
Scalable Computing:
Practice and Experience

Scientific International Journal
for Parallel and Distributed Computing

ISSN: 1895-1767

⑦⑦
⑦
⑦

⑦
⑦

t

Volume 22(1) March 2021

Editor-in-Chief

Dana Petcu

Computer Science Department

West University of Timisoara

and Institute e-Austria Timisoara

B-dul Vasile Parvan 4, 300223

Timisoara, Romania

Dana.Petcu@e-uvt.ro

Managinig and

TEXnical Editor

Silviu Panica

Computer Science Department

West University of Timisoara

and Institute e-Austria Timisoara

B-dul Vasile Parvan 4, 300223

Timisoara, Romania

Silviu.Panica@e-uvt.ro

Book Review Editor

Shahram Rahimi

Department of Computer Science

Southern Illinois University

Mailcode 4511, Carbondale

Illinois 62901-4511

rahimi@cs.siu.edu

Software Review Editor

Hong Shen

School of Computer Science

The University of Adelaide

Adelaide, SA 5005

Australia

hong@cs.adelaide.edu.au

Domenico Talia

DEIS

University of Calabria

Via P. Bucci 41c

87036 Rende, Italy

talia@deis.unical.it

Editorial Board

Peter Arbenz, Swiss Federal Institute of Technology, Zürich,

arbenz@inf.ethz.ch

Dorothy Bollman, University of Puerto Rico,

bollman@cs.uprm.edu

Luigi Brugnano, Università di Firenze,

brugnano@math.unifi.it

Giacomo Cabri, University of Modena and Reggio Emilia,

giacomo.cabri@unimore.it

Bogdan Czejdo, Fayetteville State University,

bczejdo@uncfsu.edu

Frederic Desprez, LIP ENS Lyon, frederic.desprez@inria.fr

Yakov Fet, Novosibirsk Computing Center, fet@ssd.sscc.ru

Giancarlo Fortino, University of Calabria,

g.fortino@unical.it

Andrzej Goscinski, Deakin University, ang@deakin.edu.au

Frederic Loulergue, Northern Arizona University,

Frederic.Loulergue@nau.edu

Thomas Ludwig, German Climate Computing Center and Uni-

versity of Hamburg, t.ludwig@computer.org

Svetozar Margenov, Institute for Parallel Processing and Bul-

garian Academy of Science, margenov@parallel.bas.bg

Viorel Negru, West University of Timisoara,

Viorel.Negru@e-uvt.ro

Moussa Ouedraogo, CRP Henri Tudor Luxembourg,

moussa.ouedraogo@tudor.lu

Marcin Paprzycki, Systems Research Institute of the Polish

Academy of Sciences, marcin.paprzycki@ibspan.waw.pl

Roman Trobec, Jozef Stefan Institute, roman.trobec@ijs.si

Marian Vajtersic, University of Salzburg,

marian@cosy.sbg.ac.at

Lonnie R. Welch, Ohio University, welch@ohio.edu

Janusz Zalewski, Florida Gulf Coast University,

zalewski@fgcu.edu

SUBSCRIPTION INFORMATION: please visit http://www.scpe.org

Scalable Computing: Practice and Experience

Volume 22, Number 1, March 2021

TABLE OF CONTENTS

Regular Papers:

A Novel Approach for Cluster Head Selection using Trust Function in

WSN 1

Vipul Narayan, A.K. Daniel

Mitigating Malicious Insider Attacks in the Internet of Things using

Supervised Machine Learning Techniques 13

Mir Shahnawaz Ahmad, Shahid Mehraj Shah

Estimation of Traffic Matrix from Links Load using Genetic Algorithm 29

Joseph L Pachuau, Arnab Roy, Gopal Krishna, Anish Kumar Saha

A Microservice Decomposition Method Through Using Distributed

Representation of Source Code 39

Omar Al-Debagy, Péter Martinek

A Novel Sentiment Analysis for Amazon Data with TSA based Feature

Selection 53

Anand Joseph Daniel D., Janaki Meena M.

Distributed Application Checkpointing for Replicated State Machines 67

Niyazi Özdinç, Tolga Ovatman

Improved Localized Sleep Scheduling Techniques to Prolong WSN

Lifetime 81

Nachiketa Tarasia, Amulya Ratna Swain, Soham Roy, Udit Narayana Kar

© SCPE, Timişoara 2021

Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org

© 2021 SCPE. Volume 22, Issues 1, pp. 1–13, DOI 10.12694:/scpe.v22i1.1808

A NOVEL APPROACH FOR CLUSTER HEAD SELECTION
USING TRUST FUNCTION IN WSN

VIPUL NARAYAN∗
AND A.K. DANIEL†

Abstract. The enhancement of new technology in the sensor network shows a significant result in every aspect of life such as
military surveillance, hospitals, mining and hospitals etc. The nodes are scattered randomly in RoI (Region of Interest) and data
is transmitted to Base Station (BS) using the multi-hop technique. The Wireless Sensor Network (WSN) become an important
research field for challenging problems as energy consumption, efficient cluster head selection process, routing algorithm, network
strength, packet loss, energy loss and so forth. The agenda in the paper is to enhance Residual Energy (RE) of nodes and network
lifetime. The problem is solved by using an efficient clustering and Cluster Head (CH) selection process.The cluster head selection
is based on the maximum node residual energy and the minimum distance from the base station. The Proposed protocol worked
in two stages. The new Threshold value T(H) is calculated for the cluster head selection process in the first stage. The data fusion
method based on the trust function is used to get accurate data in the second stage. The energy model is utilized to reduce the
excessive energy transmission inside the network. The Proposed protocol is compared with Stable Election Protocol and achieves
44% lifetime improvement, 59% stability improvement and 15% in survival rate respectively.

Key words: Clustering, Cluster Head Selection, Energy Efficiency, Wireless Sensor Network, Trust.

AMS subject classifications. 68M14

1. Introduction. Recent growth in the field of the mobile internet and sensor network technology has
motivated the mindset of people towards new technology [1][2]. The Sensor Nodes (SN) are distributed to cover
the network area and interact with the external environment using certain communication factors. The SN have
limited battery power. The multiple SN are required to perform real-time tracking of objects in the network.
In the twenty-one century, the WSN has played a significant impact on human lives. The evolution of science
engineering and advanced technology in many disciplines improve sensor nodes technology and influences daily
life nowadays. In year 1970s, the first generation sensor network was introduced. The SN follow point to point
communication to transfer the data to BS. The next generation sensor network instead comprises less energy
and operated independently with the cooperation of former nodes and collects data in the network. In the early
1990s, the third generation sensor network was introduced in the market with advance features and use a device
manager and bus connection system to collect the information in the network. The fourth generation sensor
networks have an advanced characteristic which performs a multi-hop approach and self-organizing features in
the network for data transmission in the WSN [3][4]. The sensor network collects the information from various
sources and sent to BS via single/multiple hop fashion. The sensor objects and observers play a significant
role together for establishing communication via the communication link in the network. The multiple SN are
deployed in the critical zone area after regular interval of time because data collection in these places are very
difficult. The location of every SN in the network is not easily tracked. The GPS is used in some sensor nodes
to know the exact location in the network. The sensor network has played an important role in the current
scenario as deployement strategy,protocol design and green communication etc.[5]. The various applications
are handled remotely and embedded therefore,requirements of sensor network in every place for the scientific
and research purpose [6]. The modern sensor network technology is much more efficient than the traditional
network. The node energy and environmental interruption affects the communication in the network. The

∗Department of Computer Science and Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, India.
(vipulupsainian2470@gmail.com).

†Department of Computer Science and Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, India.
(danielak@rediffmail.com).

1

2 Vipul Narayan, A.K. Daniel

effective route optimization technique and utilization of resources in the network solve the problem which
maximizes bandwidth utilization and maintain QoS in the WSN. The nodes are placed at static location in the
hazardous region and sometimes unable to cover the network area due to several obstructions. The problem is
solved by using energy efficient-coverage protocol and improves network lifetime. The RSSI is used to determine
the current power of the signal. The complete coverage and optimum utilization of energy while transmitting
the data in in the network become important research in the present scenario [7][8]. There are two types of
transmission in the sensor network. The first is the actual transmission and another is the data fusion rate.
In actual transmission the data is lost due to environment factors and data corruption. The data fusion rate
helps in node computing, storage computing and reduce the consumption of energy inside the WSN. The nodes
are randomly distributed in network and every time long distance node use more RE compared to shortest
distance.

The paper proposed a protocol that uses new Threshold value for advanced nodes and normal nodes to
prevent randonmness in the selection process of CH. The new Threshold value consits of weighted energy and
distance ratio to prevent CH(s) and low node failure. The data fusion method based on trust function to get
accurate data and energy model are utilized to reduce the energy transmission in the WSN.

The remaining section is defined as follows. The Design issues and Related work are discussed in section 2.
The LEACH protocol in section 3. The Proposed Protocol is presented in section 4. The Experimental results
are performed and contrasted with SEP in section 5. Conclusion and future work describe in section 6.

2. Design Issues and Related Work. The important task in the sensor network is to enhance the RE
of the SN and WSN life by using optimum energy conservation techniques. The WSN area is partitioned into
the number of regions by using longitudinal distance to the BS. In [9] the regions constitute CH for transmitting
data to BS via the multihop scheme. In [10] performed static clustering to reduce the overhead in the system.
The node having maximum RE is used for the selection of CH in the WSN. The increased number of CH(s) in the
region enhanced the RE of SN and lifetime of system [11]. In [12] proposed LEACH protocol and performed
static clustering for the CH selection by utilizing maximum RE of SN and minimum distance from BS as
parameter in the network. In [13] proposed a minimum spanning tree algorithm for the selection of CH and
transmission of data to BS using a single-hop scheme in the network. In [14] introduced the LEACH protocol
for an efficient cluster head selection process and used K means clustering method for proficient utilization
of clusters node inside the network and improved the performance of the WSN. In [15] proposed a clustering
technique for the organization of SN and efficient routing scheme for transmission of data to BS. The WSN
is partitioned into different regions and CH is based on the SN having maximum RE and minimum distance
from BS which enhances the network lifetime. In [16]used distance,energy and node density as a parameter
to increase the lifespan of WSN. In [17] energy problem in LEACH protocol is solved by adjusting the CH
formula bassed on distance and energy as important parameters in the network. In [18] used radius and weight
function to elect candidate CH in the network area and transmission of data to BS via a multi-hop approach
which minimizes the energy consumption in the network. In [19] introduced the K- Medoids algorithm for
the selection of clusters inside the network which enhanced the lifespan of the WSN. In [20] introduced a new
methodology that uses the fusion method based on the principle of ingredient analysis algorithms to minimize
the energy issue in the network. In [21] authors said that unequal nodes energy consumption and CH selection
process is randomly performed in the network. The problem is solved by an efficient CH selection process
which enhanced the node’s RE and the lifetime of the WSN. In [19] proposed a protocol in which WSN is
partitioned into equal size regions and static clustering scheme is used to avoid the overhead problem and
multi-hop scheme for transfer the data to the BS. In [22] proposed a protocol in which the CH and non-CH
are selected according to the RE of SN. The maximum value is chosen as CH among them which reduced the
consumption of energy inside the network and improve system performance. The CH selection in the LEACH
protocol is not appropriate so causes various problems.

In [23] introduced trust model for secure data transmission and minimize various issues in the network.
In [24] the trust model is used to secure various layers of communication in the network. In [25] proposed
data fusion process relying on the degree of trust to enhanced the system performance. In [26] proposed the
data fusion method based on multivariate streams of data to detect and avoid outliers in the system. In [27]
proposed a Trust-Distrust protocol and use four stages as topology management, linq quality appraisal, grading

A Novel Approach for Cluster Head Selection using Trust Function in WSN 3

and secure data transmission based on grade points in the network for data routing to the BS. In [28] achieved
secure communication based on trust function and energy efficient clustering algorithm in the network. In [29]
proposed a protocol for the selection of CH based on trust function. The data fusion and trust function is
utilized to avoid unnecessary transmission and achieve a higher packet delivery ratio in the system.

3. Low Energy Adaptive Cluster Hierarchy (LEACH). The LEACH is the first clustering proto-
col.The selection of CH in the protocol is performed randomly and average energy is distributed among all
nodes to avoid energy issues and network survival period. In the protocol different clusters are formed and
among them, one is elected as CH. The rest non-CH(s) nodes sent data to each respective CH(s) to avoid the
redundancy problem occurred in the data. The CH(s) aggregate the data and sent it to BS. The non-CH(s)
have the cluster header information and a small routing table is maintained by the CHs [22]. The unnecessary
consumption inside the network is avoided by using a routing table in the protocol. The protocol has many
advantages as well as disadvantages too. In LEACH protocol when cluster formation takes place, the energy
is optimized in the stabilization phase. The random numbers are allocated as 0 and 1 to every SN and when
the resulting number is greater compared to the threshold set T(n) will be chosen as CH for that round. The
clustering process has two phases known as the establishing phase and stabilization phase. The formation of
clusters takes place and message-id is broadcast in the network using signal strength and with the help of
non-CH(s) nodes in the network. The CH(s) request all messages and the routing table is maintained and
follow the TDMA schedule for all clusters. The data aggregation is performed on the basis of the routing table
and finally, the data is sent to BS [30][31].

4. Proposed Model. The SEP protocol was introduced to minimize energy issues in the network [32][33].
The SEP protocol uses weighted probability for CH election in normal as well as advance nodes. The SEP
protocol does not ensure whether the nodes are effectively deployed or not in the network.

This paper proposes a new protocol in which WSN is partitioned into regions and contains two different
SN. The nodes for high energy are known as advanced nodes and for low energy nodes called normal nodes.
The proposed protocol is executed in two phases. In the first phase, distribution of SN and new Threshold
value for cluster head selection in the WSN. In the next phase the accuracy of data is preserved by utilizing
the data fusion method based on trust function to obtained accurate data. The energy model is used to reduce
the unnecessary energy transmission in the WSN. The proposed protocol uses new a cluster head selection
mechanism which avoids randomness for CH selection process. The selection of CH(s) is performed by using
maximum RE of SN and minimum BS distance. The new T(H) consists of distance ratio and weighted energy
which avoids energy failure problems in the CH(s) and low node energy problem. Through this way,it enhances
the CH(s) nodes RE. The CH(s) wait for the completion of the data communication task of their cluster nodes.
The proposed protocol reduces the energy consumption in WSN and improves the system performance.

4.1. Network Assumptions for Designing the Proposed Protocol. The following presumptions are
considered for designing the proposed protocol.

• The SN are scattered in a random fashion in the RoI.
• The BS has a continuous power supply and the SN are deterministic in nature.
• The RSSI Plays a major role in the distance estimation between two nodes.
• The battery is not rechargeable.

4.2. Energy Model. The Energy model for the proposed protocol shown in the Fig 4.1. For communi-
cating c bits over distance d, the transmission energy (TE) is required as follows [16]:

TE =

{

c× Eelec + c× Efs × d2, if d < d0

c× Eelec + c× Emp × d4, else
(4.1)

where, Eelec= Electrical energy (Eelec required for the conversion of 1 bit of data to signal), Efs= Power
amount for free space, Emp= Power amount for multipath models.

d0 =

√

Efs

Emp

(4.2)

4 Vipul Narayan, A.K. Daniel

Fig. 4.1: Energy Model

The energy required for receiving c bits is as follows:

ERX = c× Eelec (4.3)

The energy required by the Cluster Member(CME) for communicating c bits is as follows:

CME = c× Eelec + c× Efs × dCH (4.4)

where dCH= distance to CH.
The energy required by the CH (CHE) is calculated as follows:

CHE = c×m(Eelec + Efs × dB + EDA) (4.5)

where m =count of cluster member’s, dB= distance from Base Station, EDA = Aggregation Energy.

4.3. Trust Function. Let us assume that the set of SN as S = s1, s2,…, sn is covering the entire network
area. The di and dj is the data collected by the sensor node si and sj at same moment. If the accuracy of
sensor data di is higher, than the trust degree of di is greater than the rest of the sensor data. When data
di is trusted by dj , than di covers all the possible degree for sensor data. Thus the trust degree function is
represented as [25]:

tij = f(|(di − dj)|) (4.6)

where tij = f(|(di − dj)|) ∈ [0, 1] and i, j = 1, 2, . . . , n. Based on the trust function tij , the trust matrix
corresponding to n number of sensor nodes computes all same parameters used at the same time as follow:

T =







t11 · · · t1n
...

. . .
...

tn1 · · · tnn






(4.7)

The weight of data (di) collected from the sensor node (si) is bi. In the matrix T , tij represents the trust
degree of di to dj , but does not show the trust degree of all data with respect to di. The actual value of di
is reflected by ti1, ti2,. . . ,tin. Therefore, weight matrix B combine all the actual value of T with a set of the
non-negative matrix A with values a1, a2, . . . ,an.











b1
b2
...
bn











= T











a1
a2
...
an











(4.8)

bi = a1ti1 + a2ti2 + . . .+ antin (4.9)

A Novel Approach for Cluster Head Selection using Trust Function in WSN 5

bi =

n
∑

j=1

ajtij (4.10)

The matrix B and A are scalar multiples, if B = TA = λA. Here, λ is the Eigenvalue for the corresponding
eigenvector A. Thus the degree of trust is measured as:

bi

bj
=

ai

aj
, i, j = 1, 2, . . . , n (4.11)

The normalized bi is:

bi =
ai

a1 + a2 + . . .+ an
(4.12)

The data fusion is the process to collects data from multiple sources and gives meaningful information that
is not performed by any single sensor node. The objective of data fusion is to enhance the QoS and achieves
reliable and accurate data transmission in the RoI. The data fusion process also minimized data redundancy
problems and minimized the energy conniption in the WSN. The data fusion expression is:

DF =

n
∑

i=1

bidi (4.13)

From equation 4.13 data fusion is also expressed as:

DF =

∑n

i=1 aidi

a1 + a2 + . . .+ an
(4.14)

4.4. Cluster Head Selection Phase. The CH are selected by using maximum nodes RE and minimum
distance from BS.The nodes are categorized into two parts.The first is normal nodes and the second is advanced
nodes.

NP =
P

1 +NnNa

(4.15)

AP =
P

1 +NnNa

(1 +Nn) (4.16)

where, NP =Selection probability of normal node as CH, AP = Selection probability of advanced node as CH,
Na = Advanced Node percentage, Nn = Amount of energy higher than the normal node.

The threshold is calculated as shown below:

T (H) =

{

P
1−P×(r mod 1

P
)
, if n ∈ G

0, otherwise
(4.17)

where T (H) =Threshold Value, r =current number of round, P =The desired percentage of a node to be CH.
The new T (H) is calculated by modifying in equation 4.17. The weighted energy (E) and distance ratio

(D) are calculated as follow:

E = (REcurrent − (Ea + Et + Er)) (4.18)

D =
DBS

DL

(4.19)

where REcurrent is current Residual Energy, Ea is Aggregation Energy, Et is Transmission Energy, Er is
Reception Energy and DBS is the distance from the BS, DL is the longest distance from BS.The new T (H) is

6 Vipul Narayan, A.K. Daniel

used to avoid the low energy problem and improves CH survival rate. By utilizing equation 4.15, 4.16, 4.17,
4.18, 4.19 simultaneously improves in distribution of Normal and Advanced nodes. The new T (H) for Normal
and Advanced nodes are given in equation 4.20 and 4.21 below.

T (H) =

{

NPX

1−NP×(r mod 1

NP
)
(a× E + b×D), if n ∈ G

0, otherwise
(4.20)

T (H) =

{

APX

1−AP×(r mod 1

AP
)
(a× E + b×D), if n ∈ G

0, otherwise
(4.21)

where NPX represents NP with weight parameter X, APX represents AP with weight parameter X, and a, b

are the coefficient i.e. a ∈ [0, 1], b ∈ [0, 1] and a+ b = 1.
Equation 4.20 and 4.21 improves energy consumption in the WSN. The long-distance nodes consume much

more energy compares to short distance nodes. Therefore by using new T (H) for normal and advanced nodes
improves the distribution of SN and enhanced the node RE in the WSN.

4.5. Proposed Protocol. The flow chart for the Proposed protocol is shown in Fig 4.2.
The network consist of advanced nodes and normal nodes. The new threshold value minimizes the ran-

domness in the CH selection process. The data fusion rate is used to get accurate data using trust function.
The energy model are used to avoid unnecessary energy transmission in the network.

Algorithm 1: The Data Prediction Phase

Initialization: HE = Node High Energy, H = Transformed High Energy, L = Transformed Low
Energy, CH = Cluster Head, BS = Base Station ;
Nodei ← rand (0,1) ;
if Nodei > HE then

Set H_Nodei ← High Energy Node ;
else

Set L_Nodei ← Low Energy Node ;

Calculate energy radio weight ;
Calculate distance parameters ;
Transform H_Nodei ← H ;
Transform L_Nodei ← L ;
if ((H < T(H) & & L < T(H)) then

Broadcast ← CH message ;
Nodes receive ← message ;

else
Non_CH nodes ← wait till message broadcast;

Nodes receive information intensity ;
Nodes receive message to join CH ;
CH receive request message ;
CH set TDMA schedule ;
Broadcast TDMA schedule ;
CH receive data ;
CH Fused data ;
CH send data to BS ;

A Novel Approach for Cluster Head Selection using Trust Function in WSN 7

Fig. 4.2: Flow Chart of Proposed Protocol

8 Vipul Narayan, A.K. Daniel

Table 5.1: Parameter for Simulation

Parameters Used Values

Nodes (N) 150
Network Area (150,150)
Position of BS (150,75)
Efs 10 pJ/bit/m2

Emp 0.0013 pJ/bit/m4

(E0) 0.5 J
(ERX) 50 nJ/bit
(EDA) 5 nJ/bit/signal

Fig. 5.1: The deployment of Normal Nodes and Advanced Nodes

5. Simulation Results And Execution Assessments. The simulation is performed in Matlab 2017a.
The RoI is (150 × 150) m2 area and the distribution of nodes are deterministic in the area. The probability of
CH selection is 10%. The proposed protocol is compared with the SEP based on simulation parameter [34] as
shown in Table 5.1.

The initial network deployment is as shown in the Figure 5.1.
In the Figure 5.1 the blue color represents the advanced nodes and the red color represents the normal

nodes. The BS is located at (150, 75) on the X axis and the Y axis respectively and represented with black
color. The effectiveness of the proposed protocol is compared with respect to the SEP for alive nodes is shown
in Figure 5.2, dead nodes in Figure 5.3, number of packet transmitted to BS in Figure 5.4, nodes elected as CH
in Figure 5.5, percentage of energy consumed in Figure 5.6, percentage of remaining energy in Figure 5.7 and
survival rate percentage in Figure 5.8 respectively.

The results in Figure 5.2 shown that the proposed protocol has 29 alive nodes after the first iteration which
is better than SEP.

In the Figure 5.3 shown the proposed protocol reveals better performance than SEP protocol because in
the proposed protocol first node dies at 998 rounds where as in SEP protocol dies at 411 rounds.

As shown in the Figure 5.4, the packets transmitted to BS are 1.8× 104 for the proposed protocol while in
SEP protocol the value 1.7× 104 has used for packet transmission.

As shown in Figure 5.5, the proposed protocol has more number of nodes as CH compares to the SEP
protocol. It can be observed from the figure that the number of CH starts decreasing after 400 rounds in
SEP and for the proposed protocol number of CH starts decreasing after 1000 rounds. So we can say that the
stability period is higher for the proposed protocol compared with SEP.

In the Figure 5.6 shown that the energy consumption is reduced for the proposed protocol compared with

A Novel Approach for Cluster Head Selection using Trust Function in WSN 9

Fig. 5.2: Number of Alive Nodes

Fig. 5.3: Number of Dead Nodes

Fig. 5.4: Number of Packet Transmission to BS

10 Vipul Narayan, A.K. Daniel

Fig. 5.5: Number of Node to become CH

Fig. 5.6: The amount of energy consumption (in %)

Fig. 5.7: The remaining amount of energy

A Novel Approach for Cluster Head Selection using Trust Function in WSN 11

Fig. 5.8: The Death Rate of Network

SEP protocol. It is observed that the energy consumption is around 100 % in SEP protocol for 1400 rounds
whereas it is around 80% for 1400 rounds in the proposed protocol.

In the Figure 5.7 the proposed protocol has more remaining energy compare to the SEP protocol which
has almost zero energy for each node.

In the Figure 5.8 the survival rate of the proposed protocol is around 15% which is significantly better in
comparison with SEP.

6. Conclusions. The proposed protocol prevents randomness in the selection process of CH. The new
Threshold value consists of weighted energy and distance ratio which prevent the energy issues inside the
sensor network. The data fusion method is used in the Proposed protocol to get accurate data using the trust
function and the energy model is utilized to minimize energy trnasmission within the network. The simulation
results have shown a better lifetime, stability period and survival rate for the Proposed protocol compared with
the SEP protocol. In the future fuzzy logic approach will be used for the CH selection process which efficiently
utilized energy consumption inside the network and enhanced the system performance.

REFERENCES

[1] Munir, Saad Ahmed and Ren, Biao and Jiao, Weiwei and Wang, Bin and Xie, Dongliang and Ma, Jian. Mobile
wireless sensor network: Architecture and enabling technologies for ubiquitous computing. C luster Computing, 2(3), pp.
113–120,(2007). Springer.

[2] V. Narayan, A. Daniel, Novel protocol for detection and optimization of overlapping coverage in wireless sensor networks
(2019).

[3] Roy, Nihar Ranjan and Chandra, Pravin. Analysis of data aggregation techniques in wsn. C luster Computing, 22(3),
pp. 571–581,(2020). Springer.

[4] Narayan, Vipul and Daniel, AK and Rai, Ashok Kumar. Energy Efficient Two Tier Cluster Based Protocol for Wireless
Sensor Network. C luster Computing, 22(3), pp. 574–579,(2020). Springer.’

[5] Chaturvedi, Pooja and Daniel, AK. Trust based node scheduling protocol for target coverage in wireless sensor networks.
C luster Computing, 22(3), pp. 163–173,(2015). Springer.

[6] Chaturvedi, Pooja and Daniel, AK. Trust based energy efficient coverage preserving protocol for wireless sensor networks.
C luster Computing, 22(3), pp. 860–865,(2015). Springer.

[7] Chaturvedi, Pooja and Daniel, Ajai K. Trust Based Target Coverage Protocol for Wireless Sensor Networks Using Fuzzy
Logic. C luster Computing, 22(3), pp. 188–192,(2016). Springer.

[8] Tripathi, Abhishek and Gupta, Hari Prabhat and Dutta, Tanima and Mishra, Rahul and Shukla, KK and Jit,

Satyabrat. Coverage and connectivity in WSNs: A survey, research issues and challenges. IEEE Access, 6(3), pp.
26971–26992,(2018). IEEE.

[9] Rajpoot, Prince and Dwivedi, Pragya. Optimized and load balanced clustering for wireless sensor networks to increase
the lifetime of WSN using MADM approaches. W ireless Networks, 26(1), pp. 215–251,(2020). Springer.

[10] Yadav, Ravi and Daniel, AK. Fuzzy based smart farming using wireless sensor network. C luster Computing, 22(3), pp.
1–6,(2018). Springer.

12 Vipul Narayan, A.K. Daniel

[11] Lu, Yu-ding and Chen, Yao-dong and Chen, Meng-yuan. The improvement and simulation research of wireless sensor
network LEACHprotocol. Journal of Anhui Polytechnic University, 22(4), pp. 13,(2012). Springer.

[12] Shokouhifar, Mohammad and Jalali, Ali. A new evolutionary based application specific routing protocol for clustered
wireless sensor networks. AEU-International Journal of Electronics and Communications, 69(1), pp. 432–441,(2015).
Elsevier.

[13] Zhenxing, Wang and Weili, Xiong and Baoguo, Xu. A LEACH Cluster Tree Network Routing Algorithm Research [J].
Computer Measurement & Control, 11(3), pp. 5811–5823,(2008). Springer.

[14] Jiang, JianMing and Shi, GuoDong and Zhao, Dean and Li, ZhengMing and Shi, Bing and Zhao, YiGang et al.

Intelligent monitoring system of aquaculture parameters based on LEACH protocol.. Nongye Jixie Xuebao= Transactions
of the Chinese Society for Agricultural Machinery, 45(11), pp. 286–291,(2014). Chinese Society for Agricultural Machinery.

[15] Li, Fangfang and Wang, Jing. A New LEACH-Based Routing Algorithm for Wireless Sensor Networks [J]. Chinese Journal
of Sensors and Actuators, 10(3), pp. 5811–5823,(2012). Springer.

[16] Wan, Chuanfei and Du, Shangfeng. Improvement and simulation of leach in wireless sensor networks. Jisuanji Yingyong
yu Ruanjian, 28(4), pp. 113–116,(2011). Shanghai Institute of Computing Technology.

[17] Roshan, Komal and Sharma, Kritika Rai. Improved LEACH protocol with cache nodes to increase lifetime of wireless
sensor networks. C luster Computing, 22(3), pp. 903–908,(2018). Springer.

[18] Zhang, Li. The improvement and simulation of LEACH clustering routing protocol for WSNs. Wuhan University of
Technology, Wuhan, 22(3), pp. 1–75,(2009). Springer.

[19] Zayoud, Maha and Abdulsalam, Hanady M and Al-Yatama, A and Kadry, Seifedine. Split and merge leach based
Routing algorithm for wireless sensor networks. International Journal of Communication Networks and Information
Security, 10(1), pp. 155–162,(2018). Springer.

[20] Xu, Yan and Yue, Zhanwei and Lv, Lingling. Clustering routing algorithm and simulation of internet of things perception
layer based on energy balance. IEEE Access, 7(3), pp. 145667–145676,(2019). IEEE.

[21] Gawade, Rohit D and Nalbalwar, Sanjay L. A centralized energy efficient distance based routing protocol for wireless
sensor networks. Journal of Sensors, 2016(3), pp. 5811–5823,(2016). Hindawi.

[22] Wu, Wenliang and Xiong, Naixue and Wu, Chunxue. Improved clustering algorithm based on energy consumption in
wireless sensor networks. Iet Networks, 6(3), pp. 47–53,(2017). IET.

[23] Dhand, Geetika and Tyagi, SS. SMEER: Secure multi-tier energy efficient routing protocol for hierarchical wireless sensor
networks. W ireless Personal Communications, 105(1), pp. 17–35,(2019). Springer.’

[24] Dwivedi, AK and Sharma, AK and Kumar, R. Dynamic Trust Management Model for the Internet of Things and Smart
Sensors: The Challenges and Applications. Recent Patents Comput. Sci, 12(3), pp. 5811–5823,(2019). Springer.

[25] Sun, Guiling and Zhang, Ziyang and Zheng, Bowen and Li, Yangyang. Multi-Sensor Data Fusion Algorithm Based on
Trust Degree and Improved Genetics. Sensors, 19(9), pp. 2139,(2019). Multidisciplinary Digital Publishing Institute.

[26] Kolomvatsos, Kostas and Anagnostopoulos, Christos and Hadjiefthymiades, Stathes. Data fusion and type-2 fuzzy
inference in contextual data stream monitoring. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(8),
pp. 1839–1853,(2016). IEEE.

[27] Karthick, Suyambu. TDP: A novel secure and energy aware routing protocol for wireless sensor networks. International
Journal of Intelligent Engineering and Systems, 11(2), pp. 76–84,(2018). Springer.

[28] Sharma, Richa and Vashisht, Vasudha and Singh, Umang. eeTMFO/GA: a secure and energy efficient cluster head
selection in wireless sensor networks. Telecommunication Systems, 22(3), pp. 1–16,(2020). Springer.

[29] Mishra, Mukesh and Gupta, Gourab Sen and Gui, Xiang. Trust-Based Cluster Head Selection Using the K-Means
Algorithm for Wireless Sensor Networks. C luster Computing, 22(3), pp. 819–825,(2019). Springer.

[30] Al-Humidi, Nada and Chowdhary, Girish V. Energy-aware approach for routing protocol by using centralized control
clustering algorithm in wireless sensor networks. C luster Computing, 22(3), pp. 261–274,(2019). Springer.

[31] Gopalakrishna, Aravind Kota and Pai, Manohara MM. Multi-service adaptable routing protocol for wireless sensor
networks. C luster Computing, 22(3), pp. 5811–5823,(oct ” 23” 2012). Google Patents.

[32] Heinzelman, Wendi Beth. Application-specific protocol architectures for wireless networks. C luster Computing, 22(3), pp.
5811–5823,(2000). Springer.

[33] Smaragdakis, Georgios and Matta, Ibrahim and Bestavros, Azer. SEP: A stable election protocol for clustered het-
erogeneous wireless sensor networks. C luster Computing, 22(3), pp. 5811–5823,(2004). Springer.

[34] Dwivedi, Anshu Kumar and Sharma, Awadhesh Kumar and Mehra, Pawan Singh. Energy Efficient Sensor Node
Deployment Scheme for Two Stage Routing Protocol of Wireless Sensor Networks assisted IoT. ECTI Transactions on
Electrical Engineering, Electronics, and Communications, 18(2), pp. 158–169,(2020). IEEE.’

Edited by: Dana Petcu
Received: Sep 30, 2020
Accepted: Jan 3, 2021

Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org

© 2021 SCPE. Volume 22, Issues 1, pp. 13–28, DOI 10.12694:/scpe.v22i1.1818

MITIGATING MALICIOUS INSIDER ATTACKS IN THE INTERNET OF THINGS USING
SUPERVISED MACHINE LEARNING TECHNIQUES

MIR SHAHNAWAZ AHMAD∗
AND SHAHID MEHRAJ SHAH†

Abstract. The interconnection of large number of smart devices and sensors for critical information gathering and analysis
over the internet has given rise to the Internet of Things (IoT) network. In recent times, IoT has emerged as a prime field for solving
diverse real-life problems by providing a smart and affordable solutions. The IoT network has various constraints like: limited
computational capacity of sensors, heterogeneity of devices, limited energy resource and bandwidth etc. These constraints restrict
the use of high-end security mechanisms, thus making these type of networks more vulnerable to various security attacks including
malicious insider attacks. Also, it is very difficult to detect such malicious insiders in the network due to their unpredictable
behaviour and the ubiquitous nature of IoT network makes the task more difficult. To solve such problems machine learning
techniques can be used as they have the ability to learn the behaviour of the system and predict the particular anomaly in the
system. So, in this paper we have discussed various security requirements and challenges in the IoT network. We have also applied
various supervised machine learning techniques on available IoT dataset to deduce which among them is best suited to detect the
malicious insider attacks in the IoT network.

Key words: Internet of Things, attack detection, security, malicious insider, supervised machine learning.

AMS subject classifications. 68M14

1. Introduction. The recent advancement in various technological fields has led to the interconnection of
enormous devices over the Internet, thus giving rise to the Internet of Things (IoT) network. With the help of
IoT network even the ordinary devices (e.g. wearables, smart meters, smart water meters etc.) used by human
beings in day-to-day living can be used to gather the information from surroundings using sensors/actuators,
which can be used to solve various real life problems. IoT has transformed the classical field into smart field
like: smart healthcare, smart transport, smart grid, smart home, smart waste management and many more [1].
However, an IoT network has some constraints like, limited computational capability of sensors, heterogeneity
of devices, limited energy resource and bandwidth etc. These constraints restrict the use of high-end security
mechanisms in IoT network and thereby makes such networks more vulnerable to malicious insider attacks[2].

A malicious insider can be employee or an ex-employee or a business partner of a company, who has or
once had an authorized access to the company’s data or network. Malicious insider can exploit that access
to launch various malicious attacks in the company’s network [3]. Non-authorized attackers are comparatively
easy to detect since they have to break various authentication and authorization mechanisms employed by a
company. Whereas, an insider is already known to company’s security mechanisms and gets an easy access to
the company’s network and crucial data, thus making it hard for the already implemented security mechanisms
to detect such attackers in the network. With the increasing use of IoT devices the insider attacks may also
increase drastically because we are surrounded by a large number of IoT devices. Since IoT devices are usually
low-end devices with limited resources hence it becomes easy for the insider attackers to launch malicious
attacks in the network.

To solve such problem of detecting insider attackers in an IoT network, machine learning techniques can
be used as they have the ability to learn the behaviour of the system and predict a particular anomaly in the
system[4]. In order to use various machine learning techniques to detect malicious insiders in the IoT network,

∗Communication Control & Learning Lab, Department of Electronics & Communication Engineering, National Institute of
Technology, Srinagar, J&K, India. (mirshahnawaz888@gmail.com).

†Communication Control & Learning Lab, Department of Electronics & Communication Engineering, National Institute of
Technology, Srinagar, J&K, India.

13

14 Mir Shahnawaz Ahmad, Shahid Mehraj Shah

Fig. 2.1: Attacks that can affect the security requirements of IoT devices.

we need some dataset to train the algorithm. One such dataset is Network Security Laboratory–Knowledge
Discovery in Databases (NSL-KDD). NSL-KDD is the latest version of KDD99 dataset [5]. The KDD99 was
generated in 1999 as a result of international competition for Knowledge Discovery in Databases (KDD) and
using DARPA98 network traffic. The various attacks included in NSL-KDD dataset include: DoS (Denial of
Services) attack, User-to-Root attack, Remote-to-local attack and Probes. In the literature, this dataset has
been widely used to assess the performance of anomaly-based attack detection systems for IoT network [6, 7, 8].

In this paper we apply various supervised machine learning algorithms on NSL-KDD dataset and analyse
the performance of each algorithm. Based on various performance metrics we identify the best machine learning
technique for malicious insider attack detection.

The rest of the paper is organized as: Section 2 describes various IoT security requirements and challenges;
Section 3 highlights the characteristics of a malicious insider, its types and various malicious activities carried
out by such attacker in an IoT network; Section 4 describes various supervised machine learning techniques
used in our study; Section 5 outlines the attributes of NSL-KDD dataset and describes various performance
parameters to measure the performance of each machine learning classifier for detecting a malicious insider;
Finally, section 6 concludes the paper.

2. IoT security requirements and challenges. IoT is the integration of physical objects/things over
an internet in order to create a smart living environment. The IoT devices are usually deployed in diverse
environment to sense or gather the desired data, which can be used to accomplish various tasks. However,
to successfully accomplish a task using IoT network, it must meet various security requirements [9]. The
heterogeneous nature of IoT network makes it susceptible for various attacks. Due to the limited computational
resources of IoT devices, it becomes computationally difficult to use complex security mechanisms for attack
detection. The IoT devices are usually connected over a wireless medium, this makes them vulnerable to
malicious intruders. Figure 2.1 shows some of the attacks that can affect various security requirements of IoT
network, which are summarized as:

• Authentication: The identity of IoT network user should be first verified and only then they should be
allows to access the network. However, due to limited resources of IoT devices the implementation of
robust authentication mechanism is a challenging task. The authentication mechanism should have a
trade-off between robustness, flexibility and IoT device constraints [10].

• Authorisation: It includes those security procedures which grant permission to legitimate users so that
they can access various IoT devices in a network [2].

• Integrity: The sensed data by IoT devices is usually transferred/ shared via wireless channels, due to
which it can be easily accessed by illegitimate users that can then modify it. So, one must ensure

Mitigating Malicious Insider Attacks in the Internet of Things using Supervised Machine Learning Techniques 15

integrity of IoT network data and should be flexible enough to deal with wide variety of IoT devices
[2].

• Availability: The services provided by various IoT devices should be readily available to all the au-
thorized users, but attacks like Denial of Services (DoS) and jamming attacks may create a hindrance
by overwhelming the IoT devices. So, we need to implement such mechanisms which can detect such
attacks in IoT network, but these attacks are difficult to detect and the heterogeneity & resource
constraints of IoT network make it much more challenging task.

• Confidentiality: Like other networks, the security of gathered data in IoT network is very important.
The confidentiality of data can be done by implementing various encryption algorithms, but keeping
in view the resource constraints of IoT devices, these algorithms should be lightweight [11].

In this paper we deal with attacks related to availability requirement for the IoT network.

3. Malicious Insider Attacks in IoT. In this section we will be discussing in detail about the malicious
insider attacks, their types and how they can affect the IoT networks.

3.1. Malicious Insider. Greitzer et al. [12] defines a malicious insider as a user of an organization who
once had or has currently an authorized access to the organization’s confidential data, resources or network,
and uses these authorized privileges to launch various attacks in the network. Since the malicious insider
has an authorized access to the network, so the authentication/ authorization mechanism implemented at the
organizational level is unable to detect such attackers in the network. Due to this characteristic of an insider
attacker node, it becomes very challenging for a security mechanism to detect such attackers in the network.
Also, if these attackers are left undetected in an IoT network, it makes IoT nodes vulnerable to a malicious
node. In order to further understand the details of insider attackers, we will be discussing various types of
malicious insiders in the following section.

3.2. Types of Malicious Insiders. The malicious insiders can be categorized mainly into three cate-
gories: traitor, masquerader and unintended insiders. Among all these insiders, traitor is most threatening to a
system and is responsible for launching around 92% of total attacks out of all the malicious insider attacks [13].
The traitors are those attackers who have authorized access to company’s resources and use these privileges
to launch various attacks in the company’s network. They can be more severe since they already know the
vulnerabilities of a network and are independent of any time constraint for launching attacks. Another category
of insider attackers is a masquerader [14] who does not belong to an organization but somehow gets an access
to the organization’s networks (e.g. by guessing/ stealing the password of a legitimate user). The unintended
insiders can also be categorized as a malicious insider, who threatens an organization by accidentally breaking
the security mechanism [15].

3.3. Classification of Malicious Insider activities. Various activities that a malicious insider can
perform in order to harm an organization mainly includes: IT Sabotage, Theft of Intellectual Property, Fraud
and Espionage [9]. In IT sabotage, a malicious insider makes use of privileged access to network data and
uses it to directly vandalise an organization or an individual by lunching attacks like DoS, sybil, man-in-the-
middle, botnet and various other attacks. Since a malicious insider can access the organization’s resources, so
it can steal various innovative ideas, schemes and other essential artefacts which constitute various intellectual
properties of an organization. A malicious insider can also perform fraudulent transactions that can affect
an organization. The espionage includes all those activities with which a malicious insider can overhear the
network data and sell the organization’s critical information to other rival companies.

All the above discussed malicious activities by an insider can critically harm an organization and when an
organization uses IoT network, then these attacks become more catastrophic due to low computational abilities
of IoT devices. So, one needs to use a security procedure that will not only detect such anomalies in the system
but also puts less load on IoT devices. The characteristics of machine learning techniques make them suitable
for detecting such malicious attacks in the IoT network.

4. Supervised machine learning algorithms for detecting malicious insiders in IoT network.
In this section we will discuss various supervised machine learning techniques that are used in our study.

16 Mir Shahnawaz Ahmad, Shahid Mehraj Shah

4.1. Ridge Regression. If the data is given as (xi, yi) where, xi = (xi1, xi2, · · · , xip)
T is the input and

yi is the outcome, then a linear regression model can be written as:

yi = β1xi1 + β2xi2 + · · ·+ βpxip(4.1)

where, β1, β2, · · · , βp represents the regression coefficients for different xi. The aim of linear regression is to
choose those βi for which the residual sum of squares minimize. Hence the optimization problem is framed as:

min
β





N
∑

i=1

(yi −
∑

j

βjxij)
2



(4.2)

But, this model does not generalize well for the new data (i.e., the data with high variance) and hence result
into overfitting. To overcome this problem, the ridge regression is used, which continuously narrows down the
regression coefficients and hence producing a stable model [16]. The ridge regression overcomes this problem
by adding a constraint for optimization problem of 4.2. Hence the optimization problem corresponding to a
ridge regression can be written as:

min
β





N
∑

i=1

(yi −
∑

j

βjxij)
2



 , s.t.
∑

j

|βj |
2 ≤ 1(4.3)

Now to solve this optimization problem, we introduce Lagrange multiplier α, also known as regularization
constant. Hence, Ridge estimate for β̂ = (β̂1, β̂2, · · · , β̂p)

T is given as:

β̂ = argmin
β





N
∑

i=1

(yi −
∑

j

βjxij)
2



+ α
∑

j

|βj |
2(4.4)

subjected to the condition that for each xij ,
∑

i xij/N = 0 and
∑

i xij
2/N = 1. Where,

∑

j |βj |
2 is the

regularization term and α is constant which controls the amount of regularization applied. In our study, we
have set α = 1 and allowed maximum iterations to 10.

4.2. Lasso Regression. In a model where a set of features are highly correlated the ridge regression will
distribute weights equally to all the correlated features. Also, ridge regression will shrink the coefficients of
less important predictors, but never makes them zero. This hinders the process of feature selection in a model.
To overcome these limitation Lasso (Least Absolute Shrinkage and Selection Operator) regression can be used,
which narrows down some of the model coefficients and sets others to zero [17]. It combines the best features
of ridge regression and subset selection. For a given data (xi, yi) where, xi = (xi1, xi2, · · · , xip)

T is the input

and yi is the outcome, the Lasso estimate for β̂ = (β̂1, β̂2, · · · , β̂p)
T is given as:

β̂ = argmin
β





N
∑

i=1

(yi −
∑

j

βjxij)
2



+ α
∑

j

|βj |(4.5)

subjected to the condition that for each xij ,
∑

i xij/N = 0 and
∑

i xij
2/N = 1. where α is the constant which

controls the amount of regularization applied. The penalty term
∑

j |βj | has such effect that it forces some
of the coefficients to exactly zero for large value of α. Thus, helping in variable selection and yielding sparse
models. In our study, we have set α = 0.019 and allowed maximum iterations to 150.

4.3. Elastic Net. The Lasso only selects one variable among a group of variables having high correlation
and due to convex optimization it selects a limited number of features. These properties of Lasso affects its
performance. To overcome this issue, elastic net regularization technique was proposed [18]. The elastic net can
continuously shrink the model parameters and can also select a group of variables which have high correlation.

Mitigating Malicious Insider Attacks in the Internet of Things using Supervised Machine Learning Techniques 17

Fig. 4.1: Sigmoid Function

If the data is given as (xi, yi) where, xi = (xi1, xi2, · · · , xip)
T is the input and yi is the outcome, then the elastic

net estimate for β̂ = (β̂1, β̂2, · · · , β̂p)
T is given as:

β̂ = argmin
β





N
∑

i=1

(yi −
∑

j

βjxij)
2



+ λ2

∑

j

|βj |
2 + λ1

∑

j

|βj |(4.6)

under the condition that:
∑n

i=1
yi = 0,

∑n
i=1

xij = 0, and
∑n

i=1
xij

2 = 1, for j = 1, 2, · · · , p. where λ1 and λ2

are non-negative constants. In our study, we have set λ1 = 0.2 and λ2 = 0.8 with allowed maximum iteration
to 150.

4.4. Lasso with Lars. Lars is a least-angle regression technique which helps to fit regression model to a
high dimensional data. In our study we have used the combination of Lasso with Lars which resembles forward
step-wise regression process, but at each step it selects those estimated coefficients which are in the direction
equiangular with the square of residual error [19]. In its implementation for detecting malicious traffic in the
IoT dataset, we have set α (constant which controls the amount of regularization applied) = 0.02 and maximum
iteration to 50.

4.5. Logistic Regression (LR). Logistic regression describes a statistical method of predicting a bino-
mial event. Like other Machine Learning classifiers, the input data can consist of one or multiple features.
The outcome for the binary logistic regression is 0 or 1 that performs a differential positive class classification
from the negative class. To give out a probabilistic value, Sigmoid curve shown in figure 4.1 is used in logistic
regression [20].

The hypothesis function used in logistic regression in shown in equation below:

h(x) = S(w0 + w1x1 + w2x2 + . . .+ wnxn)(4.7)

where x1, x2, . . . , xn denotes the features, w0, w1, w2, . . . , wn denotes the model weights and S() represents the
sigmoid function identified by:

S(Z) =
1

1 + e−Z
(4.8)

The range of output of S() is from 0 to 1. All the values below 0.5 refer to negative class while as values
from 0.5 to 1 indicate a positive class. While implementing logistic regression on the dataset we have set
maximum iteration of 100 and used L2 norm for regularization, also we have used BFGS (Broyden Fletcher
Goldfarb Shanno) optimization algorithm [21].

18 Mir Shahnawaz Ahmad, Shahid Mehraj Shah

4.6. K-Nearest Neighbors (KNN). In KNN algorithm, the aim is to classify any new, unknown data
point by analyzing the data points (most similar to the input or feature space) given in the training set [22].
The algorithm works by finding the K-nearest neighbours of the new data point by usually using one of the
three distance measures for continuous variable viz. Euclidean distance (EuD), Manhattan distance (MaD) or
the Minkowski distance (MiD) represented below:

EuD =

√

√

√

√

n
∑

i=1

(xi − yi)
2(4.9)

MaD =

n
∑

i=1

|xi − yi|(4.10)

MiD =

[

n
∑

i=1

(xi − yi)
q

]1/q

(4.11)

where, x = (x1, x2, . . . , xn)
T & y = (y1, y2, . . . , yn)

T represent the data points.
We have implemented the KNN classifier for various values of K on the given dataset. To choose the optimal

value of K we observed that the accuracy of KNN algorithm increases with K but for K > 10 the accuracy
saturates, hence choose the value of K as 10. We have used Euclidean distance to find K-nearest neighbours
for a new data point.

4.7. Support Vector Machine (SVM). It is a Machine Learning classifier that is currently receiving
the most significant attention due to its high performance [23] and the ability to alleviate the problem of
classifying non-linear data. Typically SVMs are the non-probabilistic, binary classifiers aimed at discovering a
hyperplane that divides the two classes of the training set with the highest margin.

If the data is given as (x⃗i, yi) where, x⃗i represent the input vector and yi is the outcome which indicates
to which a particular x⃗i belongs. The SVM tries to find a maximum-margin hyperplane which divides x⃗i into
different classes such that the distance between the hyperplane and the nearest point x⃗i from either classes is
maximized. The equation of a hyperplane is given as:

w⃗ · x⃗− b = 0(4.12)

where, x⃗ represent the input vector, w⃗ is the vector normal to hyperplane and b is the intercept (bias term).
The objective of SVM is to minimize:

[

1

p

p
∑

i=1

max(0, 1− yi(w⃗ · x⃗i − b))

]

+ α∥w⃗∥2(4.13)

where, max(0, 1− yi(w⃗ · x⃗i− b)) represent the hinge loss function, which return a value proportional to distance
from margin to x⃗i, if x⃗i is misclassified, otherwise returns zero. ∥w⃗∥2 represents the penalty for incorrect
classification, which is controlled by constant α.

Apart from linear classification, SVMs perform non-linear classification of data by implicitly mapping an
input variable into high dimensional attribute spaces using kernel trick [24].

As such SVMs tried in our work are classified into three categories: Linear SVM, SVM with Radial Basis
Function (RBF) kernel and SVM with the polynomial kernel. The information about their kernels is given
below.

Radial Basis Function (RBF) is the common kernel choice that is implemented in SVM. Given x and y as
the input feature vectors, then the RBF kernel is given as:

K(x, y) = exp(−γ||x− y||2)(4.14)

Mitigating Malicious Insider Attacks in the Internet of Things using Supervised Machine Learning Techniques 19

where, γ defines the influence of single training example in a model, i.e., increased value of γ results into over-
fitting and decreased value results into under-fitting of model. γ > 0, and is often parametrized by γ = 1

2σ2 ,
where σ is a free independent parameter. Therefore, the RBF kernel becomes:

K(x, y) = exp

(

−
||x− y||2

2σ2

)

(4.15)

To define the similarity among the input samples, Polynomial kernel not only takes into account the given
features, but also the combinations of samples. A polynomial kernel is given as:

K(x, y) = (xT · y + t)c(4.16)

where x, y denote input feature vectors, t is a complexity parameter which trades-off between higher-order
and lower-order terms in the polynomial (t ≥ 0), and c is the integer exponent. If t = 0, then the kernel is
homogeneous.

In our study, for SVM, we have used L2 norm for regularization in all kernel types. For Linear SVM,
maximum iteration was set to 10000 and kernel coefficient was 1/N , where N is the total features in dataset.
For polynomial kernel type the degree was chosen to be 3.

4.8. LR and SVM with Stochastic Gradient decent (SGD). SGD is an extended version of Gradient
Descent algorithm that decreases the number of computation per iteration by incorporating randomness in the
learning process. It repeatedly considers a single or batch training example and evaluates the gradient of the
loss function to reduce the model’s risk, and hence updates the parameters used by the model. Whether it be a
strictly convex problem or a non-convex one, SGD performs better and supports robustness and scalability [25].
The main objective of SGD algorithm is to minimize the regularized training error, which is the combination
of empirical risk and the regularization term. The empirical risk term measures the performance of training
set using a loss function L(ŷ, y) (that gives the cost of predicting ŷ , given y as the actual output). The
regularization term decides the penalty for the model’s complexity, whose impact is decided by the term α
(non- negative hyperparameter) [26].

We have studied the performance of SGD using SVM and logistic regression. SVM uses Max-margin
classification, where correct category score should be larger (by a predefined margin) than the collective wrong
category scores. Log loss (or cross-entropy loss or the logistic loss) decreases as the probability of correct
prediction increases. During simulation, maximum number of iterations was set to 10000 with α = 0.1, where
α is a constant which is multiplied to regularization term to control the degree of regularization. Here again
we have used L2 for regularization.

4.9. Random Forest (RF) Classifier. Random Forest Classifier is an Ensemble method of classification,
which combines the outputs of various decision trees to generate more accurate results. Thus, it is based on
the simple philosophy that the collection of classifiers will always perform better than a single classifier. This
classifier works well for large datasets, gives an estimate of essential features in the dataset and possesses
robustness for noise and outliers [27]. It also decreases the generalization error by randomly selecting subset of
features during the splitting of a node (which also decreases the degree of correlation between various generated
trees). Random Forest uses the Gini Index (GI) as an approximation to choose the best set of features during
tree formation.

GI = 1−
n
∑

i=1

(pi)
2(4.17)

where, pi is the probability with which an element is classified to a particular class. Due to the use of multiple
trees, some of the features in the dataset may be used more than once for the training purpose. This increases
the classifier stability because a slight change in input may not cause any change in the output of classifier,
hence making it more robust and accurate [27].

In our study we have chosen the best split at each node in a decision tree using gini index with a minimum
allowed splits at each node as 2. The classifier was iteratively run on the training data to find the optimal

20 Mir Shahnawaz Ahmad, Shahid Mehraj Shah

number of trees in the forest and maximum training samples to be used to train each base estimator. We
observed that if we increase the number of trees in the forest beyond 10 and maximum training samples to be
used for base estimator training beyond 1000, then there was no change in classifier’s accuracy. So, we selected
number of trees in the forest as 10 and maximum training samples to be used for base estimator training as
1000.

4.10. AdaBoost (AB). AdaBoost is an iterative machine learning technique which attempts to fit weak
classifiers iteratively [28]. The process starts with un-weighted training sample, using which a weak classifier is
trained and then at each iteration the weights are boosted and the classifier is trained again. At each iteration
the weights of those examples are increased for which the classifier at previous iteration predicted wrong label
and the weights for those examples are decreased for which the classifier at previous iteration classified correctly.
This process continues until all the data entries are correctly classified or it becomes difficult for a classifier to
predict a label for unclassified/misclassified data. In this way the final classifier acts as the linear combination
of various classifiers used at each iteration.

In our study, we have used Decision tree classifier as the weak classifier at each step and the maximum size
of estimator (at which it terminates) was set to 200. The learning rate was set to 1 and we have used SAMME
(Stage-wise Additive Modelling using a Multi-class Exponential loss function) algorithm for implementing the
boosting process [29].

4.11. Gradient Boosting (GB). Gradient boosting is also a form of ensemble method which uses gradi-
ent descent to minimize the model’s loss function by incorporating weak classifiers in an iterative manner [30].
At each iteration the gradient descent algorithm selects those classifiers which minimize the loss function. In
this technique each weak classifier is trained on the residue of strong classifier. The input to the algorithm is
the training data, a loss function (which should be differentiable) and number of iterations. In each iteration,
it computes the residual error from strong classifiers, uses it to fit the weak classifiers, chooses that classifier
which minimizes the loss function and finally updates the model.

We have used Decision tree classifier as the weak classifier at each step and log loss function with learning
rate of 0.1 in our study. Number of boosting stages was chosen to be 200 and the quality of node split in
decision tree was done using mean squared error (with an improved score by Friedman).

4.12. Artificial Neural Network (ANN) Classifier. For ANN based classification we have used multi-
layer perceptron (MLP) classifier. MLP is a multi-layer feed-forward neural network that trains using back-
propagation algorithm [31]. The first layer of neurons acts as the input layer, which is responsible for taking
inputs (feature vector), and the final layer is responsible for generating the classified output. In between these
two layers, there can be multiple layers of neurons, known as hidden layer, which processes the input vector
and helps the output layer to generate output. In hidden layers each connection from one layer to another is
associated with a weight vector. Figure 4.2 shows an example of Multi-layer perceptron with only one hidden
layer of neurons and a single neuron at the output layer.

Each neuron is associated with an activation function, which generates an output depending on the values
of previous layer neurons and the associated weights. The training algorithm (SGD) tries to fit a perfect
combination of weight vector values to reduce the loss.

For implementing MLP, we have used a single hidden layer of neurons (with number of neuron = 90 and
the activation function as a rectified linear unit function) and a single neuron at the output layer to classify
the input data into malicious (abnormal) or non-malicious (normal). We train the neural network using SGD
algorithm with a learning rate = 0.001 and L2 norm for regularization.

5. Numerical results. To compare the efficiency and applicability of various Machine Learning algo-
rithms for detecting malicious insider attacks in IoT, we have used a popular Intrusion detection dataset –
NSL-KDD, the details of which are given in next sub-section.

5.1. Introduction to NSL-KDD dataset and data pre-processing. NSL-KDD is the latest version
of KDD99 dataset and has been widely used by researchers to evaluate the performance of the attack detection
system in IoT [6, 7, 8]. In NSL-KDD dataset, the training data is available in “KDDTrain+” file, consisting of
125973 data entries, out of which 67343 entries represent non-malicious and 58630 entries represent malicious.

Mitigating Malicious Insider Attacks in the Internet of Things using Supervised Machine Learning Techniques 21

Fig. 4.2: Multi-layer Perceptron with single hidden layer and only one neuron in output layer

The testing data is available in “KDDTest+” file, consisting of 22543 entries, out of which 9710 represent non-
malicious and 12833 entries represent malicious. Each dataset has 41 features and a single class label (as shown
in figure 5.1). After analysing the feature of dataset, we have categorized them into four categories. Category
– I represents those features which reveal the properties of TCP connection between source and destination
node. Category – II highlights the basic features of the data that is being shared over a single connection
between source and destination nodes. Category – III represents those features which depict the status of
various connections in the network with a time frame of 2 seconds. Attributes of destination nodes in various
connections in a network which help to analyse an attack that lasted for more than 2 seconds are represented
by category – IV. The last feature represents the class label for each data entry (malicious or non-malicious)
in the dataset. Among all the features, some of them represent various sub-features/attributes, they include:
‘Protocol type’, ‘Service’ and ‘flag’, and for the computational purposes we have converted them into numeric
data. In ’protocol type’ we have used 1, 2 and 3 for representing ICMP (Internet Control Message Protocol),
TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) protocols respectively. The ‘service’
attribute contained 70 different web services used by the destination network. Various attributes of ‘flag’ feature
are shown in figure 5.2.

Since the available data in the dataset is multidimensional and to enhance the performance of Machine
Learning algorithm, we have normalized the data using standard scalar:

X̂i =
Xi − µ

σ
(5.1)

where, X̂i is the normalized value of a data sample Xi with mean µ and standard deviation σ. It is evident
from the above equation that the Standard Scaler normalizes the data by removing the mean of each feature
and scaling the variance to 1.

5.2. Performance Parameters. To evaluate the performance of each trained machine learning model,
confusion matrix was used, that is shown in Table 5.1.

Using the values obtained from the confusion matrix for each classifier, the following performance param-
eters were used to analyse the performance:

Accuracy =
TP + TN

TP + FN + FP + TN
(5.2)

22 Mir Shahnawaz Ahmad, Shahid Mehraj Shah

Fig. 5.1: Various features of NSL–KDD dataset with corresponding values in the dataset

Fig. 5.2: Attributes of Flag feature in NSL–KDD Dataset

Precision =
TP

TP + FP
(5.3)

Recall =
TP

TP + FN
(5.4)

Mitigating Malicious Insider Attacks in the Internet of Things using Supervised Machine Learning Techniques 23

Table 5.1: Confusion Matrix

Actual Value
Predicted Value

Malicious Non-malicious
Malicious True Positive (TP) False Negative (FN)

Non-malicious False Positive (FP) True Negative (TN)

Fig. 5.3: Accuracy of Ridge regression for detecting malicious IoT network traffic in KDDTest+ dataset for
varying values of α

F1− score =
2 ∗ TP

2 ∗ TP + FP + FN
(5.5)

The accuracy give the percentage of samples that are correctly classified out of all the tested samples,
precision depicts the classifier’s ability to detect only relevant data, recall gives the efficiency of a classifier to
detect all interested data points in the dataset (i.e total positives detected by the system to that of actual
positives throughout the system) and F1-score is the harmonic mean of both precision and recall.

We have also used Area Under the Curve (AUC) of a Receiver Operating Characteristic (ROC) curve as a
performance matrix, which gives the overall performance of each classifier used in classifying the malicious and
non-malicious traffic in KDDTest+ dataset. The value of AUC lies between [0, 1] and the performance of a
particular classifier is directly proportional to the value of AUC obtained, i.e. a classification model is considered
efficient if its AUC value lies close to 1 and inefficient if its value lies close to 0. Besides these performance
parameters, we have also noted the time a particular classifier takes to train on KDDTrain+ dataset (Training
Time) and the time it takes to predict a label for data in KDDTest+ dataset (Test Time). Evidently, more the
training time of a particular classifier, more computation resources are needed for achieving classification, and
lesser the test time indicates that the classifier will have quick response.

5.3. Performance evaluation of various machine learning algorithms for detecting insider at-
tacks in IoT. In order to analyse the performance of various supervised machine learning algorithms for
detecting insider attackers in IoT network, they were first trained on KDDTrain+ dataset and then their classi-
fication performance was evaluated using KDDTest+ dataset. For the implementation of these models, we have
used intel core i3-5005U CPU @ 2.00GHz * 4, RAM: 4GB and operating system: ubuntu 14.04 LTS (64bit),
using Scikit-learn and pandas package.

To choose the optimal value of various critical parameters in various classifiers, we have simulated the
models for different values as shown in figure 5.3 to 5.8.

Figure 5.3 plots the accuracy of ridge regression to detect malicious IoT network traffic against various

24 Mir Shahnawaz Ahmad, Shahid Mehraj Shah

Fig. 5.4: Accuracy of Lasso regression for detecting malicious IoT network traffic in KDDTest+ dataset for
varying values of α

Fig. 5.5: Accuracy of Elastic Net for detecting malicious IoT network traffic in KDDTest+ dataset for varying
values of λ1 and λ2

values of α, and it is evident from the figure that maximum detection accuracy is achieved for α = 1. Also,
figure 5.4 proves that maximum detection accuracy is achieved at α = 0.02 for Lasso regression. We have tested
the Elastic Net for varying values of λ1 and λ2 on KDDTest+ dataset, as shown in figure 5.5. The figure shows
that maximum accuracy is achieved for λ1 = 0.2 and λ2 = 0.8.

The value of K in K-Nearest Neighbor classifier was chosen to be 10, since the detection accuracy saturates
after K = 10 (as shown in figure 5.6). Figure 5.7 gives the optimal number of iterations for various classifiers by
analysing the detection accuracy. Optimal values for number of training samples used to train base estimator
for Random forest, AdaBoost and Gradient Boosting respectively are shown in figure 5.8.

Thus, after getting the optimal values for various parameters, the detailed results for detecting malicious
insider attacks in the IoT network by various supervised machine learning algorithms are shown in Table 5.2,
figure 5.9 and 5.10.

After thorough analysis of performance parameters in table 5.2 and figure 5.9 & 5.10 for various machine
learning algorithms, we conclude that ensemble machine learning methods (Random forest, AdaBoost and

Mitigating Malicious Insider Attacks in the Internet of Things using Supervised Machine Learning Techniques 25

Fig. 5.6: Accuracy of K-Nearest Neighbor classifier for detecting malicious IoT network traffic in KDDTest+
dataset for varying values of K

Fig. 5.7: Accuracy of various classifier for detecting malicious IoT network traffic in KDDTest+ dataset for
varying number of iterations during training process

Gradient Boosting) perform better than the other studied machine learning classifiers for classifying the IoT
network traffic into malicious and non-malicious. Among them the Gradient Boosting outperforms with an
accuracy of 81.29% and AUC value of 0.96. Although the training time of Gradient Boosting algorithm is
slightly more than some of the discussed algorithms, the testing time is nominal.

6. Conclusion. In this paper, we have discussed various characteristics and security requirements of an
IoT network. We have also discussed how a malicious insider can be a major threat to IoT network and analysed
various supervised machine learning algorithms which make them favourable for detecting such attacks in the
IoT network. In order to demonstrate that the machine learning techniques can be used to detect malicious
insiders in the IoT network, we trained various supervised machine learning algorithms on NSL-KDD dataset.
The results show that Gradient Boosting technique outperforms the other discussed techniques. As part of
future work, new and updated optimization techniques can be used to further enhance the attack detection
accuracy of Gradient Boosting algorithm.

26 Mir Shahnawaz Ahmad, Shahid Mehraj Shah

Fig. 5.8: Accuracy of various classifier for detecting malicious IoT network traffic in KDDTest+ dataset for
varying number of training samples used to train base estimator

Table 5.2: Performance Analysis of various Machine Learning Classifiers on KDDTest+ dataset

Machine
Learning
Classifiers

TP FP TN FN Accu-
racy
(%)

Pre- ci-
sion

Re-
call

F1-
score

Train-
ing
Time
(Sec)

Test
Time
(Sec)

AUC

Lasso 9391 4725 8108 319 77.62 0.83 0.78 0.77 0.93 0.0021 0.80
Ridge 9484 4786 8047 226 77.77 0.84 0.78 0.77 0.22 0.0021 0.80
Elastic Net 9404 4604 8229 306 78.22 0.84 0.78 0.78 0.62 0.0021 0.80
Lasso with
Lars

9389 4752 8081 321 77.5 0.83 0.77 0.77 0.08 0.002 0.80

LR 9070 4899 7934 640 75.42 0.81 0.75 0.75 11.38 0.0021 0.87
K-NN 9482 4977 7856 228 76.91 0.84 0.77 0.77 74.39 184.52 0.85
Linear SVM 9071 4953 7880 639 75.19 0.81 0.75 0.75 410.21 0.0022 0.87
SVM with
RBF Kernel

9508 4699 8134 202 78.25 0.84 0.78 0.78 117.93 9.68 0.94

SVM with
Poly. Kernel

9500 5092 7741 210 76.48 0.83 0.76 0.76 100.81 7.85 0.89

LR with SGD 9342 4781 8052 368 77.16 0.83 0.77 0.77 0.50 0.0021 0.92
SVM with
SGD

9515 4931 7902 195 77.26 0.84 0.77 0.77 0.36 0.0021 0.90

Random For-
est

9430 4655 8178 280 78.10 0.84 0.78 0.78 14.05 0.32 0.96

AdaBoost 9409 4196 8637 301 80.05 0.85 0.80 0.80 34.18 0.79 0.95
Gradient
Boosting

9424 3932 8901 286 81.29 0.86 0.81 0.81 73.47 0.11 0.96

MLP 9466 4581 8252 244 78.59 0.84 0.79 0.78 406.99 0.14 0.96

Acknowledgments. We would like to thank TEQIP-III and MITS, Gwalior for supporting this research.

REFERENCES

[1] F. Javed, M. K. Afzal, M. Sharif, and B.-S. Kim, Internet of Things (IoT) operating systems support, networking
technologies, applications, and challenges: A comparative review, in IEEE Communications Surveys & Tutorials, 20, No.
3 (2018), pp. 2062–2100.

[2] F. A. Alaba, M. Othman, I. A. T. Hashem, and F. Alotaibi, Internet of things security: A survey, in Journal of Network

Mitigating Malicious Insider Attacks in the Internet of Things using Supervised Machine Learning Techniques 27

Fig. 5.9: ROC curves for various classifiers (having AUC > 0.85) after classifying IoT network traffic in
KDDTest+ dataset (Part 1)

Fig. 5.10: ROC curves for various classifiers (having AUC > 0.85) after classifying IoT network traffic in
KDDTest+ dataset (Part 2)

and Computer Applications, 88 (2017), pp. 10–28.
[3] S. Alneyadi, E. Sithirasenan, and V. Muthukkumarasamy, A survey on data leakage prevention systems, in Journal of

Network and Computer Applications, 62 (2016), pp. 137–152.
[4] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu, Iot security techniques based on machine learning: How do IoT devices

use AI to enhance security?, in IEEE Signal Processing Magazine, 35, no. 5 (2018), pp. 41–49.
[5] Nsl-kdd dataset, https://www.unb.ca/cic/datasets/nsl.html, (accessed: 02.08.2020).
[6] R. K. Gunupudi, M. Nimmala, N. Gugulothu, and S. R. Gali, Clapp: A self constructing feature clustering approach for

anomaly detection, in Future Generation Computer Systems, 74 (2017), pp. 417–429.
[7] T. Su, H. Sun, J. Zhu, S. Wang, and Y. Li, Bat: Deep learning methods on network intrusion detection using nsl-kdd

dataset, in IEEE Access, 8 (2020), pp. 29,575–29,585.
[8] C. A. de Souza, C. B. Westphall, R. B. Machado, J. B. M. Sobral, and G. dos Santos Vieira, Hybrid approach to

intrusion detection in fog-based IoT environments, in Computer Networks, 180 (2020), pp. 107417.
[9] I. Homoliak, F. Toffalini, J. Guarnizo, Y. Elovici, and M. Ochoa, Insight into insiders and it: A survey of insider

threat taxonomies, analysis, modeling, and countermeasures, in ACM Computing Surveys (CSUR), 52, no. 2 (2019), pp.
1–40.

[10] J. Lopez, R. Roman, and C. Alcaraz, Analysis of security threats, requirements, technologies and standards in wireless

28 Mir Shahnawaz Ahmad, Shahid Mehraj Shah

sensor networks, in Foundations of Security Analysis and Design V. Springer (2009), pp. 289–338.
[11] X. Yao, Z. Chen, and Y. Tian, A lightweight attribute-based encryption scheme for the internet of things, in Future

Generation Computer Systems, 49 (2015), pp. 104–112.
[12] F. L. Greitzer and D. A. Frincke, Combining traditional cyber security audit data with psychosocial data: towards

predictive modeling for insider threat mitigation, in Insider threats in cyber security. Springer (2010), pp. 85–113.
[13] T. E. Senator, H. G. Goldberg, A. Memory, W. T. Young, B. Rees, R. Pierce, D. Huang, M. Reardon, D. A. Bader,

E. Chow et al., Detecting insider threats in a real corporate database of computer usage activity, in Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery and data mining (2013), pp. 1393–1401.

[14] L. Liu, O. De Vel, Q.-L. Han, J. Zhang, and Y. Xiang, Detecting and preventing cyber insider threats: A survey, in IEEE
Communications Surveys & Tutorials, vol. 20, no. 2 (2018), pp. 1397–1417.

[15] F. L. Greitzer, J. Strozer, S. Cohen, J. Bergey, J. Cowley, A. Moore, and D. Mundie, Unintentional insider threat:
contributing factors, observables, and mitigation strategies, in 2014 47th Hawaii International Conference on System
Sciences. IEEE (2014), pp. 2025–2034.

[16] D. W. Marquardt and R. D. Snee, Ridge regression in practice, in The American Statistician, 29, no. 1 (1975), pp. 3–20.
[17] R. Tibshirani, Regression shrinkage and selection via the lasso, in Journal of the Royal Statistical Society: Series B

(Methodological), vol. 58, no. 1 (1996), pp. 267–288.
[18] H. Zou and T. Hastie, Regularization and variable selection via the elastic net, in Journal of the royal statistical society:

series B (statistical methodology), vol. 67, no. 2 (2005), pp. 301–320.
[19] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani et al., Least angle regression, in The Annals of statistics, vol. 32, no.

2 (2004), pp. 407–499.
[20] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic regression, in John Wiley & Sons (2013), vol.

398.
[21] R. Battiti and F. Masulli, Bfgs optimization for faster and automated supervised learning, in International neural network

conference. Springer (1990), pp. 757–760.
[22] T. Cover and P. Hart, Nearest neighbor pattern classification, in IEEE transactions on information theory, vol. 13, no. 1

(1967), pp. 21–27.
[23] C. Cortes and V. Vapnik, Support-vector networks, in Machine learning, vol. 20, no. 3 (1995), pp. 273–297.
[24] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi, and A. P. Sheth, Machine learning for

internet of things data analysis: A survey, in Digital Communications and Networks, vol. 4, no. 3 (2018), pp. 161–175.
[25] G. Xu, Z. Cao, B.-G. Hu, and J. C. Principe, Robust support vector machines based on the rescaled hinge loss function,

in Pattern Recognition, 63 (2017), pp. 139–148.
[26] S. Mehrkanoon, X. Huang, and J. A. Suykens, Non-parallel support vector classifiers with different loss functions, in

Neurocomputing, 143 (2014), pp. 294–301.
[27] T. G. Dietterich, An experimental comparison of three methods for constructing ensembles of decision trees: Bagging,

boosting, and randomization, in Machine learning, 40, no. 2 (2000), pp. 139–157.
[28] T. Hastie, S. Rosset, J. Zhu, and H. Zou, Multi-class adaboost, in Statistics and its Interface, vol. 2, no. 3 (2009), pp.

349–360.
[29] X. Zhu, P. Zhang, X. Lin, and Y. Shi, Active learning from stream data using optimal weight classifier ensemble, in IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 40, no. 6 (2010), pp. 1607–1621.
[30] J. H. Friedman, Stochastic gradient boosting, in Computational statistics & data analysis, vol. 38, no. 4 (2002), pp. 367–378.
[31] A. Guezzaz, A. Asimi, A. Mourade, Z. Tbatou, and Y. Asimi, A multilayer perceptron classifier for monitoring network

traffic, in International Conference on Big Data and Networks Technologies. Springer (2019), pp. 262–270.

Edited by: Dana Petcu
Received: Oct 15, 2020
Accepted: Jan 20, 2021

Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org

© 2021 SCPE. Volume 22, Issues 1, pp. 29–38, DOI 10.12694:/scpe.v22i1.1834

ESTIMATION OF TRAFFIC MATRIX FROM LINKS LOAD

USING GENETIC ALGORITHM

JOSEPH L PACHUAU, ARNAB ROY, GOPAL KRISHNA AND ANISH KUMAR SAHA ∗

Abstract. Traffic Matrix (TM) is a representation of all traffic flows in a network. It is helpful for traffic engineering and
network management. It contains the traffic measurement for all parts of a network and thus for larger network it is difficult to
measure precisely. Link load are easily obtainable but they fail to provide a complete TM representation. Also link load and TM
relationship forms an under-determined system with infinite set of solutions. One of the well known traffic models Gravity model
provides a rough estimation of the TM. We have proposed a Genetic algorithm (GA) based optimization method to further the
solutions of the Gravity model. The Gravity model is applied as an initial solution and then GA model is applied taking the link
load-TM relationship as a objective function. Results shows improvement over Gravity model.

Key words: Traffic Matrix, Traffic Engineering, Gravity model, Link loads, Optimization, Genetic Algorithm, IP networks.

AMS subject classifications. 68M14

1. Introduction. Traffic matrix is a representation of traffic volume flowing between node pair in a
network. It plays an important role in traffic engineering. Traffic matrix helps network manager in task like load
balancing, network optimization, anomaly detection etc. The ingress-egress traffic matrix is collected between
ingress and egress routers in the network. Origin destination matrix measures the traffic flow from actual source
destination. The point where the packages are created and where they are received. For large IP networks
this produces an extremely large and sparse matrix. For such a case an aggregated IP or blocks of IP may be
considered as a single point. Direct measurement of traffic matrix requires placement of flow measurement at
each ingress/egress points. This is impractical for large IP networks in terms of cost, time and effort [1]. As a
result, several approaches have been implemented to estimate or model the traffic matrix from other available
measurements. Link measurements provides traffic data for each link in a network. These measurements are
easily collected from routers using SNMP (Simple network management protocol). In [2], authors proposed
the method of network tomography, where used of traffic matrix is estimated from link measurements and
routing information. The link and traffic matrix relationship has greater number of unknown than the number
of equations. Thus, it cannot be solved for a unique solution. Approaches like Bayesian and Expectation
Maximization model estimates the TM from statistical features of the traffic data [3][4]. These approaches take
into account nature of traffic with changes in time. Spatial estimation of traffic matrix ignores the temporal
features and works for a single time instance of TM matrix. Spatial model like Gravity model, Discrete choice
model, independent connections etc. model have been implemented to produce TM. Different traffic model
provides useful estimations based on the implementation. But these models are not actual representations
and so they have inaccuracy. Several approaches were introduced where the output from these model are
improved for higher accuracy. Traffic matrix estimation by using a combination of network tomography and
spatial models was proposed in [5]. Estimation method in [6] implemented neural networks to improve TM
based on expectation maximization model. Applying optimization methods to estimate and improve traffic
matrix accuracy was proven successful in various studies [7, 8, 9]. In this paper we explore the use of GA as
an optimization tool. Genetic Algorithm is a soft optimization technique which uses guided random techniques
to search for an optimized solution. GA is known to work well for noisy environments and large parameter
problems. For traffic matrix estimation using neural networks GA was applied to optimize the weights [10].
GA also found its implementation in Distributed Denial of Service attack. Parameters of traffic matrix were

∗Department of Computer Science and Engineering, National Institute of Technology Silchar, India (anishkumarsaha@gmail.com)

29

30 Joseph L Pachuau, Arnab Roy, Gopal Krishna, Anish Kumar Saha

optimized using GA to detect the attacks [11]. We proposed the combination of Gravity model and GA
optimization to estimate and improve the accuracy of traffic matrix.

2. Related Works. Traffic Engineering (TE) deals with improvement of network performance by analy-
sing traffic data and patterns. Traffic prediction is used in TE to control time varying traffic. Traffic variation are
categorised into short-term and long-term variation. The long term variation helps to define the daily behaviour
of traffic, while short term variation are handled to avoid congestion. Prediction is used to manage the traffic for
optimal link utilization[12]. Dynamic behaviour of routing depends on proper prediction of traffic. In [13], the
authors proposed optimization of router deployment depending on traffic flow to improve network efficiency.
In their method, traffic flows are directed to a service node for making egress based optimization routing.
The network paths are planned to facilitate an effective TE for improvement of quality of network traffic. In
[14], a sequence-to-sequence model is proposed to improve the challenges caused by growth of Internet traffic.
The sequence-to-sequence model learns forwarding path based on traffic data. In [15], authors investigated
various TE techniques to improve different aspects of a network. They proposed Centralized Optimal Traffic
Engineering system, Suboptimal Solution, and Distributed & Greedy solution to maximize data delivery. The
performance of the network is measured in aggregated network throughput, average end to end delay and flow
fairness. In [16], a heuristic approach is proposed to optimize routing over multiple TMs. The routes obtained
through this methods are loop free and optimized bandwidth of links.

GA due to it’s flexibility is implemented for different problems in networking. In [17], authors give weigh-
tage on quality of service for mixed traffic environment. They proposed a scheduling algorithm using GA for
optimal resource allocation in a network. The quality of service is taken as fitness function in their proposed
GA. The traffic is possible to be classified into different categories as shown in [18]. They used wavelet kernel
function with GA for classification. This type of classification helps in intruder detection for unwanted traffics
of various applications. There are other example of GA based traffic classifiers like, distance-based, K-Nearest
Neighbors, and neural networks. Data points are separated using Mutual information, Dunn, and SD based
biased measurement. It helps in Peer to Peer and non Peer to Peer traffic classification [19]. Classification
of packets require a robust scheme that provide scalability, reliability and quality services. Feature selection,
a classification process, selects relevant features during prediction. Both GA based classification and feature
selection are used to classify packets as shown in [20]. An incomplete collection of traffic data degrade the
integrity, information and quality. Fuzzy C-Means is an algorithm used to tackle clustering problem of incom-
plete traffic data. The missing data is filled up with the process called imputation, where estimated data replace
the missed data. Fuzzy C-means with GA is making a good hybrid model for traffic data estimation[21].

Effective TE applications requires accurate estimation of Traffic matrix. A model named, network tomog-
raphy equation establishes a relationship between link measurements and traffic matrix. This relationship is
an under determined system. Due to this ill posed problem, numerous works focus on combining network
tomography method with other mathematical models. The Gravity model construct TMs by assuming Origin-
Destination flows proportional to the incoming and outgoing traffic of nodes. The generalised gravity further
improves this process by classifying the traffic flows. The tomogravity model combines gravity and tomogra-
phy model to increase accuracy of TM. Advanced tomogravity method introduces a relativity factor to further
improve the estimation as in [22]. The co-variance method [23] uses co-variance matrix of link count sample to
make up for insufficient information. TMs are estimated from the link count covariance matrix. This method
provides a light weight estimation consistent with actual link measurements. The Generalized Autoregres-
sive Conditional Heteroscedasticity model [24] deals with the ill posed nature of TMs. It provides a flexible
approach to capture self similarity in traffic behaviour. Comparison of different TM estimation method [25]
shows that tomogravity and entropy maximization performs better than linear programming approach. Adding
extra constraints in entropy maximization further increase the performance. In [26], authors present the use
of Simple Network Management Protocol for complete traffic collection with known estimation techniques to
improve accuracy. The adaptive information gain maximization also focuses on traffic collection for improve-
ment in accuracy. The most informative flow from traffic is determined for estimation of TMs. This approach
increases the accuracy with a small increase in measurement resources [27]. For a large network, estimating
TM takes high computation time for which division of network is one of the solutions. In [25], authors proposed
divide and conquer method for estimating TM for large size network. The large network is divided into smaller

Estimation of Traffic Matrix from Links Load using Genetic Algorithm 31

Table 3.1: An Instance of Traffic Matrix for duration of 5 min. on 01/03/2004

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

S1 10000 195828 615502 125898 154887 183703 136904 306701 169523 280277 145619 1178115

S2 166931 30997781 6106169 1938388 1474276 10256961 1816513 6836966 4801483 533208 3359056 19405592

S3 1422635 4775747 10779162 5151845 3686376 9884916 2451656 10415963 5286877 681353 1685721 3992645

S4 86552 878056 14444321 1410746 3153286 2702903 1480837 8015838 2146278 5394549 3978549 4593323

S5 89641 1108792 6334313 1384882 2102362 3428964 2673813 36921723 2724474 1105266 839099 3189994

S6 1787597 3470525 45766716 8016824 12440169 8568396 3709065 9151891 15231037 1299895 5209570 15426785

S7 157860 1666336 10114602 2022864 2053539 3006659 1508587 3252594 4815904 458907 916602 4518164

S8 127373 7272971 33646381 3389768 3386575 16020094 5088844 4263424 22936657 866828 9569795 20897395

S9 1461615 15332940 20127858 6129395 8995420 31247043 9287731 26633460 51298517 3596757 8225459 41947778

S10 10000 390452 1892275 3902592 538756 1448104 786402 750079 829298 5351103 1236618 745390

S11 41632 5955580 8442220 1627941 4238538 2884194 847818 6662390 9317015 1783127 389384 3944017

S12 4207163 47226648 24952949 13523783 5789742 23543180 12241025 34378360 50123027 742716 11160076 70370056

parts then combined them for the full estimation of TM. This approach deals with smaller routing table and
allows parallel processing which improves computational time. Artificial Neural Network approach is possible
to improve estimation of TM. In [28], authors proposed Recurrent Neural Network approach for estimation of
TM. The Recurrent Neural Network takes real world data for training of the model to extract spatio-temporal
features of TM. Convolutional neural network is another finding for spatial relationship between link loads and
Origin-Destination flows[29]. These artificial neural networks approach are good in finding hidden features of
TM, although it requires large training data. TM estimation often includes aggregation of large traffic flows
which is a difficult task at real time. In [30], authors proposed distributed Map Reduce approach for aggregation
of large traffic flows. The Map Reduce approach uses topology information to identify origin-destination links,
for easier aggregation of traffic flows. The input for the Map reduce is collected using a big data streaming
module and the result shows near real time estimation of TM.

3. Proposed model for GA based Traffic Matrix Estimation.

3.1. Basics of Traffic Matrix Model. We have used a well known network for TM estimation named
Abilene network collected by Y.Zhang, which contains data set of actual traffic matrix of the Abilene network
for 6 months [31]. Each instance of TM collects 5 minutes of traffic between all source and destination. The
routing matrix and topology are included in the data set. It consist of 12 nodes and 54 links. There are 32
uni-directional links between nodes and each nodes has an inbound and outbound link, therefore a total of 54
links. The TM of an instance Xi is a 2D matrix of 12×12 in size, an example is shown in Table 3.1. Each value
xij in the matrix denotes the traffic flow from source Si to destination Dj . With elapsed time t, the traffic
matrix extend to a complete 3D traffic matrix as X1, X2, X3, ..., Xi.

For determining TM X, two inputs are required namely, routing matrix A and link loads Y respectively.
The relationship among them is as follows,

AX = Y (3.1)

For this, all links load are measured for a network, from which different models are applied to have more
precise TM values. In Abilene network, 54 numbers of link loads are available as seen 1D vector. Link loads
are direct count of packets for a link. Abilene network has 144 (12 × 12) numbers of all possible combination
of {Source, Destination} for all 12 nodes and 54 numbers of various links. Thus making the routing matrix A

of {144× 54} in dimension size. The entries of A are as follows,

Aij =

{

1, if link i is utilized in {Source-Destination} j path

0, otherwise
(3.2)

Eq. 3.1 is a linear system where the number of unknowns are larger than the number of equations. There
are multiple solutions for the value of X. Proper use of mathematical models such like, Gravity model, provides
a close estimation, yet further improvement is possible in the solution.

32 Joseph L Pachuau, Arnab Roy, Gopal Krishna, Anish Kumar Saha

Fig. 3.1: Abilene network topology with various link traffic direction

Fig. 3.2: Flowchart for proposed GA

3.2. Basics of Gravity Model. The Gravity model as the name suggest its an adaptation of Newton’s
Gravity model. This model is applied in different transportation problems, like road traffic, goods etc. In
internet TM also it is applied to estimate traffic matrix by taking the ingress and egress flow of a node [32].
Each entry of the TM, Xij represent the traffic from node i to node j. It is considered proportional to all traffic
flowing out from i, T out

i and all traffic flowing in to j, T in
j . The total traffic T total =

∑n
k=1 T

in
k =

∑n
k=1 T

out
k ,

is used for normalization. The expression for the TM entry is as follows:

Xij =
T out
i × T in

j

T total
(3.3)

where n is number of nodes in the network and the output is a traffic matrix of X{n× n} dimension, where
1 ≤ i ≤ n and 1 ≤ j ≤ n.

3.3. Proposed TM model. The Concept of GA, was introduced as an optimization technique that
models after the evolution of biological being in the natural world. GA is a heuristic random search that
finds sub-optimal solution. The first step of GA is initialization, where a set of random feasible solution for the
optimization is generated. GA basic operators, like crossover and mutation are applied to form new population.
The best solutions are selected from the population. The operations are repeated until the result converged
towards a sub-optimal solution [33]. The gravity model solution is possible to further optimize using GA to

Estimation of Traffic Matrix from Links Load using Genetic Algorithm 33

closer match the link measurements. The optimization with the help of Eq. 3.1 is defined as follows:

Min. ∥AX − Y ∥+ w ∥X −XGM∥
Subject to

∑n
j=1 xij = Ii

∑n
i=1 xij = Jj
xij ≥ 0 i = 1...n & j = 1...n.

(3.4)

where, Ii and Jj are the total incoming and outgoing traffic for node i and node j respectively. The first part
of the objective function gives the distance of calculated link load from the link measurement, while the second
part calculates the TM solution distance from the Gravity model. The w is a weight applied to the distance
with gravity model in order to adjust the significance of Gravity model in the optimization. First and second
constraint maintains the conservation of traffic, i.e. total traffic is constant. Third constraint makes sure that
the traffic between any two nodes is always positive. The details of the proposed GA operators, shown in Fig.
3.2, for optimization of Eq. 3.4 are discussed below.

3.3.1. Initialization. We need a set of random solution known as initial population. For making initial
population, a first individual is generated from Gravity model. Then after the remaining population are
generated by making random changes to the first individual while maintaining all constraints. For this we
introduce a matrix ∆ of dimension {n× n} which is defined as:

∆ =

[

[B] −[B]
−[B] [B]

]

. (3.5)

B is a matrix of size (n
2 × n

2), where each element bij takes a random value from the set {-1, 1}. Therefore ∆
contains random elements of 1 or -1, and due to its arrangement given in (1), the sum of each row and column
is equal to 0. A random multiplier, r is generated to calculate random solution. If XGM represents the TM
obtained by gravity model, then the rest of individual can be calculated as,

X = XGM + r∆ (3.6)

Eq. 3.6 is possible to evaluate with multiple repetition for different values of r for generating multiple in-
dividuals. Since the sum of rows and columns of ∆ is 0, the new individuals satisfy the first and second
constraint.

3.3.2. Selection. Individuals for crossover are selected using the selection operator. For this purpose a
roulette wheel is implemented. Roulette wheel as the name suggest takes inspiration from the game. The
individuals are placed on the wheel as a pie chart structure. The fitter individuals occupy larger space on the
wheel. A fixed pointer is placed on the wheel. When the wheel is spun the individual that the pointer lands
on is selected. The roulette wheel provides a random selection while giving preferences to the better solution.

3.3.3. Crossover. The crossover takes two individuals and exchange information between them to form
new individuals or offspring. Two individuals P and Q are selected as parents where P is the fitter parent and
the generated offspring are C and D. A random gene location with index i and j is selected to apply crossover
as below,

cij = pij + β × (pij − qij)
dij = qij + β × (pij − qij)

(3.7)

where β is a random number in the range of [0, b]. The remaining gene locations in C and D are directly
copied from P and Q respectively. This crossover is known as the heuristic crossover [34]. Other crossovers
like, average, arithmetic, blend etc., are also applicable in this process. The heuristic crossover is suitable here
for finding a new solution closer to the fitter parent and the range of values for child genes are adjustable with
b. The same is shown in Fig. 3.3.

34 Joseph L Pachuau, Arnab Roy, Gopal Krishna, Anish Kumar Saha

Fig. 3.3: Crossover operation

3.3.4. Mutation. The Mutation makes random change in gene values. This process is generally used
to prevent the solutions converging to a local optimum point or premature convergence. For an individual P
mutation is performed to produce one offspring C as follows,

cij = α× pij (3.8)

where α is a random number in the range of [0, a]. The gene location with index i and j are randomly selected.
The rest of the gene remain unchanged. Here, the rate of mutation is kept to 0.2.

3.3.5. Constraint Validation. The crossover and mutation when applied to a single gene value leads
to violation in first and second constraints. These violation of constraints are handled using direct method as
explained in [35]. The offspring of crossover and mutation are processed for constraint validation. If x′

ij and
xij denotes the old and updated values for offspring X, the change in gene value is calculated as δ = xij − x′

ij .
Changes are made in X as follows:

xkl =











xkl, if i = k and j = l

xkl +
δ

n+1 , if either i = k or j = l

xkl +
δ

(n+1)2 , otherwise

(3.9)

where k = 1 . . . n and l = 1...n. This maintains the traffic conservation of first two constraints. Constraint 3
is handled by assigning a penalty to the fitness function when constraint is violated.

4. Results and Analysis. The results obtained from Gravity model and the proposed GA for the same
traffic are compared. The traffic is collected from Abilene network available in [31]. The error is calculated
using Root Mean Square Error(RMSE). The RMSE is calculated as follows,

RMSE =

√

1

n
(Xestimated −Xraw)

2
(4.1)

Population size plays an important role in the proposed model. The algorithm is executed for different
population size for the same time instance t = 1 as shown in Figure 4.1. It is observed that above 300, almost
the RMSE is reaching to lowest value. A population size of 300 is taken as the optimal size. Figure 4.2 shows
the comparison of TM values for the proposed GA and Tomogravity proposed in [5]. We observe that the
GA estimation are closer to the real value, which is represented as a diagonal line. The RMSE and average
error comparison is shown in Table 4.2. It is observed that the RMSE value shows good improvement while

Estimation of Traffic Matrix from Links Load using Genetic Algorithm 35

0 100 200 300 400 500

4.5M

5.0M

5.5M

6.0M
R
M
SE

Population Size

Fig. 4.1: Output of proposed GA with Population size for time instance, t=1.

Table 4.1: Effects of parameters in GA operators.

(a) Effect of α range in mutation.

Value of a Generation number

0.25 417
0.5 344
1 247
2 253
4 280
8 329
16 365

(b) Effect of β range in crossover.

Value of b Generation number

1 678
2 337
4 291
8 240
16 237
32 251
64 287

the average error improvement is lesser. This shows that the proposed GA estimation give higher accuracy for
large traffic flows which contribute more to the entire traffic. The TM estimation for time instances t = 1 to
50 shows that the proposed GA provides improved results over the initial Gravity model and the Tomogravity
results as seen in Figure 4.3.

The effectiveness of mutation and crossover decides the performance of GA. Varying the range of the random
multiplier α and β from the range [0, a] and [0, b] affects the performance of the proposed GA in mutation and
crossover respectively. The optimal value of the proposed GA for different values of a and b are shown in Table
4.1. The proposed algorithm is executed with different values of a and b, and the outcomes are measured in
the number of generation to converge to an optimized solution. For mutation Table 4.1a, a = 1 shows the
best result, obtaining the solution at 247 generations. For crossover Table 4.1b, b = 16 shows the best result,
obtaining the solution at 237 generations.

36 Joseph L Pachuau, Arnab Roy, Gopal Krishna, Anish Kumar Saha

(a) Gravity

-10M 0 10M 20M 30M 40M 50M 60M 70M 80M
-10M

0

10M

20M

30M

40M

50M

60M

70M

80M

R
aw

 T
M

 v
al

ue
s

Tomogravity estimation

(b) Tomogravity

-10M 0 10M 20M 30M 40M 50M 60M 70M 80M
-10M

0

10M

20M

30M

40M

50M

60M

70M

80M

R
aw

 T
M

 v
al

ue
s

GA estimation

(c) GA estimation

Fig. 4.2: Comparison of various TM to raw value for instance t=1.

Table 4.2: Comparison of RMSE and Averrage error TM instance t=1.

Gravity Model Tomogravity GA estimation

RMSE 6.1510× 106 4.7038× 106 4.2787× 106

Average error 3.4572× 106 2.6660× 106 2.7638× 106

5. Conclusion. Traffic matrix calculation for large IP network is a difficult task due to insufficient infor-
mation. In this paper we have proposed a way to improve estimation for traffic matrix. The gravity model
provides a reasonable estimation but can be improved with GA optimization. Higher population size provides
a more diverse population thus allowing for better exploration of the search space. As the TM consist of 144
elements, such a high dimensional search space requires a larger population size. The GA estimation gives rea-
sonable result at population size beyond 100, and as it further increases beyond 300 no significant improvement

Estimation of Traffic Matrix from Links Load using Genetic Algorithm 37

0 10 20 30 40 50
0

1M

2M

3M

4M

5M

6M

7M

8M

R
M
SE

Time instance (t)

 Gravity model
 Tomogravity
 GA estimation

Fig. 4.3: RMSE of Gravity model and proposed GA for different time instances t= 1 to 50 & fixed population
size= 300.

is observed. Our proposed model shows improvement over the gravity model in both RMSE and average error,
while comparison with tomogravity results shows improvement in RMSE value shows better improvement than
the average error. This shows that the propose GA estimation is more sensitive to the larger traffic values which
are more significant to the overall matrix. Overall the proposed model provides improvement for traffic matrix
model and theoretically it can be used with any TM model by replacing the Gravity model for an improved
result.

REFERENCES

[1] P. Tune, M. Roughan, H. Haddadi, and O. Bonaventure, “Internet traffic matrices: A primer,” Recent Advances in
Networking, vol. 1, pp. 1–56, 2013.

[2] Y. Vardi, “Network tomography: Estimating source-destination traffic intensities from link data,” Journal of the American
statistical association, vol. 91, no. 433, pp. 365–377, 1996.

[3] C. Tebaldi and M. West, “Bayesian inference on network traffic using link count data,” Journal of the American Statistical
Association, vol. 93, no. 442, pp. 557–573, 1998.

[4] J. Cao, D. Davis, S. Vander Wiel, and B. Yu, “Time-varying network tomography: router link data,” Journal of the
American statistical association, vol. 95, no. 452, pp. 1063–1075, 2000.

[5] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg, “Fast accurate computation of large-scale ip traffic matrices
from link loads,” ACM SIGMETRICS Performance Evaluation Review, vol. 31, no. 1, pp. 206–217, 2003.

[6] H. Zhou, L. Tan, Q. Zeng, and C. Wu, “Traffic matrix estimation: A neural network approach with extended input and
expectation maximization iteration,” Journal of Network and Computer Applications, vol. 60, pp. 220–232, 2016.

[7] S. Eum, J. Murphy, and R. Harris, “A fast accurate lp approach for traffic matrix estimation,” in International Teletraffic
Congress ITC19, 2005.

[8] O. Goldschmidt, “Isp backbone traffic inference methods to support traffic engineering,” in Internet Statistics and Metrics
Analysis (ISMA) Workshop, pp. 1063–1075, 2000.

[9] D. Jiang, X. Wang, and L. Guo, “An optimization method of large-scale ip traffic matrix estimation,” AEU-International
Journal of Electronics and Communications, vol. 64, no. 7, pp. 685–689, 2010.

[10] A. Omidvar and H. Shahhoseini, “Intelligent ip traffic matrix estimation by neural network and genetic algorithm,” in 2011
IEEE 7th International Symposium on Intelligent Signal Processing, pp. 1–6, IEEE, 2011.

[11] S. M. Lee, D. S. Kim, J. H. Lee, and J. S. Park, “Detection of ddos attacks using optimized traffic matrix,” Computers &
Mathematics with Applications, vol. 63, no. 2, pp. 501–510, 2012.

[12] T. Otoshi, Y. Ohsita, M. Murata, Y. Takahashi, K. Ishibashi, and K. Shiomoto, “Traffic prediction for dynamic traffic
engineering,” Computer Networks, vol. 85, pp. 36–50, 2015.

[13] J. Sun, S. Sun, K. Li, D. Liao, A. K. Sangaiah, and V. Chang, “Efficient algorithm for traffic engineering in cloud-of-things
and edge computing,” Computers & Electrical Engineering, vol. 69, pp. 610–627, 2018.

[14] Y. Zuo, Y. Wu, G. Min, and L. Cui, “Learning-based network path planning for traffic engineering,” Future Generation

38 Joseph L Pachuau, Arnab Roy, Gopal Krishna, Anish Kumar Saha

Computer Systems, vol. 92, pp. 59–67, 2019.
[15] M. Islam, M. A. Razzaque, M. Mamun-Or-Rashid, M. M. Hassan, A. Alelaiwi, and A. Alamri, “Traffic engineering

in cognitive mesh networks: Joint link-channel selection and power allocation,” Computer Communications, vol. 116,
pp. 212–224, 2018.

[16] Y. Guo, Z. Wang, X. Yin, X. Shi, and J. Wu, “Traffic engineering in hybrid sdn networks with multiple traffic matrices,”
Computer Networks, vol. 126, pp. 187–199, 2017.

[17] S. H. da Mata and P. R. Guardieiro, “Resource allocation for the lte uplink based on genetic algorithms in mixed traffic
environments,” Computer Communications, vol. 107, pp. 125–137, 2017.

[18] F. Ertam and E. Avcı, “A new approach for internet traffic classification: Ga-wk-elm,” Measurement, vol. 95, pp. 135–142,
2017.

[19] M. Mohammadi, B. Raahemi, A. Akbari, H. Moeinzadeh, and B. Nasersharif, “Genetic-based minimum classification
error mapping for accurate identifying peer-to-peer applications in the internet traffic,” Expert Systems with applications,
vol. 38, no. 6, pp. 6417–6423, 2011.

[20] J. Park, H.-R. Tyan, and C.-C. J. Kuo, “Ga-based internet traffic classification technique for qos provisioning,” in 2006
International Conference on Intelligent Information Hiding and Multimedia, pp. 251–254, IEEE, 2006.

[21] J. Tang, G. Zhang, Y. Wang, H. Wang, and F. Liu, “A hybrid approach to integrate fuzzy c-means based imputation
method with genetic algorithm for missing traffic volume data estimation,” Transportation Research Part C: Emerging
Technologies, vol. 51, pp. 29–40, 2015.

[22] H. Zhou, L. Tan, F. Ge, and S. Chan, “Traffic matrix estimation: Advanced-tomogravity method based on a precise gravity
model,” International Journal of Communication Systems, vol. 28, no. 10, pp. 1709–1728, 2015.

[23] I. Juva, S. Vaton, and J. Virtamo, “Quick traffic matrix estimation based on link count covariances,” in 2006 IEEE
International Conference on Communications, vol. 2, pp. 603–608, IEEE, 2006.

[24] D. Jiang and G. Hu, “Garch model-based large-scale ip traffic matrix estimation,” IEEE Communications Letters, vol. 13,
no. 1, pp. 52–54, 2009.

[25] M. M. Rahman, S. Saha, U. Chengan, and A. S. Alfa, “Ip traffic matrix estimation methods: Comparisons and improve-
ments,” in 2006 IEEE International Conference on Communications, vol. 1, pp. 90–96, IEEE, 2006.

[26] A. Gunnar, M. Johansson, and T. Telkamp, “Traffic matrix estimation on a large ip backbone: a comparison on real
data,” in Proceedings of the 4th ACM SIGCOMM conference on Internet measurement, pp. 149–160, 2004.

[27] D. Li, C. Xing, N. Dai, F. Dai, and G. Zhang, “Estimating sdn traffic matrix based on online adaptive information gain
maximization method,” Peer-to-Peer Networking and Applications, vol. 12, no. 2, pp. 465–480, 2019.

[28] J. Zhao, H. Qu, J. Zhao, and D. Jiang, “Towards traffic matrix prediction with lstm recurrent neural networks,” Electronics
Letters, vol. 54, no. 9, pp. 566–568, 2018.

[29] M. Emami, R. Akbari, R. Javidan, and A. Zamani, “A new approach for traffic matrix estimation in high load computer
networks based on graph embedding and convolutional neural network,” Transactions on Emerging Telecommunications
Technologies, vol. 30, no. 6, p. e3604, 2019.

[30] W. J. Queiroz, M. A. Capretz, and M. A. Dantas, “A mapreduce approach for traffic matrix estimation in sdn,” IEEE
Access, vol. 8, pp. 149065–149076, 2020.

[31] Y. Zhang, Abilene Dataset, https://www.cs.utexas.edu/ yzhang/research/AbileneTM/, 2004.
[32] M. Roughan, “Simplifying the synthesis of internet traffic matrices,” ACM SIGCOMM Computer Communication Review,

vol. 35, no. 5, pp. 93–96, 2005.
[33] M. Mitchell, An introduction to genetic algorithms. MIT press, 1998.
[34] A. H. Wright, “Genetic algorithms for real parameter optimization,” in Foundations of genetic algorithms, vol. 1, pp. 205–

218, Elsevier, 1991.
[35] B. Craenen, A. Eiben, and E. Marchiori, “How to handle constraints with evolutionary algorithms,” Practical Handbook

Of Genetic Algorithms: Applications, pp. 341–361, 2001.

Edited by: Dana Petcu
Received: Nov 13, 2020
Accepted: Jan 21, 2021

Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org

© 2021 SCPE. Volume 22, Issues 1, pp. 39–52, DOI 10.12694:/scpe.v22i1.1836

A MICROSERVICE DECOMPOSITION METHOD THROUGH USING DISTRIBUTED

REPRESENTATION OF SOURCE CODE

OMAR AL-DEBAGY∗
AND PÉTER MARTINEK

Abstract. This research proposed a novel decomposition method for refactoring monolithic applications into microservices
applications using a neural network model (code2vec) for creating code embeddings from the monolithic application source code. As
a Result, semantically similar code embeddings are clustered through a hierarchical clustering algorithm to produce microservices
candidates to resemble the domain model more efficiently. The quality characteristics of the results were measured using two
metrics for measuring cohesion. These metrics were Cohesion at Message Level (CHM) and Cohesion at Domain Level (CHD).
Also, four applications were used as test cases with different sizes ranging from small to big applications. The proposed method
showed promising results in terms of cohesion when compared to other decomposition methods. The proposed method scored better
scores in 5 out of 8 tests compared to other methods. Also, averaged CHD and CHM results were 0.52 and 0.76, respectively, for
the proposed method, better results when compared to the other methods.

Key words: microservices decomposition, microservices, refactoring

AMS subject classifications. 68M14

1. Introduction. Nowadays, the internet requires a more flexible, scalable, and understandable software
architecture. Therefore, many companies and organizations started the process of migration from the monolithic
architecture toward a more suitable architecture that meets the demands of the current market [1]. The current
market requires an architecture flexible enough to face the frequent changes in user demands, and easily scalable
architecture to face the massive number of users [2]. These reasons led many companies and organizations to
adopt the microservices architecture. They chose microservices architecture to have a more scalable, easier to
maintain, and easier to manage applications [3]. Microservices is an architecture of fine-grained services that are
working independently from each other and communicating with each other through lightweight mechanisms to
do the tasks of an application suite. Although microservices provide different advantages to the organization,
but the process of migration introduced multiple issues. One of these issues is how to decompose or refactor
an existing monolithic application into microservices, which are loosely coupled and highly cohesive at the
same time, according to Newman [4]. Multiple researchers have introduced several methods to decompose the
monolithic application [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. These methods include many different
approaches such as static analysis of the application’s code [8, 9, 10, 14], dynamic analysis of the performance
of the applications [11, 12, 15, 16], and analysis of the applications interfaces [7, 17, 13]. These methods
provide assistance for developers to help them in the process of migrating from monolithic applications to the
microservices application. Still, the result of these methods cannot be considered as absolute results. This
research aims to tackle the issue of microservices identification using vector representation of software’s source
code. Hence, this paper proposed a novel approach to decompose monolith application into a microservices
application by using a neural model [22] to represent snippets of code as continuous distributed vectors. The
code of the monolithic application would be converted into vector representation using the provided model, and
then certain classes would be grouped to provide microservices candidates.

Four monolithic applications with different sizes were decomposed using the provided methodology in order
to verify the effectiveness of this approach. These applications were tested in other research papers before, so
they are considered benchmark applications for monolithic applications’ decomposition process. We used two
different metrics to compare the proposed method’s performance with other methods from the literature. Also,

∗Department of Electronics Technology, Budapest University of Technology and Economics, Budapest, Hungary (omeraldebagy@

gmail.com)

39

40 Omar Al-Debagy, Péter Martinek

we utilized other metrics to compare the sizes of the mentioned applications in the test, such as the number
of classes, number of methods, lines of code (LoC), and the number of microservices. The proposed method is
a useful aiding tool for developers in the process of migration from monolithic to a microservices architecture,
which suggests a specific direction for the decomposition process.

The goal of this paper is to investigate the effectiveness of using code embeddings in the process of decompos-
ing monolithic applications into microservices ones. Also, provide a new technique for extracting microservices
from monolithic applications.

The rest of this research is organized as follows: the literature review provides different approaches for
handling microservices decomposition. Then, the methodology section presents the details of the proposed
methodology and how the decomposition method was constructed. After the methodology, there is a section
with the results and the discussion. Finally, a conclusion section highlights future potentials for the method
and other possible implementations.

2. Literature Review. There are several research papers related to microservices identification or de-
composition. These researches provide different types of methods that can be divided into three groups. The
first group is based on the static analysis of the source code of the monolithic application. The second group is
based on the dynamic analysis of the monolithic application. Finally, the third group is using the analysis of
the application program interfaces or application interfaces.

Abdullah et al. [15] created a decomposition method that considers the scalability and performance of
the application and improve its performance after decomposition. Their method used an unsupervised ma-
chine learning approach analysing access logs of monolithic applications. Then, they proposed a method to
automatically assign the type of virtual machines and their resources to the microservices instances on a cloud
architecture. Their method of decomposing a monolithic application based on the application’s performance can
be misleading because it depends on how the application can be used or how the users are using it. Therefore,
the methods based on performance analysis need to have very detailed testing scenarios to work efficiently.

Mazlami et al. [9] proposed a decomposition method for monolithic applications by analysing the version
control repository of the application and converting it into graphs for detecting microservices candidates using
a graph clustering algorithm. Their method consisted of three different extraction strategies, which are Logical
Coupling Strategy, Semantic Coupling Strategy, and Contributor Coupling Strategy. One limitation of the
method is the use of classes without considering methods and their input and output parameters.

Kamimura et al. [8] created a method for extracting microservices candidates from source code using a
clustering algorithm. They tested their method on two different applications, and two developers reviewed
their results. Also, they visualized the provided microservices for the ease of understanding with the Software
Architecture Finder (SArF) map for visualization.

Li et al. [6] proposed a data-flow driven approach for decomposing monolith applications into microservices
candidates. They highlighted how the decomposition process is different between service-oriented architecture
(SOA) and Microservices. First, services in SOA are coarse-grained while in microservices are fine-grained.
Second, the process is bottom-up in SOA and top-down first then bottom-up in microservices. Their method
consists of 4 steps, first analysing requirements of the monolithic application. Second, constructing data flow
diagrams (DFD). Third, compress DFDs into decomposable DFDs. Fourth, propose microservice candidates
through decomposable DFDs.

Furthermore, they used cohesion and coupling metrics to evaluate their results compared to Service Cutter
and API analysis. The issue with this approach is the need for attention to details in order to create a detailed
DFD to make the process of identifying appropriate microservices. Furthermore, they used a relatively small
application for the evaluation.

Taibi and Systa [11] proposed a decomposition method using a data-driven approach based on process
mining by utilizing log files as a data source. Their decomposition method consisted of 6 steps. The first step is
the execution analysis path; the second step is the frequency analysis of the execution path. Removing circular
dependencies is the third step. The fourth step is identifying decomposition options. The fifth step is ranking
the decomposition options based on metrics. Finally, the sixth step is selecting the decomposition option. They
used coupling and the number of classes as metrics for step five. Their evaluation method of depending on the
coupling metric is lacking because their method needs other metrics such as cohesion.

A Microservice Decomposition Method Through Using Distributed Representation of Source Code 41

Table 2.1: Literature Review Summary

Research Input Decomposition Method Year Tested Application

Abdullah et al. [15] Log Files Performance Based 2019 ACME Air
Mazlami et al. [9] Commits Version Control Analysis with Graphs 2017 Multiple
Kamimura et al. [8] Source Code SArF software clustering algorithm 2018 PetClinic
Li et al. [6] Data Flow Diagrams Analyzing DFD 2019 Cargo App
Taibi and Systa [11] Log Files Analysis of the execution paths 2019 Industrial App
Saidani et al. [14] Source Code nondominated sorting genetic algorithm 2019 JPetstore, Spring Blog
Jin et al. [12] Log Files 2018 JPetstore, SpringBlog, JForum, Roller

Nunes et al. [10] Source Code Clustering call graphs 2019
LdoD, Blended
Workflow

Service Cutter [17]
System Specification

Clustering of graphs 2016 Cargo App
Artifacts

Al-Debagy and Martinek [7] API Clustering of Operations 2019 Cargo App, Kanban Board, Money App
Santos and Silva [5] Method Calls Clustering call graphs 2020 LdoD, Blended Workflow, FenixEdu

Saidani et al. [14] introduced a new decomposition method called MSExtractor. They used the source
code of monolithic applications to extract classes and group classes to create microservices candidates. For the
evaluation of their method, they used cohesion and coupling metrics. Furthermore, they are utilized a non-
dominated sorting genetic algorithm to identify microservices from the source code. This research is compared
to the proposed method of this research paper.

Jin et al. [12] proposed a functional oriented decomposition method for microservices applications that
monitor the application dynamic behaviour and clusters execution logs or traces. They proposed some evalu-
ation metrics for cohesion and coupling. The logs are generated using specific test cases, but sometimes these
test cases cannot cover all the business functionalities, which may lead to ignoring some essential classes and
functionalities. The metrics proposed in Jin et al. are used in this paper in order to compare the performance
of the proposed method to other decomposition methods.

Nunes et al. [10] developed a method that converts the source code of a monolithic application into call
graphs. After that, domain entities are identified, and a clustering algorithm will group these entities. This
work has several limitations such as, it is developed for a specific web application framework, and the tool that
creates call graphs does not work correctly with all Java versions.

Service Cutter [17] is a decomposition tool that uses domain models and use cases to extract coupling
information. This coupling information was defined by the authors and was represented as a weighted graph
using Epidemic Label Propagation clustering algorithms.

Al-Debagy and Martinek [7] introduced a decomposition method that relies on the monolithic application’s
API. They used API operation names to identify the microservices through grouping semantically similar
operation names using a hierarchical clustering algorithm.

Santos and Silva [5] proposed a decomposition method that collects graph calls of the monolithic application
and converts them into domain entities. Then a similarity function measures the similarity between two entities,
and a clustering algorithm groups similar entities together to create microservices candidates. Also, they
proposed a complexity metric to verify the validity of the suggested microservices candidates.

Table 2.1 summarizes the methods mentioned in the literature review section 2 and included the applied
types of inputs and the type of decomposition they used.

3. Methodology. Machine learning for code refactoring was used on several other software architectures
before [23, 24, 25]. However, it can be applied in a microservices’ environment as well. This research proposes a
new decomposition method for decomposing monolithic applications into microservices applications as follows.
The approach uses a novel approach for microservice decomposition by using code representation to understand
the similarity within the application classes and cluster semantically similar classes together to create microser-
vices candidates. Clustering semantically similar classes together in order to resemble the domain model more
efficiently.

The proposed machine learning-based method consists of these steps:

42 Omar Al-Debagy, Péter Martinek

1. extracting the methods and its code from the monolithic application,
2. converting the code to code embeddings or vector representations,
3. aggregating the code embeddings of one class,
4. group together semantically similar classes to obtain microservices candidates.

3.1. Extracting Code Embeddings. Methods are extracted from classes and converted into code em-
beddings using the code2vec [22] model. Code embeddings are snippets of codes characterized as a vector-based
representation for a machine-learning algorithm to understand these snippets of codes.

Embeddings are a mapping of an object represented as vectors. For example, word embeddings are repre-
sentations of a word (or sequence of words) as vectors of real numbers [26]. Word embeddings make it possible
for textual data to work with a mathematical model. Code embeddings have a similar benefit to word embed-
dings; these embeddings can capture the semantics of the source code. These code embeddings can be used for
several tasks such as malware detection, author identification, and refactoring.

3.2. Code Embeddings Model. The proposed method uses the code2vec model created by Alon et al.
[22] to obtain code embeddings or continuous distributed vectors of the extracted methods. Code embeddings
give us the ability to find a similarity between the extracted classes.

Code2vec is a deep representation learning method, which was used for predicting method names. However,
code2vec code embeddings can be used in other tasks as well. Code2vec converts the source code into a set
of Abstract Syntax Tree (AST) paths and sums these paths using an attention mechanism. The attention
technique works by giving more weight for the important AST paths that represent the source code. So, the
vector representation of a function is an aggregation of weighted AST paths. The attention mechanism shows
the important AST paths that need more focus than the other available paths.

AST is represented with branches and leaves similar to a tree. The functional structure of source code
is represented by AST instead of a detailed description of source code. For example, Fig. 3.1 shows an AST
representation of a factorial function. The utilization of AST improve the accuracy and training of a machine
learning model [26].

The goal of code2vec is to generate code embeddings that keep the semantics of the source code. Code2vec
represent the source code as a bag of AST paths; these paths are generated between the leaves of the AST tree.
AST path is a path between two leaves in an AST tree. For example, the coloured paths in Fig. 3.1 are AST
paths. Path-context is a set of three tokens, consisting of two tokens represent the two AST leaves and another
token represent the path between these two leaves. For example, the red path in Fig. 3.1 can be represented
as follows:

{n, T imes ↓MethodCall ↓Minus ↓, n}

The sign ↓ represent the path goring toward the leaves while ↑ represent going toward the root of the AST tree.
For more details and information check the original paper [22]. Fig. 3.2 shows the architecture of code2vec
model with all the processes described earlier.

3.3. Aggregation Method. This step combines the code embeddings of the methods in order to reflect
the representation of the class. Multiple aggregation functions were used, such as mean, sum, maximum,
minimum, standard deviation, and variance. The mean function gave the best results regarding the accuracy
of the clustering function in the next step. Fig. 3.3 shows the process of aggregating multiple code embeddings
into one vector representation using the mean function. Table 3.1 lists all the aggregation methods that we
tested to find the most applicable aggregation method for the proposed decomposition algorithm.

After this step, the aggregated code embeddings are sent to the next step, which is the clustering method,
where it will generate the microservices candidates.

3.4. Clustering Method. Following the conversion of the source code into code embeddings based on
code2vec model and aggregating code embeddings, a clustering method was applied. Related classes are clus-
tered together using the clustering method in order to generate a suitable microservice candidate. The Affinity
Propagation [19] algorithm was chosen for this process because it identifies the sum of clusters minus the neces-
sity to indicate it in advance. Microservices candidates are identified using the previously mentioned methods
combined with the clustering algorithm.

A Microservice Decomposition Method Through Using Distributed Representation of Source Code 43

�✁✂✄☎✆ ✝✁✞✟✠✡✠✂☛☎☞

✌✠✡✠✍✁✂✁✡

✎✟☎✞✏ ✑✂✠✂✁✍✁☞✂

✎☛☞✠✡✒✓✔✕✖✠✟✗ ✘✁✂✖✡☞ ✑✂✠✂✁✍✁☞✂ ✘✁✂✖✡☞ ✑✂✠✂✁✍✁☞✂

✙☛✍✁✗

�✁✂✄☎✆ ✚✠✟✟

�☛☞✖✗

☛☞✂ ✛

☛☞✂ ☞

☞ ✜ ✢

☞

✛

☞ ✢

✣✤✥ ✦✧✣✤✥ ✤★ ✩

✣✦ ✧✤ ✪✪ ✫★ ✩

✬✭✥✮✬✤ ✯✰

✱ ✭✲✳✭ ✩

✬✭✥✮✬✤ ✤ ✴ ✦✧✤✵✯★✰

✱

✱

Fig. 3.1: AST representation of a factorial function

The Affinity Propagation algorithm is based on two concepts that are passing messages between data points
and finding exemplars [19]. Exemplars are the centres of each cluster, which represent the cluster, and each
cluster contains a single exemplar. Also, there are two types of these exchanged messages between the data
points. The first type is exchanged between the data points and the candidate exemplars, and these types of
messages are called (responsibility) messages. They are used to find the strength of the link between the data
points and the exemplars.

The (responsibility) messages are represented by r(i, k) in equation 3.1 implies if point k is fit to be an
exemplar for point i. Responsibilities are exchanged from point i to exemplar to be k:

r(i, k)← s(i, k)− max
k′ s.t. k’ ̸=k

{a(i, k′) + s(i, k′)} (3.1)

The second type checks the suitability of an exemplar in being an exemplar by sending messages from the
exemplar candidates to other data points in the cluster. This type of messages referred to as (availability)
messages. The (availability) represented by a(i, k) in equation 3.2 shows if point i can select point k as an
exemplar. Availabilities are exchanged between exemplar candidate k and data point i starting from k:

44 Omar Al-Debagy, Péter Martinek

Fig. 3.2: code2vec Model [22]

Table 3.1: Aggregation Methods

Aggregation Method Equation

Mean 1
n

∑n
i=1 xi

Summation
∑n

i=1 xi

Maximum xi : xi ≥ xi, i ̸= j∀i, j ∈ n

Minimum xi : xi ≤ xi, i ̸= j∀i, j ∈ n

Standard Deviation

√

∑

(xi−x)2

(n−1)

Variance

∑

(xi−x)2

(n−1)

a(i, k)← min







0, r(k, k) +
∑

i′ s.t. i′ /∈{i,k}

max {0, r(i′, k)}







(3.2)

Equation 3.3 shows the method of updating self-availability for an exemplar:

a(k, k)←
∑

i′ s.t. i′ ̸=k

max {0, r(i′, k)} (3.3)

Then pairwise similarities are used to identify the similarities between the data points. Also, clusters can
be found by maximizing the total similarity between the exemplars and their data points.

Mezard [20] described the significance and effectiveness of message passing algorithms, even on complex
problems. Thus, Affinity Propagation was used for our research paper for clustering related classes to generate
microservices candidates.

Affinity Propagation algorithm includes three parameters which affect the performance of the clustering
algorithm:

A Microservice Decomposition Method Through Using Distributed Representation of Source Code 45

Fig. 3.3: Mean Aggregation Method

1. The first parameter is damping, which checks the interchange of messages between responsibility and
availability to avoid numerical fluctuations while updating the values of responsibilities and availabilities
[21].

2. The second parameter is the maximum number of iterations.
3. The third one is the number of iterations with no change in the number of estimated clusters that stop

the convergence.

Algorithm 1 shows the steps of the Affinity Propagation algorithm.

Algorithm 1 Affinity Propagation algorithm

1: Input: {s(i, j)}i,j∈{1,...,N} data similarities and preferences
2: Output: cluster assignments ĉ

3: Availability←0
4: repeat a and r updates until convergence
5: r(i, k)← s(i, k)−maxk′s.t.k′ ̸=k{a(i, k

′) + s(i, k′)}

6: a(i, k)← min
{

0, r(k, k) +
∑

i′ s.t. i′ /∈{i,k} max {0, r(i′, k)}
}

7: if k ̸= i then

8: a(k, k)←
∑

i′ s.t. i′ ̸=k max {0, r(i′, k)}
9: end if

10: until convergence
11: Return ĉ = argmaxk [a(i, k) + r(i, k)]

Affinity Propagation groups similar code embeddings together in order to generate microservices candidates.
The proposed microservices candidates are analysed using cohesion metrics in order to be compared with the
results of other decomposition methods.

3.5. Metrics for Evaluating Clustering Method Performance. Silhouette coefficient, precision, re-
call, and f-measure were used to determine the efficiency and the threshold of the clustering method parameters.
Silhouette coefficient s(i) [28] is a validation method for clustered data. It measures the similarity of an object
within its cluster and compares it to other clusters. An object is perfectly matched to its cluster when it gets
a score of 1, and it is incorrectly matched when it gets a score of -1, so s(i) score ranges from -1 to 1. The
silhouette coefficient was used to evaluate the effectiveness of the clustering method with different parameters
setup. The silhouette coefficient is shown in equation 3.4.

s(i) =
b(i)− a(i)

max {a(i), b(i)}
(3.4)

where a(i) is the mean dissimilarity for object i, compared to the other objects in the same cluster. b(i) is the
smallest average distance between i and other data points in different clusters. Also, a grid search was utilized
in order to find the most suitable values for the cluster algorithm parameters.

Besides the silhouette coefficient, precision and recall [29] were used to measure the performance of the
clustering algorithm and its parameters. These metrics measure the efficiency of the information retrieval

46 Omar Al-Debagy, Péter Martinek

method and how the retrieved results by the method are related to the requested data. Precision is defined as
shown in equation 3.5.

P =
TP

TP + FP
(3.5)

where P is precision, TP represent true positive results, and FP represents false positive results. The recall
definition can be found in equation 3.6.

R =
TP

TP + FN
(3.6)

where FN represents false-negative results. In order to get the harmonic mean of precision and recall, we used
F-Measure (F1) to calculate the average of the precision and recall metrics, where 1 represents the best value,
and 0 is the worst. F1 definition can be found in equation 3.7.

F1 = 2 ∗
P ∗R

P +R
(3.7)

3.6. Evaluation Metrics. For this section, we chose metrics that were used by other researchers, as well.
As a result, the comparison can be suitable with other decomposition methods. These researches [12], [16], and
[14] used these metrics.

The first metric is Cohesion at Message Level (CHM) which uses the average cohesion of microservices
interfaces at the message level. It is a refined version of Lack of Message Level Cohesion by Athanasopoulos et
al. [18]. CHM value can be calculated, as shown in equation 3.8.

CHM =

∑

∑

K

i=1
ni

j=1 CHMj
∑K

i=1 ni

where CHMj =







∑

(k,m)
fsimM(Opk,Opm)

|Ii|∗(|Ii|−1)/2 if |Ii| ̸= 1

1 if |Ii| = 1

fsimM(Opk, Opm) =
(
|resk

∩

resm|

|resk
∪

resm|
+

|pask
∩

pasm|

|pask
∪

pasm|
)

2

(3.8)

ni represents the number of the interfaces of a microservice i. k represents the number of microservices
candidates that were generated from the monolithic application. CHMj measures the cohesion of a microservice
at the message level. Opk and Opm represent the operations that are provided by the interface ”Ii” of a
microservice. The similarity between the output parameters and the input parameters are calculated by the
similarity function fsimM . The higher value of the CHM metric is the better.

The other metric is Cohesion at Domain Level (CHD), which measures the average of the interfaces’
cohesion at the domain level. It is a modified version of Lack of Domain Level Cohesion by Athanasopoulos et
al. [18]. The formal definition of the metric is shown in equation 3.9.

CHD =

∑

∑

K

i=1
ni

j=1 CHDj
∑K

i=1 ni

where CHDj =







∑

(k,m)
fsimD(Opk,Opm)

|Ii|∗(|Ii|−1)/2 if |Ii| ̸= 1

1 if |Ii| = 1

fsimD(Opk, Opm) =
|TOpk

∩

TOpm
|

|TOpk

∪

TOpm
|

(3.9)

A Microservice Decomposition Method Through Using Distributed Representation of Source Code 47

Fig. 3.4: High - Level Representation of the Proposed Algorithm

Table 4.1: Dimensions of the Tested Applications

Application Classes Methods LoC MS numbers

JPetStore 24 290 2059 4
SpringBlog 46 155 1553 6
JForum 335 2702 52,719 8
Roller 153 780 29,154 11

ni represents the number of the interfaces of a microservice i. K represents the number of microservices
candidates that were generated from the monolithic application. fsimD function calculates the similarity of
the operations at the domain level. Opk and Opm represents the domain terms that are extracted from the
operations. The higher value of the CHD metric is the better.

CHM and CHD metrics were introduced by Jin et al. [12]. These metrics are used for measuring the
cohesion at message and domain levels of the microservices through analysing their interfaces.

Fig. 3.4 presents a high-level description of the proposed algorithm, which starts with obtaining the methods
code snippets from the monolithic application source code. Then these codes are converted to code embeddings
using the code2vec model. Furthermore, aggregate the methods code embeddings using the mean function to
represent the code of each class of the related methods. Finally, microservices candidates are generated through
clustering related class files using a hierarchical clustering algorithm.

4. Experiments and Results. The setup of the experiment consists of testing four applications to
compare the performance of the proposed method against other methods in the literature. The first application
is JPetStore1 is a pet store commercial website written in JAVA, and it is a monolithic web application consists
of 24 classes. Also, it is the smallest application in the experiment setup. The second application is SpringBlog2,
which is a blogging website that is written in JAVA consists of 46 classes. The third application is JForum3,
which is a messaging boards application consisting of 335 classes. The last application is Apache Roller4,
which is a monolithic application that allows multiple users to create blog sites and posts. The sizes of these
applications range from small to big applications with different class numbers, method numbers, and lines of
codes. See a detailed comparison of the tested applications in Table 4.1.

1https://github.com/mybatis/jpetstore-6
2https://github.com/Raysmond/SpringBlog
3https://sourceforge.net/projects/jforum2/
4https://github.com/apache/roller

48 Omar Al-Debagy, Péter Martinek

Table 4.2: Aggregation Methods Accuracy Comparison

Aggregation Method Accuracy Precision Recall F1 Silhouette coefficient

Mean 0.70 0.58 0.46 0.49 0.47
Sum 0.07 0.07 0.008 0.015 N/A
Maximum 0.15 0.33 0.10 0.14 0.27
Minimum 0.15 0.33 0.10 0.14 0.23
Median 0.23 0.56 0.27 0.30 0.17
Standard deviation 0.15 0.05 0.33 0.09 N/A
Variance 0.15 0.05 0.33 0.09 N/A

Table 4.3: JPetStore Metrics Scores

Application Metrics Jin et al Our Method

JPetStore
CHD 0.52 0.52
CHM 0.78 0.82

4.1. Aggregation Method. Several aggregation methods were tested to find the most effective method
for the proposed algorithm. These methods are mean, sum, standard deviation, variance, maximum, and
minimum. The setup for the experiment consisted of comparing the accuracy, precision, and recall of the
clustering results against the optimal microservices design of Spring Pet Clinic5, which have the monolithic
application and the microservices design6 as well. The results of the experiment are shown in Table 4.2. Thus,
the mean function is the most suitable aggregation method for this experiment because it has the highest scores
for accuracy, precision, and recall.

4.2. Clustering Method Parameters. The parameters for refining the performance of the Affinity
Propagation algorithm are damping, the maximum number of iterations, and convergence iterations, the values
for these parameters were 0.8, 500, and 50, respectively. These values were found using the gird search technique
with different setups, configurations, and tests against the monolithic application Spring Pet Clinic which was
mentioned previously. The results for these tests are displayed in Table 4.2. The tests were compared using
the silhouette coefficient score.

4.3. Decomposition Results. After conducting the previous experiments and tests to find the most
optimal aggregation method and the most efficient parameter values, it is the turn of displaying the results of
the proposed decomposition methodology. As was mentioned before in Section 4, the decomposition method
was tested with four different applications (listed in Table 4.1.)

The first application is JPetStore, which was tested by Jin et al. [12] and Saidani et al. [14]. JPetStore
application was compared with Jin et al. approach in detail. For example, Fig. 4.1 shows a comparison between
the decomposition results of our approach and their approach. Our approach generated four microservices while
Jin et al. approach gave three microservices. Fig. 4.1 displays the microservices and their related classes.

For the cohesion side of the comparison, both of the approaches have similar results, but our approach
has a slightly better score for CHM . These results in Table 4.3 are concerning the results of only JPetStore
application because the decomposition results for JPetStore were described thoroughly in the research of Jin
et al. [12].

The results for the comparison of the proposed method and the other methods using the additional three
applications are available in Table 4.4.

5https://github.com/spring-projects/spring-petclinic
6https://github.com/spring-petclinic/spring-petclinic-microservices

A Microservice Decomposition Method Through Using Distributed Representation of Source Code 49

Fig. 4.1: JPetStore Results

Table 4.4: Decomposition Results

Application Metrics Jin et al Saidani et al. Our Method

JPetStore
CHD 0.52 0.65 0.52
CHM 0.78 0.55 0.82

SpringBlog
CHD 0.55 0.67 0.50
CHM 0.68 0.75 0.73

JForum
CHD 0.45 0.15 0.52
CHM 0.70 0.51 0.73

Roller
CHD 0.52 0.38 0.53
CHM 0.72 0.78 0.76

The second application is SpringBlog, which consists of 46 classes. The results in Table 4.4 suggest that our
approach have a better performance in term of CHM metric compared to the other decomposition methods,
but our approach has a less cohesive score, based on the CHD score, compared to the other approaches.

For the JForum application, the proposed method performed the best in terms of cohesion at the message
and domain level, as it is shown in Table 4.4. It scored better scores in both CHD and CHM compared to Jin
et al. and Saidani et al. methods. Therefore, this means the proposed method creates better decomposition
results in terms of cohesion.

The final application is Apache Roller, where our approach had slightly improved results in term of CHD,
while had a good result for CHM metrics. These results show that the proposed method can handle big
applications such as JForm and Apache Roller without any issues.

The overall results for tested applications suggest that our approach has some advantages in terms of
cohesion in the middle and high range applications. For example, Table 4.4 shows that most of the better and
good metrics values were related to our approach, except in the small tier application such as JPetStore. Our
approach scored the best results in five test experiments out of 8, while Saidani et al. method scored 3 out of
8, and Jin et al. scored 0. These results show that all the methods have good results, but the proposed method
had better ones when compared with the other methods. The proposed method showed better performance in
terms of cohesion, which is one of the essential requirements for a good microservices application design because
microservices applications need to be loosely coupled and cohesive, according to Newman [4].

Fig. 4.2 shows an interpretation of the results that are shown in Table 4.4. Fig. 4.2 shows that our method
is performing similar to Jin et al. [12] but in 4 cases has better performance. Also, the results of Saidani et al.
[14] fluctuates between 0.1 and 0.8, while the results of the proposed method are between 0.5 and 0.8. Therefore,
this means the proposed method has a more stable approach when compared to Saidani et al. approach.

50 Omar Al-Debagy, Péter Martinek

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
H

D

C
H

M

C
H

D

C
H

M

C
H

D

C
H

M

C
H

D

C
H

M

JPetStore SpringBlog JForum Roller

Jin et al Saidani et al. Our Method

Fig. 4.2: Metrics Results Comparing the Performance of the Decomposition Methods

Table 4.5: Average Results of CHD and CHM Metrics

Metrics Jin et al Saidani et al. Our Method

CHD Average 0.51 0.46 0.52
CHM Average 0.72 0.65 0.76

The overall results showed that the proposed decomposition method is better performing compared to Jin
et al. and Saidani et al. methods. For example, our method had better results in 5 out of 8 metrics scores,
Saidani et al. had 3, and Jin et al. ’s method performed the worst when compared to the other methods. In
another interpretation of the results, Table 4.5 presents the averaged results of Table 4.4, which shows that the
results of Jin et al. are better on average compared to Saidani et al., but our proposed method has the best
results in this case as well.

5. Conclusion. This paper proposed a novel decomposition method for refactoring monolithic applications
into microservices applications using a neural network based model for creating code embeddings from the
monolithic application source code. As a Result, semantically similar code embeddings are grouped using a
hierarchical clustering algorithm in order to generate microservices candidates. The quality characteristics of
the results were measured using two metrics for measuring cohesion.

The proposed method showed promising results in terms of cohesion when compared to other decomposition
methods. The results were compared with two other methods proposed by Jin et al. [12] and Saidani et al.
[14], 8 test cases were conducted, and the proposed method got the highest scores in 5 of them.

In conclusion, the proposed method can be a helpful add-on for developers in the process of migration
from monolithic architecture into microservices architecture. This method will give the developers insights and
directions on the path and the design that the developers need to take in order to achieve a good microservices
design.

For future work, this method can be developed further and can be tested with other programming languages
such as Python, C, C++, et al. The tested cases of this research were all written in JAVA, and the proposed
method is only capable of handling code written in that programming language. Also, the neural network-based

A Microservice Decomposition Method Through Using Distributed Representation of Source Code 51

model can be trained on the source codes of the microservices application to achieve more precise results.

REFERENCES

[1] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Microservices architecture enables DevOps: Migration to
a cloud-native architecture. IEEE Software 33(3):42–52, 2016.

[2] Cerny, Tomas and Donahoo, Michael J. and Trnka, Michal. Contextual Understanding of Microservice Architecture:
Current and Future Directions. ACM SIGAPP Applied Computing Review 17(4):29–45, 2018.

[3] Dragoni, Nicola and Giallorenzo, Saverio and Lafuente, Alberto Lluch and Mazzara, Manuel and Montesi,
Fabrizio and Mustafin, Ruslan and Safina, Larisa. Microservices: yesterday, today, and tomorrow In: Mazzara M.,
Meyer B. (eds) Present and Ulterior Software Engineering. Springer, Cham, 2017.

[4] Sam Newman. Building Microservices: Designing Fine-Grained Systems. O’Reilly Media, Incorporated. 2021.
[5] Nuno Santos and António Rito Silva. A complexity metric for microservices architecture migration. In 2020 IEEE

International Conference on Software Architecture (ICSA), pages 169–178, 2020.
[6] Shanshan Li, He Zhang, Z. Jia, Z. Li, C. Zhang, J. Li, Q. Gao, Jidong Ge, and Zhihao Shan. A dataflow-driven

approach to identifying microservices from monolithic applications. Journal of Systems and Software 157, 2019.
[7] Omar Al-Debagy and Peter Martinek. A new decomposition method for designing microservices. Periodica Polytechnica

Electrical Engineering and Computer Science 63(4):274–281. 2019.
[8] Manabu Kamimura, Keisuke Yano, Tomomi Hatano, and Akihiko Matsuo. Extracting candidates of microservices from

monolithic application code. In 2018 25th Asia-Pacific Software Engineering Conference (APSEC), pages 571–580, 2018.
[9] Genc Mazlami, Jürgen Cito, and Philipp Leitner. Extraction of microservices from monolithic software architectures.

In 2017 IEEE International Conference on Web Services (ICWS), pages 524–531, 2017.
[10] Luís Nunes, Nuno Santos, and António Rito Silva. From a monolith to a microservices architecture: An approach

based on transactional contexts. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 11681 LNCS, pages 37–52. Springer Verlag, 2019.

[11] Davide Taibi and Kari Systä. From monolithic systems to microservices: A decomposition framework based on process
mining:. In Proceedings of the 9th International Conference on Cloud Computing and Services Science, pages 153–164.
SCITEPRESS - Science and Technology Publications, 2019.

[12] Wuxia Jin, Ting Liu, Qinghua Zheng, Di Cui, and Yuanfang Cai. Functionality-oriented microservice extraction based
on execution trace clustering. In 2018 IEEE International Conference on Web Services (ICWS), pages 211–218, 2018.

[13] Luciano Baresi, Martin Garriga, and Alan De Renzis. Microservices identification through interface analysis. In Flavio
De Paoli, Stefan Schulte, and Einar Broch Johnsen, editors, Service-Oriented and Cloud Computing, volume 10465, pages
19–33. Springer International Publishing, 2017.

[14] Islem Saidani, Ali Ouni, Mohamed Wiem Mkaouer, and Aymen Saied. Towards automated microservices extraction
using muti-objective evolutionary search. In Sami Yangui, Ismael Bouassida Rodriguez, Khalil Drira, and Zahir Tari,
editors, Service-Oriented Computing, volume 11895, pages 58–63. Springer International Publishing, 2019.

[15] Muhammad Abdullah, Waheed Iqbal, and Abdelkarim Erradi. Unsupervised learning approach for web application
auto-decomposition into microservices. Journal of Systems and Software 151:243–257, 2019.

[16] Wuxia Jin, Ting Liu, Yuanfang Cai, Rick Kazman, Ran Mo, and Qinghua Zheng. Service candidate identification from
monolithic systems based on execution traces. IEEE Transactions on Software Engineering, 2019.

[17] Michael Gysel, Lukas Kölbener, Wolfgang Giersche, and Olaf Zimmermann. Service cutter: A systematic approach
to service decomposition. In Marco Aiello, Einar Broch Johnsen, Schahram Dustdar, and Ilche Georgievski, editors,
Service-Oriented and Cloud Computing, volume 9846, pages 185–200. Springer International Publishing, 2016.

[18] Dionysis Athanasopoulos, Apostolos V. Zarras, George Miskos, Valerie Issarny, and Panos Vassiliadis. Cohesion-
driven decomposition of service interfaces without access to source code. IEEE Transactions on Services Computing
8(4):550–562, 2015.

[19] Brendan J. Frey and Delbert Dueck. Clustering by passing messages between data points. Science 315(5814): 972–976,
2007.

[20] Marc Mézard. Computer science. Where are the exemplars? Science 315(5814): 949–951, 2007.
[21] R. Refianti, A. B. Mutiara, and A. A. Syamsudduha. Performance evaluation of affinity propagation approaches on data

clustering. International Journal of Advanced Computer Science and Applications 7(3), 2016
[22] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: learning distributed representations of code.

Proceedings of the ACM on Programming Languages 3:1–29, 2019.
[23] Brahmaleen Kaur Sidhu, Kawaljeet Singh, and Neeraj Sharma. A machine learning approach to software model

refactoring. International Journal of Computers and Applications 0(0):1–12, 2020
[24] Boukhdhir Amal, Marouane Kessentini, Slim Bechikh, Josselin Dea, and Lamjed Ben Said. On the use of machine

learning and search-based software engineering for ill-defined fitness function: A case study on software refactoring. In
Claire Le Goues and Shin Yoo, editors, Search-Based Software Engineering, Lecture Notes in Computer Science, pages
31–45. Springer International Publishing, 2014.

[25] Yasemin Kosker, Burak Turhan, and Ayse Bener. An expert system for determining candidate software classes for
refactoring. Expert Systems with Applications 36(6): 10000–10003, 2009.

[26] Rhys Compton, Eibe Frank, Panos Patros, and Abigail Koay. Embedding java classes with code2vec: Improvements
from variable obfuscation. In Proceedings of the 17th International Conference on Mining Software Repositories, 243-253,
2020.

52 Omar Al-Debagy, Péter Martinek

[27] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. A general path-based representation for predicting program
properties. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 404–419, 2018.

[28] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of
Computational and Applied Mathematics 20:53–65, 1987.

[29] Kai Ming Ting. Precision and recall. In Claude Sammut and Geoffrey I. Webb, editors, Encyclopedia of Machine Learning,
pages 781–781. Springer US, 2010.

Edited by: Dana Petcu
Received: Nov 18, 2020
Accepted: Jan 21, 2021

Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org

© 2021 SCPE. Volume 22, Issues 1, pp. 53–66, DOI 10.12694:/scpe.v22i1.1839

A NOVEL SENTIMENT ANALYSIS FOR AMAZON DATA
WITH TSA BASED FEATURE SELECTION

ANAND JOSEPH DANIEL D.∗AND JANAKI MEENA M.†

Abstract. Sentiment analysis of online product reviews has become a mainstream way for businesses on e-commerce platforms
to promote their products and improve user satisfaction. Hence, it is necessary to construct an automatic sentiment analyser
for automatic identification of sentiment polarity of the online product reviews. Traditional lexicon-based approaches used for
sentiment analysis suffered from several accuracy issues while machine learning techniques require labelled training data. This paper
introduces a hybrid sentiment analysis framework to bond the gap between both machine learning and lexicon-based approaches.
A novel tunicate swarm algorithm (TSA) based feature reduction is integrated with the proposed hybrid method to solve the
scalability issue that arises due to a large feature set. It reduces the feature set size to 43% without changing the accuracy
(93%). Besides, it improves the scalability, reduces the computation time and enhances the overall performance of the proposed
framework. From experimental analysis, it can be observed that TSA outperforms existing feature selection techniques such as
particle swarm optimization and genetic algorithm. Moreover, the proposed approach is analysed with performance metrics such
as recall, precision, F1-score, feature size and computation time.

Key words: Tunicate Swarm Algorithm, Feature optimization, sentiment analysis, classifier, machine learning.

AMS subject classifications. 68T05

1. Introduction. The enormous growth of social networks including blogs, forum discussions and e-
commerce sites are used among people to share their opinion about online products, services or any topics.
These online reviews can be used by many organizations to enhance customer satisfaction, to improve product
quality and identify the aspects of products to be upgraded. It also helps to make better-informed decisions
towards user interest and preference thereby generating more profits. For example, Amazon collects customer
reviews about the products or services. Similarly, social networks like Twitter and Facebook allow their users
to share their opinions on any topic like events, elections, products or services. These opinions are useful to
manufacturers as well as customers [1]. The manufacturers collect the negative reviews from the customers and
rectify them to increase the sales. This kind of analysis is usually called as sentiment analysis (SA) termed
as the computational opinion study for several events, topics, products, entities and their qualities. Hence, it
is necessary to construct a sentiment analyser for the classification of product data into negative or positive
sentiments and for automatic identification of product aspect sentiments from the review documents.

Based on the mechanisms used, SA is mainly classified under three forms like machine learning (ML),
lexicon-based and hybrid [2]. In ML-based approaches, various learning algorithms and labelled datasets are
utilized to train the classifier for identifying the sentiments [3]. In lexicon-based approaches, the sentiment
polarity of the dataset is calculated through the semantic orientation of words [4]. It will classify the texts
using unlabelled training set where the lexicons are defined independently of the text; so that overfitting at any
instance can be prevented [28]. It showed robust performance across texts and domains and can be applied to
perform SA on multiple domain datasets [6]. Though this approach posses more merits, the need for manual
maintenance and less accuracy becomes a major disadvantage. Moreover, it could not identify abbreviations
in a non-standard form which are mainly used in posts due to limited coverage on informal texts [7]. On
the other hand, the ML approach is very suitable for informal text and unstructured content. It provides

∗School of Computer Science and Engineering, Vellore Institute of Technology, Chennai Campus, India (danny02.20099

@gmail.com).
†School of Computing Science and Engineering, Vellore Institute of Technology, Chennai Campus, India (janakimeena.m

@vit.ac.in).

53

54 Anand Joseph Daniel D., Janaki Meena M.

more flexibility and hence eliminates predefined lexicons. Although ML approach performs well, it requires a
manually annotated training dataset [8]. As a result, hybrid methods are introduced to bridge the gap between
ML and lexicon-based approaches [9]. In this paper, valence aware dictionary for sentiment reasoning (VADER)
is utilized for lexicon-based approaches and linear support vector machine (LSVM) classifier is utilized for ML
approaches.

Since high-quality word embeddings can be obtained from Glove [10] and fastText [11] models, the proposed
work utilizes these models to get initial word embeddings. However, including all the possible features will
grow the feature size that would not fit in the memory and cause scalability problem. An approach with
better scalability will be able to maintain its performance even with larger datasets. This is usually achieved by
adopting suitable feature selection methods [12]. The main aim of feature selection is to generate a well-selected
subset of feature that can improve the performance of classifier with better scalability and minimize the time cost
simultaneously. Conversely, feature selection through optimization algorithms can automatically select features
without manual intervention and eliminate large quantity of unnecessary features without compromising the
accuracy.

Conventional feature selection techniques based on concepts like data pick up, shared data and Chi-square
are better in reducing the redundant features but have less accuracy. Furthermore, the unwanted features create
a non-polynomial hard issue which reduces the system efficiency on selection [13]. Therefore, the attention is
now been shifted to intelligent algorithms to enhance classification and to solve the scalability issues. These
intelligent algorithms are nature-inspired algorithms that are effective for solving complex problems during
classification [14]. It reduces any kind of problems related to accuracy, rate of misclassification and error.
Particle swarm optimization (PSO) [15] and genetic algorithm (GA) [16] are two traditional algorithms employed
to resolve many complex problems. PSO is influenced by two notable drawbacks such as diversity loss and
outdated memory [17]. This can be overcome with a novel nature-inspired algorithm called tunicate swarm
algorithm (TSA) [18]. It is effective with redundant data and selects the appropriate features within least
execution time.

The main aim of this paper is to propose a hybrid SA method by combining lexicon-based and ML ap-
proaches. The data is initially labelled by using VADER sentiment lexicon and the labelled data input to ML
classifier. Feature selection is carried out with novel tunicate swarm algorithm. Experiments are performed to
show the performance of proposed method with Amazon product reviews from four categories such as Elec-
tronics, Toys, Furniture and Camera. The performance is evaluated in terms of metrics such as F1 score, recall,
precision and accuracy. Moreover, the computation time comparison of proposed TSA based feature selection
with existing methods like GA and PSO is also provided. The experimental results of the proposed method
with Amazon dataset shows best classification performance in each test data while adapting more training data.
The rest of this paper is arranged as follows. Section 2 details the related works in the area of hybrid SA and
optimized feature selection. Section 3 explains the proposed methodology. Experiments are provided in Sect.
4. In Sect. 5, the results of experiments are discussed. Section 6 concludes this paper with future work.

2. Related Works. In this section, the related works carried out in the area of lexicon-based approach,
ML based approach and hybrid approach with feature selection are discussed.

2.1. Hybrid Sentiment Analysis. The lexicon-based sentiment analysis methods are widely classified
into two approaches: (i) dictionary based and (ii) corpus based [19]. In dictionary-based approach, the words
with their polarity scores are utilized for sentiment analysis. In corpus-based approach, positive and negative
set of words together with their probability of sentiment is utilized. VADER is a lexicon as well as rule-based
SA framework that performs equally or better when compared to existing SA lexicons [20]. Anton and Martin
[21] applied the VADER sentiment lexicon with support vector machine (SVM) to classify the sentiments of
customer response. Their method is effective with mean AUC of 0.896 and F1 score of 0.834. Tanjim et al.
[22] proposed a supervised learning method for SA. Five various ML methods are utilized by them to train
the classifier for Amazon product reviews and attained classification accuracy up to 94.02%. When comparing
different ML classifiers, LSVM shows the best performance closely followed by random forest (RF). A similar
comparison is presented in the proposed work for classifier performance evaluation and accurate measurement.

In lexicon-based methods, the polarities and frequencies of the negative and positive words are examined
to get the sentiment of analysed text using a predefined dictionary of words [23]. In ML based approach,

A Novel Sentiment Analysis For Amazon Data with TSA Based Feature Selection 55

features are generated from the text and used by different learning algorithms to predict a label. A hybrid
approach is necessary to eliminate the disadvantages and to combine the merits of each methodology. The
hybrid classifier is designed by using ML and lexicon-based methods to classify the documents and to improve
the sentiment classification. Term polarities from lexicons are utilized as extra features to train ML classifiers in
hybrid approaches [23]. Combination of these methods helps to improve the result of classifier. Xia. et al. [24]
presented a hybrid approach with the combination of both ML and lexicon-based methods for SA. Kang et al.
[25] introduced a combination of naive bayes (NB) and lexicon-based method for SA of reviews of restaurant.
Govindrajan [26] implemented classification-based hybrid SA approach with arcing classifier. The performance
of both NB and GA ensemble classifiers are analysed in terms of accuracy. Geetika et al. [27] presented set of
approaches to ML with lexical analysis for the product reviews and sentence classification.

A hybrid SA technique on Facebook to automatically analyse sentiments of online product reviews has
been proposed by Ortigosa et al. [28]. Zou et al. [29] introduced a method for finding imbalanced threshold
classification. Agrawal and Nandi [30] proposed a layered hybrid method for SA. It has two layers where the
primary layer is based on the lexicon-based method and the secondary layer is based on the ML method.
Rajganesh et al. [31] introduced a hybrid method for SA of feedback-based recommendation system. A hybrid
method has been implemented for SA of product reviews from Amazon [32] . In [33], a hybrid SA approach
has been introduced by integrating both ML and polarity-based lexicon methods. But these existing works did
not employ any optimization algorithms in the feature selection task to improve the scalability and accuracy
of hybrid SA.

2.2. Optimized Feature Selection in SA. Feature selection in sentiment analysis plays a vital role
in system accuracy enhancement. Many studies have been done in text classification domain with optimized
feature selection. Bio-inspired algorithms have an incredible ability in solving different optimization problems
[34]. Kalarani et al. [35] proposed the firefly algorithm (FA) for feature reduction with SVM and ANN classifier
to classify the sentiments of movie reviews. The experimental outcomes displayed an improved accuracy with
reduced training time. Kristiyanti et al. [36] implemented three algorithms called principal component analysis
(PCA), PSO and GA based feature reduction with SVM classifier. The accuracy of SVM classifier has been
enhanced with these three algorithms. They used Amazon products’ reviews for classification. When compared
with GA and PCA, PSO algorithm showed higher accuracy for classification.

Farkhund et al. [1] introduced a novel GA based feature selection technique to enhance the scalability
issue that happens when the feature-set size increases in the SA. A hybrid SA approach with reviews from
IMDB, Yelp and Amazon is utilized. The performance is analysed in terms of recall, accuracy, precision,
F1 score and six different classifier algorithms. The results proved that GA based feature selection approach
obtains higher accuracy than LSA (Latent semantic analysis) and PCA methods. In the proposed work, a
hybrid framework is utilized for SA with novel TSA based optimal feature selection for testing ML classifiers.
In sentiment classification, PSO with SVM classifier is the most commonly used approach among researchers
followed by ant colony optimization (ACO) [34]. But PSO based optimization has some disadvantages such as
the need for multi-objective optimization, fine-tuning of parameters value and poor performance for datasets
of multi-domain [37].

This paper proposes a novel TSA based feature reduction in SA. The proposed feature selection approach
is encouraged by swarm and jet propulsion behaviours of tunicates throughout the foraging and navigation
process [18]. TSA can reduce local optima problem and deliver fast convergence speed by providing better
performance in exploration and exploitation stages. Furthermore, it has the capability to keep the stability
between exploitation and exploration by searching the large space to get the best global solution. Thus, TSA
will be a better solution for feature selection tasks to overcome

3. Proposed Methodology. This section explains the hybrid SA with TSA based optimized feature
selection approach. The proposed methodology with VADER sentiment lexicon and ML classifiers is detailed.
Then TSA based optimized feature selection is explained

3.1. Hybrid SA with Optimized Feature Selection Approach. This hybrid method includes lexicon-
based dictionary for training the ML classifier and bag-of-words as features for testing the ML classifier with
TSA based feature selection. A complete framework of proposed work is displayed in Fig. 3.1.

56 Anand Joseph Daniel D., Janaki Meena M.

Fig. 3.1: Block diagram of proposed hybrid SA methodology

In the proposed method, the Amazon product data is utilized for SA. Initially, the dataset is pre-processed
to eliminate unnecessary data. VADER sentiment lexicon is performed to label the pre-processed data. The
feature vectors are generated for labelled training data using Glove and fastText word embeddings. If all
the feature vectors are directed to the ML classifier, scalability issue may arise because these vectors contain
80% of the input data. As the dataset size grows bigger, this problem worsens. To minimize this problem,
an efficient TSA based feature selection process is introduced in this paper. In this method, each feature
vector is modelled on TSA for several hundred generations. TSA simulation is run to find the optimal feature
vectors to give improved accuracy for SA. These selected features are utilized to train the ML based classifiers.
Linear Support Vector machine, Decision Tree (DT), Naïve Bayes and k-Nearest Neighbours (KNN) are the
ML classifiers utilized for classification in this proposed work. The description of these classifiers is given below.
Manually labeled dataset is utilized to validate the performance of proposed hybrid SA model.

LSVM. SVM is one of the most used supervised learning techniques which can perform regression, and
classification. However, SVM is widely utilized for classification in ML. SVM can handle simple and complex
datasets with higher accuracy than other algorithms. In classification, SVM transforms the data points and
find hyperplane with maximum margin from multiple decision boundaries to classify the data points in n-
dimensional space using the kernel trick technique. The polynomial, linear or Gaussian RBF kernel can be
utilized to minimize the computational complexity related to the prediction of new data point. Training an
SVM with a linear kernel is quicker than with any other kernel. NB: It is also a supervised learning technique
mainly utilized in text classification. NB classifiers are based on the Bayes’ theorem and occurrence of a
particular feature is independent of occurrence of other features. It is a probabilistic based machine learning
model that predicts based on the probability of each feature. NB is capable of handle high dimensional complex
datasets.

KNN. It is also one of the simplest supervised learning techniques that is utilized for both regression and
classification. To classify new data this algorithm assumes the similarity between training data and new data.
Then classifies the data based on the similarity. The data is assigned to the category for which the similarity is
maximum. To assume the similarity, the distance between training data and testing data is measured by using
Euclidean distance. The number of nearest neighbours is calculated for test data. The category of new data is

A Novel Sentiment Analysis For Amazon Data with TSA Based Feature Selection 57

Fig. 3.2: Block diagram of proposed hybrid SA methodology

selected for which data have a greater number of nearest neighbours.
DT. It is also a supervised learning technique that can be utilized to perform both regression and classifica-

tion. DT utilizes tree structure to classify the data based on given conditions in which root node represents the
whole training dataset, decision rules such as Boolean function are represented as branches and output class
label is represented by each leaf node. The DT algorithm starts with root node which contains whole dataset.
The best attributes are selected using the Attribute Selection Measure. The decision node is created with best
attributes. This process is repeated until finding the leaf node for all branches.

3.2. Feature Selection using TSA. When using a larger dataset, scalability issue arises as the increase
in the feature vector size. This issue can be eliminated with feature vector optimization by minimizing its
size when keeping the accuracy without reduction. This problem is framed in this section and its solution is
proposed by utilizing TSA approach.

3.2.1. Problem formulation. If we include all the possible features in the testing set, then the increase
in the size of datasets will create larger feature size that creates scalability problem. Thus, to eliminate this
problem, the feature selection optimization technique is required. An optimization problem is the minimum
number of selection of features from the feature-set of large size. As discussed before, the TSA has more merits
such as achieving optimized fitness value and early convergence compared to other optimization algorithms like
PSO and GA. Also, this optimization algorithm does not need labelled dataset for sentiment classification.

3.2.2. Mathematical model and optimization. From the training data, the feature vectors are ex-
tracted and the optimal feature subset is selected by using TSA approach. Fig. 3.2 shows the flow chart of the
proposed TSA based feature selection approach.

In the proposed approach, the optimal feature subset is selected according to the position of best features

58 Anand Joseph Daniel D., Janaki Meena M.

(
−→
FS). The features are initialized as the tunicate population (

−→
Pp). The features can keep its position towards the

best feature. The best feature is explored after the computation of fitness value of each feature. In the proposed
approach, the feature subset having minimum error rate in prediction of sentiment polarity is considered as the
best feature. The fitness value is calculated using Eq. 3.1.

fitness = min(1− accuracy)(3.1)

Here, accuracy in the prediction of sentiment polarity is considered to calculate the error rate. Algorithm
3.1 explains the fitness function calculation.

Algorithm 1: Fitness calculation

Procedure Compute Fitness (
−→
Pp)

for i← 1toN do

Fit [i] = FitnessFunction (Pp)(
−→
i , :))

Fitbest ← Best(Fit[]);
return Fitbest

Procedure Procedure Best (Fit)
Best ← Fit[0];
for i← 1toN do

if (Fit[i] < Best) then
Best← Fit[i]

return Best

The position of best feature
−−−→
(FS) is explored after the computation of fitness value.

−−−→
(PD) is defined as the

distance between the features and the position of best feature. It can be determined using Eq. 3.2.

−−−→
(PD) = |

−−−→
(FS)− rand.

−−−−−→
(Pp(x))|(3.2)

where x represents the present iteration, (rand) represents a random number in the range between 0 and 1.

(
−→
A) is calculated using Eqs. 3.3, 3.4 and 3.5.

−→
A =

−→
G
−→
M

(3.3)

−→
G = c2 + c3 −

−→
F(3.4)

−→
F = 2.c1(3.5)

Here
−→
G represents the force of gravity and

−→
F represents water flow advection in deep ocean [17]. c1, c2andc3

are random number variables between the range [0, 1].
−→
M shows the tunicates social forces.

−→
M is calculated as

shown in Eq. 3.6.

−→
M = ⌊Pmin + c1.Pmax − Pmin⌋(3.6)

where Pmin and Pmax shows the initial and secondary speeds to create social interaction. Pmin and Pmax values

are considered as 1 and 4 respectively.
−−−−−→
(Pp(x)) is the position of feature which is calculated using Eq. 3.7.

−−−→
Pp(x) =

{−→
FS +

−→
A.
−−→
PD, if rand ≥ 0.5

−→
FS −

−→
A.
−−→
PD, if rand < 0.5

(3.7)

A Novel Sentiment Analysis For Amazon Data with TSA Based Feature Selection 59

The position of each features
−−−→
Pp(x) is updated according to the position of best feature

−→
FS using Eq. 3.8.

−−−−−−→
Pp(x+ 1) =

−−−→
Pp(x) +

−−−−−−→
Pp(x+ 1)

2 + c1
(3.8)

The updated features going beyond the optimal feature size are adjusted. The fitness value is calculated for
the updated position of features. (

−→
Pp) is updated till a solution is found better than the prior optimal solution.

This process is repeated until the satisfied stopping criterion is obtained. Thus, the best optimal feature subset
is obtained from the OBL-TSA based feature selection process. Algorithm 3.2 explains the optimal feature
subset selection with OBL-TSA based feature selection process.

Algorithm 2: Feature selection with Tunicate Swarm Algorithm

input : Feature set as tunicate population
−→
Pp, N dimension of features.

output: Position of optimal best features
−→
FS

Procedure Procedure TSA_feature_selection
//Initialization;

Initialize population
−→
Pp;

Initialize the parameters
−→
A,
−→
G,
−→
F ,
−→
M, and Maxiter;

Set
−→
Pp ← 0, Pmin← 1, Pmax←4;

while x < Maxiter do
//Compute fitness;

Calculate position of best features
−→
FS using Eq. 3.1;

−→
FS ← ComputeF itness(

−→
Pp) using;

// Jet propulsion and swarm behaviour;
c1, c2, c3, rand ← Rand();

Determine
−−→
PD using Eq. 3.2,3.3,3.4,3.5 and 3.6.;

Calculate the position of features
−−−→
Pp(x) using Eq. 3.7;

Update the position of features using Eq. 3.8;

return
−→
FS

4. Experiments. This section details which dataset used in this work, how dataset is prepared for SA by
removing the redundant data and also explains how to evaluate the proposed model for SA tasks.

4.1. Dataset. The dataset utilized for this experiment is Amazon product reviews from four categories
such as Electronics, Toys, Furniture and Camera. It consists of approximately 48,500 product reviews extracted
from Amazon.com (https : //s3.amazonaws.com/amazon − reviews − pds/tsv/index.txt). The dataset after
manual data cleaning process has been taken for analysis. This contains 1000 positive reviews and 1000 negative
reviews for each category. Each review has information with rating (0–5 stars), reviewer location and name,
review date and title, product name and the review text. The dataset was unlabelled and labelled manually
while using as testing data. For that purpose, the ratings of product reviews have been divided into two
categories, reviews with ratings >3 labelled as positive and the reviews with rating <3 labelled as negative.
These reviews go through data cleaning and pre-processing before given as input to ML classifier because of its
unstructured format.

4.2. Data Pre-Processing and Cleaning. In this section, product reviews after manual processing are
kept in the memory for pre-processing and cleaning. Pre-processing of data removes unwanted data including
web addresses, URLs and online links. This module also includes tokenization and case conversion.

• Removal of unwanted data. This step removes unwanted non-characters consisting of URLs, symbols,
web addresses, digits and online links from the review.

60 Anand Joseph Daniel D., Janaki Meena M.

Table 5.1: Model Parameters

Algorithm Parameters Values
PSO Weight 0.2

Constant 2
GA Rate of Crossover 0.8

Rate of Mutation 0.01
Proposed TSA Pmin 1

Pmax 4

• Removal of stop words. Most of the more regularly used stop words in English are “an”, “of”, “a”,
“you”, “the”, “and”, etc. These are some words that do not have any meaning. So, these words are
generally ignored to improve the accuracy of SA. These words are collected together and removed from
the dataset.
• Tokenization. In this process, the sequence of strings is separated into individuals such as keywords,

words, symbols, phrases and tokens based on the space of separation. Further, punctuation marks are
discarded in this process.
• Case conversion. All the reviews should be converted to lower case because it must be in same case to

process. At last, a string of meaningful words is obtained.

4.3. Performance Metrics. In this paper, four performance measures were utilized for the performance
evaluation of proposed approach: precision, accuracy, recall and F1 score. The performance measures are given
as follows.

• True Positives. It is the count of positive comments classified correctly.
• False Positives. It is the count of negative comments classified wrongly.
• True Negatives. It is the count of negative comments classified correctly.
• False Negatives. It is the count of positive comments classified wrongly.
• Accuracy. It is the ratio between the correctly classified comments and the total number of comments

as shown in Eq. 4.1.

accuracy = TP + TN/TP + TN + FP + FN(4.1)

• Precision. It is the ratio of properly classified positive comments over the total number of positive
classified comments as shown in Eq. 4.2.

precision = TP/TP + FP(4.2)

• Recall. It is the ratio of properly classified positive comments over all comments actually belonging to
that class as shown in Eq. 4.3.

recall = TP/TP + FN(4.3)

• F1-Score. It is the weighted average of recall and precision as shown in Eq. 4.4.

F1 = 2 ∗ precision ∗ recall/precision+ recall(4.4)

5. Parameter Settings. The experiments are performed on a HP laptop with Windows 10 operating
system, Intel Core i3 processor having 2.3 GHz frequency, 4GB of RAM. The software used for evaluation
of the proposed framework is MATLAB R2020a. The model parameters used to validate the performance of
various optimization techniques in SA oriented feature selection domain and general feature selection domain
is given in Table 5.1.

A Novel Sentiment Analysis For Amazon Data with TSA Based Feature Selection 61

Table 6.1: Performance measures comparison of different classifiers in sentiment analysis

Classifier Accuracy Precision Recall F1 score Computation Time (sec)
LSVM 93 94.3 97.6 96 22

NB 85 89.7 94.3 92 28
DT 82 88.8 88.4 88.6 32

KNN 87 92.9 96.5 94.7 25

Table 6.2: Performance measures comparison of VADER lexicon model

Products Accuracy Precision Recall F1 score
Furniture 68 71.3 65.3 68.3

Toys 62 63.5 56.8 59.9
Electronics 63 65.3 57.7 61.5

Camera 59 61 58.4 59.7

6. Experiment Results and Discussion. The experiment results and discussion are given in this sec-
tion. The performance of the proposed SA approach is evaluated using four different ML based classifiers:
LSVM, NB, DT and KNN. The accuracy, recall, precision and F1 score are used as performance measures for
classifiers.

6.1. Performance Comparison of ML classifiers. The comparison of four various ML classifiers in
the proposed hybrid SA approach is performed by applying TSA and non-TSA enhanced features. The same
tests are performed for the reviews of four different products that have been discussed previously.

Table 6.1 shows the accuracy, precision, recall and F1 score comparison for four different classifiers. These
results are taken for SA of Furniture dataset. The accuracy of LSVM is higher than other classifiers. It has
achieved more than 90% accuracy which lies below 90% for remaining classifiers. The precision rate of all the
classifiers are observed to be more than 85%. However, precision rate of LSVM is comparatively higher than
other classifiers. The recall measure and F1-score of all classifiers except DT attained more than 90%. The
recall rate is 1% higher for LSVM compared to KNN approach. Likewise, F1-score is slightly better for LSVM
in comparison to both NB and KNN. When considering computation time, LSVM takes less time than other
classifiers. From these results, it can be observed that total performance of LSVM classifier is better than other
classifiers. In the proposed work, LSVM classifier is used for classification of other datasets since it proves best
accuracy than other classifiers.

6.2. Comparison of three different SA approaches. Three SA approaches are implemented in the
proposed SA framework. Table 6.2 shows the performance comparison for VADER sentiment lexicon model.
The accuracy of all datasets except Camera dataset attained more than 60% . The accuracy of Furniture
dataset achieved 68% which lies below 65% for other datasets. In terms of precision, the Furniture dataset has
the maximum precision of 71.3%. Similarly, the F1 score of Furniture dataset is comparatively higher than
other datasets. The Recall rate is 65.3% for Furniture dataset.

Table 6.3 shows the performance measures comparison of ML approach for LSVM classifier with TSA based
feature selection approach. The fastText and Glove word embedding model is utilized to create feature vectors.
From Table 4, it can be observed that Camera dataset has the maximum accuracy than other datasets. The
precision rate of Furniture dataset is comparatively higher than other datasets. In terms of Recall, Camera
dataset shows a higher recall than Electronics dataset. The F1 score of all datasets was observed to be more
than 70%. The F1score is slightly better for Camera dataset in comparison to Electronics dataset.

Table 6.4 shows the results of the proposed model with TSA and without TSA. LSVM classifier is utilized
to classify the Amazon product data as it shows better results. From Table 5, it can be observed that the
accuracy of TSA and non- TSA based approaches for Furniture dataset achieved maximum accuracy than

62 Anand Joseph Daniel D., Janaki Meena M.

Table 6.3: Performance measures comparison of ML approach with LSVM classifier

Products Accuracy Precision Recall F1 score
Furniture 79 81.8 62 71.9

Toys 74 75.2 71.6 73.4
Electronics 78 78 78.8 78.4

Camera 85 70.2 87.2 78.7.7

Table 6.4: Performance measures comparison of proposed hybrid model with TSA and without TSA on Amazon
data

With TSA Without TSA
Products Accu

racy
Preci
sion

Recall F1
score

Accu
racy

Preci
sion

Recall F1
score

Furniture 93 94.4 97.6 96 91 93.9 97.3 95.6
Toys 86 92.5 95.3 93.9 84 89.8 91.6 90.7
Electronics 89 93 96.2 94.6 88 89.3 95.1 92.2
Camera 85 87.5 93.1 90.3 82 85.4 92.8 89.1

other datasets. The precision rate of all datasets achieved above 90% except Camera dataset for both TSA and
non- TSA optimization. The Recall and F1 score is more than 90% for all datasets with TSA optimization.
Without TSA optimization, the Recall rate is above 90% for all datasets. Likewise, F1 score is above 90%
for all datasets except Camera dataset without TSA optimization. These results show that the performance
measures of TSA based optimized feature selection is almost similar to non-TSA based technique with reduced
feature size. Thus, TSA based optimal feature selection reduces the scalability problem and computation time
than non- TSA based approaches. Thus, Tables 3, 4 and 5 shows that the proposed hybrid SA approach with
TSA based feature selection outperforms VADER lexicon and ML-based approaches.

6.3. Feature size comparison of TSA based ML approach. Feature size comparison is performed
to show that TSA based feature selection improves the scalability by reducing the feature size while keeping
the same accuracy as non-TSA based SA.

Figure 6.1 shows the feature size before and after SA optimization on selection of features. For Electronics
dataset, the size of features before employing TSA is 3295. After employing TSA, the feature size has been
minimized to 2169 which is nearly 34% less in the size. For the Toys dataset, the size of features before
employing TSA is 4045. After employing TSA, the feature size has been minimized to 2985 which is almost
26% less in the size. For Camera dataset, the size of features before employing TSA is 2940. After employing
TSA, the feature size has been minimized to 1754 which is almost 40% less in the size. Moreover, for Furniture
dataset, the size of features before performing TSA is 3492. After performing TSA, the feature size has been
minimized to 1982 which is nearly 43% less in the size. We have already seen that the performance of both
methods is similar but optimization using TSA gives minimized size of the feature. This reflects an important
effect on the system scalability. When dataset with large features is used for SA, it results in an enormous
bottleneck.

6.4. Comparing of TSA with GA and PSO. The results are taken only for LSVM classifier because
LSVM gives a better outcome for both TSA and non-TSA methods. To make a comparison and to verify the
results of TSA, two famous existing algorithms: GA and PSO are considered.

Figure 6.2 illustrates that TSA finds the optimum solution faster than the other two optimization algorithms
and it has an improved convergence speed. Thus, the proposed TSA based feature selection algorithm can keep
the balance between the exploration and exploitation and escape from local optima problem.

From Table 6.5, it can be known that TSA based feature selection shows better accuracy of 93% which is

A Novel Sentiment Analysis For Amazon Data with TSA Based Feature Selection 63

Fig. 6.1: Features size comparison for various datasets with TSA and without TSA

Fig. 6.2: Convergence curve comparison for PSO, GA in general feature selection domain

Table 6.5: Performance Comparison of various feature selection techniques

Performance measures
Techni
ques

Accur
acy

Preci
sion

Recall F1
score

Com-
putation
time

Feature
size re-
duction
(%)

Proposed
OBL-
TSA

95 95.4 96.6 96 15 sec 43

TSA 93 94.3 97.6 96 22 sec 40
PSO 89 91.1 96.5 93.7 35 sec 38
GA 90 92.1 96.5 94.3 38 sec 35

64 Anand Joseph Daniel D., Janaki Meena M.

Table 6.6: Comparative Analysis with related works

Methods Dataset Accuracy
(%)

SA with Probabilistic Machine Books 82.9
Learning for Amazon Reviews Electronics 86.6
[38] DVD 83.7

Kitchen 89.1
SA for business analytics with Accessories & 80.11
and cellphone Amazon Reviews [39] Cellphone 72.95
SA for Amazon Product Camera 62
Reviews and feature selection and 80
methods [40] 68

Musical 62
instruments 80

68
Books 70

70
80

Proposed Model Electronics 89
Toys 86
Camera 85
Furniture 93

better than PSO and GA based feature selection with less computation time (22 sec). Moreover, 43% of the
features are minimized using TSA based SA. The final part of this discussion demonstrates that TSA based
feature reduction outperformed both GA and PSO based feature selection approaches. From these results,
it can be concluded that the proposed TSA based approach is efficient than other commonly used existing
algorithms for feature selection.

Table 6.6 shows the comparative analysis of the proposed method with the related works in terms of
accuracy. The related works employed various pre-processing and feature extraction processes. In the proposed
approach hybrid approach is employed with optimized feature selection. From this comparative analysis and
above results, it can be observed that the proposed approach is more effective than existing optimization
algorithms for feature selection and could give better results than related works.

7. Conclusion. In this paper, a novel hybrid model with feature selection using TSA is designed, developed
and evaluated. Moreover, the proposed hybrid technique is evaluated for scalability in terms of execution time
comparison. In the total execution time, optimal feature-set selection using TSA took about 50-60% and
reduced feature-size up to 43% without any change in accuracy (93%). Experiments showed the performance of
proposed method with the data of Amazon product reviews from four categories Electronics, Camera, Furniture
and Toys. The evaluation of the proposed work is done with performance metrics such as F1-score, recall,
precision and accuracy. The results indicated that the TSA based optimized feature selection method showed
improved accuracy than PSO and GA algorithms with less computation time. Thus, the proposed approach
has higher accuracy and better scalability for SA of online reviews. The future work aims at the extension of
the proposed work on multi-domain SA with various sources of datasets.

REFERENCES

[1] F. Iqbal, J. Maqbool, B. C. M. Fung, R. Batool, A. M. Khattak, S. Aleem And P. C. K. Hung, A Hybrid Framework

for Sentiment Analysis using Genetic Algorithm based Feature Reduction, IEEE Access, 1-1, 2019.

A Novel Sentiment Analysis For Amazon Data with TSA Based Feature Selection 65

[2] S. Kausar, X. Huahu, M. Y Shabir And W. Ahmad, A Sentiment Polarity Categorization Technique for Online Product

Reviews, IEEE Access, 8, 3594–3605, 2020.
[3] E. Boiy And M.-F. Moens, A machine learning approach to sentiment analysis in multilingual Web texts, Information

Retrieval, 12(5), 526–558, 2008.
[4] M. Taboada, J. Brooke, M. Tofiloski, K. Voll and M. Stede, Sentiment analysis in Facebook and its application to

e-learning, Computers in Human Behavior, 37(2), 267–307, 2014.
[5] A. Ortigosa, J.M. Martín and R.M. Carro, Lexicon-Based Methods for Sentiment Analysis, Computational Linguistics,

31, 527–541, 2011.
[6] G. Katz, N. Ofek and B. Shapira, ConSent: Context-based sentiment analysis, Knowledge-Based Systems, 84, 162–178,

2015.
[7] P. Ducange, M. Fazzolari, M. Petrocchi and M. Vecchio, An effective Decision Support System for social media listening

based on cross-source sentiment analysis models, Engineering Applications of Artificial Intelligence,78, 71–85, 2019.
[8] Z. Yuan, S. Wu, F. Wu, J. Liu and Y. Huang, Domain attention model for multi-domain sentiment classification, Knowledge-

Based Systems,155, 1–10, 2018.
[9] L. Shang, Z. Zhou and X. Liu, Particle swarm optimization-based feature selection in sentiment classification, Soft Com-

puting, 20(10), 3821–3834, 2016.
[10] J. Pennington, R. Socher and C. Manning, Glove: Global Vectors for Word Representation, Proceedings of the 2014

Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532-1543, 2014.
[11] P. Bojanowski, E. Grave, A. Joulin and T. Mikolov, En-riching Word Vectors with Subword Information, Transactions

of the Association for Computational Linguistics, 5, 135–146, 2017.
[12] G. Ansari, T. Ahmad and M.N. Doja, Hybrid Filter–Wrapper Feature Selection Method for Sentiment Classification,

Arabian Journal for Science and Engineering, 2019.
[13] Y. Liu, C. Goa, Z. Zhang, Y. Lu, S. Chen, M. Liang and L. Tao, Solving NP-Hard Problems with Physarum-Based Ant

Colony System, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 14(1), 108–120, 2017.
[14] A. Nabaei, M. Hamian, M.R. Parsaei, R. Safdari, T. Samad-Soltani, H. Samad-Soltani and A. Ghassemi, Topologies

and performance of intelligent algorithms: a comprehensive review, Topologies and performance of intelligent algorithms:
a comprehensive review. Artificial Intelligence Review, 49(1), 79–103, 2016.

[15] R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, MHS’95. Proceedings of the Sixth International
Symposium on Micro Machine and Human Science.

[16] J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control,

and Artificial Intelligence,U Michigan Press.
[17] S.S. Grill, R. Buyya, I. Chana, M. Singh and A. Abraham, BULLET: Particle Swarm Optimization Based Scheduling

Technique for Provisioned Cloud Resources, Journal of Network and Systems Management, 26(2), 361–400, 2017.
[18] S. Kaur, L.K Awasthi, A.L. Sangal and G. Dhiman, Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic

paradigm for global optimization, Engineering Applications of Artificial Intelligence, 90, 103541, 2020.
[19] M. Darwich, S.A.M. Noah, N. Omar and N. Osman, Corpus-Based Techniques for Sentiment Lexicon Generation: A

Review, Journal of Digital Information Management, 17, 296, 2019.
[20] C.J. Hutto and E. Gilbert, VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text,

Proceedings of the 8th International Conference on Weblogs and Social Media, ICWSM, 2014.
[21] A. Borg and M. Boldt, Using VADER Sentiment and SVM for Predicting Customer Response Sentiment, Expert Systems

with Applications, 113746, 2020.
[22] T.U. Haque, N.N. Saber and F.M. Shah, Sentiment analysis on large scale Amazon product reviews, IEEE International

Conference on Innovative Research and Development (ICIRD), 2018.
[23] H. Cho, S. Kim, J. Lee and J.S. Lee, Data-driven integration of multiple sentiment dictionaries for lexicon-based sentiment

classification of product reviews, Knowledge-Based Systems, 71, 61–71, 2014.
[24] R. Xia, C. Zong and S. Li, Ensemble of feature sets and classification algorithms for sentiment classification, Information

Sciences, 181(6), 1138–1152, 2011.
[25] H. Kang, S.J. Yoo and D. Han, Senti-lexicon and improved Naïve Bayes algorithms for sentiment analysis of restaurant

reviews, Expert Systems with Applications, 39(5), 6000–6010, 2012.
[26] M. Govindarajan, Sentiment analysis of movie reviews using hybrid method of naive Bayes and genetic algorithm, Int. J.

Adv. Comput. Res., 3(4), 139145, 2013.
[27] G. Gautam and D. Yadav, Sentiment analysis of twitter data using machine learning approaches and semantic analysis,

Seventh International Conference on Contemporary Computing (IC3), 2014.
[28] A. Ortigosa, J.M. Martín and R.M. Carro, Sentiment analysis in Facebook and its application to e-learning, Computers

in Human Behavior,31, 527–541, 2014.
[29] Q. Zou, S. Xie, M. Wu and Y. Ju, Finding the Best Classification Threshold in Imbalanced Classification, Big Data

Research,5, 2–8, 2016.
[30] V. Nandi and S. Agrawal, Political sentiment analysis using hybrid approach, International Research Journal of Engineering

and Technology (IRJET),3(5), 1621–1627, 2016.
[31] N. Rajganesh, C. Asha, A.T. Keerthana and K. Suriya, A hybrid feedback-based book recommendation system using

sentiment analysis, IJSRCSEIT,3(3), 2456–3307, 2018.
[32] D. Mumtaz and B. Ahuja, A Lexical and Machine Learning-Based Hybrid System for Sentiment Analysis, Studies in

Computational Intelligence, 165–175, 2017.
[33] I. Gupta and N. Joshi, Enhanced Twitter Sentiment Analysis Using Hybrid Approach and by Accounting Local Contextual

Semantic, Journal of Intelligent Systems, 0(0), 2019.

66 Anand Joseph Daniel D., Janaki Meena M.

[34] A. Yadav and D.K. Vishwakarma, A comparative study on bio-inspired algorithms for sentiment analysis, Cluster Com-
puting, 2020.

[35] P. Kalarani and S. Brunda, Sentiment analysis by POS and joint sentiment topic features using SVM and ANN, Soft
Computing, 2018.

[36] D.A. Kristiyanti and M. Wahyudi, Feature selection based on Genetic algorithm, particle swarm optimization and principal

component analysis for opinion mining cosmetic product review, 5th International Conference on Cyber and IT Service
Management (CITSM), 2017.

[37] H. Jiang, C.K. Kwong, W.Y. Park and K.M. Yu, A multi-objective PSO approach of mining association rules for affective

design based on online customer reviews, Journal of Engineering Design, 29(7), 381–403, 2018.
[38] R. Xia, F. Xu, J. Yu, Y. Qi and E. Cambria, Polarity shift detection, elimination and ensemble: A three-stage model for

document-level sentiment analysis, Information Processing & Management, 52(1), 36–45, 2018.
[39] M.S. Elli and Yi-Fan, Amazon Reviews, business analytics with sentiment analysis,2016.
[40] T. Shaikh and D. Deepa, Feature Selection Methods in Sentiment Analysis and Sentiment Classification of Amazon Product

Reviews,International Journal of Computer Trends and Technology, 36(4), 225-230, 2016.

Edited by: Dana Petcu
Received: Nov 26, 2020
Accepted: Jan 23, 2021

Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org

© 2021 SCPE. Volume 22, Issues 1, pp. 67–79, DOI 10.12694:/scpe.v22i1.1840

DISTRIBUTED APPLICATION CHECKPOINTING
FOR REPLICATED STATE MACHINES∗

NIYAZI ÖZDINÇ ÇELIKEL†
AND TOLGA OVATMAN‡

Abstract. Application checkpointing is a widely used recovery mechanism that consists of saving an application’s state
periodically to be used in case of a failure. In this study we investigate the utilisation of distributed checkpointing for replicated
state machines. Conventionally, for replicated state machines, checkpointing information is stored in a replicated way in each of
the replicas or separately in a single instance. Applying distributed checkpointing provides a means to adjust the level of fault
tolerance of the checkpointing approach by giving away from recovery time. We use a local cluster and cloud environment to
examine the effects of distributed checkpointing in a simple state machine example and compare the results with conventional
approaches. As expected, distributed checkpointing gains from memory consumption and utilise different levels of fault tolerance
while performing worse in terms of recovery time.

Key words: Application Checkpointing, Replicated State Machines, Cloud Computing

AMS subject classifications. 68M14, 68W15

1. Introduction. During the passing few years, serverless computing has become more widespread among
the cloud service providers. Very broadly, this term refers to isolating almost every layer of the software
development stack from service developer by providing a service modelling medium such as a state machine.
By using this service definition model, developer might model and execute simple services without worrying
about the configuration of software stack layers.

From a cloud provider’s perspective, using replicated state machine (RSM) approach for fault tolerance is a
favourable alternative [1] [2] since it is a widely-known and implemented approach among software developers,
there even exists many frameworks for back-end programming such as Spring State Machines1. RSMs simply
execute replicas of a state machine to handle requests in a distributed way. During running time, each replica
handles different requests and executes them as if they are being orderly processed by a main state machine.

An example of state machine replication can be seen in Fig. 1.1, where a master state machine on top is
replicated over three replicas. State machines transit between defined states such as A, B and C with incoming
events such as E1, E2 and E3. Using a master replica (or state machine) is dependent on the context of usage.
When no master is used, replicas are expected to eventually be orchestrated to reflect a single logical state
machine. The replicas can be deployed in proximate locations as well as in geographically distinct locations [3]
that may affect the performance of orchestration among the replicas.

One of the important aspects in deploying RSMs is fault recovery. Replicas may periodically save system
state, known as checkpoints, to recover to a past state in the presence of a system failure. Checkpointing is also
utilised for the cases where a new replica is introduced to the system to update the replica’s state to the current
state of the RSM. For RSMs, using different checkpointing approaches might have different characteristics in
terms of non-functional properties of the system. For instance, if each replica keeps full restore information
specific to the replica, redundant replicated checkpointing information would emerge since all the replicas
eventually go through the same execution path at run-time. On the other hand, keeping a single checkpointing
replica would result in a single point of failure for checkpointing operation.

∗This work is supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under grant id 118E887.
†Istanbul Technical University Department of Computer Engineering Istanbul, Turkey (celikelni@itu.edu.tr).
‡Istanbul Technical University Department of Computer Engineering Istanbul, Turkey (ovatman@itu.edu.tr) ORCID-id:0000-

0001-5918-3145. Corresponding author.
1https://projects.spring.io/spring-statemachine/

67

68 Niyazi Özdinç, Tolga Ovatman

Fig. 1.1: State machine replication

In this study, we utilise characteristics specific to state machines to introduce a distributed checkpointing
approach for RSMs (DCfRSM) that simply distributes the checkpointing operation and checkpoint information
among replicas. Our approach makes it possible to utilise different levels of replication of checkpointing infor-
mation to leverage recovery overhead and fault tolerance. We use a simple state machine instance, implemented
using spring state machines to demonstrate and evaluate our approach. We use different number of replicas
running in a local cluster and in amazon web services separately to measure memory consumption for each
replica and recovery time for a booting state machine replica. We compared our approach with two differ-
ent approaches, namely conventional checkpointing and centralised checkpointing, to evaluate the advantages
in using distributed checkpointing for RSMs. Results from these experiments show that DCfRSM provided
advantage in terms of memory consumption compared to centralised conventional approaches. On the other
hand, DCfRSM produces a high recovery time when it is compared to centralised and conventional approaches
because of the extra communication overhead needed for collecting partial histories from different replicas inside
a cluster. However, we believe this overhead is the cost of obtaining a higher level of fault tolerance especially
with respect to centralised checkpointing. This study expands our earlier preliminary study [4] by providing
implementation details of the DCfRSM approach and results from experiments on a real cloud environment.

The rest of the paper is organised as follows: In Sect. 2 we review related literature. In Sect. 3 we explain
the DCfRSM approach in more detail. Experimental architecture, implemented approaches for benchmarking
purposes and simulation environment are introduced in Sect. 4. Section 5 presents the results of the experiments
and the paper is concluded in Sect. 6.

2. Related Work. There exists numerous studies to optimise performance and recovery costs of check-
pointing approaches in distributed computing. In this study, we study on application level checkpointing which
is applied in a more software-agnostic way by relying on operating on memory as a whole; a comparative
discussion between system and application level checkpointing can be found in [5]. The work depicted in [6]
states the necessity for replicated state machines to guarantee that majority of replicas inside a cluster can
communicate with each other and be prone to node failures. In case of failures on physical machines, in order
to minimise checkpointing costs, [7] proposes a novel replication technique with the aim of decreasing recovery
costs while [8] proposes a new approach for reducing storage costs.

Due to the review by [9], several layers of fault-tolerance may be defined, such as optimistic fault-tolerance
and conservative fault-tolerance mechanisms. This study also states that, by using checkpointing and redo
mechanisms, there is a strong chance for ensuring replica consistency for the RSM clusters. Achieving replica
consistency, is also one of the features proposed by the DCfRSM approach.

The idea behind using replicated state machines in order to model distributed checkpointing approach is
already stated by [2] and [10]. Replicated state machines can be made fault-tolerant with feeding the same

Distributed Application Checkpointing for Replicated State Machines 69

inputs to multiple computers which is the approach used as fundamental principle within scope of experiments
of this study. In this aspect, another interesting study is abortable state machine replication approach [11],
implemented as an extension for Zyzzyva [12] where authors provide a byzantine fault tolerance mechanism to
support interruption of execution in replicated state machines.

Moreover, the study in [1] states that increasing the quality of the user experience is highly dependent on
making systems replicated across geographically by using replicated state machines. As suggested by [1], we
also experiment on cloud systems to be able to examine the advantage of DCfRSM approach on geographically
distributed and replicated state machines.Thesis study in [13], also represents an efficient logging mechanism
along with an efficient checkpointing model, which is executed in a parallel and distributed manner by executing
concurrent commands. By using this approach, not only recovery process is parallelised but also checkpointing
is persisted concurrently in all replicas.

Following geographical distribution, a number of studies has also been publishing the utilisation of check-
pointing in cloud environments and in state machines running on cloud environments. Providing checkpointing,
as a cloud service has been proposed in an earlier study, where authors have used existing software packages
to implement checkpointing on cloud environments [14]. A later study examined checkpointing in edge cloud
scenarios and provided algorithms to improve persistence and recovery server selection processes [15]. Having
a similar domain with edge domain, a past study uses state machine models of internet of things devices to
select optimal points for checkpointing and try to reduce energy overhead of checkpointing process [16].

Another area of literature, regarding checkpointing in the cloud, consists recovery processes of distributed
running tasks. A recent study proposes a system in this aspects and evaluates over energy consumption, service
level agreement violations, recovery time of tasks and failure rates [17]. A very recent study also reports storage
checkpoint recovery times for bag-of-tasks jobs over Amazon Web Services [18]. Even though not being in cloud
domain, there has been past research on modelling tasks as state machines and using state machine properties
to schedule checkpointing process to optimise restoration time [19].

Reduction of communication between replicas is not the primary concern of our study but there are studies
in literature focusing on networking aspects. For instance, the study in [20] proposes a high-performance
replicated state machine checkpoint and recovery approach inspired by Paxos consensus protocol. There are
also other studies that utilise Paxos such as [21], where authors propose an efficient implementation for snapshots
and recovering current state of the state machine.

In order to minimise overall checkpoint overhead, the study in [22] proposes to checkpoint only straggling
tasks in order to minimise the number of checkpoints. Within the scope of our study, instead of persisting
checkpoints after only certain tasks, as suggested by [22], we have chosen to persist checkpoints to be triggered
just after every task execution inside state machines.

With the aim of reducing the checkpoint data size, the study depicted in [23] propose a novel checkpointing
mechanism by modelling a decision algorithm in order to reveal the and persist dirty pages that are modified
since last checkpoint time. We employ the time ticks and execution history elements in incremental checkpoint-
ing approach introduced by [23] and store events occurred within predesignated time ticks for a predesignated
execution steps, instead of forcing all the replicas to checkpoint all the modifications performed on the internal
states so far. Another study in [24] presents concurrent replication technique for the replicated state machines
and compensate non-determinism with the help of static analysis. In our study we reduce the checkpointing
storage costs by trying to eliminate redundant checkpointing information from replicas.

Another important aspect of implementing a checkpointing approach is the system level which the desig-
nated approach is going to operate on; such as in user level [25] or kernel level [26]. The approach introduced
in this paper operates as user level. In the study depicted by [25], states that the user level checkpoint-
ing is performed explicitly by external applications and hence, user-level application is unaware whether it is
check-pointed or not.On the other hand, the study in [26] proposes an innovative approach called buffered
co-scheduling which is implemented at kernel level, hence has unrestricted access to hardware and software
resources easily so that operating system’s signal mechanism can easily be used for checkpointing formulations.

Although considerable amount of work has been performed on memory checkpointing, very few recent
studies exists that provides an approach utilising state machines. A very recent example to such a study uses
checkpointing in persisting distributed legacy in memory software by the introduction of a persistent memory

70 Niyazi Özdinç, Tolga Ovatman

based tool [27]. Another recent study in non volatile memory systems uses differential checkpointing to leverage
energy efficiency [28]. Even though state machines are not explicitly used in this study, a recent application of
differential checkpointing is presented.

Checkpointing in in-memory processing has been focus of recent studies; an example to such a study is the
idea of applying probabilistic checkpointing on the domain of stream processing where authors present a periodic
multi-level checkpointing approach and evaluated their approach by experimenting on Apache Flink [29]. An
earlier study proposes asynchronous checkpointing approach to be used in in-memory database systems by
defining virtual consistency points in application run and apply checkpointing regarding those points [30].
Frequency of checkpointing, lately has drawn some attention as well; a recent study explores how recomputing
some data values instead of recovering a persistent copy may decrease checkpointing frequency and provide
energy efficiency [31].

Besides checkpointing approaches, there has also been interest in recovery mechanisms with respect to state
machine execution context. Due to the study in [32], there are various industry-standard tools which adopts
recovery approach in the context of state machines in different aspects. An example to such an approach
is ”declarative system update”, that works by defining the desired state of system and applying necessary
modifications to current state in order to achieve the desired state by using RSMs in different context. In
addition to this study, the study in [13] increases the performance of the recovery of failed replicas by parallelising
the checkpointing operation. Parallelisation, in this study, is achieved by execution of concurrent commands
under coordinated and uncoordinated modes of execution. This approach provides a chance for achieving
consistency for both faulty and regular(non-faulty) replicas. The study depicted in [33], proposes three novel
recovery approaches that produce less overhead during restoration in faulty replicas. Our proposed approach is
also inspired from this study in reducing the amount of overhead produced by replicas by reducing the amount
of extra processing related to checkpointing.

Efficient checkpointing and recovery mechanisms in the context of replicated state machines has other
application areas as well. An example to such an application area can be found in [34], where efficient recovery
execution is implemented in the presence of arbitrary faults. The study depicted in [35], proposes to use divide-
and-conquer approach for the fault-tolerant replicated state machine cluster systems. According to the study
in [36], a decision system inside state machine cluster may predict the executing process being CPU-bound
or I/O-bound. According to this decision, subsequent modifications are speculatively executed and used in
checkpointing. If the speculation is correct, then checkpoint is made durable and persistent, otherwise, RSM
cluster rolls back to previous state to the checkpoint and re-execute further operations for ensuring durability.
This approach is stated as beneficial if the time interval of checkpointing is less than the time interval of
performing operation which generates the expected result.

3. Distributed Checkpointing for Replicated State Machines (DCfRSM). Distributed check-
pointing approach employs deploying and serialising request history handled by an RSM into many pieces
during persisting checkpoints. This way, each RSM instance may store a specific piece of history instead of
full execution history. During a recovery, whole history is going to be gathered from the components of the
system, which also means, logical master history will be shared between all the active state machine replicas.

Definition 3.1 (State Machine). A state machine is composed of a triplet where S is a set consisting the

states in the system, E is the set of events and F is a transition function that represent transitions between the

states, each triggered by an event.

M = {S,E, F}

S = {s0, s1, . . .}

E = {e0, e1, . . .}

F ⊂ S × E × S

To explain the distributed checkpointing approach in more detail we employ a labelled state transition
model where a state machine is defined with a triplet M = {S,E, F} such as in Definition 1. In this model
S represents the set of states in the transition system, E corresponds to the set of labels used to label the

Distributed Application Checkpointing for Replicated State Machines 71

transitions between the states and F is the transition function between the states that defines a deterministic
system.

More precisely, each and every RSM instances includes some states stated as si ∈ S, some labels corre-
sponding to events ei ∈ E triggering transitions between state machine states such as si

ek→ sj . The transition
function F is defined over S × E → S. For instance for the master state machine in Fig. 1.1, S = {A,B,C}
where E = {E1, E2, E3} and F = {(A,E1, B), (B,E2, C), (C,E3, A)}.

We may use the generic machine definition in presented in Definition 1 to demonstrate the distributed
checkpointing process. Whole execution history for the RSM instance can be illustrated as in definition in
Eq. 3.1. By using this equation, it is possible to state the history begins with a designated state, execution of
state machine continues by events that trigger the machine to transit between the states.

H = (si, ei, sj , ej , sk, ek, sm) . . . (3.1)

An execution history instance contains some number of events that results in the machine to transit between
states in an orderly manner. In order to represent this order of events we may use superscripts to annotate
our history definitions such as in Eq. 3.22. Here, we omit the subscripts that distinguish between the specific
events/states for simplicity. In case of a replicated state machine, eventually, each replica of the master state
machine is supposed to execute the same order of events. Hence, in a synchronisation agnostic manner, we may
distribute the responsibility of saving specific parts of history to specific machines.

H [0−59] = (s0, e0, s1, e1, s2, e2, . . . , s59, e59, s60)

H
[0−19]
0 = (s0, e0, s1, e1, . . . , s19, e19, s20)

H
[20−39]
1 = (s20, e20, s21, e21, . . . , e39, s40)

H
[40−59]
2 = (s40, e40, e41, e42, . . . , e59, s60)

(3.2)

A very straightforward example would be the one in Eq. 3.2, where the history is divided into three equally
length parts. A division like in Eq. 3.2 might be accomplished in the presence of three replicas which has
executed 60 events so far. Each replica saves a specific portion of history which might be represented as Hτ

i

where i represents the replica id and τ represents the time interval which replica needs to save the history for
the checkpointing purpose. Once the τ is parameter is determined for the overall system, a specific replica
might simply perform history saving decision by a simple arithmetic operation. For instance for a three replica
system where τ is designated as 20, the replica with id 0 should begin saving history for 20 events every time
the modulus of the event number divided by τ equals its own id. Equation 3.3 formalises this calculation by
representing replica id by rid

3, event number by ei and number of replicas by |R| where R corresponds to the
replica set.

rid == ((ei div τ) mod |R|) (3.3)

In this decision process, an important aspect would be the necessity to broadcast and synchronise whenever
a new replica joins the replica set or a present replica leaves the replica set since those situations change the
specific points in history where a replica starts saving history for checkpoint. Another important aspect is
distributing the history portions in the aforementioned way works correctly for the case when a new replica
joins the system but in case of a failure, the specific portion of the history saved by the failing replica becomes
lost. In order to deal with this issue, an additional parameter may be introduced to the system such as ρ that
represents the replication factor.

Replication factor parameter designates how much each portion of the execution history is replicated among
replicas. When performing history saving decision, each replica checks the replication factor parameter as well
to starts saving history. For instance, for the straightforward example above ρ is 1 since each portion of the
history is saved by a single replica. If we designate ρ as 2 then each portion should be saved by two replicas.

2We use simple brackets to represent an ordered set.
3We assume replica id’s start from 0 in the context of this paper

72 Niyazi Özdinç, Tolga Ovatman

Fig. 4.1: Example book store state machine.

Parameter ρ can be adapted as in Eq. 3.4 simply by adding ρ number of additional condition where the right
hand side of the equation is incremented once for each additional condition.

ρ∧

k=0

(rid == ((ei div τ) mod |R|) + k) (3.4)

For instance, for a 240 event execution, if the number of replicas is 6, τ is determined as 20 and ρ is
determined as 2, replica with id 4 is going to save history for twenty events beginning from 80th, 100th, 200th

and 220th events. Additionally, replica with id 5 is going to save history for twenty events beginning from 100th,
120th, and 220th events. Since we assume the execution history consists of 240 events, replica 5 is going to stop
saving at the end of 240th event but for a case with longer execution histories it is going to continue saving for
20 events starting from 240th event as well. This approach is similar to mirroring and striping approach used
in RAID 1+0 implementations [37].

A final remark might be to note that ρ parameter should not exceed the number of replicas, naturally. This
parameter provides full history saving by all the replicas when it is set to the number of replicas and provide
minimal level of reliability when it is set to 2. If ρ parameter is set to 1, distributed checkpointing will be
useful only for the joining replicas to the replica cluster but it will be unreliable in case of a replica failure. It
should also be noted that as ρ gets larger it will produce more overhead on each replica during checkpointing
and recovery operations.

4. Experimental Environment.

4.1. Overall Architecture. We use a simple book store state machine, as shown on Fig. 4.1 to carry out
experiments on distributed checkpointing approach. When a book is ready to be bought from customers, it
starts with UNPAID state and waits the PAID event to be triggered. When the booking and payment operations
are performed on the book, PAID event is triggered and state has been changed from UNPAID to PENDING state.
In this state, book store waits the receipt from customer in order to ship the book. Once the receipt is received
by book store, RECEIPT event is triggered and state is transited from PENDING to PAID. In our experiments we
use an implementation of this state machine using Spring State Machines.

We set an experimental environment up using containers and a message queue as illustrated in Fig. 4.2.
Each state machine is implemented using Spring State Machine framework inside containers running replicas
of the book store state machine. Coordinator node is responsible from generating workload for state machine
replicas and coordinating booting sequences of the state machine instances by communicating with replica
agents through a simple message queue. We also use coordinators and agents to collect information about the
run-time measures that we use to evaluate the performance of the experimented approaches. We have used this
architecture in our local experiments as well as cloud experiments.

A typical execution of an experiments kicks off with booting all the replicated state machines inside current
cluster. During their booting sequence, replicas prepares themselves to process events -initialize local and shared

Distributed Application Checkpointing for Replicated State Machines 73

Fig. 4.2: Overall architecture.

variables and so on-, and then, begin listening to incoming events in order to perform transitions between state
machine states. Controller node, creates necessary events and sends them to replicas via message broker. The
message broker in our architecture is responsible from the following actions:

• Event communication between the coordinator node and replicas,
• Acknowledging controller node of replica life cycle,
• Communicating checkpointing information between replicas and the coordinator node,
• Measuring and reporting number of messages passed through during event processing.

Once the first event is send to state machines, it processes this event, performs necessary operations on its
variables and finishes its execution in order to process a new event. After event processing finishes checkpointing
operations are performed. During our experiments we use replicas to store checkpointing information as well as
coordinator node whenever an external entity is necessary for the checkpointing approach. The details of the
checkpointing approaches we have implement is explained in more detail in Sect. 4.2. During checkpointing,
we store the context of the state machine which involves inputs and outputs of the current state. Inputs
consist of incoming event, event timestamp, source state of the state machine while outputs consist of local and
shared variables, destination state of the state machine. As a result of checkpointing process in each replica,
whole execution history is recorded as a sequence of state machine contexts in replicas and/or coordinator node
depending on the applied approach.

4.2. Implemented Approaches. For our experiments we implemented four different approaches to
compare the performance of the distributed checkpointing approach. Initially we implemented centralised
checkpointing approach where checkpointing information is stored only in the controller node. Afterwards we
implemented conventional approach where each replica stores all the checkpointing information. Finally we
implemented two variants of our approach: a striped DCfRSM where each replica stores a single portion of the
execution history (ρ = 1) and a striped and mirrored DCfRSM where each replica stores two portions of the
execution history (ρ = 2).

In case of centralised approach, none of RSMs store any of the checkpoints; instead all the checkpoint
messages are stored by the controller node, ensuring all the events processed by all the replicas are persisted.
To avoid the controller node to be a single point of failure, centralised node can also be replicated. We have
left implementation and performance evaluation of such a scenario for a future study.

74 Niyazi Özdinç, Tolga Ovatman

One of the checkpointing approaches that is used for benchmarking DCfRSM approach is conventional
checkpointing. In this approach all the replicas perform checkpointing after each and every event processing,
storing exactly the same checkpoints information. In case of any failure on any of the RSM instances, all the
checkpoint information should be gathered and applied in order to join back to the RSM cluster. Likewise, a
freshly booting replica should communicate with a/some running replica(s) to gather checkpoint information.
Memory overhead of this approach is expected to be larger than other approaches, since checkpoint snapshots
are redundantly stored by replicas.

As explained in Sect. 3, we implemented two variants of DCfRSM, with replication factor(ρ) set to one and
two respectively, to reason about the amount of increase in the overhead as the replication factor parameter
gets higher. As discussed earlier, employing a higher level of ρ provides more reliable checkpointing and a
higher overhead to replicas.

We provide our implementations for the book store state machine4 and controller node5 openly hosted in
a cloud repository service to make our experiments reproducible by the scientific community.

5. Experimental Evaluation. For the executions of tests, we use two different environments, a local
cluster and a cloud based environment. All the experiments are conducted with 4, 6, 8 and 10 replicas in the
experimental environment over 10 repetitions for each experiment by sending a total number of 3600 requests
for the master state machine of the replicated cluster. We set the replica’s history portion interval τ to 120
events being a common multiple for each different number of replicas used in the experiments and also being a
divisor of total number of requests used in the experiments.

During these experiments average amount of memory consumption used by all replicas in the cluster
is measured as well as average of restore duration of newly joining replica. In order to measure memory
consumption of each replica during state machine execution, an external library is used for counting number of
checkpoint objects in memory. Java’s instrumentation API6 is used during state machine execution to measure
and log memory usage whenever a checkpoint is about to be persisted. An overview of the application of our
experiments can be summarised as follows:

• Initialise controller node and message broker,
• Initialise the necessary number of replica in the cluster,
• Trigger messages from controller node, wait for replicas to finish execution,
• Once all the events are processed, compare local and shared variables of all the replicas in order to

ensure that replicas executed consistently,
• Boot a new replica in order to join the cluster, wait for the replica to gather checkpoint information

from respective node/nodes
Once the new replica finishes its execution, it means that first round of the experiments are finished. As of

all the experiments for the respective replica set is finished, reports can be generated. By using the flow above,
total memory consumption of the cluster is calculated for the replicas. Then, averages and standard errors for
repeated experiments are calculated.

5.1. Experiments on local cluster. As a local cluster we use computers with 2.60 GHz Intel i5 proces-
sors, 4 GB RAM and 100 GB SSDs running debian linux distributions. We begin presenting the experiments on
our local cluster by examining memory consumption of each approach on average for each replica. Figure 5.1
presents and compares the memory consumption for approaches. As expected, conventional approach con-
stantly consumes the highest amount of memory since all the replicas in the cluster keep the whole history all
the time for this approach. Likewise, centralised approach constantly consumes the lowest amount of memory
since replicas do not keep any checkpointing history for this approach. Distributed checkpointing approaches
stand in the middle between conventional and centralised approaches and spend less memory as the number of
replicas increase since the history will be divided among more number of replicas. Comparably, mirroring on
top of striping increases the amount of memory consumption, as expected.

For restore duration in Fig. 5.2, the results in the local cluster are close and have high deviations. However,

4https://github.com/celikelozdinc/DistributedStateMachine
5https://github.com/celikelozdinc/LoadBalancer
6https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.html

Distributed Application Checkpointing for Replicated State Machines 75

Fig. 5.1: Average memory consumption by replicas.

Fig. 5.2: Restore duration.

the average restore duration for centralised approach performed the best with respect to other approaches since
the booting sequence requires less communication and only with coordinator node. Conventional approach came
the second because obtaining history information from another replica requires and extra step of communication
in our implementation compared to centralised approach: during booting sequence checkpoint information needs
to be communicated from a running replica to coordinator and then from the coordinator to booting replica.
This overhead may be avoided by enabling the booting replica to directly obtain checkpoint data from a
running replica. Distributed checkpointing approaches perform worse because they need more communication

76 Niyazi Özdinç, Tolga Ovatman

Fig. 5.3: Average time spend for each phases of restoring

Fig. 5.4: AWS EC2 architecture for cloud experiments.

with other replicas more than the conventional and centralised approaches. An important remark might be the
mirrored and striped approach beating the striped approach for restore duration. We believe, this is due to the
more number of alternatives to obtain checkpoint data portions during restoring phase. Any slow responding,
bottleneck, replica is eliminated due to the presence of alternatives to obtain the same data when striping and
mirroring is applied.

Furthermore, we investigated the time spent during the restoring of a booting replica in Fig. 5.3. It can
be seen that the difference between different approaches is greatly due to the checkpoint data communication
phase.

5.2. Experiments on cloud environment. We also repeat our experiments on geographically dis-
tributed t3.medium instances running on a Amazon Web Services Elastic Compute Cloud (AWS-EC2). As per
Fig. 5.4, 6 virtual machines from 3 different regions are used for executing experiments in cloud environment.
While executing experiments, controller node and message broker service is isolated and positioned on a dif-

Distributed Application Checkpointing for Replicated State Machines 77

Fig. 5.5: Memory consumption from the experiments in cloud.

Fig. 5.6: Restore duration from the experiments in cloud.

ferent region which is totally apart from RSM instances. All the RSM instances distributed among 4 virtual
machines and hence, spread to 2 regions. Freshly booting replicas are joint to cluster from a region apart from
the regions of active replicas. By doing so, whenever a new replica joins the cluster, it is needed to gather
checkpoint snapshots from different machines on geographically distributed regions.

Figure 5.5 shows the same advantage of DCfRSM approach in terms of memory consumption. Distributed
approaches spend less memory since they divide the history data to multiple parts during their execution.
Centralised approach is the best in this respect, naturally, since it doesn’t require any replica to keep any
checkpointing data.

As per Fig. 5.6, results from experiments in cloud environment shows some differences in terms of restore
duration in cloud environments. Conventional approaches perform worse than the rest due to the fact that
the booting replica is always in a geographically different region than the replica that provides checkpointing
information. Likewise, for the centralised approach it is guaranteed that the booting replica and the coordinator
are in the same region, which provides an advantage of communication latency during the booting time. In more
realistic scenarios these measurements might change form case to case. A booting replica might not always
find the checkpoint data in a close replica in terms of geographical location or network latency. However,

78 Niyazi Özdinç, Tolga Ovatman

our experiments provide the best and worst case scenarios under centralised and conventional approaches
respectively to show the place of distributed checkpointing approaches with this respect. For distributed
checkpointing, restore duration is always better than conventional approach even though the booting replica is
in a different region than all the other replicas. This situation is due to the exploitation of alternatives instead
of relying on a single replica. On the other hand, for cloud experiments, striped approach has performed slightly
better than the striped and mirrored approach for small number of replicas but striped and mirrored approach
performed much better as the number of replicas reached to 10. This situation shows that for increased network
latency mirroring might lose its positive effect on restore duration for small number of replicas.

6. Conclusion and Future Work. In this paper, distributed checkpointing for the replicated state
machines is examined and compared with conventional approaches. Especially in terms of full replication of
checkpointing data and using a single node, distributed checkpointing approaches provide a mediation point
to leverage between the amount of fault tolerance of the cluster versus restore duration of the replicas. Our
experiments show that using distributed checkpointing provides a certain amount of memory consumption
advantage and provides worse (as expected) but comparable restore duration. Main advantage of using a
distributed checkpointing approach is to distribute the checkpointing information among replicas to provide an
adjustable level of fault tolerance during replicated state machine execution.

Our studies can be extended to decrease recovery time overhead as much as possible in order to provide a
better trade-off between distributed checkpointing and other approaches. Though many possible improvement
opportunities exist in our implementations, allowing replicas to communicate each other via agents to eliminate
the need to use a coordinator node might the most important one. Another possibility might be to better
parallelise the recovery phase for distributed checkpointing since the approach benefits from using independent
portions of the execution history. Moreover, various different values for parameters τ and ρ might be used to
find optimal values for different scenarios in RSM checkpointing. Finally, providing the reliability of history
portions by using parity information instead of mirroring might be another possible improvement to store even
less checkpointing information in this context.

REFERENCES

[1] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, R. Rodrigues, Making geo-replicated systems fast as possible,
consistent when necessary. Presented as part of the 10th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 12), pages 265-278, 2012.

[2] W.J. Bolosky, D. Bradshaw, R.B. Haagens, N.P. Kusters, P. Li, Paxos replicated state machines as the basis of a
high-performance data store. Proc. NSDI’11, USENIX Conference on Networked Systems Design and Implementation,
pages 141-154, 2011.

[3] J. Du, D. Sciascia, S. Elnikety, W. Zwaenepoel, F. Pedone, Clock-RSM: Low-latency inter-datacenter state machine
replication using loosely synchronized physical clocks. 2014 44th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks, pages 343-354, IEEE, 2014.

[4] N.Ö. Çelikel, T. Ovatman, A Distributed Checkpoint Mechanism for Replicated State Machines. Proceedings of the 10th
International Conference on Cloud Computing and Services Science, CLOSER 2020, Prague, Czech Republic, May 7-9,
2020, pages 515-520, SCITEPRESS, 2020.

[5] Posner, J. System-Level vs. Application-Level Checkpointing. IEEE International Conference on Cluster Computing (CLUS-
TER), pages 404–405, 2020.

[6] R. Friedman, A. Vaysburd, Fast replicated state machines over partitionable networks. Proceedings of SRDS’97: 16th IEEE
Symposium on Reliable Distributed Systems, pages 130-137, 1997.

[7] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, A. Warfield, Remus: High availability via asynchronous
virtual machine replication. Proceedings of the 5th USENIX symposium on networked systems design and implementation,
pages 161-174, San Francisco, 2008.

[8] J. Heo, S. Yi, Y. Cho, J. Hong, S.Y. Shin, Space-efficient page-level incremental checkpointing. Proceedings of the 2005
ACM symposium on Applied computing, pages 1558-1562, 2005.

[9] W. Zhao, Performance optimization for state machine replication based on application semantics: a review. Journal of
Systems and Software, 112:96-109,2016.

[10] F.B. Schneider, Implementing fault-tolerant services using the state machine approach: A tutorial. ACM Computing Surveys
(CSUR),

[11] Guerraoui, R., Knežević, N., Quéma, V., Vukolić, M., The next 700 BFT protocols. ACM Transactions on Computer
Systems, Vol. 32, No. 4, pages 12:1–12:45, 2015.

[12] Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E., Zyzzyva: speculative byzantine fault tolerance. Proceedings
of twenty-first ACM SIGOPS symposium on Operating systems principles, pages=45–58, 2007.

Distributed Application Checkpointing for Replicated State Machines 79

[13] O.M. Mendizabal, Fast recovery in parallel state machine replication. Pontifícia Universidade Católica do Rio Grande do
Sul, 2016. 22(4):299-319, 1990.

[14] Cao, J., Simonin, M., Cooperman, G., Morin, C., Checkpointing as a service in heterogeneous cloud environments. 15th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pages 61–70, 2015.

[15] Zhou, A., Sun, Q., Li, J., Enhancing reliability via checkpointing in cloud computing systems. China Communications,
IEEE, volume 14, number 7, pages 1–10, 2017.

[16] Mirhoseini, A., Rouhani, B. D., Songhori, E., Koushanfar, F. Chime: Checkpointing long computations on interm
ittently energized iot devices. IEEE Transactions on Multi-Scale Computing Systems, volume 2, number 4, pages 277–
290, 2016.

[17] Meroufel, B., Belalem, G., Optimization of checkpointing/recovery strategy in cloud computing with adaptive storage
management. Concurrency and Computation: Practice and Experience, volume 30, number 24, pages e4906, Wiley
Online Library, year=2018.

[18] Teylo, L., Brum, R. C., Arantes, L., Sens, P., Drummond, L. M. D. A., Developing Checkpointing and Recovery
Procedures with the Storage Services of Amazon Web Services. 49th International Conference on Parallel Processing-
ICPP: Workshops, pages 1–8, 2020.

[19] Levitin, G., Xing, L., Luo, L., Joint optimal checkpointing and rejuvenation policy for real-time computing tasks. Reliability
Engineering & System Safety, Elsevier, volume 182, pages 63–72, 2019.

[20] M. Yanhua, P.J. Flavio, M.Keith, Mencius: building efficient replicated state machines for WANs. 8th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 08), 2008.

[21] J. Konczak, N.F. de Sousa Santos, T. Zurkowski, P. Wojciechowski, A. Schiper, JPaxos: State machine replication
based on the Paxos protocol. EPFL- I&C - School of Computer and Communication Sciences, LSR - Distributed Systems
Laboratory, Technical Report, No. REP_WORK, 2011.

[22] B. Ghit, D. Epema, Better safe than sorry: Grappling with failures of in-memory data analytics frameworks. Proceedings of
the 26th International Symposium on High-Performance Parallel and Distributed Computing, pages 105-116, 2017.

[23] N. Naksinehaboon, Y. Liu, C. Leangsuksun, R. Nassar, M. Paun, S.L. Scott, Reliability-aware approach: An incremental
checkpoint/restart model in hpc environments. 2008 Eighth IEEE International Symposium on Cluster Computing and
the Grid (CCGRID), pages 783-788. IEEE, 2008.

[24] J.G. Slember, P. Narasimhan, Static Analysis Meets Distributed Fault-Tolerance: Enabling State-Machine Replication
with Nondeterminism. HotDep, 2006.

[25] J.C. Sancho, F. Petrini, G. Johnson, E. Frachtenberg, On the feasibility of incremental checkpointing for scientific
computing. 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings, page 58, IEEE, 2004.

[26] R. Gioiosa, J.C. Sancho, S. Jiang, F. Petrini, Transparent, incremental checkpointing at kernel level: a foundation for
fault tolerance for parallel computers. SC’05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing, pages
9-9, IEEE, 2005.

[27] Zhang, W., Shenker, S., Zhang, I., Persistent State Machines for Recoverable In-memory Storage Systems with NVRam.
14th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 20), pages 1029–1046, 2020.

[28] Ahmed, S., Bhatti, N. A., Alizai, M. H., Siddiqui, J. H., Mottola, L., Efficient intermittent computing with differential
checkpointing. Proceedings of the 20th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers,
and Tools for Embedded Systems, pages=70–81, 2019.

[29] Jayasekara, S., Harwood, A., Karunasekera, S. Optimal Multi-Level Interval-based Checkpointing for Exascale Stream
Processing Systems. arXiv preprint arXiv:1912.07162, 2019.

[30] Ren, K., Diamond, T., Abadi, D. J., Thomson, A., Low-overhead asynchronous checkpointing in main-memory database
systems. Proceedings of the 2016 International Conference on Management of Data pages 1539–1551, 2016.

[31] Akturk, I., Karpuzcu, U. R. ACR: Amnesic Checkpointing and Recovery. IEEE International Symposium on High Per-
formance Computer Architecture (HPCA), pages 30–43, 2020.

[32] T. Kuwahara, T. Kuroda, M. Nakanoya, Y. Yakuwa, Y. Sato, Y. Matsunaga, Automated Planning of System Rollback
in Declarative IT System Update. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM),
pages 428-434, 2019.

[33] J.Z. Konczak, P.T. Wojciechowski, N. Santos, T. Zurkowski, A. Schiper, Recovery Algorithms for Paxos-based State
Machine Replication. IEEE Transactions on Dependable and Secure Computing, 2019.

[34] J. Rushby, Reconfiguration and transient recovery in state machine architectures. Proceedings of Annual Symposium on
Fault Tolerant Computing, pages 6-15, IEEE, 1996.

[35] F.B. Schneider, L. Zhou, Implementing trustworthy services using replicated state machines. IEEE Security & Privacy,
3(5):34-43, 2005.

[36] B. Wester, J.A. Cowling, E.B. Nightingale, P.M. Chen, J. Flinn, B. Liskov, Tolerating Latency in Replicated State
Machines Through Client Speculation. NSDI, pages 245-260, 2009.

[37] P.M. Chen, E.K. Lee, G.A. Gibson, R.H. Katz, D.A. Patterson, RAID: High-performance, reliable secondary storage.
ACM Computing Surveys (CSUR), 26(2):145-185, 1994.

Edited by: Dana Petcu
Received: Dec 3, 2020
Accepted: Jan 21, 2021

Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org

© 2021 SCPE. Volume 22, Issues 1, pp. 81–92, DOI 10.12694:/scpe.v22i1.1847

IMPROVED LOCALIZED SLEEP SCHEDULING TECHNIQUES

TO PROLONG WSN LIFETIME

NACHIKETA TARASIA∗, AMULYA RATNA SWAIN†, SOHAM ROY‡, AND UDIT NARAYANA KAR§

Abstract. A standard Wireless Sensor Networks(WSNs) comprises of low-cost sensor nodes embedded with small batteries.
To enhance the network lifetime of WSN, the number of active nodes among the deployed nodes should be minimum. Along with
this, it must be ensured that coverage of the targeted area would not get affected by the currently active nodes. Considering
different applications of WSN, there is still a demand for full coverage or partial coverage of the deployed area. Irrespective of
the circumstances, a proper sleep scheduling algorithm needs to be followed. Else, the active nodes will be tuckered out of the
battery. Random distribution of the sensor nodes in a common area may have multiple active nodes. It is essential to identify
the redundant number of active nodes and put them into sleep to conserve energy. This paper has proposed a methodology where
the active sensor nodes form a hierarchical structure that heals itself by following a level-wise approach. In the meantime, it also
detects the total number of redundant nodes in the coverage area. The performance of the proposed protocol is evaluated using
the Castalia simulator. The simulation results show that the proposed level-wise periodic tree construction approach increases the
network’s durability in conjunction with the level wise approach.

Key words: Wireless Sensor Network, Sleep Scheduling, Coverage, Energy Efficient.

AMS subject classifications. 68M14

1. Introduction. Wireless Sensor Networks (WSNs) have been generally considered as one of the most
imperative innovations. A regular Wireless Sensor Network comprises many low-cost devices known as sensor
nodes. These multi-practical sensor nodes have limited battery life and are generally used to monitor a region of
interest [1] [2]. These sensor nodes have inbuilt miniaturized controllers and radio transceivers. Subsequently,
sensor nodes can detect outside events, process the detected information, and transmit it to the sink. WSNs are
broadly utilized for ecological condition monitoring, security surveillance of combat zones, monitoring untamed
natural life, etc. [3]. Sensor nodes, as a general, are densely deployed in an inhuman domain, where it would be
tough to maintain the nodes’ battery capacity. To observe and control the physical conditions, WSNs should
address the following two requirements: (i) sensing in the intended zone should be appropriately done, and
(ii) proper communication should be maintained among the sensor nodes to ensure that the collected data is
properly transmitted to the sink node. Else, the overall collection of the data is pointless.

In WSN, a sensor node can sense its detecting range, which is called as sensing coverage of the node.
The network coverage [3] [4] could be translated as the aggregate coverage by all the ACTIVE sensor nodes.
Similarly, an ACTIVE node should send the information to another node within its radio coverage area. More
is the number of ACTIVE nodes; more is the consumption of energy. To boost the lifetime of the WSN, it is
logical to limit the number of ACTIVE nodes while accomplishing the most extreme conceivable sensing and
radio coverage.

Depending upon the necessities of the application, the sensing and radio coverage may be limited [5]. For
an application like intrusion detection or movement detection, it must have at least one ACTIVE sensor node
for each location. So, most of the ACTIVE nodes will run out of battery very rapidly. Similarly, for applications
like humidity or temperature monitoring, it is required to have fewer numbers of ACTIVE nodes, with limited
coverage. Nevertheless, if any node is ACTIVE for a long duration, it is necessary to have a proper sleep

∗KIIT Deemed to be University, Bhubaneswar, India (ntarasia06@gmail.com).
†KIIT Deemed to be University, Bhubaneswar, India (swainamulya@gmail.com).
‡KIIT Deemed to be University, Bhubaneswar, India (skr2538@gmail.com).
§KIIT Deemed to be University, Bhubaneswar, India (uditnarayankar@gmail.com).

81

82 Nachiketa Tarasia, Amulya Ratna Swain, Soham Roy, Udit Narayan Kar

scheduling mechanism to manage the whole network. Applying a sleep scheduling mechanism over WSN allows
the sensor nodes to share their duties among themselves. This mechanism can be constructive in conserving
the energy of the sensor nodes. There may be instances where multiple sensor nodes are deployed to cover a
common area, which ultimately resulting in wastage of battery. In such scenarios, it is essential to identify the
redundant nodes. These redundant nodes can move to sleep mode to enhance the network lifetime. To achieve
this, WSNs must follow an appropriate duty cycle mechanism that govern the cycle of slreep and wake-up mode
among the sensor nodes.

In this manuscript, we have proposed a sleep scheduling mechanism where redundant nodes are identified
and put those nodes into sleep mode to conserve energy. Our proposed protocol ensures full coverage of the
desired region. The proposed approach uses a level-wise hierarchical structure, where the sensor nodes mend
themselves locally intending to save energy. The rest of the paper is organized as follows. Section II presents
state of the art, followed by a proposed approach presented in Section III. The detailed simulation generated
results, and analysis of the generated graphs are presented in Section IV. Finally, the manuscript concludes in
Section V.

2. State of the Art. Energy conservation is one of the significant taxonomies of WSNs. To enhance the
overall lifetime of the WSNs, energy conservation schemes are being consistently investigated and scrutinized
by researchers across the globe. Hence, there is an abundant number of research articles available in the
background. There exists a considerable different coverage optimization approaches like probing environment
and adaptive sleeping (PEAS), probing environment and collaborating adaptive sleeping (PECAS), controlled
layer deployment (CLD), random back-off sleep protocol (RBSP), and so on. In PEAS [6], the network lifetime
has been extended by embracing a basic 3-mode approach, i.e., sleeping, probing, and active. For each probing
region, an active node has remained in charge of coverage, and in the meantime, the other sensor nodes stay
in sleep mode to spare energy. The sleep node goes into the probing stage from time to time and checks for
the accessibility of the active node’s presence by sending a probing message. At that point, it returns to sleep
mode to spare energy. The PEAS has some impediment, i.e., a sensor node, which ended up active, must be
in a similar state all the time till it dries out which may result in lopsided vitality utilization in the system.
PECAS [7] is the extended version of PEAS, where it overcomes few limitations of the prior. The active node
in PECAS goes to sleep mode after a stipulated period, but it shares its remaining energy with its neighbors
before it goes to sleep mode. This information is used by the probing nodes in the region to decide when to be
active again.

The cascading effect is the most commonly faced issues in WSN between the sink and the leaf nodes. The
nodes closer to the sink are engaged in transmitting data most of the time compared to far away from leaf
nodes. If any event occurs far away from the sink, then more intermediate nodes participate, thus shortening
the network’s lifetime. The PEAS algorithm has been modified in CLD [8] approach, which uses deterministic
node deployment to counter the cascading effect. In CLD, the average distance between two active nodes is
maintained as 2r/3, where r is the sensing radius. Sleeping nodes surround the active nodes at a distance of
r/6. More number of sleep nodes are placed near the sink node to overcome the cascading effect. CLD can be
implemented in those applications where the target area is known beforehand.

RBSP [9] is a probe-based algorithm that uses information regarding the rest of the energy level of the
present active node. Here, back-off sleep time is calculated, which is utilized by the currently active node’s
neighboring nodes to choose when to wake up and examine the currently active node’s status. Using this
approach, when an active node has high outstanding energy, a neighboring node’s chance to turn active is low
and the other way around.

The authors [28] recommended sleep scheduling algorithm is intended to improve network administration
by reducing power distribution due to the passive listening of nodes. The sleep period is proportionate to the
remaining power of sensor nodes and adaptive. A sleep scheduling approach is required to adjust the network
administration by utilizing the least energy. A distributed sleep scheduling system allows the sensor node to
entirely satisfy the sensing ranges and switch off the node if the conversation doesn’t occur or does not have
adequate energy [29].

One of the significant challenges in formulating such systems lies within the obliged energy and computa-
tional assets accessible to sensor nodes. These constraints must be taken into consideration at all levels of the

Improved Localized Sleep Scheduling Techniques to Prolong WSN Lifetime 83

system progression. The arrangement of sensor nodes is the primary step in setting up a sensor network. Since
WSNs contain many sensor nodes, the nodes must be placed in clusters [30], where the area of each specific
node cannot be wholly ensured a priori. In this manner, the number of nodes deployed to cover the complete
observed zone is mostly higher. The authors in [10] have presented an algorithm that chooses mutually elite
sets of sensor nodes, where the union of these sets covers the observed region. The interim actions are same for
all collections, and one of the groups is active. This algorithm accomplishes considerable energy savings along
with ultimately protecting coverage.

In [11], the authors defined the coverage issue as a choice based problem. Here, the objective is to decide
whether each point within the desired region of the sensor network is secured by at least k nodes, where k
could be predefined esteem. The sensing ranges of nodes can be unit disks or non-unit disks. This paper
displayed polynomial-time calculations in terms of the number of nodes, which can be effectively interpreted
in distributed conventions. The simulation result showed that energy could be conserved along with the fault-
tolerant model in an area where nodes are deployed randomly. In [12], the authors address the difficulty of
choosing the least number of associated sensor nodes to cover a distributed set of interest objects. A centralized
algorithm runs by iteratively appending nodes that maximize a measure called k-benefit to an initially empty
set of nodes. Though running with the least number of sensor nodes does not singularly signify the system’s
maximal lifetime. Without global optimization, any nodes that can cover many targets could be recorded to
work massively, and they will soon run away from energy.

In [13], the authors disseminated a single step arrangement algorithm that divides the region of intrigued
into two equal networks. The nodes are deployed to possess each point in grids to be completely covered
and connected. Two strategies have been proposed for the deployment of sensor nodes, i.e., randomized and
planned as per the situations. The authors in [14] have proposed an approach in which a moving robot fixes
the coverage hole by picking nodes from the coverage area where redundant nodes are present. A carrier-based
sensor relocation by robots to mend coverage holes has also been proposed in [15] that uses a virtual force
approach in a grid structure of interest. In this approach, full coverage is achieved by placing redundant sensor
nodes in coverage holes with the help of robots that randomly move in the network and are restricted in grids.

In [16] and [17], an energy-efficient coverage approach has been proposed where authors consider a large
number of sensor nodes were deployed in the area of interest to achieve coverage. In this approach, the number
of sensor nodes is highly populated; these nodes are divided into several disjoint sets. The idea of prolonging
the network lifetime is by putting the rest of the nodes into sleep mode, whereas one disjoint set is active in a
specific area for coverage. This mentioned algorithm follows a centralized approach. A localized and distributed
algorithm [18] called Node Scheduling scheme Based on the Eligibility rule(NSBE) that follows a scheduling
approach where each node decides to be in either active or in sleep mode. At any instance, one node is active
for covering the area of interest, and the redundant nodes are in sleep mode. In each cycle, the active node
tries to find an alternative node, which will cover the area of interest. If the alternative node is found, then the
active node can go to sleep mode. There is no simulation proof of the stated approach.

Sensor Scheduling for k-Coverage(SSC) [19] monitors a two-dimensional region, where the same locations
do not have sensor nodes more than one. K number of sensor nodes must guard each point continuously. The
SSC is a centralized algorithm, which is NP-hard. The existence of WSN is determined as the whole span
during which the entire region is k-covered. The authors in [20] recommended a solution for domain coverage
in a synchronous WSN, where radio strength is equal to the sensing range. This approach considered that each
sensor node knows the exact location of its neighbor nodes. The precise location information helps the node to
decide autonomously either to be in active or in sleep mode. A node can go to sleep mode if it’s sensing range
is covered by its neighbor nodes. A backoff algorithm is being followed to avoid coverage gaps while going to
sleep mode. However, this may affect the node connectivity.

A centralized algorithm has been proposed by [21], where the sensor nodes are grouped into different sets.
The nodes of a particular set are active to cover the required positions. A scheduling algorithm decides the
nodes’ state of being alternate between active and sleep to extend the whole network’s lifespan. An adaptable
energy-efficient sensing coverage protocol using a differentiated monitoring service for WSN has been proposed
by [22]. Here, each node ensures a certain coverage degree by obeying dynamic scheduling for self. The
proposed protocol uses the grid-based approach, where the deployed area is split into several grids, and each

84 Nachiketa Tarasia, Amulya Ratna Swain, Soham Roy, Udit Narayan Kar

grid is allocated with a sensor node. Each active node covering any grid also maintains a list of other nodes
that can also cover the same grid. If the network is dense, then the time and space complexity are high as the
list contains the sensor node details.

The author in [23] proposed a greedy algorithm that maximizes the network lifespan by following a state
scheduling approach. The state scheduling approach gives autonomy to nodes to become active or inactive
initially. The proposed approach then tries to cover the target area with the selected active nodes; if failed,
the algorithm restarts. However, the algorithm consumes more energy concerning the exchange of messages
[24, 25]. It should be noted that all the readings discussed earlier address the scheduling problem for coverage.
But not the coverage problem, which ensures connectivity that we concentrate on to achieve. We analyze the
sensor nodes’ scheduling obstacle to observe the full coverage and connectivity.

3. Proposed Work. After the initial tree construction with currently selected active nodes, the nodes are
categorized into two types, viz. the internal nodes(type1) and leaf nodes(type2). Together they maintain full
coverage of the whole deployment area. So, they are also referred to as the coverage nodes. The internal nodes
are always active as they receive data packets from their children and send it to the sink node. Nevertheless,
the leaf nodes along with type1 nodes do the job of sensing the event and sending messages to their parent.
The leaf nodes stay in sleep mode most of the time. These leaf nodes turn active only when they perform the
sense operation in case of an event, pass the message to their parent, and again go back to sleep mode.

From the above description, it can be seen that all the sensor nodes participate both in the event detection
process as well as message passing. However, in a WSN with high concentration of nodes, either the sensing
radius of sensor nodes are overlapping with each other or a combination of nodes entirely coincides with the
sensing area of some other nodes. In such scenario, when all these nodes sense their surroundings and send the
sensed data to their parent nodes, they perceive the same occurrence of the event and transmit the same data
to the sink, which is entirely unnecessary. This leads to ineffective use of energy, where all the efforts by these
nodes are useless at the expense of the tree’s longevity.

To ensure full coverage of the deployed area, all the sensor nodes do not have to participate in event
detection. Some of the nodes can completely remain in sleep mode and do not take part in any operation, and
still the full coverage can be ensured. Such nodes remain a part of the tree but do not contribute in providing
coverage. Here, those nodes are referred as the type0 nodes. As long as a node is completely in sleep mode, it
is equivalent to a dead node.

In WSNs, the sensing radius of most of nodes overlaps with each other. A node is said to be redundant, if
its sensing area is within the sensing range of one or more sensor nodes. For area coverage in WSNs, the basic
idea is to find the redundant nodes in a required area, which is already under the coverage of some other nodes,
and put those redundant nodes into sleep mode. Keeping longevity and coverage in mind, in this paper, we
have proposed a novel approach that initially constructs a hierarchical structure and periodically mends itself
locally with consultation of nearby nodes based on nodes’ level. It finds the redundant nodes in the vicinity of
currently changing area only with the involvement of a minimum number of sensor nodes. Thus, full coverage
is ensured only by engaging the nodes of the concerned area without involving all the nodes of the whole tree.

3.1. Construction. Based on initial tree construction, the sensor nodes are categorized into three types
viz., type0, type1, and type2 nodes. Type0 nodes are the redundant sleep nodes which are currently in sleep
mode and do not partake either in event detection or in area coverage. Their behavior is equivalent to a dead
node. Type1 nodes are the internal nodes and always remain active for a fixed duration. Type2 nodes are
called non-redundant leaf nodes that remains inactive but take part in the coverage of deployed area. Among
these three types of nodes, type1 nodes consumes more energy as compared to type0 and type2 nodes. During
periodic tree reconstruction, the type1 nodes, which meet the criteria to go to sleep, will be put into sleep
mode, i.e., type1 nodes will be turned to either type0 or type2 nodes depending upon the need of coverage of
the locale. Moreover, before the reconstruction phase for the (n+ 1)

th
round, it is ensured that the tree was

under full coverage and connectivity is maintained till the end of the nth round.

We use the different abbreviations to describe the proposed protocol as given in Table 3.1.

For this proposed protocol, the sink node always remains active during the entire lifetime of the network.
Before the beginning of (n+ 1)

th
round of tree reconstruction phase, a node N(i), which was considered as

Improved Localized Sleep Scheduling Techniques to Prolong WSN Lifetime 85

Table 3.1: Abbreviation

Short Name Description

N(i) ith node

SS(N(i)) Sleep signal for ith node

RE(N(i)) Remaining energy for ith node

LEVEL(N(i)) Level of ith node

PT(N(i)) No. of packets transfer by ith node in a round

ALIVE(N(i)) True if ith node is alive

CONS(N(i)) No. of consecutive rounds node i is active

CRL(n) Current level reconstruct for the nth round.

CRL(n) = (CRL(n-1) +1) % max_level.

A CRL value of 3 means level 1,2,3 will be reconstructed.

CHECK_REDUNDANCY(N(k)) kth node checks for redundancy among its neighbors.

type1 node in the nth tree reconstruction phase and spends a significant amount of energy, can initiate its
sleeping process based on satisfying any one of the following criteria.

1. Number of packets transmitted by node N(i) in the current nth round, i.e. represented as PT (N(i)),
is greater than the threshold value.

2. Number of consecutive rounds the node N(i) is active, i.e. represented as Cons(N(i)), is equal to
three.

3. The level number of node N(i) is less than or equal to the current level reconstruct for the nth round,
which is represented as CRL(n). This CRL(n) value plays an important role as the proposed protocol
claims that rather than applying the sleeping process over all the nodes of WSN in each reconstruction
phase, it applies on nodes present in certain level of the tree in different reconstruction phase. This is
necessary because all the nodes in the different level of the tree do not consume energy in a uniform
manner. The nodes which are closer to the sink consume more energy as compared to the nodes which
are far away from sink. So, the nodes present in the higher level of the tree need to participate more
frequently in tree reconstruction as compared to nodes in lower level. Considering the above necessity,
we compute the CRL(n) = (CRL(n − 1) + 1)%max level that indicates up to which level the nodes
will participate in nth round of reconstruction phase. For example, if the CRL value is 3 then it means
that nodes in level 1, 2, and 3 will participate in reconstruction phase.

Once, the type1 node N(i) initiates its sleeping process, it sends a sleeping signal called SS(N(i)) to find
new parents for all of its children before it is allowed to turn into type0 or type2 node. Then the node N(i)
starts with broadcasting a FIND_PARENT message packet to its children to find their new parent.

As per the algorithm-1, the active node N(i) waits for a random amount of time until all its children
get a new parent before it turns into type0 or type2 node depending upon whether it is considered to be a
redundant node with the support of its nearby type1 and type2 nodes. Once a node N(j), which is a child of
node N(i), receives the FIND_PARENT packet, it initiates its process to find a new parent by broadcasting
a WANT_PARENT packet and waits for a random amount of time to decide its new parent. A node N(k),
which receives a WANT_PARENT packet, is eligible to become a parent only when it does not want to sleep,
i.e. SS(N(k)) is false, and it is currently alive, i.e. ALIVE(N(k)) is true. Once the node N(k) meets its
eligibility criteria, it replies back a PARENT_REPLY packet with including information such as level number
and remaining energy which are represented by LEVEL(N(k)) and RE(N(k)) respectively. Now, N(k) is ready
to become parent of any node if it is chosen by a node N(j), which is looking for a parent. A node N(j)
might receive multiple PARENT_REPLY packets from different type0, type1 or type2 nodes. Out of all the
PARENT_REPLY packets from its neighboring nodes, the node N(j) chooses the most suitable node N(k) to
be its parent based on the following criteria.

• Node N(j) will give a higher priority to a node N(k) to be its parent if LEVEL(N(k)) is equal to
LEVEL(N(j))-1 rather than LEVEL(N(k)) is equal LEVEL(N(j)).

86 Nachiketa Tarasia, Amulya Ratna Swain, Soham Roy, Udit Narayan Kar

Nevertheless, it will out-rightly reject all nodes N(k) if LEVEL(N(k)) > LEVEL(N(j)).
• Bsed on above criteria, If node N(j) has more than one possible nodes then it selects its parent whose

remaining energy is high. The node N(j) chooses N(k1) over N(k2), if LEVEL(N(k1)) is equal to
LEVEL(N(k2)) and RE(N(k1)) > RE(N(k2)).

After node N(j) selects its parent from the multiple PARENT_REPLY packets, it sends an ACKNOWL-
EDGEMENT message to node N(k). When node N(k) receives the ACKNOWLEDGEMENT packet, it
acts depending on the type of node it is. If it is a type0 node then it turns to type1 node and sets its
CHECK_REDUNDANCY(N(k)) to true. As this node turns active from sleep mode, some of its type2 neigh-
bors might have the possibility to become redundant. So, N(k) performs a redundancy check after a random
amount of time among its type2 neighbors, and all nodes found to be redundant are turned to type0 nodes from
type2 and put to sleep mode. Once the redundancy check gets over, node N(k) becomes an internal node and
turns to type1 node and remains active for the n+ 1th round. If N(k) is type2 node then it turns to type1 node
as type1 and type2 are both coverage nodes Inter-conversion between these two types of nodes does not require
a redundancy check as the coverage was already ensured up to nth round. If node N(k) is a type1 node then it
remains a type1 node and does not do any redundancy check as it had already been done before when it turned
to type1 node in previous rounds.

After this process gets over, the node N(i), who was waiting for a random amount of time, wants to check
whether all of its children have received a new parent or not. It carries out a sequence of events that comprise
of message passing to and from its neighbors to determine whether it has been able to get rid of all its children.
Still, if N(i) has a child, then it cannot be type2 for the n+ 1th round as it has not been able to lose all its child
nodes. So N(i) has to remain type1 for the n+ 1th round too. N(i) again tries to go to sleep for the n+ 2th

round after the completion of the n+ 1th round. However, if every child N(j) of N(i) can receive a new parent,
N(i) gets rid of all its children, and changes its state to type2 node for the n+ 1th round.

Once the parent selection process gets completed, all the type1 nodes with parameter CHECK_REDUN-
DANCY(N(k)) as true check for redundant nodes among its type2 neighbors and the newly found redundant
nodes are converted to type0 and put them to sleep mode. When the n+ 1th round starts, CONS(N(i)) for all
the type1 nodes is increased by 1 to keep track of the no of consecutive rounds a node is active. After each nodes
state gets decided, type1 and type2 nodes can resume its task of event detection and send the data packets to
the sink through the intermediate nodes. For each packet being sent to the sink node by node N(i), PT(N(i))
is increased by 1.

After a certain number of tree reconstruction phase, when the RE(N(i)) reaches below the threshold energy,
then node N(i) needs to die permanently and will not be a part of the tree anymore. However, if N(i) is allowed
to die immediately, it might lead to a coverage hole. If node N(i) is a type0 node, it can be allowed to die
immediately as it does not provide coverage anyway. If node N(i) is a type2 node and it was instrumental
in providing coverage then letting it die instantly, leads to a void in coverage. So, node N(i) broadcasts a
TURN_T_2 message among its neighbors, which instructs all its type0 neighbors to turn to type2 to fill the
void in coverage. In addition to this, node N(i) broadcasts a CHK_RDNCY message, which is meant for its
type1 neighbors. This sets the CHECK_REDUNDANCY(N(k)) as true for the type1 neighbor such as N(k).
Then, node N(k) performs redundancy check among its newly turned type2 neighbors, and it turns all the
redundant type2 nodes to type0, which was converted because of TURN_T_2 message from node N(i). N(i)
does not take part in the redundancy check process of N(k). Once this process gets over, full coverage is
maintained without N(i) being a part of it. So ALIVE(N(i)) is set off, i.e., it can die now without any issue.

4. Simulation Results. The proposed protocol performances have been measured using one of the popu-
lar simulator exclusive for WSN, called Castalia [31]. Around 1000 number of sensor nodes have been deployed
randomly in a deployed area of 250x250m2 to analyze the proposed approach. As per the universal standard
mentioned in the TelosB data sheet [26], the radio transmission power, sensing range, etc., have been considered
for this simulation purpose.

To fulfill the primary objective of WSN, i.e., sense the whole deployed area along with maintaining network
lifetime, the proposed level-wise tree construction approach includes the area coverage into consideration to
fulfill the above two requirements. To validate the efficiency of the proposed algorithm with respect to network
lifetime, in figure 4.1, we compare the number of nodes alive after each tree reconstruction round in the proposed

Improved Localized Sleep Scheduling Techniques to Prolong WSN Lifetime 87

Algorithm 1: In The tree reconstruction phase between two round

Function In TIMER_2:
if N(i) is type1 AND sleep constraint satisfied then

starts the process to sleep;(set timer of start_process)
else

do nothing until next round

if (ALIVE(N(i))==FALSE AND N(i) is type2 then

Broadcast TURN_T_2 message;
Broadcast CHK_RDNCY message

Trigger TIMER_3 after a random time;

Function In start_process:
Send FIND_PARENT packet to notify N(j) (their child) that they need to find new parent;
After a random time interval it triggers ”determine_istype1”;

if N(j) receives FIND_PARENT packet then

if ALIVE(N(j)) AND [PFj,1==N(i) OR PFj,2==N(i)] then

Broadcasts a WANT_PARENT packet;
Waits a random time while it chooses the best parent reply.

Function In TIMER_3:
Trigger FIND_REDUNDANT function;
Send packets to Sink node(if type1 and type2);
TIMER_2 after a certain time(next round);

if N(k) receives WANT_PARENT packet then
if (ALIVE(N(k)) == true and SS(N(k)) == false) and (LEVEL(N(k)) == LEVEL(N(j)) or LEVEL(N(k)) +1

== LEVEL(N(j)) then
broadcast PARENT_REPLY packet

if N(j) receives PARENT_REPLY packet then

if if N(j) wants new parent or PFj,1/PFj,2 is -1) then
if [LEVEL(N(k+1))==LEVEL(N(l))] OR [if(RE(N(k)) >RE(N(l))) AND (LEVEL(N(k))==LEVEL(N(l)))]

then

Select node N(k) as parent over N(l);
Send ACKNOWLEDGEMENT packet to its newly selected parent N(k)

if N(k) receives ACKNOWLEDGEMENT packet then

if N(k) is type1 node then
Remains type1

if N(k) is type2 node then
Turns to type1

if N(k) is type0 node then

CHECK_REDUNDANCY(N(K))=True;
turns to type1

if N(l) receives TURN_T_2 packet then

if N(l) is type0 then
turn to type2

if N(m) receives CHK_RDNCY packet then

if N(l) is type1 then
CHECK_REDUNDANCY(N(l))= True

Function In determine_istype1:
Determine number of child through a sequence of message if no_of_child >0 then

remains type1
else

turns type2

Function In determine_istype1:
if CHECK_REDUNDANCY(N(i))= True then

check redundancy among type2 neighbour nodes

88 Nachiketa Tarasia, Amulya Ratna Swain, Soham Roy, Udit Narayan Kar

100

200

300

400

500

600

700

800

900

46 48 50 52 54 56 58 60 62 64

N
u

m
b

e
r

o
f

N
o

d
e

s
 a

liv
e

Number of Rounds

Earlier Approach
New Approach

Fig. 4.1: Number of nodes alive after each tree reconstruction round in the normal level-wise tree construction
approach [27] vs the proposed level-wise tree construction along with coverage.

100

200

300

400

500

600

700

46 48 50 52 54 56 58 60 62 64

N
u
m

b
e

r
o

f
N

o
d

e
s

Number of Rounds

Dead
Sleep

Coverage

Fig. 4.2: Number of dead nodes, sleep nodes and coverage node after each each tree reconstruction rounds.

approach compared to the normal level-wise approach given [27]. From this figure, it is observed that after
46th round, the nodes start dying out in both the earlier approach and the proposed approach. At 64th round,
in the previous approach, almost all nodes have died out, whereas in the case of the proposed method, after
the same number of tree reconstruction rounds, the number of nodes dies out is nearly 50%. So, the network
lifetime in the proposed approach is almost double as compared to the earlier approach. It indicates that the
proposed method not only increases the network lifetime but also achieving area coverage.

Figure 4.2 shows that after the nodes start dying out, how the alive nodes become segregated into completely
sleep node and coverage nodes in each tree reconstruction round. Here, the coverage nodes include both
intermediate nodes, which are completely active, and the leaf nodes, which are in sleep mode. When an event
occurs in their surroundings, those nodes wake up, complete the event detection process, and again go back
to sleep mode. From this figure, it is observed that with an increase in the number of dead nodes, both the
coverage node and sleep nodes decreases. Here, one interesting observation is that with the rise in the number
of dead nodes, the area coverage is even managed with fewer nodes up to a certain tree reconstruction round.
As per the figure, it is 64th round. After onwards, even with the total number of alive nodes, the complete
coverage could not be achieved.

Figure 4.3 depicts the number of nodes present in each level of the tree after the nodes start dying out
as the tree reconstruction round progresses. From this figure, it is observed that the level 2 and 3 have the
maximum number of nodes, and the rate of dying out of nodes in level 1 is more as compared to level 2, which
is again greater than level 3. The nodes closer to the sink spend more time in data transmission and thus
consume more energy than the nodes far away from the sink.

As per the proposed approach, when the type1 nodes want to sleep, the children of those nodes try to select
their new parents from the group of nodes, i.e., either a leaf node or a sleep node, or an intermediate node in
the previous tree reconstruction round. Figure 4.4 shows that the number of sleep nodes, intermediate nodes,

Improved Localized Sleep Scheduling Techniques to Prolong WSN Lifetime 89

0

50

100

150

200

250

300

350

400

46 48 50 52 54 56 58 60

N
u
m

b
e

r
o

f
N

o
d
e

s
Number of Rounds

Level-1

Level-2

Level-3

Level-4

Level-5

Fig. 4.3: Number of nodes present in each level of the tree in different tree reconstruction rounds.

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30

N
u

m
b

e
r

o
f

N
o

d
e

s

Number of Rounds

Sleep Node
Intermediate Node

Leaf Node for Coverage

Fig. 4.4: Number of nodes select as parent in the next round of tree reconstruction from different group of
nodes (sleep nodes, intermediate node, and leaf nodes).

and active nodes is selected as new parents by the nodes whose current parents are interested to sleep in the
next tree reconstruction round. It is also observed that the nodes, which are looking for a parent, always have
a higher tendency to choose type0 nodes over type1 & type2 nodes.

Figure 4.5 depicts the number of type0, type1, and type2 nodes in each level of tree at different round of
tree reconstruction. In a network size of 1000 nodes, the number of levels comes up to 5. The majority of the
nodes are dominated by type0 and type2 nodes. During the initial rounds of tree reconstruction, the number of
type2 nodes is more than type0 nodes. As the round progresses, the tree adjusted to show a significant increase
in type0 nodes and a decrease in type2 nodes.

In order to evaluate the longevity of the proposed protocol, we simulated both the earlier approach [27]
as well as the proposed approach to identify the number of sleep nodes present in different rounds of the
tree reconstruction as shown in figure 4.6. This figure ensures that the network lifetime achieved through the
proposed approach is far better than the earlier level-wise tree construction approach. This enhancement is
achieved as the coverage through the proposed approach is ensured with fewer nodes.

Figure 4.7 compares the number of sleep nodes, coverage leaf nodes, and intermediate nodes in different
rounds of tree reconstruction. From this figure, it is observed that in the initial few rounds of tree reconstruction,
type0 nodes increase continuously, and coverage nodes decreased. Nevertheless, after the 46th round, more than
150 nodes died at once. So, there is a rise in the coverage nodes and drop in sleep nodes, as many sleep nodes
turn to coverage nodes to compensate for the loss of so many coverage nodes.

90 Nachiketa Tarasia, Amulya Ratna Swain, Soham Roy, Udit Narayan Kar

Type-0
Type-2
Type-1

0 5 10 15 20 25 30
Rounds 1

2
3

4
5

Level
0

40

80

120

160

200

Nodes

Fig. 4.5: Different types of nodes at different level of tree in different round tree reconstruction

150

200

250

300

350

400

450

500

550

600

0 5 10 15 20 25 30 35 40 45 50

N
u
m

b
e
r

o
f
N

o
d
e
s
 S

le
e

p

Number of Rounds

Earlier Approach
New Approach

Fig. 4.6: Number of sleep nodes in different round of tree reconstruction in proposed approach vs. normal
level-wise approach given in [27].

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70

N
u
m

b
e
r

o
f

N
o
d
e
s

Number of Rounds

Sleep Node
Leaf Node for Coverage

Intermediate Node

Fig. 4.7: Comparison of number of sleep nodes, coverage leaf nodes, and intermediate node in different round
of tree reconstruction.

Improved Localized Sleep Scheduling Techniques to Prolong WSN Lifetime 91

5. Conclusion. In this paper, we addressed the problem of scheduling sensor activities while having full
coverage. Improving the network lifetime by increasing the number of sleep nodes along with maintaining full
area coverage is the purpose of this research. We approached the least energy exhaustion provision in WSNs,
proposed a level-wise sleep scheduling mechanism, and maintained coverage to achieve the above requirement.
In this proposed approach, a routing tree is built that maintains coverage, and at the same time, longevity can
be achieved by putting the redundant nodes in the sleep mode. The tree mends itself locally by following a
level-wise approach for the tree reconstruction and finds the redundant nodes in the vicinity of the changing
area only with the engagement of a minimum number of nodes in the process. Thus, full coverage is ensured
only by engaging the nodes of the concerned area without involving all the nodes of the tree. The simulation
results also ensured improved network lifetime by making more nodes in the sleep state.

REFERENCES

[1] J. Zheng and A. Jamalipour, Wireless Sensor Networks A Networking Perspective. A JOHN WILEY and SONS, Hoboken,
New Jersey, 2009

[2] Z. Chuan, Z. Chunlin, S. Lei, H. Guangjie, A survey on coverage and connectivity issues in wireless sensor networks. J.
Network Comput. Appl. 35, 619-632, 2012, Elsevier.

[3] Mulligan, R., Ammari, M.H., Coverage in wireless sensor networks: a survey. Network Protocols Algorithms 2 (2), 2010,
27-53.

[4] Amit, G., Sajal, D., Coverage and connectivity issues in wireless sensor networks: a survey. Sci. Direct, Pervasive Mob.
Comput. 4, 303-334, 2008.

[5] Winston, J., Paramasivan, B., 2011. A survey on connectivity maintenance and preserving coverage for wireless sensor
networks. Int. J. Res. Rev. Wireless Sensor Networks (IJRRWSN) 1 (2), 11-18.

[6] Fan Ye, F., Zhong, G., Cheng, J., Lu, S., Zhang, L., 2002. PEAS: a robust energy conserving protocol for long-lived
sensor networks. In: 23rd International Conference on Distributed Computing Systems(DCS’ 02), pp. 28-37.

[7] Gui, C., Mohapatra, P., 2004. Power conservation and quality of surveillance in target tracking sensor networks. In:
Proceedings of 10th Annual International Conference on Mobile Computing and Networking (ACM MobiCom’ 04),
Pennsylvania, USA, pp. 129-143.

[8] Yen, Y., Hong, S., Hang, R., Chao, H., 2007. An energy efficient and coverage guaranteed wireless sensor network. In:
Proceedings of IEEE Wireless Communications and Networking Conference, WCNC, pp. 2923-2930.

[9] More, A., Raisinghani, V., 2014. Random backoff sleep protocol for energy efficient coverage in wireless sensor networks.
In: Kumar Kundu, M., Mohapatra, P.D., Konar, A., Chakraborty, A. (Eds.), Advanced Computing, Networking and In-
formatics, Wireless Networks and Security Proceedings of the Second International Conference on Advanced Computing,
Networking and Informatics (ICACNI-2014), vol. 2. Springer, pp. 123-131.

[10] S. Slijepcevic and M. Potkonjak, “Power efficient organization of Wireless Sensor Networks”, in Proc. of International
Conference on Communications (ICC’01). IEEE, June 2001, pp. 472–476.

[11] C. F. Huang and Y. C. Tseng, “The coverage problem in a wireless sensor network,” in Proceedings of the 2nd ACM
International Workshop on Wireless Sensor Networks and Applications (WSNA ’03), pp. 115–121, San Diego, Calif,
USA, September 2003.

[12] Z. Zhou, S. Das, H. Gupta. “Connected K-Coverage Problem”. Proceed- ings of the International Conference on Computer
Communications and Networks (IC3N), 2004.

[13] H. Mousavi, A. Nayyeri, N. Yazdani and C. Lucas. “Energy conserving movement assisted deployment of Ad hoc sensor
networks”. IEEE Comm. Lett., 10(4): 269-271, 2006.

[14] G. Fletcher, X. Li, A. Nayak, and I. Stojmenovic. “Randomized Robot- assisted Relocation of Sensors for Coverage
Repair in Wireless Sensor Networks”. IEEE Comm. Lett, 2010.

[15] X. Li, G. Fletcher, A. Nayak, and I. Stojmenovic. “Randomized carrier based sensor relocation in wireless sensor and
robot networks”. Ad Hoc Networks. 11: 1951-1962, 2013.

[16] S. Slijepcevic and M. Potkonjak, “Power efficient organization of wireless sen- sor networks,” in Proc. of IEEE International
Conference on Communications (ICC), 2001, vol. 2, pp. 472–476.

[17] M. Cardei, D. MacCallum, X. Cheng, M. Min, X. Jia, D. Li and D.-Z. Du, “Wireless sensor networks with energy
efficient organization,” Journal of Inter- connection Networks, vol. 3, no. 3-4, pp. 213–229, 2002.

[18] D. Tian and N. D. Georganas, “A coverage preserving node scheduling scheme for large wireless sensor networks,” in Proc.
of ACM International Workshop on Wireless Sensor Networks and Applications (WSNA), 2002.

[19] Gao, Shan, Chinh T. Vu, and Yingshu Li. ”Sensor scheduling for k-coverage in wireless sensor networks.” International
Conference on Mobile Ad-Hoc and Sensor Networks. Springer, Berlin, Heidelberg, 2006.

[20] Tian, Di, and Nicolas D. Georganas. ”A coverage-preserving node scheduling scheme for large wireless sensor networks.”
Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications. 2002.

[21] Cardei, Mihaela, et al. ”Energy-efficient target coverage in wireless sensor networks.” Proceedings IEEE 24th Annual
Joint Conference of the IEEE Computer and Communications Societies.. Vol. 3. IEEE, 2005.

[22] Yan, Ting, Tian He, and John A. Stankovic. ”Differentiated surveillance for sensor networks.” Proceedings of the 1st
international conference on Embedded networked sensor systems. 2003.

92 Nachiketa Tarasia, Amulya Ratna Swain, Soham Roy, Udit Narayan Kar

[23] Alfieri, Arianna, et al. ”Exploiting sensor spatial redundancy to improve network lifetime [wireless sensor networks].”
IEEE Global Telecommunications Conference, 2004. GLOBECOM’04.. Vol. 5. IEEE, 2004.

[24] Pottie, Gregory J., and William J. Kaiser. ”Wireless integrated network sensors.” Communications of the ACM 43.5
(2000): 51-58.

[25] Raghunathan, Vijay, et al. ”Energy-aware wireless microsensor networks.” IEEE Signal processing magazine 19.2 (2002):
40-50.

[26] Telosb data sheet. http://www.xbow.com/Products/ Product pdf files/Wireless pdf/TelosB Datasheet.pdf
[27] N. Tarasia, A. R. Swain, S. Roy and U. N. Kar, “A Level-Wise Periodic Tree ConstructionMechanism for Sleep Scheduling

in WSN,” Journal of Communications Software and Systems 16, no. 2 (2020): 113-121.
[28] Mhatre, Kavita Prashant, and Uday Pandit Khot. ”Energy Efficient Opportunistic Routing with Sleep Scheduling in

Wireless Sensor Networks.” Wireless Personal Communications 112.2 (2020): 1243-1263.
[29] Fang, Wei, Mithun Mukherjee, Lei Shu, Zhangbing Zhou, and Gerhard P. Hancke. ”Energy utilization concerned sleep

scheduling in wireless powered communication networks,” In 2017 IEEE International Conference on Communications
Workshops (ICC Workshops), pp. 558-563. IEEE, 2017.

[30] Guruprakash, B., C. Balasubramanian, and R. Sukumar. ”An approach by adopting multi-objective clustering and data
collection along with node sleep scheduling for energy efficient and delay aware WSN.” Peer-to-Peer Networking and
Applications 13.1 (2020): 304-319.

[31] Castalia a simulator for wireless sensor networks, http://castalia.npc.nicta.com.au/pdfs/Castalia User Manual.pdf.

Edited by: Dana Petcu
Received: Dec 21, 2020
Accepted: Jan 21, 2021

AIMS AND SCOPE

The area of scalable computing has matured and reached a point where new issues and trends require a
professional forum. SCPE will provide this avenue by publishing original refereed papers that address the
present as well as the future of parallel and distributed computing. The journal will focus on algorithm
development, implementation and execution on real-world parallel architectures, and application of parallel
and distributed computing to the solution of real-life problems. Of particular interest are:

Expressiveness:

• high level languages,
• object oriented techniques,
• compiler technology for parallel computing,
• implementation techniques and their effi-

ciency.

System engineering:

• programming environments,
• debugging tools,
• software libraries.

Performance:

• performance measurement: metrics, evalua-
tion, visualization,

• performance improvement: resource allocation
and scheduling, I/O, network throughput.

Applications:

• database,

• control systems,

• embedded systems,

• fault tolerance,

• industrial and business,

• real-time,

• scientific computing,

• visualization.

Future:

• limitations of current approaches,

• engineering trends and their consequences,

• novel parallel architectures.

Taking into account the extremely rapid pace of changes in the field SCPE is committed to fast turnaround
of papers and a short publication time of accepted papers.

INSTRUCTIONS FOR CONTRIBUTORS

Proposals of Special Issues should be submitted to the editor-in-chief.
The language of the journal is English. SCPE publishes three categories of papers: overview papers,

research papers and short communications. Electronic submissions are preferred. Overview papers and short
communications should be submitted to the editor-in-chief. Research papers should be submitted to the editor
whose research interests match the subject of the paper most closely. The list of editors’ research interests can
be found at the journal WWW site (http://www.scpe.org). Each paper appropriate to the journal will be
refereed by a minimum of two referees.

There is no a priori limit on the length of overview papers. Research papers should be limited to approx-
imately 20 pages, while short communications should not exceed 5 pages. A 50–100 word abstract should be
included.

Upon acceptance the authors will be asked to transfer copyright of the article to the publisher. The
authors will be required to prepare the text in LATEX 2ε using the journal document class file (based on the
SIAM’s siamltex.clo document class, available at the journal WWW site). Figures must be prepared in
encapsulated PostScript and appropriately incorporated into the text. The bibliography should be formatted
using the SIAM convention. Detailed instructions for the Authors are available on the SCPE WWW site at
http://www.scpe.org.

Contributions are accepted for review on the understanding that the same work has not been published
and that it is not being considered for publication elsewhere. Technical reports can be submitted. Substantially
revised versions of papers published in not easily accessible conference proceedings can also be submitted. The
editor-in-chief should be notified at the time of submission and the author is responsible for obtaining the
necessary copyright releases for all copyrighted material.

