
SCALABLE COMPUTINGPra
ti
e and Experien
e

Volume 6, Number 3, September 2005ISSN 1895-1767

Editor-in-ChiefMar
in Paprzy
kiInstitute of Computer S
ien
eWarsaw S
hool of So
ial Psy
hologyul. Chodakowska 19/3103-815 WarszawaPolandmar
in.paprzy
ki�swps.edu.plhttp://mpaprzy
ki.swps.edu.plManaginig EditorPaweª B. MyszkowskiInstitute of Applied Informati
sWro
ªaw University of Te
hnologyWyb. Wyspia«skiego 27Wro
ªaw 51-370, POLANDpawel.myszkowski�pwr.wro
.plSoftware Reviews EditorsHong ShenGraduate S
hoolof Information S
ien
e,Japan Advan
ed Instituteof S
ien
e & Te
hnology1-1 Asahidai, Tatsunoku
hi,Ishikawa 923-1292, JAPANshen�jaist.a
.ipDomeni
o TaliaISI-CNR
/o DEISUniversità della Calabria87036 Rende, CS, ITALYtalia�si.deis.uni
al.itTe
hni
al EditorAlexander Denisjuk
Elbląg Universityof Humanities and E
onomyul. Lotni
za 282-300 Elbląg, POLANDdenisjuk�euh-e.edu.pl

Editorial BoardPeter Arbenz, Swiss Federal Inst. of Te
hnology, Züri
h,arbenz�inf.ethz.
hDorothy Bollman, University of Puerto Ri
o,bollman�
s.uprm.eduLuigi Brugnano, Università di Firenze,brugnano�math.unifi.itBogdan Czejdo, Loyola University, New Orleans,
zejdo�beta.loyno.eduFrederi
 Desprez, LIP ENS Lyon,Frederi
.Desprez�inria.frDavid Du, University of Minnesota, du�
s.umn.eduYakov Fet, Novosibirsk Computing Center, fet�ssd.ss

.ruLen Freeman, University of Man
hester,len.freeman�man
hester.a
.ukIan Gladwell, Southern Methodist University,gladwell�seas.smu.eduAndrzej Gos
inski, Deakin University, ang�deakin.edu.auEmilio Hernández, Universidad Simón Bolívar, emilio�usb.veDavid Keyes, Old Dominion University, dkeyes�odu.eduVadim Kotov, Carnegie Mellon University, vkotov�
s.
mu.eduJanusz Kowalik, Gda«sk University, j.kowalik�
om
ast.netThomas Ludwig, Rupre
ht-Karls-Universität Heidelberg,t.ludwig�
omputer.orgSvetozar Margenov, CLPP BAS, So�a,margenov�parallel.bas.bgOs
ar Naím, Ora
le Corporation, os
ar.naim�ora
le.
omLalit M. Patnaik, Indian Institute of S
ien
e,lalit�mi
ro.iis
.ernet.inDana Pet
u, Western University of Timisoara,pet
u�info.uvt.roHong Shen, Japan Advan
ed Institute of S
ien
e & Te
hnology,shen�jaist.a
.ipSiang Wun Song, University of São Paulo, song�ime.usp.brBolesªaw Szyma«ski, Rensselaer Polyte
hni
 Institute,szymansk�
s.rpi.eduDomeni
o Talia, University of Calabria, talia�deis.uni
al.itRoman Trobe
, Jozef Stefan Institute, roman.trobe
�ijs.siCarl Tropper, M
Gill University,
arl�
s.m
gill.
aPavel Tvrdik, Cze
h Te
hni
al University,tvrdik�sun.felk.
vut.
zMarian Vajtersi
, University of Salzburg,marian�
osy.sbg.a
.atJan van Katwijk, Te
hni
al University Delft,J.vanKatwijk�its.tudelft.nlLonnie R. Wel
h, Ohio University, wel
h�ohio.eduJanusz Zalewski, Florida Gulf Coast University,zalewski�fg
u.eduSUBSCRIPTION INFORMATION: please visit http://www.s
pe.org

S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 3, September 2005TABLE OF CONTENTSEditorial: Challenges Con
erning Symboli
 Computations on Grids iiiDana Pet
uGuest Editors' Introdu
tion vWilson Rivera and Jaime SeguelThe GridWay Framework for Adaptive S
heduling and Exe
ution onGrids 1Eduardo Huedo, Rubén S. Montero and Igna
io M. LlorenteParrot: Transparent User-Level Middleware forData-IntensiveComputing 9Douglas Thain and Miron LivnySatin: Simple and E�
ient Java-based Grid Programming 19Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmannand Henri E. BalRun-time Adaptation of Grid Data Pla
ement Jobs 33G. Kola, T. Kosar and M. LivnyJuxMem: An Adaptive Supportive Platform for Data Sharing on theGrid 45G. Antoniu, L. Bougé and M. JanProgressive Retrieval and Hierar
hi
al Visualization of Large RemoteData 57Hans-Christian Hege, Andrei Hutanu, Ralf Kähler, André Merzky,Thomas Radke, Edward Seidel and Brygg UllmerAn Adaptive File Distribution Algorithm for Wide Area Network 67Takashi Hoshino, Kenjiro Taura and Takashi ChikayamaNetwork S
heduling for Computational Grid Environments 85Martin Swany and Ri
h WolskiToward Reputable Grids 95G. von Laszewski, Beulah Kurian Alunkal and Ivana Veljkovi
Non-Dedi
ated Distributed Environment: A Solution for Safe andContinuous Exploitation of Idle Cy
les 107R. C. Novaes,d P. Roisenberg, R. S
heer, C. North�eet, J. H. Jornadaand W. Cirne.

© SWPS, Warszawa 2005

S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 3, pp. iii�iv. http://www.s
pe.org ISSN 1895-1767
© 2005 SWPSEDITORIAL: CHALLENGES CONCERNING SYMBOLIC COMPUTATIONS ON GRIDSSymboli
 and algebrai

omputations are
urrently ones of fastest growing areas of s
ienti�

omputing.For a long time, the numeri
al approa
h to
omputational solution of mathemati
al problems had an advantageof being
apable of solving a substantially larger set of problems than the other approa
h, the symboli
 one.Only re
ently the symboli
 approa
h gained more re
ognition as a viable tool for solving large-s
ale problemsfrom physi
s, engineering or e
onomi
s, reasoning, roboti
s or life s
ien
es. Developments in symboli

om-puting were lagging relative to numeri
al
omputing, mainly due to the inadequa
y of available
omputationalresour
es, most importantly
omputer memory, but also pro
essor power. Continuous growth in the
apabilitiesof
omputer hardware led naturally to an in
reasing interest in symboli

al
ulations and resulted, among othersthings, in development of sophisti
ated Computer Algebra Systems (CASs).CASs allow users to study
omputational problems on the basis of their mathemati
al formulations andto fo
us on the problems themselves instead of spending time transforming the problems into forms that arenumeri
ally solvable. While their major purpose is to manipulate formulas symboli
ally, many systems havesubstantially extended their
apabilities, o�ering nowadays fun
tionalities like graphi
s allowing a
omprehensiveapproa
h to problem solving. While, typi
ally, CAS systems are utilized in an intera
tive mode, in order tosolve large problems they
an be also used in a bat
h mode and programmed using languages that are
lose to
ommon mathemati
al notation.As CASs be
ome
apable of solving large problems, they follow the
ourse of development that has alreadybeen taken by numeri
al software: from sequential
omputers to parallel ma
hines to distributed
omputing and�nally to the grid. It is parti
ularly the grid that has the highest potential as a dis
overy a

elerator. Currently,its widespread adoption is still impeded by a number of problems, one of whi
h is di�
ulty of developing andimplementing grid-enabled programs. That it is also the
ase for grid-enabled symboli

omputations.There are several
lasses of symboli
 and algebrai
 algorithms that
an perform better in parallel anddistributing
omputing environments. For example for multipre
ision integer arithmeti
, that appears amongothers in fa
torizations, were developed already twenty years ago systoli
 algorithms and implementations onmassive parallel pro
essors, and more re
ently, on the Internet. Another
lass that utilize signi�
ant amount of
omputational resour
es is related to the implementations of polynomial arithmeti
: knowledge based algorithmssu
h as symboli
 di�erentiation, fa
torization of polynomials, greatest
ommon divisor, or, more
ompli
ated,Groebner base
omputations. For example, in the latest
ase, the size of the
omputation and the irregulardata stru
tures make the parallel or distributed implementation not only an attra
tive option for improving thealgorithm performan
e, but also a
hallenge for the
omputational environment. A third
lass of algorithmsthat
an bene�t from multiple resour
es in parallel and distributed environments is
on
erning the exa
t solversof large systems of equations.The main reason driving the development of parallel and distributed algorithms for symboli

omputationsis the ability to solve problems that are memory bound, i.e. that
annot �t into memory of a single
omputer. Anargument for this statement relies on the observation that the input size of a symboli
 or algebrai

omputation
an be small, but the memory used in the intermediate stages of the
omputation may grow
onsiderably.Modern CASs in
rease their utility not only through new symboli

apabilities, but also expending theirappli
ability using visualization or numeri
al modules and be
oming more than only spe
i�

omputationalkernels. They are real problem solving environments based on interfa
es to a signi�
ant number of
omputationalengines. In this
ontext it appears also the need to address the ability to redu
e the wall-
lo
k time by usingparallel or distributed
omputing environment. A simple example is the
ase of rendering the images for asimulation animation.Several approa
hes
an be identi�ed in the histori
al evolution of parallel and distributed CASs: developingversions for shared memory ar
hite
tures, developing
omputer algebra hardware, adding fa
ilities for
ommuni-
ation and
ooperation between existing CASs, or building distributed systems for distributed memory parallelma
hines or even a
ross Internet.Developing
ompletely new parallel or distributed systems, although e�
ient, in most
ases is rather di�
ult.Only a few parallel or distributed algorithms within su
h a system are fully implemented and tested. Still thereare several su

essful spe
ial libraries and systems falling in this
ategory: ParSa
-2 system, the parallel versionof SAC-2, Pa
lib system, the parallel extension of Sa
lib, FLATS based on spe
ial hardware, STAR/MPI, theparallel version of GAP, ParForm, the parallel version of Form, Cabal, MuPAD, or the re
ent Givaro, for paralleliii

iv Dana Pet
u
omputing environments, FoxBox or DSC, for distributed
omputing environments.An alternative approa
h to build parallel and distributed CASs is to add the new value, the parallelism orthe distribution, to an existing system. The number of parallel and distributed versions of most popular CASsis impressive and it
an be explained by the di�erent requirements or targeted ar
hite
tures. For example, forMaple there are several implementations on parallel ma
hines, like the one for Intel Paragon or ‖Maple‖, andseveral implementations on networks of workstations, like Distributed Maple or PVMaple. For Mathemati
athere is a Parallel Computing Toolkit, a Distributed Mathemati
a and a gridMathemati
a (for dedi
ated
lus-ters). Matlab that provides a Symboli
 Math Toolbox based on a Maple kernel has more than twenty di�erentparallel or distributed versions: DP-Toolbox, MPITB/PVMTB, MultiMatlab, Matlab Parallelization Toolkit,ParMatlab, PMI, MatlabMPI, MATmarks, Matlab∗p, Conlab, Otter and others.More re
ent web-enabled systems were proved to be e�
ient in number theory for �nding large primenumbers, fa
toring large numbers, or �nding
ollisions on known en
ryption algorithms. Online systems for
ompli
ated symboli

omputations were also built: e.g. OGB for Groebner basis
omputations. A frameworkfor des
ription and provision of web-based mathemati
al servi
es was re
ently designed within the Monet proje
tand a symboli
 solver wrapper was build to provide an environment that en
apsulates CASs and expose theirfun
tionalities through symboli
 servi
es (Maple and Axiom were
hosen as
omputing engines). Another plat-form is MapleNet build on
lient-server ar
hite
ture: the server manages
on
urrent Maple instan
es laun
hedto server
lient requests for mathemati
al
omputations. WebMathemati
a is a similar system that o�ers a

essto Mathemati
a appli
ations through a web browser.Grid-oriented proje
ts that involve CASs were only re
ent initiated. The well-known NetSolve system wasone of the earliest grid system developed. Version 2 released in 2003 introdu
es GridSolve for interoperabilitywith the grid based on agent te
hnologies. APIs are available for Mathemati
a, O
tave and Matlab. TheGenss proje
t (Grid Enabled Numeri
al and Symboli
 Servi
es) follows the ideas of the Monet proje
t andintends also to
ombine grid
omputing and mathemati
al web servi
es using a
ommon agent-based framework.Several proje
ts are porting Matlab on grids: from small ones, like Matlab∗g, to very
omplex ones, likeGeodise. Maple2g and MathGridLink are two di�erent approa
hes for grid-enabled version of Maple andMathemati
a. Simple to use front-end were re
ently build in proje
ts like Geml
a and Websolve to deploylega
y
ode appli
ations as grid servi
es and to allows the submission of
omputational requests.The vision of grid
omputing is that of a simple and low
ost a

ess to
omputing resour
es without arti�
ialbarriers of physi
al lo
ation or ownership. Unfortunately, none of the above mentioned grid-enabled CAS isresponding simultaneously to some elementary requirements of a possible implementation of this vision: deploygrid symboli
 servi
es, a

ess within CAS to available grid servi
es, and
ouple di�erent grid symboli
 servi
es.Moreover a number of major obsta
les remain to be addressed. Amongst the most important are me
hanismsfor adapting to dynami

hanges in either
omputations or systems. This is espe
ially important for symboli

omputations, whi
h may be highly irregular in terms of data and general
omputational demands. Su
hdemands re
eived until now relatively little attention from the resear
h
ommunity.In the
ontext of a growing interest in symboli

omputations, powerful
omputer algebra systems arerequired for
omplex appli
ations. Freshly started proje
ts shows that porting a CAS to a
urrent distributedenvironment like a grid is not a trivial task not only from te
hnologi
al point of view but also from algorithmi
point of view. Already existing tools are allowing experimental work to be initiated, but a long way is still tobe
ross until real-world problems will be solved using symboli

omputations on grids.Dana Pet
u,Western University of Timisoara.

S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 3, p. v. http://www.s
pe.org ISSN 1895-1767
© 2005 SWPSGUEST EDITORS' INTRODUCTIONGrid
omputing fo
uses on building a large-s
ale
omputing infrastru
ture by linking
omputing fa
ilitiesat many distributed lo
ations. Signi�
ant e�ort has been spent in the design and implementation of middlewaresoftware for enabling Grid
omputing systems. These software pa
kages have been su

essfully deployed and itis now possible to build
lusters beyond the boundaries of a single lo
al area network. However, the
halleng-ing problem of dynami
ally allo
ating resour
es in response to appli
ation requests for
omputational servi
esremains unsolved. Adaptive middleware is software that resides between the appli
ation and the
omputeroperating system and enables an appli
ation to adapt to
hanging availability of
omputing and networkingresour
es. The papers for this spe
ial issue, presented for the First International Workshop on Adaptive GridMiddleware (AGridM2003),
onvey state-of-the-art adaptive Grid middleware and deliver important new s
ien-ti�
 results of interest to the whole
ommunity.Wilson Rivera,Jaime Seguel,University of Puerto Ri
o at Mayaguez.

v

S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 3, pp. 1�8. http://www.s
pe.org ISSN 1895-1767
© 2005 SWPSTHE GRIDWAY FRAMEWORK FOR ADAPTIVE SCHEDULING AND EXECUTION ONGRIDS∗EDUARDO HUEDO† , RUBÉN S. MONTERO‡ , AND IGNACIO M. LLORENTE§Abstra
t.Many resear
h and engineering �elds, like Bioinformati
s or Parti
le Physi
s, are
on�dent about the development of Gridte
hnologies to provide the huge amounts of
omputational and storage resour
es they require. Although several proje
ts areworking on
reating a reliable infrastru
ture
onsisting of persistent resour
es and servi
es, the truth is that the Grid will be amore and more dynami
 entity as it grows. In this paper, we present a new tool that hides the
omplexity and dynami
ity of theGrid from developers and users, allowing the resolution of large
omputational experiments in a Grid environment by adapting thes
heduling and exe
ution of jobs to the
hanging Grid
onditions and appli
ation dynami
 demands.Key words. grid te
hnology, bioinformati
s, adaptive s
heduling, adaptive exe
ution.1. Introdu
tion. Grid environments inherently present the following
hara
teristi
s [6℄: multiple admin-istration domains, heterogeneity, s
alability, and dynami
ity or adaptability. These
hara
teristi
s
ompletelydetermine the way s
heduling and exe
ution on Grids have to be done. For example, s
alability and multipleadministration domains prevent the deployment of
entralized resour
e brokers, with total
ontrol over
lientrequests and resour
e status. On the other hand, the dynami
 resour
e
hara
teristi
s in terms of availability,
apa
ity and
ost, make essential the ability to adapt job exe
ution to these
onditions.Moreover, the emerging of Grid te
hnology has led to a new generation of appli
ations that relies onits own ability to adapt its exe
ution to
hanging
onditions [5℄. These new self-adapting appli
ations takede
isions about resour
e sele
tion as their exe
ution evolves, and provide their own performan
e a
tivity todete
t performan
e slowdown. Therefore self-adapting appli
ations
an guide their own s
heduling.To deal with the dynami
ity of the Grid and the adaptability of the appli
ations two te
hniques has beenproposed in the literature, namely:1. Adaptive s
heduling, to allo
ate pending jobs to grid resour
es
onsidering the available resour
es, their
urrent status, and the already submitted jobs.2. Adaptive exe
ution, to migrate running jobs to more suitable resour
es based on events dynami
allygenerated by both the Grid and the appli
ation.The AppLeS [9℄ proje
t has previously dealt with the
on
ept of adaptive s
heduling. AppLeS is
urrentlyfo
used on de�ning templates for
hara
teristi
 appli
ations, like APST for parameter sweep and AMWAT formaster/worker appli
ations. Also, the Nimrod/G [10℄ resour
e broker dynami
ally optimizes the s
hedule tomeet user-de�ned deadline and budget
onstraints. On the other hand, the need of a nomadi
 migration [14℄approa
h for adaptive exe
ution on a Grid environment has been previously dis
ussed in the
ontext of theGrADS [8℄ proje
t.In the following se
tions, we �rst explain the need for an adaptive s
heduling and exe
ution of jobs due to thedynami
ity of both the Grid and the appli
ation demands. Then, in Se
tion 3, we show a Grid-aware appli
ationmodel. In Se
tion 4, we present how the GridW ay framework provides support for adaptive s
heduling andexe
ution. In Se
tion 5, we show some results obtained in the UCM-CAB resear
h testbed with a Bioinformati
sappli
ation. Finally, in Se
tion 6, we provide some
on
lusions and hints about our future work.2. Adaptive S
heduling and Exe
ution. Grid s
heduling or supers
heduling [11℄, has been de�ned inthe literature as the pro
ess of s
heduling resour
es over multiple administrative domains based upon a de�nedpoli
y in terms of job requirements, system throughput, appli
ation performan
e, budget
onstraints, deadlines,
∗This resear
h was supported by Ministerio de Cien
ia y Te
nología (resear
h grant TIC 2003-01321) and Instituto Na
ional deTé
ni
a Aeroespa
ial (INTA).
† Laboratorio de Computa
ión Avanzada, Centro de Astrobiología (CSIC-INTA), 28850 Torrejón de Ardoz, Spain(huedo
e�inta.es).
‡ Departamento de Arquite
tura de Computadores y Automáti
a, Universidad Complutense, 28040 Madrid, Spain(rubensm�da
ya.u
m.es).
§ Departamento de Arquite
tura de Computadores y Automáti
a, Universidad Complutense, 28040 Madrid, Spain(llorente�da
ya.u
m.es) & Laboratorio de Computa
ión Avanzada, Centro de Astrobiología (CSIC-INTA), 28850 Torrejón deArdoz, Spain (martinli�inta.es). 1

2 Eduardo Huedo, Rubén S. Montero and Igna
io M. Llorenteet
. In general, this pro
ess in
ludes the following phases: resour
e dis
overy and sele
tion; and job preparation,submission, monitoring, migration and termination [18℄.Adaptive s
heduling is the �rst step to deal with the dynami
ity of the Grid. The s
hedule is re-evaluatedperiodi
ally based on the available resour
es and their
urrent
hara
teristi
s, pending jobs, running jobs andhistory pro�le of
ompleted jobs. Several proje
ts [9, 10℄ have
learly demonstrated that periodi
 re-evaluationof the s
hedule in order to adapt it to the
hanging
onditions,
an result in signi�
ant improvements in bothperforman
e and fault toleran
e.In the
ase of adaptive exe
ution, job migration is the key issue [15℄. In order to obtain a reasonable degreeof both appli
ation performan
e and fault toleran
e, a job must be able to migrate among the Grid resour
esadapting itself to the resour
e availability, load (or
apa
ity) and
ost; and to the appli
ation dynami
 demands.Consequently, the following migration
ir
umstan
es, related to the
hanging
onditions and self-adaptingfeatures both dis
ussed in Se
tion 1, should be
onsidered in a Grid environment:1. Grid-initiated migration:
• A �better� resour
e is dis
overed (opportunisti
 migration [16℄).
• The remote resour
e or its network
onne
tion fails (failover migration).
• The submitted job is
an
eled or suspended.2. Appli
ation-initiated migration:
• Performan
e degradation or performan
e
ontra
t violation is dete
ted in terms of appli
ationintrinsi
 metri
s.
• The resour
e demands of the appli
ation
hange (self-migration).The fundamental aspe
t of adaptive exe
ution is the re
ognition of
hanging
onditions of both Grid re-sour
es and appli
ation demands. In order to a
hieve su
h fun
tionality, we propose a Grid-aware appli
ationmodel, whi
h in
ludes self-adapting fun
tionality, and a submission agent that provides the runtime me
hanismsneeded to adapt the exe
ution of the appli
ation. The appli
ation must be equipped with the fun
tionalityneeded to support the appli
ation-initiated migration
ir
umstan
es, while the agent is
ontinuously wat
hingthe o

urren
e of the Grid- and appli
ation-initiated migration
ir
umstan
es.3. Appli
ation Model for Self-Adapting Appli
ations. The standard appli
ation model requiresmodi�
ations to be Grid-aware. In the following list (see �gure 3.1) we detail the extension of the
lassi-
al appli
ation paradigm in order to take advantage of the Grid
apabilities and to be aware of its dynami

onditions:

• A requirement expression is ne
essary to spe
ify the appli
ation requirements that must be met bythe target resour
es. This �le
an be subsequently updated by the appli
ation to adapt its exe
utionto its dynami
 demands. The appli
ation
ould de�ne an initial set of requirements and dynami
ally
hange them when more, or even less, resour
es are required.
• A ranking expression is ne
essary to dynami
ally assign a rank to ea
h resour
e, in order to prioritizethe resour
es that ful�ll the requirements a

ording to the appli
ation runtime needs. A
ompute-intensive appli
ation would assign a higher rank to those hosts with faster pro
essors and lower load,while a data-intensive appli
ation
ould bene�t those hosts
loser to the input data [16℄.
• A performan
e profile is advisable to keep the appli
ation performan
e a
tivity in terms of appli-
ation intrinsi
 metri
s, in order to dete
t performan
e slowdown. For example, it
ould maintain thetime
onsumed by the
ode in the exe
ution of a set of given fragments, in ea
h
y
le of an iterativemethod or in a set of given input/output operations.Due to the high fault rate and the dynami
 res
heduling, restart files are highly advisable. Migration is
ommonly implemented by restarting the job on the new
andidate host, so the job should generate restart �lesat regular intervals in order to restart exe
ution from a given point. However, for some appli
ation domainsthe
ost of generating and transferring restart �les
ould be greater than the saving in
ompute time due to
he
kpointing. Hen
e, if the
he
kpointing �les are not provided the job should be restarted from the beginning.User-level
he
kpointing managed by the programmer must be implemented be
ause system-level
he
kpointingis not possible among heterogeneous resour
es.The appli
ation sour
e
ode does not have to be modi�ed if the appli
ation is not required to be self-adaptive.However, our infrastru
ture requires
hanging the sour
e
ode or inserting instrumentation instru
tions in
ompiled
ode when the appli
ation takes de
isions about resour
e sele
tion and provides its own performan
ea
tivity.

The GridWay Framework for Adaptive S
heduling and Exe
ution on Grids 3
Input Files

Input Files

RESOURCE
SELECTOR

Input Files

Std. Input

Std. Output

Std. Error

Restart File

APPLICATION

Output Files

Performance
Profile

Rank
Expression

Resource
Requirements

PERFORMANCE
DEGRADATION

EVALUATOR

Fig. 3.1. Model for self-adapting appli
ations.With self-adapting
apabilities, an appli
ation
ould initially de�ne a minimal set of requirements and, afterit begins to run, it
an
hange them to a more restri
ted set. In this way, the appli
ation will have more
han
esto �nd a resour
e to run on, and on
e running, it will migrate only if the
andidate resour
e worths it.Note also that if the appli
ation is divided in several phases, ea
h one with di�erent requirements, it
ould
hange them progressively to be more or less restri
tive. In this way, the appli
ation does not have to imposethe most restri
ted set of requirements at the beginning, sin
e it limits the
han
e for the appli
ation to beginexe
ution (see Se
tion 5.3.2). Moreover, the appli
ation have the
hoi
e to make the requirement
hange optionalor mandatory, i.e. it
an
he
k if the
urrent resour
e meets the new requirements, otherwise it may request a(self-)migration.4. GridW ay Support for Adaptive S
heduling and Exe
ution. GridW ay is a new experimentalframework based on Globus [4℄ that allows an easier and more e�
ient exe
ution of jobs on a dynami
 Gridenvironment in a �submit and forget� fashion. The
ore of the GridW ay framework [13℄ is a personal submissionagent that performs all the s
heduling stages [18℄ and wat
hes over the
orre
t and e�
ient exe
ution of jobs.Adaptation to
hanging
onditions is a
hieved by dynami
 res
heduling: on
e the job is initially allo
ated, it isres
heduled when a migration
ir
umstan
e (dis
ussed in Se
tion 2) is dete
ted.Job exe
ution is performed in three stages by the following modules, whi
h
an be de�ned on a per jobbasis:
• The prolog module, whi
h prepares the remote system and stages the input �les.
• The wrapper module, whi
h exe
utes the a
tual job and returns its exit
ode.
• The epilog module, whi
h stages the output �les and
leans up the remote system.Migration is performed by
ombining the above stages. First, the wrapper is
an
eled (if it is still running),then the prolog is submitted to the new
andidate resour
e, preparing it and transferring to it all the needed�les, in
luding the restart files from the old resour
e. After that, the epilog is submitted to the old resour
e(if it is still available), but no output �le staging is performed, it only
leans up the remote system. Finally, thewrapper is submitted to the new
andidate resour
e.The submission agent uses the following modules, whi
h also
an be de�ned on a per job basis, to providethe appli
ation with the support needed for implementing self-adapting fun
tionality:
• The resour
e sele
tor module, whi
h evaluates the requirement and ranking expressions when thejob has to be s
heduled or res
heduled. Di�erent strategies for resour
e sele
tion
an be implemented,from the simplest one based on a pre-de�ned list of hosts to more advan
ed strategies based on require-ment �ltering, and resour
e ranking in terms of performan
e models.
• The performan
e evaluator module, whi
h periodi
ally evaluates the appli
ation'sperforman
e profile in order to dete
t performan
e slowdown and so request a res
heduling a
tion.

4 Eduardo Huedo, Rubén S. Montero and Igna
io M. LlorenteDi�erent strategies
ould be implemented, from the simplest one based on querying the Grid infor-mation servi
es about system status information to more advan
ed strategies based on dete
tion ofperforman
e
ontra
t violations.The submission agent also provides the appli
ation with the fault toleran
e
apabilities needed in su
h afaulty environment:
• The GRAM [1℄ job manager noti�es submission failures as GRAM
allba
ks. This kind of failuresin
ludes, among others,
onne
tion, authenti
ation, authorization, RSL parsing, exe
utable or inputstaging,
redential expiration. . .
• The job manager is probed periodi
ally at ea
h polling interval. If the job manager does not respond,the GRAM gatekeeper is probed. If the gatekeeper responds, a new job manager is started to resumewat
hing over the job. If the gatekeeper fails to respond, a resour
e or network o

urred. This is theapproa
h followed by Condor-G [12℄.
• The standard output of prolog, wrapper and epilog is parsed in order to dete
t failures. In the
ase ofthe wrapper, this is useful to
apture the job exit
ode, whi
h is used to determine whether the job wassu

essfully exe
uted or not. If the job exit
ode is not set, the job was prematurely terminated, so itfailed or was intentionally
an
eled.When an unre
overable failure is dete
ted, the submission agent retries the submission of prolog, wrapperor epilog a number of times spe
i�ed by the user and, when no more retries are left, it performs an a
tion
hosenby the user among two possibilities: stop the job for manually resuming it later, or automati
ally res
hedule it.We have developed both an API (subset of the DRMAA [17℄ standard proposed in the GGF [3℄) and a
ommand line interfa
e to intera
t with the submission agent. They allow s
ientists and engineers to expresstheir
omputational problems in a Grid environment. The
apture of the remote exe
ution exit
ode allow usersto de�ne
omplex jobs, where ea
h depends on the output and exit
ode from the previous job. They may eveninvolve bran
hing, looping and spawning of subtasks, allowing the exploitation of the parallelism on the work�ow of
ertain type of appli
ations.Our framework is not bounded to a spe
i�

lass of appli
ations, does not require new servi
es, and doesnot ne
essarily require sour
e
ode
hanges. The framework is
urrently fun
tional on any Grid testbed basedon Globus. We believe that is an important advantage be
ause of so
io-politi
al issues:
ooperation betweendi�erent organizations, administrators, and users
an be very di�
ult.5. Experien
es.5.1. The Target Appli
ation. We have tested our tool with a Bioinformati
s appli
ation aimed atpredi
ting the stru
ture and thermodynami
 properties of a target protein from its amino a
id sequen
es.The algorithm, tested in the 5th round of Criti
al Assessment of te
hniques for protein Stru
ture Predi
tion(CASP5), aligns with gaps the target sequen
e with all the 6150 non-redundant stru
tures in the Protein DataBank (PDB), and evaluates the mat
h between sequen
e and stru
ture based on a simpli�ed free energy fun
tionplus a gap penalty term. The lowest s
oring alignment found is regarded as the predi
tion if it satis�es somequality requirements. For ea
h sequen
e-stru
ture pair, the sear
h of the optimal alignment is not exhaustive.A large number of alignments are
onstru
ted in parallel through a semi-deterministi
 algorithm, whi
h tries tominimize the s
oring fun
tion.To speed up the analysis and redu
e the data needed, the PDB �les are prepro
essed to extra
t the
onta
tmatri
es, whi
h provide a redu
ed representation of protein stru
tures. The algorithm is then applied twi
e, the�rst time as a fast sear
h, in order to sele
t the 100 best
andidate stru
tures, the se
ond time with parametersallowing a more a

urate sear
h of the optimal alignment.We have applied the algorithm to the predi
tion of thermodynami
 properties of families of orthologousproteins, i.e. proteins performing the same fun
tion in di�erent organisms. If a representative stru
ture of thisset is known, the algorithm predi
ts it as the
orre
t stru
ture. The biologi
al results of the
omparative studyof several proteins are presented elsewhere [19, 7℄.5.2. Experiment Preparation. We have modi�ed the appli
ation to provide a restart file and aperforman
e profile. The ar
hite
ture independent restart file stores the best
andidate proteins foundto that moment and the next protein in the PDB to analyze. The performan
e profile stores the timespent on ea
h iteration of the algorithm, where an iteration
onsists in the analysis of a given number ofsequen
es.

The GridWay Framework for Adaptive S
heduling and Exe
ution on Grids 5Table 5.1The UCM-CAB resear
h testbed.Name Ar
hite
ture OS Speed Memory Job mgr. VOursa 1×UltraSPARC-IIe Solaris 500MHz 256MB fork UCMdra
o 1×UltraSPARC-I Solaris 167MHz 128MB fork UCMpegasus 1×Pentium 4 Linux 2.4GHz 1GB fork UCMsolea 2×UltraSPARC-II Solaris 296MHz 256MB fork UCMbabie
a 5×Alpha EV6 Linux 466MHz 256MB PBS CABInitially, the appli
ation does not impose any requirement to the resour
es, so the requirement expressionis null. The ranking expression uses a performan
e model to estimate the job turnaround time as the sumof exe
ution and transfer time, derived from the performan
e and proximity of the
andidate resour
es [16℄.The resour
e sele
tor
onsists of a shell s
ript that queries the MDS [2℄ for potential exe
ution hosts.Initially, available
ompute resour
es are dis
overed by a

essing the GIIS server and those resour
es that donot meet the user-provided requirements are �ltered out. At this step, an authorization test (via GRAM pingrequest) is performed on ea
h dis
overed hosts to guarantee user a

ess. Then, the resour
e is monitored togather its dynami
 status by a

essing its lo
al GRIS server. This information is used to assign a rank toea
h
andidate resour
e based on user-provided preferen
es. Finally, the resultant prioritized list of
andidateresour
es is used to dispat
h the jobs.In order to redu
e the information retrieval overhead, the GIIS and GRIS information is lo
ally
a
hed atthe
lient host and updated independently in order to separately determine how often the testbed is sear
hedfor new resour
es and the frequen
y of resour
e monitoring. In the following experiments we set the GIIS
a
hetimeout to 5 minutes and the GRIS
a
he timeout to 30 se
onds.The performan
e evaluator is another shell s
ript that parses the performan
e profile and dete
ts per-forman
e slowdown when the last iteration time is greater than a given threshold.The whole experiment was submitted as an array job, where ea
h sequen
e was analyzed in a separate taskof the array, spe
ifying all the needed information in a job template �le.The experiment �les
onsists of: the exe
utable (0.5MB) provided for all the resour
e ar
hite
tures in thetestbed, the PDB �les shared and
ompressed (12.2MB) to redu
e the transfer time, the parameter �les (1KB),and the �le with the sequen
e to be analyzed (1KB). The �nal �le name of the exe
utable and the �le withthe sequen
e to be analyzed is obtained by resolving the variables GW_ARCH and GW_TASK_ID, respe
tively, atruntime for the
urrent host and job. Input �les
an be lo
al or remote (spe
i�ed as a GASS o GridFTP URL),and both
an be
ompressed (to be un
ompressed on the sele
ted host) and de
lared as shared (then stored inthe GASS
a
he and shared by all the jobs submitted to this resour
e).5.3. Results on the UCM-CAB Testbed. We have performed the experiments in the UCM-CABresear
h testbed, whi
h is summarized in table 5.1.5.3.1. Dete
tion of a Performan
e Degradation. Let us �rst
onsider an experiment
onsisting in�ve tasks, ea
h of them applies the stru
ture predi
tion algorithm to a di�erent sequen
e of the ATP Synthaseenzyme (epsilon
hain) present in di�erent organisms. Shortly after submitting the experiment, pegasus wasoverloaded with a
ompute-intensive appli
ation.Figure 5.1 shows the exe
ution pro�le in this situation, along with the load in pegasus that
aused theperforman
e degradation, and the progress of job 0, obtained from its performan
e profile. Initially fourtasks are allo
ated to babie
a and one to pegasus. When the performan
e evaluator dete
ts the performan
edegradation, it requests a job migration. Sin
e there is a slot available in babie
a, the job is migrated to italthough it presents lower performan
e. In spite of the overhead indu
ed by job migration, 6% of the totalexe
ution time, job 0 ends before the rest of jobs, be
ause of the better performan
e o�ered by pegasus beforeit be
ame saturated.5.3.2. Mandatory Change in Resour
e Requirements. In the following experiment, we have ap-plied the stru
ture predi
tion algorithm to �ve sequen
es of the Triosephosfate Isomerase enzyme, whi
h is
onsiderably larger than the previous one, present in di�erent organisms.

6 Eduardo Huedo, Rubén S. Montero and Igna
io M. Llorente

Fig. 5.1. Exe
ution pro�le (top), load in pegasus (middle), and progress of job 0 (bottom) when a performan
e degradationis dete
ted.As mentioned in Se
tion 5.1, the target appli
ation is divided in two di�erent phases. First, a fair analysisis performed to get the 100 best
andidate proteins, and then, a more exhaustive analysis is performed to getthe 20 best
andidate proteins from the 100 obtained in the �rst phase. As the se
ond phase analysis performsa more a

urate sequen
e alignment and the target sequen
e is quite large, it needs more memory than the �rstphase analysis. Therefore, the appli
ation
hange its resour
e requirements before starting the se
ond phase toassure that it has enough memory (512MB). The only resour
e that meets the requirements of the se
ond phaseis pegasus.Figure 5.2 shows the exe
ution pro�le in this situation. Job 0 starts exe
ution on pegasus, while jobs 1 to4 start exe
ution on babie
a. When job 0
ompletes its exe
ution, job 1 dete
ts that pegasus has be
ome freeand migrates to it, sin
e it presents a better rank (opportunisti
 job migration). After that, jobs 2 to 4 requesta self-migration as they have
hanged their requirements to
omplete the se
ond phase of the protein analysisand babie
a doesn't meet them. Jobs 0 and 1 also
hanged their requirements before, but its exe
ution hostin that moment (pegasus) met them, so they
ould
ontinue with their exe
ution. As pegasus is busy with job1, jobs 2 to 4 have to wait until it be
omes available. These jobs are submitted
onse
utively to pegasus (see�gure 5.2) to
omplete the se
ond phase of the protein analysis.6. Con
lusions. We have shown an e�e
tive way for providing adaptive s
heduling and exe
ution onGrids. The presented framework does not ne
essarily require sour
e
ode
hanges in the appli
ations, but withminimal
hanges, appli
ations
ould bene�t from the self-adapting features also provided.On the s
ope of the target appli
ation, these promising experiments show the potentiality of the Grid tothe study of large numbers of protein sequen
es, and suggests the possible appli
ation of this methods to thewhole set of proteins in a
omplete mi
robial genome.

The GridWay Framework for Adaptive S
heduling and Exe
ution on Grids 7

Fig. 5.2. Exe
ution pro�le when a mandatory
hange in resour
e requirements o

urs.We are
urrently working on a storage resour
e sele
tor module to provide support for repli
a �les, spe
i�edas a logi
al �le or as a �le belonging to a logi
al
olle
tion. In this way the PDB �les holding the proteinstru
tures, will be s
attered on the Grid testbed. The dis
overy pro
ess is performed by a

essing the GlobusRepli
a Catalog. The resour
e sele
tion is based on the proximity between the sele
ted
ompute resour
e andthe
andidate storage resour
es, along with the values gathered from the MDS GRIS.A
knowledgments. We would like to thank Ugo Bastolla, sta� s
ientist at the Centro de Astrobiologíaand developer of the Bioinformati
s appli
ation used in the experiments, for his support on understanding andmodifying the appli
ation. REFERENCES[1℄ Globus Resour
e Allo
ation Manager. http://www.globus.org/gram.[2℄ Monitoring and Dis
overy Servi
e. http://www.globus.org/mds.[3℄ The Global Grid Forum. http://www.gridforum.org.[4℄ The Globus Proje
t. http://www.globus.org.[5℄ G. Allen, E. Seidel, and J. Shalf, S
ienti�
 Computing on the Grid, Byte, Spring 2002 (2002), pp. 24�32.[6℄ M. Baker, R. Buyya, and D. Laforenza, Grids and Grid Te
hnologies for Wide-Area Distributed Computing, Intl. J. ofSoftware: Pra
ti
e and Experien
e (SPE), 32 (2002), pp. 1437�1466.[7℄ U. Bastolla et al., Redu
ed Protein Folding E�
ien
y, Genome Redu
tion and AT Bias in Obligatory Intra
ellularBa
teria: An Integrated View, (2003). (preprint).[8℄ F. Berman et al., The GrADS Proje
t: Software Support for High-Level Grid Appli
ation Development, Intl. J. of HighPerforman
e Computing Appli
ations, 15 (2001), pp. 327�34.[9℄ , Adaptive Computing on the Grid Using AppLeS, IEEE Transa
tions on Parallel and Distributed Systems, 14 (2003),pp. 369�382.[10℄ R. Buyya, D.Abramson, and J. Giddy, A Computational E
onomy for Grid Computing and its Implementation in theNimrod-G Resour
e Broker, Future Generation Computer Systems, 18 (2002), pp. 1061�1074.[11℄ I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastru
ture, Morgan-Kaufman, 1999.[12℄ J. Frey et al., Condor/G: A Computation Management Agent for Multi-Institutional Grids, in Pro
. of the 10th Symp.on High Performan
e Distributed Computing (HPDC10), 2001.[13℄ E. Huedo, R. S. Montero, and I. M. Llorente, A Framework for Adaptive Exe
ution on Grids, Intl. J. of Software �Pra
ti
e and Experien
e, (2004). (in press).[14℄ G. Lanfermann et al., Nomadi
 Migration: A New Tool for Dynami
 Grid Computing, in Pro
. of the 10th Symp. onHigh Performan
e Distributed Computing (HPDC10), 2001.[15℄ R. S. Montero, E. Huedo, and I. M. Llorente, Experien
es about Job Migration on a Dynami
 Grid Environment, inPro
. of Intl. Conf. on Parallel Computing (ParCo 2003), September 2003.[16℄ , Grid Resour
e Sele
tion for Opportunisti
 Job Migration, in Pro
. of Intl. Conf. on Parallel and Distributed Computing(Euro-Par 2003), vol. 2790 of Le
ture Notes on Computer S
ien
e, August 2003, pp. 366�373.

8 Eduardo Huedo, Rubén S. Montero and Igna
io M. Llorente[17℄ H. Raji
 et al., Distributed Resour
e Management Appli
ation API Spe
i�
ation 1.0, te
h. rep., The Global Grid Forum,2003. DRMAA Working Group.[18℄ J. M. S
hopf, Ten A
tions when Supers
heduling, Te
h. Rep. GFD-I.4, The Global Grid Forum: S
heduling Working Group,2001.[19℄ R. van Ham et al., Redu
tive Genome Evolution in bu
hnera aphidi
ola, Pro
. Natl. A
ad. S
i. USA, 100 (2003), pp. 581�586.Edited by: Wilson Rivera, Jaime Seguel.Re
eived: July 3, 2003.A

epted: September 1, 2003.

S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 3, pp. 9�18. http://www.s
pe.org ISSN 1895-1767
© 2005 SWPSPARROT: AN APPLICATION ENVIRONMENT FOR DATA-INTENSIVE COMPUTINGDOUGLAS THAIN AND MIRON LIVNY∗Abstra
t. Distributed
omputing
ontinues to be an alphabet-soup of servi
es and proto
ols for managing
omputationand storage. To live in this environment, appli
ations require middleware that
an transparently adapt standard interfa
es tonew distributed systems; su
h middleware is known as an interposition agent. In this paper, we present several lessons learnedabout interposition agents via a progressive study of design possibilities. Although performan
e is an important
on
ern, we payspe
ial attention to less tangible issues su
h as portability, reliability, and
ompatibility. We begin with a
omparison of sevenmethods of interposition and sele
t one method, the debugger trap, that is the slowest but also the most reliable. Using thismethod, we implement a
omplete interposition agent, Parrot, that spli
es existing remote I/O systems into the namespa
e ofstandard appli
ations. The primary design problem of Parrot is the mapping of �xed appli
ation semanti
s into the semanti
s ofthe available I/O systems. We o�er a detailed dis
ussion of how errors and other unexpe
ted
onditions must be
arefully managedin order to keep this mapping inta
t. We
on
lude with a evaluation of the performan
e of the I/O proto
ols employed by Parrot,and use an Andrew-like ben
hmark to demonstrate that semanti
 di�eren
es have
onsequen
es in performan
e.1Key words. Adaptive middleware, error diagnosis, interposition agents, virtual ma
hines.1. Introdu
tion. The �eld of distributed
omputing has produ
ed
ountless systems for harnessing remotepro
essors and a

essing remote data. Despite the intentions of their designers, no single system has a
hieveduniversal a

eptan
e or deployment. Ea
h
arries its own strengths and weakness in performan
e, manageability,and reliability. Renewed interest in world-wide
omputational systems is in
reasing the number of proto
olsand interfa
es in play. A
omplex e
ology of distributed systems is here to stay.
C

PU
/IO

Interaction

Common I/O Interface

Distributed I/O Services

FTP

Process

Distributed Computing Services

Condor PBS NQE LSF
Load

Leveler

Application

Local Operating System

Common Process Interface

(open, close, read, write, lseek)

(main, exit, abort, kill, sleep)

NeSTChirp RFIO

Parrot

DCAPFig. 1.1. The Hourglass Model

The result is an hourglass model of distributed
omputing,shown in Figure 1.1. At the
enter lie ordinary appli
ations builtto standard interfa
es su
h as POSIX. Above lie a number ofbat
h systems that manage pro
essors, intera
t with users, anddeal with failures of exe
ution. A bat
h system intera
ts with anappli
ation through simple interfa
es su
h as main and exit. Be-low lie a number of I/O servi
es that organize and
ommuni
atewith remote memory, disks, and tapes. An ordinary operatingsystem (OS) transforms an appli
ation's expli
it reads and writesinto the low-level blo
k and network operations that
ompose alo
al or distributed �le system.However, atta
hing a new I/O servi
e to a traditional OS isnot a trivial task. Although the prin
iple of an extensible OShas re
eived mu
h attention in the resear
h
ommunity [19℄, pro-du
tion operating systems have limited fa
ilities for extension,usually requiring kernel modi�
ations or administrator privileges.Although this may be a

eptable for a personal
omputer, this re-quirement makes it di�
ult or impossible to provide
ustom I/Oand naming servi
es for appli
ations visiting a borrowed
omput-ing environment su
h as a timeshared mainframe, a
ommodity
omputing
luster, or an opportunisti
 workgroup.To remedy this situation, we advo
ate the use of interpositionagents [13℄. These devi
es transform standard interfa
es intoremote I/O proto
ols not normally found in an operating system.In e�e
t, an agent allows an appli
ation to bring its �lesystemand namespa
e along with it wherever it goes. This releases thedependen
e on the details of the exe
ution site while preservingthe use of standard interfa
es. In addition, the agent
an tap into naming servi
es that transform private namesinto fully-quali�ed names relevant in the larger system.
∗Computer S
ien
es Department, University of Wis
onsin
1This resear
h was supported by a Lawren
e Landweber NCR fellowship in distributed systems.9

10 D. Thain and M. Livnyinternal te
hniques external te
hniquespoly. stati
 dyn. binary debug remote kernelexten. link link rewrite trap �lesys.
allouts
ope library stati
 dynami
 dynami
 no setuid any anyburden rewrite relink identify identify run
ommand superuser modify oslayer �xed any any any sys
all fs ops only sys
allinit/�ni hard hard hard hard easy impossible easya�. linker no no no no yes yes yesdebug yes yes yes yes limited yes yesse
ure no no no no yes yes yes�nd holes easy hard hard hard easy easy easyporting easy hard hard hard medium easy mediumFig. 1.2. Properties of Interposition Te
hniquesIn this paper, we present pra
ti
al lessons learned from several years of building and deploying interpositionagents within the Condor proje
t. [20, 28, 21, 22℄ Although the notion of su
h agents is not unique to Condor [13,2, 12℄, they have seen relatively little use in other produ
tion systems. This is due to a variety of te
hni
al andsemanti
 di�
ulties that arise in
onne
ting real systems together.We present this paper as a progressive design study that explores these problems and explains our solutions.We begin with a detailed study of seven methods of interposition, �ve of whi
h we have experien
e buildingand deploying. The remaining two are e�e
tive but impra
ti
al be
ause of the privilege required. We will
ompare the performan
e and fun
tionality of these methods, giving parti
ular attention to intangibles su
has portability and reliability. In parti
ular, we will
on
entrate on one method that has not been explored indetail: the debugger trap. Although this method has been employed in idealized operating systems, it requiresadditional te
hniques in order to provide a

eptable performan
e on popular operating systems with limiteddebugging
apabilities, su
h as Linux.Using the debugger trap, we fo
us on the design of Parrot, an interposition agent that spli
es remote I/Osystems into the �lesystem spa
e of ordinary appli
ations. A
entral problem in the design of an I/O agent isthe semanti
 problem of mapping not-quite-identi
al interfa
es to ea
h other. The outgoing mapping is usuallyquite simple: read be
omes a get, write be
omes a put, and so forth. The real di�
ulty lies in interpreting thelarge spa
e of return values from remote servi
es. Many new kinds of failure are introdu
ed: servers
rash,
redentials expire, and disks �ll. Trivial transformations into the appli
ation's standard interfa
e lead to abrittle and frustrating experien
e for the user.A
orollary to this observation is that a

ess to
omputation and storage
annot be fully divor
ed. Abstra
tnotions of design often en
ourage the partition of distributed systems into two a
tivities: either
omputationor storage. An interposition agent serves as a
onne
tion between these two
on
erns; like an operating systemkernel, it manages both types of devi
es and must mediate their intera
tion, sometimes bypassing the appli
ationitself.This paper is a
ondensed version of a workshop paper. Due to spa
e limitations, we have omitted a numberof se
tions and details, indi
ated by footnotes. The interested reader may �nd further details in the originalpaper [23℄ or in a te
hni
al report. [24℄22. Interposition Te
hniques Compared. There are many te
hniques for interpositioning servi
es be-tween an appli
ation and the underlying system. Ea
h has parti
ular strengths and weaknesses. Figure 1.2summarizes seven interposition te
hniques. They may be broken into two broad
ategories: internal and exter-nal. Internal te
hniques modify the memory spa
e of an appli
ation pro
ess in some fashion. These te
hniquesare �exible and e�
ient, but
annot be applied to arbitrary pro
esses. External te
hniques
apture and modifyoperations that are visible outside an appli
ation's address spa
e. These te
hniques are less �exible and havehigher overhead, but
an be applied to nearly any pro
ess. The Condor proje
t has experien
e building anddeploying all of the internal te
hniques as well one external te
hnique: the debugger trap. The remaining twoexternal te
hniques we des
ribe from relevant publi
ations.The simplest te
hnique is the polymorphi
 extension. If the appli
ation stru
ture is amenable to extension,we may simply add a new implementation of an existing interfa
e. The user then must make small
ode
hangesto invoke the appropriate
onstru
tor or fa
tory in order to produ
e the new obje
t. This te
hnique is used in
2Omitted: Example appli
ations of interposition agents.

Parrot: An Appli
ation Environment for Data-Intensive Computing 11Condor's Java Universe [22℄ to
onne
t an ordinary InputStream or OutputStream to a se
ure remote proxy. Itis also found in general purpose libraries su
h as SFIO [25℄.The stati
 library te
hnique involves
reating a repla
ement for an existing library. The user is obliged tore-link the appli
ation with the new library. For example, Condor's Standard Universe [20℄ provides a drop-inrepla
ement for the standard C library that provides transparent
he
kpointing as well as proxying of I/Oba
k to the submission site, fully emulating the user's home environment. The dynami
 library te
hnique alsoinvolves
reating a repla
ement for an existing library. However, through the use of linker
ontrols, the user maydire
t the new library to be used in pla
e of the old for any given dynami
ally linked library. This te
hniqueis used by DCa
he [8℄, some implementations of SOCKS [15℄, as well as our own Bypass [21℄ toolkit. Thebinary rewriting te
hnique involves modifying the ma
hine
ode of a pro
ess at runtime to redire
t the �ow of
ontrol. This requires very detailed knowledge of the CPU ar
hite
ture in use, but this
an be hidden behindan abstra
tion su
h as the Paradyn [17℄ toolkit. This te
hnique has been used to �hija
k� an unwitting pro
essat runtime [28℄.Traditional debuggers make use of a spe
ialized operating system interfa
e for stopping, examining, andresuming a pro
ess. The debugger trap te
hnique uses this interfa
e, but instead of merely examining thepro
ess, the debugging agent traps ea
h system
all, provides an implementation, and then pla
es the resultba
k in the target pro
ess while nullifying the intended system
all. An example of this te
hnique is UFO [2℄,whi
h allows a

ess to HTTP and ftp resour
es via whole-�le fet
hing. A di�
ulty with the debugger trap isthat many tools
ompete for a

ess to a single pro
ess' debug interfa
e. The Tool Daemon Proto
ol (TDP) [18℄provides an interfa
e for managing su
h tools in a distributed system.A remote �lesystem may be used as an interposition agent by simply modifying the �le server. NFS is apopular
hoi
e for this te
hnique, and is used by the Legion [27℄ obje
t-spa
e translator, as well the Sli
e [4℄mi
roproxy. Finally, short of modifying the kernel itself, we may install a one-time kernel
allout whi
h permitsa �lesystem to be servi
ed by a user-level pro
ess. This fa
ility
an be present from the ground up in ami
rokernel [1℄, but
an also be added as an afterthought, whi
h is the
ase for most implementations ofAFS [11℄.The four internal te
hniques may only be applied to
ertain kinds of programs. Polymorphi
 extension andstati
 linking only apply to those programs that
an be rebuilt. The dynami
 library te
hnique requires thatthe repla
ed library be dynami
, while binary rewriting (with the Paradyn toolkit) requires the presen
e of thedynami
 loader, although no parti
ular library must be dynami
. The three external te
hniques apply to anypro
ess, with the ex
eption that the debugging trap prevents the tra
ed pro
ess from elevating its privilege levelthrough the setuid feature.The burden upon the user for ea
h of these te
hniques also varies widely. For example, polymorphi
 exten-sion requires small
ode
hanges while stati
 linking requires rebuilding. These te
hniques may not be possiblewith pa
kaged
ommer
ial software. Dynami
 linking and binary rewriting require that the user understandwhi
h programs are dynami
ally linked and whi
h are not. Most standard system utilities are dynami
, butmany
ommer
ial pa
kages are stati
. Our experien
e is that users are surprised and quite frustrated whenan (unexpe
tedly) stati
 appli
ation blithely ignores an interposition agent. The remote �lesystem and kernel
allout te
hniques impose the smallest user burden, but require a
ooperative system administrator to makethe ne
essary
hanges. The debugger trap imposes a small burden on the user to simply invoke the agentexe
utable.Perhaps the most signi�
ant di�eren
e between the te
hniques is the ability to trap di�erent layers ofsoftware. Ea
h of the internal te
hniques may be applied at any layer of
ode. For example, Bypass has beenused to instrument an appli
ation's
alls to the standard memory allo
ator, the X Window System library, andthe OpenGL library. In
ontrast, the external te
hniques are �xed to parti
ular interfa
es. The debugger traponly operates on physi
al system
alls, while the remote �lesystem and kernel
allout are limited to
ertain�lesystem operations.Di�eren
es in these te
hniques a�e
t the design of
ode that they atta
h to. Consider the matter ofimplementing a dire
tory listing on a remote devi
e. The internal te
hniques are
apable of inter
epting library
alls su
h as open and opendir. These are easily mapped to remote �le a

ess proto
ols, whi
h generally haveseparate pro
edures for a

essing �les and dire
tories. However, the Unix interfa
e uni�es �les and dire
tories;both are a

essed through the system
all open. External te
hniques must a

ept an open on either a �le ordire
tory and defer the binding to a remote operation until either read or getdents is invoked. The
hoi
e ofinterposition layer a�e
ts the design of the agent.

12 D. Thain and M. LivnyThe external te
hniques also di�er in the range of operations that they are able to trap. While the debuggertrap
an modify any system
all, the remote �lesystem and kernel
allout te
hniques are limited to �lesystemoperations. A parti
ular remote �lesystem may have even further restri
tions. For example, the statelessNFS proto
ol has no representation of the system
alls open and
lose. Without a

ess to this information,the interposed servi
e
annot provide semanti
s signi�
antly di�erent than those provided by NFS. Further,su
h �le system interfa
es do not express any binding between individual operations and the pro
esses thatinitiate them. That is, a remote �lesystem agent sees a read or write but not the pro
ess id that issued it.Without this information, it is di�
ult or impossible to performing a

ounting for the purposes of se
urity orperforman
e.A number of important a
tivities take pla
e during the initialization and �nalization of a pro
ess: dynami
libraries are loaded;
onstru
tors, destru
tors, and other automati
 routines are run; I/O streams are
reatedor �ushed. During these transitions, the libraries and other resour
es in use by a pro
ess are in a state of�ux. This
ompli
ates the implementation of internal agents that wish to inter
ept su
h a
tivity. For example,the appli
ation may perform I/O in a global
onstru
tor or destru
tor. Thus, an internal agent itself
annotrely on global
onstru
tors or destru
tors: there is no ordering enfor
ed between those of the appli
ation andthose of the agent. Likewise, a dynami
ally loaded agent
annot interpose on the a
tions of the dynami
 linker.The programmer of su
h agents must not only exer
ise
are in
onstru
ting the agent, but also in sele
ting thelibraries invoked by the agent. Su
h
ode is time
onsuming to
reate and debug. These a
tivities are mu
hmore easily manipulated through external te
hniques. For example, external te
hniques
an easily trap andmodify the a
tivities of the dynami
 linker.No
ode is ever
omplete nor fully debugged. Produ
tion deployment of interposition agents requires thatusers be permitted to debug both appli
ations and agents. All te
hniques admit debugging of user programs,with the only
ompli
ation arising in the debugger trap. For obvious reasons, a single pro
ess
annot bedebugged by two pro
esses at on
e, so a debugger
annot be atta
hed to an instrumented pro
ess. However,a debugger trap agent
an be used to manage an entire pro
ess tree, so instead the user may use the agent toinvoke the debugger, whi
h may then invoke the appli
ation. The debugger's operations may be trapped justlike any other system
all and passed along to the appli
ation, all under the supervision of the agent.Interposition agents may be used for se
urity as well as
onvenien
e. An agent may provide a sandboxwhi
h prevents an untrusted appli
ation from modifying any external data that it is not permitted to a

ess.The internal te
hniques are not suitable for this se
urity purpose, be
ause they may easily be subverted by aprogram that invokes system
alls dire
tly without passing through libraries. The external te
hniques, however,
annot be fooled in this way and are thus suitable for se
urity.Related to se
urity is the matter of hole dete
tion. An interposition agent may fail to trap an operationattempted by an appli
ation. This may simply be a bug in the agent, or it may be that the interfa
e hasevolved over time, and the appli
ation is using a depre
ated or newly added interfa
e that the agent is notaware of. Internal agents are espe
ially sensitive to this bug. As standard libraries develop, interfa
es areadded and deleted, and modi�ed library routines may invoke system
alls dire
tly without passing through the
orresponding publi
 interfa
e fun
tion. For example, fopen may invoke the open system
all without passingthrough the open fun
tion. Su
h an event
auses general
haos in both the appli
ation and agent, often resultingin
rashes or (worse) silent output errors. No su
h problem o

urs in external agents. Although interfa
es still
hange, any unexpe
ted event is dete
ted as an unknown system
all. The agent may then terminate theappli
ation and indi
ate the exa
t problem.The problem of hole dete
tion must not be underestimated. Our experien
e is that any signi�
antoperating system upgrade in
ludes
hanges to the standard libraries, whi
h in turn require modi�
ations tointernal trapping te
hniques. Thus, internal agents are rarely forward
ompatible. Further, identifying and�xing su
h holes is time
onsuming. Be
ause the missed operation itself is unknown, one must spend long hourswith a debugger to see where the expe
ted
ourse of the appli
ation di�ers from the a
tual behavior. On
edis
overed, a new entry point must be added to the agent. The treatment is simple but the diagnosis is di�
ult.We have learned this lesson the hard way by porting both the Condor remote system
all library and the Bypasstoolkit to a wide variety of Unix-like platforms.For these reasons, we have des
ribed porting in Figure 1.2 as follows. The polymorphi
 extension and theremote �lesystem are quite easy to build on a new system. The debugger trap and the kernel
allout havesigni�
ant system dependent
omponents to be ported to ea
h operating system, but the nature and stabilityof these interfa
es make this a tra
table task. The remaining three te
hniques�stati
 linking, dynami
 linking,

Parrot: An Appli
ation Environment for Data-Intensive Computing 13getpid stat open/
lose read 8KB bandwidthunmod .18±.03 µs 1.85±.09 3.18± .08 3.27± .19 282±13 MB/srewrite .21±.25 µs 1.82±.02 3.21± .05 3.26± .03 280± 7 MB/sstati
 .21±.02 µs 1.80±.17 3.59± .05 3.34± .02 280±17 MB/sdynami
 1.22±.01 µs 3.60±.10 5.53± .06 4.31± .09 278± 4 MB/s(α unmod) (6.8x) (1.9x) (1.7x) (1.3x) (0.99x)debug 10.06±.21 µs 55.41±.50 42.09± .06 30.99± .26 122± 4 MB/s(α unmod) (56x) (30x) (13x) (9x) (0.43x)Fig. 2.1. Overhead of Interposition Te
hniquesand binary rewriting�should be viewed as a signi�
ant porting
hallenge that must be revisited at every minoroperating system upgrade.Figure 2.1
ompares the performan
e of four transparent interposition te
hniques. We
onstru
ted a ben
h-mark C program whi
h timed 100,000 iterations of various system
alls on a 1545 MHz Athlon XP1800 runningLinux 2.4.18. Available bandwidth was measured by reading a 100 MB �le sequentially in 1 MB blo
ks. Themean and standard deviation of 1000
y
les of ea
h ben
hmark are shown. File operations were performed on anexisting �le in a temporary �le system. The unmod
ase gives the performan
e of this ben
hmark without anyagent atta
hed, while the remaining �ve show the same ben
hmark modi�ed by ea
h interposition te
hnique.In ea
h
ase, we
onstru
ted a very minimal agent to trap system
alls and invoke them without modi�
ation.As
an be seen, the binary rewriting and stati
 linking methods add no signi�
ant
ost to the appli
ation.The dynami
 method has overhead on the order of mi
rose
onds, as it must manage the stru
ture of (potentially)multiple agents and invoke a fun
tion pointer. However, these overheads are qui
kly dominated by the
ostof moving data in and out of the pro
ess. The debugger trap has the greatest overhead of all the te
hniques,ranging from a 56x slowdown for getpid to a 6x slowdown for writing 8 KB. Most importantly, the bandwidthmeasurement demonstrates that the debugger trap a
hieves less than half of the unmodi�ed I/O bandwidth.It should be fairly noted that this laten
y and bandwidth will be dominated by the laten
y and bandwidth ofa

essing remote servi
es on
ommodity networks. Se
urity and reliability
ome at a measurable
ost.3

Fig. 3.1. Intera
tive Browsing with Parrot3. Parrot. The Parrot interposition agent atta
hes standard appli
ations to a variety of distributed I/Osystems by way of the debugger trap, des
ribed above. Ea
h I/O proto
ol is presented as a normal �lesystementry under a new top-level dire
tory bearing the name of the proto
ol. In addition, an optional mountlist maybe given, whi
h redire
ts parts of the �lesystem namespa
e to external paths. Figure 3.1 shows Parrot beingused with standard tools to manipulate �les stored at the Mass Storage Server (MSS) at the National Center forSuper
omputing Appli
ations (NCSA) via the Grid Se
urity Infrastru
ture (GSI) [9℄ variant of the File TransferProto
ol (FTP).Parrot is equipped with a variety of drivers for
ommuni
ating with external storage systems; ea
h hasparti
ular features and limitations. The simplest is the Lo
al driver, whi
h simply passes operations on tothe underlying operating system. The Chirp proto
ol was designed by the authors in an earlier work [22℄
3Omitted: a detailed des
ription of the debugger trap.

14 D. Thain and M. Livnyto provide remote I/O with semanti
s very similar to POSIX. A standalone
hirp server is distributed withParrot. The venerable File Transfer Proto
ol (FTP) has been in heavy use sin
e the early days of theInternet. Its simpli
ity allows for a wide variety of of implementations, whi
h, for our purposes, results in anunfortunate degree of impre
ision whi
h we will expand upon below. Parrot supports the se
ure GSI [3℄ variantof ftp. The NeST proto
ol is the native language of the NeST storage applian
e [6℄, whi
h provides an array ofauthenti
ation, allo
ation, and a

ounting me
hanisms for storage that may be shared among multiple transientusers. The RFIO and DCAP proto
ols were designed in the high-energy physi
s
ommunity to provide a

essto hierar
hi
al mass storage devi
es su
h as Castor [5℄ and DCa
he [8℄.Be
ause Parrot must preserve POSIX semanti
s for the sake of the appli
ation, our foremost
on
ern isthe ability of ea
h of these proto
ols to provide the ne
essary semanti
s. Performan
e is a se
ondary
on
ern,although it is a�e
ted signi�
antly by semanti
 issues. A summary of the semanti
s of ea
h of these proto
olsis given in Figure 3.2.4name binding dis
ipline dirs metadata symlinks
onne
tionsposix open/
lose random yes dire
t yes -
hirp open/
lose random yes dire
t yes per
lientftp get/put sequential varies indire
t no per �lenest get/put random yes indire
t yes per
lientr�o open/
lose random yes dire
t no per �le/opd
ap open/
lose random no dire
t no per
lientFig. 3.2. Proto
ol Compatibility with POSIX4. Errors and Boundary Conditions. Error handling has not been a pervasive problem in the designof traditional operating systems. As new models of �le intera
tion have developed, attending error modes havebeen added to existing systems by expanding the software interfa
e at every level. For example, the additionof distributed �le systems to the Unix kernel
reated the new possibility of a stale �le handle, represented bythe ESTALE error. As this error mode was dis
overed at the very lowest layers of the kernel, the value wasadded to the devi
e driver interfa
e, the �le system interfa
e, the standard library, and expe
ted to be handleddire
tly by appli
ations.We have no su
h luxury in an interposition agent. Appli
ations use the existing interfa
e, and we haveneither the desire nor the ability to
hange it. Sometimes, if we are lu
ky, we may re-use an error su
h asESTALE for an analogous, if not identi
al purpose. Yet, the underlying devi
e drivers generate errors rangingfrom the vague ��le system error� to the mi
ros
opi
ally pre
ise �server's
erti�
ation authority is not trusted.�How should the unlimited spa
e of errors in the lower layers be transformed into the �xed spa
e of errorsavailable to the appli
ation?5For example, several devi
e drivers have the ne
essary ma
hinery to
arry out all of a user's possible requests,but provide vague errors when a supported operation fails. The FTP driver allows an appli
ation to read a �levia the GET
ommand. However, if the GET
ommand fails, the only available information is the error
ode550, whi
h en
ompasses almost any sort of �le system error in
luding �no su
h �le,� �a

ess denied,� and �is adire
tory.� The POSIX interfa
e does not permit a
at
h-all error value; it requires a spe
i�
 reason. Whi
herror
ode should be returned to the appli
ation?One te
hnique for dealing with this problem is to interview the servi
e in order to narrow down the
auseof the error, in a manner similar to that of an expert system. Suppose that we attempt to retrieve a �le usingan FTP GET operation. If the GET should fail, we may hypothesize that the named �le is a
tually a dire
tory.The hypothesis may be tested with a
hange dire
tory (CWD)
ommand. If that su

eeds, the hypothesis istrue, and we may return the pre
ise error �not a �le.� If that fails, we must propose another hypothesis andtest it. Parrot performs a number of two- and three-step interviews in response to a variety of FTP errors.The
onne
tion stru
ture of a remote I/O proto
ol also has impli
ations for semanti
s as well as performan
e.Chirp, NeST, and DCAP require one TCP
onne
tion between ea
h
lient and server. FTP and RFIO requirea new
onne
tion made for ea
h �le opened. In addition, RFIO requires a new
onne
tion for ea
h operationperformed on a non-open �le. Be
ause most �le system operations are metadata queries, this
an result in an
4Omitted: Details of the various proto
ols supported by Parrot.
5Omitted: Several more examples of error transformation.

Parrot: An Appli
ation Environment for Data-Intensive Computing 15extraordinary number of
onne
tions in a short amount of time. Ignoring the laten
y penalties of this a
tivity, alarge number of TCP
onne
tions
an
onsume resour
es at
lients, servers, and network devi
es su
h as addresstranslators.65. Performan
e. We have deferred a dis
ussion of performan
e until this point so that we may see theperforman
e e�e
ts of semanti

onstraints. Although it is possible to write appli
ations expli
itly to use remoteI/O proto
ols in the most e�
ient manner, Parrot must provide
onservative and
omplete implementations ofPOSIX operations. For example, an appli
ation may only need to know the size of a �le, but if it requests thisinformation via stat, Parrot is obliged to �ll the stru
ture with everything it
an, possibly at great
ost.

 0

 1

 2

 3

 4

 5

 6

 7

 8

64M16M4M1M256K64K16K4K

B
an

dw
id

th
 (

M
B

/s
)

Block Size

ftp
rfio

dcap
nest
chirpFig. 5.1. Throughput of 128 MB File Copy

The I/O servi
es dis
ussed here, with the ex
ep-tion of Chirp, are designed primarily for e�
ient high-volume data movement. This is demonstrated by Fig-ure 5.1, whi
h
ompares the throughput of the proto-
ols at various blo
k sizes. The throughput was mea-sured by
opying a 128 MB �le into the remote storagedevi
e with the standard
p
ommand equipped withParrot and a varying default blo
k size, as
ontrolledthrough the stat emulation des
ribed above.Of
ourse, the absolute values are an artifa
t ofour system, however, it
an be seen that all of the pro-to
ols must be tuned for optimal performan
e. Theex
eption is Chirp, whi
h only rea
hes about one halfof the available bandwidth. This is be
ause of thestri
t RPC nature required for POSIX semanti
s; theChirp server does not extra
t from the underlying�lesystem any more data than ne
essary to supplythe immediate read. Although it is te
hni
ally feasi-ble for the server to read ahead in anti
ipation of the next operation, su
h data pulled into the server's addressspa
e might be invalidated by other a
tors on the �le in the meantime and is thus semanti
ally in
orre
t.The hi

up in throughput of DCAP at a blo
k size of 64KB is an unintended intera
tion with the defaultTCP bu�er size of 64 KB. The developers of DCAP are aware of the artifa
t and re
ommend
hanging eitherthe blo
k size or the bu�er size to avoid it. This is reasonable advi
e, given that all of the proto
ols requiretuning of some kind.Figure 5.2 ben
hmarks the laten
y of POSIX-equivalent operations in ea
h I/O proto
ol. These measure-ments were obtained in a manner identi
al to that of Figure 2.1, with the indi
ated servers residing on thesame system as in Figure 5.1. Noti
e that the laten
ies are measured in millise
onds, whereas Figure 2.1 gavemi
rose
onds. proto stat open/
lose read 8KB write 8KB bandwidth
hirp .50± .14 ms .84± .09 2.80± .06 2.23± .04 4.1 MB/sftp .87± .09 ms 2.82± .26 (no random a

ess) 7.9 MB/snest 2.51± .05 ms 2.53± .17 4.48± .14 7.41± .32 7.9 MB/sr�o 13.41± .28 ms 23.11± 1.29 3.32± .14 2.85± .18 7.3 MB/sd
ap 152.53±16.68 ms 159.09±16.68 3.01± 0.62 3.14± .62 7.5 MB/sFig. 5.2. Performan
e of I/O Proto
ols On a Lo
al-Area NetworkWe hasten to note that this
omparison, in a
ertain sense, is not �fair.� These data servers provide vastlydi�erent servi
es, so the performan
e di�eren
es demonstrate the
ost of the servi
e, not the
leverness of theimplementation. For example, Chirp and FTP a
hieve low laten
ies be
ause they are lightweight translationlayers over an ordinary �le system. NeST has somewhat higher laten
y be
ause it provides the abstra
tionof a virtual �le system, user namespa
e, a

ess
ontrol lists, and a storage allo
ation system, all built on anexisting �lesystem. The
ost is due to the ne
essary metadata log that re
ords all su
h a
tivity that
annot bestored dire
tly in the underlying �le system. Both RFIO and DCAP are designed to intera
t with mass storage
6Omitted: A dis
ussion of the interfa
e between Parrot and bat
h systems.

16 D. Thain and M. Livnydist. proto
opy list s
an make deletelo
al lo
al .15± .02 se
 .09± .20 .08± .02 65.38±3.47 .86± .18 se
lo
al
hirp 1.22± .03 se
 .34± .02 .40± .01 81.02±1.46 .79± .01 se
lan
hirp 6.16± .22 se
 .57± .30 1.32± .03 144.00±1.35 1.26± .02 se
lan
hirp 10.67± .90 se
 .53± .07 4.72± .32 95.05±2.33 1.24± .03 se
lan ftp 34.88±1.72 se
 1.47± .02 17.78±1.14 122.54±3.14 2.95± .15 se
lan nest 52.35±4.18 se
12.92±4.87 28.14±4.52 307.19±3.26 31.73±4.37 se
lan r�o (overwhelmed by repeated
onne
tions)lan d
ap (does not support dire
tories without nfs)Fig. 5.3. Performan
e of the Andrew-Like Ben
hmarksystems; single operations may result in gigabytes of a
tivity within a disk
a
he, possibly moving �les to orfrom tape. In that
ontext, low laten
y is not a
on
ern.That said, several things may be observed from this table. Although FTP has bene�tted from years ofoptimizations, the
ost of a stat is greater than that of Chirp be
ause of the need for multiple round trips to �llin the ne
essary details. The additional laten
y of open/
lose is due to the multiple round trips to name andestablish a new TCP
onne
tion. Both RFIO and DCAP have higher laten
ies for single byte reads and writesthan for 8KB reads and writes. This is due to bu�ering whi
h delays small operations in anti
ipation of furtherdata. Most importantly, all of these remote operations ex
eed the laten
y of the debugger trap itself by severalorders of magnitude. Thus, we are
omfortable with the previous de
ision to sa
ri�
e performan
e in favor ofreliability in the interposition te
hnique.We
on
lude with a ma
roben
hmark similar to the Andrew ben
hmark. [11℄ This Andrew-like ben
hmark
onsists of a series of operations on the Parrot sour
e tree, whi
h
onsists of 13 dire
tories and 296 �les totaling955 KB. To prepare, the sour
e tree is moved to the remote devi
e. In the
opy stage, the tree is dupli
ated onthe remote devi
e. In the list stage, a detailed list (ls -lR) of the tree is made. In the s
an stage, all �les in thetree are sear
hed (grep) for a text string. In the make stage, the software is built. From an I/O perspe
tive,this involves a sequential read of every sour
e �le, a sequential write of every obje
t �le, and a series of randomreads and writes to
reate the exe
utables. In the delete stage, the tree is deleted.Figure 5.3
ompares the performan
e of the Andrew-like ben
hmark in a variety of
on�gurations. In thethree
ases above the horizontal rule, we measure the
ost of ea
h layer of software added: �rst with Parrotonly, then with a Chirp server on the same host, then with a Chirp server a
ross the lo
al area network. Notsurprisingly, the I/O
ost of separating
omputation from storage is high. Copying data is mu
h slower overthe network, although the slowdown in the make stage is quite a

eptable if we intend to in
rease throughputvia remote parallelization.In the two
ases adja
ent to the rule, the only
hange is the enabling of
a
hing. As might be expe
ted, the
ost of unne
essary dupli
ation
auses an in
rease in
opying the sour
e tree, although the di�eren
e is easilymade up in the make stage, where the
a
he eliminates the multiple random I/O ne
essary to link exe
utables.The list and delete stages only involve dire
tory stru
ture and metadata a

ess and are thus not a�e
ted by the
a
he.In the �ve
ases below the horizontal rule, we explore the use of various proto
ols to run the ben
hmark.In all of these
ases,
a
hing is enabled in order to eliminate the
ost of random a

ess as dis
ussed. TheDCAP proto
ol is semanti
ally unable to run the ben
hmark, as it does not provide the ne
essary a

ess todire
tories. The RFIO proto
ol is semanti
ally able to run the ben
hmark, but the high frequen
y of �lesystemoperations results in a large number of TCP
onne
tions, whi
h qui
kly exhausts networking resour
es at boththe
lient and the server, thus preventing the ben
hmark from running. Chirp, FTP, and NeST are all able to
omplete the ben
hmark. The NeST results have a high varian
e, due to delays in
urred while the metadatalog is periodi
ally
ompressed. The di�eren
e in performan
e between Chirp, FTP, and NeST is primarilyattributable to the
ost of metadata lookups. All the stages make heavy use of stat; the multiple round tripsne
essary to implement this
ompletely for FTP and NeST have a striking
umulative e�e
t.6. Con
lusions. Interposition agents provide a stable platform for bringing old appli
ations into newenvironments. We have outlined the di�
ulties that we have en
ountered as well as the solutions we have
onstru
ted in the
ourse of building and deploying several types of agents within the Condor proje
t. As wehave shown, the Linux debugger trap has several limitations, but
an still be put to good use. As interest grows

Parrot: An Appli
ation Environment for Data-Intensive Computing 17in the use of virtual ma
hines in distributed systems [26℄ the need for powerful but low overhead methods ofinterposition grows. The appropriate interfa
e for this task is still an open resear
h topi
.The notion of virtualizing or multiplexing an existing interfa
e is a
ommon te
hnique [14, 7℄, but theplague of errors and other boundary
onditions seems to be su�ered silently by pra
titioners. Su
h problemsare rarely publi
ized, however, we are aware of two ex
ellent ex
eptions. C. Metz [16℄ des
ribes how the Berkeleyso
kets interfa
e is surprisingly hard to multiplex. T. Gar�nkel [10℄ des
ribes the subtle semanti
 problems ofsandboxing untrusted appli
ations.For more information: http://www.
s.wis
.edu/�thain/resear
h/parrot7. A
knowledgments. We thank John Bent and Sander Klous for their help deploying and debuggingParrot. Vi
tor Zandy wrote the me
hanism for binary rewriting. Alain Roy gave thoughtful
omments on earlydrafts of this paper. REFERENCES[1℄ M. A

etta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young, Ma
h: A new kernelfoundation for Unix development, in Pro
eedings of the USENIX Summer Te
hni
al Conferen
e, Atlanta, GA, 1986.[2℄ A. Alexandrov, M. Ibel, K. S
hauser, and C. S
heiman, UFO: A personal global �le system based on user-levelextensions to the operating system, ACM Transa
tions on Computer Systems, (1998), pp. 207�233.[3℄ W. All
o
k, A. Chervenak, I. Foster, C. Kesselman, and S. Tue
ke, Proto
ols and servi
es for distributed data-intensive s
ien
e, in Pro
eedings of Advan
ed Computing and Analysis Te
hniques in Physi
s Resear
h, 2000, pp. 161�163.[4℄ D. Anderson, J. Chase, and A. Vahdat, Interposed request routing for s
alable network storage, in Pro
eedings of theFourth Symposium on Operating Systems Design and Implementation, 2000.[5℄ O. Barring, J. Baud, and J. Durand, CASTOR proje
t status, in Pro
eedings of Computing in High Energy Physi
s,Padua, Italy, 2000.[6℄ J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J. Stanley, A. Arpa
i-Dusseau, R. Arpa
i-Dusseau, andM. Livny, Flexibility, manageability, and performan
e in a grid storage applian
e, in Pro
eedings of the EleventhIEEE Symposium on High Performan
e Distributed Computing, Edinburgh, S
otland, July 2002.[7℄ D. Cheriton, UIO: A uniform I/O system interfa
e for distributed systems, ACM Transa
tions on Computer Systems, 5(1987), pp. 12�46.[8℄ M. Ernst, P. Fuhrmann, M. Gasthuber, T. Mkrt
hyan, and C. Waldman, dCa
he, a distributed storage data
a
hingsystem, in Pro
eedings of Computing in High Energy Physi
s, Beijing, China, 2001.[9℄ I. Foster, C. Kesselman, G. Tsudik, and S. Tue
ke, A se
urity ar
hite
ture for
omputational grids, in Pro
eedings ofthe 5th ACM Conferen
e on Computer and Communi
ations Se
urity Conferen
e, 1998, pp. 83�92.[10℄ T. Garfinkel, Traps and pitfalls: Pra
ti
al problems in in system
all interposition based se
urity tools, in Pro
eedings ofthe Network and Distributed Systems Se
urity Symposium, February 2003.[11℄ J. Howard, M. Kazar, S. Menees, D. Ni
hols, M. Satyanarayanan, R. Sidebotham, and M. West, S
ale andperforman
e in a distributed �le system, ACM Transa
tions on Computer Systems, 6 (1988), pp. 51�81.[12℄ G. Hunt and D. Bruba
her, Detours: Binary inter
eption of Win32 fun
tions, Te
h. Report MSR-TR-98-33, Mi
rosoftResear
h, February 1999.[13℄ M. Jones, Interposition agents: Transparently interposing user
ode at the system interfa
e, in Pro
eedings of the 14th ACMSymposium on Operating Systems Prin
iples, 1993.[14℄ S. Kleiman, Vnodes: An ar
hite
ture for multiple �le system types in Sun Unix, in Pro
eedings of the USENIX Te
hni
alConferen
e, 1986, pp. 151�163.[15℄ M. Lee
h, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones, SOCKS proto
ol version 5. Internet EngineeringTask For
e, Request for Comments 1928, Mar
h 1996.[16℄ C. Metz, Proto
ol independen
e using the so
kets API, in Pro
edings of the USENIX Te
hni
al Conferen
e, June 2002.[17℄ B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. B. Irvin, K. Karavani
, K. Kun
hithapadam, andT. Newhall, The Paradyn parallel performan
e measurement tools, IEEE Computer, 28 (1995), pp. 37�46.[18℄ B. Miller, A. Cortes, M. A. Senar, and M. Livny, The tool daemon proto
ol (TDP), in Pro
eedings of Super
omputing,Phoenix, AZ, November 2003.[19℄ C. Small and M. Seltzer, A
omparison of OS extension te
hnologies, in Pro
eedings of the USENIX Te
hni
al Conferen
e,1996, pp. 41�54.[20℄ M. Solomon and M. Litzkow, Supporting
he
kpointing and pro
ess migration outside the Unix kernel, in Pro
eedings ofthe USENIX Winter Te
hni
al Conferen
e, 1992.[21℄ D. Thain and M. Livny, Multiple bypass: Interposition agents for distributed
omputing, Journal of Cluster Computing, 4(2001), pp. 39�47.[22℄ , Error s
ope on a
omputational grid, in Pro
eedings of the Eleventh IEEE Symposium on High Performan
e Dis-tributed Computing, July 2002.[23℄ , Parrot: Transparent user-level middleware for data-intensive
omputing, in Pro
eedings of the Workshop on AdaptiveGrid Middleware, September 2003.[24℄ , Parrot: Transparent user-level middleware for data-intensive
omputing, Te
h. Report 1493, Computer S
ien
esDepartment, University of Wis
onsin, De
ember 2003.[25℄ K.-P. Vo, The dis
ipline and method ar
hite
ture for reusable libraries, Software: Pra
ti
e and Experien
e, 30 (2000),pp. 107�128.

18 D. Thain and M. Livny[26℄ A. Whitaker, M. Shaw, and S. D. Gribble, S
ale and performan
e in the Denali isolation kernel, in Pro
eedings of theFifth Symposium on Operating System Design and Implementation, Boston, MA, De
ember 2002.[27℄ B. White, A. Grimshaw, and A. Nguyen-Tuong, Grid-Based File A

ess: The Legion I/O Model, in Pro
eedings of theNinth IEEE Symposium on High Performan
e Distributed Computing, August 2000.[28℄ V. Zandy, B. Miller, and M. Livny, Pro
ess hija
king, in Pro
eedings of the Eighth IEEE International Symposium onHigh Performan
e Distributed Computing, 1999.Edited by: Wilson Rivera, Jaime Seguel.Re
eived: July 14, 2003.A

epted: September 1, 2003.

S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 3, pp. 19�32. http://www.s
pe.org ISSN 1895-1767
© 2005 SWPSSATIN: SIMPLE AND EFFICIENT JAVA-BASED GRID PROGRAMMINGROB V. VAN NIEUWPOORT, JASON MAASSEN, THILO KIELMANN, HENRI E. BAL∗Abstra
t. Grid programming environments need to be both portable and e�
ient to exploit the
omputational power ofdynami
ally available resour
es. In previous work, we have presented the divide-and-
onquer based Satin model for parallel
omputing on
lustered wide-area systems. In this paper, we present the Satin implementation on top of our new Ibis platform whi
h
ombines Java's write on
e, run everywhere with e�
ient
ommuni
ation between JVMs. We evaluate Satin/Ibis on the testbedof the EU-funded GridLab proje
t, showing that Satin's load-balan
ing algorithm automati
ally adapts both to heterogeneouspro
essor speeds and varying network performan
e, resulting in e�
ient utilization of the
omputing resour
es. Our results showthat when the wide-area links su�er from
ongestion, Satin's load-balan
ing algorithm
an still a
hieve around 80% e�
ien
y, whilean algorithm that is not grid aware drops to 26% or less.Key words. Satin, Ibis, divide-and-
onquer, load balan
ing, distributed super
omputing.1. Introdu
tion. In
omputational grids, appli
ations need to simultaneously tap the
omputationalpower of multiple, dynami
ally available sites. The
rux of designing grid programming environments stems ex-a
tly from the dynami
 availability of
ompute
y
les: grid programming environments need to be both portableto run on as many sites as possible, and they need to be �exible to
ope with di�erent network proto
ols anddynami
ally
hanging groups of heterogeneous
ompute nodes.Existing programming environments are either portable and �exible (Jini, Java RMI), or they are highlye�
ient (MPI). The Global Grid Forum also has investigated possible grid programming models [19℄. Re
ently,GridRPC has been proposed as a grid programming model [30℄. GridRPC allows writing grid appli
ationsbased on the manager/worker paradigm.Unlike manager/worker programs, divide-and-
onquer algorithms operate by re
ursively dividing a probleminto smaller subproblems. This re
ursive subdivision goes on until the remaining subproblem be
omes trivial tosolve. After solving subproblems, their results are re
ursively re
ombined until the �nal solution is assembled.By allowing subproblems to be divided re
ursively, the
lass of divide-and-
onquer algorithms subsumes themanager/worker algorithms, thus enlarging the set of possible grid appli
ations.Of
ourse, there are many kinds of appli
ations that do not lend themselves well to a divide-and-
onqueralgorithm. However, we (and others) believe the
lass of divide-and-
onquer algorithms to be su�
iently large tojustify its deployment for hierar
hi
al wide-area systems. Computations that use the divide-and-
onquer modelin
lude geometry pro
edures, sorting methods, sear
h algorithms, data
lassi�
ation
odes, n-body simulationsand data-parallel numeri
al programs [33℄.Divide-and-
onquer appli
ations may be parallelized by letting di�erent pro
essors solve di�erent subprob-lems. These subproblems are often
alled jobs in this
ontext. Generated jobs are transferred between pro
essorsto balan
e the load in the
omputation. The divide-and-
onquer model lends itself well to hierar
hi
ally-stru
tured systems be
ause tasks are
reated by re
ursive subdivision. This leads to a task graph that ishierar
hi
ally stru
tured, and whi
h
an be exe
uted with ex
ellent
ommuni
ation lo
ality, espe
ially on hier-ar
hi
al platforms.In previous work [26℄, we presented our Satin system for divide-and-
onquer programming on grid platforms.Satin implements a very e�
ient load balan
ing algorithm for
lustered, wide-area platforms. So far, we
ouldonly evaluate Satin based on simulations in whi
h all jobs have been exe
uted on one single, homogeneous
luster. In this work, we evaluate Satin on a real grid testbed [2℄,
onsisting of various heterogeneous systems,
onne
ted by the Internet.In Se
tion 2, we brie�y present Satin's programming model and some simulator-based results that indi
atethe suitability of Satin as a grid programming environment. In Se
tion 3, we present Ibis, our new Java-basedgrid programming platform that
ombines Java's �run everywhere� paradigm with highly e�
ient yet �exible
ommuni
ation me
hanisms. In Se
tion 4, we evaluate the performan
e of Satin on top of Ibis in the GridLabtestbed, spanning several sites in Europe. Se
tion 5 dis
usses related work, and in Se
tion 6 we draw
on
lusions.
∗Dept. of Computer S
ien
e, Vrije Universiteit, Amsterdam, The Netherlands, {rob,jason,kielmann,bal}�
s.vu.nlhttp://www.
s.vu.nl/ibis 19

20 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. Bal2. Divide-and Conquer in Satin. Satin's programming model is an extension of the single-threadedJava model. To a
hieve parallel exe
ution, Satin programs do not have to use Java's threads or RemoteMethod Invo
ations (RMI). Instead, they use mu
h simpler divide-and-
onquer primitives. Satin does allowthe
ombination of its divide-and-
onquer primitives with Java threads and RMIs. Additionally, Satin providesshared obje
ts via RepMI. In this paper, however, we fo
us on pure divide-and-
onquer programs.interfa
e FibInte r extends s a t i n . Spawnable {publi
 long f i b (long n) ;}
lass Fib extends s a t i n . Sat inObje
timplements FibInte r {publi
 long f i b (long n) {i f (n < 2) return n ;long x = f i b (n−1); // spawnedlong y = f i b (n−2); // spawnedsyn
 () ;return x + y ;}publi
 stat i
 void main (St r ing [℄ a rg s) {Fib f = new Fib () ;long r e s = f . f i b (1 0) ;f . syn
 () ;System . out . p r i n t l n ("Fib 10 = " + re s) ;}} Fig. 2.1. Fib: an example divide-and-
onquer program in Satin.Satin expresses divide-and-
onquer parallelism entirely in the Java language itself, without requiring anynew language
onstru
ts. Satin uses so-
alledmarker interfa
es to indi
ate that
ertain method invo
ations needto be
onsidered for potentially parallel (so
alled spawned) exe
ution, rather than being exe
uted syn
hronouslylike normal methods. Furthermore, a me
hanism is needed to syn
hronize with (wait for the results of) spawnedmethod invo
ations. With Satin, this
an be expressed using a spe
ial interfa
e, satin.Spawnable, and the
lasssatin.SatinObje
t. This is shown in Fig. 2.1, using the example of a
lass Fib for
omputing the Fibona

inumbers. First, an interfa
e FibInter is implemented whi
h extends satin.Spawnable. All methods de�ned inthis interfa
e (here �b) are marked to be spawned rather than exe
uted normally. Se
ond, the
lass Fib extendssatin.SatinObje
t and implements FibInter. From satin.SatinObje
t it inherits the syn
 method, from FibInter thespawned �b method. Finally, the invoking method (in this
ase main) simply
alls Fib and uses syn
 to wait forthe result of the parallel
omputation.Satin's byte
ode rewriter generates the ne
essary
ode. Con
eptually, a new thread is started for runninga spawned method upon invo
ation. Satin's implementation, however, eliminates thread
reation altogether. Aspawned method invo
ation is put into a lo
al work queue. From the queue, the method might be transferredto a di�erent CPU where it may run
on
urrently with the method that exe
uted the spawned method. Thesyn
 method waits until all spawned
alls in the
urrent method invo
ation are �nished; the return values ofspawned method invo
ations are unde�ned until a syn
 is rea
hed.Spawned method invo
ations are distributed a
ross the pro
essors of a parallel Satin program by workstealing from the work queues mentioned above. In [26℄, we presented a new work stealing algorithm, Cluster-aware Random Stealing (CRS), spe
i�
ally designed for
luster-based, wide-area (grid
omputing) systems. CRSis based on the traditional Random Stealing (RS) algorithm that has been proven to be optimal for homogeneous(single
luster) systems [8℄. We brie�y des
ribe both algorithms in turn.2.1. Random Stealing (RS). RS attempts to steal a job from a randomly sele
ted peer when a pro
essor�nds its own work queue empty, repeating steal attempts until it su

eeds [8, 33℄. This approa
h minimizes
ommuni
ation overhead at the expense of idle time. No
ommuni
ation is performed until a node be
omesidle, but then it has to wait for a new job to arrive. On a single-
luster system, RS is the best performing

Satin: Simple and E�
ient Java-based Grid Programming 21load-balan
ing algorithm. On wide-area systems, however, this is not the
ase. With C
lusters, on average (C−
1)/C ×100% of all steal requests will go to nodes in remote
lusters,
ausing signi�
ant wide-area
ommuni
ationoverheads.2.2. Cluster-aware Random Stealing (CRS). In CRS, ea
h node
an dire
tly steal jobs from nodesin remote
lusters, but at most one job at a time. Whenever a node be
omes idle, it �rst attempts to stealfrom a node in a remote
luster. This wide-area steal request is sent asyn
hronously: Instead of waiting forthe result, the thief simply sets a �ag and performs additional, syn
hronous steal requests to randomly sele
tednodes within its own
luster, until it �nds a new job. As long as the �ag is set, only lo
al stealing will beperformed. The handler routine for the wide-area reply simply resets the �ag and, if the request was su

essful,puts the new job into the work queue. CRS
ombines the advantages of RS inside a
luster with a very limitedamount of asyn
hronous wide-area
ommuni
ation. Below, we will show that CRS performs almost as good aswith a single, large
luster, even in extreme wide-area network settings.2.3. Simulator-based
omparison of RS and CRS. A detailed des
ription of Satin's wide-area workstealing algorithm
an be found in [26℄. We have extra
ted the
omparison of RS and CRS from that workinto Table 2.1. The run times shown in this table are for parallel runs with 64 CPUs ea
h, either with a single
luster of 64 CPUS, or with 4
lusters of 16 CPUs ea
h.The wide-area network between the virtual
lusters has been simulated with our Panda WAN simulator [17℄.We simulated all
ombinations of 20ms and 200ms roundtrip laten
y with bandwidth
apa
ities of 100KByte/sand 1000KByte/s. The tests had been performed on the prede
essor hardware to our
urrent DAS-2
luster.DAS
onsists of 200MHz Pentium Pro's with a Myrinet network, running the Manta parallel Java system [23℄.Table 2.1Performan
e of RS and CRS with di�erent simulated wide-area links (times in se
onds).single 20 ms 20 ms 200 ms 200 ms
luster 1000 KByte/s 100 KByte/s 1000 KByte/s 100 KByte/sappli
ation time e�. time e�. time e�. time e�. time e�.adaptive integrationRS 71.8 99.6% 78.0 91.8% 79.5 90.1% 109.3 65.5% 112.3 63.7%CRS 71.8 99.7% 71.6 99.9% 71.7 99.8% 73.4 97.5% 73.2 97.7%N-queensRS 157.6 92.5% 160.9 90.6% 168.2 86.6% 184.3 79.1% 197.4 73.8%CRS 156.3 93.2% 158.1 92.2% 156.1 93.3% 158.4 92.0% 158.1 92.2%TSPRS 101.6 90.4% 105.3 87.2% 105.4 87.1% 130.6 70.3% 129.7 70.8%CRS 100.7 91.2% 103.6 88.7% 101.1 90.8% 105.0 87.5% 107.5 85.4%ray tra
erRS 147.8 94.2% 152.1 91.5% 171.6 81.1% 175.8 79.2% 182.6 76.2%CRS 147.2 94.5% 145.0 95.9% 152.6 91.2% 146.5 95.0% 149.3 93.2%In Table 2.1 we
ompare RS and CRS using four parallel appli
ations, with network
onditions degradingfrom the left (single
luster) to the right (high laten
y, low bandwidth). For ea
h
ase, we present the parallelrun time and the
orresponding e�
ien
y (labeled �e�.� in the table). With ts being the sequential run timefor the appli
ation, with the Satin operations ex
luded, (not shown) and tp the parallel run time as shown inthe table, and N = 64 being the number of CPUs, we
ompute the e�
ien
y as follows:

efficiency =
ts

tp · N
∗ 100%Adaptive integration numeri
ally integrates a fun
tion over a given interval. It sends very short messagesand has also very �ne grained jobs. This
ombination makes RS sensitive to high laten
y, in whi
h
ase e�
ien
ydrops to about 65 %. CRS, however, su

essfully hides the high round trip times and a
hieves e�
ien
ies ofmore than 97 % in all
ases.N Queens solves the problem of pla
ing n queens on a n × n
hess board. It sends medium-size messagesand has a very irregular task tree. With e�
ien
y of only 74 %, RS again su�ers from high round trip times asit
an not qui
kly
ompensate load imbalan
e due to the irregular task tree. CRS, however, sustains e�
ien
iesof 92 %.

22 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. BalTSP solves the problem of �nding the shortest path between n
ities. By passing the distan
e table asparameter, is has a somewhat higher parallelization overhead, resulting in slightly lower e�
ien
ies, even witha single
luster. In the wide-area
ases, these longer parameter messages
ontribute to higher round trip timeswhen stealing jobs from remote
lusters. Consequently, RS su�ers more from slower networks (e�
ien
y > 70 %)than CRS whi
h sustains e�
ien
ies of 85 %.Ray Tra
er renders a modeled s
ene to a raster image. It divides a s
reen down to jobs of single pixels. Dueto the nature of ray tra
ing, individual pixels have very irregular rendering times. The appli
ation sends longresult messages
ontaining image fra
tions, making it sensitive to the available bandwidth. This sensitivity isre�e
ted in the e�
ien
y of RS, going down to 76 %, whereas CRS hides most WAN
ommuni
ation overheadand sustains e�
ien
ies of 91 %.To summarize, our simulator-based experiments show the superiority of CRS to RS in
ase of multiple
lusters,
onne
ted by wide-area networks. This superiority is independent of the properties of the appli
ations,as we have shown with both regular and irregular task graphs as well as short and long parameter and resultmessage sizes. In all investigated
ases, the e�
ien
y of CRS never dropped below 85 %.Although we were able to identify the individual e�e
ts of wide-area laten
y and bandwidth, these resultsare limited to homogeneous Intel/Linux
lusters (due to the Manta
ompiler). Furthermore, we only tested
lusters of identi
al size. Finally, the wide area network has been simulated and thus been without possiblydisturbing third-party tra�
.An evaluation on a real grid testbed, with heterogeneous CPUs, JVMs, and networks, be
omes ne
essaryto prove the suitability of Satin as a grid programming platform. In the following, we �rst present Ibis, our newrun everywhere Java environment for grid
omputing. Then we evaluate Satin on top of Ibis on the testbed ofthe EU GridLab proje
t.
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

GMI RepMI SatinRMI

Application

Grid

Monitoring

Ibis Portability Layer (IPL)

Topology

Discovery

NWS, etc. GRAM, etc.TopoMon
etc.

TCP, UDP, MPI
Panda, GM, etc.

Information

Service

GIS, etc.

Resource

ManagementCommunication

Serialization &

Fig. 3.1. Design of Ibis. The various modules
an be loaded dynami
ally, using run time
lass loading.3. Ibis, �exible and e�
ient Java-based Grid programming. The Satin runtime system used forthis paper is implemented on top of Ibis [31℄. In this se
tion we will brie�y explain the Ibis philosophy anddesign. The global stru
ture of the Ibis system is shown in Figure 3.1. A
entral part of the system is theIbis Portability Layer (IPL) whi
h
onsists of a number of well-de�ned interfa
es. The IPL
an have di�erentimplementations, that
an be sele
ted and loaded into the appli
ation at run time. The IPL de�nes serializationand
ommuni
ation, but also typi
al grid servi
es su
h as topology dis
overy and monitoring. Although it ispossible to use the IPL dire
tly from an appli
ation, Ibis also provides more high-level programming models.Currently, we have implemented four. Ibis RMI [31℄ provides Remote Method Invo
ation, using the sameinterfa
e as Sun RMI, but with a more e�
ient wire proto
ol. GMI [21℄ provides MPI-like
olle
tive operations,
leanly integrated into Java's obje
t model. RepMI [22℄ extends Java with repli
ated obje
ts. In this paper, wefo
us on the fourth programming model that Ibis implements, Satin.3.1. Ibis Goals. A key problem in making Java suitable for grid programming is how to design a systemthat obtains high
ommuni
ation performan
e while still adhering to Java's �write on
e, run everywhere� model.Current Java implementations are heavily biased to either portability or performan
e, and fail in the other

Satin: Simple and E�
ient Java-based Grid Programming 23aspe
t. (The re
ently added java.nio pa
kage will hopefully at leas partially address this problem). TheIbis strategy to a
hieve both goals simultaneously is to develop reasonably e�
ient solutions using standardte
hniques that work �everywhere�, supplemented with highly optimized but non-standard solutions for in
reasedperforman
e in spe
ial
ases. We apply this strategy to both
omputation and
ommuni
ation. Ibis is designed touse any standard JVM, but if a native, optimizing
ompiler (e.g., Manta [23℄) is available for a target ma
hine,Ibis
an use it instead. Likewise, Ibis
an use standard
ommuni
ation proto
ols, e.g., TCP/IP or UDP, asprovided by the JVM, but it
an also plug in an optimized low-level proto
ol for a high-speed inter
onne
t, likeGM or MPI, if available. The
hallenges for Ibis are:1. how to make the system �exible enough to run seamlessly on a variety of di�erent
ommuni
ationhardware and proto
ols;2. how to make the standard, 100% pure Java
ase e�
ient enough to be useful for grid
omputing;3. study whi
h additional optimizations
an be done to improve performan
e further in spe
ial (high-performan
e)
ases.With Ibis, grid appli
ations
an run simultaneously on a variety of di�erent ma
hines, using optimizedsoftware where possible (e.g., a native
ompiler, the GM Myrinet proto
ol, or MPI), and using standard software(e.g., TCP) when ne
essary. Interoperability is a
hieved by using the TCP proto
ol between multiple Ibisimplementations that use di�erent proto
ols (like GM or MPI) lo
ally. This way, all ma
hines
an be used inone single
omputation. Below, we dis
uss the three aforementioned issues in more detail.3.2. Flexibility. The key
hara
teristi
 of Ibis is its extreme �exibility, whi
h is required to support gridappli
ations. A major design goal is the ability to seamlessly plug in di�erent
ommuni
ation substrates without
hanging the user
ode. For this purpose, the Ibis design uses the IPL. A software layer on top of the IPL
annegotiate with Ibis instantiations through the well-de�ned IPL interfa
e, to sele
t and load the modules it needs.This �exibility is implemented using Java's dynami

lass-loading me
hanism.Many message passing libraries su
h as MPI and GM guarantee reliable message delivery and FIFO messageordering. When appli
ations do not require these properties, a di�erent message passing library might be usedto avoid the overhead that
omes with reliability and message ordering. The IPL supports both reliable andunreliable
ommuni
ation, ordered and unordered messages, impli
it and expli
it re
eipt, using a single, simpleinterfa
e. Using user-de�nable properties (key-value pairs), appli
ations
an
reate exa
tly the
ommuni
ation
hannels they need, without unne
essary overhead.3.3. Optimizing the Common Case. To obtain a

eptable
ommuni
ation performan
e, Ibis imple-ments several optimizations. Most importantly, the overhead of serialization and re�e
tion is avoided by
ompile-time generation of spe
ial methods (in byte
ode) for ea
h obje
t type. These methods
an be usedto
onvert obje
ts to bytes (and vi
e versa), and to
reate new obje
ts on the re
eiving side, without usingexpensive re�e
tion me
hanisms. This way, the overhead of serialization is redu
ed dramati
ally.Furthermore, our
ommuni
ation implementations use an optimized wire proto
ol. The Sun RMI proto
ol,for example, resends type information for ea
h RMI. Our implementation
a
hes this type information per
onne
tion. Using this optimization, our proto
ol sends less data over the wire, but more importantly, savespro
essing time for en
oding and de
oding the type information.3.4. Optimizing Spe
ial Cases. In many
ases, the target ma
hine may have additional fa
ilities thatallow faster
omputation or
ommuni
ation, whi
h are di�
ult to a
hieve with standard Java te
hniques. Oneexample we investigated in previous work [23℄ is using a native, optimizing
ompiler instead of a JVM. This
ompiler (Manta), or any other high performan
e Java implementation,
an simply be used by Ibis. The mostimportant spe
ial
ase for
ommuni
ation is the presen
e of a high-speed lo
al inter
onne
t. Usually, spe
ializeduser-level network software is required for su
h inter
onne
ts, instead of standard proto
ols (TCP, UDP) thatuse the OS kernel. Ibis therefore was designed to allow other proto
ols to be plugged in. So, lower-level
ommuni
ation may be based, for example, on a lo
ally-optimized MPI library. The IPL is designed in su
h away that it is possible to exploit e�
ient hardware multi
ast, when available.Another important feature of the IPL is that it allows a zero-
opy implementation. Implementing zero-
opy(or single-
opy)
ommuni
ation in Java is a non-trivial task, but it is essential to make Java
ompetitive withsystems like MPI for whi
h zero-
opy implementations already exist. The zero-
opy Ibis implementation isdes
ribed in more detail in [31℄. On fast networks like Myrinet, the throughput of Ibis RMI
an be as mu
h as9 times higher than previous, already optimized RMI implementations su
h as KaRMI [28℄.

24 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. Bal4. Satin on the GridLab testbed. In this se
tion, we will present a
ase study to analyze the per-forman
e that Satin/Ibis a
hieves in a real grid environment. We ran the ray tra
er appli
ation introdu
edin Se
tion 2.3 on the European GridLab [2℄ testbed. More pre
isely, we were using a
hara
teristi
 subset ofthe ma
hines on this testbed that was available for our measurements at the time the study was performed.Be
ause simultaneously starting and running a parallel appli
ation on multiple
lusters still is a tedious andtime-
onsuming task, we had to restri
t ourselves to a single test appli
ation. We have
hosen the ray tra
erfor our tests as it is sending the most data of all our appli
ations, making it very sensitive to network issues.The ray tra
er is written in pure Java and generates a high resolution image (4096 × 4096, with 24-bit
olor).It takes approximately 10 minutes to solve this problem on our testbed.This is an interesting experiment for several reasons. Firstly, we use the Ibis implementation on top of TCPfor the measurements in this se
tion. This means that the numbers shown below were measured using a 100%Java implementation. Therefore, they are interesting, giving a
lear indi
ation of the performan
e level that
an be a
hieved in Java with a �run everywhere� implementation, without using any native
ode.Se
ondly, the testbed
ontains ma
hines with several di�erent ar
hite
tures; Intel, SPARC, MIPS, andAlpha pro
essors are used. Some ma
hines are 32 bit, while others are 64 bit. Also, di�erent operating systemsand JVMs are in use. Therefore, this experiment is a good method to investigate whether Java's �write on
e, runeverywhere� feature really works in pra
ti
e. The assumption that this feature su

essfully hides the
omplexityof the di�erent underlying ar
hite
tures and operating systems, was the most important reason for investigatingthe Java-
entri
 solutions presented in this paper. It is thus important to verify the validity of this
laim.

-10

-10

-5

-5

0

0

5

5

10

10

15

15

20

20

25

25

35 35

40 40

45 45

50 50

55 55

60 60

0 200 400

km

Amsterdam
Berlin

Lecce

Cardiff

Brno

Fig. 4.1. Lo
ations of the GridLab testbed sites used for the experiments.

Satin: Simple and E�
ient Java-based Grid Programming 25Thirdly, the ma
hines are
onne
ted by the Internet. The links show typi
al wide-area behavior, as thephysi
al distan
e between the sites is large. For instan
e, the distan
e from Amsterdam to Le

e is roughly2000 kilometers (about 1250 miles). Figure 4.1 shows a map of Europe, annotated with the ma
hine lo
ations.This gives an idea of the distan
es between the sites. We use this experiment to verify Satin's load-balan
ingalgorithms in pra
ti
e, with real non-dedi
ated wide-area links. We have run the ray tra
er both with thestandard random stealing algorithm (RS) and with the new
luster-aware algorithm (CRS) as introdu
ed above.For pra
ti
al reasons, we had to use relatively small
lusters for the measurements in this se
tion. The simulationresults in Se
tion 2.3 show that the performan
e of CRS in
reases when larger
lusters are used, be
ause thereis more opportunity to balan
e the load inside a
luster during wide-area
ommuni
ation.Table 4.1Ma
hines on the GridLab testbed.Operating CPUs / totallo
ation ar
hite
ture System JIT nodes node CPUsVrije Universiteit Intel Red HatAmsterdam Pentium-III Linux IBMThe Netherlands 1 GHz kernel 2.4.18 1.4.0 8 1 8Vrije Universiteit Sun Fire 280R SUNAmsterdam UltraSPARC-III Sun HotSpotThe Netherlands 750 MHz 64 bit Solaris 8 1.4.2 1 2 2ISUFI/High Perf. Compaq Compaq HP 1.4.0Computing Center Alpha Tru64 UNIX based onLe

e, Italy 667 MHz 64 bit V5.1A HotSpot 1 4 4Cardi� Intel Red Hat SUNUniversity Pentium-III Linux 7.1 HotSpotCardi�, Wales, UK 1 GHz kernel 2.4.2 1.4.1 1 2 2Masaryk University, Intel Xeon Debian Linux IBMBrno, Cze
h Republi
 2.4 GHz kernel 2.4.20 1.4.0 4 2 8Konrad-Zuse-Zentrum SGI SGIfür Origin 3000 1.4.1-EAInformationste
hnik MIPS R14000 based onBerlin, Germany 500 MHz IRIX 6.5 HotSpot 1 16 16Some information about the ma
hines we used is shown in Table 4.1. To run the appli
ation, we usedwhi
hever Java JIT (Just-In-Time
ompiler) that was pre-installed on ea
h parti
ular system whenever possible,be
ause this is what most users would probably do in pra
ti
e.Table 4.2Round-trip wide-area laten
y (in millise
onds) and a
hievable bandwidth (in KByte/s) between the GridLab sites.daytime nighttimeto to to toA'dam A'dam to to to to A'dam A'dam to to to tosour
e DAS-2 Sun Le

e Cardi� Brno Berlin DAS-2 Sun Le

e Cardi� Brno Berlinlaten
y fromA'dam DAS-2 � 1 204 16 20 42 � 1 65 15 20 18A'dam Sun 1 � 204 15 19 43 1 � 62 14 19 17Le

e 198 195 � 210 204 178 63 66 � 60 66 64Cardi� 9 9 198 � 28 26 9 9 51 � 27 21Brno 20 20 188 33 � 22 20 19 64 33 � 22Berlin 18 17 185 31 22 � 18 17 59 30 22 �bandwidth fromA'dam DAS-2 � 11338 42 750 3923 2578 � 11442 40 747 4115 2578A'dam Sun 11511 � 22 696 2745 2611 11548 � 46 701 3040 2626Le

e 73 425 � 44 43 75 77 803 � 94 110 82Cardi� 842 791 29 � 767 825 861 818 37 � 817 851Brno 3186 2709 26 588 � 2023 3167 2705 37 612 � 2025Berlin 2555 2633 9 533 2097 � 2611 2659 9 562 2111 �Be
ause the sites are
onne
ted via the Internet, we have no in�uen
e on the amount of tra�
 that �owsover the links. To redu
e the in�uen
e of Internet tra�
 on the measurements, we also performed measurementsafter midnight (CET). However, in pra
ti
e there still is some variability in the link speeds. We measured thelaten
y of the wide-area links by running ping 50 times, while the a
hievable bandwidth is measured withnetperf [25℄, using 32 KByte pa
kets. The measured laten
ies and bandwidths are shown in Table 4.2. All siteshad di�
ulties from time to time while sending tra�
 to Le

e, Italy. For instan
e, from Amsterdam to Le

e,we measured laten
ies from 44 millise
onds up to 3.5 se
onds. Also, we experien
ed pa
ket loss with this link: upto 23% of the pa
kets were dropped along the way. We also performed the same measurement during daytime,to investigate how regular Internet tra�
 in�uen
es the appli
ation performan
e. The measurements show that

26 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. Balthere
an be more than a fa
tor of two di�eren
e in link speeds during daytime and nighttime, espe
ially thelinks from and to Le

e show a large variability. It is also interesting to see that the link performan
e fromLe

e to the two sites in Amsterdam is di�erent. We veri�ed this with tra
eroute, and found that the tra�
 isindeed routed di�erently as the two ma
hines use di�erent network numbers despite being lo
ated within thesame building. Table 4.3Problems en
ountered in a real grid environment, and their solutions.problem solution�rewalls bind all so
kets to ports in the open rangebuggy JITs upgrade to Java 1.4 JITsmulti-homes ma
hines use a single, externally valid IP addressIbis, Satin and the ray tra
er appli
ation were all
ompiled with the standard Java
ompiler java
 onthe DAS-2 ma
hine in Amsterdam, and then just
opied to the other GridLab sites, without re
ompiling orre
on�guring anything. On most sites, this works �awlessly. However, we did run into several pra
ti
al problems.A summary is given in Table 4.3. Some of the GridLab sites have �rewalls installed, whi
h blo
k Satin's tra�
when no spe
ial measures are taken. Most sites in our testbed have some open port range, whi
h means thattra�
 to ports within this range
an pass through. The solution we use to avoid being blo
ked by �rewalls isstraightforward: all so
kets used for
ommuni
ation in Ibis are bound to a port within the (site-spe
i�
) openport range. We are working on a more general solution that multiplexes all tra�
 over a single port. Anothersolution is to multiplex all tra�
 over a (Globus) ssh
onne
tion, as is done by Kaneda et al. [16℄, or using ame
hanism like SOCKS [20℄.Another problem we en
ountered was that the JITs installed on some sites
ontained bugs. Espe
iallythe
ombination of threads and so
kets presented some di�
ulties. There seems to be a bug in Sun's 1.3 JIT(HotSpot) related to threads and so
ket
ommuni
ation. In some
ir
umstan
es, a blo
king operation on aso
ket would blo
k the whole appli
ation instead of just the thread that does the operation. The solution forthis problem was to upgrade to a Java 1.4 JIT, where the problem is solved.Finally, some ma
hines in the testbed are multi-homed: they have multiple IP addresses. The originalIbis implementation on TCP got
onfused by this, be
ause the InetAddress.getLo
alHost method
an returnan IP address in a private range, or an address for an interfa
e that is not a

essible from the outside. Our
urrent solution is to manually spe
ify whi
h IP address has to be used when multiple
hoi
es are available. Allma
hines in the testbed have a Globus [10℄ installation, so we used GSI-SSH (Globus Se
urity Infrastru
tureSe
ure Shell) [11℄ to login to the GridLab sites. We had to start the appli
ation by hand, as not all siteshave a job manager installed. When a job manager is present, Globus
an be used to start the appli
ationautomati
ally.As shown in Table 4.1, we used 40 pro
essors in total, using 6 ma
hines lo
ated at 5 sites all over Europe,with 4 di�erent pro
essor ar
hite
tures. After solving the aforementioned pra
ti
al problems, Satin on the TCPIbis implementation ran on all sites, in pure Java, without having to re
ompile anything.Table 4.4Relative speeds of the ma
hine and JVM
ombinations in the testbed.run relative relative total % of totalsite ar
hite
ture time (s) node speed speed of
luster systemA'dam DAS-2 1 GHz Intel Pentium-III 233.1 1.000 8.000 32.4A'dam Sun 750 MHz UltraSPARC-III 445.2 0.523 1.046 4.2Le

e 667 MHZ Compaq Alpha 512.7 0.454 1.816 7.4Cardi� 1 GHz Intel Pentium-III 758.9 0.307 0.614 2.5Brno 2.4 GHz Intel Xeon 152.8 1.525 12.200 49.5Berlin 500 MHz MIPS R14000 3701.4 0.062 0.992 4.0total 24.668 100.0As a ben
hmark, we �rst ran the parallel version of the ray tra
er with a smaller problem size (512 × 512,with 24 bit
olor) on a single ma
hine on all
lusters. This way, we
an
ompute the relative speeds of thedi�erent ma
hines and JVMs. The results are presented in Table 4.4. To
al
ulate the relative speed of ea
hma
hine/JVM
ombination, we normalized the run times relative to the run time of the ray tra
er on a node of

Satin: Simple and E�
ient Java-based Grid Programming 27the DAS-2
luster in Amsterdam. It is interesting to note that the quality of the JIT
ompiler
an have a largeimpa
t on the performan
e at the appli
ation level. A node in the DAS-2
luster and the ma
hine in Cardi� areboth 1 GHz Intel Pentium-IIIs, but there is more than a fa
tor of three di�eren
e in appli
ation performan
e.This is
aused by the di�erent JIT
ompilers that were used. On the DAS-2, we used the more e�
ient IBM1.4 JIT, while the SUN 1.4 JIT (HotSpot) was installed on the ma
hine in Cardi�.Furthermore, the results show that, although the
lo
k frequen
y of the ma
hine at Brno is 2.4 times as highas the frequen
y of a DAS-2 node, the speed improvement is only 53%. Both ma
hines use Intel pro
essors, butthe Xeon ma
hine in Brno is based on Pentium-4 pro
essors, whi
h do less work per
y
le than the Pentium-IIICPUs that are used by the DAS-2. We have to
on
lude that it is in general not possible to simply use the
lo
k frequen
ies to
ompare pro
essor speeds.Finally, it is obvious that the Origin ma
hine in Berlin is slow
ompared to the other ma
hines. This ispartly
aused by the ine�
ient JIT, whi
h is based on the SUN HotSpot JVM. Be
ause of the
ombination ofslow pro
essors and the ine�
ient JIT, the 16 nodes of the Origin we used are about as fast as a single 1 GHzPentium-III with the IBM JIT. The Origin thus hardly
ontributes anything to the
omputation. The tableshows that, although we used 40 CPUs in total for the grid run, the relative speed of these pro
essors togetheradds up to 24.668 DAS-2 nodes (1 GHz Pentium-IIIs). The per
entage of the total
ompute power that ea
hindividual
luster delivers is shown in the rightmost
olumn of Table 4.4.Table 4.5Performan
e of the ray tra
er appli
ation on the GridLab testbed.run
ommuni
ation parallelizationalgorithm time (s) time (s) overhead time (s) overhead e�
ien
ynighttimeRS 877.6 198.5 36.1% 121.9 23.5% 62.6%CRS 676.5 35.4 6.4% 83.9 16.6% 81.3%daytimeRS 2083.5 1414.5 257.3% 111.8 21.7% 26.4%CRS 693.0 40.1 7.3% 95.7 18.8% 79.3%single
luster 25RS 579.6 11.3 2.0% 11.0 1.9% 96.1%We also ran the ray tra
er on a single DAS-2 ma
hine, with the large problem size that we will use for thegrid runs. This took 13746 se
onds (almost four hours). The sequential program without the Satin
onstru
tstakes 13564 se
onds, the overhead of the parallel version thus is about 1%. With perfe
t speedup, the run timeof the parallel program on the GridLab testbed would be 13564 divided by 24.668, whi
h is 549.8 se
onds (aboutnine minutes). We
onsider this run time the upper bound on the performan
e that
an be a
hieved on thetestbed, tperfect . We
an use this number to
al
ulate the e�
ien
y that is a
hieved by the real parallel runs.We
all the a
tual run time of the appli
ation on the testbed tgrid . In analogy to Se
tion 2.3, e�
ien
y
an bede�ned as follows:
efficiency =

tperfect
tgrid

∗ 100%We have also measured the time that is spent in
ommuni
ation (tcomm). This in
ludes idle time, be
ause all idletime in the system is
aused by waiting for
ommuni
ation to �nish. We
al
ulate the relative
ommuni
ationoverhead with this formula:
communication overhead =

tcomm

tperfect
∗ 100%Finally, the time that is lost due to parallelization overhead (tpar) is
al
ulated as shown below:

tpar = tgrid − tcomm − tperfect

parallelization overhead =
tpar

tperfect
∗ 100%

28 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. BalTable 4.6Communi
ation statisti
s for the ray tra
er appli
ation on the GridLab testbed.intra
luster inter
lusteralg. messages MByte messages MBytenighttimeRS 3218 41.8 11473 137.3CRS 1353295 131.7 12153 86.0daytimeRS 56686 18.9 149634 154.1CRS 2148348 130.7 10115 82.1single
luster 25RS 45458 155.6 n.a. n.a.The results of the grid runs are shown in Table 4.5. For referen
e, we also provide measurements on asingle
luster, using 25 nodes of the DAS-2 system. The results presented here are the fastest runs out ofthree experiments. During daytime, the performan
e of the ray tra
er with RS showed a large variability, someruns took longer than an hour to
omplete, while the fastest run took about half an hour. Therefore, in thisparti
ular
ase, we took the best result of six runs. This approa
h thus is in favor of RS. With CRS, this e�e
tdoes not o

ur: the di�eren
e between the fastest and the slowest run during daytime was less than 20 se
onds.During night, when there is little Internet tra�
, the appli
ation with CRS is already more than 200 se
ondsfaster (about 23%) than with the RS algorithm. During daytime, when the Internet links are heavily used, CRSoutperforms RS by a fa
tor of three. Regardless of the time of the day, the e�
ien
y of a parallel run with CRSis about 80%.The numbers in Table 4.5 show that the parallelization overhead on the testbed is signi�
antly higher
ompared to a single
luster. Sour
es of this overhead are thread
reation and swit
hing
aused by in
omingsteal requests, and the lo
king of the work queues. The overhead is higher on the testbed, be
ause �ve of thesix ma
hines we use are SMPs (i.e. they have a shared memory ar
hite
ture). In general, this means thatthe CPUs in su
h a system have to share resour
es, making memory a

ess and espe
ially syn
hronizationpotentially more expensive. The latter has a negative e�e
t on the performan
e of the work queues. Also,multiple CPUs share a single network interfa
e, making a

ess to the
ommuni
ation devi
e more expensive.The
urrent implementation of Satin treats SMPs as
lusters (i.e., on a N -way SMP, we start N JVMs).Therefore, Satin pays the pri
e of the SMP overhead, but does not exploit the bene�ts of SMP systems, su
has the available shared memory. An implementation that does utilize shared memory when available is plannedfor the future.Communi
ation statisti
s of the grid runs are shown in Table 4.6. The numbers in the table totals for thewhole run, summed over all CPUs. Again, statisti
s for a single
luster run are in
luded for referen
e. Thenumbers show that almost all of the overhead of RS is in ex
essive wide-area
ommuni
ation. During daytime,for instan
e, it tries to send 154 MByte over the busy Internet links. During the time-
onsuming wide-areatransfers, the sending ma
hine is idle, be
ause the algorithm is syn
hronous. CRS sends only about 82 MBytesover the wide-area links (about half the amount of RS), but more importantly, the transfers are asyn
hronous.With CRS, the ma
hine that initiates the wide-area tra�

on
urrently tries to steal work in the lo
al
luster,and also
on
urrently exe
utes the work that is found.CRS e�e
tively trades less wide-area tra�
 for more lo
al
ommuni
ation. As shown in Table 4.6, the runduring the night sends about 1.4 million lo
al-area messages. During daytime, the CRS algorithm has to domore e�ort to keep the load balan
ed: during the wide-area steals, about 2.1 million lo
al messages are sentwhile trying to �nd work within the lo
al
lusters. This is about 60% more than during the night. Still, only40.1 se
onds are spent
ommuni
ating. With CRS, the run during daytime only takes 16.5 se
onds (about 2.4%)longer than the run at night. The total
ommuni
ation overhead of CRS is at most 7.3%, while with RS, this
an be as mu
h as two thirds of the run time (i.e. the algorithm spends more time on
ommuni
ating than on
al
ulating useful work).Be
ause all idle time is
aused by
ommuni
ation, the time that is spent on the a
tual
omputation
an be
al
ulated by subtra
ting the
ommuni
ation time from the a
tual run time (tgrid). Be
ause we have gatheredthe
ommuni
ation statisti
s per ma
hine (not shown), we
an
al
ulate the total time a whole
luster spends

Satin: Simple and E�
ient Java-based Grid Programming 29

0%

20%

40%

60%

80%

100%

perfect RS night CRS night RS day CRS day

%
o

f
w

o
r
k

c
a

lc
u

la
te

d

Berlin

Brno

Cardiff

Lecce

A'dam Sun

A'dam DAS-2

Fig. 4.2. Distribution of work over the di�erent sites.
omputing the a
tual problem. Given the amount of time a
luster performs useful work and the relative speedof the
luster, we
an
al
ulate what fra
tion of the total work is
al
ulated by ea
h individual
luster. We
an
ompare this workload distribution with the ideal distribution whi
h is represented by the rightmost
olumn ofTable 4.4. The ideal distribution and the results for the four grid runs are shown in Figure 4.2. The di�eren
ebetween the perfe
t distribution and the a
tual distributions of the four grid runs is hardly visible. From the�gure, we
an
on
lude that, although the workload distribution of both RS and CRS is virtually perfe
t, theRS algorithm itself spends a large amount of time on a
hieving this distribution. CRS does not su�er from thisproblem, be
ause wide-area tra�
 is asyn
hronous and is overlapped with useful work that was found lo
ally.Still, it a
hieves an almost optimal distribution.To summarize, the experiment des
ribed in this se
tion shows that the Java-
entri
 approa
h to grid
om-puting, and the Satin/Ibis system in parti
ular, works extremely well in pra
ti
e in a real grid environment. Ittook hardly any e�ort to run Ibis and Satin on a heterogeneous system. Furthermore, the performan
e results
learly show that CRS outperforms RS in a real grid environment, espe
ially when the wide-area links are alsoused for other (Internet) tra�
. With CRS, the system is idle (waiting for
ommuni
ation) during only a smallfra
tion of the total run time. We expe
t even better performan
e when larger
lusters are used, as indi
atedby our simulator results from Se
tion 2.3.5. Related work. We have dis
ussed a Java-
entri
 approa
h to writing wide-area parallel (grid
omput-ing) appli
ations. Most other grid
omputing systems (e.g., Globus [10℄ and Legion [13℄) support a variety oflanguages. GridLab [2℄ is building a toolkit of grid servi
es that
an be a

essed from various programminglanguages. Converse [15℄ is a framework for multi-lingual interoperability. The SuperWeb [1℄, and Bayani-han [29℄ are examples of global
omputing infrastru
tures that support Java. A language-
entri
 approa
hmakes it easier to deal with heterogeneous systems, sin
e the data types that are transferred over the networksare limited to the ones supported in the language (thus obviating the need for a separate interfa
e de�nitionlanguage) [32℄.The AppLeS (short for appli
ation-level s
heduling) proje
t provides a framework for adaptively s
heduling

30 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. Balappli
ations on the grid [5℄. AppLeS fo
uses on sele
ting the best set of resour
es for the appli
ation outof the resour
e pool of the grid. Satin addresses the more low-level problem of load balan
ing the parallel
omputation itself, given some set of grid resour
es. AppLeS provides (amongst others) a template for master-worker appli
ations, whereas Satin provides load balan
ing for the more general
lass of divide-and-
onqueralgorithms.Many divide-and-
onquer systems are based on the C language. Among them, Cilk [7℄ only supports shared-memory ma
hines, CilkNOW [9℄ and DCPAR [12℄ run on lo
al-area, distributed-memory systems. SilkRoad [27℄is a version of Cilk for distributed memory systems that uses a software DSM to provide shared memory to theprogrammer, targeting at small-s
ale, lo
al-area systems.The Java
lasses presented by Lea [18℄
an be used to write divide-and-
onquer programs for shared-memory systems. Satin is a divide-and-
onquer extension of Java that was designed for wide-area systems,without shared memory. Like Satin, Javar [6℄ is
ompiler-based. With Javar, the programmer uses annotationsto indi
ate divide-and-
onquer and other forms of parallelism. The
ompiler then generates multithreadedJava
ode, that runs on any JVM. Therefore, Javar programs run only on shared-memory ma
hines and DSMsystems.Herrmann et al. [14℄ des
ribe a
ompiler-based approa
h to divide-and-
onquer programming that usesskeletons. Their DHC
ompiler supports a purely fun
tional subset of Haskell, and translates sour
e programsinto C and MPI. Alt et al. [3℄ developed a Java-based system, in whi
h skeletons are used to express parallelprograms, one of whi
h for expressing divide-and-
onquer parallelism. Although the programming systemtargets grid platforms, it is not
lear how s
alable the approa
h is: in [3℄, measurements are provided only fora lo
al
luster of 8 ma
hines.Most systems des
ribed above use some form of random stealing (RS). It has been proven [8℄ that RS isoptimal in spa
e, time and
ommuni
ation, at least for relatively tightly
oupled systems like SMPs and
lustersthat have homogeneous
ommuni
ation performan
e. In previous work [26℄, we have shown that this property
annot be extended to wide-area systems. We extended RS to perform asyn
hronous wide-area
ommuni
ationinterleaved with syn
hronous lo
al
ommuni
ation. The resulting randomized algorithm,
alled CRS, doesperform well in loosely-
oupled systems.Another Java-based divide-and-
onquer system is Atlas [4℄. Atlas is a set of Java
lasses that
an be usedto write divide-and-
onquer programs. Javelin 3 [24℄ provides a set of Java
lasses that allow programmersto express bran
h-and-bound
omputations, su
h as the traveling salesperson problem. Like Satin, Atlas andJavelin 3 are designed for wide-area systems. Both Atlas and Javelin 3 use tree-based hierar
hi
al s
hedulingalgorithms. We found that su
h algorithms are ine�
ient for �ne-grained appli
ations and that CRS performsbetter [26℄.6. Con
lusions. Grid programming environments need to be both portable and e�
ient to exploit the
omputational power of dynami
ally available resour
es. Satin makes it possible to write divide-and-
onquerappli
ations in Java, and is targeted at
lustered wide-area systems. The Satin implementation on top of ournew Ibis platform
ombines Java's run everywhere with e�
ient
ommuni
ation between JVMs. The resultingsystem is easy to use in a grid environment. To a
hieve high performan
e, Satin uses a spe
ial grid-aware load-balan
ing algorithm. Previous simulation results suggested that this algorithm is more e�
ient than traditionalalgorithms that are used on tightly-
oupled systems. In this paper, we veri�ed these simulation results in a realgrid environment.We evaluated Satin/Ibis on the highly heterogeneous testbed of the EU-funded GridLab proje
t, showingthat Satin's load-balan
ing algorithm automati
ally adapts both to heterogeneous pro
essor speeds and varyingnetwork performan
e, resulting in e�
ient utilization of the
omputing resour
es. Measurements show thatSatin's CRS algorithm indeed outperforms the widely used RS algorithm by a wide margin. With CRS, Satina
hieves around 80% e�
ien
y, even during daytime when the links between the sites are heavily loaded. In
ontrast, with the traditional RS algorithm, the e�
ien
y drops to about 26% when the wide-area links are
ongested.A
knowledgments. Part of this work has been supported by the European Commission, grant IST-2001-32133 (GridLab). We would also like to thank Olivier Aumage, Rutger Hofman, Ceriel Ja
obs, Maik Nijhuis andGosia Wrzesi«ska for their
ontributions to the Ibis
ode. Kees Verstoep is doing a marvelous job maintainingthe DAS
lusters. Aske Plaat suggested performing an evaluation of Satin on a real grid testbed. John Romein,Matthew Shields and Massimo Cafaro gave valuable feedba
k on this manus
ript.

Satin: Simple and E�
ient Java-based Grid Programming 31REFERENCES[1℄ A. D. Alexandrov, M. Ibel, K. E. S
hauser, and C. J. S
heiman, SuperWeb: Resear
h Issues in Java-Based GlobalComputing, Con
urren
y: Pra
ti
e and Experien
e, 9 (1997), pp. 535�553.[2℄ G. Allen, K. Davis, K. N. Dolkas, N. D. Doulamis, T. Goodale, T. Kielmann, A. Merzky, J. Nabrzyski,J. Puka
ki, T. Radke, M. Russell, E. Seidel, J. Shalf, and I. Taylor, Enabling Appli
ations on the Grid - AGridLab Overview, nternational Journal of High Performan
e Computing Appli
ations, (2003). a

epted for publi
ation.[3℄ M. Alt, H. Bis
hof, and S. Gorlat
h, Program Development for Computational Grids using Skeletons and Performan
ePredi
tion, Parallel Pro
essing Letters, 12 (2002), pp. 157�174. World S
ienti�
 Publishing Company.[4℄ E. J. Baldes
hwieler, R. Blumofe, and E. Brewer, ATLAS: An Infrastru
ture for Global Computing, in Pro
eedingsof the Seventh ACM SIGOPS European Workshop on System Support for Worldwide Appli
ations, Connemara, Ireland,September 1996, pp. 165�172.[5℄ F. Berman, R. Wolski, S. Figueira, J. S
hopf, and G. Shao, Appli
ation-level S
heduling on Distributed HeterogeneousNetworks, in Pro
eedings of the ACM/IEEE Conferen
e on Super
omputing (SC'96), Pittsburgh, PA, November 1996.Online at http://www.super
omp.org.[6℄ A. Bik, J. Villa
is, and D. Gannon, Javar: A Prototype Java Restru
turing Compiler, Con
urren
y: Pra
ti
e andExperien
e, 9 (1997), pp. 1181�1191.[7℄ R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou., Cilk: An E�
ientMultithreaded Runtime System, in 5th ACM SIGPLAN Symposium on Prin
iples and Pra
ti
e of Parallel Programming(PPoPP'95), Santa Barbara, CA, July 1995, pp. 207�216.[8℄ R. D. Blumofe and C. E. Leiserson, S
heduling Multithreaded Computations by Work Stealing, in 35th Annual Symposiumon Foundations of Computer S
ien
e (FOCS '94), Santa Fe, New Mexi
o, November 1994, pp. 356�368.[9℄ R. D. Blumofe and P. Lisie
ki, Adaptive and Reliable Parallel Computing on Networks of Workstations, in USENIX 1997Annual Te
hni
al Conferen
e on UNIX and Advan
ed Computing Systems, Anaheim, CA, 1997, pp. 133�147.[10℄ I. Foster and C. Kesselman, Globus: A Meta
omputing Infrastru
ture Toolkit, International Journal of Super
omputerAppli
ations, 11 (1997), pp. 115�128.[11℄ I. Foster, C. Kesselman, G. Tsudik, and S. Tue
ke, A se
urity ar
hite
ture for
omputational grids, in 5th ACMConferen
e on Computer and Communi
ation Se
urity, San Fran
is
o, CA, November 1998, pp. 83�92.[12℄ B. Freisleben and T. Kielmann, Automated Transformation of Sequential Divide�and�Conquer Algorithms into ParallelPrograms, Computers and Arti�
ial Intelligen
e, 14 (1995), pp. 579�596.[13℄ A. Grimshaw and W. A. Wulf, The Legion Vision of a Worldwide Virtual Computer, Comm. ACM, 40 (1997), pp. 39�45.[14℄ C. A. Herrmann and C. Lengauer, HDC: A Higher-Order Language for Divide-and-Conquer, Parallel Pro
essing Letters,10 (2000), pp. 239�250.[15℄ L. V. Kalé, M. Bhandarkar, N. Jagathesan, S. Krishnan, and J. Yelon, Converse: An interoperable framework forparallel programming, in Intl. Parallel Pro
essing Symposium, 1996.[16℄ K. Kaneda, K. Taura, and A. Yonezawa, Virtual private grid: A
ommand shell for utilizing hundreds of ma
hinese�
iently, in 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2002), Berlin,Germany, May 2002, pp. 212�219.[17℄ T. Kielmann, H. E. Bal, J. Maassen, R. van Nieuwpoort, L. Eyraud, R. Hofman, and K. Verstoep, ProgrammingEnvironments for High-Performan
e Grid Computing: the Albatross Proje
t, Future Generation Computer Systems, 18(2002), pp. 1113�1125.[18℄ D. Lea, A Java Fork/Join Framework, in Pro
eedings of the ACM 2000 Java Grande Conferen
e, San Fran
is
o, CA, June2000, pp. 36�43.[19℄ C. Lee, S. Matsuoka, D. Talia, A. Sussmann, M. Müller, G. Allen, and J. Saltz, A Grid programming primer.Global Grid Forum, August 2001.[20℄ M. Lee
h, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones, RFC 1928: SOCKS proto
ol version 5, April 1996.[21℄ J. Maassen, T. Kielmann, and H. Bal, GMI: Flexible and E�
ient Group Method Invo
ation for Parallel Programming,in In pro
eedings of LCR-02: Sixth Workshop on Languages, Compilers, and Run-time Systems for S
alable Computers,Washington DC, Mar
h 2002, pp. 1�6.[22℄ J. Maassen, T. Kielmann, and H. E. Bal, Parallel Appli
ation Experien
e with Repli
ated Method Invo
ation, Con
ur-ren
y and Computation: Pra
ti
e and Experien
e, 13 (2001), pp. 681�712.[23℄ J. Maassen, R. van Nieuwpoort, R. Veldema, H. Bal, T. Kielmann, C. Ja
obs, and R. Hofman, E�
ient JavaRMI for Parallel Programming, ACM Transa
tions on Programming Languages and Systems, 23 (2001), pp. 747�775.[24℄ M. O. Neary and P. Cappello, Advan
ed Eager S
heduling for Java-Based Adaptively Parallel Computing, in Pro
eedingsof the Joint ACM 2002 Java Grande - ISCOPE (International Symposium on Computing in Obje
t-Oriented ParallelEnvironments) Conferen
e, Seattle, November 2002, pp. 56�65.[25℄ Publi
 netperf homepage. www.netperf.org.[26℄ R. V. v. Nieuwpoort, T. Kielmann, and H. E. Bal, E�
ient Load Balan
ing for Wide-area Divide-and-ConquerAppli
ations, in Pro
eedings Eighth ACM SIGPLAN Symposium on Prin
iples and Pra
ti
e of Parallel Programming(PPoPP'01), Snowbird, UT, June 2001, pp. 34�43.[27℄ L. Peng, W. Wong, M. Feng, and C. Yuen, SilkRoad: A Multithreaded Runtime System with Software DistributedShared Memory for SMP Clusters, in IEEE International Conferen
e on Cluster Computing (Cluster2000), Chemnitz,Saxony, Germany, November 2000, pp. 243�249.[28℄ M. Philippsen, B. Hauma
her, and C. Nester, More e�
ient serialization and RMI for Java, Con
urren
y: Pra
ti
eand Experien
e, 12 (2000), pp. 495�518.[29℄ L. F. G. Sarmenta, Volunteer Computing, PhD thesis, Dept. of Ele
tri
al Engineering and Computer S
ien
e, MIT, 2001.[30℄ Y. Tanaka, H. Nakada, S. Sekigu
hi, T. Suzumura, and S. Matsuoka, Ninf-G: A Referen
e Implementation ofRPC-based Programming Middleware for Grid Computing, Journal of Grid Computing, 1 (2003), pp. 41�51.

32 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. Bal[31℄ R. V. van Nieuwpoort, J. Maassen, R. Hofman, T. Kielmann, and H. E. Bal, Ibis: an E�
ient Java-based GridProgramming Environment, in Joint ACM Java Grande - ISCOPE 2002 Conferen
e, Seattle, Washington, USA, November2002, pp. 18�27.[32℄ A. Wollrath, J. Waldo, and R. Riggs, Java-Centri
 Distributed Computing, IEEE Mi
ro, 17 (1997), pp. 44�53.[33℄ I.-C. Wu and H. Kung, Communi
ation Complexity for Parallel Divide-and-Conquer, in 32nd Annual Symposium onFoundations of Computer S
ien
e (FOCS '91), San Juan, Puerto Ri
o, O
t. 1991, pp. 151�162.Edited by: Wilson Rivera, Jaime Seguel.Re
eived: July 15, 2003.A

epted: September 1, 2003.

S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 3, pp. 33�43. http://www.s
pe.org ISSN 1895-1767
© 2005 SWPSRUN-TIME ADAPTATION OF GRID DATA PLACEMENT JOBSG. KOLA∗, T. KOSAR∗ & M. LIVNY∗Abstra
t. Grid presents a
ontinuously
hanging environment. It also introdu
es a new set of failures. The data grid initiativehas made it possible to run data-intensive appli
ations on the grid. Data-intensive grid appli
ations
onsist of two parts: a datapla
ement part and a
omputation part. The data pla
ement part is responsible for transferring the input data to the
omputenode and the result of the
omputation to the appropriate storage system. While work has been done on making
omputationadapt to
hanging
onditions, little work has been done on making the data pla
ement adapt to
hanging
onditions. In this work,we have developed an infrastru
ture whi
h observes the environment and enables run-time adaptation of data pla
ement jobs. Wehave enabled Stork, a s
heduler for data pla
ement jobs in heterogeneous environments like the grid, to use this infrastru
tureand adapt the data pla
ement job to the environment just before exe
ution. We have also added dynami
 proto
ol sele
tion andalternate proto
ol fall-ba
k
apability to Stork to provide superior performan
e and fault toleran
e.Key words. Grid, data pla
ement, run-time adaptation, s
heduling, data intensive appli
ations, dynami
 proto
ol sele
tion,stork,
ondor.1. Introdu
tion. The grid [10℄ [11℄ [19℄ presents a
ontinuously
hanging environment. The data gridinitiative has in
reased the underlying network
apa
ity and enabled running of data-intensive appli
ations onthe grid. Data-intensive appli
ations
onsist of two parts: a data pla
ement part and a
omputation part.The data pla
ement part is responsible for transferring the input data to the
ompute node and the result ofthe
omputation to the appropriate storage system. Data pla
ement en
ompasses all data movement relateda
tivities su
h as transfer, staging, repli
ation, data positioning, spa
e allo
ation and deallo
ation. While workhas been done on making
omputation adapt to
hanging
onditions, little work has been done on making thedata pla
ement adapt to
hanging
onditions.Sophisti
ated proto
ols developed for grid data transfers like GridFTP [1℄ allow tuning depending on theenvironment to a
hieve the best performan
e. While tuning by itself is di�
ult, it is further
ompli
ated bythe
hanging environment. The parameters whi
h are optimal at the time of job submission, may no longer beoptimal at the time of exe
ution. The best time to tune the parameters is just before exe
ution of the datapla
ement job. Determining the environment
hara
teristi
s and performing tuning for ea
h job may imposea signi�
ant overhead. Ideally, we need an infrastru
ture that dete
ts environmental
hanges and performsappropriate tuning and uses the tuned parameters for subsequent data pla
ement jobs.Many times, we have the ability to use di�erent proto
ols for data transfers, with ea
h having di�erentnetwork, CPU and disk
hara
teristi
s. The new fast proto
ols do not work all the time. The main reason is thepresen
e of bugs in the implementation of the new proto
ols. The more robust proto
ols work for most of thetime but do not perform as well. This presents a dilemma to the users who submit data pla
ement jobs to datapla
ement s
hedulers. If they
hoose the fast proto
ol, some of their transfers may never
omplete and if they
hoose the slower proto
ol, their transfer would take a very long time. Ideally users would want to use the fasterproto
ol when it works and swit
h to the slower more reliable proto
ol when the fast one fails. Unfortunately,when the fast proto
ol would fail is not known apriori. The de
ision on whi
h proto
ol to use is best done justbefore starting the transfer.Some users simply want data transferred and do not
are about the proto
ol being used. Others have somepreferen
e su
h as: as fast as possible, as low a CPU load as possible, as minimal memory usage as possible. Thema
hines where the jobs are being exe
uted may have some
hara
teristi
s whi
h might favor some proto
ol.Further the ma
hine
hara
teristi
s may
hange over time due to hardware and software upgrades. Most usersdo not understand the performan
e
hara
teristi
s of the di�erent proto
ols and inevitably end up using aproto
ol that is known to work. In
ase of failures, they just wait for the failure to be �xed, even though otherproto
ols may be working.An ideal system is one that allows normal users to spe
ify their preferen
e and
hooses the appropriate pro-to
ol based on their preferen
e and ma
hine
hara
teristi
s. It should also swit
h to the next most appropriateproto
ol in
ase the
urrent one stops working. It should also allow sophisti
ated users to spe
ify the proto
olto use and the alternate proto
ols in
ase of failure. Su
h a system would not only redu
e the
omplexity of
∗Department of Computer S
ien
es, University of Wis
onsin-Madison, 1210 W. Dayton St. Madison, WI 53706, USA. ({kola,kosart, miron}�
s.wis
.edu). 33

34 G. Kola, T. Kosar and M. Livnyprogramming the data transfer but also provide superior failure re
overy strategy. The system may also be ableto improve performan
e be
ause it
an perform on-the-�y optimization.In this work, we have developed a monitoring infrastru
ture whi
h determines the environment
hara
teris-ti
s and dete
ts any subsequent
hange. The environment
hara
teristi
s are used by the tuning infrastru
tureto generate tuned parameters for the various proto
ols. These tuned parameters are fed to a data pla
ements
heduler. The data pla
ement s
heduler uses the tuned parameters while exe
uting the data pla
ement jobssubmitted to it, essentially performing run-time adaptation of data pla
ement jobs. We have also added dy-nami
 proto
ol sele
tion and alternate proto
ol fall-ba
k
apability to our prototype data pla
ement s
heduler.Dynami
 proto
ol sele
tion determines the proto
ols that are available on a parti
ular host and uses an appro-priate proto
ol for data transfer between any two hosts. Alternate proto
ol fall-ba
k allows the data pla
ements
heduler to swit
h to a di�erent proto
ol if the proto
ol being used for a transfer stops working.2. RelatedWork. NetworkWeather Servi
e (NWS) [25℄ is a distributed system whi
h periodi
ally gathersreadings from network and CPU resour
es, and uses numeri
al models to generate fore
asts for a given timeframe. Vazhkudai [24℄ found that the network throughput predi
ted by NWS was mu
h less than the a
tualthroughput a
hieved by GridFTP. He attributed the reason for it being that NWS by default was using 64KBdata transfer probes with normal TCP window size to measure throughput. We wanted our network monitoringinfrastru
ture to be as a

urate as possible and wanted to use it to tune proto
ols like GridFTP.Semke [20℄ introdu
es automati
 TCP bu�er tuning. Here the re
eiver is expe
ted to advertise largeenough windows. Fisk [9℄ points out the problems asso
iated with [20℄ and introdu
es dynami
 right sizingwhi
h
hanges the re
eiver window advertisement a

ording to estimated sender
ongestion window. 16-bit TCPwindow size �eld and 14-bit window s
ale option whi
h needs to be spe
i�ed during
onne
tion setup, introdu
emore
ompli
ations. While a higher value of the window-s
ale option allows a larger window, it in
reases thegranularity of window in
rements and de
rements. While large data transfers bene�t from large window size,web and other tra�
 are adversely a�e
ted by the larger granularity of window-size
hanges.Linux 2.4 kernel used in our ma
hines implements dynami
 right-sizing, but the re
eiver window size needsto be set expli
itly if a window size large than 64 KB is to be used. Autobuf [15℄ attempts to tune TCPwindow size automati
ally by performing bandwidth estimation before the transfer. Unfortunately there isno negotiation of TCP window size between server and
lient whi
h is needed for optimal performan
e. Alsoperforming a bandwidth estimation before every transfer introdu
es too mu
h of an overhead.Fearman et. al [8℄ introdu
e the Adaptive Regression Modeling (ARM) te
hnique to fore
ast data transfertimes for network-bound distributed data-intensive appli
ations. Ogura et. al [17℄ try to a
hieve optimalbandwidth even when the network is under heavy
ontention, by dynami
ally adjusting transfer parametersbetween two
lusters, su
h as the number of so
ket stripes and the number of network nodes involved intransfer.In [5℄, Carter et. al. introdu
e tools to estimate the maximum possible bandwidth along a given path,and to
al
ulate the
urrent
ongestion along a path. Using these tools, they demonstrate how dynami
 serversele
tion
an be performed to a
hieve appli
ation-level
ongestion avoidan
e.Thain et. al. propose the Ethernet approa
h [21℄ to Grid Computing, in whi
h they introdu
e a simples
ripting language whi
h
an handle failures in a manner similar to ex
eptions in some languages. The Ethernetapproa
h is not aware of the semanti
s of the jobs it is running, its duty is retrying any given job for a numberof times in a fault tolerant manner. Kangaroo [22℄ tries to a
hieve high throughput by making opportunisti
use of disk and network resour
es.Appli
ation Level S
hedulers (AppLeS) [4℄ have been developed to a
hieve e�
ient s
heduling by takinginto a

ount both appli
ation-spe
i�
 and dynami
 system information. AppLeS agents use dynami
 systeminformation provided by the NWS.Be
k et. al. introdu
e Logisti
al Networking [2℄ whi
h performs global s
heduling and optimization of datamovement, storage and
omputation based on a model that takes into a

ount all the network's underlyingphysi
al resour
es.3. Methodology. The environment in whi
h data pla
ement jobs exe
ute keeps
hanging all the time.The network bandwidth keeps �u
tuating. The network route
hanges on
e in a while. The opti
 �ber mayget upgraded in
reasing the bandwidth. New disks and raid-arrays may be added to the system. The monitor-ing and tuning infrastru
ture monitors the environment and tunes the di�erent parameters a

ordingly. Thedata pla
ement s
heduler then uses these tuned parameters to intelligently s
hedule and exe
ute the transfers.

Run-time Adaptation of Grid Data Pla
ement Jobs 35Figure 3.1 shows the
omponents of the monitoring and tuning infrastru
ture and the intera
tion with the datapla
ement s
heduler.3.1. Monitoring Infrastru
ture. The monitoring infrastru
ture monitors the disk, memory and network
hara
teristi
s. The infrastru
ture takes into a

ount that the disk and memory
hara
teristi
s
hange lessfrequently and the network
hara
teristi
s
hange more frequently. The disk and memory
hara
teristi
s aremeasured on
e after the ma
hine is started. If a new disk is added on the �y (hot-plugin), there is an option toinform the infrastru
ture to determine the
hara
teristi
s of that disk. The network
hara
teristi
s are measuredperiodi
ally. The period is tunable. If the infrastru
ture �nds that the network
hara
teristi
s are
onstant fora
ertain number of measurements, it redu
es the frequen
y of measurement till a spe
i�ed minimum is rea
hed.The obje
tive of this is to keep the overhead of measurement as low as possible.

Fig. 3.1. Monitoring and Tuning Infrastru
ture. This �gure shows an overview of the monitoring and tuning infrastru
ture.The di�erent pro�lers determine the various environment
onditions and the tuning infrastru
ture uses that information to generateoptimal parameter values.The disk and memory
hara
teristi
s are determined by intrusive te
hniques, and the network
hara
teristi
sare determined by a
ombination of intrusive and non-intrusive te
hniques. The memory
hara
teristi
 ofinterest to us is the optimal memory blo
k size to be used for memory-to-memory
opy. The disk
hara
teristi
smeasured in
lude the optimal read and write blo
k sizes and the in
remental blo
k size that
an be added tothe optimal value to get the same performan
e.The network
hara
teristi
s measured are the following: end-to-end bandwidth, end-to-end laten
y, numberof hops, the laten
y of ea
h hop and kernel TCP parameters. Sin
e end-to-end measurement requires two hosts,this measurement is done between every pair of hosts that may transfer data between ea
h other. The end-to-end bandwidth measurement uses both intrusive and non-intrusive te
hniques. The non-intrusive te
hniqueuses pa
ket dispersion te
hnique to measure the bandwidth. The intrusive te
hnique performs a
tual transfers.First, the non-intrusive te
hnique is used and the bandwidth is determined. Then a
tual transfer is performed tomeasure the end-to-end bandwidth. If the numbers widely di�er, the infrastru
ture performs a
ertain number

36 G. Kola, T. Kosar and M. Livnyof both of the network measurements and �nds the
orrelation between the two. After this initial setup, alight-weight network pro�ler is run whi
h uses only non-intrusive measuring te
hnique. While we perform alonger initial measurement for higher a

ura
y, the subsequent periodi
 measurements are very light-weight anddo not perturb the system.3.2. Tuning Infrastru
ture. The tuning infrastru
ture uses the information
olle
ted by monitoringinfrastru
ture and tries to determine the optimal I/O blo
k size, TCP bu�er size and the number of TCPstreams for the data transfer from a given node X to a given node Y. The tuning infrastru
ture has theknowledge to perform proto
ol-spe
i�
 tuning. For instan
e, GridFTP takes as input only a single I/O blo
ksize, but the sour
e and destination ma
hines may have di�erent optimal I/O blo
k sizes. For su
h
ases, thetuning �nds the I/O blo
k size whi
h is optimal for both of them. The in
remental blo
k size measured by thedisk pro�ler is used for this. The tuning infrastru
ture feeds the data transfer parameters to the data pla
ements
heduler.3.3. S
heduling Data Transfers. The data pla
ement s
heduler uses the information provided by thetuning infrastru
ture to make intelligent de
isions for s
heduling and exe
uting the data pla
ement jobs.In our study, we used the Stork [13℄ data pla
ement s
heduler to monitor, manage, and s
hedule thedata transfers over the wide area network. Stork is a spe
ialized s
heduler for data pla
ement a
tivities inheterogeneous environments. Stork
an queue, s
hedule, monitor and manage data pla
ement jobs, and itensures that the jobs
omplete.Stork is aware of the semanti
s of the data pla
ement requests submitted to it, so it
an make intelligents
heduling de
isions with regard to ea
h individual request. For example, if a transfer of a large �le fails, Stork
an transfer only parts of the �le not already transferred. We have made some enhan
ements to Stork that enableit to adaptively s
hedule data transfers at run-time using the information provided by monitoring and tuninginfrastru
ture. These enhan
ements in
lude dynami
 proto
ol sele
tion and run-time proto
ol auto-tuning. Thedetails of these enhan
ements are dis
ussed in se
tion 5.4. Implementation. We have developed a set of tools to determine disk, memory and network
hara
ter-isti
s and using those values determine the optimal parameter values to be used for data transfers. We exe
utedthese tools in a
ertain order and fed the results to Stork data pla
ement s
heduler whi
h then performedrun-time adaptation of the wide-area data pla
ement jobs submitted to it.4.1. Disk and Memory Pro�lers. The disk pro�ler determines the optimal read and write blo
k sizesand the in
rement that
an be added to the optimal blo
k size to get the same performan
e. A list of pathnamesand the average �le size is fed to the disk pro�ler. So, in a multi-disk system, the mount point of the di�erentdisks are passed to the disk pro�ler. In the
ase of a raid-array, the mount point of the raid array is spe
i�ed.For ea
h of the spe
i�ed paths, the disk pro�ler �nds the optimal read and write blo
k size and the optimalin
rement that
an be applied to these blo
k sizes to get the same performan
e. It also lists the read and writedisk bandwidths a
hieved by the optimal blo
k sizes.For determining the optimal write blo
k size, the pro�ler
reates a �le in the spe
i�ed path and writes theaverage �le size of data in blo
k-size
hunks and �ushes the data to disk at the end. It repeats the experiment fordi�erent blo
k sizes and �nds the optimal. For determining the read blo
k size, it uses the same te
hnique ex
eptthat it �ushes the kernel bu�er
a
he to prevent
a
he e�e
ts before repeating the measurement for a di�erentblo
k size. Sin
e normal kernels do not allow easy �ushing of the kernel bu�er
a
he, the mi
ro-ben
hmarkreads in a large dummy �le of size greater than the bu�er
a
he size essentially �ushing it. The memory pro�ler�nds the maximum memory-to-memory
opy bandwidth and the blo
k size to be used to a
hieve it.4.2. Network Pro�ler. The network pro�ler gets the kernel TCP parameters from /pro
. It runsPathrate [7℄ between given pair of nodes and gets the estimated bottlene
k bandwidth and the average round-trip time. It then runs tra
eroute between the nodes to determine the number of hops between the nodes and thehop-to-hop laten
y. The bandwidth estimated by Pathrate is veri�ed by performing a
tual transfers by a datatransfer tool developed as part of the DiskRouter proje
t [12℄. If the two numbers di�er widely, then a spe
i�ednumber of a
tual transfers and Pathrate bandwidth estimations are done to �nd the
orrelation between thetwo. Tools like Iperf [16℄
an also be used instead of the DiskRouter data transfer tool to perform the a
tualtransfer. From experien
e, we found Pathrate to the most reliable of all the network bandwidth estimation toolsthat use pa
ket dispersion te
hnique and we always found a
orrelation between the value returned by Pathrate

Run-time Adaptation of Grid Data Pla
ement Jobs 37and that observed by performing a
tual transfer. After the initial network pro�ling, we run a light-weightnetwork pro�ler periodi
ally. The light-weight pro�ler runs only Pathrate and tra
eroute.4.3. Parameter Tuner. The parameter tuner gets the information generated by the di�erent tools and�nds the optimal value of the parameters to be used for data transfer from a node X to a node Y.To determine the optimal number of streams to use, the parameter tuner uses a simple heuristi
. It �ndsthe number of hops between the two nodes that have a laten
y greater than 10 ms. For ea
h su
h hop, it addsan extra stream. Finally, if there are multiple streams and the number of streams is odd, the parameter tunerrounds it to an even number by adding one. The reason for doing this is that some proto
ols do not work wellwith odd number of streams. The parameter tuner
al
ulates the bandwidth-delay produ
t and uses that asthe TCP bu�er size. If it �nds that it has to use more than one stream, it divides the TCP bu�er size bythe number of streams. The reason for adding a stream for every 10 ms hop is as follows: In a high-laten
ymulti-hop network path, ea
h of the hops may experien
e
ongestion independently. If a bulk data transferusing a single TCP stream o

urs over su
h a high-laten
y multi-hop path, ea
h
ongestion event would shrinkthe TCP window size by half. Sin
e this is a high-laten
y path, it would take a long time for the window togrow, with the net result being that a single TCP stream would be unable to utilize the full available bandwidth.Having multiple streams redu
es the bandwidth redu
tion of a single
ongestion event. Most probably only asingle stream would be a�e
ted by the
ongestion event and halving the window size of that stream alone wouldbe su�
ient to eliminate
ongestion. The probability of independent
ongestion events o

urring in
reases withthe number of hops. Sin
e only the high-laten
y hops have a signi�
ant impa
t be
ause of the time taken toin
rease the window size, we added a stream for all high-laten
y hops and empiri
ally found that hops withlaten
y greater than 10 ms fell into the high-laten
y
ategory. Note that we set the total TCP bu�er size to beequal to the bandwidth delay produ
t, so in steady state
ase with multiple streams, we would not be
ausing
ongestion.The Parameter Tuner understands kernel TCP limitations. Some ma
hines may have a maximum TCPbu�er size limit less than the optimal needed for the transfer. In su
h a
ase, the parameter tuner uses morestreams so that their aggregate bu�er size is equal to that of the optimal TCP bu�er size.The Parameter Tuner gets the di�erent optimal values and generates overall optimal values. It makes surethat the disk I/O blo
k size is at least equal to the TCP bu�er size. For instan
e, the optimal disk blo
k sizemay be 1024 KB and the in
rement value may be 512 KB (performan
e of optimal + in
rement is same asoptimal) and the optimal TCP bu�er size may be 1536KB. In this
ase, the parameter tuner will make theproto
ol use a disk blo
k size of 1536 KB and a TCP bu�er size of 1536 KB. This is a pla
e where the in
rementvalue generated by the disk pro�ler is useful.The Parameter Tuner understands di�erent proto
ols and performs proto
ol spe
i�
 tuning. For example,globus-url-
opy, a tool used to move data between GridFTP servers, allows users to spe
ify only a single diskblo
k size. The read disk blo
k size of the sour
e ma
hine may be di�erent from the write disk blo
k size of thedestination ma
hine. In this
ase, the parameter tuner understands this and
hooses an optimal value that isoptimal for both the ma
hines.4.4. Coordinating the Monitoring and Tuning Infrastru
ture. The disk, memory and networkpro�lers need to be run on
e at startup and the light-weight network pro�ler needs to be run periodi
ally. Wemay also want to re-run the other pro�lers in
ase a new disk is added or any other hardware or operatingsystem kernel upgrade. We have used the Dire
ted A
y
li
 Graph Manager (DAGMan) [6℄ [23℄ to
oordinatethe monitoring and tuning pro
ess. DAGMan is servi
e for exe
uting multiple jobs with dependen
ies betweenthem. The monitoring tools are run as Condor [14℄ jobs on respe
tive ma
hines. Condor provides a job queuingme
hanism and resour
e monitoring
apabilities for
omputational jobs. It also allows the users to spe
ifys
heduling poli
ies and enfor
e priorities.We exe
uted the Parameter Tuner on the management site. Sin
e the Parameter Tuner is a Condor job,we
an exe
ute it anywhere we have a
omputation resour
e. It pi
ks up the information generated by themonitoring tools using Condor and produ
es the di�erent tuned parameter values for data transfer betweenea
h pair of nodes. For example, if there are two nodes X and Y, then the parameter tuner generates two setsof parameters - one for transfer from node X to node Y and another for data transfer from node Y to node X.This information is fed to Stork whi
h uses it to tune the parameters of data pla
ement jobs submitted to it.The DAG
oordinating the monitoring and tuning infrastru
ture is shown in Figure 4.1.We
an run an instan
e of parameter tuner for every pair of nodes or a
ertain number of pairs of nodes.

38 G. Kola, T. Kosar and M. Livny

Fig. 4.1. The DAG Coordinating the Monitoring and Tuning infrastru
ture. This DAG shows the order in whi
h themonitors(pro�lers) and tuner are run. Initially all the pro�lers are run and the information is logged to persistent storage and alsopassed to the parameter tuner whi
h generates the optimal parameter values. After that, the light-weight network pro�ler andparameter tuner are run periodi
ally. The parameter tuner uses the values of the earlier pro�ler runs and the
urrent light-weightnetwork pro�ler run to generate the optimal parameter values.For every pair of nodes, the data fed to the parameter tuner is in the order of hundreds of bytes. Sin
e all toolsare run as Condor jobs, depending on the number of nodes involved in the transfers, we
an have a
ertainnumber of parameter tuners, and they
an be exe
uted wherever there is available
y
les and this ar
hite
tureis not
entralized with respe
t to the parameter tuner. In our infrastru
ture, we
an also have multiple datapla
ement s
hedulers and have the parameters for data transfers handled by a parti
ular s
heduler fed to it.In a very large system, we would have multiple data pla
ement s
hedulers with ea
h handling data movementbetween a
ertain subset of nodes.4.5. Dynami
 Proto
ol Sele
tion. We have enhan
ed the Stork s
heduler so that it
an de
ide whi
hdata transfer proto
ol to use for ea
h
orresponding transfer dynami
ally and automati
ally at the run-time.Before performing ea
h transfer, Stork makes a qui
k
he
k to identify whi
h proto
ols are available for boththe sour
e and destination hosts involved in the transfer. Stork �rst
he
ks its own host-proto
ol library to seewhether all of the hosts involved the transfer are already in the library or not. If not, Stork tries to
onne
tto those parti
ular hosts using di�erent data transfer proto
ols, to determine the availability of ea
h spe
i�
proto
ol on that parti
ular host. Then Stork
reates the list of proto
ols available on ea
h host, and storesthese lists as a library in ClassAd [18℄ format whi
h is a very �exible and extensible data model that
an beused to represent arbitrary servi
es and
onstraints.[host_name = "quest2.n
sa.uiu
.edu";supported_proto
ols = "diskrouter, gridftp, ftp";℄[host_name = "nostos.
s.wis
.edu";supported_proto
ols = "gridftp, ftp, http";℄

Run-time Adaptation of Grid Data Pla
ement Jobs 39If the proto
ols spe
i�ed in the sour
e and destination URLs of the request fail to perform the transfer,Stork will start trying the proto
ols in its host-proto
ol library to
arry out the transfer. Stork dete
ts avariety of proto
ol failures. In the simple
ase,
onne
tion establishment would fail and the tool would reportan appropriate error
ode and Stork uses the error
ode to dete
t failure. In other
ase where there is a bugin proto
ol implementation, the tool may report su

ess of a transfer, but stork would �nd that sour
e anddestination �les have di�erent sizes. If the same problem repeats, Stork swit
hes to another proto
ol. The usersalso have the option to not spe
ify any parti
ular proto
ol in the request, letting Stork to de
ide whi
h proto
olto use at run-time.[dap_type = "transfer";sr
_url = "any://sli
04.sds
.edu/tmp/foo.dat";dest_url = "any://quest2.n
sa.uiu
.edu/tmp/foo.dat";℄ In the above example, Stork will sele
t any of the available proto
ols on both sour
e and destination hoststo perform the transfer. So, the users do not need to
are about whi
h hosts support whi
h proto
ols. Theyjust send a request to Stork to transfer a �le from one host to another, and Stork will take
are of de
idingwhi
h proto
ol to use.The users
an also provide their preferred list of alternative proto
ols for any transfer. In this
ase, theproto
ols in this list will be used instead of the proto
ols in the host-proto
ol library of Stork.[dap_type = "transfer";sr
_url = "drouter://sli
04.sds
.edu/tmp/foo.dat";dest_url = "drouter://quest2.n
sa.uiu
.edu/tmp/foo.dat";alt_proto
ols = "nest-nest, gsiftp-gsiftp";℄ In this example, the user asks Stork to perform a transfer from sli
04.sds
.edu to quest2.n
sa.uiu
.eduusing the DiskRouter proto
ol primarily. The user also instru
ts Stork to use any of the NeST [3℄ or GridFTPproto
ols in
ase the DiskRouter proto
ol does not work. Stork will try to perform the transfer using theDiskRouter proto
ol �rst. In
ase of a failure, it will drop to the alternative proto
ols and will try to
ompletethe transfer su

essfully. If the primary proto
ol be
omes available again, Stork will swit
h to it again. So,whi
hever proto
ol available will be used to su

essfully
omplete the user's request. In
ase all the proto
olsfail, Stork will keep trying till one of them be
omes available.4.6. Run-time Proto
ol Auto-tuning. Statisti
s for ea
h link involved in the transfers are
olle
tedregularly and written into a �le,
reating a library of network links, proto
ols and auto-tuning parameters.[link = "sli
04.sds
.edu - quest2.n
sa.uiu
.edu";proto
ol = "gsiftp";bs = 1024KB; //blo
k sizet
p_bs = 1024KB; //TCP buffer sizep = 4; //parallelism℄ Before performing every transfer, Stork
he
ks its auto-tuning library to see if there are any entries for theparti
ular hosts involved in this transfer. If there is an entry for the link to be used in this transfer, Stork usesthese optimized parameters for the transfer. Stork
an also be
on�gured to
olle
t performan
e data beforeevery transfer, but this is not re
ommended due to the overhead it will bring to the system.5. Experiments and Results. We have performed two di�erent experiments to evaluate the e�e
tivenessof our dynami
 proto
ol sele
tion and run-time proto
ol tuning me
hanisms. We also
olle
ted performan
edata to show the
ontribution of these me
hanisms to wide area data transfers.5.1. Experiment 1: Testing the Dynami
 Proto
ol Sele
tion. We submitted 500 data trans-fer requests to the Stork server running at University of Wis
onsin (skywalker.
s.wis
.edu). Ea
h re-quest
onsisted of transfer of a 1.1GB image �le (total 550GB) from SDSC (sli
04.sds
.edu) to NCSA(quest2.n
sa.uiu
.edu) using the DiskRouter proto
ol. There was a DiskRouter server installed at Starlight

40 G. Kola, T. Kosar and M. Livny(n
dm13.sl.startap.net) whi
h was responsible for routing DiskRouter transfers. There were also GridFTPservers running on both SDSC and NCSA sites, whi
h enabled us to use third-party GridFTP transfers wheneverne
essary. The experiment setup is shown in Figure 5.1.

Fig. 5.1. Experiment Setup. DiskRouter and GridFTP proto
ols are used to transfer data from SDSC to NCSA. Stork wasrunning at the Management site,a nd making s
heduling de
isions for the transfers.At the beginning of the experiment, both DiskRouter and GridFTP servi
es were available. Stork startedtransferring �les from SDSC to NCSA using the DiskRouter proto
ol as dire
ted by the user. After a while,we killed the DiskRouter server running at Starlight intentionally. This was done to simulate a DiskRouterserver
rash. Stork immediately swit
hed the proto
ols and
ontinued the transfers using GridFTP withoutany interruption. Swit
hing to GridFTP
aused a de
rease in the performan
e of the transfers, as shown inFigure 5.2. The reasons of this de
rease in performan
e is be
ause of the fa
t that GridFTP does not performauto-tuning whereas DiskRouter does. In this experiment, we set the number of parallel streams for GridFTPtransfers to 10, but we did not perform any tuning of disk I/O blo
k size or TCP bu�er size. DiskRouterperforms auto-tuning for the network parameters in
luding the number of TCP-streams in order to fully utilizethe available bandwidth. DiskRouter
an also use sophisti
ated routing to a
hieve better performan
e.After letting Stork use the alternative proto
ol (in this
ase GridFTP) to perform the transfers for a while,we restarted the DiskRouter server at the SDSC site. This time, Stork immediately swit
hed ba
k to usingDiskRouter for the transfers, sin
e it was the preferred proto
ol of the user. Swit
hing ba
k to the faster proto
olresulted in an in
rease in the performan
e. We repeated this a
ouple of more times, and observed that thesystem behaved in the same way every time.This experiment shows that with alternate proto
ol fall-over
apability, grid data pla
ement jobs
an makeuse of the new high performan
e proto
ols while they work and swit
h to more robust lower performan
eproto
ol when the high performan
e one fails.5.2. Experiment 2: Testing the Run-time Proto
ol Auto-tuning. In the se
ond experiment, wesubmitted another 500 data transfer requests to the Stork server. Ea
h request was to transfer a 1.1GB image�le (total 550 GB) using GridFTP as the primary proto
ol. We used third-party globus-url-
opy transferswithout any tuning and without
hanging any of the default parameters.

Run-time Adaptation of Grid Data Pla
ement Jobs 41

Fig. 5.2. Dynami
 Proto
ol Sele
tion. The DiskRouter server running on the SDSC ma
hine gets killed twi
e at points (1)and (3), and it gets restarted at points (2) and (4). In both
ases, Stork employed next available proto
ol (GridFTP in this
ase)to
omplete the transfers. Table 5.1Network parameters for gridFTP before and after auto-tuning feature of Stork being turned on.Parameter Before auto-tuning After auto-tuningparallelism 1 TCP stream 4 TCP streamsblo
k size 1 MB 1 MBt
p bu�er size 64 KB 256 KBWe turned o� the auto-tuning feature of Stork at the beginning of the experiment intentionally. The averagedata transfer rate that globus-url-
opy
ould get without any tuning was only 0.5 MB/s. The default networkparameters used by globus-url-
opy are shown in Table 1. After a while, we turned on the auto-tuning featureof Stork. Stork �rst obtained the optimal values for I/O blo
k size, TCP bu�er size and the number of parallelTCP streams from the monitoring and tuning infrastru
ture. Then it applied these values to the subsequenttransfers. Figure 5.3 shows the in
rease in the performan
e after the auto-tuning feature is turned on. We gota speedup of
lose to 20 times
ompared to transfers without tuning.6. Future Work. We are planning to enhan
e the dynami
 proto
ol sele
tion feature of Stork, so thatit will not only sele
t any available proto
ol to perform the transfer, but it will sele
t the best one. Therequirements of `being the best proto
ol' may vary from user to user. Some users may be interested in betterperforman
e, and others in better se
urity or better reliability. Even the de�nition of `better performan
e' mayvary from user to user. We are looking into the semanti
s of how to to de�ne `the best' a

ording to ea
h user'srequirements.We are also planning to add a feature to Stork to dynami
ally sele
t whi
h route to use in the transfers andthen dynami
ally deploy DiskRouters at the nodes on that route. This will enable us to use the optimal routesin the transfers, as well as optimal use of the available bandwidth throughout that route.7. Con
lusion. In this paper, we have shown a method to dynami
ally adapt data pla
ement jobs tothe environment at the exe
ution time. We have developed a set of disk and memory and network pro�ling,monitoring and tuning tools whi
h
an provide optimal values for I/O blo
k size, TCP bu�er size, and thenumber of TCP streams for data transfers. These values are generated dynami
ally and provided to the higherlevel data pla
ement s
heduler, whi
h
an use them in adapting the data transfers at run-time to existing

42 G. Kola, T. Kosar and M. Livny

Fig. 5.3. Run-time Proto
ol Auto-tuning. Stork starts the transfers using the GridFTP proto
ol with auto-tuning turned o�intentionally. Then we turn the auto-tuning on, and the performan
e in
reases drasti
ally.environmental
onditions. We also have provided dynami
 proto
ol sele
tion and alternate proto
ol fall-ba
k
apabilities to provide superior performan
e and fault toleran
e. With two experiments, we have shown thatour method
an be easily applied and it generates better performan
e results by dynami
ally swit
hing toalternative proto
ols in
ase of a failure, and by dynami
ally auto-tuning proto
ol parameters at run-time.A
knowledgements. We would like to thank Robert J. Brunner, Mi
helle Butler and Jason Alt fromNCSA; Philip Papadopoulos, Mason J. Katz and George Kremenek from SDSC for the invaluable help inproviding us a

ess to their resour
es, support and feedba
k.REFERENCES[1℄ B. All
o
k, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder, V. Nefedova, D.Quesnel and S. Tue
ke, Se
ure, E�
ient Data Transport and Repli
a Management for High-Performan
e Data-Intensive Computing, in Pro
eedings of IEEE Mass Storage Conferen
e", April 2001, San Diego, California.[2℄ M. Be
k, T. Moore, J. Plank and M. Swany, Logisti
al Networking, A
tive Middleware Servi
es, S. Hariri and C. Leeand C. Raghavendra, editors. Kluwer A
ademi
 Publishers, 2000.[3℄ J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J. Stanley, A. C. Arpa
i-Dusseau, R. H. Arpa
i-Dusseau andM. Livny, Flexibility, Manageability, and Performan
e in a Grid Storage Applian
e, in Pro
eedings of the EleventhIEEE Symposium on High Performan
e Distributed Computing (HPDC11),July 2002, Edinburgh, S
otland.[4℄ F. Berman, R. Wolski, S. Figueira, J. S
hopf and G. Shao, Appli
ation Level S
heduling on Distributed HeterogeneousNetworks, in Pro
eedings of Super
omputing'96, Pittsburgh, Pennsylvenia.[5℄ R. L. Carter and M. E. Crovella, Dynami
 Server Sele
tion Using Bandwidth Probing in Wide-Area Networks, Te
hni
alREport TR-96-007, Computer S
ien
e Department, Boston University, 1996.[6℄ Condor, The Dire
ted A
y
li
 Graph Manager, http://www.
s.wis
.edu/
ondor/dagman, 2003.[7℄ C. Dovrolis, P. Ramanathan and D. Moore, What do pa
ket dispersion te
hniques measure?, in Pro
eedings of INFO-COMM, 2001.[8℄ M. Faerman, A. Su, R. Wolski and F. Berman, Adaptive Performan
e Predi
tion for Distributed Data-Intensive Appli-
ations, in Pro
eedings of the IEE/ACM Conferen
e on High Performan
e Networking and Computing, November 1999,Portland, Oregon.[9℄ M. Fisk and W. Weng, Dynami
 Right-Sizing in TCP, in Pro
eedings of ICCCN, 2001.[10℄ I. Foster, C. Kesselman and S. Tue
ke, The Anatomy of the Grid: Enabling S
alable Virtual Organizations, InternationalJournal of Super
omputing Appli
ations, 2001.

Run-time Adaptation of Grid Data Pla
ement Jobs 43[11℄ D. Koester, em Demonstrating the TeraGrid - A Distributed Super
omputer Ma
hine Room, The Edge, The MITREAdvan
ed Te
hnology Newsletter, (2) 2002.[12℄ G. Kola and M. Livny, DiskRouter: A Flexible Infrastru
ture for High Performan
e Large S
ale Data Transfers, Te
hni
alReport CS-TR-2003-1484, University of Wis
onsin, Computer S
ien
es Department, 2003.[13℄ T. Kosar and M. Livny, S
heduling Data Pla
ement A
tivities in the Grid, Te
hni
al Report CS-TR-2003-1483, Universityof Wis
onsin, Computer S
ien
es Department, 2003.[14℄ M. J. Litzkow, M. Livny and M. W. Mutka, Condor - A Hunter of Idle Workstations, in Pro
eedings of the 8thInternational Conferen
e of Distributed Computing Systems, (1988), pp. 104�111.[15℄ NLANR/DAST, Auto Tuning Enabled FTP Client And Server: Autobuf, http://dast.nlanr.net/Proje
ts/Autobuf, 2003.[16℄ NLANR/DAST, Iperf: The TCP/UDP Bandwidth Measurement Tool, http://dast.nlanr.net/Proje
ts/Iperf/, 2003.[17℄ S. Ogura, H. Nakada and S. Matsuoka, Evaluation of the inter-
luster data transfer on Grid environment, in Pro
eedingsof the Third IEEE/ACM Symposium on Cluster Computing and the Grid (CCGrid), May 2003, Tokyo, Japan.[18℄ R. Raman, M. Livny and M. Solomon,Mat
hmaking: Distributed Resour
e Management for High Throughput Computing,in Pro
eedings of the Seventh IEEE International Symposium on High Performan
e Distributed Computing (HPDC7),July 1998, Chi
ago, Illinois.[19℄ B. Sagal, Grid Computing: The European DataGrid Proje
t, in Pro
eedings of IEEE Nu
lear S
ien
e Symposium andMedi
al Imaging Conferen
e, O
tober 2000, Lyon, Fran
e.[20℄ J. Semke, J. Mahdavi and M. Mathis, Automati
 TCP Bu�er Tuning, in Pro
eedings of SIGCOMM, pp. 315�323,1998.[21℄ D. Thain and and M. Livny, The Ethernet Approa
h to Grid Computing, in Pro
eedings of the Twelfth IEEE Symposiumon High Performan
e Distributed Computing (HPDC12), June 2003, Seattle, Washington.[22℄ D. Thain, J. Basney and S. Son and M. Livny, The Kangaroo Approa
h to Data Movement on the Grid, in Pro
eedingsof the Tenth IEEE Symposium on High Performan
e Distributed Computing (HPDC10), August 2001, San Fran
is
o,California.[23℄ D. Thain, T. Tannenbaum and M. Livny, Condor and the Grid, Grid Computing: Making the Global Infrastru
ture aReality., Fran Berman and Geo�rey Fox and Tony Hey, editors. John Wiley and Sons In
., 2002.[24℄ S. Vazhkudai, J. S
hopf and I. Foster, Predi
ting the Performan
e of Wide Area Data Transfers, in Pro
eedings of the16th Int'l Parallel and Distributed Pro
essing Symposium (IPDPS), 2002.[25℄ R. Wolski, Dynami
ally Fore
asting Network Performan
e to Support Dynami
 S
heduling Using the Network WeatherServi
e, in Pro
eedings of the Sixth IEEE Symposium on High Performan
e Distributed Computing (HPDC6), August1996, Portland, Oregon.Edited by: Wilson Rivera, Jaime Seguel.Re
eived: July 9, 2003.A

epted: September 1, 2003.

S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 3, pp. 45�55. http://www.s
pe.org ISSN 1895-1767
© 2005 SWPSJUXMEM: AN ADAPTIVE SUPPORTIVE PLATFORM FOR DATA SHARING ON THEGRIDG. ANTONIU∗, L. BOUGÉ† , AND M. JAN∗Abstra
t. We address the
hallenge of managing large amounts of numeri
al data within
omputing grids
onsisting of afederation of
lusters. We
laim that storing, a

essing, updating and sharing su
h data should be
onsidered by appli
ations asan external servi
e. We propose a hierar
hi
al ar
hite
ture for this servi
e, based on a peer-to-peer approa
h. This ar
hite
ture isillustrated through a software platform
alled JuxMem (for Juxtaposed Memory), whi
h provides transparent a

ess to mutabledata, while enhan
ing data persisten
e in a dynami
 environment. Managing the volatility of storage resour
es is spe
ially empha-sized. As a proof of
on
ept, we des
ribe a prototype implementation on top of the JXTA peer-to-peer framework, and we reporton a preliminary experimental evaluation.Key words. data sharing, grid, peer-to-peer, hierar
hi
al ar
hite
ture, JXTA.1. Introdu
tion. A major
ontribution of the grid
omputing environments developed so far is to havede
oupled
omputation from deployment. Deployment is then
onsidered as an external servi
e provided bythe underlying infrastru
ture, outside the appli
ation. This servi
e is in
harge of lo
ating and intera
tingwith the physi
al resour
es, in order to e�
iently s
hedule and map the
omputation. In
ontrast, as of today,no su
h sophisti
ated servi
e exists regarding data management on the grid. Paradoxi
ally enough,
omplexinfrastru
tures are available for transparent
omputation s
heduling on distributed sites, whereas the user is stillleft to expli
itly store and transfer the data needed by the
omputation between these sites. At best, advan
edFTP-like fun
tionalities are proposed by existing environments. Within the
ontext of a growing number ofappli
ations using large amounts of data, this expli
it data management arises as a major limitation against thee�
ient use of modern
omputational grids.Like deployment, we
laim that an adequate approa
h to this problem
onsists in de
oupling data manage-ment from
omputation, through an external servi
e tailored to the requirements of s
ienti�

omputation. Inthis work, we fo
us on the
ase of a grid
onsisting of a federation of distributed
lusters. Su
h a data sharingservi
e should meet the following two properties.Persisten
e. The data sets used by the grid
omputing appli
ations may be very large. Their transfer fromone site to another may be
ostly (in terms of both bandwidth and laten
y), so su
h data movementsshould be
arefully optimized. Therefore, a data management servi
e should allow data to be storedon the grid infrastru
ture independently of the appli
ations, in order to allow their reuse in an e�
ientway. Su
h a servi
e should also provide data lo
alization information, in order to
o-operate with the
omputation s
heduling servi
e, and thereby enhan
e the global e�
ien
y.Transparen
y. Su
h a data management servi
e should provide transparent a

ess to data. It should handledata lo
alization and transfer without any help from the programmer. Yet, it should make gooduse of additional information and hints provided by the programmer, if any. The servi
e should alsotransparently use adequate repli
ation strategies and
onsisten
y proto
ols to ensure data availabilityand
onsisten
y in a large-s
ale, dynami
 ar
hite
ture. In parti
ular, it should support events su
h as
omputational and storage resour
es joining and leaving, or even unexpe
tedly failing.At the same time, three main
onstraints need to be addressed:Volatility and dynami
ity. The
lusters whi
h make up the grid are not guaranteed to remain
onstantlyavailable. Nodes may leave due to te
hni
al problems or be
ause some resour
es be
ome temporarilyunavailable. This should obviously not result in disabling the data management servi
e. Also, newnodes may dynami
ally join the physi
al infrastru
ture: the servi
e should be able to dynami
ally takeinto a

ount the additional resour
es they provide.S
alability. The algorithms proposed for parallel
omputing have often been studied on small-s
ale
on�g-urations. Our target ar
hite
ture is typi
ally made of thousands of
omputing nodes, say tens ofhundred-node
lusters. It is well-known that designing low-level, expli
it MPI programs is most di�-
ult at su
h a s
ale. In
ontrast, high-level, peer-to-peer approa
hes have proved to remain e�e
tive atmu
h larger s
ales.
∗IRISA/INRIA Campus de Beaulieu, 35042 Rennes, FR. ({Gabriel.Antoniu,Mathieu.Jan}�irisa.fr).
†ENS Ca
han/Bretagne Campus de Ker Lann, 35170 Bruz, FR. (Lu
.Bouge�bretagne.ens-
a
han.fr).45

46 G. Antoniu, L. Bougé and M. JanMutable data. In our target appli
ations, data are generally shared and
an be modi�ed by multiple partners.A large number of strategies have been proposed for handling data repli
ation and data
onsisten
y,in the
ontext of Distributed Shared Memory (DSM) systems. Again, these strategies and proto
olshave been designed with the assumption of a small-s
ale, stati
, homogeneous ar
hite
ture, typi
ally of
lusters of few tens of nodes. A data sharing servi
e for the grid should
onsider
onsisten
y proto
olsadapted to a dynami
, large-s
ale, heterogeneous ar
hite
ture.The type of servi
e we propose is similar in some respe
ts to several types of existing data manage-ment systems. However, these systems address only partially the goals and the three
onstraints mentionedabove.Non-transparent, large-s
ale data management. Currently, the most widely-used approa
h to data man-agement for distributed grid
omputation relies on expli
it data transfers between
lients and
omputingservers. As an example, the Globus [7℄ platform provides data a

ess me
hanisms (Globus A

ess toSe
ondary Storage [3℄) based on the GridFTP proto
ol [1℄. Though this proto
ol provides authen-ti
ation, parallel transfers,
he
kpoint/restart me
hanisms, et
., it is still a FTP-like proto
ol whi
hrequires expli
it data lo
alization and transfer. Globus also integrates data
atalogs, where multiple
opies of the same data
an be re
orded. The management of these
atalogs is manual: it is the user'sresponsibility to re
ord these
opies and make sure they are
onsistent: no
onsisten
y guarantee isprovided by Globus.Large-s
ale data storage. The IBP Proje
t [2℄ provides a large-s
ale data storage system,
onsisting of a setof bu�ers distributed over Internet. The user
an �rent� these storage areas and use them as temporarybu�ers for e�
ient data transfers a
ross a wide-area network. IBP has been used by the Netsolve [18℄
omputing environment to implement a servi
e of persistent data. Transfer management is still at theuser's
harge. Besides, IBP does not handle dynami
 join/departure of storage nodes and provides no
onsisten
y guarantee for multiple
opies of the same data.Transparent, small-s
ale data sharing. Distributed Shared Memory (DSM) systems provide transparentdata sharing, via a unique address spa
e a

essible to physi
ally distributed ma
hines. Within this
ontext, a variety of
onsisten
y models and proto
ols have been de�ned, in order to allow an e�
ientmanagement of repli
ated data. These systems do o�er transparent a

ess to data: all nodes
an readand write data in a uniform way, using a unique identi�er or a virtual address. It is the responsibilityof the DSM system to lo
alize, transfer, repli
ate data, and guarantee their
onsisten
y a

ording tosome semanti
s. Nevertheless, existing DSM systems have generally shown satisfa
tory e�
ien
y onlyon small-s
ale
on�gurations, typi
ally, a few tens of nodes [11℄.Peer-to-peer sharing of immutable data. Re
ently, peer-to-peer (P2P) has proven to be an e�
ient ap-proa
h for large-s
ale data sharing. The peer-to-peer model is
omplementary to the
lient-server model:the relations between ma
hines are symmetri
al, ea
h node
an be
lient in a transa
tion and server inanother. This paradigm has been made popular by Napster [17℄, Gnutella [10℄, and now KaZaA [16℄.We
an note that these systems fo
us on sharing immutable �les: the shared data are read-only and
an be repli
ated at ease.Peer-to-peer sharing of mutable data. Re
ently, some me
hanisms for sharing mutable data in a peer-to-peer environment have been proposed by systems like O
eanStore [8℄, Ivy [9℄ and P-Grid [6℄. InO
eanStore, for ea
h data only a small set of primary repli
as,
alled the inner ring agrees, serializesand applies updates. Updates are then multi
ast down a dissemination tree to all other
a
hed
opiesof the data,
alled se
ondary repli
as. However, O
eanStore uses a versioning me
hanism whi
h has notproven to be e�
ient at large s
ales. Se
ond, despite it provides hooks for managing the
onsisten
yof data, appli
ations still have to use low-level me
hanisms for ea
h
onsisten
y model [12℄. Third,published measurements on the performan
e of updates only assume a single writer per data blo
k.Finally, servers making up inner rings are assumed to be highly available. The Ivy system has onemain limitation: appli
ations have to repair
on�i
ting writes, thus the number of writers per datais very limited. Both O
eanstore and Ivy target general-purpose, persistent �le storage, not datamanagement for high-performan
e,
omputing grids where for example distributed matri
es have tobe moved using parallel transfers. P-Grid proposes a �ooding-based algorithm for updating data, butassumes no
on�i
ting writes. Besides, no experimental results have been published so far for thissystem.

JuxMem: An Adaptive Supportive Platform for Data Sharing on the Grid 47
Cluster A1 Cluster A3

Cluster A2

Wide−Area
Network

Fig. 2.1. Numeri
al simulation for weather fore
ast using a pipeline
ommuni
ation s
heme with 3
lusters.2. Designing a data sharing servi
e for the grid.2.1. Motivating s
enarios. Let us
onsider a distributed federation of 3
lusters: A1, A2 and A3, whi
h
o-operate together as shown on Figure 2.1. Ea
h
luster is typi
ally inter
onne
ted through a high-performan
elo
al-area network, whereas they are all
oupled together through a regular wide-area network. Consider forinstan
e a weather fore
ast simulation. Cluster A1 may
ompute the fore
ast for a given day, then A2 for thenext day, and �nally A3 for the day after. Thus, A3 uses data produ
ed by A2, whi
h in turn uses data produ
edby A1, as in a pipeline. Alternatively,
luster A1 may simulate the weather fore
ast in a given
ountry, while
A2 et A3 simulate it for two neighboring
ountries.Su
h simulations produ
e large amount of numeri
al data, and data-related a
tions are deeply intri
atedwith
omputation. The data management systems des
ribed in the previous se
tion do not provide any simplete
hnique to support su
h designs. Consider for instan
e transferring data from A1 to A2: a widely-usedte
hnique
onsists in expli
itly writing the data on a disk within
luster A1, then use a �le transfer tool to depositthem on a disk within
luster A2. The appli
ation is dire
tly involved in this series of a
tions. In
ontrast,we propose to de
ouple the appli
ation from the data management, by making data storage and lo
alizationtransparent with respe
t to the appli
ation. Cluster A1 should only store the data within the federation-widedata management servi
e, from whi
h
luster A2
ould request them as needed. Data lo
alization and transferare then
ompletely external to the appli
ations.Let us now suppose that our 3 appli
ations no longer
o-operate a

ording to a pipeline s
heme, but rathera

ording to a multiple-writers s
heme. For instan
e, ea
h appli
ation simulates a single phenomenon part ofthe global weather fore
ast: say, wind, rain and
louds. In this
ase, ea
h
luster needs data from the otherones in order to make progress. A data sharing servi
e
ould allow the
on
urrent appli
ations not only to read,but also to write to the globally shared data, while transparently handling data
onsisten
y. This is similar toDSM systems, but at a mu
h larger s
ale, and in a fully dynami

ontext. Also, assume that some nodes fail in
luster A2. Some of the data ne
essary for A3
ould thus be
ome unavailable. The data sharing servi
e shouldalso provide me
hanisms to tolerate su
h faults, for instan
e, based on redundan
y.2.2. Design prin
iples. We
onsider two major sour
es of inspiration for the design of a data sharingservi
e for s
ienti�
 grid
omputing:DSM systems, whi
h propose
onsisten
y models and proto
ols for e�
ient transparent management of mu-table data, on stati
, small-s
aled
on�gurations (tens of nodes);P2P systems, whi
h have proven adequate for the management of immutable data on highly dynami
, large-s
ale
on�gurations (millions of nodes).These two
lasses of systems have been designed and studied in very di�erent
ontexts. In DSM systems, thenodes are generally under the
ontrol of a single administration, and the resour
es are trusted. In
ontrast,P2P systems aggregate resour
es lo
ated at the edge of the Internet, with no trust guarantee, and loose
ontrol.Moreover these numerous resour
es are essentially heterogeneous in terms of pro
essors, operating systems andnetwork links, as opposed to DSM systems, where nodes are generally homogeneous. Finally, DSM systemsare typi
ally used to support
omplex numeri
al simulation appli
ations, where data are a

essed in parallel by

48 G. Antoniu, L. Bougé and M. JanTable 2.1A grid data sharing servi
e as a
ompromise between DSM and P2P systems.DSM Grid data servi
e P2PS
ale 101�102 103�104 105�106Resour
e
ontroland trust degree High Medium NullDynami
ity Null Medium HighResour
ehomogeneity Homogeneous(
lusters) Rather heterogeneous(
lusters of
lusters) Heterogeneous(Internet)Data type Mutable Mutable ImmutableAppli
ation
omplexity Complex Complex SimpleTypi
alappli
ations S
ienti�

omputation S
ienti�

omputation anddata storage File sharing andstoragemultiple nodes. In
ontrast, P2P systems generally serve as a support for storing and sharing immutable �les.These antagonist features are summarized in the �rst and third
olumns of Table 2.1.Our data sharing servi
e targets physi
al ar
hite
tures with features intermediate between DSM and P2Psystems. We address s
ales of the order of thousands of nodes, organized as a federation of
lusters, say tens ofhundred-node
lusters. At a global level, the resour
es are thus rather heterogeneous, while they
an probablybe
onsidered as homogeneous within the individual
lusters. The
ontrol degree and the trust degree are alsointermediate, sin
e the
lusters may belong to di�erent administrations, whi
h set up agreements on the sharingproto
ol. Finally, we target numeri
al appli
ations like heavy simulations, made by
oupling individual
odes.These simulations pro
ess large amounts of data, with signi�
ant requirements in terms of data storage andsharing. These intermediate features are illustrated in the se
ond
olumn of Table 2.1.The
ontribution of this paper is namely to propose an ar
hite
ture for su
h a data sharing servi
e, whi
haddresses the problem of managing mutable data on dynami
, large-s
ale
on�gurations. Our approa
h aimsat taking bene�t of both DSM systems (transparent a

ess to data,
onsisten
y proto
ols) and P2P systems(s
alability, support for resour
e volatility and dynami
ity).2.3. The JXTA implementation framework. Our proposal is partly inspired by the P2P approa
h. It
an usefully bene�t from a platform providing basi
 me
hanisms for peer-to-peer intera
tion. To our knowledge,the most advan
ed implementation platform in this area is JXTA [14℄. The name JXTA stands for juxtaposed,in order to suggest the juxtaposition rather than the opposition of the P2P and
lient-server models. JXTA isa proje
t originally initiated by Sun Mi
rosystems.JXTA is an open-sour
e framework, whi
h spe
i�es a set of language- and platform-independent XML-basedproto
ols [15℄. JXTA provides a ri
h set of building blo
ks for the management of peer-to-peer systems: resour
edis
overy, peer group management, peer-to-peer
ommuni
ation, et
.Peers. The basi
 entity in JXTA is the peer. Peers are organized in networks. They are uniquely identi�ed byIDs. An ID is a logi
al address independent of the lo
ation of the peer in the physi
al network. JXTAintrodu
es several types of peers. The most relevant as far as we are
on
erned are the edge peers andrendezvous peers. Edge peers are able to
ommuni
ate with other peers in the JXTA virtual network.They
an also store advertisements of resour
es they dis
over in the network. Rendezvous peers havethe extra ability of forwarding the requests they re
eive to other rendezvous peers. They
an also o�era storage area for advertisements that have been published by edge peers. Finally, they are internallymanaged by JXTA using a distributed hash table (DHT) and are making up the frame of JXTA. They
an thus be dynami
ally lo
ated in an e�
ient way. Joining, leaving, and even unexpe
ted failing ofrendezvous peers are supported by the JXTA proto
ols.Peer groups. Peers
an be members of one or several peer groups. A peer group is made up of several peersthat share a
ommon set of interests, e.g., peers that have the same a

ess rights to some resour
es.The main motivation for
reating peer groups is to build servi
es
olle
tively delivered by peer groups,instead of individual peers. Indeed, su
h servi
es
an then tolerate the loss of peers within the group,as its internal management is not visible to the
lients.

JuxMem: An Adaptive Supportive Platform for Data Sharing on the Grid 49Pipes. Communi
ation between peers or peer groups within the JXTA virtual network is made by using pipes.Pipes are unidire
tional, unreliable and asyn
hronous logi
al
hannels. JXTA o�ers two types of pipes:point-to-point pipes, and propagate pipes. Propagate pipes
an be used to build a multi
ast layer atthe virtual level.Advertisements. Every resour
e in the JXTA network (peer, peer group, pipe, servi
e, et
.) is des
ribed andpublished using advertisements. Advertisements are stru
tured XML do
uments whi
h are publishedwithin the network of rendezvous peers. To request a servi
e, a
lient has �rst to dis
over a mat
hingadvertisement using spe
i�
 lo
alization proto
ols.JXTA proto
ols. JXTA proposes six generi
 proto
ols. Out of these, two are parti
ularly useful for buildinghigher-level peer-to-peer servi
es: the Peer Dis
overy Proto
ol, whi
h allows for advertisement publish-ing and dis
overy; and the Pipe Binding Proto
ol, whi
h dynami
ally establishes links between peers
ommuni
ating on a given pipe.The data sharing servi
e that we propose is designed using the JXTA building blo
ks des
ribed above.3. JuxMem: a supportive platform for data sharing on the grid. The ar
hite
ture of the datasharing servi
e we propose, mirrors an ar
hite
ture
onsisting of a federation of distributed
lusters. Thear
hite
ture is therefore hierar
hi
al, and is illustrated through the proposition of a software platform
alledJuxMem (for Juxtaposed Memory), whose goal is to be the foundation for a data sharing servi
e for grid
omputing environments, like DIET [4℄.
Group "cluster A"

Group "data"

Group "cluster B"

Physical network

Overlay network

Group "cluster C"

Cluster C

Cluster B

Cluster A

Node

Group "juxmem"

Client

Provider

Cluster managerFig. 3.1. Hierar
hy of the entities in the network overlay de�ned by JuxMem.3.1. Hierar
hi
al ar
hite
ture. Figure 3.1 shows the hierar
hy of the entities de�ned in the ar
hite
tureof JuxMem. This ar
hite
ture is made up of a network of peer groups (
luster groups A, B and C), whi
hgenerally
orrespond to
lusters at the physi
al level. All the groups are inside a wider group whi
h in
ludesall the peers whi
h run the servi
e (the juxmem group). Ea
h
luster group
onsists of a set of nodes whi
hprovide memory for data storage. We will
all these nodes providers. In ea
h
luster group, a node is in
hargeof managing the memory made available by the providers of the group. This node is
alled
luster manager.Finally, a node whi
h simply uses the servi
e to allo
ate and/or a

ess data blo
ks is
alled
lient. It shouldbe noted that a node
an be at the same time a
luster manager, a
lient and a provider, but for the sake of
larity, ea
h node plays only one role in the example illustrated on the Figure 3.1.Ea
h blo
k of data stored in the system is asso
iated to a group of peers
alled data group. This group
onsists of a set of providers that host
opies of that data blo
k. Note that a data group
an be made up of

50 G. Antoniu, L. Bougé and M. Janproviders from di�erent
luster groups. Indeed, a data
an be spread over on several
lusters (here A and C).For this reason, the data and
luster groups are at the same level of the group hierar
hy. Note also that the
luster groups
ould also
orrespond to subsets of the same physi
al
luster.Another important feature is that the ar
hite
ture of JuxMem is dynami
, sin
e
luster and data groups
an be
reated at run time. For instan
e, for ea
h blo
k of data inserted into the system, a data group isautomati
ally instantiated.API of the data sharing servi
e. The Appli
ation Programming Interfa
e (API) provided by JuxMemillustrates the fun
tionalities of a data sharing servi
e providing data persisten
e as well as transparen
y withrespe
t to data lo
alization.allo
(size, attributes) allows to
reate a memory area of the spe
i�ed size on a
luster. The attributesparameter allows to spe
ify the level of redundan
y and the default proto
ol used to manage the
onsisten
y of the
opies of the
orresponding data blo
k. This fun
tion returns an ID whi
h
an beseen at the appli
ation level as a data blo
k ID.map(id, attributes) allows to retrieve the advertisement of a data
ommuni
ation
hannel whi
h has tobe used to manipulate the data blo
k identi�ed by id. The attributes argument allows to spe
ifyparameters for the view of the data blo
k desired by the
lient, like for instan
e what we
all the degreeof
onsisten
y: some
lients may have weaker
onsisten
y requirements than the one ensured by thedefault proto
ol used to manage the data blo
k.put(id, value) allows to modify the value of the data blo
k identi�ed by id. The new value is then value.get(id) allows to get the
urrent value of the data blo
k identi�ed by id.lo
k(id) allows to lo
k the data blo
k identi�ed by id. A lo
k is impli
itly asso
iated to ea
h data blo
k.Clients whi
h a

ess a shared data blo
k need to syn
hronize using this lo
k.unlo
k(id) allows to unlo
k the data identi�ed by id.re
onfigure(attributes) allows to dynami
ally re
on�gure a node. The attributes parameter allows toindi
ate if the node is going to a
t as a
luster manager and/or as a provider. If the node is going to a
tas a provider, the attributes parameter also allows to spe
ify the amount of memory that the nodeprovides to JuxMem.3.2. Managing memory resour
es.Publishing and pla
ement of resour
e advertisements. Memory resour
es are managed using advertisements.Ea
h provider publishes the amount of memory it o�ers within the
luster group to whi
h it belongs, by themeans of a provider advertisement. The
luster manager of the group stores all su
h advertisements availablein his group. He is also responsible for publishing the amount of memory available in the
luster by using a
luster advertisement. This advertisement lists the amounts of memory o�ered by providers of the asso
iated
luster group. These
luster advertisements are published inside the juxmem group, so that they
an then beused by all the
lients in order to allo
ate memory.Cluster managers are thus in
harge of making the link between the
luster group and the juxmem group.They make up a network organized using a DHT at the level of the juxmem group level, in order to build theframe of the data sharing servi
e. This frame is represented by the ring on the Figure 3.2. Ea
h
luster managerG1 to G6 is responsible for a
luster, respe
tively A1 to A6, ea
h of whi
h is made up of �ve nodes. At the levelof the juxmem group, the DHT works as follows. Ea
h
luster advertisement
ontains a list whi
h enumeratesthe amounts of memory available in the
luster. Ea
h individual amount is separately used to generate anID, by means of a hash fun
tion. This ID is then used to determine the
luster manager responsible for alladvertisements having this amount of available memory in their list. This
luster manager is not the peer thatstores the advertisement, it only knows the
luster manager whi
h published it in the JuxMem network. Thispla
ement of
luster advertisements allows
lients to easily retrieve advertisements in order to allo
ate memory:any request for a given amount of memory is dire
ted to the
luster manager responsible for that amount ofmemory, using the hash me
hanisms des
ribed aboveSear
hing for advertisements is therefore short, and responses are exa
t and exhaustive, e.g., all the ad-vertisements that in
lude the requested memory size will be returned. But sin
e using a DHT on memorysizes means to generate a di�erent hash for ea
h memory size, JuxMem uses a parameterizable poli
y for thedis
retization of the spa
e of memory sizes. Thus, JuxMem will sear
h for the minimum memory size, givenby the poli
y used, that is superior to the one requested by
lients. For example, if a
lient wants to allo
ate amemory area of 1280 bytes, JuxMem will internally and automati
ally sear
h for a memory area of 2048 bytes,

JuxMem: An Adaptive Supportive Platform for Data Sharing on the Grid 51
1

G1

G2 P

C

Group "cluster A4"

G4

3a

G3

3a

5

Group "cluster A3"

Group "cluster A1"

3b

4

6

2

3b

G6

G5

Group "cluster A5"

Group "cluster A6"

Group "cluster A2"

Provider

Client

Cluster managerFig. 3.2. Steps of an allo
ation request made by a
lient.if it uses a power of 2 law for the spa
e dis
retization. Providers also internally use the same law when o�eringmemory areas, but provide the maximum memory size, given by the poli
y used, that is inferior to the one theywish to o�er.One of the
onstraints we �xed is to support the volatility of nodes whi
h make up the
lusters. Therefore,the advertisements published at a time t1
an be invalid at the time t2 > t1, sin
e providers
an disappear fromJuxMem at any time. The me
hanism used to manage this volatility of peers is based on republishing the
lusteradvertisements whenever a
hanging of the amount of memory provided is dete
ted. Besides, advertisementshave a limited but parameterizable lifetime, so it is ne
essary to periodi
ally republish them.Pro
essing an allo
ation request. Clients make allo
ation requests by spe
ifying the size of the memory areathey want to allo
ate. The di�erent steps for su
h a request, numbered on the Figure 3.2, are the following:1. The
lient C of the
luster group A1 wants to allo
ate a memory area of 8 MB with a redundan
ydegree of two. Consequently, it submits its request to the
luster manager G1 to whi
h it is
onne
ted.2. The
luster manager G1 then determines that the peer responsible of advertisements having a memorysize of 8 MB in their list is the
luster manager G3, using the hash me
hanism des
ribed previously.Therefore, the
luster manager peer G1 forwards the request to G3.3. The
luster manager G3 then determines that
luster managers G2 and G4 mat
h the
riterion of the
lient, and asks them to forward their
luster advertisement to the
lient C.4. The
lient C then
hooses the
luster manager G2 as the peer having the �best� advertisement: forinstan
e the
orresponding
luster o�ers a higher degree of redundan
y than the
luster handled by the
luster manager G4. Thus, it submits its allo
ation request to G2.5. The
luster manager G2 re
eives the allo
ation request and handles it. If it
an satisfy the request thenit asks one of its providers, for example P , to allo
ate a 8 MB memory area. If the request
annot besatis�ed, an error message is sent ba
k to the
lient.6. If the provider P
an satisfy this request, it
reates a 10 MB memory area, then sends ba
k theadvertisement of this memory area to the
lient C. P be
omes the
luster manager of the asso
iateddata group, whi
h means that it is responsible for repli
ating the data blo
k stored in that memoryarea. If the provider P
annot satisfy the request, an error message is sent ba
k to the
luster manager
G2, whi
h
an try other provider peers of the
luster group.If no providers
an be found on the last step of an allo
ation request, an error message is sent ba
k to the
lient.Then the
lient
an restart the allo
ation request from step 4, e.g., with another
luster manager mat
hing therequested memory size. Finally, if no
luster manager
an allo
ate the memory area, the
lient in
reases therequested memory size and restarts the allo
ation request from the beginning. This
an be done N times (forexample N = 3) until the request is satis�ed or an error is reported at the appli
ation level.

52 G. Antoniu, L. Bougé and M. Jan3.3. Managing shared data. When a memory area is allo
ated by a
lient, a data group is
reatedon the
hosen provider and an advertisement is sent to the
lient. This advertisement allows the
lient to
ommuni
ate with the data group. This advertisement is published at the juxmem's group level, but only theID of this advertisement is returned at the appli
ation level. A

ess to data by other
lients is then possible byusing this ID: the platform transparently lo
ates the
orresponding data blo
k.Storage of data blo
ks is independent of
lients. Indeed, when
lients dis
onne
t from JuxMem, data blo
ksstill remain stored in the data sharing servi
e on the providers. Consequently,
lients
an have a

ess to datablo
ks previously stored by other
lients: they simply need to look for the advertisement of the data groupasso
iated with the data blo
k (whose identi�er is assumed to be known). The map primitive of the API ofJuxMem does this by taking in input the ID of the data blo
k. In this way, the storage of data blo
ks ispersistent.Ea
h data blo
k is repli
ated on a �xed, parameterizable number of providers for a better availability. Thisredundan
y degree is spe
i�ed as an attribute at allo
ation time. The
onsisten
y of the di�erent
opies mustthen be handled. In this �rst version of JuxMem, the use of a multi
ast at the level of the juxmem group solvesthis problem: the di�erent
opies of a same data blo
k are simultaneously updated whenever a writing a

ess ismade. Alternative
onsisten
y models and proto
ols will be experimented in further versions. Note that
lientswhi
h have previously read a data blo
k are not noti�ed of this update:
lients do not store a
opy of datablo
k. Therefore, the result of a reading whi
h is valid at a time t1, may not be valid at time t2 > t1. It isworth noting that this di�eren
e between
lient and providers allows to handle a high number of
lients withouthaving to deal with a high number of
opies of data blo
ks. Syn
hronization between
lients whi
h
on
urrentlya

ess a data blo
k is handled using the lo
k/unlo
k primitives.3.4. Handling volatile providers. In order to tolerate the volatility of peers, a stati
 repli
ation of dataon a �xed and parameterizable number of providers is not enough. Indeed, the set of providers hosting a
opyof the same data blo
k
an su

essively be
ome unavailable. A dynami
 monitoring of the number of
opiesfor data is therefore needed. Consequently, ea
h data group has a manager (noted data manager) whi
h is in
harge of monitoring the level of redundan
y of the data blo
k. If this number goes below the one spe
i�edby
lients, the data manager must sear
h and ask a provider to host an extra
opy of the data blo
k. Whenthe data manager de
ides to repli
ate it, it must �rst lo
k it (internally) in order to maintain
onsisten
y. Theprovider whi
h will host this new
opy is then responsible for unlo
king it. A timeout me
hanism followed by aping test is used in order to dete
t if the provider be
ame unavailable just before unlo
king the data blo
k. Ifit is the
ase, then the data manager unlo
ks itself the data blo
k.3.5. Handling volatile managers. If a
luster manager goes down, this
ould lead to the unavailabilityof resour
es provided by a whole
luster. The role of
luster manager (noted main
luster manager) is thereforeautomati
ally dupli
ated on another provider of the
luster (
alled se
ondary
luster manager). Managersperiodi
ally syn
hronize using a me
hanism based on the ex
hange of provider advertisements, in order to �ndout new advertisements published. They
an thus both know in a nearly a

urate manner the amount ofmemory available in the
luster. A me
hanism based on periodi
al heartbeats allows to dynami
ally ensure thisdupli
ation of
luster managers. Su
h a me
hanism is also used for the data managers (see Se
tion 3.4). Notethat, the possible
hanges of managers in the
luster and data groups, due to the unavailability of managers,are not seen outside these groups. The availability of
lusters and of data blo
ks is thus maximized, whereasthe perturbation on the
lient side is minimized.4. Implementation and preliminary evaluations.4.1. Implementation of JuxMem within the JXTA framework. In order to build a prototypeof the software ar
hite
ture des
ribed in the previous se
tion, we have used the JXTA generi
 peer-to-peerframework (see Se
tion 2.3). Our JuxMem prototype uses the referen
e Java binding of JXTA (whi
h is todaythe only binding
ompatible with the JXTA 2.0 spe
i�
ation). JuxMem is written in Java and in
ludes about50
lasses (5000
ode lines).JXTA fully meets the needs of JuxMem. Thus, managers of data and
luster groups are based onJXTA's rendezvous peers. Indeed, managers have to know if providers are still alive by using a ping test inorder to manage a
luster or a blo
k of data. This
an only be done if providers have previously publishedtheir advertisements on managers, whi
h need to extra
t the address of ea
h provider. Moreover, only JXTA'srendezvous peers
an forward requests inside the JXTA network; these peers
orrespond to the role of main

JuxMem: An Adaptive Supportive Platform for Data Sharing on the Grid 53

0

20

40

60

80

100

160 140 120 100 80 60 50 40 30

Seconds elapsed between provider losses

R
el

at
iv

e
ov

er
he

ad
 (

%
)

Fig. 4.1. Relative overhead due to the volatility of providers for a sequen
e lo
k -put -unlo
k , with respe
t to a stable system.managers. For example, data managers have to forward a

ess requests, made by
lients, to providers hostinga
opy of the data blo
k. In the same way,
luster managers have to forward allo
ation requests, made by
lients, to providers. Clients and providers whi
h do not a
t as data managers for one or several blo
ks of dataare based on JXTA's edge peers. Indeed, they do not have to play a role in the dynami
 monitoring of thenumber of
opies for a blo
k of data in the system. Therefore, they do not have to store published provideradvertisements. Moreover,
lients only need to dis
over and store
luster advertisements whi
h will allow themto allo
ate memory areas. The various groups de�ned in JuxMem are implemented by JXTA's peer groups. Thejuxmem group implements a JXTA peer group servi
e providing the API of JuxMem (see Se
tion 3.1). Finally,the
ommuni
ation
hannels of JXTA also o�er the needed support for building multi
ast
ommuni
ations forsimultaneously updating
opies of the same blo
k of data.4.2. Preliminary evaluations. For our preliminary experiments, we used a
luster of 450 MHz PentiumII nodes with 256 MB RAM, inter
onne
ted by a 100 MB/s FastEthernet network.We �rst measured the memory
onsumption overhead generated by the di�erent JuxMem peers with respe
tto the underlying JXTA peers used to build JuxMem peers. This overhead is reasonable: it ranges between5% and 7.4%.We then measured the in�uen
e of the volatility degree of provider peers on the duration of a sequen
elo
k-put-unlo
k exe
uted in a loop by a
lient. This sequen
e in the loop is made on a data blo
k stored inJuxMem. The goal of this measure is to evaluate the relative overhead generated by the repli
ations whi
htake pla
e in order to maintain a given redundan
y degree for a given blo
k of data. This repli
ations aretransparently triggered when the servi
e dete
ts that a provider holding a data blo
k goes down. If theserepli
ations take pla
e while a
lient a

esses the data blo
k being repli
ated, these a

esses slow down.The test program �rst allo
ates a small memory area (1 byte) on a provider belonging to
luster and writesto it a data blo
k. The redundan
y degree is set to 3. The allo
ation takes pla
e on a
luster initially
onsistingof 16 providers and one
luster manager. 16 ma
hines of the
luster previously des
ribed host a provider, onema
hine of the same
luster hosts a
luster manager and another ma
hine of the same
luster hosts a
lient.The
lient exe
utes a 100 iteration loop, and ea
h iteration
onsists of a sequen
e lo
k-put-unlo
k.During the exe
ution of this loop, a random provider hosting a
opy of the data is killed every δ se
onds,where δ is a parameter of the experiment. In order to measure only the overhead due to the volatility ofproviders, the data manager of the asso
iated group is never killed.Figure 4.1 shows the relative overhead measured, with respe
t to a stable system (i.e. where no providergoes down during the loop exe
ution: δ = ∞). When the data manager dete
ts that providers holding a
opy ofthe data blo
k have gone down, it tries to repli
ate the blo
k on other available providers, whi
h are not alreadyhosting a
opy of the data blo
k. To ensure the
onsisten
y of the data during its repli
ation,
lients are notallowed to modify it. Therefore, the system has to internally lo
k the data. As a result of this internal lo
king,the sequen
e lo
k-put-unlo
k is longer, sin
e the
lient is blo
ked and has to wait for the lo
k to be set free.

54 G. Antoniu, L. Bougé and M. JanThe
urve pro�le is explained by the number of times the system repli
ates the data on providers, in orderto maintain the redundan
y degree spe
i�ed by the
lient (whi
h is 3 for this test). For the whole duration ofour test, the number of triggered repli
ations is given in the Table 4.1 as a fun
tion of the δ parameter.For highly volatile systems (δ < 80 s), the number of repli
ations triggered be
omes higher than 2 andthe relative overhead be
omes signi�
ant. For δ = 30 s, it rea
hes more than 65% (10 repli
ations triggered).However, in a realisti
 situation, the node volatility on the ar
hite
ture we
onsider is typi
ally a lot weaker(δ ≫ 80 s). For su
h values, the re
on�guration overhead is less than 5%. We
an reasonably say that theJuxMem platform in
ludes a me
hanism whi
h allows to dynami
ally maintain a
ertain redundan
y degree fordata blo
ks, in order to improve data availability, without signi�
ant overhead, while authorizing node failures.Table 4.1Number of triggered repli
ations when the volatility of provider peers evolves from 160 to 30 se
onds.Se
onds 160 140 120 100 80 60 50 40 30Number of triggered repli
ations 1 1 1 1 2 2.5 5 5.5 105. Con
lusion. This paper de�nes a hierar
hi
al ar
hite
ture for a data sharing servi
e managing mutabledata within a grid
onsisting of a federation of
lusters. This ar
hite
ture has been designed using a peer-to-peerapproa
h, and demonstrated through the JuxMem platform. Not only the ar
hite
ture allows to redu
e thenumber of messages to sear
h for a pie
e of data, thanks to a hierar
hi
al sear
h s
heme, but it also allows totake advantage of spe
i�
 features of the underlying physi
al ar
hite
ture. The management poli
y for ea
h
luster
an be spe
i�
 to its
on�guration, for instan
e in terms of network links to be used. Thus, some
lusters
ould use high-bandwidth, low-laten
y networks for intra-
luster
ommuni
ation, if available.The JuxMem user
an allo
ate memory areas in the system, by spe
ifying an area size and some attributes,su
h as a redundan
y degree. The allo
ation primitive returns an ID whi
h identi�es the blo
k of data. Then,data lo
alization and transfer is fully transparent, sin
e this ID is su�
ient in order to a

ess and manipulatethe
orresponding data wherever it is: no IP address nor port number needs to be spe
i�ed at the appli
ationlevel.Our ar
hite
ture supports the volatility of all types of peers. This kind of volatility is also supported in peer-to-peer systems su
h as Gnutella or KaZaA, whi
h enhan
e data availability thanks to redundan
y. However,this is a side e�e
t of the user a
tions. In
ontrast, our system a
tively takes into a

ount this volatility: thisallows not only to maintain a
ertain degree of data redundan
y (as in systems like Ivy or CFS [5℄), but also tosupport the volatility of peers with �spe
i�
� responsibilities (e.g.,
luster managers, or data managers).The implementation of a JXTA-based prototype has shown the feasibility of su
h a system. However,note that the design of JuxMem is not dependent on JXTA. A
tually, other libraries
ould be used, su
h asJavaGroups [13℄. We used the Java version of JXTA, sin
e this is the most advan
ed binding of JXTA, the onlyone
ompatible with the JXTA 2.0 spe
i�
ation.The modular ar
hite
ture of JXTA allows to easily add and remove servi
es and/or proto
ols, in
luding
ommuni
ation proto
ols. This should eventually allow the platform to take advantage of high-performan
enetworks (su
h as Myrinet or SCI) for data transfer. We plan to address this problem in the future. We alsoplan to use JuxMem as an experimental platform for di�erent data
onsisten
y strategies supporting peervolatility, in order to build a
on�gurable, adaptive data sharing servi
e for mutable data. The �nal goal is tointegrate this servi
e into large-s
ale
omputing environments, su
h as DIET [4℄, developed at ENS Lyon. Thiswill allow an extensive evaluation of the servi
e, with realisti

odes, using various data a

ess s
hemes.REFERENCES[1℄ B. All
o
k, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, S. Meder and S. Tue
ke, GridFTP Proto
olSpe
i�
ation, GGF GridFTP Working Group Do
ument, Sept. 2002.[2℄ A. Bassi, M. Be
k, G. Fagg, T. Moore, J. Plank, M. Swany and R. Wolski, The Internet Ba
kplane Proto
ol: A studyin resour
e sharing, In 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid2002),pages 194�201, Berlin, Germany, May 2002. IEEE.[3℄ J. Bester, I. Foster, C. Kesselman, J. Tedes
o and S. Tue
ke, GASS: A data movement and a

ess servi
e forwide area
omputing systems, In 6th Workshop on I/O in Parallel and Distributed Systems (IOPADS '99), pages 77�88,Atlanta, GA, May 1999. ACM Press.

JuxMem: An Adaptive Supportive Platform for Data Sharing on the Grid 55[4℄ E. Caron, F. Desprez, F. Lombard, J.-M. Ni
od, M. Quinson and F. Suter, A s
alable approa
h to network enabledservers, In B. Monien and R. Feldmann, editors, 8th International Euro-Par Conferen
e, volume 2400 of Le
ture Notesin Computer S
ien
e, pages 907�910, Paderborn, Germany, Aug. 2002. Springer-Verlag.[5℄ F. Dabek, F. Kaashoek, D. Karger, R. Morris and I. Stoi
a, Wide-area
ooperative storage with CFS, In 18th ACMSymposium on Operating Systems Prin
iples (SOSP '01), pages 202�215, Chateau Lake Louise, Ban�, Alberta, Canada,O
t. 2001.[6℄ A. Datta, M. Hauswirth and K. Aberer, Updates in highly unreliable, repli
ated peer-to-peer systems, In 23rd Interna-tional Conferen
e on Distributed Computing Systems (ICDCS 2003), pages 76�87, Providen
e, Rhode Island, USA, May2003.[7℄ I. Foster and C. Kesselman, Globus: A meta
omputing infrastru
ture toolkit, The International Journal of Super
omputerAppli
ations and High Performan
e Computing, 11(2):115�128, 1997.[8℄ J. Kubiatowi
z, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,C. Wells and B. Zhao, O
eanStore: An ar
hite
ture for global-s
ale persistent storage, In 9th International Conferen
eon Ar
hite
ture Support for Programming Languages and Operating Systems (ASPLOS 2000), number 2218 in Le
tureNotes in Computer S
ien
e, pages 190�201, Cambridge, MA, Nov. 2000. Springer.[9℄ A. Muthita
haroen, R. Morris, T. M. Gil and B. Chen, Ivy: A read/write peer-to-peer �le system, In 5th Symposiumon Operating Systems Design and Implementation (OSDI '02), Boston, MA, De
. 2002.[10℄ A. Oram, Peer-to-Peer: Harnessing the Power of Disruptive Te
hnologies,
hapter Gnutella, pages 94�122, O'Reilly, May2001.[11℄ J. Proti¢, M. Tomasevi¢ and V. Milutinovi¢, Distributed Shared Memory: Con
epts and Systems, IEEE, Aug. 1997.[12℄ S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao and J. Kubiatowi
z, Pond: the o
eanstore prototype, In2nd USENIX Conferen
e on File and Storage Te
hnologies (FAST '03), Californie, CA, USA, Mar. 2003.[13℄ JavaGroups, http://www.javagroups.
om/javagroupsnew/do
s/index.html[14℄ The JXTA proje
t, http://www.jxta.org/[15℄ JXTA v2.0 proto
ol spe
ifi
ation, http://spe
.jxta.org/nonav/v1.0/do
book/JXTAProto
ols.pdf, Mar. 2003.[16℄ KaZaA, http://www.kazaa.
om/[17℄ Napster proto
ol spe
ifi
ation, http://opennap.sour
eforge.net/napster.txt, Mar. 2001.[18℄ The NetSolve proje
t, http://i
l.
s.utk.edu/netsolve/Edited by: Wilson Rivera, Jaime Seguel.Re
eived: June 26, 2003.A

epted: September 1, 2003.

S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 3, pp. 57�66. http://www.s
pe.org ISSN 1895-1767
© 2005 SWPSPROGRESSIVE RETRIEVAL AND HIERARCHICAL VISUALIZATION OF LARGEREMOTE DATAHANS-CHRISTIAN HEGE∗, ANDREI HUTANU∗ , RALF KÄHLER∗, ANDRÉ MERZKY∗ , THOMAS RADKE† ,EDWARD SEIDEL† , AND BRYGG ULLMER†Abstra
t.The size of data sets produ
ed on remote super
omputer fa
ilities frequently ex
eeds the pro
essing
apabilities of lo
al visualizationworkstations. This phenomenon in
reasingly limits s
ientists when analyzing results of large-s
ale s
ienti�
 simulations. Thatproblem gets even more prominent in s
ienti�

ollaborations, spanning large virtual organizations, working on
ommon shared setsof data distributed in Grid environments. In the visualization
ommunity, this problem is addressed by distributing the visualizationpipeline. In parti
ular, early stages of the pipeline are exe
uted on resour
es
loser to the initial (remote) lo
ations of the data sets.This paper presents an e�
ient te
hnique for pla
ing the �rst two stages of the visualization pipeline (data a

ess and data�lter) onto remote resour
es. This is realized by exploiting the �extended retrieve� feature of GridFTP for �exible, high performan
ea

ess to very large HDF5 �les. We redu
e the number of network transa
tions for �ltering operations by utilizing a server sidedata pro
essing plugin, and hen
e redu
e laten
y overhead
ompared to GridFTP partial �le a

ess. The paper further des
ribesthe appli
ation of hierar
hi
al rendering te
hniques on remote uniform data sets, whi
h make use of the remote data �ltering stage.1. Introdu
tion. The amount of data produ
ed by numeri
al simulations on super
omputing fa
ilities
ontinues to in
rease rapidly in parallel with the in
reasing
ompute power, main memory, storage spa
e, andI/O transfer rates available to resear
hers. These developments in super
omputing have been observed to ex
eedthe growth of
ommodity network bandwith and visualization workstation memory/performan
e by a fa
tor of4 [11℄. Hen
e, it is in
reasingly
riti
al to use remote data a

ess te
hniques for analyzing this data. Amongother fa
tors, this tenden
y is strengthened by the in
reasing prominen
e of large, spatially distributed s
ienti�

ollaborations working on
ommon, shared sets of data. Under these
onditions, the simple approa
h of (partial)data repli
ation for lo
al data analysis does not s
ale.The sheer size of existing data sets
reates a demand for �exible and adaptive visualization te
hniques, su
has hierar
hi
al rendering or viewpoint dependent resolution. Su
h te
hniques
an redu
e the initial amount ofdata to be visualized by maintaining the overall visual impression of the full data set. This
an be a
hieved(e.g.) by retrieving the portions of the data set whi
h are important to the user; or by retrieving low resolutionversions of the full data set �rst, and re�ning this data later. Remote a

ess to partial interesting portions oflarge data �les
an signi�
antly support these te
hniques.One major problem of naive remote data a

ess te
hniques is the inherent di�
ulty in handling meta datafor large data sets. Meta data is the highly stru
tured set of information des
ribing the data set,
ontaining(e.g.) the number of samples per
oordinate axis and the data volume bounds within physi
al spa
e. Whilethe metadata itself is relatively small, meta data a

ess is often
onne
ted with many small read operationsand many seek operations. However, individually requesting many seeks over a remote, potentially high-laten
y
onne
tion is quite ine�
ient for proto
ols that do not support transa
tions over higher level operations [13, 19℄.In general, these developments ultimately require distributing the pipeline used for data visualization. Thepresent paper des
ribes te
hniques useable for distributing early stages of this visualization pipeline. Spe
i�
ally,we enable the appli
ation to e�
iently a

ess portions of remote large data sets present in the HDF5 �leformat [2℄. This general approa
h
an be adapted both to other �le formats and other a

ess patterns. Thepaper further presents higher level visualization te
hniques whi
h utilize these data a

ess me
hanisms to provideadaptive and progressive rendering
apabilities.The paper is stru
tured as follows. First, we des
ribe the problem spa
e our approa
h is targeting in moredetail in se
t. 2. Next, we relate our resear
h to other relevant resear
h a
tivities (see se
t. 3). In se
t. 4 followsan overall des
ription of the te
hniques we developed. Se
t. 5 and 6 des
ribe the main
omponents in morete
hni
al detail. The paper
on
ludes with two se
tions about our results and an outlook for future work.2. S
enario. The in
reasing gap between resour
es available at remote super
omputing
enters and on thelo
al workstations of individual resear
hers is one of the major motivations for our resear
h. In parti
ular, we aimto improve the a

ess to Grand Challenge simulation results as produ
ed by numerous resear
h
ollaborations
∗Zuse Institute Berlin (ZIB), http://www.zib.de/, {hege, hutanu, kaehler, merzky, ullmer}�zib.de
†Albert Einstein Institute (AEI), http://www.aei.mpg.de/, {radke, seidel}�aei.mpg.de57

58 Hans-Christian Hege, Andrei Hutanu, Ralf Kähler, André Merzky, Thomas Radke, Edward Seidel, Brygg Ullmeraround the world [12, 25, 26℄. These simulations tend to drive the resour
e utilization of super
omputer resour
esto the available maximum, and often produ
e immense amounts of data during single simulations runs.As an exemplary appli
ation we
onsider numeri
al relativity simulations performed in the Ca
tus simula-tion framework [10℄. Among other things, this framework provides the simulation
ode with an e�
ient I/Oinfrastru
ture to write data to HDF5 �les. The astrophysi
al simulations in question write data for s
alar,ve
tor and tensor �elds (as
omponents stored in separate data sets or �les), and parameters for simulationruns. A typi
al size for a data �le is on the order of tens of gigabytes1.Visualization of this data during post simulation analysis usually does not require a

ess to the
ompletedata set. For typi
al produ
tion runs, where many di�erent physi
al �elds are written to disk, only a
oupleof these �elds are visualized later. The data sets and subsets that are to be visualized are not initially known,but depend on intera
tive sele
tions by the user (timestep, �eld, resolution, spatial area, et
.). For our targetusers, this �exibility needs to be maintained as far as possible.Within these
onstraints, our target s
enario is the following:A s
ientist performs a large s
ale simulation run, utilizing one or more super
omputing re-sour
es at di�erent lo
ations. The simulation run produ
es up to TBytes of data, by storingvarious s
alar and ve
tor �elds to HDF5 �les. These HDF5 �les are
reated a

ording to a
ustom prede�ned stru
ture.After the simulation �nishes, members of the s
ientists'
ollaboration wish to visualize the data,or portions hereof, from remote workstations. They would like to use standard visualizationte
hniques from their visualization environment. They also wish to intera
tively
hoose thedata �elds to be visualized, and to intera
tively
hange the spatial sele
tion and resolution forthe data.Ideally, the data transfer and visualization are adaptive to the available network
onne
tivity,and hides data distribution details from the user.This s
enario de�nes the problem spa
e we are targeting. We expli
itely do not expe
t to �nd data on theremote systems whi
h are, by pre- or postpro
essing, spe
i�
ally prepared for later visualization. We also wantto provide a solution for environments with notorious short supply of I/O bandwith and
ompute resour
es. Andwe want to enable remote visualization for a broad width of end users,
onne
ted to the Grid by a wide rangeof network types and with varying, potentially low end
ommodity systems. The ability of the visualizationpipeline to be adaptive to that range of boundary
onditions is a
entral point of our e�orts�the fo
us of thepaper on progressive data retrieval patterns and on hierar
hi
al rendering te
hniques emphasizes this.3. Related Work. To support the s
enario we presented, it is ultimately ne
essary to distribute thepipeline used for data visualization. In prin
iple, there are many possible ways to distribute this pipeline (�g. 3.1)over remote resour
es. The distribution s
hemes used in real world systems are limited by the
ommuni
ationrequirements for transferring data between the stages of the pipeline, and by the
omplexity of the resultingdistributed software systems.
Data

Source Data Set Image

filter map render displayaccess view

Geometry

user controlFig. 3.1. Most visualization systems share the same underlying visualization pipeline [27℄.The
omponents of the pipeline
an be freely distributed, in prin
iple, as the
ommuni
ationelements between these
omponents have di�erent demands on laten
y and bandwith required.All elements of the pipeline should be
ontrolled by the end user or by the appli
ation.Early stages of the pipeline�remote a

ess and remote �ltering�potentially need to transfer and pro
esslarge amounts of data, but show
onsiderable �exibility with respe
t to laten
y. Also, by distributing these early
1With a spatial resolution of 256
ubed, this
orresponds to only a few s
alar �elds and one ve
tor �eld in 64 bit, for 1000 timesteps of evolution, with every 10th step saved to disk.

Progressive Retrieval and Hierar
hi
al Visualization of Large Remote Data 59stages, it is possible to
ompletely hide the data lo
ality from appli
ation and end user. Remote a

ess solutionsas NFS [4℄ and AFS [3℄ allow transparent utilization of standard (lo
al) �le I/O te
hniques. However, systemslike NFS and AFS are problemati
 in the administrative maintenan
e. For widely distributed environmentsspanning multiple administrative domains these solutions are not appli
able.Common remote data a

ess te
hniques
rossing administrative boundaries are marked by several limita-tions. Some, like SCP and FTP, do not support a

ess to partial �les, whi
h is not a

eptable for our purpose ofadaptive visualizing. Other te
hniques fail to deliver the performan
e required for intera
tive data visualization.For example, the GridFTP support for a

ess to remote �les with the partial �le a

ess feature [9℄ is ine�
ientfor meta data a

ess. Due to the �le format
hosen by HDF5, meta data is not ne
essarily stored in a
ontinuous�le spa
e, but instead s
attered in a hierar
hi
al binary tree. Also, a single read on the HDF5 API level maybe translated by the library into many individual low-level seek/read operations on the virtual �le driver level.Other proto
ols are similarly la
king in support for transa
tions of higher level operations [13, 19℄.Remote �ltering te
hniques often integrate models of meta data and data stru
tures, and
an perform thedata a

ess e�
iently2. Also, putting the remote �lter on the remote site
an signi�
antly redu
e the amount ofdata to be transferred over the net, and ensures that only the data a
tually needed for the visualization pro
essis retrieved and transferred. A standard problem for remote �ltering is that this pro
ess needs to integrate amodel of the data stru
tures it is operating upon. It is di�
ult or impossible to implement �ltering withoutexpli
it information about what is to be �ltered, and this information is di�
ult to express in a general waythat is appli
able over a broad range of data formats and models. Hen
e, remote �ltering te
hniques are oftenlimited to spe
i�
 �le and data types, and to spe
i�
 �ltering operations.The Data Cutter proje
t [14℄ is another well known representative of the remote �ltering approa
h. Itprovides the appli
ation programmer with a �exible and extensible �lter pipeline to a

ess portions of theoriginal data set. Compared to our approa
h, there are several main di�eren
es. First, the data
utter requiresthe data to be stored in
hunked data �les in order to bene�t from its boundary box indexing s
heme, sin
eall
hunks with a bounding box at least partly overlapping with the area of interest are
ompletely read intomemory, and passed to the �lter pipeline. Also, sin
e all �lters pass data using network
ommuni
ation, thetotal network load is mu
h higher than for our approa
h, where the �lter resides at the data sour
e, and istightly
oupled to the data a

ess stage. Further, our utilization of standard Grid tools (GridFTP and GSI)seems more appropriate for the targeted Grid environment. On the other hand, Data Cutters user de�nable�lter pipeline is more �exible than our approa
h.One widely used
ompromise for remote �ltering is the usage of prepro
essed data sets: during the simu-lations I/O stage or during a post pro
essing step, �lter operations are applied to
reate new data sets on theremote resour
es. These data sets are stored in optimized form making later remote a

ess and visualizationvery e�
ient. In the future, more and more simulation frameworks will support su
h features, not at leastin order to improve their own I/O
hara
teristi
s, i.e. due to
ompression on the �y, but also to enable thee�
ient handling of the very large data sets, after
ompletion of the sour
e simulation. Wavelet transformeddata storage is an ex
ellent example of that te
hnique [22℄, whi
h allows lossless
ompression, and adaptive,e�
ient o�ine a

es to optimally resolved data samples. Other example �lters
reate o
trees [18℄ or similarstru
tured representations [21℄, or provide progressive mesh generation.For the problem spa
e we des
ribed with our s
enario, pre applied �lters are no valid option, sin
e theyeither need to be integrated into the simulation I/O
ode, what they aren't in our
ase; or they need to beexe
uted via external jobs on the remote resour
e. This dupli
ates the storage needed and potentially performsex
ess work, thereby wasting
ostly super
omputing resour
es.After �ltering, visualization algorithms work on the data and map essential features into geometries (in
lud-ing
olor and texture information, et
.). The next stage renders images from these geometri
al representation.In the future, these stages may also be exe
uted
lose to the data sour
e, on the super
omputer itself. Thiswould be the most e�
ient way to handle large simulation data, sin
e the amount of data to be transferedduring the later stages of the visualization pipeline typi
ally de
reases signi�
antly. Completely
hanged a

esspatterns to remote data
an signi�
antly redu
e the amount of data transfered. Visualization algorithms usingsu
h patterns [23℄, in parti
ular for large data, are seen as use
ases for the presented work.The best prospe
ts of deploying su
h s
enarios have those environments
ontaining PC-
luster based super-
omputers. Here, adding
ommodity graphi
s boards to all nodes does not in
rease the total
osts signi�
antly,
2If the �lter stage is lo
ated on the remote site, the data a

ess is often performed lo
al to the �lter.

60 Hans-Christian Hege, Andrei Hutanu, Ralf Kähler, André Merzky, Thomas Radke, Edward Seidel, Brygg Ullmerbut allows high performan
e image rendering. These types of
lusters are be
oming in
reasingly
ommon, butare still rare in the top500 [6℄. For the
ollaborative and highly intera
tive visualization s
enario we envision,the feedba
k to the remote and distributed rendering system gets important, and
omplex. Also, in perhapsthe most important point, the �eld is
urrently missing su�
iently �exible software solutions whi
h are ableto realize su
h s
enarios. Promising approa
hes do exist through work su
h as [8, 7, 24℄, and we expe
t majorprogress in that �eld over the next de
ade.4. Ar
hite
ture. Our proposed remote data a

ess s
heme builds upon the GridFTP proto
ol [9℄.GridFTP is a Grid-aware extension to the standard FTP proto
ol. Amongst others, it provides a �exible serverside pro
essing feature, and allows spe
i�
ation of
ustom operations on remote data. These operations areperformed by
orresponding
ustom extensions (�plugins�) to the GridFTP server. This te
hnique is des
ribedin more detail in se
t. 5. We utilize these server side data pro
essing
apabilities to perform data �ltering oper-ations on the s
ienti�
 data sets. As des
ribed, the data sets are stored remotely in HDF5 format. Our pluginto the GridFTP server a

esses this data lo
ally via the HDF5 library, and performs data �ltering on the �y.
HDF5
File

Visualization System
(Amira)

GridFTP Client

N
etw

ork

HDF5 Plugin
− MetaData
− Data Blocks

MetaData
Cache

Native
HDF5 Calls

GridFTP Protocol (ERET/ESTO)

GridFTP Server

Fig. 4.1. The GridFTP proto
ol transports ERET
ommands from the visualization systemto the GridFTP server, whi
h forwards them to the HDF5 plugin. This way, the plugin
anperform I/O operations plus �ltering and data type
onversion on the HDF5 �le with full lo
alperforman
e. Data is transferred ba
k via ESTO
ommands, and is written into the memorybu�er of the visualization pro
ess.An important element for the ar
hite
tural de
isions is the usage of the HDF5 �le format [1℄. Given the
omplexity of this format and the ongoing improvement e�orts
on
erning the asso
iated API, the de
ision wasto use the existing API and to have the remote a

ess pro
edures either on top of the API or as also des
ribedin se
t. 3 underneath of it. The ar
hite
ture des
ribed in this work has the remote operations on top of theHDF5 API, a limited set of high-level operations was
hosen to be implemented by making use of the existingAPI, and these operations were integrated in the GridFTP server to be exe
uted at the remote site.A
omplete visualization session is performed as follows. The user sele
ts a data �le to be visualized bybrowsing the remote �le spa
e. Next, a
onne
tion to the remote GridFTP server is established, using theusers GSI
redential. The server plugin is utilized to perform an extra
tion of the �les meta data (see se
t. 5),whi
h is then transfered to the visualization host and
a
hed on the lo
al �le system. The visualization systema

esses this lo
al HDF5 �le, extra
ts all needed information (number of time steps, bounding box, resolution,. . .), and
reates an o
tree hierar
hy �tting the data set. The user
an intera
tively spe
ify the depth of thehierar
hy. As the user then triggers various visualization operations on the data (to produ
e orthosli
es, hight�elds, volumetri
 renderings), the o
tree blo
ks are s
heduled in a separate thread for data reading. The readrequests are served a

ording to a priority tag de�ned for the visualization, and ea
h trigger a GridFTP dataa

ess. This GridFTP data a

ess utilizes our remote GridFTP server side data pro
essing plugin. It extra
tsthe data in the blo
k spe
i�
 resolution and returns this data. On arrival, the data is stored within the o
treehierar
hy, and the visualization is triggered to update the rendering by in
luding the newly arrived data.On user request (e.g., next timestep) or timeout, all pending blo
k reads
an be
an
eled. Our visualizationte
hniques (see se
t. 6) use these features for dynami
 data a

ess to optimize visualization performan
e byrequesting data blo
ks
lose to the viewpoint �rst, and by progressively improving data (and image) resolution.5. GridFTP. As des
ribed in se
t. 4, the GridFTP proto
ol plays a
entral role in our data a

ess s
hema.GridFTP is mostly used for network �le transfer, whereby this paper explores its usage for memory to memory

Progressive Retrieval and Hierar
hi
al Visualization of Large Remote Data 61transfer. This approa
h gives us a number of advantages if
ompared to approa
hes implemented on top of
ustom or proprietary proto
ols.1. GridFTP allows for server side data pro
essing, whi
h we utilize for data �ltering.2. The GridFTP proto
ol, as an extension to the standard FTP proto
ol, is well known and reliable.3. It allows the in
orporation of standard servers for solutions with limited fun
tionality.34. The GridFTP infrastru
ture takes
are of:
• establishing the data
onne
tion;
• ensuring authenti
ation and authorization;
• invoking the data �lter plugin; and
• performing the data transfer;In this way, the data transfer task is redu
ed to �lling a bu�er on the writing and reading it on there
eiving end.The following subse
tions des
ribe the server side pro
essing in more detail, and spe
ify the low level operationswe use.5.1. Server-Side Pro
essing. As des
ribed before, the GridFTP proto
ol enables support for adding
ustom
ommands for server side data pro
essing [9℄. Spe
i�
ally, the plugins o�ered by a server de�ne setsof ERET and ESTO parameters that
orrespond to the data �lter module implemented by the plugin4. Theextended store (ESTO) and extended retrieve (ERET)
ommands of the GridFTP proto
ol are de�ned asfollowing:ESTO <module_name>="<modules_parms>" <filename>ERET <module_name>="<modules_parms>" <filename>module_name is a server-spe
i�
 string representing the name of the module to be used. The se
ond string(module_parms) is module spe
i�
 and de�nes the operation to be performed by the module. The last parameter(filename) spe
i�es the �le to be pro
essed, whi
h
an be any �le that
an be pro
essed by the given module.In our
ase, any HDF5 �le.5.2. Operations. We use this ERET/ESTO me
hanism to de�ne two operations that
an be applied toHDF5 �les: one for meta data �ltering, and a se
ond one for data a

ess.Meta Data Filtering. The �rst operation is the �ltering of meta data from the HDF5 �le. This is a
hievedby
reating a �ltered
opy of the original �le. Toward this end, the module reads and parses the original �le,and writes the meta data information to a
opy of the �le. However, when
opying (writing) a data set, we usethe HDF5 �lter interfa
e and apply a �lter to the original �les data set. This �lter redu
es all data sets to zerolength5. Thus, the only resulting di�eren
es between the generated �le and the original one are in the dataarray and storage layout of the data sets. All other information�e.g., the hierar
hy (groups), attributes, anddata set information (name, data type and data spa
e)�is preserved. While this approa
h might seem like asigni�
ant overhead, it is in fa
t very fast, due to the good performan
e of HDF5.The generated �le is transferred to the requesting
lient using GridFTP. The ERET
ommand for requestingthe meta data �le is:ERET Hdf5="METADATA" <filename>filename is the �le from whi
h the meta data will be extra
ted. Given the now dramati
ally redu
ed size ofthe �le, the transfer time is very small relative to the transfer time of the original data6. After the high-level�ltering
all is exe
uted remotely and the transfer is �nished, the
lient
an a

ess the lo
al meta data �leusing the standard HDF5 API. In this way, we avoid to exe
ute ea
h HDF5 API
all remote, and still o�erthe user the �exibility of the original API for meta data a

ess. Be
ause the data set stru
tures within thistemporary lo
al �le do not
ontain a
tual data, the standard API
annot be used for data a

ess. For thistask, we provide a se
ond API
all.

3bakwards
ompatible with FTP, by using normal FTP we
ould transfer the �le to a lo
al disk
a
he; for standard GridFTPserver(without plugins) we use dire
t partial �le a

ess (ERET PART, for �ltering ine�
ient).
4Not all servers implement the same set of modules. In the
urrent implementation, the plugins are
ompiled together with theserver, and are stati
ally linked.
5A
tually, for te
hni
al reasons internal to HDF5 the length is 1.
6See se
t. 7 for the times for meta data loading

62 Hans-Christian Hege, Andrei Hutanu, Ralf Kähler, André Merzky, Thomas Radke, Edward Seidel, Brygg UllmerData Set Reading and Subsampling. The se
ond operation performs data sele
tion and �ltering. Byknowing the data set
oordinates (dimensions, data type) from the now lo
ally available meta data, the
lient
an
hoose to read an entire data set, or a portion of the data set. The HDF5 data sets logi
ally group thea
tual data within multidimensional arrays named �data spa
es.� The model we use to spe
ify a portion froma data set is based on the HDF5 �hyperslab� model. A hyperslab des
ribes either a
ontiguous
olle
tion ofpoints, or a regular pattern of points or blo
ks in the data spa
es. A hyperslab is spe
i�ed by four parameters:
• origin: the starting lo
ation;
• size: the number of elements (or blo
ks) to sele
t along ea
h dimension;
• stride: the number of elements to separate ea
h element (or blo
k) to be sele
ted; and
• blo
k: the size of ea
h blo
k sele
ted from the data set.All of these parameters are one-dimensional lists, with lengths equal to the number of dimensions of the dataset. The elements of these lists spe
ify data array lengths or o�sets for
orresponding dimensions of the dataarrays. Currently the size of element blo
ks is prede�ned to one, whi
h is adequate for the targeted visualizations
enario. In future work, we will extend the proto
ol to a

ept variable blo
k sizes.Our
urrent me
hanism for spe
ifying the hyperslab
oordinates takes the following form:ERET Hdf5="BLOCK:NAME=<datasetname>;\DIMENSIONS=<dims>;\ORIGIN=<orig0>,<orig1>,...,<orign>;\SIZE=<size0>,<size1>,...,<sizen>;\SAMPLING=<sampling0>,<sampling1>,...,<samplingn>"<filename>datasetname is the fully quali�ed name (in
luding the path to the data set) of the data set from whi
h datashould be read; orig0 to orign are the
oordinates of the �rst element to be sele
ted from the data set; size0to sizen are the number of elements to be sele
ted in ea
h dimension; and sampling0 to samplingn representthe distan
e between two sele
ted elements for ea
h dimension.This request is sent to the server. The server opens the �le �lename, opens the given data set, and readsthe portion of the �le spe
i�ed by the given parameters. This pro
edure is performed via native HDF5 library
alls. Next, the retrieved data is sent via the GridFTP
onne
tion to the
lient, whi
h will
onvert the datato the lo
al byte order if needed. To determine if
onversion is ne
essary, the �rst 32 bits sent by the serverrepresent an integer with the value of 1, en
oded using the servers byte ordering.The approa
h we have taken in
reating this limited HDF5 API wrapper does redu
e the �exibility providedby the original API. Nonetheless, for our visualization s
enario this API is appropriate, and makes signi�
antsteps toward maximizing overall performan
e. To retain the �exibility of the original API, one approa
h wouldbe to exe
ute ea
h native API
all remotely. In this
ase, the
ost per
all is at least that of the network laten
y.This,
ombined with the relatively large number of
alls needed for example to gather the meta data from the�le, signi�
antly redu
es the performan
e. This motivates the usage of higher level API wrappers, as the onewe have implemented. However, su
h wrappers need not to be as limited as our
urrent version of
ourse.5.3. Se
urity. The se
urity model used used by the GridFTP server is GSI (Grid Se
urity Infrastru
-ture) [17℄. The
lient needs to hold a valid GSI proxy
ontaining a se
urity
redential with limited validity.The proxy represents a Distinguished Name (DN) that must be present in the grid-mapfile of the serverma
hine in order for the server to a

ept the
onne
tion. This proxy is used to authenti
ate the
lient withoutusing passwords. After the
onne
tion is established, the server front end starts the MPI-based ba
k end.This ba
k end runs under the lo
al identity to whi
h the DN is mapped. The ba
k end is responsible for allsubsequent operations, in
luding the �ltering operations. This ensures that only authorized
lients
an a

essthe information from the original �le.6. Adaptive Visualization. We utilize the previously des
ribed te
hniques for data a

ess and �lteringto generate a level-of-detail representation of the remote data set in the visualization phase.First, the meta data�i. e. information about the number of data samples per
oordinate axis and the datavolume extension in physi
al spa
e�is retrieved (see se
t. 5.2). With help of this information, and a sele
tableminimal resolution of the data, an o
tree stru
ture is generated, whi
h initially
ontains no data other than theparent-
hild relations and position and extensions of the tree nodes. The root node of the stru
ture will storea
oarse representation of the whole data volume. This is re
ursively re�ned by subnodes with higher spatialresolution until the resolution of the original data is rea
hed.

Progressive Retrieval and Hierar
hi
al Visualization of Large Remote Data 63Next, the data for the o
tree nodes is requested from the reader module, starting at the root node. Theorder in whi
h nodes are re�ned is determined by the distan
e from a user-de�ned point-of-interest, whi
hmight be the
amera position or an arbitrary point within the data volume. Subregions of the data sets
loserto this point are requested with higher priority than those whi
h are further away. The position and resolutionparameters for ea
h request are spe
i�ed and sent to the remote ma
hine as des
ribed in se
t. 5.2.The reader runs in a separate thread, so the visualization routines are not blo
ked during the loading phase.Ea
h time a data blo
k has arrived, the visualization module is noti�ed, and this new data is re�e
ted in thenext rendered frame of the visualization.

Fig. 6.1. The sequen
e depi
ts the volume rendering of a remote data set. First, a
oarseresolution representation of the data is generated on-the-�y and transferred to the lo
al visual-ization
lient. Next, subregions
loser to the point-of-interest (in this
ase, the
amera position)are requested and integrated at progressively higher resolutions.Besides hierar
hi
al visualization modules for orthosli
ing and the display of height �elds, we implementeda 3D texture-based volume rendering module for o
trees. The o
tree is traversed in a view-
onsistent (ba
k-to-front) order, starting at the root node. A node is rendered, if two
riteria are ful�lled:
• The data for this node is already loaded (otherwise, the traversal of the asso
iated subtree is stopped).
• The data for the subnodes is not loaded yet (otherwise, the node is skipped and the subnodes arevisited).On
e a node is sele
ted, it is rendered utilizing the standard approa
h for volume rendering with 3D textures,as proposed in (e.g.) [16, 15℄. The 3D texture is sampled on sli
es perpendi
ular to the viewing dire
tion andblended in the frame bu�er.In order to take advantage of the multi-resolution stru
ture of the data for fast rendering, the sampledistan
e of the sli
es is set with respe
t to the resolution level of the a
tual node, as proposed in [29℄.7. Results.7.1. Implementation. The implementation of the remote data a

ess infrastru
ture we have des
ribedis based on an experimental version of the GridFTP server provided by the Globus Group. This server is not

64 Hans-Christian Hege, Andrei Hutanu, Ralf Kähler, André Merzky, Thomas Radke, Edward Seidel, Brygg Ullmerpart of the Globus software distribution as of yet. It supports the addition of
ompile-time plugins (writtenin C) for handling spe
i�
 in
arnations of the ERET/ESTO proto
ol
ommands. Although ERET and ESTOare spe
i�ed in the GridFTP proto
ol version 1.0, there is
urrently no other implementation of this featureavailable other than the basi
 support for partial �le a

ess and striped data a

ess. There are good prospe
tsfor this feature to be present in various future implementations of GridFTP servers. The plugin
ode will beavailable via the GridLab proje
t software distribution, and will be published at http://www.gridlab.org/.For ben
hmarking the software we used a dual Xeon 1.7GHz Server running RedHat Linux 8.0 as a dataserver. The ma
hine was equipped with 1GB of RAM and a logi
al volume storage of 320 GByte (36.5 MByte/se
transfer rate). The measurements have a granularity of 1 se
ond.The visualization modules we des
ribed have been implemented in the Amira visualization environment [28,5℄, whi
h is based on OpenGL and OpenInventor. The renderings have been performed on a dual Pentium IVsystem with 2.6 GHz, 1 GByte main memory and NVidia Quadro4 graphi
s. The system ran under RedHatLinux 8.0 with the standard NVidia video driver.7.2. Ben
hmark Results. In order to evaluate our approa
h, we performed a number of performan
emeasurements for a

essing, loading and displaying large remote HDF5 data sets. We
ompare the performan
eobtained using the GridFTP plugin (GridFTP HDF5) with a
omparable remote a

ess te
hnique, that isHDF5 over GridFTP partial �le a

ess (GridFTP PFA). We also in
lude measurements of lo
al (lo
al a

ess)and Network File System (NFS a

ess) times to see if we a
hieved our goal of having a

eptable waiting timesbefore the �rst visualization is
reated,
onsidering the lo
al and NFS times as a

eptable.The results of these tests are listed in table 7.2. The time needed to
reate the �rst image (t3) is
omposedof the time needed to gather and transfer the meta data (t1) and the time needed to �lter and transfer thesubsampled �rst timestep (t2). t4 gives the a

ess time for a full resolution time step.The tests have been performed on a Lo
al Area Network (LAN) with normal network load (laten
y 1ms,measured 32.0 MBit/se
), and on a Wide Area Network
onne
tion (WAN) between Amsterdam and Berlin(laten
y 20ms, measured bandwith: 24.0 MBit/se
).The WAN measurements have been performed with various level settings, that is with di�erent depth ofthe o
tree hierar
hy
reated. Table 7.1The table lists performan
e measurements for the various a

ess te
hniques we explored.The results have been obtained by timing the visualization pro
ess for a 32 GB HDF5 �le,
on-taining 500 timesteps, ea
h timestep with the resolution of 2563 data points (double pre
ision).A

ess Type Net Level Meta Data Root Blo
k Startup Complete
t1 t2 t3 = t1 + t2 t4lo
al a

ess - 2 7 se
 1 se
 8 se
 3 se
NFS a

ess LAN 2 8 se
 5 se
 13 se
 8 se
GridFTP HDF5 LAN 2 11 se
 2 se
 13 se
 11 se
GridFTP PFA LAN 2 165 se
 10 se
 175 se
 200 se
GridFTP HDF5 WAN 3 14 se
 2 se
 16 se
 126 se
GridFTP HDF5 WAN 2 14 se
 3 se
 17 se
 68 se
GridFTP HDF5 WAN 1 14 se
 7 se
 21 se
 45 se
GridFTP HDF5 WAN 0 14 se
 41 se
 55 se
 41 se
GridFTP PFA WAN 3 430 se
 28 se
 458 se
 3760 se
GridFTP PFA WAN 2 430 se
 53 se
 483 se
 960 se
GridFTP PFA WAN 1 430 se
 110 se
 560 se
 477 se
GridFTP PFA WAN 0 430 se
 220 se
 670 se
 220 se
These measurements show that the goal of a fast initial visual representation of the data set was a
hieved:a small startup time t3
an be a
hieved by using the GridFTP HDF5 te
hnique
ombined with hierar
hi
ala

ess (level ≥ 2). This time is of the same order of magnitude as for lo
al visualization.Spe
ifying the hierar
hy level provides the user with an intera
tive me
hanism for tuning response times.The data a

ess s
heme
ould prove its adaptivity for di�erent network
onne
tivity. In prin
iple, the user
anredu
e the time to obtain a �rst visual representation by
hoosing a larger hierar
hy level. The tradeo� for

Progressive Retrieval and Hierar
hi
al Visualization of Large Remote Data 65shorter startup times is the total transfer time for a fully resolved data set (all o
tree levels)7. The results showthat relation (t3 / t4)
learly for the WAN measurements with di�erent level settings.Also, the large overhead for the
ompli
ated meta data a

ess was dramati
ally redu
ed in
omparison toGridFTP partial �le a

ess. The remaining time di�eren
e relative to the NFS meta data a

ess results fromthe appli
ation of the zero �lter to all data sets, the time needed to write the meta data �le, and the time totransfer it.8. Con
lusions. With the presented s
heme for progressive remote data a

ess and its use for hierar
hi
alrendering, we have su

essfully realized the fun
tionality targeted in our motivating s
enario (se
t. 2). Inparti
ular, the te
hniques we have developed support the adaptation of remote data a

ess to a wide range ofI/O
onne
tions, and rea
t �exibly to user and appli
ation demands. For example, our me
hanisms supportadjustment of the systems rea
tion time�the time until the �rst visual impression for the data set appears�byadapting data �lter parameters, su
h as the
hosen o
tree depth.Our presented solution does not depend on server-side o�ine prepro
essing of the
omplete data set. Thea

ess to the data sets meta data, when
ompared to naive remote a

ess te
hniques, o�ers very high perfor-man
e, as supported by the results of Table 1. Only a small lo
al disk storage spa
e is required for
a
hing theasso
iated metadata.The extensibility of this approa
h is also notable. This approa
h supports both additional data formatsother than HDF5, and a

ess patterns other than hyperslab, through the provision of additional plugins. Si-multaneously, it is important to a
knowledge that this approa
h may make it in
reasingly di�
ult to maintain
ompatible
on�gurations on all hosts of a Grid. The situation may improve with future GridFTP server im-plementations allowing dynami
 linking and invo
ation of plugins. Thus implementation is one of the �rst fewexisting utilizations of the ERET
apabilities provided by GridFTP. It is expe
ted to see many more in the future.Our work further demonstrates the usability of the data a

ess s
heme for hierar
hi
al rendering te
hniques.The implemented algorithms (orthosli
e, height �eld, volumetri
 rendering) show very good performan
e, andare also adaptive to user spe
i�
ation and
onne
tivity
hara
teristi
s.The presented ar
hite
ture enables us to realize visualization s
enarios whi
h would be impossible earlier, byredu
ing the total amount needed for obtaining a visual data impression by orders of magnitudes, if
omparedto naive approa
hes.We are planning to enhan
e the dynami
 proto
ol sele
tion feature of Stork, so that it will not only sele
tany available proto
ol to perform the transfer, but it will sele
t the best one. The requirements of `being thebest proto
ol' may vary from user to user. Some users may be interested in better performan
e, and others inbetter se
urity or better reliability. Even the de�nition of `better performan
e' may vary from user to user. Weare looking into the semanti
s of how to to de�ne `the best' a

ording to ea
h user's requirements.We are also planning to add a feature to Stork to dynami
ally sele
t whi
h route to use in the transfers andthen dynami
ally deploy DiskRouters at the nodes on that route. This will enable us to use the optimal routesin the transfers, as well as optimal use of the available bandwidth throughout that route.A
knowledgments. It is a pleasure to thank many
olleagues and
ollaborators who
ontributed to thiswork both dire
tly and indire
tly. At ZIB, that are namely Werner Benger and Tino Weinkauf, who
ontributedto the overall ideas of our approa
h. We wish to thank the Globus group, in parti
ular Bill All
o
k and JohnBresnahan, for their substantial support with the GridFTP server plugin infrastru
ture and implementation �without the experimental server provided by them, our work would have been hardly possible. We also wish tothank John Shalf and Werner Benger for many insightful dis
ussions about data handling. Finally, we wish tothank the members of the GridLab proje
t who
ontributed to the Adaptive Component work pa
kage for usefuldis
ussions about (future) semi-automati
 adaptivity s
hemes, and for their support during the ben
hmarkingThe presented work was funded by the German Resear
h Network (the DFN GriKSL proje
t, grant TK-602-AN-200), and by the European Community (the EC GridLab proje
t, grant IST-2001-32133).REFERENCES[1℄ HDF5 File Format Spe
i�
ation, National Center for Super
omputing Appli
ations (NCSA).http://hdf.n
sa.uiu
.edu/HDF5/do
/H5.format.html.
7The maximum amount of additionally transferred data
aused by the o
tree based a

ess s
heme is on the order of 15%. Thehigher number of resulting blo
k requests in
reases the overall transfer time also due to the additional laten
ies.

66 Hans-Christian Hege, Andrei Hutanu, Ralf Kähler, André Merzky, Thomas Radke, Edward Seidel, Brygg Ullmer[2℄ Introdu
tion to HDF5, National Center for Super
omputing Appli
ations (NCSA).http://hdf.n
sa.uiu
.edu/HDF5/do
/H5.intro.html.[3℄ Wide Area File Servi
e and the AFS Experimental System, Unix Review, 7 (1989).[4℄ Network Programming Guide, Sun Mi
rosystems In
., (1990). Revision A.[5℄ Amira User's Guide and Referen
e Manual and Amira Programmer's Guide, Konrad-Zuse-Zentrum für Informationste
hnikBerlin (ZIB) and Indeed-Visual Con
epts GmbH, Berlin, 2001. http://www.amiravis.
om/.[6℄ Top 500, (2002). http://www.top500.org/list/2002/11/.[7℄ VisIt User's Manual, Te
h. Report UCRL-MA-152039, Lawren
e Livermoore National Laboratory, February 2003.[8℄ J. Ahrens, C. Law, W. S
hroeder, K. Martin, and M. Papka, A Parallel Approa
h for E�
ient Visualizing ExtremelyLarge, Time-Varying Datasets, Te
h. Report LAUR-00-1620, Loa Alamos National Laboratory (LANL), 2000.[9℄ W. All
o
k, J. Bester, J. Bresnahan, S. Meder, P. Plasz
zak, and S. Tue
ke, Gridftp:Proto
ol extensions to ftp for the grid, GWD-R (Re
ommendation), (2002). Revised: Apr 2003,http://www-isd.fnal.gov/gridftp-wg/draft/GridFTPRev3.htm.[10℄ G. Allen, W. Benger, T. Goodale, H.-C. Hege, G. Lanfermann, A. Merzky, T. Radke, E. Seidel, and J. Shalf,The Ca
tus Code: A Problem Solving Environment for the Grid, in Pro
eedings of the Ninth IEEE InternationalSymposium on High Performan
e Distributed Computing, 2000, pp. 253�260.[11℄ D. Alpert, S
alable Mi
roSuper
omputer, Mi
ropro
essor Report, 03/17/03-01 (2003).[12℄ W. Benger, I. Foster, J. Novotny, E. Seidel, J. Shalf, W. Smith, and P. Walker, Numeri
al relativity in a dis-tributed environment, in Pro
eedings of the Ninth SIAM Conferen
e on Parallel Pro
essing for S
ienti�
 Computing, 1999.[13℄ W. Benger, H.-C. Hege, A. Merzky, T. Radke, and E. Seidel, E�
ient Distributed File I/O for Visualization inGrid Environments, Te
h. Report SC-99-43, Zuse Institute Berlin, January 2000.[14℄ M. Beynon, R. Ferreira, T. Kur
, and J. Saltz, DataCutter: Middleware for Filtering Very Large S
ienti�
 Datasetson Ar
hival Storage Systems, in The Eighth Goddard Conferen
e on Mass Storage Systems and Te
hnologies/17th IEEESymposium on Mass Storage Systems, College Park, Maryland, USA, Mar
h 2000.[15℄ B. Cabral, N. Cam, and J. Foran, A

elerated volume rendering and tomographi
 re
onstru
tion using texture mappinghardware, in 1994 Symposium on Volume Visualization, A. Kaufman and W. Krueger, eds., 1994, pp. 91�98.[16℄ T. Cullip and U. Neumann, A

elerating volume re
onstru
tion with 3D texture mapping hardware, Te
h. ReportTR93-027, Department of Computer S
ien
e at the University of North Carolina, Chapel Hill, 1993.[17℄ I. T. Foster, C. Kesselman, G. Tsudik, and S. Tue
ke, A se
urity ar
hite
ture for
omputational grids, in ACMConferen
e on Computer and Communi
ations Se
urity, 1998, pp. 83�92.[18℄ L. A. Freitag and R. M. Loy, Adaptive, multiresolution visualization of large data sets using a distributed memoryo
tree, in Pro
eedings of SC99: High Performan
e Networking and Computing, Portland, OR, November 1999, ACMPress and IEEE Computer So
iety Press.[19℄ H.-C. Hege and A. Merzky, GriKSL�Immersive Überwa
hung und Steuerung von Simulationen auf entferntenSuper
omputern, DFN-Mitteilungen, 59 (2002), pp. 5�7.[20℄ F. Isaila and W. F. Ti
hy,Mapping fun
tions and data redistribution for parallel �les, in Pro
eedings of IPDPS 2002 Work-shop on Parallel and Distributed S
ienti�
 and Engineering Computing with Appli
ations, April 2002. Fort Lauderdale.[21℄ L. Linsen, J. Gray, V. Pas
u

i, M. A. Du
haineau, B. Hamann, and K. I. Joy, Hierar
hi
al Large-s
ale VolumeRepresentation with '3rd-root-of-2' Subdivision and Trivariate B-spline Wavelets, Mathemati
s + Visualization, SpringerVerlag, Heidelberg, Germany, 2003.[22℄ A. Norton and A. Ro
kwood, Enabling View-Dependent Progressive Volume Visualization on the Grid, IEEE ComputerGraphi
s�Graphi
s Appli
ations for Grid Computing, (2003), pp. 22�31.[23℄ C. Nuber, R. W. Bru
ks
hen, B. Hamann, and K. I. Joy, Intera
tive visualization of very large datasets using an out-of-
ore point-based approa
h, in Pro
eedings of the High Performan
e Computing Symposium 2003 (HPC 2003), I. Bani
es
u,ed., San Diego, California, Mar
h 30�April 2, 2003 2003, The So
iety for Computer Simulation International. Orlando, FL.[24℄ S. Olbri
h, T. Weinkauf, A. Merzky, H. Knipp, H.-C. Hege, and H. Pralle, Lösungsansï¿½ze zur Visualisierungim High Performan
e Computing und Networking Kontext, in Zukunft der Netze - Die Verletzbarkeit meistern., J. vonKnop and W. Haverkamp, eds., vol. 10, Düsseldorf, Germany, May 2002, pp. 269�279. 16. DFN-Arbeitstagung überKommunikationsnetze, GIEdition, Le
ture Notes in Informati
s (LNI).[25℄ N. Ramakrishnan and A. Y. Grama, Data Mining Appli
ations in Bioinformati
s, in Data Mining for S
ienti�
 andEngineering Appli
ations, Kluwer A
ademi
 Publishers, 2001, pp. 125�140.[26℄ J. Rumble Jr., Publi
ation and Use of Large Data Sets, Se
ond Joint ICSU Press - UNESCO Expert Conferen
e onEle
troni
 Publishing in S
ien
e, (2001).http://users.ox.a
.uk/ i
suinfo/rumbleppr.htm.[27℄ H. S
humann and W. Müller, Visualisierung, Springer, Berlin, Heidelberg, New York, 2000.[28℄ D. Stalling, M. Westerhoff, and H. Hege, Amira�an obje
t oriented system for visual data analysis, in VisualizationHandbook, C. R. Johnson and C. D. Hansen, eds., A
ademi
 Press, to appear 2003. http://www.amiravis.
om/.[29℄ M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, and T. Ertl., Level-of-detail volume rendering via 3Dtextures, in IEEE Volume Visualization and Graphi
s Symposium 2000, 1994, pp. 7�13.[30℄ R. Wolski, N. Spring, and J. Hayes, The Network Weather Servi
e: A Distributed Resour
e Performan
e Fore
astingServi
e for Meta
omputing, Journal of Future Generation Computing Systems, 15 (1999), pp. 757�768.Edited by: Wilson Rivera, Jaime Seguel.Re
eived: July 5, 2003.A

epted: September 1, 2003.

S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 3, pp. 67�84. http://www.s
pe.org ISSN 1895-1767
© 2005 SWPSAN ADAPTIVE FILE DISTRIBUTION ALGORITHM FOR WIDE AREA NETWORKTAKASHI HOSHINO∗ , KENJIRO TAURA∗ , AND TAKASHI CHIKAYAMA∗Abstra
t. This paper des
ribes a data distribution algorithm suitable for
opying large �les to many nodes in multiple
lustersin wide-area networks. It is a self-organizing algorithm that a
hieves pipeline transfers, fault toleran
e, s
alability, and an e�
ientroute sele
tion. It works in the presen
e of today's typi
al network restri
tions su
h as �rewalls and Network Address Translations,making it suitable in wide-area setting. Experimental results indi
ate our algorithm is able to automati
ally build a transfer route
lose to the optimal. Propagation of a 300MB �le from one root node to over 150 nodes takes about 1.5 times as long as the besttime obtained by the manually optimized transfer route.Key words. Self-stabilizing distributed algorithm, fault toleran
e, s
alability, wide-area network1. Introdu
tion. This paper des
ribes a pra
ti
al algorithm for
opying large data (typi
ally in a �le)from a sour
e node(s) to many destination nodes in parallel. We seek a s
alable solution suitable both withina
luster and a
ross many
lusters in wide-area. By suitable within a
luster, we mean that it fully utilizesthe available bandwidth of LAN/
luster inter
onne
t. For example, assuming 32 nodes are
onne
ted via asu�
iently high-throughput swit
h, it should be able to
opy a single large �le to the 32 nodes in not mu
hmore than the time it takes to
opy the �le to a single node. Su
h an algorithm must at least perform manyone-to-one transfers in parallel. By suitable in wide-area, we mean it makes a good
hoi
e in sele
ting transferroutes. If many nodes in a
luster retrieve data from another
luster, a link a
ross the two easily saturates.Thus su
h an algorithm should have a me
hanism to transfer data within a
luster where possible.To be pra
ti
al, it should work with a simple and small manual
on�guration that may not be very a

urate.It won't be pra
ti
al to assume, for example, that the user gives a
omplete and a

urate information aboutphysi
al network topology, desirable paths for transferring data, or even logi
al network
onne
tivity (i.e.,network settings su
h as �rewall and Network Address Translation (NAT)). Assuming su
h information isnot pra
ti
al not only be
ause the user may not want to write them, but also be
ause su
h information may
hange over time due to su
h events as node/network failures. The system therefore must tolerate ina

urateinformation and adapt to the
onditions observed at runtime. Su
h an adaptive system naturally supports faulttoleran
e in the sense that even if some nodes fail, remaining nodes a

omplish their work and nodes that on
efailed
an join the transfer again.We believe su
h a fault-tolerant and adaptive �le repli
ator is a mandatory building blo
k for
luster andGrid
omputing. It may be used for installing large program/data to many nodes. It may also be used in�le syn
hronizers [5℄ so they support syn
hronizing data among a large number of nodes in parallel. Perhapsmost important, repli
ating a large data to many nodes will be a pra
ti
al te
hnique to �reset� a distributed
omputation; it simply reinitializes all the involved nodes, so as to re
over from some broken/in
onsistent states.This observation a

ords with re
ent pra
ti
es in large-s
ale
luster management, where reinstalling operatingsystems from s
rat
h is
onsidered as a normal operation, rather than the last resort, to �x broken
lusters [13℄.To get an intuitive idea about how a good transfer route typi
ally looks,
onsider a network in Figure 1.1.There are two lo
al area networks (LANs) named A and B, ea
h in
luding three
lusters (A1, A2, and A3in A and B1, B2, and B3 in B). Assume nodes
an
onne
t to ea
h other via the TCP layer.Suppose the data is on a node in
luster A1 and should propagate to all other nodes. In the �gure, a small
ir
le is a node, a re
tangle a swit
h, and a line
onne
ting a node and a swit
h a network
able that
an transferdata with 100Mbps.1Intuitively, the best strategy is to form a transfer route like the one shown in Figure 1.2. Figure 1.3represents the same route in the physi
al topology. Spe
i�
ally, the following two properties are important.
• The number of
onne
tions that
ross a LAN/
luster boundary is small; there is only one
onne
tiona
ross the two LANs and �ve
onne
tions a
ross the six
lusters.
• The entire transfer route forms a list. That is, no nodes serve data to two or more nodes.The reason why the �rst property is important will be
lear. A simple
al
ulation will reveal that if nodes arerandomly
onne
ted without any e�ort to
onne
t nodes
lose to ea
h other, links a
ross LANs/
lusters will

∗University of Tokyo, {hoshino,tau,
hikayama}�logos.t.u-tokyo.a
.jp
1Of
ourse, this limit may not be due to the
apa
ity of the
able per se, but due to NIC or swit
h.67

68 Takashi Hoshino, Kenjiro Taura, Takashi Chikayama

Cluster B1 Cluster B2 Cluster B3

Cluster A1 Cluster A2 Cluster A3

Subnet A

Subnet B

Node Switch 100Mbps LineFig. 1.1. Typi
al network environment for whi
h our solution is suitable
Cluster A1 Cluster A2 Cluster A3

Cluster B2 Cluster B1Cluster B3

Subnet B

Subnet A

Root

Intra-cluster edge Intra-subnet edge
Inter-cluster edge

Inter-subnet edgeFig. 1.2. Best transfer route in appli
ation layereasily be
ome a bottlene
k. This is espe
ially true in today's typi
al network
on�guration where
apa
ity oflong links (
orporate-/
ampus-/wide- area) is similar to or at best only an order of magnitude larger or so thantypi
al lo
al area links. For example, let us assume for the purpose of dis
ussion that we have two 100Mbpsswit
hed LANs
onne
ted via a 1Gbps link. In su
h settings, we should be able to transfer data among allthe nodes in the two LANs approximately at the LAN bandwidth (100Mbps), but if
onne
tions are randomly
hosen, a link a
ross the two LANs
an sustain only 10 su
h
onne
tions at best. Thus the 1Gbps link won'tbe enough for supporting 10 or more nodes in ea
h side of it.The se
ond bullet may be less obvious. It is important for redu
ing the bottlene
k in NICs. Suppose threenodes A, B, and C are linked via a 100Mbps swit
h. If data go from A to B to C, the throughput will be
lose to 100Mbps. If, on the other hand, A sends data both to B and C simultaneously, it
an emit data at50Mbps to ea
h. Note that we assume A must send data to B and C separately, whi
h we believe is a reasonableassumption be
ause B and C may want di�erent portion of the entire data stream. This is important espe
ially

An Adaptive File Distribution Algorithm for Wide Area Network 69

Cluster B1 Cluster B2 Cluster B3

Cluster A1 Cluster A2 Cluster A3

Subnet A

Subnet B

Node Switch 100Mbps Line

Root

Fig. 1.3. Best transfer route a

ording to our guidelines in typi
al networkwhen links a
ross LANs are su�
iently powerful, so they won't be
ome bottlene
ks as long as we maintain the�rst property.Our algorithm tries to build a transfer route
lose to su
h best routes. Note that it is not always possibleto
onne
t all nodes in a list. For example, if �rewalls do not allow some
onne
tions, it may be unavoidablefor some nodes to serve data to two or more
hildren. Thus, our algorithm in general forms a transfer forest ,with some heuristi
s to
onne
t nodes
lose to ea
h other and to make the tree deeper. It may be a forest,rather than a single tree, be
ause there may be multiple nodes that have
omplete data in the beginning. Insu
h
ases, a separate tree will be formed rooted at ea
h sour
e node.The paper is organized as follows. Se
tion 2 des
ribes a model of the network and the goal of this resear
h.Then, we propose our algorithm and proof of e�
ien
y in Se
tion 3. And validation and evaluation are shownin Se
tion 4. In Se
tion 5, we explain related work. Finally, we
on
lude and summarize this resear
h andremark to future work in Se
tion 6.2. Problem Des
ription. In this se
tion, we de�ne goals of the algorithm and formalize the problem.2.1. Goals.Tolerate faults and adapt to resour
e
onditions: Copying a large �le to many nodes takes a long time.Therefore our solution must tolerate temporal/permanent network faults and node
rashes. When anode
rashes, nodes re
eiving data from the
rashed node must �nd a substitute so that the remainingnodes �nish their tasks. When a node re
overs, it must be able to join the transfer network and
ontinueits job, without waiting for the ongoing operation to �nish and then restarting from s
rat
h. In additionto being fault-tolerant, it must adapt to
hanges in network
onditions; it should
hange the transferroute depending on
hanges of
onditions.Both of these requirements pre
lude a simplisti
 solution that stati
ally
onstru
ts a route in thebeginning and tries to retain the same route until they �nish. Nodes must
ontinuously sear
h for abetter transfer route.Make an e�
ient transfer route automati
ally: As motivated in Se
tion 1, our general
riteria for �good�transfer route are (1) using a small number of �long�
onne
tions (i.e.,
onne
tions that travel a largenumber of hops, su
h as inter-subnet
onne
tions), and (2) having a small number of nodes that serve

70 Takashi Hoshino, Kenjiro Taura, Takashi Chikayamadata to multiple (more than one)
hildren. This is based on our assumption that a bottlene
k is typi
ally
aused by an inter-subnet edge or a node. Examples for the latter are disks and network interfa
es.Our algorithm tries to optimize the number of long
onne
tions and the number of
hildren for ea
hnode, with a very simple lo
al sear
h heuristi
s.Work on today's typi
al network
on�gurations: Today's typi
al network
on�gurations do not allowea
h node to
onne
t to all other nodes. Firewalls may blo
k
onne
tions between LANs. Inside aLAN, it is
ommon to pla
e all
luster nodes but one (a master node) behind a NAT router, so thata

esses to
lusters need go through the master. With DHCP, it may even be impra
ti
al to assume allnodes to have persistent names.In short, we must model the network as a general graph where allowed
onne
tions are representedby its edges. Yet it is impra
ti
al to assume su
h a graph is given by the user (or the administrator)either o�ine or in the beginning of the algorithm. Altogether, we must design an algorithm that beginswith a minimum amount of global information (e.g., parti
ipating nodes) and a lo
al knowledge of thenetwork (e.g., neighbors) in ea
h node.Do not assume physi
al network topology: Knowing physi
al network topology would help us to opti-mize transfer routes. Designing the algorithm assuming a
omplete knowledge about it is, however,impra
ti
al for many reasons dis
ussed so far. First it is
umbersome for the user or the administra-tor to maintain su
h information. We may be able to obtain su
h information by using tools su
has tra
eroute, but su
h tools tend to be unavailable these days for se
urity
onsiderations. It is alsodi�
ult to obtain the topology of the network behind a single router with tra
eroute. Se
ond, evenif topology information is available, dynami
ally probing the network is always ne
essary to make thealgorithm fault-tolerant and adaptive. Algorithms based on probing
onne
tivity and proximity atruntime naturally work without detailed knowledge about network topology.Of
ourse, we
ould always use physi
al topology as hints to our algorithm, among many other hintssu
h as IP address pre�x, laten
y, and observed throughput.To a
hieve these goals, ea
h node involved in our algorithm
ontinuously seeks a parent, a node that servesdata to the node. When it fa
es su
h events as parent
rashes or dis
onne
tions, it tries to �nd a new parent.Even without su
h events, they
ontinuously sear
h for a better parent to optimize the transfer route. The
riteria for a better parent are that (1) the
loser a node is to itself the better, and (2) the fewer
hildren a nodehas the better.Our algorithm is a simple lo
al sear
h algorithm that
onverges to a satisfa
tory transfer in typi
al network
on�gurations of today. Ideally, we desire an algorithm to �nd a globally optimal solution for any given network.A plausible de�nition of the optimal would be to minimize the sum of sele
ted edge weights and the number ofbran
hes (or equivalently, the number of leaves) in the graph. The two
riteria may
on�i
t for general weightedgraphs and even if they do not, they will require a
omplex global optimization algorithm (e.g., fault-tolerantMST
onstru
tion) whose pra
ti
al importan
e may not be very
lear. In the following, we formulate ourproblem and prove our simple algorithm has a property whi
h translates to �a su�
iently good� transfer routein typi
al real network
on�gurations.2.2. Problem Formulation. As usual, we model the network by a dire
ted graph G = 〈V, E〉, where V isa set of nodes parti
ipating in the repli
ation. E represents possible
onne
tions between nodes; (a, b) ∈ E ⇐⇒
a knows b's name and the
urrent network status allows a to
onne
t to b.The graph is for modeling purposes only; in pra
ti
e, the network status may
hange over time, so ea
hnode
annot know the
omplete status of the network. It may even be impra
ti
al to assume ea
h node knowsall the neighbors it
an
onne
t to. In our implementation, ea
h node begins with knowing information abouta few of its neighbors and re
eiving a
ommand that instru
ts it to parti
ipate in the repli
ation of a �le. Theylearn other node names on the �y by propagating information along established
onne
tions. This way, theylearn other
onne
tions they may be able to make. They learn whether a parti
ular
onne
tion is allowed ornot by trying to establish a
onne
tion only when ne
essary. Nodes never maintain information about edgesthey are not adja
ent to.Below, we prove our optimization algorithm eventually rea
hes a transfer forest that has some desirableproperties, assuming that the graph is �xed at some point. Note that our algorithm
orre
tly �nishes its jobwithout this assumption. The assumption is essential only for stating the property of the forest our algorithm
onverges to.

An Adaptive File Distribution Algorithm for Wide Area Network 71To de�ne the �goodness� of a transfer forest, we must introdu
e a notion of distan
e between nodes. Oneplausible formulation would be to give edges arbitrary weights, and to aim at redu
ing the total weights ofsele
ted edges (i.e., minimum spanning forest). We do not use this formulation but introdu
e a strongerassumption about the distan
es between nodes whi
h we believe is a pra
ti
al approximation of real networks,and show a simpler lo
al sear
h obtains su�
iently good results.We assume nodes
an be de
omposed into groups so that nodes
lose to ea
h other
onstitute a group. Ouroptimization algorithm does not assume that ea
h node knows the de
omposition expli
itly, but only assumesthat ea
h node
an somehow
ompare relative distan
es from the lo
al node to other nodes. We show inSe
tion 3.3 su
h a
omparison indu
es a de
omposition. It is su
h a de
omposition for whi
h our algorithm triesto redu
e the number of inter-group edges. Again, the repli
ation
orre
tly �nishes with ina

urate information,thus an implementation
an use any su�
iently a

urate measurement. Our
urrent implementation is given inSe
tion 3.2.1.We say a de
omposition is
omplete if nodes in ea
h group form a
lique (a
omplete subgraph) of G.That is, nodes inside a group
an
onne
t to ea
h other without being blo
ked by, e.g., �rewalls. For anyde
omposition whi
h may or may not be
omplete, one
an derive a
omplete de
omposition by dividing itsin
omplete group into a number of groups so ea
h of them is a
lique. We
all su
h a
omplete de
omposition a
omplete subdivision of the original de
omposition. Given a de
omposition D, a
omplete subdivision that hasthe minimum number of groups is
alled the
oarsest subdivision of D.Given a de
omposition, the goal would be to make a transfer forest
lose to the following best desirable,whi
h has1. the minimum number of edges
onne
ting nodes in di�erent groups, and2. the minimum number of bran
hes.Our algorithm
onverges to the optimal if ea
h node
an
onne
t to any other node (i.e., the entire graphis
omplete, or in pra
ti
al terms, �rewall, NAT, or DHCP do not deny any
onne
tion against us). In moregeneral graphs, our algorithm has the following property. Let D the de
omposition indu
ed by a heuristi
s usedto measure the relative distan
e between nodes, and D the
oarsest
omplete subdivision of D. Our algorithma
hieves (1) the number of inter-group
onne
tions ≤ N − F and (2) the number of bran
hes ≤ N − 1, where
N is the total number of groups in D and F the number of groups in D
ontaining at least one �nished node,a node whi
h has re
eived the entire data.Our
laim that the above property translates to a good result in pra
ti
e is based on the following obser-vations.

• A simple measurement
an reasonably approximate the �
loseness� between nodes. For example, givena node in the same LAN as the lo
al node and another not in the same LAN, it will be relatively easyfor the lo
al node to judge if one node is
loser to the other, thus should be preferred. Therefore, one
an obtain a de
omposition ea
h group of whi
h has nodes
lose to ea
h other.
• In typi
al network
on�gurations, nodes
lose to ea
h other tend to be allowed to
onne
t to ea
h other.Most typi
ally, nodes within a LAN
an
onne
t to ea
h other. Making a group of nodes
lose to ea
hother thus tends to yield a subgraph that is nearly
omplete.The �rst bullet implies that, if we group nodes based on a reasonably a

urate measurement of distan
es betweenthem, we will have groups ea
h of whi
h
onsists of nodes
lose to ea
h other. Ea
h su
h group will be nearly
omplete (bullet #2), therefore N will be
lose to N . Together, the number of
onne
tions
rossing a groupboundary will be
lose to N − F , and the number of bran
hes
lose to N − 1.3. Algorithm. The algorithm has several features that we should remark.A simple, self-stabilizing distributed algorithm: Ea
h node works based on information about its neigh-bors and optimizes transfer routes with a small amount of lo
al information. Ea
h node
ontinuouslyseeks a
loser node that may serve data faster. This me
hanism naturally makes our algorithm fault-tolerant and allows nodes to join or leave
omputation at any time.Parallel and pipelined transfer: Transferring data from node A to B and from C to D
an o

ur in parallel.Moreover, transferring a pie
e of data from A to B and transferring another pie
e of data from B to

C
an also take pla
e in parallel (pipelined transfer). This is espe
ially important for repli
ating large�les in swit
hed networks.A simple transfer loop avoidan
e: The algorithm naturally avoids deadlo
k due to a transfer loop simply byletting ea
h node be
ome a parent of another only when it has more data than others. This me
hanism,

72 Takashi Hoshino, Kenjiro Taura, Takashi Chikayamatogether with the self-stabilizing nature of the algorithm, is enough to make it deadlo
k-free; when anode
rashes, its
hildren will eventually learn there is no progress for a long time, in whi
h
ase theytry to
onne
t to another node that is ahead of it.01: /* Starting or After Re
overed */02: o�set =
urrent �lesize on disk;03: parent = invalid; /* the node self is getting data from.*/04:
andidate = null;05: is_sending_giveme = false;06:
hildren = none; /* nodes self is giving data to */07: siblings = none; /* used for Tree2List Suggestion */08: neighbors = list of neighbors (dead or alive);09: while (true) {10: /********** Sear
hing for Parent **********/11: (
andidate == null && parent == invalid) ⇒12:
andidate = a node in neighbors;13: send(
andidate, ask(id , o�set));14: /* NearParent Heuristi
s */15: (
andidate == null && a node in neighbors satis�es16: is_
loser(self , node, parent)) ⇒17:
andidate = node;18: send(
andidate, ask(id ,o�set));19: /* Tree2List Heuristi
s */20: (
andidate == null && a sibling in siblings satis�es21: !is_
loser(self , parent , sibling)) ⇒22:
andidate = sibling ;23: send(
andidate, ask(id ,o�set));24: re
eived(ask(wid , wo�set)) ⇒25: if ((o�set > wo�set) &&26: (MAX_NODE > number of
hildren)) {27: add this node (wid , wo�set) to
hildren;28: send(wid , ok(id , o�set));29: } else {30: send(wid , ng(id));31: }32: re
eived(ok(wid , wo�set)) ⇒33: if (wo�set > o�set) {34: parent = wid ;
andidate = null;35: }36: re
eived(ng(wid)) ⇒37: if (wid ==
andidate) {38:
andidate = null;39: } else if (wid == parent) {40: parent = invalid;

41: }42: /********** Data Transfer **********/43: (parent != invalid && o�set < �lesize &&44: !is_sending_giveme) ⇒45: is_sending_giveme = true;46: send(parent , giveme(id , o�set));47: re
eived(giveme(
hild , wo�set)) ⇒48: if (o�set > wo�set) {49: size = max(BLOCKSIZE, o�set�wo�set);50: buf = load(�lename, wo�set , size);51: send(
hild , data(id , wo�set , size, buf));52: } else {53: send(
hild , ng(id));54: }55: re
eived(data(wid , wo�set , size, buf) ⇒56: if (wo�set == o�set) {57: is_sending_giveme = false;58: save(�lename, wo�set , size, buf);59: o�set += wo�set ;60: }61: (o�set == �lesize && parent != null) ⇒62: if (parent != invalid)63: send(parent , dis
onne
t(id));64: parent = null;65: re
eived(dis
onne
t(
hild)) ⇒66: delete the
hild from
hildren;67: /********** Tree2List Suggestion **********/68: (having more than one
hild) ⇒69: forea
h
hild in
hildren {70: send(
hild , suggestion(id ,
hildren));71: }72: re
eived(suggestion(parent , new_siblings)) ⇒73: siblings = new_siblings;74: /********** Fault Handling **********/75: (timeout(data, ng) from parent) ⇒76: parent = invalid;77: (timeout(giveme, dis
onne
t) from
hild) ⇒78: delete the
hild from
hildren;79: (timeout(ok, ng) from
andidate) ⇒80:
andidate = null;81: }Fig. 3.1. Pseudo-
ode of our algorithmFigure 3.1 shows the lo
al algorithm running on ea
h node. Prior to running this algorithm, ea
h nodeknows its neighbors (neighbors) and the size of the �le ea
h node must eventually have (�lesize). In a
tualimplementation, ea
h node may begin with an in
omplete list of neighbors. Nodes propagate their neighbors toother and learn from others.Inside the main while loop (line 9�81) is written as a list of the following form:
ondition ⇒ a
tionwhere
ondition is a pre
ondition (or a guard) in whi
h the a
tion
an take pla
e. The predi
ate re
eived(X)evaluates to true if a message that mat
hes X is in the in
oming message queue of the node. Ea
h iteration ofthe loop waits for at least one guard to be
ome true, and exe
utes the
orresponding a
tion. If multiple guards

An Adaptive File Distribution Algorithm for Wide Area Network 73are true, any one of them is
hosen arbitrarily.First, we explain the base part of this algorithm in Se
tion 3.1. We
ontinue with the route optimizationheuristi
s in Se
tion 3.23.1. The Base Algorithm. Ea
h node repeats the following until it gets the entire data.
• It seeks a node that is ahead of itself (i.e., has more data than itself). Let us
all su
h a node its parent .A parent may
hange over time.
• On
e it �nds a parent, it asks the parent to send the data that should
ome next to the data it
urrentlyhas. For example, if a node has the �rst 1000 bytes of a �le, it will ask the parent to send some amountof data from o�set 1000.
• In addition,� Ea
h node, ex
ept ones that have obtained the entire data, seeks a node that is
loser to its
urrentparent. Details are in Se
tion 3.2.1.� Ea
h node having two or more
hildren tries to resolve this situation, by suggesting
hildren to
onne
t to one of its siblings.When a node re
eives an instru
tion to parti
ipate in a repli
ation, ea
h node
he
ks how mu
h data ithas (line 2), sear
hes for a
andidate node that has data grater than itself by
onne
ting to some nodes inits neighbors list. Variable o�set indi
ates the size of data at that time, and satis�es the inequality 0 ≤o�set ≤ �lesize. During data transfer, the invariant
hild's o�set ≤ parent's o�set is maintained (line 25, 33,and 48).A node sear
hing for a parent sends an ask message
arrying its o�set (data size) to a
andidate (line 11�13).If the re
eiver has more data than the sender, it sends an ok message to the node sender (line 24�28, 32�35).At that time, the relation between parent-
hild is established. After that, the
hild sends a giveme message tothe parent (line 43�46) and the parent sends a
hunk of data to the
hild (line 47�51). This repeats until the
hild either
at
hes up the parent in data size (line 52�54), �nds a better
andidate than the
urrent parent, orre
eives an error. If the re
eiver of ask does not have more data than the sender, it sends an answer ng (line29�31) to the sender. Re
eiving an ng message (line 36�41), the node
ontinues to sear
h for a parent.A node
an be a parent of some nodes and a
hild of another at the same time. In e�e
t, we a
hieve a pipelinetransfer through all nodes.When a parent be
omes unrea
hable from its
hild (due to a parent
rash or a network failure), the
hildmerely sear
hes for a new parent. When a node re
overs, it
an parti
ipate in the transfer from the o�set atthe time it has failed. Hen
e, this algorithm is fault-tolerant (line 74�80).3.2. Adaptive Transfer Route Optimization. Now, we explain optimizing heuristi
s on top of thebase algorithm (line 14�23, 67�73).

is_closer(A,B,C)

parent candidate

Sub
Tree

new
parent

A

C B C B

A

Sub
Tree

Sub
Tree

Sub
TreeFig. 3.2. NearParent Operation3.2.1. NearParent Heuristi
s. Ea
h node periodi
ally tries to
onne
t to a node that is
loser to its
urrent parent (
andidate in Figure 3.2, line 15�18 in Figure 3.1). If the
andidate node turns out to have moredata than the lo
al node (line 32�35), it sele
ts the new node as the new parent. Figure 3.2 shows how thisheuristi
s modi�es a part of the transfer tree.

74 Takashi Hoshino, Kenjiro Taura, Takashi ChikayamaNote that even if ea
h node has
onne
ted to its parent, it sear
hes for an even
loser
andidate periodi
ally.We have not
ondu
ted an extensive study about the best frequen
y. Frequent measurements will allow us to�nd a good transfer route fast at the
ost of in
reased network tra�
. Our
urrent implementation guaranteesthat there is at most one tra�
 from ea
h node for the measurement. It also guarantees ea
h node performs ameasurement at most on
e every 100ms. This will hardly a�e
ts CPU or network load.The predi
ate to judge if a node B is
loser than C from the lo
al node A, is_
loser(A, B, C),
urrently usesthe following
riteria in the listed order.Throughput observed in the past: Ea
h node re
ords throughput from ea
h of the nodes that have been
hosen as its parent. If A has
hosen both B and C as its parent before, whi
hever produ
ed a betterthroughput is
onsidered
loser.Observed laten
y: The above
riterion is not appli
able when either B or C has never been
hosen one as
A's parent. In this
ase A uses laten
ies it takes to
onne
t to B and C.The length of the mat
hing IP address pre�x: When observed laten
ies are too
lose to dis
riminate, weuse IP addresses of A, B, and C. We
ompare the lengths of the
ommon pre�xes of IP addresses of Aand B to that of A and C.For the purpose of proving the theoreti
al property of the algorithm mentioned in Se
tion 3.3 (also stated asTheorem 3.7), is_
loser
an be any predi
ate that satis�es the following properties.

• is_
loser(A, B, C) and is_
loser(A, C, B) do not be
ome true at the same time.
• For a given A, the binary relation:

RA(B, C)
def
= is_
loser(A, B, C)is transitive. That is, is_
loser(A, B, C) ∧ is_
loser(A, C, D)

⇒ is_
loser(A, B, D)

• is_
loser(A, B, C) ⇒ is_
loser(B, A, C)It will be
lear that any reasonable de�nition of relative distan
e and an a

urate measurement of it, in
ludingthe ones listed above, will satisfy the �rst two bullets. The third property may not sound very obvious. Examplesthat satisfy the property in
lude:
• A de�nition based on the bottlene
k edge on trees. That is, assume nodes are
onne
ted via a weightedtree and let is_
loser(A, B, C) be true i� the minimum weight on the path between A and B is largerthan that on the path between A and C.
• A de�nition based on the distan
e on trees. That is, assume nodes are
onne
ted via a tree and letis_
loser(A, B, C) be true i� the path between A and B is shorter than A and C.
• A de�nition based on address pre�xes. That is, assume nodes are assigned integer addresses and letis_
loser(A, B, C) be true i� the length of the mat
hing address pre�x between A and B is larger thanthat between A and C.Therefore we expe
t that our
urrent implementation of is_
loser based on measured bandwidths betweennodes, measured laten
ies between nodes, and the length of IP address pre�xes, will satisfy the third propertyprovided measurements are a

urate.Note that implementing su
h a predi
ate does not require any a priori notion of groups. Just de�ning/mea-suring the relative
loseness between nodes will su�
e, as long as su
h a de�nition/measurement satis�es theabove properties. In Se
tion 2.2, we show su
h a predi
ate in general impli
itly indu
es a distan
e betweennodes, whi
h in turn indu
es a de
omposition of nodes based on the distan
e. Our algorithm redu
es thenumber of inter-group edges for a de
omposition derived this way.3.2.2. Tree2List Heuristi
s. NearParent heuristi
s redu
es the number of edges that
ross group bound-aries. It however is not useful for redu
ing the number of bran
hes. Another optimization,
alled Tree2Listheuristi
s,
omes into play to make the transfer route
loser to a list.A node that has two or more
hildren sends its
hildren list to every
hild (line 68�71). When a node re
eives asuggestion message, whi
h e�e
tively
ontains its
urrent siblings, it
hooses one in the list as the next
andidateif the
urrent parent is not
loser to it (lines 72�73, 20�23). Figure 3.3 shows how Tree2List heuristi
s modi�esa part of the transfer tree. Intuitively, Tree2List pushes bran
hes in a transfer tree downwards, hoping the treeeventually be
omes a list.

An Adaptive File Distribution Algorithm for Wide Area Network 75
Sub
TreeSub

Tree
Sub
Tree

Sub
Tree

Sub
Tree

Sub
Tree

A

B C

A

B C

!is_closer(C,A,B)

Fig. 3.3. Tree2List OperationAn important property about Tree2List, proved in the next se
tion, is that it never in
reases the number ofinter-group edges. This guarantees that applying Tree2List does not impede the NearParent's e�ort of redu
ingthe number of inter-group edges. In the next se
tion, we state and prove properties of transfer forests afterapplying both heuristi
s in an arbitrary order.3.3. Properties of the Route Optimization Algorithm. Let is_
loser satisfy the properties statedin Se
tion 3.2.1. We �rst show the following, that says is_
loser(A, B, C) is equivalent to
omparing a distan
ebetween A and B and between A and C, for some de�nition of a distan
e.Lemma 3.1. For is_
loser satisfying the property stated in Se
tion 3.2.1, there exists a distan
e fun
tion dthat satis�es the following.
• For all nodes A and B, d(A, B) = d(B, A).
• For all nodes A, B, and C, is_
loser(A, B, C) ⇐⇒ d(A, B) < d(A, C).Proof: See Appendix A.1.The following Lemma is important for guaranteeing Tree2List is appli
able when we have many bran
hes.Lemma 3.2. For any d satisfying the
ondition in Lemma 3.1,

max(d(A, B), d(A, C)) ≥ d(B, C)is true for all nodes A, B, and C. Proof: See Appendix A.2.A distan
e fun
tion d and a threshold t de�ne a natural de
omposition of a graph. That is, we remove alledges (x, y) su
h that d(x, y) > t from the original graph, and let a group be a
onne
ted
omponent of thegraph. We
all su
h a de
omposition is derived from is_
loser. Many de
ompositions
an be derived from asingle de�nition of is_
loser, depending on the
hoi
e of d and t.We model our route optimization heuristi
s as a pro
ess of rewriting the transfer forest a

ording to Near-Parent, Tree2List, or �nishing the transfer to a node.Definition 3.3. A state of
omputation is a forest among parti
ipating nodes, indu
ed by their parentpointers. Let S and S′ be states. We de�ne relations →n, →t, →f , and → by:1. S →n S′
def
⇐⇒ S′ is obtained by applying NearParent to S (Figure 3.2),2. S →t S′
def
⇐⇒ S′ is obtained by applying Tree2List to S (Figure 3.3),3. S →f S′
def
⇐⇒ S′ is obtained by �nishing a node and making its parent pointer null, and4. →

def
= →n ∪ →t ∪ →f . That is,

S → S′
def
⇐⇒ (S →n S′) or (S →t S′) or (S →f S′).Next, we de�ne some quantities of states. Below, we �x a de
omposition D derived by is_
loser, and let Dbe the
oarsest subdivision of D. Let d and t the distan
e fun
tion and the threshold that indu
ed D. Let Nbe the number of groups in D. When we say a group, it always means a group of D. Nodes in a single groupby de�nition form a
lique.

76 Takashi Hoshino, Kenjiro Taura, Takashi ChikayamaDefinition 3.4.
• Let w(S) be the number of edges in forest S that
ross group boundaries. For te
hni
al
onvenien
e, we
onsider an invalid parent pointer to
ross a group boundary, and a null parent pointer not to
rossany group boundary.
• Let f(S) be the number of �nished nodes (having parent = null) and F (S) be the number of groupsthat have at least one �nished node. We say su
h a group is �nished. Note there may be un�nishednodes in a �nished group.
• Let l(S) be the number of leaves (i.e., nodes that are not pointed to by any parent pointer).Lemma 3.5. Transition paths are bounded. That is, the length of a path S0 → S1 → S2 → · · · is bounded.Proof: De�ne SUMDIST(S), SUMDEPTH(S), and Q(S) as follows.SUMDIST(S) =

∑
x : node d(x, x's parent),SUMDEPTH(S) =
∑

x : node depth(x), and
Q(S) = (f(S),−SUMDIST(S),SUMDEPTH(S)),where depth(x) is the number of hops from the root of the tree x belongs to. d(x, x's parent) is the distan
ebetween x and its parent. Again for te
hni
al
onvenien
e, if x's parent pointer is invalid we
onsider it hasa value larger than any other d(y, z) for z 6= invalid. Similarly, if x's parent is null, it takes a value smallerthan any other d(y, z) for z 6= null.If we introdu
e a lexi
ographi
al order among triples Q(S), it is easy to see Q(S) stri
tly in
reases by a singletransition step. That is,

S → S′ ⇒ Q(S) < Q(S′).In fa
t, →f in
reases f(S), →n does not
hange f(S) and in
reases −SUMDIST(S), and →t does not
hange
f(S), never de
reases −SUMDIST(S), and in
reases SUMDEPTH(S).Sin
e all quantities of the triples are
learly bounded above, we have proved transition paths are bounded.Lemma 3.6.1. If S satis�es w(S) > N −F (S), then →n is appli
able to S. That is, there exists S′ su
h that S →n S′.2. If S satis�es l(S) − f(S) ≥ N , f(S) ≥ 1, and →n is not appli
able to S, then →t is appli
able to S.Proof:1. If w(S) > N − F (S) (= the number of un�nished groups), either of the following must hold.

• There is an un�nished group having more than one outgoing inter-group edges.
• There is a �nished group having an outgoing inter-group inter-group edge.An outgoing edge is a parent pointer pointing to a node outside the group. In the former
ase, let twoof su
h edges be (A, B) and (C, D). A and C belong to one group, say X , while neither B nor D belongto X . Thus, a transition by →n that either makes A one of C's
hildren or vi
e versa, is appli
able. Inthe latter
ase, let one su
h edge be (A, B) and one �nished node in the group be P . Thus, a transitionby →n that makes A one of P 's
hildren is appli
able.2. We split the proof into two
ases, (i) l(S) − f(S) > N , and (ii) l(S) − f(S) = N .(i) l(S) − f(S) > N :We have at least one group X that satis�es:

l − f > 1where l and f denote the number of leaves in X and the number of �nished nodes in X , respe
tively.Let a1, a2, · · · al be the leaves in X (l ≥ 2). Let ai,1 = ai and ~ai = (ai,1, ai,2, · · · , ai,ni
) (i = 1, · · · , l) be
hains of parent pointers starting from ai. That is, ai,j is a
hild of ai,j+1) for all i and j (1 ≤ i ≤ l,

1 ≤ j ≤ ni − 1).We argue by
ontradi
tion that all but one of su
h
hains must be entirely in X . Let us assume w.o.l.g.neither of ~a1 nor ~a2 are in X . Then there are j and k (1 ≤ j ≤ n1 − 1 and 1 ≤ k ≤ n2 − 1) su
h that
a1,j and a2,k ∈ X , and a1,j+1 and a2,k+1 6∈ X . Then a transition by →n that
onne
ts a1,j and a2,kshould be appli
able. This
ontradi
ts the assumption that →n is not appli
able in S.Now we have l − 1
hains entirely in X . Sin
e l − f ≥ 2 (⇒ l − 1 ≥ f + 1), at least two of them mustmerge at some node in X . Let a node at whi
h two merges be A, and B and C the
hildren of A on the

An Adaptive File Distribution Algorithm for Wide Area Network 77two
hains. It remains to show we have either (¬is_
loser(B, A, C)) or (¬is_
loser(C, A, B)), so either
B or C
an trigger →t. By Lemma 3.2, we havemax(d(A, B), d(A, C)) ≥ d(B, C),from whi
h we
an derive: max(d(A, B), d(A, C)) ≥ d(B, C)

⇔ d(A, B) ≥ d(B, C) or d(A, C) ≥ d(B, C)
⇔ d(B, A) ≥ d(B, C) or d(C, A) ≥ d(C, B)
⇒ ¬is_
loser(B, A, C) or ¬is_
loser(C, A, B).(ii) l(S) − f(S) = N :If we have one group X that satis�es:

l − f > 1,then the same dis
ussion as (i) applies. In the remaining
ase all the groups satisfy:
l − f = 1.Let X be any group. As in (i),
onsider the l
hains starting from a node in X . If all the l
hains areentirely in X , two of them must merge in X , and the following argument is the same as (i). Thereforeea
h group has exa
tly one
hain outgoing from the group. Then we have N inter-group edges, i.e.,

w(S) ≥ N . This implies, however, →n is appli
able be
ause f(S) ≥ 1 ⇒ F (S) ≥ 1 ⇒ w(S) ≥ N >
N − F (S).Theorem 3.7. Along any path of state transitions starting from any state I, we rea
h within �nite steps astate S∞ satisfying:1. w(S∞) ≤ N − F (S∞), and2. l(S∞) − f(S∞) ≤ N − 1.Proof: From Lemma 3.5, any transition path I = S0 → S1 → · · · is bounded, therefore rea
hes a state S∞in whi
h neither →n nor →t (or →, for that matter) is appli
able. Lemma 3.6 shows in this state we have bothof the above properties.Remark 1:. As a spe
ial
ase where D = D (i.e., no edges are blo
ked inside a group of D), we have N = N .In this
ase the theorem implies that, for su�
iently long transfers, the number of edges between groups rea
hesthe optimal N − F (S). Repli
ating a �le from F (S) groups to the rest will
learly need N − F (S) inter-groupedges. For being
lose to a list, the se
ond bullet of the theorem implies that the number of bran
hes, e�e
tively
al
ulated by l(S)−f(S), is the optimal N−1. To see this is optimal in general,
onsider a network
on�gurationshown in Figure 3.4, whi
h for
es inter-group edges to form a star.Remark 2:. Re
all that the theorem applies to any de
omposition derived from is_
loser. If the network hasmultiple levels of hierar
hies, (e.g., inside a
luster,
lusters inside a LAN, LANs in a
ampus/
orporate area,and LANs in wide area), and is_
loser
an des
riminate all of them, our algorithm simultaneously optimizesall the levels. For example, let us say we have N1 LANs and N2
lusters and f(S) = 1 as the usual
ase.If we assume is_
loser
an des
riminate intra-
luster, inter-
luster but intra-LAN, and inter-LAN edges, andthe network
on�guration allows all
onne
tions, our algorithm
onverges to a state in whi
h we have N1 − 1inter-LAN edges and N2 − 1 inter-
luster edges.4. Evaluation.4.1. Implementation. We have implemented the des
ribed algorithm in Java. This is exe
utable on
ommon
omputers supporting Java and TCP/IPv4 proto
ol. We
on�rmed the program runs on Solaris (spar
),Linux (x86), Windows (x86), and Tru64Unix (Alpha). Stopping some nodes in the middle of a distribution taskdid not prevent any of the remaining nodes from �nishing the task,
on�rming its fault-toleran
e.

78 Takashi Hoshino, Kenjiro Taura, Takashi Chikayama

Finished Node (and only it can be connected to by other’s group.)

Leaf Node

N = 4
l(S) = 4
f(S) = 1
l(S)-f(S) = 3 = N-1

Data Flow
GroupFig. 3.4. An example where the optimal value of l(S) − f(S) is N − 14.2. Single Cluster Experiments. First, we ran some experiments in a single
luster. The
luster
onsists of 16 nodes. Ea
h node has two Alpha CPUs and a lo
al hard-disk. Network
ables of nodes are
onne
ted to a 100Mbps swit
h. Lo
al disk bandwidth is faster than network, so it does not reveal as abottlene
k. CPU is also fast enough.We initially let one node have 500MB �le, and others have no data. Sin
e there is only a single
luster,NearParent optimization does not play any role in this experiment. So this experiment is to see the e�e
tof Tree2List. In addition to Tree2List, we ran the base algorithm without any optimization,
hanging themaximum number of
hildren ea
h node
an serve, from one to �ve. They
learly demonstrate how importantis it to make the transfer tree
lose to a list.The time whi
h the distribution tasks spent is shown in Figure 4.1.In this result, it is
lear that the average distribution time in
reases as the maximum number of
hildrenin
reases. The graph also indi
ates that, in this parti
ular experiment, limiting the number of
hildren to oneyields the best result. That is, restri
ting the shape of the transfer tree to a list in the �rst pla
e is better thanour Tree2List strategy whi
h �rst forms an arbitrary tree and then tries to develop it to a list. We believe,however, our strategy has several advantages. First, nodes may not be able to form a list in the presen
e of�rewalls et
. In su
h
ases, one must fall ba
k to a tree. Se
ond, forming a list in the beginning may take mu
hlonger than forming a tree, espe
ially when the number of nodes be
omes large, sin
e a list
an only grow onenode at a time.4.3. Multiple Cluster Experiments. Next, we made experiments in seven
lusters illustrated in Fig-ure 4.2. They are all pla
ed in the
ampus of University of Tokyo.

• An IBM Linux
luster
alled �istbs�
ontains 70 nodes. We used all of them for the experiment. Nodeswithin a
luster are
onne
ted via 1Gbps links. A node in this
luster is the sour
e node in thisexperiment. Bandwidth from/to other
lusters below is poor 100Mbps.
• A SunFire15K SMP
alled �istsun� has 70 CPUs, of whi
h we used 20. We used this ma
hine as if itwere 20 separate nodes. It has a 100Mbps NIC shared by all CPUs. Repli
ation of 300MB data among20 nodes inside istsun takes about 70 se
, where the throughput is about 34Mbps. This seems due todisk I/O bandwidth.

An Adaptive File Distribution Algorithm for Wide Area Network 79

 0

 50

 100

 150

 200

 250

tree2list children
limit 1

children
limit 2

children
limit 3

children
limit 4

children
limit 5

T
im

e
to

 D
is

tr
ib

ut
e

50
0M

B
 (

se
c)

Kinds of Making Transfer Tree

Plot of Experiments changing Children Limit in One Cluster

Fig. 4.1. Performan
e in a single
luster
• A
luster of
lusters
alled �kototoi�
ontains three
luster ea
h having 16 nodes. Network speed is100Mbps inside ea
h
luster. Throughput between two of the three is several hundreds Mbps. Havingmore than one
onne
tion to a single
luster easily saturates the link. No nodes outside kototoi
annotdire
tly
onne
t to inside it.
• An HP Alpha
luster
alled �oxen�
ontains 16 nodes, whi
h is the same
luster in Se
tion 4.2. Thereare two (and only two) gateway nodes that
an
onne
t to and
an be
onne
ted from outside the
luster.
• A Linux
luster
alled �marten� ea
h of whi
h runs Linux inside VMWare. Its
on�guration is almostthe same as a
luster in kototoi.
• For
onne
tivity, any node
an
onne
t to istsun nodes and the gateways of oxen. Also, istsun andistbs are in the same virtual LAN, so nodes in the two
lusters
an dire
tly
onne
t to ea
h other.Conne
tions to remaining nodes from other
lusters are blo
ked.We
ompared the following algorithms.Random tree: The base algorithm without any heuristi
s, with no limit on the number of
hildren for ea
hnode.NearParent only: The base algorithm + NearParent. No Tree2List.Tree2List only: The base algorithm + Tree2List. No NearParent.NearParent + Tree2List: Use both Tree2List and NearParent.Manual: Fix the transfer route that we
onsider will be the best, as follows; istbs
onne
ts to istsun via oneinter-
luster edge. It is bran
hed into three inside istsun. They go to kototoi, oxen, and marten. Inside
lusters, there are no bran
hes. The throughput should be
lose to 100Mbps / 3 = 33Mbps, determinedby the three outgoing edges from istsun, whi
h share a single 100Mbps NIC.In Figure 4.3, the results are presented. Not surprisingly, �Manual� is the fastest. NearParent + Tree2Lista
hieved an overhead of 50-100% to the manually tuned transfer and more than four times faster than therandom tree.Figure 4.4 shows that the number of inter-
luster edges and distribution time have a strong
orrelation.This result
on�rms that redu
ing inter-
luster (and inter-subnet) edges strongly a�e
ts performan
e ofrepli
ation among many nodes.

80 Takashi Hoshino, Kenjiro Taura, Takashi Chikayama

istbs 70 nodes

kototoi 16x3 nodes

istsun 20 nodes

Root

Max 100Mbps Data Route

oxen 16 nodes

marten 14 nodes

Internet

Gateway Node

Fig. 4.2. Condition of 7
lusters5. Related Work.5.1. Minimum Spanning Tree Constru
tion. MST
onstru
tion is a
ommonly used te
hnique foroptimizing �ows in networks. There have been a number of published algorithms and their appli
ations [2, 6, 1℄.It is
ompelling to model our problem by a general weighted graph, with the goal being a tree that has a smallweight and a small number of bran
hes.We
onsidered approa
hes along this line and then abandoned them for several reasons. First, from theoreti
alpoint of view, minimizing the two
riteria at the same time is impossible for general weighted graphs, so we mustmake a di�
ult (and somewhat arbitrary) de
ision about how to trade one for the other. From the pra
ti
al side,building an MST for general weighted graph in fault-tolerant and self-stabilizing manner is already
omplex toimplement. Finally, typi
al real networks have a relatively simple stru
ture we
an (and should) exploit. Thatis, nodes
lose to ea
h other in terms of physi
al proximity
an logi
ally
onne
t to ea
h other at some leveland below. Therefore these nodes should be able to form a list entirely within the
lique. We have shown thisis in fa
t possible with a very simple hill-
limbing with fault-toleran
e and adaptiveness.5.2. Appli
ation-Level Multi
ast and CDN. Our work is in spirit similar to a number of work onappli
ation-level multi
ast and
ontent distribution networks (CDN). Our optimization
riteria are di�erentfrom them, parti
ularly in that we try to redu
e the number of bran
hes.ALMI [9℄ uses a
entralized tree management s
heme and makes MST for good performan
e. End SystemMulti
ast [7℄ takes both laten
y and bandwidth into a

ount when making a tree of end-hosts. In [12℄, CAN [11℄is used for the infrastru
ture of multi
ast. Bayeux [15℄ uses Tapestry [14℄ that is also
ontent-addressablenetwork. Over
ast [8℄ is a multi
asting system that a
hieves both small laten
ies and high throughput. Themain appli
ation of these systems is multimedia streaming to widely distributed nodes. In su
h settings, it isimportant to bound laten
ies be
ause the appli
ation may be an intera
tive multimedia appli
ation. Also inCDNs, the main
riteria are laten
ies and tra�
 load balan
ing, rather than delivering as mu
h bandwidthas possible. So resear
hes about CDN su
h [10, 4, 3℄ mainly
on
ern how to allo
ate repli
as of
ontents,and how to redire
t user requests to appropriate repli
as. On the other hand, it is less important for su
happli
ations to squeeze the available bandwidth of lo
al area networks, be
ause there are typi
ally a smallnumber of parti
ipating nodes within ea
h network. In
ontrast, our �le repli
ation does not have to optimize

An Adaptive File Distribution Algorithm for Wide Area Network 81

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

random
tree

nearparent
only

tree2list
only

nearparent
tree2list

ideal
fixed tree

T
im

e
to

 D
is

tr
ib

ut
e

30
0M

B
 (

se
c)

Kinds of Making Transfer Tree

Plot of Experiments using Verious Transfer Tree on 7 Clusters

Fig. 4.3. Performan
e on 7
lusters

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60 70 80 90

T
im

e
to

 D
is

tr
ib

ut
e

30
0M

B
 D

at
a(

se
c)

Number of Inter-cluster Edges

Edges Crossing over Clusters and Time to Distribute

Fig. 4.4. Correlation between number of inter-
luster edges and distribution timelaten
ies aggressively, be
ause the �rst priority is on the
ompletion time of transferring large �les. It is alsovery important to utilize LAN bandwidth as mu
h as possible, as the typi
al usage will be to
opy large �lesto many nodes in
lusters. These di�eren
es lead them to di�erent optimization
riteria, with ours in
luding aunique Tree2List heuristi
s.

82 Takashi Hoshino, Kenjiro Taura, Takashi Chikayama6. Summary and Future Work. We have des
ribed a large �le distribution algorithm that realizess
alability, adaptiveness, fault-toleran
e, and e�
ient use of bandwidths. It is based on a simple distributedalgorithm with simple lo
al heuristi
s to optimize transfers. We formalized and proved the properties of ouralgorithm and argued that this gives a good result in pra
ti
al settings. Our system will be useful for settingup a number of
lusters and preparing wide-area distributed
omputations with a large data. Evaluationsshow that our implementation is e�e
tive in real environment
onsisting of over 150 nodes a
ross seven
lusters
ampus-wide.Our
urrent implementation of the proto
ol is not se
ure. Any mali
ious node
an parti
ipate in the repli
a-tion and breaks the integrity. To be a useful tool for distributed
omputing, we must use a suitable authenti
ationwhen nodes
onne
t to ea
h other. While introdu
ing se
ure authenti
ations is possible, this may in
rease the
ost of deploying su
h tools, whose very purpose will be to help maintain a large number of nodes easily. Wemust study how to maintain ease of installation and use of this tool while a
hieving a reasonable level of se
urity.REFERENCES[1℄ Abhishek Agrawal and Henri Casanova. Clustering Hosts in P2P and Global Computing Platforms. In Pro
eedings of the 3rdIEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2003), pages 367�373, 2003.[2℄ F. Bauer and A. Varma. Distributed Algorithms for Multi
ast Path Setup in Data Networks. Te
hni
al Report UCSC-CRL-95-10, University of California at Santa Cruz, August 1995.[3℄ A. Biliris, C. Cranor, F. Douglis, M. Rabinovi
h, S. Sibal, O. Spats
he
k, and W. Sturm. CDN brokering. In Pro
eedings ofWCW'01, June 2001.[4℄ Pei Cao and Sandy Irani. Cost-aware WWW proxy
a
hing algorithms. In Pro
eedings of the 1997 Usenix Symposium onInternet Te
hnologies and Systems (USITS-97), Monterey, CA, 1997.[5℄ CVS home. http://www.
vshome.org/.[6℄ Lisa Higham and Zhiying Liang. Self-Stabilizing Minimum Spanning Tree Constru
tion on Message-Passing Networks. InPro
eedings of the 15th Conf. on Distributed Computing, DISC, LNCS 2180, pages 194�208, 2001.[7℄ Yang hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. Enabling Conferen
ing Appli
ations on the Internet Usingan Overlay Multi
ast Ar
hite
ture. In ACM SIGCOMM 2001, San Diago, CA, August 2001. ACM.[8℄ John Jannotti, David K. Gi�ord, Kirk L. Johnson, M. Frans Kaashoek, and James W. O'Toole, Jr. Over
ast: ReliableMulti
asting with an Overlay Network. In Pro
eedings of the Fourth Symposium on Operating System Design andImplementation (OSDI), pages 197�212, O
tober 2000.[9℄ Dimitris Pendarakis, Sherlia Shi, Dinesh Verma, and Mar
el Waldvogel. ALMI: An Appli
ation Level Multi
ast Infrastru
ture.In Pro
eedings of the 3rd USNIX Symposium on Internet Te
hnologies and Systems (USITS '01), pages 49�60, SanFran
is
o, CA, USA, Mar
h 2001.[10℄ Lili Qiu, Venkata N. Padmanabhan, and Geo�rey M. Voelker. On the pla
ement of web server repli
as. In INFOCOM, pages1587�1596, 2001.[11℄ Sylvia Ratnasamy, Paul Fran
is, Mark Handley, Ri
hard Karp, and S
ott S
henker. A s
alable
ontent-addressable net-work. In Pro
eedings of the 2001
onferen
e on appli
ations, te
hnologies, ar
hite
tures, and proto
ols for
omputer
ommuni
ations (SIGCOMM 2001), pages 161�172. ACM Press, August 2001.[12℄ Sylvia Ratnasamy, Mark Handley, Ri
hard Karp, and S
ott Shenker. Appli
ation-Level Multi
ast Using Content-AddressableNetworks. Le
ture Notes in Computer S
ien
e, 2233, 2001.[13℄ Yasuhito Takamiya, Atsushi Manabe, and Satoshi Matsuoka. Lu
ie: A fast installation and administration tool for large-s
aled
lusters (in Japanese). In SACSIS 2003, pages 365�372, May 2003.[14℄ B. Y. Zhao, J. D. Kubiatowi
z, and A. D. Joseph. Tapestry: An Infrastru
ture for Fault-tolerant Wide-area Lo
ation andRouting. Te
hni
al Report UCB/CSD-01-1141, UC Berkeley, April 2001.[15℄ Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, and John D. Kubiatowi
z. Bayeux: An Ar
hite
turefor S
alable and Fault-tolerant Wide-area Data Dissemination. In Pro
eedings of the Eleventh International Workshopon Network and Operating System Support for Digital Audio and Video (NOSSDAV 2001), June 2001.Appendix A. Omitted Proofs. In this se
tion we abbreviate is_
loser to C.A.1. Lemma 3.1. Let V be the set of all nodes. We introdu
e an unknown xAB for ea
h A, B ∈ V . Forea
h triple (A, B, C) su
h that C(A, B, C) is true, we generate a
onstraint xAB < xAC . We then unify xABand xBA for all A, B ∈ V , repla
ing all o

urren
e of one with the other. We are going to show there are noloops of
onstraints xAB < xCD < · · · < xAB, thus the
onstraints are satis�able. When we have proved this,we let d(A, B) = xAB, for all A, B ∈ V .To begin with, we show the following:
xAB < · · · < xY Z

⇒ C(A, B, Z) or C(A, B, Y),by indu
tion on the length (the number of inequalities) of the lefthand side n.

An Adaptive File Distribution Algorithm for Wide Area Network 831. n = 1:Observe we must have A = Y , A = Z, B = Y , or B = Z sin
e this
onstraint was generated from C.When A = Y , xAB < xY Z ⇒ xAB < xAZ ⇒ C(A, B, Z). Other
ases are similar.2. Assume the
laim holds up to n − 1 and now we have
xAB < xCD < · · · < xY Zof length n. By indu
tion hypothesis, we either have:(a) C(C, D, Z), or(b) C(C, D, Y).By xAB < xCD, we either have:(i) A = C and C(A, B, D),(ii) A = D and C(A, B, C),(iii) B = C and C(A, B, D), or(iv) B = D and C(A, B, C).Sin
e (a) and (b) are similar we only prove the
ase (a) by analyzing the four
ases (i)�(iv).(i) C(A, B, D) and C(A, D, Z)

⇒ C(A, B, Z)(ii) C(A, B, C) and C(C, A, Z)
⇒ C(A, B, C) and C(A, C, Z)
⇒ C(A, B, Z).(iii) C(A, B, D) and C(B, D, Z)
⇒ C(B, A, D) and C(B, D, Z)
⇒ C(B, A, Z) ⇒ (A, B, Z).(iv) C(A, B, C) and C(C, B, Z)
⇒ C(B, A, C) and C(B, C, Z)
⇒ C(B, A, Z) ⇒ (A, B, Z).Now we prove by
ontradi
tion there are no loops:

xAB < · · · < xY Z < xAB .By the above indu
tion, we either have:(a) C(A, B, Z) or,(b) C(A, B, Y).By xY Z < xAB, we either have:(i) Y = A and C(A, Z, B),(ii) Y = B and C(B, Z, A),(iii) Z = A and C(A, Y, B), or(iv) Z = B and C(B, Y, A).We see
ombining any of (a)�(b) and any of (i)�(iv) will lead to
ontradi
tion. We only prove
ase (a) sin
e (b)is similar.(i) C(A, B, Z) and C(A, Z, B)
⇒ false.(ii) C(A, B, Z) and C(B, Z, A)
⇒ C(B, A, Z) and C(B, Z, A)
⇒ false.(iii) C(A, B, Z) and Z = A ⇒ false.(iv) Same as (iii).A.2. Lemma 3.2. Analyze the three
ases, (i) d(A, C) < d(A, B), (ii) d(A, B) < d(A, C), and (iii)

d(A, B) = d(A, C). Prove ea
h
ase by
ontradi
tion.(i) Let us assume d(A, C) < d(A, B) < d(B, C). Then,
d(A, C) < d(A, B) and d(A, B) < d(B, C)
⇒ d(A, C) < d(A, B) and d(B, A) < d(B, C)
⇒ C(A, C, B) and C(B, A, C)
⇒ C(A, C, B) and C(A, B, C)
⇒ false.

84 Takashi Hoshino, Kenjiro Taura, Takashi Chikayama(ii) Similar to (i).(iii) Let us assume d(A, B) = d(A, C) < d(B, C). Then,
d(A, B) = d(A, C) and d(A, C) < d(B, C)
⇒ d(A, B) = d(A, C) and d(C, A) < d(C, B)
⇒ d(A, B) = d(A, C) and C(C, A, B)
⇒ d(A, B) = d(A, C) and C(A, C, B)
⇒ d(A, C) = d(A, B) and d(A, C) < d(A, B)
⇒ false.Edited by: Wilson Rivera, Jaime Seguel.Re
eived: July 3, 2003.A

epted: September 1, 2003.

S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 3, pp. 85�94. http://www.s
pe.org ISSN 1895-1767
© 2005 SWPSNETWORK SCHEDULING FOR COMPUTATIONAL GRID ENVIRONMENTSMARTIN SWANY∗ AND RICH WOLSKI†Abstra
t.The problem of data movement is
entral to distributed
omputing paradigms like the Grid. While often overlooked, the timeto stage data and binaries
an be a signi�
ant
ontributor to the wall-
lo
k program exe
ution time in
urrent Grid environments.This paper des
ribes a simple s
heduler for network data movement in Grid systems that
an adaptively determine datadistribution s
hedules at runtime on the basis of Network Weather Servi
e (NWS) performan
e predi
tions. These s
hedules takethe form of �spanning trees.� The distribution me
hanism is an enhan
ement to the Logisti
al Session Layer (LSL), a system foroptimizing data transfers using �logisti
s.�Key words.Grid
omputing, data logisti
s, data staging1. Introdu
tion. As Computational Grid environments proliferate, the
ommunity must
onstantly evolvethe way in whi
h
omputing systems are used. Distributed
omputing on the Grid has enabled new ways ofharnessing
omputing resour
es and yet, has exposed its own set of
hallenges. One su
h problem is that of datamovement. Appli
ations that are drawn to the Grid be
ause of large resour
e requirements frequently
onsume orgenerate large amounts of data. The problems of data lo
ality and data movement are be
oming more prominentand
riti
al to the performan
e and deployability of Grid systems. Further, due to the dynamism inherent in Gridenvironments, it is
lear that me
hanisms for data staging must be adaptive like the
omputations themselves.AppLeS [8℄ demonstrated the beginning of a new way of thinking about programming the Grid�s
hedulingfrom the perspe
tive of the appli
ation. In this spirit, we propose to approa
h the problem of adaptivelys
heduling bu�ers in the network with proa
tive support from the appli
ation. This paper examines simpleoptimizations that we
an fa
ilitate by thinking of Grid resour
es in terms of
ooperating elements in a storageand
omputing �overlay� network. By enabling this type of fun
tionality, using te
hniques su
h as the Logisti
alSession Layer (LSL) [34℄ or the Internet Ba
kplane Proto
ol (IBP) [28℄, the breadth of the servi
es o�ered bya Grid is improved.The goal of this work is to investigate s
heduling and routing te
hniques fo
used on optimizing data move-ment in Grid environments. In order to investigate su
h s
heduling we will draw on previous work as follows. TheLogisti
al Session Layer (LSL) [34℄ provides the basi
 platform for
ooperative data forwarding that responds torequests from the s
heduler. The Network Weather Servi
e (NWS) [43℄ provides us with network performan
emonitoring and fore
asting
apabilities. Finally, the NWSlapd [37℄, the
a
hing and delivery subsystem of theNWS,
a
hes network performan
e fore
asts and aggregates them into a form suitable for
onsumption by thes
heduler.There has been a tremendous amount of work in this
ommunity to optimize
olle
tive operations for parallel
omputing [4, 27, 24, 5, 18, 39, 20, 40℄. Certainly, these approa
hes are all related at some fundamental level(and dis
ussed somewhat in Se
tion 6). However, our approa
h is fo
used on pre-runtime data distribution (orstaging) rather than
olle
tive operations as su
h. Initial data distribution is an important
omponent of a
tualGrid deployment. This fa
t is often obs
ured by pre-staged binaries or lo
ally-generated random input data,but for Grid systems to realize their potential, these issues must be addressed.Our approa
h to this problem is unique in a number of key ways:
• It treats Grid resour
es as a graph with edge values derived from
urrent network performan
e fore
asts
• It adaptively builds distribution trees for arbitrary topologies by
reating a s
hedule based on theMinimum Spanning Tree (MST) over that graph
• Cooperative forwarding among peers is a

omplished with the Logisti
al Session Layer (LSL), whi
huses
as
aded TCP
onne
tions.Grid environments are extremely dynami
. Network performan
e depends on ambient load. To best adaptour exe
ution at runtime, fore
asts based on
urrent performan
e information are ne
essary. Distribution treesbased on this information will often vary wildly in shape. We need an extremely general tree
onstru
tionme
hanism to a

ommodate the diversity of Grid systems. Finally, as we use LSL for our distribution platform,

∗Department of Computer and Information S
ien
es, University of Delaware, Newark, DE, 19716 (swany�
is.udel.edu).
†Department of Computer S
ien
e, University of California, Santa Barbara, CA, 93106 (ri
h�
s.u
sb.edu).85

86 Martin Swany and Ri
h Wolskiwe get the bene�ts of performan
e-enhan
ing bu�ering in the network, and the reliability and deployability ofTCP.In this paper we will �rst des
ribe the assumptions in our approa
h to s
heduling. Next, we will des
ribea simple s
heduling approa
h, based on spanning tree, that is general enough to address our needs. Finally, wedes
ribe the enhan
ements to LSL ne
essary to implement a s
hedulable distribution me
hanism and evaluatethe performan
e improvements that even simple s
heduling
an a�ord in this spa
e.2. Problem. The general problem that this work addresses is that of the �logisti
s� of data movement inComputational Grid environments. In fa
t, the logisti
s of data movement are the main reason why
omputing�power� is not a fungible resour
e like ele
tri
al power. Users need
omputations to be performed on spe
i�
bits of data, whereas ele
tri
ity
an be
onsumed regardless of the lo
ation or means of its generation. Theproblems of data lo
ality and movement are universal and are a
riti
al
onsideration in Grid systems.There has been mu
h re
ent work
onsidering
ooperative data sharing between networked peers [30, 33, 6,28, 22℄. These
ooperative approa
hes have had impa
t in both the parallel pro
essing and network
omputingdomains. In this spirit, we
onsider an environment in whi
h Grid resour
es are enabled to utilize and provide
ooperation of this sort. Our goal is to
onsider s
heduling these resour
es and examine potential performan
eoptimizations that might emerge. This work builds on the ideas of �Logisti
al� [34, 6, 28℄, �overlay� [3, 38, 17℄and �peer-to-peer� [30, 33, 22, 44℄ networking to treat the problems of
ommuni
ation in Grid systems in a novelmanner.The GrADS [7℄ proje
t is a large, multi-institution proje
t whose goal is to investigate
omprehensivesoftware environments for developing Grid appli
ations. As su
h, the GrADS environment is fo
used on programdevelopment and
ompilation as well as runtime Grid support. Before exe
ution, a Con�gurable Obje
t Programis prepared by the
ompilation systems. When the program is to be laun
hed, the S
heduler/Servi
e Negotiator(S/SN) intera
ts with a variety of runtime servi
es provided by the Grid fabri
 and dis
overs the �state� of theGrid at that time. The S/SN uses this state information to make de
isions about program
on�guration ands
heduling. In parti
ular, the system requires
urrent short-term fore
asts of resour
e performan
e levels sothat it
an make proa
tive s
heduling de
isions. The NWS generates su
h fore
asts automati
ally, but to beuseful, they have to be delivered to the S/SN (through the Globus [13℄ infrastru
ture) qui
kly and reliably.Considering the problem of initial data distribution, our assumptions
an be
aptured by the followings
enario. Let us imagine that a user is laun
hing a program in a Grid environment su
h as the GrADS [7℄proje
t's testbed. In the GrADS ar
hite
ture, the Con�gurable Obje
t Program, or COP, is distributed by theAppli
ation Manager in the �rst phases of exe
ution. This is not, of
ourse, unique to GrADS. In many Gridparadigms a user has a set of program exe
utables that need to be distributed to the resour
es before exe
ution
an begin.In other Grid usage models, end-users utilize resour
es through previously existing software infrastru
ture.This software exports servi
es through appli
ation interfa
es using remote pro
edure
alls, or RPC. NetSolve [11℄is an example of su
h a system. The problem that these systems fa
e is similar to the program distributionproblem in that some amount of data must often be sent from the user to Grid resour
es prior to the beginningof any meaningful exe
ution. This problem is strongly related in that it
on
erns initial data distribution andthus, it
an be modeled similarly.These problems are equivalent to some degree in that either prior to runtime or during an initial phase ofruntime, some data has to be sent to the ea
h
omputational node before any real appli
ation progress
an bemade. Often, we
hoose to abstra
t this problem away with �le-sharing te
hniques. In fa
t, network �le systems(e.g. NFS)
an be used within a single site so that we only need to transfer on
e to nodes that share �les thisway, but there are many
ases where systems do not share �les in this fashion. Further, NFS
an su�er frompoor performan
e and sin
e data (programs or user data) is to be moved over the network, we prefer to dealwith the asso
iated overhead expli
itly. Certainly, there are many situations and s
enarios that di�er in simpleways from this basi
 model, but this
aptures our assumptions and, in fa
t, models real Grid systems quite well.2.1. Problem Modeling. Consider the simple depi
tion of these data transfers in Figure 2.1. In thesegraphs, the value along the edge denotes some
ost. In this
ase it is the time to transfer some amount of data.Figure 2.2 obviously demonstrates a distribution pattern (or tree) with a lower overall
ost.Further, in Grid environments, resour
es are often lo
ated in groups or
lusters, so the potential performan
eimprovement from su
h optimizations be
omes more obvious. Figure 2.3 illustrates the fa
t that in many real
ases, a hierar
hi
al distribution s
heme
an greatly redu
e the overall
ost of the paths through the network.

Network S
heduling for Computational Grid Environments 87
Fig. 2.1. Cost tree for default distribution strategy

Fig. 2.2. Less
ostly distribution treeThis modeling approa
h allows us to think about the problem of data distribution as a graph and o�ersobvious
han
es for optimization.3. S
heduling Algorithms. The
rux of this work is the observation that by treating the resour
es ofthe Grid as a �network�, we
an s
hedule the
ooperation of these resour
es in the formation of a single-sour
e,data distribution tree. This s
hedule
an be
omputed dynami
ally, based on
urrent performan
e information.A distribution tree must be able to dire
t the data to ea
h node, or �span� the tree.Consider a dire
ted graph G with verti
es and edges: G = (V, E). Ea
h edge has a weight or
ost cij forea
h (i, j) ∈ E. A spanning tree (T) is a graph with T ⊆ G su
h that ∀V there is a (u, v) ∈ T that is in
identon it (i.e., T spans the set V).The Minimum Spanning Tree MST (G) = T where ∑
(u,v)∈T c(u, v) has the minimum
ost of all spanningtrees.A traditional, and provably optimal, approa
h to the solution of MST is known as Prim's algorithm [29℄.This algorithm uses a greedy approa
h in the
onstru
tion of the solution tree. Brie�y, the algorithm pro
eedsas follows.To �nd the MST (T), we
reate an empty tree T and move the starting node of the tree (vstart) from V to

T :
vstart ∈ T | T ∩ G = ∅ (3.1)Then, we iterate while |V | > 0. At ea
h step we examine edges in the �
ut� (edges that begin in T and endin V) and sele
t the minimum
ost edge:

min(e) ∈ E′ | e(u, v) u ∈ T and v ∈ V (3.2)Node v is then moved to T and we examine the newly added node and edge to see if its addition has o�ereda better path to nodes already in T .While the spanning tree problem is at the heart of this approa
h to s
heduling, there are additional fa
torsthat must be
onsidered in our model. In the previous se
tion, we
onsidered extremely simple graphs. Obviouslyfor Internet hosts, the time to transmit data to a number of hosts is not linear with the number of hosts. Multipleoutgoing edges interfere with one another � they are not independent. In terms of the network, the more streamsthere are sharing the resour
e of outgoing network
apa
ity, the less ea
h stream gets. This
ould
ompli
atethe model signi�
antly. In fa
t this problem is very similar to what is known as the �weighted graph minimum-energy broad
ast problem�, whi
h has been shown to be NP-hard [41℄. Further work in the same problem

88 Martin Swany and Ri
h Wolski

Fig. 2.3. A distribution tree for
lustersspa
e [12℄ shows that the problem remains NP-hard even when realisti
 bounds are pla
ed on transmissionlevels (redu
ing them to a small �xed set), but gives hope for polynomial-time solutions if a solution exists.Another potential
ombinatorial problem arises in our situation as well. The �Steiner Network� is di�erentfrom the MST problem in that only a subset S of G must be spanned. This problem has been shown to beNP-hard [19℄. This problem is the heart of the problem of �minimum spanners� [10℄ again demonstrated to beNP-
omplete. However, we note that sin
e the set with whi
h we are
on
erned is not a subset of G that weavoid the di�
ulties asso
iated with these problems.These previous results treat their realm of dis
ourse to be in �metri
 spa
e,� meaning that the triangleinequality holds. Internets are not, in general, in metri
 spa
e. This makes the problem more tra
table initially,but ultimately
ompli
ates the model. In parti
ular, rather than power levels, our spanning-tree problem hasthe above des
ribed
onstraint that we
an refer to as �lateral inhibition.� The more edges (streams) that arein
ident on a node, the less well any of them perform. In the extreme, the interferen
e between streams isunique for every stream
on�guration. This
ombinatorial spa
e implies that the optimal solution for su
h aproblem is NP-hard. However, we note that this approa
h is not ne
essarily
on
erned with an optimal solution,rather we wish to empiri
ally determine the e�
a
y of this general
lass of solution.The MST problem is known to be related to many problems in distributed data movement. While we do notdeal with it dire
tly in this work, the minimum
ost path and all-pairs minimax problems [2℄ provide a basis formulti-hop forwarding of the sort proposed by LSL [34℄ and IBP [28℄. Parallel streams with diverse paths allowus to
ou
h routing in terms of maximum �ow algorithms. However, utilizing parallel streams between identi
allo
ations, with default paths, only serves to in
rease the value of a single ar
. This would
ertainly in
rease theobserved bandwidth, but our treatment of the single-stream
ase still holds without loss of generality.4. System Ar
hite
ture. To deploy and test this s
heduler on a Grid system, we rely on various
ompo-nents of Grid software. Spe
i�
ally, this software depends on the Network Weather Servi
e, the NWS's
a
hingLDAP delivery system and the Logisti
al Session Layer.4.1. Network Weather Servi
e. The Network Weather Servi
e [43, 42℄ is a system developed to provideperforman
e monitoring and online performan
e predi
tion to Grid s
hedulers su
h as ours. Grid environmentsare extremely dynami
 and in order to manage this dynamism, a s
heduler must have near-term performan
epredi
tions upon whi
h to base runtime de
isions. The NWS measures, among other things, TCP bandwidthand laten
y between hosts in a s
alable and unintrusive manner. By applying various non-parametri
 statisti
alte
hniques on the timeseries produ
ed by these ongoing measurements, the NWS is able to produ
e fore
aststhat greatly improve predi
tion over naive te
hniques. Further, these measurements
an be
ombined with pastinstrumentation data to produ
e a

urate estimates of bandwidth [36℄ or transfer time.An additional
omponent of the NWS,
alled the NWSlapd [37, 35℄, provides ne
essary fun
tionality aswell. First, this system
a
hes performan
e predi
tions near querying entities making it possible to s
ale theperforman
e information infrastru
ture and provide ubiquitous fore
asts to network-aware s
hedulers. This partof the system also assembles measurement information into a network �view� that
an be easily and qui
klyqueried. Note, however, that the NWS does not a
tually initiate measurements between every pair of hosts (n2

Network S
heduling for Computational Grid Environments 89tests.) Rather, the NWSlapd interprets the hierar
hy of measurements that the NWS does take and �lls in a
omplete matrix of fore
asts (as des
ribed in [35℄.)The
omplete matrix of fore
asts provides us with the node-node adja
en
y matrix representation of ournetwork. The adja
en
y matrix is populated by the observed bandwidth (and/or laten
y) between host i andhost j in the (i, j)th element. Note that the graph that this matrix represents is fully-
onne
ted as every hoston the Internet
an rea
h every other host with some bandwidth.1 This provides the initial graph G upon whi
hour s
heduler operates.4.2. S
heduler Implementation. Our initial s
heduling approa
h is simply to des
ribe a spanning treefor the nodes in our resour
e pool. To do this, we simply use Prim's algorithm as des
ribed in Se
tion 3.In order to produ
e a minimum spanning tree, we need a metri
 where a smaller value is �better�. Sin
ewe are operating with bandwidth fore
asts, we
onvert the bandwidth estimates �transfer time� estimates by
onsidering 1/bandwidth as the �value� of an edge.
Fig. 4.1. Simple Illustration of Tree DepthOne simple te
hnique that we have implemented allows us to minimize the depth of the spanning tree. Ourgoal is to minimize the number of hops that a stream must pass through as ea
h hop adds some amount ofoverhead. Consider the graph in Figure 4.1. Stri
tly speaking, the minimum spanning should in
lude the ar

A → B, and that from B → C. However, it redu
es the depth by a level and in
reases the overall
ost of thetree to span via the ar
 from A → C.This has an e�e
t in pra
ti
e. Due to small variations in measurements through time, ma
hines withfun
tionally similar
onne
tivity have slightly di�erent fore
asts. To keep the trees more simple, we would liketo
onsider measurements within some ǫ of one another as the same. A perfe
t
hoi
e for this value is thehistori
al fore
asting error from the NWS.The s
heduler performs as expe
ted. When presented with the results of a performan
e query from NWS
ontaining information about the GrADS testbed [14℄, the system was
learly able to dis
ern separate
lusters atthe University of Tennessee and University of Illinois and suggest a distribution tree taking that into a

ount.Figure 4.2 depi
ts spanning tree produ
ed by the s
heduler, and this graph is generated from that outputusing GraphViz [15℄, a graph plotter. The initial set of results (in Se
tion 5) utilize this host pool and similardistribution s
hedules.
torc0

msc01 torc1 torc2 torc3 torc4 torc5 torc6 torc7 torc8 opus0

msc02 msc03 msc04 msc05 msc06 msc07 msc08 opus1 opus2 opus3 opus4 opus5 opus6 opus7 opus8Fig. 4.2. Spanning TreeNote that Figure 4.2 is
reated automati
ally. Other than guessing based on the names of the hosts (noton the domain name), there is no way to dis
ern these
lusters at the network level. In some
ases, onlyempiri
al performan
e measurements show these relationships, as shown previously by E�e
tive Network Views
1With the ex
eption of hosts behind �rewalls. While our te
hniques are even more natural in those
ases, a dis
ussion of thatappli
ation beyond the s
ope of this work.

90 Martin Swany and Ri
h Wolski(ENV) [32℄. It is interesting to note that we have re
overed the stru
ture of the network with our s
hedulerte
hnique alone.
Fig. 4.3. Distribution re
ords in a tree4.3. Logisti
al Session Layer Data Distribution. The s
heduler produ
es a distribution tree whi
his given to the Logisti
al Session Layer [34℄ (LSL) to
ontrol the data distribution. LSL is a system for
oop-erative forwarding and bu�ering of network tra�
 that has been shown to greatly in
rease end-to-end networkperforman
e. LSL utilizes TCP, so questions of �friendliness� are not an issue and data integrity guarantees arethose of TCP. 2 However, LSL endeavors to allow TCP to perform better by keeping the round-trip time onany sublink to a minimum. This use of TCP also fa
ilitates in
remental deployability, yet takes advantage ofimproving transport-layer performan
e.For this parti
ular experiment, we have implemented a new message option in the LSL sta
k. Ea
h optionde�nes a distribution tree in
luding information about the
hildren of that node. The hierar
hy of distributionheaders is re
ursively en
oded and de
oded so that only the relevant portions of the subtree are transmittedto downstream neighbors until ultimately, the leaf nodes get a distribution tree with a single entry. Figure 4.3illustrates this.The a
knowledgment of data re
eipt at the ultimate destination is impli
it with the
losing of the TCPso
ket. At ea
h LSL node, ne
essary data is sent out all outgoing so
kets and the sending side of ea
h of thoseso
kets is
losed. Ea
h daemon then waits for ea
h downstream neighbor to
lose its so
ket, signaling that alldestinations have re
eived the data. At the leaf nodes, the so
kets are
losed normally on
e all data is writtento the �lesystem. We note that dire
t noti�
ation from destination to sour
e may be more desirable in many
ases and su
h a modi�
ation is straightforward.Internally, the implementation is not aggressively optimized, and further performan
e improvements are
ertainly possible. There is also no se
urity model at this time. Our te
hnique
ould easily work over SSH-en
rypted and authenti
ated tunnels and this is one implementation possibility that we are investigating.5. Results. To test the e�
a
y of our system, we have deployed it a
ross the GrADS testbed [14℄. This setof Grid resour
es ranges from 50 to 100 nodes a
ross the U.S. lo
ated primarily at the University of California,San Diego, the University of Illinois, Champaign-Urbana, and the University of Tennessee, Knoxville. The sitesare
onne
ted by Internet2's Abilene [1℄ ba
kbone and enjoy relatively high-speed
onne
tivity.To evaluate the di�eren
e between dire
t distribution (the dire
t approa
h) and our s
heduler in as fair amanner as possible, we have modeled the dire
t distribution within our software infrastru
ture. That is, thedire
t distribution version is simply a �at tree. This allows for overlapping
ommuni
ation among the streamsand is not terribly ine�
ient. At any rate, the data movement is not serialized among the nodes as it often isin daily use. 3Two sets of tests were run. The �rst set
ontains 18 nodes lo
ated at two sites. The se
ond set
ontains52 nodes in 6
lusters at 3 sites. In all
ases the sour
e of the data was lo
ated at the University of California,Santa Barbara. Again, this models situations that are demonstrably realisti
.Figure 5.1 shows the distribution time, in se
onds, for �les of various sizes. This test utilized the 18 nodepool des
ribed above. We
an see that this
ase illustrates remarkably well how hierar
hi
al,
ooperative datadistribution
an improve performan
e and redu
e distribution time. Figure 5.2 shows �le distribution times forthe larger (52 node) host pool. Again, the performan
e improvement from making simple s
heduling de
isions

2Whether this is su�
ient or not is another matter, as we have done no harm.
3The authors speak from experien
e. What Grid developer hasn't iterated through a �le
opy to ea
h node of some set?

Network S
heduling for Computational Grid Environments 91

Fig. 5.1. Distribution Times for 18 Hosts

Fig. 5.2. Distribution Times for 52 Hostsis quite signi�
ant. We note that
lusters represent the best
ase for distribution te
hniques su
h as this and
lusters are frequently
omponents in a Grid.Figure 5.3 depi
ts the delivered bandwidth that we observe in data transfers to the 18 node host pool.Figure 5.4 shows this same metri
 for the larger host pool. We have initiated a data transfer that has anaverage performan
e more than the physi
al link to whi
h the ma
hine is atta
hed (12.5MB/se
).6. Related Work. There are many aspe
ts of resear
h that are similar and related. LSL is part of themore general inquiry of Logisti
al Networking [28, 6℄. This work investigates a more ri
h view of storage in thenetwork and our s
heduling approa
h is appli
able to either infrastru
ture.Globus GASS [9℄ and GridFTP [16℄ are data movement and staging servi
e for Grid systems that
ouldbe s
heduled using the te
hniques that we have des
ribed. The MagPIe [20, 40, 21℄ proje
t has investigatedperforman
e optimizations for
olle
tive operations. Improving the performan
e of
olle
tive operation has beeninvestigated in many di�erent
ontexts [4, 27, 24, 5, 18, 39℄, although primarily the fo
us has been MPI.S
heduling appli
ation a
tivity based on the state of the network is seen many pla
es in
luding REMOS [23℄,Topology-d [26℄ and the Network Weather Servi
e [42℄.

92 Martin Swany and Ri
h Wolski

Fig. 5.3. Delivered Bandwidth of Distribution Tree (18 Hosts)

Fig. 5.4. Delivered Bandwidth of Distribution Tree (52 Hosts)Our approa
h is quite similar to re
ent work by Malou
h, et. al [25℄, whi
h treats multi
ast proxies asnodes in a network optimization problem. We note that their ar
 in
iden
e
onstraints are di�erent than thosethat we propose. Further, their simulations were aimed at evaluating various heuristi
s, while our goal is tounderstand the performan
e improvements from simple s
heduling in real networks.Over
ast [17℄ is a network overlay based multi
ast system. Over
ast uses node to node proto
ols to buildand evaluate the distribution trees. Our approa
h
reates distribution trees at runtime and assumes no statein the network. Rather, we assume the availability of network performan
e fore
asts to determine distributiontrees. Our
on
erns about node failure are also quite di�erent given our utilization of TCP as a transport layer.Re
ent work in appli
ation-level multi
ast explores the appli
ability of peer-to-peer networks [31℄ for thispurpose. They note a bene�t of their work is the la
k of a
onstantly-running routing proto
ol, a bene�t that weshare. In
ontrast to their approa
h, however, we don't in
rease the time to distribute data, rather we de
reaseit.

Network S
heduling for Computational Grid Environments 937. Con
lusion. We have fo
used on the problem of initial data distribution in Grid environments. Bybuilding on previous system
omponents, su
h as the NWS and LSL, we have developed a novel system for datadistribution. We have developed a s
heduler that is able to instantiate
ooperative data forwarding based on LSLand performan
e data from NWS. This s
heduling te
hnique and infrastru
ture allow us to form distributiontrees that greatly in
rease performan
e and redu
e time to distribute data. Te
hniques su
h as this will onlybe
ome more important as Grids proliferate. REFERENCES[1℄ Abilene. http://www.u
aid.edu/abilene/.[2℄ R. Ahuja, T. Magnanti, and J. Orlin, Network Flows: Theory, Algorithms, and Appli
ations, Prenti
e Hall, UpperSaddle River, New Jersey, 1993.[3℄ D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris, Resilient overlay networks. Pro
. 18th ACM SOSP,Ban�, Canada, O
tober 2001.[4℄ V. Bala, J. Bru
k, R. Cypher, P. Elustondo, A. Ho, C.-T. Ho, S. Kipnis, and M. Snir, CCL: A portable andtunable
olle
tive
ommuni
ation library for s
alable parallel
omputers, IEEE Transa
tions on Parallel and DistributedSystems, 6 (1995), pp. 154�164.[5℄ M. Banikazemi, V. Moorthy, and D. Panda, E�
ient
olle
tive
ommuni
ation on heterogeneous networks of worksta-tions, in International Conferen
e on Parallel Pro
essing, 1998, pp. 460�467.[6℄ M. Be
k, T. Moore, J. Plank, and M. Swany, Logisti
al networking: Sharing more than the wires, in Pro
. of 2ndAnnual Workshop on A
tive Middleware Servi
es, August 2000.[7℄ F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, L. J. Dennis Gannon, K. Kennedy, C. Kessel-man, D. Reed, L. Tor
zon, , and R. Wolski, The GrADS proje
t: Software support for high-level grid appli
ationdevelopment, Te
h. Report Ri
e COMPTR00-355, Ri
e University, February 2000.[8℄ F. Berman, R. Wolski, S. Figueira, J. S
hopf, and G. Shao, Appli
ation level s
heduling on distributed heterogeneousnetworks, in Pro
eedings of Super
omputing 1996, 1996.[9℄ J. Bester, I. Foster, C. Kesselman, J. Tedes
o, and S. Tue
ke, GASS: A data movement and a

ess servi
e for widearea
omputing systems, Sixth Workshop on I/O in Parallel and Distributed Systems, (1999).[10℄ L. Cai, Np-
ompleteness of minimum spanner problem, Dis
rete Applied Mathemati
s, 48 (1994), pp. 187�194.[11℄ H. Casanova and J. Dongarra, NetSolve: A Network Server for Solving Computational S
ien
e Problems, The Interna-tional Journal of Super
omputer Appli
ations and High Performan
e Computing, (1997).[12℄ O. Ege
ioglu and T. Gonzalez, Minimum-energy broad
ast in simple graphs with limited node power, in Pro
. IASTEDInternational Conferen
e on Parallel and Distributed Computing and Systems (PDCS 2001), August 2001, pp. 334�338.[13℄ I. Foster and C. Kesselman, Globus: A meta
omputing infrastru
ture toolkit, International Journal of Super
omputerAppli
ations, (1997).[14℄ GrADS, http://hipersoft.
s.ri
e.edu/grads.[15℄ Graphviz, http://www.resear
h.att.
om/sw/tools/graphviz.[16℄ GridFTP, http://www.globus.org/datagrid/gridftp.html.[17℄ J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W. O'Toole, Jr., Over
ast: Reliable multi-
asting with an overlay network, in Pro
eedings of Fourth Symposium on Operating System Design and Implementation(OSDI), O
tober 2000, pp. 197�212.[18℄ N. T. Karonis, B. R. de Supinski, I. Foster, W. Gropp, E. Lusk, and J. Bresnahan, Exploiting hierar
hy in parallel
omputer networks to optimize
olle
tive operation performan
e, in 14th International Parallel and Distributed Pro
essingSymposium, 2000, pp. 377�386.[19℄ R. M. Karp, Redu
ibility among
ombinatorial problems, in Complexity of Computer Computations, R. Miller andJ. That
her, eds., Plenum Press, 1972, pp. 85�104.[20℄ T. Kielmann, H. E. Bal, S. Gorlat
h, K. Verstoep, and R. F. Hofman, Network performan
e-aware
olle
tive
ommuni
ation for
lustered wide area systems, Parallel Computing, 27 (2001), pp. 1431�1456.[21℄ T. Kielmann, R. Hofman, H. Bal, A. Plaat, and R. Bhoedjang, Mpi's redu
tion operations in
lustered wide areasystems, 1999.[22℄ J. Kubiatowi
z, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,C. Wells, and B. Zhao, O
eanstore: An ar
hite
ture for global-s
ale persistent storage, in Pro
eedings of ACMASPLOS, ACM, November 2000.[23℄ B. Lowe
amp, N. Miller, D. Sutherland, T. Gross, P. Steenkiste, and J. Subhlok, A resour
e query interfa
e fornetwork-aware appli
ations, in Pro
. 7th IEEE Symp. on High Performan
e Distributed Computing, August 1998.[24℄ B. Lowekamp and A. Beguelin, E
o: E�
ient
olle
tive operations for
ommuni
ation on heterogeneous networks. InInternational Parallel Pro
essing Symposium, pages 399�405, Honolulu, HI, 1996., 1996.[25℄ N. Malou
h, Z. Liu, D. Rubenstein, and S. Sahu, A graph theoreti
 approa
h to bounding delay in proxy-assisted. In12th International Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV'02),May 2002. 143, 2002.[26℄ K. Obra
zka and G. Gheorghiu, The performan
e of a servi
e for network-aware appli
ations, in Pro
eedings of 2ndSIGMETRICS Conferen
e on Parallel and Distributed Tools, August 1998.[27℄ J.-Y. L. Park, H.-A. Choi, N. Nupairoj, and L. M. Ni, Constru
tion of optimal multi
ast trees based on the parameterized
ommuni
ation model, in Pro
eedings of the International Conferen
e on Parallel Pro
essing (ICPP), 1996, pp. 180�187.[28℄ J. S. Plank, A. Bassi, M. Be
k, T. Moore, D. M. Swany, and R. Wolski, Managing data storage in the network,IEEE Internet Computing, 5 (2001), pp. 50�58.

94 Martin Swany and Ri
h Wolski[29℄ R. Prim, Shortest
onne
tion networks and some generalizations. Bell System Te
hni
al Journal, 36, 1389�1401, 1957.[30℄ S. Ratnasamy, P. Fran
is, M. Handley, R. Karp, and S. Shenker, A s
alable
ontent-addressable network, in SIG-COMM, 2001, pp. 161�171.[31℄ S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, Appli
ation-level multi
ast using
ontent-addressable networks,Le
ture Notes in Computer S
ien
e, 2233 (2001), pp. 14�25.[32℄ G. Shao, F. Berman, and R. Wolski, Using e�e
tive network views to promote distributed appli
ation performan
e. InPro
eedings of the 1999 International Conferen
e on Parallel and Distributed Pro
essing Te
hniques and Appli
ations,1999.[33℄ I. Stoi
a, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,Chord: A s
alable
ontent-addressable network,in SIGCOMM, August 2001.[34℄ M. Swany and R. Wolski, Data logisti
s in network
omputing: The Logisti
al Session Layer, in IEEE Network Computingand Appli
ations, O
tober 2001.[35℄ , Building performan
e topologies for
omputational grids. Pro
eedings of Los Alamos Computer S
ien
e Institute(LACSI) Symposium, O
tober 2002.[36℄ , Multivariate resour
e performan
e fore
asting in the network weather servi
e, in Pro
eedings of SC 2002, November2002.[37℄ , Representing dynami
 performan
e information in grid environments with the network weather servi
e. 2nd IEEEInternational Symposium on Cluster Computing and the Grid, May 2002.[38℄ J. Tou
h, The XBone. Workshop on Resear
h Dire
tions for the Next Generation Internet, May 1997.[39℄ S. Vadhiyar, G. Fagg, and J. Dongarra, Performan
e modeling for self adapting
olle
tive
ommuni
ations for MPI.Pro
eedings of Los Alamos Computer S
ien
e Institute (LACSI) Symposium, O
tober 2001.[40℄ R. V. van Nieuwpoort, T. Kielmann, and H. E. Bal, E�
ient load balan
ing for wide-area divide-and-
onquer appli-
ations, in PPoPP '01: ACM SIGPLAN Symposium on Prin
iples and Pra
ti
e of Parallel Programming, June 2001,pp. 34�43.[41℄ P.-J. Wan, G. Calines
u, X. Li, and O. Frieder, Minimum-energy broad
ast routing in stati
 ad ho
 wireless networks,in INFOCOM, 2001, pp. 1162�1171.[42℄ R. Wolski, Dynami
ally fore
asting network performan
e using the network weather servi
e, Cluster Computing, (1998).also available from http://www.
s.utk.edu/ ri
h/publi
ations/nws-tr.ps.gz.[43℄ R. Wolski, N. Spring, and J. Hayes, The network weather servi
e: A distributed resour
e performan
e fore
asting servi
efor meta
omputing, Future Generation Computer Systems, (1999).[44℄ B. Y. Zhao, J. D. Kubiatowi
z, and A. D. Joseph, Tapestry: An infrastru
ture for fault-tolerant wide-area lo
ation androuting, Te
h. Report UCB/CSD-01-1141, UC Berkeley, Apr. 2001.Edited by: Wilson Rivera, Jaime Seguel.Re
eived: July 5, 2003.A

epted: September 1, 2003.

S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 3, pp. 95�106. http://www.s
pe.org ISSN 1895-1767
© 2005 SWPSTOWARD REPUTABLE GRIDSG. VON LASZEWSKI∗, B. K. ALUNKAL† , AND I. VELJKOVIC‡Key words. Grid, Quality-of-servi
e, Trust, ReputationAbstra
t.The Grid approa
h provides a vision to a

ess, use, and manage heterogeneous resour
es in virtual organizations a
ross multipledomains and organizations. This paper foremost analyses some of the issues related to establishing trust and reputation in aGrid. Integrating reputation into quality management provides a way to reevaluate resour
e sele
tion and servi
e level agreementme
hanisms. We introdu
e a reputation management framework for Grids to work toward fa
ilitating the
omplex task of improvingthe quality of resour
e sele
tion. Based on
ommunity experien
e we adapt trust and reputation of entities through spe
ializedservi
es. Simple
ontextual quality statements are evaluated in order to e�e
t the reputation for a monitored resour
e. Additionally,we introdu
e a novel algorithm for evaluating Grid reputation by
ombining two known
on
epts using eigenve
tors to
omputereputation and integrating global trust.1. Introdu
tion. The Grid approa
h [18, 21℄ provides a vision to develop an environment for
oordinatedresour
e sharing and problem solving in dynami
, multi-institutional virtual organizations under quality-of-servi
e
onstraints [5, 10℄. However, optimal use of these distributed servi
es and resour
es requires not onlyknowledge about the
apabilities of the resour
es, but also the assuran
e that the available and requested
apabilities
an be used su

essfully. Grid users are fa
ed with questions su
h as whi
h resour
es are availableremotely, whi
h
apabilities these resour
es have, whether one is authorized to use these resour
es, whether theinformation for a resour
e sele
tion is a

urate, and on whi
h resour
es a task is likely to exe
ute with the mostsu

ess.In a typi
al Grid s
enario users identify possible
andidate resour
es through metainformation obtainedfrom dire
tories, databases, or registries. However, the
urrent generation of Grid information servi
es providesonly the most elementary information to guide quality-of-servi
e based resour
e sele
tion. For example, theGlobus Toolkit Monitoring and Dire
tory Servi
e (MDS) [19℄ provides a limited set of information about Gridresour
es, in
luding stati
 and possibly dynami
 attributes and properties. In many
ases the informationreturned by this servi
e is
ostly to obtain, ina

urate, or outdated and does not integrate a resour
e sele
tionservi
e. We observe that, similar to Heisenbergs un
ertainty prin
iple [13℄, the more variability (momentum),the information in regards to a resour
e attribute
ontains, the less we
an predi
t the a

ura
y of its value ata time, and vi
e versa. This prin
iple is of espe
ial importan
e if we
onsider the use of multiple resour
es ina
oordinated fashion, multiplying this e�e
t. Furthermore, the sporadi
 nature of the Grid and its measuredvalues as well as the possibility of integrating ad ho
 servi
es [21℄ in a Grid environment for whi
h no histori
aldata is available, poses a severe limitation on the
urrent generation of predi
tion servi
es. Additionally, we oftenla
k information provided on the quality of the parti
ipating entities, similar to an Internet shopping site, whi
h
lassi�es in
luded items while augmenting them with information not only about fun
tionality, appearan
e,availability, and pri
e, but also about appre
iations and ratings by its shoppers.In our framework we propose a probabilisti
 presele
tion of resour
es based on likelihood to deliver therequested
apability and
apa
ity. Su
h a servi
e
an be integrated into a quality-of-servi
e managementframework [7℄ to enable the reevaluation of the e�e
tiveness of quality-of-servi
e poli
ies and servi
e levelagreements.This motivated us to design a reputation framework for Grids to assist in the sele
tion pro
ess for resour
eswhile integrating the notions of trust and reputation. Trust is already a
riti
al parameter in the de
ision-makingpro
ess of several peer-to-peer (P2P) frameworks. Reputation is
omputed by using a trust rating provided byusers of servi
es through a feedba
k me
hanism. Reputation-based servi
e and produ
t sele
tion have provedto be a great asset for online sites su
h as eBay [9℄ and Amazon [3℄.Hen
e, we propose a framework that sele
ts through a hierar
hi
al pro
ess, with the help of sophisti
atedGrid servi
e, sets of resour
es and servi
es as suitable
andidates to ful�ll quality-of-servi
e requirements. Thisin
ludes the sele
tion of trusted resour
es that best satis�es appli
ation requirements a

ording to a prede�ned
∗Mathemati
s and Computer S
ien
e Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A. gregor�m
s.anl.gov
†Department of Computer S
ien
e, Illinois Institute of Te
hnology, Chi
ago, IL 60616, U.S.A.
‡Department of Computer S
ien
e and Engineering, The Pennsylvania State University, PA 16802, U.S.A.95

96 G. von Laszewski, B. Alunkal, I. Veljkovi
trust metri
. Therefore, we propose that our hierar
hi
al resour
e sele
tion pro
ess be augmented by qualitativeand quantitative experien
es based on previous transa
tions with resour
es so we
an integrate this experien
ein future resour
e sele
tions.We envision su
h a reputation system for Grids, in whi
h resour
es and servi
es are ranked based on thereputation they obtain. Generating a reputation or establishing trust by entities (resour
es, servi
es, andindividuals) in regards to their availability and
apability. We believe that su
h a reputation servi
e frameworkis of
ru
ial importan
e for Grid
omputing to in
rease reliability, use, and popularity. Trust and reputationserve as an important metri
 to avert the use of underprovisioned and mali
ious resour
es; they provide theability to simplify the sele
tion pro
ess while fo
using �rst on qualitative
on
erns.Consider a Grid environment that agglomerates expensive and spe
ialized resour
es in
luding high-per-forman
e servers, storage databases, advan
ed s
ienti�
 instruments, and sophisti
ated servi
es to visualizema
romole
ules [22℄ or nanomaterial [4℄ stru
tures. Su
h an environment requires reliable ad ho
 Grid servi
esto ful�ll the ne
essary quality-of-servi
e required by se
ure real-time use. Furthermore, the sporadi
 and time-limited nature of the servi
es and resour
es used may result in a la
k of histori
al data, posing severe limitationson existing predi
tion servi
es.Community-based adaptive metri
s su
h as trust and reputation serve as building blo
ks to support ourquality-of-servi
e requirements. We emphasize that the self-evaluation of a servi
e must be an integral part ofthe Grid ar
hite
ture in order to in
rease reliability and predi
tability. Consider the
ase in whi
h a servi
e
laims it will provide a parti
ular level of quality and engages in a servi
e level agreement with another servi
e.Assume that this servi
e fails to deliver the promised agreement. Su
h a s
enario might exist when the metri
savailable for sele
tion do not
oin
ide with the goals. Choosing a more reliable servi
e
an avoid this problem.But how do we know that another servi
e is more reliable?Con
retely, if we try to transfer 10 Gbytes of data between remote resour
es through a network, we mightbe tempted to sele
t a network path with the highest observed peak throughput. However, if the network getsinterrupted and the transfer would fail, the measurement and metri
 must take this into a

ount. We
annotrely on a servi
e that sele
ts the route for transfer based only on a simple bandwidth measurement. Rather,we require a servi
e that evaluates the promised agreement and is available for future referen
e. Hen
e, we arenot only
on
erned with the quality-of-servi
e, but also with the quality-of-information [20℄ to establish su
h aservi
e.We need to address in an e�e
tive quality-of-servi
e framework the following issues:1. Identify the metri
s that are de�ning the servi
e,2. Implement a quality-of-servi
e poli
y,3. Provide measurements that
an help sele
ting resour
es under metri
 servi
e level agreements,4. De
ide for a servi
e agreement,5. Presele
t a number of resour
es that will likely ful�ll the agreement,6. Exe
ute the servi
e,7. Evaluate the poli
ies by measuring a su

essful response,8. Adapt the strategy if it was not su

essful, to sele
t new resour
es (i.e, return to Step 5).In this paper we will fo
us on Step 8 of this framework. Other aspe
ts are addressed in [2℄.Our paper is stru
tured as follows. In Se
tions 2, 4, and 5, we de�ne the terms trust and reputation andprovide an overview of the existing reputation systems for the Grids and their limitations. In Se
tion 3, wepresent the general requirements of Grid reputation framework and servi
e. In Se
tion 6, 7, and 8, we proposea new algorithm for managing reputation in Grid-based systems and dis
uss its underlying ar
hite
ture. Afterwe provide an overview of other related work we summarize future work and
on
lude our work.2. Trust and Reputation. In this se
tion we de�ne the basi
 terminology used throughout the rest ofthe paper.2.1. De�nition: Entity. For simpli
ity, we refer to a resour
e, agent, servi
e, organization, or user as anentity. This de�nition allows us to spe
ify the term �trust in the most general way while applying it to the Gridapproa
h.2.2. De�nition: Entity Trust. As pointed out by many resear
hers, trust is an ambiguous
on
eptthat de�es exa
t de�nition. Based on e
onomi
 models [11℄, however, we
an de�ne trust as a
ommodity forredu
ing risk in unknown situations. Hen
e, trust has an important role in enabling intera
tions in an unfamiliarenvironment while weighing the risks asso
iated with a
tions performed in that environment. The prote
tion of

Towards Reputable Grids 97trust through e
onomi
 in
entives is an important fa
tor to allow trust to be
ome a stable
ommodity. For ourproposed framework, trust is the underlying prin
iple that we determined through lo
al or global intera
tionsamong entities and their de
isions based on it.2.3. De�nition: Virtual Trust. So far we have not dis
ussed the �ow relationships between trustors andtrustees. If a trust value in a
ommunity is assigned to an entity (the trustor) its trust value
an be reused by anew trustee who joins the
ommunity and adheres in prin
iple to the same values as the
ommunity members.In this
ase we use the term
ommunity trust, or virtual trust.2.4. De�nition: Entity Reputation. Reputation refers to the value we attribute to a spe
i�
 entity inthe Grid, based on the trust exhibited by it in the past. It re�e
ts the per
eption that one has of another'sintentions and norms. Entity reputation provides a way of assigning quality or value to an entity. Reputationis usually asso
iated with a time fa
tor; it is often gained over time, based on qualities attributed to it byevaluations of other entities. In many reputation models, reputation de
reases qui
kly based on adverse behavior.2.5. De�nition: Entity Reputation Servi
e. An entity reputation servi
e is de�ned as a se
ure in-formation servi
e responsible for maintaining a dynami
 and adaptive trust and reputation metri
 within a
ommunity. Entities in the Grid
ontinuously intera
t with the reputation servi
e to
reate a
ommunity ratingme
hanism that
ooperatively assists their future de
isions based on the overall
ommunity experien
es.3. Trust Models. To de�ne a trust model, we need to establish trust requirements, assign trust ratings,and de�ne trust mediation frameworks and algorithms. Be
ause of the diversity of the Grid and its
ommunities,we
annot de�ne a single trust model suitable for every
ase. Instead, we need to revisit the requirements andthe
ir
umstan
es in whi
h su
h a trust model brings added value to the Grid infrastru
ture. Some of the most
ommon ingredients used to design trust models for Grids are neighborhoods,
ommunities, virtual organizations,
ontra
ts, branding, and ownership.3.1. Neighborhoods and Communities as Trust Models. One of the most
ommon trust modelsis based on the de�nition of neighborhoods and
ommunities. Here a group of entities form a relationshipnetwork that
an be used to query about the trust the members have for another entity to be a

essed orused. Neighborhoods are typi
ally small peer-to-peer groups where ea
h member typi
ally knows the others.In
ontrast to this model,
ommunities
ontain many more members, and it may no longer possible that formember of the
ommunity to know the others. In both groups, however, trust and reputation are establishedthrough standards and
ommon views governed by the
ommunities and neighborhoods. Ratings are Adaptersthrough interpersonal
ommuni
ation or through publi
ation on a
ommunity-wide s
ale. A good example of aneighborhood trust model is the
lose intera
tion among
omputational s
ientists to interpret the out
ome of aparti
ular s
ienti�
 experiment. A good example of a
ommunity trust model is the
olle
tion and publi
ation ofopinions about a parti
ular topi
. In some
ases trusted neighborhoods are established to provide the
ommunitywith trust ratings. An example is an editorial board for the publi
ation of arti
les in a s
ienti�
 journal. Thes
ienti�

ommunity pays more attention to an arti
le reviewed by its peers than to an arti
le published on aunmoderated Web page.3.2. Geography and Politi
al Boundaries as Trust Model. A simple way to establish neighborhoodsand
ommunities is to
onsider geographi
al distan
e or politi
al boundaries. Being a
itizen of a foreign
ountrywill be in most
ases require spe
ial
learan
e to parti
ipate in entities
ontrolled by a government or universityas is often the
ase for super
omputing
enters. Geographi
al
onstraints may be needed in order to restri
tadaptive trust algorithms to a number of entities in
lose vi
inity. This is often the
ase for
erti�
ate authoritiesthat have bran
hes operating in geographi
al distributed lo
ation to verify the physi
al existen
e of a person.Hierar
hi
al Grids su
h as the TeraGrid or the Physi
s Data Grid fun
tion in su
h fashion. Although
onsidereda virtual organization, membership into this organization sponsored by the
ommunity is determined by lo
altrust authorities.3.3. Contra
ts as Trust Model. A
ontra
t is a binding agreement between two or more persons orparties. Contra
ts are
urrently under mu
h dis
ussion as part of servi
e level agreements in QoS-based frame-works su
h as Web servi
es and Grid servi
es. Here a
ontra
t between entities is formed and agreements are
ast to ful�ll a parti
ular servi
e. This
on
ept is based on the trust that the agreement will be ful�lled. Ifan unrepeatable entity is present, however, the model will not fun
tion, and adaptations need to be made toenfor
e the agreement (e.g., through litigation or punishment). One of the earliest su
h models used in Grid

98 G. von Laszewski, B. Alunkal, I. Veljkovi

omputing was experimented with by the Java CoG proje
t in 1997 in a high-throughput stru
tural biologyproje
t. Resour
es were put together in a pool and if a resour
e failed to report or the average time taken byother resour
es to respond was above a threshold, that resour
e was marked as unfavorable and was
hosenonly if no other resour
es were available. In other words, the resour
e obtained a
ertain reputation based onits
ontra
tual ful�llment.3.4. Ownership as Trust Model. Highperforman
e
omputing has traditionally fo
used on ownershipmodels. Su
h models are an extension of the
ommunity model in whi
h, however, the ownership of an expli
itentity forms a
ommunity. In the 80s and 90s these models were driven by super
omputer
enters that o�eredtheir users ex
lusive use of super
omputers through bat
h queuing systems. Today, in Grid, the ownership modelis the most
ommon one. We believe that in future, however, we will see a shift toward virtual ownerships (asalready promoted by the
on
ept of virtual organizations). Not only will we see virtual organizations but wewill also see soon virtual memberships to these organizations.To apply the
on
ept of ownership to
ommunity Grids [21℄, one must revisit the role of virtual organizations,institutions, and members
reating them. Sin
e shared resour
es in a virtual organization are
ontributed byvarious institutions, an elaborate reputation servi
e is needed, that deals with the fa
t that resour
es
an bepart of multiple domains and VOs. The di�erent
ases are depi
ted in Figure 3.1. We use the followingnomen
lature: nEi de�nes an entity with the label i that is shared by n organizations. In
ase we do knowa per
entage of share, we augment it appropriately p1...pnEi where pk de�nes the per
entage of ownership oforganization k. Considering this nomen
lature, we
an de�ne use of entities based on the reputation entitiesobtain. We note that entities within organizations
an evaluate ea
h other. To make the system work, however,we need to de�ne a value-based system a
ross the organizations or maintain reputation for di�erent
ommunitiesand virtual organizations.

Fig. 3.1. Institutions
ontribute in various ways their resour
es and servi
es to possibly various virtual organizations.3.5. Use as Trust Model. One of the simplest trust models is based on the number of uses. The
on
eptis the following: the more the entity is used, the higher the trust in this resour
e. Common sense suggests thatwhen so many per
eive this entity as desirable, it must be so. Use statisti
s have long been popular in the
omputer industry, although these often give a �rst impression of whi
h entities should be
onsidered, one mustmake sure that the
on
ept of popularity is independent of other attributes su
h as se
urity or even
ontent.One need only
onsider popular but inse
ure operating systems on Web pages with dubious
ontent appre
iatedby a large number of Internet users that have a
hieved more popularity than true
ontent driven pages.3.6. Branding as Trust Model. One other important
on
ept in industry that is related to reputationis branding. Here the reputation of
ontinuously high re
ommended entities that belong to a parti
ular
lass ororganization may
reate the desire by other
ustomers to use the same well known brand. Branding is usuallyin business a good
on
ept as outliers of poor a

idental events e�e
ting the reputation negatively are damped.

Towards Reputable Grids 99In
omputer s
ien
e the
on
ept of branding is also often used in regards to organizations and produ
ts derivedfrom these organizations.3.7. Time as Trust Model. Time is an essential variable as part of ea
h trust model. Trust and repu-tation models have sometimes a wide variety of potential
on�i
ting time assumptions. We have branding that
learly augments an entity with a reputation that is less time sensitive than establishing short term
ontra
tsbetween entities that only deal with one time intera
tions. A similar
on
ept to branding is seniority with timein whi
h the assumed entity be
omes a seniority value that is based on experien
e gained through intera
tionwith the
ommunity. Statements su
h as I have done it this way for years, it must therefore be working for theup
oming years are
ommon.3.8. E
onomy as Trust Model. In order to establish a better reevaluation methodology, trust models
an be augmented through e
onomi
 models. For example,
ontra
ts
an be signed under ex
hange of real orvirtual money, use
an be rewarded through a
oupon system, and au
tions or markets
an be put in pla
e to bidfor the most trusted and
apable resour
es. This approa
h naturally
an su

eed only if a
ommon,
ontrollable
ommodity su
h as (virtual) money is used. Business and e
onomi
 resear
h in these areas is plentiful; indeedthe term virtualization in business models long before the Grid
ommunity used these terms [17℄.3.9. Reputation as Trust Model. As indi
ated earlier, reputation
an be used as a major enhan
ementto ea
h of the models introdu
ed. Sin
e reputation de�nes a metri
, we should be able to use this metri
 tosele
t entities for
loser
onsideration as part of a neighborhood,
ommunity, or virtual organization and helpsupport models employing e
onomi
 goals, usage, and to establish
ontra
ts. This is of espe
ial importan
ebe
ause the time it takes to query all available entities for the best possible �t may be too large. Hen
e we needto group a
lass of properties of interest to a parti
ular
ommunity and presele
t from the many thousands ormillions those that give the highest likelihood of su

ess.4. Appli
ation of Reputation Related Trust Models. Trust models and use of reputation frameworkshas been
onsidered in a wide variety of systems. The most visible frameworks have been used to enhan
ebusiness and information servi
es available for a large
ommunity through the Internet.4.1. Review Trust Model. One popular use to establish reputation is to design information portals,similar to C|net [8℄, whi
h maintains ratings for produ
ts based on the ratings of an editor. Integrating feedba
kfrom the
ommunity provides an additional value in order to reevaluate the judgment of the editor against inputfrom a larger
ommunity. Although, the
ommunity feedba
k is not integrated into the editors rating it is stillavailable for review. Hen
e, the
onsumer must review both pie
es of information to obtain an a

urate pi
ture.Detailed textual reviews are also provided to provide the
onsumer with a semanti
 explanation on the reasonfor the given grade by another
onsumer. The advantages of integrating a
ommunity are that the bias of aneditor may be minimized. The disadvantage is that invalid responses not
orresponding to the editors standard
ould result in an in
orre
t evaluation.4.2. Buyers and Sellers Reputation Trust Model. The online au
tion system eBay [9℄ is an importantexample of su

essful reputation management. In eBay's reputation system, buyers and sellers
an rate ea
hother after ea
h transa
tion. The feedba
k system is based on a simple point system, that assigns a positivepoint for a positive feedba
k, No points for neutral feedba
k, and a negative point for a negative feedba
k. Thereputation is the summation of all feedba
ks for a buyer or seller over the last six month. Additionally, thefeedba
k is
lassi�ed in a detailed view to be groups in time periods of the past 7 days, the past month, andthe past six month. E-bay points out the a high feedba
k rating not ne
essarily means a good reputation. It �isa good sign, but a
onsumer �should always
he
k a member's feedba
k pro�le for any negative remarks. It'sbest not to judge users only on their feedba
k ratings.4.3. Information Ranking. The sear
h engine Google [6, 15℄ provides a reputation and trust modelbased on a method
alled PageRank that uses the links between pages as input. Here a link from other pagesto the page in question is interpreted as a positive sign and indi
ates that the page has some importan
e. Themodel is based on the
on
ept that the more links
an be found the more important the page is. Additionally,it weighs the pages based on the importan
e of the voting page.5. Basis of GridEigenTrust. Before dis
ussing our Grid reputation management framework and theGridEigenTrust algorithm, we provide a short overview of
urrent resear
h e�orts that form the basis of our

100 G. von Laszewski, B. Alunkal, I. Veljkovi
work. The GridEigenTrust algorithm is inherently based on the peer-to-peer (P2P) EigenTrust algorithm [16℄and the use of reputation to de�ne evolving and managed trust in Grids through the introdu
tion of globaltrust [1℄. The GridEigenTrust algorithm
ombines these algorithms making it
ondu
ive for a large Gridenvironment by in
reasing its s
alability.5.1. EigenTrust Algorithm for P2P Networks. A reputation management algorithm for P2P net-works,
alled EigenTrust, is introdu
ed in [16℄. We summarize the main prin
iple but use within this se
tionthe term entity instead of peer in order to provide a uniform nomen
lature. Every entity Ei rates other entitiesbased on the quality of servi
e they provide. Therefore, every entity Ej with whom Ei had business will berated with a grade gij (i gij

→ j) and is normalized as des
ribed in [16℄. Hen
e, for ea
h entity Ej , the normalizedlo
al trust value cij is de�ned as follows:
cij =

max(gij , 0)∑

j

max(gij , 0)
(5.1)The normalized lo
al trust values throughout the P2P domain needs to be aggregated. This pro
edure
anbe done by means of a transitive trust me
hanism: entity Ei asks his friends for their opinions about otherentities:

tij =
∑

k

cikckj (5.2)where tij represents the trust that entity Ei puts in entity Ej based on the opinion of his k friends. The
oe�
ients are assembled into a matrix, C = [cik]. Hen
e, equation (5.2)
an be written in matrix notation asshown in equation (5.3):
~ti = CT ~ci (5.3)The pro
ess of obtaining the trust values of friends is repeated to obtain the transitive
losure of the matrix.After n iterations, where n is the rank of the matrix, the transitive trust is obtained. For large n, ~ti
onvergesrapidly as shown in [12℄, to the same value ~t. Hen
e, ~t shows how mu
h trust the system as a whole has forevery entity Ei.5.2. Managing Reputation in Grid Networks. In [1, 14℄ several aspe
ts of trust values are
onsideredas part of a global reputation model. In this model it is assumed that the trust values de
ay with time. Itis also assumed that the trust model should stimulate organizations to san
tion entities who are not behaving
onsistently in the Grid environment and who break trust relations. Finally, it is assumed that trust relationshipsare based on a weighted
ombination of a dire
t relationship between domains and the global reputation of thedomains. The model is also based on
ontexts that, in Grids,
an be numerous, varying from exe
uting aspe
i�
 job, to storing information, downloading data, and using the network. To re�e
t more a

urately theterminology of the Grid, we repla
e the term domain with organization. We believe that the domain is not anappropriate division for trust within Grids.Our goal is to de�ne a formula for the trust relationship fun
tion Γ, based on the parameters time,
ontext,and the organizations involved.

• Let Oi and Oj denote two organizations.
• Let Γ(Oi, Oj , t, c) denote a trust relationship based on a spe
i�

ontext c at a given time t of Oi toward

Oj .Next we de�ne Γ with the help of the following fun
tions:
• Let Θ(Oi, Oj , t, c) denote a dire
t relationship for the
ontext c at time t of Oi towards Oj , whi
h is therelationship between neighboring organizations that have dire
t relationships between entities in both.
• Let Ω(Oj , t, c) denote the global reputation of Oj for the
ontext c at time t.
• Let DTT (Oi, Oj , c) denote a dire
t trust table entry of Oi for Oj for
ontext c. The table re
ords thetrust value from the last transa
tion between Oi and Oj .

Towards Reputable Grids 101
• Let Υ(t − tij , c) denote the de
ay fun
tion for spe
i�

ontext c, where t is
urrent time and tij is thetime of the last update of DTT or the time of the last transa
tion between Oi and Oj .In [1, 14℄, Γ(Oi, Oj , t, c) is
omputed as the weighted sum of dire
t relationship between domain and globalreputation of the domain:

Γ(Oi, Oj , t, c) = α · Θ(Oi, Oj , t, c) + β · Ω(Oj , t, c) (5.4)where α, β ≥ 0, α + β = 1.The dire
t relationship is a�e
ted by the time elapsed between interdomain
onta
ts, hen
e
Θ(Oi, Oj , t, c) = DTT (Oi, Oj , c) · Υ(t − tij , c) (5.5)The global trust for domain Oj is
omputed as

Ω(Oj , t, c) =

n∑

k=1

R(Ok, Oj) · RTT (Ok, Oj , c) · Υ(t − tkj , c)

n∑

k=1

(Ok)

(5.6)where R(Ok, Oj) is the re
ommender's trust level, and RTT is usually equal to DTT. Sin
e reputation isbased primarily on what organizations say about another domain, the re
ommender's trust fa
tor R(Ok, Oj)is introdu
ed to prevent
heating through
ollusion among a group of domains. Hen
e, R(Ok, Oj) is a valuebetween 0 and 1 and will have a higher value if Ok and Oj are unknown or have no prior relationship amongea
h other and a lower value if Ok and Oj are allies through, for example, a virtual organization relationship.6. GridEigenTrust Framework. In this se
tion we introdu
e more details about our proposed Grid-EigenTrust framework. We begin by pointing out some of the limitations of the two other approa
hes dis
ussedin Se
tion 5. Then, we show how one
an build a more advan
ed framework by
ombining the two approa
hes,while avoiding their limitations while applied to the Grid.The eigenvalue approa
h dis
ussed in 5.1 is expli
itly designed for P2P networks. It has not been appliedto the underlying ar
hite
ture of Grids that introdu
e virtual organizations, providing an obvious
lassi�
ationof resour
es, users, and their reputation that is needed to establish s
alability. The approa
h dis
ussed in [1℄has several limitations. First, as already pointed, the use of the term domain is not appropriate for Grids.Hen
e we have modi�ed the original formulation as shown in Se
tion 5.2. Se
ond, in
ase of a large numberof organizations, it will be
ostly to
ompute the global trust (Equation 5.6) be
ause we will have to
onsiderall relationships to in
rease a

ura
y. To improve s
alability, one
an
ompute the global trust among a setof neighbors; however, su
h a
omputation would represent only trust between neighbors but not a globaltrust value. Third, the authors suggest in their study limiting the number of
ontexts on. Spe
i�
ally, theauthors redu
ed the number of
ontexts in the study to only three: printing, storage, and
omputing. InGrid environments, however, we deal with many more
ontexts. An example is the evaluation of trust andreputation for network
hara
teristi
s, an essential part of any Grid infrastru
ture. Fourth, the fun
tion Υ,whi
h depends on the duration of the intera
tion between two organizations, must be
hosen
arefully. Webelieve that for
ontexts su
h as �le transfer, a time de
ay fun
tion may have to be
hosen far larger than thelongest �le transfer to be
onsidered, otherwise the de
ay fun
tion may invalidate the reputation even beforethe transa
tion is
ompleted. Hen
e, it will be ne
essary to introdu
e
lasses of similar
ontext, for example,for �le transfers with di�erent numbers of bytes. Another limitation is that in the
ase of networks the a
tualspeed between resour
es
ould vary, making it even more
omplex to obtain the proper trust values.We design a new algorithm,
alled Grid EigenTrust, that over
omes some of the limitations of these twoapproa
hes. We apply the EigenTrust algorithm explained in Se
tion 5.1 to address the problems of s
alabilityand multiple
ontexts; at the same time we introdu
e a global trust value based on the ability of institutions tomaintain a trusted Grid environment and provide the high-performan
e
ommunity with reputation servi
es.

102 G. von Laszewski, B. Alunkal, I. Veljkovi

Fig. 6.1. Example of a distribution of reputation management framework based on reputation servi
es in a Grid.7. GridEigenTrust Algorithm. We address the
omplexity issue by introdu
ing a set of reputationservi
es arranged in hierar
hi
al graphs. To illustrate this point, we
onsider the s
enario shown in Figure 6.1.In this s
enario, two VOs are depi
ted
ontaining two organizations ea
h. Ea
h organization has a set ofentities. Hen
e, we have introdu
ed an impli
it hierar
hy based on entities, institutions, and virtual organiza-tions. We assign a reputation to the entities in the lowest level. Based on the reputation of the entities, thereputation of the organization gets updated. Finally we
ompute the reputation of a virtual organization byusing the reputation values of all the organizations that belong to the virtual organization. Our reputationservi
e
an be reused and integrated in ea
h level of the hierar
hy.The number of reputation servi
es needed for a virtual organization or institution may vary based on itsimpli
it size, determined by the entities and the hierar
hy they de�ne. Ea
h reputation servi
e is responsiblefor a subset of entities within the hierar
hy. The reputation servi
es
ompute the reputation in a
ollaborative,but distributed, fashion. Under the assumption that the inter
hange of reputation data is se
ure and
an not
ompromised, and the time interval that a datum is valid is longer than the Smallest update, it may be possibleto distribute previous reputation values from entities in the network in order to redu
e the network overheadfor lookups through a simple
a
hing me
hanism. In order to
al
ulate and maintain the reputation, ea
hreputation servi
e uses the GridEigenTrust algorithm des
ribed in the next se
tion. To guarantee a

ura
y, thereputation servi
es must ex
hange messages with ea
h other in a se
ure way and the semanti
s of the reputationservi
e must be se
ured through a servi
e signature that
an be used to
learly identify wether the servi
e hasbeen tampered with.7.1. Cal
ulating Trust. To des
ribe our GridEigenTrust algorithm, we use the notation used in Se
tion5.2. To simplify our dis
ussion, we assume ea
h entity is in only one organization (
ompare Se
tion 3.1).We establish a trust value for ea
h entity based on various
ontexts it supports within an organization. Weuse the term organization trust to refer to a trust value for ea
h organization. Organization trust di�ers fromother
ontext trust in that it agglomerates several
ontext trust values to a single one. It re�e
ts a generalopinion of the reliability of an organization to provide a

urate information on what resour
es this organizationsupplies. As a result, a reliability trust between organizations
an be
al
ulated qui
kly to obtain the globaltrust. Although this strategy sounds initially
ounterintuitive, it is often used in an e
onomi
 model based onthe trust model through branding.By
ombining organization trust and the trust level of an entity within an organization (for a spe
i�

ontext c at time t), we derive a reliable trust value for the given entity. We apply the eigenve
tor mathemati
almodel to
ompute the global reputation of an organization. Currently, we
ompute the reputation of a virtualorganization as weighted sum of the reputations of all organizations that belong to the virtual organization.7.1.1. Cal
ulating the Trust of Entities. To des
ribe how an organization maintains trust parametersof its entities, we modify the notation from Se
tion 5.2. Sin
e we are
al
ulating trust values lo
ally, (i.e. within

Towards Reputable Grids 103an organization), we omit the �rst parameter in the fun
tion spe
i�
ation Θ, whi
h denotes the entity fromwhi
h the trust value was obtained.All entities that use resour
es or
ollaborate with users within another organization grade the quality andreliability of the requested entity. The overall grade of the entity is established as the weighted sum of theprevious grade (whi
h de
ays with time) and the new grade. It is also important to
onsider how mu
h we trustthe organization from whi
h the remote entity (i.e., entity that gives the grade) originates its requests.If Θp(Ei, ti, c) is the previous
umulative grade established at time ti for entity Ei within
ontext c, then
gij(t, c) is a new grade given by entity from organizationOj , and T (Oj), then reliability trust level of organization
Oj , is the overall new
umulative grade. Then, Θ(Ei, t, c)
an be
al
ulated as

Θ(Ei, t, c) =
α(c) · Θp(Ei, ti, c) · Υ(t − ti, c) + β(c) · T (Oj) · gij(t, c)

α(c) + β(c)
(7.1)where α(c), β(c) ≥ 0.Equation 7.1 is similar to Equation 5.5 from Se
tion 5.2. However, the parameters α(c) and β(c) re�e
t the
ontext importan
e of the latest grade the entity re
eived.If an organization just joined the Grid, the initial trust values will be set to a low initial value be
ause thetrust must be earned �rst. However, if the entity for whi
h we assign the trust is su�
iently similar to others inthe already existing Grid, an initial value
an be obtained from these integrated entities. We
hose the lowesttrust value and add as penalty a linear
orre
tion fun
tion.Let Θ0(Ei, t0, c) denote the initial trust value for an entity Ei within our organization for a
ontext c. Let

Θ(Ei, ti, c) denote the
umulative reputation value gathered from other entities (de�ned by equation (7.1)).Then the initial trust of the entity is the weighted sum of these two values:
Γ(Ei, t, c) =

γ(c) · Θ0(Ei, t0, c) + δ(c) · Θ(Ei, ti, c)

γ(c) + δ(c)
(7.2)where γ(c), δ(c) ≥ 0.7.1.2. Cal
ulating the Reliability Trust between Organizations. The reliability trust of organiza-tion Oi toward organization Oj re�e
ts the opinion of organization Oi about the quality and trustworthiness ofinformation organization Oj supplies. Therefore, besides maintaining individual
ontexts, we introdu
e global
ontext (
ompare Se
tion 5.2). We use a similar notation as in Se
tion 5.2, but we omit the parameter c. Ifwe have a priori knowledge about the initial trust information, we assign this value at initialization time of ouralgorithm.Let the initial value of trust be represented as C(Oj). Reliability trust should be obtained through theweighted sum of dire
t experien
e and global trust value of organization Oj .Dire
t experien
e
an be
al
ulated in the same way as in equation 7.1. It is a normalized weighted sumbetween C(Oj), the
umulative grade from the previous period Θp(Oi, Oj , tij) and the new grade G(t).Users within organization Oi grade the reputation of a
ertain entity Ej within organization Oj withgrade Φ(Ej). Also, organization Oj advertises the quality-of-servi
e of this entity with grade ∆(Ej). Then,organization Oi will grade reliability of information given by organization Oj with grade G(t). For determininggrade G(t) we have three
ases:

• If Φ ∈ [∆ − ǫ, ∆ − ζ], the new grade G(t) is 1.
• If Φ > ∆ − ζ, the new grade G(t) is bigger than 1.
• If Φ < ∆ − ǫ, the new grade G(t) is less than 1, depending on how mu
h the Φ di�ers from ∆Dire
t experien
e that organization Oi has with Oj at some time t, Θ(Oi, Oj , t)
an be
al
ulated in thesame way as in equation 7.1. It is a normalized weighted sum between C(Oj),
umulative grade from theprevious period Θp(Oi, Oj , tij) and the new grade G(t).

Θ(Oi, Oj , t) =
α · C(Oj) + β · Θp(Oi, Oj , tij) · Υ(t − tij) + γ · G(t)

α + β + γ
(7.3)where α, β, γ ≥ 0.

104 G. von Laszewski, B. Alunkal, I. Veljkovi
Global reliability trust of organization Oj , Ω(Oj , t)
an now be
al
ulated with the EigenTrust algorithmexplained in Se
tion 5.1. If we repla
e cij with Θ(Oi, Oj , t) in Se
tion 5.1, we obtain a matrix C = [Θ(Oi, Oj , t)],and initial ve
tor ~T0 = t0(i), t0(i) = C(Oi). Now we have all the ingredients to apply a power iteration for
omputing the prin
ipal eigenve
tor of CT , whi
h represents global reliability trust values for organizations inGrids.We
an summarize the basi
 steps of the algorithm as follows:Entity Ei within organization O1 wants to use entity Ej within organization O2 in the
ontext c at time t.
• Consider the reliability trust of O2
omputed using the EigenTrust algorithm, Ω(O2, t).
• Ask Ei about Γ(Ej , t, c), the trust value of organization Ej within organization O2.
• In
al
ulating the overall trust value for entity Ej , in formula (5.4) repla
e Ω(Ej , t, c) with Ω(O2, t) ·

Γ(Ej , t, c)
• Compute the overall trust for the entity Γ(Ei, Ej , t, c) with formulas (5.4) and (5.5).After
omputing the trust values, we
an
ompare them to suggest the resour
e with the highest reputation.Modi�
ations, su
h as the introdu
tion of a statisti
al sele
tion algorithm based on random variables, arepossible.This
ombined approa
h has several advantages. First, the algorithm
onverges rapidly and introdu
es lessoverhead than
omputing global trust values for individual entities within every
ontext. One of the reasonsis that the number of values for
omputation is not too large be
ause we are
omputing global trust values oforganizations through hierar
hies, not an overall pool of individual entities. Se
ond, organizations will makean e�ort to report a

urate trust information about their entities be
ause wrong information will be penalized,lowering the global trust of the organization.8. Reputation Servi
e Ar
hite
ture. The ar
hite
ture of an individual reputation servi
e is shown inFigure 8.1. It
onsists of a
olle
tion manager,
omputation manager, storage and
olle
tion manager, andreporter. The
olle
tion manager is responsible for evaluating the quality statement des
ribing the requestedreputation, and
olle
ting relevant data from the entities su
h as resour
es and users. It gives the
olle
teddata to the
omputation manager. The
omputation manager
omputes the reputation values of entities basedon the
ontext spe
i�ed and gives the result to the storage manager, whi
h stores the values to maintain aglobal and histori
al view. The reporter
onta
ts the storage manager to report the reputation values wheneverqueried by some entity in the Grid.

Fig. 8.1. Ar
hite
ture of a reputation servi
e.Hen
e, when an appli
ation submits a request for a servi
e
ast in a qualitative statement to the reputationservi
e, the reputation servi
e evaluates the statement and
omputes the reputation for all the entities providingthe required servi
e using the heuristi
s explained in Se
tion 7.1. It
onta
ts other reputation servi
es if requiredand returns the information regarding the servi
es and their reputation ba
k to the requester. The requester
an de
ide to sele
t the servi
e by looking at the reputation values. This pro
edure
an be easily modi�ed forenabling and enhan
ing automating resour
e sele
tion de
isions in the Grid.

Towards Reputable Grids 1059. Con
lusion and Future Work. In this paper, we have des
ribed a framework for
al
ulating repu-tation in Grid-based system. The paper was mostly fo
used on issues that have to be addressed while workingtoward Grid servi
es that integrate reputation
on
epts into their fun
tionality. We have identi�ed several ofthese issues. Se
ond we have experimented with an ar
hite
ture and algorithm to gain experien
e with this newarea of resear
h for the Grid
ommunity. We have identi�ed a framework and algorithm, that is a
ombinationof other resear
h e�orts. The underlying algorithm is based on introdu
ing a global trust value that is updatedwith an eigenvalue based trust
al
ulation algorithm. At present we are enhan
ing and evaluating our frameworkby introdu
ing a variety of reputation measurements that are
ontrolled through adaptive parameters.A
knowledgment. This work was supported by the Mathemati
al, Information, and Computational S
i-en
e Division subprogram of the O�
e of Advan
ed S
ienti�
 Computing Resear
h, O�
e of S
ien
e, U.S.Department of Energy, under Contra
t W-31-109-Eng-38. DARPA, DOE, and NSF support Globus Allian
eresear
h and development. The Java CoG Kit Proje
t is supported by DOE S
iDAC and NSF Allian
e. Wethank Dr. Paul E. Plassman and Kaizar Amin for detailed and insightful
omments on the paper. The algo-rithm des
ribed in this paper was �rst presented by Gregor von Laszewski in the Workshop on Adaptive GridMiddleware, in New Orleans, LA, September 28, 2003. A draft publi
ation of part of the material that waspresented is authored by B. K. Alunkal I. Veljkovi
, G. von Laszewski, and K. Amin. This draft is availablefrom http://www.m
s.anl.gov/�gregor REFERENCES[1℄ Evolving and Managing Trust in Grid Computing Systems, Hotel Fort Garry, Winnipeg, Manitoba, Canada, May 12-15 2002,IEEE Computer So
iety Press. Available from World Wide Web: http://www.
s.m
gill.
a/~anrl/PUBS/

e
e2002_farag.pdf.[2℄ R. Al-Ali, K. Amin, G. von Laszewski, O. Rana, and D. Walker, An OGSA-based Quality of Servi
e Framework,in GCC2003, Shanghai, 2003. Available from World Wide Web:http://www.m
s.anl.gov/~gregor/papers/vonLaszewski--qos.pdf.[3℄ amazon. Web page. Available from World Wide Web: http://www.amazon.
om.[4℄ K. Amin, M. Hategan, G. von Laszewski, A. Rossi, S. Hampton, and N. J. Zaluze
, GridAnt: A Client-ControllableGrid Work�ow System, in 37th Hawai'i International Conferen
e on System S
ien
e, Island of Hawaii, Big Island, 5-8 Jan.2004. Available from World Wide Web: http://www.m
s.anl.gov/~gregor/papers/vonLaszewski--gridant-hi
s.pdf.[5℄ F. Berman, G. C. Fox, and T. Hey, eds., Grid Computing: Making The Global Infrastru
ture a Reality, Wiley, 2003.[6℄ S. Brin and L. Page, The Anatomy of a Large-S
ale Hypertextual Web Sear
h Engine, Computer Networks and ISDNSystems, 30 (1998), pp. 107�117. Available fromWorld Wide Web: http://www-db.stanford.edu/~ba
krub/google.html.[7℄ Internetworking te
hnology handbook, quality of servi
e. Web Page, visited De
. 2004. Available from World Wide Web:http://www.
is
o.
om/univer
d/

/td/do
/
isintwk/ito_do
/qos.htm.[8℄ C net. Web Page. Available from World Wide Web: http://www.
net.
om.[9℄ ebay. Web page. Available from World Wide Web: http://www.ebay.
om.[10℄ I. Foster and C. Kesselman, eds., The Grid 2: Blueprint for a New Computing Infrastru
ture, Morgan KaufmannPublishers, De
. 2003.[11℄ D. Gambetta, ed., Trust, Bla
kwell, 1990,
h. Chapter 4: Trust as a Commodity, pp. 49�72.[12℄ T. H. Haveliwala and S. D. Kamvar, The Se
ond Eigenvalue of the Google Matrix. Web page. Available from WorldWide Web: http://www.stanford.edu/~sdkamvar/papers/se
ondeigenvalue.pdf.[13℄ W. Heisenberg, Uber quantentheoretishe umdeutung kinematisher und me
hanisher beziehungen, Zeits
hrift fr Physik, 33(1925), pp. 879�893.[14℄ The International Asso
iation for Computers and Communi
ations, Integrating Trust into Grid Resour
e Manage-ment Systems, Van
ouver, B.C., Canada, Aug. 18-21 2002, IEEE Computer So
iety Press. Available from World WideWeb: http://www.
s.umanitoba.
a/~anrl/PUBS/i
pp2002_farag.pdf.[15℄ S. D. Kamvar, T. H. Haveliwala, and G. H. Golub, Adaptive Methods for the Computation of Page Rank. Web page.Available from World Wide Web: http://www.stanford.edu/~sdkamvar/papers/adaptive.pdf.[16℄ S. D. Kamvar, M. T. S
hlosser, and H. Gar
ia-Molina, The eigentrust algorithm for reputation management in p2pnetworks, in Twelfth International World Wide Web Conferen
e, 2003, Budapest, Hungary, May 20-24 2003, ACM Press.Available from World Wide Web:
iteseer.nj.ne
.
om/arti
le/kamvar03eigentrust.html.[17℄ A. Mowshowitz, Virtual organization: a vision of management in the information age, The Information So
iety, 10 (1994),pp. 267�288.[18℄ G. von Laszewski and K. Amin, Middleware for Commni
ations, in Grid Middleware, Wiley, 2004, pp. 109�130. Availablefrom World Wide Web: http://www.m
s.anl.gov/~gregor/papers/vonLaszewski--grid-middleware.pdf.[19℄ G. von Laszewski, S. Fitzgerald, I. Foster, C. Kesselman, W. Smith, and S. Tue
ke, A Dire
tory Servi
e for Con-�guring High-Performan
e Distributed Computations, in Pro
eedings of the 6th IEEE Symposium on High-Performan
eDistributed Computing, 5-8 Aug. 1997, pp. 365�375. Available from World Wide Web:http://www.m
s.anl.gov/~gregor/papers/fitzgerald--hpd
97.pdf.[20℄ G. von Laszewski, J. Gawor, C. J. Peña, and I. Foster, InfoGram: A Peer-to-Peer Information and Job SubmissionServi
e, in Pro
eedings of the 11th Symposium on High Performan
e Distributed Computing, Edinbrough, U.K.,

106 G. von Laszewski, B. Alunkal, I. Veljkovi
24-26 July 2002, pp. 333�342. Available from World Wide Web:http://www.m
s.anl.gov/~gregor/papers/vonLaszewski--infogram.ps.[21℄ G. von Laszewski and P. Wagstrom, Gestalt of the Grid, in Tools and Environments for Parallel and DistributedComputing, Series on Parallel and Distributed Computing, Wiley, 2004, pp. 149�187. Available from World Wide Web:http://www.m
s.anl.gov/~gregor/papers/vonLaszewski--gestalt.pdf.[22℄ G. von Laszewski, M. Westbrook, I. Foster, E. Westbrook, and C. Barnes, Using Computational Grid Capabilitiesto Enhan
e the Ability of an X-Ray Sour
e for Stru
tural Biology, Cluster Computing, 3 (2000), pp. 187�199. Availablefrom World Wide Web: http://www.m
s.anl.gov/~gregor/papers/vonLaszewski--dtrek.pdf.Edited by: Wilson Rivera, Jaime Seguel.Re
eived: July 8, 2003.A

epted: September 1, 2003.

S
alable Computing: Pra
ti
e and Experien
eVolume 6, Number 3, pp. 107�115. http://www.s
pe.org ISSN 1895-1767
© 2005 SWPSNON-DEDICATED DISTRIBUTED ENVIRONMENT: A SOLUTION FOR SAFE ANDCONTINUOUS EXPLOITATION OF IDLE CYCLESR. C. NOVAES∗ , P. ROISENBERG∗ , R. SCHEER∗ , C. NORTHFLEET∗ , J. H. JORNADA∗, AND W. CIRNE†Abstra
t. The Non-Dedi
ated Distributed Environment (NDDE) aims to muster the idle pro
essing power of intera
tive
omputers (workstations or PCs) into a virtual resour
e for parallel appli
ations and grid
omputing. NDDE is novel in the sensethat it allows for safe and
ontinuous use of idle
y
les. Di�erently from existing solutions, NDDE appli
ations run inside avirtual ma
hine rather than on the user environment. Besides safe and
ontinuous
y
le exploitation, this approa
h enables NDDEappli
ations to run on an operating system other than that used intera
tively. Our preliminary results suggest that NDDE
an infa
t harvests most of the idle
y
les and has almost no impa
t on the intera
tive user.Key words. Grid Computing, Virtual Ma
hines, Idle Cy
les.1. Introdu
tion. Modern desktop
omputers and workstations have powerful
omputational
apabilitiesthat are used primarily to provide short response times to the user's daily a
tivities like word pro
essing,spreadsheet
al
ulations or web page rendering. Most of the time, however, this pro
essing power is idle,waiting for o

asional user inputs or requests. During this unused periods that
an range from fra
tions of ase
ond (e.g. between user keystrokes) to hours, the operating system normally exe
utes an "idle" pro
ess, whi
his a dummy pro
ess with the lowest priority on the system, so it runs only when there is no other pro
ess orservi
e needing to be exe
uted. The pro
essing
apa
ity used to run this idle pro
ess is in fa
t being wasted.The Non-Dedi
ated Distributed Environment (NDDE) aims to potentially use all of this fragmented idletime from most or all the ma
hines
onne
ted to a network. This will
reate a very low
ost virtual resour
ewith only minimal interferen
e on the normal operation of the intera
tive users. Su
h a virtual resour
e
an bedire
tly used to run parallel appli
ation or
an be a
omponent of a large
omputational grid.Of
ourse, this is not a new idea. Systems like Condor [1℄ and SETI�home [2℄ are
lassi
 examples ofsu

essful exploitation of idle
y
les to do useful
omputation. NDDE di�ers from these in the sense that itallows for safe and
ontinuous use of idle
y
les. It is safe be
ause it is mu
h harder for a mali
ious guestappli
ation to tamper with user data and environment. It is
ontinuous be
ause it avoids the �intera
tive versusidle� resour
es di
hotomy. That is, NDDE enables both environments to run
on
urrently so the workstationdoes not need to be totally idling to make its resour
es available. It
an exploit idle resour
es in a mu
h �nergrain.Safe and
ontinuous idle exploitation is possible be
ause NDDE appli
ations run inside a virtual ma
hinerather than on the user environment. Note that, additionally, this approa
h enables NDDE appli
ations to runon operating system other than that used intera
tively.We have
ondu
ted some initial experiments to (i) gauge how mu
h of the idle
y
les NDDE
an in fa
tdeliver for a parallel or grid appli
ation, and (ii) measure its impa
t on the intera
tive users. In a nutshell,NDDE
an in fa
t harvests most of the idle
y
les and has almost no impa
t on the intera
tive user. However,it displays a noti
eable overhead for I/O intensive appli
ations.The reminder of this paper is organized as follows. The next se
tion surveys the state of the art in exploringidle
y
les. Then, we introdu
e NDDE, presenting its features and ar
hite
ture. Finally, we give a performan
eoverview of this environment and
on
lude with an outlook on future work.2. Exploiting Idle Cy
les. The use of many resour
es to ta
kle a single problem dates ba
k (at least)to the 1970's. The
onventional approa
h sin
e then has been to use dedi
ated platforms for running parallelappli
ations. These platforms are generally assembled as parallel super
omputers (su
h as IBM SP2 and CrayT3E) or dedi
ated Beowulf
lusters [3℄.On the other hand, there are also appli
ations that
an use non-dedi
ated resour
es, running opportunis-ti
ally when resour
es are idle. Sin
e non-dedi
ated resour
es are mu
h
heaper than dedi
ated resour
es,mu
h e�ort has been spent to ease using su
h idle resour
es. Therefore, we have seen in the 1980's the intro-du
tion of systems su
h as Condor, whi
h enabled parallel appli
ations to e�e
tively bene�t from
y
les that
∗Hewlett-Pa
kard Brazil {reynaldo.novaes, paulo.roisenberg, roque.s
heer,
aio.north�eet, joao.jornada}�hp.
om.
†Federal University of Campina Grande. walfredo�ds
.uf
g.edu.br.107

108 R. C. Novaes, P. Roisenberg, R. S
heer, C. North�eet, J. H. Jornada and W. Cirnewould otherwise be wasted. More re
ently, SETI�home showed that this approa
h
ould s
ale up to planetaryproportions.However, in traditional idle harvesting systems as
an be seen in Condor and SETI�home, the guest parallelappli
ation runs in the user environment (i.e., as a pro
ess in the user operating system). This
reates a se
urity
on
ern. Sin
e the parallel appli
ation runs as a normal pro
ess inside the user's environment, it may be ableto exploit some se
urity brea
hes and
ause damage. There are two possible solutions for this problem. The�rst is to exe
ute the guest appli
ation in an emulated platform, like Java. The se
ond is to reboot the ma
hineand run a
ompletely independent operating system from where the guest appli
ation has no a

ess to the userenvironment.Systems like HP's I-Cluster [4℄ and vCluster [5℄ implement a solution based on reboot motivated by se
urity
on
erns. These systems, upon dete
ting that there is no user a
tivity, reboot the ma
hine, entering in adi�erent, separated operating system, in whi
h the guest appli
ation runs. This approa
h requires a separatedpartition to hold the parallel environment and it addresses the se
urity
on
erns providing a separated operatingsystem and �le system, preserving user data. As an extra advantage, the parallel appli
ation
an run on anoperating system di�erent from the one that serves the intera
tive user. For example, in I-Cluster and vCluster,Windows
aters for intera
tive users, while parallel appli
ations run on Linux.One drawba
k of this approa
h is that it requires a reboot to swit
h between the two operating systemsand this operation has an impa
t on the intera
tive user. This is be
ause swit
hing between operating systemsis not instantaneous. It takes tens of se
onds, in the best
ase. In order to minimize su
h an impa
t, I-Clusterand vCluster keep tra
k of the usage of the ma
hine to try to predi
t when the intera
tive user will need itagain. This predi
tion is used to avoid rebooting the ma
hine into
luster mode when the user is expe
ted togo in a
tivity soon, as well as to reboot ba
k into intera
tive mode in anti
ipation of the user's need. Of
ourse,any user a
tivity also prompts the swit
h ba
k to the intera
tive operating system.Other systems, whi
h run guest appli
ations
on
urrently with lo
al user appli
ations like SETI�home, usea di�erent approa
h for harvesting idle
y
les. They monitor user a
tivity using operating system features, likea s
reensaver.However, no matter whi
h approa
h the system uses, it will always try to minimize the impa
t in the inter-a
tive user. Therefore, the predi
tion of the user idleness is
ru
ial for swit
hing and
on
urrent approa
hes. Ina perfe
t world, the user should not noti
e the exploitation of idle
y
les. An issue that
ompli
ates matters isthat sometimes the user is not intera
ting with the ma
hine but she is waiting for a task to be
ompleted, likea download. This means that idleness dete
tion me
hanism must monitor many of the system's parameters to
orre
tly dete
t user a
tivity.Unfortunately, the above approa
hes impose a limit on how many idle
y
les one
an harvest. First, foridleness predi
tion based systems, idle
y
les will be really wasted be
ause in order to
ause minimal impa
t onthe user, the system has to be somewhat
onservative, keeping the system in intera
tive mode. Se
ondly, fors
reensaver-based systems, the user might be intera
ting with the
omputer, but using only a small fra
tion ofits pro
essing power (e.g., when the user is typing text) but the system will be seen as a
tive. In both
asesidle
y
les will be being wasted.In short, using the s
reensaver or rebooting the ma
hine to safely exploit idle
y
les seems to be e�e
tivewhen there are big
hunks of idle time. Su
h s
hemes are not e�e
tive at harvesting fragmented idle time.The NDDE addresses these problems. It allows for the safe exploitation of idle
y
les, just as I-Cluster andvCluster, but is also able to harvest fragmented idle time, unlike I-Cluster and vCluster. Another feature thatdistinguishes our approa
h from the implementations listed above is that, being based on a virtual ma
hine, it
an provide a more homogenous exe
ution environment.3. NDDE. The NDDE is part of a group of proje
ts hosted by HP Brazil that aim to provide simplesolutions for exploiting unused
omputational resour
es for grid or
luster usage. The target resear
h subje
ts arenon-dedi
ated
omputers in
orporations and edu
ational institutions. This resear
h in
ludes the developmentof environment swit
hing pro
esses using reboot or in
on
urrent mode, like the solution presented here.NDDE improves upon original I-Cluster and vCluster proje
ts. It presents a di�erent approa
h to exploreidle time, based on the premise that there are unused
y
les even when the user is intera
ting with the
omputer.The NDDE implements a virtual ma
hine inside the user's system, running a separated operating system thathas its own address spa
e and �le system. The parallel appli
ations run
on
urrently with the user's appli
ations.Although the
ore of this idea (grid
omputing using virtual ma
hines) is not new, as we
an see in paper of

Non-dedi
ated Distributed Environment 109Figueiredo et al. [6℄, our
ontribution is that we propose to in
rease the availability of a non-dedi
ated ma
hineto the grid or
luster using as many idle
y
le as possible, with minor impa
t on the intera
tive user's a
tivities.Using this approa
h the system does not require any spe
ial a
tion, like rebooting, to be
ome an a
tive
luster resour
e. The guest operating system runs in a user-mode virtual ma
hine, whi
h has restri
ted a

essto user's system resour
es, thus parallel appli
ations
an be safely exe
uted. In order to isolate the user'senvironment, the virtual ma
hine
an only a

ess data inside its �le system that is entirely
ontained inside asingle �le on user's ma
hine. The main advantages on this approa
h are:1. The guest environment is isolated from the user environment. The appli
ations running on the guestOS have their own address and storage spa
e and the a

ess to system resour
e is made through asoftware layer provided by the virtual ma
hine.2. There is no noti
eable swit
hing time between the two di�erent environments (user and parallel).3. There is no instru
tion set
onversion, only system
alls
onversion. So the overhead for CPU intensiveappli
ations is minimum.4. The user does not need to be aware about exploitation of idle
y
les. The only requirement may bethat the user should leave the ma
hine always turned on.5. It in
reases the availability of the node to be exploited as a
luster resour
e. Any idle time, no matterhow small it is,
an be used to perform
luster tasks.Fig. 3.1 shows the basi
 ar
hite
ture model for the solution. The virtual ma
hine a
ts like a native ap-pli
ation and runs
on
urrently with other appli
ations on the user's ma
hine. The virtual ma
hine
an beimplemented using open sour
e tools like Plex86 [7℄ or
ommer
ial produ
ts like VMware [8℄. Another optionis to use User-Mode Linux for Windows (Umlwin32) [9℄, but it la
ks the se
urity o�ered by the virtual ma
hineimplementations. In all
ases, the user ma
hine's resour
es are shared between the native appli
ations and thevirtual ma
hine.The virtual ma
hine runs its own instan
e of an operating system,
alled 'guest system', that provides a

essto the virtual ma
hine's emulated storage spa
e and
ontrols the use of other resour
es like virtual memory spa
eand network a

ess. All parallel appli
ation a

esses to system resour
es are made through the Host SystemCall
onverter, whi
h
onverts the virtual ma
hine system
alls to equivalent host operating system
alls. CPUintensive appli
ations (the typi
al appli
ation on parallel environments) run near native ma
hine speed sin
ethere is no ma
hine instru
tion emulation. The parallel appli
ations are loaded in the virtual ma
hine addressspa
e and feel as if they are on a dedi
ated ma
hine. Note also that parallel appli
ations
ompatible with theguest operating system do not need to be
hanged or re
ompiled to run on this environment.To improve the se
urity, we
ould also restri
t or
ompletely eliminate the virtual ma
hine's ability toa

ess the network. A trusted appli
ation on the host OS would be responsible for transferring
ode and datain and out from the guest �le system. This solution is very similar to Entropia [10℄ that o�ers a "sandboxed"environment for safe task exe
ution.
Host System resources

Guest System kernel

Host System call converter

Guest

Application 1

Guest

Application 2

Guest

Application n

...

Guest file system

Native applications

Virtual Machine

Fig. 3.1. NDDE basi
 ar
hite
tureTo not interfere with the regular users of the
omputers, the virtual ma
hines will be made to run as thepro
ess with one of the lowest priorities on the system, having only slightly higher priority than the operatingsystem's own �idle� pro
ess. This way the virtual ma
hine will be exe
uted by the operating system onlywhen there is no other pro
ess or servi
e able to run, but will be
hosen to be run by the operating system

110 R. C. Novaes, P. Roisenberg, R. S
heer, C. North�eet, J. H. Jornada and W. Cirneinstead of the operating system's own �idle� pro
ess. When there are regular appli
ations running, the NDDEenvironment,
omposed by the virtual ma
hine and its own appli
ations, will be automati
ally preempted andmaintained by the host operating system in a �ready-to-run� state, so it
an
ontinue to run as soon as there isno regular pro
esses or servi
es running.4. Performan
e Evaluation. In order to verify the usability of the NDDE two sets of tests were per-formed. The �rst one gauges the performan
e an appli
ation
an attain via NDDE. The se
ond one measuresthe impa
t on the regular intera
tive usage of the ma
hine.4.1. Ben
hmark Environment. The test environment
onsisted of a pair of HP e-PC 42, a Pentium 41.7 GHz ma
hine with 256MB of memory. The host operating system was Mi
rosoft Windows 2000 Professional.The guest operating system was Linux Red Hat 8.0 and used OpenSSI version 0.9.6r3 [11℄ as the basi
 parallelpro
essing environment.At the beginning two implementations for running the guest environment were
onsidered: Umlwin32 andVMware. The VMware was
hosen due to the UMLWin32's early development stage. In the tests des
ribedhere, the guest operating system runs under VMware Workstation version 3.2.0
on�gured with 128 MB ofmemory.4.2. Performan
e of Parallel Appli
ations. The tests aim to measure the overall performan
e NDDEmakes available for the guest appli
ations. LLCBen
h, whi
h is a
ombined set of syntheti
 ben
hmarks, wasused to make these tests. It is the
ombination of BLASBen
h [12℄, MPBen
h [13℄, and Ca
heBen
h [14℄.MPBen
h is used to measure the
ommuni
ation performan
e of MPI [15℄. Ca
heBen
h has been
hosen todetermine the virtual ma
hine's memory subsystem performan
e. Finally, BLASBen
h is used to measure theperforman
e of a CPU-bound appli
ation.In order to evaluate the performan
e impa
t, a baseline test was performed. These tests, referred as 'NativeLinux' in the graphs, use ma
hines exe
uting OpenSSI in native mode, without any emulation.The idea behind these tests was to verify the performan
e penalties imposed by this approa
h, that is, anexe
ution environment running
on
urrently with a
ompletely di�erent operating system. For sure these testsare generi
 and only basi
 usability issues are addressed.The following tests were performed: one group of tests for memory a

ess simulation, shown in Fig. 4.1,Fig. 4.2 and Fig. 4.3, one test for simulating CPU intensive appli
ations, shown in Fig. 4.4 and, �nally, a testregarding the network bandwidth, shown in Fig. 4.5.These graphs show the average results of ea
h test after several runs.The Fig. 4.1, Fig. 4.2 and Fig. 4.3 show that VMware has some in�uen
e on
a
he operation that is almost
onstant for all
a
he size. We spe
ulate that this performan
e loss is probably due to page fault handling inthe virtual ma
hine but further investigation is required to
on�rm this theory.The BLAS performan
e test, shown in Fig. 4.4, also shows that VMware adds little overhead to the guestenvironment for CPU intensive appli
ations.The Fig. 4.5 shows that the network operations su�er noti
eable losses imposed by the I/O hardwareemulation implemented by virtual ma
hine. This happens be
ause the guest appli
ation sees a �double OS� onevery a

ess to network devi
es, that needs to be handled �rst by the guest OS and later again by the host OS.The same situation happens for all �le a

ess, as des
ribed by Sugerman et al. [16℄.These tests show that the virtual ma
hine solution is best suited for CPU-intensive appli
ations but maynot be suited for network or I/O intensive tasks.4.3. Impa
t on the User. In order to evaluate the impa
t of NDDE on normal intera
tive usage, weele
ted editing a huge �le with Mi
rosoft Word 2000 as ar
hetypi
al representative of a ma
hine's intera
tiveusage. This huge �le had 151MB in size, with 2,623,919 words in 14,211 pages. Considering that we were usinga ma
hine with 256 MB of memory and VMware was
on�gured to emulate a ma
hine with 128 MB of memory,this �le size (151 MB) is expe
ted to
ause Mi
rosoft Word Pro
essor to generate some swapping a
tivity.In the guest operating system, two test appli
ations were developed. One is a CPU
onsuming appli
ation,whi
h exe
utes a
ontinuous loop. The other appli
ation is both CPU and memory
onsuming. This appli
ationallo
ates 100 MB and exe
utes a
ontinuous loop tou
hing every page by
hanging the
ontents of a few byteson ea
h of them to for
e the pages to be marked as dirty. So, the guest operating system needs to save their
ontents to the swap �le in
ase it needs to release pages to make room for user appli
ations.The tests were grouped in four distin
t s
enarios:

Non-dedi
ated Distributed Environment 111

435

440

445

450

455

460

465

470

475

480

256 512 1024 2048 4096 8192 16384 32768 65536 131072

M
B

/S
ec

Vector Length in Bytes

Native Linux
Linux on VMware

Fig. 4.1. Ca
heBen
h Read Performan
e1. A baseline ma
hine just with the user appli
ation (Mi
rosoft Word 2000 editing the 151 MB �le)2. A ma
hine with the same user appli
ation and just the guest operating system exe
uting in VMware(no appli
ation exe
uting on it)3. Same as s
enario 2, but exe
uting a CPU bound appli
ation in the virtual ma
hine4. Same as s
enario 2, but exe
uting a CPU and memory bound appli
ation in the virtual ma
hineIn ea
h s
enario, four operations were exe
uted:1. Starting of the appli
ation (Mi
rosoft Word) and huge do
ument load2. Go to the end of the do
ument3. Sele
t the �statisti
s� tab option in do
ument properties4. Repla
e a
hara
ter at the end of do
ument and measuring the time to save itThe
ompletion time for ea
h operation was measured, a

ording to Table 4.1.Table 4.1Average resulting time (min:se
)Baseline VMware only CPU bound CPU + memory boundLoad 0:39 0:41 0:41 0:48Go to end 5:47 5:56 5:57 6:02Properties 4:18 4:25 4:26 4:26Save 3:00 3:10 3:12 3:26The results shown in Table 4.1 are the mean value of several exe
utions. There is only minor impa
t on theregular user operation for most s
enarios, and even the impa
t of the
on
urren
y for memory was a

eptablein this test. Considering the gain of allowing the ma
hine to a
t as a
luster node
on
urrently with normalma
hine operation, the impa
t on the regular user side seems to be a

eptable.It is interesting to point out that literature reports
ases where the
ompetition for memory introdu
ed byguest appli
ation
ause serious problems for the intera
tive use of the ma
hine [17℄. This would o

ur whenthe intera
tive appli
ations are sleeping and thus
an get swapped out to disk when the guest appli
ation needsto allo
ate more memory. We
ould not reprodu
e su
h a behavior. We
onje
ture that this is due to the

112 R. C. Novaes, P. Roisenberg, R. S
heer, C. North�eet, J. H. Jornada and W. Cirne

1600

1700

1800

1900

2000

2100

2200

2300

256 512 1024 2048 4096 8192 16384 32768 65536 131072

M
B

/S
ec

Vector Length in Bytes

Native Linux
Linux on VMware

Fig. 4.2. Ca
heBen
h Write Performan
e

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

256 512 1024 2048 4096 8192 16384 32768 65536 131072

M
B

/S
ec

Vector Lenght in Bytes

Native Linux
Linux on VMware

Fig. 4.3. Ca
heBen
h Read/Modify/Write Performan
e

Non-dedi
ated Distributed Environment 113

0

100

200

300

400

500

600

700

800

2 4 8 16 32 64 128

M
flo

ps
/S

ec

Problem Size

Native Linux
Linux on VMware

Fig. 4.4. BLASBen
h Performan
efa
t VMware's memory was limited to 128 MB. In previous experiments reported in the literature, the guestappli
ations had no expli
it memory limit.5. Con
lusions. In this arti
le we des
ribed NDDE, an alternative way to explore the idle time of in-tera
tive
omputers, turning a set of su
h
omputers into a virtual resour
e for parallel appli
ations and grid
omputing. NDDE is novel be
ause it allows for safe and
ontinuous use of idle
y
les. It is safe in the sensethat it is mu
h harder for a mali
ious guest appli
ation to tamper with user data and environment. It is
ontin-uous be
ause it
an also harvest fragmented idle time. Moreover, sin
e NDDE appli
ations run inside a virtualma
hine rather than on the user environment, this approa
h enables NDDE appli
ations to run on an operatingsystem other than that used intera
tively.An analysis was
arried out to establish the performan
e of appli
ations that run on NDDE. The resultsshow that NDDE is best indi
ated when the parallel appli
ations are
omputationally intensive. Appli
ationsthat are I/O-intensive may be impa
ted by the intrinsi
 limitations of the implementation of virtual ma
hines.The impa
t on the normal usage of the ma
hine was also measured. The me
hanism of using low priority onthe virtual ma
hine keeps the impa
t on the user to a minimum.The next steps in this work will be going in three dire
tions. First, we intend to evaluate NDDE morethoroughly, re�ning it where ne
essary. This in
ludes (i) further investigating the apparentresilien
e of NDDE to memory
ompetition with the host appli
ations, (ii) evaluation of the per
entageof idle time that is available to be harvested on a typi
al enterprise or a
ademi
 network, and (iii) redu
e theoverhead for parallel appli
ations that are heavily based on internode
ommuni
ations. Some real world datais being
olle
ted in order to
ompare the total of
y
les harvested in this solution with a s
reensaver-based orreboot-based solution.One relevant result in this work is the performan
e loss observed in network-bounded appli
ations. Thisissue motivates us to perform some measurements to determine the appli
ation granularity that the guestappli
ation should have to make the transferen
e times be a

eptable.All the investigation topi
s des
ribed above will help us to see if this solution is pro�table when
omparedto dedi
ated and swit
hed environments. Se
ond, it might be worthwhile to
ombine NDDE's and I-Cluster'sapproa
h into a hybrid s
heme. For example, most ma
hines are totally idle during the night. We
ould thus

114 R. C. Novaes, P. Roisenberg, R. S
heer, C. North�eet, J. H. Jornada and W. Cirne

0

100

200

300

400

500

600

700

800

2 4 8 16 32 64 128

M
flo

ps
/S

ec

Problem Size

Native Linux
Linux on VMware

Fig. 4.5. MPBen
h Bandwidththink of using I-Cluster during the night and NDDE during the day. Third, we intend to explore NDDE as asandboxing platform for MyGrid [18℄, enabling grid appli
ations that
ross administrative boundaries. Note thatsu
h grid appli
ations raise espe
ially serious se
urity issues, making the use of NDDE te
hnology parti
ularlyrelevant.A
knowledgements. The authors wish to express their sin
ere thanks to the AGridM'03 reviewers fortheir insightful
omments. REFERENCES[1℄ M. Litzkow, M. Livny and M. Mutka, A Hunter of Idle Workstations, Pro
eedings of the 8th International Conferen
eof Distributed Computing Systems, pp. 104�111, June 1988.[2℄ D. Anderson, J. Cobb and E. Korpela, SETI�home: An Experiment in Publi
-Resour
e Computing, Communi
ationof the ACM, vol. 45, no. 11, pp. 56�61, November 2002.[3℄ D. Ridge, D. Be
ker, P. Merkey and T. Sterling, Beowulf: Harnessing the Power of Parallelism in a Pile-of-PCs,Pro
eedings of IEEE Aerospa
e, 1997.[4℄ B. Ri
hard and P. Augerat, I-Cluster: Intense
omputing with untapped resour
es, MPCS'02, Is
hia, Italy, April 2002.[5℄ C. A. F. De Rose, F. Blan
o, N. Maillard, K. Saikoski, R. Novaes and B. Ri
hard, The virtual
luster: a dynami
environment for exploitation of idle network resour
es, Pro
eedings of 14th Symposium on Computer Ar
hite
ture andHigh Performan
e Computing (SBAC-PAD'2002), pp. 141�148, Vitï¿½ia, ES, Brazil, 2002.[6℄ R. J. Figueiredo, P. A. Dinda and J. A. B. Fortes, A Case for Grid Computing on Virtual Ma
hines, Pro
eedings ofInternational Conferen
e on Distributed Computing Systems (ICDCS), April 2003.[7℄ K. Lawton, The new Plex86 x86 Virtual Ma
hine Proje
t, WWW, August 2003. http://plex86.sour
eforge.net/.[8℄ VMware, VMware Workstation - Powerful Virtual Ma
hine Software for the Te
hni
al Professional , WWW, April 2003.http://www.vmware.
om/pdf/ws_spe
s.pdf.[9℄ C. Kudige, Umlwin32 , WWW, Mar
h 2003. http://umlwin32.sour
eforge.net/.[10℄ A. A. Chien, B. Calder and S. Elbert, Entropia: Ar
hite
ture and Performan
e of an Enterprise Desktop Grid System,Journal of Parallel Distributed Computing, vol. 63, no. 5, pp. 597�610, May 2003.[11℄ B. J. Walker, OpenSSI Linux Cluster Proje
t, WWW, April 2003. http://openssi.org/ssi-intro.pdf.[12℄ National S
ien
e Foundation, BLAS (Basi
 Linear Algebra Subprograms), WWW, Mar
h 2003.http://www.netlib.org/blas/.[13℄ P. J. Mu

i, K. London and J. Thurman, The MPBen
h Report, November 1998. WWW, Mar
h 2003.http://i
l.
s.utk.edu/proje
ts/ll
ben
h/mpben
h.pdf.

Non-dedi
ated Distributed Environment 115[14℄ P. J. Mu

i, K. London and J. Thurman, The Ca
heBen
h Report, November 1998. WWW, Mar
h 2003.http://i
l.
s.utk.edu/proje
ts/ll
ben
h/
a
heben
h.pdf.[15℄ Message Passing Interfa
e Forum, MPI: A Message Passing Interfa
e Standard , May 1994.[16℄ J. Sugerman, G. Venkita
halam and B. Lim, Virtualizing I/O Devi
es on VMware Workstation's Hosted Virtual Ma
hineMonitor , Pro
eedings of the USENIX Annual Te
hni
al Conferen
e, June 2001.[17℄ T. E. Anderson, D. E. Culler, D. A. Patterson and the NOW Team, A Case for Networks of Workstations: NOW,IEEE Mi
ro, February 1995.[18℄ W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F. Brasileiro, J. Sauvï¿½ F. A. Barbosa da Silva,C. Osthoff Barros and C. Silveira, Running Bag-of-Tasks Appli
ations on Computational Grids: The MyGridApproa
h, Pro
eedings of the ICCP'2003 - International Conferen
e on Parallel Pro
essing, WWW, O
tober 2003.http://walfredo.ds
.ufpb.br/resume.html#publi
ations.Edited by: Wilson Rivera, Jaime Seguel.Re
eived: July 9, 2003.A

epted: September 1, 2003.

AIMS AND SCOPEThe area of s
alable
omputing has matured and rea
hed a point where new issues and trends require a pro-fessional forum. SCPE will provide this avenue by publishing original refereed papers that address the presentas well as the future of parallel and distributed
omputing. The journal will fo
us on algorithm development,implementation and exe
ution on real-world parallel ar
hite
tures, and appli
ation of parallel and distributed
omputing to the solution of real-life problems. Of parti
ular interest are:Expressiveness:
• high level languages,
• obje
t oriented te
hniques,
•
ompiler te
hnology for parallel
omputing,
• implementation te
hniques and their e�-
ien
y.System engineering:
• programming environments,
• debugging tools,
• software libraries.Performan
e:
• performan
e measurement: metri
s, evalua-tion, visualization,
• performan
e improvement: resour
e allo
ationand s
heduling, I/O, network throughput.

Appli
ations:
• database,
•
ontrol systems,
• embedded systems,
• fault toleran
e,
• industrial and business,
• real-time,
• s
ienti�

omputing,
• visualization.Future:
• limitations of
urrent approa
hes,
• engineering trends and their
onsequen
es,
• novel parallel ar
hite
tures.Taking into a

ount the extremely rapid pa
e of
hanges in the �eld SCPE is
ommitted to fast turnaroundof papers and a short publi
ation time of a

epted papers.INSTRUCTIONS FOR CONTRIBUTORSProposals of Spe
ial Issues should be submitted to the editor-in-
hief.The language of the journal is English. SCPE publishes three
ategories of papers: overview papers,resear
h papers and short
ommuni
ations. Ele
troni
 submissions are preferred. Overview papers and short
ommuni
ations should be submitted to the editor-in-
hief. Resear
h papers should be submitted to the editorwhose resear
h interests mat
h the subje
t of the paper most
losely. The list of editors' resear
h interests
anbe found at the journal WWW site (http://www.s
pe.org). Ea
h paper appropriate to the journal will berefereed by a minimum of two referees.There is no a priori limit on the length of overview papers. Resear
h papers should be limited to approx-imately 20 pages, while short
ommuni
ations should not ex
eed 5 pages. A 50�100 word abstra
t should bein
luded.Upon a

eptan
e the authors will be asked to transfer
opyright of the arti
le to the publisher. Theauthors will be required to prepare the text in LATEX2ε using the journal do
ument
lass �le (based on theSIAM's siamltex.
lo do
ument
lass, available at the journal WWW site). Figures must be prepared inen
apsulated PostS
ript and appropriately in
orporated into the text. The bibliography should be formattedusing the SIAM
onvention. Detailed instru
tions for the Authors are available on the PDCP WWW site athttp://www.s
pe.org.Contributions are a

epted for review on the understanding that the same work has not been publishedand that it is not being
onsidered for publi
ation elsewhere. Te
hni
al reports
an be submitted. Substantiallyrevised versions of papers published in not easily a

essible
onferen
e pro
eedings
an also be submitted. Theeditor-in-
hief should be noti�ed at the time of submission and the author is responsible for obtaining thene
essary
opyright releases for all
opyrighted material.

