SCALABLE COMPUTING
Practice and Experience

Volume 6, Number 3, September 2005

ISSN 1895-1767

SWPS

EDITOR-IN-CHIEF

Marcin Paprzycki

Institute of Computer Science
Warsaw School of Social Psychology
ul. Chodakowska 19/31

03-815 Warszawa

Poland
marcin.paprzycki@swps.edu.pl
http://mpaprzycki.swps.edu.pl

MANAGINIG EDITOR

Pawel B. Myszkowski
Institute of Applied Informatics
Wroctaw University of Technology
Wyb. Wyspianskiego 27

Wroctaw 51-370, POLAND

pawel.myszkowski@pwr.wroc.pl

SOFTWARE REVIEWS EDITORS

Hong Shen

Graduate School

of Information Science,
Japan Advanced Institute
of Science & Technology
1-1 Asahidai, Tatsunokuchi,
Ishikawa 923-1292, JAPAN

shen@jaist.ac.ip

Domenico Talia
ISI-CNR c¢/o DEIS
Universita della Calabria,
87036 Rende, CS, ITALY

talia@si.deis.unical.it

TECHNICAL EDITOR

Alexander Denisjuk
Elblag University

of Humanities and Economy
ul. Lotnicza 2

82-300 Elblag, POLAND
denisjuk@euh-e.edu.pl

EDITORIAL BOARD

Peter Arbenz, Swiss Federal Inst. of Technology, Ziirich,
arbenz@inf.ethz.ch

Dorothy Bollman, University of Puerto Rico,
bollman@cs.uprm.edu

Luigi Brugnano, Universita di Firenze,
brugnano@math.unifi.it

Bogdan Czejdo, Loyola University, New Orleans,
czejdo@beta.loyno.edu

Frederic Desprez, LIP ENS Lyon,
Frederic.Desprez@inria.fr

David Du, University of Minnesota, du@cs.umn.edu

Yakov Fet, Novosibirsk Computing Center, fet@ssd.sscc.ru

Len Freeman, University of Manchester,
len.freeman@manchester.ac.uk

Ian Gladwell, Southern Methodist University,
gladwell@seas.smu.edu

Andrzej Goscinski, Deakin University, ang@deakin.edu.au

Emilio Hernandez, Universidad Simén Bolivar, emilio@usb.ve

David Keyes, Old Dominion University, dkeyes@odu.edu

Vadim Kotov, Carnegie Mellon University, vkotov@cs.cmu.edu

Janusz Kowalik, Gdarnsk University, j.kowalik@comcast.net

Thomas Ludwig, Ruprecht-Karls-Universitét Heidelberg,
t.ludwig@computer.org

Svetozar Margenov, CLPP BAS, Sofia,
margenov@parallel.bas.bg

Oscar Naim, Oracle Corporation, oscar.naim@oracle.com

Lalit M. Patnaik, Indian Institute of Science,
lalit@micro.iisc.ernet.in

Dana Petcu, Western University of Timisoara,
petcu@info.uvt.ro

Hong Shen, Japan Advanced Institute of Science & Technology,
shen@jaist.ac.ip

Siang Wun Song, University of Sao Paulo, song@ime.usp.br

Boleslaw Szymariski, Rensselaer Polytechnic Institute,
szymansk@cs.rpi.edu

Domenico Talia, University of Calabria, talia@deis.unical.it

Roman Trobec, Jozef Stefan Institute, roman. trobec@ijs.si

Carl Tropper, McGill University, carl@cs.mcgill.ca

Pavel Tvrdik, Czech Technical University,
tvrdik@sun.felk.cvut.cz

Marian Vajtersic, University of Salzburg,
marian@cosy.sbg.ac.at

Jan van Katwijk, Technical University Delft,
J.vanKatwijk@its.tudelft.nl

Lonnie R. Welch, Ohio University, welch@ohio.edu

Janusz Zalewski, Florida Gulf Coast University,
zalewski@fgcu.edu

SUBSCRIPTION INFORMATION: please visit http://www.scpe.org

Scalable Computing: Practice and Experience

Volume 6, Number 3, September 2005

TABLE OF CONTENTS

Editorial: Challenges Concerning Symbolic Computations on Grids iii
Dana Petcu

Guest Editors’ Introduction v
Wilson Rivera and Jaime Seguel

The GridWay Framework for Adaptive Scheduling and Execution on
Grids 1
Eduardo Huedo, Rubén S. Montero and Ignacio M. Llorente

Parrot: Transparent User-Level Middleware for
Data-IntensiveComputing 9
Douglas Thain and Miron Livny

Satin: Simple and Efficient Java-based Grid Programming 19
Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann
and Henri E. Bal

Run-time Adaptation of Grid Data Placement Jobs 33
G. Kola, T. Kosar and M. Livny

JuxMem: An Adaptive Supportive Platform for Data Sharing on the
Grid 45
G. Antoniu, L. Bougé and M. Jan

Progressive Retrieval and Hierarchical Visualization of Large Remote

Data 57
Hans-Christian Hege, Andrei Hutanu, Ralf Kdihler, André Merzky,
Thomas Radke, Edward Seidel and Brygg Ullmer

An Adaptive File Distribution Algorithm for Wide Area Network 67
Takashi Hoshino, Kenjiro Taura and Takashi Chikayama

Network Scheduling for Computational Grid Environments 85
Martin Swany and Rich Wolski
Toward Reputable Grids 95

G. von Laszewski, Beulah Kurian Alunkal and Ivana Veljkovic

Non-Dedicated Distributed Environment: A Solution for Safe and

Continuous Exploitation of Idle Cycles 107
R. C. Nowvaes,d P. Roisenberg, R. Scheer, C. Northfleet, J. H. Jornada
and W. Cirne.

(© SWPS, Warszawa 2005

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 6, Number 3, pp. iii-iv. http://www.scpe.org © 2005 SWPS

0,..

EDITORIAL: CHALLENGES CONCERNING SYMBOLIC COMPUTATIONS ON GRIDS

Symbolic and algebraic computations are currently ones of fastest growing areas of scientific computing.
For a long time, the numerical approach to computational solution of mathematical problems had an advantage
of being capable of solving a substantially larger set of problems than the other approach, the symbolic one.
Only recently the symbolic approach gained more recognition as a viable tool for solving large-scale problems
from physics, engineering or economics, reasoning, robotics or life sciences. Developments in symbolic com-
puting were lagging relative to numerical computing, mainly due to the inadequacy of available computational
resources, most importantly computer memory, but also processor power. Continuous growth in the capabilities
of computer hardware led naturally to an increasing interest in symbolic calculations and resulted, among others
things, in development of sophisticated Computer Algebra Systems (CASs).

CASs allow users to study computational problems on the basis of their mathematical formulations and
to focus on the problems themselves instead of spending time transforming the problems into forms that are
numerically solvable. While their major purpose is to manipulate formulas symbolically, many systems have
substantially extended their capabilities, offering nowadays functionalities like graphics allowing a comprehensive
approach to problem solving. While, typically, CAS systems are utilized in an interactive mode, in order to
solve large problems they can be also used in a batch mode and programmed using languages that are close to
common mathematical notation.

As CASs become capable of solving large problems, they follow the course of development that has already
been taken by numerical software: from sequential computers to parallel machines to distributed computing and
finally to the grid. It is particularly the grid that has the highest potential as a discovery accelerator. Currently,
its widespread adoption is still impeded by a number of problems, one of which is difficulty of developing and
implementing grid-enabled programs. That it is also the case for grid-enabled symbolic computations.

There are several classes of symbolic and algebraic algorithms that can perform better in parallel and
distributing computing environments. For example for multiprecision integer arithmetic, that appears among
others in factorizations, were developed already twenty years ago systolic algorithms and implementations on
massive parallel processors, and more recently, on the Internet. Another class that utilize significant amount of
computational resources is related to the implementations of polynomial arithmetic: knowledge based algorithms
such as symbolic differentiation, factorization of polynomials, greatest common divisor, or, more complicated,
Groebner base computations. For example, in the latest case, the size of the computation and the irregular
data structures make the parallel or distributed implementation not only an attractive option for improving the
algorithm performance, but also a challenge for the computational environment. A third class of algorithms
that can benefit from multiple resources in parallel and distributed environments is concerning the exact solvers
of large systems of equations.

The main reason driving the development of parallel and distributed algorithms for symbolic computations
is the ability to solve problems that are memory bound, i.e. that cannot fit into memory of a single computer. An
argument for this statement relies on the observation that the input size of a symbolic or algebraic computation
can be small, but the memory used in the intermediate stages of the computation may grow considerably.

Modern CASs increase their utility not only through new symbolic capabilities, but also expending their
applicability using visualization or numerical modules and becoming more than only specific computational
kernels. They are real problem solving environments based on interfaces to a significant number of computational
engines. In this context it appears also the need to address the ability to reduce the wall-clock time by using
parallel or distributed computing environment. A simple example is the case of rendering the images for a
simulation animation.

Several approaches can be identified in the historical evolution of parallel and distributed CASs: developing
versions for shared memory architectures, developing computer algebra hardware, adding facilities for communi-
cation and cooperation between existing CASs, or building distributed systems for distributed memory parallel
machines or even across Internet.

Developing completely new parallel or distributed systems, although efficient, in most cases is rather difficult.
Only a few parallel or distributed algorithms within such a system are fully implemented and tested. Still there
are several successful special libraries and systems falling in this category: ParSac-2 system, the parallel version
of SAC-2, Paclib system, the parallel extension of Saclib, FLATS based on special hardware, STAR/MPI, the
parallel version of GAP, ParForm, the parallel version of Form, Cabal, MuPAD, or the recent Givaro, for parallel

iii

iv Dana Petcu

computing environments, FoxBox or DSC, for distributed computing environments.

An alternative approach to build parallel and distributed CASs is to add the new value, the parallelism or
the distribution, to an existing system. The number of parallel and distributed versions of most popular CASs
is impressive and it can be explained by the different requirements or targeted architectures. For example, for
Maple there are several implementations on parallel machines, like the one for Intel Paragon or |[Maple||, and
several implementations on networks of workstations, like Distributed Maple or PVMaple. For Mathematica
there is a Parallel Computing Toolkit, a Distributed Mathematica and a gridMathematica (for dedicated clus-
ters). Matlab that provides a Symbolic Math Toolbox based on a Maple kernel has more than twenty different
parallel or distributed versions: DP-Toolbox, MPITB/PVMTB, MultiMatlab, Matlab Parallelization Toolkit,
ParMatlab, PMI, MatlabMPI, MATmarks, Matlabxp, Conlab, Otter and others.

More recent web-enabled systems were proved to be efficient in number theory for finding large prime
numbers, factoring large numbers, or finding collisions on known encryption algorithms. Online systems for
complicated symbolic computations were also built: e.g. OGB for Groebner basis computations. A framework
for description and provision of web-based mathematical services was recently designed within the Monet project
and a symbolic solver wrapper was build to provide an environment that encapsulates CASs and expose their
functionalities through symbolic services (Maple and Axiom were chosen as computing engines). Another plat-
form is MapleNet build on client-server architecture: the server manages concurrent Maple instances launched
to server client requests for mathematical computations. WebMathematica is a similar system that offers access
to Mathematica applications through a web browser.

Grid-oriented projects that involve CASs were only recent initiated. The well-known NetSolve system was
one of the earliest grid system developed. Version 2 released in 2003 introduces GridSolve for interoperability
with the grid based on agent technologies. APIs are available for Mathematica, Octave and Matlab. The
Genss project (Grid Enabled Numerical and Symbolic Services) follows the ideas of the Monet project and
intends also to combine grid computing and mathematical web services using a common agent-based framework.
Several projects are porting Matlab on grids: from small ones, like Matlabxg, to very complex ones, like
Geodise. Maple2g and MathGridLink are two different approaches for grid-enabled version of Maple and
Mathematica. Simple to use front-end were recently build in projects like Gemlca and Websolve to deploy
legacy code applications as grid services and to allows the submission of computational requests.

The vision of grid computing is that of a simple and low cost access to computing resources without artificial
barriers of physical location or ownership. Unfortunately, none of the above mentioned grid-enabled CAS is
responding simultaneously to some elementary requirements of a possible implementation of this vision: deploy
grid symbolic services, access within CAS to available grid services, and couple different grid symbolic services.

Moreover a number of major obstacles remain to be addressed. Amongst the most important are mechanisms
for adapting to dynamic changes in either computations or systems. This is especially important for symbolic
computations, which may be highly irregular in terms of data and general computational demands. Such
demands received until now relatively little attention from the research community.

In the context of a growing interest in symbolic computations, powerful computer algebra systems are
required for complex applications. Freshly started projects shows that porting a CAS to a current distributed
environment like a grid is not a trivial task not only from technological point of view but also from algorithmic
point of view. Already existing tools are allowing experimental work to be initiated, but a long way is still to
be cross until real-world problems will be solved using symbolic computations on grids.

Dana Petcu,
Western University of Timisoara.

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 6, Number 3, p. v. http://www.scpe.org © 2005 SWPS

0,..

GUEST EDITORS’ INTRODUCTION

Grid computing focuses on building a large-scale computing infrastructure by linking computing facilities
at many distributed locations. Significant effort has been spent in the design and implementation of middleware
software for enabling Grid computing systems. These software packages have been successfully deployed and it
is now possible to build clusters beyond the boundaries of a single local area network. However, the challeng-
ing problem of dynamically allocating resources in response to application requests for computational services
remains unsolved. Adaptive middleware is software that resides between the application and the computer
operating system and enables an application to adapt to changing availability of computing and networking
resources. The papers for this special issue, presented for the First International Workshop on Adaptive Grid
Middleware (AGridM2003), convey state-of-the-art adaptive Grid middleware and deliver important new scien-
tific results of interest to the whole community.

Wilson Rivera,
Jaime Seguel,
University of Puerto Rico at Mayaguez.

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 6, Number 3, pp. 1-8. http://www.scpe.org © 2005 SWPS

0,..

THE GRIDWAY FRAMEWORK FOR ADAPTIVE SCHEDULING AND EXECUTION ON
GRIDS*

EDUARDO HUEDOT, RUBEN S. MONTERO?, AND IGNACIO M. LLORENTES

Abstract.

Many research and engineering fields, like Bioinformatics or Particle Physics, are confident about the development of Grid
technologies to provide the huge amounts of computational and storage resources they require. Although several projects are
working on creating a reliable infrastructure consisting of persistent resources and services, the truth is that the Grid will be a
more and more dynamic entity as it grows. In this paper, we present a new tool that hides the complexity and dynamicity of the
Grid from developers and users, allowing the resolution of large computational experiments in a Grid environment by adapting the
scheduling and execution of jobs to the changing Grid conditions and application dynamic demands.

Key words. grid technology, bioinformatics, adaptive scheduling, adaptive execution.

1. Introduction. Grid environments inherently present the following characteristics [6]: multiple admin-
istration domains, heterogeneity, scalability, and dynamicity or adaptability. These characteristics completely
determine the way scheduling and execution on Grids have to be done. For example, scalability and multiple
administration domains prevent the deployment of centralized resource brokers, with total control over client
requests and resource status. On the other hand, the dynamic resource characteristics in terms of availability,
capacity and cost, make essential the ability to adapt job execution to these conditions.

Moreover, the emerging of Grid technology has led to a new generation of applications that relies on
its own ability to adapt its execution to changing conditions [5]. These new self-adapting applications take
decisions about resource selection as their execution evolves, and provide their own performance activity to
detect performance slowdown. Therefore self-adapting applications can guide their own scheduling.

To deal with the dynamicity of the Grid and the adaptability of the applications two techniques has been
proposed in the literature, namely:

1. Adaptive scheduling, to allocate pending jobs to grid resources considering the available resources, their
current status, and the already submitted jobs.

2. Adaptive execution, to migrate running jobs to more suitable resources based on events dynamically
generated by both the Grid and the application.

The AppLeS [9] project has previously dealt with the concept of adaptive scheduling. AppLeS is currently
focused on defining templates for characteristic applications, like APST for parameter sweep and AMWAT for
master/worker applications. Also, the Nimrod/G [10] resource broker dynamically optimizes the schedule to
meet, user-defined deadline and budget constraints. On the other hand, the need of a nomadic migration [14]
approach for adaptive erecution on a Grid environment has been previously discussed in the context of the
GrADS [8] project.

In the following sections, we first explain the need for an adaptive scheduling and execution of jobs due to the
dynamicity of both the Grid and the application demands. Then, in Section 3, we show a Grid-aware application
model. In Section 4, we present how the Grid Way framework provides support for adaptive scheduling and
execution. In Section 5, we show some results obtained in the UCM-CAB research testbed with a Bioinformatics
application. Finally, in Section 6, we provide some conclusions and hints about our future work.

2. Adaptive Scheduling and Execution. Grid scheduling or superscheduling [11], has been defined in
the literature as the process of scheduling resources over multiple administrative domains based upon a defined
policy in terms of job requirements, system throughput, application performance, budget constraints, deadlines,

*This research was supported by Ministerio de Ciencia y Tecnologia (research grant TIC 2003-01321) and Instituto Nacional de
Técnica Aeroespacial (INTA).

T Laboratorio de Computacién Avanzada, Centro de Astrobiologia (CSIC-INTA), 28850 Torrejon de Ardoz, Spain
(huedoce@inta.es).

¥ Departamento de Arquitectura de Computadores y Automéatica, Universidad Complutense, 28040 Madrid, Spain
(rubensm@dacya.ucm.es).

§ Departamento de Arquitectura de Computadores y Automatica, Universidad Complutense, 28040 Madrid, Spain
(1lorente@dacya.ucm.es) & Laboratorio de Computacién Avanzada, Centro de Astrobiologia (CSIC-INTA), 28850 Torrejon de
Ardoz, Spain (martinli@inta.es).

2 Eduardo Huedo, Rubén S. Montero and Ignacio M. Llorente

etc. In general, this process includes the following phases: resource discovery and selection; and job preparation,
submission, monitoring, migration and termination [18].

Adaptive scheduling is the first step to deal with the dynamicity of the Grid. The schedule is re-evaluated
periodically based on the available resources and their current characteristics, pending jobs, running jobs and
history profile of completed jobs. Several projects [9, 10] have clearly demonstrated that periodic re-evaluation
of the schedule in order to adapt it to the changing conditions, can result in significant improvements in both
performance and fault tolerance.

In the case of adaptive execution, job migration is the key issue [15]. In order to obtain a reasonable degree
of both application performance and fault tolerance, a job must be able to migrate among the Grid resources
adapting itself to the resource availability, load (or capacity) and cost; and to the application dynamic demands.

Consequently, the following migration circumstances, related to the changing conditions and self-adapting
features both discussed in Section 1, should be considered in a Grid environment:

1. Grid-initiated migration:
e A “better” resource is discovered (opportunistic migration [16]).
e The remote resource or its network connection fails (failover migration).
e The submitted job is canceled or suspended.
2. Application-initiated migration:
e Performance degradation or performance contract violation is detected in terms of application
intrinsic metrics.
e The resource demands of the application change (self-migration).

The fundamental aspect of adaptive execution is the recognition of changing conditions of both Grid re-
sources and application demands. In order to achieve such functionality, we propose a Grid-aware application
model, which includes self-adapting functionality, and a submission agent that provides the runtime mechanisms
needed to adapt the execution of the application. The application must be equipped with the functionality
needed to support the application-initiated migration circumstances, while the agent is continuously watching
the occurrence of the Grid- and application-initiated migration circumstances.

3. Application Model for Self-Adapting Applications. The standard application model requires
modifications to be Grid-aware. In the following list (see figure 3.1) we detail the extension of the classi-
cal application paradigm in order to take advantage of the Grid capabilities and to be aware of its dynamic
conditions:

e A requirement expression is necessary to specify the application requirements that must be met by
the target resources. This file can be subsequently updated by the application to adapt its execution
to its dynamic demands. The application could define an initial set of requirements and dynamically
change them when more, or even less, resources are required.

e A ranking expressionis necessary to dynamically assign a rank to each resource, in order to prioritize
the resources that fulfill the requirements according to the application runtime needs. A compute-
intensive application would assign a higher rank to those hosts with faster processors and lower load,
while a data-intensive application could benefit those hosts closer to the input data [16].

e A performance profile is advisable to keep the application performance activity in terms of appli-
cation intrinsic metrics, in order to detect performance slowdown. For example, it could maintain the
time consumed by the code in the execution of a set of given fragments, in each cycle of an iterative
method or in a set of given input/output operations.

Due to the high fault rate and the dynamic rescheduling, restart files are highly advisable. Migration is
commonly implemented by restarting the job on the new candidate host, so the job should generate restart files
at regular intervals in order to restart execution from a given point. However, for some application domains
the cost of generating and transferring restart files could be greater than the saving in compute time due to
checkpointing. Hence, if the checkpointing files are not provided the job should be restarted from the beginning.
User-level checkpointing managed by the programmer must be implemented because system-level checkpointing
is not possible among heterogeneous resources.

The application source code does not have to be modified if the application is not required to be self-adaptive.
However, our infrastructure requires changing the source code or inserting instrumentation instructions in
compiled code when the application takes decisions about resource selection and provides its own performance
activity.

The GridWay Framework for Adaptive Scheduling and Execution on Grids 3

PERFORMANCE
DEGRADATION
EVALUATOR

Performance
Profile

Output Files

Std. Input
Std. Output ~ APPLICATION
= RESOURCE
Std. Error pRateiien
Resource
Requirements|

-—— > Rank
Expression

Restart File

Fic. 3.1. Model for self-adapting applications.

With self-adapting capabilities, an application could initially define a minimal set of requirements and, after
it begins to run, it can change them to a more restricted set. In this way, the application will have more chances
to find a resource to run on, and once running, it will migrate only if the candidate resource worths it.

Note also that if the application is divided in several phases, each one with different requirements, it could
change them progressively to be more or less restrictive. In this way, the application does not have to impose
the most restricted set of requirements at the beginning, since it limits the chance for the application to begin
execution (see Section 5.3.2). Moreover, the application have the choice to make the requirement change optional
or mandatory, i.e. it can check if the current resource meets the new requirements, otherwise it may request a
(self-)migration.

4. Grid Way Support for Adaptive Scheduling and Execution. Grid Way is a new experimental
framework based on Globus [4] that allows an easier and more efficient execution of jobs on a dynamic Grid
environment in a “submit and forget” fashion. The core of the Grid Way framework [13] is a personal submission
agent that performs all the scheduling stages [18] and watches over the correct and efficient execution of jobs.
Adaptation to changing conditions is achieved by dynamic rescheduling: once the job is initially allocated, it is
rescheduled when a migration circumstance (discussed in Section 2) is detected.

Job execution is performed in three stages by the following modules, which can be defined on a per job
basis:

e The prolog module, which prepares the remote system and stages the input files.

e The wrapper module, which executes the actual job and returns its exit code.

e The epilog module, which stages the output files and cleans up the remote system.

Migration is performed by combining the above stages. First, the wrapper is canceled (if it is still running),
then the prolog is submitted to the new candidate resource, preparing it and transferring to it all the needed
files, including the restart files from the old resource. After that, the epilog is submitted to the old resource
(if it is still available), but no output file staging is performed, it only cleans up the remote system. Finally, the
wrapper is submitted to the new candidate resource.

The submission agent uses the following modules, which also can be defined on a per job basis, to provide
the application with the support needed for implementing self-adapting functionality:

e The resource selector module, which evaluates the requirement and ranking expressions when the
job has to be scheduled or rescheduled. Different strategies for resource selection can be implemented,
from the simplest one based on a pre-defined list of hosts to more advanced strategies based on require-
ment filtering, and resource ranking in terms of performance models.

e The performance evaluator module, which periodically evaluates the application’s
performance profile in order to detect performance slowdown and so request a rescheduling action.

4 Eduardo Huedo, Rubén S. Montero and Ignacio M. Llorente

Different, strategies could be implemented, from the simplest one based on querying the Grid infor-
mation services about system status information to more advanced strategies based on detection of
performance contract violations.

The submission agent also provides the application with the fault tolerance capabilities needed in such a
faulty environment:

e The GRAM [1] job manager notifies submission failures as GRAM callbacks. This kind of failures
includes, among others, connection, authentication, authorization, RSL parsing, executable or input
staging, credential expiration. ..

e The job manager is probed periodically at each polling interval. If the job manager does not respond,
the GRAM gatekeeper is probed. If the gatekeeper responds, a new job manager is started to resume
watching over the job. If the gatekeeper fails to respond, a resource or network occurred. This is the
approach followed by Condor-G [12].

e The standard output of prolog, wrapper and epilog is parsed in order to detect failures. In the case of
the wrapper, this is useful to capture the job exit code, which is used to determine whether the job was
successfully executed or not. If the job exit code is not set, the job was prematurely terminated, so it
failed or was intentionally canceled.

When an unrecoverable failure is detected, the submission agent retries the submission of prolog, wrapper
or epilog a number of times specified by the user and, when no more retries are left, it performs an action chosen
by the user among two possibilities: stop the job for manually resuming it later, or automatically reschedule it.

We have developed both an API (subset of the DRMAA [17] standard proposed in the GGF [3]) and a
command line interface to interact with the submission agent. They allow scientists and engineers to express
their computational problems in a Grid environment. The capture of the remote execution exit code allow users
to define complex jobs, where each depends on the output and exit code from the previous job. They may even
involve branching, looping and spawning of subtasks, allowing the exploitation of the parallelism on the work
flow of certain type of applications.

Our framework is not bounded to a specific class of applications, does not require new services, and does
not necessarily require source code changes. The framework is currently functional on any Grid testbed based
on Globus. We believe that is an important advantage because of socio-political issues: cooperation between
different organizations, administrators, and users can be very difficult.

5. Experiences.

5.1. The Target Application. We have tested our tool with a Bioinformatics application aimed at
predicting the structure and thermodynamic properties of a target protein from its amino acid sequences.
The algorithm, tested in the 5th round of Critical Assessment of techniques for protein Structure Prediction
(CASP5), aligns with gaps the target sequence with all the 6150 non-redundant structures in the Protein Data
Bank (PDB), and evaluates the match between sequence and structure based on a simplified free energy function
plus a gap penalty term. The lowest scoring alignment found is regarded as the prediction if it satisfies some
quality requirements. For each sequence-structure pair, the search of the optimal alignment is not exhaustive.
A large number of alignments are constructed in parallel through a semi-deterministic algorithm, which tries to
minimize the scoring function.

To speed up the analysis and reduce the data needed, the PDB files are preprocessed to extract the contact
matrices, which provide a reduced representation of protein structures. The algorithm is then applied twice, the
first time as a fast search, in order to select the 100 best candidate structures, the second time with parameters
allowing a more accurate search of the optimal alignment.

We have applied the algorithm to the prediction of thermodynamic properties of families of orthologous
proteins, i.e. proteins performing the same function in different organisms. If a representative structure of this
set is known, the algorithm predicts it as the correct structure. The biological results of the comparative study
of several proteins are presented elsewhere [19, 7].

5.2. Experiment Preparation. We have modified the application to provide a restart file and a
performance profile. The architecture independent restart file stores the best candidate proteins found
to that moment and the next protein in the PDB to analyze. The performance profile stores the time
spent on each iteration of the algorithm, where an iteration consists in the analysis of a given number of
sequences.

The GridWay Framework for Adaptive Scheduling and Execution on Grids)

TABLE 5.1
The UCM-CAB research testbed.
Name Architecture 0S Speed | Memory | Job mgr. | VO
ursa 1x UltraSPARC-IIe | Solaris | 500MHz 256 MB fork UCM
draco 1xUltraSPARC-I Solaris | 167TMHz 128MB fork UCM
pegasus || 1xPentium 4 Linux 2.4GHz 1GB fork UCM
solea 2x UltraSPARC-II Solaris | 296 MHz 256 MB fork UCM
babieca || 5xAlpha EV6 Linux | 466MHz | 256MB PBS CAB

Initially, the application does not impose any requirement to the resources, so the requirement expression
is null. The ranking expression uses a performance model to estimate the job turnaround time as the sum
of execution and transfer time, derived from the performance and proximity of the candidate resources [16].

The resource selector consists of a shell script that queries the MDS [2] for potential execution hosts.
Initially, available compute resources are discovered by accessing the GIIS server and those resources that do
not meet the user-provided requirements are filtered out. At this step, an authorization test (via GRAM ping
request) is performed on each discovered hosts to guarantee user access. Then, the resource is monitored to
gather its dynamic status by accessing its local GRIS server. This information is used to assign a rank to
each candidate resource based on user-provided preferences. Finally, the resultant prioritized list of candidate
resources is used to dispatch the jobs.

In order to reduce the information retrieval overhead, the GIIS and GRIS information is locally cached at
the client host and updated independently in order to separately determine how often the testbed is searched
for new resources and the frequency of resource monitoring. In the following experiments we set the GIIS cache
timeout to 5 minutes and the GRIS cache timeout to 30 seconds.

The performance evaluator is another shell script that parses the performance profile and detects per-
formance slowdown when the last iteration time is greater than a given threshold.

The whole experiment, was submitted as an array job, where each sequence was analyzed in a separate task
of the array, specifying all the needed information in a job template file.

The experiment files consists of: the executable (0.5MB) provided for all the resource architectures in the
testbed, the PDB files shared and compressed (12.2MB) to reduce the transfer time, the parameter files (1KB),
and the file with the sequence to be analyzed (1KB). The final file name of the executable and the file with
the sequence to be analyzed is obtained by resolving the variables GW_ARCH and GW_TASK_ID, respectively, at
runtime for the current host and job. Input files can be local or remote (specified as a GASS o GridFTP URL),
and both can be compressed (to be uncompressed on the selected host) and declared as shared (then stored in
the GASS cache and shared by all the jobs submitted to this resource).

5.3. Results on the UCM-CAB Testbed. We have performed the experiments in the UCM-CAB
research testbed, which is summarized in table 5.1.

5.3.1. Detection of a Performance Degradation. Let us first consider an experiment consisting in
five tasks, each of them applies the structure prediction algorithm to a different sequence of the ATP Synthase
enzyme (epsilon chain) present in different organisms. Shortly after submitting the experiment, pegasus was
overloaded with a compute-intensive application.

Figure 5.1 shows the execution profile in this situation, along with the load in pegasus that caused the
performance degradation, and the progress of job 0, obtained from its performance profile. Initially four
tasks are allocated to babieca and one to pegasus. When the performance evaluator detects the performance
degradation, it requests a job migration. Since there is a slot available in babieca, the job is migrated to it
although it presents lower performance. In spite of the overhead induced by job migration, 6% of the total
execution time, job 0 ends before the rest of jobs, because of the better performance offered by pegasus before
it became saturated.

5.3.2. Mandatory Change in Resource Requirements. In the following experiment, we have ap-
plied the structure prediction algorithm to five sequences of the Triosephosfate Isomerase enzyme, which is
considerably larger than the previous one, present in different organisms.

6 Eduardo Huedo, Rubén S. Montero and Ignacio M. Llorente

[] Prologuing Subm. on pegasus [_] Pending E Migrating
Subm. on babieca [l Epiloguing

‘. Job load [[] Other load [] Idle‘

100%

90%

Performance 80%

| gaiaton| | S

O
=
O 30%
o

20%

I —
N N T

o
0 5 10 15 20 001 2 3 456 7 8 9 1011 12 13 14 15 16 17 18 19 2
Time (minutes) Time (minutes)

10%

+ Adaptive Execution » Static Execu(ion‘

22 /:
e

c 14 /

s A
S 1ol | EaN
- / / // }2"’ phase s!art‘

' \—{ Performance degradalion‘

0123 4586 7 8 9 10111213 141516 17 18 19 20
Time (minutes)

FiG. 5.1. Ezecution profile (top), load in pegasus (middle), and progress of job 0 (bottom) when a performance degradation
is detected.

As mentioned in Section 5.1, the target application is divided in two different phases. First, a fair analysis
is performed to get the 100 best candidate proteins, and then, a more exhaustive analysis is performed to get
the 20 best candidate proteins from the 100 obtained in the first phase. As the second phase analysis performs
a more accurate sequence alignment and the target sequence is quite large, it needs more memory than the first
phase analysis. Therefore, the application change its resource requirements before starting the second phase to
assure that it has enough memory (512MB). The only resource that meets the requirements of the second phase
is pegasus.

Figure 5.2 shows the execution profile in this situation. Job 0 starts execution on pegasus, while jobs 1 to
4 start execution on babieca. When job 0 completes its execution, job 1 detects that pegasus has become free
and migrates to it, since it presents a better rank (opportunistic job migration). After that, jobs 2 to 4 request
a self-migration as they have changed their requirements to complete the second phase of the protein analysis
and babieca doesn’t meet them. Jobs 0 and 1 also changed their requirements before, but its execution host
in that moment (pegasus) met them, so they could continue with their execution. As pegasus is busy with job
1, jobs 2 to 4 have to wait until it becomes available. These jobs are submitted consecutively to pegasus (see
figure 5.2) to complete the second phase of the protein analysis.

6. Conclusions. We have shown an effective way for providing adaptive scheduling and execution on
Grids. The presented framework does not necessarily require source code changes in the applications, but with
minimal changes, applications could benefit from the self-adapting features also provided.

On the scope of the target application, these promising experiments show the potentiality of the Grid to
the study of large numbers of protein sequences, and suggests the possible application of this methods to the
whole set of proteins in a complete microbial genome.

The GridWay Framework for Adaptive Scheduling and Execution on Grids 7

[] Prologuing Subm. on babieca [| Pending E Migrating
Subm. on pegasus [ll Epiloguing

Time (minutes)

Fic. 5.2. Ezecution profile when a mandatory change in resource requirements occurs.

We are currently working on a storage resource selector module to provide support for replica files, specified
as a logical file or as a file belonging to a logical collection. In this way the PDB files holding the protein
structures, will be scattered on the Grid testbed. The discovery process is performed by accessing the Globus
Replica Catalog. The resource selection is based on the proximity between the selected compute resource and
the candidate storage resources, along with the values gathered from the MDS GRIS.

Acknowledgments. We would like to thank Ugo Bastolla, staff scientist at the Centro de Astrobiologia
and developer of the Bioinformatics application used in the experiments, for his support on understanding and
modifying the application.

REFERENCES

[1] Globus Resource Allocation Manager. http://www.globus.org/gram.

[2] Monitoring and Discovery Service. http://www.globus.org/mds.

[3] The Global Grid Forum. http://www.gridforum.org.

[4] The Globus Project. http://www.globus.org.

[5] G. ALLen, E. SEIDEL, AND J. SHALF, Scientific Computing on the Grid, Byte, Spring 2002 (2002), pp. 24 32.

[6] M. BAkER, R. Buyva, anp D. LAFORENZA, Grids and Grid Technologies for Wide-Area Distributed Computing, Intl. J. of
Software: Practice and Experience (SPE), 32 (2002), pp. 1437 1466.

[7] U. BasToLLA ET AL., Reduced Protein Folding Efficiency, Genome Reduction and AT Bias in Obligatory Intracellular
Bacteria: An Integrated View, (2003). (preprint).

[8] F. BErMAN ET AL., The GrADS Project: Software Support for High-Level Grid Application Development, Intl. J. of High
Performance Computing Applications, 15 (2001), pp. 327 34.

[9] , Adaptive Computing on the Grid Using AppLeS, IEEE Transactions on Parallel and Distributed Systems, 14 (2003),
pp- 369-382.

[10] R. Buyva, D.ABraMSON, aND J. Gippy, A Computational Economy for Grid Computing and its Implementation in the
Nimrod-G Resource Broker, Future Generation Computer Systems, 18 (2002), pp. 1061-1074.

[11] I. FostEr anDp C. KeESSELMAN, The Grid: Blueprint for a New Computing Infrastructure, Morgan-Kaufman, 1999.

[12] J. FrREY ET AL., Condor/G: A Computation Management Agent for Multi-Institutional Grids, in Proc. of the 10th Symp.
on High Performance Distributed Computing (HPDC10), 2001.

[13] E. Huepo, R. S. MonNTERO, AND I. M. LLORENTE, A Framework for Adaptive Ezecution on Grids, Intl. J. of Software
Practice and Experience, (2004). (in press).

[14] G. LANFERMANN ET AL., Nomadic Migration: A New Tool for Dynamic Grid Computing, in Proc. of the 10th Symp. on
High Performance Distributed Computing (HPDC10), 2001.

[15] R. S. MonTERO, E. HUEDO, AND I. M. LLORENTE, Ezperiences about Job Migration on a Dynamic Grid Environment, in
Proc. of Intl. Conf. on Parallel Computing (ParCo 2003), September 2003.

, Grid Resource Selection for Opportunistic Job Migration, in Proc. of Intl. Conf. on Parallel and Distributed Computing

(Euro-Par 2003), vol. 2790 of Lecture Notes on Computer Science, August 2003, pp. 366-373.

[16]

8 Eduardo Huedo, Rubén S. Montero and Ignacio M. Llorente

[17] H. Rauic Bt AL., Distributed Resource Management Application API Specification 1.0, tech. rep., The Global Grid Forum,
2003. DRMAA Working Group.

[18] J. M. Scuoprr, Ten Actions when Superscheduling, Tech. Rep. GFD-1.4, The Global Grid Forum: Scheduling Working Group,
2001.

[19] R. van Ham ET AL., Reductive Genome Evolution in buchnera aphidicola, Proc. Natl. Acad. Sci. USA, 100 (2003), pp. 581—
586.

Edited by: Wilson Rivera, Jaime Seguel.
Received: July 3, 2003.
Accepted: September 1, 2003.

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 6, Number 3, pp. 9-18. http://www.scpe.org © 2005 SWPS

0,..

PARROT: AN APPLICATION ENVIRONMENT FOR DATA-INTENSIVE COMPUTING

DOUGLAS THAIN AND MIRON LIVNY*

Abstract. Distributed computing continues to be an alphabet-soup of services and protocols for managing computation
and storage. To live in this environment, applications require middleware that can transparently adapt standard interfaces to
new distributed systems; such middleware is known as an interposition agent. In this paper, we present several lessons learned
about interposition agents via a progressive study of design possibilities. Although performance is an important concern, we pay
special attention to less tangible issues such as portability, reliability, and compatibility. We begin with a comparison of seven
methods of interposition and select one method, the debugger trap, that is the slowest but also the most reliable. Using this
method, we implement a complete interposition agent, Parrot, that splices existing remote I/O systems into the namespace of
standard applications. The primary design problem of Parrot is the mapping of fixed application semantics into the semantics of
the available I/O systems. We offer a detailed discussion of how errors and other unexpected conditions must be carefully managed
in order to keep this mapping intact. We conclude with a evaluation of the performance of the I/O protocols employed by Parrot,
and use an Andrew-like benchmark to demonstrate that semantic differences have consequences in performance.!

Key words. Adaptive middleware, error diagnosis, interposition agents, virtual machines.

1. Introduction. The field of distributed computing has produced countless systems for harnessing remote
processors and accessing remote data. Despite the intentions of their designers, no single system has achieved
universal acceptance or deployment. Each carries its own strengths and weakness in performance, manageability,
and reliability. Renewed interest in world-wide computational systems is increasing the number of protocols
and interfaces in play. A complex ecology of distributed systems is here to stay.

The result is an hourglass model of distributed computing,

Distributed Computing Services shown in Figure 1.1. At the center lie ordinary applications built
L oad {)0 sthamdard int(}elrfaces such as POSIX. Above lie zimlnumber oj
atch systems that manage processors, interact with users, an
Condor| PBS | NQE | LSF Leveler deal with failures of execution. A batch system interacts with an
- application through simple interfaces such as main and exit. Be-
Local Operating System low lie a number of I/O services that organize and communicate
Common Process I nterface with remote memory, disks, and tapes. An ordinary operating
)) . system (OS) transforms an application’s explicit reads and writes
(main, exit, abort, kill, sleep) into the low-level block and network operations that compose a
A local or distributed file system.
T =1 e} However, attaching a new I/0 service to a traditional OS is
Application o E not a trivial task. Although the principle of an extensible OS
Process § = has received much attention in the research community [19], pro-
o |O . . . e -
v 5 duction ope‘ra‘tlng systems bave ‘hmlted fac1'11‘?1es for ex‘te'nsmn,
usually requiring kernel modifications or administrator privileges.
(open, close, read, write, |seek) Although this may be acceptable for a personal computer, this re-
Common 1/O Interface quirement makes it difficult or impossible to provide custom I/0
and naming services for applications visiting a borrowed comput-
Parrot ing environment such as a timeshared mainframe, a commodity
computing cluster, or an opportunistic workgroup.
Chirp | FTP | NeST | RFIO | DCAP To remedy this situation, we advocate the use of interposition
agents [13]. These devices transform standard interfaces into
Distributed 1/O Services remote I/O protocols not normally found in an operating system.
In effect, an agent allows an application to bring its filesystem
Fig. 1.1. The Hourglass Model and namespace along with it wherever it goes. This releases the

dependence on the details of the execution site while preserving
the use of standard interfaces. In addition, the agent can tap into naming services that transform private names
into fully-qualified names relevant in the larger system.

*Computer Sciences Department, University of Wisconsin
IThis research was supported by a L.awrence Landweber NCR fellowship in distributed systems.

9

10 D. Thain and M. Livny

internal techniques external techniques
poly. static dyn. binary debug remote kernel
exten. link link rewrite trap filesys. callout
scope library static ~ dynamic dynamic no setuid any any
burden rewrite relink identify identify | run command superuser modify os
layer fixed any any any syscall fs ops only syscall
init /fini hard hard hard hard easy impossible easy
aff. linker no no no no yes yes yes
debug yes yes yes yes limited yes yes
secure no no no no yes yes yes
find holes easy hard hard hard easy easy easy
porting easy hard hard hard medium easy medium

Fia. 1.2. Properties of Interposition Techniques

In this paper, we present practical lessons learned from several years of building and deploying interposition
agents within the Condor project. [20, 28, 21, 22| Although the notion of such agents is not unique to Condor [13,
2, 12|, they have seen relatively little use in other production systems. This is due to a variety of technical and
semantic difficulties that arise in connecting real systems together.

We present this paper as a progressive design study that explores these problems and explains our solutions.
We begin with a detailed study of seven methods of interposition, five of which we have experience building
and deploying. The remaining two are effective but impractical because of the privilege required. We will
compare the performance and functionality of these methods, giving particular attention to intangibles such
as portability and reliability. In particular, we will concentrate on one method that has not been explored in
detail: the debugger trap. Although this method has been employed in idealized operating systems, it requires
additional techniques in order to provide acceptable performance on popular operating systems with limited
debugging capabilities, such as Linux.

Using the debugger trap, we focus on the design of Parrot, an interposition agent that splices remote I/0O
systems into the filesystem space of ordinary applications. A central problem in the design of an I/O agent is
the semantic problem of mapping not-quite-identical interfaces to each other. The outgoing mapping is usually
quite simple: read becomes a get, write becomes a put, and so forth. The real difficulty lies in interpreting the
large space of return values from remote services. Many new kinds of failure are introduced: servers crash,
credentials expire, and disks fill. Trivial transformations into the application’s standard interface lead to a
brittle and frustrating experience for the user.

A corollary to this observation is that access to computation and storage cannot be fully divorced. Abstract
notions of design often encourage the partition of distributed systems into two activities: either computation
or storage. An interposition agent serves as a connection between these two concerns; like an operating system
kernel, it manages both types of devices and must mediate their interaction, sometimes bypassing the application
itself.

This paper is a condensed version of a workshop paper. Due to space limitations, we have omitted a number
of sections and details, indicated by footnotes. The interested reader may find further details in the original
paper [23] or in a technical report. [24]*

2. Interposition Techniques Compared. There are many techniques for interpositioning services be-
tween an application and the underlying system. Each has particular strengths and weaknesses. Figure 1.2
summarizes seven interposition techniques. They may be broken into two broad categories: internal and exter-
nal. Internal techniques modify the memory space of an application process in some fashion. These techniques
are flexible and efficient, but cannot be applied to arbitrary processes. External techniques capture and modify
operations that are visible outside an application’s address space. These techniques are less flexible and have
higher overhead, but can be applied to nearly any process. The Condor project has experience building and
deploying all of the internal techniques as well one external technique: the debugger trap. The remaining two
external techniques we describe from relevant publications.

The simplest technique is the polymorphic extension. If the application structure is amenable to extension,
we may simply add a new implementation of an existing interface. The user then must make small code changes
to invoke the appropriate constructor or factory in order to produce the new object. This technique is used in

20mitted: Example applications of interposition agents.

Parrot: An Application Environment for Data-Intensive Computing 11

Condor’s Java Universe [22] to connect an ordinary InputStream or OutputStream to a secure remote proxy. It
is also found in general purpose libraries such as SFIO [25].

The static library technique involves creating a replacement for an existing library. The user is obliged to
re-link the application with the new library. For example, Condor’s Standard Universe [20] provides a drop-in
replacement for the standard C library that provides transparent checkpointing as well as proxying of I/0
back to the submission site, fully emulating the user’s home environment. The dynamic library technique also
involves creating a replacement for an existing library. However, through the use of linker controls, the user may
direct the new library to be used in place of the old for any given dynamically linked library. This technique
is used by DCache [8], some implementations of SOCKS [15], as well as our own Bypass [21] toolkit. The
binary rewriting technique involves modifying the machine code of a process at runtime to redirect the flow of
control. This requires very detailed knowledge of the CPU architecture in use, but this can be hidden behind
an abstraction such as the Paradyn [17] toolkit. This technique has been used to “hijack” an unwitting process
at runtime [28].

Traditional debuggers make use of a specialized operating system interface for stopping, examining, and
resuming a process. The debugger trap technique uses this interface, but instead of merely examining the
process, the debugging agent traps each system call, provides an implementation, and then places the result
back in the target process while nullifying the intended system call. An example of this technique is UFO [2],
which allows access to HI'TP and ftp resources via whole-file fetching. A difficulty with the debugger trap is
that many tools compete for access to a single process’ debug interface. The Tool Daemon Protocol (TDP) [18]
provides an interface for managing such tools in a distributed system.

A remote filesystem may be used as an interposition agent by simply modifying the file server. NFS is a
popular choice for this technique, and is used by the Legion [27] object-space translator, as well the Slice [4]
microproxy. Finally, short of modifying the kernel itself, we may install a one-time kernel callout which permits
a filesystem to be serviced by a user-level process. This facility can be present from the ground up in a
microkernel [1], but can also be added as an afterthought, which is the case for most implementations of
AFS [11].

The four internal techniques may only be applied to certain kinds of programs. Polymorphic extension and
static linking only apply to those programs that can be rebuilt. The dynamic library technique requires that
the replaced library be dynamic, while binary rewriting (with the Paradyn toolkit) requires the presence of the
dynamic loader, although no particular library must be dynamic. The three external techniques apply to any
process, with the exception that the debugging trap prevents the traced process from elevating its privilege level
through the setuid feature.

The burden upon the user for each of these techniques also varies widely. For example, polymorphic exten-
sion requires small code changes while static linking requires rebuilding. These techniques may not be possible
with packaged commercial software. Dynamic linking and binary rewriting require that the user understand
which programs are dynamically linked and which are not. Most standard system utilities are dynamic, but
many commercial packages are static. Our experience is that users are surprised and quite frustrated when
an (unexpectedly) static application blithely ignores an interposition agent. The remote filesystem and kernel
callout techniques impose the smallest user burden, but require a cooperative system administrator to make
the necessary changes. The debugger trap imposes a small burden on the user to simply invoke the agent
executable.

Perhaps the most significant difference between the techniques is the ability to trap different layers of
software. Each of the internal techniques may be applied at any layer of code. For example, Bypass has been
used to instrument an application’s calls to the standard memory allocator, the X Window System library, and
the OpenGL library. In contrast, the external techniques are fixed to particular interfaces. The debugger trap
only operates on physical system calls, while the remote filesystem and kernel callout are limited to certain
filesystem operations.

Differences in these techniques affect the design of code that they attach to. Consider the matter of
implementing a directory listing on a remote device. The internal techniques are capable of intercepting library
calls such as open and opendir. These are easily mapped to remote file access protocols, which generally have
separate procedures for accessing files and directories. However, the Unix interface unifies files and directories;
both are accessed through the system call open. External techniques must accept an open on either a file or
directory and defer the binding to a remote operation until either read or getdents is invoked. The choice of
interposition layer affects the design of the agent.

12 D. Thain and M. Livny

The external techniques also differ in the range of operations that they are able to trap. While the debugger
trap can modify any system call, the remote filesystem and kernel callout techniques are limited to filesystem
operations. A particular remote filesystem may have even further restrictions. For example, the stateless
NFS protocol has no representation of the system calls open and close. Without access to this information,
the interposed service cannot provide semantics significantly different than those provided by NFS. Further,
such file system interfaces do not express any binding between individual operations and the processes that
initiate them. That is, a remote filesystem agent sees a read or write but not the process id that issued it.
Without this information, it is difficult or impossible to performing accounting for the purposes of security or
performance.

A number of important activities take place during the initialization and finalization of a process: dynamic
libraries are loaded; constructors, destructors, and other automatic routines are run; I/O streams are created
or flushed. During these transitions, the libraries and other resources in use by a process are in a state of
flux. This complicates the implementation of internal agents that wish to intercept such activity. For example,
the application may perform I/0 in a global constructor or destructor. Thus, an internal agent itself cannot
rely on global constructors or destructors: there is no ordering enforced between those of the application and
those of the agent. Likewise, a dynamically loaded agent cannot interpose on the actions of the dynamic linker.
The programmer of such agents must not only exercise care in constructing the agent, but also in selecting the
libraries invoked by the agent. Such code is time consuming to create and debug. These activities are much
more easily manipulated through external techniques. For example, external techniques can easily trap and
modify the activities of the dynamic linker.

No code is ever complete nor fully debugged. Production deployment of interposition agents requires that
users be permitted to debug both applications and agents. All techniques admit debugging of user programs,
with the only complication arising in the debugger trap. For obvious reasons, a single process cannot be
debugged by two processes at once, so a debugger cannot be attached to an instrumented process. However,
a debugger trap agent can be used to manage an entire process tree, so instead the user may use the agent to
invoke the debugger, which may then invoke the application. The debugger’s operations may be trapped just
like any other system call and passed along to the application, all under the supervision of the agent.

Interposition agents may be used for security as well as convenience. An agent may provide a sandbox
which prevents an untrusted application from modifying any external data that it is not permitted to access.
The internal techniques are not suitable for this security purpose, because they may easily be subverted by a
program that invokes system calls directly without passing through libraries. The external techniques, however,
cannot be fooled in this way and are thus suitable for security.

Related to security is the matter of hole detection. An interposition agent may fail to trap an operation
attempted by an application. This may simply be a bug in the agent, or it may be that the interface has
evolved over time, and the application is using a deprecated or newly added interface that the agent is not
aware of. Internal agents are especially sensitive to this bug. As standard libraries develop, interfaces are
added and deleted, and modified library routines may invoke system calls directly without passing through the
corresponding public interface function. For example, fopen may invoke the open system call without passing
through the open function. Such an event causes general chaos in both the application and agent, often resulting
in crashes or (worse) silent output errors. No such problem occurs in external agents. Although interfaces still
change, any unexpected event is detected as an unknown system call. The agent may then terminate the
application and indicate the exact problem.

The problem of hole detection must not be underestimated. Our experience is that any significant
operating system upgrade includes changes to the standard libraries, which in turn require modifications to
internal trapping techniques. Thus, internal agents are rarely forward compatible. Further, identifying and
fixing such holes is time consuming. Because the missed operation itself is unknown, one must spend long hours
with a debugger to see where the expected course of the application differs from the actual behavior. Once
discovered, a new entry point must be added to the agent. The treatment is simple but the diagnosis is difficult.
We have learned this lesson the hard way by porting both the Condor remote system call library and the Bypass
toolkit to a wide variety of Unix-like platforms.

For these reasons, we have described porting in Figure 1.2 as follows. The polymorphic extension and the
remote filesystem are quite easy to build on a new system. The debugger trap and the kernel callout have
significant system dependent components to be ported to each operating system, but the nature and stability
of these interfaces make this a tractable task. The remaining three techniques—static linking, dynamic linking,

Parrot: An Application Environment for Data-Intensive Computing 13

getpid stat open/close read 8KB bandwidth

unmod 18+.03 ps 1.85+.09 3.18+ .08 3.27+ .19 282413 MB/s
rewrite 21425 ps 1.82+.02 3.21+ .05 3.26+ .03 280+ 7 MB/s
static .214+.02 ps 1.80+£.17 3.59+ .05 3.34+ .02 280+17 MB/s
dynamic 1.22+.01 ps 3.60£.10 5.53f .06 4.31+ .09 278+ 4 MB/s

(a unmod) (6.8x) (1.9x%) (1.7x) (1.3x) (0.99x)
debug 10.06+.21 us 55.41+.50 42.09+ .06 30.99+ .26 1224+ 4 MB/s
(o unmod) (56x) (30x) (13x) (9x) (0.43x)

Fia. 2.1. Overhead of Interposition Techniques

and binary rewriting should be viewed as a significant porting challenge that must be revisited at every minor
operating system upgrade.

Figure 2.1 compares the performance of four transparent interposition techniques. We constructed a bench-
mark C program which timed 100,000 iterations of various system calls on a 1545 MHz Athlon XP1800 running
Linux 2.4.18. Available bandwidth was measured by reading a 100 MB file sequentially in 1 MB blocks. The
mean and standard deviation of 1000 cycles of each benchmark are shown. File operations were performed on an
existing file in a temporary file system. The unmod case gives the performance of this benchmark without any
agent attached, while the remaining five show the same benchmark modified by each interposition technique.
In each case, we constructed a very minimal agent to trap system calls and invoke them without modification.

As can be seen, the binary rewriting and static linking methods add no significant cost to the application.
The dynamic method has overhead on the order of microseconds, as it must manage the structure of (potentially)
multiple agents and invoke a function pointer. However, these overheads are quickly dominated by the cost
of moving data in and out of the process. The debugger trap has the greatest overhead of all the techniques,
ranging from a 56x slowdown for getpid to a 6x slowdown for writing 8 KB. Most importantly, the bandwidth
measurement demonstrates that the debugger trap achieves less than half of the unmodified I/O bandwidth.
It should be fairly noted that this latency and bandwidth will be dominated by the latency and bandwidth of
accessing remote services on commodity networks. Security and reliability come at a measurable cost.?

= |

% parrot tcsh

% cd /fgsifTtp/mss.ncsa.uiuc.edufufac/thain

% 1s -la

total 3

druxruxrux 1 thain thain 0 Aug 26 15:00 .trash
“TWXTWXFWX 1 thain thain 15057 fug 26 15:00 condor.gif
“TUXTWXFWX 1 thain thain 68 fug 26 15:00 hello.c
—TWXFWXFWX 1 thain thain 132921 Aug 26 15:00 lessons.pdf
% cp lessons.pdf /tmp

% mkdir datadir

% vi hello.c

% xv condor.gif

1]

L

Fia. 3.1. Interactive Browsing with Parrot

3. Parrot. The Parrot interposition agent attaches standard applications to a variety of distributed I/0
systems by way of the debugger trap, described above. Each 1/O protocol is presented as a normal filesystem
entry under a new top-level directory bearing the name of the protocol. In addition, an optional mountlist may
be given, which redirects parts of the filesystem namespace to external paths. Figure 3.1 shows Parrot being
used with standard tools to manipulate files stored at the Mass Storage Server (MSS) at the National Center for
Supercomputing Applications (NCSA) via the Grid Security Infrastructure (GSI) [9] variant of the File Transfer
Protocol (FTP).

Parrot is equipped with a variety of drivers for communicating with external storage systems; each has
particular features and limitations. The simplest is the Local driver, which simply passes operations on to
the underlying operating system. The Chirp protocol was designed by the authors in an earlier work [22]

3Omitted: a detailed description of the debugger trap.

14 D. Thain and M. Livny

to provide remote I/O with semantics very similar to POSIX. A standalone chirp server is distributed with
Parrot. The venerable File Transfer Protocol (FTP) has been in heavy use since the early days of the
Internet. Its simplicity allows for a wide variety of of implementations, which, for our purposes, results in an
unfortunate degree of imprecision which we will expand upon below. Parrot supports the secure GSI [3] variant
of ftp. The NeST protocol is the native language of the NeST storage appliance [6], which provides an array of
authentication, allocation, and accounting mechanisms for storage that may be shared among multiple transient
users. The RFIO and DCAP protocols were designed in the high-energy physics community to provide access
to hierarchical mass storage devices such as Castor [5] and DCache [8].

Because Parrot must preserve POSIX semantics for the sake of the application, our foremost concern is
the ability of each of these protocols to provide the necessary semantics. Performance is a secondary concern,
although it is affected significantly by semantic issues. A summary of the semantics of each of these protocols
is given in Figure 3.2.%

name binding discipline dirs metadata symlinks connections

posix open/close random yes direct yes -
chirp open/close random yes direct yes per client
ftp get/put sequential varies indirect no per file
nest get/put random yes indirect yes per client
rfio open/close random yes direct no per file/op
dcap open/close random no direct no per client

Fia. 3.2. Protocol Compatibility with POSIX

4. Errors and Boundary Conditions. Error handling has not been a pervasive problem in the design
of traditional operating systems. As new models of file interaction have developed, attending error modes have
been added to existing systems by expanding the software interface at every level. For example, the addition
of distributed file systems to the Unix kernel created the new possibility of a stale file handle, represented by
the ESTALE error. As this error mode was discovered at the very lowest layers of the kernel, the value was
added to the device driver interface, the file system interface, the standard library, and expected to be handled
directly by applications.

We have no such luxury in an interposition agent. Applications use the existing interface, and we have
neither the desire nor the ability to change it. Sometimes, if we are lucky, we may re-use an error such as
ESTALEFE for an analogous, if not identical purpose. Yet, the underlying device drivers generate errors ranging
from the vague “file system error” to the microscopically precise “server’s certification authority is not trusted.”
How should the unlimited space of errors in the lower layers be transformed into the fixed space of errors
available to the application?®

For example, several device drivers have the necessary machinery to carry out all of a user’s possible requests,
but provide vague errors when a supported operation fails. The FTP driver allows an application to read a file
via the GET command. However, if the GET command fails, the only available information is the error code
550, which encompasses almost any sort of file system error including ‘“no such file,” “access denied,” and “is a
directory.” The POSIX interface does not permit a catch-all error value; it requires a specific reason. Which
error code should be returned to the application?

One technique for dealing with this problem is to interview the service in order to narrow down the cause
of the error, in a manner similar to that of an expert system. Suppose that we attempt to retrieve a file using
an FTP GET operation. If the GET should fail, we may hypothesize that the named file is actually a directory.
The hypothesis may be tested with a change directory (CWD) command. If that succeeds, the hypothesis is
true, and we may return the precise error “not a file.” If that fails, we must propose another hypothesis and
test it. Parrot performs a number of two- and three-step interviews in response to a variety of FTP errors.

The connection structure of a remote I/O protocol also has implications for semantics as well as performance.
Chirp, NeST, and DCAP require one TCP connection between each client and server. FTP and RFIO require
a new connection made for each file opened. In addition, RFIO requires a new connection for each operation
performed on a non-open file. Because most file system operations are metadata queries, this can result in an

4Omitted: Details of the various protocols supported by Parrot.
50Omitted: Several more examples of error transformation.

Parrot: An Application Environment for Data-Intensive Computing 15

extraordinary number of connections in a short amount of time. Ignoring the latency penalties of this activity, a
large number of TCP connections can consume resources at clients, servers, and network devices such as address
translators.®

5. Performance. We have deferred a discussion of performance until this point so that we may see the
performance effects of semantic constraints. Although it is possible to write applications explicitly to use remote
I/0 protocols in the most efficient manner, Parrot must provide conservative and complete implementations of
POSIX operations. For example, an application may only need to know the size of a file, but if it requests this
information via stat, Parrot is obliged to fill the structure with everything it can, possibly at great cost.

The I/0 services discussed here, with the excep-
tion of Chirp, are designed primarily for efficient high-
volume data movement. This is demonstrated by Fig-
ure 5.1, which compares the throughput of the proto-
cols at various block sizes. The throughput was mea-
sured by copying a 128 MB file into the remote storage
device with the standard c¢p command equipped with
Parrot and a varying default block size, as controlled
through the stat emulation described above.

Of course, the absolute values are an artifact of
our system, however, it can be seen that all of the pro-
tocols must be tuned for optimal performance. The
exception is Chirp, which only reaches about one half
of the available bandwidth. This is because of the
strict RPC nature required for POSIX semantics; the
Chirp server does not extract from the underlying

Fia. 5.1. Throughput of 128 MB File Copy filesystem any more data than necessary to supply

the immediate read. Although it is technically feasi-

ble for the server to read ahead in anticipation of the next operation, such data pulled into the server’s address
space might be invalidated by other actors on the file in the meantime and is thus semantically incorrect.

The hiccup in throughput of DCAP at a block size of 64KB is an unintended interaction with the default
TCP buffer size of 64 KB. The developers of DCAP are aware of the artifact and recommend changing either
the block size or the buffer size to avoid it. This is reasonable advice, given that all of the protocols require
tuning of some kind.

Figure 5.2 benchmarks the latency of POSIX-equivalent operations in each I/O protocol. These measure-
ments were obtained in a manner identical to that of Figure 2.1, with the indicated servers residing on the
same system as in Figure 5.1. Notice that the latencies are measured in milliseconds, whereas Figure 2.1 gave
microseconds.

Bandwidth (MB/s)
o [l N w » (6] [o)] ~ (o]

4K 16K 64K 256K 1M 4M 16M 64M
Block Size

proto stat open/close read 8KB write 8KB bandwidth
chirp 50+ .14 ms .84+ .09 2.80+ .06 2.23+ .04 4.1 MB/s
ftp 87 .09 ms 2.82+ .26 (no random access) 7.9 MB/s
nest 2.51+ .05 ms 253+ 17 448+ 14 741+ .32 7.9 MB/s

rfio 13.41+ .28 ms 2311+ 1.29 332+ .14 285 .18 7.3 MB/s
dcap 152.53£16.68 ms 159.09+16.68 3.01+ 0.62 3.14+ .62 7.5 MB/s

Fia. 5.2. Performance of 1/O Protocols On a Local-Area Network

We hasten to note that this comparison, in a certain sense, is not “fair.” These data servers provide vastly
different services, so the performance differences demonstrate the cost of the service, not the cleverness of the
implementation. For example, Chirp and FTP achieve low latencies because they are lightweight translation
layers over an ordinary file system. NeST has somewhat higher latency because it provides the abstraction
of a virtual file system, user namespace, access control lists, and a storage allocation system, all built on an
existing filesystem. The cost is due to the necessary metadata log that records all such activity that cannot be
stored directly in the underlying file system. Both RFIO and DCAP are designed to interact with mass storage

S0Omitted: A discussion of the interface between Parrot and batch systems.

16 D. Thain and M. Livny

dist. proto copy list scan make delete

local local 15+ .02 sec .09+ .20 .08+ .02 65.38+3.47 .86+ .18 sec

local chirp 1.22+ .03 sec .34% .02 .40+ .01 81.02+1.46 .79+ .01 sec
lan chirp 6.16+ .22 sec .57+ .30 1.32+ .03 144.00+£1.35 1.26£ .02 sec
lan chirp 10.674+ .90 sec .53+ .07 4.72+ .32 95.05+2.33 1.24+ .03 sec
lan ftp 34.88+1.72 sec 1.474+ .02 17.78+1.14 122.54+3.14 2.95+ .15 sec
lan mnest 52.35+4.18 sec12.924+4.87 28.14+£4.52 307.19£3.26 31.73+4.37 sec
lan rfio (overwhelmed by repeated connections)
lan dcap (does not support directories without nfs)

Fia. 5.3. Performance of the Andrew-Like Benchmark

systems; single operations may result in gigabytes of activity within a disk cache, possibly moving files to or
from tape. In that context, low latency is not a concern.

That said, several things may be observed from this table. Although FTP has benefitted from years of
optimizations, the cost of a stat is greater than that of Chirp because of the need for multiple round trips to fill
in the necessary details. The additional latency of open/close is due to the multiple round trips to name and
establish a new TCP connection. Both RFIO and DCAP have higher latencies for single byte reads and writes
than for 8KB reads and writes. This is due to buffering which delays small operations in anticipation of further
data. Most importantly, all of these remote operations exceed the latency of the debugger trap itself by several
orders of magnitude. Thus, we are comfortable with the previous decision to sacrifice performance in favor of
reliability in the interposition technique.

We conclude with a macrobenchmark similar to the Andrew benchmark. [11] This Andrew-like benchmark
consists of a series of operations on the Parrot source tree, which consists of 13 directories and 296 files totaling
955 KB. To prepare, the source tree is moved to the remote device. In the copy stage, the tree is duplicated on
the remote device. In the list stage, a detailed list (Is -IR) of the tree is made. In the scan stage, all files in the
tree are searched (grep) for a text string. In the make stage, the software is built. From an I/O perspective,
this involves a sequential read of every source file, a sequential write of every object file, and a series of random
reads and writes to create the executables. In the delete stage, the tree is deleted.

Figure 5.3 compares the performance of the Andrew-like benchmark in a variety of configurations. In the
three cases above the horizontal rule, we measure the cost of each layer of software added: first with Parrot
only, then with a Chirp server on the same host, then with a Chirp server across the local area network. Not
surprisingly, the I/O cost of separating computation from storage is high. Copying data is much slower over
the network, although the slowdown in the make stage is quite acceptable if we intend to increase throughput
via remote parallelization.

In the two cases adjacent to the rule, the only change is the enabling of caching. As might be expected, the
cost of unnecessary duplication causes an increase in copying the source tree, although the difference is easily
made up in the make stage, where the cache eliminates the multiple random I/O necessary to link executables.
The list and delete stages only involve directory structure and metadata access and are thus not affected by the
cache.

In the five cases below the horizontal rule, we explore the use of various protocols to run the benchmark.
In all of these cases, caching is enabled in order to eliminate the cost of random access as discussed. The
DCAP protocol is semantically unable to run the benchmark, as it does not provide the necessary access to
directories. The RFIO protocol is semantically able to run the benchmark, but the high frequency of filesystem
operations results in a large number of TCP connections, which quickly exhausts networking resources at both
the client and the server, thus preventing the benchmark from running. Chirp, FTP, and NeST are all able to
complete the benchmark. The NeST results have a high variance, due to delays incurred while the metadata
log is periodically compressed. The difference in performance between Chirp, FTP, and NeST is primarily
attributable to the cost of metadata lookups. All the stages make heavy use of stat; the multiple round trips
necessary to implement this completely for FTP and NeST have a striking cumulative effect.

6. Conclusions. Interposition agents provide a stable platform for bringing old applications into new
environments. We have outlined the difficulties that we have encountered as well as the solutions we have
constructed in the course of building and deploying several types of agents within the Condor project. As we
have shown, the Linux debugger trap has several limitations, but can still be put to good use. As interest grows

Parrot: An Application Environment for Data-Intensive Computing 17

in the use of virtual machines in distributed systems [26] the need for powerful but low overhead methods of
interposition grows. The appropriate interface for this task is still an open research topic.

The notion of virtualizing or multiplexing an existing interface is a common technique [14, 7], but the
plague of errors and other boundary conditions seems to be suffered silently by practitioners. Such problems
are rarely publicized, however, we are aware of two excellent exceptions. C. Metz [16] describes how the Berkeley
sockets interface is surprisingly hard to multiplex. T. Garfinkel [10] describes the subtle semantic problems of
sandboxing untrusted applications.

For more information: http://www.cs.wisc.edu/~“thain/research/parrot

7. Acknowledgments. We thank John Bent and Sander Klous for their help deploying and debugging
Parrot. Victor Zandy wrote the mechanism for binary rewriting. Alain Roy gave thoughtful comments on early
drafts of this paper.

REFERENCES

[1] M. Accerra, R. BaroN, W. Borosky, D. GorLus, R. RasHip, A. TEVANIAN, AND M. YouNG, Mach: A new kernel
foundation for Uniz development, in Proceedings of the USENIX Summer Technical Conference, Atlanta, GA, 1986.
[2] A. ArLexanprov, M. IBeL, K. Scuauser, anp C. ScHEIMAN, UFO: A personal global file system based on user-level
extensions to the operating system, ACM Transactions on Computer Systems, (1998), pp. 207-233.
[3] W. ArrLcock, A. CHERVENAK, I. FosTER, C. KESSELMAN, AND S. TUECKE, Protocols and services for distributed data-
intensive science, in Proceedings of Advanced Computing and Analysis Techniques in Physics Research, 2000, pp. 161 163.
[4] D. AxpErsoNn, J. CHASE, AND A. VAHDAT, Interposed request routing for scalable network storage, in Proceedings of the
Fourth Symposium on Operating Systems Design and Implementation, 2000.
[5] O. BarriNG, J. Baubp, anp J. DuranDp, CASTOR project status, in Proceedings of Computing in High Energy Physics,
Padua, Italy, 2000.
[6] J. BenT, V. VENkATARAMANI, N. LeERoy, A. Rovy, J. StaNnLEY, A. ARPACI-Dusseau, R. ARPACI-DUSSEAU, AND
M. Lrvny, Flezibility, manageability, and performance in a grid storage appliance, in Proceedings of the Eleventh
IEEE Symposium on High Performance Distributed Computing, Edinburgh, Scotland, July 2002.
[7] D. CueriTON, UIO: A uniform I/0 system interface for distributed systems, ACM Transactions on Computer Systems, 5
(1987), pp. 12 46.
[8] M. Ernst, P. FUHRMANN, M. GASTHUBER, T. MKRTCHYAN, AND C. WALDMAN, dCache, a distributed storage data caching
system, in Proceedings of Computing in High Energy Physics, Beijing, China, 2001.
[9] T. FosTER, C. KEsseLMAN, G. Tsubpik, AND S. TUECKE, A securily architecture for computational grids, in Proceedings of
the 5th ACM Conference on Computer and Communications Security Conference, 1998, pp. 83 92.
[10] T. GarrFINKEL, Traps and pitfalls: Practical problems in in system call interposition based security tools, in Proceedings of
the Network and Distributed Systems Security Symposium, February 2003.
[11] J. Howarp, M. Kazar, S. MENEES, D. NicHoLs, M. SATYANARAYANAN, R. SipEBoTHAM, AND M. WEsT, Scale and
performance in a distributed file system, ACM Transactions on Computer Systems, 6 (1988), pp. 51-81.
G. HunT anDp D. BRUBACHER, Detours: Binary interception of Win32 functions, Tech. Report MSR-TR-98-33, Microsoft
Research, February 1999.
[13] M. Jongs, Interposition agents: Transparently interposing user code at the system interface, in Proceedings of the 14th ACM
Symposium on Operating Systems Principles, 1993.
[14] S. KLEIMAN, Vnodes: An architecture for multiple file system types in Sun Uniz, in Proceedings of the USENIX Technical
Conference, 1986, pp. 151 163.
[15] M. LeEecuH, M. Ganis, Y. Leg, R. Kuris, D. KoBras, anp L. Jones, SOCKS protocol version 5. Internet Engineering
Task Force, Request for Comments 1928, March 1996.
[16] C. METz, Protocol independence using the sockets API, in Procedings of the USENIX Technical Conference, June 2002.
[17] B. MiLLEr, M. CaLLAGHAN, J. CARGILLE, J. HoLLiNngsworTH, R. B. IrviN, K. Karavanic, K. KUNCHITHAPADAM, AND
T. NewHALL, The Paradyn parallel performance measurement tools, IEEE Computer, 28 (1995), pp. 37-46.
[18] B. MiLLER, A. CorrES, M. A. SENAR, AND M. LivNY, The tool daemon protocol (TDP), in Proceedings of Supercomputing,
Phoenix, AZ, November 2003.
[19] C. SmaLL AND M. SELTZER, A comparison of OS extension technologies, in Proceedings of the USENIX Technical Conference,
1996, pp. 41 54.
[20] M. Soromon anp M. Litzkow, Supporting checkpointing and process migration outside the Uniz kernel, in Proceedings of
the USENIX Winter Technical Conference, 1992.
[21] D. THAaIN AND M. LivNy, Multiple bypass: Interposition agents for distributed computing, Journal of Cluster Computing, 4
(2001), pp. 39 47.

[12]

[22] , Error scope on a computational grid, in Proceedings of the Eleventh IEEE Symposium on High Performance Dis-
tributed Computing, July 2002.
[23] , Parrot: Transparent user-level middleware for data-intensive computing, in Proceedings of the Workshop on Adaptive

Grid Middleware, September 2003.

[24] , Parrot: Transparent user-level middleware for data-intensive computing, Tech. Report 1493, Computer Sciences
Department, University of Wisconsin, December 2003.

[25] K.-P. Vo, The discipline and method architecture for reusable libraries, Software: Practice and Experience, 30 (2000),
pp. 107-128.

18 D. Thain and M. Livny

[26] A. WHiTAKER, M. SHAW, AND S. D. GRIBBLE, Scale and performance in the Denali isolation kernel, in Proceedings of the
Fifth Symposium on Operating System Design and Implementation, Boston, MA, December 2002.

[27] B. WHITE, A. GRiMSHAW, AND A. NGUYEN-TUONG, Grid-Based File Access: The Legion 1/O Model, in Proceedings of the
Ninth IEEE Symposium on High Performance Distributed Computing, August 2000.

[28] V. Zanpy, B. MILLER, AND M. LivNY, Process hijacking, in Proceedings of the Eighth TEEE International Symposium on
High Performance Distributed Computing, 1999.

Edited by: Wilson Rivera, Jaime Seguel.
Received: July 14, 2003.

Accepted: September 1, 2003.

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 6, Number 3, pp. 19-32. http://www.scpe.org © 2005 SWPS

0,..

SATIN: SIMPLE AND EFFICIENT JAVA-BASED GRID PROGRAMMING

ROB V. VAN NIEUWPOORT, JASON MAASSEN, THILO KIELMANN, HENRI E. BAL*

Abstract. Grid programming environments need to be both portable and efficient to exploit the computational power of
dynamically available resources. In previous work, we have presented the divide-and-conquer based Satin model for parallel
computing on clustered wide-area systems. In this paper, we present the Satin implementation on top of our new Ibis platform which
combines Java’s write once, run everywhere with efficient communication between JVMs. We evaluate Satin/Ibis on the testbed
of the EU-funded GridLab project, showing that Satin’s load-balancing algorithm automatically adapts both to heterogeneous
processor speeds and varying network performance, resulting in efficient utilization of the computing resources. Our results show
that when the wide-area links suffer from congestion, Satin’s load-balancing algorithm can still achieve around 80% efficiency, while
an algorithm that is not grid aware drops to 26% or less.

Key words. Satin, Ibis, divide-and-conquer, load balancing, distributed supercomputing.

1. Introduction. In computational grids, applications need to simultaneously tap the computational
power of multiple, dynamically available sites. The crux of designing grid programming environments stems ex-
actly from the dynamic availability of compute cycles: grid programming environments need to be both portable
to run on as many sites as possible, and they need to be flexible to cope with different network protocols and
dynamically changing groups of heterogeneous compute nodes.

Existing programming environments are either portable and flexible (Jini, Java RMI), or they are highly
efficient (MPI). The Global Grid Forum also has investigated possible grid programming models [19]. Recently,
GridRPC has been proposed as a grid programming model [30]. GridRPC allows writing grid applications
based on the manager/worker paradigm.

Unlike manager/worker programs, divide-and-conquer algorithms operate by recursively dividing a problem
into smaller subproblems. This recursive subdivision goes on until the remaining subproblem becomes trivial to
solve. After solving subproblems, their results are recursively recombined until the final solution is assembled.
By allowing subproblems to be divided recursively, the class of divide-and-conquer algorithms subsumes the
manager/worker algorithms, thus enlarging the set of possible grid applications.

Of course, there are many kinds of applications that do not lend themselves well to a divide-and-conquer
algorithm. However, we (and others) believe the class of divide-and-conquer algorithms to be sufficiently large to
justify its deployment for hierarchical wide-area systems. Computations that use the divide-and-conquer model
include geometry procedures, sorting methods, search algorithms, data classification codes, n-body simulations
and data-parallel numerical programs [33].

Divide-and-conquer applications may be parallelized by letting different processors solve different subprob-
lems. These subproblems are often called jobs in this context. Generated jobs are transferred between processors
to balance the load in the computation. The divide-and-conquer model lends itself well to hierarchically-
structured systems because tasks are created by recursive subdivision. This leads to a task graph that is
hierarchically structured, and which can be executed with excellent communication locality, especially on hier-
archical platforms.

In previous work [26], we presented our Satin system for divide-and-conquer programming on grid platforms.
Satin implements a very efficient load balancing algorithm for clustered, wide-area platforms. So far, we could
only evaluate Satin based on simulations in which all jobs have been executed on one single, homogeneous
cluster. In this work, we evaluate Satin on a real grid testbed [2], consisting of various heterogeneous systems,
connected by the Internet.

In Section 2, we briefly present Satin’s programming model and some simulator-based results that indicate
the suitability of Satin as a grid programming environment. In Section 3, we present Ibis, our new Java-based
grid programming platform that combines Java’s “run everywhere” paradigm with highly efficient yet flexible
communication mechanisms. In Section 4, we evaluate the performance of Satin on top of Ibis in the GridLab
testbed, spanning several sites in Europe. Section 5 discusses related work, and in Section 6 we draw conclusions.

*Dept. of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands, {rob,jason,kielmann,bal}@cs.vu.nl
http://www.cs.vu.nl/ibis

19

20 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. Bal

2. Divide-and Conquer in Satin. Satin’s programming model is an extension of the single-threaded
Java model. To achieve parallel execution, Satin programs do not have to use Java’s threads or Remote
Method Invocations (RMI). Instead, they use much simpler divide-and-conquer primitives. Satin does allow
the combination of its divide-and-conquer primitives with Java threads and RMIs. Additionally, Satin provides
shared objects via RepMI. In this paper, however, we focus on pure divide-and-conquer programs.

interface FibInter extends satin.Spawnable {
public long fib(long n);
}

class Fib extends satin.SatinObject
implements FibInter {
public long fib(long n) {
if(n < 2) return n;

long x = fib(n—-1); // spawned
long y = fib(n—-2); // spawned
sync ();

return x + y;

}

public static void main(String [] args) {
Fib f = new Fib();
long res = f.fib (10);

f.sync();
System.out.println ("Fib_10_=_" + res);

Fig. 2.1. Fib: an example divide-and-conquer program in Satin.

Satin expresses divide-and-conquer parallelism entirely in the Java language itself, without requiring any
new language constructs. Satin uses so-called marker interfaces to indicate that certain method invocations need
to be considered for potentially parallel (so called spawned) execution, rather than being executed synchronously
like normal methods. Furthermore, a mechanism is needed to synchronize with (wait for the results of) spawned
method invocations. With Satin, this can be expressed using a special interface, satin.Spawnable, and the class
satin.SatinObject. This is shown in Fig. 2.1, using the example of a class Fib for computing the Fibonacci
numbers. First, an interface Fiblnter is implemented which extends satin.Spawnable. All methods defined in
this interface (here fib) are marked to be spawned rather than executed normally. Second, the class Fib extends
satin.SatinObject and implements FibInter. From satin.SatinObject it inherits the sync method, from FibInter the
spawned fib method. Finally, the invoking method (in this case main) simply calls Fib and uses sync to wait for
the result of the parallel computation.

Satin’s byte code rewriter generates the necessary code. Conceptually, a new thread is started for running
a spawned method upon invocation. Satin’s implementation, however, eliminates thread creation altogether. A
spawned method invocation is put into a local work queue. From the queue, the method might be transferred
to a different CPU where it may run concurrently with the method that executed the spawned method. The
sync method waits until all spawned calls in the current method invocation are finished; the return values of
spawned method invocations are undefined until a sync is reached.

Spawned method invocations are distributed across the processors of a parallel Satin program by work
stealing from the work queues mentioned above. In [26], we presented a new work stealing algorithm, Cluster-
aware Random Stealing (CRS), specifically designed for cluster-based, wide-area (grid computing) systems. CRS
is based on the traditional Random Stealing (RS) algorithm that has been proven to be optimal for homogeneous
(single cluster) systems [8]. We briefly describe both algorithms in turn.

2.1. Random Stealing (RS). RS attempts to steal a job from a randomly selected peer when a processor
finds its own work queue empty, repeating steal attempts until it succeeds [8, 33]. This approach minimizes
communication overhead at the expense of idle time. No communication is performed until a node becomes
idle, but then it has to wait for a new job to arrive. On a single-cluster system, RS is the best performing

Satin: Simple and Efficient Java-based Grid Programming 21

load-balancing algorithm. On wide-area systems, however, this is not the case. With C' clusters, on average (C' —
1)/C x100% of all steal requests will go to nodes in remote clusters, causing significant wide-area communication
overheads.

2.2. Cluster-aware Random Stealing (CRS). In CRS, each node can directly steal jobs from nodes
in remote clusters, but at most one job at a time. Whenever a node becomes idle, it first attempts to steal
from a node in a remote cluster. This wide-area steal request is sent asynchronously: Instead of waiting for
the result, the thief simply sets a flag and performs additional, synchronous steal requests to randomly selected
nodes within its own cluster, until it finds a new job. As long as the flag is set, only local stealing will be
performed. The handler routine for the wide-area reply simply resets the flag and, if the request was successful,
puts the new job into the work queue. CRS combines the advantages of RS inside a cluster with a very limited
amount of asynchronous wide-area communication. Below, we will show that CRS performs almost as good as
with a single, large cluster, even in extreme wide-area network settings.

2.3. Simulator-based comparison of RS and CRS. A detailed description of Satin’s wide-area work
stealing algorithm can be found in [26]. We have extracted the comparison of RS and CRS from that work
into Table 2.1. The run times shown in this table are for parallel runs with 64 CPUs each, either with a single
cluster of 64 CPUS, or with 4 clusters of 16 CPUs each.

The wide-area network between the virtual clusters has been simulated with our Panda WAN simulator [17].
We simulated all combinations of 20 ms and 200 ms roundtrip latency with bandwidth capacities of 100 KByte/s
and 1000 KByte/s. The tests had been performed on the predecessor hardware to our current DAS-2 cluster.
DAS counsists of 200 MHz Pentium Pro’s with a Myrinet network, running the Manta parallel Java system [23].

TaBLE 2.1
Performance of RS and CRS with different simulated wide-area links (times in seconds).

single 20 ms 20 ms 200 ms 200 ms
cluster 1000 KByte/s 100 KByte/s 1000 KByte/s 100 KByte/s
application time eff. time eff. time eff. time eff. time eff.
adaptive integration
RS 71.8 99.6% 78.0 91.8% 79.5 90.1% | 109.3 65.5% | 112.3 63.7%
CRS 71.8 99.7% 71.6 99.9% 7.7 99.8% 734 97.5% 73.2 97.7%
N-queens
RS 157.6 92.5% | 160.9 90.6% | 168.2 86.6% | 184.3 79.1% | 1974 73.8%
CRS 156.3 93.2% | 158.1 92.2% | 156.1 93.3% | 158.4 92.0% | 158.1 92.2%
TSP
RS 101.6 90.4% | 105.3 87.2% | 105.4 87.1% | 130.6 70.3% | 129.7 70.8%
CRS 100.7 91.2% | 103.6 88.7% | 101.1 90.8% | 105.0 87.5% | 107.5 85.4%
ray tracer
RS 147.8 94.2% | 152.1 91.5% | 171.6 81.1% | 175.8 79.2% | 182.6 76.2%
CRS 147.2 94.5% | 145.0 95.9% | 152.6 91.2% | 146.5 95.0% | 149.3 93.2%

In Table 2.1 we compare RS and CRS using four parallel applications, with network conditions degrading
from the left (single cluster) to the right (high latency, low bandwidth). For each case, we present the parallel
run time and the corresponding efficiency (labeled “eff.” in the table). With ¢s being the sequential run time
for the application, with the Satin operations excluded, (not shown) and t, the parallel run time as shown in
the table, and N = 64 being the number of CPUs, we compute the efficiency as follows:

, ls
efficiency = LN * 100%

Adaptive integration numerically integrates a function over a given interval. It sends very short messages
and has also very fine grained jobs. This combination makes RS sensitive to high latency, in which case efficiency
drops to about 65%. CRS, however, successfully hides the high round trip times and achieves efficiencies of
more than 97 % in all cases.

N Queens solves the problem of placing n queens on a n x n chess board. It sends medium-size messages
and has a very irregular task tree. With efficiency of only 74 %, RS again suffers from high round trip times as
it can not quickly compensate load imbalance due to the irregular task tree. CRS, however, sustains efficiencies
of 92%.

22 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. Bal

TSP solves the problem of finding the shortest path between n cities. By passing the distance table as
parameter, is has a somewhat higher parallelization overhead, resulting in slightly lower efficiencies, even with
a single cluster. In the wide-area cases, these longer parameter messages contribute to higher round trip times
when stealing jobs from remote clusters. Consequently, RS suffers more from slower networks (efficiency > 70 %)
than CRS which sustains efficiencies of 85 %.

Ray Tracer renders a modeled scene to a raster image. It divides a screen down to jobs of single pixels. Due
to the nature of ray tracing, individual pixels have very irregular rendering times. The application sends long
result messages containing image fractions, making it sensitive to the available bandwidth. This sensitivity is
reflected in the efficiency of RS, going down to 76 %, whereas CRS hides most WAN communication overhead
and sustains efficiencies of 91 %.

To summarize, our simulator-based experiments show the superiority of CRS to RS in case of multiple
clusters, connected by wide-area networks. This superiority is independent of the properties of the applications,
as we have shown with both regular and irregular task graphs as well as short and long parameter and result
message sizes. In all investigated cases, the efficiency of CRS never dropped below 85 %.

Although we were able to identify the individual effects of wide-area latency and bandwidth, these results
are limited to homogeneous Intel/Linux clusters (due to the Manta compiler). Furthermore, we only tested
clusters of identical size. Finally, the wide area network has been simulated and thus been without possibly
disturbing third-party traffic.

An evaluation on a real grid testbed, with heterogeneous CPUs, JVMs, and networks, becomes necessary
to prove the suitability of Satin as a grid programming platform. In the following, we first present Ibis, our new
run everywhere Java environment for grid computing. Then we evaluate Satin on top of Ibis on the testbed of
the EU GridLab project.

‘ Application ‘

TCP, UDP, MPI || \\ys etc. | | TOPOMON || cpaM. etc. || GIS, etc.
Panda, GM, etc. etc.

Fia. 3.1. Design of Ibis. The various modules can be loaded dynamically, using run time class loading.

3. Ibis, flexible and efficient Java-based Grid programming. The Satin runtime system used for
this paper is implemented on top of Ibis [31]. In this section we will briefly explain the Ibis philosophy and
design. The global structure of the Ibis system is shown in Figure 3.1. A central part of the system is the
Ibis Portability Layer (IPL) which consists of a number of well-defined interfaces. The IPL can have different
implementations, that can be selected and loaded into the application at run time. The IPL defines serialization
and communication, but also typical grid services such as topology discovery and monitoring. Although it is
possible to use the IPL directly from an application, Ibis also provides more high-level programming models.
Currently, we have implemented four. Ibis RMI [31] provides Remote Method Invocation, using the same
interface as Sun RMI, but with a more efficient wire protocol. GMI [21] provides MPI-like collective operations,
cleanly integrated into Java’s object model. RepMI [22] extends Java with replicated objects. In this paper, we
focus on the fourth programming model that Ibis implements, Satin.

3.1. Ibis Goals. A key problem in making Java suitable for grid programming is how to design a system
that obtains high communication performance while still adhering to Java’s "write once, run everywhere” model.
Current Java implementations are heavily biased to either portability or performance, and fail in the other

Satin: Simple and Efficient Java-based Grid Programming 23

aspect. (The recently added java.nio package will hopefully at leas partially address this problem). The
Ibis strategy to achieve both goals simultaneously is to develop reasonably efficient solutions using standard
techniques that work “everywhere”, supplemented with highly optimized but non-standard solutions for increased
performance in special cases. We apply this strategy to both computation and communication. Ibis is designed to
use any standard JVM, but if a native, optimizing compiler (e.g., Manta [23]) is available for a target machine,
Ibis can use it instead. Likewise, Ibis can use standard communication protocols, e.g., TCP/IP or UDP, as
provided by the JVM, but it can also plug in an optimized low-level protocol for a high-speed interconnect, like
GM or MPI, if available. The challenges for Ibis are:
1. how to make the system flexible enough to run seamlessly on a variety of different communication
hardware and protocols;
2. how to make the standard, 100% pure Java case efficient enough to be useful for grid computing;
3. study which additional optimizations can be done to improve performance further in special (high-
performance) cases.

With Ibis, grid applications can run simultaneously on a variety of different machines, using optimized
software where possible (e.g., a native compiler, the GM Myrinet protocol, or MPI), and using standard software
(e.g., TCP) when necessary. Interoperability is achieved by using the TCP protocol between multiple Ibis
implementations that use different protocols (like GM or MPI) locally. This way, all machines can be used in
one single computation. Below, we discuss the three aforementioned issues in more detail.

3.2. Flexibility. The key characteristic of Ibis is its extreme flexibility, which is required to support grid
applications. A major design goal is the ability to seamlessly plug in different communication substrates without
changing the user code. For this purpose, the Ibis design uses the IPL. A software layer on top of the IPL can
negotiate with Ibis instantiations through the well-defined IPL interface, to select and load the modules it needs.
This flexibility is implemented using Java’s dynamic class-loading mechanism.

Many message passing libraries such as MPI and GM guarantee reliable message delivery and FIFO message
ordering. When applications do not require these properties, a different message passing library might be used
to avoid the overhead that comes with reliability and message ordering. The IPL supports both reliable and
unreliable communication, ordered and unordered messages, implicit and explicit receipt, using a single, simple
interface. Using user-definable properties (key-value pairs), applications can create exactly the communication
channels they need, without unnecessary overhead.

3.3. Optimizing the Common Case. To obtain acceptable communication performance, Ibis imple-
ments several optimizations. Most importantly, the overhead of serialization and reflection is avoided by
compile-time generation of special methods (in byte code) for each object type. These methods can be used
to convert objects to bytes (and vice versa), and to create new objects on the receiving side, without using
expensive reflection mechanisms. This way, the overhead of serialization is reduced dramatically.

Furthermore, our communication implementations use an optimized wire protocol. The Sun RMI protocol,
for example, resends type information for each RMI. Our implementation caches this type information per
connection. Using this optimization, our protocol sends less data over the wire, but more importantly, saves

processing time for encoding and decoding the type information.

3.4. Optimizing Special Cases. In many cases, the target machine may have additional facilities that
allow faster computation or communication, which are difficult to achieve with standard Java techniques. One
example we investigated in previous work [23] is using a native, optimizing compiler instead of a JVM. This
compiler (Manta), or any other high performance Java implementation, can simply be used by Ibis. The most
important special case for communication is the presence of a high-speed local interconnect. Usually, specialized
user-level network software is required for such interconnects, instead of standard protocols (TCP, UDP) that
use the OS kernel. Ibis therefore was designed to allow other protocols to be plugged in. So, lower-level
communication may be based, for example, on a locally-optimized MPI library. The IPL is designed in such a
way that it is possible to exploit efficient hardware multicast, when available.

Another important feature of the IPL is that it allows a zero-copy implementation. Implementing zero-copy
(or single-copy) communication in Java is a non-trivial task, but it is essential to make Java competitive with
systems like MPI for which zero-copy implementations already exist. The zero-copy Ibis implementation is
described in more detail in [31]. On fast networks like Myrinet, the throughput of Ibis RMI can be as much as
9 times higher than previous, already optimized RMI implementations such as KaRMI [28].

24 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. Bal

4. Satin on the GridLab testbed. In this section, we will present a case study to analyze the per-
formance that Satin/Ibis achieves in a real grid environment. We ran the ray tracer application introduced
in Section 2.3 on the European GridLab [2] testbed. More precisely, we were using a characteristic subset of
the machines on this testbed that was available for our measurements at the time the study was performed.
Because simultaneously starting and running a parallel application on multiple clusters still is a tedious and
time-consuming task, we had to restrict ourselves to a single test application. We have chosen the ray tracer
for our tests as it is sending the most data of all our applications, making it very sensitive to network issues.
The ray tracer is written in pure Java and generates a high resolution image (4096 x 4096, with 24-bit color).
It takes approximately 10 minutes to solve this problem on our testbed.

This is an interesting experiment for several reasons. Firstly, we use the Ibis implementation on top of TCP
for the measurements in this section. This means that the numbers shown below were measured using a 100%
Java implementation. Therefore, they are interesting, giving a clear indication of the performance level that
can be achieved in Java with a “run everywhere” implementation, without using any native code.

Secondly, the testbed contains machines with several different architectures; Intel, SPARC, MIPS, and
Alpha processors are used. Some machines are 32 bit, while others are 64 bit. Also, different operating systems
and JVMs are in use. Therefore, this experiment is a good method to investigate whether Java’s “write once, run
everywhere” feature really works in practice. The assumption that this feature successfully hides the complexity
of the different underlying architectures and operating systems, was the most important reason for investigating
the Java-centric solutions presented in this paper. It is thus important to verify the validity of this claim.

0 200 400

Fia. 4.1. Locations of the GridLab testbed sites used for the erperiments.

Satin: Simple and Efficient Java-based Grid Programming 25

Thirdly, the machines are connected by the Internet. The links show typical wide-area behavior, as the
physical distance between the sites is large. For instance, the distance from Amsterdam to Lecce is roughly
2000 kilometers (about 1250 miles). Figure 4.1 shows a map of Europe, annotated with the machine locations.
This gives an idea of the distances between the sites. We use this experiment to verify Satin’s load-balancing
algorithms in practice, with real non-dedicated wide-area links. We have run the ray tracer both with the
standard random stealing algorithm (RS) and with the new cluster-aware algorithm (CRS) as introduced above.
For practical reasons, we had to use relatively small clusters for the measurements in this section. The simulation
results in Section 2.3 show that the performance of CRS increases when larger clusters are used, because there
is more opportunity to balance the load inside a cluster during wide-area communication.

TaBLE 4.1

Machines on the GridLab testbed.

Operating CPUs / | total
location architecture System JIT nodes | node CPUs
Vrije Universiteit Intel Red Hat
Amsterdam Pentium-IIT Linux IBM
The Netherlands 1 GHz kernel 2.4.18 1.4.0 8 1 8
Vrije Universiteit Sun Fire 280R SUN
Amsterdam UltraSPARC-IIT | Sun HotSpot
The Netherlands 750 MHz 64 bit Solaris 8 1.4.2 1 2 2
ISUFI/High Perf. Compaq Compaq HP 1.4.0
Computing Center Alpha Tru64 UNIX based on
Lecce, Italy 667 MHz 64 bit V5.1A HotSpot 1 4 4
Cardiff Intel Red Hat SUN
University Pentium-IIT Linux 7.1 HotSpot
Cardiff, Wales, UK 1 GHz kernel 2.4.2 1.4.1 1 2 2
Masaryk University, Intel Xeon Debian Linux | IBM
Brno, Czech Republic 2.4 GHz kernel 2.4.20 1.4.0 4 2 8
Konrad-Zuse-Zentrum | SGI SGI
fiir Origin 3000 1.4.1-EA
Informationstechnik MIPS R14000 based on
Berlin, Germany 500 MHz IRIX 6.5 HotSpot 1 16 16

Some information about the machines we used is shown in Table 4.1. To run the application, we used
whichever Java JIT (Just-In-Time compiler) that was pre-installed on each particular system whenever possible,
because this is what most users would probably do in practice.

TABLE 4.2
Round-trip wide-area latency (in milliseconds) and achievable bandwidth (in KByte/s) between the GridLab sites.

daytime nighttime
to to to to

A'dam | A’'dam to to to to A'dam | A'dam to to to to
source DAS-2 Sun Lecce Cardiff | Brno | Berlin DAS-2 Sun Lecce Cardiff | Brno | Berlin
latency from
A’dam DAS-2 — 1 204 16 20 42 — 1 65 15 20 18
A’dam Sun 1 — 204 15 19 43 1 — 62 14 19 17
Lecce 198 195 210 204 178 63 66 60 66 64
Cardiff 9 9 198 28 26 9 9 51 27 21
Brno 20 20 188 33 22 20 19 64 33 22
Berlin 18 17 185 31 22 18 17 59 30 22
bandwidth from
A’dam DAS-2 — 11338 42 750 3923 2578 — 11442 40 747 4115 2578
A’dam Sun 11511 — 22 696 2745 2611 11548 — 46 701 3040 2626
Lecce 73 425 44 43 75 77 803 94 110 82
Cardiff 842 791 29 767 825 861 818 37 817 851
Brno 3186 2709 26 588 2023 3167 2705 37 612 2025
Berlin 2555 2633 9 533 2097 2611 2659 9 562 2111

Because the sites are connected via the Internet, we have no influence on the amount of traffic that flows
over the links. To reduce the influence of Internet traffic on the measurements, we also performed measurements
after midnight (CET). However, in practice there still is some variability in the link speeds. We measured the
latency of the wide-area links by running ping 50 times, while the achievable bandwidth is measured with
netperf [25], using 32 KByte packets. The measured latencies and bandwidths are shown in Table 4.2. All sites
had difficulties from time to time while sending traffic to Lecce, Italy. For instance, from Amsterdam to Lecce,
we measured latencies from 44 milliseconds up to 3.5 seconds. Also, we experienced packet loss with this link: up
to 23% of the packets were dropped along the way. We also performed the same measurement during daytime,
to investigate how regular Internet traffic influences the application performance. The measurements show that

26 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. Bal

there can be more than a factor of two difference in link speeds during daytime and nighttime, especially the
links from and to Lecce show a large variability. It is also interesting to see that the link performance from
Lecce to the two sites in Amsterdam is different. We verified this with traceroute, and found that the traffic is
indeed routed differently as the two machines use different network numbers despite being located within the
same building.

TABLE 4.3
Problems encountered in a real grid environment, and their solutions.

problem | solution
firewalls bind all sockets to ports in the open range
buggy JITs upgrade to Java 1.4 JITs

multi-homes machines | use a single, externally valid IP address

Ibis, Satin and the ray tracer application were all compiled with the standard Java compiler javac on
the DAS-2 machine in Amsterdam, and then just copied to the other GridLab sites, without recompiling or
reconfiguring anything. On most sites, this works flawlessly. However, we did run into several practical problems.
A summary is given in Table 4.3. Some of the GridLab sites have firewalls installed, which block Satin’s traffic
when no special measures are taken. Most sites in our testbed have some open port range, which means that
traffic to ports within this range can pass through. The solution we use to avoid being blocked by firewalls is
straightforward: all sockets used for communication in Ibis are bound to a port within the (site-specific) open
port range. We are working on a more general solution that multiplexes all traffic over a single port. Another
solution is to multiplex all traffic over a (Globus) ssh connection, as is done by Kaneda et al. [16], or using a
mechanism like SOCKS [20].

Another problem we encountered was that the JITs installed on some sites contained bugs. Especially
the combination of threads and sockets presented some difficulties. There seems to be a bug in Sun’s 1.3 JIT
(HotSpot) related to threads and socket communication. In some circumstances, a blocking operation on a
socket would block the whole application instead of just the thread that does the operation. The solution for
this problem was to upgrade to a Java 1.4 JIT, where the problem is solved.

Finally, some machines in the testbed are multi-homed: they have multiple IP addresses. The original
Ibis implementation on TCP got confused by this, because the InetAddress.getLocalHost method can return
an IP address in a private range, or an address for an interface that is not accessible from the outside. Our
current solution is to manually specify which IP address has to be used when multiple choices are available. All
machines in the testbed have a Globus [10] installation, so we used GSI-SSH (Globus Security Infrastructure
Secure Shell) [11] to login to the GridLab sites. We had to start the application by hand, as not all sites
have a job manager installed. When a job manager is present, Globus can be used to start the application
automatically.

As shown in Table 4.1, we used 40 processors in total, using 6 machines located at 5 sites all over Europe,
with 4 different processor architectures. After solving the aforementioned practical problems, Satin on the TCP
Ibis implementation ran on all sites, in pure Java, without having to recompile anything.

TABLE 4.4
Relative speeds of the machine and JVM combinations in the testbed.

run relative relative total % of total
site architecture time (s) | node speed | speed of cluster system
A’dam DAS-2 1 GHz Intel Pentium-IIT 233.1 1.000 8.000 32.4
A’dam Sun 750 MHz UltraSPARC-III 445.2 0.523 1.046 4.2
Tecce 667 MHZ Compaq Alpha 512.7 0.454 1.816 7.4
Cardiff 1 GHz Intel Pentium-III 758.9 0.307 0.614 2.5
Brno 2.4 GHz Intel Xeon 152.8 1.525 12.200 49.5
Berlin 500 MHz MIPS R14000 3701.4 0.062 0.992 4.0
total 24.668 100.0

As a benchmark, we first ran the parallel version of the ray tracer with a smaller problem size (512 x 512,
with 24 bit color) on a single machine on all clusters. This way, we can compute the relative speeds of the
different machines and JVMs. The results are presented in Table 4.4. To calculate the relative speed of each
machine/JVM combination, we normalized the run times relative to the run time of the ray tracer on a node of

Satin: Simple and Efficient Java-based Grid Programming 27

the DAS-2 cluster in Amsterdam. It is interesting to note that the quality of the JIT compiler can have a large
impact on the performance at the application level. A node in the DAS-2 cluster and the machine in Cardiff are
both 1 GHz Intel Pentium-IIIs, but there is more than a factor of three difference in application performance.
This is caused by the different JIT compilers that were used. On the DAS-2, we used the more efficient IBM
1.4 JIT, while the SUN 1.4 JIT (HotSpot) was installed on the machine in Cardiff.

Furthermore, the results show that, although the clock frequency of the machine at Brno is 2.4 times as high
as the frequency of a DAS-2 node, the speed improvement is only 53%. Both machines use Intel processors, but
the Xeon machine in Brno is based on Pentium-4 processors, which do less work per cycle than the Pentium-III
CPUs that are used by the DAS-2. We have to conclude that it is in general not possible to simply use the
clock frequencies to compare processor speeds.

Finally, it is obvious that the Origin machine in Berlin is slow compared to the other machines. This is
partly caused by the inefficient JIT, which is based on the SUN HotSpot JVM. Because of the combination of
slow processors and the inefficient JIT, the 16 nodes of the Origin we used are about as fast as a single 1 GHz
Pentium-IIT with the IBM JIT. The Origin thus hardly contributes anything to the computation. The table
shows that, although we used 40 CPUs in total for the grid run, the relative speed of these processors together
adds up to 24.668 DAS-2 nodes (1 GHz Pentium-IIls). The percentage of the total compute power that each
individual cluster delivers is shown in the rightmost column of Table 4.4.

TABLE 4.5
Performance of the ray tracer application on the GridLab testbed.

run communication parallelization

algorithm time (s) || time (s) | overhead || time (s) | overhead || efficiency
nighttime

RS 877.6 198.5 36.1% 121.9 23.5% 62.6%

CRS 676.5 35.4 6.4% 83.9 16.6% 81.3%
daytime

RS 2083.5 1414.5 257.3% 111.8 21.7% 26.4%

CRS 693.0 40.1 7.3% 95.7 18.8% 79.3%
single cluster 25

RS 579.6 11.3 2.0% 11.0 1.9% 96.1%

We also ran the ray tracer on a single DAS-2 machine, with the large problem size that we will use for the
grid runs. This took 13746 seconds (almost four hours). The sequential program without the Satin constructs
takes 13564 seconds, the overhead of the parallel version thus is about 1%. With perfect speedup, the run time
of the parallel program on the GridLab testbed would be 13564 divided by 24.668, which is 549.8 seconds (about
nine minutes). We consider this run time the upper bound on the performance that can be achieved on the
testbed, tperfece. We can use this number to calculate the efficiency that is achieved by the real parallel runs.
We call the actual run time of the application on the testbed ¢4.;4. In analogy to Section 2.3, efficiency can be
defined as follows:

t
efficiency = 227 4 100%
tgrid
We have also measured the time that is spent in communication (tcomm). This includes idle time, because all idle
time in the system is caused by waiting for communication to finish. We calculate the relative communication
overhead with this formula:

. . comm
communication overhead = * 100%
perfect

Finally, the time that is lost due to parallelization overhead (tpq-) is calculated as shown below:

tpar = tgrid — tcomm — tperfect

t
parallelization overhead = —22— % 100%
perfect

28 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. Bal

TABLE 4.6
Communication statistics for the ray tracer application on the GridLab testbed.

intra cluster inter cluster

alg. messages | MByte || messages | MByte
nighttime

RS 3218 41.8 11473 137.3

CRS 1353295 131.7 12153 86.0
daytime

RS 56686 18.9 149634 154.1

CRS 2148348 130.7 10115 82.1
single cluster 25

RS 45458 155.6 n.a. n.a.

The results of the grid runs are shown in Table 4.5. For reference, we also provide measurements on a
single cluster, using 25 nodes of the DAS-2 system. The results presented here are the fastest runs out of
three experiments. During daytime, the performance of the ray tracer with RS showed a large variability, some
runs took longer than an hour to complete, while the fastest run took about half an hour. Therefore, in this
particular case, we took the best result of six runs. This approach thus is in favor of RS. With CRS, this effect
does not occur: the difference between the fastest and the slowest run during daytime was less than 20 seconds.
During night, when there is little Internet traffic, the application with CRS is already more than 200 seconds
faster (about 23%) than with the RS algorithm. During daytime, when the Internet links are heavily used, CRS
outperforms RS by a factor of three. Regardless of the time of the day, the efficiency of a parallel run with CRS
is about 80%.

The numbers in Table 4.5 show that the parallelization overhead on the testbed is significantly higher
compared to a single cluster. Sources of this overhead are thread creation and switching caused by incoming
steal requests, and the locking of the work queues. The overhead is higher on the testbed, because five of the
six machines we use are SMPs (i.e. they have a shared memory architecture). In general, this means that
the CPUs in such a system have to share resources, making memory access and especially synchronization
potentially more expensive. The latter has a negative effect on the performance of the work queues. Also,
multiple CPUs share a single network interface, making access to the communication device more expensive.
The current implementation of Satin treats SMPs as clusters (i.e., on a N-way SMP, we start N JVMs).
Therefore, Satin pays the price of the SMP overhead, but does not exploit the benefits of SMP systems, such
as the available shared memory. An implementation that does utilize shared memory when available is planned
for the future.

Communication statistics of the grid runs are shown in Table 4.6. The numbers in the table totals for the
whole run, summed over all CPUs. Again, statistics for a single cluster run are included for reference. The
numbers show that almost all of the overhead of RS is in excessive wide-area communication. During daytime,
for instance, it tries to send 154 MByte over the busy Internet links. During the time-consuming wide-area
transfers, the sending machine is idle, because the algorithm is synchronous. CRS sends only about 82 MBytes
over the wide-area links (about half the amount of RS), but more importantly, the transfers are asynchronous.
With CRS, the machine that initiates the wide-area traffic concurrently tries to steal work in the local cluster,
and also concurrently executes the work that is found.

CRS effectively trades less wide-area traffic for more local communication. As shown in Table 4.6, the run
during the night sends about 1.4 million local-area messages. During daytime, the CRS algorithm has to do
more effort to keep the load balanced: during the wide-area steals, about 2.1 million local messages are sent
while trying to find work within the local clusters. This is about 60% more than during the night. Still, only
40.1 seconds are spent communicating. With CRS, the run during daytime only takes 16.5 seconds (about 2.4%)
longer than the run at night. The total communication overhead of CRS is at most 7.3%, while with RS, this
can be as much as two thirds of the run time (i.e. the algorithm spends more time on communicating than on
calculating useful work).

Because all idle time is caused by communication, the time that is spent on the actual computation can be
calculated by subtracting the communication time from the actual run time (t4.;4). Because we have gathered
the communication statistics per machine (not shown), we can calculate the total time a whole cluster spends

Satin: Simple and Efficient Java-based Grid Programming 29

100% -
80% -
R~}
Q i
®
E O Berlin
KC] 60% - M Brno
g [Cardiff
-E [JLecce
o 40% -+ [l A'dam Sun
'; HA'dam DAS-2
X
20% -
0% -

perfect RS night CRS night RS day CRS day

Fia. 4.2. Distribution of work over the different sites.

computing the actual problem. Given the amount of time a cluster performs useful work and the relative speed
of the cluster, we can calculate what fraction of the total work is calculated by each individual cluster. We can
compare this workload distribution with the ideal distribution which is represented by the rightmost column of
Table 4.4. The ideal distribution and the results for the four grid runs are shown in Figure 4.2. The difference
between the perfect distribution and the actual distributions of the four grid runs is hardly visible. From the
figure, we can conclude that, although the workload distribution of both RS and CRS is virtually perfect, the
RS algorithm itself spends a large amount of time on achieving this distribution. CRS does not suffer from this
problem, because wide-area traffic is asynchronous and is overlapped with useful work that was found locally.
Still, it achieves an almost optimal distribution.

To summarize, the experiment described in this section shows that the Java-centric approach to grid com-
puting, and the Satin/Ibis system in particular, works extremely well in practice in a real grid environment. It
took hardly any effort to run Ibis and Satin on a heterogeneous system. Furthermore, the performance results
clearly show that CRS outperforms RS in a real grid environment, especially when the wide-area links are also
used for other (Internet) traffic. With CRS, the system is idle (waiting for communication) during only a small
fraction of the total run time. We expect even better performance when larger clusters are used, as indicated
by our simulator results from Section 2.3.

5. Related work. We have discussed a Java-centric approach to writing wide-area parallel (grid comput-
ing) applications. Most other grid computing systems (e.g., Globus [10] and Legion [13]) support a variety of
languages. GridLab [2] is building a toolkit of grid services that can be accessed from various programming
languages. Converse [15] is a framework for multi-lingual interoperability. The SuperWeb [1], and Bayani-
han [29] are examples of global computing infrastructures that support Java. A language-centric approach
makes it easier to deal with heterogeneous systems, since the data types that are transferred over the networks
are limited to the ones supported in the language (thus obviating the need for a separate interface definition
language) [32].

The AppLeS (short for application-level scheduling) project provides a framework for adaptively scheduling

30 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. Bal

applications on the grid [5]. AppLeS focuses on selecting the best set of resources for the application out
of the resource pool of the grid. Satin addresses the more low-level problem of load balancing the parallel
computation itself, given some set of grid resources. AppLeS provides (amongst others) a template for master-
worker applications, whereas Satin provides load balancing for the more general class of divide-and-conquer
algorithms.

Many divide-and-conquer systems are based on the C language. Among them, Cilk [7] only supports shared-
memory machines, CilkNOW [9] and DCPAR [12] run on local-area, distributed-memory systems. SilkRoad [27]
is a version of Cilk for distributed memory systems that uses a software DSM to provide shared memory to the
programmer, targeting at small-scale, local-area systems.

The Java classes presented by Lea [18] can be used to write divide-and-conquer programs for shared-
memory systems. Satin is a divide-and-conquer extension of Java that was designed for wide-area systems,
without shared memory. Like Satin, Javar [6] is compiler-based. With Javar, the programmer uses annotations
to indicate divide-and-conquer and other forms of parallelism. The compiler then generates multithreaded
Java code, that runs on any JVM. Therefore, Javar programs run only on shared-memory machines and DSM
systems.

Herrmann et al. [14] describe a compiler-based approach to divide-and-conquer programming that uses
skeletons. Their DHC compiler supports a purely functional subset of Haskell, and translates source programs
into C and MPI. Alt et al. [3] developed a Java-based system, in which skeletons are used to express parallel
programs, one of which for expressing divide-and-conquer parallelism. Although the programming system
targets grid platforms, it is not clear how scalable the approach is: in [3], measurements are provided only for
a local cluster of 8 machines.

Most systems described above use some form of random stealing (RS). It has been proven [8] that RS is
optimal in space, time and communication, at least for relatively tightly coupled systems like SMPs and clusters
that have homogeneous communication performance. In previous work [26], we have shown that this property
cannot be extended to wide-area systems. We extended RS to perform asynchronous wide-area communication
interleaved with synchronous local communication. The resulting randomized algorithm, called CRS, does
perform well in loosely-coupled systems.

Another Java-based divide-and-conquer system is Atlas [4]. Atlas is a set of Java classes that can be used
to write divide-and-conquer programs. Javelin 3 [24] provides a set of Java classes that allow programmers
to express branch-and-bound computations, such as the traveling salesperson problem. Like Satin, Atlas and
Javelin 3 are designed for wide-area systems. Both Atlas and Javelin 3 use tree-based hierarchical scheduling
algorithms. We found that such algorithms are inefficient for fine-grained applications and that CRS performs
better [26].

6. Conclusions. Grid programming environments need to be both portable and efficient to exploit the
computational power of dynamically available resources. Satin makes it possible to write divide-and-conquer
applications in Java, and is targeted at clustered wide-area systems. The Satin implementation on top of our
new Ibis platform combines Java’s run everywhere with efficient communication between JVMs. The resulting
system is easy to use in a grid environment. To achieve high performance, Satin uses a special grid-aware load-
balancing algorithm. Previous simulation results suggested that this algorithm is more efficient than traditional
algorithms that are used on tightly-coupled systems. In this paper, we verified these simulation results in a real
grid environment.

We evaluated Satin/Ibis on the highly heterogeneous testbed of the EU-funded GridLab project, showing
that Satin’s load-balancing algorithm automatically adapts both to heterogeneous processor speeds and varying
network performance, resulting in efficient utilization of the computing resources. Measurements show that
Satin’s CRS algorithm indeed outperforms the widely used RS algorithm by a wide margin. With CRS, Satin
achieves around 80% efficiency, even during daytime when the links between the sites are heavily loaded. In
contrast, with the traditional RS algorithm, the efficiency drops to about 26% when the wide-area links are
congested.

Acknowledgments. Part of this work has been supported by the European Commission, grant IST-2001-
32133 (GridLab). We would also like to thank Olivier Aumage, Rutger Hofman, Ceriel Jacobs, Maik Nijhuis and
Gosia Wrzesinska for their contributions to the Ibis code. Kees Verstoep is doing a marvelous job maintaining
the DAS clusters. Aske Plaat suggested performing an evaluation of Satin on a real grid testbed. John Romein,
Matthew Shields and Massimo Cafaro gave valuable feedback on this manuscript.

(1]
(2]

(3]
[4]

[5]

[6]
(7]

(8]
[9]
[10]
[11]
[12]

[13]
[14]

[15]

[16]

[17]

18]
[19]
[20]
[21]
[22]
23]
[24]

[25]
[26]

[27]

28]

[29]
[30]

Satin: Simple and Efficient Java-based Grid Programming 31
REFERENCES

A. D. ALexanprov, M. IBeL, K. E. ScHAUsERr, aAND C. J. ScHEIMAN, Super Web: Research Issues in Java-Based Global
Computing, Concurrency: Practice and Experience, 9 (1997), pp. 535-553.

G. ArLen, K. Davis, K. N. Dorkas, N. D. Dourawmis, T. GoobarLe, T. KieLMaNN, A. MEgRrRzKY, J. NABRZYSKI,
J. Pukacki, T. Rabpke, M. RusseLL, E. SEmEL, J. SHALF, AND I. TAYLOR, Enabling Applications on the Grid - A
GridLab Overview, nternational Journal of High Performance Computing Applications, (2003). accepted for publication.

M. Avr, H. BiscHor, aNnD S. GOrLATCH, Program Development for Computational Grids using Skeletons and Performance
Prediction, Parallel Processing Letters, 12 (2002), pp. 157-174. World Scientific Publishing Company.

E. J. BALDESCHWIELER, R. BLuMOFE, AND E. BREWER, ATLAS: An Infrastructure for Global Computing, in Proceedings
of the Seventh ACM SIGOPS European Workshop on System Support for Worldwide Applications, Connemara, Ireland,
September 1996, pp. 165 172.

F. BErMAN, R. Worski, S. FIGUEIRA, J. SCHOPF, AND G. SHAO, Application-level Scheduling on Distributed Heterogeneous
Networks, in Proceedings of the ACM/IEEE Conference on Supercomputing (SC’96), Pittsburgh, PA, November 1996.
Online at http://www.supercomp.org.

A. Bik, J. VirLLacis, aAND D. GAaNNON, Javar: A Prototype Java Restructuring Compiler, Concurrency: Practice and
Experience, 9 (1997), pp. 1181 1191.

R. D. Brumorg, C. F. JoErg, B. C. KuszmauL, C. E. LeisersoN, K. H. RanpaLL, aNp Y. Zuou., Cilk: An Efficient
Multithreaded Runtime System, in 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP’95), Santa Barbara, CA, July 1995, pp. 207-216.

. D. BLumorke anp C. E. LEISERSON, Scheduling Multithreaded Computations by Work Stealing, in 35th Annual Symposium
on Foundations of Computer Science (FOCS ’94), Santa Fe, New Mexico, November 1994, pp. 356—368.

R. D. BLumorE AND P. Lisiecki, Adaptive and Reliable Parallel Computing on Networks of Workstations, in USENTX 1997

Annual Technical Conference on UNIX and Advanced Computing Systems, Anaheim, CA, 1997, pp. 133 147.

I. FosTER AND C. KESSELMAN, Globus: A Metacomputing Infrastructure Toolkit, International Journal of Supercomputer
Applications, 11 (1997), pp. 115 128.

I. FosTER, C. KESSELMAN, G. Tsubpik, AND S. TUECKE, A security architecture for computational grids, in 5th ACM
Conference on Computer and Communication Security, San Francisco, CA, November 1998, pp. 83 92.

B. FrREISLEBEN AND T. KieLMANN, Automated Transformation of Sequential Divide—and—Conquer Algorithms into Parallel
Programs, Computers and Artificial Intelligence, 14 (1995), pp. 579-596.

A. GriMsHaw AND W. A. Wurr, The Legion Vision of a Worldwide Virtual Computer, Comm. ACM, 40 (1997), pp. 39 45.

C. A. HERRMANN AND C. LENGAUER, HDC: A Higher-Order Language for Divide-and-Conquer, Parallel Processing Letters,
10 (2000), pp. 239 250.

.. V. KALE, M. BHANDARKAR, N. JAGATHESAN, S. KRISHNAN, AND J. YELON, Converse: An interoperable framework for
parallel programming, in Intl. Parallel Processing Symposium, 1996.

K. KaneEpa, K. TAaura, AND A. YoNEzawa, Virtual private grid: A command shell for utilizing hundreds of machines
efficiently, in 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2002), Berlin,
Germany, May 2002, pp. 212 219.

T. KieLmanN, H. E. Bar, J. MaasseN, R. van NieuwpooRrT, .. EYyraup, R. HoFmaN, aAND K. VERSTOEP, Programming
Environments for High-Performance Grid Computing: the Albatross Project, Future Generation Computer Systems, 18
(2002), pp. 1113-1125.

D. Lea, A Java Fork/Join Framework, in Proceedings of the ACM 2000 Java Grande Conference, San Francisco, CA, June
2000, pp. 36-43.

C. LEg, S. Marsuoka, D. Taria, A. SussMmanNnN, M. MULLER, GG. ALLEN, AND J. Savrz, A Grid programming primer.

M

oy

Global Grid Forum, August 2001.
. LeecH, M. Ganis, Y. LEg, R. Kuris, D. KoBras, anDp L. JonEs, RFC 1928: SOCKS protocol version 5, April 1996.

J. Maassen, T. KieLmanN, aAND H. BarL, GMI: Flezible and Efficient Group Method Invocation for Parallel Programming,
in In proceedings of LCR-02: Sixth Workshop on Languages, Compilers, and Run-time Systems for Scalable Computers,
Washington DC, March 2002, pp. 1 6.

J. MaasseN, T. KieLMANN, aAND H. E. Bar, Parallel Application Ezperience with Replicated Method Invocation, Concur-
rency and Computation: Practice and Experience, 13 (2001), pp. 681 712.

J. MaasseEN, R. van NieuwpoorT, R. VELDEMA, H. BarL, T. KieLmann, C. JacoBs, aND R. HormaNn, Efficient Java
RMI for Parallel Programming, ACM Transactions on Programming Languages and Systems, 23 (2001), pp. 747 775.

M. O. NeEary anp P. CaprpreELLO, Advanced Fager Scheduling for Java-Based Adaptively Parallel Computing, in Proceedings
of the Joint ACM 2002 Java Grande - ISCOPE (International Symposium on Computing in Object-Oriented Parallel
Environments) Conference, Seattle, November 2002, pp. 56 65.

Public netperf homepage. www.netperf.org.

R. V. v. Nieuwpoorr, T. KieLmManNN, anD H. E. Bav, Efficient Load Balancing for Wide-area Divide-and-Conquer
Applications, in Proceedings Eighth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP’01), Snowbird, UT, June 2001, pp. 34 43.

L. Penag, W. Wong, M. Fenag, anp C. YueN, SilkRoad: A Multithreaded Runtime System with Software Distributed
Shared Memory for SMP Clusters, in IEEE International Conference on Cluster Computing (Cluster2000), Chemnitz,
Saxony, Germany, November 2000, pp. 243 249.

M. PHiLiPPSEN, B. HAUMACHER, AND C. NESTER, More efficient serialization and RMI for Java, Concurrency: Practice
and Experience, 12 (2000), pp. 495 518.

L. F. G. SARMENTA, Volunteer Computing, PhD thesis, Dept. of Electrical Engineering and Computer Science, MIT, 2001.

Y. Tanaka, H. Nakapa, S. SekigucHi, T. SuzuMURA, AND S. Marsuoka, Ninf-G: A Reference Implementation of
RPC-based Programming Middleware for Grid Computing, Journal of Grid Computing, 1 (2003), pp. 41-51.

32 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. Bal

[31] R. V. vaN Nieuwproorr, J. Maassen, R. Horman, T. KieLmanNN, anD H. E. BaL, Ibis: an Efficient Java-based Grid
Programming Environment, in Joint ACM Java Grande - ISCOPE 2002 Conference, Seattle, Washington, USA, November
2002, pp. 18-27.

[32] A. WorLraTH, J. WaLpO, AND R. Riaas, Java-Centric Distributed Computing, IEEE Micro, 17 (1997), pp. 44 53.

[33] I.-C. Wu anp H. Kung, Communication Complezity for Parallel Divide-and-Congquer, in 32nd Annual Symposium on
Foundations of Computer Science (FOCS ’91), San Juan, Puerto Rico, Oct. 1991, pp. 151 162.

Edited by: Wilson Rivera, Jaime Seguel.
Received: July 15, 2003.
Accepted: September 1, 2003.

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 6, Number 3, pp. 33-43. http://www.scpe.org © 2005 SWPS

0,..

RUN-TIME ADAPTATION OF GRID DATA PLACEMENT JOBS

G. KOLA*, T. KOSAR* & M. LIVNY*

Abstract. Grid presents a continuously changing environment. It also introduces a new set of failures. The data grid initiative
has made it possible to run data-intensive applications on the grid. Data-intensive grid applications consist of two parts: a data
placement part and a computation part. The data placement part is responsible for transferring the input data to the compute
node and the result of the computation to the appropriate storage system. While work has been done on making computation
adapt to changing conditions, little work has been done on making the data placement adapt to changing conditions. In this work,
we have developed an infrastructure which observes the environment and enables run-time adaptation of data placement jobs. We
have enabled Stork, a scheduler for data placement jobs in heterogeneous environments like the grid, to use this infrastructure
and adapt the data placement job to the environment just before execution. We have also added dynamic protocol selection and
alternate protocol fall-back capability to Stork to provide superior performance and fault tolerance.

Key words. Grid, data placement, run-time adaptation, scheduling, data intensive applications, dynamic protocol selection,
stork, condor.

1. Introduction. The grid [10] [11] [19] presents a continuously changing environment. The data grid
initiative has increased the underlying network capacity and enabled running of data-intensive applications on
the grid. Data-intensive applications consist of two parts: a data placement part and a computation part.
The data placement part is responsible for transferring the input data to the compute node and the result of
the computation to the appropriate storage system. Data placement encompasses all data movement related
activities such as transfer, staging, replication, data positioning, space allocation and deallocation. While work
has been done on making computation adapt to changing conditions, little work has been done on making the
data placement adapt to changing conditions.

Sophisticated protocols developed for grid data transfers like GridF'TP [1] allow tuning depending on the
environment to achieve the best performance. While tuning by itself is difficult, it is further complicated by
the changing environment. The parameters which are optimal at the time of job submission, may no longer be
optimal at the time of execution. The best time to tune the parameters is just before execution of the data
placement job. Determining the environment characteristics and performing tuning for each job may impose
a significant overhead. Ideally, we need an infrastructure that detects environmental changes and performs
appropriate tuning and uses the tuned parameters for subsequent data placement jobs.

Many times, we have the ability to use different protocols for data transfers, with each having different
network, CPU and disk characteristics. The new fast protocols do not work all the time. The main reason is the
presence of bugs in the implementation of the new protocols. The more robust protocols work for most of the
time but do not perform as well. This presents a dilemma to the users who submit data placement jobs to data
placement schedulers. If they choose the fast protocol, some of their transfers may never complete and if they
choose the slower protocol, their transfer would take a very long time. Ideally users would want to use the faster
protocol when it works and switch to the slower more reliable protocol when the fast one fails. Unfortunately,
when the fast protocol would fail is not known apriori. The decision on which protocol to use is best done just
before starting the transfer.

Some users simply want data transferred and do not care about the protocol being used. Others have some
preference such as: as fast as possible, as low a CPU load as possible, as minimal memory usage as possible. The
machines where the jobs are being executed may have some characteristics which might favor some protocol.
Further the machine characteristics may change over time due to hardware and software upgrades. Most users
do not understand the performance characteristics of the different protocols and inevitably end up using a
protocol that is known to work. In case of failures, they just wait for the failure to be fixed, even though other
protocols may be working.

An ideal system is one that allows normal users to specify their preference and chooses the appropriate pro-
tocol based on their preference and machine characteristics. It should also switch to the next most appropriate
protocol in case the current one stops working. It should also allow sophisticated users to specify the protocol
to use and the alternate protocols in case of failure. Such a system would not only reduce the complexity of

*Department of Computer Sciences, University of Wisconsin-Madison, 1210 W. Dayton St. Madison, WI 53706, USA. ({kola,
kosart, miron}@cs.wisc.edu).

33

34 G. Kola, T. Kosar and M. Livny

programming the data transfer but also provide superior failure recovery strategy. The system may also be able
to improve performance because it can perform on-the-fly optimization.

In this work, we have developed a monitoring infrastructure which determines the environment characteris-
tics and detects any subsequent change. The environment characteristics are used by the tuning infrastructure
to generate tuned parameters for the various protocols. These tuned parameters are fed to a data placement
scheduler. The data placement scheduler uses the tuned parameters while executing the data placement jobs
submitted to it, essentially performing run-time adaptation of data placement jobs. We have also added dy-
namic protocol selection and alternate protocol fall-back capability to our prototype data placement scheduler.
Dynamic protocol selection determines the protocols that are available on a particular host and uses an appro-
priate protocol for data transfer between any two hosts. Alternate protocol fall-back allows the data placement
scheduler to switch to a different protocol if the protocol being used for a transfer stops working.

2. Related Work. Network Weather Service (NWS) [25] is a distributed system which periodically gathers
readings from network and CPU resources, and uses numerical models to generate forecasts for a given time
frame. Vazhkudai [24] found that the network throughput predicted by NWS was much less than the actual
throughput achieved by GridFTP. He attributed the reason for it being that NWS by default was using 64KB
data transfer probes with normal TCP window size to measure throughput. We wanted our network monitoring
infrastructure to be as accurate as possible and wanted to use it to tune protocols like GridFTP.

Semke [20] introduces automatic TCP buffer tuning. Here the receiver is expected to advertise large
enough windows. Fisk [9] points out the problems associated with [20] and introduces dynamic right sizing
which changes the receiver window advertisement according to estimated sender congestion window. 16-bit TCP
window size field and 14-bit window scale option which needs to be specified during connection setup, introduce
more complications. While a higher value of the window-scale option allows a larger window, it increases the
granularity of window increments and decrements. While large data transfers benefit from large window size,
web and other traffic are adversely affected by the larger granularity of window-size changes.

Linux 2.4 kernel used in our machines implements dynamic right-sizing, but the receiver window size needs
to be set explicitly if a window size large than 64 KB is to be used. Autobuf [15] attempts to tune TCP
window size automatically by performing bandwidth estimation before the transfer. Unfortunately there is
no negotiation of TCP window size between server and client which is needed for optimal performance. Also
performing a bandwidth estimation before every transfer introduces too much of an overhead.

Fearman et. al [8] introduce the Adaptive Regression Modeling (ARM) technique to forecast data transfer
times for network-bound distributed data-intensive applications. Ogura et. al [17] try to achieve optimal
bandwidth even when the network is under heavy contention, by dynamically adjusting transfer parameters
between two clusters, such as the number of socket stripes and the number of network nodes involved in
transfer.

In [5], Carter et. al. introduce tools to estimate the maximum possible bandwidth along a given path,
and to calculate the current congestion along a path. Using these tools, they demonstrate how dynamic server
selection can be performed to achieve application-level congestion avoidance.

Thain et. al. propose the Ethernet approach [21] to Grid Computing, in which they introduce a simple
scripting language which can handle failures in a manner similar to exceptions in some languages. The Ethernet
approach is not aware of the semantics of the jobs it is running, its duty is retrying any given job for a number
of times in a fault tolerant manner. Kangaroo [22] tries to achieve high throughput by making opportunistic
use of disk and network resources.

Application Level Schedulers (AppLeS) [4] have been developed to achieve efficient scheduling by taking
into account both application-specific and dynamic system information. AppLeS agents use dynamic system
information provided by the NWS.

Beck et. al. introduce Logistical Networking [2] which performs global scheduling and optimization of data
movement, storage and computation based on a model that takes into account all the network’s underlying
physical resources.

3. Methodology. The environment in which data placement jobs execute keeps changing all the time.
The network bandwidth keeps fluctuating. The network route changes once in a while. The optic fiber may
get upgraded increasing the bandwidth. New disks and raid-arrays may be added to the system. The monitor-
ing and tuning infrastructure monitors the environment and tunes the different parameters accordingly. The
data placement scheduler then uses these tuned parameters to intelligently schedule and execute the transfers.

Run-time Adaptation of Grid Data Placement Jobs 35

Figure 3.1 shows the components of the monitoring and tuning infrastructure and the interaction with the data
placement scheduler.

3.1. Monitoring Infrastructure. The monitoring infrastructure monitors the disk, memory and network
characteristics. The infrastructure takes into account that the disk and memory characteristics change less
frequently and the network characteristics change more frequently. The disk and memory characteristics are
measured once after the machine is started. If a new disk is added on the fly (hot-plugin), there is an option to
inform the infrastructure to determine the characteristics of that disk. The network characteristics are measured
periodically. The period is tunable. If the infrastructure finds that the network characteristics are constant for
a certain number of measurements, it reduces the frequency of measurement till a specified minimum is reached.
The objective of this is to keep the overhead of measurement as low as possible.

| Monitoring |
: Infrastructure :

| @Hostl 1 Memory

: Memory : Parnameters

: Profiler |

| ! Disk

: Disk 1 Parameters

1 | Profiler |

I

I Network :

I etwor I

| | Profiler |1 Network Tuning Data Transfer Data

e o o o 1 Parameters Parcmeters

[- Infra- Placement
! 1

: Network : structure Scheduler
1 | Profiler "

I .

| : Disk

1 | Disk | Parcmeters

: Profiler :

I | Memory

: Memory : Parcmeters

1 | Profiler "

! 1

| Monitoring |

I Infrastructure |

! @Host2 !

Fia. 3.1. Monitoring and Tuning Infrastructure. This figure shows an overview of the monitoring and tuning infrastructure.
The different profilers determine the various environment conditions and the tuning infrastructure uses that information to generate
optimal parameter values.

The disk and memory characteristics are determined by intrusive techniques, and the network characteristics
are determined by a combination of intrusive and non-intrusive techniques. The memory characteristic of
interest to us is the optimal memory block size to be used for memory-to-memory copy. The disk characteristics
measured include the optimal read and write block sizes and the incremental block size that can be added to
the optimal value to get the same performance.

The network characteristics measured are the following: end-to-end bandwidth, end-to-end latency, number
of hops, the latency of each hop and kernel TCP parameters. Since end-to-end measurement requires two hosts,
this measurement is done between every pair of hosts that may transfer data between each other. The end-
to-end bandwidth measurement uses both intrusive and non-intrusive techniques. The non-intrusive technique
uses packet dispersion technique to measure the bandwidth. The intrusive technique performs actual transfers.
First, the non-intrusive technique is used and the bandwidth is determined. Then actual transfer is performed to
measure the end-to-end bandwidth. If the numbers widely differ, the infrastructure performs a certain number

36 G. Kola, T. Kosar and M. Livny

of both of the network measurements and finds the correlation between the two. After this initial setup, a
light-weight network profiler is run which uses only non-intrusive measuring technique. While we perform a
longer initial measurement for higher accuracy, the subsequent periodic measurements are very light-weight and
do not perturb the system.

3.2. Tuning Infrastructure. The tuning infrastructure uses the information collected by monitoring
infrastructure and tries to determine the optimal I/O block size, TCP buffer size and the number of TCP
streams for the data transfer from a given node X to a given node Y. The tuning infrastructure has the
knowledge to perform protocol-specific tuning. For instance, GridFTP takes as input only a single I/O block
size, but the source and destination machines may have different optimal I/O block sizes. For such cases, the
tuning finds the I/O block size which is optimal for both of them. The incremental block size measured by the
disk profiler is used for this. The tuning infrastructure feeds the data transfer parameters to the data placement
scheduler.

3.3. Scheduling Data Transfers. The data placement scheduler uses the information provided by the
tuning infrastructure to make intelligent decisions for scheduling and executing the data placement jobs.

In our study, we used the Stork [13] data placement scheduler to monitor, manage, and schedule the
data transfers over the wide area network. Stork is a specialized scheduler for data placement activities in
heterogeneous environments. Stork can queue, schedule, monitor and manage data placement jobs, and it
ensures that the jobs complete.

Stork is aware of the semantics of the data placement requests submitted to it, so it can make intelligent
scheduling decisions with regard to each individual request. For example, if a transfer of a large file fails, Stork
can transfer only parts of the file not already transferred. We have made some enhancements to Stork that enable
it to adaptively schedule data transfers at run-time using the information provided by monitoring and tuning
infrastructure. These enhancements include dynamic protocol selection and run-time protocol auto-tuning. The
details of these enhancements are discussed in section 5.

4. Implementation. We have developed a set of tools to determine disk, memory and network character-
istics and using those values determine the optimal parameter values to be used for data transfers. We executed
these tools in a certain order and fed the results to Stork data placement scheduler which then performed
run-time adaptation of the wide-area data placement jobs submitted to it.

4.1. Disk and Memory Profilers. The disk profiler determines the optimal read and write block sizes
and the increment that can be added to the optimal block size to get the same performance. A list of pathnames
and the average file size is fed to the disk profiler. So, in a multi-disk system, the mount point of the different
disks are passed to the disk profiler. In the case of a raid-array, the mount point of the raid array is specified.
For each of the specified paths, the disk profiler finds the optimal read and write block size and the optimal
increment that can be applied to these block sizes to get the same performance. It also lists the read and write
disk bandwidths achieved by the optimal block sizes.

For determining the optimal write block size, the profiler creates a file in the specified path and writes the
average file size of data in block-size chunks and flushes the data to disk at the end. It repeats the experiment for
different block sizes and finds the optimal. For determining the read block size, it uses the same technique except
that it flushes the kernel buffer cache to prevent cache effects before repeating the measurement for a different
block size. Since normal kernels do not allow easy flushing of the kernel buffer cache, the micro-benchmark
reads in a large dummy file of size greater than the buffer cache size essentially flushing it. The memory profiler
finds the maximum memory-to-memory copy bandwidth and the block size to be used to achieve it.

4.2. Network Profiler. The network profiler gets the kernel TCP parameters from /proc. It runs
Pathrate [7] between given pair of nodes and gets the estimated bottleneck bandwidth and the average round-
trip time. It then runs traceroute between the nodes to determine the number of hops between the nodes and the
hop-to-hop latency. The bandwidth estimated by Pathrate is verified by performing actual transfers by a data
transfer tool developed as part of the DiskRouter project [12]. If the two numbers differ widely, then a specified
number of actual transfers and Pathrate bandwidth estimations are done to find the correlation between the
two. Tools like Iperf [16] can also be used instead of the DiskRouter data transfer tool to perform the actual
transfer. From experience, we found Pathrate to the most reliable of all the network bandwidth estimation tools
that use packet dispersion technique and we always found a correlation between the value returned by Pathrate

Run-time Adaptation of Grid Data Placement Jobs 37

and that observed by performing actual transfer. After the initial network profiling, we run a light-weight
network profiler periodically. The light-weight profiler runs only Pathrate and traceroute.

4.3. Parameter Tuner. The parameter tuner gets the information generated by the different tools and
finds the optimal value of the parameters to be used for data transfer from a node X to a node Y.

To determine the optimal number of streams to use, the parameter tuner uses a simple heuristic. It finds
the number of hops between the two nodes that have a latency greater than 10 ms. For each such hop, it adds
an extra stream. Finally, if there are multiple streams and the number of streams is odd, the parameter tuner
rounds it to an even number by adding one. The reason for doing this is that some protocols do not work well
with odd number of streams. The parameter tuner calculates the bandwidth-delay product and uses that as
the TCP buffer size. If it finds that it has to use more than one stream, it divides the TCP buffer size by
the number of streams. The reason for adding a stream for every 10 ms hop is as follows: In a high-latency
multi-hop network path, each of the hops may experience congestion independently. If a bulk data transfer
using a single TCP stream occurs over such a high-latency multi-hop path, each congestion event would shrink
the TCP window size by half. Since this is a high-latency path, it would take a long time for the window to
grow, with the net result being that a single TCP stream would be unable to utilize the full available bandwidth.
Having multiple streams reduces the bandwidth reduction of a single congestion event. Most probably only a
single stream would be affected by the congestion event and halving the window size of that stream alone would
be sufficient to eliminate congestion. The probability of independent congestion events occurring increases with
the number of hops. Since only the high-latency hops have a significant impact because of the time taken to
increase the window size, we added a stream for all high-latency hops and empirically found that hops with
latency greater than 10 ms fell into the high-latency category. Note that we set the total TCP buffer size to be
equal to the bandwidth delay product, so in steady state case with multiple streams, we would not be causing
congestion.

The Parameter Tuner understands kernel TCP limitations. Some machines may have a maximum TCP
buffer size limit less than the optimal needed for the transfer. In such a case, the parameter tuner uses more
streams so that their aggregate buffer size is equal to that of the optimal TCP buffer size.

The Parameter Tuner gets the different optimal values and generates overall optimal values. It makes sure
that the disk I/0 block size is at least equal to the TCP buffer size. For instance, the optimal disk block size
may be 1024 KB and the increment value may be 512 KB (performance of optimal + increment is same as
optimal) and the optimal TCP buffer size may be 1536KB. In this case, the parameter tuner will make the
protocol use a disk block size of 1536 KB and a TCP buffer size of 1536 KB. This is a place where the increment
value generated by the disk profiler is useful.

The Parameter Tuner understands different protocols and performs protocol specific tuning. For example,
globus-url-copy, a tool used to move data between GridFTP servers, allows users to specify only a single disk
block size. The read disk block size of the source machine may be different from the write disk block size of the
destination machine. In this case, the parameter tuner understands this and chooses an optimal value that is
optimal for both the machines.

4.4. Coordinating the Monitoring and Tuning Infrastructure. The disk, memory and network
profilers need to be run once at startup and the light-weight network profiler needs to be run periodically. We
may also want to re-run the other profilers in case a new disk is added or any other hardware or operating
system kernel upgrade. We have used the Directed Acyclic Graph Manager (DAGMan) [6] [23] to coordinate
the monitoring and tuning process. DAGMan is service for executing multiple jobs with dependencies between
them. The monitoring tools are run as Condor [14] jobs on respective machines. Condor provides a job queuing
mechanism and resource monitoring capabilities for computational jobs. It also allows the users to specify
scheduling policies and enforce priorities.

We executed the Parameter Tuner on the management site. Since the Parameter Tuner is a Condor job,
we can execute it anywhere we have a computation resource. It picks up the information generated by the
monitoring tools using Condor and produces the different tuned parameter values for data transfer between
each pair of nodes. For example, if there are two nodes X and Y, then the parameter tuner generates two sets
of parameters - one for transfer from node X to node Y and another for data transfer from node Y to node X.
This information is fed to Stork which uses it to tune the parameters of data placement jobs submitted to it.
The DAG coordinating the monitoring and tuning infrastructure is shown in Figure 4.1.

We can run an instance of parameter tuner for every pair of nodes or a certain number of pairs of nodes.

38 G. Kola, T. Kosar and M. Livny

Disk Memory Network |)

Profiler Profiler Profiler)
This part

\ ﬂ / S~ executes at

startup and

Parameter whenever
Tuner ted
ﬂ r/ r'eques (A
Lightweight ™

Network Profiler

11 . This part
Parameter BXBF ufes
Tuner periodically

Fia. 4.1. The DAG Coordinating the Monitoring and Tuning infrastructure. This DAG shows the order in which the
monitors(profilers) and tuner are run. Initially all the profilers are run and the information is logged to persistent storage and also
passed to the parameter tuner which generates the optimal parameter values. After that, the light-weight network profiler and
parameter tuner are run periodically. The parameter tuner uses the values of the earlier profiler runs and the current light-weight
network profiler run to generate the optimal parameter values.

For every pair of nodes, the data fed to the parameter tuner is in the order of hundreds of bytes. Since all tools
are run as Condor jobs, depending on the number of nodes involved in the transfers, we can have a certain
number of parameter tuners, and they can be executed wherever there is available cycles and this architecture
is not centralized with respect to the parameter tuner. In our infrastructure, we can also have multiple data
placement schedulers and have the parameters for data transfers handled by a particular scheduler fed to it.
In a very large system, we would have multiple data placement schedulers with each handling data movement
between a certain subset of nodes.

4.5. Dynamic Protocol Selection. We have enhanced the Stork scheduler so that it can decide which
data transfer protocol to use for each corresponding transfer dynamically and automatically at the run-time.
Before performing each transfer, Stork makes a quick check to identify which protocols are available for both
the source and destination hosts involved in the transfer. Stork first checks its own host-protocol library to see
whether all of the hosts involved the transfer are already in the library or not. If not, Stork tries to connect
to those particular hosts using different data transfer protocols, to determine the availability of each specific
protocol on that particular host. Then Stork creates the list of protocols available on each host, and stores
these lists as a library in ClassAd [18] format which is a very flexible and extensible data model that can be
used to represent arbitrary services and constraints.

[
host_name = '"quest2.ncsa.uiuc.edu";
supported_protocols = "diskrouter, gridftp, ftp";
]
[
host_name = "nostos.cs.wisc.edu";

supported_protocols = "gridftp, ftp, http";
]

Run-time Adaptation of Grid Data Placement Jobs 39

If the protocols specified in the source and destination URLs of the request fail to perform the transfer,
Stork will start trying the protocols in its host-protocol library to carry out the transfer. Stork detects a
variety of protocol failures. In the simple case, connection establishment would fail and the tool would report
an appropriate error code and Stork uses the error code to detect failure. In other case where there is a bug
in protocol implementation, the tool may report success of a transfer, but stork would find that source and
destination files have different sizes. If the same problem repeats, Stork switches to another protocol. The users
also have the option to not specify any particular protocol in the request, letting Stork to decide which protocol
to use at run-time.

[
dap_type = "transfer";
src_url "any://slicO4.sdsc.edu/tmp/foo.dat";
dest_url = "any://quest2.ncsa.uiuc.edu/tmp/foo.dat";

In the above example, Stork will select any of the available protocols on both source and destination hosts
to perform the transfer. So, the users do not need to care about which hosts support which protocols. They
just send a request to Stork to transfer a file from one host to another, and Stork will take care of deciding
which protocol to use.

The users can also provide their preferred list of alternative protocols for any transfer. In this case, the
protocols in this list will be used instead of the protocols in the host-protocol library of Stork.

L
dap_type = "transfer";

src_url = "drouter://slic04.sdsc.edu/tmp/foo.dat";
dest_url = "drouter://quest2.ncsa.uiuc.edu/tmp/foo.dat";
alt_protocols = "nest-nest, gsiftp-gsiftp";

In this example, the user asks Stork to perform a transfer from slic04.sdsc.edu to quest2.ncsa.uiuc.edu
using the DiskRouter protocol primarily. The user also instructs Stork to use any of the NeST [3] or GridFTP
protocols in case the DiskRouter protocol does not work. Stork will try to perform the transfer using the
DiskRouter protocol first. In case of a failure, it will drop to the alternative protocols and will try to complete
the transfer successfully. If the primary protocol becomes available again, Stork will switch to it again. So,
whichever protocol available will be used to successfully complete the user’s request. In case all the protocols
fail, Stork will keep trying till one of them becomes available.

4.6. Run-time Protocol Auto-tuning. Statistics for each link involved in the transfers are collected
regularly and written into a file, creating a library of network links, protocols and auto-tuning parameters.
[
link = "slicO4.sdsc.edu - quest2.ncsa.uiuc.edu";
protocol = "gsiftp";

bs = 1024KB; //block size
tcp_bs = 1024KB; //TCP buffer size
P = 4 //parallelism

]

Before performing every transfer, Stork checks its auto-tuning library to see if there are any entries for the
particular hosts involved in this transfer. If there is an entry for the link to be used in this transfer, Stork uses
these optimized parameters for the transfer. Stork can also be configured to collect performance data before
every transfer, but this is not recommended due to the overhead it will bring to the system.

5. Experiments and Results. We have performed two different experiments to evaluate the effectiveness
of our dynamic protocol selection and run-time protocol tuning mechanisms. We also collected performance
data to show the contribution of these mechanisms to wide area data transfers.

5.1. Experiment 1: Testing the Dynamic Protocol Selection. We submitted 500 data trans-
fer requests to the Stork server running at University of Wisconsin (skywalker.cs.wisc.edu). Each re-
quest consisted of transfer of a 1.1GB image file (total 550GB) from SDSC (s1ic04.sdsc.edu) to NCSA
(quest2.ncsa.uiuc.edu) using the DiskRouter protocol. There was a DiskRouter server installed at Starlight

40 G. Kola, T. Kosar and M. Livny

(ncdm13.sl.startap.net) which was responsible for routing DiskRouter transfers. There were also GridFTP
servers running on both SDSC and NCSA sites, which enabled us to use third-party GridFTP transfers whenever
necessary. The experiment setup is shown in Figure 5.1.

------ » Control flow Management Site
— [Data flow [skywalker.os.wisc.edu)

— GridFTP
B
. SDscC DiskRouter NCSA_
(s1ic04. sdsc. edu) (gquest?.nosa.uiuc. edu)

StarLight
{(ncdml3. s1. startap. net)

Fia. 5.1. Ezperiment Setup. DiskRouter and GridFTP protocols are used to transfer data from SDSC to NCSA. Stork was
running at the Management site,a nd making scheduling decisions for the transfers.

At the beginning of the experiment, both DiskRouter and GridF'TP services were available. Stork started
transferring files from SDSC to NCSA using the DiskRouter protocol as directed by the user. After a while,
we killed the DiskRouter server running at Starlight intentionally. This was done to simulate a DiskRouter
server crash. Stork immediately switched the protocols and continued the transfers using GridFTP without
any interruption. Switching to GridFTP caused a decrease in the performance of the transfers, as shown in
Figure 5.2. The reasons of this decrease in performance is because of the fact that GridF' TP does not perform
auto-tuning whereas DiskRouter does. In this experiment, we set the number of parallel streams for GridF'TP
transfers to 10, but we did not perform any tuning of disk I/O block size or TCP buffer size. DiskRouter
performs auto-tuning for the network parameters including the number of TCP-streams in order to fully utilize
the available bandwidth. DiskRouter can also use sophisticated routing to achieve better performance.

After letting Stork use the alternative protocol (in this case GridFTP) to perform the transfers for a while,
we restarted the DiskRouter server at the SDSC site. This time, Stork immediately switched back to using
DiskRouter for the transfers, since it was the preferred protocol of the user. Switching back to the faster protocol
resulted in an increase in the performance. We repeated this a couple of more times, and observed that the
system behaved in the same way every time.

This experiment shows that with alternate protocol fall-over capability, grid data placement jobs can make
use of the new high performance protocols while they work and switch to more robust lower performance
protocol when the high performance one fails.

5.2. Experiment 2: Testing the Run-time Protocol Auto-tuning. In the second experiment, we
submitted another 500 data transfer requests to the Stork server. Each request was to transfer a 1.1GB image
file (total 550 GB) using GridFTP as the primary protocol. We used third-party globus-url-copy transfers
without any tuning and without changing any of the default parameters.

Run-time Adaptation of Grid Data Placement Jobs 41

Data Transfer from SDSC to NCSA
using Dynamic Protocol Selection

14
13
12
11
10

Transfer Rate (MB/s)

9
]
7
6
5

Jun 28 12:04;00 Time Jun 28 22:34:00
DiskRouter)@ @ @ @\ DiskRouter
server killed server restarted

Fia. 5.2. Dynamic Protocol Selection. The DiskRouter server running on the SDSC machine gets killed twice at points (1)
and (3), and it gets restarted at points (2) and (4). In both cases, Stork employed next available protocol (GridFTP in this case)
to complete the transfers.

TaBLE 5.1
Network parameters for gridFTP before and after auto-tuning feature of Stork being turned on.

| Parameter | Before auto-tuning | After auto-tuning |
parallelism 1 TCP stream 4 TCP streams
block size 1 MB 1 MB
tcp buffer size | 64 KB 256 KB

We turned off the auto-tuning feature of Stork at the beginning of the experiment intentionally. The average
data transfer rate that globus-url-copy could get without any tuning was only 0.5 MB/s. The default network
parameters used by globus-url-copy are shown in Table 1. After a while, we turned on the auto-tuning feature
of Stork. Stork first obtained the optimal values for I/O block size, TCP buffer size and the number of parallel
TCP streams from the monitoring and tuning infrastructure. Then it applied these values to the subsequent
transfers. Figure 5.3 shows the increase in the performance after the auto-tuning feature is turned on. We got
a speedup of close to 20 times compared to transfers without tuning.

6. Future Work. We are planning to enhance the dynamic protocol selection feature of Stork, so that
it will not only select any available protocol to perform the transfer, but it will select the best one. The
requirements of ‘being the best protocol’ may vary from user to user. Some users may be interested in better
performance, and others in better security or better reliability. Even the definition of ‘better performance’ may
vary from user to user. We are looking into the semantics of how to to define ‘the best’ according to each user’s
requirements.

We are also planning to add a feature to Stork to dynamically select which route to use in the transfers and
then dynamically deploy DiskRouters at the nodes on that route. This will enable us to use the optimal routes
in the transfers, as well as optimal use of the available bandwidth throughout that route.

7. Conclusion. In this paper, we have shown a method to dynamically adapt data placement jobs to
the environment at the execution time. We have developed a set of disk and memory and network profiling,
monitoring and tuning tools which can provide optimal values for I/O block size, TCP buffer size, and the
number of TCP streams for data transfers. These values are generated dynamically and provided to the higher
level data placement scheduler, which can use them in adapting the data transfers at run-time to existing

42 G. Kola, T. Kosar and M. Livny

Data Trangfer from SDSC to NCSA
using Run-time Protocol Auto-tuning

(AR LA e
LT | | | | | | |
Jun 18 2003 22:44:25 Jun 29 2003 04:30:34

Time
Auto-tuning k Network

turned on outage

—
=
|

=t
[
N

Transfer Rate (MB/s)
== =

=

Fia. 5.3. Run-time Protocol Auto-tuning. Stork starts the transfers using the GridF'TP protocol with auto-tuning turned off
intentionally. Then we turn the auto-tuning on, and the performance increases drastically.

environmental conditions. We also have provided dynamic protocol selection and alternate protocol fall-back
capabilities to provide superior performance and fault tolerance. With two experiments, we have shown that
our method can be easily applied and it generates better performance results by dynamically switching to
alternative protocols in case of a failure, and by dynamically auto-tuning protocol parameters at run-time.

Acknowledgements. We would like to thank Robert J. Brunner, Michelle Butler and Jason Alt from
NCSA; Philip Papadopoulos, Mason J. Katz and George Kremenek from SDSC for the invaluable help in
providing us access to their resources, support and feedback.

REFERENCES

[1] B. ArrLcock, J. BEsTER, J. BrRESNAHAN, A. CHERVENAK, I. FosTerR, C. KEssELMAN, S. MEDER, V. NEFEDOVA, D.
QUESNEL AND S. TUECKE, Secure, Efficient Data Transport and Replica Management for High-Performance Data-
Intensive Computing, in Proceedings of IEEE Mass Storage Conference", April 2001, San Diego, California.

[2] M. Beck, T. Moorg, J. PLANK AND M. Swany, Logistical Networking, Active Middleware Services, S. Hariri and C. Lee
and C. Raghavendra, editors. Kluwer Academic Publishers, 2000.

[3] J. BEnT, V. VENKATARAMANI, N. LEROY, A. RoYy, J. StanLEY, A. C. Arpraci-Dusseau, R. H. Arpaci-DUSSEAU AND
M. LivnNy, Flezibility, Manageability, and Performance in a Grid Storage Appliance, in Proceedings of the Eleventh
IEEE Symposium on High Performance Distributed Computing (HPDC11),July 2002, Edinburgh, Scotland.

[4] F. BeErmaN, R. WoLskl, S. FiGUEIRA, J. ScHOoPF AND G. SHAO, Application Level Scheduling on Distributed Heterogeneous
Networks, in Proceedings of Supercomputing’96, Pittsburgh, Pennsylvenia.

[5] R. L. CarreEr AND M. E. CroVELLA, Dynamic Server Selection Using Bandwidth Probing in Wide-Area Networks, Technical
REport TR-96-007, Computer Science Department, Boston University, 1996.

[6] Conpor, The Directed Acyclic Graph Manager, http://www.cs.wisc.edu/condor/dagman, 2003.

[7] C. Dovrouis, P. RamMANATHAN AND D. Moorg, What do packet dispersion techniques measure?, in Proceedings of INFO-
COMM, 2001.

[8] M. FaermaN, A. Su, R. Wouski anp F. BerMmAN, Adaptive Performance Prediction for Distributed Data-Intensive Appli-
cations, in Proceedings of the IEE/ACM Conference on High Performance Networking and Computing, November 1999,
Portland, Oregon.

[9] M. Fisk anp W. WENG, Dynamic Right-Sizing in TCP, in Proceedings of ICCCN, 2001.

[10] I. FostERr, C. KESSELMAN AND S. TUueckE, The Anatomy of the Grid: Enabling Scalable Virtual Organizations, International
Journal of Supercomputing Applications, 2001.

[11]
[12]
[13]
[14]
[15]
[16]
[17]

18]

[19]

[20]
[21]

[22]

23]
[24]

[25]

Run-time Adaptation of Grid Data Placement Jobs 43

D. KoEesTER, em Demonstrating the TeraGrid - A Distributed Supercomputer Machine Room, The Edge, The MITRE
Advanced Technology Newsletter, (2) 2002.

G. Kora anD M. LivNy, DiskRouter: A Flexible Infrastructure for High Performance Large Scale Data Transfers, Technical
Report CS-TR-2003-1484, University of Wisconsin, Computer Sciences Department, 2003.

T. KosarR AND M. LivNy, Scheduling Data Placement Activities in the Grid, Technical Report CS-TR-2003-1483, University
of Wisconsin, Computer Sciences Department, 2003.

M. J. Litzkow, M. LivNy anpD M. W. Mutka, Condor - A Hunter of Idle Workstations, in Proceedings of the 8th
International Conference of Distributed Computing Systems, (1988), pp. 104 111.

NLANR/DAST, Auto Tuning Enabled FTP Client And Server: Autobuf, http://dast.nlanr.net/Projects/Autobuf, 2003.

NLANR/DAST, Iperf: The TCP/UDP Bandwidth Measurement Tool, http://dast.nlanr.net/Projects/Iperf/, 2003.

S. Oaura, H. Nakapa AND S. M ATSUOKA, Fvaluation of the inter-cluster data transfer on Grid environment, in Proceedings
of the Third IEEE/ACM Symposium on Cluster Computing and the Grid (CCGrid), May 2003, Tokyo, Japan.

R. Raman, M. LivNy anD M. SoLoMON, Matchmaking: Distributed Resource Management for High Throughput Computing,
in Proceedings of the Seventh TEEE International Symposium on High Performance Distributed Computing (HPDC7),
July 1998, Chicago, Illinois.

B. SacaLr, Grid Computing: The European DataGrid Project, in Proceedings of IEEE Nuclear Science Symposium and

Medical Imaging Conference, October 2000, Lyon, France.

SEMKE, J. MAHDAVI AND M. MatHis, Automatic TCP Buffer Tuning, in Proceedings of SIGCOMM, pp. 315 323,1998.

D. TraiNn aND AND M. Livny, The Ethernet Approach to Grid Computing, in Proceedings of the Twelfth IEEE Symposium
on High Performance Distributed Computing (HPDC12), June 2003, Seattle, Washington.

D. TuaiN, J. BAsNEY AND S. SoN aAND M. LivNy, The Kangaroo Approach to Data Movement on the Grid, in Proceedings
of the Tenth IEEE Symposium on High Performance Distributed Computing (HPDC10), August 2001, San Francisco,
California.

D. THain, T. TANNENBAUM AND M. LivNy, Condor and the Grid, Grid Computing: Making the Global Infrastructure a

Reality., Fran Berman and Geoffrey Fox and Tony Hey, editors. John Wiley and Sons Inc., 2002.
. Vazukupal, J. ScHoPF AND I. FOSTER, Predicting the Performance of Wide Area Data Transfers, in Proceedings of the
16th Int’l Parallel and Distributed Processing Symposium (IPDPS), 2002.

R. Wouski, Dynamically Forecasting Network Performance to Support Dynamic Scheduling Using the Network Weather
Service, in Proceedings of the Sixth IEEE Symposium on High Performance Distributed Computing (HPDC6), August
1996, Portland, Oregon.

=

wn

Edited by: Wilson Rivera, Jaime Seguel.
Received: July 9, 2003.
Accepted: September 1, 2003.

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 6, Number 3, pp. 45-55. http://www.scpe.org © 2005 SWPS

0,..

JUXMEM: AN ADAPTIVE SUPPORTIVE PLATFORM FOR DATA SHARING ON THE
GRID

G. ANTONIU*, L. BOUGET, AND M. JAN*

Abstract. We address the challenge of managing large amounts of numerical data within computing grids consisting of a
federation of clusters. We claim that storing, accessing, updating and sharing such data should be considered by applications as
an external service. We propose a hierarchical architecture for this service, based on a peer-to-peer approach. This architecture is
illustrated through a software platform called JuxMewm (for Juxtaposed Memory), which provides transparent access to mutable
data, while enhancing data persistence in a dynamic environment. Managing the wvolatility of storage resources is specially empha-
sized. As a proof of concept, we describe a prototype implementation on top of the JXTA peer-to-peer framework, and we report
on a preliminary experimental evaluation.

Key words. data sharing, grid, peer-to-peer, hierarchical architecture, JXTA.

1. Introduction. A major contribution of the grid computing environments developed so far is to have
decoupled computation from deployment. Deployment is then considered as an external service provided by
the underlying infrastructure, outside the application. This service is in charge of locating and interacting
with the physical resources, in order to efficiently schedule and map the computation. In contrast, as of today,
no such sophisticated service exists regarding data management on the grid. Paradoxically enough, complex
infrastructures are available for transparent computation scheduling on distributed sites, whereas the user is still
left to explicitly store and transfer the data needed by the computation between these sites. At best, advanced
FTP-like functionalities are proposed by existing environments. Within the context of a growing number of
applications using large amounts of data, this explicit data management arises as a major limitation against the
efficient use of modern computational grids.

Like deployment, we claim that an adequate approach to this problem consists in decoupling data manage-
ment from computation, through an exzternal service tailored to the requirements of scientific computation. In
this work, we focus on the case of a grid consisting of a federation of distributed clusters. Such a data sharing
service should meet the following two properties.

Persistence. The data sets used by the grid computing applications may be very large. Their transfer from
one site to another may be costly (in terms of both bandwidth and latency), so such data movements
should be carefully optimized. Therefore, a data management service should allow data to be stored
on the grid infrastructure independently of the applications, in order to allow their reuse in an efficient
way. Such a service should also provide data localization information, in order to co-operate with the
computation scheduling service, and thereby enhance the global efficiency.

Transparency. Such a data management service should provide transparent access to data. It should handle
data localization and transfer without any help from the programmer. Yet, it should make good
use of additional information and hints provided by the programmer, if any. The service should also
transparently use adequate replication strategies and consistency protocols to ensure data availability
and consistency in a large-scale, dynamic architecture. In particular, it should support events such as
computational and storage resources joining and leaving, or even unexpectedly failing.

At the same time, three main constraints need to be addressed:

Volatility and dynamicity. The clusters which make up the grid are not guaranteed to remain constantly
available. Nodes may leave due to technical problems or because some resources become temporarily
unavailable. This should obviously not result in disabling the data management service. Also, new
nodes may dynamically join the physical infrastructure: the service should be able to dynamically take
into account the additional resources they provide.

Scalability. The algorithms proposed for parallel computing have often been studied on small-scale config-
urations. Our target architecture is typically made of thousands of computing nodes, say tens of
hundred-node clusters. It is well-known that designing low-level, explicit MPI programs is most diffi-
cult at such a scale. In contrast, high-level, peer-to-peer approaches have proved to remain effective at
much larger scales.

*TRISA/INRTA Campus de Beaulieu, 35042 Rennes, FR. ({Gabriel.Antoniu,Mathieu.Jan}@irisa.fr).
TENS Cachan/Bretagne Campus de Ker Lann, 35170 Bruz, FR. (Luc.Bouge@bretagne.ens-cachan.fr).

45

46 G. Antoniu, L. Bougé and M. Jan

Mutable data. In our target applications, data are generally shared and can be modified by multiple partners.
A large number of strategies have been proposed for handling data replication and data consistency,
in the context of Distributed Shared Memory (DSM) systems. Again, these strategies and protocols
have been designed with the assumption of a small-scale, static, homogeneous architecture, typically of
clusters of few tens of nodes. A data sharing service for the grid should consider consistency protocols
adapted to a dynamic, large-scale, heterogeneous architecture.

The type of service we propose is similar in some respects to several types of existing data manage-
ment systems. However, these systems address only partially the goals and the three constraints mentioned
above.

Non-transparent, large-scale data management. Currently, the most widely-used approach to data man-
agement for distributed grid computation relies on explicit data transfers between clients and computing
servers. As an example, the Globus [7] platform provides data access mechanisms (Globus Access to
Secondary Storage [3]) based on the GridFTP protocol [1]. Though this protocol provides authen-
tication, parallel transfers, checkpoint/restart mechanisms, etc., it is still a FTP-like protocol which
requires explicit data localization and transfer. Globus also integrates data catalogs, where multiple
copies of the same data can be recorded. The management of these catalogs is manual: it is the user’s
responsibility to record these copies and make sure they are consistent: no consistency guarantee is
provided by Globus.

Large-scale data storage. The IBP Project [2] provides a large-scale data storage system, consisting of a set
of buffers distributed over Internet. The user can “rent” these storage areas and use them as temporary
buffers for efficient data transfers across a wide-area network. IBP has been used by the Netsolve [18§]
computing environment to implement a service of persistent data. Transfer management is still at the
user’s charge. Besides, IBP does not handle dynamic join/departure of storage nodes and provides no
consistency guarantee for multiple copies of the same data.

Transparent, small-scale data sharing. Distributed Shared Memory (DSM) systems provide transparent
data sharing, via a unique address space accessible to physically distributed machines. Within this
context, a variety of consistency models and protocols have been defined, in order to allow an efficient
management of replicated data. These systems do offer transparent access to data: all nodes can read
and write data in a uniform way, using a unique identifier or a virtual address. It is the responsibility
of the DSM system to localize, transfer, replicate data, and guarantee their consistency according to
some semantics. Nevertheless, existing DSM systems have generally shown satisfactory efficiency only
on small-scale configurations, typically, a few tens of nodes [11].

Peer-to-peer sharing of immutable data. Recently, peer-to-peer (P2P) has proven to be an efficient ap-
proach for large-scale data sharing. The peer-to-peer model is complementary to the client-server model:
the relations between machines are symmetrical, each node can be client in a transaction and server in
another. This paradigm has been made popular by Napster [17], Gnutella [10], and now KaZaA [16].
We can note that these systems focus on sharing immutable files: the shared data are read-only and
can be replicated at ease.

Peer-to-peer sharing of mutable data. Recently, some mechanisms for sharing mutable data in a peer-
to-peer environment have been proposed by systems like OceanStore [8], Ivy [9] and P-Grid [6]. In
OceanStore, for each data only a small set of primary replicas, called the inner ring agrees, serializes
and applies updates. Updates are then multicast down a dissemination tree to all other cached copies
of the data, called secondary replicas. However, OceanStore uses a versioning mechanism which has not
proven to be efficient at large scales. Second, despite it provides hooks for managing the consistency
of data, applications still have to use low-level mechanisms for each consistency model [12]. Third,
published measurements on the performance of updates only assume a single writer per data block.
Finally, servers making up inner rings are assumed to be highly available. The Ivy system has one
main limitation: applications have to repair conflicting writes, thus the number of writers per data
is very limited. Both Oceanstore and Ivy target general-purpose, persistent file storage, not data
management for high-performance, computing grids where for example distributed matrices have to
be moved using parallel transfers. P-Grid proposes a flooding-based algorithm for updating data, but
assumes no conflicting writes. Besides, no experimental results have been published so far for this
system.

JuxMem: An Adaptive Supportive Platform for Data Sharing on the Grid 47

Cluster A1 Cluster A3

111
TITIR

Cluster A2

Fic. 2.1. Numerical simulation for weather forecast using a pipeline communication scheme with 3 clusters.

2. Designing a data sharing service for the grid.

2.1. Motivating scenarios. Let us consider a distributed federation of 3 clusters: A;, Ay and As, which
co-operate together as shown on Figure 2.1. Each cluster is typically interconnected through a high-performance
local-area network, whereas they are all coupled together through a regular wide-area network. Consider for
instance a weather forecast simulation. Cluster A; may compute the forecast for a given day, then As for the
next day, and finally A3 for the day after. Thus, A3 uses data produced by As, which in turn uses data produced
by Aj, as in a pipeline. Alternatively, cluster A1 may simulate the weather forecast in a given country, while
Ay et Az simulate it for two neighboring countries.

Such simulations produce large amount of numerical data, and data-related actions are deeply intricated
with computation. The data management systems described in the previous section do not provide any simple
technique to support such designs. Consider for instance transferring data from A; to As: a widely-used
technique consists in ezplicitly writing the data on a disk within cluster Ay, then use a file transfer tool to deposit
them on a disk within cluster A;. The application is directly involved in this series of actions. In contrast,
we propose to decouple the application from the data management, by making data storage and localization
transparent with respect to the application. Cluster A; should only store the data within the federation-wide
data management service, from which cluster A5 could request them as needed. Data localization and transfer
are then completely external to the applications.

Let us now suppose that our 3 applications no longer co-operate according to a pipeline scheme, but rather
according to a multiple-writers scheme. For instance, each application simulates a single phenomenon part of
the global weather forecast: say, wind, rain and clouds. In this case, each cluster needs data from the other
ones in order to make progress. A data sharing service could allow the concurrent applications not only to read,
but also to write to the globally shared data, while transparently handling data consistency. This is similar to
DSM systems, but at a much larger scale, and in a fully dynamic context. Also, assume that some nodes fail in
cluster A;. Some of the data necessary for Az could thus become unavailable. The data sharing service should
also provide mechanisms to tolerate such faults, for instance, based on redundancy.

2.2. Design principles. We consider two major sources of inspiration for the design of a data sharing
service for scientific grid computing;:
DSM systems, which propose consistency models and protocols for efficient transparent management of mu-
table data, on static, small-scaled configurations (tens of nodes);
P2P systems, which have proven adequate for the management of immutable data on highly dynamic, large-
scale configurations (millions of nodes).
These two classes of systems have been designed and studied in very different contexts. In DSM systems, the
nodes are generally under the control of a single administration, and the resources are trusted. In contrast,
P2P systems aggregate resources located at the edge of the Internet, with no trust guarantee, and loose control.
Moreover these numerous resources are essentially heterogeneous in terms of processors, operating systems and
network links, as opposed to DSM systems, where nodes are generally homogeneous. Finally, DSM systems
are typically used to support complex numerical simulation applications, where data are accessed in parallel by

48 G. Antoniu, L. Bougé and M. Jan

TaBLE 2.1
A grid data sharing service as a compromise between DSM and P2P systems.

DSM Grid data service P2P
Scale 101-102 103-10% 105-10°
Resource control High Medium Null
and trust degree
Dynamicity Null Medium High
Resource Homogeneous Rather heterogeneous Heterogeneous
homogeneity (clusters) (clusters of clusters) (Internet)
Data type Mutable Mutable Immutable
Application Complex Complex Simple
complexity
Typical Scientific Scientific computation and | File sharing and
applications computation data storage storage

multiple nodes. In contrast, P2P systems generally serve as a support for storing and sharing immutable files.
These antagonist features are summarized in the first and third columns of Table 2.1.

Our data sharing service targets physical architectures with features intermediate between DSM and P2P
systems. We address scales of the order of thousands of nodes, organized as a federation of clusters, say tens of
hundred-node clusters. At a global level, the resources are thus rather heterogeneous, while they can probably
be considered as homogeneous within the individual clusters. The control degree and the trust degree are also
intermediate, since the clusters may belong to different administrations, which set up agreements on the sharing
protocol. Finally, we target numerical applications like heavy simulations, made by coupling individual codes.
These simulations process large amounts of data, with significant requirements in terms of data storage and
sharing. These intermediate features are illustrated in the second column of Table 2.1.

The contribution of this paper is namely to propose an architecture for such a data sharing service, which
addresses the problem of managing mutable data on dynamic, large-scale configurations. Our approach aims
at taking benefit of both DSM systems (transparent access to data, consistency protocols) and P2P systems
(scalability, support for resource volatility and dynamicity).

2.3. The JXTA implementation framework. Our proposal is partly inspired by the P2P approach. It
can usefully benefit from a platform providing basic mechanisms for peer-to-peer interaction. To our knowledge,
the most advanced implementation platform in this area is JXTA [14]. The name JXTA stands for justaposed,
in order to suggest the juxtaposition rather than the opposition of the P2P and client-server models. JXTA is
a project originally initiated by Sun Microsystems.

JXTA is an open-source framework, which specifies a set of language- and platform-independent XML-based
protocols [15]. JXTA provides a rich set of building blocks for the management of peer-to-peer systems: resource
discovery, peer group management, peer-to-peer communication, etc.

Peers. The basic entity in JXTA is the peer. Peers are organized in networks. They are uniquely identified by
IDs. An ID is a logical address independent of the location of the peer in the physical network. JXTA
introduces several types of peers. The most relevant as far as we are concerned are the edge peers and
rendezvous peers. Edge peers are able to communicate with other peers in the JXTA virtual network.
They can also store advertisements of resources they discover in the network. Rendezvous peers have
the extra ability of forwarding the requests they receive to other rendezvous peers. They can also offer
a storage area for advertisements that have been published by edge peers. Finally, they are internally
managed by JXTA using a distributed hash table (DHT) and are making up the frame of JXTA. They
can thus be dynamically located in an efficient way. Joining, leaving, and even unexpected failing of
rendezvous peers are supported by the JXTA protocols.

Peer groups. Peers can be members of one or several peer groups. A peer group is made up of several peers
that share a common set of interests, e.g., peers that have the same access rights to some resources.
The main motivation for creating peer groups is to build services collectively delivered by peer groups,
instead of individual peers. Indeed, such services can then tolerate the loss of peers within the group,
as its internal management is not visible to the clients.

JuxMem: An Adaptive Supportive Platform for Data Sharing on the Grid 49

Pipes. Communication between peers or peer groups within the JXTA virtual network is made by using pipes.
Pipes are unidirectional, unreliable and asynchronous logical channels. JXTA offers two types of pipes:
point-to-point pipes, and propagate pipes. Propagate pipes can be used to build a multicast layer at
the virtual level.

Advertisements. Every resource in the JXTA network (peer, peer group, pipe, service, etc.) is described and
published using advertisements. Advertisements are structured XML documents which are published
within the network of rendezvous peers. To request a service, a client has first to discover a matching
advertisement using specific localization protocols.

JXTA protocols. JXTA proposes six generic protocols. Out of these, two are particularly useful for building
higher-level peer-to-peer services: the Peer Discovery Protocol, which allows for advertisement publish-
ing and discovery; and the Pipe Binding Protocol, which dynamically establishes links between peers
communicating on a given pipe.

The data sharing service that we propose is designed using the JXTA building blocks described above.

3. JuUXMEM: a supportive platform for data sharing on the grid. The architecture of the data
sharing service we propose, mirrors an architecture consisting of a federation of distributed clusters. The
architecture is therefore hierarchical, and is illustrated through the proposition of a software platform called
JUXMEM (for Juztaposed Memory), whose goal is to be the foundation for a data sharing service for grid
computing environments, like DIET [4].

Group "juxmem”

I 47 47 | Group g/ 4747 I

_..-Group™ “Cluster C"

Overlay network

Physical network :

Cluster A

Client
Cluster manager

Provider

Cluster B

NN L

Node

Fic. 3.1. Hierarchy of the entities in the network overlay defined by JuxMEgM.

3.1. Hierarchical architecture. Figure 3.1 shows the hierarchy of the entities defined in the architecture
of JUxMEM. This architecture is made up of a network of peer groups (cluster groups A, B and C), which
generally correspond to clusters at the physical level. All the groups are inside a wider group which includes
all the peers which run the service (the juxmem group). Each cluster group consists of a set of nodes which
provide memory for data storage. We will call these nodes providers. In each cluster group, a node is in charge
of managing the memory made available by the providers of the group. This node is called cluster manager.
Finally, a node which simply uses the service to allocate and/or access data blocks is called client. It should
be noted that a node can be at the same time a cluster manager, a client and a provider, but for the sake of
clarity, each node plays only one role in the example illustrated on the Figure 3.1.

Each block of data stored in the system is associated to a group of peers called data group. This group
consists of a set of providers that host copies of that data block. Note that a data group can be made up of

50 G. Antoniu, L. Bougé and M. Jan

providers from different cluster groups. Indeed, a data can be spread over on several clusters (here A and C).
For this reason, the data and cluster groups are at the same level of the group hierarchy. Note also that the
cluster groups could also correspond to subsets of the same physical cluster.

Another important feature is that the architecture of JUXMEM is dynamic, since cluster and data groups
can be created at run time. For instance, for each block of data inserted into the system, a data group is
automatically instantiated.

API of the data sharing service. The Application Programming Interface (API) provided by JuxMEgwm
illustrates the functionalities of a data sharing service providing data persistence as well as transparency with
respect to data localization.
alloc(size, attributes) allows to create a memory area of the specified size on a cluster. The attributes
parameter allows to specify the level of redundancy and the default protocol used to manage the
consistency of the copies of the corresponding data block. This function returns an ID which can be
seen at the application level as a data block ID.

map(id, attributes) allows to retrieve the advertisement of a data communication channel which has to
be used to manipulate the data block identified by id. The attributes argument allows to specify
parameters for the view of the data block desired by the client, like for instance what we call the degree
of consistency: some clients may have weaker consistency requirements than the one ensured by the
default protocol used to manage the data block.

put (id, value) allows to modify the value of the data block identified by id. The new value is then value.

get (id) allows to get the current value of the data block identified by id.

lock(id) allows to lock the data block identified by id. A lock is implicitly associated to each data block.
Clients which access a shared data block need to synchronize using this lock.

unlock(id) allows to unlock the data identified by id.

reconfigure(attributes) allows to dynamically reconfigure a node. The attributes parameter allows to
indicate if the node is going to act as a cluster manager and/or as a provider. If the node is going to act
as a provider, the attributes parameter also allows to specify the amount of memory that the node
provides to JUXMEM.

3.2. Managing memory resources.

Publishing and placement of resource advertisements. Memory resources are managed using advertisements.
Each provider publishes the amount of memory it offers within the cluster group to which it belongs, by the
means of a provider advertisement. The cluster manager of the group stores all such advertisements available
in his group. He is also responsible for publishing the amount of memory available in the cluster by using a
cluster advertisement. This advertisement lists the amounts of memory offered by providers of the associated
cluster group. These cluster advertisements are published inside the juxmem group, so that they can then be
used by all the clients in order to allocate memory.

Cluster managers are thus in charge of making the link between the cluster group and the juxmem group.
They make up a network organized using a DHT at the level of the juxmem group level, in order to build the
frame of the data sharing service. This frame is represented by the ring on the Figure 3.2. Each cluster manager
G1 to G6 is responsible for a cluster, respectively A1l to A6, each of which is made up of five nodes. At the level
of the juxmem group, the DHT works as follows. Each cluster advertisement contains a list which enumerates
the amounts of memory available in the cluster. Each individual amount is separately used to generate an
ID, by means of a hash function. This ID is then used to determine the cluster manager responsible for all
advertisements having this amount of available memory in their list. This cluster manager is not the peer that
stores the advertisement, it only knows the cluster manager which published it in the JUXMEM network. This
placement of cluster advertisements allows clients to easily retrieve advertisements in order to allocate memory:
any request for a given amount of memory is directed to the cluster manager responsible for that amount of
memory, using the hash mechanisms described above

Searching for advertisements is therefore short, and responses are exact and exhaustive, e.g., all the ad-
vertisements that include the requested memory size will be returned. But since using a DHT on memory
sizes means to generate a different hash for each memory size, JUXMEM uses a parameterizable policy for the
discretization of the space of memory sizes. Thus, JUXMEM will search for the minimum memory size, given
by the policy used, that is superior to the one requested by clients. For example, if a client wants to allocate a
memory area of 1280 bytes, JUXMEM will internally and automatically search for a memory area of 2048 bytes,

JuxMem: An Adaptive Supportive Platform for Data Sharing on the Grid 51

Group "cluster A2"

Group "cluster A1"

] Provider

I Cluster manager
B ciient
Group "cluster A4"

Group "“cluster A5"

Fic. 3.2. Steps of an allocation request made by a client.

if it uses a power of 2 law for the space discretization. Providers also internally use the same law when offering
memory areas, but provide the maximum memory size, given by the policy used, that is inferior to the one they
wish to offer.

One of the constraints we fixed is to support the volatility of nodes which make up the clusters. Therefore,
the advertisements published at a time ¢1 can be invalid at the time ¢2 > t1, since providers can disappear from
JUXMEM at any time. The mechanism used to manage this volatility of peers is based on republishing the cluster
advertisements whenever a changing of the amount of memory provided is detected. Besides, advertisements
have a limited but parameterizable lifetime, so it is necessary to periodically republish them.

Processing an allocation request. Clients make allocation requests by specifying the size of the memory area
they want to allocate. The different steps for such a request, numbered on the Figure 3.2, are the following;:

1. The client C of the cluster group Al wants to allocate a memory area of 8 MB with a redundancy
degree of two. Consequently, it submits its request to the cluster manager G1 to which it is connected.

2. The cluster manager G1 then determines that the peer responsible of advertisements having a memory
size of 8 MB in their list is the cluster manager GG3, using the hash mechanism described previously.
Therefore, the cluster manager peer G1 forwards the request to G3.

3. The cluster manager G3 then determines that cluster managers G2 and G4 match the criterion of the
client, and asks them to forward their cluster advertisement to the client C.

4. The client C' then chooses the cluster manager G2 as the peer having the “best” advertisement: for
instance the corresponding cluster offers a higher degree of redundancy than the cluster handled by the
cluster manager G4. Thus, it submits its allocation request to G2.

5. The cluster manager G2 receives the allocation request and handles it. If it can satisfy the request then
it asks one of its providers, for example P, to allocate a 8 MB memory area. If the request cannot be
satisfied, an error message is sent back to the client.

6. If the provider P can satisfy this request, it creates a 10 MB memory area, then sends back the
advertisement of this memory area to the client C. P becomes the cluster manager of the associated
data group, which means that it is responsible for replicating the data block stored in that memory
area. If the provider P cannot satisfy the request, an error message is sent back to the cluster manager
G2, which can try other provider peers of the cluster group.

If no providers can be found on the last step of an allocation request, an error message is sent back to the client.
Then the client can restart the allocation request from step 4, e.g., with another cluster manager matching the
requested memory size. Finally, if no cluster manager can allocate the memory area, the client increases the
requested memory size and restarts the allocation request from the beginning. This can be done N times (for
example N = 3) until the request is satisfied or an error is reported at the application level.

52 G. Antoniu, L. Bougé and M. Jan

3.3. Managing shared data. When a memory area is allocated by a client, a data group is created
on the chosen provider and an advertisement is sent to the client. This advertisement allows the client to
communicate with the data group. This advertisement is published at the juxmem’s group level, but only the
ID of this advertisement is returned at the application level. Access to data by other clients is then possible by
using this ID: the platform transparently locates the corresponding data block.

Storage of data blocks is independent of clients. Indeed, when clients disconnect from JUXMEM, data blocks
still remain stored in the data sharing service on the providers. Consequently, clients can have access to data
blocks previously stored by other clients: they simply need to look for the advertisement of the data group
associated with the data block (whose identifier is assumed to be known). The map primitive of the API of
JUXMEM does this by taking in input the ID of the data block. In this way, the storage of data blocks is
persistent.

Each data block is replicated on a fixed, parameterizable number of providers for a better availability. This
redundancy degree is specified as an attribute at allocation time. The consistency of the different copies must
then be handled. In this first version of JUXMEM, the use of a multicast at the level of the juxmem group solves
this problem: the different copies of a same data block are simultaneously updated whenever a writing access is
made. Alternative consistency models and protocols will be experimented in further versions. Note that clients
which have previously read a data block are not notified of this update: clients do not store a copy of data
block. Therefore, the result of a reading which is valid at a time ¢1, may not be valid at time ¢2 > t1. It is
worth noting that this difference between client and providers allows to handle a high number of clients without
having to deal with a high number of copies of data blocks. Synchronization between clients which concurrently
access a data block is handled using the lock/unlock primitives.

3.4. Handling volatile providers. In order to tolerate the volatility of peers, a static replication of data
on a fixed and parameterizable number of providers is not enough. Indeed, the set of providers hosting a copy
of the same data block can successively become unavailable. A dynamic monitoring of the number of copies
for data is therefore needed. Consequently, each data group has a manager (noted data manager) which is in
charge of monitoring the level of redundancy of the data block. If this number goes below the one specified
by clients, the data manager must search and ask a provider to host an extra copy of the data block. When
the data manager decides to replicate it, it must first lock it (internally) in order to maintain consistency. The
provider which will host this new copy is then responsible for unlocking it. A timeout mechanism followed by a
ping test is used in order to detect if the provider became unavailable just before unlocking the data block. If
it is the case, then the data manager unlocks itself the data block.

3.5. Handling volatile managers. If a cluster manager goes down, this could lead to the unavailability
of resources provided by a whole cluster. The role of cluster manager (noted main cluster manager) is therefore
automatically duplicated on another provider of the cluster (called secondary cluster manager). Managers
periodically synchronize using a mechanism based on the exchange of provider advertisements, in order to find
out new advertisements published. They can thus both know in a nearly accurate manner the amount of
memory available in the cluster. A mechanism based on periodical heartbeats allows to dynamically ensure this
duplication of cluster managers. Such a mechanism is also used for the data managers (see Section 3.4). Note
that, the possible changes of managers in the cluster and data groups, due to the unavailability of managers,
are not seen outside these groups. The availability of clusters and of data blocks is thus maximized, whereas
the perturbation on the client side is minimized.

4. Implementation and preliminary evaluations.

4.1. Implementation of JUXMEM within the JXTA framework. In order to build a prototype
of the software architecture described in the previous section, we have used the JXTA generic peer-to-peer
framework (see Section 2.3). Our JUXMEM prototype uses the reference Java binding of JXTA (which is today
the only binding compatible with the JXTA 2.0 specification). JUXMEM is written in Java and includes about
50 classes (5000 code lines).

JXTA fully meets the needs of JUXMEM. Thus, managers of data and cluster groups are based on
JXTA’s rendezvous peers. Indeed, managers have to know if providers are still alive by using a ping test in
order to manage a cluster or a block of data. This can only be done if providers have previously published
their advertisements on managers, which need to extract the address of each provider. Moreover, only JXTA’s
rendezvous peers can forward requests inside the JXTA network; these peers correspond to the role of main

JuxMem: An Adaptive Supportive Platform for Data Sharing on the Grid 53

100 ? ? ? ? .
8O~ AR AR AR SRR SRR AR S

6o e R IR R SRS e

Relative overhead (%)

20 S s SRR R Lot

0
160 140 120 100 80 60 50 40 30
Seconds elapsed between provider losses

Fia. 4.1. Relative overhead due to the volatility of providers for a sequence lock -put -unlock, with respect to a stable system.

managers. For example, data managers have to forward access requests, made by clients, to providers hosting
a copy of the data block. In the same way, cluster managers have to forward allocation requests, made by
clients, to providers. Clients and providers which do not act as data managers for one or several blocks of data
are based on JXTA’s edge peers. Indeed, they do not have to play a role in the dynamic monitoring of the
number of copies for a block of data in the system. Therefore, they do not have to store published provider
advertisements. Moreover, clients only need to discover and store cluster advertisements which will allow them
to allocate memory areas. The various groups defined in JUXMEM are implemented by JXTA’s peer groups. The
juxmem group implements a JXTA peer group service providing the API of JUXMEM (see Section 3.1). Finally,
the communication channels of JXTA also offer the needed support for building multicast communications for
simultaneously updating copies of the same block of data.

4.2. Preliminary evaluations. For our preliminary experiments, we used a cluster of 450 MHz Pentium
IT nodes with 256 MB RAM, interconnected by a 100 MB/s FastEthernet network.

We first measured the memory consumption overhead generated by the different JUXMEM peers with respect
to the underlying JXTA peers used to build JuxMEM peers. This overhead is reasonable: it ranges between
5% and 7.4%.

We then measured the influence of the volatility degree of provider peers on the duration of a sequence
lock-put-unlock executed in a loop by a client. This sequence in the loop is made on a data block stored in
JUXMEM. The goal of this measure is to evaluate the relative overhead generated by the replications which
take place in order to maintain a given redundancy degree for a given block of data. This replications are
transparently triggered when the service detects that a provider holding a data block goes down. If these
replications take place while a client accesses the data block being replicated, these accesses slow down.

The test program first allocates a small memory area (1 byte) on a provider belonging to cluster and writes
to it a data block. The redundancy degree is set to 3. The allocation takes place on a cluster initially consisting
of 16 providers and one cluster manager. 16 machines of the cluster previously described host a provider, one
machine of the same cluster hosts a cluster manager and another machine of the same cluster hosts a client.
The client executes a 100 iteration loop, and each iteration consists of a sequence lock-put-unlock.

During the execution of this loop, a random provider hosting a copy of the data is killed every § seconds,
where ¢ is a parameter of the experiment. In order to measure only the overhead due to the volatility of
providers, the data manager of the associated group is never killed.

Figure 4.1 shows the relative overhead measured, with respect to a stable system (i.e. where no provider
goes down during the loop execution: § = o0). When the data manager detects that providers holding a copy of
the data block have gone down, it tries to replicate the block on other available providers, which are not already
hosting a copy of the data block. To ensure the consistency of the data during its replication, clients are not
allowed to modify it. Therefore, the system has to internally lock the data. As a result of this internal locking,
the sequence lock-put-unlock is longer, since the client is blocked and has to wait for the lock to be set free.

54 G. Antoniu, L. Bougé and M. Jan

The curve profile is explained by the number of times the system replicates the data on providers, in order
to maintain the redundancy degree specified by the client (which is 3 for this test). For the whole duration of
our test, the number of triggered replications is given in the Table 4.1 as a function of the § parameter.

For highly volatile systems (6 < 80 s), the number of replications triggered becomes higher than 2 and
the relative overhead becomes significant. For ¢ = 30 s, it reaches more than 65% (10 replications triggered).
However, in a realistic situation, the node volatility on the architecture we consider is typically a lot weaker
(6 > 80 s). For such values, the reconfiguration overhead is less than 5%. We can reasonably say that the
JuxMEM platform includes a mechanism which allows to dynamically maintain a certain redundancy degree for

data blocks, in order to improve data availability, without significant overhead, while authorizing node failures.

TaBLE 4.1
Number of triggered replications when the volatility of provider peers evolves from 160 to 30 seconds.

Seconds 160 | 140 | 120 | 100 | 80 | 60 | 50 | 40 | 30
Number of triggered replications 1 1 1 1 2125 55510

5. Conclusion. This paper defines a hierarchical architecture for a data sharing service managing mutable
data within a grid consisting of a federation of clusters. This architecture has been designed using a peer-to-peer
approach, and demonstrated through the JuxMEM platform. Not only the architecture allows to reduce the
number of messages to search for a piece of data, thanks to a hierarchical search scheme, but it also allows to
take advantage of specific features of the underlying physical architecture. The management policy for each
cluster can be specific to its configuration, for instance in terms of network links to be used. Thus, some clusters
could use high-bandwidth, low-latency networks for intra-cluster communication, if available.

The JUXMEM user can allocate memory areas in the system, by specifying an area size and some attributes,
such as a redundancy degree. The allocation primitive returns an ID which identifies the block of data. Then,
data localization and transfer is fully transparent, since this ID is sufficient in order to access and manipulate
the corresponding data wherever it is: no IP address nor port number needs to be specified at the application
level.

Our architecture supports the volatility of all types of peers. This kind of volatility is also supported in peer-
to-peer systems such as Gnutella or KaZaA, which enhance data availability thanks to redundancy. However,
this is a side effect of the user actions. In contrast, our system actively takes into account this volatility: this
allows not only to maintain a certain degree of data redundancy (as in systems like Ivy or CFS [5]), but also to
support the volatility of peers with “specific” responsibilities (e.g., cluster managers, or data managers).

The implementation of a JXTA-based prototype has shown the feasibility of such a system. However,
note that the design of JUXMEM is not dependent on JXTA. Actually, other libraries could be used, such as
JavaGroups [13]. We used the Java version of JXTA, since this is the most advanced binding of JXTA, the only
one compatible with the JXTA 2.0 specification.

The modular architecture of JXTA allows to easily add and remove services and/or protocols, including
communication protocols. This should eventually allow the platform to take advantage of high-performance
networks (such as Myrinet or SCI) for data transfer. We plan to address this problem in the future. We also
plan to use JUXMEM as an experimental platform for different data consistency strategies supporting peer
volatility, in order to build a configurable, adaptive data sharing service for mutable data. The final goal is to
integrate this service into large-scale computing environments, such as DIET [4], developed at ENS Lyon. This
will allow an extensive evaluation of the service, with realistic codes, using various data access schemes.

REFERENCES

[1] B. ArLcock, J. BesTER, J. BrRESNAHAN, A. CHERVENAK, L. LiMmiNG, S. MEDER AND S. Turecke, GridFTP Protocol
Specification, GGF GridFTP Working Group Document, Sept. 2002.

[2] A. Bassi, M. Beck, G. Facga, T. Moorg, J. PLank, M. Swany anp R. Wouski, The Internet Backplane Protocol: A study
in resource sharing, In 2nd TEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid2002),
pages 194 201, Berlin, Germany, May 2002. IEEE.

[3] J. BesTER, I. FosTER, C. KEsseLMAN, J. TEDEscO AND S. TUECKE, GASS: A data movement and access service for
wide area computing systems, In 6th Workshop on /O in Parallel and Distributed Systems (IOPADS ’99), pages 77 88,
Atlanta, GA, May 1999. ACM Press.

[4]

[5]

(6]

(7]
(8]

9]
[10]

[11]
[12]

[13]
[14]
[15]
[16]
[17]
[18]

JuxMem: An Adaptive Supportive Platform for Data Sharing on the Grid 59

E. Caron, F. DEsprEz, F. LomBARD, J.-M. Nicop, M. QuiNsoN aAND F. SuTEr, A scalable approach to network enabled
servers, In B. Monien and R. Feldmann, editors, 8th International Euro-Par Conference, volume 2400 of Lecture Notes
in Computer Science, pages 907-910, Paderborn, Germany, Aug. 2002. Springer-Verlag.

F. DaBek, F. KaasHoek, D. KARGER, R. MoRrris anND 1. Stoica, Wide-area cooperative storage with CFS, In 18th ACM
Symposium on Operating Systems Principles (SOSP ’01), pages 202-215, Chateau Lake Louise, Banff, Alberta, Canada,
Oct. 2001.

A. DarTa, M. HauswirTH AND K. ABERER, Updates in highly unreliable, replicated peer-to-peer systems, In 23rd Interna-
tional Conference on Distributed Computing Systems (ICDCS 2003), pages 76 87, Providence, Rhode Island, USA, May
2003.

1. FosTER AND C. KESSELMAN, Globus: A metacomputing infrastructure toolkit, The International Journal of Supercomputer
Applications and High Performance Computing, 11(2):115 128, 1997.

J. Kuiatowicz, D. BiNpEL, Y. CHEN, P. EaToN, D. GEELs, R. Gummabi, S. RHEA, H. WEATHERSPOON, W. WEIMER,
C. WELLS AND B. ZHao, OceanStore: An architecture for global-scale persistent storage, In 9th International Conference
on Architecture Support for Programming Languages and Operating Systems (ASPLOS 2000), number 2218 in Lecture
Notes in Computer Science, pages 190 201, Cambridge, MA, Nov. 2000. Springer.

A. MUTHITACHAROEN, R. Morris, T. M. GiL aND B. CHEN, Tvy: A read/write peer-to-peer file system, In 5th Symposium
on Operating Systems Design and Implementation (OSDI ’02), Boston, MA, Dec. 2002.

A. Orawm, Peer-to-Peer: Harnessing the Power of Disruptive Technologies, chapter Gnutella, pages 94 122, O’Reilly, May
2001.

J. ProT1i¢, M. Tomasevi¢ AND V. MiLuTtiNoVIC, Distributed Shared Memory: Concepts and Systems, IEEE, Aug. 1997.

S. RHEA, P. EaTton, D. GEELS, H. WEATHERSPOON, B. ZHAO AND J. KuBiatowicz, Pond: the oceanstore prototype, In
2nd USENIX Conference on File and Storage Technologies (FAST ’03), Californie, CA, USA, Mar. 2003.

JavaAGROUPS, http://www.javagroups.com/javagroupsnew/docs/index.html

Tue JXTA proJECT, http://www.jxta.org/

JXTA v2.0 PROTOCOL SPECIFICATION, http://spec.jxta.org/nonav/vl.0/docbook/JXTAProtocols.pdf, Mar. 2003.

KAZAA, http://wwu.kazaa.com/

NAPSTER PROTOCOL SPECIFICATION, http://opennap.sourceforge.net/napster.txt, Mar. 2001.

THE NETSOLVE PROJECT, http://icl.cs.utk.edu/netsolve/

Edited by: Wilson Rivera, Jaime Seguel.
Received: June 26, 2003.
Accepted: September 1, 2003.

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 6, Number 3, pp. 57-66. http://www.scpe.org © 2005 SWPS

0,..

PROGRESSIVE RETRIEVAL AND HIERARCHICAL VISUALIZATION OF LARGE
REMOTE DATA

HANS-CHRISTIAN HEGE*, ANDREI HUTANU* , RALF KAHLER*, ANDRE MERZKY* , THOMAS RADKET,
EDWARD SEIDELT , AND BRYGG ULLMERT

Abstract.
The size of data sets produced on remote supercomputer facilities frequently exceeds the processing capabilities of local visualization
workstations. This phenomenon increasingly limits scientists when analyzing results of large-scale scientific simulations. That
problem gets even more prominent in scientific collaborations, spanning large virtual organizations, working on common shared sets
of data distributed in Grid environments. In the visualization community, this problem is addressed by distributing the visualization
pipeline. In particular, early stages of the pipeline are executed on resources closer to the initial (remote) locations of the data sets.

This paper presents an efficient technique for placing the first two stages of the visualization pipeline (data access and data
filter) onto remote resources. This is realized by exploiting the “extended retrieve” feature of GridFTP for flexible, high performance
access to very large HDF5 files. We reduce the number of network transactions for filtering operations by utilizing a server side
data processing plugin, and hence reduce latency overhead compared to GridF TP partial file access. The paper further describes
the application of hierarchical rendering techniques on remote uniform data sets, which make use of the remote data filtering stage.

1. Introduction. The amount of data produced by numerical simulations on supercomputing facilities
continues to increase rapidly in parallel with the increasing compute power, main memory, storage space, and
I/0 transfer rates available to researchers. These developments in supercomputing have been observed to exceed
the growth of commodity network bandwith and visualization workstation memory /performance by a factor of
4 [11]. Hence, it is increasingly critical to use remote data access techniques for analyzing this data. Among
other factors, this tendency is strengthened by the increasing prominence of large, spatially distributed scientific
collaborations working on common, shared sets of data. Under these conditions, the simple approach of (partial)
data replication for local data analysis does not scale.

The sheer size of existing data sets creates a demand for flexible and adaptive visualization techniques, such
as hierarchical rendering or viewpoint dependent resolution. Such techniques can reduce the initial amount of
data to be visualized by maintaining the overall visual impression of the full data set. This can be achieved
(e.g.) by retrieving the portions of the data set which are important to the user; or by retrieving low resolution
versions of the full data set first, and refining this data later. Remote access to partial interesting portions of
large data files can significantly support these techniques.

One major problem of naive remote data access techniques is the inherent difficulty in handling meta data
for large data sets. Meta data is the highly structured set of information describing the data set, containing
(e.g.) the number of samples per coordinate axis and the data volume bounds within physical space. While
the metadata itself is relatively small, meta data access is often connected with many small read operations
and many seek operations. However, individually requesting many seeks over a remote, potentially high-latency
connection is quite inefficient for protocols that do not support transactions over higher level operations [13, 19].

In general, these developments ultimately require distributing the pipeline used for data visualization. The
present paper describes techniques useable for distributing early stages of this visualization pipeline. Specifically,
we enable the application to efficiently access portions of remote large data sets present in the HDF5 file
format [2]. This general approach can be adapted both to other file formats and other access patterns. The
paper further presents higher level visualization techniques which utilize these data access mechanisms to provide
adaptive and progressive rendering capabilities.

The paper is structured as follows. First, we describe the problem space our approach is targeting in more
detail in sect. 2. Next, we relate our research to other relevant research activities (see sect. 3). In sect. 4 follows
an overall description of the techniques we developed. Sect. 5 and 6 describe the main components in more
technical detail. The paper concludes with two sections about our results and an outlook for future work.

2. Scenario. The increasing gap between resources available at remote supercomputing centers and on the
local workstations of individual researchers is one of the major motivations for our research. In particular, we aim
to improve the access to Grand Challenge simulation results as produced by numerous research collaborations

*Zuse Institute Berlin (ZIB), http://www.zib.de/, {hege, hutanu, kaehler, merzky, ullmer}@zib.de
T Albert Einstein Institute (AEI), http://www.aei.mpg.de/, {radke, seidel}Qaei.mpg.de

a7

58 Hans-Christian Hege, Andrei Hutanu, Ralf Kdhler, André Merzky, Thomas Radke, Edward Seidel, Brygg Ullmer

around the world [12, 25, 26]. These simulations tend to drive the resource utilization of supercomputer resources
to the available maximum, and often produce immense amounts of data during single simulations runs.

As an exemplary application we consider numerical relativity simulations performed in the Cactus simula-
tion framework [10]. Among other things, this framework provides the simulation code with an efficient I/0
infrastructure to write data to HDF5 files. The astrophysical simulations in question write data for scalar,
vector and tensor fields (as components stored in separate data sets or files), and parameters for simulation
runs. A typical size for a data file is on the order of tens of gigabytes'.

Visualization of this data during post simulation analysis usually does not require access to the complete
data set. For typical production runs, where many different physical fields are written to disk, only a couple
of these fields are visualized later. The data sets and subsets that are to be visualized are not initially known,
but depend on interactive selections by the user (timestep, field, resolution, spatial area, etc.). For our target
users, this flexibility needs to be maintained as far as possible.

Within these constraints, our target scenario is the following:

A scientist performs a large scale simulation run, utilizing one or more supercomputing re-

sources at different locations. The simulation run produces up to TBytes of data, by storing

various scalar and vector fields to HDFS files. These HDFS files are created according to a

custom predefined structure.

After the simulation finishes, members of the scientists’ collaboration wish to visualize the data,

or portions hereof, from remote workstations. They would like to use standard visualization

techniques from their visualization environment. They also wish to interactively choose the

data fields to be visualized, and to interactively change the spatial selection and resolution for

the data.

Ideally, the data transfer and visualization are adaptive to the available network connectivity,

and hides data distribution details from the user.
This scenario defines the problem space we are targeting. We explicitely do not expect to find data on the
remote systems which are, by pre- or postprocessing, specifically prepared for later visualization. We also want
to provide a solution for environments with notorious short supply of I/O bandwith and compute resources. And
we want to enable remote visualization for a broad width of end users, connected to the Grid by a wide range
of network types and with varying, potentially low end commodity systems. The ability of the visualization
pipeline to be adaptive to that range of boundary conditions is a central point of our efforts the focus of the
paper on progressive data retrieval patterns and on hierarchical rendering techniques emphasizes this.

3. Related Work. To support the scenario we presented, it is ultimately necessary to distribute the
pipeline used for data visualization. In principle, there are many possible ways to distribute this pipeline (fig. 3.1)
over remote resources. The distribution schemes used in real world systems are limited by the communication
requirements for transferring data between the stages of the pipeline, and by the complexity of the resulting
distributed software systems.

—__>| Data Set :> Geometry | >| Image | > £>

access filter map render display view

T T user control

Fia. 3.1. Most visualization systems share the same underlying visualization pipeline [27].
The components of the pipeline can be freely distributed, in principle, as the communication
elements between these components have different demands on latency and bandwith required.
All elements of the pipeline should be controlled by the end user or by the application.

Early stages of the pipeline—remote access and remote filtering—potentially need to transfer and process
large amounts of data, but show considerable flexibility with respect to latency. Also, by distributing these early

1With a spatial resolution of 256 cubed, this corresponds to only a few scalar fields and one vector field in 64 bit, for 1000 time
steps of evolution, with every 10th step saved to disk.

Progressive Retrieval and Hierarchical Visualization of Large Remote Data 59

stages, it is possible to completely hide the data locality from application and end user. Remote access solutions
as NFS [4] and AFS [3] allow transparent utilization of standard (local) file I/O techniques. However, systems
like NFS and AFS are problematic in the administrative maintenance. For widely distributed environments
spanning multiple administrative domains these solutions are not applicable.

Common remote data access techniques crossing administrative boundaries are marked by several limita-
tions. Some, like SCP and FTP, do not support access to partial files, which is not acceptable for our purpose of
adaptive visualizing. Other techniques fail to deliver the performance required for interactive data visualization.
For example, the GridF TP support for access to remote files with the partial file access feature [9] is inefficient
for meta data access. Due to the file format chosen by HDF5, meta data is not necessarily stored in a continuous
file space, but instead scattered in a hierarchical binary tree. Also, a single read on the HDF5 API level may
be translated by the library into many individual low-level seek/read operations on the virtual file driver level.
Other protocols are similarly lacking in support for transactions of higher level operations [13, 19].

Remote filtering techniques often integrate models of meta data and data structures, and can perform the
data access efficiently?. Also, putting the remote filter on the remote site can significantly reduce the amount of
data to be transferred over the net, and ensures that only the data actually needed for the visualization process
is retrieved and transferred. A standard problem for remote filtering is that this process needs to integrate a
model of the data structures it is operating upon. It is difficult or impossible to implement filtering without
explicit information about what is to be filtered, and this information is difficult to express in a general way
that is applicable over a broad range of data formats and models. Hence, remote filtering techniques are often
limited to specific file and data types, and to specific filtering operations.

The Data Cutter project [14] is another well known representative of the remote filtering approach. It
provides the application programmer with a flexible and extensible filter pipeline to access portions of the
original data set. Compared to our approach, there are several main differences. First, the data cutter requires
the data to be stored in chunked data files in order to benefit from its boundary box indexing scheme, since
all chunks with a bounding box at least partly overlapping with the area of interest are completely read into
memory, and passed to the filter pipeline. Also, since all filters pass data using network communication, the
total network load is much higher than for our approach, where the filter resides at the data source, and is
tightly coupled to the data access stage. Further, our utilization of standard Grid tools (GridFTP and GSI)
seems more appropriate for the targeted Grid environment. On the other hand, Data Cutters user definable
filter pipeline is more flexible than our approach.

One widely used compromise for remote filtering is the usage of preprocessed data sets: during the simu-
lations I/0 stage or during a post processing step, filter operations are applied to create new data sets on the
remote resources. These data sets are stored in optimized form making later remote access and visualization
very efficient. In the future, more and more simulation frameworks will support such features, not at least
in order to improve their own I/O characteristics, i.e. due to compression on the fly, but also to enable the
efficient handling of the very large data sets, after completion of the source simulation. Wavelet transformed
data storage is an excellent example of that technique [22], which allows lossless compression, and adaptive,
efficient offline acces to optimally resolved data samples. Other example filters create octrees [18] or similar
structured representations [21], or provide progressive mesh generation.

For the problem space we described with our scenario, pre applied filters are no valid option, since they
either need to be integrated into the simulation I/O code, what they aren’t in our case; or they need to be
executed via external jobs on the remote resource. This duplicates the storage needed and potentially performs
excess work, thereby wasting costly supercomputing resources.

After filtering, visualization algorithms work on the data and map essential features into geometries (includ-
ing color and texture information, etc.). The next stage renders images from these geometrical representation.
In the future, these stages may also be executed close to the data source, on the supercomputer itself. This
would be the most efficient way to handle large simulation data, since the amount of data to be transfered
during the later stages of the visualization pipeline typically decreases significantly. Completely changed access
patterns to remote data can significantly reduce the amount of data transfered. Visualization algorithms using
such patterns [23], in particular for large data, are seen as use cases for the presented work.

The best prospects of deploying such scenarios have those environments containing PC-cluster based super-
computers. Here, adding commodity graphics boards to all nodes does not increase the total costs significantly,

21f the filter stage is located on the remote site, the data access is often performed local to the filter.

60 Hans-Christian Hege, Andrei Hutanu, Ralf Kdhler, André Merzky, Thomas Radke, Edward Seidel, Brygg Ullmer

but allows high performance image rendering. These types of clusters are becoming increasingly common, but
are still rare in the top500 [6]. For the collaborative and highly interactive visualization scenario we envision,
the feedback to the remote and distributed rendering system gets important, and complex. Also, in perhaps
the most important point, the field is currently missing sufficiently flexible software solutions which are able
to realize such scenarios. Promising approaches do exist through work such as [8, 7, 24|, and we expect major
progress in that field over the next decade.

4. Architecture. Our proposed remote data access scheme builds upon the GridFTP protocol [9].
GridFTP is a Grid-aware extension to the standard FTP protocol. Amongst others, it provides a flexible server
side processing feature, and allows specification of custom operations on remote data. These operations are
performed by corresponding custom extensions (“plugins”) to the GridFTP server. This technique is described
in more detail in sect. 5. We utilize these server side data processing capabilities to perform data filtering oper-
ations on the scientific data sets. As described, the data sets are stored remotely in HDF5 format. Our plugin
to the GridF TP server accesses this data locally via the HDF5 library, and performs data filtering on the fly.

GridFTP Server

Visualization System
(Amira)

GridFTP Client

fGridFTP Protocol (ERET/ESTO)

NIINEIN]

HDF5 Plugin

- MetaData
- Data Blocks

MetaData
Cache

Native
HDF5 Calls

1

HDF5
File

Fia. 4.1. The GridFTP protocol transports ERET commands from the visualization system
to the GridFTP server, which forwards them to the HDF5 plugin. This way, the plugin can
perform 1/0 operations plus filtering and data type conversion on the HDF5 file with full local
performance. Data is transferred back via ESTO commands, and is written into the memory
buffer of the visualization process.

An important element for the architectural decisions is the usage of the HDF5 file format [1]. Given the
complexity of this format and the ongoing improvement efforts concerning the associated API, the decision was
to use the existing API and to have the remote access procedures either on top of the API or as also described
in sect. 3 underneath of it. The architecture described in this work has the remote operations on top of the
HDF5 API, a limited set of high-level operations was chosen to be implemented by making use of the existing
API, and these operations were integrated in the GridF TP server to be executed at the remote site.

A complete visualization session is performed as follows. The user selects a data file to be visualized by
browsing the remote file space. Next, a connection to the remote GridFTP server is established, using the
users GSI credential. The server plugin is utilized to perform an extraction of the files meta data (see sect. 5),
which is then transfered to the visualization host and cached on the local file system. The visualization system
accesses this local HDF5 file, extracts all needed information (number of time steps, bounding box, resolution,

..), and creates an octree hierarchy fitting the data set. The user can interactively specify the depth of the
hierarchy. As the user then triggers various visualization operations on the data (to produce orthoslices, hight
fields, volumetric renderings), the octree blocks are scheduled in a separate thread for data reading. The read
requests are served according to a priority tag defined for the visualization, and each trigger a GridFTP data
access. This GridFTP data access utilizes our remote GridFTP server side data processing plugin. It extracts
the data in the block specific resolution and returns this data. On arrival, the data is stored within the octree
hierarchy, and the visualization is triggered to update the rendering by including the newly arrived data.
On user request (e.g., next timestep) or timeout, all pending block reads can be canceled. Our visualization
techniques (see sect. 6) use these features for dynamic data access to optimize visualization performance by
requesting data blocks close to the viewpoint first, and by progressively improving data (and image) resolution.

5. GridFTP. As described in sect. 4, the GridFTP protocol plays a central role in our data access schema.
GridFTP is mostly used for network file transfer, whereby this paper explores its usage for memory to memory

Progressive Retrieval and Hierarchical Visualization of Large Remote Data 61

transfer. This approach gives us a number of advantages if compared to approaches implemented on top of
custom or proprietary protocols.
1. GridFTP allows for server side data processing, which we utilize for data filtering.
2. The GridFTP protocol, as an extension to the standard FTP protocol, is well known and reliable.
3. It allows the incorporation of standard servers for solutions with limited functionality.?
4. The GridFTP infrastructure takes care of:
e establishing the data connection;
e ensuring authentication and authorization;
e invoking the data filter plugin; and
e performing the data transfer;
In this way, the data transfer task is reduced to filling a buffer on the writing and reading it on the
receiving end.
The following subsections describe the server side processing in more detail, and specify the low level operations
we use.

5.1. Server-Side Processing. As described before, the GridFTP protocol enables support for adding
custom commands for server side data processing [9]. Specifically, the plugins offered by a server define sets
of ERET and ESTO parameters that correspond to the data filter module implemented by the plugin®. The
extended store (ESTO) and extended retrieve (ERET) commands of the GridFTP protocol are defined as
following:

ESTO <module_name>="<modules_parms>" <filename>

ERET <module_name>="<modules_parms>" <filename>

module_name is a server-specific string representing the name of the module to be used. The second string
(module_parms) is module specific and defines the operation to be performed by the module. The last parameter
(filename) specifies the file to be processed, which can be any file that can be processed by the given module.
In our case, any HDF5 file.

5.2. Operations. We use this ERET/ESTO mechanism to define two operations that can be applied to
HDF5 files: one for meta data filtering, and a second one for data access.

Meta Data Filtering. The first operation is the filtering of meta data from the HDF5 file. This is achieved
by creating a filtered copy of the original file. Toward this end, the module reads and parses the original file,
and writes the meta data information to a copy of the file. However, when copying (writing) a data set, we use
the HDF'5 filter interface and apply a filter to the original files data set. This filter reduces all data sets to zero
length®. Thus, the only resulting differences between the generated file and the original one are in the data
array and storage layout of the data sets. All other information e.g., the hierarchy (groups), attributes, and
data set information (name, data type and data space) is preserved. While this approach might seem like a
significant overhead, it is in fact very fast, due to the good performance of HDF5.

The generated file is transferred to the requesting client using GridFTP. The ERET command for requesting
the meta data file is:

ERET Hdf5="METADATA" <filename>

filename is the file from which the meta data will be extracted. Given the now dramatically reduced size of
the file, the transfer time is very small relative to the transfer time of the original data®. After the high-level
filtering call is executed remotely and the transfer is finished, the client can access the local meta data file
using the standard HDF5 API. In this way, we avoid to execute each HDF5 API call remote, and still offer
the user the flexibility of the original API for meta data access. Because the data set structures within this
temporary local file do not contain actual data, the standard API cannot be used for data access. For this
task, we provide a second API call.

3bakwards compatible with FTP, by using normal FTP we could transfer the file to a local disk cache; for standard GridFTP
server(without plugins) we use direct partial file access (ERET PART, for filtering inefficient).

4Not all servers implement the same set of modules. In the current implementation, the plugins are compiled together with the
server, and are statically linked.

5 Actually, for technical reasons internal to HDF5 the length is 1.

6See sect. 7 for the times for meta data loading

62 Hans-Christian Hege, Andrei Hutanu, Ralf Kéhler, André Merzky, Thomas Radke, Edward Seidel, Brygg Ullmer

Data Set Reading and Subsampling. The second operation performs data selection and filtering. By
knowing the data set coordinates (dimensions, data type) from the now locally available meta data, the client
can choose to read an entire data set, or a portion of the data set. The HDF5 data sets logically group the
actual data within multidimensional arrays named “data spaces.” The model we use to specify a portion from
a data set is based on the HDF5 “hyperslab” model. A hyperslab describes either a contiguous collection of
points, or a regular pattern of points or blocks in the data spaces. A hyperslab is specified by four parameters:
origin: the starting location;
size: the number of elements (or blocks) to select along each dimension;
stride: the number of elements to separate each element (or block) to be selected; and

e block: the size of each block selected from the data set.
All of these parameters are one-dimensional lists, with lengths equal to the number of dimensions of the data
set. The elements of these lists specify data array lengths or offsets for corresponding dimensions of the data
arrays. Currently the size of element blocks is predefined to one, which is adequate for the targeted visualization
scenario. In future work, we will extend the protocol to accept variable block sizes.

Our current mechanism for specifying the hyperslab coordinates takes the following form:

ERET HAf5="BLOCK:NAME=<datasetname>;\

DIMENSIONS=<dims>;\

ORIGIN=<orig0>,<origl>,...,<orign>;\
SIZE=<size0>,<sizel>,...,<sizen>;\
SAMPLING=<sampling0>,<samplingl>,...,<samplingn>"
<filename>

datasetname is the fully qualified name (including the path to the data set) of the data set from which data
should be read; orig0 to orign are the coordinates of the first element to be selected from the data set; sizeO
to sizen are the number of elements to be selected in each dimension; and sampling0 to samplingn represent
the distance between two selected elements for each dimension.

This request is sent to the server. The server opens the file filename, opens the given data set, and reads
the portion of the file specified by the given parameters. This procedure is performed via native HDF5 library
calls. Next, the retrieved data is sent via the GridF'TP connection to the client, which will convert the data
to the local byte order if needed. To determine if conversion is necessary, the first 32 bits sent by the server
represent an integer with the value of 1, encoded using the servers byte ordering.

The approach we have taken in creating this limited HDF5 API wrapper does reduce the flexibility provided
by the original API. Nonetheless, for our visualization scenario this API is appropriate, and makes significant
steps toward maximizing overall performance. To retain the flexibility of the original API, one approach would
be to execute each native API call remotely. In this case, the cost per call is at least that of the network latency.
This, combined with the relatively large number of calls needed for example to gather the meta data from the
file, significantly reduces the performance. This motivates the usage of higher level API wrappers, as the one
we have implemented. However, such wrappers need not to be as limited as our current version of course.

5.3. Security. The security model used used by the GridFTP server is GSI (Grid Security Infrastruc-
ture) [17]. The client needs to hold a valid GSI proxy containing a security credential with limited validity.
The proxy represents a Distinguished Name (DN) that must be present in the grid-mapfile of the server
machine in order for the server to accept the connection. This proxy is used to authenticate the client without
using passwords. After the connection is established, the server front end starts the MPI-based back end.
This back end runs under the local identity to which the DN is mapped. The back end is responsible for all
subsequent operations, including the filtering operations. This ensures that only authorized clients can access
the information from the original file.

6. Adaptive Visualization. We utilize the previously described techniques for data access and filtering
to generate a level-of-detail representation of the remote data set in the visualization phase.

First, the meta data i. e. information about the number of data samples per coordinate axis and the data
volume extension in physical space is retrieved (see sect. 5.2). With help of this information, and a selectable
minimal resolution of the data, an octree structure is generated, which initially contains no data other than the
parent-child relations and position and extensions of the tree nodes. The root node of the structure will store
a coarse representation of the whole data volume. This is recursively refined by subnodes with higher spatial
resolution until the resolution of the original data is reached.

Progressive Retrieval and Hierarchical Visualization of Large Remote Data 63

Next, the data for the octree nodes is requested from the reader module, starting at the root node. The
order in which nodes are refined is determined by the distance from a user-defined point-of-interest, which
might be the camera position or an arbitrary point within the data volume. Subregions of the data sets closer
to this point are requested with higher priority than those which are further away. The position and resolution
parameters for each request are specified and sent to the remote machine as described in sect. 5.2.

The reader runs in a separate thread, so the visualization routines are not blocked during the loading phase.
Each time a data block has arrived, the visualization module is notified, and this new data is reflected in the
next rendered frame of the visualization.

Fic. 6.1. The sequence depicts the volume rendering of a remote data set. First, a coarse
resolution representation of the data is generated on-the-fly and transferred to the local visual-
ization client. Next, subregions closer to the point-of-interest (in this case, the camera position)
are requested and integrated at progressively higher resolutions.

Besides hierarchical visualization modules for orthoslicing and the display of height fields, we implemented
a 3D texture-based volume rendering module for octrees. The octree is traversed in a view-consistent (back-to-
front) order, starting at the root node. A node is rendered, if two criteria are fulfilled:
e The data for this node is already loaded (otherwise, the traversal of the associated subtree is stopped).
e The data for the subnodes is not loaded yet (otherwise, the node is skipped and the subnodes are
visited).
Once a node is selected, it is rendered utilizing the standard approach for volume rendering with 3D textures,
as proposed in (e.g.) [16, 15]. The 3D texture is sampled on slices perpendicular to the viewing direction and
blended in the frame buffer.
In order to take advantage of the multi-resolution structure of the data for fast rendering, the sample
distance of the slices is set with respect to the resolution level of the actual node, as proposed in [29].

7. Results.

7.1. Implementation. The implementation of the remote data access infrastructure we have described
is based on an experimental version of the GridF TP server provided by the Globus Group. This server is not

64 Hans-Christian Hege, Andrei Hutanu, Ralf Kéhler, André Merzky, Thomas Radke, Edward Seidel, Brygg Ullmer

part of the Globus software distribution as of yet. It supports the addition of compile-time plugins (written
in C) for handling specific incarnations of the ERET/ESTO protocol commands. Although ERET and ESTO
are specified in the GridFTP protocol version 1.0, there is currently no other implementation of this feature
available other than the basic support for partial file access and striped data access. There are good prospects
for this feature to be present in various future implementations of GridF'TP servers. The plugin code will be
available via the GridLab project software distribution, and will be published at http://www.gridlab.org/.

For benchmarking the software we used a dual Xeon 1.7GHz Server running RedHat Linux 8.0 as a data
server. The machine was equipped with 1GB of RAM and a logical volume storage of 320 GByte (36.5 MByte/sec
transfer rate). The measurements have a granularity of 1 second.

The visualization modules we described have been implemented in the Amira visualization environment |28,
5], which is based on OpenGL and Openlnventor. The renderings have been performed on a dual Pentium IV
system with 2.6 GHz, 1 GByte main memory and NVidia Quadro4 graphics. The system ran under RedHat
Linux 8.0 with the standard NVidia video driver.

7.2. Benchmark Results. In order to evaluate our approach, we performed a number of performance
measurements for accessing, loading and displaying large remote HDF5 data sets. We compare the performance
obtained using the GridFTP plugin (GridFTP HDF5) with a comparable remote access technique, that is
HDF5 over GridFTP partial file access (GridFTP PFA). We also include measurements of local (local access)
and Network File System (NF'S access) times to see if we achieved our goal of having acceptable waiting times
before the first visualization is created, considering the local and NFS times as acceptable.

The results of these tests are listed in table 7.2. The time needed to create the first image (¢3) is composed
of the time needed to gather and transfer the meta data (¢1) and the time needed to filter and transfer the
subsampled first timestep (t2). t4 gives the access time for a full resolution time step.

The tests have been performed on a Local Area Network (LAN) with normal network load (latency lms,
measured 32.0 MBit/sec), and on a Wide Area Network connection (WAN) between Amsterdam and Berlin
(latency 20ms, measured bandwith: 24.0 MBit/sec).

The WAN measurements have been performed with various level settings, that is with different depth of
the octree hierarchy created.

TABLE 7.1
The table lists performance measurements for the various access techniques we explored.
The results have been obtained by timing the visualization process for a 32 GB HDF5 file, con-
taining 500 timesteps, each timestep with the resolution of 256 data points (double precision).

Access Type Net | Level | Meta Data | Root Block Startup | Complete

tq to | t3 =11 +to ty4
local access - 2 7 sec 1 sec 8 sec 3 sec
NFS access LAN 2 8 sec 5 sec 13 sec 8 sec
GridFTP HDF5 | LAN 2 11 sec 2 sec 13 sec 11 sec
GridFTP PFA LAN 2 165 sec 10 sec 175 sec 200 sec
GridFTP HDF5 | WAN 3 14 sec 2 sec 16 sec 126 sec
GridFTP HDF5 | WAN 2 14 sec 3 sec 17 sec 68 sec
GridFTP HDF5 | WAN 1 14 sec 7 sec 21 sec 45 sec
GridFTP HDF5 | WAN 0 14 sec 41 sec 55 sec 41 sec
GridFTP PFA WAN 3 430 sec 28 sec 458 sec 3760 sec
GridFTP PFA WAN 2 430 sec 53 sec 483 sec 960 sec
GridFTP PFA WAN 1 430 sec 110 sec 560 sec 477 sec
GridFTP PFA WAN 0 430 sec 220 sec 670 sec 220 sec

These measurements show that the goal of a fast initial visual representation of the data set was achieved:
a small startup time t3 can be achieved by using the GridFTP HDF5 technique combined with hierarchical
access (level > 2). This time is of the same order of magnitude as for local visualization.

Specifying the hierarchy level provides the user with an interactive mechanism for tuning response times.
The data access scheme could prove its adaptivity for different network connectivity. In principle, the user can
reduce the time to obtain a first visual representation by choosing a larger hierarchy level. The tradeoff for

Progressive Retrieval and Hierarchical Visualization of Large Remote Data 65

shorter startup times is the total transfer time for a fully resolved data set (all octree levels)”. The results show
that relation (t3 / t4) clearly for the WAN measurements with different level settings.

Also, the large overhead for the complicated meta data access was dramatically reduced in comparison to
GridFTP partial file access. The remaining time difference relative to the NFS meta data access results from
the application of the zero filter to all data sets, the time needed to write the meta data file, and the time to
transfer it.

8. Conclusions. With the presented scheme for progressive remote data access and its use for hierarchical
rendering, we have successfully realized the functionality targeted in our motivating scenario (sect. 2). In
particular, the techniques we have developed support the adaptation of remote data access to a wide range of
I/0O connections, and react flexibly to user and application demands. For example, our mechanisms support
adjustment of the systems reaction time the time until the first visual impression for the data set appears by
adapting data filter parameters, such as the chosen octree depth.

Our presented solution does not depend on server-side offline preprocessing of the complete data set. The
access to the data sets meta data, when compared to naive remote access techniques, offers very high perfor-
mance, as supported by the results of Table 1. Only a small local disk storage space is required for caching the
associated metadata.

The extensibility of this approach is also notable. This approach supports both additional data formats
other than HDF5, and access patterns other than hyperslab, through the provision of additional plugins. Si-
multaneously, it is important to acknowledge that this approach may make it increasingly difficult to maintain
compatible configurations on all hosts of a Grid. The situation may improve with future GridFTP server im-
plementations allowing dynamic linking and invocation of plugins. Thus implementation is one of the first few
existing utilizations of the ERET capabilities provided by GridFTP. It is expected to see many more in the future.

Our work further demonstrates the usability of the data access scheme for hierarchical rendering techniques.
The implemented algorithms (orthoslice, height field, volumetric rendering) show very good performance, and
are also adaptive to user specification and connectivity characteristics.

The presented architecture enables us to realize visualization scenarios which would be impossible earlier, by
reducing the total amount needed for obtaining a visual data impression by orders of magnitudes, if compared
to naive approaches.

We are planning to enhance the dynamic protocol selection feature of Stork, so that it will not only select
any available protocol to perform the transfer, but it will select the best one. The requirements of ‘being the
best protocol’ may vary from user to user. Some users may be interested in better performance, and others in
better security or better reliability. Even the definition of ‘better performance’ may vary from user to user. We
are looking into the semantics of how to to define ‘the best’ according to each user’s requirements.

We are also planning to add a feature to Stork to dynamically select which route to use in the transfers and
then dynamically deploy DiskRouters at the nodes on that route. This will enable us to use the optimal routes
in the transfers, as well as optimal use of the available bandwidth throughout that route.

Acknowledgments. It is a pleasure to thank many colleagues and collaborators who contributed to this
work both directly and indirectly. At ZIB, that are namely Werner Benger and Tino Weinkauf, who contributed
to the overall ideas of our approach. We wish to thank the Globus group, in particular Bill Allcock and John
Bresnahan, for their substantial support with the GridFTP server plugin infrastructure and implementation —
without the experimental server provided by them, our work would have been hardly possible. We also wish to
thank John Shalf and Werner Benger for many insightful discussions about data handling. Finally, we wish to
thank the members of the GridLab project who contributed to the Adaptive Component work package for useful
discussions about (future) semi-automatic adaptivity schemes, and for their support during the benchmarking

The presented work was funded by the German Research Network (the DFN GriKSL project, grant TK-
602-AN-200), and by the European Community (the EC GridLab project, grant IST-2001-32133).

REFERENCES

[1] HDF5 File Format Specification, National Center for Supercomputing Applications (NCSA).
http://hdf .ncsa.uiuc.edu/HDF5/doc/H5.format . html.

"The maximum amount of additionally transferred data caused by the octree based access scheme is on the order of 15%. The
higher number of resulting block requests increases the overall transfer time also due to the additional latencies.

66

(2]
[3]
[4]
[5]
[6]
[7]
(8]

[9]
[10]
[11]
[12]
[13]

[14]

[15]
[16]
[17]

18]

[19]
[20]

[21]

[22]

23]

[24]

[25]
[26]
[27]
28]
[29]

30]

Hans-Christian Hege, Andrei Hutanu, Ralf Kéhler, André Merzky, Thomas Radke, Edward Seidel, Brygg Ullmer

Introduction to HDF5, National Center for Supercomputing Applications (NCSA).
http://hdf.ncsa.uiuc.edu/HDF5/doc/H5. intro.html.

Wide Area File Service and the AFS Ezperimental System, Unix Review, 7 (1989).

Network Programming Guide, Sun Microsystems Inc., (1990). Revision A.

Amira User’s Guide and Reference Manual and Amira Programmer’s Guide, Konrad-Zuse-Zentrum fiir Informationstechnik
Berlin (ZIB) and Indeed-Visual Concepts GmbH, Berlin, 2001. http://www.amiravis.com/.

Top 500, (2002). http://www.top500.0rg/list/2002/11/.

Vislt User’s Manual, Tech. Report UCRL-MA-152039, Lawrence Livermoore National Laboratory, February 2003.

J. Aurens, C. Law, W. ScHROEDER, K. MARTIN, AND M. Parka, A Parallel Approach for Efficient Visualizing Fxtremely
Large, Time-Varying Datasets, Tech. Report LAUR-00-1620, Loa Alamos National Laboratory (LANL), 2000.

W. Avrrcock, J. BesteEr, J. BRresNaHaN, S. Mebper, P. Praszczak, anNp S. Tueckge, Gridftp:
Protocol extensions to ftp for the grid, GWD-R (Recommendation), (2002). Revised: Apr 2003,
http://www-isd.fnal.gov/gridftp-wg/draft/GridFTPRev3.htm.

G. ALLEN, W. BENGER, T. GoopaLg, H.-C. HEGE, G. LANFERMANN, A. MERZKY, T. RADKE, E. SEIDEL, AND J. SHALF,
The Cactus Code: A Problem Solving Environment for the Grid, in Proceedings of the Ninth IEEE International
Symposium on High Performance Distributed Computing, 2000, pp. 253-260.

D. Avprerr, Scalable MicroSupercomputer, Microprocessor Report, 03/17/03-01 (2003).

W. BENGER, I. FosTER, J. NovorNy, E. SEIDEL, J. SHALF, W. SMITH, AND P. WaALKER, Numerical relativity in a dis-
tributed environment, in Proceedings of the Ninth STAM Conference on Parallel Processing for Scientific Computing, 1999.

W. BenGger, H.-C. HeGe, A. Merzky, T. Rapke, anp E. SeipeL, Efficient Distributed File 1/0 for Visualization in
Grid Environments, Tech. Report SC-99-43, Zuse Institute Berlin, January 2000.

M. BeynoN, R. FErrEIRA, T. Kurc, aND J. Savrz, DataCutter: Middleware for Filtering Very Large Scientific Datasets
on Archival Storage Systems, in The Eighth Goddard Conference on Mass Storage Systems and Technologies/17th TEEE
Symposium on Mass Storage Systems, College Park, Maryland, USA, March 2000.

B. CaBraL, N. Cam, anD J. Foran, Accelerated volume rendering and tomographic reconstruction using texture mapping
hardware, in 1994 Symposium on Volume Visualization, A. Kaufman and W. Krueger, eds., 1994, pp. 91-98.

T. Currip aND U. NEUMANN, Accelerating volume reconstruction with 3D texture mapping hardware, Tech. Report
TR93-027, Department of Computer Science at the University of North Carolina, Chapel Hill, 1993.

I. T. FosteEr, C. KesseLMAN, G. Tsubpik, aND S. TUECKE, A security architecture for computational grids, in ACM
Conference on Computer and Communications Security, 1998, pp. 83-92.

L. A. Freitac aNnpD R. M. Loy, Adaptive, multiresolution visualization of large data sets using a distributed memory
octree, in Proceedings of SC99: High Performance Networking and Computing, Portland, OR, November 1999, ACM
Press and IEEE Computer Society Press.

H.-C. Hece anp A. Merzky, GriKSL Immersive Uberwachung und Steuerung von Simulationen auf entfernten
Supercomputern, DFN-Mitteilungen, 59 (2002), pp. 5-7.

F. IsaiLa anp W. F. Ticuy, Mapping functions and data redistribution for parallel files, in Proceedings of IPDPS 2002 Work-
shop on Parallel and Distributed Scientific and Engineering Computing with Applications, April 2002. Fort Lauderdale.

L. Linsen, J. Gray, V. Pascucci, M. A. DucHaIiNEAU, B. HamanN, anp K. 1. Jov, Hierarchical Large-scale Volume
Representation with ’3rd-root-of-2’ Subdivision and Trivariate B-spline Wavelets, Mathematics + Visualization, Springer
Verlag, Heidelberg, Germany, 2003.

A. NorTtON AND A. Rockwoob, Enabling View-Dependent Progressive Volume Visualization on the Grid, IEEE Computer
Graphics—Graphics Applications for Grid Computing, (2003), pp. 22-31.

C. NuBER, R. W. BruckscHEN, B. HamanN, anDp K. 1. Jov, Interactive visualization of very large datasets using an out-of-
core point-based approach, in Proceedings of the High Performance Computing Symposium 2003 (HPC 2003), I. Banicescu,
ed., San Diego, California, March 30 April 2, 2003 2003, The Society for Computer Simulation International. Orlando, FL.

S. OuBricH, T. WEINKAUF, A. MErRzkY, H. Knipp, H.-C. HEGE, AND H. PRrRALLE, Lésungsansif jze zur Visualisierung
im High Performance Computing und Networking Kontezt, in Zukunft der Netze - Die Verletzbarkeit meistern., J. von
Knop and W. Haverkamp, eds., vol. 10, Diisseldorf, Germany, May 2002, pp. 269-279. 16. DFN-Arbeitstagung iiber
Kommunikationsnetze, GIEdition, Lecture Notes in Informatics (LNT).

N. RAaMAKRISHNAN AND A. Y. Grama, Data Mining Applications in Bioinformatics, in Data Mining for Scientific and
Engineering Applications, Kluwer Academic Publishers, 2001, pp. 125-140.

J. RuMmBLE JRr., Publication and Use of Large Data Sets, Second Joint ICSU Press - UNESCO Expert Conference on
Electronic Publishing in Science, (2001).
http://users.ox.ac.uk/ icsuinfo/rumbleppr.htm.

H. ScrnumanN aND W. MULLER, Visualisierung, Springer, Berlin, Heidelberg, New York, 2000.

D. StaLLiING, M. WESTERHOFF, AND H. HEGE, Amira—an object oriented system for visual data analysis, in Visualization
Handbook, C. R. Johnson and C. D. Hansen, eds., Academic Press, to appear 2003. http://www.amiravis.com/.

M. WEILER, R. WESTERMANN, C. HanseN, K. ZIMMERMAN, AND T. ERrrL., Level-of-detail volume rendering via 3D
textures, in IEEE Volume Visualization and Graphics Symposium 2000, 1994, pp. 7 13.

R. Worski, N. SprING, AND J. Haves, The Network Weather Service: A Distributed Resource Performance Forecasting
Service for Metacomputing, Journal of Future Generation Computing Systems, 15 (1999), pp. 757 768.

Edited by: Wilson Rivera, Jaime Seguel.
Received: July 5, 2003.
Accepted: September 1, 2003.

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 6, Number 3, pp. 67-84. http://www.scpe.org © 2005 SWPS

0,..

AN ADAPTIVE FILE DISTRIBUTION ALGORITHM FOR WIDE AREA NETWORK

TAKASHI HOSHINO* , KENJIRO TAURA* , AND TAKASHI CHIKAYAMA*

Abstract. This paper describes a data distribution algorithm suitable for copying large files to many nodes in multiple clusters
in wide-area networks. It is a self-organizing algorithm that achieves pipeline transfers, fault tolerance, scalability, and an efficient
route selection. It works in the presence of today’s typical network restrictions such as firewalls and Network Address Translations,
making it suitable in wide-area setting. Experimental results indicate our algorithm is able to automatically build a transfer route
close to the optimal. Propagation of a 300MB file from one root node to over 150 nodes takes about 1.5 times as long as the best
time obtained by the manually optimized transfer route.

Key words. Self-stabilizing distributed algorithm, fault tolerance, scalability, wide-area network

1. Introduction. This paper describes a practical algorithm for copying large data (typically in a file)
from a source node(s) to many destination nodes in parallel. We seek a scalable solution suitable both within
a cluster and across many clusters in wide-area. By suitable within a cluster, we mean that it fully utilizes
the available bandwidth of LAN/cluster interconnect. For example, assuming 32 nodes are connected via a
sufficiently high-throughput switch, it should be able to copy a single large file to the 32 nodes in not much
more than the time it takes to copy the file to a single node. Such an algorithm must at least perform many
one-to-one transfers in parallel. By suitable in wide-area, we mean it makes a good choice in selecting transfer
routes. If many nodes in a cluster retrieve data from another cluster, a link across the two easily saturates.
Thus such an algorithm should have a mechanism to transfer data within a cluster where possible.

To be practical, it should work with a simple and small manual configuration that may not be very accurate.
It won’t be practical to assume, for example, that the user gives a complete and accurate information about
physical network topology, desirable paths for transferring data, or even logical network connectivity (i.e.,
network settings such as firewall and Network Address Translation (NAT)). Assuming such information is
not practical not only because the user may not want to write them, but also because such information may
change over time due to such events as node/network failures. The system therefore must tolerate inaccurate
information and adapt to the conditions observed at runtime. Such an adaptive system naturally supports fault
tolerance in the sense that even if some nodes fail, remaining nodes accomplish their work and nodes that once
failed can join the transfer again.

We believe such a fault-tolerant and adaptive file replicator is a mandatory building block for cluster and
Grid computing. It may be used for installing large program/data to many nodes. It may also be used in
file synchronizers [5] so they support synchronizing data among a large number of nodes in parallel. Perhaps
most important, replicating a large data to many nodes will be a practical technique to “reset” a distributed
computation; it simply reinitializes all the involved nodes, so as to recover from some broken /inconsistent states.
This observation accords with recent practices in large-scale cluster management, where reinstalling operating
systems from scratch is considered as a normal operation, rather than the last resort, to fix broken clusters [13].

To get an intuitive idea about how a good transfer route typically looks, consider a network in Figure 1.1.

There are two local area networks (LANs) named A and B, each including three clusters (A1, Ao, and As
in A and B, Bs, and Bs in B). Assume nodes can connect to each other via the TCP layer.

Suppose the data is on a node in cluster A; and should propagate to all other nodes. In the figure, a small
circle is a node, a rectangle a switch, and a line connecting a node and a switch a network cable that can transfer
data with 100Mbps.!

Intuitively, the best strategy is to form a transfer route like the one shown in Figure 1.2. Figure 1.3
represents the same route in the physical topology. Specifically, the following two properties are important.

e The number of connections that cross a LAN/cluster boundary is small; there is only one connection
across the two LANs and five connections across the six clusters.
e The entire transfer route forms a list. That is, no nodes serve data to two or more nodes.
The reason why the first property is important will be clear. A simple calculation will reveal that if nodes are
randomly connected without any effort to connect nodes close to each other, links across LANs/clusters will

*University of Tokyo, {hoshino,tau,chikayama}@Qlogos.t.u-tokyo.ac.jp
LOf course, this limit may not be due to the capacity of the cable per se, but due to NIC or switch.

67

68 Takashi Hoshino, Kenjiro Taura, Takashi Chikayama

Cluster Al Cluster A2 Cluster A3
ONONONONONONO ONONONONONONO ONONONONONONO

Subnet A _

Subnet B [~ =

ONONONONONONO ONONONONONONO ONONONONONONO
Cluster Bl Cluster B2 Cluster B3

100Mops Line

Fia. 1.1. Typical network environment for which our solution is suitable

Subnet A
1 i‘ O_t """"""""""""""""
: Cluster Al Cluster A2

, Custer B3 Cluster B2 Cluster Bl
Subnet B
—_ > —l #
Intra-cluster edge |I|ntra-subnet edge I nter-subnet edge

Inter-cluster edge

Fic. 1.2. Best transfer route in application layer

easily become a bottleneck. This is especially true in today’s typical network configuration where capacity of
long links (corporate-/campus-/wide- area) is similar to or at best only an order of magnitude larger or so than
typical local area links. For example, let us assume for the purpose of discussion that we have two 100Mbps
switched LANs connected via a 1Gbps link. In such settings, we should be able to transfer data among all
the nodes in the two LANs approximately at the LAN bandwidth (100Mbps), but if connections are randomly
chosen, a link across the two LANs can sustain only 10 such connections at best. Thus the 1Gbps link won’t
be enough for supporting 10 or more nodes in each side of it.

The second bullet may be less obvious. It is important for reducing the bottleneck in NICs. Suppose three
nodes A, B, and C are linked via a 100Mbps switch. If data go from A to B to C, the throughput will be
close to 100Mbps. If, on the other hand, A sends data both to B and C simultaneously, it can emit data at
50Mbps to each. Note that we assume A must send data to B and C separately, which we believe is a reasonable
assumption because B and C may want different portion of the entire data stream. This is important especially

An Adaptive File Distribution Algorithm for Wide Area Network 69

Cluster Al Cluster A2 Cluster A3
..... ONONONONONONO ONONMNNONONONO

Wi N2, \H/,///
I LiLA4 4N N TP Nl id/4

Root

Subnet A m

__

Subnet B P —

/NN /7T AN
A EAL SRR AS LR At b

100Mops Line

" Femad D

Fia. 1.3. Best transfer route according to our guidelines in typical network

when links across LANs are sufficiently powerful, so they won’t become bottlenecks as long as we maintain the
first property.

Our algorithm tries to build a transfer route close to such best routes. Note that it is not always possible
to connect all nodes in a list. For example, if firewalls do not allow some connections, it may be unavoidable
for some nodes to serve data to two or more children. Thus, our algorithm in general forms a transfer forest,
with some heuristics to connect nodes close to each other and to make the tree deeper. It may be a forest,
rather than a single tree, because there may be multiple nodes that have complete data in the beginning. In
such cases, a separate tree will be formed rooted at each source node.

The paper is organized as follows. Section 2 describes a model of the network and the goal of this research.
Then, we propose our algorithm and proof of efficiency in Section 3. And validation and evaluation are shown
in Section 4. In Section 5, we explain related work. Finally, we conclude and summarize this research and
remark to future work in Section 6.

2. Problem Description. In this section, we define goals of the algorithm and formalize the problem.

2.1. Goals.

Tolerate faults and adapt to resource conditions: Copying a large file to many nodes takes a long time.
Therefore our solution must tolerate temporal /permanent network faults and node crashes. When a
node crashes, nodes receiving data from the crashed node must find a substitute so that the remaining
nodes finish their tasks. When a node recovers, it must be able to join the transfer network and continue
its job, without waiting for the ongoing operation to finish and then restarting from scratch. In addition
to being fault-tolerant, it must adapt to changes in network conditions; it should change the transfer
route depending on changes of conditions.

Both of these requirements preclude a simplistic solution that statically constructs a route in the
beginning and tries to retain the same route until they finish. Nodes must continuously search for a
better transfer route.

Make an efficient transfer route automatically: As motivated in Section 1, our general criteria for “good”
transfer route are (1) using a small number of “long” connections (i.e., connections that travel a large
number of hops, such as inter-subnet connections), and (2) having a small number of nodes that serve

70 Takashi Hoshino, Kenjiro Taura, Takashi Chikayama

data to multiple (more than one) children. This is based on our assumption that a bottleneck is typically
caused by an inter-subnet edge or a node. Examples for the latter are disks and network interfaces.
Our algorithm tries to optimize the number of long connections and the number of children for each
node, with a very simple local search heuristics.

Work on today’s typical network configurations: Today’s typical network configurations do not allow

each node to connect to all other nodes. Firewalls may block connections between LANs. Inside a
LAN, it is common to place all cluster nodes but one (a master node) behind a NAT router, so that
accesses to clusters need go through the master. With DHCP, it may even be impractical to assume all
nodes to have persistent names.
In short, we must model the network as a general graph where allowed connections are represented
by its edges. Yet it is impractical to assume such a graph is given by the user (or the administrator)
either offline or in the beginning of the algorithm. Altogether, we must design an algorithm that begins
with a minimum amount of global information (e.g., participating nodes) and a local knowledge of the
network (e.g., neighbors) in each node.

Do not assume physical network topology: Knowing physical network topology would help us to opti-
mize transfer routes. Designing the algorithm assuming a complete knowledge about it is, however,
impractical for many reasons discussed so far. First it is cumbersome for the user or the administra-
tor to maintain such information. We may be able to obtain such information by using tools such
as traceroute, but such tools tend to be unavailable these days for security considerations. It is also
difficult to obtain the topology of the network behind a single router with traceroute. Second, even
if topology information is available, dynamically probing the network is always necessary to make the
algorithm fault-tolerant and adaptive. Algorithms based on probing connectivity and proximity at
runtime naturally work without detailed knowledge about network topology.

Of course, we could always use physical topology as hints to our algorithm, among many other hints
such as IP address prefix, latency, and observed throughput.

To achieve these goals, each node involved in our algorithm continuously seeks a parent, a node that serves
data to the node. When it faces such events as parent crashes or disconnections, it tries to find a new parent.
Even without such events, they continuously search for a better parent to optimize the transfer route. The
criteria for a better parent are that (1) the closer a node is to itself the better, and (2) the fewer children a node
has the better.

Our algorithm is a simple local search algorithm that converges to a satisfactory transfer in typical network
configurations of today. Ideally, we desire an algorithm to find a globally optimal solution for any given network.
A plausible definition of the optimal would be to minimize the sum of selected edge weights and the number of
branches (or equivalently, the number of leaves) in the graph. The two criteria may conflict for general weighted
graphs and even if they do not, they will require a complex global optimization algorithm (e.g., fault-tolerant
MST counstruction) whose practical importance may not be very clear. In the following, we formulate our
problem and prove our simple algorithm has a property which translates to “a sufficiently good” transfer route
in typical real network configurations.

2.2. Problem Formulation. As usual, we model the network by a directed graph G = (V, E), where V is
a set of nodes participating in the replication. E represents possible connections between nodes; (a,b) € E <~
a knows b’s name and the current network status allows a to connect to b.

The graph is for modeling purposes only; in practice, the network status may change over time, so each
node cannot know the complete status of the network. It may even be impractical to assume each node knows
all the neighbors it can connect to. In our implementation, each node begins with knowing information about
a few of its neighbors and receiving a command that instructs it to participate in the replication of a file. They
learn other node names on the fly by propagating information along established connections. This way, they
learn other connections they may be able to make. They learn whether a particular connection is allowed or
not by trying to establish a connection only when necessary. Nodes never maintain information about edges
they are not adjacent to.

Below, we prove our optimization algorithm eventually reaches a transfer forest that has some desirable
properties, assuming that the graph is fixed at some point. Note that our algorithm correctly finishes its job
without this assumption. The assumption is essential only for stating the property of the forest our algorithm
converges to.

An Adaptive File Distribution Algorithm for Wide Area Network 71

To define the “goodness” of a transfer forest, we must introduce a notion of distance between nodes. One
plausible formulation would be to give edges arbitrary weights, and to aim at reducing the total weights of
selected edges (i.e., minimum spanning forest). We do not use this formulation but introduce a stronger
assumption about the distances between nodes which we believe is a practical approximation of real networks,
and show a simpler local search obtains sufficiently good results.

We assume nodes can be decomposed into groups so that nodes close to each other constitute a group. Our
optimization algorithm does not assume that each node knows the decomposition explicitly, but only assumes
that each node can somehow compare relative distances from the local node to other nodes. We show in
Section 3.3 such a comparison induces a decomposition. It is such a decomposition for which our algorithm tries
to reduce the number of inter-group edges. Again, the replication correctly finishes with inaccurate information,
thus an implementation can use any sufficiently accurate measurement. Our current implementation is given in
Section 3.2.1.

We say a decomposition is complete if nodes in each group form a clique (a complete subgraph) of G.
That is, nodes inside a group can connect to each other without being blocked by, e.g., firewalls. For any
decomposition which may or may not be complete, one can derive a complete decomposition by dividing its
incomplete group into a number of groups so each of them is a clique. We call such a complete decomposition a
complete subdivision of the original decomposition. Given a decomposition D, a complete subdivision that has
the minimum number of groups is called the coarsest subdivision of D.

Given a decomposition, the goal would be to make a transfer forest close to the following best desirable,
which has

1. the minimum number of edges connecting nodes in different groups, and
2. the minimum number of branches.

Our algorithm converges to the optimal if each node can connect to any other node (i.e., the entire graph
is complete, or in practical terms, firewall, NAT, or DHCP do not deny any connection against us). In more
general graphs, our algorithm has the following property. Let D the decomposition induced by a heuristics used
to measure the relative distance between nodes, and D the coarsest complete subdivision of D. Our algorithm
achieves (1) the number of inter-group connections < N — F and (2) the number of branches < N — 1, where
N is the total number of groups in D and F the number of groups in D containing at least one finished node,
a node which has received the entire data.

Our claim that the above property translates to a good result in practice is based on the following obser-
vations.

e A simple measurement can reasonably approximate the “closeness” between nodes. For example, given
a node in the same LAN as the local node and another not in the same LAN, it will be relatively easy
for the local node to judge if one node is closer to the other, thus should be preferred. Therefore, one
can obtain a decomposition each group of which has nodes close to each other.
e In typical network configurations, nodes close to each other tend to be allowed to connect to each other.
Most typically, nodes within a LAN can connect to each other. Making a group of nodes close to each
other thus tends to yield a subgraph that is nearly complete.
The first bullet implies that, if we group nodes based on a reasonably accurate measurement of distances between
them, we will have groups each of which consists of nodes close to each other. Each such group will be nearly
complete (bullet #2), therefore N will be close to N. Together, the number of connections crossing a group
boundary will be close to N — F', and the number of branches close to N — 1.

3. Algorithm. The algorithm has several features that we should remark.

A simple, self-stabilizing distributed algorithm: Each node works based on information about its neigh-
bors and optimizes transfer routes with a small amount of local information. Each node continuously
seeks a closer node that may serve data faster. This mechanism naturally makes our algorithm fault-
tolerant and allows nodes to join or leave computation at any time.

Parallel and pipelined transfer: Transferring data from node A to B and from C to D can occur in parallel.
Moreover, transferring a piece of data from A to B and transferring another piece of data from B to
C' can also take place in parallel (pipelined transfer). This is especially important for replicating large
files in switched networks.

A simple transfer loop avoidance: The algorithm naturally avoids deadlock due to a transfer loop simply by
letting each node become a parent of another only when it has more data than others. This mechanism,

72

01:
02:
03:

Y/

04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

Takashi Hoshino, Kenjiro Taura, Takashi Chikayama

together with the self-stabilizing nature of the algorithm, is enough to make it deadlock-free; when a
node crashes, its children will eventually learn there is no progress for a long time, in which case they
try to connect to another node that is ahead of it.

/* Starting or After Recovered */
offset — current filesize on disk;

parent = invalid; /* the node self is getting data from.

candidate — null;
is_sending giveme = false;
children = none; /* nodes self is giving data to */
siblings — none; /* used for Tree2List Suggestion */
neighbors = list of neighbors (dead or alive);
while (true) {
/********** Searching for Parent **********/
(candidate == null && parent == invalid) =
candidate = a node in neighbors;
send (candidate, ask(id, offset));
/* NearParent Heuristics */

(candidate == null && a node in neighbors satisfies

is_ closer(self, node, parent)) =
candidate = node;
send(candidate, ask(id,offset));
/* Tree2List Heuristics */

(candidate == null && a sibling in siblings satisfies

lis closer(self, parent, sibling)) =
candidate = sibling;
send(candidate, ask(id,offset));
received(ask(wid, woffset)) =
if ((offset > woffset) &&
(MAX_NODE > number of children)) {
add this node (wid, woffset) to children;
send(wid, ok(id, offset));
} else {
send(wid, ng(id));
}

received(ok(wid, woffset)) =
if (woffset > offset) {
parent = wid; candidate = null;
}

received(ng(wid)) =
if (wid == candidate) {
candidate = null;
} else if (wid == parent) {
parent — invalid;

41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81: }

/********** Data Transfer **********/
(parent !— invalid && offset < filesize &&
lis_sending giveme) =
1s_sending _giveme — true;
send(parent, giveme(id, offset));
received(giveme(child, woffset)) =
if (offset > woffset) {
size = max(BLOCKSIZE, offset woffset);
buf = load(filename, woffset, size);
send(child, data(id, woffset, size, buf));
} else {
send(child, ng(id));
}

received(data(wid, woffset, size, buf) =
if (woffset == offset) {
is_sending giveme — false;
save(filename, woffset, size, buf);
offset += woffset;

}
(offset == filesize && parent = null) =
if (parent != invalid)

send (parent, disconnect(id));
parent = null;
received(disconnect(child)) =
delete the child from children;
JRRREAAKIR TroeBList Suggestion **FFExEkES /
(having more than one child) =
foreach child in children {
send(child, suggestion(id, children));
}

received(suggestion(parent, new_ siblings)) =
siblings = new_ siblings;
JRREERRAS Fault Hapdling ** %66 xxxk)
(timeout(data, ng) from parent) =
parent = invalid;
(timeout(giveme, disconnect) from child) =
delete the child from children;
(timeout(ok, ng) from candidate) =
candidate = null;

Fia. 3.1. Pseudo-code of our algorithm

Figure 3.1 shows the local algorithm running on each node. Prior to running this algorithm, each node

knows its neighbors (neighbors) and the size of the file each node must eventually have (filesize). In actual
implementation, each node may begin with an incomplete list of neighbors. Nodes propagate their neighbors to
other and learn from others.

condition = action

Inside the main while loop (line 9 81) is written as a list of the following form:

where condition is a precondition (or a guard) in which the action can take place. The predicate received(X)
evaluates to true if a message that matches X is in the incoming message queue of the node. Each iteration of
the loop waits for at least one guard to become true, and executes the corresponding action. If multiple guards

An Adaptive File Distribution Algorithm for Wide Area Network 73

are true, any one of them is chosen arbitrarily.
First, we explain the base part of this algorithm in Section 3.1. We continue with the route optimization
heuristics in Section 3.2

3.1. The Base Algorithm. Each node repeats the following until it gets the entire data.

e It seeks a node that is ahead of itself (i.e., has more data than itself). Let us call such a node its parent.
A parent may change over time.

e Once it finds a parent, it asks the parent to send the data that should come next to the data it currently
has. For example, if a node has the first 1000 bytes of a file, it will ask the parent to send some amount
of data from offset 1000.

e In addition,

— Each node, except ones that have obtained the entire data, seeks a node that is closer to its current
parent. Details are in Section 3.2.1.

— Each node having two or more children tries to resolve this situation, by suggesting children to
connect to one of its siblings.

When a node receives an instruction to participate in a replication, each node checks how much data it
has (line 2), searches for a candidate node that has data grater than itself by connecting to some nodes in
its neighbors list. Variable offset indicates the size of data at that time, and satisfies the inequality 0 <
offset < filesize. During data transfer, the invariant child’s offset < parent’s offset is maintained (line 25, 33,
and 48).

A node searching for a parent sends an ask message carrying its offset (data size) to a candidate (line 11 13).
If the receiver has more data than the sender, it sends an ok message to the node sender (line 24 28, 32 35).
At that time, the relation between parent-child is established. After that, the child sends a giveme message to
the parent (line 43—-46) and the parent sends a chunk of data to the child (line 47-51). This repeats until the
child either catches up the parent in data size (line 52-54), finds a better candidate than the current parent, or
receives an error. If the receiver of ask does not have more data than the sender, it sends an answer ng (line
29 31) to the sender. Receiving an ng message (line 36 41), the node continues to search for a parent.

A node can be a parent of some nodes and a child of another at the same time. In effect, we achieve a pipeline
transfer through all nodes.

When a parent becomes unreachable from its child (due to a parent crash or a network failure), the child
merely searches for a new parent. When a node recovers, it can participate in the transfer from the offset at
the time it has failed. Hence, this algorithm is fault-tolerant (line 74 80).

3.2. Adaptive Transfer Route Optimization. Now, we explain optimizing heuristics on top of the
base algorithm (line 14 23, 67 73).

\ is_closer(A,B,C) \

® o © par ent

par e@\candi date > /

F1a. 3.2. NearParent Operation

3.2.1. NearParent Heuristics. Each node periodically tries to connect to a node that is closer to its
current parent (candidate in Figure 3.2, line 15-18 in Figure 3.1). If the candidate node turns out to have more
data than the local node (line 32-35), it selects the new node as the new parent. Figure 3.2 shows how this
heuristics modifies a part of the transfer tree.

74 Takashi Hoshino, Kenjiro Taura, Takashi Chikayama

Note that even if each node has connected to its parent, it searches for an even closer candidate periodically.
We have not conducted an extensive study about the best frequency. Frequent measurements will allow us to
find a good transfer route fast at the cost of increased network traffic. Our current implementation guarantees
that there is at most one traffic from each node for the measurement. It also guarantees each node performs a
measurement at most once every 100ms. This will hardly affects CPU or network load.

The predicate to judge if a node B is closer than C from the local node A4, is_closer(A, B, C), currently uses
the following criteria in the listed order.

Throughput observed in the past: Each node records throughput from each of the nodes that have been
chosen as its parent. If A has chosen both B and C' as its parent before, whichever produced a better
throughput is considered closer.

Observed latency: The above criterion is not applicable when either B or C has never been chosen one as
A’s parent. In this case A uses latencies it takes to connect to B and C.

The length of the matching IP address prefix: When observed latencies are too close to discriminate, we
use IP addresses of A, B, and C. We compare the lengths of the common prefixes of IP addresses of A
and B to that of A and C.

For the purpose of proving the theoretical property of the algorithm mentioned in Section 3.3 (also stated as

Theorem 3.7), is_closer can be any predicate that satisfies the following properties.

e is closer(4, B,C) and is_closer(A, C, B) do not become true at the same time.
e For a given A, the binary relation:
Ra(B,C) def is_closer(4, B,C)
is transitive. That is,

is_closer(A, B,C) Ais_closer(A,C, D)
= is_closer(A, B, D)

e is closer(4, B,C) =is_closer(B, A, C)
It will be clear that any reasonable definition of relative distance and an accurate measurement of it, including
the ones listed above, will satisfy the first two bullets. The third property may not sound very obvious. Examples
that satisfy the property include:
e A definition based on the bottleneck edge on trees. That is, assume nodes are connected via a weighted
tree and let is_ closer(A, B, C) be true iff the minimum weight on the path between A and B is larger
than that on the path between A and C.
e A definition based on the distance on trees. That is, assume nodes are connected via a tree and let
is_closer(A, B,C) be true iff the path between A and B is shorter than A and C.
e A definition based on address prefixes. That is, assume nodes are assigned integer addresses and let
is closer(A, B, (') be true iff the length of the matching address prefix between A and B is larger than
that between A and C.

Therefore we expect that our current implementation of is_closer based on measured bandwidths between
nodes, measured latencies between nodes, and the length of IP address prefixes, will satisfy the third property
provided measurements are accurate.

Note that implementing such a predicate does not require any a priori notion of groups. Just defining/mea-
suring the relative closeness between nodes will suffice, as long as such a definition/measurement satisfies the
above properties. In Section 2.2, we show such a predicate in general implicitly induces a distance between
nodes, which in turn induces a decomposition of nodes based on the distance. Our algorithm reduces the
number of inter-group edges for a decomposition derived this way.

3.2.2. Tree2List Heuristics. NearParent heuristics reduces the number of edges that cross group bound-
aries. It however is not useful for reducing the number of branches. Another optimization, called Tree2List
heuristics, comes into play to make the transfer route closer to a list.

A node that has two or more children sends its children list to every child (line 68 71). When a node receives a
suggestion message, which effectively contains its current siblings, it chooses one in the list as the next candidate
if the current parent is not closer to it (lines 72-73, 20-23). Figure 3.3 shows how Tree2List heuristics modifies
a part of the transfer tree. Intuitively, Tree2List pushes branches in a transfer tree downwards, hoping the tree
eventually becomes a list.

An Adaptive File Distribution Algorithm for Wide Area Network 75

lis closer(C,A,B)

T i ", Sub ™
~"Sub __.-‘Sub “, o Tree

Fia. 3.3. Tree2List Operation

An important property about Tree2List, proved in the next section, is that it never increases the number of
inter-group edges. This guarantees that applying Tree2List does not impede the NearParent’s effort of reducing
the number of inter-group edges. In the next section, we state and prove properties of transfer forests after
applying both heuristics in an arbitrary order.

3.3. Properties of the Route Optimization Algorithm. Let is_closer satisfy the properties stated
in Section 3.2.1. We first show the following, that says is closer(A, B, C) is equivalent to comparing a distance
between A and B and between A and C, for some definition of a distance.

LEMMA 3.1. Foris_closer satisfying the property stated in Section 3.2.1, there exists a distance function d
that satisfies the following.
e For all nodes A and B, d(A,B) = d(B, A).
e For all nodes A, B, and C,

is closer(4, B,C) < d(A,B) < d(A,QC).

Proof: See Appendix A.1.

The following Lemma is important for guaranteeing Tree2List is applicable when we have many branches.

LeEMMA 3.2. For any d satisfying the condition in Lemma 3.1,

max(d(4, B),d(A,C)) > d(B,C)
is true for all nodes A, B, and C. Proof: See Appendix A.2.

A distance function d and a threshold ¢ define a natural decomposition of a graph. That is, we remove all
edges (x,y) such that d(z,y) > t from the original graph, and let a group be a connected component of the
graph. We call such a decomposition is derived from is_closer. Many decompositions can be derived from a
single definition of is_ closer, depending on the choice of d and t.

We model our route optimization heuristics as a process of rewriting the transfer forest according to Near-
Parent, Tree2List, or finishing the transfer to a node.

DEFINITION 3.3. A state of computation is a forest among participating nodes, induced by their parent
pointers. Let S and S’ be states. We define relations —,,, —, —, and — by:

d
1. §$—, 95 <éf> S’ is obtained by applying NearParent to S (Figure 3.2),

d
2.8 —, 5 <:ef> S’ is obtained by applying Tree2List to S (Figure 3.3),

def

e
3.8 —; 8 < 9 is obtained by finishing a node and making its parent pointer null, and

de
4. — :f—>nU —+ U —¢. That is,

d
S — 5 <:ef> (S —=nS") or (S—¢ 8" or (S—y 5.

Next, we define some quantities of states. Below, we fix a decomposition D derived by is closer, and let D
be the coarsest subdivision of D. Let d and ¢ the distance function and the threshold that induced D. Let N
be the number of groups in D. When we say a group, it always means a group of D. Nodes in a single group
by definition form a clique.

76 Takashi Hoshino, Kenjiro Taura, Takashi Chikayama

DEFINITION 3.4.

e Let w(S) be the number of edges in forest S that cross group boundaries. For technical convenience, we
consider an invalid parent pointer to cross a group boundary, and a null parent pointer not to cross
any group boundary.

o Let f(S) be the number of finished nodes (having parent = null) and F(S) be the number of groups
that have at least one finished node. We say such a group is finished. Note there may be unfinished
nodes in a finished group.

e Let I(S) be the number of leaves (i.e., nodes that are not pointed to by any parent pointer).

LemMA 3.5. Transition paths are bounded. That is, the length of a path Sg — S1 — Sy — -+ is bounded.
Proof: Define SUMDIST(S), SUMDEPTH(S), and Q(S) as follows.

SUMDIST(S) =3, . node d(x,2’s parent),
SUMDEPTH(S) =3 . 1ode depth(z),and
Q(S) = (f(S),—SUMDIST(S), SUMDEPTH(S)),

where depth(x) is the number of hops from the root of the tree x belongs to. d(z,z’s parent) is the distance
between x and its parent. Again for technical convenience, if z’s parent pointer is invalid we consider it has
a value larger than any other d(y, z) for z # invalid. Similarly, if 2’s parent is null, it takes a value smaller
than any other d(y, z) for z # null.

If we introduce a lexicographical order among triples Q(S), it is easy to see Q(S) strictly increases by a single
transition step. That is,

S — 8 = Q(S) < Q).

In fact, — increases f(S), —, does not change f(S) and increases —SUMDIST(S), and —; does not change
f(S), never decreases —SUMDIST(S), and increases SUMDEPTH(S).
Since all quantities of the triples are clearly bounded above, we have proved transition paths are bounded. 5
LeMMA 3.6.
1. If S satisfies w(S) > N — F(S), then —,, is applicable to S. That is, there exists S' such that S —, S'.
2. If S satisfies 1(S) — f(S) > N, f(S) > 1, and —,, is not applicable to S, then — is applicable to S.
Proof:
1. If w(S) > N — F(S) (= the number of unfinished groups), either of the following must hold.
e There is an unfinished group having more than one outgoing inter-group edges.
e There is a finished group having an outgoing inter-group inter-group edge.
An outgoing edge is a parent pointer pointing to a node outside the group. In the former case, let two
of such edges be (4, B) and (C, D). A and C belong to one group, say X, while neither B nor D belong
to X. Thus, a transition by —,, that either makes A one of C’s children or vice versa, is applicable. In
the latter case, let one such edge be (A4, B) and one finished node in the group be P. Thus, a transition
by —, that makes A one of P’s children is applicable.
2. We split the proof into two cases, (i) I(S) — f(S) > N, and (ii) I(S) — f(S) = N.
(i) () - (S) > N:
We have at least one group X that satisfies:

I—f>1

where [and f denote the number of leaves in X and the number of finished nodes in X, respectively.
Let a1,a2, - Q be the leaves in X (l Z 2) Let a; 1 = a; and 61 = (aiyl,ﬁiﬁg, cee ,aiym) (’L = 1, ce ,l) be
chains of parent pointers starting from a;. That is, a; ; is a child of a; j41) for all ¢ and j (1 <37 </,
1<j<n;—1).

We argue by contradiction that all but one of such chains must be entirely in X. Let us assume w.o.l.g.
neither of @; nor @ are in X. Then there are j and k (1 < j <n; —1and 1 <k <ng — 1) such that
ai,; and az; € X, and aq j+1 and ag k1 € X. Then a transition by —,, that connects a1 ; and ag
should be applicable. This contradicts the assumption that —,, is not applicable in S.

Now we have [— 1 chains entirely in X. Since [— f > 2 (=1—12> f+ 1), at least two of them must
merge at some node in X. Let a node at which two merges be A, and B and C the children of A on the

An Adaptive File Distribution Algorithm for Wide Area Network 77

two chains. It remains to show we have either (—is_closer(B, A, C)) or (—is_ closer(C, A, B)), so either
B or C can trigger —;. By Lemma 3.2, we have

max(d(A, B),d(A,C)) > d(B, (),

from which we can derive:

max(d(4, B),d(A,C)) > d(B,C)

& d(A,B) > d(B,) or d(A,C) > d(B,C)
< d(B,A) >d(B,C) or d(C,A) > d(C, B)
= ﬁlsicloser(,A,C) or —is_ closer(C, A, B).

(i) () — /(S) = N:

If we have one group X that satisfies:
l—f>1,

then the same discussion as (i) applies. In the remaining case all the groups satisfy:
l—f=1

Let X be any group. As in (i), consider the [chains starting from a node in X. If all the [chains are
entirely in X, two of them must merge in X, and the following argument is the same as (i). Therefore
each group has exactly one chain outgoing from the group. Then we have N inter-group edges, i.e.,

w(S) > N. This implies, however, —,, is applicable because f(S) > 1 = F(S) > 1= w(S) > N >
N — F(S).

O

THEOREM 3.7. Along any path of state transitions starting from any state I, we reach within finite steps a
state Seo satisfying:
1. w(Ss) £ N — F(S4), and
2. 1(Se) — f(S00) < N — 1.
Proof: From Lemma 3.5, any transition path I = Sy — S; — --- is bounded, therefore reaches a state S
in which neither —,, nor —; (or —, for that matter) is applicable. Lemma 3.6 shows in this state we have both
of the above properties.

Remark 1:. As a special case where D = D (i.e., no edges are blocked inside a group of D), we have N = N.
In this case the theorem implies that, for sufficiently long transfers, the number of edges between groups reaches
the optimal N — F(S). Replicating a file from F(S) groups to the rest will clearly need N — F(S) inter-group
edges. For being close to a list, the second bullet of the theorem implies that the number of branches, effectively
calculated by I(S)— f(.9), is the optimal N —1. To see this is optimal in general, consider a network configuration
shown in Figure 3.4, which forces inter-group edges to form a star.

Remark 2:. Recall that the theorem applies to any decomposition derived from is_closer. If the network has
multiple levels of hierarchies, (e.g., inside a cluster, clusters inside a LAN, LANs in a campus/corporate area,
and LANs in wide area), and is_ closer can descriminate all of them, our algorithm simultaneously optimizes
all the levels. For example, let us say we have N; LANs and Ny clusters and f(S) = 1 as the usual case.
If we assume is_closer can descriminate intra-cluster, inter-cluster but intra-LAN, and inter-LAN edges, and
the network configuration allows all connections, our algorithm converges to a state in which we have Ny — 1
inter-LAN edges and Ny — 1 inter-cluster edges.

4. Evaluation.

4.1. Implementation. We have implemented the described algorithm in Java. This is executable on
common computers supporting Java and TCP /IPv4 protocol. We confirmed the program runs on Solaris (sparc),
Linux (x86), Windows (x86), and Tru64Unix (Alpha). Stopping some nodes in the middle of a distribution task
did not prevent any of the remaining nodes from finishing the task, confirming its fault-tolerance.

78 Takashi Hoshino, Kenjiro Taura, Takashi Chikayama

. Fi ni shed Node (and only it can be connected to by other’s group.)
O Leaf Node

G oup
— Data Fl ow

Fia. 3.4. An ezample where the optimal value of I(S) — f(S) is N —1

4.2. Single Cluster Experiments. First, we ran some experiments in a single cluster. The cluster
consists of 16 nodes. Each node has two Alpha CPUs and a local hard-disk. Network cables of nodes are
connected to a 100Mbps switch. Local disk bandwidth is faster than network, so it does not reveal as a
bottleneck. CPU is also fast enough.

We initially let one node have 500MB file, and others have no data. Since there is only a single cluster,
NearParent optimization does not play any role in this experiment. So this experiment is to see the effect
of Tree2List. In addition to Tree2List, we ran the base algorithm without any optimization, changing the
maximum number of children each node can serve, from one to five. They clearly demonstrate how important
is it to make the transfer tree close to a list.

The time which the distribution tasks spent is shown in Figure 4.1.

In this result, it is clear that the average distribution time increases as the maximum number of children
increases. The graph also indicates that, in this particular experiment, limiting the number of children to one
yields the best result. That is, restricting the shape of the transfer tree to a list in the first place is better than
our Tree2List strategy which first forms an arbitrary tree and then tries to develop it to a list. We believe,
however, our strategy has several advantages. First, nodes may not be able to form a list in the presence of
firewalls etc. In such cases, one must fall back to a tree. Second, forming a list in the beginning may take much
longer than forming a tree, especially when the number of nodes becomes large, since a list can only grow one
node at a time.

4.3. Multiple Cluster Experiments. Next, we made experiments in seven clusters illustrated in Fig-
ure 4.2. They are all placed in the campus of University of Tokyo.

e An IBM Linux cluster called “istbs” contains 70 nodes. We used all of them for the experiment. Nodes
within a cluster are connected via 1Gbps links. A node in this cluster is the source node in this
experiment. Bandwidth from/to other clusters below is poor 100Mbps.

e A SunFirel5K SMP called “istsun” has 70 CPUs, of which we used 20. We used this machine as if it
were 20 separate nodes. It has a 100Mbps NIC shared by all CPUs. Replication of 300MB data among
20 nodes inside istsun takes about 70 sec, where the throughput is about 34Mbps. This seems due to
disk I/O bandwidth.

An Adaptive File Distribution Algorithm for Wide Area Network 79

Plot of Experiments changing Children Limit in One Cluster

N
al
o

N
o
o

T
|
|
|
|
|
I
|
|
|
|
|
|
|
|

1

[E—

150

[-

100 3

et

[E—

Time to Distribute 500MB (sec)
g
o

0
tree2list children children children children children
limit 1 limit 2 limit 3 limit 4 limit 5
Kinds of Making Transfer Tree

Fic. 4.1. Performance in a single cluster

A cluster of clusters called “kototoi” contains three cluster each having 16 nodes. Network speed is

100Mbps inside each cluster. Throughput between two of the three is several hundreds Mbps. Having

more than one connection to a single cluster easily saturates the link. No nodes outside kototoi cannot
directly connect to inside it.

e An HP Alpha cluster called “oxen” contains 16 nodes, which is the same cluster in Section 4.2. There
are two (and only two) gateway nodes that can connect to and can be connected from outside the
cluster.

e A Linux cluster called “marten” each of which runs Linux inside VMWare. Its configuration is almost
the same as a cluster in kototoi.

e For connectivity, any node can connect to istsun nodes and the gateways of oxen. Also, istsun and
istbs are in the same virtual LAN, so nodes in the two clusters can directly connect to each other.
Connections to remaining nodes from other clusters are blocked.

We compared the following algorithms.

Random tree: The base algorithm without any heuristics, with no limit on the number of children for each
node.

NearParent only: The base algorithm + NearParent. No Tree2List.

Tree2List only: The base algorithm + Tree2List. No NearParent.

NearParent + Tree2List: Use both Tree2List and NearParent.

Manual: Fix the transfer route that we consider will be the best, as follows; istbs connects to istsun via one
inter-cluster edge. It is branched into three inside istsun. They go to kototoi, oxen, and marten. Inside
clusters, there are no branches. The throughput should be close to 100Mbps / 3 — 33Mbps, determined
by the three outgoing edges from istsun, which share a single 100Mbps NIC.

In Figure 4.3, the results are presented. Not surprisingly, “Manual” is the fastest. NearParent + Tree2List
achieved an overhead of 50-100% to the manually tuned transfer and more than four times faster than the
random tree.

Figure 4.4 shows that the number of inter-cluster edges and distribution time have a strong correlation.

This result confirms that reducing inter-cluster (and inter-subnet) edges strongly affects performance of
replication among many nodes.

80 Takashi Hoshino, Kenjiro Taura, Takashi Chikayama

oxen 16 nodes

marten 14 nodes

kot ot oi 16x3 nodes

i stbs 70 nodes

Max 100Mops Data Route

Fic. 4.2. Condition of 7 clusters

5. Related Work.

5.1. Minimum Spanning Tree Construction. MST construction is a commonly used technique for
optimizing flows in networks. There have been a number of published algorithms and their applications [2, 6, 1].
It is compelling to model our problem by a general weighted graph, with the goal being a tree that has a small
weight and a small number of branches.

We considered approaches along this line and then abandoned them for several reasons. First, from theoretical
point of view, minimizing the two criteria at the same time is impossible for general weighted graphs, so we must
make a difficult (and somewhat arbitrary) decision about how to trade one for the other. From the practical side,
building an MST for general weighted graph in fault-tolerant and self-stabilizing manner is already complex to
implement. Finally, typical real networks have a relatively simple structure we can (and should) exploit. That
is, nodes close to each other in terms of physical proximity can logically connect to each other at some level
and below. Therefore these nodes should be able to form a list entirely within the clique. We have shown this
is in fact possible with a very simple hill-climbing with fault-tolerance and adaptiveness.

5.2. Application-Level Multicast and CDN. Our work is in spirit similar to a number of work on
application-level multicast and content distribution networks (CDN). Our optimization criteria are different
from them, particularly in that we try to reduce the number of branches.

ALMI [9] uses a centralized tree management scheme and makes MST for good performance. End System
Multicast [7] takes both latency and bandwidth into account when making a tree of end-hosts. In [12], CAN [11]
is used for the infrastructure of multicast. Bayeux [15] uses Tapestry [14] that is also content-addressable
network. Overcast [8] is a multicasting system that achieves both small latencies and high throughput. The
main application of these systems is multimedia streaming to widely distributed nodes. In such settings, it is
important to bound latencies because the application may be an interactive multimedia application. Also in
CDNs, the main criteria are latencies and traffic load balancing, rather than delivering as much bandwidth
as possible. So researches about CDN such [10, 4, 3] mainly concern how to allocate replicas of contents,
and how to redirect user requests to appropriate replicas. On the other hand, it is less important for such
applications to squeeze the available bandwidth of local area networks, because there are typically a small
number of participating nodes within each network. In contrast, our file replication does not have to optimize

An Adaptive File Distribution Algorithm for Wide Area Network 81

Plot of Experiments using Verious Transfer Tree on 7 Clusters

1600 =
© 1400 | |
= |
g 1200
S 1000 | |
= |
g
5 800
2 : i
- ! |
@ 600 | |
@] i i
2 400 1 i
£ J W
£ 200 : B
l_ =
O - -
random nearparent tree2list nearparent ideal
tree only only tree2list fixed tree
Kinds of Making Transfer Tree
Fia. 4.3. Performance on 7 clusters
Edges Crossing over Clusters and Time to Distribute
1600 T T T T T T T T T
1400 4
+
+
o 1200 B
p 1000 . 4
=
8
o 800 - B
2 +
8 600 . i
2
o +
E a0t oot -
.
r *:; i £
200 | " * e
o 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

Number of Inter-cluster Edges

Fia. 4.4. Correlation between number of inter-cluster edges and distribution time

latencies aggressively, because the first priority is on the completion time of transferring large files. It is also
very important to utilize LAN bandwidth as much as possible, as the typical usage will be to copy large files
to many nodes in clusters. These differences lead them to different optimization criteria, with ours including a
unique Tree2List heuristics.

82 Takashi Hoshino, Kenjiro Taura, Takashi Chikayama

6. Summary and Future Work. We have described a large file distribution algorithm that realizes
scalability, adaptiveness, fault-tolerance, and efficient use of bandwidths. It is based on a simple distributed
algorithm with simple local heuristics to optimize transfers. We formalized and proved the properties of our
algorithm and argued that this gives a good result in practical settings. Our system will be useful for setting
up a number of clusters and preparing wide-area distributed computations with a large data. Evaluations
show that our implementation is effective in real environment consisting of over 150 nodes across seven clusters
campus-wide.

Our current implementation of the protocol is not secure. Any malicious node can participate in the replica-
tion and breaks the integrity. To be a useful tool for distributed computing, we must use a suitable authentication
when nodes connect to each other. While introducing secure authentications is possible, this may increase the
cost of deploying such tools, whose very purpose will be to help maintain a large number of nodes easily. We
must study how to maintain ease of installation and use of this tool while achieving a reasonable level of security.

REFERENCES

[1] Abhishek Agrawal and Henri Casanova. Clustering Hosts in P2P and Global Computing Platforms. In Proceedings of the 3rd
IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2003), pages 367 373, 2003.

[2] F. Bauer and A. Varma. Distributed Algorithms for Multicast Path Setup in Data Networks. Technical Report UCSC-CRL-
95-10, University of California at Santa Cruz, August 1995.

[3] A. Biliris, C. Cranor, F. Douglis, M. Rabinovich, S. Sibal, O. Spatscheck, and W. Sturm. CDN brokering. In Proceedings of
WCW?’01, June 2001.

[4] Pei Cao and Sandy Irani. Cost-aware WWW proxy caching algorithms. In Proceedings of the 1997 Useniz Symposium on
Internet Technologies and Systems (USITS-97), Monterey, CA, 1997.

[5] CVS home. http://www.cvshome.org/.

[6] Lisa Higham and Zhiying Liang. Self-Stabilizing Minimum Spanning Tree Construction on Message-Passing Networks. In
Proceedings of the 15th Conf. on Distributed Computing, DISC, LNCS 2180, pages 194 208, 2001.

[7] Yang hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. Enabling Conferencing Applications on the Internet Using
an Overlay Multicast Architecture. In ACM SIGCOMM 2001, San Diago, CA, August 2001. ACM.

[8] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek, and James W. O’Toole, Jr. Overcast: Reliable
Multicasting with an Overlay Network. In Proceedings of the Fourth Symposium on Operating System Design and
Implementation (OSDI), pages 197212, October 2000.

[9] Dimitris Pendarakis, Sherlia Shi, Dinesh Verma, and Marcel Waldvogel. ALMI: An Application Level Multicast Infrastructure.
In Proceedings of the 3rd USNIX Symposium on Internet Technologies and Systems (USITS ’01), pages 49 60, San
Francisco, CA, USA, March 2001.

[10] Lili Qiu, Venkata N. Padmanabhan, and Geoffrey M. Voelker. On the placement of web server replicas. In INFOCOM, pages
1587-1596, 2001.

[11] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker. A scalable content-addressable net-
work. In Proceedings of the 2001 conference on applications, technologies, architectures, and protocols for computer
communications (SIGCOMM 2001), pages 161 172. ACM Press, August 2001.

[12] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker. Application-Level Multicast Using Content- Addressable
Networks. Lecture Notes in Computer Science, 2233, 2001.

[13] Yasuhito Takamiya, Atsushi Manabe, and Satoshi Matsuoka. Lucie: A fast installation and administration tool for large-scaled
clusters (in Japanese). In SACSIS 2003, pages 365-372, May 2003.

[14] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An Infrastructure for Fault-tolerant Wide-area Location and
Routing. Technical Report UCB/CSD-01-1141, UC Berkeley, April 2001.

[15] Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, and John D. Kubiatowicz. Bayeux: An Architecture
for Scalable and Fault-tolerant Wide-area Data Dissemination. In Proceedings of the Eleventh International Workshop
on Network and Operating System Support for Digital Audio and Video (NOSSDAV 2001), June 2001.

Appendix A. Omitted Proofs. In this section we abbreviate is_closer to C.

A.1. Lemma 3.1. Let V be the set of all nodes. We introduce an unknown x4 for each A, B € V. For
each triple (A, B, C) such that C(A, B,C) is true, we generate a constraint zap < xac. We then unify z4p
and zpa for all A, B € V| replacing all occurrence of one with the other. We are going to show there are no
loops of constraints xa4p < xop < --- < Tap, thus the constraints are satisfiable. When we have proved this,
we let d(A,B) = xap, forall AABeV.

To begin with, we show the following:

A < - < Tyyz
= C(A,B,Z) or C(A,B,Y),

by induction on the length (the number of inequalities) of the lefthand side n.

An Adaptive File Distribution Algorithm for Wide Area Network 83

1. n=1:
Observe we must have A=Y, A= 272, B=Y, or B = Z since this constraint was generated from C.
When A=Y, zap <xyz = zaB < zaz = C(A, B,Z). Other cases are similar.

2. Assume the claim holds up to n — 1 and now we have

TAB < Top < - < ZXyygy

of length n. By induction hypothesis, we either have:
(a) C(C,D,Z), or
(b) C(C,D,Y).

By zap < xcp, we either have:

(i) A=C and C(A4, B, D),

A= D and C(4,B,(C),

iii) B=C and C(4, B, D), or

)
(11)
(iv) B=D and C(4A, B,(C).
Sinc
)

ince (a) and (b) are similar we only prove the case (a) by analyzing the four cases (i) (iv).
(i) C(A,B,D) and C(A, D, Z)
= C(A,B,2)
(ii) C(A,B,C) and C(C, A, Z)
= C(A,B,C) and C(A,C, Z)
= C(A,B, 7).
(ili) C(A, B, D) and C(B, D, Z)
= C(B,A,D) and C(B, D, Z)
=C(B,A,Z)= (A,B,2).
(iv) C(A,B,C) and C(C, B, Z)
= C(B,A,C) and C(B,C, Z)
= C(B,A,Z)= (A,B,2).
Now we prove by contradiction there are no loops:

TAB < -+ < Tyz < TAB-

By the above induction, we either have:
(a) C(A, B, Z) or,
(b) C(A,B,Y).
By zyz < xap, we either have:
(i) Y =Aand C(4, Z, B),
(ii) Y =B and C(B, Z, A),
(iii) Z= A and C(A,Y,B), or
(iv) Z =B and C(B,Y, A).
We see combining any of (a) (b) and any of (i) (iv) will lead to contradiction. We only prove case (a) since (b)
is similar.
(i) C(A,B,Z) and C(A, Z, B)
= false.
(ii) C(A,B,Z) and C(B, Z, A)
= C(B,A,Z) and C(B, Z, A)
= false.
(i) C(A,B,Z) and Z = A = false.
(iv) Same as (iii).

A.2. Lemma 3.2. Analyze the three cases, (i) d(4,C) < d(A,B), (ii) d(4,B) < d(A,C), and (iii)
d(A, B) = d(A, C). Prove each case by contradiction.
(i) Let us assume d(A,C) < d(A, B) < d(B,C). Then,
d(A,C) < d(A, B) and d(A, B) < d(B,C)
= d(A,C) < d(A,B) and d(B, A) < d(B,C)
= C(A,C,B) and C(B, A,C)
= C(A,C,B) and C(4, B,C)
= false.

84 Takashi Hoshino, Kenjiro Taura, Takashi Chikayama

(ii) Similar to (i).

(iii) Let us assume d(4, B) = d(A,C) < d(B,C). Then,
d(A,B) =d(A,C) and d(A,C) < d(B,C)
= d(A,B) =d(A,C) and d(C, A) < d(C, B)
= d(A, B) = d(A,C) and C(C, A, B)
= d(A, B) = d(A,C) and C(A, C, B)
= d(A,C) = d(A, B) and d(A, C) < d(A, B)
= false.

Edited by: Wilson Rivera, Jaime Seguel.
Received: July 3, 2003.
Accepted: September 1, 2003.

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 6, Number 3, pp. 85-94. http://www.scpe.org © 2005 SWPS

0,..

NETWORK SCHEDULING FOR COMPUTATIONAL GRID ENVIRONMENTS

MARTIN SWANY* AND RICH WOLSKIT

Abstract.

The problem of data movement is central to distributed computing paradigms like the Grid. While often overlooked, the time
to stage data and binaries can be a significant contributor to the wall-clock program execution time in current Grid environments.

This paper describes a simple scheduler for network data movement in Grid systems that can adaptively determine data
distribution schedules at runtime on the basis of Network Weather Service (NWS) performance predictions. These schedules take
the form of “spanning trees.” The distribution mechanism is an enhancement to the Logistical Session Layer (LSL), a system for
optimizing data transfers using “logistics.”

Key words.
Grid computing, data logistics, data staging

1. Introduction. As Computational Grid environments proliferate, the community must constantly evolve
the way in which computing systems are used. Distributed computing on the Grid has enabled new ways of
harnessing computing resources and yet, has exposed its own set of challenges. One such problem is that of data
movement. Applications that are drawn to the Grid because of large resource requirements frequently consume or
generate large amounts of data. The problems of data locality and data movement are becoming more prominent
and critical to the performance and deployability of Grid systems. Further, due to the dynamism inherent in Grid
environments, it is clear that mechanisms for data staging must be adaptive like the computations themselves.

AppLeS [8] demonstrated the beginning of a new way of thinking about programming the Grid scheduling
from the perspective of the application. In this spirit, we propose to approach the problem of adaptively
scheduling buffers in the network with proactive support from the application. This paper examines simple
optimizations that we can facilitate by thinking of Grid resources in terms of cooperating elements in a storage
and computing “overlay” network. By enabling this type of functionality, using techniques such as the Logistical
Session Layer (LSL) [34] or the Internet Backplane Protocol (IBP) [28], the breadth of the services offered by
a Grid is improved.

The goal of this work is to investigate scheduling and routing techniques focused on optimizing data move-
ment in Grid environments. In order to investigate such scheduling we will draw on previous work as follows. The
Logistical Session Layer (LSL) [34] provides the basic platform for cooperative data forwarding that responds to
requests from the scheduler. The Network Weather Service (NWS) [43] provides us with network performance
monitoring and forecasting capabilities. Finally, the NWSlapd [37], the caching and delivery subsystem of the
NWS, caches network performance forecasts and aggregates them into a form suitable for consumption by the
scheduler.

There has been a tremendous amount of work in this community to optimize collective operations for parallel
computing [4, 27, 24, 5, 18, 39, 20, 40]. Certainly, these approaches are all related at some fundamental level
(and discussed somewhat in Section 6). However, our approach is focused on pre-runtime data distribution (or
staging) rather than collective operations as such. Initial data distribution is an important component of actual
Grid deployment. This fact is often obscured by pre-staged binaries or locally-generated random input data,
but for Grid systems to realize their potential, these issues must be addressed.

Our approach to this problem is unique in a number of key ways:

e It treats Grid resources as a graph with edge values derived from current network performance forecasts

e It adaptively builds distribution trees for arbitrary topologies by creating a schedule based on the
Minimum Spanning Tree (MST) over that graph

e Cooperative forwarding among peers is accomplished with the Logistical Session Layer (LSL), which
uses cascaded TCP connections.

Grid environments are extremely dynamic. Network performance depends on ambient load. To best adapt
our execution at runtime, forecasts based on current performance information are necessary. Distribution trees
based on this information will often vary wildly in shape. We need an extremely general tree construction
mechanism to accommodate the diversity of Grid systems. Finally, as we use LSL for our distribution platform,

*Department of Computer and Information Sciences, University of Delaware, Newark, DE, 19716 (swanyQcis.udel.edu).
TDepartment of Computer Science, University of California, Santa Barbara, CA, 93106 (rich@cs.ucsb.edu).

85

86 Martin Swany and Rich Wolski

we get the benefits of performance-enhancing buffering in the network, and the reliability and deployability of
TCP.

In this paper we will first describe the assumptions in our approach to scheduling. Next, we will describe
a simple scheduling approach, based on spanning tree, that is general enough to address our needs. Finally, we
describe the enhancements to LSL necessary to implement a schedulable distribution mechanism and evaluate
the performance improvements that even simple scheduling can afford in this space.

2. Problem. The general problem that this work addresses is that of the “logistics” of data movement in
Computational Grid environments. In fact, the logistics of data movement are the main reason why computing
“power” is not a fungible resource like electrical power. Users need computations to be performed on specific
bits of data, whereas electricity can be consumed regardless of the location or means of its generation. The
problems of data locality and movement are universal and are a critical consideration in Grid systems.

There has been much recent work considering cooperative data sharing between networked peers [30, 33, 6,
28, 22]. These cooperative approaches have had impact in both the parallel processing and network computing
domains. In this spirit, we consider an environment in which Grid resources are enabled to utilize and provide
cooperation of this sort. Our goal is to consider scheduling these resources and examine potential performance
optimizations that might emerge. This work builds on the ideas of “Logistical” [34, 6, 28|, “overlay” [3, 38, 17]
and “peer-to-peer” [30, 33, 22, 44| networking to treat the problems of communication in Grid systems in a novel
manner.

The GrADS [7] project is a large, multi-institution project whose goal is to investigate comprehensive
software environments for developing Grid applications. As such, the GrADS environment is focused on program
development and compilation as well as runtime Grid support. Before execution, a Configurable Object Program
is prepared by the compilation systems. When the program is to be launched, the Scheduler /Service Negotiator
(S/SN) interacts with a variety of runtime services provided by the Grid fabric and discovers the “state” of the
Grid at that time. The S/SN uses this state information to make decisions about program configuration and
scheduling. In particular, the system requires current short-term forecasts of resource performance levels so
that it can make proactive scheduling decisions. The NWS generates such forecasts automatically, but to be
useful, they have to be delivered to the S/SN (through the Globus [13] infrastructure) quickly and reliably.

Considering the problem of initial data distribution, our assumptions can be captured by the following
scenario. Let us imagine that a user is launching a program in a Grid environment such as the GrADS [7]
project’s testbed. In the GrADS architecture, the Configurable Object Program, or COP, is distributed by the
Application Manager in the first phases of execution. This is not, of course, unique to GrADS. In many Grid
paradigms a user has a set of program executables that need to be distributed to the resources before execution
can begin.

In other Grid usage models, end-users utilize resources through previously existing software infrastructure.
This software exports services through application interfaces using remote procedure calls, or RPC. NetSolve [11]
is an example of such a system. The problem that these systems face is similar to the program distribution
problem in that some amount of data must often be sent from the user to Grid resources prior to the beginning
of any meaningful execution. This problem is strongly related in that it concerns initial data distribution and
thus, it can be modeled similarly.

These problems are equivalent to some degree in that either prior to runtime or during an initial phase of
runtime, some data has to be sent to the each computational node before any real application progress can be
made. Often, we choose to abstract this problem away with file-sharing techniques. In fact, network file systems
(e.g. NFS) can be used within a single site so that we only need to transfer once to nodes that share files this
way, but there are many cases where systems do not share files in this fashion. Further, NFS can suffer from
poor performance and since data (programs or user data) is to be moved over the network, we prefer to deal
with the associated overhead explicitly. Certainly, there are many situations and scenarios that differ in simple
ways from this basic model, but this captures our assumptions and, in fact, models real Grid systems quite well.

2.1. Problem Modeling. Consider the simple depiction of these data transfers in Figure 2.1. In these
graphs, the value along the edge denotes some cost. In this case it is the time to transfer some amount of data.
Figure 2.2 obviously demonstrates a distribution pattern (or tree) with a lower overall cost.

Further, in Grid environments, resources are often located in groups or clusters, so the potential performance
improvement from such optimizations becomes more obvious. Figure 2.3 illustrates the fact that in many real
cases, a hierarchical distribution scheme can greatly reduce the overall cost of the paths through the network.

Network Scheduling for Computational Grid Environments 87

Fia. 2.2. Less costly distribution tree

This modeling approach allows us to think about the problem of data distribution as a graph and offers
obvious chances for optimization.

3. Scheduling Algorithms. The crux of this work is the observation that by treating the resources of
the Grid as a “network”, we can schedule the cooperation of these resources in the formation of a single-source,
data distribution tree. This schedule can be computed dynamically, based on current performance information.
A distribution tree must be able to direct the data to each node, or “span” the tree.

Consider a directed graph G with vertices and edges: G = (V, E). Each edge has a weight or cost ¢;; for
each (4,j) € E. A spanning tree (T) is a graph with 7' C G such that YV there is a (u,v) € T that is incident
on it (i.e., T spans the set V).

The Minimum Spanning Tree MST(G) = T where }_, e c(u,v) has the minimum cost of all spanning
trees.

A traditional, and provably optimal, approach to the solution of MST is known as Prim’s algorithm [29].
This algorithm uses a greedy approach in the construction of the solution tree. Briefly, the algorithm proceeds
as follows.

To find the MST (T'), we create an empty tree 7" and move the starting node of the tree (vstqr¢) from V to
T:

vstart€T|TﬂG:® (31)

Then, we iterate while |[V| > 0. At each step we examine edges in the “cut” (edges that begin in T and end
in V) and select the minimum cost edge:

min(e) € E' | e(u,v)u € Tandv € V (3.2)

Node v is then moved to T and we examine the newly added node and edge to see if its addition has offered
a better path to nodes already in 7.

While the spanning tree problem is at the heart of this approach to scheduling, there are additional factors
that must be considered in our model. In the previous section, we considered extremely simple graphs. Obviously
for Internet hosts, the time to transmit data to a number of hosts is not linear with the number of hosts. Multiple
outgoing edges interfere with one another they are not independent. In terms of the network, the more streams
there are sharing the resource of outgoing network capacity, the less each stream gets. This could complicate
the model significantly. In fact this problem is very similar to what is known as the “weighted graph minimum-
energy broadcast problem”, which has been shown to be NP-hard [41]. Further work in the same problem

88 Martin Swany and Rich Wolski

Fia. 2.3. A distribution tree for clusters

space [12] shows that the problem remains NP-hard even when realistic bounds are placed on transmission
levels (reducing them to a small fixed set), but gives hope for polynomial-time solutions if a solution exists.

Another potential combinatorial problem arises in our situation as well. The “Steiner Network” is different
from the MST problem in that only a subset S of G must be spanned. This problem has been shown to be
NP-hard [19]. This problem is the heart of the problem of “minimum spanners” [10] again demonstrated to be
NP-complete. However, we note that since the set with which we are concerned is not a subset of G that we
avoid the difficulties associated with these problems.

These previous results treat their realm of discourse to be in “metric space,” meaning that the triangle
inequality holds. Internets are not, in general, in metric space. This makes the problem more tractable initially,
but ultimately complicates the model. In particular, rather than power levels, our spanning-tree problem has
the above described constraint that we can refer to as “lateral inhibition.” The more edges (streams) that are
incident on a node, the less well any of them perform. In the extreme, the interference between streams is
unique for every stream configuration. This combinatorial space implies that the optimal solution for such a
problem is NP-hard. However, we note that this approach is not necessarily concerned with an optimal solution,
rather we wish to empirically determine the efficacy of this general class of solution.

The MST problem is known to be related to many problems in distributed data movement. While we do not
deal with it directly in this work, the minimum cost path and all-pairs minimax problems [2]| provide a basis for
multi-hop forwarding of the sort proposed by LSL [34] and IBP [28]. Parallel streams with diverse paths allow
us to couch routing in terms of maximum flow algorithms. However, utilizing parallel streams between identical
locations, with default paths, only serves to increase the value of a single arc. This would certainly increase the
observed bandwidth, but our treatment of the single-stream case still holds without loss of generality.

4. System Architecture. To deploy and test this scheduler on a Grid system, we rely on various compo-
nents of Grid software. Specifically, this software depends on the Network Weather Service, the NWS’s caching
LDAP delivery system and the Logistical Session Layer.

4.1. Network Weather Service. The Network Weather Service [43, 42] is a system developed to provide
performance monitoring and online performance prediction to Grid schedulers such as ours. Grid environments
are extremely dynamic and in order to manage this dynamism, a scheduler must have near-term performance
predictions upon which to base runtime decisions. The NWS measures, among other things, TCP bandwidth
and latency between hosts in a scalable and unintrusive manner. By applying various non-parametric statistical
techniques on the timeseries produced by these ongoing measurements, the NWS is able to produce forecasts
that greatly improve prediction over naive techniques. Further, these measurements can be combined with past
instrumentation data to produce accurate estimates of bandwidth [36] or transfer time.

An additional component of the NWS, called the NWSlapd [37, 35], provides necessary functionality as
well. First, this system caches performance predictions near querying entities making it possible to scale the
performance information infrastructure and provide ubiquitous forecasts to network-aware schedulers. This part
of the system also assembles measurement information into a network “view” that can be easily and quickly
queried. Note, however, that the NWS does not actually initiate measurements between every pair of hosts (n?2

Network Scheduling for Computational Grid Environments 89

tests.) Rather, the NWSlapd interprets the hierarchy of measurements that the NWS does take and fills in a
complete matrix of forecasts (as described in [35].)

The complete matrix of forecasts provides us with the node-node adjacency matrix representation of our
network. The adjacency matrix is populated by the observed bandwidth (and/or latency) between host i and
host j in the (4, j)th element. Note that the graph that this matrix represents is fully-connected as every host
on the Internet can reach every other host with some bandwidth.! This provides the initial graph G upon which
our scheduler operates.

4.2. Scheduler Implementation. Our initial scheduling approach is simply to describe a spanning tree
for the nodes in our resource pool. To do this, we simply use Prim’s algorithm as described in Section 3.
In order to produce a minimum spanning tree, we need a metric where a smaller value is “better”. Since
we are operating with bandwidth forecasts, we convert the bandwidth estimates “transfer time” estimates by
counsidering 1/bandwidth as the “value” of an edge.

100 H

2

Fic. 4.1. Simple Illustration of Tree Depth

One simple technique that we have implemented allows us to minimize the depth of the spanning tree. Our
goal is to minimize the number of hops that a stream must pass through as each hop adds some amount of
overhead. Consider the graph in Figure 4.1. Strictly speaking, the minimum spanning should include the arc
A — B, and that from B — C. However, it reduces the depth by a level and increases the overall cost of the
tree to span via the arc from A — C.

This has an effect in practice. Due to small variations in measurements through time, machines with
functionally similar connectivity have slightly different forecasts. To keep the trees more simple, we would like
to consider measurements within some € of one another as the same. A perfect choice for this value is the
historical forecasting error from the NWS.

The scheduler performs as expected. When presented with the results of a performance query from NWS
containing information about the GrADS testbed [14], the system was clearly able to discern separate clusters at
the University of Tennessee and University of Illinois and suggest a distribution tree taking that into account.
Figure 4.2 depicts spanning tree produced by the scheduler, and this graph is generated from that output
using GraphViz [15], a graph plotter. The initial set of results (in Section 5) utilize this host pool and similar
distribution schedules.

LIOICICIOICIOIOIOID
CIOICICICICIOMIOIOIOIOIOIOIOIO

Fic. 4.2. Spanning Tree

Note that Figure 4.2 is created automatically. Other than guessing based on the names of the hosts (not
on the domain name), there is no way to discern these clusters at the network level. In some cases, only

3

empirical performance measurements show these relationships, as shown previously by Effective Network Views

1With the exception of hosts behind firewalls. While our techniques are even more natural in those cases, a discussion of that
application beyond the scope of this work.

90 Martin Swany and Rich Wolski

(ENV) [32]. It is interesting to note that we have recovered the structure of the network with our scheduler
technique alone.

Dist Tree

Dist Tree Dist Tree Dist Tree

Dist Tree Dist Tree Dist Tree

Fia. 4.3. Distribution records in a tree

4.3. Logistical Session Layer Data Distribution. The scheduler produces a distribution tree which
is given to the Logistical Session Layer [34] (LSL) to control the data distribution. LSL is a system for coop-
erative forwarding and buffering of network traffic that has been shown to greatly increase end-to-end network
performance. LSL utilizes TCP, so questions of “friendliness” are not an issue and data integrity guarantees are
those of TCP. ? However, LSL endeavors to allow TCP to perform better by keeping the round-trip time on
any sublink to a minimum. This use of TCP also facilitates incremental deployability, yet takes advantage of
improving transport-layer performance.

For this particular experiment, we have implemented a new message option in the LSL stack. Each option
defines a distribution tree including information about the children of that node. The hierarchy of distribution
headers is recursively encoded and decoded so that only the relevant portions of the subtree are transmitted
to downstream neighbors until ultimately, the leaf nodes get a distribution tree with a single entry. Figure 4.3
illustrates this.

The acknowledgment of data receipt at the ultimate destination is implicit with the closing of the TCP
socket. At each LSL node, necessary data is sent out all outgoing sockets and the sending side of each of those
sockets is closed. Each daemon then waits for each downstream neighbor to close its socket, signaling that all
destinations have received the data. At the leaf nodes, the sockets are closed normally once all data is written
to the filesystem. We note that direct notification from destination to source may be more desirable in many
cases and such a modification is straightforward.

Internally, the implementation is not aggressively optimized, and further performance improvements are
certainly possible. There is also no security model at this time. Our technique could easily work over SSH-
encrypted and authenticated tunnels and this is one implementation possibility that we are investigating.

5. Results. To test the efficacy of our system, we have deployed it across the GrADS testbed [14]. This set
of Grid resources ranges from 50 to 100 nodes across the U.S. located primarily at the University of California,
San Diego, the University of Illinois, Champaign-Urbana, and the University of Tennessee, Knoxville. The sites
are connected by Internet2’s Abilene [1] backbone and enjoy relatively high-speed connectivity.

To evaluate the difference between direct distribution (the direct approach) and our scheduler in as fair a
manner as possible, we have modeled the direct distribution within our software infrastructure. That is, the
direct distribution version is simply a flat tree. This allows for overlapping communication among the streams
and is not terribly inefficient. At any rate, the data movement is not serialized among the nodes as it often is
in daily use. ?

Two sets of tests were run. The first set contains 18 nodes located at two sites. The second set contains
52 nodes in 6 clusters at 3 sites. In all cases the source of the data was located at the University of California,
Santa Barbara. Again, this models situations that are demonstrably realistic.

Figure 5.1 shows the distribution time, in seconds, for files of various sizes. This test utilized the 18 node
pool described above. We can see that this case illustrates remarkably well how hierarchical, cooperative data
distribution can improve performance and reduce distribution time. Figure 5.2 shows file distribution times for
the larger (52 node) host pool. Again, the performance improvement from making simple scheduling decisions

2Whether this is sufficient or not is another matter, as we have done no harm.
3The authors speak from experience. What Grid developer hasn’t iterated through a file copy to each node of some set?

Network Scheduling for Computational Grid Environments 91

180

160

—&— Direct Transfer /

140 —— LSL Distribution /

80 /
) ,/
40

20
O—m

Data Size

Seconds to Distribute

Fia. 5.1. Distribution Times for 18 Hosts

1000

900

—&— Direct Transfer /

800 —B- LSL Distribution /
700

600 //
500

400 /

300 /

200 //

16K 512K 1M 2M 4M 6M 8M 16M 32M
Data Size

Seconds to Distribute

Fic. 5.2. Distribution Times for 52 Hosts

is quite significant. We note that clusters represent the best case for distribution techniques such as this and
clusters are frequently components in a Grid.

Figure 5.3 depicts the delivered bandwidth that we observe in data transfers to the 18 node host pool.
Figure 5.4 shows this same metric for the larger host pool. We have initiated a data transfer that has an
average performance more than the physical link to which the machine is attached (12.5MB/sec).

6. Related Work. There are many aspects of research that are similar and related. LSL is part of the
more general inquiry of Logistical Networking [28, 6]. This work investigates a more rich view of storage in the
network and our scheduling approach is applicable to either infrastructure.

Globus GASS [9] and GridFTP [16] are data movement and staging service for Grid systems that could
be scheduled using the techniques that we have described. The MagPlIe [20, 40, 21] project has investigated
performance optimizations for collective operations. Improving the performance of collective operation has been
investigated in many different contexts [4, 27, 24, 5, 18, 39], although primarily the focus has been MPL

Scheduling application activity based on the state of the network is seen many places including REMOS [23],
Topology-d [26] and the Network Weather Service [42].

92 Martin Swany and Rich Wolski

16 —e— Direct Transfer /-/I—l"4
14 —— LSL Distribution /./

MBytes/sec Bandwidth

5 ./?//’—W——‘
16K 512K M 2M 4aM 6M 8M 16M 32M
Data Size

Fia. 5.3. Delivered Bandwidth of Distribution Tree (18 Hosts)

—— Direct Transfer

—- LSL Distribution

MBytes/sec Bandwidth
.\\
\

*
R
<

f
p
L 4
*
L 4

16K 512K 1M 2M 4M 6M 8M 16M 32M
Data Size

Fia. 5.4. Delivered Bandwidth of Distribution Tree (52 Hosts)

Our approach is quite similar to recent work by Malouch, et. al [25], which treats multicast proxies as
nodes in a network optimization problem. We note that their arc incidence constraints are different than those
that we propose. Further, their simulations were aimed at evaluating various heuristics, while our goal is to
understand the performance improvements from simple scheduling in real networks.

Overcast [17] is a network overlay based multicast system. Overcast uses node to node protocols to build
and evaluate the distribution trees. OQur approach creates distribution trees at runtime and assumes no state
in the network. Rather, we assume the availability of network performance forecasts to determine distribution
trees. Our concerns about node failure are also quite different given our utilization of TCP as a transport layer.

Recent work in application-level multicast explores the applicability of peer-to-peer networks [31] for this
purpose. They note a benefit of their work is the lack of a constantly-running routing protocol, a benefit that we
share. In contrast to their approach, however, we don’t increase the time to distribute data, rather we decrease
it.

Network Scheduling for Computational Grid Environments 93

7. Conclusion. We have focused on the problem of initial data distribution in Grid environments. By

building on previous system components, such as the NWS and LSL, we have developed a novel system for data
distribution. We have developed a scheduler that is able to instantiate cooperative data forwarding based on LSL
and performance data from NWS. This scheduling technique and infrastructure allow us to form distribution
trees that greatly increase performance and reduce time to distribute data. Techniques such as this will only
become more important as Grids proliferate.

[1]
(2]

(3]
[4]

[5]
(6]
[7]

(8]
[9]

[10]
[11]

[12]
[13]
[14]
[15]

[16]
[17]

18]

[19]
[20]
[21]

[22]

23]
[24]

[25]

[26]
[27]

28]

REFERENCES

Abilene. http://wuw.ucaid.edu/abilene/.

R. Anuia, T. MaGNANTI, AND J. ORLIN, Network Flows: Theory, Algorithms, and Applications, Prentice Hall, Upper
Saddle River, New Jersey, 1993.

D. AnNDERSEN, H. BAaLAaKRISHNAN, M. KaAsHOEK, AND R. MoRRris, Resilient overlay networks. Proc. 18th ACM SOSP,
Banff, Canada, October 2001.

V. Bavra, J. Bruck, R. CypHiERr, P. ELustonpo, A. Ho, C.-T. Ho, S. Kipnis, aAND M. SNir, CCL: A portable and
tunable collective communication library for scalable parallel computers, IEEE Transactions on Parallel and Distributed
Systems, 6 (1995), pp. 154 164.

M. BanikazEMI, V. MoOORTHY, AND D. Panpa, Efficient collective communication on heterogeneous networks of worksta-
tions, in International Conference on Parallel Processing, 1998, pp. 460 467.

M. Beck, T. MooRrE, J. PLaNk, aAND M. SwaNy, Logistical networking: Sharing more than the wires, in Proc. of 2nd
Annual Workshop on Active Middleware Services, August 2000.

F. BermaN, A. CHien, K. CoopPer, J. DoNGAaRRA, I. Foster, L. J. DENNIS GAanNNON, K. KeENNEDY, C. KESSEL-
MAN, D. ReEDp, L.. TorczoN, , aND R. Wourski, The GrADS project: Software support for high-level grid application
development, Tech. Report Rice COMPTRO00-355, Rice University, February 2000.

F. BErMAN, R. Wourski, S. FiGUEIRA, J. SCHOPF, AND G. SHAO, Application level scheduling on distributed heterogeneous
networks, in Proceedings of Supercomputing 1996, 1996.

J. BESTER, I. FosTER, C. KESsseLMAN, J. TEDEScO, AND S. TUECKE, GASS: A data movement and access service for wide
area computing systems, Sixth Workshop on I/O in Parallel and Distributed Systems, (1999).

L. Ca1, Np-completeness of minimum spanner problem, Discrete Applied Mathematics, 48 (1994), pp. 187 194.

H. Casanova anND J. DoONGARRA, NetSolve: A Network Server for Solving Computational Science Problems, The Interna-
tional Journal of Supercomputer Applications and High Performance Computing, (1997).

O. EgreciogrLu aAND T. GoONzALEzZ, Minimum-energy broadcast in simple graphs with limited node power, in Proc. TASTED
International Conference on Parallel and Distributed Computing and Systems (PDCS 2001), August 2001, pp. 334 338.

I. FosTErR AND C. KESSELMAN, Globus: A metacomputing infrastructure toolkit, International Journal of Supercomputer
Applications, (1997).

GRADS, http://hipersoft.cs.rice.edu/grads.

Graphviz, http://wuw.research.att.com/sw/tools/graphviz.

GridF'T'P, http://wuw.globus.org/datagrid/gridftp.html.

J. JannorTi, D. K. Girrorp, K. L. JounsoN, M. F. KaasHoEk, AND J. W. O’TooLE, Jr., Overcast: Reliable multi-
casting with an overlay network, in Proceedings of Fourth Symposium on Operating System Design and Implementation
(OSDI), October 2000, pp. 197-212.

N. T. Karonis, B. R. pe Supinski, I. Foster, W. Gropp, E. Lusk, aNnD J. BRESNAHAN, Ezploiting hierarchy in parallel
computer networks to optimize collective operation performance, in 14th International Parallel and Distributed Processing
Symposium, 2000, pp. 377-386.

R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, R. Miller and
J. Thatcher, eds., Plenum Press, 1972, pp. 85-104.

T. KieLmanN, H. E. Bar, S. GorrarchH, K. VERSTOEP, AND R. F. HormaAN, Network performance-aware collective
communication for clustered wide area systems, Parallel Computing, 27 (2001), pp. 1431-1456.

T. KieLmanN, R. HormaNn, H. BaL, A. Praar, aND R. BHOEDJANG, Mpi’s reduction operations in clustered wide area

systems, 1999.

. KuBiatowicz, D. BinpeL, Y. CHEN, P. Eaton, D. GeeLs, R. Gummabi, S. Ruea, H. WEATHERSPOON, W. WEIMER,
C. WELLS, aAND B. Zuao, Oceanstore: An architecture for global-scale persistent storage, in Proceedings of ACM
ASPLOS, ACM, November 2000.

B. Lowecamp, N. MILLER, D. SUTHERLAND, T. GrOSS, P. STEENKISTE, AND J. SUBHLOK, A resource query interface for

network-aware applications, in Proc. 7th IEEE Symp. on High Performance Distributed Computing, August 1998.

B. Lowekamp AND A. BEGUELIN, Fco: Efficient collective operations for communication on heterogeneous networks. In
International Parallel Processing Symposium, pages 399-405, Honolulu, HI, 1996., 1996.

N. MaLoucH, Z. Liu, D. RUBENSTEIN, AND S. SAHU, A graph theoretic approach to bounding delay in prozy-assisted. In
12th International Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV’02),
May 2002. 143, 2002.

K. OBraczka anp G. GHEORGHIU, The performance of a service for network-aware applications, in Proceedings of 2nd
SIGMETRICS Conference on Parallel and Distributed Tools, August 1998.

J.-Y. L. Park, H.-A. CHoi, N. NupairoJ, AND L. M. N1, Construction of optimal multicast trees based on the parameterized
communication model, in Proceedings of the International Conference on Parallel Processing (ICPP), 1996, pp. 180-187.

J. S. Prank, A. Bassi, M. Beck, T. Moorg, D. M. Swany, anp R. WoLski, Managing data storage in the network,
TEEE Internet Computing, 5 (2001), pp. 50-58.

[

94

[29]
30]

[31]

[32]

33]
[34]
[35]
[36]
[37]

[38]
39]

[40]

[41]
[42]
[43]

[44]

Martin Swany and Rich Wolski

R. Prim, Shortest connection networks and some generalizations. Bell System Technical Journal, 36, 1389 1401, 1957.

S. Rarnasamy, P. Francis, M. HanbLey, R. KArpP, AND S. SHENKER, A scalable content-addressable network, in SIG-
COMM, 2001, pp. 161-171.

S. RarNnasamy, M. HaNDLEY, R. KARP, AND S. SHENKER, Application-level multicast using content-addressable networks,
Lecture Notes in Computer Science, 2233 (2001), pp. 14-25.

G. SHao, F. BErMAN, AND R. Wouskl, Using effective network views to promote distributed application performance. In
Proceedings of the 1999 International Conference on Parallel and Distributed Processing Techniques and Applications,
1999.

I. Stoica, R. Morris, D. KARGER, F. KaasHOEK, AND H. BALAKRISHNAN, Chord: A scalable content-addressable network,
in SIGCOMM, August 2001.

M. Swany anD R. Wouski, Data logistics in network computing: The Logistical Session Layer, in IEEE Network Computing
and Applications, October 2001.

, Building performance topologies for computational grids. Proceedings of Los Alamos Computer Science Institute

(LACST) Symposium, October 2002.

, Multivariate resource performance forecasting in the network weather service, in Proceedings of SC 2002, November

2002.

, Representing dynamic performance information in grid environments with the network weather service. 2nd IEEE
International Symposium on Cluster Computing and the Grid, May 2002.

J. ToucH, The XBone. Workshop on Research Directions for the Next Generation Internet, May 1997.

S. VabHiYAR, G. Faga, anD J. DONGARRA, Performance modeling for self adapting collective communications for MPI.
Proceedings of Los Alamos Computer Science Institute (LACST) Symposium, October 2001.

R. V. van Nieuwpoorr, T. KieLMANN, anD H. E. Baw, Efficient load balancing for wide-area divide-and-conquer appli-
cations, in PPoPP ’01: ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, June 2001,
pp- 34 43.

P.-J. Wan, G. CariNescu, X. Li, aAND O. FrRIEDER, Minimum-energy broadcast routing in static ad hoc wireless networks,
in INFOCOM, 2001, pp. 1162-1171.

R. Wouski, Dynamically forecasting network performance using the network weather service, Cluster Computing, (1998).
also available from http://www.cs.utk.edu/ rich/publications/nws-tr.ps.gz.

R. WouLski, N. SpriNG, aAND J. HAYES, The network weather service: A distributed resource performance forecasting service
for metacomputing, Future Generation Computer Systems, (1999).

B. Y. Zuao, J. D. KuBiatowicz, aAND A. D. JoseprH, Tapestry: An infrastructure for fault-tolerant wide-area location and
routing, Tech. Report UCB/CSD-01-1141, UC Berkeley, Apr. 2001.

Edited by: Wilson Rivera, Jaime Seguel.
Received: July 5, 2003.
Accepted: September 1, 2003.

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 6, Number 3, pp. 95-106. http://www.scpe.org © 2005 SWPS

0,..

TOWARD REPUTABLE GRIDS

G. VON LASZEWSKI*, B. K. ALUNKAL', AND I. VELJKOVIC?

Key words. Grid, Quality-of-service, Trust, Reputation

Abstract.

The Grid approach provides a vision to access, use, and manage heterogeneous resources in virtual organizations across multiple
domains and organizations. This paper foremost analyses some of the issues related to establishing trust and reputation in a
Grid. Integrating reputation into quality management provides a way to reevaluate resource selection and service level agreement
mechanisms. We introduce a reputation management framework for Grids to work toward facilitating the complex task of improving
the quality of resource selection. Based on community experience we adapt trust and reputation of entities through specialized
services. Simple contextual quality statements are evaluated in order to effect the reputation for a monitored resource. Additionally,
we introduce a novel algorithm for evaluating Grid reputation by combining two known concepts using eigenvectors to compute
reputation and integrating global trust.

1. Introduction. The Grid approach [18, 21| provides a wision to develop an environment for coordinated
resource sharing and problem solving in dynamic, multi-institutional virtual organizations under quality-of-
service constraints [5, 10]. However, optimal use of these distributed services and resources requires not only
knowledge about the capabilities of the resources, but also the assurance that the available and requested
capabilities can be used successfully. Grid users are faced with questions such as which resources are available
remotely, which capabilities these resources have, whether one is authorized to use these resources, whether the
information for a resource selection is accurate, and on which resources a task is likely to execute with the most
success.

In a typical Grid scenario users identify possible candidate resources through metainformation obtained
from directories, databases, or registries. However, the current generation of Grid information services provides
only the most elementary information to guide quality-of-service based resource selection. For example, the
Globus Toolkit Monitoring and Directory Service (MDS) [19] provides a limited set of information about Grid
resources, including static and possibly dynamic attributes and properties. In many cases the information
returned by this service is costly to obtain, inaccurate, or outdated and does not integrate a resource selection
service. We observe that, similar to Heisenbergs uncertainty principle [13], the more variability (momentum),
the information in regards to a resource attribute contains, the less we can predict the accuracy of its value at
a time, and vice versa. This principle is of especial importance if we consider the use of multiple resources in
a coordinated fashion, multiplying this effect. Furthermore, the sporadic nature of the Grid and its measured
values as well as the possibility of integrating ad hoc services [21] in a Grid environment for which no historical
data is available, poses a severe limitation on the current generation of prediction services. Additionally, we often
lack information provided on the quality of the participating entities, similar to an Internet shopping site, which
classifies included items while augmenting them with information not only about functionality, appearance,
availability, and price, but also about appreciations and ratings by its shoppers.

In our framework we propose a probabilistic preselection of resources based on likelihood to deliver the
requested capability and capacity. Such a service can be integrated into a quality-of-service management
framework [7] to enable the reevaluation of the effectiveness of quality-of-service policies and service level
agreements.

This motivated us to design a reputation framework for Grids to assist in the selection process for resources
while integrating the notions of trust and reputation. Trust is already a critical parameter in the decision-making
process of several peer-to-peer (P2P) frameworks. Reputation is computed by using a trust rating provided by
users of services through a feedback mechanism. Reputation-based service and product selection have proved
to be a great asset for online sites such as eBay [9] and Amazon [3].

Hence, we propose a framework that selects through a hierarchical process, with the help of sophisticated
Grid service, sets of resources and services as suitable candidates to fulfill quality-of-service requirements. This
includes the selection of trusted resources that best satisfies application requirements according to a predefined

*Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A. gregor@mcs.anl.gov
TDepartment of Computer Science, Tllinois Tnstitute of Technology, Chicago, I, 60616, U.S.A.
IDepartment of Computer Science and Engineering, The Pennsylvania State University, PA 16802, U.S.A.

95

96 G. von Laszewski, B. Alunkal, 1. Veljkovic

trust metric. Therefore, we propose that our hierarchical resource selection process be augmented by qualitative
and quantitative experiences based on previous transactions with resources so we can integrate this experience
in future resource selections.

We envision such a reputation system for Grids, in which resources and services are ranked based on the
reputation they obtain. Generating a reputation or establishing trust by entities (resources, services, and
individuals) in regards to their availability and capability. We believe that such a reputation service framework
is of crucial importance for Grid computing to increase reliability, use, and popularity. Trust and reputation
serve as an important metric to avert the use of underprovisioned and malicious resources; they provide the
ability to simplify the selection process while focusing first on qualitative concerns.

Consider a Grid environment that agglomerates expensive and specialized resources including high-per-
formance servers, storage databases, advanced scientific instruments, and sophisticated services to visualize
macromolecules [22] or nanomaterial [4] structures. Such an environment requires reliable ad hoc Grid services
to fulfill the necessary quality-of-service required by secure real-time use. Furthermore, the sporadic and time-
limited nature of the services and resources used may result in a lack of historical data, posing severe limitations
on existing prediction services.

Community-based adaptive metrics such as trust and reputation serve as building blocks to support our
quality-of-service requirements. We emphasize that the self-evaluation of a service must be an integral part of
the Grid architecture in order to increase reliability and predictability. Consider the case in which a service
claims it will provide a particular level of quality and engages in a service level agreement with another service.
Assume that this service fails to deliver the promised agreement. Such a scenario might exist when the metrics
available for selection do not coincide with the goals. Choosing a more reliable service can avoid this problem.
But how do we know that another service is more reliable?

Concretely, if we try to transfer 10 Gbytes of data between remote resources through a network, we might
be tempted to select a network path with the highest observed peak throughput. However, if the network gets
interrupted and the transfer would fail, the measurement and metric must take this into account. We cannot
rely on a service that selects the route for transfer based only on a simple bandwidth measurement. Rather,
we require a service that evaluates the promised agreement and is available for future reference. Hence, we are
not only concerned with the quality-of-service, but also with the quality-of-information [20] to establish such a
service.

We need to address in an effective quality-of-service framework the following issues:

Identify the metrics that are defining the service,
Implement a quality-of-service policy,
Provide measurements that can help selecting resources under metric service level agreements,
Decide for a service agreement,
Preselect a number of resources that will likely fulfill the agreement,
Execute the service,
Evaluate the policies by measuring a successful response,
8. Adapt the strategy if it was not successful, to select new resources (i.e, return to Step 5).

In this paper we will focus on Step 8 of this framework. Other aspects are addressed in [2].

Our paper is structured as follows. In Sections 2, 4, and 5, we define the terms trust and reputation and
provide an overview of the existing reputation systems for the Grids and their limitations. In Section 3, we
present the general requirements of Grid reputation framework and service. In Section 6, 7, and 8, we propose
a new algorithm for managing reputation in Grid-based systems and discuss its underlying architecture. After
we provide an overview of other related work we summarize future work and conclude our work.

A o

2. Trust and Reputation. In this section we define the basic terminology used throughout the rest of
the paper.

2.1. Definition: Entity. For simplicity, we refer to a resource, agent, service, organization, or user as an
entity. This definition allows us to specify the term “trust in the most general way while applying it to the Grid
approach.

2.2. Definition: Entity Trust. As pointed out by many researchers, trust is an ambiguous concept
that defies exact definition. Based on economic models [11], however, we can define trust as a commodity for
reducing risk in unknown situations. Hence, trust has an important role in enabling interactions in an unfamiliar
environment while weighing the risks associated with actions performed in that environment. The protection of

Towards Reputable Grids 97

trust through economic incentives is an important factor to allow trust to become a stable commodity. For our
proposed framework, trust is the underlying principle that we determined through local or global interactions
among entities and their decisions based on it.

2.3. Definition: Virtual Trust. So far we have not discussed the flow relationships between trustors and
trustees. If a trust value in a community is assigned to an entity (the trustor) its trust value can be reused by a
new trustee who joins the community and adheres in principle to the same values as the community members.
In this case we use the term community trust, or virtual trust.

2.4. Definition: Entity Reputation. Reputation refers to the value we attribute to a specific entity in
the Grid, based on the trust exhibited by it in the past. It reflects the perception that one has of another’s
intentions and norms. Entity reputation provides a way of assigning quality or value to an entity. Reputation
is usually associated with a time factor; it is often gained over time, based on qualities attributed to it by
evaluations of other entities. In many reputation models, reputation decreases quickly based on adverse behavior.

2.5. Definition: Entity Reputation Service. An entity reputation service is defined as a secure in-
formation service responsible for maintaining a dynamic and adaptive trust and reputation metric within a
community. Entities in the Grid continuously interact with the reputation service to create a community rating
mechanism that cooperatively assists their future decisions based on the overall community experiences.

3. Trust Models. To define a trust model, we need to establish trust requirements, assign trust ratings,
and define trust mediation frameworks and algorithms. Because of the diversity of the Grid and its communities,
we cannot define a single trust model suitable for every case. Instead, we need to revisit the requirements and
the circumstances in which such a trust model brings added value to the Grid infrastructure. Some of the most
common ingredients used to design trust models for Grids are neighborhoods, communities, virtual organizations,
contracts, branding, and ownership.

3.1. Neighborhoods and Communities as Trust Models. One of the most common trust models
is based on the definition of neighborhoods and communities. Here a group of entities form a relationship
network that can be used to query about the trust the members have for another entity to be accessed or
used. Neighborhoods are typically small peer-to-peer groups where each member typically knows the others.
In contrast to this model, communities contain many more members, and it may no longer possible that for
member of the community to know the others. In both groups, however, trust and reputation are established
through standards and common views governed by the communities and neighborhoods. Ratings are Adapters
through interpersonal communication or through publication on a community-wide scale. A good example of a
neighborhood trust model is the close interaction among computational scientists to interpret the outcome of a
particular scientific experiment. A good example of a community trust model is the collection and publication of
opinions about a particular topic. In some cases trusted neighborhoods are established to provide the community
with trust ratings. An example is an editorial board for the publication of articles in a scientific journal. The
scientific community pays more attention to an article reviewed by its peers than to an article published on a
unmoderated Web page.

3.2. Geography and Political Boundaries as Trust Model. A simple way to establish neighborhoods
and communities is to consider geographical distance or political boundaries. Being a citizen of a foreign country
will be in most cases require special clearance to participate in entities controlled by a government or university
as is often the case for supercomputing centers. Geographical constraints may be needed in order to restrict
adaptive trust algorithms to a number of entities in close vicinity. This is often the case for certificate authorities
that have branches operating in geographical distributed location to verify the physical existence of a person.
Hierarchical Grids such as the TeraGrid or the Physics Data Grid function in such fashion. Although considered
a virtual organization, membership into this organization sponsored by the community is determined by local
trust authorities.

3.3. Contracts as Trust Model. A contract is a binding agreement between two or more persons or
parties. Contracts are currently under much discussion as part of service level agreements in QoS-based frame-
works such as Web services and Grid services. Here a contract between entities is formed and agreements are
cast to fulfill a particular service. This concept is based on the trust that the agreement will be fulfilled. If
an unrepeatable entity is present, however, the model will not function, and adaptations need to be made to
enforce the agreement (e.g., through litigation or punishment). One of the earliest such models used in Grid

98 G. von Laszewski, B. Alunkal, 1. Veljkovic

computing was experimented with by the Java CoG project in 1997 in a high-throughput structural biology
project. Resources were put together in a pool and if a resource failed to report or the average time taken by
other resources to respond was above a threshold, that resource was marked as unfavorable and was chosen
only if no other resources were available. In other words, the resource obtained a certain reputation based on
its contractual fulfillment.

3.4. Ownership as Trust Model. Highperformance computing has traditionally focused on ownership
models. Such models are an extension of the community model in which, however, the ownership of an explicit
entity forms a community. In the 80s and 90s these models were driven by supercomputer centers that offered
their users exclusive use of supercomputers through batch queuing systems. Today, in Grid, the ownership model
is the most common one. We believe that in future, however, we will see a shift toward virtual ownerships (as
already promoted by the concept of virtual organizations). Not only will we see virtual organizations but we
will also see soon virtual memberships to these organizations.

To apply the concept of ownership to community Grids [21], one must revisit the role of virtual organizations,
institutions, and members creating them. Since shared resources in a virtual organization are contributed by
various institutions, an elaborate reputation service is needed, that deals with the fact that resources can be
part of multiple domains and VOs. The different cases are depicted in Figure 3.1. We use the following
nomenclature: "FE; defines an entity with the label ¢ that is shared by n organizations. In case we do know
a percentage of share, we augment it appropriately P*~P» F; where pj defines the percentage of ownership of
organization k. Considering this nomenclature, we can define use of entities based on the reputation entities
obtain. We note that entities within organizations can evaluate each other. To make the system work, however,
we need to define a value-based system across the organizations or maintain reputation for different communities
and virtual organizations.

Organization C

Organization B

Organization A

Fia. 3.1. Institutions contribute in various ways their resources and services to possibly various virtual organizations.

3.5. Use as Trust Model. One of the simplest trust models is based on the number of uses. The concept
is the following: the more the entity is used, the higher the trust in this resource. Common sense suggests that
when so many perceive this entity as desirable, it must be so. Use statistics have long been popular in the
computer industry, although these often give a first impression of which entities should be considered, one must
make sure that the concept of popularity is independent of other attributes such as security or even content.
One need only consider popular but insecure operating systems on Web pages with dubious content appreciated
by a large number of Internet users that have achieved more popularity than true content driven pages.

3.6. Branding as Trust Model. One other important concept in industry that is related to reputation
is branding. Here the reputation of continuously high recommended entities that belong to a particular class or
organization may create the desire by other customers to use the same well known brand. Branding is usually
in business a good concept as outliers of poor accidental events effecting the reputation negatively are damped.

Towards Reputable Grids 99

In computer science the concept of branding is also often used in regards to organizations and products derived
from these organizations.

3.7. Time as Trust Model. Time is an essential variable as part of each trust model. Trust and repu-
tation models have sometimes a wide variety of potential conflicting time assumptions. We have branding that
clearly augments an entity with a reputation that is less time sensitive than establishing short term contracts
between entities that only deal with one time interactions. A similar concept to branding is seniority with time
in which the assumed entity becomes a seniority value that is based on experience gained through interaction
with the community. Statements such as I have done it this way for years, it must therefore be working for the
upcoming years are common.

3.8. Economy as Trust Model. In order to establish a better reevaluation methodology, trust models
can be augmented through economic models. For example, contracts can be signed under exchange of real or
virtual money, use can be rewarded through a coupon system, and auctions or markets can be put in place to bid
for the most trusted and capable resources. This approach naturally can succeed only if a common, controllable
commodity such as (virtual) money is used. Business and economic research in these areas is plentiful; indeed
the term virtualization in business models long before the Grid community used these terms [17].

3.9. Reputation as Trust Model. As indicated earlier, reputation can be used as a major enhancement
to each of the models introduced. Since reputation defines a metric, we should be able to use this metric to
select entities for closer consideration as part of a neighborhood, community, or virtual organization and help
support models employing economic goals, usage, and to establish contracts. This is of especial importance
because the time it takes to query all available entities for the best possible fit may be too large. Hence we need
to group a class of properties of interest to a particular community and preselect from the many thousands or
millions those that give the highest likelihood of success.

4. Application of Reputation Related Trust Models. Trust models and use of reputation frameworks
has been considered in a wide variety of systems. The most visible frameworks have been used to enhance
business and information services available for a large community through the Internet.

4.1. Review Trust Model. One popular use to establish reputation is to design information portals,
similar to C|net [8], which maintains ratings for products based on the ratings of an editor. Integrating feedback
from the community provides an additional value in order to reevaluate the judgment of the editor against input
from a larger community. Although, the community feedback is not integrated into the editors rating it is still
available for review. Hence, the consumer must review both pieces of information to obtain an accurate picture.
Detailed textual reviews are also provided to provide the consumer with a semantic explanation on the reason
for the given grade by another consumer. The advantages of integrating a community are that the bias of an
editor may be minimized. The disadvantage is that invalid responses not corresponding to the editors standard
could result in an incorrect evaluation.

4.2. Buyers and Sellers Reputation Trust Model. The online auction system eBay [9] is an important
example of successful reputation management. In eBay’s reputation system, buyers and sellers can rate each
other after each transaction. The feedback system is based on a simple point system, that assigns a positive
point for a positive feedback, No points for neutral feedback, and a negative point for a negative feedback. The
reputation is the summation of all feedbacks for a buyer or seller over the last six month. Additionally, the
feedback is classified in a detailed view to be groups in time periods of the past 7 days, the past month, and
the past six month. E-bay points out the a high feedback rating not necessarily means a good reputation. It “is
a good sign, but a consumer “should always check a member’s feedback profile for any negative remarks. It’s
best not to judge users only on their feedback ratings.

4.3. Information Ranking. The search engine Google [6, 15] provides a reputation and trust model
based on a method called PageRank that uses the links between pages as input. Here a link from other pages
to the page in question is interpreted as a positive sign and indicates that the page has some importance. The
model is based on the concept that the more links can be found the more important the page is. Additionally,
it weighs the pages based on the importance of the voting page.

5. Basis of GridEigenTrust. Before discussing our Grid reputation management framework and the
GridEigenTrust algorithm, we provide a short overview of current research efforts that form the basis of our

100 G. von Laszewski, B. Alunkal, 1. Veljkovic

work. The GridEigenTrust algorithm is inherently based on the peer-to-peer (P2P) EigenTrust algorithm [16]
and the use of reputation to define evolving and managed trust in Grids through the introduction of global
trust [1]. The GridEigenTrust algorithm combines these algorithms making it conducive for a large Grid
environment by increasing its scalability.

5.1. EigenTrust Algorithm for P2P Networks. A reputation management algorithm for P2P net-
works, called EigenTrust, is introduced in [16]. We summarize the main principle but use within this section
the term entity instead of peer in order to provide a uniform nomenclature. Every entity E; rates other entities
based on the quality of service they provide. Therefore, every entity F; with whom E; had business will be

rated with a grade g;; (¢ %4 j) and is normalized as described in [16]. Hence, for each entity E;, the normalized
local trust value c;; is defined as follows:

max(gi;,0)

Cij = m (5.1)

The normalized local trust values throughout the P2P domain needs to be aggregated. This procedure can
be done by means of a transitive trust mechanism: entity FE; asks his friends for their opinions about other
entities:

tij = Zcikckj (5.2)
2

where t;; represents the trust that entity E; puts in entity E; based on the opinion of his k£ friends. The
coefficients are assembled into a matrix, C' = [¢;;]. Hence, equation (5.2) can be written in matrix notation as
shown in equation (5.3):

=t (5.3)

The process of obtaining the trust values of friends is repeated to obtain the transitive closure of the matrix.
After n iterations, where n is the rank of the matrix, the transitive trust is obtained. For large n, t; converges
rapidly as shown in [12], to the same value t. Hence, ¢ shows how much trust the system as a whole has for
every entity Ej.

5.2. Managing Reputation in Grid Networks. In [1, 14| several aspects of trust values are considered
as part of a global reputation model. In this model it is assumed that the trust values decay with time. It
is also assumed that the trust model should stimulate organizations to sanction entities who are not behaving
consistently in the Grid environment and who break trust relations. Finally, it is assumed that trust relationships
are based on a weighted combination of a direct relationship between domains and the global reputation of the
domains. The model is also based on contexts that, in Grids, can be numerous, varying from executing a
specific job, to storing information, downloading data, and using the network. To reflect more accurately the
terminology of the Grid, we replace the term domain with organization. We believe that the domain is not an
appropriate division for trust within Grids.

Our goal is to define a formula for the trust relationship function I', based on the parameters time, context,
and the organizations involved.

e Let O; and O; denote two organizations.
o Let I'(0;, O;, t, ¢) denote a trust relationship based on a specific context ¢ at a given time ¢ of O; toward
0;.

Next we define I with the help of the following functions:

e Let ©(0;,0j,t,c) denote a direct relationship for the context c at time ¢ of O; towards O;, which is the
relationship between neighboring organizations that have direct relationships between entities in both.

e Let Q(0,,t,c) denote the global reputation of O; for the context ¢ at time ¢.

e Let DTT(O;,0;,c) denote a direct trust table entry of O; for O; for context ¢. The table records the
trust value from the last transaction between O; and O;.

Towards Reputable Grids 101
e Let Y(t —t;;,c) denote the decay function for specific context ¢, where ¢ is current time and ¢;; is the
time of the last update of DTT or the time of the last transaction between O; and O;.

In |1, 14|, T(O;, O;,t, ¢) is computed as the weighted sum of direct relationship between domain and global
reputation of the domain:

F(OZ, Oj, t, C) = - @(Ol, Oj,t, C) —|— 6 . Q(Oj,t, C) (54)

where a, 5 >0, o+ 3 = 1.
The direct relationship is affected by the time elapsed between interdomain contacts, hence

@(Oi,Oj,t,C) = DTT(Oi,Oj,C) . T(t—tij,c) (55)
The global trust for domain O; is computed as
> R(Ox,05) - RTT (O, 0j,c) - Y(t — tij,)

Q(0;,t,¢) = 2= _
> (Ox)

k=1

n

(5.6)

where R(Oy, O;) is the recommender’s trust level, and RTT is usually equal to DTT. Since reputation is
based primarily on what organizations say about another domain, the recommender’s trust factor R(Oy, O;)
is introduced to prevent cheating through collusion among a group of domains. Hence, R(Oy,O;) is a value
between 0 and 1 and will have a higher value if Oy and O; are unknown or have no prior relationship among
each other and a lower value if Oy and O; are allies through, for example, a virtual organization relationship.

6. GridEigenTrust Framework. In this section we introduce more details about our proposed Grid-
EigenTrust framework. We begin by pointing out some of the limitations of the two other approaches discussed
in Section 5. Then, we show how one can build a more advanced framework by combining the two approaches,
while avoiding their limitations while applied to the Grid.

The eigenvalue approach discussed in 5.1 is explicitly designed for P2P networks. It has not been applied
to the underlying architecture of Grids that introduce virtual organizations, providing an obvious classification
of resources, users, and their reputation that is needed to establish scalability. The approach discussed in [1]
has several limitations. First, as already pointed, the use of the term domain is not appropriate for Grids.
Hence we have modified the original formulation as shown in Section 5.2. Second, in case of a large number
of organizations, it will be costly to compute the global trust (Equation 5.6) because we will have to consider
all relationships to increase accuracy. To improve scalability, one can compute the global trust among a set
of neighbors; however, such a computation would represent only trust between neighbors but not a global
trust value. Third, the authors suggest in their study limiting the number of contexts on. Specifically, the
authors reduced the number of contexts in the study to only three: printing, storage, and computing. In
Grid environments, however, we deal with many more contexts. An example is the evaluation of trust and
reputation for network characteristics, an essential part of any Grid infrastructure. Fourth, the function T,
which depends on the duration of the interaction between two organizations, must be chosen carefully. We
believe that for contexts such as file transfer, a time decay function may have to be chosen far larger than the
longest file transfer to be considered, otherwise the decay function may invalidate the reputation even before
the transaction is completed. Hence, it will be necessary to introduce classes of similar context, for example,
for file transfers with different numbers of bytes. Another limitation is that in the case of networks the actual
speed between resources could vary, making it even more complex to obtain the proper trust values.

We design a new algorithm, called Grid EigenTrust, that overcomes some of the limitations of these two
approaches. We apply the EigenTrust algorithm explained in Section 5.1 to address the problems of scalability
and multiple contexts; at the same time we introduce a global trust value based on the ability of institutions to
maintain a trusted Grid environment and provide the high-performance community with reputation services.

102 G. von Laszewski, B. Alunkal, 1. Veljkovic

Organization 3

SN

M

Organization 1

Z uopeziuehiQ [ENHIA

Virtual Organization 1

Organization 4

Organization 2

RS = Reputation Service

Fia. 6.1. Example of a distribution of reputation management framework based on reputation services in a Grid.

7. GridEigenTrust Algorithm. We address the complexity issue by introducing a set of reputation
services arranged in hierarchical graphs. To illustrate this point, we consider the scenario shown in Figure 6.1.

In this scenario, two VOs are depicted containing two organizations each. Each organization has a set of
entities. Hence, we have introduced an implicit hierarchy based on entities, institutions, and virtual organiza-
tions. We assign a reputation to the entities in the lowest level. Based on the reputation of the entities, the
reputation of the organization gets updated. Finally we compute the reputation of a virtual organization by
using the reputation values of all the organizations that belong to the virtual organization. Our reputation
service can be reused and integrated in each level of the hierarchy.

The number of reputation services needed for a virtual organization or institution may vary based on its
implicit size, determined by the entities and the hierarchy they define. Each reputation service is responsible
for a subset of entities within the hierarchy. The reputation services compute the reputation in a collaborative,
but distributed, fashion. Under the assumption that the interchange of reputation data is secure and can not
compromised, and the time interval that a datum is valid is longer than the Smallest update, it may be possible
to distribute previous reputation values from entities in the network in order to reduce the network overhead
for lookups through a simple caching mechanism. In order to calculate and maintain the reputation, each
reputation service uses the GridEigenTrust algorithm described in the next section. To guarantee accuracy, the
reputation services must exchange messages with each other in a secure way and the semantics of the reputation
service must be secured through a service signature that can be used to clearly identify wether the service has
been tampered with.

7.1. Calculating Trust. To describe our GridEigenTrust algorithm, we use the notation used in Section
5.2. To simplify our discussion, we assume each entity is in only one organization (compare Section 3.1).

We establish a trust value for each entity based on various contexts it supports within an organization. We
use the term organization trust to refer to a trust value for each organization. Organization trust differs from
other context trust in that it agglomerates several context trust values to a single one. It reflects a general
opinion of the reliability of an organization to provide accurate information on what resources this organization
supplies. As a result, a reliability trust between organizations can be calculated quickly to obtain the global
trust. Although this strategy sounds initially counterintuitive, it is often used in an economic model based on
the trust model through branding.

By combining organization trust and the trust level of an entity within an organization (for a specific
context ¢ at time t), we derive a reliable trust value for the given entity. We apply the eigenvector mathematical
model to compute the global reputation of an organization. Currently, we compute the reputation of a virtual
organization as weighted sum of the reputations of all organizations that belong to the virtual organization.

7.1.1. Calculating the Trust of Entities. To describe how an organization maintains trust parameters
of its entities, we modify the notation from Section 5.2. Since we are calculating trust values locally, (i.e. within

Towards Reputable Grids 103

an organization), we omit the first parameter in the function specification ©, which denotes the entity from
which the trust value was obtained.

All entities that use resources or collaborate with users within another organization grade the quality and
reliability of the requested entity. The overall grade of the entity is established as the weighted sum of the
previous grade (which decays with time) and the new grade. It is also important to consider how much we trust
the organization from which the remote entity (i.e., entity that gives the grade) originates its requests.

If ©,(E;,t;,c) is the previous cumulative grade established at time ¢; for entity F; within context ¢, then
gij(t, ¢) is a new grade given by entity from organization O;, and T(O,), then reliability trust level of organization
O, is the overall new cumulative grade. Then, ©(E;, t,c) can be calculated as

Oé(C) . @p(Ei,ti, C) . T(t — ti, C) + ﬁ(C) . T(O]) . gij(t, C)
a(e) + B(c)

O(E;, t,c) = (7.1)

where a(c), B(c) > 0.

Equation 7.1 is similar to Equation 5.5 from Section 5.2. However, the parameters «(c) and §(c) reflect the
context importance of the latest grade the entity received.

If an organization just joined the Grid, the initial trust values will be set to a low initial value because the
trust must be earned first. However, if the entity for which we assign the trust is sufficiently similar to others in
the already existing Grid, an initial value can be obtained from these integrated entities. We chose the lowest
trust value and add as penalty a linear correction function.

Let ©¢(E;, to, ¢) denote the initial trust value for an entity E; within our organization for a context c. Let
O(F;, ti,c) denote the cumulative reputation value gathered from other entities (defined by equation (7.1)).
Then the initial trust of the entity is the weighted sum of these two values:

’7(0) . GQ(Ei,tO, C) + 5(0) . @(El, ti, C)

[(Eist,c) = v(c) +4(c)

(7.2)

where 7y(c),d(c) > 0.

7.1.2. Calculating the Reliability Trust between Organizations. The reliability trust of organiza-
tion O; toward organization O; reflects the opinion of organization O; about the quality and trustworthiness of
information organization O; supplies. Therefore, besides maintaining individual contexts, we introduce global
context (compare Section 5.2). We use a similar notation as in Section 5.2, but we omit the parameter c. If
we have a priori knowledge about the initial trust information, we assign this value at initialization time of our
algorithm.

Let the initial value of trust be represented as C(O;). Reliability trust should be obtained through the
weighted sum of direct experience and global trust value of organization O;.

Direct, experience can be calculated in the same way as in equation 7.1. It is a normalized weighted sum
between C'(O;), the cumulative grade from the previous period ©,(0;,0j,t;;) and the new grade G(t).

Users within organization O; grade the reputation of a certain entity E; within organization O; with
grade ®(E;). Also, organization O; advertises the quality-of-service of this entity with grade A(E;). Then,
organization O; will grade reliability of information given by organization O, with grade G(t). For determining
grade G(t) we have three cases:

o If & € [A—¢ A—(], the new grade G(¢) is 1.
o If ® > A —(, the new grade G(t) is bigger than 1.
o If ® < A — ¢, the new grade G(t) is less than 1, depending on how much the ® differs from A

Direct experience that organization O; has with O; at some time ¢, ©(0;, O;,t) can be calculated in the
same way as in equation 7.1. It is a normalized weighted sum between C(O;), cumulative grade from the
previous period ©,(0;, O;,t;;) and the new grade G(t).

a-C(0)) +8-0,(04,05,ti;) - Lt —ti;) +v-G(H)

0(0:,0;,%) = a+ B+

(7.3)

where «, 3,7 > 0.

104 G. von Laszewski, B. Alunkal, 1. Veljkovic

Global reliability trust of organization O;, ©2(0;,t) can now be calculated with the EigenTrust algorithm
explained in Section 5.1. If we replace ¢;; with ©(0;, 0;,) in Section 5.1, we obtain a matrix C' = [©(0;, 0y,)],
and initial vector Ty = to(i), to(i) = C(O;). Now we have all the ingredients to apply a power iteration for
computing the principal eigenvector of C”, which represents global reliability trust values for organizations in
Grids.

We can summarize the basic steps of the algorithm as follows:

Entity F; within organization O; wants to use entity F; within organization O3 in the context c at time ¢.

e Consider the reliability trust of Oy computed using the EigenTrust algorithm, Q(Os, t).

e Ask E; about I'(Ej, t, ¢), the trust value of organization E; within organization Os.

e In calculating the overall trust value for entity F;, in formula (5.4) replace Q(E;,t,c) with Q(Os,t) -
F(Ej, t, C)

e Compute the overall trust for the entity I'(E;, E;, ¢, ¢) with formulas (5.4) and (5.5).

After computing the trust values, we can compare them to suggest the resource with the highest reputation.
Modifications, such as the introduction of a statistical selection algorithm based on random variables, are
possible.

This combined approach has several advantages. First, the algorithm converges rapidly and introduces less
overhead than computing global trust values for individual entities within every context. One of the reasons
is that the number of values for computation is not too large because we are computing global trust values of
organizations through hierarchies, not an overall pool of individual entities. Second, organizations will make
an effort to report accurate trust information about their entities because wrong information will be penalized,
lowering the global trust of the organization.

8. Reputation Service Architecture. The architecture of an individual reputation service is shown in
Figure 8.1. It consists of a collection manager, computation manager, storage and collection manager, and
reporter. The collection manager is responsible for evaluating the quality statement describing the requested
reputation, and collecting relevant data from the entities such as resources and users. It gives the collected
data to the computation manager. The computation manager computes the reputation values of entities based
on the context specified and gives the result to the storage manager, which stores the values to maintain a
global and historical view. The reporter contacts the storage manager to report the reputation values whenever
queried by some entity in the Grid.

/ Reputation Service (RS) \

Reputation
— Computation
Manager
Information
Service

- Data . <
Reputati
Collection eputation

Reporter
Manager

Entities
such as
SUsgrs, Storage
5 vices] Manager
Resouces \ /

Application
User

Fia. 8.1. Architecture of a reputation service.

Hence, when an application submits a request for a service cast in a qualitative statement to the reputation
service, the reputation service evaluates the statement and computes the reputation for all the entities providing
the required service using the heuristics explained in Section 7.1. It contacts other reputation services if required
and returns the information regarding the services and their reputation back to the requester. The requester
can decide to select the service by looking at the reputation values. This procedure can be easily modified for
enabling and enhancing automating resource selection decisions in the Grid.

Towards Reputable Grids 105

9. Conclusion and Future Work. In this paper, we have described a framework for calculating repu-
tation in Grid-based system. The paper was mostly focused on issues that have to be addressed while working
toward Grid services that integrate reputation concepts into their functionality. We have identified several of
these issues. Second we have experimented with an architecture and algorithm to gain experience with this new
area of research for the Grid community. We have identified a framework and algorithm, that is a combination
of other research efforts. The underlying algorithm is based on introducing a global trust value that is updated
with an eigenvalue based trust calculation algorithm. At present we are enhancing and evaluating our framework
by introducing a variety of reputation measurements that are controlled through adaptive parameters.

Acknowledgment. This work was supported by the Mathematical, Information, and Computational Sci-
ence Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S.
Department of Energy, under Contract W-31-109-Eng-38. DARPA, DOE, and NSF support Globus Alliance
research and development. The Java CoG Kit Project is supported by DOE SciDAC and NSF Alliance. We
thank Dr. Paul E. Plassman and Kaizar Amin for detailed and insightful comments on the paper. The algo-
rithm described in this paper was first presented by Gregor von Laszewski in the Workshop on Adaptive Grid
Middleware, in New Orleans, LA, September 28, 2003. A draft publication of part of the material that was
presented is authored by B. K. Alunkal I. Veljkovic, G. von Laszewski, and K. Amin. This draft is available
from http://www.mcs.anl.gov/ gregor

REFERENCES

[1] Fwvolving and Managing Trust in Grid Computing Systems, Hotel Fort Garry, Winnipeg, Manitoba, Canada, May 12-15 2002,
IEEE Computer Society Press. Available from World Wide Web: http://www.cs.mcgill.ca/~anrl/PUBS/ccece2002_
farag.pdf.

[2] R. Ar-ALi, K. AmiN, G. voN Laszewski, O. Rana, aND D. WALKER, An OGSA-based Quality of Service Framework,
in GCC2003, Shanghai, 2003. Available from World Wide Web:
http://www.mcs.anl.gov/ “gregor/papers/vonLaszewski--qos.pdf.

[3] amazon. Web page. Available from World Wide Web: http://www.amazon.com.

[4] K. AmiN, M. HateGAN, G. vON Laszewski, A. Rossi, S. HaAmPTON, AND N. J. ZALuzEC, GridAnt: A Client-Controllable
Grid Workflow System, in 37th Hawai’i International Conference on System Science, Island of Hawaii, Big Island, 5-8 Jan.
2004. Available from World Wide Web: http://www.mcs.anl.gov/“gregor/papers/vonLaszewski--gridant-hics.pdf.

[5] F. BErmaNn, G. C. Fox, anp T. Hey, eds., Grid Computing: Making The Global Infrastructure a Reality, Wiley, 2003.

[6] S. Brin aND L. PaGe, The Anatomy of a Large-Scale Hypertextual Web Search Engine, Computer Networks and ISDN
Systems, 30 (1998), pp. 107-117. Available from World Wide Web: http://www-db.stanford.edu/ backrub/google.html.

[7] Internetworking technology handbook, quality of service. Web Page, visited Dec. 2004. Available from World Wide Web:
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/qos.htm.

[8] C net. Web Page. Available from World Wide Web: http://www.cnet.com.

[9] ebay. Web page. Available from World Wide Web: http://wuw.ebay.com.

[10] I. Foster anp C. KESSELMAN, eds., The Grid 2: Blueprint for a New Computing Infrastructure, Morgan Kaufmann
Publishers, Dec. 2003.

[11] D. GAMBETTA, ed., Trust, Blackwell, 1990, ch. Chapter 4: Trust as a Commodity, pp. 49-72.

[12] T. H. HaveLiwarLa anp S. D. Kamvar, The Second FEigenvalue of the Google Matriz. Web page. Available from World
Wide Web: http://www.stanford.edu/~sdkamvar/papers/secondeigenvalue.pdf.

[13] W. HEeisenBERG, Uber quantentheoretishe umdeutung kinematisher und mechanisher beziehungen, Zeitschrift fr Physik, 33
(1925), pp. 879-893.

[14] THE INTERNATIONAL ASSOCIATION FOR COMPUTERS AND COMMUNICATIONS, Integrating Trust into Grid Resource Manage-
ment Systems, Vancouver, B.C., Canada, Aug. 18-21 2002, IEEE Computer Society Press. Available from World Wide
Web: http://www.cs.umanitoba.ca/ anrl/PUBS/icpp2002_farag.pdf.

[15] S. D. Kamvar, T. H. Haveriwara, anp G. H. Govrus, Adaptive Methods for the Computation of Page Rank. Web page.
Available from World Wide Web: http://www.stanford.edu/~sdkamvar/papers/adaptive.pdf.

[16] S. D. Kamvar, M. T. ScuLosser, AND H. GAarcia-MoviNa, The eigentrust algorithm for reputation management in p2p
networks, in Twelfth International World Wide Web Conference, 2003, Budapest, Hungary, May 20-24 2003, ACM Press.
Available from World Wide Web: citeseer.nj.nec.com/article/kamvarO3eigentrust.html.

[17] A. MowsnowiTz, Virtual organization: a vision of management in the information age, The Information Society, 10 (1994),
pp. 267 288.

[18] G. von Laszewski aND K. AmIN, Middleware for Commnications, in Grid Middleware, Wiley, 2004, pp. 109 130. Available
from World Wide Web: http://www.mcs.anl.gov/ gregor/papers/vonLaszewski--grid-middleware.pdf.

[19] G. voN Laszewski, S. FirrzGeraLp, 1. Foster, C. KesseLmaN, W. SmitTH, AND S. TueckEe, A Directory Service for Con-
figuring High-Performance Distributed Computations, in Proceedings of the 6th IEEE Symposium on High-Performance
Distributed Computing, 5-8 Aug. 1997, pp. 365 375. Available from World Wide Web:
http://wuww.mcs.anl.gov/ gregor/papers/fitzgerald--hpdc97.pdf.

[20] G. von Laszewski, J. Gawor, C. J. PefNa, anp 1. Foster, InfoGram: A Peer-to-Peer Information and Job Submission
Service, in Proceedings of the 11th Symposium on High Performance Distributed Computing, Edinbrough, U.K.,

106 G. von Laszewski, B. Alunkal, 1. Veljkovic

24-26 July 2002, pp. 333 342. Available from World Wide Web:

http://www.mcs.anl.gov/~gregor/papers/vonLaszewski- - infogram.ps.
[21] G. voN Laszewskl AND P. WaasTroM, Gestalt of the Grid, in Tools and Environments for Parallel and Distributed

Computing, Series on Parallel and Distributed Computing, Wiley, 2004, pp. 149 187. Available from World Wide Web:

http://www.mcs.anl.gov/ gregor/papers/vonLaszewski--gestalt.pdf.
[22] G. von Laszewski, M. WEsSTBROOK, [. FosTer, E. WEsTBROOK, AND C. BarNES, Using Computational Grid Capabilities

to Enhance the Ability of an X-Ray Source for Structural Biology, Cluster Computing, 3 (2000), pp. 187-199. Available
from World Wide Web: http://www.mcs.anl.gov/ gregor/papers/vonLaszewski--dtrek.pdf.

Edited by: Wilson Rivera, Jaime Seguel.
Received: July 8, 2003.
Accepted: September 1, 2003.

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 6, Number 3, pp. 107-115. http://www.scpe.org © 2005 SWPS

0,..

NON-DEDICATED DISTRIBUTED ENVIRONMENT: A SOLUTION FOR SAFE AND
CONTINUOUS EXPLOITATION OF IDLE CYCLES

R. C. NOVAES* , P. ROISENBERG* , R. SCHEER* , C. NORTHFLEET* , J. H. JORNADA* AND W. CIRNEf

Abstract. The Non-Dedicated Distributed Environment (NDDE) aims to muster the idle processing power of interactive
computers (workstations or PCs) into a virtual resource for parallel applications and grid computing. NDDE is novel in the sense
that it allows for safe and continuous use of idle cycles. Differently from existing solutions, NDDE applications run inside a
virtual machine rather than on the user environment. Besides safe and continuous cycle exploitation, this approach enables NDDE
applications to run on an operating system other than that used interactively. Our preliminary results suggest that NDDE can in
fact harvests most of the idle cycles and has almost no impact on the interactive user.

Key words. Grid Computing, Virtual Machines, Idle Cycles.

1. Introduction. Modern desktop computers and workstations have powerful computational capabilities
that are used primarily to provide short response times to the user’s daily activities like word processing,
spreadsheet calculations or web page rendering. Most of the time, however, this processing power is idle,
waiting for occasional user inputs or requests. During this unused periods that can range from fractions of a
second (e.g. between user keystrokes) to hours, the operating system normally executes an "idle" process, which
is a dummy process with the lowest priority on the system, so it runs only when there is no other process or
service needing to be executed. The processing capacity used to run this idle process is in fact being wasted.

The Non-Dedicated Distributed Environment (NDDE) aims to potentially use all of this fragmented idle
time from most or all the machines connected to a network. This will create a very low cost virtual resource
with only minimal interference on the normal operation of the interactive users. Such a virtual resource can be
directly used to run parallel application or can be a component of a large computational grid.

Of course, this is not a new idea. Systems like Condor [1] and SETI@home [2] are classic examples of
successful exploitation of idle cycles to do useful computation. NDDE differs from these in the sense that it
allows for safe and continuous use of idle cycles. It is safe because it is much harder for a malicious guest
application to tamper with user data and environment. It is continuous because it avoids the “interactive versus
idle” resources dichotomy. That is, NDDE enables both environments to run concurrently so the workstation
does not need to be totally idling to make its resources available. It can exploit idle resources in a much finer
grain.

Safe and continuous idle exploitation is possible because NDDE applications run inside a virtual machine
rather than on the user environment. Note that, additionally, this approach enables NDDE applications to run
on operating system other than that used interactively.

We have conducted some initial experiments to (i) gauge how much of the idle cycles NDDE can in fact
deliver for a parallel or grid application, and (ii) measure its impact on the interactive users. In a nutshell,
NDDE can in fact harvests most of the idle cycles and has almost no impact on the interactive user. However,
it displays a noticeable overhead for I/O intensive applications.

The reminder of this paper is organized as follows. The next section surveys the state of the art in exploring
idle cycles. Then, we introduce NDDE, presenting its features and architecture. Finally, we give a performance
overview of this environment and conclude with an outlook on future work.

2. Exploiting Idle Cycles. The use of many resources to tackle a single problem dates back (at least)
to the 1970’s. The conventional approach since then has been to use dedicated platforms for running parallel
applications. These platforms are generally assembled as parallel supercomputers (such as IBM SP2 and Cray
T3E) or dedicated Beowulf clusters [3].

On the other hand, there are also applications that can use non-dedicated resources, running opportunis-
tically when resources are idle. Since non-dedicated resources are much cheaper than dedicated resources,
much effort has been spent to ease using such idle resources. Therefore, we have seen in the 1980’s the intro-
duction of systems such as Condor, which enabled parallel applications to effectively benefit from cycles that

*Hewlett-Packard Brazil {reynaldo.novaes, paulo.roisenberg, roque.scheer, caio.northfleet, joao.jornada}@hp.com.
TFederal University of Campina Grande. walfredo@dsc.ufcg.edu.br.

107

108 R. C. Novaes, P. Roisenberg, R. Scheer, C. Northfleet, J. H. Jornada and W. Cirne

would otherwise be wasted. More recently, SETI@home showed that this approach could scale up to planetary
proportions.

However, in traditional idle harvesting systems as can be seen in Condor and SETI@home, the guest parallel
application runs in the user environment (i.e., as a process in the user operating system). This creates a security
concern. Since the parallel application runs as a normal process inside the user’s environment, it may be able
to exploit some security breaches and cause damage. There are two possible solutions for this problem. The
first is to execute the guest application in an emulated platform, like Java. The second is to reboot the machine
and run a completely independent operating system from where the guest application has no access to the user
environment,.

Systems like HP’s I-Cluster [4] and vCluster [5] implement a solution based on reboot motivated by security
concerns. These systems, upon detecting that there is no user activity, reboot the machine, entering in a
different, separated operating system, in which the guest application runs. This approach requires a separated
partition to hold the parallel environment and it addresses the security concerns providing a separated operating
system and file system, preserving user data. As an extra advantage, the parallel application can run on an
operating system different from the one that serves the interactive user. For example, in I-Cluster and vCluster,
Windows caters for interactive users, while parallel applications run on Linux.

One drawback of this approach is that it requires a reboot to switch between the two operating systems
and this operation has an impact on the interactive user. This is because switching between operating systems
is not instantaneous. It takes tens of seconds, in the best case. In order to minimize such an impact, I-Cluster
and vCluster keep track of the usage of the machine to try to predict when the interactive user will need it
again. This prediction is used to avoid rebooting the machine into cluster mode when the user is expected to
go in activity soon, as well as to reboot back into interactive mode in anticipation of the user’s need. Of course,
any user activity also prompts the switch back to the interactive operating system.

Other systems, which run guest applications concurrently with local user applications like SETI@home, use
a different approach for harvesting idle cycles. They monitor user activity using operating system features, like
a screensaver.

However, no matter which approach the system uses, it will always try to minimize the impact in the inter-
active user. Therefore, the prediction of the user idleness is crucial for switching and concurrent approaches. In
a perfect world, the user should not notice the exploitation of idle cycles. An issue that complicates matters is
that sometimes the user is not interacting with the machine but she is waiting for a task to be completed, like
a download. This means that idleness detection mechanism must monitor many of the system’s parameters to
correctly detect user activity.

Unfortunately, the above approaches impose a limit on how many idle cycles one can harvest. First, for
idleness prediction based systems, idle cycles will be really wasted because in order to cause minimal impact on
the user, the system has to be somewhat conservative, keeping the system in interactive mode. Secondly, for
screensaver-based systems, the user might be interacting with the computer, but using only a small fraction of
its processing power (e.g., when the user is typing text) but the system will be seen as active. In both cases
idle cycles will be being wasted.

In short, using the screensaver or rebooting the machine to safely exploit idle cycles seems to be effective
when there are big chunks of idle time. Such schemes are not effective at harvesting fragmented idle time.

The NDDE addresses these problems. It allows for the safe exploitation of idle cycles, just as I-Cluster and
vCluster, but is also able to harvest fragmented idle time, unlike I-Cluster and vCluster. Another feature that
distinguishes our approach from the implementations listed above is that, being based on a virtual machine, it
can provide a more homogenous execution environment.

3. NDDE. The NDDE is part of a group of projects hosted by HP Brazil that aim to provide simple
solutions for exploiting unused computational resources for grid or cluster usage. The target research subjects are
non-dedicated computers in corporations and educational institutions. This research includes the development
of environment switching processes using reboot or in concurrent mode, like the solution presented here.

NDDE improves upon original I-Cluster and vCluster projects. It presents a different approach to explore
idle time, based on the premise that there are unused cycles even when the user is interacting with the computer.
The NDDE implements a virtual machine inside the user’s system, running a separated operating system that
has its own address space and file system. The parallel applications run concurrently with the user’s applications.
Although the core of this idea (grid computing using virtual machines) is not new, as we can see in paper of

Non-dedicated Distributed Environment 109

Figueiredo et al. [6], our contribution is that we propose to increase the availability of a non-dedicated machine
to the grid or cluster using as many idle cycle as possible, with minor impact on the interactive user’s activities.
Using this approach the system does not require any special action, like rebooting, to become an active
cluster resource. The guest operating system runs in a user-mode virtual machine, which has restricted access
to user’s system resources, thus parallel applications can be safely executed. In order to isolate the user’s
environment, the virtual machine can only access data inside its file system that is entirely contained inside a
single file on user’s machine. The main advantages on this approach are:
1. The guest environment is isolated from the user environment. The applications running on the guest
OS have their own address and storage space and the access to system resource is made through a
software layer provided by the virtual machine.
2. There is no noticeable switching time between the two different environments (user and parallel).
3. There is no instruction set conversion, only system calls conversion. So the overhead for CPU intensive
applications is minimum.
4. The user does not need to be aware about exploitation of idle cycles. The only requirement may be
that the user should leave the machine always turned on.
5. It increases the availability of the node to be exploited as a cluster resource. Any idle time, no matter
how small it is, can be used to perform cluster tasks.

Fig. 3.1 shows the basic architecture model for the solution. The virtual machine acts like a native ap-
plication and runs concurrently with other applications on the user’s machine. The virtual machine can be
implemented using open source tools like Plex86 [7] or commercial products like VMware [8]. Another option
is to use User-Mode Linux for Windows (Umlwin32) [9], but it lacks the security offered by the virtual machine
implementations. In all cases, the user machine’s resources are shared between the native applications and the
virtual machine.

The virtual machine runs its own instance of an operating system, called 'guest system’, that provides access
to the virtual machine’s emulated storage space and controls the use of other resources like virtual memory space
and network access. All parallel application accesses to system resources are made through the Host System
Call converter, which converts the virtual machine system calls to equivalent host operating system calls. CPU
intensive applications (the typical application on parallel environments) run near native machine speed since
there is no machine instruction emulation. The parallel applications are loaded in the virtual machine address
space and feel as if they are on a dedicated machine. Note also that parallel applications compatible with the
guest operating system do not need to be changed or recompiled to run on this environment.

To improve the security, we could also restrict or completely eliminate the virtual machine’s ability to
access the network. A trusted application on the host OS would be responsible for transferring code and data
in and out from the guest file system. This solution is very similar to Entropia [10] that offers a "sandboxed"
environment for safe task execution.

Virtual Machine

Guest Guest Guest
Application 1 Application 2 Application n
Guest System kernel Native applications

Host System call converter

Guest file system Host System resources

Fia. 3.1. NDDEFE basic architecture

To not interfere with the regular users of the computers, the virtual machines will be made to run as the
process with one of the lowest priorities on the system, having only slightly higher priority than the operating
system’s own “idle” process. This way the virtual machine will be executed by the operating system only
when there is no other process or service able to run, but will be chosen to be run by the operating system

110 R. C. Novaes, P. Roisenberg, R. Scheer, C. Northfleet, J. H. Jornada and W. Cirne

instead of the operating system’s own “idle” process. When there are regular applications running, the NDDE
environment, composed by the virtual machine and its own applications, will be automatically preempted and
maintained by the host operating system in a “ready-to-run” state, so it can continue to run as soon as there is
no regular processes or services running.

4. Performance Evaluation. In order to verify the usability of the NDDE two sets of tests were per-
formed. The first one gauges the performance an application can attain via NDDE. The second one measures
the impact on the regular interactive usage of the machine.

4.1. Benchmark Environment. The test environment consisted of a pair of HP e-PC 42, a Pentium 4
1.7 GHz machine with 256 MB of memory. The host operating system was Microsoft Windows 2000 Professional.
The guest operating system was Linux Red Hat 8.0 and used OpenSSI version 0.9.6r3 [11] as the basic parallel
processing environment.

At the beginning two implementations for running the guest environment were considered: Umlwin32 and
VMware. The VMware was chosen due to the UMLWin32’s early development stage. In the tests described
here, the guest operating system runs under VMware Workstation version 3.2.0 configured with 128 MB of
memory.

4.2. Performance of Parallel Applications. The tests aim to measure the overall performance NDDE
makes available for the guest applications. LLCBench, which is a combined set of synthetic benchmarks, was
used to make these tests. It is the combination of BLASBench [12], MPBench [13]|, and CacheBench [14].
MPBench is used to measure the communication performance of MPI [15]. CacheBench has been chosen to
determine the virtual machine’s memory subsystem performance. Finally, BLASBench is used to measure the
performance of a CPU-bound application.

In order to evaluate the performance impact, a baseline test was performed. These tests, referred as ’Native
Linux’ in the graphs, use machines executing OpenSSI in native mode, without any emulation.

The idea behind these tests was to verify the performance penalties imposed by this approach, that is, an
execution environment running concurrently with a completely different operating system. For sure these tests
are generic and only basic usability issues are addressed.

The following tests were performed: one group of tests for memory access simulation, shown in Fig. 4.1,
Fig. 4.2 and Fig. 4.3, one test for simulating CPU intensive applications, shown in Fig. 4.4 and, finally, a test
regarding the network bandwidth, shown in Fig. 4.5.

These graphs show the average results of each test after several runs.

The Fig. 4.1, Fig. 4.2 and Fig. 4.3 show that VMware has some influence on cache operation that is almost
constant for all cache size. We speculate that this performance loss is probably due to page fault handling in
the virtual machine but further investigation is required to confirm this theory.

The BLAS performance test, shown in Fig. 4.4, also shows that VMware adds little overhead to the guest
environment for CPU intensive applications.

The Fig. 4.5 shows that the network operations suffer noticeable losses imposed by the 1/O hardware
emulation implemented by virtual machine. This happens because the guest application sees a “double OS” on
every access to network devices, that needs to be handled first by the guest OS and later again by the host OS.
The same situation happens for all file access, as described by Sugerman et al. [16].

These tests show that the virtual machine solution is best suited for CPU-intensive applications but may
not be suited for network or I/0 intensive tasks.

4.3. Impact on the User. In order to evaluate the impact of NDDE on normal interactive usage, we
elected editing a huge file with Microsoft Word 2000 as archetypical representative of a machine’s interactive
usage. This huge file had 151MB in size, with 2,623,919 words in 14,211 pages. Considering that we were using
a machine with 256 MB of memory and VMware was configured to emulate a machine with 128 MB of memory,
this file size (151 MB) is expected to cause Microsoft Word Processor to generate some swapping activity.

In the guest operating system, two test applications were developed. One is a CPU consuming application,
which executes a continuous loop. The other application is both CPU and memory consuming. This application
allocates 100 MB and executes a continuous loop touching every page by changing the contents of a few bytes
on each of them to force the pages to be marked as dirty. So, the guest operating system needs to save their
contents to the swap file in case it needs to release pages to make room for user applications.

The tests were grouped in four distinct scenarios:

480

Non-dedicated Distributed Environment 111

475

465

460

MB/Sec

455

450

445

440

435

T T
Native Linux —+—
Linux on VMware ---x---

256

—_

1024 2048 4096

8192

Vector Length in Bytes

16384 32768 65536 131072

Fic. 4.1. CacheBench Read Performance

. A baseline machine just with the user application (Microsoft Word 2000 editing the 151 MB file)

2. A machine with the same user application and just the guest operating system executing in VMware
(no application executing on it)
3. Same as scenario 2, but executing a CPU bound application in the virtual machine
4. Same as scenario 2, but executing a CPU and memory bound application in the virtual machine
In each scenario, four operations were executed:
1. Starting of the application (Microsoft Word) and huge document load
2. Go to the end of the document
3. Select the “statistics” tab option in document properties
4. Replace a character at the end of document and measuring the time to save it
The completion time for each operation was measured, according to Table 4.1.

TABLE 4.1
Average resulting time (min:sec)

Baseline | VMware only | CPU bound | CPU + memory bound
Load 0:39 0:41 0:41 0:48
Go to end 5:47 5:56 5:57 6:02
Properties 4:18 4:25 4:26 4:26
Save 3:00 3:10 3:12 3:26

The results shown in Table 4.1 are the mean value of several executions. There is only minor impact on the
regular user operation for most scenarios, and even the impact of the concurrency for memory was acceptable
in this test. Considering the gain of allowing the machine to act as a cluster node concurrently with normal
machine operation, the impact on the regular user side seems to be acceptable.

It is interesting to point out that literature reports cases where the competition for memory introduced by
guest application cause serious problems for the interactive use of the machine [17]. This would occur when
the interactive applications are sleeping and thus can get swapped out to disk when the guest application needs
to allocate more memory. We could not reproduce such a behavior. We conjecture that this is due to the

112 R. C. Novaes, P. Roisenberg, R. Scheer, C. Northfleet, J. H. Jornada and W. Cirne

2300 T T T T T T T T
; ; ; ; ; : Native Linux —+—
Linux on VMware ---x---

aof

2100

2000

MB/Sec

1900

1800

1700

1600 | | | | | | | |
256 512 1024 2048 4096 8192 16384 32768 65536 131072
Vector Length in Bytes

Fia. 4.2. CacheBench Write Performance

8000 T T T T T T T 7
: : : : : : Native Linux —+—
Linux on VMware ---x---

7500 TN — — — o

TOOQ |t
B500 [A Bl b b b

O A

MB/Sec

5500 T I Al S T """" - %»"Xé;'%,:,x;,;xf‘*f

S S il e * SO

000 o]

256 512 1024 2048 4096 8192 16384 32768 65536 131072
Vector Lenght in Bytes

Fia. 4.3. CacheBench Read/Modify/Write Performance

Non-dedicated Distributed Environment 113

800 T T T T ST
; ; ; : Native Linux —+—
Linux on VMware ---x---

600
500

400

Mflops/Sec

300
0 N S — R — -

100 [e . o -

128

Problem Size

Fic. 4.4. BLASBench Performance

fact VMware’s memory was limited to 128 MB. In previous experiments reported in the literature, the guest
applications had no explicit memory limit.

5. Conclusions. In this article we described NDDE, an alternative way to explore the idle time of in-
teractive computers, turning a set of such computers into a virtual resource for parallel applications and grid
computing. NDDE is novel because it allows for safe and continuous use of idle cycles. It is safe in the sense
that it is much harder for a malicious guest application to tamper with user data and environment. It is contin-
uous because it can also harvest fragmented idle time. Moreover, since NDDE applications run inside a virtual
machine rather than on the user environment, this approach enables NDDE applications to run on an operating
system other than that used interactively.

An analysis was carried out to establish the performance of applications that run on NDDE. The results
show that NDDE is best indicated when the parallel applications are computationally intensive. Applications
that are I/O-intensive may be impacted by the intrinsic limitations of the implementation of virtual machines.
The impact on the normal usage of the machine was also measured. The mechanism of using low priority on
the virtual machine keeps the impact on the user to a minimum.

The next steps in this work will be going in three directions. First, we intend to evaluate NDDE more
thoroughly, refining it where necessary. This includes (i) further investigating the apparent

resilience of NDDE to memory competition with the host applications, (ii) evaluation of the percentage
of idle time that is available to be harvested on a typical enterprise or academic network, and (iii) reduce the
overhead for parallel applications that are heavily based on internode communications. Some real world data
is being collected in order to compare the total of cycles harvested in this solution with a screensaver-based or
reboot-based solution.

One relevant result in this work is the performance loss observed in network-bounded applications. This
issue motivates us to perform some measurements to determine the application granularity that the guest
application should have to make the transference times be acceptable.

All the investigation topics described above will help us to see if this solution is profitable when compared
to dedicated and switched environments. Second, it might be worthwhile to combine NDDE’s and I-Cluster’s
approach into a hybrid scheme. For example, most machines are totally idle during the night. We could thus

114 R. C. Novaes, P. Roisenberg, R. Scheer, C. Northfleet, J. H. Jornada and W. Cirne

800 T T T T T
; ; ; : Native Linux —+—
Linux on VMware ---x---

Mflops/Sec

200 fo AN

100 o

0 . ; ; ; ;
2 4 8 16 32 64 128
Problem Size

Fig. 4.5. MPBench Bandwidth

think of using I-Cluster during the night and NDDE during the day. Third, we intend to explore NDDE as a
sandboxing platform for MyGrid [18], enabling grid applications that cross administrative boundaries. Note that
such grid applications raise especially serious security issues, making the use of NDDE technology particularly
relevant,.

Acknowledgements. The authors wish to express their sincere thanks to the AGridM’03 reviewers for
their insightful comments.

REFERENCES

[1] M. Litzxow, M. LivNy aND M. Mutka, A Hunter of Idle Workstations, Proceedings of the 8th International Conference
of Distributed Computing Systems, pp. 104 111, June 1988.
[2] D. AnpERsON, J. CoBB aAND E. KorPELA, SETI@home: An Ezperiment in Public-Resource Computing, Communication
of the ACM, vol. 45, no. 11, pp. 56 61, November 2002.
[3] D. Ripge, D. BECKER, P. MERKEY AND T. STERLING, Beowulf: Harnessing the Power of Parallelism in a Pile-of-PCs,
Proceedings of IEEE Aerospace, 1997.
[4] B. RicHARD AND P. AuGERAT, I-Cluster: Intense computing with untapped resources, MPCS’02, Ischia, Ttaly, April 2002.
[5] C. A. F. De Rosg, F. Buanco, N. MaiLLarDp, K. Saikoski, R. Novaes anp B. Ricuarp, The virtual cluster: a dynamic
environment for exploitation of idle network resources, Proceedings of 14th Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD’2002), pp. 141-148, Viti£jia, ES, Brazil, 2002.
[6] R. J. Ficueirepo, P. A. Dinpa anp J. A. B. Forres, A Case for Grid Computing on Virtual Machines, Proceedings of
International Conference on Distributed Computing Systems (ICDCS), April 2003.
[7] K. Lawton, The new Plexz86 z86 Virtual Machine Project, WWW, August 2003. http://plex86.sourceforge.net/.
[8] VMwaRrE, VMware Workstation - Powerful Virtual Machine Software for the Technical Professional, WWW, April 2003.
http://www.vmware.com/pdf/ws_specs.pdf.
[9] C. Kubpiae, Umlwin32, WWW, March 2003. http://umlwin32.sourceforge.net /.
[10] A. A. CHIEN, B. CALDER AND S. ELBERT, Entropia: Architecture and Performance of an Enterprise Desktop Grid System,
Journal of Parallel Distributed Computing, vol. 63, no. 5, pp. 597 610, May 2003.
[11] B. J. WALKER, OpenSSI Linuz Cluster Project, WWW, April 2003. http://openssi.org/ssi-intro.pdf.
[12] NarionaL Science FounparioN, BLAS (Basic Linear Algebra Subprograms), WWW, March 2003.
http://www.netlib.org/blas/.
[13] P. J. Mucci, K. LonpoN aND J. THUrRMAN, The MPBench Report, November 1998. WWW, March 2003.
http://icl.cs.utk.edu/projects/llcbench/mpbench.pdf.

Non-dedicated Distributed Environment 115

[14] P. J. Mucci, K. Lonpon AND J. TuHUrRMAN, The CacheBench Report, November 1998. WWW, March 2003.
http://icl.cs.utk.edu/projects/llcbench/cachebench.pdf.

[15] MEssaGe PassiNGg INTERFACE Forum, MPI: A Message Passing Interface Standard, May 1994.

[16] J. SucErmAN, G. VENKITACHALAM AND B. Lim, Virtualizing 1/0 Devices on VMuware Workstation’s Hosted Virtual Machine
Monitor, Proceedings of the USENIX Annual Technical Conference, June 2001.

[17] T. E. Anperson, D. E. CuLLer, D. A. PaArTERSON AND THE NOW TEeamMm, A Case for Networks of Workstations: NOW,
TEEE Micro, February 1995.

[18] W. Cirng, D. Parannos, L. Costa, E. Santos-Nero, F. BrasiLeiro, J. Sauvvi£j F. A. BArBOSA DA SiLva,
C. OsTHOFF BARROS AND C. SILVEIRA, Running Bag-of-Tasks Applications on Computational Grids: The MyGrid
Approach, Proceedings of the ICCP’2003 - International Conference on Parallel Processing, WWW, October 2003.
http://walfredo.dsc.ufpb.br/resume.html#publications.

Edited by: Wilson Rivera, Jaime Seguel.
Received: July 9, 2003.
Accepted: September 1, 2003.

AIMS AND SCOPE

The area of scalable computing has matured and reached a point where new issues and trends require a pro-
fessional forum. SCPE will provide this avenue by publishing original refereed papers that address the present
as well as the future of parallel and distributed computing. The journal will focus on algorithm development,
implementation and execution on real-world parallel architectures, and application of parallel and distributed
computing to the solution of real-life problems. Of particular interest are:

Expressiveness: Applications:
e high level languages,

object oriented techniques,

compiler technology for parallel computing,

implementation techniques and their effi-

e database,
[)
[)
. [)
ciency.
[)
[)
[)
[)

control systems,
embedded systems,

fault tolerance,

. . industrial and business,
System engineering:

e programming environments,
e debugging tools,
e software libraries.

real-time,
scientific computing,
visualization.

Performance:
e performance measurement: metrics, evalua-
tion, visualization,
e performance improvement: resource allocation e engineering trends and their consequences,
and scheduling, I/0, network throughput. e novel parallel architectures.

Future:

e limitations of current approaches,

Taking into account the extremely rapid pace of changes in the field SCPE is committed to fast turnaround
of papers and a short publication time of accepted papers.

INSTRUCTIONS FOR CONTRIBUTORS

Proposals of Special Issues should be submitted to the editor-in-chief.

The language of the journal is English. SCPE publishes three categories of papers: overview papers,
research papers and short communications. Electronic submissions are preferred. Overview papers and short
communications should be submitted to the editor-in-chief. Research papers should be submitted to the editor
whose research interests match the subject of the paper most closely. The list of editors’ research interests can
be found at the journal WWW site (http://www.scpe.org). Each paper appropriate to the journal will be
refereed by a minimum of two referees.

There is no a priori limit on the length of overview papers. Research papers should be limited to approx-
imately 20 pages, while short communications should not exceed 5 pages. A 50-100 word abstract should be
included.

Upon acceptance the authors will be asked to transfer copyright of the article to the publisher. The
authors will be required to prepare the text in INTEX 2¢ using the journal document class file (based on the
STAM’s siamltex.clo document class, available at the journal WWW site). Figures must be prepared in
encapsulated PostScript and appropriately incorporated into the text. The bibliography should be formatted
using the STAM convention. Detailed instructions for the Authors are available on the PDCP WWW site at
http://www.scpe.org.

Contributions are accepted for review on the understanding that the same work has not been published
and that it is not being considered for publication elsewhere. Technical reports can be submitted. Substantially
revised versions of papers published in not easily accessible conference proceedings can also be submitted. The
editor-in-chief should be notified at the time of submission and the author is responsible for obtaining the
necessary copyright releases for all copyrighted material.

