster than the other algorithms compared.

The details in the Table 8.2 depict the coverage (%) of each algorithm. In this case the proposed algorithm
doesnt gives 100% as nise-sph-fprr and nise-grc-fppr [35]. When the number of communities is considered the
proposed P4S method gives better result than the algorithms compared.

9. Conclusion. The proposed P4S method has been implemented and tested in this article. The work
gives encouraging result and it could produce better communities in less time. The P4S selects very good seeds
and because of the seeds he communities can be expanded from the seeds easily. Since the seeds have a good
density of nodes around it, the expansion will be faster when the process starts and it drags a little to complete.
The generated communities from this method prove the seeds selected are excellent. The goodness metric of the
communities selected has been tested with the density metrics. The density test proves that the communities
generated are also good. The communities detected has also been tested with the clustering coefficient and
proved to be good after the detection of community. The trend line shows that larger the seed set higher the
density will be. The runtime of the algorithm was also calculated and it shows a very good improvement.
Finally, the coverage of the algorithm was tested and the P4S covers more than 95% in most of the iterations.
When considering the number of communities with the coverage % the result P4S gave is better. The algorithm
still needs many improvements with respect to the centrality measures selection, range of threshold values and
seed expansion approach.

Parallel seed selection method for overlapping community detection in social network 383

Fig. 8.4. (a) Comparison of average clustering coefficient of nodes before and after community detection. (b) Comparison of
average degree of nodes before and after community detection.

Table 8.1

Running times of different methods on our test networks in (Minutes)

Graph oslom demon bigclam nise-sph-fppr nise-grc-fppr P4S
HepPh 19.26 0.45 11.383 0.36 2.8 0.3
AstroPh 38.05 0.7 48.016 0.6 2.43 0.483
CondMat 20.65 0.83 7.35 0.6 1.23 0.45
DBLP 350 233 433 18.33 29.733 12.6
Amazon 175 115 85 37.6 42.716 20.3
Orkut N/A N/A 4199 43.916 236 31.83

Table 8.2

Returned number of communities and graph coverage of each algorithm

Graph oslom demon bigclam nise-sph-fppr nise-grc-fppr P4S

HepPh
Coverage (%)
no.of.clusters

100
608

88.3
5,147

84.37
100

100
99

100
90

94.83
270

AstroPh
Coverage (%)
no.of.clusters

100
1,241

94.15
8,259

91.11
200

100
212

100
246

95.4
270

CondMat
Coverage (%)
no.of.clusters

100
1,534

91.16
10,474

99.96
200

100
201

100
249

98.5
270

DBLP
Coverage (%)
no.of.clusters

100
17,519

84.89
174,560

100
25,000

100
26,503

100
18,477

97.4
270

Amazon
Coverage (%)
no.of.clusters

100
17,082

79.16
105,685

100
25,000

100
27,763

100
20,036

96.71
270

Orkut
Coverage (%)
no.of.clusters

N/A
N/A

N/A
N/A

82.13
25,000

99.99
25,204

99.99
32,622

98.5
270

384 Belfin R.V. and E. Grace Mary Kanaga

REFERENCES

[1] R. Belfin, G. E., and P. Bródka. Overlapping community detection using superior seed set selection in social networks.
Computers and Electrical Engineering, 2018.

[2] P. Bonacich. Power and Centrality: A Family of Measures. American Journal of Sociology, 1987.
[3] T. Chakraborty, S. Srinivasan, N. Ganguly, A. Mukherjee, and S. Bhowmick. Permanence and Community Structure in

Complex Networks. 11(2), 2016.
[4] M. Coscia, G. Rossetti, F. Giannotti, and D. Pedreschi. DEMON: a Local-First Discovery Method for Overlapping Commu-

nities. 2012.
[5] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. Communications of the ACM, 2008.
[6] S. Dhamal, P. K. J., and Y. Narahari. Information Diffusion in Social Networks in Two Phases. IEEE Transactions on

Network Science and Engineering, 4697(c):1–1, 2016.
[7] F. Erlandsson, P. Brdóka, and A. Borg. Seed selection for information cascade in multilayer networks. Studies in Computational

Intelligence, 689:426–436, 2018.
[8] W. Fan, J. Xu, X. Luo, Y. Wu, W. Yu, and R. Xu. GRAPE: Conducting Parallel Graph Computations without Developing

Parallel Algorithms. pages 30–41.
[9] L. C. Freeman. Centrality in Social Networks. Social Networks, 1978.

[10] L. C. Freeman. Centrality in social networks conceptual clarification. Social Networks, 1978.
[11] J. Han, W. Li, Z. Su, L. Zhao, and W. Deng. Community detection by label propagation with compression of flow. 2016.
[12] L. G. S. Jeub, M. W. Mahoney, P. J. Mucha, and M. A. Porter. A Local Perspective on Community Structure in Multilayer

Networks. volume 5, pages 144–163, 2015.
[13] R. Kanawati. Seed-Centric Approaches for Community Seed-Centric Algorithms : A Classification Study. pages 197–208,

2014.
[14] R. Kanawati. YASCA: An Ensemble-Based Approach for Community Detection in Complex Networks. Algorithmica,

76(4):657–666, 2014.
[15] A. Lancichinetti and S. Fortunato. Community detection algorithms: A comparative analysis. Physical Review E - Statistical,

Nonlinear, and Soft Matter Physics, 80(5):1–11, 2009.
[16] A. Lancichinetti, F. Radicchi, J. J. Ramasco, and S. Fortunato. Finding statistically significant communities in networks.

PLoS ONE, 6(4), 2011.
[17] S. Large and N. Dataset. Stanford Large Network Dataset Collection, 2013.
[18] Y. Li, Y. Wang, J. Chen, L. Jiao, and R. Shang. Overlapping community detection through an improved multi-objective

quantum-behaved particle swarm optimization. Journal of Heuristics, 21(4):549–575, 2015.
[19] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. GraphLab: A New Framework for Parallel

Machine Learning. The 26th Conference on Uncertainty in Artificial Intelligence (UAI 2010), 2010.
[20] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for large-scale

graph processing. Proceedings of the 2010 international conference on Management of data - SIGMOD ’10, 2010.
[21] R. Michalski, T. Kajdanowicz, P. Bródka, and P. Kazienko. Seed selection for spread of influence in social networks: Temporal

vs. static approach. New Generation Computing, 32(3-4):213–235, 2014.
[22] C. H. Mu, J. Xie, Y. Liu, F. Chen, Y. Liu, and L. C. Jiao. Memetic algorithm with simulated annealing strategy and tightness

greedy optimization for community detection in networks. Applied Soft Computing Journal, 34:485–501, 2015.
[23] S. Salihoglu and J. Widom. GPS : A Graph Processing System. SSDBM Proceedings of the 25th International Conference

on Scientific and Statistical Database Management, 2013.
[24] A. Sol, S. G. e-Ribalta, Manlio De Domenico, and A. A. Omez. Random walk centrality in interconnected multilayer networks.

Physica D: Nonlinear Phenomena, 323-324:73–79, 2016.
[25] L. Solá, M. Romance, R. Criado, J. Flores, A. Garćıa del Amo, and S. Boccaletti. Eigenvector centrality of nodes in multiplex

networks. Chaos, 23(3):1–11, 2013.
[26] G. Song, Y. Li, X. Chen, X. He, and J. Tang. Influential Node Tracking on Dynamic Social Network: An Interchange Greedy

Approach. IEEE Transactions on Knowledge and Data Engineering, 29(2):359–372, 2017.
[27] A. Srivastava, C. Chelmis, and V. Prasanna. Social influence computation and maximization in signed networks with compet-

ing cascades. Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining, ASONAM 2015, pages 41–48, 2015.

[28] V. Tejaswi, P. V. Bindu, and P. S. Thilagam. Diffusion models and approaches for influence maximization in social networks.
In 2016 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2016, pages
1345–1351, 2016.

[29] L. G. . V. . Valiant. A Bridging Model for Parallel Computation. Communications of the ACM, 1990.
[30] G. Wang, W. Xie, A. Demers, and J. Gehrke. Asynchronous Large-Scale Graph Processing Made Easy. Cidr, 2013.
[31] M. Wang, C. Wang, J. X. Yu, and J. Zhang. Community Detection in Social Networks : An In-depth Benchmarking Study

with a Procedure-Oriented Framework. Proceedings of the VLDB Endowment, pages 998–1009, 2015.
[32] Y. Wang, B. Zhang, A. V. Vasilakos, and J. Ma. PRDiscount: A Heuristic scheme of initial seeds selection for diffusion

maximization in social networks. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 8588 LNCS, pages 149–161, 2014.

[33] D. J. Watts and S. H. Strogatz. Collective dynamics of small-world’ networks. Nature, 393(6684):440–442, 1998.
[34] M. Weskida. Evolutionary Algorithm for Seed Selection in Social Influence Process. pages 1189–1196, 2016.
[35] J. J. Whang, D. F. Gleich, and I. S. Dhillon. Overlapping Community Detection Using Neighborhood-Inflated Seed Expansion.

IEEE Transactions on Knowledge and Data Engineering, 28(5):1272–1284, 2016.

Parallel seed selection method for overlapping community detection in social network 385

[36] J. J. Whang, P. Rai, and I. S. Dhillon. Stochastic blockmodel with cluster overlap, relevance selection, and similarity-based
smoothing. Proceedings - IEEE International Conference on Data Mining, ICDM, pages 817–826, 2013.

[37] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica. GraphX. In First International Workshop on Graph Data Management
Experiences and Systems - GRADES ’13, pages 1–6, 2013.

[38] D. Yan, J. Cheng, Y. Lu, and W. Ng. Blogel - a block-centric framework for distributed computation on real-world graphs.
Proceedings of the VLDB Endowment, 7(14):1981–1992, 2014.

[39] J. Yang and J. Leskovec. Overlapping community detection at scale: A Nonnegative Matrix Factorization Approach. Sixth
ACM international conference on Web search and data mining, page 587, 2013.

[40] J. U. N. Zhang, F. Xia, S. Member, and Z. Ning. A Hybrid Mechanism for Innovation Diffusion in Social Networks. 4, 2016.

Edited by: Rajkumar Rajasekaran
Received: Jul 30, 2018
Accepted: Dec 14, 2018

Scalable Computing: Practice and Experience

Volume 19, Number 4, pp. 387–400. http://www.scpe.org

DOI 10.12694/scpe.v19i4.1438
ISSN 1895-1767
c⃝ 2018 SCPE

ENERGY-EFFICIENT REAL-TIME SCHEDULING ALGORITHM FOR
FAULT-TOLERANT AUTONOMOUS SYSTEMS∗

HUSSEIN EL GHOR†, JULIA HAGE‡, NIZAR HAMADEH§, AND RAFIC HAGE CHEHADE¶

Abstract. For the past decades, we have experienced an aggressive technology scaling due to the tremendous advancements
of Integrated Circuit technology. As massive integration continues, the power consumption of the IC chips exponentially increases
which further degraded the system reliability. This in turn poses significant challenges to the design of real-time autonomous
systems. In this paper, we target the problem of designing advanced real-time scheduling algorithms that are subject to timing,
energy consumption and fault-tolerant design constraints. To this end, we first investigated the problem of developing scheduling
techniques for uniprocessor real-time systems that minimizes energy consumption while still tolerating up to k transient faults to
preserve the system’s reliability. Two scheduling algorithms are proposed: the first scheduler is an extension of an optimal fault-
free energy-efficient scheduling algorithm, named ES-DVFS. The second algorithm aims to enhance the energy saving by reserving
adequate slack time for recovery when faults strike. We derive a necessary and sufficient condition that must be efficiently checked
for the time and energy feasibility of aperiodic jobs in the presence of failures. Later, we formally prove that the proposed algorithm
is optimal for a k-fault-tolerant model. Our simulation results demonstrate that the proposed schedulers can efficiently improve
energy savings when compared with previous works.

Key words: Real-time systems, real-time scheduling, fault tolerance, energy consumption, processor demand, ES-DVFS
scheduler

AMS subject classifications. 68M15, 94C12

1. Introduction. Autonomous systems are becoming increasingly important in our lives. In these au-
tonomous devices, the management of energy is a crucial issue. They are more and more varied and appear in
extremely diverse sectors such as transport (avionics, cars, buses, ..), multimedia, mobile phones, game consoles,
etc. A large part of autonomous systems have needs for autonomy and limitations of space (small size) and
energy (limited consumption). As a result, the major technological and scientific challenge is to build systems
of trust from the point of view of the functionalities provided and the rendered quality of service. Its more
about designing these systems at an acceptable cost.

For the past several decades, we have experienced tremendous growth of real-time systems and applications
largely due to the remarkable advancements of IC technology. However, as transistor scaling and massive in-
tegration continue, the dramatically increased power/energy consumption and degraded reliability of IC chips
have posed signficant challenges to the design of real-time embedded systems [1]. Hence, it is imperative to pro-
pose efficient and effective power/energy management techniques for real-time systems while still guaranteeing
the timing constraints. For the past years, extensive real-time energy-efficient scheduling algorithms have been
proposed to minimize the processor energy consumption for embedded systems [2], [3].

Such a problem is usually treated by Dynamic Voltage and Frequency Scaling (DVFS) methods that affect
the processor speed, which directly affects the energy consumption of the system. The energy-efficient scheduling
of real-time jobs on a DVFS processor has been extensively studied in the previous decade [4], [5], [6].

At the same time, it is observed that as autonomous real-time systems become more and more complex,
the required level of reliability for such systems appears to be another open problem. Such comples systems
are usually situated at harsh, remote or inaccessible locations. Consequently, it is often difficult and sometimes
even impossible to repair and to perform maintenance. This necessitates the use of fault-tolerant techniques.
Fault-tolerant computing stands for the reliable (correct) execution of system software and user programs in
the presence of failures [7]. Nowadays, the impacts of system failures become more and more substantial,
ranging from personal inconvenience, disruption of our daily lives, to some catastrophic consequences such
as huge financial loss. Conceivably, guaranteeing the reliability of computing systems has also been raised

∗This work was supported by the Laboratory of Embedded and Networked Systems at the Lebanese University.
†LENS Laboratory, Faculty of Technology, Lebanese University, B.P. 813 Saida, LEBANON. (husseinelghor@ul.edu.lb).
‡Faculty of Technology, Lebanese University, B.P. 813 Saida, LEBANON.
§LENS Laboratory, Faculty of Technology, Lebanese University, B.P. 813 Saida, LEBANON (nizar.hemadeh@ul.edu.lb).
¶LENS Laboratory, Faculty of Technology, Lebanese University, B.P. 813 Saida, LEBANON (rhagechehade@ul.edu.lb).

387

388 H. EL Ghor, J. Hage, N. Hamadeh and R. Hage Chehade

to be a first-class design concern. Recent studies indicate that the emerging energy-efficient design techniques
further increase the susceptibility of VLSI circuits to transient faults [4]. Left unchecked, the high power/energy
consumption and deteriorating reliability of IC chips will handicap the availability of future generations of real-
time computing systems. Hence, faults have to be detected and convenient recovery methods must be performed
within the timing constraints.

Processor faults can be mainly seperated into two categories: transient and permanent faults [8]. Transient
faults are temporary malfunctioning of the computing unit or any other associated components caused by factors
such as electromagnetic interference and cosmic ray radiations, which causes incorrect results to be computed.
On the contrary, a permanent or hard fault in hardware is an erroneous state that is continuous and stable.
Permanent faults in hardware are caused by the failure of the computing unit. We focus in this paper on the
transient fault since, in most computing systems, the majority of errors are due to transient faults [9]. In the
case of an energy-efficient system, reliability also means ensuring that the system will never be short of energy
to ensure its treatment. Anticipation of possible cases of energy can, again, be implemented on the basis of the
flexibility offered by the system at the level of the execution of the tasks.

In this work, we target the problem of real-time scheduling under reliability and energy constraints. Its
about considering real-time tasks that have needs which are expressed on the one hand in terms of processing
time and energy consumed by the processor and on the other hand in terms of the number of tolerated faults.
A task configuration is energy overloaded, this means that the amount of energy consumed is greater than the
amount of energy available. In addition, the amount of execution time requested is smaller than the available
capacity, the system will therefore typically be able to meet all its deadlines or else catastrophic consequences
will occur. A major question that needs to be answered is: how to schedule real-time tasks in case of energy
where the system keeps reliable and able to tolerate up to k faults.

To answer this question, a uniprocessor Earliest Deadline First (EDF) scheduler is first analyzed to derive
an efficient and exact feasibility condition by considering energy management and fault-tolerance. Second, the
proposed algorithm is designed to achieve energy autonomous utilization of the processor while meeting the
task deadlines.

The rest of the paper is organized as follows. In the next section, we summarize the related work. In section
3, we introduce the model and terminology. The fault tolerant speed schedule was then presented in section 4.
Section 5 presents the experimental results to demonstrate energy savings and Section 6 concludes the paper.

2. Related Work. Researchers in both academia and industry have resorted to various techniques to min-
imize energy consumption in computing systems. Among these, DVFS technique has risen as one of the best
framework level methods for energy consumption. DVFS scheduling reduces the supply voltage and frequency
when conceivable for preserving energy consumption. Subsequently, a great number of procedures considering
the issue of limiting the energy consumption without jeopardizing the timing constraints on uniprocessor plat-
forms are widely proposed in literature for different task models. Many of the previous work that studied the
problem of energy efficient frameworks for real-time embedded systems employ the DVFS technique [4], [10],
[11], [12], [13].

Yao et al. [10] developed a DVFS scheme for a set of aperiodic real-time tasks scheduled under EDF
policy with a focus of minimizing dynamic power consumption for real-time systems. In [12], authors consid-
ered the temperate and leakage dependencies and proposed an efficient DVFS scheme to minimize the overall
energy consumption while guaranteeing the timing constraints of a real-time system. Later in [13], we settle
the hypothesis for enhancing energy saving in real-time systems, we proposed an energy-efficient scheduling
algorithm for aperiodic tasksin real-time embedded systems. Specifically, we applied the DVFS technique to
the concept of real-time process scheduling. Further, we proposed in [14] an energy guarantee scheduling and
voltage/frequency selection algorithm targeting at real-time systems with energy harvesting capability. We
show that our scheduler achieves capacity savings when compared to other schedulers.

On the other side, fault tolerance, and in general reliability, objectives are of paramount importance for
embedded systems [15]: faults and failures can occur in real-time computing systems and can result in deadline
violations and/or hardware errors. Since soft errors are more common in computing systems, most researches
related to fault tolerance focus on soft errors. Such research efforts was done on scheduling techniques with the
joint consideration of energy efficiency and fault tolerance.

Energy-Efficient Real-Time Scheduling Algorithm for Fault-Tolerant Autonomous Systems 389

Zhu et al. [16] investigated the reliability problem of a real-time system as the probability to execute all
tasks, in abscence or presence of faults. Following this, authors proposed a linear and an exponential model
that can detect the effects of DVFS technique on the transient fault rate. They demonstrated that minimizing
energy consumption through DVFS can reduce the system reliability. For this sake, they presented a recovery
scheme to schedule a recovery for each scaled job to compensate the reliability loss caused by DVFS.

Melhem et al. [17] targeted the reliability problem for a set of periodic tasks scheduled under EDF on
a monoprocessor with the restriction that there is at most one failure (i.e. k = 1). Authors presented a
checkpointing scheme that can reduce the fault-recovery overhead significantly at the cost of runtime overhead,
this means by inserting checkpoints, which may potentially improve the system schedulability and leave more
space for energy management. Zhang et al. [18] investigated the same problem but on fixed-priority real-time
tasks. For this sake, authors proposed a DVFS scheme combined with checkpointing that is able to tolerate
faults for a set of periodic tasks to minimize energy consumption.

More recently, Zhao et al. [19] proposed the Generalized Shared Recovery (GSHR) technique to reserve
computing resources, which can be used by other tasks to enhance the energy efficiency. Later, this work was
extended to be applied to a real-time periodic task model [15]. The proposed algorithms aim to determine the
processor scaling factor and the reserved resources for every task to enhance the minimization of energy while
still guaranteeing the reliability requirement at the task-level. The advantage of the GSHR scheduler comes
from the fact that the reliability of the system can be increased when aplying the DVFS technique.

Recently, Han et al. developed effective scheduling algorithms that can save energy when considering that
the proposed real-time system can tolerate up to k failures when scheduling a set of aperiodic tasks on a single
processor under the EDF policy [20]. For this sake, authors proposed three algorithms: The first two algorithms
are based on the previous work performed in [10]. The third algorithm extends the first two by considering that
the computing resources are no longer reserved and hence better energy saving performance can be achieved.
The main drawback of this work is that the problem of improving the system reliability in presence of failures
cannot be solved by a simple modification to the work done in [10].

3. Model and Terminology. We consider the system model and their corresponding notations. Then,
we present the problem formulation.

3.1. Task Model. We consider a set of n independent aperiodic real-time jobs J = {J1, J2, · · · , Jn}, where
Ji denotes the ith job in J and is characterized by a three tuple (ai, ci, di). The definition of these parameters
are as follows:

• ai is referred to the arrival time, this means that the time when job Ji is ready for execution.
• ci stands for the worst case execution time (WCET) under the maximum available speed Smax of the
processor.
• di is considered as the absolute deadline of job Ji.

We denote the laxity of the job Ji by di − (ai − ci). We consider that the job set J is said to be feasible in
the real-time manner and under fault-free scenario. In other words, there exists a feasible schedule for J in
abscence of energy considerations, where all deadlines in are respected.

3.2. Power and Energy Model. We assume the speed / frequency of the processor is equipped with a
DVFS-enabled with N discrete frequencies f ranging from fmin = f1 ≤ f2 ≤ · · · ≤ fN = fmax. We consider the
notation processor speed SN , or slowdown factor, as the ratio of the computed speed to the maximum processor
speed, this means that SN = fN/fmax [13]. The CPU speed can be changed continuously in [Smin, Smax].
Consequently, when a job Ji is executed under speed Si, the worst case execution time of Ji becomes equal to
ci/Si.

For embedded systems, the processor and off-chip devices such as memory, I/O interfaces and underlying
circuits mainly consume the major part of the energy [21]. In this paper, we distinguish between frequency-
dependent and frequency-independent power components. Specifically, we adopt the overall power consumption
(P) at a slowdown factor S as follows:

P = Pind + Pdep = Pind + CefS
α(3.1)

Where Pind stands for the frequency-independent power that includes the constant leakage power and the power

390 H. EL Ghor, J. Hage, N. Hamadeh and R. Hage Chehade

consumed by off-chip devices [20], which is independent of the system frequency and supply voltage. Cef is
denoted as the effective switching capacitance. α is the dynamic power exponent, which is a constant usually
larger than or equal to 2.
Pdep is considered to be the frequency-dependent active power, which includes not only the processor power,
but also any power that depends on the processing speed S. Consequently, the energy consumption of a job Ji
that runs at the speed Si, denoted as Ei(Si), can be expressed as:

Ei(Si) = (Pind + CefS
α
i).

ci
Si

(3.2)

3.3. Energy Storage Model. Our system relies on an energy storage unit (battery or supercapacitor)
with a nominal capacity, namely C, that corresponds to a maximum stored energy. The energy level of the
battery must remain between two predefined boundaries, namely Cmin and Cmax, where C = Cmax − Cmin.
We consider that C(t) stands for the energy level in the energy storage unit at time t. We state that the energy
stored in the battery at any time is less than the storage capacity, that is

C(t) ≤ C ∀ t(3.3)

3.4. Fault Model. During the execution of an operation computing system, both permanent and transient
faults may occur due to various reasons, like hardware defects or system errors. In this paper, we focus on
transient faults since it has been shown to be dominant over permanent faults especially with scaled technology
sizes [23].

We consider that the proposed system can afford a maximum of k transient faults. The used system is
usually able to detect faults when a job ends its execution. We assume that the energy and time overhead
caused by fault detection, denoted as EOi and TOi respectively, are not negligible and are independent of the
variations in the processor frequency.

Generally, there is not restriction on the occurrence of faults during the execution of jobs and multiple faults
may occur when executing a single job [20]. The fault recovery scheme in this paper is based on re-executing
the affected job. Consequently, Ri stands for the maximum recovery overhead for executing a job Ji under the
maximum speed Smax, which is equal to ci, or Ri = ci . When a fault occurs during any job execution, say Ji
, a recovery job is released having the same deadline di, which is subject to preemption as well.

3.5. Terminology. We now give some definitions we will be useful throughout the rest of this paper.
Definition 3.1. A schedule Γ for a job set J is said to be valid if the deadlines of all jobs of J are met

in Γ, starting with a storage fully charged [13].
Definition 3.2. A system is said to be feasible if there exists at least one valid schedule Γ for J with a

given energy source. Otherwise, it is infeasible [13].
In this paper, we consider that the limiting factors are not only time but are either, both time and energy,

only energy or only time. We focus here on feasible systems only.
Formally, we introduce a novel terminology that is peculiar to energy constrained real-time computing systems.

Definition 3.3. A schedule Γ for a job set J is said to be time-valid if the deadlines of all jobs of J are
met in Γ, considering that ∀ 1 ≤ i ≤ n, Ei(Si) = 0 [13].

Definition 3.4. A system is said to be time-feasible if there exists at least one time-valid schedule Γ for
J . Otherwise, it is infeasible [13].

Definition 3.5. A schedule Γ for a job set J is said to be energy-valid if the deadlines of all jobs of J
are met in Γ, considering that ∀ 1 ≤ i ≤ n, ci = 0 [13].

Definition 3.6. A system is said to be energy-feasible if there exists at least one time-valid schedule Γ for
J . Otherwise, it is infeasible [13].

3.6. Problem Formulation. We formulate the problem in this paper as follows:
Given a set of real-time jobs J of n independent aperiodic jobs J = {J1, J2, · · · , Jn} having the following
parameters: a release time, a worst-case execution time (WCET) and a deadline, that are executed on a
DVS-enabled processor. Is it possible to minimize the overall energy consumption for all jobs in J along
with the potential recovery operations without deadline violations under any fault scenario with at most k

Energy-Efficient Real-Time Scheduling Algorithm for Fault-Tolerant Autonomous Systems 391

transient faults? In our work, we use the ES-DVFS scheduling policy [13], which was proved to be optimal
in minimizing the total energy consumption for uniprocessor systems under conventional or non-fault-tolerant
analysis techniques. To answer this question, we have to find the CPU speed decisions (including the recoveries)
in order to minimize the overall energy consumption within predefined timing constraints when no more than
k faults occur.
We consider that the processor is equipped with a set of discrete speed values for the whole time interval where
J is executed as a speed schedule.

4. Fault Tolerant Speed Schedule.

4.1. Overview of the Scheduling Scheme. We develop an approach of a fault-tolerant DVFS scheduling
for dynamic-priority real-time job set on uniprocessor systems to enhance energy savings while still guaranteeing
the timing constraints. The proposed algorithm is based on the Energy Saving - Dynamic Voltage and Frequency
Scaling (ES-DVFS) algorithm that we previously proposed in [13].

Definition 4.1. A job set J is said to be k-fault tolerant if all jobs and potential recovery operations can
be completed before their corresponding deadlines under any fault scenario with at most k transient faults.

To better understand our approach and before proceeding, we first state some basic definitions and then briefly
reiterate the general concept of ES-DVFS.

Definition 4.2. Given a real-time job set J of n independent aperiodic jobs such that J = {J1, J2, · · · , Jn}.

• J (ts, tf) stands for the set of jobs contained in the time interval ϕ = [ts, tf], i.e jobs that are ready to
be processed at time ts and with deadlines not more than tf . J (ϕ) = {Ji | ts ≤ ai < di ≤ tf}.
• W (ϕ) denotes the total amount of workload of jobs in J (ϕ) in the time interval [ts, tf], that means that

the total worst case execution time of jobs that are completely contained in the time interval,

W (ϕ) =
∑

JiϵJ (ϕ)

ci(4.1)

• The processor load h(ϕ) over an interval ϕ = [ts, tf] is defined as

h(ϕ) =
W (ϕ)

tf − ts
(4.2)

• The intensity of jobs in the time interval ϕ = [ts, tf], denoted as I(ϕ), is defined as

I(ϕ) = max
JjϵJ (ϕ)

(

∑

di≤dj

ci

dj − (tf − ts)

)

(4.3)

• We consider that the fault-related overhead of a time interval ϕ = [ts, tf], denoted as Wk(ϕ) is

Wk(ϕ) = Wr(ϕ) +WTO(ϕ)(4.4)

Where Wr(ϕ) stands for the worst-case reserved workload to be used in case of recovery, i.e. Wr(ϕ) =
k × (Rl + TOl) and l represents the index of the job with the longest recovery time in J (ϕ). Jl =
{Ji | max(Ri + TOi), JiϵJ (tϕ)} and WTO(ϕ) denotes the overhead imposed by fault detection from
regular jobs, i.e.

WTO(ϕ) =
∑

JiϵJ (ϕ)

TOi(4.5)

Further, Wk(ϕ) ≥Wk−1(ϕ) for k ≥ 1, since all the jobs’ recovery have strictly positive execution times.
For this sake, we restrict our analysis to the k-fault tolerance in such a way that there exists exactly k
faults when we investigate the worst-case reserved recovery of failures with at most k faults.

392 H. EL Ghor, J. Hage, N. Hamadeh and R. Hage Chehade

• The energy demand of a job set J on the time interval ϕ = [ts, tf] is

g(ϕ) =
∑

ts≤rk,dk≤tf

Ek(Sk)(4.6)

Given a real-time job set J , ES-DVFS was provably optimal in minimizing energy consumption in on-line
energy-constrained setting by providing sound dynamic speed reduction mechanisms [13]. ES-DVFS produces
an energy efficient technique by scaling down the processor frequency iwhile still guaranteeing the timing
constraints. Using this framework, the slowdown factor of the ready jobs to be executed is not fixed in the used
interval as the previous work in [10] but is dynamically adjusted on the fly. ES-DVFS is employed as follows:

• Step 1: Identify an interval ϕ = [ts, tf], add the ready jobs to the job queue Q and select the job Ji
with the highest priority.
• Step 2: Calculate the effective processor load h(ϕ) and intensity I(ϕ) using equations 4.2 and 4.3
respectively.
• Step 3: Set the speed Si of job Ji to the maximum between h(ϕ) and I(ϕ).
• Step 4: In case of preemption, update Si.
• Step 5: Remove job Ji from the queue Q.
• Step 6: Repeat step (1) - (6) until Q is empty.

Moreover, we proved that ES-DVFS provides an optimal speed schedule for a given job set J .
Lemma 4.3. [13] An optimal speed schedule for a job set J is defined on a set of time intervals ϕ = [ts, tf]

in which the processor maintains a constant speed Si = max

(

I(ϕ), h(ϕ)

)

where h(ϕ) and I(ϕ) are respectively

the workload and intensity of jobs in ϕ = [ts, tf] and each of these intervals [ts, tf] must start at ts and with
deadlines at or earlier than tf .

4.2. Concepts for the EMES-DVFS Model. ES-DVFS is proved to be optimal in case of fault-free
conditions. Hence, To make the above ES-DVFS fault-tolerant, we adopt an approach, named MES-DVFS,
that takes the fault recovery into consideration when calculating the effective processor load and intensity in
any interval ϕ = [ts, tf], i.e. to replace h(ϕ) and I(ϕ) with hm(ϕ) and Im(ϕ) respectively, such that

hm(ϕ) =

∑

JiϵJ (ϕ)

ci + k ×Rl

dmax −WTO(ϕ)− k × TOl
(4.7)

Where dmax is the longest deadline in J (ϕ), l stands for the index of the job with the maximum recovery in
J (tϕ) and WTO(ϕ) stands for the overall fault-detection overheads for regular jobs as stated in Definition 4.2.

In addition, the intensity of the jobs in J (ϕ) at current time t is

Im(t) = max
JjϵJ (ϕ)

(

∑

di≤dj

ci + k ×Rl

dj − t−WTO(ϕ)− k × TOl)

)

(4.8)

Aydin, in [25], showed that the feasibility condition of scheduling a job set J by using EDF scheduler on a
monoprocessor that can tolerate up to k transient faults can be summarized as

Theorem 4.4. [25] Given a real-time job set J that can tolerate a maximum of k faults and with maximum
processor speed (Smax = 1), if for each interval [ts, tf] , we have

∑

JiϵJ (ts,tf)

ci +Wft(ts, tf)

tf − ts
≤ 1(4.9)

When a fault is detected, and for the sake of enhancing the total savings for both the original jobs and their
recovery copies, MES-DVFS runs the copy of the recovered job using a scaled processor speed (Si ≤ Smax).

Energy-Efficient Real-Time Scheduling Algorithm for Fault-Tolerant Autonomous Systems 393

However, this may not be energy efficient since, in practice, the fault rate is usually very low.

An extended approach for MES-DVFS (we call it EMES-DVFS), is to execute the recovery copies under the
maximum possible processor speed, usually at Smax.

Hence, the intensity calculation of the jobs in J (ϕ) can be modified correspondingly, as equation 4.10

Ie(t) = max
JjϵJ (ϕ)

(

∑

di≤dj

ci

dj − t−Wk(ϕ)

)

(4.10)

Further, the effective processor load of the jobs in J (ϕ) can also be modified correspondingly, as equation
4.11

he(ϕ) =

∑

JiϵJ (ϕ)

ci

dmax −Wk(ϕ)
(4.11)

4.3. Description of the EMES-DVFS Scheduler. In what follows, we consider a given set of n jobs
J = {J1, J2, · · · , Jn} that can tolerate up to k faults. Let Q(ϕ) be the list of uncompleted jobs ready for exe-
cution at in the time interval ϕ = [ts, tf]. We can formulate our EMLPEDF algorithm to obey the following rules:

Rule 1: The EDF priority order is used to select the future running jobs in Q(ϕ).
Rule 2: The processor is imperatively idle in [ts, ts + 1) if Q(ϕ) is empty.
Rule 3: The processor is imperatively busy in [ts, ts + 1) if Q(ϕ) is not empty and 0 < C(ts) ≤ C. Hence, the
following steps must be performed:

1. Select the job, say Ji with the highest priority.
2. Calculate the effective processor load he(ϕ) and intensity Ie(ϕ) using equations 4.11 and 4.10 respec-

tively.
3. Set the speed Sei of job Ji to the maximum between he(ϕ) and Ie(ϕ).

Rule 4: If Sei < Smin, then Sei = Smin ∀ JiϵJ (ϕ).
Rule 5: If job, say Jj is released with dj < di, then update Sei by Rule 3.
Rule 6: If job, say Jk is released with dk > di, then complete the execution of Ji.
Rule 7: If job, say Jk is released with dk > di, and ck > dk − di then update Sei by Rule 3.
Rule 8: Calculate the energy consumption Ei(Sei) according to eq. (3.2).
Rule 9: Calculate the remaining energy in the battery at the end of the execution.
Rule 10: Remove job Ji from the queue Q(ϕ).
Rule 11: Repeat step (1) - (8) until the queue Q is empty.

4.4. Feasibility Analysis. When the job set J is feasible, it is not difficult to verify that Se(ϕ) ≤
Sm(ϕ) for a given interval ϕ = [ts, tf] since

∑

JiϵJ (ϕ)

ci +Wk(ϕ) ≤ tf − ts, where Sm(ϕ) and Se(ϕ) are equal to

max

(

Im(ϕ), hm(ϕ)

)

and max

(

Ie(ϕ), he(ϕ)

)

respectively.

More importantly, since EMES-DVFS can successfully schedule a given job set J , then we can guarantee
the feasibility of the resulted schedule. This is stated in the theorem below.

Theorem 4.5. EMES-DVFS can guarantee that the deadlines of all jobs in J can be met as long as the
following two constraints are satisfied : (1) no more than k faults occur; (2) ∀ i ϵ [1, n], where n is the number
of jobs in the job set J , we have Sei ≤ 1 and C(t) > 0 ∀ t.

Proof. In EMES-DVFS, for a given time interval ϕ = [ts, tf], we can only execute jobs and their recovery
copies included in the interval. For any job with higher priority, say Jh, and ready at time t, with possible
execution overlapping with ϕ , the EMES-DVFS scheduler must preempt the running job and begin executing
Jh and hence we will have a new slowdown factor that forces Jh to finish within the interval ϕ. Similarly, for

394 H. EL Ghor, J. Hage, N. Hamadeh and R. Hage Chehade

any job with lower priority (e.g. Jl) with an execution time that can possibly overlap with ϕ, the EMES-DVFS
scheduler will update the processor speed and continue execution. Jl is excluded from execution in the time
interval ϕ and will be postponed to the next interval. Hence, scheduling decisions are only applied online when
any of the following events occur: 1) Event 1: a new aperiodic job arrives and is added to the job queue. 2)
Event 2: the current job is completely executed.
Hence, for proving this theorem, it is sufficient to prove that when the processor speed is set to Sei, then we
can guarantee that all jobs in ϕ are scheduled in the worst case scenario (i.e. against k faults), as long as
Sei ≤ 1 and the energy reservoir is not fully depleted (C(ϕ) > 0). We prove this by contradiction. Consider
that Jb = (rb, cb, db) ϵ J (ϕ) misses its deadline when the processor speed is set to Sei. Here, we have 2 cases:
Case 1: Jb misses its deadline because of time starvation. Then we must be able to find a time t ≤ rb, such

that for interval ϕ′ = [t, db], we have W (ϕ′)
Sei

+Wk(ϕ
′) ≥ db − t. Here we have 2 cases:

Case 1a: Jb is not contained in the time interval ϕ (i.e. db ≥ tf). In this case, event 2 occurs, which means
that the current running job, say Ji, will complete its execution without being preempted and job Jb will be
executed in the next time interval. This contradicts that Jb misses its deadline.

Case 1b: Jb is contained in the time interval ϕ (i.e. db ≤ tf). In this case, event 1 occurs, which means
that the EMES-DVFS scheduler updates the processor speed schedule for all the ready jobs including the newly
arrived one and consequently Sei is updated to another slowdown value S′

ei such that S′
ei ≥ Sei and ϕ′ ⊆ ϕ.

Here we have 2 cases:

Case 1b1: Effective processor load he(ϕ
′) is greater than the intensity Ie(ϕ

′). This means that S′
ei(ϕ

′) =

he(ϕ
′). But, he(ϕ

′) is equal to W (ϕ′)
dmax−Wk(ϕ′) which is greater than or equal to Sei. Since S′

ei(ϕ
′) ≥ Sei, then we

have W (ϕ′)
S′
ei

≤ W (ϕ′)
Sei

. Take Eq. 4.11 into the right-hand side of the above inequality and add Wk(ϕ
′) to both

sides. We get W (ϕ′)
S′
ei

+Wk(ϕ
′) ≤ db − t ≤ dmax − t. This violates the assumption that Jb misses its deadline.

Case 1b2: Effective processor load he(ϕ
′) is smaller than the intensity Ie(ϕ

′). This means that S′
ei(ϕ

′) =

Ie(ϕ
′). But, Ie(ϕ

′) is equal to max
JjϵJ (ϕ′)

(

∑

di≤dj

ci

dj−t−Wk(ϕ′)

)

which is greater than or equal to Sei. Since S
′
ei(ϕ

′) ≥ Sei,

then we have

∑

di≤dj

ci

S′
ei

≤

∑

di≤dj

ci

Sei
. Take Eq. 4.10 into the right-hand side of the above inequality and add Wk(ϕ

′)

to both sides. We have W (ϕ′)
S′
ei

+Wk(ϕ
′) ≤ db − t. This violates the assumption that Jb misses its deadline.

Case 2: Jb misses its deadline because of energy starvation. This means that .db is missed with energy
demand g(db) = 0. Then, we must find a time t0 ≤ db where a job with deadline after db is released and no
other job is ready just before t0 and the battery is fully replenished i.e. C(t0) = C. The processor is busy at
least in the time interval ϕ′ = [t0, db]. Here we also have 2 cases:

Case 2a: No job with deadline greater than db executes within the time interval ϕ′. This means that all
the jobs that execute within ϕ′ have release time greater than or equal to t0 and a deadline no more than db.
The amount of energy needed to fully execute these tasks is g(ϕ′). But since the processor is always busy in
the time interval ϕ′, then jobs are executed with the minimum possible speed. Further, the energy reservoir is
fully charged at t0. Consequently, g(ϕ′) < C(t0) < C. We conclude that all ready jobs within ϕ′ can be fully
executed with no energy starvation, which contradicts the deadline violation at db with C(db) = 0.

Case 2b: At least one job, say Jm is released within time interval ϕ′ and with with rm > rb. Here we have
2 cases:

Case 2b1: Jm is released with dm < db, therefore we have to update Sei by Rule 3. Let t2 be the latest
time where Jm is executed. As dm is lower than db and jobs are executed according to preemptive EDF, we
have rm ≥ rb and Jb is preempted by the higher priority job Jm. Thus, the processsor speed must be updated,
otherwise dm will be violated. Since the processor is busy all the times in [t2, db] and the job set J is time-
feasible, then Sem will be the minimum speed for the execution of Jm and consequently g(t2, db) < C(db).
Hence, the amount of energy that Jm require is at most g(t2, db). That contradicts deadline violation and

Energy-Efficient Real-Time Scheduling Algorithm for Fault-Tolerant Autonomous Systems 395

C(db) = 0.

Case 2b2: Jm is released with dm > db. We consider two cases: (i) cm < dk − db, hence Jb will complete its
execution (Rule 6) and the proof is therefore similar to case 2a. (ii) cm > dk − db, hence Seb must be updated
(Rule 7) and the proof is therefore similar to case 2b1.

Since all jobs in J are successfully executed within time intervals in EMES-DVFS and all running jobs
within the corresponding time intervals are still schedulable when applying their corresponding speed, we prove
the theorem.

We state the optimality of EMES-DVFS by proving that a job set J is feasible in a k-fault-tolerant if and
only if all the jobs in J are executed without violating time and energy constraints. This violation is due to one
of the two following reasons: either job, say Ji lacks time (Lemma 4.6) or job Ji lacks energy (Lemma 4.7) to
complete its execution before or at deadline di. The time starvation occurs when deadline di is missed with the
energy reservoir not exhausted at di. On the other side, the energy starvation case is when the energy reservoir
is fully depleted at di and Ji is not completed.

Further, the feasibility of the EMES-DVFS scheduler is guaranteed, which is formulated in Lemma 4.6 and
Lemma 4.7.

Lemma 4.6. A real-time job set J can be time-feasible in a k-fault-tolerant manner by EMES-DVFS if and
only if all the jobs in J can still respect their deadlines when they are executed according to the processor speeds
determined by EMES-DVFS for every time interval [ts, tf].

Proof. Only if part. Directly follows Theorem 4.5.
If part. Suppose the contrary. Let us consider J (ϕ) as the set of jobs contained in the time interval ϕ = [ts, tf],
this means jobs that are ready to be processed at or after time ts and with deadlines at or earlier than tf .
We denote a fault pattern f = {f1, f2, · · · , fn}, where fi refers to the number of faults affecting job Ji and its
recovery. Hence, we say that f is a k-fault pattern if the total number of faults is exactly k. Formally he(ϕ) ≤ 1
for all intervals [ts, tf]. However, there is a j-fault pattern j ≤ k (say f j) resulting in deadline miss(es). Let us
assume that the first deadline violation occurs at t = di and that t0 is the latest time preceding di such that
either the processor is idle or a job (recovery) of deadline > di is executing.
We note that the time t0 is well-defined in a way that it corresponds to a job release time. In addition, the
processor is continuously busy executing jobs (recovery) in the time interval ϕ0 = [t0, di). Now, let us denote
f0 ⊂ f j be the subset of faults affecting jobs in the time interval ϕ0. Note that the number of faults in f0 is
obviously smaller than k. Since EDF is a work-conserving scheduling algorithm, this means that the processor
is never kept idle unless there are no ready jobs, the deadline violation at di and the above definition of t0
imply that the available processor time in the interval time interval ϕ0 was not sufficient to accommodate the
increase in the processor demand even there is no energy starvation in the interval ϕ0 (the battery is not fully
replenished at time di). Consequently, we obtain

∑

JiϵJ (ϕ0)

ci + j × Rl > dmax −WTO(ϕ
0) − j × TOl, where j

is the number of faults in ϕ0 and l stands for the index of the job with the longest recovery time in J (ϕ0).
But since

∑

JiϵJ (ϕ)

ci + Wk(ϕ) ≤ di − t0 (he(ϕ) ≤ 1) and Wk(ϕ) > Wk(ϕ
0) and

∑

JiϵJ (ϕ)

ci >
∑

JiϵJ (ϕ0)

ci, we get

∑

JiϵJ (ϕ0)

ci +Wk(ϕ
0) ≤ di − t0 contradicting our assumption that a deadline violation occurs at di.

Lemma 4.7. A real-time job set J can be energy-feasible in a k-fault-tolerant manner by EMES-DVFS if
and only if the deadlines of all the jobs in J can be met when they are executed based on the processor speeds
determined by EMES-DVFS considering that for every time interval [ts, tf], g(ts, tf) > 0.

Proof. Only if part. Directly follows Theorem 4.5.
If part. Suppose the contrary. Let us consider J (ϕ) as the set of jobs contained in the time interval ϕ = [ts, tf].
We also denote a fault pattern f = {f1, f2, · · · , fn}, where fi refers to the number of faults affecting job Ji and
its recovery. Hence, we say that f is a k-fault pattern if the total number of faults is exactly k and the energy
in the reservoir is sufficient to execute all jobs in ϕ. Formally g(ϕ) > 0 for all intervals [ts, tf]. However, there
is a j-fault pattern j ≤ k (say f j) resulting in deadline miss(es) due to energy starvation. Let us assume that
the energy reservoir becomes empty at t = di (C(di) = 0) and that t0 is the latest time preceding di such that

396 H. EL Ghor, J. Hage, N. Hamadeh and R. Hage Chehade

the processor is still executing a job (recovery) of deadline < di.
We note that the time t0 is well-defined in a way that it corresponds to a job release time. In addition,
the processor is continuously busy executing jobs (recovery) in the time interval ϕ0 = [t0, di). Now, let us
denote f0 ⊂ f j be the subset of faults affecting jobs in the time interval ϕ0. Note that the number of faults
in f0 is obviously smaller than k. Since EDF is a work-conserving scheduling algorithm, this means that
the processor is never kept idle unless there are no ready jobs, the deadline violation at di and the above
definition of t0 imply that the available energy in the reservoir in the time interval ϕ0 was not sufficient to
accommodate the increase in the energy demand even there is no time starvation in the interval ϕ0, this means
∑

JiϵJ (ϕ0)

ci+ j×Rl ≤ dmax−WTO(ϕ
0)− j×TOl, where j is the number of faults in ϕ0 and l stands for the index

of the job with the maximum recovery time in J (ϕ0). But since the job set J (ϕ) is feasible, then g(ϕ) > 0. In
addition, the energy demand in ϕ is greater than the energy demand in ϕ0, since the number of faults in ϕ (k)
is more than that in ϕ0 (j), i.e. g(ϕ) > g(ϕ0). Hence, we get g(ϕ) > g(ϕ0) > 0 contradicting our assumption
that a deadline violation occurs at di because of energy starvation.

Now, we may draw Theorem 4.8, a major result of optimality for uniprocessor scheduling in a k-fault-tolerant
manner by EMES-DVFS with time and energy constraints.

Theorem 4.8. The EMES-DVFS scheduling algorithm is optimal for a k-fault-tolerant model.
Proof. According to Lemma 4.6, EMES-DVFS can schedule a given set of jobs J in a k-fault-tolerant

manner, without violating timing constraints when the energy demand is lower than the maximum energy that
is available in the reservoir. According to Lemma 4.7, EMES-DVFS can schedule a given set of jobs Γ in a
k-fault-tolerant manner, without violating energy constraints when the processor demand is cannot exceed the
maximum available processor time that could be available in any given time interval. As a conclusion, if EMES-
DVFS can schedule a given set of jobs J for a given time or/and energy constraints without time starvation
and energy starvation, are the only two reasons for deadline violations, then we conclude that EMES-DVFS is
optimal.

5. Evaluation. In this section, we study the performance of four scheduling algorithms: EMES-DVFS,
MES-DVFS, NPM and LPSSR proposed in [20]. NPM scheme executes jobs with maximum frequency and does
not scale down the voltage/frequency.

We developed a discrete event-driven simulator in C that generates a job set J where the number of jobs
varies from 10 to 50. The simulation is repeated 100 times for the same number of jobs.

For the sake of clarity, we use NPM as a reference schedule that represents the schedule of given set of jobs
J without incorporating DVFS. This means that all jobs or recoveries in J are executed under the maximum
processor speed Smax. We consider that all the plotted energy consumptions are normalized to NPM. However,
to give LPSSR a fair chance, we consider the same parameters as used in [20]. Hence, we consider the following
parameters: We assumed that α = 2, Cef = 1, Pind = 0.05, and Smin is set to 0.25.
The proposed algorithms are tested with randomly generated job sets as follows: the choice of the arrival time ai
and the relative deadline of each job Ji is assumed to be distributed uniformly in the time interval [0s, 100s] and
[50s, 100s] respectively. Moreover, the worst case execution time ci is randomly generated such that ci < di. The
timing and energy overhead of detecting faults is considered as 10% of the WCET and its energy consumption
respectively. As for the fault arrival rate, we consider 2 cases: safety-critical real-time system with range of
10−10 to 10−5 /hour or in harsh environment with a range between 10−2 and 102 /hour.

All simulation results are computed on a discrete DVFS processor that operates on 8 frequency levels
{1.00, 0.86, 0.76, 0.67, 0.57, 0.47, 0.38, 0.28} as in the PentiumM processor.

We report here two sets of experiments. The first set is designed to show the energy consumption of the 4
approaches by varying the number of jobs. In the second experiment set-up, we compare the energy consumption
by varying the number of faults.

5.1. Experiment 1: Energy Consumption by Varying the Number of Faults. In this set of
simulations, we evaluated the impact of the number of faults on energy savings. In this experiment, we took a
fixed number of jobs equal to 15 and the number of tolerated faults varies between 1 and 10. Again, we repeat
the experiment for 100 times with different generated test cases but with the same number of faults. We took
then the average results, which are shown in figure 5.1.

Energy-Efficient Real-Time Scheduling Algorithm for Fault-Tolerant Autonomous Systems 397

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

Number of Faults

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n

NPM LPSSR MES−DVFS EMES−DVFS

Fig. 5.1. Energy savings by varying the numbers of faults.

From the figure 5.1, we can find that EMES-DVFS and MES-DVFS can achieve energy savings compared
to LPSSR and NPM. Clearly, we find that the energy consumptions by the four schedulers increase rapidly
as the number of faults increases, since more expected energy may be consumed due to the increased number
of recovery jobs being executed, which in turn limits the maximum amount of dynamic slack used. However,
as the number of faults increases, the energy consumption in EMES-DVFS and EMES-DVFS grows but less
dramatically.

As illustrated in figure 5.1, the EMES-DVFS and MES-DVFS approaches attain respectively around 19%
and14% more energy saving than LPSSR. The reason is that the optimal dynamic slack time to minimize the
expected energy consumption is used to the maximum extent by employing speed assignment on the fly. On
the contrary, LPSSR is significantly affected when we increase the number of system faults and the system
consumes of about 22% additional energy when we increase the fault occurrences from 1 to 10. On the other
hand, EMES-DVFS could tolerate up to 5 times more faults with same energy as consumed by LPSSR.

As a conclusion, the advantage of our approaches (EMES-DVFS and MES-DVFS) over the other two
(LPSSR and NPM) in terms of energy savings is evident in this experiment where EMES-DVFS and MES-
DVFS can still guarantee tolerance even under 10 faults and with more energy saving than LPSSR and the
energy savings drops around 19% under LPSSR when we compare it with EMES-DVFS.

5.2. Experiment 2: Energy Consumption by Varying Pind. In this experiment, we study the impact
of frequency-independent power Pind on energy savings. Pind varies between [0, 0.3] for each job and the number
of jobs is fixed at 15. According to figure 5.2 , the larger the Pind, the higher the energy consumption. This is due
to the fact that as the Pind increases, the contribution of frequency independent energy consumption becomes
more dominant, the energy-efficient frequency increases and consequently DVFS has fewer opportunities to be
applied. Even under this situation, EMES-DVFS still has the best performance in terms of energy consumption
(EMES-DVFS attains approximately 18% more energy saving than LPSSR).

5.3. Experiment 3: Percentage of feasible Job Set. In this experiment, we take interest in the
percentage of feasible job set that respect their deadlines with the four scheduling algorithms by varying the
energy storage capacity. From this experiment, we can deduce two measures. The first one gives us an indication
about the percentage of time during which all deadlines are still respected. The second one gives, for each

398 H. EL Ghor, J. Hage, N. Hamadeh and R. Hage Chehade

0 0.05 0.1 0.15 0.2 0.25 0.3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

P
ind

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n

NPM LPSSR MES−DVFS EMES−DVFS

Fig. 5.2. Energy savings by varying Pind.

approach and for a given processor load, the minimum size of the storage that ensures time and energy feasibility.
We report here the results of two simulation studies where the processor load is set to 0.4 and 0.8, respectively.

1 1.5 2 2.5 3 3.5
20

40

60

80

100

(a) Processor load = 0.4

C/C
min

%
 o

f
F

e
a
s
ib

le
 J

o
b
 S

e
t

1 1.2 1.4 1.6 1.8 2 2.2

40

60

80

100

(b) Processor load = 0.8

C/C
min

%
 o

f
F

e
a
s
ib

le
 J

o
b
 S

e
t

NPM

LPSSR

MES−DVFS

EMES−DVFS

NPM

LPSSR

MES−DVFS

EMES−DVFS

Fig. 5.3. Percentage of feasible job set. (a) Low processor load. (b) High processor load.

Figure 5.3 depicts the percentage of feasible job sets that meet their deadlines over the energy storage
capacity C. For each job set, we compute the minimum storage capacity Cmin which permits achieving time
and energy feasibility under EMES-DVFS. We then begin to increase the energy storage capacity till the 4
approaches achieve neutral operation.

Under low processor load (figure 5.3a), it is observed that 100% of job sets meet their deadlines under
EMES-DVFS when the energy storage capacity is 4510 energy units, i.e. C = Cmin = 4510 energy units. We
start then to increase C till it reaches 8118 where MES-DVFS becomes feasible. this means that means that
EMES-DVFS can provide the same level of performance with a storage unit which is about 1.8 times less. The
increase in the storage capacity will continue to increase till LPSSR and NPM becomes feasible where the energy
storage unit must be respectively more than 2.2 and 3.8 times bigger with LPSSR and NPM to maintain zero

Energy-Efficient Real-Time Scheduling Algorithm for Fault-Tolerant Autonomous Systems 399

deadline miss, compared with EMES-DVFS.

The results for high processor load (figure 5.3b) follow the same trend. Unlike the previous experiment, the
relative performance gain of EMES-DVFS in terms of capacity savings is decreasing when the processor load
is increasing. EMES-DVFS obtains respectively capacity savings of about 37%, 44% and 57% compared with
MES-DVFS, LPSSR and NPM.

It is important here to note that the four approaches require exactly the same storage size when the processor
load is equal to 1 since the processor is continuously busy and there is no chance to apply DVFS.

In summary, this experiment points out that the proposed EMES-DVFS approach is very effective in
reducing deadline miss rate and storage size even under high processor load. And lower is the processor load
rate, higher is the capacity saving and our approach will then outperform the others by a high amount of energy
savings.

6. Conclusions. In this paper, we presented and evaluated a novel approach, which aims to minimize
energy consumption when scheduling a set of real-time jobs that can tolerate up to k transient faults while
still respecting time and energy constraints. We explore the reserved slacks generated during run-time to the
maximum extent in such a way that all the available slack time is used for energy reduction, which is carried out
using dynamic voltage and frequency scaling (DVFS). Under this notion, we propose an algorithm that estimates
an optimal speed reduction mechanism which maintains feasibility within predefined timing constraints when
no more than k faults occur.

Our scheduler dynamically adjusts the jobs’ slowdown factors by utilizing run-time slacks which may be
increased for recovery demands of the system. It differs from the existing approach where job frequencies
assignments are predetermined, and hence it is more flexible and adaptive in minimizing energy consumption
while still keeping the systems reliability at a desired level. In addition, we presented two feasibility tests
for recovery schemes under variable processor speed which decouples the time and energy constraints. The
experimental results demonstrate that the proposed algorithm can significantly improve the energy savings
compared with the previous works.

For future work, we will explore the adaptation of the proposed approaches to fixed priority environments
in real-time energy harvesting systems.

Acknowledgments. This work was fully supported by a research grant from the Lebanese University.

REFERENCES

[1] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability tests. Real-Time Systems, 30(1-2):129-154, May
2005.

[2] D. Brooks, P. Bose, S. Schuster, H. Jacobson, P. Kudva, A. Buyuktosunoglu, J.-D. Wellman, V. Zyuban, M. Gupta,

and P. Cook. Power-aware microarchitecture: Design and modeling challenges for next-generation microprocessors.
Micro, IEEE, 20(6):26-44, Nov 2000.

[3] R. Gupta. Dynamic voltage scaling for system-wide energy minimization in real-time embedded systems. Proceedings of the
International Symposium on Low Power Electronics and Design ISLPED ’04, pages 78-81, Aug 2004.

[4] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Power-aware scheduling for periodic real-time tasks. IEEE
Transactions on Computers, 53(5):584-600, 2004.

[5] H. Aydin, V. Devadas, and D. Zhu. System-level energy management for periodic real-time tasks. In Proc. of IEEE Real-
Time Systems Symposium (RTSS), pages 313322, Dec. 2006.

[6] V. Devadas and H. Aydin. On the interplay of dynamic voltage scaling and dynamic power management in real-time
embedded applications. In Proc. ACM Conference on Embedded Systems Software (EMSOFT’08), 2008.

[7] D. Siewiorek and R. Swarz. Reliable Computer Systems: Design and Evaluation. Natick, MA: A. K. Peters, Ltd., 1998.
[8] Srinivasan J, Adve SV, Bose P, Rivers J, Hu CK. Ramp: A model for reliability aware microprocessor design. IBM

Research Report, RC23048, 2003.
[9] Castillo X, McConnel SR, Siewiorek DP. Derivation and calibration of a transient error reliability model. IEEE Trans

Comput 31:658671, 1982.
[10] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy. In Foundations of Computer Science,

Proceedings., 36th Annual Symposium on, pages 374-382, oct 1995.
[11] Y. Zhang, K. Chakrabarty, and V. Swaminathan. Energy-aware fault tolerance in fixed-priority real-time embedded

systems. In Proceedings of the 2003 IEEE/ACM international conference on Computer-aided design, ICCAD’03, 2003.
[12] H. Huang and G. Quan. Leakage aware energy minimization for real-time systems under the maximum temperature con-

straint. In Design, Automation Test in Europe Conference Exhibition (DATE), 2011, pages 1-6, March, 2011.

400 H. EL Ghor, J. Hage, N. Hamadeh and R. Hage Chehade

[13] Hussein El Ghor, E. M. Aggoune. Energy efficient scheduler of aperiodic jobs for real-time embedded systems, International
Journal of Automation and Computing, pages 1-11, 2016.

[14] Hussein EL GHOR, Maryline CHETTO. Energy Guarantee Scheme for Real-time Systems with Energy Harvesting Con-
straints. International Journal of Automation and Computing, to appear.

[15] Baoxian Zhao, Hakan Aydin and Dakai Zhu. Energy Management under General Task-Level Reliability Con-

straints. IEEE 18th Real Time and Embedded Technology and Applications Symposium, 2012.
[16] Zhu D, Melhem R, Mosse D. The effects of energy management on reliability in real-time embedded systems. In: ICCAD

’04, Proceedings of the 2004 IEEE/ACM International conference on Computer-aided design, IEEE Computer Society,
Washington, DC, pp 35-40, 2004.

[17] R. Melhem, D. Mosse, and E. Elnozahy. The interplay of power management and fault recovery in real-time

systems, IEEE Transactions on Computers, 53(2):217-231, Feb 2004.
[18] Y. Zhang and K. Chakrabarty. A unified approach for fault tolerance and dynamic power management in fixed-priority

real-time embedded systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(1):111-
125, jan. 2006.

[19] B. Zhao, H. Aydin, and D. Zhu. Generalized reliability-oriented energy management for real-time embedded applications.
In 48th ACM/EDAC/IEEE Design Automation Conference (DAC), pages 381-386, june 2011.

[20] Qiushi Han, Linwei Niu, Gang Quan, Shaolei Ren and Shangping Ren. Energy efficient fault-tolerant earliest deadline
first scheduling for hard real-time systems. Real-Time Systems 50:592-619, 2014.

[21] T. D. Burd and R. W. Brodersen. Energy efficient cmos microprocessor design. In Proc. of The HICSS Conference, Jan.
1995.

[22] J. W. S. W. Liu. Real-time Systems, NJ, USA: Prentice Hall, 2000.
[23] P. Hazucha and C. Svensson. Impact of cmos technology scaling on the atmospheric neutron soft error rate. IEEE Trans.

on Nuclear Science, 47(6) 2586-2594, 2000.
[24] Pradhan DK. Fault-tolerant computer system design. Prentice-Hall Inc, Upper Saddle River, 1996.
[25] Aydin H. Exact fault-sensitive feasibility analysis of real-time tasks. IEEE Trans Comput 56(10):1372-1386, 2007.

Edited by: Dana Petcu
Received: Sep 4, 2018
Accepted: Nov 3, 2018

Scalable Computing: Practice and Experience
Volume 19, Number 4, pp. 401–422. http://www.scpe.org

DOI 10.12694/scpe.v19i4.1439
ISSN 1895-1767

© 2018 SCPE

MODELLING AND SIMULATION OF GPU PROCESSING
IN THE MERPSYS ENVIRONMENT

TOMASZ GAJGER‡∗
AND PAWEŁ CZARNUL‡†

Abstract. In this work, we evaluate an analytical GPU performance model based on Little’s law, that expresses the kernel
execution time in terms of latency bound, throughput bound, and achieved occupancy. We then combine it with the results of several
research papers, introduce equations for data transfer time estimation, and finally incorporate it into the MERPSYS framework,
which is a general-purpose simulator for parallel and distributed systems. The resulting solution enables the user to express a CUDA
application in a MERPSYS editor using an extended Java language and then conveniently evaluate its performance for various
launch configurations using different hardware units. We also provide a systematic methodology for extracting kernel characteristics,
that are used as input parameters of the model. The model was evaluated using kernels representing different traits and for a large
variety of launch configurations. We found it to be very accurate for computation bound kernels and realistic workloads, whilst for
memory throughput bound kernels and uncommon scenarios the results were still within acceptable limits. We have also proven its
portability between two devices of the same hardware architecture but different processing power. Consequently, MERPSYS with
the theoretical models embedded in it can be used for prediction of application performance on various GPUs.

Key words: Performance simulation, Simulation environment, GPGPU, CUDA

AMS subject classifications. 68M20, 65Y05, 68U20

1. Introduction. Graphics processing units (GPUs) are highly data-parallel devices that are nowadays
ubiquitously used for a variety of applications by employing the GPGPU paradigm. GPGPU stands for general-
purpose computing on a GPU and refers to the GPU being used to execute tasks, which are not necessarily
related to graphics - general purpose tasks, e.g. numerical algorithms, neural networks training, data analysis,
and many more. In order to use what the GPU offers effectively, the programmer needs to write a dedicated
application. Furthermore, the GPU differs greatly from the CPU both in terms of a hardware design and
processing model. It would be of a great help to such a programmer to have a tool that allows creation of
a theoretical model of an application and provides means to assess it in terms of computational performance,
scalability and behaviour on different hardware units. This becomes even more important when the GPUs
are used in highly parallel and distributed environments such as HPC clusters, grids or volunteer computing
networks. What is more, according to the recent TOP500 [1] list of the fastest supercomputers, the accelerators
(mostly NVIDIA GPUs) are an important component used in 22% of these systems.

Considering NVIDIA’s dominance in this field, the size of the CUDA community and maturity of available
software tools, we have decided to focus our efforts on the NVIDIA GPUs. Nevertheless, we have developed a
generic solution for simulation of running applications on GPUs. Use of a simulator equipped with a proper
theoretical model, such as MERPSYS described later, may be beneficial in many ways, one can use it to analyse
the behaviour of an application in hardware setups which may be unavailable for testing purposes, such as
before purchasing. It also allows to exceed limits imposed by the hardware, e.g. assess the relation between
execution time and data size for very large data sets. Despite providing estimations for application execution
time, a simulator may also compute the predicted energy consumption or failure chance. These values may be
then used for multi-criteria optimisation [44], including energy efficiency and reliability. For a GPU, a simulator
can allow easy assessment of application execution using various configurations such as grid configuration or
application parameters. When searching for an appropriate theoretical model one should consider only these of
acceptable (preferably as high as possible) accuracy, but this is not the only expected trait. Ease of use, the
possibility to extend and customise the model are important as well and lastly, the closer the model resembles the
actual processing that happens on the GPU, the better. The complexity of the GPU hardware and abundance of
internal parallelism makes such a theoretical model harder to develop, but as we will further show in Section 4.1,

∗tomasz.gajger@pg.edu.pl
†pczarnul@eti.pg.edu.pl
‡Department of Computer Architecture, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of

Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

401

402 T. Gajger and P. Czarnul

this is still a manageable task. We have analysed existing solutions, based on which we propose a performance
model for a GPU.

In this paper we contribute by incorporation of modelling parallel processing on a GPU into an existing
simulator – MERPSYS [15], validate the model against real results for a parallel GPU-enabled application
with various launch configurations on three different GPUs and emphasise benefits from using MERPSYS for
simulation using various GPUs from its database. Details of our contribution are described in the context of
introduced models in Section 3.3. The paper is organised as follows: Section 2 explains important aspects
related to the GPU processing and briefly describes the MERPSYS framework, Section 3 lists related work and
motivations for developing the modelling solution. In Section 4, we propose our own solution, explain it in detail,
and show its implementation in Section 5. Section 6 describes our testbed, testing methodology, validation of
the model, and presents the results. Finally, Section 7 summarises results and outlines the proposed direction
of future research.

2. Background.

2.1. GPU architecture and programming model. GPU is a many-core device that exemplifies a
SIMD (Single Instruction Multiple Data) architecture type per Flynn’s taxonomy [32]. Although the GPU
itself does not contain vector units but rather simple cores capable of executing one instruction on a single
operand at a time (or two instructions if we consider FMAC operations), it acts in a very similar manner. All
the threads comprising a single work group (called warp) in a single clock cycle execute the same instruction on
different operands, that is why NVIDIA describes this architecture as SIMT [39] (Single Instruction Multiple
Threads). This term is obviously a direct derivative of SIMD but expresses the internal architecture of the
device more clearly - multiple threads executing an instruction instead of a single thread executing it on a wide
register containing multiple operands. GPU is perfectly suited for handling tasks that are highly data parallel
and compute intensive, yet simple in terms of the control logic.

A CUDA program is heterogeneous in its nature and consists of two parts: one that executes on the CPU
and one that is offloaded to the GPU. Upon program launch the code is executed by the CPU until a kernel
invocation is encountered. When it happens, two important parameters are specified: grid size and block size
[37]. As the grid may be comprised of many threads, it is logical that only a limited number will be loaded to the
Streaming Multiprocessors (SMs) at a given time, allocation is done at the block level and once a block finishes
its execution a new one will be scheduled. This process continues until all of the blocks are processed [19].

Without going into deeper details, from our perspective the following facts are important:
1. SM may hold a limited number of blocks at a time;
2. blocks have their requirements for shared memory and registers which need to be allocated from the

pool available on the SM;
3. threads are executed in groups of 32, called warps;
4. there are constraints regarding maximum number of active warps as well as rules affecting warps

execution;
5. SM can perform zero-overhead context switches between warps.

The above directly affect the capability of the SM to execute the instructions effectively. If the number of
active warps is not large enough to cover the stalls (caused by memory accesses, conditional branches resulting
in warp divergence, etc.) then performance will be suboptimal [45]. The process of calculating the number
of threads that may be loaded to a single SM considering shared memory and register constraints is called
occupancy calculation. Shortly speaking, if the occupancy is poor then likely the performance of the application
will decrease. It should be noted, however, that increasing occupancy may not lead to any performance gains
or may even result in a performance degradation [46] because of an increased contention for shared resources as
was experimentally proven in [6]. It is also possible to achieve optimal performance with a very low occupancy
if thread granularity (number of instructions executed per thread) is sufficient [50]. Given all these, it is clear
that the effectiveness of warps execution depends on the characteristics of the specific kernel.

2.1.1. Compiled CUDA code. CUDA code can be compiled into two representations: PTX (Parallel
Thread Execution) or SASS (Shader Assembly). PTX is a model of a virtual machine and a definition of ISA
to be used with this machine, it exposes GPU to the higher layers as a data-parallel computing device. PTX

Modelling and Simulation of GPU Processing in the MERPSYS Environment 403

code is an intermediate representation of a program and an abstraction over GPU architecture that is not tied
to any hardware type, thus it does not directly resemble the instructions that are executed by the GPU. It is
ultimately translated into a machine code (cubin object) either by nvcc in a separate compilation step or by
leveraging just-in-time compilation by the CUDA runtime driver upon being scheduled for launch on a specific
device [38]. This allows a high level of interoperability between varying GPU architectures. SASS is the machine
code for GPU, generated for a specific architecture and maps directly to instructions being processed by the
functional units. It can be either generated directly by nvcc during the compilation process or, as it was already
mentioned, generated on-the-fly from PTX source code.

2.2. MERPSYS. Developed at the ETI faculty of Gdansk University of Technology, MERPSYS1 [13, 15]
is a simulation environment for distributed systems that allows its users to predict execution time, power
usage and failure probability of their applications. The application is described in a form of Java code imbued
with special functions implementing communication (MPI-like) and computation primitives. The system is
modelled as a hierarchical structure of components representing computational devices and interconnects, each
of them having its own characteristics defined. It consists of four software components: GUI, server, database
and simulator. Block based representation [12] is employed as a theoretical concept behind the application
model, the environment provides a set of extensions to the Java language that allow to define computation and
communication blocks while preserving the original structure of the code. An application model can be expressed
in Java with additional message passing communication primitives using properly parametrized (input data size,
operation type, etc.) MERPSYS-specific constructs in place of actual computation or communication code.

A system model is created by selecting hardware components and placing them in the editor’s workspace.
It may consist of several nested levels, e.g., two machines connected using an InfiniBand network and inside
each of them a GPU and a processor connected via a PCIe bus. The hardware model is a term used to describe
the characteristics of a given hardware setup. A model has special functions associated with it that reflect, e.g.:
power usage equation for an active or idle component, communication time for point-to-point, scatter or gather
operations, etc. These functions are then used by the simulator to calculate the effective time taken by various
operations. Hardware components have attributes that describe their characteristics. A database of hardware
components is provided, that can be extended with new records. It should be further noted that the hardware
model is sometimes referred to as a computational model. For each computational component a user defines an
arbitrary number of labels that are used to tie application and hardware models together. They are used in the
application model to mark parts of the code representing distinct processes or threads and allow the scheduler
to map them to the hardware components. A simulation configuration screen also allows to define attributes
that are passed to the application model, an example of such may be data size, block configuration of a GPU,
etc. A request to launch a simulation is passed from GUI to the server which in turn directs it to one of the
simulators connected to one of its simulation queues [13]. The simulation queue to be used may be specified
as well.

MERPSYS was successfully used by its authors to model execution time, energy consumption and reliability
of divide-and-conquer (DAC [18, 13]) and geometric single program multiple data (SPMD [13]) applications [16],
K-means algorithm [17] and volunteer computing systems [14]. For a more detailed description providing better
insight into the whole MERPSYS environment see [15].

3. Related Work.

3.1. GPU performance models. When considering performance models targeted specifically at GPUs,
several approaches are to be distinguished, three of the most common are [30]: analytical methods, quantitative
and compiler-based methods, statistical and machine learning methods. The first kind focuses on creation of a
theoretical model for a kernel execution expressed as set of equations and feeding it with parameters obtained
by direct analysis of the kernel’s code and the underlying hardware. Amaris et al. have proposed an analytical
model [2] based on BSP [49], that estimates kernel execution time using an equation combining global and
shared memory access times, with computation time and available GPU hardware resources. Another model
[23] focuses on highly parallel aspects of GPU processing, discerning ones originating from parallel execution of

1http://merpsys.eti.pg.gda.pl

404 T. Gajger and P. Czarnul

warps and memory accesses. It enumerates as many as 21 distinct parameters obtained via source code analysis,
microbenchmarking, or defined by user. These are then used to estimate kernel’s execution time.

The model proposed by Volkov [51] leverages Little’s Law by defining the parallel process using three
metrics: warp latency bound, warp throughput bound and occupancy. Execution of a kernel is modelled at a
warp level in the scope of a single SM with the findings extrapolated to reflect the overall kernel execution time.
The model focuses on obtaining a key metric describing the parallel process - a warp throughput, from which
the total kernel execution time can be derived. Concurrency in this case is synonymous to occupancy through
the number of active warps residing at an SM at a given time. Furthermore, an assumption is made that both
the occupancy and the throughput are sustained for the entire time of the kernel’s execution. An important
part of the model are the bounds for warp throughput and latency, warp throughput is limited by throughput
bound imposed by the hardware and its latency may not be lower than the one resulting from the instruction
sequence comprising the kernel. Warp latency bound is obtained by direct inspection of the compiled kernel
assembly code. Warp throughput bound is calculated based on requirements for resources available on the SM.

Quantitative methods, on the other hand, evaluate the characteristics and behaviour of a given kernel either
by measuring or microbenchmarking kernel execution on actual hardware or by executing it, or parts of it, in
a GPU simulator. These are often integrated into a compilation process of a kernel and are more automated
than analytical ones. Examples include the following: an automated approach where the kernel is analysed
to create a work flow graph [5] that focuses on measuring warp and instruction level parallelism, that is later
parametrized to reflect execution process on a specific GPU unit; a microbenchmark based [53] method where
instructions are extracted directly from the compiled source code of a kernel, backed by a functional simulator
for memory accesses; Ocelot dynamic compilation framework [27, 28] leveraging PTX representation of a kernel,
that is transformed into a form feasible to be modelled on a single CPU thread. Lastly, an interval analysis [24]
technique, which is based on an assumption that by locating events causing performance degradation (memory
stalls, cache misses, etc.), one can reason about the overall execution time of a kernel.

Statistical and machine learning methods [25, 52, 31] are often implemented as separate frameworks that
are highly automated and require additional training so that the neural network correctly recognises patterns
and behaviour of the kernel code. The network learns the kernel’s instructions composition given a set of
input data and is then able to reason about the performance of subsequent kernel executions for different
launch configurations. Consequently, they provide a complete simulation environment on their own and are
not suitable for developing a new model that could be used within MERPSYS. Given the aim of this work is
extending MERPSYS with a performance model for a GPU, we find them not relevant in our analysis.

3.2. GPU modelling in general-purpose simulators. General-purpose simulators are not tied to any
specific device type or programming language and provide means to perform various kinds of simulation for
many processing paradigms on parallel and distributed systems. Designing an application for such environments
is not a trivial task as one needs to consider execution time, energy efficiency, reliability, maintainability and
many other factors [48]. This is why most of the simulators a layer of abstraction over the actual hardware,
what is a good thing when we consider a use case like modelling a complex grid system, but it may also be a
significant drawback if one needs to model the parallel process on a specific hardware unit with a greater detail.
All of further mentioned simulators implement the discrete-event simulation model [43], which means that the
entire process of simulation is governed by events being processed and passed between entities. Such an event
may represent a computation, communication, synchronisation or a resource access, with the details specified
by the simulation environment itself. We have looked at the following tools with the focus on GPU simulation:
GridSim [8], SimGrid [42, 21], CloudSim [9, 41, 47], GSSIM [29, 7], and MARS [20]. Table 3.1 summarises their
suitability for this purpose, a general overview of their functionality was given in [15].

We have found that none of these simulators offers a convenient way to incorporate GPU modelling within
it with the level of detail we require. This is mostly because their focus is on a different area of modelling,
i.e. an HPC system as a whole, where computational units are described in terms of overall computational
power. CloudSim with GPU extension [47] is closest to our requirements, but it still operates at the GPU
computational task level and does not allow for precise modelling of kernels comprising the application. On
the contrary, MERPSYS whilst being a general-purpose simulator itself, is a highly customizable solution that
allows to drill down deep into internals of a single hardware unit, in our case a GPU. It allows easy modification

Modelling and Simulation of GPU Processing in the MERPSYS Environment 405

Table 3.1
General-purpose simulators comparison

Simulator
Level of detail available for modelling a
hardware component

Suitability for GPU modelling

GridSim
Poor - computational power defined in terms
of MIPS or SPEC rating.

Not with the required level of detail.

SimGrid
High - complex analytical models may be
used.

Theoretically yes, would require more
in-depth investigation of the possibility to
extend the existing framework with a custom
computational resource.

CloudSim High if extensions to the framework are used. Yes, but not with the required level of detail.

GSSIM
Plugins that take many factors into account
may be written to describe the performance.

Possibly, by writing plugins to define complex
application performance models.

MARS
Task modules execute logs containing MPI
call traces. There’s no room for
customisation.

Not at all.

of the model by substitution of other hardware such as GPUs and repeating simulations, easy modification of
formulas modelling execution and communication times, as well as relevant constants and coefficients.

3.3. Contributions of this work. Contributions of this work are as follows:
• We have incorporated the model proposed by Volkov [51] within the MERPSYS simulator [15], showing

that it is well suited for practical implementations. We have used a simplified version of this model by
reducing the scope of hardware units considered to CUDA cores, schedulers, and global memory system,
for which we decided to use a trivial non-parametrized access model. For this version, we provide a
complete set of equations (Eqs. 4.1 - 4.6) together with a detailed description of input parameters,
creating an easy to grasp explanation of all the building blocks of the model.

• We have also extended the model with a scaling parameter, allowing to fine-tune it to better fit hardware
and kernel characteristics. We propose Eq. 4.5 for calculating global memory bandwidth and introduce
data transfer time calculation, whilst the original model considered only kernel execution time.

• We show that for the considered model configuration derived from results on one GPU of a given
architecture can be directly applied to another GPU of the same architecture, introducing only the
second GPU’s specifications into the model. This makes the MERPSYS environment with the model
deployed in it a suitable tool that is able to verify performance of a given application on potentially
several cards without even having physical access to them.

4. Proposed Approach. Compared to other general-purpose simulators, MERPSYS is a much better fit
for GPU modelling. It is mainly because of the very high level of detail available when modelling a hardware piece
combined with a possibility to add custom functions describing device’s behaviour. Hence, the computational
devices are highly customizable which allows implementation of complex analytical models like the one being
described in this section. Additionally, the hardware (computational) model may be customised to use additional
data needed for GPU modelling. This data may be specified in the application model, which allows for easy
parametrization of simulation runs. Another advantage is an extensible database of hardware components and
ease of hardware model customisation, which allows for convenient evaluation of various setups. These can
be activated just by selecting other GPUs, that have all the parameters in the database, through a graphical
interface.

4.1. GPU Performance Model. To model the execution time of a single kernel on a single GPU we will
rely on a model proposed by Volkov [51], we define Eq. 4.1 for this purpose. The number of warps launched is
computed as shown in Eq. 4.2. For warp throughput, we use Eq. 4.3 (proposed by Volkov), the methodology
for obtaining occupancy, latency bound, and throughput bound will follow. This model considers all of the
important elements that contribute to the overall execution time of a kernel in most of the scenarios. Later on,

406 T. Gajger and P. Czarnul

we explain the meaning of each of these elements and the approach used to determine their values. Since the
entire model is based on a concept of modelling a concurrent process in terms of a warp being executed on a
Streaming Multiprocessor (SM) and the metrics are calculated for that single warp, it is required to extrapolate
the findings to reflect the actual number of warps that were executed on the GPU and thus compute the result.
For this purpose, Eq. 4.2 is used that takes as an input the launch configuration of a kernel i.e. the sizes of grid
and block, and the result is the total number of warps that were launched to process the kernel.

Tk =
WL

WT h × SMs × SMclock × λk

(4.1)

WL = grid size ×

⌈

block size

warp size

⌉

(4.2)

WT h ≈ min

(

occupancy

Latbound

, Thbound

)

(4.3)

where: Tk – estimated kernel execution time [s]; WL – number of warps launched; WT h – processing rate of
warps [1 / cycle]; SMs – number of streaming multiprocessors; SMclock – SM core clock [cycles / s]; λk – scaling
parameter; grid size – number of blocks in a grid; block size – number of threads in a block; warp size – 32
for all GPU architectures; Thbound – throughput bound [1 / cycles]; Latbound – latency bound [cycles].

SMs and SMclock parameters are needed to extrapolate the model from a single warp in scope of a single
multiprocessor to one that fits the processing model of the GPU. These two parameters, when multiplied, yield
the processing power of the entire device in cycles per second. The λk value is a ratio between estimated and
measured execution times that adjusts the model to fit the characteristics of a given kernel launched on a specific
device architecture. It shall be obtained experimentally by measuring the execution time of a real application
combined with running a simulation with an initial model. Once calculated the new λk can be used to perform
simulation across varying data sizes and different GPUs. It was experimentally proven by the authors of another
model [2, 3] that a single λk value is sufficient for accurate simulations in scope of a single device architecture.
When used for a different architecture the accuracy of the model drops and it is advised that λk is recalculated.
To calculate the λk we divide the estimated execution time, by the measured one: λk =

Testimated

Tmeasured
.

Calculation of warp throughput, the most essential part of the model, as given by Eq. 4.3, is the most
challenging task. Three parameters need to be extracted from the kernel code in close consideration of a specific
GPU architecture that one intends to model. These parameters are warp latency and throughput bounds, and
the achieved occupancy, we will describe them in detail in subsequent sections.

4.1.1. Occupancy. The first method of retrieving the parameters needed for occupancy calculation is to
compile the code with verbose ptxas output, this is done by passing ’-Xptxas -v’ command line option to nvcc

[38]. A sample result is shown in Listing 1. It tells us that the kernel uses 8 registers per thread and does not
use any shared memory, otherwise information about the amount of shared memory used would be included
in the output. cmem stands for constant memory and does not concern our analysis. Having determined the
number of registers and amount of shared memory required, we enter these together with threads per block
count (block size) into the NVIDIA occupancy calculator [34] to get the theoretical occupancy. Another way is
to profile the application, NVIDIA Visual Profiler not only displays the values of shared memory and registers
used but it is even capable of calculating both the theoretical and achieved occupancies.

Listing 1
Verbose ptxas output for saxpy2 kernel

ptxas i n f o : Function p r o p e r t i e s f o r saxpy2
Used 8 r e g i s t e r s , 344 bytes cmem [0]

Modelling and Simulation of GPU Processing in the MERPSYS Environment 407

4.1.2. Latency bound. We construct an execution graph of the kernel with nodes representing instruc-
tions and edges representing latencies as shown in Volkov’s work [51] and then apply a critical path method to
it to find the latency. Critical path is the latency bound only if we assume that all of the warps are the same
- they execute the very same instructions, so this approach will not work if there is a substantial control flow
divergence in a kernel. In such a case, a different set of instructions resulting from different branches being
executed should be considered.

The graph considers latencies of the following kind: register dependencies and thus instruction execution
latency, instruction issue latency, and memory stalls to describe how the instructions comprising the kernel are
depend between themselves. This approach is valid because there is no out-of-order execution present in the
GPUs, meaning that the sequencing of the instructions is maintained in a strict order. It is also more precise
than when making an assumption that a kernel is a simple sequence of dependent instructions as in [2, 11, 40]
and simply summing the latencies of all instructions comprising the sequence, treating the result as a total
cost in clock cycles of executing this kernel by a single warp. The latter approaches fall short because there
are independent functional units within the SM, which results in latency hiding, e.g. in case of waiting for
memory accesses. Furthermore, even in the case of a single functional unit type the instructions are processed
in a pipelined-based manner and thus ILP (Instruction Level Parallelism) exists.

Volkov reports [51] that there are two other types of latency, the latency between two independent in-
structions from a single warp, called ILP latency and latency resulting from a replacement of a terminated
thread block, we address both of these. What is more, depending on the architecture, multiple warp schedulers
per SM may be present and two instructions per warp may be issued every instruction issue time if mutually
independent instructions are available for execution. The effect of dual issue is considered as well, in which case
the ILP latency is expressed as 0 cycles. We omit double precision and special function units, both of which
have their own pipelines with different latencies for various instructions. Moreover, our approach to modelling
global memory accesses is simplified as we do not consider gradual saturation effect [51], which manifests itself
in a form of increasing memory access latency as the number of memory transaction increases and memory
bus gets saturated. It should also be noted that the modelling of shared memory accesses was omitted. These
omissions do not affect results of our work as we have deliberately chosen a simple kernel, which does not make
use of aforementioned functional units. Furthermore, the model is designed in such a way that it may easily be
extended with these elements in the future.

4.1.3. Throughput bound. To obtain the throughput bound, each of the hardware resources available on
the SM must be considered separately, including: CUDA cores, Special Function Units (SFUs), double precision
units, schedulers, and global and shared memories. We will narrow our analysis to three of them as denoted by
Eq. 4.4. The tightest bound, that is the highest number of cycles required to execute the warp’s instructions
due to a limited processing power of the functional units, is selected as the limiter of the performance and then
a reciprocal is calculated to obtain the bound represented in warps per cycle.

Thbound ≈
1

max

(

Wsz×INSCUDA

CUDA cores
, INSissued

schedulers
,

GMembytes

GMembw

) (4.4)

GMembw ≈
GMemclock ×

bus width
8 × data rate

SMs × SMclock

(4.5)

where: Wsz – warp size; INScuda – number of instructions to be executed by CUDA cores; INSissued – total
number of instructions issued (including dual-issues and re-issues); CUDA cores – number of CUDA cores
available on the SM; schedulers – number of schedulers available on the SM; GMembytes – number of bytes
transferred with global memory for each warp [bytes]; GMembw – peak throughput of the memory system
per SM [bytes / cycle]; GMemclock – global memory clock [Hz]; bus width – global memory bus width [bits];
data rate – data rate multiplier depending on the kind of memory used.

4.2. Obtaining hardware parameters. Each of the instructions issued by a thread is assumed to require
a well-known number of clock cycles to complete, this is a simplified approach not considering varying memory

408 T. Gajger and P. Czarnul

Table 4.1
Instructions latencies for Maxwell architecture

Operation Latency
add, sub (integer, 32-bit FP) 6
mad (32-bit FP) 6
shl, shr 6
mov, setp 6
bra (taken) 12
bra (not taken) 10
ILP latency 3
Terminated block replacement 150
Global memory access 350

access times, varying instruction latency depending on the instruction sequence and other effects. Based on
papers [4, 51] and additional reasoning, Table 4.1 presents latencies we assumed in this work. For latencies of
Tesla, Fermi and Kepler architectures see [4], for Pascal and Volta see [26]. For a detailed information regarding
meaning of the mnemonics refer to [36].

There are two sets of parameters in Eq. 4.4. The first one is related directly to the hardware characteristics
of a given device, it includes: warp size, number of CUDA cores and warp schedulers, and the throughput of the
global memory. At the time of writing the warp size is a constant value of 32 for all GPU architectures. The
number of CUDA cores and warp schedulers may be obtained from GPU hardware specification. Theoretical
bandwidth of the GPU’s global memory available per single SM every cycle is given by Eq. 4.5, for which all
the parameters are available in hardware specification except the data rate that is derived from memory type
and equals 2 or 4 respectively for GDDR3 and GDDR5 [33]. Although the peak bandwidth is not sustainable
in practice for the entire execution of a kernel because the memory clock may drop due to dynamic frequency
scaling and furthermore would require an ideal access pattern and sufficient occupancy, a value close to this
theoretical limit is attainable [51]. Considering this fact, we use this bandwidth in the proposed model. What is
more, we do not differentiate between loads and stores and assume them to behave in the same way. Additionally,
we limit the model to a scenario where there are no cache hits and the accesses are fully coalesced. If we were to
include the possibility of cached accesses in the model then we would need to consider the fact that depending
on the device architecture accesses to global memory are cached in L1 and L2 caches, hence the number of
cache hits should be subtracted from the actual number of DRAM accesses. The ratio of cache hits could be
obtained by launching the application in a profiler [11].

The second set of parameters: INSCUDA, INSissued and GMembytes describes application execution char-
acteristics, all three are extracted directly from compiled SASS code of the kernel, description of these follows.
To calculate the number of CUDA core instructions we count all occurrences of operations that are executed
using these cores: FP32, INT32, logical, etc. Getting a sum of all instructions that were issued is a little more
demanding because dual-issues and re-issues of instructions need to be accounted for. In the former case, two
instructions are issued in a single issue cycle and hence are counted as one. In the latter, a single instruction
must be counted multiple times depending on the number of re-issues. A re-issue typically occurs when there
are bank conflicts when accessing shared memory or when an access to global memory is uncoalesced and must
be split into several separate transactions. This also affects number of bytes transferred per warp, for example
when fetching a single 32-bit value per thread, a stride of two would result in 256 bytes transferred instead of 128
and a single additional re-issue of memory transaction instruction, stride of 4 would cause 3 additional re-issues
and increase the number of bytes to be transferred to 512. Numbers of functional units and clock values for the
devices as listed in Section 6.1 were obtained from vendor’s documentation and using ndivia-smi [35].

4.3. Modelling communication time. Performing computations on a GPU requires the data to be
transferred to the device prior to launching a kernel and once its execution completes the results must be fetched
back to the main operating memory. Memory transfer between the host and the device may be considered an
instance of a point-to-point communication, for which the communication time is given by the following equation

Modelling and Simulation of GPU Processing in the MERPSYS Environment 409

[12]:

Tc = ts +
n

bw × λc

(4.6)

where: Tc – data transfer time; ts – startup time; n – data size; bw – bandwidth; λc – scaling parameter.
Startup time is the time needed to initiate data transfer that depends on latency and runtime overhead, it

can be measured by sending a very small data packet. Bandwidth is dependent on the configuration of the PCIe
bus that connects the devices, for example a theoretical bandwidth of PCIe v3.1 16x bus in single direction is
16GB/s or 15.8 GB/s if we consider 128b/130b encoding. Furthermore, we have noticed that the bus is better
utilised for larger data sizes but even for the largest transfer of 2GB the throughput was noticeably lower than
the theoretically achievable one. Due to this fact, in our implementation we introduce an additional scaling
parameter λc to Eq. 4.6 that allows us to fine-tune the link bandwidth so that it reflects the actual characteristic
of a given hardware setup.

Note that both the λc and ts will have different values for each transfer direction. The scaling parameter
can be obtained similarly to the one for the kernel execution time (λk), i.e. by dividing the estimated transfer
time by the measured one. To get the value of the bandwidth parameter we first need to determine the PCIe
configuration, for this purpose we have used nvidia-smi. Having obtained these two values, we can refer to
hardware documentation to get the bandwidth parameter.

5. Implementation. It is easiest to present how the performance model is constructed by example. For
this purpose we use saxpy2 kernel (Listing 2) that is a slightly modified version of a kernel from the blog post [22].
The main difference when compared to a regular saxpy is that instead of a single multiplication an equivalent
number of additions is performed, this allows us to benchmark kernels of various compute intensities. The
highlighted part of the code is responsible for a compute intensity of the kernel, i.e. the number of arithmetic
instructions executed by each warp. Input data size is determined by the number of elements in the vectors as:
number_of_elements_per_vector × 2 × 4 Bytes.

Listing 2
Testbed CUDA kernel

__global__ void saxpy2 (i n t n , i n t a , f l o a t ∗x , f l o a t ∗y) {
i n t i = blockIdx . x ∗ blockDim . x + threadIdx . x ;
i f (i < n) {

f l o a t va l = x [i] , tmp = 0 ;
#pragma unroll 1
for (int cnt = 0; cnt < a ; ++cnt) tmp += val ;
y [i] += tmp ;

}
}

To accurately determine the kernel’s instruction composition, we cannot simply analyse the C or C++
source code since we do not know the optimisations that took place and thus the actual instructions that were
generated by the compiler. For this purpose we need to analyse SASS code (see Section 2.1.1), to extract it
from a compiled binary file we use cuobjdump [36]. Listing 3 is a SASS representation of the saxpy2 kernel that
was compiled for sm_52, for the sake of brevity we skip the irrelevant NOP instructions from the very end. The
highlighted part represents the loop governing the kernel’s arithmetic intensity.

Listing 3
SASS representation of the saxpy2 kernel

MOV R1 , c [0 x0] [0 x20] ;
S2R R0 , SR_CTAID.X;
S2R R2 , SR_TID.X;
XMAD.MRG R3 , R0 . reuse , c [0 x0] [0 x8] . H1 ,RZ;
XMAD R2 , R0 . reuse , c [0 x0] [0 x8] , R2 ;
XMAD. PSL .CBCC R0 , R0 . H1 , R3 . H1 , R2 ;

410 T. Gajger and P. Czarnul

ISETP .GE.AND P0 , PT, R0 , c [0 x0] [0 x140] ,PT;
@P0 EXIT ;
MOV R3 , c [0 x0] [0 x144] ;
SHL R6 , R0 . reuse , 0x2
ISETP .LT.AND P0 , PT, R3 , 0x1 , PT;
SHR R7 , R0 , 0x1e ;
IADD R2 .CC, R6 , c [0 x0] [0 x148] ;
MOV R0 , RZ;
{ IADD.X R3 , R7 , c [0 x0] [0 x14c] ;
@P0 BRA 0x100 ; }
{ MOV R5 , RZ;
LDG.E R0 , [R2] ; }
MOV R4 , RZ;
IADD32I R4, R4, 0x1 ;
ISETP.LT.AND P0, PT, R4, c [0x0] [0 x144] ,PT;
{ FADD R5, R0, R5;
@P0 BRA 0xd0; }
MOV R0 , R5 ;
IADD R2 .CC, R6 , c [0 x0] [0 x150] ;
IADD.X R3 , R7 , c [0 x0] [0 x154] ;
LDG.E R5 , [R2] ;
FADD R0 , R0 , R5 ;
STG.E [R2] , R0 ;
EXIT ;

5.1. Creating kernel execution graph. To construct an execution graph of saxpy2 kernel we start off
by creating a directed graph representing the sequence of instructions comprising the kernel based on Listing 3.
Each instruction is a single node, additional start and end nodes mark respectively the entry and exit point of
the kernel. Edges represent the dependencies between the instructions and are labelled with latency values from
Table 4.1. Straight, solid arrows are used for the ILP latency, which equals 3 cycles for Maxwell architecture.
There are total of 3 dual-issues, these edges are labelled with 0. The next step is to include latencies from
register dependency, these are shown as dotted arrows. We do this by reading the SASS line by line and
verifying whether any of the input registers of the current instruction has its value written to by one of the
preceding instructions, if so then a register dependency exists and we add a new edge connecting the predecessor
with successor labelled with latency value of the preceding instruction. If this instruction is a memory access,
then we use the latency of the storage area being referenced, which in case of this kernel is always the global
memory as cache hit ratio equals 0%. This is true because there is no re-use of data - each element is accessed
by a single thread and exactly once. We verified correctness of this assumption by inspecting the profiler output
for this kernel regarding the memory throughputs. Lastly, we label the inbound edge of the virtual end node
with a terminated thread block replacement latency.

Once the graph is complete and labelled we use the critical path method to find the latency bound of the
kernel. Figure 5.1 shows the resulting graph with critical path highlighted in blue. The part of the graph where
nodes are ellipses is the computational loop, which may execute multiple times depending on the compute
intensity parameter passed to the kernel. When calculating the latency bound, the critical path of the loop
needs to be multiplied by the number of loop iterations. The final equation for latency bound is as follows:
latency bound = 92 + 700 + 150 + 24a = 942 + 24a where the first term is sum of instructions’ latencies, the
second one is latency of memory accesses, the third is thread block replacement latency, and the fourth one is
latency of the loop multiplied by the compute intensity parameter ’a’. We have created and analysed the graph
manually, but creation of an automated tool is entirely possible.

5.2. Obtaining throughput limits. As the first step in throughput limit calculation for the saxpy2
kernel we need to count instructions in the generated SASS. It can be done either by reading directly from

Modelling and Simulation of GPU Processing in the MERPSYS Environment 411

start

MOVS2RS2R

XMAD XMAD

XMAD

ISETP

EXIT

MOV

SHL

ISETP

SHR

IADD

MOV

IADD

BRA

MOV

LDG

MOV IADD32I

ISETP

FADD

BRA

MOVIADD

IADD LDG

FADD

STG EXIT end

0

33

3

3

3

3

3 3 3 3

3

3

3

3

0

3

0

3

3

3

3

0

3

3

3

3

3 3

3 150

6 6

6

6

6

6

6

6

6

6

6

350

6

6

taken
(12)

6

6

6

6
6

6

6

not
taken
(10)

6

6

not
taken
(10)

350 6

Fig. 5.1. Execution graph for saxpy2 kernel

the assembly listing (Listing 3) or based on the kernel execution graph (Fig. 5.1). In our example, we have
23 CUDA core instructions that are executed once and 4 instructions in a loop, so the resulting equation is:
INSCUDA = 23 + 4a. It should be noted that in this kernel everything except memory accesses is processed
by CUDA cores, this would not be the case if there were any instructions designated for a double precision
or SFU units. When getting the number of instructions issued we must remember to address the dual-issues
and re-issues. In our kernel, we have 3 accesses to global memory, all three are fully coalesced so there are no
re-issues taking place. There are 3 dual-issues, each resulting in a pair of instructions being issued together
during a single cycle.

Summing up, we have 23 CUDA core instructions issued once and four of these in a loop, three memory
instructions, and three dual-issues which we subtract from the total number, so we get: INSissued = 23+3−3+

4a = 23+4a. The number of bytes transferred to and from a global memory depends on four factors: the number
of the memory access instructions, cache hit rate, operand size, and access pattern. The saxpy2 kernel contains
3 memory access instructions: two loads and a single store, but for the sake of brevity we do not differentiate
between these two as the difference is marginal. In all three cases, a single 4-byte value is accessed per thread
and as was mentioned in preceding paragraph, the accesses are fully coalesced so there are no redundant memory
transactions when accessing the data, this gives us: GMembytes = 3 × 4 bytes × 32 = 384 bytes. Furthermore,
there are no cache hits hence all these bytes are accessed directly in the global memory and we can entirely omit
both the L2 and L1 caches. If this was not the case then we would separately consider a fraction of GMembytes

equal to cache hit ratio as being accessed from cache, which has a higher throughput than the global memory.
Now that we have all the throughput related parameters extracted from the kernel we need to list those

specific to the device the application will run on, which is NVIDIA GeForce GTX 970 in our case. The first
two parameters can be obtained directly from card specifications shown in Section 6.1, compute capability of
our card is 5.2, hence we have: CUDA cores = 128, schedulers = 4. The third parameter - bandwidth of the
global memory can be calculated using Eq. 4.5 substituting the required values as: GMemclock = 1753MHz,
bus width = 256 bits, data rate = 4, SMs = 13, SMclock = 1253 MHz. This gives us: GMembw = 13.78

Bytes
cycle

The final step is to gather up all these parameters and substitute them to Eq. 4.4:

Thbound ≈
1

max

(

32×(23+4a)
128 , 23+4a

4 , 384
13.78

)

5.3. Equations for communication time. Our testbed with GTX 970 uses PCIe v3.1 16x. Based on
this fact and our measurements we substitute the parameters of Eq. 4.6 and thus we get the equation for data

412 T. Gajger and P. Czarnul

Fig. 5.2. Hardware units with customised attributes: GPU (left), interconnect (right)

transfer time in function of its size for both directions as shown below.

THost to Device = 3.9687 × 10
−6

+
n

15.8 × 109 × 0.689
and TDevice to Host = 5.1569 × 10

−6
+

n

15.8 × 109 × 0.653
.

5.4. Incorporating the model within MERPSYS. In this section, we show how the theoretical model
was implemented in MERPSYS. At first, we demonstrate how to create a system model representing our testbed,
including the creation of new hardware units. Then we proceed to computational model definition, i.e. the
programmatic representation of what was shown in previous sections. Next, we move to the application model
definition, which will represent the CUDA application being modelled, explaining how all these pieces are tied
together and finally elaborate on how to customise the application launch parameters and execute the simulation.
Creation of hardware units that are customised with parameters required by our theoretical model was the first
implementation step. All previous measurements were performed using GTX 970 and PCIe v3.1 16x. For these
two devices we have created a representation in MERPSYS’ database as shown in Fig. 5.2. It should be further
noted that the λc parameter from Eq. 4.6 was included as an attribute of the PCIe hardware unit. We assumed
that the effective bus utilisation is a parameter of the hardware itself and its value does not change for different
application types if the memory transfers are performed using the same functions. Shall a requirement for this
parameter be customizable via application model arise, it can be moved there and passed in the function calls
the same way it was done for kernel parameters, as shown in Section 5.4.2.

The next step to perform is creation of a testbed representation using the hardware model editor in MERP-
SYS editor application. Two hardware units that we have just created are used in this model together with a
unit representing the CPU. Note that this model directly resembles the actual hardware structure where GPU
and CPU are connected using a PCIe bus.

Modelling and Simulation of GPU Processing in the MERPSYS Environment 413

Fig. 5.3. Testbed configuration in MERPSYS system model editor

Figure 5.3 is a screenshot from the editor application showing the created model, GPU unit is selected with
its properties visible on the right side, moving from the top to the bottom:

1. Hardware - hardware unit represented by this element, in our case the GTX 970 GPU visible on the
left of Fig. 5.2;

2. Count - the number of hardware units of a given type, for example in a multi-GPU setup we could set
the count to 2, 3, 4, etc.;

3. Name - displayed name of the element;
4. Model - computational model connected to the element, in our case the one from Listing 4, description

of which will follow;
5. Labels - labels assigned to the element, these form the connection between hardware and application

models. Name is the identifier of the label and multiplicity denotes the number of processes with this
label that may be executed on a single unit of this type.

5.4.1. Computational model. Another crucial component of the simulation suite is the computational
model, in which we have implemented the equations comprising the model. These are written in JavaScript using
MERPSYS’ so-called shallow functions, one of them (an implementation of Eq. 4.1) is depicted in Listing 4.
Others are not presented for the sake of brevity, but their implementation is similar. Parameters characterising
hardware, i.e. hardware unit attributes are directly accessible from within the computational model functions.
For example: SMCoreClock or SMs which reference attributes of the GPU (the ones from Fig. 5.2). On the
other hand, application specific parameters are passed from the application model using proper arguments of the
computation or communication function calls. These are then accessible as JSON objects containing key-value
pairs. When we look at the signature of getTimeGPUModel() we can notice params argument, which is this
JSON object. The value stored under a specific key is accessed using params.get() method.

414 T. Gajger and P. Czarnul

Listing 4
Part of the computational model

f unc t i on getTimeGPUModel (params) {
var warpsLaunched = getWarpsLaunched (params . get (’ g r i dS i z e ’) , params . get (’

b lockS ize ’)) ;
var throughputBound = getThroughputBound (params . get (’ CUDACoreInstructions ’) ,

params . get (’ i s s u e d I n s t r u c t i o n s ’) , params . get (’ GMEMBytesTransferred ’)) ;
var latencyBound_WPC = params . get (’ occupancy ’) / params . get (’ latencyBound ’) ;
var warpThroughput = Math . min (latencyBound_WPC , throughputBound) ;
var execTime_cycles = warpsLaunched / (warpThroughput ∗ SMs ∗ params . get (’

kernelExecutionLambda ’)) ;
var execTime_seconds = execTime_cycles / (SMCoreClock ∗ Math . pow(10 ,6)) ;
r e turn execTime_seconds ∗ 1000000;

}

5.4.2. Application model. The application model is an abstract representation of the program being
modelled, in our case it consists of few data transfers and a kernel launch, the model is depicted in Listing 5 and
the source code for the host part of the CUDA application is given in Listing 6. At the very beginning parameters
characterising the kernel are defined, this part is based on the idea described in the section concerning extraction
of kernel parameters. Next we have the actual application divided into two branches that are distinguished
based on labels (types of processes), one for a CPU and one for a GPU. It is visible that the CPU only
handles data transfers and each of the communication functions specified for it has its counterpart present
in the GPU section. Sequencing of the operations that originate from the communication functions calls is
managed internally in MERPSYS. Also note the artificial synchronisation point (marked with a comment in the
source code), send in MERPSYS is non-blocking whilst cudaMemcpy() is blocking, hence the next transfer can
only be performed when the preceding one is complete. The input parameters of the theoretical model for the
kernel execution time are specified in the GPU section, these are put into a key-value map, that is converted
by MERPSYS into a JSON object and passed to the appropriate function of the computational model, in our
case it is getTimeGPUModel(). For the sake of brevity we have omitted most of the parameters and left only
CUDACoreInstructions as an example, the others are set similarly.

Listing 5
Application model

I n t eg e r CUDACoreInstr = new In t eg e r (23 + 4 ∗ computeIntens i ty) ;
I n t eg e r i s s u e d I n s t r u c t i o n s = new In t eg e r (26 + 4 ∗ computeIntens i ty) ;
I n t eg e r GMEMBytesTransferred = new In t eg e r (384) ;
I n t eg e r latencyBound = new In t eg e r (942 + 24 ∗ computeIntens i ty) ;
I n t eg e r g r i d S i z e = new In t eg e r ((N+blockSz −1) / blockSz) ;
Double kernelExecutionLambda = new Double (0 . 703787) ;

i f (tag . equa l s ("CPU")) {
sim . p2pCommunicationSend (4∗ (double)N, "GPU" , ConstVar . HostToDevice) ;
// a r t i f i c i a l s ynch ron i s a t i on po int
sim . p2pCommunicationReceive ("GPU") ;
sim . p2pCommunicationSend (4∗ (double)N, "GPU" , ConstVar . HostToDevice) ;
sim . p2pCommunicationReceive ("GPU") ;

} e l s e {
sim . p2pCommunicationReceive ("CPU") ;
// a r t i f i c i a l s ynch ron i s a t i on po int
sim . p2pCommunicationSend (0 , "CPU") ;
sim . p2pCommunicationReceive ("CPU") ;
Map GPUModelParams = new HashMap () ;
GPUModelParams . put (" CUDACoreInstructions " , CUDACoreInstr) ;

Modelling and Simulation of GPU Processing in the MERPSYS Environment 415

Fig. 5.4. Simulation launch screen

// (. . .) r e s t o f the model parameters
sim . computation (GPUModelParams , SoftwareStack . Undefined , OptimizationType . None

) ;
sim . p2pCommunicationSend (4∗ (double)N, "CPU" , ConstVar . DeviceToHost) ;

}

Most of the parameters defined in the application model are not constant values, but are instead computed
based on the model input parameters (e.g. occupancy), that are specified in the Variables section of the editor
application, which may be customised either from the application model editor screen or simulation launch
screen, the latter is shown in Fig. 5.4. The Variables section is in the bottom left corner, values located there
may be easily changed between simulation runs which allows for an effortless customisation. For example, if we
want to test the application’s behaviour for a different number of input elements or change the characteristics
of the kernel by tweaking computeIntensity parameter. In the Labels section of the simulation screen, we define
what processes are going to be launched. A label represents a process or a thread and its value is the number
of processes or threads of this type, note that these are not the same labels that we have already seen in the
hardware model, although both kinds are directly related. The relation is that a process identified by label
GPU requires the very same label to be assigned to at least one of the hardware components.

Furthermore, the maximum number of processes or threads of a given type that may be launched depends
on the hardware units’ execution capacity, which we may compute by inspecting the hardware model and
multiplying the label multiplicity by the count of hardware units. For example, in Fig. 5.3 label GPU has
multiplicity of 1 and there is only a single unit, hence when launching the simulation, the number of processes of
this type must not exceed 1. This label is also referenced in the application model using tag.equals() construction,
this demonstrates that the labels are what binds all of the simulation pieces together. With the variables and
labels defined, a simulation can be launched. We first specify the name of a simulation queue, gajgerqueue in our
case, this name must match the one that was used when a simulator application was started. After specifying
a proper name of the simulation queue, we start the simulation, and once it finishes its execution the outcome
is presented in the top right corner in the Results section. The simulated application execution time is listed as
the Overall time in simulation results (Fig. 5.4), we will refer to it in the next section when comparing predicted
values with the ones measured from the actual runs.

6. Experiments and Results. We have performed numerous tests for various configurations to verify
accuracy of the implemented solution in four scenarios where different parameters change. In the first case, all
parameters but the compute intensity were constant, the second one included modification of the block size in

416 T. Gajger and P. Czarnul

Table 6.1
Testbed GPUs

GTX970 TITAN X GTX1070
SMs 13 24 15
SM clock [MHz] 1253 1076 1923
Compute capability 5.2 6.1
Schedulers per SM 4
CUDA cores per SM 128
Memory clock [MHz] 1753 2002
Bus width [bits] 256 384 256
Data rate 4 (GDDR5)
Global memory throughput per SM [bytes / cycle] 13.78 13.03 8.88
Kernel execution λk 0.703787

Table 6.2
PCIe bus characteristics for testbeds

Bus v3.1 x16 v2.0 x4 v3.1 x16
OS Ubuntu 14 Ubuntu 16 Windows 10
Driver ver. 352.21 384.111 388.19
ts HtD [ms] 0.00397 0.00733 0.0244
ts DtH [ms] 0.00516 0.01168 0.0283
λc HtD 0.689 0.844 0.452
λc DtH 0.653 0.842 0.447
bw [GB/s] 15.8 2 15.8

addition to compute intensity, the third scenario concerned varying occupancy and the fourth changing input
data size. In the first three scenarios, we measured only the kernel execution time as the data size was constant
and memory copying could be omitted. In the last one, however, we included the measurements of the data
transfer times in both directions, as well as the execution time of the entire application. All measurements in
this section were repeated 10 times and then a mean value was used.

6.1. Testbed Environment. The tests were performed using three testbeds, one with GTX 970 and
PCIe v3.1 16x, the second with GTX TITAN X (Maxwell edition) and PCIe v2.0 4x, and the last one with
GTX 1070 and PCIe v3.1 16x. The first two were running Linux, and the last one Windows (see Table 6.2).
The model was calibrated for the setup with GTX 970 and the kernel execution λk was found to equal 0.703787,
it also turned out that the value of λk did not change for the second GPU. This is expected behaviour since
both devices are of the same architecture (compute capability), which proves the correctness of the model. We
have also used the same λk for the third GPU, representing a newer architecture (Pascal). The results were still
accurate, it is likely because both architectures do not differ much in terms of instruction types and latencies.
The devices differ in number of SMs, SM clock and in terms of memory system, with GTX TITAN X having
wider memory bus, the differences and similarities are summarised in Table 6.1.

For interconnects we have measured data transfer startup time (ts) and PCIe bus utilisation (λc) separately
for each transfer direction: host to device (HtD) and device to host (DtH), the results are shown in Table 6.2.
The transfer is slightly more efficient in the former case. We have also observed that bus utilisation was lower
on Windows, when compared to Linux. This was likely caused by additional overhead incurred by Windows
Display Driver Model (WDDM) [10].

6.2. Testbed Application. We have prepared a sample CUDA application that allocates the data, copies
it from host to the device, calls saxpy2 kernel (Listing 2) and then fetches the results back into the host memory.
The code of the application used for tests is given in Listing 6 and its representation in MERPSYS application
model was already presented in the previous section (Listing 5).

Modelling and Simulation of GPU Processing in the MERPSYS Environment 417

Listing 6
Source code of a simple CUDA application used for tests

void simpleCUDAApp(i n t computeIntens ity , i n t blockSz , i n t shMem, i n t N) {
std : : vector<f l o a t > x (N) , y (N) ;
f l o a t ∗d_x , ∗d_y ;
s i z e_t s i z e = N ∗ s i z e o f (f l o a t) ;
cudaMalloc(&d_x , s i z e) ;
cudaMalloc(&d_y , s i z e) ;
cudaMemcpy(d_x , x . data () , s i z e , cudaMemcpyHostToDevice) ;
cudaMemcpy(d_y , y . data () , s i z e , cudaMemcpyHostToDevice) ;
i n t gr idSz = (N+blockSz −1)/ blockSz ;
saxpy2<<<gridSz , blockSz , shMem>>>(N, computeIntens ity , d_x , d_y) ;
cudaMemcpy(y . data () , d_y , s i z e , cudaMemcpyDeviceToHost) ;
cudaFree (d_x) ;
cudaFree (d_y) ;

}

6.3. Tests and Results. In the first of the test scenarios we investigate the effect of a varying compute
intensity of the kernel on its execution time. We have measured and simulated execution times for compute
intensities (a parameter from Listing 2) spanning from 1 to 4096, while keeping all of the other parameters
constant. This test verifies whether the theoretical model works for kernels exhibiting various ratios of com-
putations to communication. For saxpy2 running with a maximum achievable occupancy of 64 warps per SM,
if the intensity is low, then the kernel is bound by the throughput of a global memory, if it is high enough
(32 in our case) it is bound by the CUDA cores throughput. We have observed that for all devices the model
accurately determines the kernel execution time, however for lower compute intensities it is less precise, as the
actual measured values diverge more from the predictions. This confirms that the model handles throughput
bound scenario very well when the bound is imposed by the CUDA cores and is less accurate when it is due to
the global memory system. The latter is not surprising as we have decided to take a simplified approach to the
global memory modelling, by not considering the gradual saturation effect, using an equation to determine the
theoretical memory throughput, and not adjusting it to the actual hardware characteristics.

The second test case verifies whether our implementation of the model handles two performance modes -
latency and throughput bound. To address both, we adjust the occupancy achieved when executing the kernel.
To control the occupancy without modifying the block size we allocate dummy shared memory that effectively
limits the maximum number of blocks that may be assigned to an SM. Note that it is not technically possible to
cover every single value of the occupancy due to the fact how block and warp allocation works but nevertheless
we were able to address a wide range of occupancies from 2 warps per SM to 64. Figure 6.1 shows the test results
for Maxwell devices, the model precisely determines the kernel execution time with an average relative error of
5.4% and 7.8% for GTX 970 and GTX TITAN X respectively. For GTX 1070 the error was 3.9%, we do not
present it on this and subsequent figures for the sake of brevity. Furthermore, the transition from latency bound
to throughput bound mode is represented accurately as well. Based on Fig. 6.1 we can determine the occupancy
at which the transition occurs, this is around 32 warps / SM where rest of the figure becomes flat. However, for
very small values of the occupancy the model overestimates the execution time by a small factor. Various block
sizes were used when performing this test and it was noticed that the block size had no significant effect on
the kernel execution time and the only significant factor was the occupancy. The validity of this conclusion is
confirmed by the fact that what matters is the effectiveness of the utilisation of SM resources, which is directly
related to achieved occupancy and not to the block size. The block size can only have an indirect effect by
affecting the occupancy, which was not the case here once we excluded uncommon scenarios, where the size was
smaller than 32. The proposed model is also based on calculation of the SM resources utilisation, therefore it
behaved correctly in this scenario.

For the last test, we start by considering the kernel execution time. The charts showing the execution time
in function of data size are depicted in Fig. 6.2 and Fig. 6.3, the former for small data sizes and the latter
for large ones. Since the model was calibrated for a scenario with hundreds of thousands of elements it is less

418 T. Gajger and P. Czarnul

0 8 16 24 32 40 48 56 64
0

500

1,000

1,500

2,000

2,500

Occupancy [warps / SM]

K
er

n
el

ex
ec

u
ti

o
n

ti
m

e
[m

s]

GTX970 - measured

GTX970 - predicted

TITAN X - measured

TITAN X - predicted

Fig. 6.1. Kernel execution time in function of occupancy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·10
6

0

0.1

0.2

0.3

0.4

Data size [elements]

K
er

n
el

ex
ec

u
ti

o
n

ti
m

e
[m

s]

GTX970 - measured

GTX970 - predicted

TITAN X - measured

TITAN X - predicted

Fig. 6.2. Kernel execution time for small data sizes

accurate when the data size is small and improves its accuracy as the number of elements to process increases.
The average error for large data size was 3.7% (GTX 970), 4.6% (GTX TITAN X) and 13.6% (GTX 1070).
The last one was expected to be higher since the model was calibrated for a different hardware architecture. The
important fact is that even for the overestimated results, the functional relation between the data size and the
execution time is maintained. This is acceptable since in real world scenarios the computations are performed
for large data sizes and a case where the data is relatively small may be considered an uncommon one.

Since this test concerns a varying data size it must include data transfer time estimation, unlike the previous
ones which focused only on the kernel execution. Given that our testbeds used different configurations of the
PCIe bus we measured λc and ts separately for each of them. The results are presented in Table 6.2, these were
then used as the parameters of the hardware unit, which are substituted to Eq. 4.6 in the computational model.

Measured and estimated data transfer times are shown in Fig. 6.4. A decrease in accuracy for smaller data
sizes resulting from an overestimation can be noticed, this is the same observation as in the case of the kernel
execution time. Note that the transfers from host to the device take twice as much time because there are two
arrays of N elements to be transferred in this direction, compared to only a single array that is transferred back.
We have also proved experimentally here what was pointed out earlier, that the λc and ts assume different
values depending on the transfer direction. If this effect was not considered, then the accuracy of the results
would be lower. For large data sizes the predicted values very closely resemble the measured ones, thus we may
conclude that the methodology proposed for measuring data transfer times is valid.

Finally, the total execution time of the application for large data sizes is presented in Fig. 6.5. Technically,
it sums up the results from the previous figures presented earlier in this section, since what comprises the
application execution time is the data transfer in both directions and the kernel execution. It also concludes
our work and proves its correctness by showing that the model we have implemented is capable of accurate

Modelling and Simulation of GPU Processing in the MERPSYS Environment 419

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·10
8

0

50

100

150

200

Data size [elements]

K
er

n
el

ex
ec

u
ti

o
n

ti
m

e
[m

s]

GTX970 - measured

GTX970 - predicted

TITAN X - measured

TITAN X - predicted

Fig. 6.3. Kernel execution time for large data sizes

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·10
8

0

500

1,000

1,500

2,000

2,500

Data size [elements]

D
a
ta

tr
a
n

sf
er

ti
m

e
[m

s]

GTX970 - DtH measured

GTX970 - DtH predicted

GTX970 - HtD measured

GTX970 - HtD predicted

TITAN X - DtH measured

TITAN X - DtH predicted

TITAN X - HtD measured

TITAN X - HtD predicted

Fig. 6.4. Data transfer times for large data sizes

prediction of the application execution time for the most essential scenario, achieving 1.8%, 0.5% and 1.5% mean
relative error for large data size (≥10000000 elements, where 1 element = 8 Bytes as described in Section 5), for
tested GPUs respectively. From the end user perspective, parameters like occupancy, block size and compute
intensity will likely be determined once and then kept constant. What is probably the most common real-world
use case, is verification of the application on different hardware setups and for different data sizes.

6.4. Discussion. For the most essential scenario with a varying data size, when this size was not very
small, the mean values of the error were 1.8% for GTX 970 and 0.5% for GTX TITAN X. Tests of a compute
bound kernel with varying occupancy yielded an average prediction error of 5.4% and 7.8% respectively which is
also a very good result. When the input data size was small or the kernel was bound by a memory throughput,
the relative prediction error had a mean value of 32.8% for GTX 970 and 9.9% for GTX TITAN X. Significantly
worse results for a memory throughput bound kernel are caused by a highly simplified memory access model. For
compute throughput bound kernels, the error went down to a few percent depending on the launch configuration.
It should be further noted that for every test case the functional relationship between the launch configuration
parameter being investigated and the application execution time was very closely reproduced by the model.

7. Summary and Future Work. We have implemented adaptation of a performance model proposed
by Volkov in the MERPSYS simulator for simulation of parallel applications on GPUs. We have verified
the correctness of the model for various launch configurations and representative scenarios on three testbeds.
MERPSYS has been proven to be an easily extendable and feasible tool for GPU modelling, and it was also

420 T. Gajger and P. Czarnul

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·10
8

0

1,000

2,000

3,000

4,000

Data size [elements]

A
p

p
li

ca
ti

o
n

ex
ec

u
ti

o
n

ti
m

e
[m

s]

GTX970 - measured

GTX970 - predicted

TITAN X - measured

TITAN X - predicted

Fig. 6.5. Application execution times for large data sizes

shown that processing on a GPU may be conveniently modelled with a high degree of accuracy using a general-
purpose simulator. MERPSYS, with the deployed model, allows its users to assess the behaviour of their
applications for data sizes exceeding the hardware capabilities of units available to them and even use ones that
are not in their possession, given that these are available in MERPSYS’ database. It allows to evaluate the
application on hardware setups, on which testing prior to actual computational runs, would not otherwise be
feasible, e.g. large clusters with a high cost per core-hour. It also allows to estimate the costs by predicting how
long it will take for the computations to finish. In case of long-running applications, this allows for significantly
shorter simulation times than the real runs.

The scope of modelling can be extended in the future as we have omitted double precision units, SFUs and
shared memory, all of these could be fairly easy added to the model. Moreover, the approach to modelling of
global memory accesses can be extended to consider caches, gradual saturation effect and varying access time
depending on the transfer direction. So far we did include CUDA and NVIDIA GPUs in the model, possible
extension includes its generalisation to be applicable to units produced by AMD and the OpenCL framework.
The model can be extended with inclusion of an equation for occupancy calculation, which could be incorporated
into the existing set of the equations and hence remove the need of relying on an external tool for this purpose.
The solution would also largely benefit from an automation of the kernel analysis process. The behaviour of
the model could also be verified on different GPU hardware architectures.

Acknowledgements. The work has been supported partially by the Polish Ministry of Science and Higher
Education.

REFERENCES

[1] Top 500 list. [accessed November-2018].
[2] M. Amaris, D. Cordeiro, A. Goldman, and R. Y. d. Camargo, A simple bsp-based model to predict execution time

in gpu applications, in 2015 IEEE 22nd International Conference on High Performance Computing (HiPC), Dec 2015,
pp. 285–294.

[3] M. Amaris, R. Y. de Camargo, M. Dyab, A. Goldman, and D. Trystram, A comparison of gpu execution time prediction
using machine learning and analytical modeling, in 2016 IEEE 15th International Symposium on Network Computing
and Applications (NCA), Oct 2016, pp. 326–333.

[4] M. Andersch, J. Lucas, M. Alvarez-Mesa, and B. Juurlink, Analyzing gpgpu pipeline latency, in Proc. 10th Int. Summer
School on Advanced Computer Architecture and Compilation for High-Performance and Embedded Systems, Fiuggi, Italy
(ACACES’ 14), July 2014.

[5] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W.-m. W. Hwu, An adaptive performance modeling
tool for gpu architectures, in Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’10, New York, NY, USA, 2010, ACM, pp. 105–114.

[6] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt, Analyzing cuda workloads using a detailed
gpu simulator, in 2009 IEEE International Symposium on Performance Analysis of Systems and Software, April 2009,
pp. 163–174.

Modelling and Simulation of GPU Processing in the MERPSYS Environment 421

[7] S. Bąk, M. Krystek, K. Kurowski, A. Oleksiak, W. Piątek, and J. Węglarz, Gssim – a tool for distributed computing
experiments, Sci. Program., 19 (2011), pp. 231–251.

[8] R. Buyya and M. Murshed, Gridsim: a toolkit for the modeling and simulation of distributed resource management and
scheduling for grid computing, Concurrency and Computation: Practice and Experience, 14 (2002), pp. 1175–1220.

[9] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya, Cloudsim: A toolkit for modeling and
simulation of cloud computing environments and evaluation of resource provisioning algorithms, Softw. Pract. Exper.,
41 (2011), pp. 23–50.

[10] N. Capodieci and P. Burgio, Efficient implementation of genetic algorithms on gp-gpu with scheduled persistent cuda
threads, in 2015 Seventh International Symposium on Parallel Architectures, Algorithms and Programming (PAAP), Dec
2015, pp. 6–12.

[11] Z. Cui, Y. Liang, K. Rupnow, and D. Chen, An accurate gpu performance model for effective control flow divergence
optimization, in 2012 IEEE 26th International Parallel and Distributed Processing Symposium, May 2012, pp. 83–94.

[12] P. Czarnul, ed., Modeling Large-Scale Computing Systems. Concepts and Models, Gdańsk University of Technology, Gdańsk,
Poland, 2013.

[13] , ed., Modeling Large-Scale Computing Systems. Practical Approaches in MERPSYS, Gdańsk University of Technology,
Gdańsk, Poland, 2016.

[14] P. Czarnul, J. Kuchta, and M. Matuszek, Parallel computations in the volunteer–based comcute system, in Parallel
Processing and Applied Mathematics, R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Waśniewski, eds., Berlin,
Heidelberg, 2014, Springer Berlin Heidelberg, pp. 261–271.

[15] P. Czarnul, J. Kuchta, M. Matuszek, J. Proficz, P. Rościszewski, M. Wójcik, and J. Szymański, Merpsys: An
environment for simulation of parallel application execution on large scale hpc systems, Simulation Modelling Practice
and Theory, 77 (2017), pp. 124 – 140.

[16] P. Czarnul, J. Kuchta, P. Rościszewski, and J. Proficz, Modeling energy consumption of parallel applications, in 2016
Federated Conference on Computer Science and Information Systems (FedCSIS), Sept 2016, pp. 855–864.

[17] P. Czarnul, P. Rościszewski, M. Matuszek, and J. Szymański, Simulation of parallel similarity measure computations
for large data sets, in 2015 IEEE 2nd International Conference on Cybernetics (CYBCONF), June 2015, pp. 472–477.

[18] P. Czarnul, K. Tomko, and H. Krawczyk, Dynamic partitioning of the divide-and-conquer scheme with migration in pvm
environment, in Recent Advances in Parallel Virtual Machine and Message Passing Interface, Y. Cotronis and J. Dongarra,
eds., Berlin, Heidelberg, 2001, Springer Berlin Heidelberg, pp. 174–182.

[19] T. T. Dao, J. Kim, S. Seo, B. Egger, and J. Lee, A performance model for gpus with caches, IEEE Transactions on Parallel
and Distributed Systems, 26 (2015), pp. 1800–1813.

[20] W. E. Denzel, J. Li, P. Walker, and Y. Jin, A framework for end-to-end simulation of high-performance computing systems,
in Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and
Systems & Workshops, Simutools ’08, ICST, Brussels, Belgium, Belgium, 2008, ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), pp. 21:1–21:10.

[21] B. Donassolo, H. Casanova, A. Legrand, and P. Velho, Fast and scalable simulation of volunteer computing systems
using simgrid, in Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing,
HPDC ’10, New York, NY, USA, 2010, ACM, pp. 605–612.

[22] M. Harris, An easy introduction to cuda c and c++, October 2012. [accessed November-2018].
[23] S. Hong and H. Kim, An analytical model for a gpu architecture with memory-level and thread-level parallelism awareness,

in Proceedings of the 36th Annual International Symposium on Computer Architecture, ISCA ’09, New York, NY, USA,
2009, ACM, pp. 152–163.

[24] J. C. Huang, J. H. Lee, H. Kim, and H. H. S. Lee, Gpumech: Gpu performance modeling technique based on interval
analysis, in 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture, Dec 2014, pp. 268–279.

[25] W. Jia, K. A. Shaw, and M. Martonosi, Stargazer: Automated regression-based gpu design space exploration, in 2012 IEEE
International Symposium on Performance Analysis of Systems Software, April 2012, pp. 2–13.

[26] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, Dissecting the NVIDIA Volta GPU Architecture via Microbench-
marking, ArXiv e-prints, (2018).

[27] A. Kerr, G. Diamos, and S. Yalamanchili, A characterization and analysis of ptx kernels, in Workload Characterization,
2009. IISWC 2009. IEEE International Symposium on, oct. 2009, pp. 3 –12.

[28] , Modeling gpu-cpu workloads and systems, in Proceedings of the 3rd Workshop on General-Purpose Computation on
Graphics Processing Units, GPGPU-3, New York, NY, USA, 2010, ACM, pp. 31–42.

[29] K. Kurowski, J. Nabrzyski, A. Oleksiak, and J. Węglarz, Gssim - grid scheduling simulator, Computational Methods
in Science and Technology, 13 (2007), pp. 121–129.

[30] S. Madougou, A. Varbanescu, C. de Laat, and R. van Nieuwpoort, The landscape of gpgpu performance modeling tools,
Parallel Comput., 56 (2016), pp. 18–33.

[31] S. Madougou, A. L. Varbanescu, C. D. Laat, and R. V. Nieuwpoort, A tool for bottleneck analysis and performance
prediction for gpu-accelerated applications, in 2016 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), May 2016, pp. 641–652.

[32] O. Maitre, Understanding NVIDIA GPGPU Hardware, Springer-Verlag, Berlin, 2013.
[33] Micron Technology, Gddr5 sgram introduction, 2014.
[34] NVIDIA Corporation, Cuda occupancy calculator, December 2016. [accessed November-2018].
[35] , nvidia-smi - nvidia system management interface, July 2016. [accessed November-2018].
[36] , Cuda binary utilities, March 2017. [accessed November-2018].
[37] , Cuda c programming guide, June 2017. [accessed November-2018].

422 T. Gajger and P. Czarnul

[38] , Nvidia cuda compiler driver nvcc, March 2017. [accessed November-2018].
[39] , Parallel thread execution isa, March 2017. [accessed November-2018].
[40] A. K. Parakh, M. Balakrishnan, and K. Paul, Performance estimation of gpus with cache, in 2012 IEEE 26th International

Parallel and Distributed Processing Symposium Workshops PhD Forum, May 2012, pp. 2384–2393.
[41] S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, Containercloudsim: An environment for modeling and

simulation of containers in cloud data centers, Software: Practice and Experience, 47 (2017), pp. 505–521. spe.2422.
[42] M. Quinson, Simgrid: a generic framework for large-scale distributed experiments, in 2009 IEEE Ninth International Con-

ference on Peer-to-Peer Computing, Sept 2009, pp. 95–96.
[43] H. Rashidi, Discrete simulation software: a survey on taxonomies, Journal of Simulation, 11 (2017), pp. 174–184.
[44] P. Rościszewski, Modeling and simulation for exploring power/time trade-off of parallel deep neural network training,

Procedia Computer Science, 108 (2017), pp. 2463 – 2467. International Conference on Computational Science, ICCS
2017, 12-14 June 2017, Zurich, Switzerland.

[45] T. Scudiero, Memory bandwidth bootcamp: Best practices, in Proceedings of the GPU Technology Conference, GTC, 2015.
[46] , Memory bandwidth bootcamp: Beyond best practices, in Proceedings of the GPU Technology Conference, GTC, 2015.
[47] A. Siavashi and M. Momtazpour, Gpucloudsim: an extension of cloudsim for modeling and simulation of gpus in cloud

data centers, The Journal of Supercomputing, (2018).
[48] A. Sulistio, C. S. Yeo, and R. Buyya, A taxonomy of computer-based simulations and its mapping to parallel and distributed

systems simulation tools, Softw., Pract. Exper., 34 (2004), pp. 653–673.
[49] L. G. Valiant, A bridging model for parallel computation, Commun. ACM, 33 (1990), pp. 103–111.
[50] V. Volkov, Better performance at lower occupancy, in Proceedings of the GPU Technology Conference, GTC, vol. 10, 2015.
[51] , Understanding Latency Hiding on GPUs, PhD thesis, EECS Department, University of California, Berkeley, Aug

2016.
[52] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou, Gpgpu performance and power estimation using

machine learning, in 2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA),
Feb 2015, pp. 564–576.

[53] Y. Zhang and J. D. Owens, A quantitative performance analysis model for gpu architectures, in 2011 IEEE 17th International
Symposium on High Performance Computer Architecture, Feb 2011, pp. 382–393.

Edited by: Dana Petcu
Received: Sep 7, 2018
Accepted: Nov 3, 2018

Scalable Computing: Practice and Experience
Volume 19, Number 4, pp. 423–432. http://www.scpe.org

DOI 10.12694/scpe.v19i4.1468
ISSN 1895-1767

© 2018 SCPE

A COMPARISON OF MESSAGE PASSING INTERFACE (MPI) AND CO-ARRAY
FORTRAN FOR LARGE FINITE ELEMENT VARIABLY SATURATED FLOW

SIMULATIONS ∗

FRED T. TRACY†, THOMAS C. OPPE‡, AND MAUREEN K. CORCORAN§

Abstract. The purpose of this research is to determine how well co-array FORTRAN (CAF) performs relative to Message
Passing Interface (MPI) on unstructured mesh finite element groundwater modelling applications with large problem sizes and core
counts. This research used almost 150 million nodes and 300 million 3-D prism elements. Results for both the Cray XE6 and Cray
XC30 are given. A comparison of the ghost-node update algorithms with source code provided for both MPI and CAF is also
presented.

Key words: Co-array FORTRAN, MPI, finite element method, variably saturated seepage flow modelling

AMS subject classifications. 35J66, 65Y05, 76S05

1. Introduction. Several parallel programming paradigms have been developed in recent years as alterna-
tives to the popular software Message Passing Interface (MPI) [1] used for passing messages among the processes
of a distributed memory parallelized program. One of these new ways is the Partitioned Global Address Space
(PGAS) [2] paradigm where arrays partitioned across processes can be referenced by special syntax implemented
in the language. A popular PGAS language for FORTRAN users is co-array FORTRAN (CAF) [3], and a CAF
specification has been adopted in the FORTRAN 2008 standard. CAF has performed better than MPI for
certain applications, and it was found easier to program than MPI. A recent example tested structured-grid
partial-differential-equation applications [4].

A recent paper [7] describing the challenges and scalability results of running a large finite element model
of variably saturated flow [5] in a three-dimensional (3-D) levee on a large high performance, parallel computer
where MPI was used for the communication was published. Using the same levee model, this current research
expands that work by using CAF for the communication and comparing these results with the results using
MPI. The original finite element model consisted of 3,017,367 nodes and 5,836,072 3-D prism elements running
on 32 cores, and the problem and core count were magnified as much as 350 times to achieve 1,044,246,303
nodes and 2,042,625,200 elements.

A traditional partitioning of the mesh achieved approximately the same number of finite element nodes on
each core. Thus, the main communication challenge was updating ghost-node information on the different cores
for a solution of a system of simultaneous, linear equations at each nonlinear iteration. In both the MPI and
CAF versions, the ghost node data are first buffered and then sent to the different cores where they are needed.
Details of the FORTRAN coding for both MPI and CAF are described herein.

2. Description of the problem. The problem consists of steady-state seepage flow through a levee as
shown in Fig. 2.1 and idealised in Fig. 2.2 where there are several soil layers. A detailed description of this
problem is given in [6, 7]. The challenges of parallelization using MPI of the groundwater program used in this
research, when the problem size is approximately one billion nodes and two billion elements, are given in [7].
Performance results are also given. Fig. 2.3 shows a portion of the 3-D mesh of the levee system before a tree
with its root system was added at the toe. More details of the modelling of the woody vegetation are given
in [6]. To model the tree root at the toe of the levee, a 5 ft × 6 ft × 6 ft heterogeneous zone was added in
which the mesh was refined using 1 in × 1 in × 1 in 3-D prism elements (Fig. 2.4). To simulate heterogeneities,
a randomly generated hydraulic conductivity was assigned to each element in this zone. The resulting mesh
consisted of 3,017,367 nodes and 5,836,072 3-D prism elements.

∗This work was supported in part by a grant of computer time from the Department of Defense High Performance Computing
Modernization Program (HPCMP).

†Information Technology Laboratory (ITL), Engineer Research and Development Center (ERDC), Vicksburg, MS.
‡ITL, ERDC, Vicksburg, MS.
§Geotechnical and Structures Laboratory, ERDC, Vicksburg, MS.

423

424 F. T. Tracy, T. C. Oppe and M. K. Corcoran

Fig. 2.1. River side of a levee with trees.�

�

�
����

����

�

����������	�
�������

������	����	
�������

���	���������

�������

������������
�����������

�	�
�

�	���������
	���

Fig. 2.2. Cross section of a levee with material types and elevation of the river.

3. High performance parallel computing. The parallel 3-D groundwater finite element program men-
tioned above was run on Garnet, the Cray XE6 at the U.S. Army Engineer Research and Development Center
(ERDC) [8], and on Lightning, the Cray XC30 at the Air Force Research Laboratory, Aberdeen, MD [9]. At the
time of this study, Garnet consisted of 4,716 dual-socket compute nodes with each socket populated with a 2.5
GHz 16-core AMD 6200 Opteron (Interlagos) processor. Each node had 64 GB memory (60 GB user-accessible)
or an average of 1.875 GB memory per core. The interconnect type was Cray Gemini in a 3-D torus topology.
Garnet was rated at 1.5 peak PFLOPS or 10 GFLOPS per core when these computations were done. Garnet
had a large Lustre file system that was tuned for parallel I/O. At the time of this research, Lightning consisted
of 2,360 dual-socket compute nodes with each socket populated with a 2.7 GHz 12-core Intel Xeon E5-2697v2
(Ivy Bridge) processor. Each node had 64 GB memory (63 GB user-accessible) or an average of 2.625 GB
memory per core. The interconnect type was Cray Aries in a Dragonfly topology. Lightning was rated at 1.2
peak PFLOPS or 21.6 GFLOPS per core when the data in this paper were collected. Lightning had a large
Lustre file system that was also tuned for parallel I/O.

The parallelization of the 3-D seepage/groundwater program was separated into four parts or programs.
One MPI process or one CAF image was placed on each core of a compute node. The four programs are (1)
a partitioner using the Parallel Graph Partitioning and Fill-reducing Matrix Ordering program, ParMETIS
[10], to divide the mesh into approximately equal pieces among the MPI processes or CAF images, (2) a
preparer to provide data, such as owned nodes, ghost nodes, owned elements, ghost elements, and communication
data, needed for each MPI process or CAF image, (3) a finite element program that does the finite element
computations with output files containing results for each owned node of that MPI process or CAF image, and
(4) a post processor that combines all data from each MPI process or CAF image into the final output files.

A Comparison of MPI and Co-array FORTRAN for Large Finite Element Variably Saturated Flow Simulations 425

Fig. 2.3. Portion of the 3-D mesh before the root zone was added.

The primary communication challenge is ghost node updates in the conjugate gradient or BICG-STAB
[11] linear solvers using either a Picard or Newton linearization [12, 13] of the governing nonlinear equation of
Richards’ equation [14]. As in [7], only times to solution for the finite element part of the program suite were
collected for MPI and CAF and reported in this paper. The ghost node update routine for both MPI and CAF
is examined in detail in the following section.

4. Ghost node update.

4.1. MPI. Table 4.1 gives the ghost node update subroutine for MPI and a description of the important
variables. The subroutine has three steps: (1) a set-up phase in which data are to be received from the different
cores, (2) send data to the different cores, and (3) wait until all the MPI messages have been processed. The
arrays, nstngh, ighost, and nodgh have all been supplied by the preparer program. There are no global arrays
in the parallel versions of the finite element program, i.e., no arrays with sizes of the total number of nodes or
the total number of elements. The elimination of global arrays allowed for much larger finite element meshes
to be run.

4.2. CAF. Table 4.2 gives the ghost node update subroutine for CAF and a description of the important
variables. The same data provided in the MPI version were also provided to the CAF subroutine. The CAF
version of ghost node updating is simpler than the MPI version in that for CAF, data are first placed in a buffer
and then directly “put” into the different cores by the statement,

vc(nst : nst + num - 1)[i] = buff(:)

While in the MPI case, the efficiency of the data transfer is dependent on how well MPI_IRECV, MPI_SEND, and
MPI_WAIT are implemented, the efficiency of the CAF routine is dependent on the quality of the FORTRAN
compiler implementation and internal data transfer capability. It is also important to note that two explicit
barrier calls,

call sync_all

were required in the CAF implementation, whereas none were required in the MPI version. Also, the huge page
option described by

module load craype-hugepages2M

was required to run the CAF version.

426 F. T. Tracy, T. C. Oppe and M. K. Corcoran�

�

�

�

�

�

�

����

����

�

����

Fig. 2.4. Heterogeneous zone representing the roots of a tree.

5. Results and Analysis. All runs on both computers were done using the Cray compiler with -O1
optimisation.

5.1. Results. Tables 5.1 and 5.2 give the time to solution for the finite element program on the Cray
XE6 and XC30 for different problem sizes and core counts. The m represents how much the original problem
is magnified to produce larger problem sizes. When m = 2, for instance, two original meshes are created and
joined such that the number of elements is exactly doubled, and the number of nodes is doubled less one set of
the nodes common to the two pieces. The original problem was run with 96 cores. Although the MPI version of
the finite element program could run this problem on 32 cores, the first multiple of 32 where the CAF version
would run was 96. Values of m = 1, 2, 5, 10, 20, and 50 were run. The running times for MPI and CAF for
three runs, their respective averages, and the ratio of MPI to CAF running times were tabulated for each m

value and core count.

5.1.1. Analysis. The following observations are made:
• When m = 1 and the number of cores is 96, the ratio of MPI / CAF running times was almost equal.
• As m increased, this ratio got significantly smaller. The ratios become so small that m was not increased

further than 50. Apparently, the global synchronisations required by the CAF implementation became
increasingly costly as the partition size grew.

• The MPI/CAF ratio is larger for the XE6 than the XC30.
• The XC30 running times are approximately half of those of the XE6.

A Comparison of MPI and Co-array FORTRAN for Large Finite Element Variably Saturated Flow Simulations 427

Table 4.1
Ghost node update for MPI.

Receive FORTRAN code

do i = 1, noproc
num = numngh(i)
if (num .ne. 0) then

itag = 100
nst = nstngh(i)
call MPI_IRECV (v(nst), num, MPI_REAL8, i - 1, itag, MPI_COMM_WORLD, &

ireq(i), ierror)
end if

end do

Send FORTRAN code

allocate (buff(num_max))

do i = 1, noproc
num = ighost(i + 1) - ighost(i)
if (num .ne. 0) then

do j = 1, num
jloc = nodgh(ighost(i) + j)
buff(j) = v(jloc)

end do
itag = 100
call MPI_SEND (buff, num, MPI_REAL8, i - 1, itag, MPI_COMM_WORLD, ierror)

end if
end do

deallocate (buff)

Wait FORTRAN code

do i = 1, noproc
if (numngh(i) .ne. 0) then

call MPI_WAIT (ireq(i), istat, ierror)
end if

end do

noproc = number of cores or MPI processes
num_max = maximum number of ghost node data to send

v = variable to be updated
nstngh(i) = the starting address of v where data are to be received from core, i - 1

numngh(i) = the number of values be received in v from core, i - 1
nodgh = array containing local node numbers whose data are to be sent to other cores
ighost = array containing the accumulated number of ghost nodes whose data

are to be sent

428 F. T. Tracy, T. C. Oppe and M. K. Corcoran

Table 4.2
Ghost node update for CAF.

Special CAF variables

common / caf / nstnghc(npmx)[*], vc(ndlmx)[*]

CAF put FORTRAN code

call sync_all
allocate (buff(num_max))

do i = 1, noproc
num = ighost(i + 1) - ighost(i)
if (num .ne. 0) then

nst = nstnghc(image)[i]
do j = 1, num

jloc = nodgh(ighost(i) + j)
buff(j) = v(jloc)

end do
vc(nst : nst + num - 1)[i] = buff(:)

end if
end do

call sync_all
deallocate (buff)

do i = nnpown + 1, nnpl
v(i) = vc(i)

end do

noproc = number of cores or CAF images
image = CAF image number
npmx = maximum number of CAF images

nnpl = number of local nodes
ndlmx = maximum number of local nodes

v = variable to be updated
vc = CAF array containing the updated ghost node data

nstnghc(i) = CAF array containing the starting address of v where data are
to be received from core, i

nodgh = array containing local node numbers whose data are to be sent
to other cores

ighost = array containing the accumulated number of ghost nodes whose data
are to be sent

A Comparison of MPI and Co-array FORTRAN for Large Finite Element Variably Saturated Flow Simulations 429

Table 5.1
Time (sec) for MPI and CAF on the Cray XE6 and XC30 for m = 1, 2, and 5.

m Nodes Elements Cores Cray
Time Time Ratio
MPI CAF MPI/CAF

1 3017367 5836072 96
XE6 788.0 816.0
XC30 323.6 376.6

XE6 786.6 826.7
XC30 324.8 379.2

XE6 767.7 820.7
XC30 322.1 375.3

XE6
Avg.

780.8
Avg.

820.8 0.95
XC30 323.5 377.0 0.86

128
XE6 601.1 658.8
XC30 252.1 322.6

XE6 597.3 723.7
XC30 258.4 325.4

XE6 596.6 628.9
XC30 257.0 343.3

XE6
Avg.

598.3
Avg.

670.5 0.89
XC30 255.8 330.4 0.77

2 6000831 11672144 192
XE6 804.1 1028.7
XC30 283.0 393.6

XE6 788.8 850.2
XC30 281.5 363.7

XE6 786.3 896.4
XC30 281.4 397.8

XE6
Avg.

793.1
Avg.

925.1 0.86
XC30 282.0 385.0 0.73

256
XE6 642.1 914.4
XC30 255.8 408.5

XE6 604.0 692.1
XC30 258.1 383.5

XE6 659.4 917.5
XC30 256.0 386.7

XE6
Avg.

645.2
Avg.

841.3 0.76
XC30 256.6 392.9 0.65

5 14951223 29180360 480
XE6 878.3 1361.8
XC30 344.0 636.8

XE6 819.0 1292.5
XC30 347.3 630.1

XE6 829.4 1287.3
XC30 347.1 635.3

XE6
Avg.

842.2
Avg.

1313.9 0.64
XC30 346.1 634.1 0.55

640
XE6 708.8 1491.8
XC30 260.5 576.3

XE6 599.6 1254.0
XC30 264.4 671.2

XE6 663.4 1241.4
XC30 267.5 595.9

XE6
Avg.

657.3
Avg.

1328.1 0.49
XC30 264.1 614.5 0.43

430 F. T. Tracy, T. C. Oppe and M. K. Corcoran

Table 5.2
Time (sec) for MPI and CAF on the Cray XE6 and XC30 for m = 10, 20, and 50.

m Nodes Elements Cores Cray
Time Time Ratio
MPI CAF MPI/CAF

10 3017367 58360720 960
XE6 862.0 1691.6
XC30 344.7 910.7

XE6 881.2 1730.2
XC30 353.1 912.2

XE6 867.5 1473.4
XC30 349.5 907.5

XE6
Avg.

870.2
Avg.

1631.7 0.53
XC30 349.1 910.1 0.38

1280
XE6 632.9 1309.0
XC30 266.9 995.1

XE6 624.6 1584.0
XC30 267.6 999.3

XE6 609.4 1768.6
XC30 267.6 998.2

XE6
Avg.

622.3
Avg.

1553.9 0.40
XC30 267.4 997.5 0.27

20 59703183 116721440 1920
XE6 957.7 2685.8
XC30 351.0 1330.3

XE6 852.6 3031.6
XC30 356.3 1465.0

XE6 874.4 2760.2
XC30 363.9 1326.6

XE6
Avg.

894.9
Avg.

2825.9 0.32
XC30 357.1 1374.0 0.26

2560
XE6 659.8 2609.2
XC30 276.5 1496.1

XE6 651.8 2641.7
XC30 276.1 1755.5

XE6 651.2 2283.0
XC30 274.9 1473.7

XE6
Avg.

654.3
Avg.

2511.3 0.26
XC30 275.8 1575.1 0.18

50 149207103 291803600 4800
XE6 882.9 5242.1
XC30 374.6 2990.1

XE6 883.0 5704.6
XC30 356.7 3133.1

XE6 923.0 5255.3
XC30 359.4 3140.2

XE6
Avg.

896.3
Avg.

5400.7 0.17
XC30 363.6 3087.8 0.12

6400
XE6 703.2 5792.8
XC30 306.9 3801.3

XE6 739.6 6902.2
XC30 302.3 3833.0

XE6 749.1 6256.4
XC30 300.3 3796.7

XE6
Avg.

730.6
Avg.

6317.1 0.12
XC30 303.2 3810.3 0.08

A Comparison of MPI and Co-array FORTRAN for Large Finite Element Variably Saturated Flow Simulations 431

Table 6.1
Consistency check comparing values of pressure head from the original mesh and the mesh for m = 50 for the first 10 nodes

and last 6 nodes of each mesh.

m = 1 m = 50

Node MPI CAF Node MPI CAF

1 129.00000 129.00000 1 129.00000 129.00000

2 128.99678 128.99678 2 128.99678 128.99678

3 128.99345 128.99345 3 128.99345 128.99345

4 119.00000 119.00000 4 119.00000 119.00000

5 118.99735 118.99735 5 118.99735 118.99735

6 124.23808 124.23808 6 124.23808 124.23808

7 118.99464 118.99464 7 118.99464 118.99464

8 123.54520 123.54520 8 123.54520 123.54520

9 128.98993 128.98993 9 128.98993 128.98993

10 110.50000 110.50000 10 110.50000 110.50000

6000826 0.0000000 0.0000000 149207098 0.0000000 0.0000000

6000827 0.041718483 0.041718484 149207099 0.041718479 0.041718479

6000828 3.0365778 3.0365778 149207100 3.0365779 3.0365779

6000829 0.036494873 0.036494870 149207101 0.036494875 0.036494875

6000830 0.0000000 0.0000000 149207102 0.0000000 0.0000000

6000831 0.0000000 0.0000000 149207103 0.0000000 0.0000000

6. Consistency check. A check for consistency for the first 10 nodes and last 6 nodes of the meshes for
m = 1 and m = 50 was done with pressure head results placed in Table 6.1. The MPI and CAF results should
be the same and because of symmetry, the values for m = 1 and m = 50 should also be the same. A comparison
of the MPI and CAF results in Table 6.1 shows excellent consistency.

7. Conclusions. The following conclusions can be drawn:
1. Both MPI and CAF versions ran successfully and gave the same results.
2. As the problem size and process count increased, the results remained consistent.
3. The update routine for CAF was simpler than that for MPI.
4. CAF required more memory than MPI to run the same size mesh.
5. CAF required huge pages, but MPI did not.
6. CAF required explicit barriers, but MPI did not.
7. For the original problem, CAF and MPI performed almost the same when using 96 cores.
8. As the problem size and process count grew, MPI performed much better than CAF.
9. The MPI/CAF ratio is larger for the XE6 than the XC30.

10. The XC30 running times are approximately half of those of the XE6.

REFERENCES

[1] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard, Version 3.0, http://www.mpi-
forum.org/docs/mpi-3.0/mpi30-report.pdf, 2012.

[2] PGAS, Partitioned Global Address Space, http://pgas.org, 2015.
[3] R. W. Numrich and J. K. Reid, Co-arrays in the next FORTRAN Standard, Scientific Programming, 14 (2006), pp. 1-18.
[4] S. Garain, D. S. Balsara, and J. Reid, Comparing Co-array FORTRAN (CAF) with MPI for several structured mesh

PDE applications, J. of Comp. Physics, 297 (2015), pp. 237-253.
[5] J. Istok, Groundwater modelling by the finite element method, AGU, 1989.
[6] M. Corcoran, J. Peters, J. Dunbar, J. Llopis, F. Tracy, J. Wibowo, J. Simms, C. Kees, S. McKay, J. Fischenich,

M. Farthing, M. Glynn, B. Robbins, R. Strange, M. Schultz, J. Clarke, T. Berry, C. Little, and L. Lee, Initial
research into the effects of woody vegetation on levees, volume I of IV: project overview, volume II of IV: field data
collection, volume III of IV: numerical model simulation, and volume IV of IV: summary of results and conclusions,
U.S. Army Engineer Research and Development Center, Vicksburg, MS, 2011.

[7] F. T. Tracy, T. C. Oppe, W. A. Ward, and M. K. Corcoran, A scalability study using supercomputers for huge finite
element variably saturated flow simulations, Scalable Computing: Practice and Experience, 16 (2015), pp. 153-162.

432 F. T. Tracy, T. C. Oppe and M. K. Corcoran

[8] ERDC DSRC, http://www.erdc.hpc.mil/hardware/index.html, Department of Defense Supercomputing Resource Center,
Vicksburg, MS, 2014.

[9] AFRL DSRC, http://www.afrl.hpc.mil/index.html, Department of Defense Supercomputing Resource Center, Aberdeen, MD,
2014.

[10] G. Karypis, ParMETIS - Parallel Graph Partitioning and Fill-reducing Matrix Ordering, http://glaros.dtc.umn.edu/
gkhome/metis/parmetis/overview, 2014.

[11] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2003.
[12] S. Mehl, Use of Picard and Newton iteration for solving nonlinear ground water flow equations, Ground Water, 44 (2006),

pp. 583-594.
[13] C. T. Kelley, Solving nonlinear equations with Newton’s method, SIAM, 2003.
[14] L. A. Richards, Capillary conduction of liquids through porous mediums, J. of Physics, 1 (1931), pp. 318-333.

Edited by: Dana Petcu
Received: Nov 23, 2018
Accepted: Dec 23, 2018

AIMS AND SCOPE

The area of scalable computing has matured and reached a point where new issues and trends require a pro-
fessional forum. SCPE will provide this avenue by publishing original refereed papers that address the present
as well as the future of parallel and distributed computing. The journal will focus on algorithm development,
implementation and execution on real-world parallel architectures, and application of parallel and distributed
computing to the solution of real-life problems. Of particular interest are:

Expressiveness:
• high level languages,
• object oriented techniques,
• compiler technology for parallel computing,
• implementation techniques and their effi-
ciency.

System engineering:
• programming environments,
• debugging tools,
• software libraries.

Performance:
• performance measurement: metrics, evalua-
tion, visualization,

• performance improvement: resource allocation
and scheduling, I/O, network throughput.

Applications:

• database,

• control systems,

• embedded systems,

• fault tolerance,

• industrial and business,

• real-time,

• scientific computing,

• visualization.

Future:

• limitations of current approaches,

• engineering trends and their consequences,

• novel parallel architectures.

Taking into account the extremely rapid pace of changes in the field SCPE is committed to fast turnaround
of papers and a short publication time of accepted papers.

INSTRUCTIONS FOR CONTRIBUTORS

Proposals of Special Issues should be submitted to the editor-in-chief.
The language of the journal is English. SCPE publishes three categories of papers: overview papers,

research papers and short communications. Electronic submissions are preferred. Overview papers and short
communications should be submitted to the editor-in-chief. Research papers should be submitted to the editor
whose research interests match the subject of the paper most closely. The list of editors’ research interests can
be found at the journal WWW site (http://www.scpe.org). Each paper appropriate to the journal will be
refereed by a minimum of two referees.

There is no a priori limit on the length of overview papers. Research papers should be limited to approx-
imately 20 pages, while short communications should not exceed 5 pages. A 50–100 word abstract should be
included.

Upon acceptance the authors will be asked to transfer copyright of the article to the publisher. The
authors will be required to prepare the text in LATEX2ε using the journal document class file (based on the
SIAM’s siamltex.clo document class, available at the journal WWW site). Figures must be prepared in
encapsulated PostScript and appropriately incorporated into the text. The bibliography should be formatted
using the SIAM convention. Detailed instructions for the Authors are available on the SCPE WWW site at
http://www.scpe.org.

Contributions are accepted for review on the understanding that the same work has not been published
and that it is not being considered for publication elsewhere. Technical reports can be submitted. Substantially
revised versions of papers published in not easily accessible conference proceedings can also be submitted. The
editor-in-chief should be notified at the time of submission and the author is responsible for obtaining the
necessary copyright releases for all copyrighted material.

