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A TRANSFER REPRESENTATION LEARNING APPROACH FOR BREAST CANCER
DIAGNOSIS FROM MAMMOGRAMS USING EFFICIENTNET MODELS

PARITA OZA* PAAWAN SHARMA, AND SAMIR PATEL

Abstract. Breast cancer is a deadly disease that affects the lives of millions of women throughout the world. Over time,
the number of cases of breast cancer has increased. Preventing this disease is difficult and remains unidentified, but the survival
percentage can be improved if diagnosed early. The progress of computer-assisted diagnosis (CAD) of breast cancer has seen a lot of
improvements thanks to advances in deep learning. With the notable advancement of deep neural networks, diagnostic capabilities
are nearing a human expert’s. In this paper, we used EfficientNet to classify mammograms. This model is introduced with the
new concept of model scaling called compound scaling. Compound scaling is the strategy which scales the model by adding more
layers to extend the receptive field along with more channels to catch the detailed features of larger input. We also compare
the performance of various variants of EfficientNet over CBIS-DDSM mammogram datasets. We used the optimum fine-tuning
procedure to represent the importance of transfer learning (TL) during training.

Key words: Convolutional Neural Networks, EfficientNet, Breast Cancer, Transfer Learning

AMS subject classifications.

1. Introduction. Breast cancer is the most frequent type of cancer worldwide, especially among women,
and it is also the leading cause of death. Breast cancer can be detected early, allowing for better treatment plan-
ning and a higher survival rate. The most effective techniques for early detection of breast cancer are several
imaging modalities such as mammography, Breast MRI, Breast Ultrasound, and PET CT [1]. Computer-
aided diagnosis (CAD) systems are being developed for the automated diagnosis of breast cancer. This system
enhances the accuracy of findings and the ability to distinguish between abnormalities such as mass, micro-
calcification, architectural distortion, etc. CAD systems can act as a double reader solely meant to assist a
radiologist; only expert clinicians make final choices.

Deep convolutional neural networks are commonly used in various medical imaging tasks such as cancer
detection, classification, and segmentation [18]. Unfortunately, training a network from the ground up can take
days or weeks and necessitates a lot of computational power. The research community, on the other hand,
already has an access to pre-trained networks like as AlexNet [2], VGGNet [3], ResNet [4], Google Inception
Family [5], EfficientNet [6], and so on. Rather than beginning from scratch, most current research suggests
leveraging pre-trained networks. On the other hand, state-of-the-art networks are built and tested on datasets
that are substantially more diverse [7]. As a result, such networks’ capacity and complexity may exceed the
needs of smaller datasets, resulting in severe drawbacks when learning from scratch. As a result, several papers
have appeared in which the authors call for comprehensive training [7]. In light of the aforementioned, we
examine the performance of EfficientNet [6] using the transfer learning approach. Furthermore, we compare
the performance of various variants of the EfficientNet family by commencing the training with pre-trained
weights.

The rest of the paper is organized as follows: Section 2 deals with the related work in the domain. Then, in
section 3, we discuss the EfficientNet model in brief. Then, section 4 presents the proposed methodology used
in this work. Experimental results are discussed in section 5. We finally end with the conclusion in section 6.

*Pandit Deendayal Energy University, Nirma University (parita.ophd19@sot.pdpu.ac.in, parita.prajapati@nirmauni.
ac.in).
fPandit Deendayal Energy University
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2. Related Work in the Domain. Rahman et al. [8] proposed modified versions of InceptionV3 and
ResNet50. The authors have altered the output layer and added two fully connected layers. During the
experiment, the first seven layers of the InceptionV3 model were frozen, and two fully linked layers were added,
with the last layer being replaced with a Softmax layer for binary classification. A similar logic was applied for
ResNet50. Chougrad et al. [9] investigated the significance of transfer learning and tested various deep CNN
models to find the optimum fine-tuning technique. With the Swish activation function, a modified VGG16
model was proposed in [10]. Authors have shown that the modified VGG16 model with the Swish activation
function delivers better accuracy than Relu activation. A comprehensive study of mammogram classification
techniques of various deep learning and machine learning approaches is presented in [11]. Apart from these,
Support vector machine (SVM), naive bayes , artificial neural network (ANN), and set classifiers [12] are some
of the machine learning algorithms that have proven popular for the development of computer-aided diagnosis
systems for breast cancer [13, 14]. Another work by Ikechukwu et al. [19] presented a comparative study of
two pre-trained models, such as ResNet-50 and VGG-19, against training a model from scratch (Iyke-Net).
Data augmentation and dropout regularization were employed to reduce overfitting. Authors concluded that
the pre-trained models with sufficient fine-tuning were comparable to Iyke-Net, a CNN developed from scratch,
with a recall of 92.03 percent.

We found that transfer learning plays a substantial role in various deep learning algorithms based on our
literature review. With a modest number of datasets, this method is useful in the medical arena [15, 21].
Different existing models based on a short dataset with the CNN architecture and the transfer learning method
have not been completely investigated till now. As a result, using a modified state-of-the-art CNN architecture,
there is potential for additional advancement in deep learning approaches.

3. EfficientNet Model Scaling. Convolutional Neural Networks have become common in the realm
of Computer Vision since Alexnet won the 2012 ImageNet Challenge. However, one of the most challenging
aspects of developing CNNs is model scaling so as to improve model accuracy. This process is time-consuming
and also necessitates manual trial and error until a sufficiently accurate model is generated while meeting the
resource constraints [6]. The procedure consumes a lot of resources and time, and it often results in models
that aren’t as accurate or efficient as they could be. In response to this issue, Google published a study in 2019
that discussed a new family of CNNs called EfficientNet [6]. The authors of this paper contributed two things:

e Development of mobile-friendly baseline architecture.
e The concept of compound scaling introduces a strategy for expanding model size and maximizing
accuracy improvements.

The concept of compound scaling strategy for expanding model size and maximizing accuracy improvements.
Depth, breadth, and resolution are three parameters to scale the convolutional neural network. The number of
layers in a network refers to the network depth. The number of neurons in a layer, or the number of kernels or
filters in a convolutional layer, is related to the width. The input image’s height and width are used to determine
the resolution. Figure 3.1 shows pictorial representation of compound scaling. An EfficientNet introduces two
rules.

e The scaled models’ layers/stages will all use the same convolution techniques as the baseline network.
e All layers must be scaled in the same way, with the same ratio.

All layers must be scaled in the same way, with the same ratio. Equation 3.1 mathematically presents the

definition of EfficientNet imparting these two rules.

N(d,w,r) =Y FM (X Hy,r. Wi, w.Cy)) (3.1)
1l..s

where w, d, r are scaling coefficients to scale width, depth, and resolution of the network; F;, L;, H;, W;,
C; are predefined parameters in baseline network. The authors offer a simple but successful scaling strategy
that employs a compound coefficient to uniformly scale network breadth, depth, and resolution in a principled
manner (see equations 3.2 to 3.4):

depth : d = o (3.2)

width : w = B° (3.3)
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Fig. 3.1: Compound Scaling

Table 4.1: Image input shape expected for each model

Basemodel Resolution
EfficientNetB0O 224
EfficientNetB1 240
EfficientNetB2 260
EfficientNetB3 300
EfficientNetB4 380
EfficientNetB5 456
EfficientNetB6 528
EfficientNetB7 600
resolution : 7 = % (3.4)

With the help of grid search and by setting ¢=1, the parameters «, 5, and v can be determined. Once
these parameters have been identified, they can be fixed, and the compound coefficient ¢ increases to produce
larger but more accurate models. EfficientNet B1-B7 are built in this manner, with the integer at the end of
the name denoting the value of the compound coefficient.

4. Proposed Methodology. In this work, we used different versions of EfficientNet. We used TL [16, 17]
approach to combat the effect of overfitting. Figure 4.1 shows the complete methodology adopted for the work
carried out in this study. The TL is applied to the EfficientNet model (all versions) to classify mammograms in
our work. As shown in figure 4.1, we used the recent implementation of deep neural networks that incorporates
TL by using parameters of a pre-trained model for a particular task to initialize the new model with certain
modifications. First, we created a base model and populated it with pre-trained weights. All the layers in the
base model are then frozen by setting "trainable” as a "False”. A new model is then created on top of the
output of one (or several) layers from the base model. Finally, we train the new model on CBIS-DDSM [20]
dataset. The classic oscillating problem is handled by varying the learning rate from 0.001 to 0.0005. The
EfficientNet family has eight models, BO to B7, out of which we used EfficientNetB0 to B5 and EfficientNetB7
in our work. Many factors control the choice of depth, resolution, and width. Therefore, the input shapes for
BO through B7 basic models differ. Table 4.1 shows the input shapes that are predicted for each model. To
improve the model’s performance and mitigate the effect of overfitting, data augmentation methods are also
used in the proposed work. Table 4.2 shows the hyperparameters used to train all the variants of EfficientNet
as well as parameters for the augmented strategies.

About Dataset: CBIS-DDSM (Curated Breast Imaging Subset of DDSM) [20] is a standardised and
improved version of DDSM. The 10,239 mammographic images, with normal, benign, and malignant cases,
were chosen and curated by a skilled mammographer. The images are converted to DICOM format, and the
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Table 4.2: Model Parameters for Training and Data Augmentation

Hyper Parameters for training

Batch Size 64
Validation split 0.2
Epochs 100
Learning Rate 0.0005
Loss Function Binary Crossentropy
Optimizer Rmsdrop
Data Augmentation Parameters
Rotation Range 180
Shear Range 10
Zoom Range 0.2
Fill Mode reflect
Horizontal and Vertical Flip True

ROI segmentation for each lesion is updated. The dataset is separated into training and testing subgroups to
directly compare performance between different methodologies. Due to extensive memory usage during training
time, we used 6700 images for our work.

5. Result Analysis and Discussion. We carried out experiments of the proposed model on ”The
PARAM Shavak system .” The system has two multi-core x86_ 64 CPUs, each having 12 or more cores. The
GPU card used for this work is Intel Xeon Phi or Nvidia Tesla GPGPU. Moreover, the system has 64 GB RAM
and 8 TB RAID-5 storage. With the default ratio of 80:20, we split the dataset into train and test random
splits. The improved models are trained with 100 epochs and 64 instances each batch. In our research, we
employed accuracy and loss as performance metrics. We measured accuracy and loss for all types of cases,
including train, test, and validation. Figures 5.1, 5.2, and 5.3 show the training and validation performance of
the improved EfficientNet models, respectively.

The validation and test accuracy, as well as the validation and test loss, for all EfficientNet models, are
summarized in Table 5.1. We found that the performance of EfficientNetB2 and EfficientNetB3 are nearly
identical. We set up the models so that the accuracy and loss are optimum. Early stopping was also employed
to keep track of the validation loss. The best findings, as well as the results collected to the final epoch, have
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Fig. 5.1: Accuracy for EfficientNet B0 to B5
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Fig. 5.3: Accuracy and Loss for EfficientNet B6 and B7

Table 5.1: Performance Measures by Various EfficientNet Models

Validation Validation Test Test

Accuracy Loss Accuracy Loss
EfficientNetB0O 0.9159 0.2413 0.8512 0.3928
EfficientNetB1 0.9121 0.2154 0.8810 0.2793
EfficientNetB2 0.9196 0.2223 0.8155 0.2734
EfficientNetB3 0.9196 0.2070 0.9018 0.2471
EfficientNetB4 0.9084 0.3699 0.8452 0.3940
EfficientNetB5 0.8579 0.3326 0.8482 0.3521
EfficientNetB6 0.8692 0.2839 0.8125 0.3888
EfficientNetB7 0.8879 0.2655 0.9018 0.2389

been reported. Figure 5.3 shows that EfficientNetB7 has the best accuracy and loss at almost the last epoch
(100 for our example), while EfficientNetB6 could result into its best performance prior to the final epoch.
EfficientNetB6 almost falls between EfficientNetB5 and EfficientNetB7 in terms of validation accuracy and loss.
In terms of test accuracy, EfficientNetB2 and B6 are nearly equal. The optimized outcomes for the other models
can be observed before the final epoch (See figure 5.1 and 5.2).

EfficientNet gets very high accuracy while using fewer parameters. A baseline network called EfficientNet-
B0 was created first, and then scaled it up to create Efficient-B1 through B7. Comparing EfficientNetB7 to
all other versions of the EfficienNet family, we can observe that it offers the best test accuracy and the lowest
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test loss. The idea behind this neural network is that larger input images necessitate additional layers, which
expand the receptive field, and more channels, which enable the network to catch more fine-grained patterns on
the larger images. With 600 x 600 resolution, EfficientNetB7 is the largest EfficientNet model that has obtained
state-of-the-art performance on the datasets like CIFAR-100 and ImageNet. The outcome demonstrates that
the model performs just as well on medical datasets, including the one utilized in this study.

Compound scaling is a better way to scale up neural networks. The main idea behind the compound scaling
approach is the notion of balancing width, depth, and resolution dimensions by scaling with a fixed ratio. In
the table 4.1, we present resolution parameters for each EfficientNet model that we employed in our research.
The remaining parameters such as depth and width are predefined in the baseline network. Section 3 presents
a brief discussion of the selection process utilized by EfficientNet models for all of these parameters.

6. Conclusion. It is preferable to scale up neural networks using compound scaling. The primary principle
of the compound scaling method adopted by EfficientNet model family is to scale the model with a constant
ratio in order to balance the width, depth, and resolution parameters. On several versions of EfficientNet, we
present a transfer representation learning approach in this study. The deep neural model’s classification accuracy
improves when the fine-tuning approach is used. We discovered that the performance of EfficientNetB2 and
EfficientNetB3 are practically equal in our tests. Furthermore, in comparison to other models, EfficientNetB3 is
relatively stable in terms of validation and test accuracy. The presented approach is used for binary classification,
but it can be modified to work with multi-class classification as well.

Acknowledgment. The authors express their gratitude to the Department of Computer Science and
Engineering, Nirma University, Ahmedabad, for providing computing facilities for the studies.
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REVIEW OF CROP YIELD ESTIMATION USING MACHINE LEARNING AND DEEP
LEARNING TECHNIQUES

ANITHA MODI} PRIYANKA SHARMA] DEEPTI SARASWAT ! AND RACHANA MEHTAS

Abstract. The agriculture sector is subjected to constant challenge of yield deficit due to rising population, improper resource
management and shrinking agricultural land. Advance yield estimates help in systematic planning to reduce such losses. However,
prediction of accurate estimates is still an open challenge due to geographical diversity, crop diversity & crop area. Recently non-
destructive approach has gained attention due to its robustness and provides easy availability of data from heterogeneous resources
compared to its counterpart; destructive approach which is computational, resource intensive and hence less utilized. This paper
conducts a detailed study on utilization of non-destructive approach to estimate yield taking into account, input feature, and
methodology. We consider five major observations namely, data acquisition, pre-processing techniques, features, methodology, and
result. Moreover, we summarize analysis of each observation, extract most prominent technique, the adopted methods, and finally
recommends integration of different models that can be explored to improve accuracy.

Key words: Crop yield estimation, vegetation indices, counting, regression, segmentation, machine learning, deep learning

1. Introduction. Steep population growth has led to a rise in food demand over the last few decades.
Undernourished and hunger counts have been consistently increasing as per FAO statistics [1]. Major agendas
of the FAO included improving the quality and quantity and minimizing the losses of agricultural produce.
Fig. 1.1(a) depicts the ratio of crop production to the population from the year 2015 to 2020, which shows an
increasing trend, while crop production is not increasing as per yield requirement [2]. Fig. 1.1(b) depicts the
year-wise production of major crops viz. Soyabean, Maize, Wheat and Rice [3]. Production losses and wastage
is estimated to be about 600 million tons worldwide [4].

Accurate and advanced crop yield estimates are required for planning and gap analysis. This task involved
obtaining potential and actual yield data of a particular crop. Potential yield yp is obtained when a crop is
grown in an ideal condition with optimal nutrient supply and an adapted environment without any stress [5].
Actual yield y 4 is obtained when the crop is subjected to realistic conditions. The difference between potential
and actual yield is the yield gap dyg as shown in Equation 1.1.

0Yya = yp — ya (1.1)

Destructive and non-destructive approaches were adopted to obtain actual yield value, which is still an open
challenge. It depends on factors like regional crop cultivation techniques, climatic conditions, meteorological,
physiological, growth factors, quality of the crop, etc. Several such factors were identified and categorized
into qualitative and quantitative factors. Agrometeorological data like irrigation, soil data, climate, and soil
nutrients were majorly incorporated into yield estimation models. Factors such as VI, LAI, and phenotype
evapotranspiration were accommodated into quantitative data-oriented estimation models. There was a need
to gather accurate agrometeorological data. Country-wise, meteorological and agricultural departments con-
tributed to this task. These RS data obtained from the specialized sensor were also made available. The
availability of diverse data led to various model designs ranging from traditional CCE to modern Al-based
models. The survey focuses on the non-destructive approach adopted to calculate the yield y 4.

*CSE Department, Nirma University(16extvphde159@nirmauni.ac.in).
fSamyak Infotech, Ahmedabad,India.(drpriyankasharma.ai@gmail.com).
tCSE Department, Nirma University(deepti.saraswata@nirmauni.ac.in).
8CSE Department, Nirma University(rachana.mehta@nirmauni.ac.in).
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Fig. 1.1: (a) Crop production versus population (b) Year-wise crop production

Table 1.1: Comparative study of yield estimation surveys with our survey

Data Model
Ref Summary ATB T DI T T2 13 (4735
6 RS with regression to estimate yield vV IV v v
7 ML algorithms along with RS data VIvIY v v
8 Brief overview of ML yield model v V|V
8 Discussed ML & RS integration ViV Vv v v
10] ML applicability in yield estimation with climatic v IV v
parameters as input
12 Summarized statistical and simulation models VA AN A 4
13 DL and counting based model v v v
14 A combination of ML and DL algorithms with ma- ViV Vv v |V
jor focus on ML
15 DL and image-based yield v v
16 ML with specific focus on palm oil yield VIV VY v
Our paper VIVIVIVIVIVIVI V]V

1.1. Scope of the survey. This section covers a summary of the existing review articles about yield
estimation. Johnson et al., considered popular ML models with ANN and regression, BP-ANN [6]. Chivasa et
al., conducted similar studies [7], using meteorological & environmental data and suggested to include RS data
into ML model. Liakos et al., reviewed application of ML into agricultural sector [8]. Chlingaryan et al. further
explored RS with ML, stating the need for a feature-rich dataset and advanced ML algorithms [9]. Elavarasan
and Vincent studied environment and climate data. They studied the applicability of unsupervised and super-
vised ML algorithms with climatic parameters [10]. Kamilaris & Prenafeta-Boldu explored DL architectures,
and their applicability to sub-areas of precision agriculture was stated [11]. Brasso summarized statistical, and
simulation models and Liu [12]. Fruit detection and localization using the counting technique to estimate was
reviewed by Koirala et al., [13]. Counting-based techniques was also studied by Maheswari et al.[15], Agrome-
teorological and RS by-products as input features was surveyed by Van Klompenburg et al.,[14]. Rashid et al.
reviewed ML-based models along with their advantage and disadvantage [16] for palm oil prediction. A brief
comparative study and our scope are summarized in Table 1.1

1.2. Contribution of the Survey. In this survey, a systematic review of yield estimation is presented.
The entire paper collection is segregated into five different models based on the input data and methods. We



Review of Crop Yield Estimation using Machine Learning and Deep Learning Technique 61

Roadmap based on search query

What is the need for yield estimation?

Section 1: Introduction
Section 2:Background and
History of Yield Estimation
Approach

What is the scope of this survey and
issues addressed?

— Section 1: Introduction
Section 6: Open issues and
challenges

What are different kinds of yield
estimation?

Section 2:Background and
I History of Yield Estimation
Approach

| Section 4:Yield estimation
models

How data is handled in estimating yield?

~ Section 3: Data acquisition and
preprocessing
Section 4:Yield estimation
models

What are the benefits of writing this
survey?

® Introduction
(1
Scope of the Contribution of the Organization and
Survey Survey Reading map
&) Background and History
= ‘ Destructive Approach Non-destructive Approach
® Acquisition and Processing
3
‘ Data Acquisition ‘ Data Preprocessing
~ Estimation Models
“‘u Crop Remote Sensing | | Image Processing | | Machine Learning | Deep Learning
Model Model Model Model Model
Analysis
@ Evaluation Metric Analysis Method Usage Analysis
(8) Open Issues and Challenges
) Conclusion

Section 1: Introduction
Section 5::Analysis

Section 6: Open issues and
challenges

Section 7: Conclusion

Fig. 1.2: (a): Organisation and reading map of the survey (b): Query based reading map

have highlighted the open issues and challenges faced in this research area. In line with the above statements,
the major contributions made in our survey are enlisted as follows.
e A detailed description of data acquisition, preprocessing and taxonomy with comprehensive coverage
of numeric and non-numeric data.
e (Categorized each paper based on the input feature and the method and covered the growth of this field
from traditional destructive approaches to modern non-destructive approaches.
e Presented overview of standard analysis to verify the results with their usage summary with the count.
This provides an insight into the choice of evaluation metric and would aid in model designing.
e We have addressed research challenges and concluded with solution insights into open issues and chal-

lenges.

1.3. Organization and Reading Map. Standard sources such as Google Scholar, Scopus, ScienceDirect,
SpringerLink and Web of Science were looked for papers. Data acquisition, preprocessing, input type, method
and result analysis were significant observations that were used for selection. Based on these observations, the
papers were grouped into five models: CM, RS, IP, ML and DL. Further, it was observed that the critical input
features of one model were integrated into other models to obtain better results which is a significant inclusion

in our survey.

A reading map consisting of the paper’s complete visual layout and a query-based reading map to address
readers’ crucial questions is shown in Fig. 1.2. Table 1.2 list the abbreviations used in our survey.

2. Background and History of Yield Estimation Approach. Based on sampling schemes adopted,
the approach is categorized into destructive and non-destructive approaches [17]. Different models were designed



62 Anitha Modi, Priyanka Sharma, Deepti Saraswat, Rachana Mehta

Table 1.2: Abbreviations used in the survey

Abbrev. Meaning Abbrev. Meaning
Al Artificial Intelligence NDVI Normalized Difference Vegetation In-
dex
ANN Artificial Neural Network NOAA National Oceanic and Atmospheric Ad-
ministration
AVHRR Advanced Very High Resolution Ra- | NRMSE Normalized Root Mean Square Error
diometer
BP-ANN Back Propagation Artificial Neural | RMSE Root Mean Square Error
Network
CCE Crop Cutting Experiment ROI Region of Interest
CM Crop Model RRMSE Relative Root Mean Square Error
CP-ANN Counter Propagation Artificial Neural | RS Remote Sensing
Networks
DL Deep Learning RS Remote Sensing
DVI Difference Vegetation Index RVI Ratio Vegetation Index
EVI Enhanced Vegetation Index SKN Supervised Kohonen Networks
FAO Food and Agriculture Organization SMLR Stepwise Multiple Linear Regression
GI Greenness Index SNN Semiparametric Neural Network
HRV High Resolution Vertical SPOT French: Satellite Pour ’Observation de
la Terre
1P Image Processing TCI Temperature Condition Index
LAI Leaf Area Index VCI Vegetation Condition Index
MAE Mean Absolute Error VHI Vegetation Health Indices
MAPE Mean Absolute Percentage Error VI Vegetation Indices
ML Machine Learning WDRVI Wide Dynamic Range Vegetation Index
MODIS Moderate Resolution Imaging Spectro- | WHR Weighted Histogram Regression
radiometer
NAIP National Agriculture Imagery Program | WOFOST | WOrld FOod STudies

and experimented with for each approach, as shown in Fig. 1.3. Each model used a subset of data gathered
from heterogeneous sources. Researchers have explored several methods ranging from traditional field surveys,
and CCE [18] to modern DL [82] to provide a solution. A detailed discussion of these models and the methods
adopted in each model is covered in the subsequent sections.

2.1. Destructive approach. The destructive approach means clearing a portion of the field for sampling
or harvesting the crop to obtain estimates. The approach is further segregated into the pre-harvest and post-
harvest models. Pre-harvest model provides yield estimates before actual harvest, such as CCE. A physical field
examination with a collection of samples for analysis is done in CCE [20]. Yield is estimated and extrapolated
to the entire crop region during sample analysis as illustrated in Fig. 1.3. Yield details are obtained from market
records post-harvest. Both methods provide accurate estimates. However, this approach is resource intensive.
A considerable workforce and micro-level planning are required for CCE site identification and market surveys.
Site visits and market surveys in the post-harvest method are difficult due to inherent variations in market
structure, geographical diversity, and biodiversity [21]. Further, estimates are available at the later stage or
after harvest, which affects the planning. Hence, the destructive approach is less used and is not covered in our
survey.

2.2. Non-destructive approach. Several visual and analytical models were designed and studied using
data from heterogeneous sources such as past yield data, environmental, meteorological, physiological and
visual data. This approach provided advanced estimates without undergoing any destructive process such as
harvesting, hence the non-destructive method. Non-destructive offers advanced estimates without experiencing
time-consuming market surveys, CCE site identification and experimentation at a macro level. But is highly
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dependent on accurate data. The study was initialized with numerical data. However, the availability of data
from heterogeneous sources and technological progress allowed researchers to explore the possibility of including

them in yield models. The entire non-destructive approach is summarized into three generic phases as shown
in Fig. 1.3.

3. Data acquisition and preprocessing. To estimate yield, data plays a vital role. This section covers
the detailed taxonomy of data acquisition and processing. A brief specification of their usage in different models
is also covered in this section.

3.1. Data acquisition. The data acquisition process involves data collection. Site-specific data are
recorded using various devices. Gathered data is categorized into numeric & non-numeric. Numeric data
is segregated into meteorological, environmental and economic [22], [23]. The data combines categorical or
continuous data and provides qualitative and quantitative features that can be used as input. Temperature,
humidity, sunshine, and precipitation are widely used meteorological data. Environmental parameters include
soil properties, crop type, harvest information, acreage, phenology, & irrigation. Economic data includes mar-
ket statistics such as trading prices and harvest information about crop gathering and production. Machine
learning [39], [40], crop models [41] widely use this data for estimate prediction.

Non-numeric data include images and remote sensing data products. RGB images acquired from the cam-
era are used in image processing and deep learning models [42]. Specialized cameras such as LED [43], thermal
[44], and monocular high-resolution camera devices [45] were used to capture images. Other non-numeric data
are acquired from remote sensors. The most widely used remote sensing products were NIR, R(Red), and
B(Blue) bands to compute values like NDVI and EVI. Data was gathered from various satellites with remote
sensors such as SPOT [46], MODIS [47], Terra and Aqua [48], Landsat [49] and IRS [20]. The computation of
NDVI [50] and EVI [51] for MODIS data is shown in Equation 3.1 and Equation 3.2 where BNIR, BR, B and
G represents NIR, R, B band and gain factor respectively. A sample image was acquired from earth explorer,
and VI were computed. Apart from these AVHRR NOAA [52], hyperspectral imagery [53] and multispectral
images [39] were also used. Fig. 3.1 illustrates the taxonomy of data.
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Table 3.1: Data acquisition and preprocessing details

Model | Dataset Type of data Preprocessing techniques
source
CM [66]-[69] Meteorological, envi- | Recalibration, ensemble, Kalman filter, calibration of
ronmental, economi- | data using standard equations, atmospheric corrections,
cal normalization
RS [66], [70]-[72] Environmental, im- | GA for optimization, radiometric corrections, atmo-
age spheric corrections, NDVI, LAI, EVI calculation, spatial

sampling, recalibration of parameters, spectral clustering,
ROI extraction, manual detection of boundary mask.

P [43], [44], [59], | Image, economical Color conversion, grey scaling, shape analysis, segmen-
[80] tation, color, texture detection,edge detection, threshold-
ing, histogram processing, histogram equalization, blur-
ring, laplacian, sobel, symmetry analysis

ML [73]-[76] Meteorological, envi- | Replacing missing values by mean, median, removal or
ronmental, economi- | merging certain column data, normalization (Z-score,
cal mean, standard deviation)

DL [66], [76]-[79] Image, economical Pixel annotation, spectral processing, cropping ROI, an-

notation, segmentation of pixel, augmentation, PCA, his-
togram processing

Several datasets are available as specified in the dataset source column of Table 3.1. Meteorological, en-
vironmental and economic data can be obtained from these sources. Entire data or a few subsets of features
after required preprocessing can be used in CM, RS and ML models. IP and DL model mostly uses image data.
Due to the expensive data gathering process, most of these data are unavailable as open access.

BNIR — BR

NDV[=2""T""P=%
v BNIR + R

(3.1)

BNIR — BR
BNIR +6BR — 7.58B + 1

EVI=G (3.2)

3.2. Data preprocessing. The data had to be preprocessed for several reasons, such as missing values,
outliers, etc. Crop and ML models used numerical data such as climate, weather information, soil data, and
meteorological data. These data were obtained from standard data sources released by country or state such
as USDA, IOWA [55], Illinois [40], Minnesota university [56] etc. The data obtained from such sources might
contain missing data or need to undergo recalibration. Data normalization techniques such as Z-score, mean,
and standard deviations [22] were used to fix the values in the required range. Atmospheric corrections filters
such as Kalman filters [55], [57] are also applied numeric data. RGB to HSV color conversion [42], reshaping
[68], resizing, grey scaling [59] are some of the techniques applied to images. Apart from this, segmentation
using colour, texture [59], and watershed algorithm [42] were also applied to separate ROI from the image.
Preprocessing remote sensing data is essential due to the inherent complexity of data and its acquisition
process. Recalibration [60], radiometric, atmospheric [46], spatial and spectral [53] corrections were applied
before using the values. Since the image acquired spans a large area, ROI extraction, manual demarcation,
and spatial sampling [61] were applied. GA [62] was used for optimal parameter selection on data gathered
from sensors. Most deep learning models require an image dataset with a large sample size for model training.
Augmentation techniques [63] helps to enhance dataset size. Remote sensing (RS) data was integrated into a
deep learning model. However, the data had to be preprocessed using techniques such as histogram processing
[64], pixel annotation [82]. RS data was segmented using spectral clustering [65] and ROI extraction. Table 3.1
summarizes the data acquisition techniques, a few dataset sources and preprocessing techniques widely adopted
in the research work.
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4. Yield estimation models. Several methods are tried depending on the features extracted from dif-
ferent sources. The taxonomy of modes is shown in Fig. 4.1. Each technique is explained as it evolved in
technological advancement.

4.1. Crop Models. The crop model estimation involves two mathematical models, viz. qualitative and
quantitative. Crop models can be categorized as statistical or simulation-based, depending on the input. Sta-
tistical estimation models accept a set of agrometeorological data as an input into a statistical regressor to
estimate yield. However, the past few decades have witnessed wide variations in climate and soil structures,
impacting the estimated yield. Statistical models failed to incorporate this dynamic aspect. To overcome this,
qualitative features such as soil, weather, phenology with other infield observations are incorporated into simu-
lation models. Plant biomass and yield were generated as an output by these models. In [83], environment and
growth-related parameters were used to estimate yield; the study was conducted at geographical sites with local
weather station data. Experimental observations concluded that there could not be a global optimized model
to estimate yield for all crops. Region-wise new models of existing models should be developed. Production
and crop growth analysis was done in the WOFOST model [84]. The CERES-Maize water balance model
experimented with [85] under varied weather and soil conditions in the Netherlands. Input data comprised
crop species, soil profile, fertility, physical properties and historical crop yield. Initially, SUCROS [86] model
studied growth under sufficient water supply and nutrients. This model did not consider growth inhibitors such
as pests, diseases and weeds. Variants of this model integrated other data such as SPOT, aerial images and
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remote sensing data to improve the accuracy of the model [60] [87].

A comparative study was conducted between SUCROS2 and SAIL [88] model. These models used SPOT
and aerial photos to calculate leaf area; it is an early study of integrating remote sensing data into the crop
model. Irrigation and Nitrogen related studies were conducted in designing the VSM model [89]. Plant den-
sity and mean daily solar parameters are included in it. Similar studies were conducted between CERES and
CroySyst model in Indo-Gangetic plains. In [90] with CropSyst gives better results in the Indian subcontinent
scenario. SBOCM [41] integrated geographical data from the weather station in China and the SVR method
to estimate crop growth at various stages. Upscaling of AquaCrop model with RS data used to compute crop
canopy and biomass was used in AquaCrop-RS [91] model for regional yield. Table 4.1 includes the summary
of crop models.

4.2. RS model. Aerial and RS images were mainly used for land cover, crop classification, etc. However,
certain features extracted from these images provided qualitative parameters which were integrated into yield
models. The frequency of data capturing and a good resolution have allowed researchers to design a model to
incorporate them. Several parameters could be calculated with the captured spectral band [92]. A subset of
these calculated or calibrated values played a significant role in yield estimation models. The plant absorbs
energy during photosynthesis as per plant physiology. IR and NIR bands capture this qualitative feature,
indicating plant health and growth process. [61] stated the usage of RVI and NDVI data to estimate crop yield
along with field survey data for the crop in India. NDVI calculated from Landsat and IRS-1A and IRS- 1B band
assisted in CCE site identification leading to higher accuracy in the yield model [20]. Evapotranspiration (ET)
data computed from (RS) was used in the SWAP model to recalibrate soil water content managing parameters
which widely assisted in increasing yield [49]. A combination of soil moisture and LAI was integrated into the
DSSAT-CSM model [55] which was unsuccessful due to discontinued satellite services. Early studies showed a
linear correlation between GIN values acquired from Landsat in the US and yield estimates when integrated
into the Agromet model [93]. In another paper greenness value obtained from Landsat and AVHRR data was
used to generate yield estimates [94].
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4.2.1. RS data used in other models. Recalibration of LAT using SPOT/ HRV data was used in the
SAFY yield model [46]. In another work, LAI calculated from Landsat 7, and 8 and Sentinel-2A were assimilated
into the WARM model [57]. WOFROST-PROSAIL model used KS reflectance algorithm with MODIS surface
reflectance. The highest accuracy was achieved when KS reflectance values were used [47]. VI product of
MODIS and LAI products was used in the CSM-CERES model for estimating yield with a conclusion that only
half year product is sufficient to estimate yearly produce [62]. RS data was also used to estimate grassland
biomass [95] in regions such as Ireland. Another product of MODIS, DVI was used at the national and further
at the subnational level capturing extreme weather conditions [48].

The growing popularity of AT and ML led researchers to explore the possibility of using them to solve the
yield estimation problem. SKN, CP-ANN and XY-F algorithms were used along with NDVI [23]. Spectral
clustering of ROI into tomato and non-tomato was done using aerial images captured from a UAV. SOM and
EM for clustering were used, and EM gave better results [65]. Linear regression with NDVI was used in [96].
VHI, VCI, and TCI computed weekly for almost two decades (1982- 2004) using NOAA-AVHRR were used in
PCR [52] to estimate crop yield. Table 4.2 summarizes the RS yield model.

4.3. Image processing model. Several methods depending on the image source and the image acquisition
mode were experimented with to obtain a yield estimate. Color, contrast, texture, and shape can be input
features. Image processing techniques are used to extract these features from images. Usually, images are
captured in broad daylight with maximum sun exposure using normal handheld cameras [42], [59] and mobile
cameras [58]. Images captured under a controlled lighting environment using the specialized LED camera at
night to avoid errors due to illumination effect [43] were also experimented. A different set of input images
captured from different devices such as thermal camera [44] monocular high-resolution camera [45] was also
tried. The manual image capturing was difficult due to various conditions such as large crop areas, repeated site
visits at a specific time, etc. This process was automated using aerial vehicles and satellite payloads. Specialized
vehicles such as UAV [65], [74], computer vision integrated autonomous vehicles [45] were used. A combination
of thermal, multispectral and RGB image data captured and features extracted from them were used in another
image processing-based yield model [74].

Color is an important feature that can be used in designing a yield model. Colour format conversions such
as RGB to HSV were also explored to improve efficiency [97]. Experiments were conducted on trees with objects
of high or meagre contrast [45], [42], [59], [98] against green foliage. The work in [99] discusses correlations
such as count and weight, size and weight, and area and weight using a grape cluster as a case study. These
correlations are essential while using count to estimate yield. Table 4.3 summarizes different yield models based
on image processing.

4.4. Machine Learning Model. ML in Al is widely used for yield estimation. Widely used ML models
include simple feed-forward neural network (NN) [101], back-propagation [22], [40] and NN.

Meteorological, environmental, and market pricing were widely used for training NN [22, 102]. SNN (a
variant of NN) with panel regression using environmental features were also tried [102]. ENN gave better
results when compared with BPN with different input features [22]. KNN, ANN [39], [102] used different
parameters for estimation. C4.5 [104] was also used to focus on GUI design for illustrating climatic variations
and estimation. GA was used for selecting optimal input features that could maximize yield estimation using
BP-ANN [40]. SMLR with feed-forward NN was designed to model the relation between soil parameters, climate,
and yield [101].
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The calendar day model against thermal was modelled to estimate yield in [103] as there were greater
variations in temperature conditions. Within a year, spatial changes and weather were studied using BPNN
[105]. Table 4.5 summarises various ML-based yield model.

Table 4.5: Summary of ML model

Ref | Model Input features Evaluation | Description Open issues

metric

[40] | BP-ANN Yield, weather, soil | RMSE, Ac-| Studied fertilizer & rain- | Missing weather pat-
details, phenology curacy fall with input parameter | terns, history and re-

combinations gional data.

[101] | NN, SMLR Soil data, yield, tem- | R? Quantifiable relations be- | Overfitting & need
perature, rain tween climate, soil & | more data on climate

yield.

[105] | BPNN 14 factors (site, to- | RMSEP Used BPNN & major pat- | Missing input feature
pography, weather, terns were captured selection technique
soil)

[103] | ANN, k-NN, | Growth, reproduc- | Accuracy Calendar-oriented estima- | Limited input fea-

MR tive stage tion tures

[104] | C4.5 Cloud, rainfall, tem- | Average Ac- | GUI for ease of usage. Cli- | Missing environmen-
perature, yield curacy mate changes were a ma- | tal data.

jor factor

[22] | BPN, ENN, | meteorological, envi- | Error rate reduction in error rate Optimal architecture

regression ronmental, economi- was not fixed.
cal
[39] MLR, RF, | Agrometeorological, RMSE;, overall harvest with opti- | Unbalanced & miss-
SVM, K-NN, | RS, economical data | MAER mal seed selection ing environmental
ANN, WHR data
[102] | SNN, Panel | parameters: environ- | MSE climate change impact on | Missing site-specific
Regression ment, economic, irri- yield data & warmer
gation climate conditions

4.5. Deep learning model. DNN has gained attention for solving yield estimation problems through
regression analysis. Clustering and segmentation architectures are also used along with regressors to identify or
extract ROIs. The ROI’s were further processed to estimate the count of objects being studied. These outputs
were then fed to the regressor designed for yield estimation. Deep architectures need a large dataset with a
high variance to train the network. Usually, augmentation techniques such as flip, scale, PCA augmentation
were used to increase the dataset size [63]. A modified inception-ResNetA architecture was used to count ROI
in the image with Adam optimizer and Xavier weight to initialize the network [106]. PASCAL-VOC data set
was used to identify and count from the image to estimate against ground truth [63]. DNN was used by the
winners of the Syngenta challenge 2018, wherein the data set provided was used to estimate corn yield [107].
CNN-based semantic segmentation with counting technique was also used [82]. Hyperspectral and multispectral
images obtained from RS or specialized cameras were available for studies. The paper discussed a preprocessing
technique in which multispectral data was processed, and histograms were generated. These histograms were
fed to CNN, and LSTM was integrated with a GP. A combination of CNN, LSTM and GP was also tried
in [54], [64]. In another approach, spectral processing and CNN for ROI identification were experimented
with using hyperspectral image (HSI) [53]. Multimodal fusion of data from different sensors captured using a
UAV experimented. The extracted features were concatenated and fed as input to DNN, which was used as a
regressor to estimate yield [108]. Table 4.4 list the details of DL methods in crop yield estimation.

5. Analysis. The critical part of estimation is the analysis of model-generated output with actual data
to ensure the correctness of estimates generated. This section covers the evaluation metric and methods that
are widely used.
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5.1. Evaluation Metric. The wide methods utilized in the literature for accuracy and performance anal-
ysis are RMSE, R2, RE and Accuracy. It was difficult to identify common evaluation metrics with benchmark
values as different methods were used with different input parameters across different models. Example CM
and RS models were used for rice yield estimation. However, RMSE, RE [41] MAE, RRMSE [57] and R2 [89]
with different output values were used for result analysis. This is an open issue that needs to be addressed.
Hence, metric usage was considered in our study for various models. Fig. 5.1 shows the graphical representa-
tion of the metric evaluation usage across five different models considered in the survey. The most important
metric having wide acceptance for evaluation has been kept initially. It also shows that the RMSE and R? are
acceptable evaluation metrics for all five models.

RMSE ucm R-SQUARE RE ACCURACY MAE

14% %%

.z”‘

NRMSE

RECALL MAPE DIFFERENCE

Fig. 5.1: Percentage distribution of prominent evaluation metric across 5 yield models

5.2. Method usage. We have implemented ML techniques such as SVM, segmentation, classification,
clustering, K-Means, KNN, LSTM, Random Forest, NN, DNN and CNN for yield estimation. These techniques
are based on statistical analysis and regression. Regressors were used in all five models. SVM in CM, IP, ML
model. Segmentation in RS, IP, DL model. Classification in IP, ML, DL model. Clustering in RS, IP, DL
model. K-Means and KNN in IP, ML model. LSTM in RS, DL model. Random Forest and NN in RS, ML
model. DNN and CNN in DL models. It is quite clear that regression-based methods are predominantly used
for yield estimation. Fig. 5.2 shows detailed usage distribution of method used across all models.

6. Open issues and challenges. This section discusses the open issues and challenges of the yield
estimation models. Specific issues are common to few models.

6.1. Data related issues. A major challenge is data availability. The unavailability of historical data to
train or design the model is a significant issue [87]. National or global scale data gathering is essential to test
the correctness of a model developed at the regional level [52]. Satisfying this requirement is difficult due to
economic and government policies laid by nations. Hence, synthetic data are generated and used while designing
and testing the estimation model. This may produce incorrect results over real data [106]. Further, RS depends
on satellite services to gather the required data. Discontinuity of satellite services affects the model under design
or deployment [62]. RS and ML models could provide better results compared to CM. However, these models
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m Regressor

1% 1% = NN
= CNN

SVM
= Segmentation
m Clustering
u KNN
= Random Forest

3%

m Classification
u LSTM

m K-means

= DNN

Fig. 5.2: Detailed usage distribution of methods across the entire survey

require large amount of data [95] and accurate calibration [46], [57]. Cloud cover and other weather extremities
can affect the quality of data gathered [46] [48]. Another challenge is crop diversity due to geographical and
environmental variations. It is difficult to obtain specific data on multiple variants of the individual crop, which
is crucial for estimation [20] [57]. Expensive equipment is required for data gathering, which is a bottleneck for
economical solutions [45]. Further, data gathering is subjected to several inherent problems such as blurring
of images [58], limited [42], unbalanced [39], missing data [85] and complex capturing technique [108]. Certain
IP, DL, and RS models provide better results. However, the data required by these models need to undergo a
complex preprocessing stage which is resource intensive, and time-consuming [97] [74] [108].

6.2. Model related issues. Researchers designed several estimation models using different methods. The
designed model is applicable with specific conditions or over specific crops due to inherent variations. Example
RS model is suitable for rainfed crops and cannot be applied to irrigated lands on the specified ROI [100]. Also,
there is no common model that fits all crops. Research is carried out around standard crops [17] such as wheat
[90] [23], rice [41], cotton [80], few fruits [44] [45] [97] and vegetables [65]. This introduces a new issue of certain
crops being eliminated as they are grown in limited regions or countries which needs to be addressed. Certain
models such as RS, ML and DL depend on image data and focus on counting-based yield estimation [99] [44].
However, inherent image processing issues such as occlusion [53], illumination [59], duplicate count [82], geo-
referencing [45] [74], and object clusters [98] are few major challenges that affect the accuracy of prediction in
these models. ML, RS, and CM need a careful selection of input features. No standard algorithms or methods
can be used to perform this task [105]. DL and CM simulation version have high computational complexity due
to complex input data [54] [53] [74]. Certain IP, DL, and RS models provide good results with certain inputs.
However, it requires a resource-intensive and time-consuming preprocessing stage to generate these inputs [108]
[85]. Also, these models require expensive equipment for data capturing, preprocessing and training [45] [74].
Insufficient or missing historical yield estimates gathered using traditional techniques [102] or market studies
led researchers to fill the gap using synthetic data, which may not lead to an optimal model [47] [106].

6.3. Analysis related issues. Count and weight are the major representation of yield value. CM, RS
[46] and ML models produce weight-based results [93], while image processing, RS (image) and deep learning
models provide counting based results [63] [99] [44]. A single model cannot handle both representations. Further,
different models are designed to solve estimation problems for a particular crop. Researchers have used different
evaluation metrics and input parameters to solve the problem. For example, CM and RS models are used to
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estimate rice yield. However, different evaluation metrics with different result values were used for result
verification as per their design [41][57][89]. Hence, it isn’t easy to establish a common evaluation metric with
benchmark values.

7. Conclusion. The paper summarizes non-destructive approaches designed to estimate crop yield. Dif-
ferent models were developed based on input data and the methodology adopted. Statistical and simulation
crop models were less researched as they could not incorporate various dynamic features effectively. The quali-
tative by-products of RS, such as NDVI, EVI, and DVI data, were extensively used in the crop and ML model
to improve the accuracy of the model. Clustering and segmentation were widely used to separate ROIs in the
image processing model. Pixel classification and segmentation architectures were used in the deep learning
model for estimating crop yield. Most CNN and its variants, LSTM, were used to test and train the model
for object detection and then proceeded towards counting. RS data was also experimented with for integration
into deep architectures with histogram preprocessing.

To summarize, weight-based yield estimation was implemented by the crop model, ML model and RS
model. These models were generally used for estimating yield in large geographical areas. Counting-based
analysis was implemented by image processing, RS model and deep learning model using an image as a primary
input. Single and a bunch of objects were explored during the counting process. But accuracy is still an open
challenge due to object clutter and occlusion. R2; RMSE is widely used to analyze the accuracy of the yield
estimation model. Further, there is a broad scope to harness the multimodal integration of RS image data,
image processing techniques and deep learning techniques to estimate crop yield over large areas.
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