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© 2005 SWPSGUEST EDITOR'S INTRODUCTIONComputational S
ien
e appli
ations are more and more 
omplex to develop and require more and more
omputing power. Parallel and grid 
omputing are solutions to the in
reasing need for 
omputing power. Highlevel languages o�er a high degree of abstra
tion whi
h ease the development of 
omplex systems. Being basedon formal semanti
s, it is even possible to 
ertify the 
orre
tness of 
riti
al parts of the appli
ations. Algorithmi
skeletons, parallel extensions of fun
tional languages, su
h as Haskell and ML, or parallel logi
 and 
onstraintprogramming, parallel exe
ution of de
larative programs su
h SQL queries, et
. have produ
ed methods andtools that improve the pri
e/performan
e ratio of parallel software, and broaden the range of target appli
ations.This spe
ial issue of presents re
ent work of resear
hers in these �elds. These arti
les are extended andrevised versions of papers presented at the �rst international workshop on Pra
ti
al Aspe
ts of High-Level Par-allel Programming (PAPP), a�liated to the International Conferen
e on Computational S
ien
e (ICCS 2004).The PAPP workshops fo
us on pra
ti
al aspe
ts of high-level parallel programming: design, implementationand optimization of high-level programming languages and tools (performan
e predi
tors working on high-levelparallel/grid sour
e 
ode, visualisations of abstra
t behaviour, automati
 hotspot dete
tors, high-level GRIDresour
e managers, 
ompilers, automati
 generators, et
.), appli
ations in all �elds of 
omputational s
ien
e,ben
hmarks and experiments. The PAPP workshops are aimed both at resear
hers involved in the developmentof high level approa
hes for parallel and grid 
omputing and 
omputational s
ien
e resear
hers who are potentialusers of these languages and tools.One 
on
ern in the development of parallel programs is to predi
t the performan
es of the programs fromthe sour
e 
ode in order to be able to optimize the programs or to �t the resour
es needed by the programsto the resour
es o�ered by the ar
hite
ture. In their paper, Evaluating the performan
e of pipeline-stru
turedparallel programs with skeletons and pro
ess algebra, Anne Benoît et al., propose a framework to evaluate theperforman
e of stru
tured parallel programs with skeletons and pro
ess algebra. Frédéri
 Gava in ExternalMemory in Bulk-Syn
hronous Parallel ML provides an extension of the Bulk Syn
hronous Parallel ML libraryby input/output operations on disks, together with an extension of the Bulk Syn
hronous Parallel model.Another dire
tion of resear
h is to set 
onstraints on the resour
es used by the programs. Stephen Gilmore etal. designed and developed the Camelot language whi
h is a resour
e-bounded fun
tional programming languagewhi
h 
ompiles to Java byte 
ode to run on the Java Virtual Ma
hine. Their paper Extending resour
e-boundedfun
tional programming languages with mutable state and 
on
urren
y extends Camelot to in
lude languagesupport for Camelot-level threads and extends the existing Camelot resour
e-bounded type system to providesafety guarantees about the heap usage of Camelot threads. Fran
k Pommereau's previous work is about high-level Petri nets with a notion of time, 
alled 
ausal time, used for the spe
i�
ation and the veri�
ation of systemswith time 
onstraints. In his paper Petri nets as Exe
utable Spe
i�
ations of High-Level Timed Parallel Systemshe presents a step forward the use of this formalism for exe
ution purposes: an algorithm for the exe
ution ofa restri
ted 
lass of high-level Petri nets with 
ausal time.High-level programming languages aim at easing the programming of systems. This should not hinder thepredi
tability and the e�
ien
y of programs. Joël Fal
ou and Jo
elyn Sérot designed a high-level library C++for the programming of the SIMD 
omponent of the Power PC pro
essors, whi
h is mu
h simpler to use thatlower level spe
i�
 libraries but with a very good e�
ien
y. Their EVE library is thus a very good pra
ti
al
hoi
e for the programming of su
h hardware.I would like to thank all the people who made the PAPP workshop possible: the organizers of the ICCS
onferen
e, the other members of the programme 
ommittee: Rob Bisseling (Univ. of Utre
ht, The Netherlands),Matthieu Exbrayat (Univ. of Orléans, Fran
e), Sergei Gorlat
h (Univ. of Muenster, Germany), Clemens Grel
k(Univ. of Luebe
k, Germany), Kevin Hammond (Univ. of St. Andrews, UK), Zhenjiang Hu (Univ. of Tokyo,Japan), Quentin Miller (Miller Resear
h Ltd., UK), Susanna Pelagatti (Univ. of Pisa, Italy), Alexander Tiskin(Univ. of Warwi
k, UK). I also thank the other referees for their e�
ient help: Martin Alt, Frédéri
 Gava andSven-Bodo S
holz. Finally I thank all authors who submitted papers for their interest in the workshop, thequality and variety of resear
h topi
s they proposed.Frédéri
 Loulergue,Laboratoire d'Informatique Fondamentale d'Orléans, University of Orléans,rue Léonard de Vin
i, B. P. 6759 F-45067 ORLEANS Cedex 2, Fran
e.iii
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© 2005 SWPSEVALUATING THE PERFORMANCE OF PIPELINE-STRUCTURED PARALLELPROGRAMS WITH SKELETONS AND PROCESS ALGEBRA∗ANNE BENOIT† , MURRAY COLE , STEPHEN GILMORE , AND JANE HILLSTONAbstra
t. We show in this paper how to evaluate the performan
e of pipeline-stru
tured parallel programs with skeletonsand pro
ess algebra. Sin
e many appli
ations follow some 
ommonly used algorithmi
 skeletons, we identify su
h skeletons andmodel them with pro
ess algebra in order to get relevant information about the performan
e of the appli
ation, and to be ableto take good s
heduling de
isions. This 
on
ept is illustrated through the 
ase study of the pipeline skeleton, and a tool whi
hgenerates automati
ally a set of models and solves them is presented. Some numeri
al results are provided, proving the e�
a
y ofthis approa
h.Key words. Algorithmi
 skeletons, pipeline, high-level parallel programs, performan
e evaluation, pro
ess algebra, PEPAWorkben
h.1. Introdu
tion. One of the most promising te
hni
al innovations in present-day 
omputing is the in-vention of grid te
hnologies whi
h harness the 
omputational power of widely distributed 
olle
tions of 
om-puters [8℄. Designing an appli
ation for the Grid raises di�
ult issues of resour
e allo
ation and s
heduling(roughly speaking, how to de
ide whi
h 
omputer does what, and when, and how they intera
t). These issuesare made all the more 
omplex by the inherent unpredi
tability of resour
e availability and performan
e. Forexample, a super
omputer may be required for a more important task, or the Internet 
onne
tions required bythe appli
ation may be parti
ularly busy.In this 
ontext of grid programming, a skeleton-based approa
h [5, 16, 7℄ re
ognizes that many real ap-pli
ations draw from a range of well-known solution paradigms and seeks to make it easy for an appli
ationdeveloper to tailor su
h a paradigm to a spe
i�
 problem. Powerful stru
turing 
on
epts are presented to theappli
ation programmer as a library of pre-de�ned `skeletons'. As with other high-level programming modelsthe emphasis is on providing generi
 polymorphi
 routines whi
h stru
ture programs in 
learly-delineated ways.Skeletal parallel programming supports reasoning about parallel programs in order to remove programmingerrors. It enhan
es modularity and 
on�gurability in order to aid modi�
ation, porting and maintenan
e a
tiv-ities. In the present work we fo
us on the Edinburgh Skeleton Library (eSkel) [6℄. eSkel is an MPI-based librarywhi
h has been designed for SMP and 
luster 
omputing and is now being 
onsidered for grid appli
ations usinggrid-enabled versions of MPI su
h as MPICH-G2 [14℄.The use of a parti
ular skeleton 
arries with it 
onsiderable information about implied s
heduling depen-den
ies. By modelling these with sto
hasti
 pro
ess algebras su
h as Performan
e Evaluation Pro
ess Algebra[13℄, and thereby being able to in
lude aspe
ts of un
ertainty whi
h are inherent to grid 
omputing, we believethat we will be able to underpin systems whi
h 
an make better s
heduling de
isions than less sophisti
ated ap-proa
hes. Most signi�
antly, sin
e this modelling pro
ess 
an be automated, and sin
e grid te
hnology providesfa
ilities for dynami
 monitoring of resour
e performan
e, our approa
h will support adaptive res
heduling ofappli
ations.Sto
hasti
 pro
ess algebras were introdu
ed in the early 1990s as a 
ompositional formalism for performan
emodelling. Sin
e then they have been su

essfully applied to the analysis of a wide range of systems. In generalanalysis is based on the generation of an underlying 
ontinuous time Markov 
hain (CTMC) and derivation ofits steady state probability distribution. This ve
tor re
ords the likelihood of ea
h potential state of the system,and 
an in turn be used to derive performan
e measures su
h as throughput, utilisation and response time.Several sto
hasti
 pro
ess algebras have appeared in the literature; we use Hillston's Performan
e EvaluationPro
ess Algebra (PEPA) [13℄.Some related proje
ts obtain performan
e information from the Grid using ben
hmarking and monitoringte
hniques [4, 17℄. In the ICENI proje
t [9℄, performan
e models are used to improve the s
heduling de
isions,but these are just graphs whi
h approximate data obtained experimentally. Moreover, there is no upper-levellayer based on skeletons in any of these approa
hes.
∗This work is part of the ENHANCE proje
t, funded by the United Kingdom Engineering and Physi
al S
ien
es Resear
h
oun
il grant number GR/S21717/01.
†S
hool of Informati
s, The University of Edinburgh, James Clerk Maxwell Building, The King's Buildings, May�eld Road,Edinburgh EH9 3JZ, UK. enhan
ers�inf.ed.a
.uk, http://groups.inf.ed.a
.uk/enhan
e/1



2 A. Benoit et al.Other re
ent work 
onsiders the use of skeleton programs within grid nodes to improve the quality of 
ostinformation [1℄. Ea
h server provides a simple fun
tion 
apturing the 
ost of its implementation of ea
h skeleton.In an appli
ation, ea
h skeleton therefore runs only on one server, and the goal of s
heduling is to sele
t themost appropriate servers within the wider 
ontext of the appli
ation and supporting grid. In 
ontrast, ourapproa
h 
onsiders single skeletons whi
h span the Grid. Moreover, we use modelling te
hniques to estimateperforman
e.Our main 
ontribution is based on the idea of using performan
e models to enhan
e the performan
e ofgrid appli
ations. We propose to model skeletons in a generi
 way to obtain signi�
ant performan
e resultswhi
h may be used to res
hedule the appli
ation dynami
ally. To the best of our knowledge, this kind of workhas not been done before. We show in this paper how we 
an obtain signi�
ant results on a �rst 
ase studybased on the pipeline skeleton. An earlier version of this paper is published in the pro
eedings of the workshopon Pra
ti
al Aspe
ts of High-level Parallel Programming (PAPP04), part of the International Conferen
e onComputational S
ien
e (June 7-9, 2004, Kraków, Poland) [2℄. In this extended version a presentation of PEPAis in
luded; the model resolution and the tool AMoGeT are des
ribed more pre
isely; and more experimentalresults are exposed.In the next se
tion, we present the pipeline and a model of the skeleton. Then we explain how to solvethe model with the PEPA Workben
h in order to get relevant information (Se
tion 3). In Se
tion 4 we presenta tool whi
h automati
ally determines the best mapping to use for the appli
ation, by �rst generating a setof models, then solving them and 
omparing the results. Some numeri
al results on the pipeline appli
ationare provided in Se
tion 5, and the feasibility of this approa
h is dis
ussed in Se
tion 6. Finally we give some
on
lusions.2. The pipeline skeleton. Many parallel algorithms 
an be 
hara
terized and 
lassi�ed by their adheren
eto one or more of a number of generi
 algorithmi
 skeletons [16, 5, 7℄. We fo
us in this paper on the 
on
ept ofpipeline parallelism, whi
h is of well-proven usefulness in several appli
ations. We re
all brie�y the prin
iple ofthe pipeline skeleton. Then we introdu
e the pro
ess algebra PEPA [13℄ and we explain how we 
an model thepipeline with PEPA. Finally, we show in Se
tion 2.4 the state transition diagram of a three stage pipeline.2.1. The prin
iple of pipeline. In the simplest form of pipeline parallelism [6℄, a sequen
e of Ns stagespro
ess a sequen
e of inputs to produ
e a sequen
e of outputs (Fig. 2.1).
...Stage 1 Stage 2 Stage Ns

inputs outputsFig. 2.1. The pipeline appli
ationEa
h input passes through ea
h stage in the same order, and the di�erent inputs are pro
essed one afteranother (a stage 
annot pro
ess several inputs at the same time). Note that the internal a
tivity of a stage maybe parallel, but this is transparent to our model. In the remainder of the paper we use the term �pro
essor�to denote the hardware responsible for exe
uting su
h a
tivity, irrespe
tive of its internal design (sequential orparallel).We 
onsider this appli
ation 
lass in the 
ontext of 
omputational grids, and so we want to map it toour 
omputing resour
es, whi
h 
onsist of a set of potentially heterogeneous pro
essors inter
onne
ted by aheterogeneous network.It is well known that a 
omputing pipeline performs most e�e
tively when the workload is well balan
eda
ross stages and there are a large enough number of inputs to amortize the 
osts of �lling and draining. Ourwork dire
tly addresses the �rst of these issues, by fa
ilitating exploration of the stage-to-pro
essor mappingspa
e. The se
ond issue remains the responsibility of the programmer: our approa
h assumes that running theappli
ation will take long enough for the system to rea
h an equilibrium behaviour. The models help us tostudy this steady state behaviour.Considering the pipeline appli
ation in the eSkel library [6℄, we fo
us here on a pipeline variant whi
hrequires that ea
h stage produ
es exa
tly one output for ea
h input.We now go on to present the PEPA language whi
h we will use to model the pipeline appli
ation. Thepresentation below is ne
essarily brief and rather informal. For full details the reader is referred to [13℄. Theoperational semanti
s 
an also be found in Appendix A.



Evaluating The Performan
e of Pipeline-stru
tured Parallel Programs 32.2. Introdu
tion to PEPA. The PEPA language provides a small set of 
ombinators. These allowlanguage terms to be 
onstru
ted de�ning the behaviour of 
omponents, via the a
tivities they undertake and theintera
tions between them. Timing information is asso
iated with ea
h a
tivity. Thus, when enabled, an a
tivity
a = (α, r) will delay for a period sampled from the negative exponential distribution whi
h has parameter r.If several a
tivities are enabled 
on
urrently, either in 
ompetition or independently, we assume that a ra
e
ondition exists between them. The 
omponent 
ombinators, together with their names and interpretations,are presented informally below.Pre�x: The basi
 me
hanism for des
ribing the behaviour of a system is to give a 
omponent a designated�rst a
tion using the pre�x 
ombinator, denoted by a full stop. For example, the 
omponent (α, r).S 
arriesout a
tivity (α, r), whi
h has a
tion type α and an exponentially distributed duration with parameter r, and itsubsequently behaves as S.Choi
e: The 
hoi
e 
ombinator 
aptures the possibility of 
ompetition between di�erent possible a
tivities.The 
omponent P + Q represents a system whi
h may behave either as P or as Q. The a
tivities of both Pand Q are enabled. The �rst a
tivity to 
omplete distinguishes one of them: the other is dis
arded. The systemwill behave as the derivative resulting from the evolution of the 
hosen 
omponent.Constant: It is 
onvenient to be able to assign names to patterns of behaviour asso
iated with 
omponents.Constants are 
omponents whose meaning is given by a de�ning equation. For example, P

def
= (α, r).P de�nesa 
omponent whi
h performs a
tivity α at rate r, forever.Hiding: The possibility to abstra
t away some aspe
ts of a 
omponent's behaviour is provided by the hidingoperator, denoted P/L. Here, the set L of visible a
tion types identi�es those a
tivities whi
h are to be
onsidered internal or private to the 
omponent and whi
h will appear as the unknown type τ .Cooperation: In PEPA dire
t intera
tion, or 
ooperation, between 
omponents is the basis of 
ompositionality.The set whi
h is used as the subs
ript to the 
ooperation symbol, the 
ooperation set L, determines thosea
tivities on whi
h the 
o-operands are for
ed to syn
hronise. For a
tion types not in L, the 
omponentspro
eed independently and 
on
urrently with their enabled a
tivities. However, an a
tivity whose a
tion typeis in the 
ooperation set 
annot pro
eed until both 
omponents enable an a
tivity of that type. The two
omponents then pro
eed together to 
omplete the shared a
tivity. The rate of the shared a
tivity may bealtered to re�e
t the work 
arried out by both 
omponents to 
omplete the a
tivity (for details see [13℄). Wewrite P ‖ Q as an abbreviation for P ⊲⊳

L
Q when L is empty.In some 
ases, when an a
tivity is known to be 
arried out in 
ooperation with another 
omponent, a
omponent may be passive with respe
t to that a
tivity. This means that the rate of the a
tivity is leftunspe
i�ed (denoted ⊤) and is determined upon 
ooperation, by the rate of the a
tivity in the other 
omponent.All passive a
tions must be syn
hronised in the �nal model.The dynami
 behaviour of a PEPA model is represented by the evolution of its 
omponents, either individ-ually or in 
ooperation. The form of this evolution is governed by a set of formal rules whi
h give an operationalsemanti
s of PEPA terms (see [13℄). Thus, as in 
lassi
al pro
ess algebra, the semanti
s of ea
h term in PEPA isgiven via a labelled multi-transition system (the multipli
ities of ar
s are signi�
ant). In the transition system astate 
orresponds to ea
h synta
ti
 term of the language, or derivative, and an ar
 represents the a
tivity whi
h
auses one derivative to evolve into another. The 
omplete set of rea
hable states is termed the derivative setof a model and these form the nodes of the derivation graph whi
h is formed by applying the semanti
 rulesexhaustively.The derivation graph is the basis of the underlying Continuous Time Markov Chain (CTMC) whi
h is usedto derive performan
e measures from a PEPA model. The graph is systemati
ally redu
ed to a form where it
an be treated as the state transition diagram of the underlying CTMC. Ea
h derivative is then a state in theCTMC. The transition rate between two derivatives P and Q in the derivation graph is the rate at whi
h thesystem 
hanges from behaving as 
omponent P to behaving as Q. It is the sum of the a
tivity rates labellingar
s 
onne
ting node P to node Q.2.3. Pipeline model. To model a pipeline appli
ation, we de
ompose the problem into the stages, thepro
essors and the network. The model is expressed in PEPA (
f. Se
tion 2.2).



4 A. Benoit et al.The stagesThe �rst part of the model is the appli
ation model, whi
h is spe
i�ed independently of the resour
es on whi
hthe appli
ation will be 
omputed. We de�ne one PEPA 
omponent per stage. For i = 1..Ns, the 
omponentStagei works sequentially. At �rst, it gets data (a
tivity movei), then pro
esses it (a
tivity pro
essi), and �nallymoves the data to the next stage (a
tivity movei+1).Stagei

def
= (movei,⊤).(pro
essi,⊤).(movei+1,⊤).StageiAll the rates are unspe
i�ed, denoted by the distinguished symbol ⊤, sin
e the pro
essing and move timesdepend on the resour
es where the appli
ation is running. These rates will be de�ned later, in another part ofthe model.The pipeline appli
ation is then de�ned as a 
ooperation of the di�erent stages over the movei a
tivities,for i = 2..Ns.The a
tivities move1 and moveNs+1 represent, respe
tively, the arrival of an input in the appli
ation andthe transfer of the �nal output out of the pipeline. They do not represent any data transfer between stages, sothey are not syn
hronizing the pipeline appli
ation. Finally, we have:Pipeline def
= Stage1 ⊲⊳{move2}

Stage2 ⊲⊳{move3}
. . . ⊲⊳

{moveNs
}
StageNsThe pro
essorsWe 
onsider that the appli
ation must be mapped on a set of Np pro
essors. Ea
h stage is pro
essed by a given(unique) pro
essor, but a pro
essor may pro
ess several stages (in the 
ase where Np < Ns). In order to keepthe model simple, we de
ide to put information about the pro
essor (su
h as the load of the pro
essor or thenumber of stages being pro
essed) dire
tly in the rate µi of the a
tivities pro
essi, i = 1..Ns (these a
tivitieshave been de�ned for the 
omponents Stagei).Ea
h pro
essor is then represented by a PEPA 
omponent whi
h has a 
y
li
 behaviour, 
onsisting ofpro
essing sequentially inputs for a stage. Some examples follow.

• In the 
ase when Np = Ns, we map one stage per pro
essor:Pro
essori def
= (pro
essi, µi).Pro
essori

• If several stages are pro
essed by a same pro
essor, we use a 
hoi
e 
omposition. In the followingexample (Np = 2 and Ns = 3), the �rst pro
essor pro
esses the two �rst stages, and the se
ondpro
essor pro
esses the third stage.Pro
essor1 def
= (pro
ess1, µ1).Pro
essor1 + (pro
ess2, µ2).Pro
essor1Pro
essor2 def
= (pro
ess3, µ3).Pro
essor2Sin
e all pro
essors are independent, the set of pro
essors is de�ned as a parallel 
omposition of the pro
essor
omponents: Pro
essors def
= Pro
essor1||Pro
essor2|| . . . ||Pro
essorNpThe networkThe last part of the model is the network. We do not need to dire
tly model the ar
hite
ture and the topologyof the network for what we aim to do, but we want to get some information about the e�
ien
y of the link
onne
tion between pairs of pro
essors. This information is given by a�e
ting the rates λi of the movei a
tivities(i = 1..Ns + 1).� λ1 represents the 
onne
tion between the user (providing inputs to the pipeline) and the pro
essor hostingthe �rst stage.� For i = 2..Ns, λi represents the 
onne
tion between the pro
essor hosting stage i− 1 and the pro
essorhosting stage i.� λNs+1 represents the 
onne
tion between the pro
essor hosting the last stage and the user (the site wherewe want the output to be delivered).
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e of Pipeline-stru
tured Parallel Programs 5Note that λi will en
ode information both about the load on the links and the size of the data pro
essedby pro
essi−1. When the data is �transferred� on the same 
omputer, the rate is really high, meaning that the
onne
tion is fast (
ompared to a transfer between di�erent sites).The network is then modelled by the following 
omponent:Network def
= (move1, λ1).Network + · · ·+ (moveNs+1, λNs+1).NetworkThe pipeline modelOn
e we have de�ned the di�erent 
omponents of our model, we just have to map the stages onto the pro
essorsand the network by using the 
ooperation 
ombinator. For this, we de�ne the following sets of a
tion types:� Lp = {pro
essi}i=1..Ns
to syn
hronize the Pipeline and the Pro
essors� Lm = {movei}i=1..Ns+1 to syn
hronize the Pipeline and the NetworkMapping def

= Network⊲⊳
Lm

Pipeline ⊲⊳
Lp

Pro
essorsPEPA input �leAn example of an input �le for the PEPA Workben
h 
an be found in Appendix B.2.4. State transition diagram for the pipeline model. Figure 2.2 represents the state transitiondiagram of a three stage, three pro
ess pipeline. This pi
ture shows all of the possible interleavings of the
omponents of the model with ar
s of various kinds showing the di�erent types of transitions from state tostate.In Table 2.1 we show the 
orresponden
e between the state numbers in Figure 2.2 and the PEPA terms.Sin
e the PEPA terms are long we have omitted the 
ooperation sets, showing only the lo
al state of ea
h
omponent. Moreover to keep the table 
ompa
t we have named the derivatives of the Stage 
omponents asfollows: Stagei0
def
= (movei,⊤).Stagei1Stagei1

def
= (pro
essi,⊤).Stagei2Stagei2
def
= (movei+1,⊤).Stagei03. Solving the models. One reason to work with a formal modelling language su
h as PEPA is thatmodels are unambiguous and 
an serve to support reliable 
ommuni
ation between those who design systems,those who develop them and those who maintain them. Another reason to work with a formal modellinglanguage is that formal models 
an be automati
ally pro
essed by tools in order to derive information fromthem whi
h otherwise would have to be produ
ed by manual 
al
ulation or reasoning.The tool whi
h we have used for pro
essing our PEPA models and 
omputing the steady-state probabilitydistribution of our system is the PEPA Workben
h. A full des
ription of the fun
tioning of this software 
an befound in [11℄; the referen
e manual for the latest release is [12℄. We in
lude a brief des
ription of the fun
tioningof the Workben
h in Appendix C.1 in order to make the present paper self-
ontained.Noti
e however that the steady-state probability distribution of the system is rarely the desired result ofthe performan
e analysis pro
ess and so to progress we must identify a signi�
ant performan
e result. Theperforman
e result that is pertinent for the pipeline appli
ation is the throughput of the pro
essi a
tivities(i = 1..Ns). Sin
e data passes sequentially through ea
h stage, the throughput is identi
al for all i, and we needto 
ompute only the throughput of pro
ess1 to obtain signi�
ant results. This is done by adding the steady-stateprobabilities of ea
h state in whi
h pro
ess1 
an happen, and multiplying this by µ1.We have made some 
hanges to the Java edition of the PEPA Workben
h in order to allow the user tospe
ify performan
e results whi
h will then be automati
ally 
omputed. This new fun
tionality is then used to
ompute numeri
al results from the pipeline models. Some more te
hni
al details are provided in Appendix C.2.
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Fig. 2.2. State transition diagram of a three stage, three pro
ess pipeline with states numbered a

ording to Table 2.14. AMoGeT: The Automati
 Model Generation Tool. We investigate in this paper how to enhan
ethe performan
e of grid appli
ations with the use of algorithmi
 skeletons and pro
ess algebras. To do this, wehave 
reated a tool whi
h automati
ally generates performan
e models for the pipeline 
ase study, and thensolves the models. These results 
ould be used to res
hedule the appli
ation.We give at �rst an overview of the tool. Then we des
ribe the information whi
h is provided to the tool viaa des
ription �le. Finally, we explain the fun
tioning of the tool.
des
ription�le performan
einformation

PEPAmodels resultsAMoGeT CompareresultsmodelsGenerate Workben
hPEPA
Fig. 4.1. The prin
iple of AMoGeT4.1. AMoGeT des
ription. Fig. 4.1 illustrates the prin
iple of the tool. In its 
urrent form, the toolis a generi
, reusable software 
omponent. Its ultimate role will be as an integrated 
omponent of a run-time s
heduler and re-s
heduler, adapting the mapping from appli
ation to resour
es in response to 
hanges inresour
e availability and performan
e.
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e of Pipeline-stru
tured Parallel Programs 7Table 2.1Corresponden
e between state numbers in Figure 2.2 and PEPA terms (
ooperation sets are omitted but remain 
onstant)state no. PEPA state1 (Network, (Stage10,Stage20,Stage30), (Pro
essor1,Pro
essor2,Pro
essor3))2 (Network, (Stage11,Stage20,Stage30), (Pro
essor1,Pro
essor2,Pro
essor3))3 (Network, (Stage12,Stage20,Stage30), (Pro
essor1,Pro
essor2,Pro
essor3))4 (Network, (Stage10,Stage21,Stage30), (Pro
essor1,Pro
essor2,Pro
essor3))5 (Network, (Stage11,Stage21,Stage30), (Pro
essor1,Pro
essor2,Pro
essor3))6 (Network, (Stage12,Stage21,Stage30), (Pro
essor1,Pro
essor2,Pro
essor3))7 (Network, (Stage10,Stage22,Stage30), (Pro
essor1,Pro
essor2,Pro
essor3))8 (Network, (Stage11,Stage22,Stage30), (Pro
essor1,Pro
essor2,Pro
essor3))9 (Network, (Stage12,Stage22,Stage30), (Pro
essor1,Pro
essor2,Pro
essor3))10 (Network, (Stage10,Stage20,Stage31), (Pro
essor1,Pro
essor2,Pro
essor3))11 (Network, (Stage11,Stage20,Stage31), (Pro
essor1,Pro
essor2,Pro
essor3))12 (Network, (Stage12,Stage20,Stage31), (Pro
essor1,Pro
essor2,Pro
essor3))13 (Network, (Stage10,Stage21,Stage31), (Pro
essor1,Pro
essor2,Pro
essor3))14 (Network, (Stage11,Stage21,Stage31), (Pro
essor1,Pro
essor2,Pro
essor3))15 (Network, (Stage12,Stage21,Stage31), (Pro
essor1,Pro
essor2,Pro
essor3))16 (Network, (Stage10,Stage22,Stage31), (Pro
essor1,Pro
essor2,Pro
essor3))17 (Network, (Stage11,Stage22,Stage31), (Pro
essor1,Pro
essor2,Pro
essor3))18 (Network, (Stage12,Stage22,Stage31), (Pro
essor1,Pro
essor2,Pro
essor3))19 (Network, (Stage10,Stage20,Stage32), (Pro
essor1,Pro
essor2,Pro
essor3))20 (Network, (Stage11,Stage20,Stage32), (Pro
essor1,Pro
essor2,Pro
essor3))21 (Network, (Stage12,Stage20,Stage32), (Pro
essor1,Pro
essor2,Pro
essor3))22 (Network, (Stage10,Stage21,Stage32), (Pro
essor1,Pro
essor2,Pro
essor3))23 (Network, (Stage11,Stage21,Stage32), (Pro
essor1,Pro
essor2,Pro
essor3))24 (Network, (Stage12,Stage21,Stage32), (Pro
essor1,Pro
essor2,Pro
essor3))25 (Network, (Stage10,Stage22,Stage32), (Pro
essor1,Pro
essor2,Pro
essor3))26 (Network, (Stage11,Stage22,Stage32), (Pro
essor1,Pro
essor2,Pro
essor3))27 (Network, (Stage12,Stage22,Stage32), (Pro
essor1,Pro
essor2,Pro
essor3))Information is provided to the tool via a des
ription �le (
f. Se
tion 4.2). This information 
an be gatheredfrom the Grid resour
es and from the appli
ation de�nition. In the following experiments, it is provided by theuser, but we 
an also get it automati
ally from grid servi
es, for example from the Network Weather Servi
e [17℄.The tool allows everything to be done in a single step through a simple Perl s
ript (
f. Se
tion 4.3): itgenerates the models, solves them with the PEPA Workben
h, and then 
ompares the results. This allows usto have feedba
k on the appli
ation when the performan
e of the available resour
es is modi�ed.4.2. Des
ription �le for AMoGeT. The aim of this �le is to provide information about the availablegrid resour
es and the modelled appli
ation, in our 
ase the pipeline.This des
ription �le is named mymodel.des, where mymodel is the name of the appli
ation.
• The �rst information provided is the type of the model. Sin
e we study here the pipeline skeleton, the�rst line is

type = pipeline;

• We then have the information about the Grid resour
es and Network links, as a list of parameters. Thenumber of pro
essors N must at �rst be spe
i�ed:
nbproc =N ;And then, for i = 1..N and j = 1..N , we spe
ify the available 
omputing power of the pro
essor i (
pi),and the performan
e of the network link between pro
essors i and j (nli-j):
p1=10; 
p2=5;nl1-1=10000; nl1-2=8;
pi 
aptures the fa
t that a pro
essor's full power may not be available to our appli
ation (e. g. be
auseof time-sharing with other a
tivities).
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• Con
erning the appli
ation, we have some information about the stages of the pipeline. Ns is thenumber of stages.nbstage=Ns;The amount of work wi required to 
ompute one output for stage i must be spe
i�ed for i = 1..Ns:w1=2; w2=4; ...Finally, we need to spe
ify the size of the data transferred to and from ea
h stage. For i = 1..Ns + 1,dsi is the size of the data transferred to stage i, with the boundary 
ase dsNs + 1 whi
h represents thesize of the output data.ds1=100; ds2=5; ...
• Next we de�ne a set of 
andidate mappings of stages to pro
essors. Ea
h mapping spe
i�es where theinitial data is lo
ated, where the output data must be left and (as a tuple) the pro
essor where ea
hstage is pro
essed. For example, the tuple (1, 1, 2) means that the two �rst stages are on pro
essor 1,with the third stage on pro
essor 2. A mapping is then of the form [input, tuple, output]. The mappingde�nition is a set of mappings, it 
an be as follows:mappings=[1,(1,2,3),3℄,[1,(1,1,2),2℄,[1,(1,1,1),1℄;
• The last thing is the performan
e result we want to 
ompute. For the pipeline appli
ation, we 
an askfor the throughput with the line:throughput;4.3. The AMoGeT Perl s
ript. The tool allows everything to be done in a single step through a simplePerl s
ript. The model generation is done by 
alling an auxiliary fun
tion. Models are then solved with thePEPA Workben
h as seen in Se
tion 3. Finally, the results are 
ompared. This allows us to have feedba
k onthe appli
ation when the performan
e of the available resour
es is modi�ed.One model is generated from ea
h mapping of the des
ription �le. Ea
h model is as des
ribed in Se
tion 2.3.The di�
ult point 
onsists of generating the rates from the information gathered before. The model generationitself is then straightforward.To 
ompute the rates of the pro
essi a
tivities for a given model (i = 1..Ns), we need to know how manystages are hosted on ea
h pro
essor, and we assume that the work sharing between the stages is equitable. Therate asso
iated with the pro
essi a
tivity is then:

µi = wi×
cpj

nbstjwhere j is the number of the pro
essor hosting the stage i, and nbstj is the number of stages being pro
essedon pro
essor j. In e�e
t, the available 
omputing power 
pj is further diluted by our own internal timesharingfa
tor nbstj, before being applied to the workload asso
iated with the stage, wi.The rates of 
ommuni
ation between stages depend on the mapping too, sin
e the rate of a movei a
tivitydepends on the 
onne
tion link between the pro
essor j1 hosting stage i−1 and the pro
essor j2 hosting stage i,whi
h is given by nlj1-j2. Sin
e the mapping spe
i�es where the input and output data are, we 
an also �ndthe 
onne
tion link for the data arriving into the pipeline and the data exiting the appli
ation. These ratesdepend also on the size of the data transferred from one stage of the pipeline to the next, given by dsi. Theboundary 
ases are applied to 
ompute the rates of the move1 and moveNs+1 a
tivities. The rate asso
iatedwith the movei a
tivity is therefore:
λi =

nlj1−j2
dsiOn
e these rates are derived, generating the model is straightforward. We add into the �le the des
riptionof the throughput of the pro
ess1 a
tivity as a required result to allow an automati
 
omputation of this result.The models 
an then be solved with the PEPA Workben
h, and the throughput of the pipeline is automati
ally
omputed (Se
tion 3). During the resolution, all the results are saved in a single �le, and the last step of results
omparison �nds out whi
h mapping produ
es the best throughput. This mapping is the one we should use torun the appli
ation.
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e of Pipeline-stru
tured Parallel Programs 95. Numeri
al results. We present in this se
tion some numeri
al results. We explain through them howthe information obtained with AMoGeT 
an be relevant for optimizing the appli
ation.In the present paper we do not apply this method to a given �real-world� example. We use an abstra
tpipeline for whi
h we arbitrarily �x the time required to 
omplete ea
h stage. This is su�
ient to show thatAMoGeT 
an help to optimize an appli
ation.5.1. Experiment 1: Pipeline with 3 stages��xed data size. We give here a few numeri
al resultson an example with 3 pipeline stages (and up to 3 pro
essors). The models that we need to solve are reallysmall (in this 
ase, the model has 27 states and 51 transitions, 
f. Figure 2.2).We suppose in this experiment that nli-i=10000 for i = 1..3, and that there is no need to transfer the inputor the output data. Moreover, we suppose that the network is symmetri
al (nli-j=nlj-i for all i, j = 1..3).Con
erning the pipeline parameters, the amount of work wi required to 
ompute ea
h stage is 1, as well as thesize of the data dsi whi
h is transferred from one stage to another. The relevant parameters are therefore nl1-2,nl2-3, nl1-3, and 
pi for i = 1..3. We 
ompare di�erent mappings, and just spe
ify the tuple indi
ating whi
hstage is on whi
h pro
essor. We 
ompare the mappings (1,1,1), (1,1,2), (1,1,3), (1,2,1), (1,2,2), (1,2,3), (1,3,1),(1,3,2) and (1,3,3) (the �rst stage is always on pro
essor 1). The results are displayed in Table 5.1, and we onlyput the best of the mappings whi
h were investigated in the relevant line of the table.Table 5.1Result table for Experiment 1Set of results Parameters Mapping &nl1-2 nl2-3 nl1-3 
p1 
p2 
p3 Throughput1 10000 10000 10000 10 10 10 (1,2,3): 5.63467
10000 10000 10000 5 5 5 (1,2,3): 2.818922 10000 10000 10000 10 10 1 (1,2,1): 3.36671

10 10 10 10 10 1 (1,1,2): 2.59914
1 1 1 10 10 1 (1,1,1): 1.879633 10 1 1 10 10 10 (1,1,2): 2.59914
10 1 1 1 1 100 (1,3,3): 0.49988In the �rst set of results, all the pro
essors are identi
al and the network links are really fast. In these 
ases,the best mapping always 
onsists of putting one stage on ea
h pro
essor (the results for the mapping (1, 3, 2)are identi
al to the best mapping). If we divide the time allo
ated by the pro
essor to the appli
ation by 2, theresulting throughput is also divided by 2, sin
e only the pro
essing power has an impa
t on the throughput.The se
ond set of results illustrates the 
ase when one pro
essor is be
oming really busy, in this 
asepro
essor 3. We should not use it any more, but depending on the network links, the best mapping may 
hange.If the links are not e�
ient, we should indeed avoid data transfer and try to put 
onse
utive stages on the samepro
essor. When nl1-2 = nl2-3 = nl1-3 = 10, the mapping (1, 2, 2) provides the same results as (1, 1, 2).Finally, the third set of results shows what happens if the network link to pro
essor 3 is really slow. Inthis 
ase again, the use of the pro
essor should be avoided, and the best mappings are (1, 1, 2) and (1, 2, 2).However, if pro
essor 3 is a really fast pro
essor 
ompared to the other ones (last line), we pro
ess stage 2 andstage 3 on the third pro
essor (mapping (1, 3, 3)).5.2. Experiment 2: Pipeline with 3 stages�data size 
hanging. The third experiment keeps the

3 stage pipeline, but 
onsiders 
hanges in the size of the data. The assumptions are the same as for Experiment 1,but more parameters have a �xed value.In this experiment, the network 
onne
tion between pro
essors 1 and 2 is slightly less e�e
tive than theothers. So, we have nl1-2 = 100, nl2-3 = nl1-3 = 1000. Moreover, the 
omputing power of ea
h stage is
pi = 10. The size of the data is now �xed to 100, ex
ept from the data transiting from stage 1 to stage 2(ds2), whose size is varying.Figure 5.1 presents the throughput obtained with ea
h mapping, as a fun
tion of the data size ds2.Noti
e �rst that some of the mappings are not in�uen
ed by the 
hange of the data size, i. e. (1,1,1), (1,1,2)and (1,1,3). This is due to the fa
t that the 
onne
tion between stages 1 and 2 is good be
ause the data stayson the same pro
essor. The in�uen
e of the size of the data transferred is mu
h more important when the
onne
tion is less e�e
tive (mappings (1,2,2) and (1,2,3)), sin
e the move2 a
tivity is then the bottlene
k of thesystem.
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Fig. 5.1. Experiment 2: Throughput fun
tion of ds2The best mapping is (1,3,2) when ds2 < 150, and (1,1,3) for greater values. Both of them avoid theslow 
onne
tion nl1-2, and they use several pro
essors so the pro
essing power is better than for mappingslike (1,1,1). When the size of the data transferred between the �rst two stages be
omes high, the bottlene
k isthe 
onne
tion link between them, so it is better to put them on the same pro
essor, even if we may lose somepro
essing power.5.3. Experiment 3: Pipeline with 8 stages. The last experiment 
onsiders a larger pipeline, 
omposedof 8 stages. We use up to 8 pro
essors, and 
ompare four di�erent mappings, depending on the number ofpro
essors we wish to use:
• 8 pro
essors, the mapping is [1, (1, 2, 3, 4, 5, 6, 7, 8), 8]
• 4 pro
essors, the mapping is [1, (1, 1, 2, 2, 3, 3, 4, 4), 4]
• 2 pro
essors, the mapping is [1, (1, 1, 1, 1, 2, 2, 2, 2), 2]
• 1 pro
essor, the mapping is [1, (1, 1, 1, 1, 1, 1, 1, 1), 1]The parameters are the same as for Experiment 1, with 
pi = 10, wi = 1, dsi=1 and nli-i = 10000 forall i. We vary the parameters nli-j, for i 6= j, assuming that all these links are equal, and we 
ompute thethroughput for the di�erent mappings. Figure 5.2 displays the results.The 
urves obtained 
on�rm that we should avoid data transfer when the network 
onne
tions are lesse�
ient. When nli-j > 7, the network performs well enough to allow the use of the 8 pro
essors. However,when the performan
e de
reases, we should use only 4 pro
essors, then two, and only one when nli-j < 0.8.When we need to transfer the output data ba
k to the �rst pro
essor (for example, the mapping

[1, (1, 2, 3, 4, 5, 6, 7, 8), 1]for the 
ase with 8 pro
essors), we obtain almost the same results, with a slightly smaller throughput due tothis additional transfer.6. Feasibility of the approa
h. We envisage the use of our approa
h within a s
heduling and res
hedulingplatform for long-running grid appli
ations. In this 
ontext it is anti
ipated that after initial analysis ands
heduling, the system would be monitored and that res
heduling would be needed only relatively infrequently,for example, on
e an hour. Nevertheless it is important that the use of the tool does not 
ontribute an overheadwhi
h eliminates the bene�t to be obtained from its use. In this se
tion we present eviden
e whi
h suggeststhat this is not likely to be the 
ase in pra
ti
e. The reader should note that here we are re�e
ting on theperforman
e of the analysis tools themselves rather than on the performan
e of the appli
ation whi
h theymonitor (as presented in the previous se
tion).
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nli-jFig. 5.2. Experiment 3: Pipeline with 8 stagesWe ran an experiment to assess the time taken to generate and solve models using AMoGeT, whi
h will, of
ourse, be dependent on the size of the generated model. Fig. 6.1 illustrates the number of states and transitionsof the models as a fun
tion of the parameters of the skeleton. These numbers are independent of the numberof pro
essors in the model; they depend only on the number of pipeline stages.
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Fig. 6.1. States and TransitionsThe time required to generate and solve the models must be 
arefully 
onsidered. The generation is alwaysvery qui
k: it takes less than 0.01 se
onds to generate 20 models. The time required to solve the modelsis usually more important, espe
ially when the models have a large state spa
e. However, if we 
onsider onlyrelatively small models (up to 20, 000 states), the resolution with the PEPA workben
h takes only a few se
onds.Fig. 6.1 shows that when the number of stages is less than 9, the size of the model is small enough to have a fastresolution. However, the model grows exponentially when the number of stages is in
reased, making AMoGeTless e�e
tive for a large number of stages. Sin
e real appli
ations usually do not have very many stages, this isnot a limitation of the tool in pra
ti
e.



12 A. Benoit et al.The overall use of AMoGeT takes usually less than one minute for 
omplex appli
ations running on severalpro
essors, even when we 
onsider several models to solve.As stated earlier, in a s
enario of long 
omputing grid appli
ations, with eventually dynami
 res
hedulingof the appli
ation, we 
onsider that the tool may be run on
e per hour. We therefore believe that the amountof time required may be quite negligible and that the gain obtained by using the best of the mappings whi
hwere investigated 
an outperform the 
ost of the use of the tool.7. Con
lusions. In the 
ontext of grid appli
ations, the availability and performan
e of the resour
es
hange dynami
ally. We have shown through this study that the use of skeletons, and performan
e modelsof these, 
an produ
e some relevant information to improve the performan
e of the appli
ation. This hasbeen illustrated on the pipeline skeleton, whi
h is a 
ommonly used algorithmi
 skeleton. The models helpus to 
hoose the mapping, of the stages onto the pro
essors, whi
h will produ
e the best throughput. A toolautomates all the steps to obtain the result easily.The pipeline skeleton is a simple 
ontrol skeleton. The deal skeleton has already been modelled in a similarway [3℄, and experiments are ongoing using deal skeletons nested into a pipeline appli
ation. This approa
h willalso be developed on some other skeletons so it may be useful for a larger 
lass of appli
ations.Our re
ent work 
onsiders the generation of models whi
h take into a

ount information from the Gridresour
es, whi
h is gathered with the help of the Network Weather Servi
e [17℄. This will allow us to havemodels �tted to the real-time 
onditions of the resour
es. This �rst 
ase study has already shown that we
an use su
h information produ
tively and that we have the potential to enhan
e the performan
e of gridappli
ations with the use of skeletons and pro
ess algebras.Having pro
ess algebra models of our skeletons also potentially o�ers other bene�ts su
h as the ability toformally verify the 
orre
t fun
tioning of the skeleton. We intend to explore this aspe
t in future work.Appendix A. Stru
tured Operational Semanti
s for PEPA.The semanti
 rules, in the stru
tured operational style, are presented in Figure A.1; the interested readeris referred to [13℄ for more details. The rules are read as follows: if the transition(s) above the inferen
e line
an be inferred, then we 
an infer the transition below the line. The notation rα(E) whi
h is used in the third
ooperation rule denotes the apparent rate of α in E, i.e. the sum of the rates of all a
tivities of type α in
Act(E).Appendix B. Pipeline example: input �le for the PEPA Workben
h.The input �le for the PEPA Workben
h is displayed in Fig. B.1, for a small example with Ns = Np = 3,and where ea
h pro
essor is hosting one of the stages.Appendix C. The PEPA Workben
h.C.1. Fun
tioning of the Workben
h. The PEPA Workben
h begins by generating the rea
hable statespa
e of a PEPA model as found from all possible interleavings of its transitions from state to state. For a �nitestate model with n states we 
an enumerate this state spa
e as C = {C1, . . . , Cn}. As the workben
h 
arriesout this task it 
ompiles the in�nitesimal generator matrix Q of the 
ontinuous-time Markov pro
ess underlyingthe PEPA model. The workben
h adds a transition rate r to Qij every time that it �nds a transition from state
Ci to Cj at rate r. Additionally it subtra
ts r from Qii in order that the row sum of the matrix remains inbalan
e.The 
onditions whi
h must be satis�ed in order to guarantee the existen
e of an equilibrium distributionfor a Markov pro
ess, and for this to be the same as the limiting distribution, are well-known�a stationaryor equilibrium probability distribution, Π, exists for every time-homogeneous irredu
ible Markov 
hain whosestates are all positive-re
urrent.The intuition behind this distribution is the obvious one, namely that in the long run the probability thatthe PEPA model is in state Ci is given by Π(Ci).For �nite state PEPA models whose derivation graph is strongly 
onne
ted, and whi
h therefore havegenerated an ergodi
 Markov pro
ess, the equilibrium distribution of the model, Π, is found by solving thematrix equation

ΠQ = 0 (C.1)
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= E)Fig. A.1. The operational semanti
s of PEPAsubje
t to the normalisation 
ondition whi
h ensures that Π is a well-formed probability distribution

∑

Π(Ci) = 1. (C.2)The equations C.1 and C.2 are 
ombined by repla
ing a 
olumn of Q by a 
olumn of ones and pla
ing a 1 inthe 
orresponding row of 0.Be
ause the 
onne
tivity graph of the state transition system of the model will in general have low degree,the transition matrix of the Markov pro
ess is best stored as a sparse matrix. The PEPA Workben
h usesa Java implementation of the pre
onditioned bi
onjugate gradient method. This is an iterative pro
edure asdes
ribed in [15℄ storing the in�nitesimal generator matrix in row-indexed sparse storage mode, a 
ompa
t storagemode whi
h requires storage of only about two times the number of nonzero matrix elements. An advantageof 
onjugate gradient methods for large sparse systems is that they referen
e the matrix only through itsmultipli
ation of a ve
tor, or the multipli
ation of its transpose and a ve
tor.C.2. Computing performan
e results with the PEPA Workben
h. The new fun
tionality of theworkben
h is des
ribed through a tiny example [10℄, whi
h we shall �rst des
ribe. We then explain how to addthe des
ription of the results in the PEPA input �le and how to 
ompute them.A tiny example. We des
ribe the 
omponents of the PEPA input language for the Workben
h via asimple example, des
ribed in the �le tiny.pepa:r1=2; r2=10; r3=1;P1=(start,r1).P2;



14 A. Benoit et al.// PIPELINE APPLICATION// 3 stages, 3 pro
essors (1 stage per pro
essor)// Variables de
laration (all identi
al)mu1=10; mu2=10; mu3=10;la1=10; la2=10; la3=10; la4=10;// Definition of the StagesStage1 = (move1, infty).(pro
ess1, infty).(move2, infty).Stage1;Stage2 = (move2, infty).(pro
ess2, infty).(move3, infty).Stage2;Stage3 = (move3, infty).(pro
ess3, infty).(move4, infty).Stage3;// Definition of the Pro
essorsPro
essor1 = (pro
ess1, mu1).Pro
essor1;Pro
essor2 = (pro
ess2, mu2).Pro
essor2;Pro
essor3 = (pro
ess3, mu3).Pro
essor3;// Definition of the NetworkNetwork = (move1,la1).Network + (move2,la2).Network+ (move3,la3).Network + (move4,la4).Network;// The pipeline modelNetwork <move1,move2,move3,move4>(Stage1 <move2> Stage2 <move3> Stage3)<pro
ess1,pro
ess2,pro
ess3> (Pro
essor1||Pro
essor2||Pro
essor3)Fig. B.1. The input �le for the PEPA Workben
h: pipeline.pepaP2=(run,r2).P3;P3=(stop,r3).P1;P1 || P1This model is 
omposed of two 
opies of a 
omponent, P1, exe
uting in a pure parallel syn
hronization. P1is a simple sequential pro
ess whi
h undergoes a start a
tivity with rate r1 to be
ome P2 whi
h runs with rate
r2 to be
ome P3 whi
h goes ba
k to P1 via a stop a
tivity with rate r3.The �rst line of the �le is de�ning the rates. Then the sequential pro
ess is de�ned, and the �nal line is thesystem equation, whi
h des
ribes the behaviour of the modelled system.Adding results to the input �le. In order to automati
ally 
ompute some performan
e results, the userjust needs to spe
ify them in the PEPA input �le, for example in the �le tiny.pepa presented before. This isdone by in
luding at the end of the �le one line per result, of the form:result_name = {result_des
ription};result_name = rate * {result_des
ription};The name of the performan
e result that is des
ribed is result_name, and the des
ription of the result for thePEPA State Finder is result_des
ription.The states of interest are des
ribed through the use of a simple pattern language, with double stars (**)for wild 
ards, and double verti
al bars (||) for separators between model 
omponents. The model 
omponentsare des
ribed in the order used in the system equation.A rate 
an be added; in this 
ase the �nal result obtained by the PEPA State Finder will be multiplied bythis rate. This is quite useful to 
ompute throughput.For our example, we 
an add some results 
on
erning the �rst pro
ess, independently of the state of these
ond one:start1 = {P1 || **};
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tured Parallel Programs 15run1 = {P2 || **};Trun1 = r2 * {P2 || **};stop1 = {P3 || **};For example, the performan
e result run1 mat
hes all the states in whi
h the �rst pro
ess is ready toperform the run a
tivity. The state of the se
ond pro
ess 
an be anything. Trun1 is the same, multiplied bythe rate of the run a
tivity r2. It 
orresponds therefore to the throughput of run for the �rst pro
ess.For the pipeline appli
ation, the required performan
e result is spe
i�ed in the PEPA input �lepipeline.pepa (Fig. B.1). This is done by adding the following line at the end of this �le:Throughput = mu1 * { ** <move1,move2,move3,move4>((pro
ess1, infty).(move2,infty).Stage1 <move2> ** <move3> **)<pro
ess1,pro
ess2,pro
ess3> (** || ** || **)}Computing the results. The results 
an be 
omputed by using the 
ommand line interfa
e. This is doneby invoking the following 
ommand:java pepa.workben
h.Main -run lr ./tiny.pepaThe -run lr (or -run lnb
g+results) option means that we use the linear bi
onjugate gradient methodto 
ompute the steady state solution of the model des
ribed in the �le ./tiny.pepa, and then we 
ompute theperforman
e results spe
i�ed in this �le.This exe
ution prints the results to the s
reen, and it also saves one �le per performan
e result(./results/model_name.result_name). This �le is the output of the PEPA State Finder for the result des
rip-tion spe
i�ed in the input �le. It 
ontains the state mat
hing the des
ription, and the sum of the steady-stateprobabilities for these states. It does not take the multipli
ative rate into a

ount. The results are also appendedto the �le./model_root.res, where model_root is the beginning of the model_name, until a �−� or a � .� isfound. This is used to automati
ally 
ompare results of similar models.Only a few �les have been modi�ed to in
lude the new fun
tionality in the Java Workben
h. The interestedreader should refer to [12℄. REFERENCES[1℄ M. Alt, H. Bis
hof, and S. Gorlat
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© 2005 SWPSEXTENDING RESOURCE-BOUNDED FUNCTIONAL PROGRAMMING LANGUAGESWITH MUTABLE STATE AND CONCURRENCYSTEPHEN GILMORE, KENNETH MACKENZIE AND NICHOLAS WOLVERSON∗Abstra
t. Camelot is a resour
e-bounded fun
tional programming language whi
h 
ompiles to Java byte 
ode to run on theJava Virtual Ma
hine. We extend Camelot to in
lude language support for Camelot-level threads whi
h are 
ompiled to nativeJava threads. We extend the existing Camelot resour
e-bounded type system to provide safety guarantees about the heap usage ofCamelot threads. We demonstrate the usefulness of our 
on
urren
y extensions to the language by implementing a multi-threadedgraphi
al network 
hat appli
ation whi
h 
ould not have been expressed as naturally in the sequential, obje
t-free sublanguage ofCamelot whi
h was previously available.1. Introdu
tion. Fun
tional programming languages allow programmers to express algorithms 
on
iselyusing high-level language 
onstru
ts operating over stru
tured data, se
ured by strong type-systems. Togetherthese properties support the produ
tion of high-quality software for 
omplex appli
ation problems. Fun
tionalprograms in strongly-typed languages typi
ally have relatively few programming errors when 
ompared to similarappli
ations implemented in languages without these bene�
ial features.These desirable language properties mean that developers shed the burdens of expli
it memory manage-ment, but this has the asso
iated 
ost that they typi
ally lose all 
ontrol over the allo
ation and deallo
ation ofmemory. The Camelot language provides an intermediate way between 
ompletely automati
 memory manage-ment and unassisted allo
ation and deallo
ation in that it provides type-safe storage management by re-bindingof addresses. The address of a datum 
an be obtained in a pattern mat
h and used in an expression (to store adi�erent data value at that address), overwriting the 
urrently-held value.The Camelot 
ompiler targets the Java Virtual Ma
hine but the JVM does not provide an instru
tionto free memory, 
onsigning this to the garbage 
olle
tor, a generational 
olle
tor with three generations andimplementations of stop-and-
opy and mark-sweep 
olle
tions. Camelot allows more pre
ise 
ontrol of memoryallo
ation, allowing in-pla
e modi�
ation of user-de�ned data stru
tures. The Camelot 
ompiler supports variousresour
e-aware type systems whi
h ensure that memory re-use takes pla
e in a safe manner and also allow stati
predi
tion of heap-spa
e usage. Camelot uses a uniform representation for types whi
h are generated by the
ompiler, allowing data types to ex
hange storage 
ells. This uniform representation is 
alled the diamondtype [10, 12℄, implemented by a Diamond 
lass in the Camelot run-time. The Camelot language implementsa type system whi
h assigns types to fun
tions whi
h re
ord the number of parameters whi
h they 
onsume,and their types; the type of the result; and the number of diamonds 
onsumed or freed. The out
ome is thatthe storage 
onsumption requirements of a fun
tion are stati
ally 
omputed at 
ompile-time along with thetraditional Hindley-Milner type inferen
e pro
edure.The novel 
ontribution of the present paper is to explain how su
h an unusually ri
h programming model
an be extended to in
orporate obje
t-oriented and 
on
urrent programming idioms. This 
ontribution is notjust a design: it has been realised in the latest release of the Camelot 
ompiler.Stru
ture of this paper. In Se
tion 2 we present the Camelot language in order that the reader may under-stand the operational 
ontext of the work. We follow this in Se
tion 3 with a dis
ussion of our obje
t-orientedextensions to Camelot. This leads on to a presentation of the use of threads in Se
tion 4 followed by an analysisof the management of threads by the run-time system in Se
tion 5. Se
tion 6 explains the relationship betweenthreads in Camelot and threads as traditionally implemented in 
on
urrent fun
tional languages using �rst-
lass
ontinuations. Se
tion 7 details the impli
ations for veri�
ation of Camelot programs. Related work is surveyedin Se
tion 8 and 
on
lusions follow after that.2. The Camelot language. The 
ore of Camelot is a standard polymorphi
 ML-like fun
tional languagewhose syntax is based upon that of O'Caml; the main novelty lies in extensions whi
h allow the programmer toperform in-pla
e modi�
ations to heap-allo
ated data-stru
tures. These features are similar to those des
ribedin by Hofmann in [11℄, but in
lude some extra extensions for free list management. To retain a purely fun
tionalsemanti
s for the language in the presen
e of these extensions a linear type system 
an be employed: in thepresent implementation, linearity 
an be enfor
ed via a 
ompiler swit
h. We are in the pro
ess of enhan
ing
∗Laboratory for Foundations of Computer S
ien
e, The University of Edinburgh, King's Buildings, Edinburgh, EH9 3JZ, S
otland17



18 S. Gilmore et al.the 
ompiler by the addition of other, less restri
tive type systems whi
h still allow safe in-pla
e modi�
ations:more details will be given below.Cru
ial design 
hoi
es for the 
ompilation are transparen
y and an exa
t spe
i�
ation of the 
ompilationpro
ess. The former ensures that the 
ompilation does not modify the resour
e 
onsumption in an unpredi
tableway. The latter provides a formal basis for using resour
e information inferred for the high-level language inproofs on the intermediate language.In the following se
tions we will give a brief des
ription of the stru
ture of the language. We will then outlinehow the language is 
ompiled, and in parti
ular how the memory-management extensions are implemented.2.1. The stru
ture of Camelot. We will give some examples to indi
ate the basi
 stru
ture of Camelot;full details 
an be found in [20℄.Datatypes are de�ned in the normal way:type intlist = Nil | Cons of int * intlisttype 'a polylist = NIL | CONS of 'a * 'a polylisttype ('a, 'b) pair = Pair of 'a *'bValues belonging to user-de�ned types are 
reated by applying 
onstru
tors and are de
onstru
ted using themat
h statement:let re
 length l = mat
h l withNil -> 0| Cons (h,t) -> 1+length tlet test () = let l = Cons(2, Cons(7,Nil))in length lAs 
an be seen from this example, 
onstru
tor arguments are en
losed in parentheses and are separated by
ommas. In 
ontrast, fun
tion de�nitions and appli
ations whi
h require multiple arguments are written in a�
urried� style:let add a b = a+blet f x y z = add x (add y z)Despite this notation, the present version of Camelot does not support higher-order fun
tions; any appli-
ation of a fun
tion must involve exa
tly the same number of arguments as are spe
i�ed in the de�nition of thefun
tion.2.2. Diamonds and Resour
e Control. The Camelot 
ompiler targets the Java Virtual Ma
hine, andvalues from user-de�ned datatypes are represented by heap-allo
ated obje
ts from a 
ertain JVM 
lass. Detailsof this representation will be given in Se
tion 2.4.Consider the following fun
tion whi
h uses an a

umulator to reverse a list of integers (as de�ned by theintlist type above).let re
 rev l a

 = mat
h l withNil -> a

| Cons (h,t) -> rev t (Cons (h,a

))let reverse l = rev l NilThis fun
tion allo
ates an amount of memory equal to the amount o

upied by the input list. If no furtherreferen
e is made to the input list then the heap spa
e whi
h it o

upies may eventually be re
laimed by theJVM garbage 
olle
tor.In order to allow more pre
ise 
ontrol of heap usage, Camelot in
ludes 
onstru
ts allowing re-use of heap
ells. There is a spe
ial type known as the diamond type (denoted by <>) whose values represent blo
ks of heap-allo
ated memory, and Camelot allows expli
it manipulation of diamond obje
ts. This is a
hieved by equipping
onstru
tors and mat
h rules with spe
ial annotations referring to diamond values. Here is the reverse fun
tionrewritten using diamonds so that it performs in-pla
e reversal:let re
 rev l a

 = mat
h l withNil -> a

| Cons (h,t)�d -> rev t (Cons (h,a

)�d)let reverse l = rev l NilThe annotation ��d� on the �rst o

urren
e of Cons tells the 
ompiler that the diamond value d is to bebound to a referen
e to the spa
e used by the list 
ell. The annotation on the se
ond o

urren
e of Cons spe
i�es
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y 19that the list 
ell Cons(h,a

) should be 
onstru
ted in the diamond obje
t referred to by d, and no new spa
eshould be allo
ated on the heap.One might not always wish to re-use a diamond value immediately. This 
an sometimes 
ause di�
ultysin
e su
h diamonds might then have to be returned as part of a fun
tion result so that they 
an be re
y
ledby other parts of the program. For example, the alert reader may have noti
ed that the list reversal fun
tionabove does not in fa
t reverse lists entirely in pla
e. When the user 
alls reverse, the invo
ation of the Nil
onstru
tor in the 
all to rev will 
ause a new list 
ell to be allo
ated. Also, the Nil value at the end of theinput list o

upies a diamond, and this is simply dis
arded in the se
ond line of the rev fun
tion (and will besubje
t to garbage 
olle
tion if there are no other referen
es to it).The overall e�e
t is that we 
reate a new diamond before 
alling the rev fun
tion and are left with an extradiamond after the 
all had 
ompleted. We 
ould re
over the extra diamond by making the reverse fun
tionreturn a pair 
onsisting of the reversed list and the spare diamond, but this is rather 
lumsy and programsqui
kly be
ome very 
omplex when using this kind of te
hnique.To avoid this kind of problem, unwanted diamonds 
an be stored on a free list for later use. This is doneby using the annotation ��_� as in the following example whi
h returns the sum of the entries in an integer list,destroying the list in the pro
ess:let re
 sum l a

 = mat
h l withNil�_ -> a

| Cons (h,t)�_ -> sum t (a

+h)The question now is how the user retrieves a diamond from the free list. In fa
t, this happens automati
allyduring 
onstru
tor invo
ation. If a program uses an unde
orated 
onstru
tor su
h as Nil or Cons(4,Nil) thenif the free list is empty the JVM new instru
tion is used to allo
ate memory for a new diamond obje
t on theheap; otherwise, a diamond is removed from the head of the free list and is used to 
onstru
t the value. Itmay o

asionally be useful to expli
itly return a diamond to the free list and an operator free: <> -> unit isprovided for this purpose.There is one �nal notational re�nement. The in-pla
e list reversal fun
tion above is still not entirelysatisfa
tory sin
e the Nil value 
arries no data but is nonetheless allo
ated on the heap. We 
an over
ome thisby rede�ning the intlist type astype intlist = !Nil | Cons of int * intlistThe ex
lamation mark dire
ts the 
ompiler to represent the Nil 
onstru
tor by the JVM null referen
e. Withthe new de�nition of intlist the original list-reversal fun
tion performs true in-pla
e reversal: no heap spa
eis 
onsumed or destroyed when the reverse fun
tion is applied. The ! annotation 
an be used for a single zero-argument 
onstru
tor in any datatype de�nition. In addition, if every 
onstru
tor for a parti
ular datatype isnullary then they may all be pre
eded by!, in whi
h 
ase they will be represented by integer values at runtime.We have deliberately 
hosen to expose this 
hoi
e to the programmer (rather than allowing the 
ompiler toautomati
ally 
hoose the most e�
ient representation) in keeping with our poli
y of not allowing the 
ompilerto perform optimisations whi
h have unexpe
ted results on resour
e 
onsumption.The features des
ribed above are very powerful and 
an lead to many kinds of program error. For example,if one applied the reverse fun
tion to a sublist of some larger list then the small list would be reversed properly,but the larger list 
ould be
ome partially reversed. Perhaps worse, a diamond obje
t might be used in severaldi�erent data stru
tures of di�erent types simultaneously. Thus a list 
ell might also be used as a tree node, andany modi�
ation of one stru
ture might lead to modi�
ations of the other. The simplest way of preventing thiskind of problem is to require linear usage of heap-allo
ated obje
ts, whi
h means that variables bound to su
hobje
ts may be used at most on
e after they are bound. Details of this approa
h 
an be found in Hofmann'spaper [11℄. Stri
t linearity would require one to write the list length fun
tion as something likelet re
 length l = mat
h l withNil -> Pair (0, Nil)| Cons(h,t)�d ->let p = length tin mat
h p withPair(n, t1)�d1 -> Pair(n+1, Cons(h,t1)�d)�d1It is ne
essary to return a new 
opy of the list sin
e it is illegal to refer to l after 
alling length l.Our 
ompiler has a swit
h to enfor
e linearity, but the example demonstrates that the restri
tive nature



20 S. Gilmore et al.of linear typing 
an lead to unne
essary 
ompli
ations. Aspinall and Hofmann [1℄ give a type system whi
hrelaxes the linearity 
ondition while still allowing safe in-pla
e updates, and Mi
hal Kone£ný generalises thisstill further in [15, 16℄. As part of the MRG proje
t, Kone£ný has implemented a type
he
ker for a variant ofthe type system of [15℄ adapted to Camelot.A di�erent approa
h to providing heap-usage guarantees is given by Hofmann and Jost in [13℄, where analgorithm is presented whi
h 
an be used to stati
ally infer heap-usage bounds for fun
tional programs of asuitable form. In 
ollaboration with the MRG proje
t, Ste�en Jost has implemented a variant of this inferen
ealgorithm for Camelot: the implementation is des
ribed in [14℄. Both of these implementations are 
urrentlystand-alone programs, but we are in the pro
ess of integrating them with the Camelot 
ompiler.One of our goals in the design of Camelot was to de�ne a language whi
h 
ould be used as a testbed fordi�erent heap-usage analysis methods. The in
lusion of expli
it diamonds �ts the type systems of [1, 15, 16℄, andthe in
lusion of the free list fa
ilitates the Hofmann-Jost inferen
e algorithm, whi
h requires that all memorymanagement takes pla
e via a free list.2.3. Compilation of expressions. Camelot is initially 
ompiled into the Grail intermediate language[5, 19℄ whi
h is essentially a fun
tional form of Java byte
ode. This pro
ess is fa
ilitated by an initial phase inwhi
h several transformations are applied to the abstra
t syntax tree.2.3.1. Monomorphisation. Firstly, all polymorphism is removed from the program. For polymorphi
types (αn, . . . , α1) t su
h as α list we examine the entire program to determine all instantiations of the typevariables, and 
ompile a separate datatype for ea
h distin
t instantiation. Similarly, whenever a polymorphi
fun
tion is de�ned the program is examined to �nd all uses of the fun
tion and a monomorphi
 fun
tion of theappropriate type is generated for ea
h distin
t instantiation of types.2.3.2. Normalisation. After monomorphisation there is a phase referred to as normalisation whi
h trans-forms the Camelot program into a form whi
h 
losely resembles Grail.Firstly the 
ompiler ensures that all variables have unique names. Any dupli
ations are resolved by gener-ating new names. This allows us to map Camelot variable names dire
tly onto Grail variable names (whi
h inturn map onto JVM lo
al variable lo
ations) with no danger of 
lashes arising.Next, we give names to intermediate results in many 
ontexts by repla
ing 
omplex expressions with vari-ables. For example, the expression f(a + b + c) would be repla
ed by an expression of the form let t1 =
a + b in let t2 = t1 + c in f(t2). The introdu
tion of names for intermediate results 
an produ
e a largenumber of Grail (and hen
e JVM) variables. After the sour
e 
ode has been 
ompiled to Grail the number oflo
al variables is minimised by applying a standard register allo
ation algorithm (see [30℄).A �nal transformation ensures that let-expressions are in a �straight-line� form. After all of these trans-formations have been performed expressions have been redu
ed to a form whi
h we refer to as normalisedCamelotThe stru
ture of normalised Camelot (whi
h is in fa
t in a type of A-normal form [9℄) is su�
iently 
loseto that of Grail that it is fairly straightforward to translate from the former to the latter. Another bene�t ofnormalisation is that it is easier to write and implement type systems for normalised Camelot. The fa
t thatthe 
omponents of many expressions are atoms rather than 
omplex subexpressions means that typing rules
an have very simple premisses.2.4. Compilation of values. Camelot has various primitive types (int, float, et
.) whi
h 
an betranslated dire
tly into 
orresponding JVM types. The 
ompilation of user-de�ned datatypes, however, israther more 
ompli
ated. Obje
ts belonging to datatypes are represented by members of a single JVM 
lasswhi
h we will refer to as the diamond 
lass. Obje
ts of the diamond 
lass 
ontain enough �elds to representany member of any datatype de�ned in the program. Ea
h instan
e X of the diamond 
lass 
ontains an integertag �eld whi
h identi�es the 
onstru
tor with whi
h X is asso
iated. The diamond 
lass also 
ontains a stati
�eld pointing to the free list. The free list is managed via the stati
 methods allo
 (whi
h returns the diamondat the head of the free list, or 
reates a new diamond by 
alling new if the free list is empty), and free whi
hpla
es a diamond obje
t on the free list. The diamond 
lass also has overloaded stati
 methods 
alled makeand fill, one instan
e of ea
h for every sequen
e of types appearing in a 
onstru
tor. The make methods areused to implement ordinary 
onstru
tor appli
ation; ea
h takes an integer tag value and a sequen
e of argumentvalues and 
alls allo
 to obtain an instan
e of the diamond 
lass, and then 
alls a 
orresponding fill method
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y 21to �ll in the appropriate �elds with the tag and the arguments. The fill methods are also used when theprogrammer reuses an existing diamond to 
onstru
t a datatype value.It 
an be argued that this representation is ine�
ient in that datatype values are often represented by JVMobje
ts whi
h are larger than they need to be. This is true, but is di�
ult to avoid due to the type-safe natureof JVM memory management whi
h prevents one from re-using the heap spa
e o

upied by a value of one typeto store a value of a di�erent type. We wish to be able to reuse heap spa
e, but this 
an be impossible if obje
ts
an 
ontain only one type of data. With the 
urrent s
heme one 
an easily write a heapsort program whi
hoperates entirely in-pla
e. List 
ells are large enough to be reused as heap nodes and this allows a heap to bebuilt using 
ells obtained by destroying the input list. On
e the heap has been built it 
an in turn be destroyedand the spa
e reused to build the output list. In this 
ase, the amount of memory o

upied by a list 
ell islarger than it needs to be, but the overall amount of store required is less than would be the 
ase if separate
lasses were used to 
ontain list 
ells and heap nodes.In the 
urrent 
ontext it 
an be 
laimed that it is better to have an ine�
ient representation about whi
h we
an give 
on
rete guarantees than an e�
ient one whi
h about we 
an say nothing. Most of the programs whi
hwe have written so far use a limited number of datatypes so that the overhead introdu
ed by the monolithi
representation for diamonds is not too severe. However, it is likely that for very large programs this overheadwould be
ome una

eptably large. One possibility whi
h we have not yet explored is that it might be possibleto a
hieve more e�
ient heap usage by using data�ow te
hniques to follow the �ow of diamonds through theprogram and dete
t datatypes whi
h are never used in an overlapping way. One 
ould then equip a programwith several smaller diamond 
lasses whi
h would represent su
h non-overlapping types.These problems 
ould be avoided by 
ompiling to some platform other than the JVM (for example toC or to a spe
ialised virtual ma
hine) where 
ompa
tion of heap regions would be possible. The Hofmann-Jost algorithm is still appli
able in this situation, so it would still be feasible to produ
e resour
e guarantees.However, it was a fundamental de
ision of the MRG proje
t to use the JVM, based on the fa
ts that the JVMis widely deployed and very well-known, and that resour
e usage is a genuine 
on
ern in many 
ontexts wherethe JVM is used. Our present approa
h allows us to produ
e 
on
rete guarantees at the 
ost of some overhead;we hope that at a later stage a more sophisti
ated approa
h (su
h as the one suggested above) might allow usto redu
e the overheads while still obtaining guaranteed resour
e bounds.2.5. Remarks. There are various ways in whi
h Camelot 
ould be extended. The la
k of higher-orderfun
tions is in
onvenient, but the resour
e-aware type systems whi
h we use are presently unable to deal withhigher-order fun
tions, partly be
ause of the fa
t that these are normally implemented using heap-allo
ated
losures whose size may be di�
ult to predi
t. A possible strategy for dealing with this whi
h we are 
urrentlyinvestigating is Reynolds' te
hnique of defun
tionalization [24℄ whi
h transforms higher-order programs into�rst-order ones, essentially by performing a transformation of the sour
e 
ode whi
h repla
es 
losures withmembers of datatypes. This has the advantage that extra spa
e required by 
losures is exposed at the sour
elevel, where it is amenable to analysis by the heap-usage inferen
e te
hniques mentioned earlier.3. Obje
t-oriented extensions. The 
ore Camelot language as des
ribed in Se
tion 2 above enables theprogrammer to write a program with a predi
table resour
e usage; however, only primitive intera
tion with theoutside world is possible, through 
ommand line arguments, �le input and printed output. To be able to writea full interfa
e for a game or utility to be run on a mobile devi
e, Camelot programs must be able to interfa
ewith external Java libraries. Similarly, the programmer may wish to utilise devi
e-spe
i�
 libraries, or Java'sextensive 
lass library.This se
tion des
ribes our obje
t-oriented extension to Camelot. This is primarily intended to allow Camelotprograms to a

ess Java libraries. It would also be possible to write resour
e-
erti�ed libraries in Camelot for
onsumption by standard Java programs, or indeed use the obje
t system for OO programming for its own sake,but giving Camelot programs a

ess to the outside world is the main obje
tive.In designing an obje
t system for Camelot, many 
hoi
es are made for us, or at least tightly 
onstrained.We wish to 
reate a system allowing inter-operation with Java, and we wish to 
ompile an obje
t system toJVML. So we are almost for
ed into drawing the obje
t system of the JVM up to the Camelot level, and 
annotseriously 
onsider a fundamentally di�erent system.On the other hand, the type system is strongly in�uen
ed by the existing Camelot type system. Thereis more s
ope for 
hoi
e, but implementation 
an be
ome 
omplex, and an overly 
omplex type system is



22 S. Gilmore et al.undesirable from a programmer's point of view. We also do not want to interfere with type systems for resour
esas mentioned above.We shall �rst attempt to make the essential features of Java obje
ts visible in Camelot in a simple form,with the view that a simple abbreviation or module system 
an be added at a later date to make things morepalatable if desired.3.1. Basi
 Features. We shall view obje
ts as re
ords of possibly mutable �elds together with relatedmethods, although Camelot has no existing re
ord system. We de�ne the usual operations on these obje
ts,namely obje
t 
reation, method invo
ation, �eld a

ess and update, and 
asting and mat
hing. As one mightexpe
t we 
hoose a 
lass-based system 
losely modelling the Java obje
t system. Consequently we must a
-knowledge Java's uses of 
lasses for en
apsulation, and asso
iate stati
 methods and �elds with 
lasses also.We now 
onsider these features. The examples below illustrate the new 
lasses of expressions we add toCamelot.Stati
 method 
alls There is no 
on
eptual di�eren
e between stati
 methods and fun
tions, ignoring the useof 
lasses for en
apsulation, so we 
an treat stati
 method 
alls just like fun
tion 
alls.java.lang.Math.max a bStati
 �eld a

ess Some libraries require the use of stati
 �elds. We should only need to provide a

ess to
onstant stati
 �elds, so they 
orrespond to simple values.java.math.BigInteger.ONEObje
t 
reation We 
learly need a way to 
reate obje
ts, and there is no need to deviate from the newoperator. By analogy with standard Camelot fun
tion appli
ation syntax (i.e. 
urried form) we have:new java.math.BigInteger "101010" 2Instan
e �eld a

ess To retrieve the value of an instan
e variable, we writeobje
t#fieldwhereas to update that value we use the syntaxobje
t#field <- valueassuming that field is de
lared to be a mutable �eld.It 
ould be argued that allowing unfettered external a

ess to an obje
t's variables is against the spiritof OO, and more to the point inappropriate for our small language extension, but we wish to allow easyinteroperability with any external Java 
ode.Method invo
ation Drawing inspiration from the O'Caml syntax, and again using a 
urried form, we haveinstan
e method invo
ation:myMap#put key valueNull values In Java, any method with obje
t return type may return the null obje
t. For this reason we adda 
onstru
tisnull ewhi
h tests if the expression e is a null value.Casts and type
ase It may be o

asionally be ne
essary to 
ast obje
ts up to super
lasses, for example tofor
e the intended 
hoi
e between overloaded methods. We will also want to re
over sub
lasses, su
has when removing an obje
t from a 
olle
tion. Here we propose a simple notation for up-
asting:obj :> ClassThis notation is that of O'Caml, also borrowed by MLj (des
ribed in [3℄). To handle down-
asting weshall extend patterns in the manner of type
ase (again like MLj) as follows:mat
h obj with o :> C1 -> o.a()| o :> C2 -> o.b()| _ -> obj.
()Here o is bound in the appropriate subexpressions to the obje
t obj viewed as an obje
t of type C1 orC2 respe
tively. As in datatype mat
hes we require that every possible 
ase is 
overed; here this meansthat the default 
ase is mandatory. We also require that ea
h 
lass is a sub
lass of the type of obj, andsuggest that a 
ompiler warning should be given for any redundant mat
hes.Unlike MLj we 
hoose not to allow down
asting outside of the new form of mat
h statement, partlybe
ause at present Camelot has no ex
eption support to handle invalid down-
asts.As usual, the arguments of a (stati
 or instan
e) method invo
ation may be sub
lasses of the method's argumenttypes, or 
lasses implementing the spe
i�ed interfa
es.
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urren
y 23The following example demonstrates some of the above features, and illustrates the ease of interoperability.Note that the type of the parameter l is spe
i�ed by a 
onstraint here. Type inferen
e does not 
ross 
lassboundaries in Camelot.let 
onvert (l: string list) =mat
h l with [℄ -> new java.util.LinkedList ()| h::t ->let ll = 
onvert tin let _ = ll#addFirst hin ll3.2. De�ning 
lasses. On
e we have the ability to write and 
ompile programs using obje
ts, we may aswell start writing 
lasses in Camelot. We must be able to 
reate 
lasses to implement 
allba
ks, su
h as in theSwing GUI system whi
h requires us to write stateful adaptor 
lasses. Otherwise, as mentioned previously, wemay wish to write Camelot 
ode to be 
alled from Java, for example to 
reate a resour
e-
erti�ed library foruse in a Java program, and de�ning a 
lass is a natural way to do this. Implementation of these 
lasses willobviously be tied to the JVM, but the form these take in Camelot has more s
ope for variation.We allow the programmer to de�ne a 
lass whi
h may expli
itly sub
lass another 
lass, and implement anumber of interfa
es. We also allow the programmer to de�ne (possibly mutable) �elds and methods, as wellas stati
 methods and �elds for the purpose of 
reating a spe
i�
 
lass for interfa
ing with Java. We naturallyallow referen
e to this.The form of a 
lass de
laration is given below. Items within angular bra
kets 〈. . .〉 are optional.
classdecl ::= 
lass cname = 〈scname with〉 body end

body ::= 〈interfaces〉 〈fields〉 〈methods〉

interfaces ::= implement iname 〈interfaces〉

fields ::= field 〈fields〉

methods ::= method 〈methods〉This de�nes a 
lass 
alled cname, implementing the spe
i�ed interfa
es. The optional scname gives the nameof the dire
t super
lass; if it is not present, the super
lass is taken to be the root of the 
lass hierar
hy, namelyjava.lang.Obje
t. The 
lass cname inherits the methods and values present in its super
lass, and these maybe referred to in its de�nition.As well as a super
lass, a 
lass 
an de
lare that it implements one or more interfa
es. These 
orresponddire
tly to the Java notion of an interfa
e. Java libraries often require the 
reation of a 
lass implementing aparti
ular interfa
e�for example, to use a Swing GUI one must 
reate 
lasses implementing various interfa
esto be used as 
allba
ks. Note that at the 
urrent time it is not possible to de�ne interfa
es in Camelot, theyare provided purely for the purpose of interoperability.Now we des
ribe �eld de
larations.
field ::= field x : τ | field mutable x : τ | val x : τInstan
e �elds are de�ned using the keyword field, and 
an optionally be de
lared to be mutable. Stati
 �eldsare de�ned using val, and are non-mutable. In a sense these mutable �elds are the �rst introdu
tion of side-e�e
ts into Camelot. While the Camelot language is de�ned to have an array type, this has largely been ignoredin our more formal treatments as it is not fundamental to the language. Mutable �elds, on the other hand,are fundamental to our notion of obje
t orientation, so we expe
t any extension of Camelot resour
e-
ontrolfeatures to obje
t-oriented Camelot to have to deal with this properly.Methods are de�ned as follows, where 1 ≤ i1, . . . , im ≤ n.

method ::= maker(x1:τ1) . . . (xn:τn) 〈: super xi1 . . . xim
〉 = exp

| method m(x1:τ1) . . .(xn:τn) : τ = exp

| method m() : τ = exp

| let m(x1:τ1) . . . (xn:τn) : τ = exp

| let m() : τ = exp



24 S. Gilmore et al.Again, we use the usual let syntax to de
lare what Java would 
all stati
 methods. Stati
 methods are simplymonomorphi
 Camelot fun
tions whi
h happen to be de�ned within a 
lass, although they are invoked usingthe syntax des
ribed earlier. Instan
e methods, on the other hand, are a
tually a fundamentally new additionto the language. We 
onsider the instan
e methods of a 
lass to be a set of mutually re
ursive monomorphi
fun
tions, in whi
h the spe
ial variable this is bound to the 
urrent obje
t of that 
lass.We 
an 
onsider the methods as mutually re
ursive without using any additional syntax (su
h as andblo
ks) sin
e they are monomorphi
. ML uses and blo
ks to group mutually re
ursive fun
tions be
ause itslet-polymorphism prevents any of these fun
tions being used polymorphi
ally in the body of the others, but thisis not an issue here. In any 
ase this impli
it mutual re
ursion feels appropriate when we are 
ompiling to theJava Virtual Ma
hine, and have to 
ome to terms with open re
ursion.In addition to stati
 and instan
e methods, we also allow a spe
ial kind of method 
alled a maker. This isjust what would be 
alled a 
onstru
tor in the Java world, but as in [8℄ we use the term maker in order to avoid
onfusion between obje
t and datatype 
onstru
tors. The maker term above de�nes a maker of the 
ontaining
lass C su
h that if new C is invoked with arguments of type τ1 . . . τn, an obje
t of 
lass C is 
reated, thesuper
lass maker is exe
uted (this is the zero-argument maker of the super
lass if none is expli
itly spe
i�ed),expression exp (of unit type) is exe
uted, and the obje
t is returned as the result of the new expression. Every
lass has at least one maker; a 
lass with no expli
it maker is taken to have the maker with no arguments whi
hinvokes the super
lass zero-argument maker and does nothing. This impli
it maker is inserted by the 
ompiler.3.3. Polymorphism. We remarked earlier that stati
 methods are basi
ally monomorphi
 Camelot fun
-tions together with a form of en
apsulation, but it is worth 
onsidering polymorphism more expli
itly. obje
t-oriented Camelot methods, whether stati
 or instan
e methods, are not polymorphi
. That is, they have subtypepolymorphism but not parametri
 polymorphism (generi
ity), unlike Camelot fun
tions whi
h have parametri
but not subtype polymorphism. This is not generally a problem, as most polymorphi
 fun
tions will involvemanipulation of polymorphi
 datatypes, and 
an be pla
ed in the main program, whereas most methods willbe interfa
ing with the Java world and thus should 
onform to Java's subtyping polymorphism.3.4. Translation. As mentioned earlier, the present Camelot 
ompiler targets the JVM, via the inter-mediate language Grail. Translating the obje
t-oriented features whi
h have just been des
ribed is relativelystraightforward, as the JVM (and Grail) provide what we need. A detailed formal des
ription of the translationpro
ess 
an be found in [31℄3.5. Obje
ts and Resour
e Types. As des
ribed earlier, the use of diamond annotations on Camelotprograms in 
ombination with 
ertain resour
e-aware type systems allows the heap usage of those programsto be inferred, as well as allowing some in-pla
e update to o

ur. Clearly the presen
e of mutable obje
ts inobje
t-oriented Camelot also provides for in-pla
e update. However by allowing arbitrary obje
t 
reation wealso repli
ate the unbounded heap-usage problem solved for datatypes. Perhaps more seriously, we are allowingCamelot programs to invoke arbitrary Java 
ode, whi
h may use an unlimited amount of heap spa
e.Firstly 
onsider the se
ond problem. Even if we have some way to pla
e a bound on the heap spa
e used byour new OO features within a Camelot program, external Java 
ode may use arbitrary amounts of heap. Thereseem to be a few possible approa
hes to this problem, none of whi
h are parti
ularly satisfa
tory. We 
ouldde
ide to only allow the use of external 
lasses if they 
ame with a proof of bounded heap usage. Constru
tinga resour
e-bounded Java 
lass library or inferring resour
e bounds for an existing library would be a massiveundertaking, although perhaps less problemati
 with the smaller 
lass libraries used with mobile devi
es. Thissuggestion seems somewhat unrealisti
.Alternatively, we 
ould simply allow the resour
e usage of external methods to be stated by the programmeror library 
reator. This extends the trusted 
omputing base in the sense of resour
es, but seems a morereasonable solution. The other alternative�
onsidering resour
e-bound proofs to only refer to the resour
esdire
tly 
onsumed by the Camelot 
ode�seems unrealisti
, as one 
ould easily (and even a

identally) 
heatby using Java libraries to do some memory-
onsuming �dirty work�.The issue of heap-usage internal to obje
t-oriented Camelot programs seems more tra
table, although wedo not propose a solution here. A �rst attempt might mimi
 the te
hniques used earlier for datatypes; perhapswe 
an adapt the use of diamonds and linear type systems? The use of diamonds for in-pla
e update is irrelevanthere, and indeed relies on the uniform representation of datatypes by obje
ts of a parti
ular Java 
lass. Sin
ewe are hardly going to represent every Java obje
t by an obje
t of one 
lass we 
ould not hope to have su
h adire
t 
orrelation between diamonds and 
hunks of storage.
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y 25However, we 
ould imagine an abstra
t diamond whi
h represents the heap storage used by an arbitraryobje
t, and require any instan
e of new to supply one of these diamonds, in order that the total number ofobje
ts 
reated is limited. Unfortunately re
lamation of su
h an abstra
t diamond would only 
orrespond tomaking an obje
t available to garbage 
olle
tion, rather than de�nitely being able to re-use the storage. Evenso, su
h a system might be able to give a measure of the total number of obje
ts 
reated and the maximumnumber in a
tive use simultaneously.4. Using threads in Camelot. Previously the JVM had been used simply as a 
onvenient run-timefor the Camelot language but the obje
t-oriented extensions des
ribed above allow the Java namespa
e to bea

essed from a Camelot appli
ation. Thus a Camelot appli
ation 
an now 
reate Java obje
ts and invoke Javamethods. Figure 4.1 shows the implementation of a remote input reader in RoundTable, a networked 
hatappli
ation written in Camelot. This example 
lass streams input from a network 
onne
tion and renders it ina display area in the graphi
al user interfa
e of the appli
ation.(* Thread to read from the network, passing data to a display obje
t *)
lass remote = java.lang.Threadwith�eld input : java.io.BufferedReader�eld disp : displaymaker (i : java.io.BufferedReader )(d : display) =let _ = input ← i in disp ← dmethod run() : unit =let line = this#input#readLine()in if isnullobj line then () elselet _ = this#disp#append linein this#run()endFig. 4.1. An extra
t from the RoundTable 
hat appli
ation showing the OO extensions to CamelotThis example shows the Camelot syntax for method invo
ation (obj#meth()), �eld a

ess (obj#field) andmutable �eld update (f <- exp). Both of these are familiar from Obje
tive Caml.This example also shows that even in the obje
t-oriented fragment of the Camelot language that the naturalde�nition style for unbounded repetition is to write re
ursive method 
alls. The Camelot 
ompiler 
onverts tail-
alls of instan
e methods (su
h as this#run) into while-loops so that methods implemented as in Figure 4.1run in 
onstant spa
e and do not over�ow the Java run-time sta
k. In 
ontrast re
ursive method 
alls in Javaare not optimised in this way and would lead to the program over�owing the sta
k.A s
reenshot of a window from the RoundTable appli
ation is shown in Figure 4.2. This shows date-and-time-stamped messages arriving spontaneously in the window. The appli
ation o�ers the ability to threadmessages by 
ontent or to sort them by time. The sorting routine is guaranteed by type
he
king to run in
onstant spa
e be
ause addresses of 
ons 
ells in the list of messages are re-
y
led using the free list as des
ribedin Se
tion 2.2.
Fig. 4.2. S
reenshot of the Camelot RoundTable appli
ation



26 S. Gilmore et al.The extension of the Camelot 
ompiler to support interoperation with Java fa
ilitates the implementationof graphi
al appli
ations su
h as these. The Java APIs used by this appli
ation in
lude the Swing graphi
aluser interfa
e 
omponents, networking, threads and pluggable look-and-feel 
omponents su
h as the Skin look-and-feel shown above.5. Management of threads. In designing a thread management system for Camelot our strongest re-quirement was to have a system whi
h works harmoniously with the storage management system already inpla
e for Camelot. One aspe
t of this is that the resour
e 
onsumption of a single-threaded Camelot program
an be 
omputed in line with the reasoning explained in Se
tion 1.In moving from one to multiple threads the most important question with respe
t to memory usage is thefollowing. Should the free list of storage whi
h 
an be reused be a single stati
 instan
e shared a
ross all threads;or should ea
h thread separately maintain its own lo
al instan
e of the free list?In the former 
ase the a

essor methods for the free list must be syn
hronised in order for data stru
turesnot to be
ome disordered by 
on
urrent write operations. Syn
hronisation in
urs an overhead of lo
king andunlo
king the parent of the �eld when entering and leaving a 
riti
al region. This imposes a run-time penalty.In the latter 
ase there is no requirement for a

ess to the free list to be syn
hronised; ea
h thread has itsown free list. In this 
ase, though, the free memory on ea
h free list is private, and not shared. This means thatthere will be times when one thread allo
ates memory (with a Java new instru
tion) while another thread hasunused memory on its lo
al free list. This imposes a penalty on the program memory usage, and this form ofthread management would lead to programs typi
ally using more memory overall.We have 
hosen the former s
heme; we have a single stati
 instan
e of a free list shared a
ross all threads. Ourprograms will take longer than their optimum run-time but memory performan
e will be improved. Cru
ially,predi
tability of memory 
onsumption is retained.There are several possible variants on this se
ond s
heme whi
h we 
onsidered. They were not right for ourpurposes but might be right for others. One interesting alternative is a hybrid of the two approa
hes is whereea
h thread had a bounded (small) lo
al free list and �ushes this to the global free list when it be
omes full.This would redu
e the overhead of 
alls to a

ess the syn
hronised global free list, while preventing threads fromkeeping too many unused memory 
ells lo
ally. This 
ould be a suitable 
ompromise between the two extremesbut the analysis of this approa
h would inevitably be more 
ompli
ated than the approa
h whi
h we adopted(a single stati
 free list).A se
ond alternative would be to implement weak lo
al free lists. In this 
onstru
tion ea
h thread would haveits own private free list implemented using weak referen
es whi
h are referen
es that are not strong enough bythemselves to keep an obje
t alive if no genuine referen
es to it are retained. Weak referen
es are typi
ally usedto implement 
a
hes and se
ondary indexes for data stru
tures. Other high-level garbage-
olle
ted languagessu
h as O'Caml implement weak referen
es also. This s
heme was not usable by us be
ause the Camelot
ompiler also targets small JVMs on handheld devi
es and the J2ME does not provide the ne
essary 
lass(java.lang.ref.WeakReferen
e).The analysis of memory 
onsumption of Camelot programs is based on the 
onsumption of memory by heap-allo
ated data stru
tures. The present analysis of Camelot programs is based on a single-threaded ar
hite
ture.To assist with the development of an analysis method for multi-threaded Camelot programs we require thatdata stru
tures in a multi-threaded Camelot program are not shared a
ross threads. For example, it is notpossible to hold part of a list in one thread and the remainder in another. This requirement means that thespa
e 
onsumption of a multi-threaded Camelot program is obtained as the sum of per-thread spa
e allo
ationplus the spa
e requirements of the threads themselves.At present our type system takes a

ount of heap allo
ations but does not take a

ount of sta
k growth.Thus Camelot programs 
an potentially (and sometimes do in pra
ti
e) fail at runtime with ajava.lang.Sta
kOverflowError ex
eption if the programmer overuses the idiom of working with families ofmutually-re
ursive fun
tions and methods whi
h 
ompute with deeply-nested re
ursion.Even sophisti
ated fun
tional language 
ompilers for the JVM su�er from this problem and some, su
has MLj [4, 3℄, do not even implement tail-
all elimination in 
ases where the Camelot 
ompiler does. Severalauthors 
onsider the absen
e of support for tail 
all elimination to be a failing of the JVM [2, 22℄. An approa
hto eliminating tail 
alls su
h as that used by Funnel [25℄ would be a useful next improvement to the Camelot
ompiler. Te
hniques su
h as trampolining have also been shown to work for the JVM [29℄. The prin
ipalreason why the JVM does not automati
ally perform tail-
all optimisation is that the Java se
urity model may
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y 27require inspe
tion of the sta
k to ensure that a parti
ular method has su�
ient privileges to exe
ute anothermethod; eliminating tail-
alls would lead to the dis
arding of sta
k frames whi
h 
ontain the ne
essary se
urityinformation. However, Clements and Felleisen have re
ently proposed another se
urity model whi
h allowssafe tail-
all optimisation [7℄; they 
laim that this requires only a minor 
hange to the me
hanism 
urrentlyused by the JVM (and other platforms), so there may be some hope that future JVM implementations willsupport proper tail-
all optimisation and thus simplify the pro
ess of implementing fun
tional languages forthe JVM.6. A simple thread model for Camelot. To retain predi
tability of memory behaviour in Camelot werestri
t the programming model o�ered by Java's threads.Firstly, we disallow use of the stop and suspend methods from Java's threads API. These are depre
atedmethods whi
h have been shown to have poor programming properties in any 
ase. Use of the stop methodallows obje
ts to be exposed in a damaged state, part-way through an update by a thread. Use of suspendfreezes threads but these do not release the obje
ts whi
h they are holding lo
ks on, thereby often leadingto deadlo
ks. Dispensing with pre-emptive thread interruption means that there is a 
orresponden
e betweenCamelot threads and lightweight threads implemented using �rst-
lass 
ontinuations, 
all/

 and throw, asare usually to be found in multi-threaded fun
tional programming languages [6, 18℄.Se
ondly, we require that all threads are run, again for the purposes of supporting predi
tability of memoryusage. In the Java language thread allo
ation (using new) is separated from thread initiation (using the startmethod in the java.lang.Thread 
lass) and there is no guarantee that allo
ated threads will ever be run atall. In multi-threaded Camelot programs we require that all threads are started at the point where they are
onstru
ted.Finally, we have a single 
onstru
tor for 
lasses in Camelot be
ause our type system does not supportoverloading. This must be passed initial values for all the �elds of the 
lass (be
ause the thread will initiateautomati
ally). All Camelot threads ex
ept the main thread of 
ontrol are daemon threads, whi
h means thatthe Java Virtual Ma
hine will not keep running if the main thread exits.let re
 threadname(args) =let locals = subexps in threadname(args)let threadInstance =new threadname(actuals) in . . .
 
lass threadnameHolder (args) = java.lang.Threadwithlet re
 threadname() =let locals = subexps in threadname()method run() : unit =let _ = this#setDaemon(true)in threadname()endlet threadInstance =new threadnameHolder (actuals) inlet _ = threadInstance#start() in . . .Fig. 6.1. Derived forms for thread 
reation and use in CamelotThis simpli�ed idiom of thread use in Camelot allows us to de�ne derived forms for Camelot threads whi
habbreviate the use of threads in the language. These derived forms 
an be implemented by 
lass hoisting,moving a generated 
lass de�nition to the top level of the program. This translation is outlined in Figure 6.1.7. Threads and (non-)termination. The Camelot programming language is supported not only by astrong, expressive type system but also by a program logi
 whi
h supports reasoning about the time and spa
eusage of programs in the language. However, the logi
 is a logi
 of partial 
orre
tness, whi
h is to say that the
orre
tness of the program is guaranteed only under the assumption that the program terminates. It would
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onvert this logi
 into a logi
 of total 
orre
tness whi
h would guarantee termination instead ofassuming it but proofs in su
h a logi
 would be more di�
ult to produ
e than proofs in the partial 
orre
tnesslogi
.It might seem nonsensi
al to have a logi
 of partial 
orre
tness to guarantee exe
ution times of programs(�this program either terminates in 20 se
onds or it never does�) but even these proofs about exe
ution times havetheir use. They are used to provide a bound on the running time of a program so that if this time is ex
eeded theprogram may be terminated for
ibly by the user or the operating system be
ause after this point it seems thatthe program will not terminate. Su
h a priori information about exe
ution times would be useful for s
hedulingpurposes. In Grid-based 
omputing environments Grid servi
e providers s
hedule in
oming jobs on the basis ofestimated exe
ution times supplied by Grid users. These estimates are sometimes signi�
antly wrong, leadingthe s
heduler either to for
ibly terminate an over-running job due to an under-estimated exe
ution time or tos
hedule other jobs poorly on the basis of an over-estimated exe
ution time.Be
ause of the presen
e of threads in the language we now have meaningful (impure, side-e�e
ting) fun
tionswhi
h do not terminate so a strong fun
tional programming approa
h [27℄ requiring proofs of termination forevery fun
tion would be inappropriate for our purposes.8. Related work. The 
ore of the Camelot programming language is a stri
t, 
all-by-value �rst-orderfun
tional programming language in the ML family extended with expli
it memory deallo
ation 
ommands andan extended type system whi
h expresses the 
ost of fun
tion appli
ation in terms of an in
rease in the sizeof the allo
ated memory on the heap. Other authors have addressed a similar programming model with somevariations. Lee, Yang and Yi [17℄ present a stati
 analysis approa
h whi
h is used in applying a sour
e-leveltransformation to insert expli
it free 
ommands into the program text. Their analysis allows uses of expli
itmemory deallo
ation whi
h are not expressible in Camelot due to the linearity requirement of the Camelottype system. Vas
on
elos and Hammond [28℄ present a type system whi
h is superior to ours in applying tohigher-order fun
tional programs. Our primary 
ost 
omputation is memory allo
ation whereas their primaryfo
us is on run-time abstra
ted as the number of beta-redu
tions in the abstra
t semanti
 interpretation ofthe fun
tion term against the operational semanti
s of the language. Our work di�ers from both of these in
onsidering multi-threaded, not only single-threaded programs.We have made referen
e to MLj, the aspe
ts of whi
h related to Java interoperability are des
ribed in [3℄.MLj is a fully formed implementation of Standard ML, and as su
h is a mu
h larger language than we 
onsiderhere. In parti
ular, MLj 
an draw upon features from SML su
h as modules and fun
tors, for example, allowingthe 
reation of 
lasses parameterised on types. Su
h �exibility 
omes with a pri
e, and we hope that therestri
tions of our system will make the 
erti�
ation of the resour
e usage of obje
t-oriented Camelot programsmore feasible.By virtue of 
ompiling an ML-like language to the JVM, we have made many of the same 
hoi
es that havebeen made with MLj. In many 
ases there is one obvious translation from high level 
on
ept to implementation,and in others the appropriate language 
onstru
t is suggested by the Java obje
t system. However we have alsomade di�erent 
hoi
es more appropriate to our purpose, in terms of transparen
y of resour
e usage and thedesire for a smaller language. For example, we represent obje
ts as re
ords of mutable �elds whereas MLj usesimmutable �elds holding referen
es.There have been various other attempts to add obje
t oriented features to ML and ML-like languages.O'Caml provides a 
lean, �exible obje
t system with many features and impressive type inferen
e�a formalisedsubset is des
ribed in [23℄. As in obje
t-oriented Camelot, obje
ts are modelled as re
ords of mutable �elds plusa 
olle
tion of methods. Many of the additional features of O'Caml 
ould be added to obje
t-oriented Camelotif desired, but there are some 
ompli
ations 
aused when we 
onsider Java 
ompatibility. For example, thereare various ways to 
ompile parameterised 
lasses and polymorphi
 methods for the JVM, but making thesefeatures intera
t 
leanly with the Java world is more subtle.The power of the O'Caml obje
t system seems to 
ome more from the distin
tive type system employed.O'Caml uses the notion of a row variable, a type variable standing for the types of a number of methods. Thismakes it possible to express �a 
lass with these methods, and possibly more� as a type. Where we would havea method parameter taking a parti
ular obje
t type and by subsumption any subtype, in O'Caml the type ofthat parameter would in
lude a row variable, so that any obje
t with the appropriate methods and �elds 
ouldbe used. This allows O'Caml to preserve type inferen
e, but this is less important for our appli
ation, and doesnot map 
leanly to the JVM.
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y 29A 
lass me
hanism for Moby is de�ned in [8℄ with the prin
iple that 
lasses and modules should be orthogonal
on
epts. La
king a module system, Camelot is unable to take su
h an approa
h, but both Moby and O'Camlhave been a guide to 
on
rete representation. Many other relevant issues are dis
ussed in [21℄, but again la
kof a module system�and our desire to avoid this to keep the language small�gives us a di�erent perspe
tiveon the issues.9. Con
lusions and further work. Our ongoing programme of resear
h on the Camelot fun
tionalprogramming language has been investigating resour
e 
onsumption and providing stati
 guarantees of resour
e
onsumption at the time of program 
ompilation. Our thread management system provides a layer of abstra
tionover Java threads. This 
ould allow us to modify the present implementation to multi-task several Camelotthreads onto a single Java thread. The reason to do this would be to 
ir
umvent the ungenerous thread limit onsome JVMs. This extension remains as future work but our present design strongly supports su
h an extension.We have dis
ussed a very simple thread pa
kage for Camelot. A more sophisti
ated one, perhaps based onThimble [26℄, would provide a mu
h more powerful programming model.A possibly pro�table extension of Camelot would be to use defun
tionalization [24℄ to eliminate mutualtail-re
ursion. Given a set of mutually re
ursive fun
tions F whose results are of type t, we de�ne a datatypes whi
h has for ea
h of the fun
tions in F a 
onstru
tor with arguments 
orresponding to the fun
tion'sarguments. The 
olle
tion of fun
tions F is then repla
ed by a single fun
tion f: s -> t whose body is amat
h statement whi
h 
arries out the 
omputations required by the individual fun
tions in F . In this waythe mutually re
ursive fun
tions 
an be repla
ed by a single tail-re
ursive fun
tion, and we already have anoptimisation whi
h eliminates re
ursion for su
h fun
tions. This te
hnique is somewhat 
lumsy, and 
are isrequired in re
y
ling the diamonds whi
h are required to 
ontain members of the datatypes required by s.Another potential problem is that several small fun
tions are e�e
tively 
ombined into one large one, and thereis thus a danger that that 64k limit for JVM methods might be ex
eeded. Nevertheless, this te
hnique doesover
ome the problems related to mutual re
ursion without a�e
ting the transparen
y of the 
ompilation pro
essunduly, and it might be possible for the 
ompiler to perform the appropriate transformations automati
ally.We intend to investigate this in more detail.A
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t. This paper des
ribes the eve (Expressive Velo
ity Engine) library, an obje
t oriented C++ library designed to easethe pro
ess of writing e�
ient numeri
al appli
ations using AltiVe
, the SIMD extension designed by Apple, Motorola and IBM.AltiVe
-powered appli
ations typi
ally show o� a relative speed up of 4 to 16 but need a 
omplex and awkward programmationstyle. By using various template metaprogramming te
hniques, E.V.E. provides an easy to use, STL-like, interfa
e that allowsdeveloper to qui
kly write e�
ient and easy to read 
ode. Typi
al appli
ations written with E.V.E. 
an bene�t from a largefra
tion of theori
al maximum speed up while being written as simple C++ arithmeti
 
ode.1. Introdu
tion.1.1. The AltiVe
 Extension. Re
ently, SIMD enhan
ed instru
tions have been proposed as a solutionfor delivering higher mi
ropro
essor hardware utilisation. SIMD (Single Instru
tion, Multiple Data) extensionsstarted appearing in 1994 in HP's MAX2 and Sun's VS extensions and 
an now be found in most of mi
ropro-
essors, in
luding Intel's Pentiums (MMX/SSE/SSE2) and Motorola/IBM's PowerPCs (Altive
). They havebeen proved parti
ularly useful for a

elerating appli
ations based upon data-intensive, regular 
omputations,su
h as signal or image pro
essing.AltiVe
 [10℄ is an extension designed to enhan
e PowerPC1 pro
essor performan
e on appli
ations handlinglarge amounts of data. The AltiVe
 ar
hite
ture is based on a SIMD pro
essing unit integrated with thePowerPC ar
hite
ture. It introdu
es a new set of 128 bit wide registers distin
t from the existing generalpurpose or �oating-point registers. These registers are a

essible through 160 new �ve
tor� instru
tions that
an be freely mixed with other instru
tions (there are no restri
tion on how ve
tor instru
tions 
an be intermixedwith bran
h, integer or �oating-point instru
tions with no 
ontext swit
hing nor overhead for doing so). Altive
handles data as 128 bit ve
tors that 
an 
ontain sixteen 8 bit integers, eight 16 bit integers, four 32 bitintegers or four 32 bit �oating points values. For example, any ve
tor operation performed on a ve
tor 
haris in fa
t performed on sixteen 
har simultaneously and is theoreti
ally running sixteen times faster as thes
alar equivalent operation. AltiVe
 ve
tor fun
tions 
over a large spe
trum, extending from simple arithmeti
fun
tions (additions, subtra
tions) to boolean evaluation or lookup table solving.Altive
 is natively programmed by means of a C API [5℄. Programming at this level 
an o�er signi�
antspeedups (from 4 to 12 for typi
al signal pro
essing algorithms) but is a rather tedious and error-prone task,be
ause this C API is really �assembly in disguise�. The appli
ation-level ve
tors (arrays, in variable numberand with variable sizes) must be expli
itly mapped onto the Altive
 ve
tors (�xed number, �xed size) and theprogrammer must deal with several low-level details su
h as ve
tor padding and alignment. To 
orre
tly turn as
alar fun
tion into a ve
tor-a

elerated one, a large part of 
ode has to be rewritten.Consider for example a simple 3x1 smoothing �lter (Fig. 1.1):void C_filter( 
har* d, short* r){ for(int i=1; i<SIZE-1; i++ )r[i℄ = (d[i-1℄+2*d[i℄+d[i+1℄)/4;} Fig. 1.1. A simple 3x1 gaussian �lter written in standard C.This 
ode 
an be rewritten (�ve
torized") using Altive
 ve
tor fun
tions. However, this rewriting is nottrivial. We �rst have to look at the original algorithm in a parallel way. The C_filter fun
tion is based on aniterative algorithm that runs trough ea
h item of the input data, applies the 
orresponding operations and writesthe result into the output array. By 
ontrast, AltiVe
 fun
tions operate on a bun
h of data simultaneously.We have to re
raft the algorithm so that it works on ve
tors instead of single s
alar values. This is done by
∗LASMEA, UMR 6602 CNRS / U. Clermont Ferrand, Fran
e (fal
ou, jserot�lasmea.univ-bp
lermont.fr).
1PPC 74xx (G4) and PPC 970 (G5). 31
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ou and J. Serotloading data into AltiVe
 ve
tors, shifting these ve
tors left and right, and performing ve
tor multipli
ation andaddition. The resulting 
ode�whi
h is indeed signi�
antly longer than the original one�is given in Appendix A.We have ben
hmarked both the s
alar and ve
torized implementation on a 2 GHz PowerPC G5 and obtainedthe results shown in Table 1.1. Both 
ode were 
ompiled using g

 3.3 using -O3. On this example, a ten folda

eleration 
an be observed with the AltiVe
 extension. However, the time spent to rewrite the algorithm in a�ve
torized" way and the somehow awkward Altive
 API 
an hinder the development of larger s
ale appli
ations.Table 1.1Exe
ution time and relative speed-up for 3x1 �lters.SIZE value C_filter AV_filter Speed Up
16 K 0.209 ms 0.020 ms 10.5
64 K 0.854 ms 0.075 ms 11.4

256 K 3.737 ms 0.322 ms 11.6
1024 K 16.253 ms 1.440 ms 11.32. AltiVe
 in high level API. As eviden
ed in the previous se
tion, writing AltiVe
-based appli
ations
an be a tedious task. A possible approa
h to 
ir
umvent this problem is to en
apsulate Altive
 ve
tors andthe asso
iated operations within a C++ 
lass. Instantiating this 
lass and using 
lassi
 in�x notations willprodu
e the AltiVe
 
ode. We a
tually built su
h a 
lass (AVe
tor) and used it to en
ode the �ltering exampleintrodu
ed in se
tion 1.1. The resulting 
ode is shown below.AVe
tor<
har> img(SIZE);AVe
tor<short> res(SIZE);res = (img.sr(1)+2*img+img.sl(1))/4;In this formulation, expli
it iterations have been repla
ed by appli
ation of overloaded operators on AVe
torobje
ts. The sr and sl methods implements the shifting operations. The performan
e of this 
ode, however,is very disappointing. With the array sizes shown in Table 1.1, the measured speed-ups never ex
eed 1. Thereasons for su
h behaviour are given below.Consider a simple 
ode fragment using overloaded operators as shown below:AVe
tor<
har> r(SIZE),x(SIZE),y(SIZE),z(SIZE);r = x + y + z;When a C++ 
ompiler analyses this 
ode, it redu
es the su

essive operator 
alls iteratively, resolving �rsty+z then x+(y+z) where y+z is in fa
t stored in a temporary obje
t. Moreover, to a
tually 
ompute x+y+z,the involved operations are 
arried out within a loop that applies the ve
_add fun
tion to every single ve
torelement of the array. An equivalent 
ode, after operator redu
tion and loop expansion is:AVe
tor<
har> r(SIZE),x(SIZE),y(SIZE),z(SIZE);AVe
tor<
har> tmp1(SIZE),tmp2(SIZE);for(i=0;i<SIZE/16);i++) tmp1[i℄ = ve
_add(y[i℄,z[i℄);for(i=0;i<SIZE/16);i++) tmp2[i℄ = ve
_add(x[i℄,tmp1[i℄);for(i=0;i<SIZE/16);i++) r[i℄ = tmp2[i℄;Fig. 2.1. Expanded 
ode for overloaded operator 
ompilationThis 
ode 
an be 
ompared to an �optimal", hand-written Altive
 
ode like the one shown on �gure 2.2. The
ode generated by the �naive" AltiVe
 
lass 
learly exhibits unne
essary loops and 
opies. When expressionsget more 
omplex, the situation gets worse. The time spent in loop index 
al
ulation and temporary obje
t
opies qui
kly over
omes the bene�ts of the SIMD parallelization, resulting in poor performan
es.This 
an be explained by the fa
t that all C++ 
ompilers use a dyadi
 redu
tion s
heme to evaluateoperators 
omposition. Some 
ompilers2 
an output a slightly better 
ode when 
ertain optimisations are

2Like Code Warrior or g

.
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t Oriented SIMD Library 33AVe
tor<
har> r(SIZE),x(SIZE),y(SIZE),z(SIZE);for(i=0;i<SIZE/16);i++) r[i℄ = ve
_add(x[i℄,ve
_add(y[i℄,z[i℄));Fig. 2.2. Optimal, hand written AltiVe
 
ode for x+y+z 
omputationturned on. However, large expressions or 
omplex fun
tions 
all 
an't be totally optimised. Another fa
tor isthe impa
t of the order of AltiVe
 instru
tions. When writing AltiVe
 
ode, one have to take in a

ount thefa
t that 
a
he lines have to be �lled up to their maximum. The typi
al way for doing so is to pa
k the loadinginstru
tions together, then the operations and �nally the storing instru
tions. When loading, 
omputing andstoring instru
tions are mixed in an unordered way, AltiVe
 performan
es generally drop.The aforementioned problem has already been identi�ed�in [13℄ for example�and is the major in
on-venient of the C++ language when it is used for high-level s
ienti�
 
omputations. In the domain of C++s
ienti�
 
omputing, it has led to the development of the so-
alled A
tive Libraries [15, 2, 14, 1℄, whi
h bothprovide domain-spe
i�
 abstra
tions and dedi
ated 
ode optimisation me
hanisms. This paper des
ribes howthis approa
h 
an be applied to the spe
i�
 problem of generating e�
ient Altive
 
ode from a high-level C++API.It is organized as follows. Se
t. 3 explains why generating e�
ient 
ode for ve
tor expressions is not trivialand introdu
es the 
on
ept of template-based meta-programming. Se
t. 4 explains how this 
on
ept 
an used togenerate optimised Altive
 
ode. Se
t. 5 rapidly presents the API of the library we built upon these prin
iples.Performan
e results are presented in Se
t. 6. Se
t. 7 is a brief survey of related work and Se
t. 8 
on
ludes.3. Template based Meta Programming. The evaluation of any arithmeti
 expression 
an be viewedas a two stages pro
ess:
• A �rst step, performed at 
ompile time, where the stru
ture of the expression is analysed to produ
e a
hain of fun
tion 
alls.
• A se
ond step, performed at run time, where the a
tual operands are provided to the sequen
e offun
tion 
alls and the a�erent 
omputations are 
arried out.When the expression stru
ture mat
hes 
ertain pattern or when 
ertain operands are known at 
ompile time, itis often possible to perform a given set of 
omputations at 
ompile time in order to produ
e an optimised 
hainof fun
tion 
alls. For example, if we 
onsider the following 
ode:for( int i=0;i<SIZE;i++){ table[i℄ = 
os(2*i);} If the size of the table is known at 
ompile time, the 
ode 
ould be optimised by removing the loop entirelyand writing a linear sequen
e of operations:table[0℄ = 
os(0);table[1℄ = 
os(2);// later \dotstable[98℄ = 
os(196);table[99℄ = 
os(198);Furthermore, the value 
os(0), . . . , 
os(198) 
an be 
omputed on
e and for all at 
ompile-time, so thatthe runtime 
ost of su
h initialisation boils down to 100 store operations.Te
hni
ally speaking, su
h a �lifting� of 
omputations from runtime to 
ompile-time 
an be implementedusing a me
hanism known as template-based metaprogramming. The sequel of this se
tion gives a brief a

ountof this te
hnique and of its 
entral 
on
ept, expressions templates. More details 
an be found, for example, inVeldhuizen's papers [11, 12, 13℄. We fo
us here on how this te
hnique 
an be used to remove unne
essary loopsand obje
t 
opies from the 
ode produ
ed for the evaluation of ve
tor based expressions.The basi
 idea behind expressions templates is to en
ode the abstra
t syntax tree (AST) of an expressionas a C++ re
ursive template 
lass and use overloaded operators to build this tree. Combined with an array-like
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ontainer 
lass, it provides a way to build a stati
 representation of an array-based expression. For example, ifwe 
onsider an �oat Array 
lass and an addition fun
tor add, the expression D=A+B+C 
ould be represented bythe following C++ type:Xpr<Array,add,Xpr<Array,add,Array>>Where Xpr is de�ned by the following type:template<
lass LEFT,
lass OP,
lass RIGHT>
lass Xpr{ publi
:Xpr( float* lhs, float* rhs ) : mLHS(lhs), mRHS(rhs) {}private:LEFT mLHS;RIGHT mRHS;}; The Array 
lass is de�ned as below:
lass Array{ publi
:Array( size_t s ) { mData = new float[s℄; mSize = s;}~Array() {if(mData) delete[℄ mData; }float* begin() { return mData; }private:float *mData;size_t mSize;}; This type 
an be automati
ally built from the 
on
rete syntax of the expression using an overloaded versionof the '+' operator that takes an Array and an Xpr obje
t and returns a new Xpr obje
t:Xpr< Array,add,Array> operator+(Array a, Array b){ return Xpr<T,add,Array>(a.begin(),b.begin());} Using this kind of operators, we 
an simulate the parsing of the above 
ode (�A+B+C") and see how the
lasses get 
ombined to build the expression tree:Array A,B,C,D;D = A+B+C;D = Xpr<Array,add,Array> + CD = Xpr<Xpr<Array,add,Array>,add,Array>Following the 
lassi
 C++ operator resolution, the A+B+C expression is parsed as (A+B)+C. The A+Bpart gets en
oded into a �rst template type. Then, the 
ompiler redu
e the X+C part, produ
ing the �nal type,en
oding the whole expression.Handling the assignation of A+B+C to D 
an then be done using an overloaded version of the assignmentoperator:template<
lass XPR> Array& Array::operator=(
onst XPR& xpr){ for(int i=0;i<mSize;i++) mData[i℄ = xpr[i℄;return *this;}
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t Oriented SIMD Library 35The Array and Xpr 
lasses have to provide a operator[℄ method to be able to evaluate xpr[i℄:int Array::operator[℄(size_t index){ return mData[index℄;}template<
lass L,
lass OP,
lass R>int Xpr<L,OP,R>::operator[℄(size_t index){ return OP::eval(mLHS[i℄,mRHS[i℄);} We still have to de�ne the add 
lass 
ode. Simply enough, add is a fun
tor that exposes a stati
 method
alled eval performing the a
tual 
omputation. Su
h fun
tors 
an be freely extended to in
lude any otherarithmeti
 or mathemati
al fun
tions.
lass add{ stati
 int eval(int x,int y) { return x+y; }} With these methods, ea
h referen
e to xpr[i℄ 
an be evaluated. For the above example, this gives:data[i℄ = xpr[i℄;data[i℄ = add::eval(Xpr<Array,add,Array>,C[i℄);data[i℄ = add::eval(add::apply(A[i℄,B[i℄),C[i℄);data[i℄ = add::eval(A[i℄+B[i℄,C[i℄);data[i℄ = A[i℄+B[i℄+C[i℄;4. Appli
ation to e�
ient AltiVe
 
ode generation. At this stage, we 
an add AltiVe
 supportto this meta-programming engine. If we repla
e the s
alar 
omputations and the indexed a

esses by ve
toroperations and loads, we 
an write an AltiVe
 template 
ode generator. These 
hanges a�e
t all the 
lasses andfun
tions shown in the previous se
tions.The Array 
lass now provides a load method that return a ve
tor instead of a s
alar:int Array::load(size_t index) { return ve
_ld(data_,index*16); }The add fun
tor now use ve
_add fun
tions instead of the standard + operator:
lass add{ stati
 ve
tor int eval(ve
tor int x,ve
tor int y){ return ve
_add(x,y); }} Finally, we use ve
_st to store results:template<
lass XPR> Array& Array::operator=(
onst XPR& xpr){ for(size_t i=0;i<mSize/4;i++) ve
_st(xpr.load(i),0,mData);return *this;} The �nal result of this 
ode generation 
an be observed on �gure 4.1.b for the A+B+C example. Figure 4.1.agives the 
ode produ
ed by g

 when using the std::valarray 
lass.For this simple task, one 
an easily see that the minimum number of loads operation is three and theminimum number of store operations is one. For the standard 
ode, we have seven extraneous lwz instru
tionsto load pointers, three lsfx to load the a
tual data and one stfs to store the result. For the optimised 
ode,we have repla
ed the s
alar lsfx with the AltiVe
 equivalent lvx, the s
alar fadds with vaddfp and stfsxwith the ve
tor stvx. Only three load instru
tions and one store instru
tions, redu
ing op
ode 
ount from 17to 9.
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ou and J. Serot(a) std::valarray 
ode (b) optimized 
odeL253: L117:lwz r9,0(r3) slwi r2,r9,4slwi r2,r12,2 addi r9,r9,1lwz r4,4(r3) lvx v1,r5,r2addi r12,r12,1 lvx v0,r4,r2lwz r11,4(r9) lvx v13,r6,r2lwz r10,0(r9) vaddfp v0,v0,v1lwz r7,4(r11) vaddfp v1,v0,v13lwz r6,4(r10) stvx v1,r2,r8lfsx f0,r7,r2 bdnz L117lfsx f1,r6,r2lwz r0,4(r4)fadds f2,f1,f0lfsx f3,r2,r0fadds f1,f2,f3stfs f1,0(r5)addi r5,r5,4bdnz L253 Fig. 4.1. Assembly 
ode for a simple ve
tor operation5. The EVE library. Using the 
ode generation te
hnique des
ribed in the previous se
tion, we haveprodu
ed a high-level array manipulation library aimed at s
ienti�
 
omputing and taking advantage of theSIMD a

eleration o�ered by the Altive
 extension on PowerPC pro
essors. This library, 
alled eve (forExpressive Velo
ity Engine) basi
ally provides two 
lasses, ve
tor and matrix�for 1D and 2D arrays �, and ari
h set of operators and fun
tions to manipulate them. This set 
an be roughly divided in four families:1. Arithmeti
 and boolean operators, whi
h are the dire
t ve
tor extension of their C++ 
ounterparts.For example:ve
tor<
har> a(64),b(64),
(64),d(64);d = (a+b)/
;2. Boolean predi
ates. These fun
tions 
an be used to manipulate boolean ve
tors and use them assele
tion masks. For example:ve
tor <
har> a(64),b(64),
(64);// 
[i℄ = a[i℄ if a[i℄<b[i℄, b[i℄ otherwise
 = where(a < b, a, b);3. Mathemati
al and STL fun
tions. These fun
tions work like their STL or math.h 
ounterparts.The only di�eren
e is that they take an array (or matrix) as a whole argument instead of a 
oupleof iterators. Apart from this di�eren
e, eve fun
tions and operators are very similar to their STL
ounterparts (the interfa
e to the eve array 
lass is a
tually very similar to the one o�ered by the STLvalarray 
lass. This allows algorithms developed with the STL to be ported (and a

elerated) with aminimum e�ort on a PowerPC platform with eve. For example:ve
tor <float> a(64),b(64);b = tan(a);float r = inner_produ
t(a, b);4. Signal pro
essing fun
tions. These fun
tions allow the dire
t expression (without expli
it de
om-position into sums and produ
ts) of 1D and 2D FIR �lters. For example:matrix<float> image(320,240),res(320,240);filter<3,horizontal> gauss_x = 0.25, 0.5, 0.25;res = gauss_x(image);
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t Oriented SIMD Library 37The eve API allows the developer to write a large variety of algorithms as long as these algorithm 
an beexpressed as a serie of global operation on ve
tor.6. Performan
e. Two kinds of performan
e tests have been performed: basi
 tests, involving only oneve
tor operation and more 
omplex tests, in whi
h several ve
tor operations are 
omposed into more 
omplexexpressions. All tests involved ve
tors of di�erent types (8 bit integers, 16 bit integers, 32 bit integers and32 bit �oats) but of the same total length (16 Kbytes) in order to redu
e the impa
t of 
a
he e�e
ts on theobserved performan
es3. They have been 
ondu
ted on a 2GHz PowerPC G5 with g

 3.3.1 and the following
ompilation swit
hes: -faltive
 -ftemplate-deph-128 -O3. A sele
tion of performan
e results is given inTable 6.1. For ea
h test, four numbers are given: the maximum theoreti
al speedup4 (TM), the measuredspeedup for a hand-
oded version of the test using the native C Altive
 API (N.C), the measured speedup witha �naive� ve
tor library�whi
h does not use the expression template me
hanism des
ribed in Se
t. 3 (N.V),and the measured speedup with the eve library. Table 6.1Sele
ted performan
e resultsTest Ve
tor type TM N.C N.V EVE1. v3=v1+v2 8 bit integer 16 15.7 8.0 15.42. v2=tan(v1) 32 bit �oat 4 3.6 2.0 3.53. v3=v1/v2 32 bit �oat 4 4.8 2.1 4.64. v3=v1/v2 16 bit integer 8(4) 3.0 1.0 3.05. v3=inner_prod(v1,v2) 8 bit integer 8 7.8 4.5 7.26. v3=inner_prod(v1,v2) 32 bit �oat 4 14.1 4.8 13.87. 3x1 Filter 8 bit integer 8 7.9 0.1 7.88. 3x1 Filter 32 bit �oat 4 4.12 0.1 4.089. v5=sqrt(tan(v1+v2)/
os(v3*v4)) 32 bit �oat 4 3.9 0.04 3.9It 
an be observed that, for most of the tests, the speedup obtained with eve is 
lose to the one obtainedwith a hand-
oded version of the algorithm using the native C API. By 
ontrast, the performan
es of the �naive�
lass library are very disappointing (espe
ially for tests 7-10). This 
learly demonstrates the e�e
tiveness of themetaprogramming-based optimisation.Tests 1�3 
orrespond to basi
 operations, whi
h are mapped dire
tly to a single AltiVe
 instru
tion. In this
ase, the measured speedup is very 
lose to the theoreti
al maximum. For test 3, it is even greater. This e�e
t
an be explained by the fa
t that on G5 pro
essors, and even for non-SIMD operations, the Altive
 FPU isalready faster than the s
alar FPU5. When added to the speedup o�ered by the SIMD parallelism, this leadsto super-linear speedups. The same e�e
t explains the result obtained for test 6. By 
ontrast, test 4 exhibitsa situation in whi
h the observed performan
es are signi�
antly lower than expe
ted. In this 
ase, this is dueto the asymmetry of the Altive
 instru
tion set, whi
h does not provide the basi
 operations for all types ofve
tors. In parti
ular, it does not in
lude division on 16 bit integers. This operation must therefore be emulatedusing ve
tor �oat division. This involves several type 
asting operations and pra
ti
ally redu
es the maximumtheoreti
al speedup from 8 to 4.Tests 5-9 
orrespond to more 
omplex operations, involving several AltiVe
 instru
tions. Note that fortests 5 and 7, despite the fa
t that the operands are ve
tors of 8 bit integers, the 
omputations are a
tually
arried out on ve
tors of 16 bit integers, in order to keep a reasonable pre
ision. The theoreti
al maximumspeedup is therefore 8 instead of 16.6.1. Realisti
 Case Study. In order to show that eve 
an be used to solve realisti
 problems, while stilldelivering signi�
ant speedups, we have used it to ve
torize several 
omplete image pro
essing algorithms. Thisse
tion des
ribes the implementation of an algorithm performing the dete
tion of points of interest in grey s
aleimages using the Harris �lter [7℄.
3I.e. the ve
tor size (in elements) was 16K for 8 bit integers, 8K for 16 bit integers and 4K for 32 bits integers or �oats.
4This depends on the type of the ve
tor elements: 16 for 8 bit integers, 8 for 16 bit integers and 4 for 32 bit integers and �oats.
5It has more pipeline stages and a shortest 
y
le time.



38 J. Fal
ou and J. SerotStarting from an input image I(x, y), horizontal and verti
al gaussian �lters are applied to remove noiseand the following matrix is 
omputed:
M(x, y) =

(

( ∂I
∂x

)2 ∂I
∂x

∂I
∂y

∂I
∂x

∂I
∂y

( ∂I
∂y

)2

)Where ( ∂I
∂x

) and ( ∂I
∂y

) are respe
tively the horizontal and verti
al gradient of I(x, y). M(x, y) is �lteredagain with a gaussian �lter and the following quantity is 
omputed:
H(x, y) = Det(M)− k.trace(M)2, k ∈ [0.04; 0.06]

H is viewed as a measure of pixel interest. Lo
al maxima of H are then sear
hed in 3x3 windows and the
nth �rst maxima are �nally sele
ted. Figure 6.1 shows the result of the dete
tion algorithm on a video framepi
turing an outdoor s
ene.

In this implementation, only the �ltering and the pixel dete
tion are ve
torized. Sorting an array 
annotbe easily ve
torized with the AltiVe
 instru
tion set. It's not worth it anyway, sin
e the time spent in the �nalsorting and sele
tion pro
ess only a

ounts for a small fra
tion (around 3%) of the total exe
ution time of thealgorithm. The 
ode for 
omputing M 
oe�
ients and H values is shown in Fig. 6.1. It 
an be split into threese
tions:1. A de
larative se
tion where the needed matrix and filter obje
ts are instantiated. matrix obje
tsare de
lared as float 
ontainers to prevent over�ow when �ltering is applied on the input image and to speedup �nal 
omputation by removing the need for type 
asting.2. A �ltering se
tion where the 
oe�
ients of the M matrix are 
omputed. We use eve �lter obje
ts,instantiated for gaussian and gradient �lters. Filter support an overloaded * operator that is semanti
ally usedas the 
omposition operator.3. A 
omputing se
tion where the �nal value of H(x, y) is 
omputed using the overloaded versions ofarithmeti
 operators.The performan
es of this dete
tor implementation have been 
ompared to those of the same algorithmwritten in C, both using 320*240 pixels video sequen
e as input. The tests were run on a 2GHz Power PC G5and 
ompiled with g

 3.3. As the two steps of the algorithm (�ltering and dete
tion) use two di�erent partsof the E.V.E. API, we give the exe
ution time for ea
h step along with the total exe
ution time.Step Exe
ution Time Speed UpFiltering 1.4ms 5.21Evaluation 0.45ms 4.23Total Time 1.85ms 4.98The performan
e of both parts of the algorithm are satisfa
tory. The �ltering se
tion speed-up is near 65%of maximum speed-up while the se
ond part bene�ts from a superlinear a

eleration.7. Related Work. Proje
ts aiming at simplifying the exploitation of the SIMD extensions of modernmi
ro-pro
essors 
an be divided into two broad 
ategories: 
ompiler-based approa
hes and library-based ap-proa
hes.
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t Oriented SIMD Library 39// De
larations#define W 320#define H 240matrix<short> I(W,H),a(W,H),b(W,H);matrix<short> 
(W,H),t1(W,H),t2(W,H);matrix<float> h(W,H);float k = 0.05f;filter<3,horizontal> smooth_x = 1,2,1;filter<3,horizontal> grad_x = 1,0,1;filter<3,verti
al> smooth_y = 1,2,1;filter<3,verti
al> grad_y = -1,0,1;// Computes matrix M://// | a 
 |// M = | 
 b |t1 = grad_x(I);t2 = grad_y(I);a = (smooth_x*smooth_y)(t1*t1);b = (smooth_x*smooth_y)(t2*t2);
 = (smooth_x*smooth_y)(t1*t2);// Computes matrix HH = (a*b-
*
)-k*(a+b)*(a+b);Fig. 6.1. The Harris dete
tor, 
oded with eveThe swar (SIMD Within A register, [4℄) proje
t is an example of the �rst approa
h. Its goal is to proposea versatile data parallel C language making full SIMD-style programming models e�e
tive for 
ommodity mi-
ropro
essors. An experimental 
ompiler (s

) has been developed that extends C semanti
s and type systemand 
an target several family of mi
ropro
essors. Started in 1998, the proje
t seems to be in dormant state.Another example of the 
ompiler-based approa
h is given by Kyo et al. in [8℄. They des
ribe a 
ompiler fora parallel C diale
t (1d
, One Dimensional C) produ
ing SIMD 
ode for Pentium pro
essors and aimed at thesu

in
t des
ription of parallel image pro
essing algorithms. Ben
hmarks results show that speed-ups in therange of 2 to 7 (
ompared with 
ode generated with a 
onventional C 
ompiler) 
an be obtained for low-levelimage pro
essing tasks. But the parallelization te
hniques des
ribed in the work�whi
h are derived from the oneused for programming linear pro
essor arrays�seems to be only appli
able to simple image �ltering algorithmsbased upon sweeping a horizontal pixel-updating line row-wise a
ross the image, whi
h restri
ts its appli
ability.Moreover, and this 
an be viewed as a limitation of 
ompiler-based approa
hes, retargeting another pro
essormay be di�
ult, sin
e it requires a good understanding of the 
ompiler internal representations.The vast 
ode optimiser [3℄ has a spe
i�
 ba
k-end for generating Altive
/Power PC 
ode. This 
ompilero�ers automati
 ve
torization and parallelization from 
onventional C sour
e 
ode, automati
ally repla
ing loopswith inline ve
tor extensions. The speedups obtained with vast are 
laimed to be 
losed to those obtained withhand-ve
torized 
ode. vast is a 
ommer
ial produ
t.There have been numerous attempts to provide a library-based approa
h to the exploitation of SIMDfeatures in mi
ro-pro
essors. Apple ve
lib [6℄, whi
h provides a set of Altive
-optimised fun
tions for signalpro
essing, is an example. But most of these attempts su�er from the weaknesses des
ribed in Se
t. 2; namely,they 
annot handle 
omplex ve
tor expressions and produ
e ine�
ient 
ode when multiple ve
tor operationsare involved in the same algorithm. Ma
STL [9℄ is the only work we are aware of that aims at eliminating theseweaknesses while keeping the expressivity and portability of a library-based approa
h. Ma
STL is a
tuallyvery similar to eve in goals and design prin
iples. This C++ 
lass library provides a fast valarray 
lass



40 J. Fal
ou and J. Serotoptimised for Altive
 and relies on template-based metaprogramming te
hniques for 
ode optimisation. Theonly di�eren
e is that it only provides STL-
ompliant fun
tions and operators (it 
an a
tually be viewed asa spe
i�
 implementation of the STL for G4/G5 
omputers) whereas eve o�ers additional domain-spe
i�
fun
tions for signal and image pro
essing.8. Con
lusion. We have shown how a 
lassi
al te
hnique�template-based metaprogramming�
an be ap-plied to the design and implementation of an e�
ient high-level ve
tor manipulation library aimed at s
ienti�

omputing on PowerPC platforms. This library o�ers a signi�
ant improvement in terms of expressivity overthe native C API traditionally used for taking advantage of the SIMD 
apabilities of this pro
essor. It allows de-velopers to obtain signi�
ant speedups without having to deal with low level implementation details. Moreover,The eve API is largely 
ompliant with the STL standard and therefore provides a smooth transition path forappli
ations written with other s
ienti�
 
omputing libraries. A prototype version of the library 
an be down-loaded from the following URL: http://wwwlasmea.univ-bp
lermont.fr/Personnel/Joel.Fal
ou/eng/eve.We are 
urrently working on improving the performan
es obtained with this prototype. This involves, forinstan
e, globally minimizing the number of ve
tor load and store operations, using more judi
iously Altive
-spe
i�
 
a
he manipulation instru
tions or taking advantage of fused operations (e. g. multiply/add). Finally, it
an be noted that, although the 
urrent version of eve has been designed for PowerPC pro
essors with Altive
,it 
ould easily be retargeted to Pentium 4 pro
essors with MMX/SSE2 be
ause the 
ode generator itself (usingthe expression template me
hanism) 
an be made largely independent of the SIMD instru
tion set.REFERENCES[1℄ The BOOST Library. http://www.boost.org/.[2℄ The POOMA Library. http://www.
odesour
ery.
om/pooma/.[3℄ VAST. http://www.psrv.
om/vast_altive
.html/.[4℄ The SWAR Home Page http://shay.e
n.purdue.edu/~swar Purdue University[5℄ Apple, The AltiVe
 Instru
tions Referen
es Page. http://developer.apple.
om/hardware/ve.[6℄ Apple, Ve
Lib framework. http://developer.apple.
om/hardware/ve/ve
tor_libraries.html[7℄ C. Harris and M. Stephens, A 
ombined 
orner and edge dete
tor. In 4th Alvey Vision Conferen
e, 1988.[8℄ S. Kyo and S. Okasaki and I. Kuroda, An extended C language and a SIMD 
ompiler for e�
ient implementation ofimage �lters on media extended mi
ro-pro
essors. in Pro
eedings of A
ivs 2003 (Advan
ed Con
epts for Intelligent VisionSystems), Ghent, Belgium, Sept. 1998[9℄ G. Low, Ma
 STL. http://www.pixelglow.
om/ma
stl/.[10℄ I. Ollman, AltiVe
 Velo
ity Engine Tutorial. http://www.simdte
h.org/altive
. Mar
h 2001.[11℄ T. Veldhuizen, Using C++ Template Meta-Programs. In C++ Report, vol. 7, p. 36-43,1995.[12℄ , Expression Templates. In C++ Report, vol. 7, p. 26-31, 1995.[13℄ , Te
hniques for S
ienti�
 C++. http://osl.iu.edu/ tveldhui/papers/te
hniques/.[14℄ , Arrays in Blitz++. In Dr Dobb's Journal of Software Tools, p. 238-44, 1996.[15℄ T. Veldhuizen and D. Gannon, A
tive Libraries: Rethinking the roles of 
ompilers and libraries Pro
. of the SIAMWorkshop on Obje
t Oriented Methods for Inter-operable S
ienti�
 and Engineering Computing. SIAM Press, 1998
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t Oriented SIMD Library 41Appendix A. A simple 3x1 gaussian �lter written with the Altive
 native C API .void AV_filter( 
har* img, short* res){ ve
tor unsigned 
har zu8,t1,t2,t3,t4;ve
tor signed short x1h,x1l,x2h;ve
tor signed short x2l,x3h,x3l;ve
tor signed short zs16 ,rh,rl,v0,v1,shift;// Generate 
onstantsv0 = ve
_splat_s16(2);v1 = ve
_splat_s16(4);zu8 = ve
_splat_u8(0);zs16 = ve
_splat_s16(0);shift = ve
_splat_s16(8);for( int j = 0; j< SIZE/16 ; j++ ){ // Load input ve
torst1 = ve
_ld(j*16, img); t2 = ve
_ld(j*16+16, img);// Generate shifted ve
torst3 = ve
_sld(t1,t2,1); t4 = ve
_sld(t1,t2,2);// Cast to shortx1h = ve
_mergeh(zu8,t1); x1l = ve
_mergel(zu8,t1);x2h = ve
_mergeh(zu8,t3); x2l = ve
_mergel(zu8,t3);x3h = ve
_mergeh(zu8,t4); x3l = ve
_mergel(zu8,t4);// A
tual filteringrh = ve
_mladd(x1h,v0,zs16);rl = ve
_mladd(x1l,v0,zs16);rh = ve
_mladd(x2h,v1,rh);rl = ve
_mladd(x2l,v1,rl);rh = ve
_mladd(x3h,v0,rh);rl = ve
_mladd(x3l,v0,rl);rh = ve
_sr(rh,shift);rl = ve
_sr(rl,shift);// Pa
k and store result ve
tort1 = ve
_pa
ksu(rh,rl);ve
_st(t1,j,out);}}Edited by: Frédéri
 LoulergueRe
eived: June 26, 2004A

epted: June 5, 2005
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© 2005 SWPSEXTERNAL MEMORY IN BULK-SYNCHRONOUS PARALLEL ML∗FRÉDÉRIC GAVA†Abstra
t. A fun
tional data-parallel language 
alled BSML was designed for programming Bulk-Syn
hronous Parallel algo-rithms, a model of 
omputing whi
h allows parallel programs to be ported to a wide range of ar
hite
tures. BSML is based on anextension of the ML language with parallel operations on a parallel data stru
ture 
alled parallel ve
tor. The exe
ution time 
an beestimated. Dead-lo
ks and indeterminism are avoided. For large s
ale appli
ations where parallel pro
essing is helpful and wherethe total amount of data often ex
eeds the total main memory available, parallel disk I/O be
omes a ne
essity. In this paper, wepresent a library of I/O features for BSML and its formal semanti
s. A 
ost model is also given and some preliminary performan
eresults are shown for a 
ommodity 
luster.Key words. Parallel Fun
tional Programming, Parallel I/O, Semanti
s, BSP.1. Introdu
tion. Some problems require performan
e that 
an only be provided by massively parallel
omputers. Programming these kind of 
omputers is still di�
ult. Many important 
omputational appli
ationsinvolve solving problems with very large data sets [44℄. Su
h appli
ations are also referred as out-of-
oreappli
ations. For example astronomi
al simulation [47℄, 
rash test simulation [10℄, geographi
 informationsystems [32℄, weather predi
tion [52℄, 
omputational biology [17℄, graphs [40℄ or 
omputational geometry [11℄and many other s
ienti�
 problems 
an involve data sets that are too large to �t in the main memory andtherefore fall into this 
ategory. For another example, the Large Hadron Collider of the CERN laboratoryfor �nding tra
es of exoti
 fundamental parti
les (web page at lh
-new-homepage.web.
ern.
h), when startsrunning, this instrument will produ
es about 10 Petabytes a month. The earth-simulator, the most powerfulparallel ma
hine in the top500 list, has 1 Petabyte of total main memory and 100 Petabytes of se
ondarymemories. Using the main memory is not enough to store all the data of an experiment.Using parallelism 
an redu
e the 
omputation time and in
rease the available memory size, but for 
hal-lenging appli
ations, the memory is always insu�
ient in size. For instan
e, in a mesh de
omposition of ame
hani
al problem, a s
ientist might want to in
rease the mesh size. To in
rease the available memory size, atrivial solution is to use the virtual memory me
hanism present in modern operating systems. This has beenestablished as a standard method for managing external memory. Its main advantage is that it allows theappli
ation to a

ess to a large virtual memory without having to deal with the intri
a
ies of blo
ked se
ondarymemory a

esses. Unfortunately, this solution is ine�
ient if standard paging poli
y is employed [7℄. To get thebest performan
es, the algorithms must be restru
tured with expli
it I/O 
alls on this se
ondary memory.Su
h algorithms are generally 
alled external memory (EM) algorithms and are designed for large 
ompu-tational problems in whi
h the size of the internal memory of the 
omputer is only a small fra
tion of the sizeof the problem ([55, 53℄ for a survey). Parallel pro
essing is an important issue for EM algorithms for the samereasons that parallel pro
essing is of pra
ti
al interest in non-EM algorithm design. Existing algorithm anddata stru
tures were often unsuitable for out-of-
ore appli
ations. This is largely due to the need of lo
ality ondata referen
es, whi
h is not generally present when algorithms are designed for internal memory due to thepermissive nature of the PRAM model: parallel EM algorithms [54℄ are �new� and do not work optimally and
orre
tly in �
lassi
al� parallel environments.De
larative parallel languages are needed to simplify the programming of massively parallel ar
hite
tures.Fun
tional languages are often 
onsidered. The design of parallel programming languages is a tradeo� betweenthe possibility to express the parallel features that are ne
essary for predi
table e�
ien
y (but with programsthat are more di�
ult to write, prove and port) and the abstra
tion of su
h features that are ne
essary tomake parallel programming easier (but whi
h should not hinder e�
ien
y and performan
e predi
tion). Onthe one hand the programs should be e�
ient but without the pri
e of non portability and unpredi
tabilityof performan
es. The portability of 
ode is needed to allow 
ode reuse on a wide variety of ar
hite
tures.The predi
tability of performan
es is needed to guarantee that the e�
ien
y will always be a
hieved, whateverar
hite
ture is used.
∗This work is supported by the ACI Grid program from the Fren
h Ministry of Resear
h,under the proje
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Fig. 2.1. The BSP model of 
omputationAnother important 
hara
teristi
 of parallel programs is the 
omplexity of their semanti
s. Deadlo
ksand non-determinism often hinder the pra
ti
al use of parallelism by a large number of users. To avoid theseundesirable properties, there is a trade-o� between the expressiveness of the language and its stru
ture whi
h
ould de
rease the expressiveness.We are 
urrently exploring the intermediate position of the paradigm of algorithmi
 skeletons [6, 42℄ inorder to obtain universal parallel languages where the exe
ution 
ost 
an easily be determined from the sour
e
ode. In this 
ontext, 
ost means the estimate of parallel exe
ution time. This last requirement for
es the useof expli
it pro
esses 
orresponding to the pro
essors of the parallel ma
hine. Bulk-Syn
hronous Parallel ML orBSML is an extension of ML for programming Bulk-Syn
hronous Parallel algorithms as fun
tional programswith a 
ompositional 
ost model. Bulk-Syn
hronous Parallel (BSP) 
omputing is a parallel programming modelintrodu
ed by Valiant [46, 50℄ to o�er a high degree of abstra
tion like PRAM models and yet to allow portableand predi
table performan
e on a wide variety of ar
hite
tures with a realisti
 
ost model based on a stru
turedparallelism. Deadlo
ks and indeterminism are avoided. BSP programs are portable a
ross many parallel ar
hi-te
tures. Su
h algorithms o�er predi
table and s
alable performan
es ([38℄ for a survey) and BSML expressesthem with a small set of primitives taken from the 
on�uent BSλ 
al
ulus [37℄. Su
h operations are implementedas a library for the fun
tional, with a stri
t evaluation strategy, programming language Obje
tive Caml [33℄.We refer to [27℄ for more details about the 
hoi
e of this strategy for massively parallel 
omputing.Parallel disk I/O has been identi�ed as a 
riti
al 
omponent of a suitable high performan
e 
omputer.Resear
h in EM algorithms has re
ently re
eived 
onsiderable attention. Over the last few years, 
omprehensive
omputing and 
ost models that in
orporate disks and multiple pro
essors have been proposed [35, 55, 54℄, butnot with all the above elements. [14, 16℄ showed how an EM ma
hine 
an take full advantage of parallel disk I/Oand multiple pro
essors. This model is based on an extension of the BSP model for I/O a

esses. Our resear
haims at 
ombining the BSP model with fun
tional programming. We naturally need to also extend BSML withI/O a

esses for programming EM algorithms. This paper is the follow-up to our work on imperative featuresof our fun
tional data-parallel language [22℄.This paper des
ribes a further step after [21℄ towards this dire
tion. The remainder of this paper is organizedas follows. First we review the BSP model in Se
tion 2 and, then, brie�y present the BSML language. Inse
tion 3 we introdu
e the EM-BSP model and the problems that appear in BSML. In se
tion 4, we then givenew primitives for our language. In se
tion 5, we des
ribe the formal semanti
s of our language with persistentfeatures. Se
tion 6 is devoted to the formal 
ost model asso
iated to our language and Se
tion 7 to someben
hmarks of a parallel program. We dis
uss related work in se
tion 8 and we end with 
on
lusions and futureresear
h (se
tion 9).2. Fun
tional Bulk-Syn
hronous Parallel ML.2.1. Bulk-Syn
hronous Parallelism. A BSP 
omputer 
ontains a set of pro
essor -memory pairs, a
ommuni
ation network allowing inter-pro
essor delivery of messages and a global syn
hronization unit whi
h
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hronous Parallel ML 45exe
utes 
olle
tive requests of a syn
hronization barrier. For the sake of 
on
iseness, we refer to [5, 46℄ for moredetails. In this model, a parallel 
omputation is subdivided into supersteps (Figure 2.1) at the end of whi
h abarrier syn
hronization and a routing are performed. After that, all requests for data posted during a pre
edingsuperstep are ful�lled. The performan
e of the ma
hine is 
hara
terized by 3 parameters expressed as multiplesof the lo
al pro
essing speed r:(i) p is the number of pro
essor-memory pairs;(ii) l is the time required for a global syn
hronization and(iii) g is the time for 
olle
tively delivering a 1-relation, a 
ommuni
ation phase where every pro
essorre
eives/sends at most one word. The network 
an deliver an h-relation in time g × h for any arity h.These parameters 
an easily be obtained using ben
hmarks [28℄. The exe
ution time of a superstep s is thusthe sum of the maximal lo
al pro
essing time, the maximal data delivery time and the global syn
hronizationtime, i.e, Time(s) = maxi:processor ws
i + maxi:processor hs

i ∗ g + l where ws
i= lo
al pro
essing time on pro
essor

i during superstep s and hs
i =max{hs

i+, hs
i−} where hs

i+ (resp. hs
i−) is the number of words transmitted (resp.re
eived) by pro
essor i during superstep s. The exe
ution time ∑s Time(s) of a BSP program 
omposed of Ssupersteps is therefore the sum of 3 terms:

tcomp + tcomm + L where 


tcomp =
∑

s maxi ws
i

tcomm = H × g where H =
∑

s maxi hs
i

L = S × l.In general tcomp, H and S are fun
tions of p and of the size of data n, or of more 
omplex parameters like dataskew and histogram sizes. To minimize exe
ution time, the BSP algorithm design must jointly minimize thenumber S of supersteps and the total volume h (resp. tcomp) and imbalan
e hs (resp. tcomm) of 
ommuni
ation(resp. lo
al 
omputation). Bulk Syn
hronous Parallelism and the Coarse-Grained Multi
omputer (CGM),whi
h 
an be seen as a spe
ial 
ase of the BSP model are used for a large variety of appli
ations. As statedin [13℄ �A 
omparison of the pro
eedings of the eminent 
onferen
e in the �eld, the ACM Symposium onParallel Algorithms and Ar
hite
tures between the late eighties and the time from the mid-nineties to todayreveals a startling 
hange in resear
h fo
us. Today, the majority of resear
h in parallel algorithms is within the
oarse-grained, BSP style, domain�.bsp_p: unit→int bsp_l: unit→�oat bsp_g: unit→�oatmkpar: (int→α )→αparapply: (α→β )par→αpar→β partype α option = None | Some of αput: (int→α option)par→(int→α option)parat: αpar→int→α Fig. 2.2. The Core Bsmllib Library2.2. Bulk-Syn
hronous Parallel ML. BSML does not rely on SPMD programming. Programs areusual �sequential� Obje
tive Caml (OCaml) programs [33℄ but work on a parallel data stru
ture. Some of theadvantages are simpler semanti
s and better readability. The exe
ution order follows the reading order in thesour
e 
ode (or, at least, the results are su
h as seems to follow the exe
ution order). There is 
urrently noimplementation of a full BSML language but rather a partial implementation as a library for OCaml (web pageat http://bsmllib.free.fr/).The so-
alled BSMLlib library is based on the elements given in Figure 2.2. They give a

ess to the BSPparameters of the underling ar
hite
ture: bsp_p() is p the stati
 number of pro
esses (this value does not
hange during exe
ution), bsp_g() is g the time for 
olle
tively delivering a 1-relation and bsp_l() is l thetime required for a global syn
hronization barrier.There is an abstra
t polymorphi
 type αpar whi
h represents the type of p-wide parallel ve
tors of obje
tsof type α one per pro
essor. BSML parallel 
onstru
ts operate on parallel ve
tors. Those parallel ve
tors are
reated by mkpar so that (mkpar f) stores (f i) on pro
ess i for i between 0 and p− 1:mkpar f = (f 0) (f 1) · · · (f i) · · · (f (p−1))We usually write f as fun pid→e to show that the expression e may be di�erent on ea
h pro
essor. Thisexpression e is said to be lo
al, i.e, a usual ML expression. The expression (mkpar f) is a parallel obje
t and



46 F. Gavait is said to be global. A usual ML expression whi
h is not within a parallel ve
tor is 
alled repli
ate, i.e,identi
al to ea
h pro
essor. A BSP algorithm is expressed as a 
ombination of asyn
hronous lo
al 
omputations(�rst phase of a superstep) and phases of global 
ommuni
ation (se
ond phase of a superstep) with globalsyn
hronization (third phase of a superstep). Asyn
hronous phases are programmed with mkpar and applysu
h that (apply (mkpar f) (mkpar e)) stores ((f i) (e i)) on pro
ess i:apply f0 f1 · · · fi · · · fp−1 v0 v1 · · · vi · · · vp−1

= (f0 v0) (f1 v1) · · · (fi vi) · · · (fp−1 vp−1)Let us 
onsider the following expression:let vf=mkpar(fun pid x→x+pid)and vv=mkpar(fun pid→2∗pid+1)in apply vf vvThe two parallel ve
tors are respe
tively equivalent to:fun x→x + 0 fun x→x + 1 · · · fun x→x + i · · · fun x→x + (p− 1)and
0 3 · · · 2× i + 1 · · · 2× (p− 1) + 1The expression apply vf vv is then evaluated to:
0 4 · · · 2× i + 2 · · · 2× (p− 1) + 2Readers familiar with BSPlib [28℄ will observe that we ignore the distin
tion between a 
ommuni
ation requestand its realization at the barrier. The 
ommuni
ation and syn
hronization phases are expressed by put.Consider the expression: put(mkpar(fun i→fsi)) (∗). To send a value v from pro
ess j to pro
ess i, thefun
tion fsj at pro
ess j must be su
h that (fsj i) evaluates to Some v. To send no value from pro
ess j topro
ess i, (fsj i) must evaluate to None. The expression (∗) evaluates to a parallel ve
tor 
ontaining a fun
tionfdi of delivered messages on every pro
ess i. At pro
ess i, (fdi j) evaluates to None if pro
ess j sent no messageto pro
ess i or evaluates to Some v if pro
ess j sent the value v to the pro
ess i.The full language would also 
ontain a syn
hronous proje
tion operation at. (at ve
 n) returns the nthvalue of the parallel ve
tor ve
: at v0 · · · vn · · · vp−1 n = vnat expresses 
ommuni
ation and syn
hronization phases. Without it, the global 
ontrol 
annot take into a

ountdata 
omputed lo
ally. Global 
onditional is ne
essary for expressing algorithms like: Repeat Parallel IterationUntilMax of lo
al errors < ǫ. The nesting of par types is prohibited and the proje
tion should not be evaluatedinside the s
ope of a mkpar. Our type system enfor
es these restri
tions [23℄.2.3. Examples.2.3.1. Often Used Fun
tions. Some useful fun
tions 
an be de�ned by using only the primitives. Forexample the fun
tion repli
ate 
reates a parallel ve
tor whi
h 
ontains the same value everywhere. The primitiveapply 
an be used only for a parallel ve
tor of fun
tions whi
h take only one argument. To deal with fun
tionswhi
h take two arguments we need to de�ne the apply2 fun
tion.let repli
ate x = mkpar(fun pid→x)let apply2 vf v1 v2 = apply (apply vf v1) v2It is also 
ommon to apply the same sequential fun
tion at ea
h pro
ess. This 
an be done using the parfunfun
tions. They only di�er in the number of arguments to apply:let parfun f v = apply(repli
ate f) vlet parfun2 f v1 v2 = apply(parfun f v1) v2let parfun3 f v1 v2 v3 = apply(parfun2 f v1 v2) v2
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hronous Parallel ML 47It is also 
ommon to apply a di�erent fun
tion on a pro
ess. applyat n f1 f2 v applies fun
tion f1 at pro
ess nand fun
tion f2 at other pro
esses:let applyat n f1 f2 v =apply(mkpar(fun i→if i=n then f1 else f2)) v2.3.2. Communi
ation Fun
tion. Our example is the 
lassi
al 
omputation of the pre�x of a list. Herewe make the hypothesis that the elements of the list are distributed to all the pro
esses as lists. Ea
h pro
essorperforms a lo
al redu
tion, then sends its partial result to the following pro
essors and �nally lo
ally redu
esits partial result with the sent values. Take for example the following expression:s
an_list_dire
t e (+) [1; 2] [3; 4] [5]It will be evaluated to:
[e + 1; e + 1 + 2] [e + 1 + 2 + 3; e + 1 + 2 + 3 + 4; ] [e + 1 + 2 + 3 + 4 + 5]for a pre�x of three pro
essors and where e is the neutral element (here 0). To do this, we need �rst the
omputation of the pre�x of a parallel ve
tor:(∗ s
an_dire
t:(α→α→α )→α→α par→α par ∗)let s
an_dire
t op e vv =let mkmsg pid v dst=if dst<pid then None else Some v inlet pro
s_lists=mkpar(fun pid→from_to 0 pid) inlet re
eivedmsgs=put(apply(mkpar mkmsg) vv) inlet values_lists= parfun2 List.map(parfun (
ompose noSome) re
eivedmsgs) pro
s_lists inapplyat 0 (fun _ →e) (List.fold_left op e) values_listswhere











List.map f [v0; . . . ; vn] = [(f v0); . . . ; (f vn)]List.fold_left f e [v0; . . . ; vn] = f (· · · (f (f e v0) v1) · · · ) vnfrom_to n m = [n; n + 1; n + 2;. . . ; m]noSome (Some v) = v
ompose f g x = (f (g x)).Then, we 
an dire
tly have the pre�x of lists using some generi
 s
an:let s
an_wide s
an seq_s
an_last map op e vv =let lo
al_s
an=parfun (seq_s
an_last op e) vv inlet last_elements=parfun fst lo
al_s
an inlet values_to_add=(s
an op e last_elements) inlet pop=applyat 0 (fun x y→y) op inparfun2 map (pop values_to_add) (parfun snd lo
al_s
an)let s
an_wide_dire
t seq_s
an_last map op e vv =s
an_wide s
an_dire
t seq_s
an_last map op e vvlet s
an_list s
an op e vl =s
an_wide s
an seq_s
an_last List.map op e vl(∗ s
an_list_dire
t:(α→α→α )→α→α list par→α list par ∗)let s
an_list_dire
t op e vl = s
an_list s
an_dire
t op e vlwhere seq_s
an_last f e [v0; v1; . . . ; vn] = (last, [(f e v0); f(f e v0) v1; . . . ; last]) wherelast = f (· · · (f (f e v0) v1) · · · ) vn. The BSP 
ost formula of the above fun
tion (assuming op has a 
onstant
ost cop) is thus 2×N × cop × r + (p− 1)× s× g + l where s denotes the size in words of a value 
ompute bythe s
an and N the length of the biggest list held at a pro
ess. We have thus the time to 
ompute the partialpre�x, the time to send the partial results, time to perform the global syn
hronization and the time to �nishthe pre�x.
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omputer with external memories2.4. Advantages of Fun
tional BSP Programming. One important bene�t of the BSP model is theability to a

urately predi
t the exe
ution time requirements of parallel algorithms. Communi
ations are 
learlyseparated from syn
hronization, i. e., this avoids deadlo
ks and it 
an be performed in any order, providedthat the information is delivered at the beginning of the next superstep. This is a
hieved by 
onstru
tinganalyti
al formulas that are parameterized by a few values whi
h 
aptured the 
omputation, 
ommuni
ationand syn
hronization performan
e of the parallel system.The 
larity, abstra
tion and formal semanti
s of fun
tional language make them desirable vehi
les for
omplex software. The fun
tional approa
h of this parallel model allows the re-use of suitable te
hniques fromfun
tional languages be
ause a few number of parallel primitives is needed. Primitives of the BSML languagewith a stri
t strategy are derived from a 
on�uent 
al
ulus [37℄ so parallel algorithms are also 
on�uent andkeep the advantages of the BSP models: no deadlo
k, e�
ient implementation using optimized 
ommuni
ationalgorithms, stati
 
ost formulas and 
ost previsions. The lazy evaluation strategy of pure fun
tional languageis not suited for the need of the massively parallel programmer. Lazy evaluation has the unwanted property ofhiding 
omplexity from the programmer [27℄. The stri
t strategy of OCaml makes the BSMLlib a better toolfor high performan
e appli
ations be
ause programs are transparent in the sense of making 
omplexity expli
itin the syntax.Also, as in fun
tional languages, we 
ould easily prove and 
ertify fun
tional implementation of su
h algo-rithms with a proof assistant [1, 4℄ as in [20℄. Using the extra
tion possibility of the proof assistant, we 
ouldgenerate a 
erti�ed implementation to be used independently of the sequential or parallel implementation ofthe BSML primitives.3. External Memory.3.1. The EM-BSP model. Modern 
omputers typi
ally have several layers of memories whi
h in
ludethe main memory and 
a
hes as well as disks. We restri
t ourselves to the two-level model [54℄ be
ause thespeed di�eren
e between disks and the main memory is mu
h more signi�
ant than between other layers ofmemories. [16℄ extended the BSP model to in
lude se
ondary lo
al memories. The basi
 idea is simple and itis illustrated in Figure 3.1. Ea
h pro
essor has, in addition to its lo
al memory, an external memory (EM) inthe form of a set of disks. This idea is applied to extend the BSP model to its EM version 
alled EM-BSP byadding the following parameters to the standard BSP parameters:(i) M is the lo
al memory size of ea
h pro
essor;(ii) D is the number of disk drives of ea
h pro
essor;(iii) B is the transfer blo
k size of a disk drive, and(iv) G is the ratio of lo
al 
omputational 
apa
ity (number of lo
al 
omputation operations) divided bylo
al I/O 
apa
ity (number of blo
ks of size B that 
an be transferred between the lo
al disks and memory)per unit time.In many pra
ti
al 
ases, all pro
essors have the same number of disks and, thus, the model is restri
ted tothat 
ase (although the model forbids di�erent memory sizes). The disk drives of ea
h pro
essor are denoted by

D0,D1, . . . ,DD−1. Ea
h drive 
onsists of a sequen
e of tra
ks whi
h 
an be a

essed by dire
t random a

ess. Atra
k stores exa
tly one blo
k of B words. Ea
h pro
essor 
an use all its D disk drives 
on
urrently and transfer
D × B words from/to the lo
al disks to/from its lo
al memory in a single I/O operation being at 
ost G. Insu
h an operation, only one tra
k per disk is permitted to be a

essed without any restri
tion and ea
h tra
kis set on ea
h disk. Note that an operation involving fewer disk drives in
urs the same 
ost. Ea
h pro
essor is
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hronous Parallel ML 49assumed to be able to store in its lo
al main memory at least some blo
ks from ea
h disk at the same time,i. e., M >> DB.Like 
omputation on the BSP model, the 
omputation of the EM-BSP model pro
eeds in a su

ession ofsupersteps. The 
ommuni
ation 
osts are the same as for the BSP model. The EM-BSP model allows multipleI/O operations during the 
omputation phase of the superstep. The total 
ost of ea
h superstep is thus de�ned as
tcomp,io + tcomm +L where tcomp,io is the 
omputational 
ost and additional I/O 
ost 
harged for the supersteps,i.e, tcomp,io =

∑

s maxi(w
s
i +ms

i ) where ms
i is the I/O 
ost in
urred by pro
essor i during superstep s. We referto [16℄ to have the EM-BSP 
omplexity of some 
lassi
al BSP algorithms.3.2. Examples of EM algorithms. Our �rst example is the matrix inversion whi
h is used by manyappli
ations as a dire
t method to solve linear systems. The 
omputation of the inverse of a matrix A 
anbe derived from its LU fa
torization. [8℄ presents the LU fa
torization by blo
ks. For this parallel out-of-
orefa
torization, the matrix is divided in blo
ks of 
olumns 
alled superblo
ks. The width of the superblo
k isdetermined by the amount of physi
al available memory: only blo
ks of the 
urrent superblo
k are in the mainmemory, the others are on disks. The algorithm fa
torize the matrix from left to right, superblo
k by superblo
k.Ea
h time a new superblo
k of the matrix is fet
hed in the main memory (
alled the a
tive superblo
k), allprevious pivoting and update of a history of the right-looking algorithm are applied to the a
tive superblo
ks.On
e the last superblo
k is fa
torized, the matrix is re-read to apply the remaining row pivoting of the re
ursivephases. Note that the 
omputation is done data in pla
e, the matrix has been �rst distributed on pro
essorsand thus, for load balan
ing, a 
y
li
 distribution of the data is used.[9℄ presents PRAM algorithms using external-memory for graph problems as bi
onne
ted 
omponents of agraph or minimum spanning forest. One of them is the 3-
oloring of a 
y
le applied to �nding large independentssets for the problem of list ranking (determine, for ea
h node v of a list, the rank of v de�ne as the number oflinks from v to the end of the list). The methods for solving it is to update s
attered su

essor and prede
essor
olors as needed after re-
oloring a group of nodes of the list without sorting or s
anning the entire list. Asbefore, the algorithms works group by groups with only one group in the main memory.The last example is the multi-string sear
h problem whi
h 
onsists of determining whi
h of k pattern stringso

ur in another string. Important appli
ations on biologi
al databases make use of very large text 
olle
tionsrequiring spe
ialized nontrivial sear
h operations. [19℄ des
ribes an algorithm for this problem with a 
onstantnumber of supersteps and based on the distribution of a proper data stru
ture among the pro
essors and thedisks to redu
e and balan
e the 
ommuni
ation 
ost. This data stru
ture is based on a bind tree built on thesu�xes of the strings and the algorithm works on longest 
ommon pre�x on su
h trees and by lexi
ographi
order. The algorithm takes advantage of disks by only keeping a part of a bind tree in the main memory andby 
olle
ting subpart of trees during the supersteps.4. External Memory in BSML.4.1. Problems by Adding I/O in BSML. The main problem by adding external memory and so I/Ooperators to BSML is to keep safe the fa
t that in the global 
ontext, the repli
ate values, i.e, usual OCamlvalues repli
ate on ea
h pro
essor, are the same. Su
h values are dedi
ated to the global 
ontrol of the parallelalgorithms. Take for example the following expression:let 
han=open_in "�le.dat" inif (at (mkpar(fun pid→(pid mod 2)=0)) (input_value 
han))then s
an_dire
t (+) 0 (repli
ate 1)else (repli
ate 1)It is not true that the �le on ea
h pro
essor 
ontains the same value. In this 
ase, ea
h pro
essor reads on itsse
ondary memory a di�erent value. We would have obtained an in
oherent result be
ause ea
h pro
essor reads adi�erent integer on the 
hannel 
han and some of them would exe
ute s
an_dire
t whi
h need a syn
hronization.Others would exe
ute repli
ate whi
h does not need a syn
hronization. This breaks the 
on�uent result of theBSML language and the BSP model of 
omputation with its global syn
hronizations. If this expression hadbeen evaluated with the BSMLlib library, we would have a breakdown of the BSP 
omputer be
ause at is aglobal syn
hronous primitive. Note that we also have this kind of problems in the BSPlib [28℄ where the authorsnote that only the I/O operations of the �rst pro
essor are �safe�. Another problem 
omes from side-e�e
tsthat 
an o

ur on ea
h pro
essor. Take for example the following expression:
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	P/M P/M P/M P/M P/MDisk0 DiskDg−1NetworkRouter Fig. 4.1. A BSP 
omputer with shared diskslet a=mkpar(fun i→if i=0 then(open_in "�le.dat");()else ())in (open_out "�le.dat")where () is an empty value. If this expression had been evaluated with the BSMLlib library, only the �rstpro
essor would have opened the �le in a read mode. After, ea
h pro
essor opened the �le with the same namein a write mode ex
ept the �rst one. This �le has already been opened in read mode. We would also have anin
oherent result be
ause the �rst pro
essor raised an ex
eption whi
h is not 
aught at all by other pro
essesin the global 
ontext. This problem of side-e�e
ts 
ould also be 
ombined with the �rst problem if there is no�le at the beginning of the 
omputation. Take for example the following expression:let 
han=open_out "�le.dat" inlet x=mkpar(fun i→if i=0 then (ouput_value 0) else ()) inouput_value 1; 
lose 
ha;let 
han=open_in "�le.dat" inif (at (mkpar(fun pid→(pid mod 2)=0)) (input_value 
han))then s
an_dire
t (+) 0 (repli
ate 1)else (repli
ate 1)The �rst pro
essor adds the integers 1 and 2 on its �le and other pro
essors add the integer 2 on their �les. Asin the �rst example, we would have a breakdown of the BSP 
omputer be
ause the integer read would not bethe same and at is a global syn
hronous primitive.4.2. The proposed solution. Our solution is to have two kinds of �les: global and lo
al ones. In thisway, we have two kinds of I/O operators. Lo
al I/O operators do not have to o

ur in the global 
ontext andglobal I/O ones do not have to o

ur lo
ally. Lo
al �les are in lo
al �le systems whi
h are presents in ea
hpro
essor as in the EM-BSP model. Global �les are in a global �le system. These �les need to be the same fromthe point of view of ea
h node. The global �le system is thus in shared disks (as in Figure 4.1) or as a 
opy inea
h pro
essor. They thus always give the same values for the global 
ontext. Note that if they are only shareddisks and not lo
al ones, the lo
al �le systems 
ould be in di�erent dire
tories, one per pro
essor in the global�le system.An advantage of having shared disks is the 
ase of some algorithms whi
h do not have distributed data atthe beginning of the 
omputation. As those whi
h sort, the list of data to sort is in a global �le at the beginningof the program and in another global �le at the end. On the other hand, in the 
ase of a distributed global �lesystem, the global data are also distributed and programs are less sensitive to the problem of faults. Thus, wehave two important 
ases for the global �le system whi
h 
ould be seen as a new parameter of the EM-BSPma
hine: have we shared disks or not?In the �rst 
ase, the 
ondition that the global �les are the same for ea
h pro
essor point of view requiressome syn
hronizations for some global I/O operators as 
reated, opened or deleted a �le. For example, it isimpossible or un-deterministi
 for a pro
essor to 
reate a �le in the global �le system if at the same time anotherpro
essor deleted it. On the other hand, reading (resp. writing) values from (resp. to) �les do not need anysyn
hronization. All the pro
essors read the same values in the global �le and only one of the pro
essors needsto really write the value on the shared disks. In the 
ase of a global output operator only one of the pro
essorswrites the value and in the 
ase of a global input operator the value is �rst read from the disks by a pro
essorand then is read by other pro
essors from the operating system bu�ers. In this way, for all global operators,there is not a bottlene
k of the shared disks.In the se
ond 
ase, all the �les, lo
al and global ones, are distributed and no syn
hronization is needed atall. Ea
h pro
essor reads/writes/deletes et
. in its own �le system. But at the beginning, the global �le systemneeds to be empty or repli
ated to ea
h pro
essor and the global and lo
al �le systems in di�erent dire
tories.
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hronous Parallel ML 51Note that many modern parallel ma
hines have 
on
urrent shared disks. Su
h disks are always 
onsideredas user disks, i.e, disks where the users put the data needed for the 
omputations whereas lo
al disks are onlygenerally used for the parallel 
omputations of programs. For example, the earth simulator has 1,5 Petabytesfor users as mass storage disks and a spe
ial network to a

ess them. If there are no shared disks, NFS ors
alable low level libraries as in [36℄ are able to simulate 
on
urrent shared disks. Note also that if they are onlyshared disks, lo
al disks 
ould be simulated by using di�erent dire
tories for the lo
al disks of the pro
essors(one dire
tory for one pro
essor).
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Fig. 4.2. Ben
hmarks of EM parameters4.3. Our new model. After some experiments to determine the EM-BSP parameters of our parallelma
hine, we have found that operating systems do not read/write data in a 
onstant time but in a linear timedepending on the size of the data. We also noti
e that there is an overhead depending on the size of the blo
ks,i. e., if we have n× (DB) < s < (n + 1)×DB, where s is the size in words of the data, there is n + 1 overheads



52 F. Gavato read/write this value from/to the D 
on
urrent disks. Figure 4.2 gives the results of this experiment on aPC with 3 disks, ea
h disk with blo
ks of 4096 words (se
onds are plotted on the verti
al axis). This programwas run 10000 times and the average was taken. Su
h results are not altered if we de
rease the number of disks.Our proposed solution gives the pro
essors a

ess to two kinds of �les: global and lo
al ones. By this way,our model 
alled EM2-BSP extends the BSP model to its EM2 version with two kinds of external memories,lo
al and global ones. Ea
h lo
al �le system will be on lo
al 
on
urrent disks as in the EM-BSP model. Theglobal one will be on 
on
urrent shared disks (as in Figure 4.1) if they exist or repli
ate on the lo
al disks. TheEM2-BSP model is thus able to take into a

ount the time to read the data and to distributed them into thepro
essors. The following parameters are thus adding to the standard BSP parameters:(i) M is the lo
al memory size of ea
h pro
essor;(ii) Dl is the number of independent disks of ea
h pro
essor;(iii) Bl is the transfer blo
k size of a lo
al disk;(iv) Gl is the time to read or write in parallel one word on ea
h lo
al disk;(v) Ol is the overhead of the 
on
urrent lo
al disks;(vi) Dg is the number of independent shared disks (or global disks);(vii) Bg is the transfer blo
k size of a global disk;(viii) Gg is the time to read or write in parallel one word on ea
h global disk and(ix) Og is the overhead of the 
on
urrent global disks.Of 
ourse, if there are no shared disks or no lo
al disks: Dl = Dg, Bl = Bg, Gl = Gg and Ol = Og. A pro
essoris able to read/write n words to its lo
al disks in time ⌈ n
Dl⌉ ×Gl + ⌈n+1

DlBl⌉ ×Ol and n words to the global disksin time ⌈ n
Dg⌉ ×Gg + ⌈ n+1

DgBg⌉ ×Og.As in the EM-BSP model, the 
omputation of the EM2-BSP model pro
eeds in a su

ession of supersteps.The 
ommuni
ation 
osts are the same as for the EM-BSP model and multiple I/O operations are also allowedduring the 
omputation phase of a superstep.Note that Gg is not g even if pro
essors a

ess to the shared disks by the network (in 
ase of some parallelma
hines): g is the time to perform a 1-relation and Gg is the time to read/write D words on the shared
on
urrent disks. It 
ould depend on g in some parallel ma
hine as 
lusters but it 
ould depend on many otherhardware parameters if, for example, there is a spe
ial network to a

ess to the shared 
on
urrent disks.4.4. New Primitives. In this se
tion we des
ribe the 
ore of our I/O library, i. e., the minimal set ofprimitives for programming EM2-BSP algorithms. This library will be in
orporated in the next release of theBSMLlib. This I/O library is based on the elements given in Figure 4.3. As in the BSMLlib library, we havefun
tions to a

ess to the EM2-BSP parameters of the underlining ar
hite
ture. For example, embsp_lo
_D()is Dl the number of lo
al disks and glo_shared() gives if the global �le system is shared or not. Sin
e wehave two �le systems, we need two kinds of names and two kinds of abstra
t types of output 
hannels (resp.input 
hannels): glo_out_
hannel (resp. glo_in_
hannel) and lo
_out_
hannel (resp. lo
_in_
hannel) toread/write values from/to global or lo
al �les.We 
an open a named �le for writing. The primitive returns a new output 
hannel on that �le. The �le istrun
ated to zero length if it already exists. Either it is 
reated or the primitive will raise an ex
eption if the �le
ould not be opened. For this, we have two kinds of fun
tions for global and lo
al �les: (glo_open_out F)whi
h opens the global �le F in write mode and returns a global 
hannel positioned at the beginning of that�le and (lo
_open_out f) whi
h opens the lo
al �le f in write mode and returns a lo
al 
hannel positionedat the beginning of that �le. In the same manner, we have two fun
tions, glo_open_in and lo
_open_infor opening a named �le in read mode. Su
h fun
tions return new lo
al or global input 
hannels positioned atthe beginning of the �les. In the 
ase of global shared disks, a syn
hronization o

urs for ea
h global �open�.With this global syn
hronization, ea
h pro
essor 
ould signal to the other ones if it managed to open the �lewithout errors or not and ea
h pro
essor would raise an ex
eption if one of them has failed to open the �le.Now, with our 
hannels, we 
an read/write values from/to the �les. This feature is generally 
alled per-sisten
e. To write the representation of a stru
tured value of any type to a 
hannel (global or lo
al), we usedthe following fun
tions: (glo_output_value Cha v) whi
h writes the repli
ate value v to the opened global�le and (lo
_output_value 
ha v) whi
h lo
ally writes the lo
al value v to the opened lo
al �le. The obje
t
an be then read ba
k, by the reading fun
tions: (glo_input_value Cha) (resp. (lo
_input_value 
ha))whi
h returns from the global 
hannel Cha (resp. lo
al 
hannel 
ha) the repli
ate value Some v (resp. lo
alvalue) or None if there is no more value in the opened global �le (resp. lo
al �le). This is the end of the �le.
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hronous Parallel ML 53EM2-BSP parametersembsp_lo
_D:unit→int embsp_lo
_B:unit→int embsp_lo
_G:unit→�oatembsp_glo_D:unit→int embsp_glo_B:unit→int embsp_glo_G:unit→�oatembsp_lo
_O:unit→�oat embsp_glo_O:unit→�oat glo_shared:unit→boolGlobal I/O primitives Lo
al I/O primitivesglo_open_out:glo_name→glo_out_
hannelglo_open_in:glo_name→glo_in_
hannelglo_output_value:glo_out_
hannel→α→unitglo_input_value:glo_in_
hannel→α optionglo_
lose_out:glo_out_
hannel→unitglo_
lose_in:glo_in_
hannel→unitglo_delete:glo_name→unitglo_seek:glo_in_
hannel→int→unit
lo
_open_out: lo
_name→lo
_out_
hannello
_open_in:lo
_name→lo
_out_
hannello
_output_value:lo
_out_
hannel→α→unitlo
_input_value:lo
_in_
hannel→α optionlo
_
lose_out:lo
_out_
hannel→unitlo
_
lose_in:lo
_in_
hannel→unitlo
_delete:lo
_name→unitlo
_seek:lo
_in_
hannel→int→unitFrom lo
al to globalglo_
opy:int→lo
_name→glo_name→unitFig. 4.3. The Core I/O Bsmllib LibrarySu
h fun
tions read the representation of a stru
tured value and we refer to [34℄ about having type safety in
hannels and reading them in a safe way. We also have (glo_seek Cha n) (resp. lo
_seek) whi
h allows topositioned the 
hannel at the nth value of a global �le (resp. lo
al �le). The behavior is unspe
i�ed if any ofthe above fun
tions is 
alled with a 
losed 
hannel.Note that only lo
al or repli
ate values 
ould be written on lo
al or global �les. Nesting of parallel ve
torsis prohibited and thus lo
_output_value 
ould only write lo
al values. It is also impossible to write on ashared global �le a parallel ve
tor of values (global values) be
ause these values are di�erent on ea
h pro
essorand glo_output_value is an asyn
hronous primitive. Su
h values 
ould be written in any order and 
ouldbe mixed with other values. This is why only lo
al and repli
ate values should be read/write from/to disks (seese
tion 6 for more details).After, read/write values from/to 
hannels, we need to 
lose them. As previously, we need four kinds offun
tions: two for the input 
hannels (lo
al and global ones) and two for the output 
hannels. For example,(glo_
lose_out Cha), 
loses the global output 
hannel Cha whi
h had been 
reated by glo_open_out. Theglo_delete and lo
_delete primitives delete a global or a lo
al �le if it is �rst 
losed.The last primitive 
opies a lo
al �le from a pro
essor to the global �le system. It is thus a global primitive.(glo_
opy n f F) 
opies the �le f from the pro
essor n to the global �le system with the name F. This primitive
ould be used at the end of a BSML program to 
opy the lo
al results from lo
al �les to the global (user) �lesystem. It is not a 
ommuni
ation primitive be
ause used as a 
ommuni
ation primitive, glo_
opy has a moreexpensive 
ost than any 
ommuni
ation primitive (see se
tion 6). In the 
ase of a distributed global �le system,the �le is dupli
ated on all the global �le systems of ea
h pro
essor and thus all the data of the �le are allput into the network. On the 
ontrary, in the 
ase of global shared disks, it is just a 
opy of the �le be
ause,a

ess to the global shared disks is generally slower than putting values into the network and read them ba
kby another pro
essor.Using these primitives, the �nal result of any program would be the same (but naturally without the sametotal time, i. e., without the same 
osts) with shared disk or not. Now, to better understand how these newprimitives work, we des
ribe a formal semanti
s of our language with su
h persistent features.5. High Order Formal Semanti
s.5.1. Mini-BSML. Reasoning on the 
omplete de�nition of a fun
tional and parallel language su
h asBSML, would have been 
omplex and tedious. In order to simplify the presentation and to ease the formalreasoning, this se
tion introdu
es a 
ore language as a mini programming language. It is an attempt to tradebetween integrating the prin
ipal features of persisten
e, fun
tional, BSP language and being simple. The



54 F. Gavaexpressions of mini-BSML, written e possibly with a prime or subs
ript, have the following abstra
t syntax:
e ::= x variables | c 
onstants

| op operators | fun x→ e abstra
tion
| (e e) appli
ation | let x = e in e binding
| (e, e) pairs | if e then e else e 
onditional
| (mkpar e) parallel ve
tor | (apply e e) parallel appli
ation
| (put e) 
ommuni
ation | (at e e) proje
tion
| f �le names or 
hannelsIn this grammar, x ranges over a 
ountable set of identi�ers. The form (e e′) stands for the appli
ation of afun
tion or an operator e, to an argument e′. The form fun x → e is the so-
alled and well-known lambda-abstra
tion that de�nes the �rst-
lass fun
tion of whi
h the parameter is x and the result is the value of e.Constants c are the integers, the booleans, the number of pro
esses p and we assume having a unique valuefor the type unit: (). The set of primitive operations op 
ontains arithmeti
 operations, pair operators, testfun
tion isn
 of the n
 
onstru
tor whi
h plays the role of the None 
onstru
tor in OCaml, �xpoint to de�nednatural iteration fun
tions and our I/O operators: openr (resp. openw) to open a �le as a 
hannel in readmode (resp. write mode), 
loser (resp. 
losew) to 
lose a 
hannel in read mode (resp. write mode), read,write to read or write in a 
hannel, delete to delete a �le and seek to 
hange the reading position. All thoseoperators are distinguished with a subs
ript whi
h is l for a lo
al operator and g for a global one. We also haveour parallel operators: mkpar, apply, put and at. We also have two kinds of �le systems, the lo
al and theglobal ones, de�ned with (possibly with a prime):

• f for a �le name;
• fw for a write 
hannel, fr for a read 
hannel and gξ

k for a 
hannel pointed on the kth value of a �lewhere ξ is the name of the 
hannel;
• ?f

vn.
..

v0
is a �le where ? is 
, r or w for a 
lose �le or an open �le in read or write mode and where

v0, . . . , vn the values hold in the �le.When a �le is opened in read mode, it 
ontains the name [ga
n, . . . , gz

m] of the 
hannels that pointed to it and theposition of these 
hannels. Before presenting the dynami
 semanti
s of the language, i. e., how the expressionsof mini-BSML are 
omputed to values, we present the values themselves and the simple ML types [39℄ of thevalues. There is one semanti
s per value of p, the number of pro
esses of the parallel ma
hine. In the following,the expressions are extended with the parallel ve
tors: 〈e, . . . , e〉 (nesting of parallel ve
tors is prohibited; ourstati
 analysis enfor
es this restri
tion [23℄). The values of mini-BSML are de�ned by the following grammar:
v ::= fun x → e fun
tional value | c 
onstant

| op primitive | (v, v) pair value
| 〈v, . . . , v〉 p-wide parallel ve
tor value | f �le names or 
hannelsand the simple ML types of values are de�ned by the following grammar:

τ ::= κ base type (bool, int, unit, �le names or 
hannels) | α type variables
| τ1 → τ2 type of fun
tional values from τ1 to τ2 | τ1 ∗ τ2 type for pair valuesWe note ⊢ v : τ to say that the value v has the type τ and we refer to [39℄ for an introdu
tion to the types ofthe ML language and to [23℄ for those of BSML.5.2. High Order Semanti
s. The dynami
 semanti
s is de�ned by an evaluation me
hanism that relatesexpressions to values. To express this relation, we used a small-step semanti
s. It 
onsists of a predi
atebetween an expression and another expression de�ned by a set of axioms and rules 
alled steps. The small-step semanti
s des
ribes all the steps of the language from an expression to a value. We suppose that weevaluate only expressions that have been type-
he
ked [23℄ (nesting of parallel ve
tors has been prohibited).Unlike in a sequential 
omputer with a sequential programming language, a unique �le system (a set of �les)for persistent operators is not su�
ient. We need to express the �le system of all our pro
essors and ourglobal �le system. We assume a �nite set N = {0, . . . , p − 1} whi
h represents the set of pro
essor namesand we write i for these names and ⋊⋉ for the whole parallel 
omputer. Now, we 
an formalize the �les forea
h pro
essor and for the network. We write {fi} for the �le system of pro
essor i with i ∈ N . We assumethat ea
h pro
essor has a �le system as an in�nite mapping of �les whi
h are di�erent at ea
h pro
essor. Wewrite {f} = {{f0}, . . . , {fp−1}} for all the lo
al �le systems of our parallel ma
hine and {F} for our global �le
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(bsp_p ()) ⇀

δ
p

(fst (v1, v2)) ⇀
δ

v1if true then e1 else e2 ⇀
δ

e1

(isn
 n
) ⇀
δ

true
(�x op) ⇀

δ
op (+ (n1, n2)) ⇀

δ
n with n = n1 + n2

(snd (v1, v2)) ⇀
δ

v2if false then e1 else e2 ⇀
δ

e2

(isn
 v) ⇀
δ

false if v 6= n

(�x (fun x→ e)) ⇀

δ
e[x← (�x (fun x→ e))]Fig. 5.1. Fun
tional δ-rulessystem. The persistent version of the small-steps semanti
s has the following form: {F}/e/{f}⇀ {F ′}/e′/{f ′}.We note ∗

⇀, for the transitive and re�exive 
losure of ⇀, e. g., we note {F0}/e0/{f
0}

∗
⇀ {F}/v/{f} for

{F0}/e0/{f0} ⇀ {F1}/e1/{f1} ⇀ {F2}/e2/{f2} ⇀ . . . ⇀ {F}/v/{f}. To de�ne the relation ⇀, we beginwith some rules for two kinds of redu
tions:(i) e/{fi}
i

⇀ e′/{f ′
i} whi
h 
ould be read as �with the initial lo
al �le system {fi}, at pro
essor i, theexpression e is redu
ed to e′ with the �le system {f ′

i}";(ii) {F}/e/{f}
⋊⋉
⇀ {F ′}/e′/{f} whi
h 
ould be read as �with the initial global �le system {F} and withthe initial set of lo
al �le systems, the expression e is redu
ed to e′ with the global �le system F ′ and with thesame set of lo
al �le systems".To de�ne these relations, we begin with some axioms for the fun
tional head redu
tion ε

⇀:
(fun x→ e) v

ε
⇀ e[x← v] and let x = v in e

ε
⇀ e[x← v]We write e[x ← v] for the expression obtained by substituting all the free o

urren
es of x in e by v. Freeo

urren
es of a variable are de�ned as a 
lassi
al and trivial indu
tive fun
tion on our expressions. Thisfun
tional head redu
tion has two versions. First, a lo
al redu
tion, ε

⇀
i
, of just the pro
essor i and se
ond, aglobal redu
tion, ε

⇀
⋊⋉
, of the whole parallel ma
hine:

e
ε
⇀ e′

e / {fi}
ε
⇀
i

e′ / {fi}
(1)

e
ε
⇀ e′

{F} / e / {f}
ε
⇀
⋊⋉
{F} / e′ / {f}

(2)For primitive operators we also have some axioms, the δ-rules. The fun
tional δ-rules ⇀
δ
are given in Figure 5.1.First, we have fun
tional δ-rules whi
h 
ould be used by one pro
essor i, ⇀

δi

or by the parallel ma
hine, ⇀
δ⋊⋉

. Asin the fun
tional head redu
tion, we have two di�erent 
ases for using fun
tional δ-rules:
e⇀

δ
e′

e / {fi}⇀
δi

e′ / {fi}
(3)

e⇀
δ

e′

{F} / e / {f}⇀
δ⋊⋉

{F} / e′ / {f}
(4)Su
h redu
tions, whi
h are not persistent redu
tions, do not 
hange and do not need the �les. Only persistentoperators 
hange and need them.

{F} / (mkpar v) / {f} ⇀
δ≎

{F} / 〈(v 0), . . . , (v (p − 1))〉 / {f}

{F}/(apply 〈v0, . . . , vp−1〉 〈v′0, . . . , v′p−1
〉) / {f} ⇀

δ≎

{F}/〈(v0 v′
0
), . . . , (vp−1 v′p−1

)〉/{f}

{F} / (at 〈. . . , vn, . . .〉 n) / {f} ⇀
δ≎

{F} / vn / {f} if Ac(vn) 6= True
{F} / (put 〈v0, . . . , vp−1〉) / {f}⇀

δ≎

{F} / (mkfun (〈send (init v0 p), . . . , send (init vp−1 p)〉)) / {f}

{F} / 〈send [v0

0 , .., vp−1

0
], . . . , send [v0

p−1, .., vp−1

p−1
]〉 / {f}

⇀
δ≎

{F} / 〈[v0

0 , .., v0

p−1], . . . , [vp−1

0
, .., vp−1

p−1
]〉 / {f} if ∀n, m ∈ 0, . . . , p− 1 Ac(v

m
n ) 6= Truewhere mkfun = apply (mkpar (fun j t i→ if (and (≤(0, i), <(i,p))) then (a

ess t i) else n
))Fig. 5.2. Parallel δ-rules
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ond, for the parallel primitives, we naturally have δ-rules but we do not have those δ-rules on a singlepro
essor but only for the parallel ma
hine (Figure 5.2). For simple reasons it is impossible for a pro
essor tosend a 
hannel to another pro
essor. This se
ond pro
essor does not have to read in this 
hannel be
ause it
ould be seen as a hidden 
ommuni
ation. In this way, we have to test if the sent values 
ontain 
hannels ornot. To do this, we used a trivial indu
tive fun
tion Ac whi
h tells whether an expression 
ontains a 
hannelor not. Note that this work is done when OCaml serializes values. This raises an ex
eption when an abstra
tdatum like a 
hannel has been found. The evaluation of a put primitive pro
eeds in two steps. In a �rst step,ea
h pro
essor 
reates a pure fun
tional array of values. Thus, we need a new kind of expression, arrays written
[e, . . . , e]. init and a

ess operators are used to manipulate these fun
tional arrays:a

ess [v0, . . . , vn, . . . , vm] n ⇀

δ
vn and init f m ⇀

δ
[(f 0), . . . , (f (m−1))]In the se
ond step, the send operations ex
hange these arrays. For example, the value at the index j of thearray held at pro
ess i is sent to pro
ess j and is stored at index i of the result. The fun
tion mkfun 
onstru
tsa parallel ve
tor of fun
tions from the resulting ve
tor of arrays.

(openr f)/{f ′, . . . , 
f vn.
..

v0

, . . . , f ′′}
io
⇀
δ

far / {f ′, . . . , rf vn.
..

v0

[ga
0
], . . . , f ′′}

(openr f)/{f ′, . . . , rf vn.
..

v0

[ga, . . . , gz ], . . . , f ′′}
io
⇀
δ

fξr / {f ′, . . . , rf vn.
..

v0

[ga, . . . , gz , gξ
0
], . . . , f ′′}

(openw f)/{f ′, . . . , 
f vn.
..

v0

, . . . , f ′′}
io
⇀
δ

fξw / {f ′, . . . ,wf ∅, . . . , f ′′}

(openwl f)/{f ′, . . . , f ′′}
io
⇀
δ

fξw / {f ′, . . . ,wf ∅, . . . , f ′′} if f /∈{f ′, . . . , f ′′}

(
loser fξr )/{f ′, . . . , rf vn.
..

v0

[ga, . . . , gξ
k
, . . . , gz ], . . . , f ′′}

io
⇀
δ

() / {f ′, . . . , rf vn.
..

v0

[ga, . . . , gz ], . . . , f ′′}

(
loser fξr )/{f ′, . . . , rf vn.
..

v0

[ga, . . . , gz ], . . . , f ′′}
io
⇀
δ

() / {f ′, . . . , rf vn.
..

v0

[ga, . . . , gz ], . . . , f ′′}

(
loser fξr )/{f ′, . . . , rf vn.
..

v0

[gξ
k
], . . . , f ′′}

io
⇀
δ

() / {f ′, . . . , 
f vn.
..

v0

, . . . , f ′′}

(
loser fξr )/{f ′, . . . , 
f vn.
..

v0

, . . . , f ′′}
io
⇀
δ

() / {f ′, . . . , 
f vn.
..

v0

, . . . , f ′′}

(
losew fξw/{f ′, . . . , ?f vn.
..

v0

, . . . , f ′′}
io
⇀
δ

() / {f ′, . . . , 
f vn.
..

v0

, . . . , f ′′} where ?=w or ?=

(readτ fξr )/{f ′, . . . , rf .

..
vk.
..

[ga, .., gξ
k
, . . . , gz ], . . . , f ′′}

io
⇀
δ

vk / {f ′, . . . , rf .
..

vk.
..

[ga, .., gξ
m, . . . , gz ], . . . , f ′′}if ⊢ vk : τ and m = k + 1. vk is the kth value of f

(readτ fξr )/{f ′, . . . , rf vn.
..

v0

[ga, .., gξ
k
, . . . , gz ], . . . , f ′′}

io
⇀
δ
n
 / {f ′, . . . , rf vn.

..
v0

[ga, .., gξ
k
, . . . , gz], . . . , f ′′}if k > n

(seek fξr k)/{f ′, . . . , rf vn.
..

v0

[ga, .., gξ
m, . . . , gz ], . . . , f ′′}

io
⇀
δ
n
 / {f ′, . . . , rf vn.

..
v0

[ga, .., gξ
k
, . . . , gz ], . . . , f ′′}

(write (v, fξw))/{f ′, . . . ,wf
.
.., . . . , f ′′}

io
⇀
δ
()/{f ′, . . . ,wf

v
.
.. , . . . , f ′′} if Ac(vn) 6= True

(delete f)/{f ′, . . . , 
f .
.., . . . , f ′′}

io
⇀
δ

()/{f ′, . . . , f ′′}Fig. 5.3. δ-rules of the persistent operatorsThird, we 
omplete our semanti
s by giving the δ-rules io
⇀
δ
of the I/O operators given in Figure 5.3. Theopen operation opens a �le (in read or write mode) and returns a new 
hannel, pointing to this �le, to a

essto the values of the �le or write values in this �le. Opening a �le in write mode, gives an empty �le. If possible,readτ gives the value of type τ 
ontained in the �le from the 
hannel. If no more value 
ould be read thenreadτ returns an empty value. The write operation writes a new value into the �le using the 
hannel. delete
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Γ ::= []
| Γ e
| v Γ
| let x = Γ in e
| (Γ, e)
| (v, Γ)
| if Γ then e else e
| (mkpar Γ)
| (apply Γ e)
| (apply v Γ)
| (put Γ)
| (at Γ e)
| (at v Γ)

Γi
l

::= Γi
l

e
| v Γi

l
| let x = Γi

l
in e

| (Γi
l
, e)

| (v, Γi
l
)

| if Γi
l
then e else e

| (mkpar Γi
l
)

| (apply Γi
l

e)
| (apply v Γi

l
)

| (put Γi
l
)

| (at Γi
l

e)
| (at v Γi

l
)

| 〈e, . . . ,

i
z}|{

Γl , e, . . . , e〉

Γl ::= []
| Γl e
| v Γl

| let x = Γl in e
| let re
 g x = Γl in e
| (Γl, e)
| (v, Γl)
| if Γl then e else e
| (send Γl)
| [Γl, e1, . . . , en]
| [v0,Γl, . . . , en]
| . . .
| [v0, v1, . . . , Γl]Fig. 5.4. Context of evaluationdeletes a �le from the �le system if it has been fully 
losed. 
lose 
loses a 
hannel or do nothing if the 
hannelhas been �rst 
losed. All those rules 
ould be distinguished with a subs
ript (l or g) for the lo
al or the globaloperators. Thus, we need two kinds of redu
tions, one for the lo
al redu
tion io

⇀
δi

and another one for the globalredu
tion io
⇀
δ⋊⋉

:
e / {fi}

io
⇀
δ

e′ / {f ′
i}

e / {fi}
io
⇀
δi

e′ / {f ′
i}

(5)
e / {F}

io
⇀
δ

e′ / {F ′}

{F} / e / {f}
io
⇀
δ⋊⋉

{F ′} / e′ / {f}
(6)First, for a single pro
essor i su
h persistent operations work on the lo
al �le system of the pro
essor i wherethey are exe
uted. Se
ond, for the whole parallel ma
hine, we have the same operations ex
ept for the global�le system. The spe
ial operator 
opy⋊⋉ 
opies one �le of one pro
essor into the global �le system:

{F ′, .., F ′′}/(
opy i f F)/{f0, . . . , fi, . . . , fp−1}
io
⇀
δ⋊⋉

{F ′, .., F ′′, 
F vn.
..

v0

}/()/{f0, . . . , fi, . . . , fp−1}if F /∈{F ′, .., F ′′} and fi = {f ′, . . . , 
f vn.
..

v0

, . . . , f ′′}Now, the 
omplete de�nitions of our two kinds of redu
tions are:
i

⇀ =
ε
⇀
i
∪ ⇀

δi

∪
io
⇀
δi

and ⋊⋉
⇀ =

ε
⇀
⋊⋉
∪ ⇀

δ⋊⋉

∪ ⇀
δ≎

∪
io
⇀
δ⋊⋉5.3. Contexts of evaluation. It is easy to see that we 
annot always make a head redu
tion. We haveto redu
e �in depth� in the sub-expressions. To de�ne this deep redu
tion, we de�ne two kinds of 
ontexts,i.e, expressions with a hole noted [] that have the abstra
t syntax given in Figure 5.4. The hole gives whereexpressions 
ould be redu
ed. In this way, the 
ontexts give the order of evaluation of the arguments of the
onstru
tion of the language, i.e, the strategy of the language.The Γ 
ontext is used to de�ne a global redu
tion of the parallel ma
hine. For example:

Γ = let x = [] in mkpar (fun pid→ e)The redu
tion will o

ur at the hole to �rst 
ompute the value of x. The Γi
l 
ontext is used to de�ne inwhi
h 
omponent i of a parallel ve
tor the redu
tion is done, i.e., whi
h pro
essor i redu
es its lo
al expression.This 
ontext uses the Γl 
ontext whi
h de�nes a lo
al redu
tion on a pro
essor i. Note that, in this way, thehole is always inside a parallel ve
tor. For example, the following 
ontext: Γi

l = apply v 〈v0, e1, . . . , Γl〉 and
Γl = openrl [] is used to de�ne that the last pro
essor �rst 
omputes the argument of the openrl primitive.Now we 
an redu
e �in depth� in the sub-expressions. To de�ne this deep redu
tion, we use the inferen
erules of the lo
al 
ontext rule:

e / {fi}
i

⇀ e′ / {f ′
i}

{F} / Γi
l
(e) / {f}⇀ {F} / Γi

l
(e′) / {f ′}

where 
{f} = {{f0}, . . . , {fi}, . . . , {fp−1}}
{f ′} = {{f0}, . . . , {f ′

i}, . . . , {fp−1}}
(7)



58 F. GavaSo, we 
an redu
e the parallel ve
tors and the 
ontext gives the name of the pro
essor where the expression isredu
ed. The global 
ontext rule is:
{F} / e / {f}

⋊⋉
⇀ {F ′} / e′ / {f}

{F} / Γ(e) / {f}⇀ {F ′} / Γ(e′) / {f}
(8)We 
an remark that the 
ontext gives an order to evaluate an expression but not for the parallel ve
tors and thisrule is not deterministi
. It is not a problem be
ause the BSλ-
al
ulus is 
on�uent [37℄. We 
an also noti
e thatour two kinds of 
ontexts used in the rules ex
lude ea
h other by 
onstru
tion be
ause the hole in a Γi

l 
ontextis always in a 
omponent of a parallel ve
tor and never for a Γ one. Thus, we have a rule to redu
e globalexpressions and another one to redu
e usual expressions within the parallel ve
tors and we have the followingresult of 
on�uen
e:Theorem 5.1. if {F}/e/{f}
∗
⇀ {F1}/v1/{f1} and {F}/e/{f}

∗
⇀ {F2}/v2/{f2} then v1 = v2, F1 = F2and f1 = f2.Proof. (Sket
h of) The BSML language is known to be 
on�uent [37℄. With our two kinds of �le systems,it is easy to see that a global rule never modi�es a lo
al �le system and never a lo
al rule modi�es the globalone. To be more formal, the global (resp. lo
al) �les are always the same before and after a lo
al (resp. global)redu
tion. Thus, the global values are the same on all the pro
essors as proof of 
on�uent of the BSML languageneeded. All the δ-rules working on �les are deterministi
 (lo
al and global ones). So, the BSML language withparallel I/O features is 
on�uent.We refer to appendix 9 for a full proof. Note that the semanti
s is not deterministi
. Several rules 
an beapplied at the same time, parallelism 
omes from 
ontext rules.6. Formal Cost Model. A formal 
ost model 
an be asso
iated to redu
tions in the BSML language.�
ost terms� are de�ned and ea
h rule of the semanti
s is asso
iated to a 
ost rule on 
ost terms. Given the weak
all-by-value strategy, i.e., arguments to fun
tions and operators need to be values (see se
tion 5), a program isalways redu
ed in the �same way�. As stated in [41℄, �Ea
h evaluation order has its advantages and disanvatages,but stri
t evaluation is 
learly superior in at least one area: ease of reasoning about asymptoti
 
omplexity�.In this 
ase, 
osts 
an be asso
iated with terms rather than redu
tions. It is the way we 
hoose to ease thedis
ussion about the 
ompositional nature of the 
ost model of our language and the 
ost of our I/O primitives.6.1. Costs of the Parallel Operators. No order of redu
tion is given between the di�erent 
omponentsof a parallel ve
tor and their evaluations are done in parallel. The 
ost in this 
ase is independent from the orderof redu
tion. We will not des
ribe the 
osts of the evaluation of lo
al terms, i. e., fun
tional terms. They arethe same as those of a stri
t fun
tional language (OCaml for example) but we give the 
osts of the evaluationof global and I/O operations.The 
ost model asso
iated to our programs follows the EM2-BSP 
ost model. We noted C(e) the 
ost termasso
iated to an expression, S(v) the size in words of a serialized value v and ⊕ for the sum of 
ost with thefollowing rules:

c⊕ 〈◦c0, . . . , cp−1◦〉 = 〈◦c + c0, . . . , c + cp−1◦〉
c1 ⊕ c2 = c2 ⊕ c1

〈◦c1
0, . . . , c

1
p−1◦〉 ⊕ 〈◦c

2
0, . . . , c

2
p−1◦〉 = 〈◦c1

0 + c2
0, . . . , c

1
p−1 + c2

p−1◦〉where c, c1 c2 are 
ost terms and 〈◦c0, . . . , cp−1◦〉 is the 
ost term asso
iated to a parallel ve
tor. Su
h rules saythat the 
ost of repli
ate terms 
ould be inside or outside a parallel ve
tor 
ost term and when we have the 
ostterm of a full-evaluated superstep, this 
ost 
ould also be inside or outside a parallel ve
tor 
ost term. This is nota problem be
ause, using the BSP model of 
omputation, at the end of a superstep, we take the maximal of the
osts. + and × are 
lassi
al 
ost addition and multipli
ation using the EM2-BSP parameters (g, l, r, Gl et
.).We also noted ⊎ for the maximal 
ost of parallel ve
tor 
ost terms with this rules: ⊎ 〈◦c0, . . . , cn, . . . , cp−1◦〉 = cnif cn is the maximal 
ost of the 
omponent of the parallel ve
tor 
ost term. We also noted ⊕p−1
i=0 hi for themaximal of sent/re
eived words. The EM2-BSP 
osts of the parallel primitives are given in Figure 6.1. The 
ostof a program e is thus ⊎(C(e)) the maximal time for a pro
essor to perform all the supersteps of the program.Let us explain su
h formal rules with more details and more �readable notations�.If the 
omputational and I/O time for the evalution of the fun
tional parameter e of mkpar is wall (itis a repli
ate fun
tion and thus 
omputed by all the pro
essors) and if the sequential evaluation time of ea
h
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C(mkpar e)  C(e)⊕ 〈◦C((f 0)), . . . , C((f (p− 1)))◦〉 if e

∗
⇀ f

C(apply e1 e2)  C(e1)⊕ C(e2)⊕ 〈◦C((f0 v0)), . . . , C((fp−1 vp−1))◦〉if { e1
∗
⇀ 〈f0, . . . , fp−1〉

e2
∗
⇀ 〈v0, . . . , vp−1〉

C(put e)  

⊎

(C(e)⊕ 〈◦
p−1
∑

j=0

C((f0 j)), . . . ,
p−1
∑

j=0

C((fp−1 j))◦〉)⊕ (
p−1
⊕

i=0

hi)× g ⊕ lwhere








if e
∗
⇀ 〈f0, . . . , fp−1〉if ∀i, j ∈ {0, . . . , p− 1} (fi j)

∗
⇀ vi

jand hi =
⊕

(
p−1
∑

j=0

S(vi
j),

p−1
∑

j=0

S(vj
i ))

C(at e1 e2)  

⊎

(C(e1)⊕ C(e2))⊕ (p− 1)× S(vn)× g ⊕ lif { e2
∗
⇀ n

e1
∗
⇀ 〈v0, . . . , vn, . . . , vp−1〉Fig. 6.1. Costs of our parallel operators
omponent of the parallel ve
tor is wi + mi (
omputational time and I/O time) then, the parallel evaluationtime of the parallel ve
tor is 〈◦wall + w0 + m0, . . . , wall + wp−1 + mp−1◦〉, i.e, it is a lo
al 
omputation.Provided the two arguments of the parallel appli
ation are parallel ve
tors of values, and if wi (resp.

mi) is the 
omputational time (resp. I/O time) of (fi vi) at pro
essor i, the parallel evaluation time of
(apply 〈f0, . . . , fp−1〉 〈v0, . . . , vp−1〉) is 〈◦wall +w0+m0, . . . , wall +wp−1+mp−1◦〉 where wall is the 
omputationaland I/O time to 
reate the two parallel ve
tors.The evaluation of put 〈f0, . . . , fp−1〉 requires a full superstep. Ea
h pro
essor evaluates the p lo
al terms
(fi j), 0 ≤ j < p leading to p2 sending values vj

i (�rst phase of the superstep). If the value vj
i of pro
essor iis di�erent from None, it is sent to pro
essor j (
ommuni
ation phase of the superstep). On
e all values havebeen ex
hanged, a syn
hronization barrier o

urs. So, the parallel evaluation time is:

max
0≤i<p

(wi + mi + wall)⊕ max
0≤i<p

(hi × g)⊕ lwhere wi (resp. mi) is the 
omputation time (resp. I/O time) of (fi j), hi is the number of words transmitted(or re
eived) by pro
essor i and wall is the 
omputation time to 
reate the parallel ve
tor 〈f0, . . . , fp−1〉.The evaluation of a global proje
tion (at 〈v0, . . . , vp−1〉 n) where n is an integer value also requires a fullsuperstep. First the pro
essor n sends the value vn to all other pro
essors and then a syn
hronization barriero

urs. The parallel evaluation time is thus the time to send this data, the time for 
ompute n and the maximallo
al 
omputation and I/O time to 
reate the parallel ve
tor 〈v0, . . . , vp−1〉.6.2. Cost of I/O operators. Our I/O operators have naturally some 
omputational and I/O 
osts.We also made sure that arguments of the I/O operators be evaluated �rst (weak 
all-by-value strategy). Asexplained in the EM2-BSP model, ea
h transfer from (resp. to) the lo
al external memory to (resp. from) themain memory has the 
ost ⌈ n
Dl⌉ × Gl + ⌈n+1

DlBl⌉ × Ol (resp. ⌈ n
Dg⌉ × Gg + ⌈ n+1

DgBg⌉ × Og for the global externalmemory) for n words. Note that, in the 
ase of an empty �le, the value to be read would be an empty valuewith an empty size. Thus the 
ost would just be the overhead. In this way, we have the 
ost of the �operatingsystem I/O 
alls�. Depending on whether the global �le system is shared or not, the global I/O operators havedi�erent 
osts and some barrier syn
hronizations are needed (Figure 6.2).Lo
al operators are asyn
hronous operators. They belong to the �rst phase of a superstep. In the 
aseof a distributed global �le system, a global operator has the same 
ost as a lo
al operator. But, in the 
aseof global shared disks, global operators are syn
hronous operators be
ause they modify the global behaviourof the EM2-BSP 
omputer. The two ex
eptions are glo_output_value and glo_input_value whi
h areasyn
hronous global operators be
ause only one pro
ess really has to write this repli
ate value (whi
h is thus thesame on ea
h pro
essor) or ea
h pro
essor read this value. The reading of this value 
ould be done in any order.Di�erent 
hannels are positioned at di�erent pla
es in the �le but read the same value for the same position. Forexample, opening a global �le needs a syn
hronization be
ause glo_output_value and glo_input_value



60 F. GavaOperator Costlo
_open_in (resp. out) 
onstant time tlor (resp. tlow)(lo
_output_value v) ⌈size(v)
Dl ⌉×Gl + ⌈size(v)+1

DlBl ⌉×Ollo
_input_value ⌈size(v)
Dl ⌉×Gl + ⌈size(v)+1

DlBl ⌉×Ol where v is the readed valuelo
_
lose_in (resp. out) 
onstant time tlcr (resp. tlcw)lo
_delete 
onstant time tldglo_open_in {

(p− 1)× g + tgor + l If global �le system shared
tlor Otherwiseglo_open_out {

(p− 1)× g + tgor + l If global �le system shared
tlow Otherwise(glo_output_value v)

{

⌈size(v)
Dg ⌉×Gg + ⌈size(v)+1

DgBg ⌉×Og If shared
⌈size(v)

Dl ⌉×Gl + ⌈size(v)+1
DlBl ⌉×Ol Otherwiseglo_input_value 





⌈size(v)
Dg ⌉×Gg + ⌈size(v)+1

DgBg ⌉×Og If shared
⌈size(v)

Dl ⌉×Gl + ⌈size(v)+1
DlBl ⌉×Ol Otherwiseand where v is the readed valueglo_
lose_in {

(p− 1)× g + tgcr + l If global �le system shared
tlcr Otherwiseglo_
lose_out {

(p− 1)× g + tgcw + l If global �le system shared
tlcw Otherwiseglo_delete {

(p− 1)× g + tgd + l If global �le system shared
tld Otherwise(glo_
opy F f)















⌈size(F )
Dg ⌉×Gg+⌈size(F )

DgBg ⌉×Og+⌈size(F )
Dl ⌉×Gl+⌈size(F )

DlBl ⌉×Ol+lIf global �le system shared
(⌈size(F )

Dl ⌉×Gl+⌈size(F )
DlBl ⌉×Ol)×2+size(F )×g+lFig. 6.2. Formal 
osts of our I/O operatorsare asyn
hronous operators and a pro
essor 
ould never write in a global �le when another reads in this �le oropens it in read mode. With this barrier of syn
hronization, all the pro
essors open (resp. 
lose) the �le andthey 
ould 
ommuni
ate to ea
h other whether they managed to open (resp. 
lose) that �le without errors ornot. In this way, p− 1 booleans are sent on the network and a global ex
eption will be raised if there are anyproblems.6.3. Formal Cost Composition. The 
osts (parallel evaluation time) above are 
ontext independents.This is why our 
ost model is 
ompositional. The 
ompositional nature of this 
ost model relies on the absen
eof nesting of parallel ve
tors (our stati
 analysis enfor
es this 
ondition [23℄) and the fa
t of having two kindsof �le systems. A global I/O operator whi
h a

esses a global �le and whi
h 
ould make some 
ommuni
ationsand syn
hronizations never o

urs lo
ally. If the nesting was not forbidden, for a parallel ve
tor v and a s
anfun
tion, the following expression (mkpar (fun i → if i=0 then (s
an e (+) v) else v)) would be a 
orre
tone. The main problem is the meaning of this expression.We said that (mkpar f) evaluates to a parallel ve
tor su
h that pro
essor i holds value (f i). In the 
aseof our example, this means that pro
essor 0 should hold the value of (s
an e (+) v). Sin
e the semanti
sof the language is 
on�uent, it is possible to evaluate (s
an e (+) v) lo
ally. But in this 
ase, pro
essor 0would not have all the needed values. We 
ould 
hoose that another pro
essors broad
ast there own values topro
essor 0 and then pro
essor 0 evaluates (s
an e (+) v) lo
ally. The exe
ution time will not follow the formula
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ost model be
ause the broad
asting of these values need additional 
ommuni
ations anda syn
hronization. Thus, we have additional 
osts whi
h are 
ontext dependent. The 
ost of this expressionwill then depend on its 
ontext. The 
ost model will no be 
ompositional. This preliminary broad
ast is notneeded if (s
an e (+) v) 
ould be not under a mkpar. Furthermore, the above solution would imply the useof a s
heduler for ea
h pro
essor to know, at every time, if the pro
essor need the values of other pro
essors ornot. Su
h 
onstraints make the 
ost formulas very di�
ult to write.As explained above, if the global �le system is shared, only one pro
ess has to a
tually write a value toa global �le. In this way, if this value is di�erent on ea
h pro
essor (
ase of a parallel ve
tor of values) thenpro
essors would asyn
hronously write di�erent values on a shared �le and we will not be able to re
onstru
tthis value. The 
on�uen
e of the language would be lost. In the 
ase of a distributed global �le system, thisproblem does not o

ur be
ause ea
h pro
essor writes the value on a di�erent �le system. Programs would notbe portables be
ause they would be ar
hite
ture dependent. The 
ompositional nature of the 
ost model is alsolost be
ause the �nal results would depend on the EM2-BSP ar
hite
ture and not on the program. This is whyit is forbidden to write global values to keep safe the 
ompositional nature of the 
ost model. Note that thesemanti
s forbids a parallel operator or a parallel persistent operator to be used inside a parallel ve
tor and alsoforbid a lo
al persistent operator to be used outside a parallel ve
tor.7. Experiments.7.1. Implementation. The glo_
hannel and lo
_
hannel are abstra
t types and are implemented asarrays of 
hannels, one 
hannel per disk. The 
urrent implementation used the thread fa
ilities of OCaml towrite (or read) on the D-disks of the 
omputers: we 
reate D-threads whi
h write (or read) on the D 
hannels.Ea
h thread has a part of the data represented as a sequen
e of bytes and write it in parallel with other threads.To do this, we need to serialize our values, i.e., transform our values into a sequen
e of bytes to be written ona �le and de
oded ba
k into a data stru
ture. The module Marshal of OCaml provides this feature.In the 
ase of global shared disks, one of the pro
essors is sele
ted to really write the value, in our �rstimplementation, ea
h of them in turn. To 
ommuni
ate booleans, we used the primitives of 
ommuni
ation ofBSML. A total ex
hange of the booleans indi
ates if the pro
essors has well opened/
losed the �le or not. Theglobal and the lo
al �le systems are in di�erent dire
tories that are parameters of the language. The globaldire
tory is supposed to be mounted to a

ess to the shared disks or is in di�erent dire
tories in the 
ase of adistributed global �le system. Therefore, global operators a

essed to the global dire
tory and lo
al operatorsa

essed to the lo
al dire
tories. In the 
ase of shared disks without lo
al disks, for example, using the libraryin a sequential ma
hine as a PC, lo
al operators use the �pid� of the pro
essor to distinguish the lo
al �les ofthe di�erent pro
essors.7.2. Example of fun
tions using our library. Our example is the 
lassi
al 
omputation of the pre�xof a list. Here we make the hypothesis that the elements of the list are distributed on all the pro
esses as �leswhi
h 
ontain sub-parts of the initial list. Ea
h �le is 
ut out on sub-lists with Dl×Bl

s
elements where s isthe size of an element. We now des
ribe the algorithm. We �rst re
al the sequential OCaml 
ode part of ouralgorithm:let isn
=fun
tion None→true | _→false(∗ seq_s
an_last:(α→α→α )→α→α list→α ∗α list∗)let seq_s
an_last op e l =let re
 seq_s
an' last l a

u = mat
h l with[℄→(last,(List.rev a

u))| hd::tl→(let new_last = (op last hd)in seq_s
an' new_last tl (new_last::a

u))in seq_s
an' e l [℄where List.rev [v0; v1; . . . ; vn] = [vn; . . . ; v1; v0]. To 
ompute the pre�x of a list, we �rst lo
ally 
ompute thepre�x of the lo
al lists lo
ated on the lo
al �les. For this, we used the following 
ode:(∗ seq_s
an_list_io:(α→α→α )→α→lo
_name→lo
_name→α ∗)let seq_s
an_list_io op e name_in name_tmp=let 
ha_in =lo
_open_in name_in in
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ha_tmp=lo
_open_out name_tmp inlet re
 seq_s
an' last =let blo
k=(lo
_input_value 
ha_in) inif (isn
 blo
k) then lastelse let blo
k2=(seq_s
an_last op last (noSome blo
k)) inlo
_output_value 
ha_tmp (snd blo
k2);seq_s
an' (fst blo
k2) inlet res=seq_s
an' e inlo
_
lose_in 
ha_in;lo
_
lose_out 
ha_tmp;resThe lo
al �le is opened as well as another temporary �le. For all the sub-lists of the �le, we 
ompute the pre�xand the last elements of these pre�xes. Then, we write these pre�xes to the temporary �le and we 
lose the two�les. Se
ond, we 
ompute the parallel pre�x of the last elements of ea
h pre�x of that �le. Third, we add thosevalues to the temporary pre�xes.(∗ add_last:(α→α→α )−α→lo
_name→lo
_name→unit ∗)let add_last op e name_tmp name_out =let 
ha_tmp=lo
_open_in name_tmp inlet 
ha_out=lo
_open_out name_out inlet re
 seq_add () =let blo
k = (lo
_input_value 
ha_tmp) inif (isn
 blo
k) then () elselo
_output_value 
ha_out(List.map (op e)(noSome blo
k));seq_add () inseq_add ();lo
_
lose_in 
ha_tmp;lo
_
lose_out 
ha_out; lo
_delete name_tmpThe operating of this fun
tion is similar to seq_s
an_list_io and the full fun
tion is thus the 
omposition ofthe above fun
tions.(∗s
an:(α→α→α )→α→lo
_name→lo
_name→lo
_name→unit par∗)let s
an_list_dire
t_io op e name_in name_tmp name_out =let lasts=parfun (seq_s
an_list_io op e name_in)(repli
ate name_tmp) inlet tmp_values=s
an_dire
t op lasts inparfun3 (add_last op) tmp_values(repli
ate name_tmp) (repli
ate name_out)For example of the use of global �les, we give the 
ode of the distribution of the sub-lists to the pro
essors: forea
h blo
k of the initial list, one pro
essor writes it to its lo
al �le.(∗ distribut:glo_name→lo
_name→unit ∗)let distribut name_in name_out =let 
ha_in=glo_open_in name_in inlet 
ha_outs=parfun lo
_open_in (repli
ate name_out) inlet re
 distri m =let blo
k=glo_input_value 
ha_in inif (isn
 blo
k) then () else(apply2 (mkpar (fun pid→if pid=m then lo
_output_valueelse (fun a b→())))
ha_outs (repli
ate (noSome blo
k)));distri ((m+1) mod (bsp_p())) indistri 0;parfun lo
_
lose_out 
ha_outs;glo_
lose_in 
ha_inWe have the following 
ost formula for the I/O s
an-list version using a dire
t s
an algorithm:
(p− 1)× s× g + 4×N × (Bl ×Gl + Ol) + 2× r ×N × (Dl ×Bl) + T 1 + lif we read sub-lists of the �les by blo
k of size DlBl where s denotes the size in words of a element, N is the
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Fig. 7.1. Ben
hmarks of pre�x 
omputationsmaximal length of a �le on a pro
ess and where T 1 the time to open and 
lose the �les. We have the time toread the lo
al �les, write the temporary results of the temporary �les, 
ompute the lo
al s
an, read the lo
altempory �les and write the �nal result in the �nal �les. The 
ost formula of the distribution is:


















p×N × (⌈
DlBl

Dg
⌉ ×Gg + ⌈

DlBl

DgBg
⌉ ×Og) + N × (Bl ×Gl + Ol) + 2× l + T 2If shared global �le system

p×N × (Bl ×Gl + Og) + N × (Bl ×Gl + Ol) + T 2 Otherwisewhere T 2 the time to open and 
lose the �les. We have the time to read the data on the global �le (read byblo
k of size DlBl) and to write them on the lo
al �les. We also have two barriers of syn
hronization due toglo_open_in and glo_
lose_in. The 
ost formula for a global distributed �le system is simpler than this



64 F. Gavawith shared disks but having a distributed �le system makes the hypothesis that the global �les are repli
atedon all the pro
essors.7.3. Ben
hmarks. Preliminary experiments have been done on a 
luster with 6 Pentium IV nodes inter-
onne
ted with a Gigabit Ethernet network to show a performan
e 
omparison between a BSP algorithm usingonly the BSMLlib and the 
orresponding EM2-BSP algorithm using our library. The BSP algorithm reads thedata from a global �le and keeps them in the main memories. The EM2-BSP algorithm distributed the data asin the above se
tion. Figure 7.1 summarizes the timings. These programs were run 100 times and the averagewas taken. Only the lo
al 
omputation has been taken into a

ount be
ause the 
luster do not have a trueshared disk but a simulated shared disk using NFS. Therefore, the distribution of the data is very slow: Ggdepends on g and the distribution of the two di�erent algorithms takes approximately the same time.The 
luster has the following EM2-BSP parameters:
p = 6 nodes
r = 469 M�ops/s
g = 28 �ops
l = 22751 �ops Dl = 1 bytes

Bl = 4096 bytes
Gl = 1.2 �ops
Ol = 100 �ops Dg = 1 bytes

Bg = 4096 bytes
Gg = 33.33 �ops
Og = 120 �opsusing the MPI implementation of the BSMLlib and with 256 Mbytes of main memory per node. The BSPparameters have been obtained by using the bsmlprobe des
ribed in [5℄ and the I/O parameters have beenobtained by using ben
hmarks as those of the Figure 4.2. The predi
ted performan
es using those parametersare also given. We have used �oats as elements with e = 0, op = + and we have approximately 140 �oats inone blo
k and thus the lists are 
ut out on sub-lists with 140 elements.For small lists and thus for a small number of data the overhead for the external memory mapping makesthe BSML program outperform the EM2-BSML one. However, on
e the main memory is all utilized, theperforman
e of the BSML program degenerates (
ost of the paging me
hanism to have a virtual memory). TheEM2-BSML program 
ontinues �smoothly� and 
learly outperforms the BSML 
ode. Note that there is a stepbetween the predi
tions of the performan
es and the true performan
es. This is due to the garbage 
olle
tor ofthe OCaml language. In the ML family, the abstra
t ma
hine manages the resour
es and the memory, unlike inC or C++ where the programmer has to allo
ate and de-allo
ate the data of the memory. Using I/O operatorsand thus a less naive algorithm a
hieved a s
alability improvement for a big number of data.8. Related Work. With few ex
eptions, previous authors fo
used on a unipro
essor EM model. TheParallel Disk Model (PDM) introdu
ed by Vitter and Shriver [54℄ is used to model a two-level memory hierar
hy
onsisting of D parallel disks 
onne
ted to v ≥ 1 pro
essors via a shared memory or a network. The PDM
ost measure is the number of I/O operations required by an algorithm where items 
an be transferred betweeninternal memory and disks in a single I/O operation. While the PDM 
aptures 
omputation and I/O 
osts,it is designed for a spe
i�
 type of 
ommuni
ation network where a 
ommuni
ation operation is expe
ted totake a single unit of time, 
omparable to a single CPU instru
tion. BSP and similar parallel models 
apture
ommuni
ation and 
omputational 
osts for a more general 
lass of inter
onne
tion networks, but do not 
aptureI/O 
osts. [8℄ presents an out-of-
ore parallel algorithm for inversions of big matri
es. The algorithm only usedbroad
asts as primitive of 
ommuni
ation with a 
ost as the BSP 
ost of a dire
t broad
ast. The I/O 
osts aresimilar to ours: linear 
ost (and not 
onstant 
ost) to read/write from/to the parallel disks.Some other parallel fun
tional languages like SAC [25℄, Eden [31℄ or GpH [49℄ o�er some I/O features butwithout any 
ost model [30℄. Parallel EM algorithms need to be 
arefully hand-
rafted to work optimally and
orre
tly in EM environments. I/O operators in SAC have been written for shared disks without formal seman-ti
s and the programmer is responsible for underterministi
 results of su
h operations. In parallel extensionsof the Haskell language (web page http://haskell.org) like Eden and Gph, the safety and the 
on�uen
e ofI/O operators are ensured by the use of monads [56℄ and lo
al external memories. Using shared disks is notspe
i�ed in the semanti
s of these languages. These parallel languages also authorize pro
essor to ex
hanged
hannels and give the possibility to read/write to/from them. It in
reases the expressiveness of the languagesbut de
reases the 
ost predi
tion of the programs. Too many 
ommuni
ations are hidden. It also makes thesemanti
s di�
ult to write [3℄. [24℄ presents a dynami
 semanti
s of a mini fun
tional language with a 
all-by-value strategy but I/O operators do not work on �les. The semanti
s used a unique input entry (standardinput) and a unique output. [18℄ develops a language for reasoning about 
on
urrent pure fun
tional I/O. Theyprove that under 
ertain 
onditions the evaluation of this language is deterministi
. But the �les are only lo
al�les and no formal 
ost model is given.
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hronous Parallel ML 65In [12℄ the authors fo
used on optimization of some parallel EM sort algorithms using 
a
he performan
esand the several layers of memories of the parallel ma
hines. But they used low level languages and the largenumber of parameters in this model introdu
e a hardly tra
table 
omplexity. In [15℄ the authors have imple-mented some I/O operations to test their models but in a low level language and low level data. In the samemanner, [26℄ des
ribes an I/O library of an EM extension of its 
ost model whi
h is a spe
ial 
ase of the BSPmodel but also for a low level language. To our knowledge, our library is the �rst for an extension of the BSPmodel with I/O features 
alled EM2-BSP and for a parallel fun
tional language with a formal semanti
s anda formal 
ost model. This 
ost model and our library 
ould be used for large and parallel Data Base as in [2℄where the authors used the BSP 
ost model to balan
e the 
ommuni
ations and the lo
al 
omputations.9. Con
lusions and Future Works. The Bulk-Syn
hronous Parallel ML allows dire
t mode BSP pro-gramming and the 
urrent implementation of BSML is the BSMLlib library. But for some appli
ations wherethe size of the problem is very signi�
ant, external memories are needed. In this paper we have presented anexternal memory extension of BSP model named EM2-BSP and a way to extend the BSMLlib for I/O a

esses inthese external memories. The 
ost model of these new primitives and a formal semanti
s as persistent featureshave been investigated and some ben
hmarks have been done. This library is the follow-up to our work onimperative features of our fun
tional data-parallel language [22℄.There are several possible dire
tions for future works. The �rst dire
tion is the implementation of persistentprimitives using spe
ial parallel I/O libraries as des
ribed in [29℄. For example, low level libraries for sharedRAID disks 
ould be used for a fault toleran
e implementation of the global I/O primitives.A 
omplementary dire
tion is the implementation of BSP algorithms [13, 38, 45℄ and their transformationsinto EM2-BSP algorithms as des
ribed in [16℄. We will design a new library of 
lassi
al programs as in theBSMLlib library to be used with large 
omputational problems. We also have extended the model to in
ludeshared disks. To validate the 
ost model of these programs, we need a ben
hmark suite in order to automati
allydetermine the EM parameters. This is ongoing work. We are also working on a result of simulation of a sharedexternal memory as those of the main memory in the BS-PRAM of [48℄.A semanti
 investigation of this framework is another dire
tion of resear
h. To ensure safety and a 
om-positional 
ost model whi
h allow 
ost analysis of the programs, two kinds of persistent primitives are needed,global and lo
al ones. Su
h operators need o

ur in their 
ontext (lo
al or global) and not in another one. Weare 
urrently working on a �ow analysis [43℄ of BSML to avoid this problem stati
ally and to forbid nesting ofparallel ve
tors. Stati
 
ost analysis as in [51℄ is also another dire
tion of resear
h.A
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68 F. GavaAppendix A. Proof of the 
on�uen
e.Lemma A.1. If e/{fi}
i

⇀ e1/{f1
i } and e/{fi}

i
⇀ e2/{f2

i } then e1= e2 and {f1
i }={f

2
i }. Proof. By 
ase ofthe rules of �gures 5.1, 5.3 and by 
onstru
tion of rules (1), (3) and (5).Lemma A.2. If {F}/e/{f}

⋊⋉
⇀ {F1}/e1/{f1} and {F}/e/{f}

⋊⋉
⇀ {F2}/e2/{f2} then e1 = e2, {f} =

{f1} = {f2} and {F1} = {F2}.Proof. By 
ase of the rules of �gures 5.2, 5.3 and by 
onstru
tion of rules (2), (4) and (6).Lemma A.3. If e = Γi
l(e1) then 6 ∃ e2 as e = Γ(e2); If e = Γ(e1) then 6 ∃ e2 as e = Γi

l(e2). Proof. Byde�nition, the hole [] is inside a parallel ve
tor in the 
ase of a Γi
l 
ontext and outside a parallel ve
tor in theother 
ase. By 
onstru
tion, 
ontexts ex
luded ea
h other.Definition A.4. We noted ⇒

⋊⋉
the redu
tion ⇀ only using the rule (8) and ⇒

i
the redu
tion ⇀ only usingthe rule (7).Lemma A.5. If {F}/Γi

l(e)/{f} ⇒
i
{F1}/Γi

l(e
1)/{f1} and {F}/Γi

l(e)/{f} ⇒
i
{F2} /Γi

l(e
2)/{f2} then

e1 = e2, {f1} = {f2} and {F} = {F1} = {F2}.Proof. By appli
ation of lemma A.1 and by de�nition of rule (7).Lemma A.6. If {F}/Γ(e)/{f} ⇒
⋊⋉
{F1}/Γ(e1)/{f1} and {F}/Γ(e)/{f} ⇒

⋊⋉
{F2}/ Γ(e2)/{f2} then e1 = e2,

{f} = {f1} = {f2} and {F1} = {F2}.Proof. By appli
ation of lemma A.2 and by de�nition of rule (8).Definition A.7. We noted {F}/e/{f} ⇒
l
{F}/e1/{f ′} the redu
tion {F}/e/{f}

∗
⇒
i
{F}/e1/{f ′} ∀ i andwhere 6 ∃ e2 ∧ Γi

l as e1 = Γi
l(e2) and where e2 is not a value.Lemma A.8. If Γi

l(e1) = Γj
l (e2) and {F}/Γi

l(e1)/{f} ⇒
i
{F}/Γi

l(e3)/{f3} and {F}/Γj
l (e2)/{f} ⇒

j

{F}/Γj
l (e4)/{f

4} then ∃ Γ′j
l ∧ Γ′i

l as Γi
l(e3) = Γ′j

l (e2) and Γj
l (e4) = Γ′i

l(e1) where {F}/Γ′j
l (e

2)/{f3} ⇒
j

{F}/Γ′j
l (e5)/{f5} and {F}/Γ′i

l(e1)/{f4} ⇒
i
{F}/ Γ′i

l(e6)/{f6} and where Γ′j
l (e5) = Γ′i

l(e6) and {f5} = {f6}.Proof. It is easy to see that a ⇒
i
redu
tion only modify an expression of the ith 
omponent of a parallel ve
torand the ith �le system. Su
h redu
tion is determinist by lemma A.5 and thus we have that if two redu
tionsappear in two di�erent 
omponents of a parallel ve
tor then su
h redu
tions 
ould be done in any order andgive the same �nal result.Lemma A.9. If {F}/e/{f} ⇒

l
{F}/e1/{f1} and {F}/e/{f} ⇒

l
{F}/e2/{f2} then e1 = e2 and {f1} =

{f2}.Proof. By indu
tion on the two redu
tion ⇒
l
and using lemma A.8 to �re-sti
k� together di�erent paths of thederivations: parallel redu
tions 
ould be done in any order.Definition A.10. ⇒ = ⇒

⋊⋉
∪ ⇒

lLemma A.11. If {F}/e/{f}
∗
⇒ {F1}/v1/{f1} and {F}/e/{f}

∗
⇒ {F2}/v2/{f2} then v1 = v2, {f1} =

{f2} and {F1} = {F2}.Proof. By indu
tion of the derivation and by using lemma A.3: for the two indu
tive 
ases, we have thetwo following 
ases: if {F ′}/e′/{f ′} ⇒
⋊⋉
{F ′′}/e′′/{f ′} then the redu
tion is deterministi
 by lemma A.6 else

{F ′}/e′/{f ′} ⇒
l
{F ′}/e′′/{f ′′} and then the redu
tion is also deterministi
 by lemma A.9.Lemma A.12. If {F}/e/{f} ⇒

i
{F}/e1/{f1} then {F}/e1/{f1}

∗
⇒
i
{F}/e2/{f2} and where e2 is a value
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2} ⇒

⋊⋉
{F ′}/e3/{f

2}.Proof. By indu
tion and using lemma A.3 for ea
h steps of the derivation.Lemma A.13. if {F}/e/{f}
∗
⇀ {F ′}/v/{f ′} then {F}/e/{f}

∗
⇒ {F ′}/v/{f ′}. Proof. By indu
tion ofthe derivation. If the rule (8) is used, we are in the 
ase of a global redu
tion and then we have a ⇒

⋊⋉
redu
tion.Else if the rule (7) is used, we are in the 
ase of a lo
al redu
tion and we have by lemma A.12 that we have a

⇒
l
redu
tion.Theorem A.14. 
on�uen
e of the semanti
sProof. if {F}/e/{f}

∗
⇀ {F1}/v1/{f1} and {F}/e/{f}

∗
⇀ {F2}/v2/{f2} then {F}/e/{f}

∗
⇒ {F1}/v1/{f1} and

{F}/e/{f}
∗
⇒ {F2}/v2/{f2} by lemma A.13 and then v1 = v2, {f1} = {f2} and {F1} = {F2} by lemma A.11.Edited by: Frédéri
 LoulergueRe
eived: June 3, 2004A

epted: June 5, 2005
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© 2005 SWPSPETRI NETS AS EXECUTABLE SPECIFICATIONS OF HIGH-LEVEL TIMED PARALLELSYSTEMSFRANCK POMMEREAU∗Abstra
t. We propose to use high-level Petri nets as a model for the semanti
s of high-level parallel systems. This modelis known to be useful for the purpose of veri�
ation and we show that it is also exe
utable in a parallel way. Exe
uting a Petrinet is not di�
ult in general but more 
ompli
ated in a timed 
ontext, whi
h makes ne
essary to syn
hronise the internal time ofthe Petri net with the real time of its environment. Another problem is to relate the exe
ution of a Petri net, whi
h has its ownsemanti
s, to that of its environment; i. e., to properly handle input/output.This paper presents a parallel algorithm to exe
ute Petri nets with time, enfor
ing the even progression of internal time withrespe
t to that of the real time and allowing the ex
hange of information with the environment. We de�ne a 
lass of Petri netssuitable for a parallel exe
ution ma
hine whi
h preserves the step sequen
e semanti
s of the nets and ensures time 
onsistentexe
utions while taking into a

ount the soli
itation of its environment. The question of the e�
ient veri�
ation of su
h nets hasbeen addressed in a separate paper [14℄, the present one is more fo
used on the pra
ti
al aspe
ts involved in the exe
ution of somodelled systems.Key words. Petri nets, parallelism, real-time, exe
ution ma
hines.1. Introdu
tion. Petri nets are widely used as a model of 
on
urren
y, whi
h allows to represent theo

urren
e of independent events. They 
an be as well a model of parallelism, where the simultaneity of theevents is more important. Indeed, when we 
onsider their step sequen
e semanti
s, an exe
ution is representedby a sequen
e of steps, ea
h of them being the simultaneous o

urren
es of some transitions. Within thissemanti
s, the exe
ution of a step may be repla
ed by that of any of its linearisation (total or partial). This 
anbe viewed as possible exe
utions of the same program on parallel ma
hines with di�erent numbers of pro
essors.In this 
ontext, the 
hoi
e of exe
uting one step or another be
omes a question of s
heduling (this is usuallysolved non-deterministi
ally by the Petri net semanti
s). Petri nets are thus suitable for spe
ifying and verifyingsystems in models for whi
h the portability is an important 
on
ern.Our main goal in this paper is to show that Petri nets are also suitable for the exe
ution of the modelledsystems. We thus 
onsider high-level Petri nets for modelling high-level parallel systems, with the aim to allowboth veri�
ation and exe
ution of the spe
i�
ation. The question of the e�
ient veri�
ation of su
h nets hasbeen addressed in a separate paper [14℄, the present one is more fo
used on the pra
ti
al aspe
ts involved inthe exe
ution of so modelled systems.There are at least two reasons for having exe
utable spe
i�
ations. First, it allows for prototyping andtesting at early stage of the design: there may be no need to have an implementation in order to see howthe program behaves when its model 
an already be exe
uted. Se
ond, if the exe
ution of the spe
i�
a-tion 
an be made (or happens to be) e�
ient enough, there is no need to 
onsider any further implemen-tation. This 
ompletely saves from the risk of introdu
ing errors on the way from spe
i�
ation to imple-mentation: the veri�ed model and the exe
uted program are exa
tly the same obje
t. It may be obje
tedthat Petri nets are suitable for modelling but really not for programming. This is true. However, Petrinets like those used in this paper are widely used has a semanti
al domain for parallel programming lan-guages or pro
ess algebra with 
on
urrent semanti
s. For instan
e, the semanti
s of the parallel languageB(PN)2 [3℄ is de�ned in terms of Petri nets similar to those used in this paper. It features most usuallyexpe
ted high-level 
onstru
ts for programming languages, in parti
ular: nested de
laration of typed vari-ables and FIFO 
ommuni
ation 
hannels; 
ommuni
ation through shared variables or 
hannels; atomi
 a
-tions; 
ontrol �ow 
onstru
ts in
luding parallelism; pro
edures with parameters passed by value or by referen
eand allowing re
ursive and parallel 
alls [10℄; ex
eptions whose propagation 
an 
arry arbitrary value [11℄;or Ada-like tasking with suspend/resume or abort 
apability [12℄. Moreover, it 
an be easily extended withreal-time 
onstru
ts using the same approa
h to timed system as presented in the following, see [13, � 7.3℄.Another example is the Causal Time Cal
ulus de�ned in [14℄ whi
h is a pro
ess algebra with timing fea-tures having a step based semanti
s. Both these formalisms 
ould be applied to massively parallel problems,allowing to leave Petri nets in the ba
kground while working with mu
h more pleasant and 
onvenient nota-tions.
∗LACL, université Paris 12 � 61, avenue du général de Gaulle � 94010 Créteil, Fran
e �pommereau�univ-paris12.fr71



72 F. PommereauExe
uting a Petri net is not di�
ult when we 
onsider it alone, i. e., in a 
losed world. But as soon as thenet is embedded in an environment, the question be
omes more 
ompli
ated. The �rst problem 
omes when thenet is timed: we have to ensure that its time referen
e mat
hes that of the environment. The se
ond problem isto allow an ex
hange of information between the net and its environment. Both these questions are addressedin this paper.The 
ausal time approa
h is a way to introdu
e timing features in an otherwise untimed model [7℄, inparti
ular Petri nets. The idea behind 
ausal time is to use the expressive power of the model in order to givean expli
it representation of 
lo
ks in the modelled systems. In the 
ase of high-level Petri nets, it is possible tointrodu
e 
ounters and a distinguished ti
k transition whose role is to simultaneously in
rement them. These
ounters thus be
ome the timing referen
e and 
an be used as 
lo
k-wat
hes by the pro
esses as in [15, 6, 13, 14℄.It was shown in [6, 14℄ that the 
ausal time approa
h is highly relevant sin
e it is simple to put into pra
ti
e andallows for e�
ient veri�
ation through model 
he
king. This paper shows that this approa
h is also relevantwhen 
on
rete exe
ution are 
onsidered. For the purpose of veri�
ation, the hypothesis of the 
losed world isassumed: the Petri net whi
h models a system is 
onsidered alone, without any referen
e to something externalto it. The situation di�ers if we 
onsider the exe
ution of su
h a Petri net in an environment whi
h has itsown time referen
e. Indeed, the ti
k transition of a Petri net may 
ausally depend on the progression of othertransitions in the net, whi
h results in the so 
alled deadline paradox [7℄: �ti
k is disabled until the systemprogresses�. In a 
losed world, this statement is logi
ally equivalent to �the system is for
ed to progress beforethe next ti
k�, whi
h solves the deadline paradox. But, in the 
ase of an open world, one may wonder how evenis the progression of the 
ausal time with respe
t to that of the real time, whi
h is the time imposed by theenvironment.Moreover, if the Petri net has to 
ommuni
ate with its environment, one may ask how the net 
an re
eiveinformation from the environment and send ba
k appropriate responses. Produ
ing output is rather simplesin
e the net is not disturbed; but reading input (i. e., 
hanging the behaviour of the net in rea
tion to the
hanges in the environment) is more di�
ult and may not be always possible.In this paper, we de�ne a parallel exe
ution ma
hine whose role is to run a Petri net with a ti
k transitionin su
h a way that the ti
ks o

ur evenly with respe
t to the real time. We show that this 
an be ensuredunder reasonable assumptions about the Petri net. The other role of the ma
hine is to allow the 
ommuni
ationbetween the Petri net and the environment and we will identify favourable situations, very easy to obtain inpra
ti
e, in whi
h the rea
tion to a message is ensured within a short delay. An important property of ourexe
ution ma
hine will be that it will preserve the step sequen
e semanti
s of the Petri net: this ma
hine 
anbe seen as an implementation of the Petri net exe
ution rule in
luding additional 
onstraints related to theenvironment (real time and 
ommuni
ation).In the perspe
tive of dire
t exe
ution of the modelled systems, it be
omes natural to provide parallelexe
utions of the model of a parallel system. So, our goal in proposing a parallel exe
ution ma
hine is morerelated to a question of 
onsisten
y than to that of speedup. The question of the speed of our exe
ution ma
hinewill thus be intentionally left out of the topi
s of this paper. However, our de�nitions will leave enough freespa
e to investigate in this dire
tion and we will 
ome ba
k to this dis
ussion at the end of the paper.1.1. Exe
ution ma
hines. De�ning an exe
ution ma
hine is the usual way to show that an abstra
tmodel, de�ned under assumptions whi
h may be 
onsidered as unrealisti
, 
an be used for 
on
rete exe
utions.For instan
e, the family of syn
hronous languages (e. g., Esterel [2℄), relies on the syn
hronous hypothesis whi
hstates that the rea
tion to a signal is instantaneous. This leads to 
onsider an in�nitely fast 
omputer in theabstra
t model. Several exe
ution ma
hines for these languages have been de�ned (see, e. g., [1, 5℄); in all
ases, the solution to remove the syn
hronous hypothesis makes use of a 
ompilation stage whi
h produ
es�nite automata in whi
h a whole 
hain of a
tion/rea
tion is 
ollapsed on a single transition. This allows a
orre
t implementation of the instantaneous rea
tion assuming a 
omputer fast enough with respe
t to thedelays that the environment 
an observe. However, this breaks the 
ausality relation between events andleads to reje
t some systems whi
h may be 
onsidered on the abstra
t level but are 
on
retely impossible toimplement.Similar 
on
erns arise in the 
ase of Petri nets with 
ausal time; in parti
ular, we have to reje
t systemswhi
h allow runs of unbounded length between two 
onse
utive ti
ks. (Su
h behaviours are often 
alled Zenoruns.) Con
erning the question of rea
ting to the soli
itation of the environment, it is easy to introdu
e spe
i�

onstru
ts in a Petri net in order to ensure that a signal will be always taken into a

ount very e�
iently,
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ations 73provided that the environment is not �too demanding�. This is to say that we will need a 
omputer fast enoughwith respe
t to its environment, exa
tly like for syn
hronous languages.1.2. Organisation of the paper. The sequel is organised as follows. The se
tion 2 introdu
es the basi
notions related to Petri nets and their semanti
s. The se
tion 3 then de�nes the 
lass of Petri nets we areinterested in and gives the assumptions whi
h must be 
onsidered in order to allow their real-time exe
ution.The se
tion 4 shows how su
h nets 
an be 
ompiled into a form suitable for their exe
ution. Then, the se
tion 5de�nes the exe
ution ma
hine itself. We �nally 
on
lude in the se
tion 6, introdu
ing dis
ussions about thee�
ien
y of an implementation.2. Basi
 de�nitions about Petri nets. This se
tion brie�y introdu
es the 
lass of Petri nets and therelated notions that will be used in the following.2.1. Multisets. A multiset over a set X is a fun
tion µ : X → N. We denote by mult(X) the set of all�nite multisets µ over X , i. e., su
h that∑x∈X µ(x) <∞. We write µ ≤ µ′ if the domain X of µ is in
luded inthat of µ′, and if µ(x) ≤ µ′(x), for all x ∈ X . An element x ∈ X belongs to µ, denoted x ∈ µ, if µ(x) > 0. Thesum and di�eren
e of multisets, and the multipli
ation by a non-negative integer are respe
tively denoted by +,
− and ∗ (the di�eren
e is de�ned only when the se
ond argument is smaller or equal to the �rst one). A subsetof X may be treated as a multiset over X , by identifying it with its 
hara
teristi
 fun
tion, and a singletonset 
an be identi�ed with its sole element. A �nite multiset µ over X may be written as ∑x∈X µ(x) ∗ x or
∑

x∈X µ(x)∗{x}, as well as in extended set notation, e. g., {a1, a1, a2} denotes a multiset µ su
h that µ(a1) = 2,
µ(a2) = 1 and µ(x) = 0 for all x ∈ X \ {a1, a2}.2.2. Labelled Petri nets. Let S be a set of a
tions symbols, D a �nite set of data values (or just values)and V a set of variables. For A ⊆ S and X ⊆ D ∪ V, we denote by A⊗X the set {a(x) | a ∈ A, x ∈ X}. Then,we de�ne A

df

= S⊗(D∪V) as the set of a
tions (with parameters). These four sets are assumed pairwise disjoint.Definition 2.1. A labelled marked Petri net is a tuple N = (S, T, ℓ, M) where:
• S is a nonempty �nite set of pla
es;
• T is a nonempty �nite set of transitions, disjoint from S;
• ℓ de�nes the labelling of pla
es, transitions and ar
s, i. e., elements of (S × T ) ∪ (T × S), as follows:� for s ∈ S, the labelling is ℓ(s) ⊆ D whi
h de�nes the tokens that the pla
e is allowed to 
arry (often
alled the type of s),� for t ∈ T , the labelling is ℓ(t)

df

= α(t)γ(t) where α(t) ∈ A and γ(t) is a boolean expression 
alledthe guard of t,� for (x, y) ∈ (S × T ) ∪ (T × S), the labelling is ℓ(x, y) ∈ mult(D ∪ V) whi
h denotes the tokens�owing on the ar
 during the exe
ution of the atta
hed transition. The empty multiset ∅ denotesthe absen
e of ar
;
• M is a marking fun
tion whi
h asso
iates to ea
h pla
e s ∈ S a multiset in mult(ℓ(s)) representing thetokens held by s.Noti
e that α(t) 
ould be a �nite multiset of a
tions. This would be a trivial extension but would leadto more 
ompli
ated de�nitions; we 
hoose to restri
t ourselves to single a
tions in order to streamline thepresentation.We adopt the standard rules about representing Petri nets as dire
ted graphs with the following simpli�
a-tions: the names of some nodes (espe
ially pla
es) may not be given; the two 
omponents of transition labels aredepi
ted separately; true guards are omitted as well as bra
kets around sets; ar
s may be labelled by expressionsas a shorthand (see the example given in the �gure 2.1).

0 0,...,η

t τ(x)

x + 1 x

0 0,...,η

t τ(x)
y = x + 1

y xFig. 2.1. On the left, a Petri net whi
h a
tually denotes that given on the right, with η ≥ 0, {0, . . . , η} ⊆ D, {x, y} ⊆ V and
τ ∈ S.



74 F. Pommereau2.3. Step sequen
e semanti
s. A binding is a fun
tion σ : V → D whi
h asso
iates 
on
rete values tothe variables appearing in a transition and its ar
s. We denote by σ(E) the evaluation of the expression Ebound by σ.Let (S, T, ℓ, M) be a Petri net, and t ∈ T one of its transitions. A binding σ is enabling for t at M if theguard evaluates to true, i. e., σ(γ(t)) = ⊤, and if the evaluation of the annotations on the adja
ent ar
s respe
tsthe types of the pla
es, i. e., for all s ∈ S, σ(ℓ(s, t)) ∈ mult(ℓ(s)) and σ(ℓ(t, s)) ∈ mult(ℓ(s)).A step 
orresponds to the simultaneous exe
ution of some transitions, it is a multiset
U = {(t1, σ1), . . . , (tk, σk)}su
h that ti ∈ T and σi is an enabling binding of ti, for 1 ≤ i ≤ k. U is enabled if the marking is su�
ient toallow the �ow of tokens required by the exe
ution of the step, i. e., for all s ∈ S

M(s) ≥
∑

(t,σ)∈U

U((t, σ)) ∗ σ(ℓ(s, t)).It is worth noting that if a step U is enabled at a marking, then so is any sub-step U ′ ≤ U . A step U enabledby M may be exe
uted, leading to the new marking M ′ de�ned for all s ∈ S by
M ′(s)

df

= M(s) −
∑

(t,σ)∈U

U((t, σ)) ∗ σ(ℓ(s, t)) +
∑

(t,σ)∈U

U((t, σ)) ∗ σ(ℓ(t, s)).This is denoted by M [U〉M ′ and this notation naturally extends to sequen
es of steps. The empty step, denotedby ∅, is always enabled and we have M [∅〉M . A marking M ′ is rea
hable from a marking M if their exists asequen
e of steps ω su
h that M [ω〉M ′; we will say in this 
ase that M enables ω. Noti
e that M is rea
hablefrom itself through a sequen
e of empty steps.The step sequen
e semanti
s is de�ned as the set 
ontaining all the sequen
es of steps enabled by a net. Thissemanti
s is based on transitions identities but the relevant information is generally the labels of the exe
utedtransitions. The labelled step asso
iated to a step U is de�ned as ∑(t,σ)∈U U((t, σ)) ∗ σ(α(t)), whi
h allows tonaturally de�ne the labelled step sequen
e semanti
s of a Petri net. In the sequel we will 
onsider only thissemanti
s and omit the word �labelled�.2.4. Safety. A Petri net (S, T, ℓ, M) is safe if any marking M ′ rea
hable from M is su
h that, for all s ∈ Sand all d ∈ ℓ(s), M ′(s)(d) ≤ 1, i. e., any pla
e holds at most one token of ea
h value. The 
lass of safe Petrinets (in
luding models abbreviating them) is very interesting:
• from a theoreti
al point of view, safe Petri nets never have auto-
on
urren
y of transitions, whi
h allowsfor e�
ient veri�
ation te
hniques [8℄;
• from a pragmati
al point of view, safe Petri nets 
orresponds to the 
lass of �nite state Petri nets (asshown in [4℄, bounded Petri nets 
an be redu
ed to safe Petri nets while preserving their 
on
urrentsemanti
s), whi
h 
orrespond to realisti
 systems, i. e., those that 
an be implemented on a 
on
rete
omputer;
• from a pra
ti
al point of view, this 
lass was shown expressive enough to model most interestingproblems from the real world. For instan
e, the semanti
s pro
edures, ex
eptions or tasks preemptionin the language B(PN)2 do not require more than safe Petri net.Another ni
e property of safe Petri nets, dire
tly related to our purpose, is that they have �nitely manyrea
hable markings, ea
h of whi
h enabling �nitely many steps whose sizes are bounded by the number oftransitions in the net. For all these reasons, as in the previous works about 
ausal time [15, 6, 13, 14℄, werestri
t ourselves to safe Petri nets.3. Petri nets with 
ausal time: CT-nets. We are now in position to de�ne the 
lass of Petri nets weare a
tually interested in; it 
onsists in safe Petri nets, with several restri
tions, for whi
h we will de�ne somespe
i�
 vo
abulary related to the o

urren
e of ti
ks. We assume that there exists τ ∈ S, used in the labellingof the ti
k transition.Definition 3.1. A Petri net with 
ausal time (CT-net) is a safe labelled Petri net N

df

= (S, T, ℓ, M) inwhi
h there exists a unique tτ ∈ T , 
alled the ti
k transition of N , su
h that:
• α(tτ ) ∈ {τ} ⊗ (D ∪ V);
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• α(t) /∈ {τ} ⊗ (D ∪V) for all t ∈ T \ {tτ};
• tτ has at least one in
oming ar
 labelled by a singleton.A ti
k-step is a step U of N whi
h involves the ti
k transition, i. e., su
h that τ(d) ∈ U for a d ∈ D.Thanks to the safety and the last restri
tion on tτ , any ti
k-step 
ontains exa
tly one o

urren
e of theti
k transition. On the other hand, one may noti
e that this de�nition is very liberal and allows to de�ne netsin whi
h the ti
k transition is not tight to in
rement 
ounters but may produ
e any other e�e
t not relatedto time. Fortunately, we do not need a more restri
tive de�nition, whi
h lets us free to experiment di�erentapproa
hes in the future.The �gure 3.1 shows a toy CT-net that will be used as a running example. In this net, the role of theti
k transition tτ is to in
rement a 
ounter lo
ated in the top-right pla
e. When the transition t1 is exe
uted,it resets this 
ounter and pi
ks in the top-left pla
e a value whi
h is bound to the variable m. This value istransmitted to the transition t2 whi
h will be allowed to exe
ute when at least m ti
ks will have o

urred. Thus,

m spe
i�es the minimum number of ti
ks between the exe
ution of t1 and that of t2. At any time, the transition
t3 may randomly 
hange the value of this minimum while emitting a visible a
tion u(x) where x is the newvalue. Noti
e that the maximum number of ti
ks between the exe
ution of t1 and that of t2 is enfor
ed by thetype of the pla
e 
onne
ted to tτ whi
h spe
i�es that only tokens in {0, . . . , η} are allowed (given η > 0).

00,...,η

t1
a1(m)

t2 c ≥ m
a2(c)

0 0,...,η

t3u(x) tτ τ(n)

0,...,η

••
•

m

m

0
y c

c

xy n + 1n

m mFig. 3.1. An example of a CT-net, where η > 0, {a1, a2, u, τ} ⊆ S, {c, n, m, x, y} ⊆ V and {0, . . . , η} ∪ {•} ⊆ D.Assuming η ≥ 5, a possible exe
ution of this CT-net is:
{τ(0)} {u(2)} {a1(2)} {τ(0), u(1)} {τ(1)} {u(5)} {τ(2)} {τ(3)} {a2(4), u(0)} {τ(4)} .3.1. Tra
tability. A CT-net (S, T, ℓ, M) is tra
table if there exists an integer δ ≥ 2 su
h that, for allmarking M ′ rea
hable from M , any sequen
e of at least δ nonempty steps enabled by M ′ 
ontains at least twoti
k-steps. In other words, the length of an exe
ution between two 
onse
utive ti
ks is bounded by δ whosesmallest possible value is 
alled the maximal distan
e between ti
ks.This notion of tra
table nets is important be
ause it allows to distinguish those nets whi
h 
an be exe
utedon a realisti
 ma
hine: indeed, an intra
table net may have potentially in�nite runs between two ti
ks (so
alled Zeno runs), whi
h 
annot be exe
uted on a �nitely fast 
omputer without breaking the evenness of ti
kso

urren
es.For example, the CT-net of our running example is intra
table be
ause the transition t3 
an be exe
utedin�nitely often between two ti
ks: in the exe
ution given above, the step {u(5)} 
ould be repeated an arbitrarynumber of times. In the rest of this paper, we restri
t ourselves to tra
table CT-nets.3.2. Input and output. The 
ommuni
ation between a CT-net and its environment is modelled usingsome of the a
tions in transitions labels. We distinguish for this purpose two �nite disjoint subsets of S: Siis the set of input a
tion symbols and So is that of output a
tions symbols. We assume that τ /∈ Si ∪ So. Wealso distinguish a nonempty set Dio ⊆ D representing the values allowed for input and output. Intuitively, thedistinguished symbols 
orrespond to 
ommuni
ation ports on whi
h values from Dio may be ex
hanged betweenthe exe
ution ma
hine and its environment. Thus the exe
ution of a transition labelled by ao(do) ∈ So ⊗Dio isseen as the sending of the value do on the output port ao. Conversely, if the environment sends a value di ∈ Dioon the input port ai ∈ Si, the net is expe
ted to exe
ute a step 
ontaining the a
tion ai(di). In general, we
annot ensure that su
h a step is enabled, in the worst 
ase, it may happen that no transition has ai in its label.Fortunately, we show now that a net 
an easily be designed in order to ensure that su
h an input message isalways 
orre
tly handled.



76 F. PommereauA naive way to a
hieve this result is to use self-loops, like the transition t3 in the �gure 3.1. In this example,if we assume u ∈ Si and {0, . . . , η} ⊇ Dio , any requested 
ommuni
ation on u 
an always be handled. Unfor-tunately, self-loops lead to intra
table nets sin
e su
h transitions 
an always be arbitrarily repeated (rememberthe step {u(5)} above). A
tually, a self-loop indi
ates that the CT-net is expe
ted to be able to respond in-stantaneously to all the messages that the environment would send on the 
orresponding port, whi
h is not arealisti
 assumption. Indeed, if the number of su
h messages sent in a given amount of real time is not bounded,then a �nitely fast 
omputer 
annot avoid to miss some of them. So, in the following, we assume that theenvironment may not produ
e more than one message on ea
h input port between two ti
ks, whi
h will lead tothe notion of ti
k-rea
tiveness. This assumption is equivalent to say that we require the CT-net to be exe
utedon a 
omputer fast enough with respe
t to its environment; so, this is a
tually one of the 
lassi
al 
onditionsthat must be assumed while de�ning an exe
ution ma
hine.Let A ⊆ Si be a nonempty set of input a
tion symbols, we denote by req(A) the set of potential requests on
A, whi
h 
ontains all the sets of the form {a1(d1), . . . , ak(dk)} where {a1, . . . , ak} ⊆ A and (d1, . . . , dk) ∈ Dio

kfor all k ≥ 1. Ea
h element of req(A) is potentially a step of a CT-net.A CT-net (S, T, ℓ, M) is on
e-rea
tive to A ⊆ Si i�: either, it enables only the empty step; or, there existsa step U ′ /∈ req(A) su
h that M [U ′〉M ′′ and, for all U ∈ req(A), we have M [U〉M ′ and the CT-net (S, T, ℓ, M ′)is on
e-rea
tive to A \ {a ∈ A | ∃d ∈ Dio , a(d) ∈ U}. Intuitively, this indu
tive de�nition states that, for allinput port ai ∈ Si, the CT-net 
an rea
t to any request on a as soon as it 
omes, after what it may miss them.On the other hand, the CT-net is never for
ed to exe
ute an a
tion involving an input port in A (thanks to thestep U ′). At any time, the CT-net may terminate its exe
ution with a deadlo
k.A CT-net (S, T, ℓ, M) is ti
k-rea
tive to A ⊆ Si i� it is on
e-rea
tive to A and, for all sequen
e of steps
U1 · · ·Uk su
h that Uk is a ti
k-step and M [U1 · · ·Uk〉M ′, then the CT-net (S, T, ℓ, M ′) is ti
k-rea
tive to A.This de�nition is also indu
tive and states that a ti
k-rea
tive CT-net is almost like a on
e-rea
tive net ex
eptthat its 
apability to rea
t is fully restored after ea
h ti
k. This guarantees that one message on a may alwaysbe handled between two ti
ks, whi
h exa
tly mat
hes our assumption. It turns out that it is easy to transform area
tive CT-net with self-loops into a ti
k-rea
tive one. It is enough to add one pla
e for ea
h self-loop with thetype {◦, •} and marked with •, and ar
s su
h that ea
h o

urren
e of the self-loop 
onsumes the • and repla
eit with a ◦, so it 
annot o

ur twi
e; on the other hand, ea
h o

urren
e of the ti
k-transition must reset to •the token in the added pla
es. This way, self-loops 
annot be repeated with at least one ti
k in between. Aswe 
an see, it is easy to 
onstru
t a ti
k-rea
tive net; for instan
e, the �gure 3.2 shows a modi�ed version ofour running example whi
h is ti
k-rea
tive to {u} and tra
table (now, the step {u(5)} 
ould not be repeated atwill).
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•
xy n + 1n

m mFig. 3.2. The ti
k-rea
tive version of the running example, where z ∈ V and {◦, •} ⊂ D.3.3. Consisten
y. We denote by U [a] the number of o

urren
es of the a
tion symbol a in a step U , i. e.,
U [a]

df

=
∑

a(x)∈U U(a(x)). A step U is 
onsistent if U [a] ≤ 1 for all a ∈ Si ∪ So. A CT-net is 
onsistent ifits step sequen
e semanti
s only involve 
onsistent steps. In
onsistent steps are those during the exe
ution ofwhi
h several 
ommuni
ations take pla
e on the same port. Sin
e the transitions exe
uted by a single step o

ursimultaneously, this means that several values may be sent or re
eived on the same port at the same time. Thisis 
ertainly something whi
h is not realisti
 and so, we restri
t ourselves to 
onsistent CT-nets in the following.The nets given in the �gures 3.1 and 3.2 are both 
onsistent. But, assuming a2 ∈ Si ∪ So, it would not bethe 
ase if we would repla
e u(x) by a2(x) in the label of the transition t3 sin
e we 
ould have and exe
utionwith the step {a2(4), a2(0)} whi
h is not 
onsistent.
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ations 774. Compilation of CT-nets: CT-automata. The aim of this se
tion is to show how to transform atra
table and 
onsistent CT-net into a form more suitable for the exe
ution ma
hine. This 
orresponds to a
ompilation produ
ing an automaton (non-deterministi
 in general), 
alled a CT-automaton, whose states arethe rea
hable markings of the net and whose transitions 
orrespond to the steps allowing to rea
h one markingfrom another. It should be remarked that this 
ompilation is not stri
tly required but allows to simplify thingsa lot, in parti
ular in an implementation of the ma
hine: with respe
t to its 
orresponding CT-net, a CT-automaton has no notion of markings, bindings, enabling, et
., whi
h results in a mu
h simpler model. Anotherreason to introdu
e this 
ompilation stage is that it 
an be used to 
he
k if the net of interest is really a safe,tra
table and 
onsistent CT-net; moreover, it is an almost ne
essary step to 
ompute the value of δ (the maximaldistan
e between ti
ks) whi
h will be used during the exe
ution. So, as we 
annot avoid a 
omputation at leastequivalent to this 
ompilation stage, we turn it into an advantage for the exe
ution whi
h 
an be made mu
hsimpler and more e�
ient.In order to re
ord only the input and output a
tions in a step U of a CT-net, we de�ne the set of the visiblea
tions in U by ⌊U⌋ df

= U ∩ (((Si ∪ So) ⊗ Dio) ∪ ({τ} ⊗ D)). Be
ause of the 
onsisten
y, ⌊U⌋ 
ould not be amultiset.Definition 4.1. Let N = (S, T, ℓ, M) be a tra
table and 
onsistent CT-net, the CT-automaton of N is the�nite automaton A(N)
df

= (SA, TA, sA) where:
• SA is the set of states de�ned as the set of all the rea
hable markings of N ;
• the set of transitions is TA ⊆ SA × LA × SA, where LA

df

= {A ⊆ ((Si ∪ So) ⊗ Dio) ∪ ({τ} ⊗ D)}, andis de�ned as the set of all the triples (M ′, A, M ′′) su
h that M ′, M ′′ ∈ SA and there exists a nonemptystep U of N su
h that M [U〉M ′ and A = ⌊U⌋;
• sA

df

= M ∈ SA is the initial state of A(N), i. e., the initial marking of N .The following holds by de�nition but should be stressed sin
e it states that a CT-net and the 
orrespondingCT-automaton have exa
tly the same exe
utions.Proposition 4.2. Let N
df

= (S, T, ℓ, M) be a tra
table and 
onsistent CT-net, M ′ be a rea
hable markingof N and (SA, TA, M)
df

= A(N).1. If M ′[U〉M ′′ for a nonempty step U then (M ′, ⌊U⌋, M ′′) ∈ TA.2. Conversely, if (M ′′, A, M ′′′) ∈ TA then there exists a nonempty step U su
h that M ′′[U〉M ′′′ and
⌊U⌋ = A.As an example, the �gure 4.1 shows the CT-automaton whi
h 
orresponds to the tra
table version of ourrunning example (given in the �gure 3.2). For the sake of 
ompa
tness, we assumed η

df

= 1 (the automaton for
η = 2 has 105 states and this number grows to 277 for η = 3). Moreover, we assumed {a1, a2, u} ⊆ Si ∪ So.5. The exe
ution ma
hine. We now des
ribe the exe
ution ma
hine. In order to 
ommuni
ate with theenvironment, a symbol ao ∈ So is 
onsidered as a port on whi
h a value d ∈ Dio may be written, whi
h is denotedby a← d (more generally, this is used for any assignment). Similarly, a symbol ai ∈ Si is 
onsidered as a porton whi
h su
h a value, denoted by ai?, may be read; we assume that ai? = ∅ /∈ Dio when no 
ommuni
ationis requested on ai. Moreover, in order to indi
ate to the environment if a 
ommuni
ation have been properlyhandled, we also assume that ea
h a ∈ Si may be marked �a

epted� (denoting that the 
ommuni
ation has been
orre
tly handled), �refused� (denoting that the 
ommuni
ation 
ould not been handled), �erroneous� (denotingthat a 
ommuni
ation on this port was possible but with another value, or that a 
ommuni
ation was expe
tedbut not requested) or not marked, whi
h is represented by �no mark�. We also use the notation ai ← markwhen an input port is being marked.Let (SA, TA, sA) be a CT-automaton and let ∆ be a 
onstant amount of time; we will see later on how ∆is de�ned sin
e it depends on the de�nition of the exe
ution ma
hine. We will use three variables:

• Θ is a time 
orresponding to the o

urren
es of ti
ks;
• s ∈ SA is the 
urrent state;
• I ⊆ Si is the set of ports on whi
h the environment asks a 
ommuni
ation.The behaviour of the ma
hine is des
ribed by the algorithm given on the left of the �gure 4.2 where theexe
ution of a step (line 13) is detailed on the right of the �gure. Several aspe
ts of this algorithm should be
ommented:
• the statement �now� evaluates to the 
urrent time when it is exe
uted;
• the �for all� loops are parallel loops;
• the exe
ution of the line 8 
an be parallelised also (see below);
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Fig. 4.1. The CT-automaton of the CT-net given in the �gure 3.2 (with η
df

= 1), the initial state is numbered 0 and �lled inbla
k.1: s← sA2: Θ← now3: while s has su

essors do4: for all a ∈ Si do5: a← �no mark�6: end for7: I ← {a ∈ Si | a? 6= ∅}8: 
hoose a transition (s, A, s′)9: if A is a ti
k-step then10: wait until now = Θ + ∆11: Θ← now12: end if13: exe
ute(A, I)14: s← s′15: end while

pro
edure exe
ute(A, I) :17: for all a(d) ∈ A (a 6= τ) do18: if a ∈ So then19: a← d20: else if a ∈ Si and a? = d then21: a← �a

epted�22: else23: a← �erroneous�24: end if25: I ← I \ {a}26: end for27: for all a ∈ I do28: a← �refused�29: end forFig. 4.2. The main loop of the exe
ution ma
hine (on the left) and the exe
ution of a step A with respe
t to requested inputsgiven by I (on the right).
• ea
h exe
ution of the �while� loop performs a bounded amount of work, in parti
ular the followingnumbers are bounded: the number of ports; the number of transitions outgoing from a state; thenumber of a
tions in ea
h step. Assuming that 
hoosing a transition requires a �xed amount of time(see below), ∆ is the maximum amount of time required to exe
ute the �while� loop δ − 1 times;
• no ti
k is expli
itly exe
uted but its o

urren
e a
tually 
orresponds to the exe
ution of the line 11.
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ations 79Proposition 5.1. The algorithm presented in the �gure 4.2 ensures an even o

urren
e of the ti
ks.Proof. Let θ be the value assigned to Θ when the line 2 is exe
uted. A number of transitions (at most
δ − 2) is exe
uted until a ti
k transition is 
hosen. All together, the duration of these exe
utions requires is
D ≤ ∆ so the line 10 waits during ∆−D. Thus, the line 11, whi
h 
orresponds to the ti
k, is exe
uted at time
θ + D + (∆−D) = θ + ∆. By indu
tion, we obtain that ti
ks are exe
uted at times θ + k∆ for k ≥ 1.5.1. Choosing a transition. We still have to de�ne how a transition may be 
hosen, in a �xed amountof time, in order to mark �a

epted� as mu
h as possible input ports in the set I of requested 
ommuni
ations.In order to de�ne a 
riterion of maximality, we assume that there exists a total order on Si. This 
orrespondsto a priority between the ports: when several 
ommuni
ations are requested but not all are possible, we �rst
hoose to serve those on the ports with the highest priorities. Then, given I, we de�ne a partial order ≺ onthe transitions outgoing from a state and the ma
hine 
hooses one of the smallest transitions a

ording to ≺.This 
hoi
e may be random or driven by a s
heduler. For instan
e, we may 
hoose to exe
ute steps as large aspossible, or steps no larger than the number of pro
essors, et
. The de�nition of a s
heduling strategy is out ofthe s
ope of this paper; we just need to assume that the time needed to 
hoose a transition is bounded (whi
hshould hold in the reasonable 
ases).For ea
h step A appearing on a transition outgoing from the 
urrent state, we de�ne a ve
tor VA ∈ {0, 1, 2}Siwhi
h represents the marks on the input ports after A would be exe
uted: the value 0 stands for �a

epted�or �no mark�, the value 1 for �refused� and the value 2 for �erroneous�. Thus, the value of VA(a) 
an be foundusing the following table, where d and d′ are distin
t values in Dio :

A[a] = 0 a(d) ∈ A a(d′) ∈ A

a? = d 1 0 2

a? = ∅ 0 2 2Then, A1 ≺ A2 if VA1
< VA2

a

ording to the lexi
ographi
 order on these ve
tors.Again, it is 
lear that building these ve
tors and 
hoosing the smallest one is feasible in a �xed amount oftime sin
e the number of transitions outgoing from a state is bounded. This is also feasible in parallel: all the
VA's 
an be 
omputed in parallel (as well as all their 
omponents) and the sele
tion of the smallest one is alogarithmi
 redu
tion.Noti
e that if ≺ allows to de�ne a total order on steps, it is not the 
ase for the transitions sin
e severaltransitions may be labelled by the same step. For instan
e, assuming u /∈ Si ∪ So, the running example wouldgive a CT-automaton similar to that of the �gure 4.1 but in whi
h all the a
tions u(0) or u(1) would have beendeleted. In this 
ase, the state 13 would have two outgoing transitions labelled by ∅ and three labelled by a2(1).Proposition 5.2. Let a ∈ Si be an input a
tion symbol and N be a CT-net whi
h is ti
k-rea
tive to R ∋ a.Then, the exe
ution of A(N) will never mark a as �erroneous� nor �refused�.Proof. Let s be the 
urrent state of A(N) and (s, A, s′) be the transition 
hosen by the exe
ution ma
hine.There are three 
ases.(1) If a? = ∅, then it may be marked �erroneous� or not marked. In the former 
ase, this means that
a(d) ∈ A for a d ∈ Dio . Then, if A = {a(d)}, be
ause of the ti
k-rea
tiveness, there must exist a transition
(s, U ′, s′′) whi
h does not involve a (ti
k-rea
tiveness never for
es the o

urren
e of an input a
tion), otherwise,the transition (s, A′, s′′) with A′ df

= A \ {a(d)} must exists (sin
e it 
orresponds to a sub-step). In both 
ases,we have (s, U ′, s′′) ≺ (s, A, s′) or (s, A′, s′′) ≺ (s, A, s′) hen
e a 
ontradi
tion with the fa
t that (s, A, s′) was
hosen. So, a must be not marked in this 
ase.(2) If a? = d 6= ∅ and the 
ommuni
ation on a is marked �refused�, this means that A[a] = 0. The ti
k-rea
tiveness ensures that there must exist a transition (s, A ∪ {a(d)}, s′′) (by assumption, a 
annot have beenrequested before sin
e the previous ti
k), hen
e again a 
ontradi
tion. So, a must be marked �a

epted� in this
ase.(3) If a? = d 6= ∅ and the 
ommuni
ation on a is marked �erroneous�, this means that a(d′) ∈ A for a
d′ ∈ Dio \ {d}. But there must exist a transition (s, (A ∪ {a(d)}) \ {a(d′)}, s′′) (ti
k-rea
tiveness allows theo

urren
e for any value in Dio), hen
e again a 
ontradi
tion. So, a is also marked �a

epted� here.Then, the next result shows that a 
ommuni
ation requested on a port to whi
h the CT-net is ti
k-rea
tiveis always 
orre
tly handled (i. e., a

epted) within the 
urrent �while� loop, whi
h is the best response timethat one 
an expe
t from the presented algorithm.



80 F. PommereauProposition 5.3. Let a ∈ Si be an input a
tion symbol and N be a CT-net whi
h is ti
k-rea
tive to R ∋ a.If a? = d 6= ∅ before the exe
ution of the line 7 in the �gure 4.2, then a is marked �a

epted� after the line 13has exe
uted.Proof. Dire
tly follows from how the ma
hine 
hooses a transition and from the proposition 5.2.6. Con
luding remarks. We de�ned a parallel exe
ution ma
hine whi
h shows the adequa
y of 
ausaland real time by allowing time-
onsistent exe
utions of 
ausally timed Petri nets (CT-nets) in a real-timeenvironment. We also shown that it was possible to ensure that the ma
hine e�
iently rea
ts to the soli
itationof its environment by designing CT-nets having the property of ti
k-rea
tiveness, whi
h is easy to 
onstru
t. Inorder to obtain these results, several restri
tions have been adopted:
• only safe Petri nets are 
onsidered;
• the nets must be tra
table, i. e., they are not allowed to have unbounded runs between two ti
ks;
• the nets must be 
onsistent, i. e., they 
annot perform several simultaneous 
ommuni
ations on thesame port;
• the exe
ution ma
hine must be run on a 
omputer fast enough to ensure that the environment 
annotattempt more than one 
ommuni
ation on a given port between two ti
ks.We do not 
onsider the tra
tability and 
onsisten
y requirements as true restri
tions sin
e they a
tually 
orre-spond to what 
an be performed on a realisti
 ma
hine. The last restri
tion is a
tually a pres
ription: in orderto ensure a 
orre
t 
ommuni
ation, one has to run the exe
ution ma
hine on a 
omputer fast enough to exe
uteti
ks more often than the environment 
an produ
e input. Moreover, it should be noti
ed that the frequen
yof ti
ks is arbitrary. So, if the ti
ks of a CT-net are too mu
h sparse with respe
t to the requested inputs, itis easy to multiply by a 
onstant k all its timing 
onstraints in the net so ti
ks will o

ur k times more often.Using non-safe Petri nets may be 
onsidered in the future, however, this would lead to the 
lass of in�nite statesystems whi
h does not seem realisti
 for the purpose of exe
ution.6.1. Future work. Petri nets like CT-nets have been used for a long time as a semanti
al domain forhigh-level programming languages and pro
ess algebras with step based semanti
s (see, e. g., [3, 14℄) and thesete
hniques 
ould be dire
tly applied to massively parallel languages or formalisms. In this dire
tion, we envisageto 
ombine a n-ary parallel 
omposition operation with symmetry redu
tions [9℄ allowing to the veri�
ation ofvery large systems while giving modelling support for kinds of SPMD systems.6.2. Implementation issues. A preliminary version of this work proposed a sequential exe
ution ma
hineand a prototype has been su

essfully implemented in Ada; this allowed to show that the evenness of ti
ks wasnot only possible in the theory but also easy to a
hieve in an implementation. (The only �di�
ulty� was toobtains ∆ using test runs at the starting of the ma
hine.) A parallel implementation of the version presented herehad been started but had to be delayed sin
e it turned out that there were still need for a ground study. Indeed,several open questions are a
tually 
riti
al ones. Noti
e that if our goal is to perform testing or simulation,an implementation 
an be naive and may even be sequential. But in the perspe
tive of dire
t exe
ution ofthe modelled systems, the speedup be
omes 
ru
ial and a
tually depends on the intera
tion between severalparameters: the model of 
omputation, the family of parallel ma
hine targeted and the s
heduling strategy(as dis
ussed in the se
tion 5.1). All these questions were left out of the 
urrent paper; we thus envisagefurther resear
h on this subje
t with the goal to identify good 
ombinations allowing to produ
e high-qualityimplementations of our exe
ution ma
hine. In parti
ular: how to exploit the parallelism in the presentedalgorithm strongly depends on the 
omputational model envisaged (whi
h may itself depend on the targetar
hite
ture); the question of storing the CT-automaton is also important if one targets a distributed memoryar
hite
ture. Taking all these parameters into a

ount may lead to several very di�erent re�nements of thealgorithm proposed above, ea
h spe
ially dedi
ated to a parti
ular 
lass of parallel 
omputer and parallelprogramming language or model.Related to the goal of e�
ient exe
utions, another interesting problem is to 
onne
t the input/output ofthe ma
hine to the 
on
rete 
omputer in order to delegate some 
omputation. Indeed, output a
tions may be
onsidered as 
alls to 
omputational primitives, while input a
tions 
ould 
orrespond to the re
eiving of the
omputed values. This introdu
es delays, externals to the model, whi
h must be taken into a

ount. This 
anbe made by introdu
ing further timing 
onstraints in the model in order to re�e
t the exe
ution times obtainedfrom ben
hmarks or from real-time guarantees in the 
ase of 
alls to real-time primitives. In this perspe
tive,
onsidering Petri nets with time be
omes ne
essary.
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ations 816.3. Con
lusion. We believe that the framework proposed in this paper 
an be used to build 
on
reteparallel appli
ations in whi
h the 
ontrol �ow 
ould be ensured by Petri nets while a large part of the 
omputationwould be delegated to dedi
ated primitives with known performan
es. Using Petri nets for both the modellingand the exe
ution allows to verify and run the same obje
t, saving from the risk to introdu
e errors on the wayfrom a model to its implementation, while allowing exe
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© 2005 SWPSAGENT BASED SEMANTIC GRIDS: RESEARCH ISSUES AND CHALLENGESOMER F. RANA∗ AND LINE POUCHARD†Abstra
t. The use of agent based servi
es in a Computational Grid is outlined�along with parti
ular roles that these agentsundertake. Reasons why agents provide the most natural abstra
tion for managing and supporting Grid servi
es is also dis
ussed.Agent servi
es are divided into two broad 
ategories: (1) infrastru
ture servi
es, and (2) appli
ation servi
es. Infrastru
ture servi
esare provided by existing Grid management systems, su
h as Globus and Legion, and appli
ation servi
es by intelligent agents. Usages
enarios are provided to demonstrate the 
on
epts involved.1. Introdu
tion and Related Work. There has been an in
rease in interest re
ently within the Grid
ommunity [11℄ towards �Servi
e Oriented� Computing. Servi
es are often seen as a natural progression from
omponent based software development [6℄, and as a means to integrate di�erent 
omponent developmentframeworks. A servi
e in this 
ontext may be de�ned as a behaviour that is provided by a 
omponent foruse by any other 
omponent based on a network-addressable interfa
e 
ontra
t (generally identifying some
apability provided by the servi
e). A servi
e stresses interoperability and may be dynami
ally dis
overed andused. A

ording to [7℄, the servi
e abstra
tion may be used to spe
ify a

ess to 
omputational resour
es, storageresour
es, and networks in a uni�ed way. How the a
tual servi
e is implemented is hidden from the user throughthe servi
e interfa
e. Hen
e, a 
ompute servi
e may be implemented on a single or multi-pro
essor ma
hine�however, these details may not be dire
tly exposed in the servi
e 
ontra
t. The granularity of a servi
e 
anvary�and a servi
e 
an be hosted on a single ma
hine, or it may be distributed. The �TeraGrid� proje
t [9℄provides an example of the use of servi
es for managing a

ess to 
omputational and data resour
es. In thisproje
t, a 
omputational 
luster of IA-64 ma
hines may be viewed as a 
ompute servi
e, for instan
e�hidingdetails of the underlying operating system and network. A developer would intera
t with su
h a system usingthe GT4.0 [26℄ system�via a 
olle
tion of servi
es and software libraries.Web Servi
es provide an important instantiation of the Servi
es paradigm, and 
omprise infrastru
turefor spe
ifying servi
e properties (in XML�via the Web Servi
es Des
ription Language (WSDL) for instan
e),intera
tion between servi
es (via SOAP), me
hanisms for servi
e invo
ation through a variety of proto
olsand messaging systems (via the Web Servi
es Invo
ation Framework), support for a servi
es registry (viaUDDI), tunnelling through �rewalls (via a Web Servi
es Gateway), and s
heduling (via the Web Servi
esChoreography Language). A variety of languages and support infrastru
ture for Web Servi
es has appeared inre
ent months�although some of these are still spe
i�
ations at this stage with no supporting implementation.Web Servi
es play an important role in the Semanti
 Web [17℄ vision, aiming to add �ma
hine-pro
essableinformation to the largely human-language 
ontent 
urrently on the Web" [12℄. A list of publi
ly a

essibleWeb Servi
es (de�ned in WSDL) 
an be found at [21℄. By providing metadata to enable ma
hine pro
essing ofinformation, the Semanti
 Web provides a useful me
hanism to enable automati
 intera
tion between software�thereby also providing a useful environment for agent systems to intera
t [8℄. The adoption of more 
omplexrepresentation s
hemes for metadata, su
h as WebONT [13℄, suggest that the software using this information
an be more adaptive, and support updates when new information be
omes available. The agent paradigmtherefore provides a useful me
hanism for managing and mediating a

ess to Web Servi
es. Various extensionsof Web servi
es through the agents paradigm have been dis
ussed by Huhns [8℄�the most signi�
ant in the
ontext of Grid 
omputing in
lude self-awareness and learning 
apability, the ability to support a number ofontologies, and the formation of groups or teams of agents. Conversely, a key advantage of using agents is tosupport semanti
 interoperability (i. e. intera
tion between software systems based on pre-agreed, semanti
allygrounded, de�nitions). Support of te
hnologies su
h as WebONT in the 
ontext of Web Servi
es are likely toprovide the ne
essary 
ore infrastru
ture for agents to work more e�e
tively in dynami
 environments su
h asComputational Grids.2. Role of Agents in Grids. Grid 
omputing 
urrently fo
uses on sharing resour
es at regional andnational 
entres. Generally, these in
lude large 
omputational engines or data repositories, often requiring theuser to a

ept �usage poli
y� statements from the 
entre managers and owners. Similarly, resour
e owners are
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hardobliged under the poli
y to guarantee a

ess on
e an external user has been approved. A

ess rights to theresour
es are supported through X.509 
erti�
ates�whereby a user requiring a

ess must posses a 
erti�
ate.The grid-proxy-init fun
tion in Globus provides a me
hanism for delegation�however, it is limited in s
ope,and prote
ted mainly by standard Unix a

ess rights. In this model, a trust-
hain must be established before aproxy request 
an be a

epted. Furthermore, system administrators responsible for parti
ular resour
e domainsare a

ountable�and operate based on the poli
y of the site. As Grid systems embra
e servi
e-oriented 
omput-ing, more open and �exible me
hanisms are ne
essary to support servi
e provision and servi
e usage, as a userproviding a servi
e may not belong to a parti
ular 
entre. Hen
e, multiple providers may o�er a similar servi
e,and the servi
e user now has to sele
t between them. The more �open� perspe
tive on Grids�whereby servi
eproviders 
an be a 
olle
tion of 
entres or individuals�would ne
essitate a user evaluating servi
e providersbased on a number of di�erent 
riteria, su
h as: 
hoosing servi
es whi
h are best value for money, 
hoosingthe most �reputable� servi
es, 
hoosing the most se
ure servi
es, or servi
es whi
h have the highest response(exe
ution) time, or whi
h have been around the longest. These 
riteria are therefore more diverse in s
ope, and
an support servi
e 
hoi
e based on dynami
, run-time attributes of a servi
e. We assume two kinds of servi
esto exist within a Grid: (1) 
ore servi
es�whi
h are provided by the infrastru
ture and by trusted users, and(2) user servi
es�whi
h 
an be provided by any parti
ipant utilising 
ommon Grid software�su
h as OGSA.Two su
h 
ore servi
es�responsible for managing a

ess to user servi
es�in
lude:
• Certi�
ate Authority (Se
urity Servi
e): The 
erti�
ate authority is externally managed, and used toauthenti
ate servi
es�based on the identity of a servi
e provider. Only a few of these servi
es are likelyto exist a
ross a Grid�and aimed at ensuring that servi
e providers 
an be veri�ed. The Certi�
ateAuthority servi
es is also used to support the development of servi
e 
ontra
ts between a servi
e userand provider. A simple me
hanism based on X.509 
erti�
ates already exists, and additional workis ne
essary to extend this to in
lude users who require temporary 
erti�
ates, or may 
hange theiridentity over time. A 
riteria to be asso
iated with su
h a servi
e in
ludes the �risk� of a

essing aservi
e whi
h does not posses a 
erti�
ate. In this 
ontext, the servi
e user must now de
ide whetherto not a

ept any servi
e at all, or to 
hoose one whi
h is non-trustable. Su
h risk evaluation mustbe undertaken with other de
isions being made by the servi
e user�and within a limited time. Thede
ision making 
apability needed to undertake su
h an evaluation 
an be supported through agentsystems�and has been a subje
t of extensive resear
h as �trust models� [31℄. The 
on
ept of risk 
anbe de�ned in a number of di�erent ways�for instan
e, a high risk servi
e may be one that is likely togive low-a

ura
y results (for a numeri
 servi
e), or one that is provided by an unknown vendor. It istherefore important to qualify what is meant by risk in a parti
ular instan
e.
• Reputation Servi
e: Ea
h servi
e 
an have an asso
iated �Reputation� index, whi
h is used to 
lassifyhow often the provider has ful�lled its Servi
e Level Agreement (
ontra
t) in the past, and to whatdegree of 
on�den
e. It is possible for a parti
ular servi
e user to subs
ribe to multiple su
h ReputationServi
es�and indeed for a 
lient servi
e to look up the reputation of the providing servi
e from multipleReputation providers. The 
on
ept of Reputation Servi
es have been developed in the Peer-2-Peer
omputing 
ommunity [14℄, and aimed at in
reasing a

ountability within a system of anonymouspeers. Another 
on
ept of reputation (in the FreeHaven proje
t [15℄) requires servi
e owners to provide�re
eipts� (feedba
k) to verify the 
orre
tness of results obtained from other servi
es they intera
twith. These re
eipts are 
oupled with servi
es that a
t as �witnesses� to ensure that re
eipts have beengenerated, and thereby 
an judge node misbehaviour. In the 
ontext of Grid servi
es, witnesses 
an beexternal nodes whi
h monitor that a given node has met its Servi
e Level Agreement, and 
an verifythat the feedba
k provided by the user on the servi
e provider is a

urate.A Reputation or Certi�
ate 
an be used by a 
lient servi
e to identify whether to use a parti
ular servi
eprovider. This 
on�den
e in a given servi
e is important in the 
ontext of servi
e-oriented Grids�as it allowsrequesting servi
es to sele
t between multiple providers with a greater degree of a

ura
y. Agents provide themost suitable me
hanism for o�ering and managing Grid servi
es. Ea
h agent 
an be a servi
e provider or user,or 
an intera
t with an existing information servi
e.We therefore assume that servi
es within a Grid environment are managed and exe
uted via agents. It is alsopossible for ea
h agent to support one or more �servi
e types� (see se
tion 4.2). We assume three kinds of agentsto be present: (1) Servi
e Providers, (2) Servi
e Consumers, and (3) Community Managers (see se
tion 4.1).Ea
h agent must therefore provide support for managing a 
ommunity des
ription, managing and sustainingintera
tions with other agents, and provide a poli
y interpreter. The poli
y interpreter is used by a servi
e
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ommunity manager to ensure that a servi
e provider 
onforms to its servi
e provision 
ontra
t.Parti
ularly important in Grid systems is the role played by middle agents�primarily servi
e providers whi
hdo not o�er an appli
ation servi
e, but a
t as brokers to dis
over other servi
es of interest. The 
riteria forservi
e dis
overy used by a broker may range from servi
e type to servi
e reputation�and a servi
e 
onsumermay simultaneously invoke a number of di�erent servi
e providers (brokers) to undertake this sear
h.The parti
ular 
hallenges therefore in
lude the ability to assess the risk asso
iated with using a servi
e, andprovide feedba
k to potential users to evaluate this risk. Middle agents 
an support the management of riskwithin an agent 
ommunity�enabling agents to 
ombine the use of trusted servi
es along with newer ones.3. Servi
e Life
y
le. Ea
h agent is responsible for managing one or more servi
es�and ea
h agentmay utilise a number of di�erent infrastru
ture servi
es to a
hieve this. An agent exists within a parti
ular
ommunity, and utilises infrastru
ture servi
es (su
h as a se
urity or registration servi
e) within its 
ommunity�rst. A servi
e life
yle identi�es the stages in 
reating, managing, and terminating a servi
e. A new servi
emay either be 
reated by an agent, or a servi
e may be asso
iated with an agent by a user�where a

ess tothe servi
e is subsequently mediated by the agent. A new servi
e may also be 
reated by 
ombining servi
eso�ered by di�erent agents�whereby an agent manages a servi
e aggregate. The agent is now responsible forinvoking servi
es in the order spe
i�ed in the 
omposition pro
ess (spe
i�ed in a servi
e ena
tment 
ontra
t).On
e a new servi
e has been 
reated, it must be registered with its �
ommunity manager� by the agent. Aservi
e is initialised and invoked by sending a request to the agent managing the servi
e, whi
h may either agreeto the request immediately, or o�er a 
ommitment to perform the servi
e at a later time. Servi
e terminationinvolves an agent unregistering a servi
e via the 
ommunity manager, and removing all data 
orresponding tothe servi
e state. When an agent needs to exe
ute an aggregate servi
e, it will involve intera
tions with agentswithin multiple 
ommunities. The manager within ea
h 
ommunity is responsible for ensuring that servi
e
ontra
ts are being adhered to by agents within its 
ommunity. The ability to 
reate a servi
e aggregate leadsto the formation of �dynami
 work�ow��whereby an agent de
ides at run time whi
h other agent it needs tointera
t with to a
hieve a parti
ular goal. Consequently, the exa
t invo
ation sequen
e between servi
es is notpre-de�ned, and may vary based on the operating environment of the agent undertaking the aggregation. Thefollowing te
hni
al 
hallenges are signi�
ant in the 
ontext of Servi
e Life
y
les:
• Servi
e Creation: Creating a servi
e des
ription using a standard format is an important requirement�to enable the servi
e to be subsequently dis
overed. The 
reation of a servi
e also ne
essitates asso
iatingthe servi
e with an agent. An agent would re
eive a request for an appli
ation servi
e and 
reate a newinstan
e of it using the Fa
tory Interfa
e [7℄. Ea
h agent therefore provides a persistent pla
e holderfor an appli
ation servi
e. An important 
hallenge in this 
ontext is determining the number and typesof servi
es that should be managed by a single agent.
• Servi
e advertising and dis
overy: Registering a servi
e with the lo
al 
ommunity manager may restri
ta

ess�unless there is also some me
hanism to allow 
ommunity managers to intera
t. Dis
overing aservi
e a
ross multiple network based registries be
omes an important 
on
ern�and e�
ien
y of thereferral and query propagation me
hanisms between 
ommunity managers be
ome signi�
ant. Thegreater the number of parti
ipants that need to be 
onta
ted to sear
h for a servi
e, the more time
onsuming and 
omplex the sear
h pro
ess will be. The number of registries sear
hed to �nd a servi
eof interest be
omes an important 
riteria, as does the me
hanism used to formulate and 
onstrainthe query. The ability to divide a query into sub-parts whi
h 
an be simultaneously sent to multipleregistries is useful in this 
ontext�although it restri
ts the spe
i�
ation of a query.
• Contra
t enfor
ement: The 
ommunity manager is responsible for ensuring that a request for servi
eprovision is being honoured by an agent within the 
ommunity. There is a need for monitoring tools toverify that a 
ontra
t is being adhered to�although this requires an agent to reveal its internal state tothe monitoring servi
e. Enfor
ement of a 
ontra
t also requires the 
ommunity manager to de-registerthe servi
e or to restri
t a

ess to it if it does not meet its 
ontra
t. As previously dis
ussed, it is alsopossible for a 
ommunity manager to 
hange the risk or reputation index of su
h a servi
e�and utilisemonitoring tools to periodi
ally update this. Contra
t enfor
ement must be undertaken based on a
ommunity spe
i�
 poli
y.A servi
e may also register interest in one or more event types via its agent or the 
ommunity manager. Certainevent types may be 
ommon for all servi
es within a 
ommunity, and handlers for these provided at servi
e
reation time. Su
h an event me
hanism may also provide support for servi
e leasing�whereby a servi
e is
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es Sta
konly made available to a 
ommunity (or to external agents) for a lease duration�the lease is monitored by the
ommunity manager. When the lease period expires, the servi
e agent must either renew the lease or delete theservi
e.4. Servi
e Types and Instan
es. Figure 4.1 illustrates the layers within servi
e oriented Grids�startingfrom the servi
es themselves (whi
h 
an be infrastru
ture or user servi
es) and interfa
es to these servi
esen
oded in some agreed upon format. At present no standard exists within the Grid 
ommunity, although thereare working groups in the GGF [11℄ exploring standard interfa
es for servi
es within a parti
ular appli
ationdomain. Existing work on the Common Component Ar
hite
ture (CCA) [10℄ provides a useful pre
eden
efor developing 
ommon interfa
e standards. Some of the servi
es may also wrap existing exe
utable 
odes,developed in C or Fortran�requiring the users of these lega
y 
odes to publish interfa
es to their 
ode.Servi
es may subsequently be implemented using a number of di�erent te
hnologies�and interfa
e de�ni-tions using WSDL may bind to a number of di�erent implementations. Servi
e intera
tion is then supportedthrough an infrastru
ture that provides support for servi
e registration and dis
overy, distributed event deliverybetween servi
es, and support for transa
tions between servi
es. Currently, this is provided by systems su
h asGlobus, although the need for integrating su
h infrastru
ture servi
es from other platforms, su
h as EnterpriseJavaBeans or CORBA be
omes signi�
ant.Servi
es are assumed to be of two 
ategories: (1) infrastru
ture servi
es provided via Globus/OGSA (forinstan
e), and (2) appli
ation servi
es provided by agents. Examples of infrastru
ture servi
es in
lude a Se
urityServi
e, an A

ounting Servi
e, a Data Transfer servi
e et
. Examples of appli
ation servi
es in
lude Matrixsolvers, PDE Solvers, and 
omplete s
ienti�
 appli
ations. Agents utilise infrastru
ture servi
es on-demand,and may use type information made available by infrastru
ture servi
es. Agents 
an also intera
t with ea
hother based on a goal they are aiming to satisfy.A minimal set of servi
e metadata should be agreed upon by all agents within a 
ommunity, regardless ofthe appli
ation domain�referred to as a �Servi
es Ontology". Su
h an ontology would be used by agents todis
over other servi
e providers and servi
e 
onsumers, and the types of servi
es they o�er�and based on theGrid Servi
es Spe
i�
ation (GSS) [22℄. Terms within su
h an ontology 
an in
lude the 
on
ept of �le/servi
etitle, authors/servi
e manager, lo
ations, dates, and metadata about �le 
ontent�su
h as quality, provenan
eet
. Ea
h agent responsible for a servi
e must also de
ide how to pro
ess requests being made to a given servi
ethat it manages. These 
riteria may be enfor
ed by the 
ommunity manager, or based on the attributes of theservi
es being managed by the agent.4.1. Servi
e Intera
tions and Communities. Intera
tions between servi
es form an essential part ofGrid systems, with intera
tions ranging from simple requests for information (su
h as extra
ting data fromthe Grid Information Index Servi
e (GIIS) in Globus), to more 
omplex negotiation me
hanisms for arranging



Agent Based Semanti
 Grids: Resear
h Issues and Challenges 87
ommon operations between servi
es (su
h as 
o-s
heduling operations on multiple ma
hines). Intera
tionsbetween agents are 
onstrained by the paradigm used�su
h as the 
on
ept of a �virtual market��wherebyagents 
an trade servi
es based on a 
omputational e
onomy [30℄. An important aspe
t of su
h an intera
tionparadigm is that agents need to make de
isions in an environment over whi
h they have limited 
ontrol, restri
tedinformation about other agents, and often a limited understanding of the global obje
tives of the environmentthey inhabit. The 
on
ept of �
ommunities� be
omes important to limit the 
omplexity of de
isions ea
hagent needs to make, by limiting intera
tions to a restri
ted set of other agents. In the 
ommunity 
ontext,agents must be able to �rst establish whi
h 
ommunities to join, and subsequently to de
ide upon me
hanismsfor making their lo
al state visible to others. Ea
h 
ommunity must have a manager entity, responsible foradmitting other agents, and for ensuring that agents adhere to some 
ommon obligations within the 
ommunity.Intera
tion between agents may also be mediated via su
h a manager�whereby the manager also a
ts as aproto
ol translator. The 
ommunity manager is also responsible for advertising the properties of a 
ommunityto others, and for eventually disbanding a 
ommunity if it is non-persistent.
Service
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MatchMaking Service (M)Fig. 4.2. Servi
e CommunityFigure 4.2 illustrates the 
ore servi
es provided within ea
h 
ommunity, and 
onsists of servi
e user-s/providers, a Mat
hMaker (M)�whi
h is supported via a veri�
ation and information servi
e, and a 
ommunitymanager. The Mat
hMaker provides an example of a middle agent, fa
ilitating intera
tion between other servi
eusers and providers within the 
ommunity. The information servi
e 
an intera
t with the GRIS/GIIS serverand lo
ate other 
omputational resour
es of interest�using the Globus system. Intera
tion between the servi
euser and provider is undertaken based on a 
ommon data representation�whi
h enables the state of a givenservi
e to be queried at a given time `t' (an example of this data model for 
omputational servi
es 
an be foundin [23℄). We assume that there is a single M within a 
ommunity, although the request for mat
h may utilisedi�erent 
riteria. The availability of a servi
e over time extends from t < t
urrent (usage history) to t > t
urrent(proje
ted usage) and in
ludes t = t
urrent (
urrent usage). Availability over time is just one of the parametersthat must be supported in the system, for instan
e, we also 
onsider availability over the set of servi
e users.The mat
hmaking servi
e works as follows:
• Ea
h Servi
e Provider sends an asyn
hronous message to a pre-de�ned mat
hmaking servi
e `M' (run-ning on a given host) to indi
ate its availability within the lo
al 
ommunity. Ea
h message may betagged with the servi
e type that is being supported. The message 
ontains no other information, andis sent to the lo
al `M'. The identity of M may be pre-built into ea
h servi
e when it is 
reated, or maybe obtained from the 
ommunity manager agent (via a multi
ast request within the 
ommunity).
• On re
eiving the message, the lo
al `M' responds by sending a do
ument spe
ifying the required in-formation to be 
ompleted by the servi
e provider agent. This information is en
oded in an XML
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harddo
ument (see [23℄), and 
ontains spe
ialised keywords that 
orrespond to dynami
 information thatmust be re
orded for every servi
e managed by the agent. The do
ument also 
ontains a time stampindi
ating when it was issued, and an address for `M'.
• The servi
e provider agent 
ompletes the do
ument�obtaining the ne
essary information via the GIISserver (if ne
essary), and sends ba
k the form to `M', maintaining a lo
al 
opy. The do
ument 
ontainsthe original time stamp of `M', and a new time stamp generated by the servi
e manager. Some parts ofthe do
ument are stati
, while others 
an be dynami
ally updated. The new servi
e is now registeredwith the 
ommunity manager, and 
an be invoked by a servi
e user, until it de-registers with `M'. If theservi
e is terminated or 
rashes, `M' will automati
ally de-register it when it tries to retrieve a new 
opyof the do
ument. An alternative te
hnique would involve a `push' model whereby ea
h servi
e updatesM with its state on a 
hange. Typi
ally, the update would be to des
ribe 
hanges in availability, forexample after a reservation has been made by a servi
e user. However, the update 
ould also involve a
hange in 
apability, for example an extra servi
e being added to the lo
al system. If a push me
hanismis used from the servi
e to M then repeated polling of the resour
es is not ne
essary. It is useful to notethat the 
ommunity manager does not dire
tly maintain any servi
e information or 
ontent itself, andintera
ts with M to obtain the ne
essary servi
e details.Agents within a 
ommunity may need to undertake multiple intera
tions to rea
h 
onsensus. For instan
e,an agent trying to dis
over suitable servi
es may need to issue multiple dis
overy requests before it is able to�nd a suitable servi
e. Intera
tion me
hanisms between agents therefore may be more 
omplex, and utiliseau
tion and negotiation me
hanisms, or intera
tion rules. The 
ommunity manager may provide mediation inthis pro
ess, by restri
ting the maximum number of message ex
hanges between agents. The main obje
tivebeing to enable servi
e providers to enable their servi
es to be more e�e
tively used.A parti
ular 
hallenge in this 
ontext is the ability to agree on a 
ommon data model for ex
hange servi
e
apability do
uments. There must be some agreement based on GSS [22℄, but also the ability of a servi
e providerto identify additional properties if available in the servi
e interfa
e. Another important 
hallenge is to identifythe 
omplexity of the mat
h pro
ess (from a syntax based mat
h to a semanti
 mat
h�for instan
e)�and toenable a user to limit the 
omplexity of the mat
h in their request to `M'.4.2. Servi
e Semanti
s. Servi
e intera
tions require de�nitions of 
ommon terms�the de�nition of 
om-mon units when ex
hanging engineering data for instan
e (where one servi
e may reports its results in miles,while the servi
e user undertakes its pro
essing in kilometres). Servi
e semanti
s are generally assumed in dis-tributed systems�where 
he
ks on the results 
an be made by a user. However, when servi
es intera
t dire
tly,it is important to ensure that the results they produ
e follow some prede�ned types.Servi
e types may be �abstra
t� types�dire
tly supported by a servi
e, or �derived� types whi
h are obtainedby extending or 
ombining abstra
t types. An agent therefore also publishes type information asso
iated withthe servi
es it supports�enabling servi
e users (other agents) to undertake the ne
essary type 
onversions.Servi
e types 
an be based on data types supported within the servi
e implementation�su
h as float, string,et
, or they may be appli
ation related�su
h as a distan
e type or a 
o-ordinate type. The servi
e typeme
hanism may be extended into an ontology�whi
h may also identify additional attributes, su
h as parti
ularinstan
es of types, axioms for transforming between types, and 
onstraints on types.The type me
hanism is also used for dis
overing other servi
es, and for laun
hing spe
ialist servi
es whi
hprovide a parti
ular output type. The semanti
s asso
iated with a parti
ular type must also be de�ned by aservi
e�hen
e, a servi
e whi
h uses a derived type distan
e, must pre�x it with its servi
e identity. Conse-quently, servi
es with similar types but di�erent semanti
s may 
o-exist, and 
an publish this information aspart of their interfa
e des
riptions. One example of semanti
 servi
es in
lude mathemati
al libraries (su
h as inthe MONET proje
t [20℄) with prede�ned 
ategorisation of these numeri
 libraries. In this 
ontext therefore, asear
h for a numeri
 solver servi
e by a user in a parti
ular appli
ation domain would pro
eed by 
onta
ting onemore more broker agents and perform mat
hing based on problem domain, along with various non-mathemati
alissues su
h as the user's preferen
es for parti
ular kinds or brands of software. The motivation stems from theobservation that many s
ientists prefer to use servi
es from parti
ular developers, a de
ision often determinedby the appli
ation domain of the s
ientist. This subje
tive 
riteria should therefore be utilised when sear
hingfor suitable numeri
 servi
es�and used along with the operational interfa
e the servi
e o�ers.In a typi
al Grid environment, multiple domain spe
i�
 ontologies are likely to 
o-exist. Work beingundertaken in the Gene Ontology Consortium [24℄ provides one example of a vo
abulary being developed to
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ommon servi
es (based on ageneri
 servi
es ontology), and a number of spe
ialist servi
es (su
h as mathemati
al libraries, gene 
lusteringsoftware et
), whi
h 
an only be invoked in a limited way, and by a restri
ted set of other servi
es. Animportant 
hallenge in this 
ontext is to identify the granularity at whi
h these domain spe
i�
 servi
es shouldbe des
ribed, and whether advertising of servi
es should be restri
ted. Also important is to identify how servi
esa
ross domains 
an be de�ned in 
ommon ways�for instan
e, the use of 
lustering and data analysis servi
esmay be 
ommon in a number of di�erent domains. However, the parti
ular des
ription s
hemes used mayvary. Many of the 
on
erns related to the de�nition of ontologies needs to be undertaken within the parti
ulars
ienti�
 
ommunity involved�although ways of identifying 
ommon servi
es used by a number of di�erent
ommunities would be a useful undertaking.5. S
enario. We illustrate the 
on
epts outlined in this paper via a proje
t whi
h uses agents for man-aging user a

ess to s
ienti�
 instruments at Oak Ridge National Laboratory (ORNL). It was mainly aimed atautomating an existing manual pro
ess of approving user requests to obtain time on a mi
ros
ope and others
ienti�
 instruments. The proje
t was undertaken as part of the Materials Mi
ro
hara
terization Collaboratory(MMC) [16℄ proje
t, involving ORNL and various other parti
ipants. The purpose of 
ollaboration within theMMC is to 
hara
terise the mi
rostru
ture of material samples using te
hniques su
h as ele
troni
 mi
ros
opy,and X-ray and neutron di�ra
tion. Observation, data a
quisition, and analysis are performed using instrumentssu
h as transmission and s
anning ele
troni
 mi
ros
opes, and a neutron beam line. An important aspe
t of theMMC proje
t is the 
omputer 
o-ordination and 
ontrol of remote instrumentation, data repositories, visuali-sation platforms, 
omputational resour
es, and expertise, all of whi
h are distributed at various sites a
ross theUS. The role of ORNL in this 
ollaboratory was to provide a

ess to, and management of experiments withinthe High Temperature Materials Laboratory [18℄. A s
ientists is required to 
omplete a pre-formatted proposaldo
ument (a part of this is illustrated in �gure 5.1), and pass this to a 
entral fa
ility. Based on the type ofexperiment, and the instrument identi�ed, the fa
ility sele
ts one or more experts to evaluate the proposal. Thesele
tion 
riteria involves e
onomi
 fa
tors (su
h as industrial impa
t the experiment is likely to have), te
hni
alfa
tors (su
h as types of materials to be analysed in the experiment), safety fa
tors (su
h as whether the userhas had radiation or general training on the instrument), and 
redibility fa
tors (su
h as what publi
ations theuser already has in the �eld, why the experiment is being requested et
). These fa
tors are weighed by theexpert, and a de
ision is made on whether the proposal to undertake the experiment should be granted. Theproje
t was 
on
eived to automate some of the pro
essing involved in rea
hing a de
ision on the initial proposal.It was de
ided that repla
ing the expert was not a viable option, as this would involve a detailed knowledgeeli
itation from existing experts, and the e�ort and time involved in su
h an undertaking would be signi�
ant.Instead, the approa
h adopted was to support the de
ision making pro
ess of the expert, and to automate asmu
h analysis of the proposal as possible, prior to delivery of the proposal to the expert.The automation of the 
urrent system was a
hieved using Web based forms, CGI s
ripts and an agentdevelopment tool. An agent is used to represent every entity involved in the system, and in
ludes a �User�agent, an �Expert� agent, an �Instrument� agent, an �Experiment� agent, and two utility/middle agents, a�S
heduling� agent and a �Fa
ilitator� agent. Ea
h of these agents perform a pre-de�ned set of servi
es, whi
hmust intera
t to 
omplete the overall request. Message ex
hanges between agents 
an relate to requests forproposal to be veri�ed, 
on�rmation or denial of a proposal, and a veri�
ation of s
heduling request. Ea
hagent operates as an autonomous entity, in that it manages and makes requests for information to other agents,in order to a
hieve a given goal. The goals are spe
i�ed by the physi
al entities whi
h are being represented bythe agent�su
h as a human user (for a User agent), or an instrument expert (for an Expert agent). Ea
h agentthen tries to �nd a set of servi
es to be undertaken to rea
h the goal it has been set. Goal 
ompletion is basedon ea
h agent 
hoosing an initial a
tion that will lead it 
loser to its goal, and determined by the pre-
onditionsfor a given a
tion to be taken, and post-
onditions (or e�e
ts) identifying the out
ome of a given a
tion on theagent itself, and its environment. The agent based approa
h provides the best option for modelling s
enarioswhere a large number of users, instruments and experts 
an 
o-exist, with ea
h entity 
ontrolling and managingits own requirements and goals.MatML for Materials Property Data [25℄ is used for spe
ifying intrinsi
 
hara
teristi
s of materials. Inthe DeepView system developed for the MMC [27℄, an instrument s
hema has been designed for instrumentproperties permitting the remote, on-line operation of mi
ros
opes [28℄. These s
hemas were examined to formthe basis of a lo
al ontology for our system. However, re-use of existing s
hemas raises questions 
on
erning
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Fig. 5.1. Form 
ompleted by the userthe purpose and s
ope of an ontology within the 
ontext of an agent-based system�as our obje
tive was toenable a user to a

ess an instrument and performan
e of the system was of issue [29℄. With these 
onstraints inmind, it was de
ided that the 
on
epts in the ontology must fo
us on use of instruments and 
hara
teristi
s of(human) users rather than on properties of materials su
h as 
hemi
al 
omposition and geometry (MatML), andinstrument 
hara
teristi
s su
h as vendor and resolution (DeepView). For these and other reasons, a domainontology for our system was 
reated that did not re-use 
on
epts in the s
hemas mentioned above. The domainontology is divided into four 
ategories: Users, Experts, Experiments and Instruments��gure 5.2 illustrates the�Experiment ontology�. Terms used within the ontology 
an take on a number of di�erent 
ontent types�su
has integers, reals, strings�and 
onstraints are de�ned as ranges on these basi
 types. An important 
on
ernwas to identify me
hanisms to translate existing types supported in the form, into types that 
ould be dire
tlyinterpreted by the agents. Some attributes in the ontologies utilised by the agents required an appropriaterepresentation of �Phase" (in the Instrument ontology), the 
on
ept of �Impa
t� (in the Experiment ontology),and 
ommon ways to en
ode time and date information. It was also ne
essary to 
onstrain parameters asso
iatedwith ontologies maintained by di�erent agents�to enable intera
tion between agent roles.Ea
h agent in the system undertakes a parti
ular set of a
tions to a
hieve its �role". A role is de�nedas a set of goals that need to be 
ompleted by an agent, in a given 
ontext. Hen
e, a User agent plays therole of an external user. In the 
ontext of the MMC, this involves �Creating a Proposal" and �A

epting aProposal". A role is de�ned at a higher level of abstra
tion than method 
alls on obje
ts, or sub-routine 
allsin sour
e 
ode. In an agent based system, a given entity (or agent) 
an only undertake pre-de�ned roles whi
hdetermine its fun
tion in a given so
iety of other agents. Hen
e, a User agent in this parti
ular 
ontext 
annots
hedule operations on a given instrument, be
ause it does not possess this as a role. It 
an make a request toa S
heduling agent to undertake su
h an operation, or alternatively, to 
ommuni
ate with an Expert agent torequest a given s
hedule to be validated. Agents 
an therefore posses roles and relationships with ea
h otherbased on their parti
ular fun
tion in the agent so
iety. It is assumed in this proje
t that agents 
annot 
hangeor modify their roles or servi
es, although they 
an update the information 
ontent of their lo
al repositoriesbased on intera
tions with other agents.



Agent Based Semanti
 Grids: Resear
h Issues and Challenges 91
Experiment

Start Time

End Time
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Requestor
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Academic
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EnvironmentFig. 5.2. The �Experiment" ontology
User 

Agent

Expert 

Agent

Instrument

Agent

 Scheduling

Agent

Experiment

Agent

Sub-ordinate

Relationship

Peer RelationshipFig. 5.3. Co-ordination me
hanism and role intera
tion between 
ollaborating agents for MMC resour
e allo
ationA User agent and an Expert agent have a peer-to-peer relationship, as ea
h 
an initiate a request to the otherone. An Instrument agent is a sub-ordinate to an Expert agent, as an Expert agent 
an request informationfrom an Instrument agent, but not vi
e versa. Roles between agents in the MMC system are illustrated in�gure 5.3. Ea
h agent in the system, and the parti
ular servi
es undertakes are as below:
• User Agent: This agent undertakes two basi
 servi
es: CreateProposal and A

eptProposal. TheCreateProposal task involves reading a �le from disk, based on a given User ID, and initiating a proposalrequest to an Expert agent. The A

eptProposal task involves verifying that the s
hedule given by theExpert agent is a

eptable�the a

eptan
e 
riteria is based on 
he
king 
onstraints de�ned in theproposal with the initial request made by the User agent.
• Expert Agent: This agent is the most 
omplex of all, and a
ts as the 
o-ordinator. The Expert agent
an undertake one of �ve di�erent servi
es: Re
eiveProposal, RequestInstrument, Che
kS
hedule,ConfirmS
hedule and ValidateRequest. Re
eiveProposal involves a

epting a User generated request
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hardto undertake a given experiment. RequestInstrument involves verifying 
onstraints via the Instrumentagent, based on availability of the instrument, and whether the parameters for the requested experimentare valid for the given instrument. Only two su
h parameters were identi�ed as being relevant for thisprototype�the �Operating Temperature" of the instrument, and the �Phase ID". Both of these are
ompared with the initial request from the User agent to 
on�rm that a given instrument 
an supportthese ranges or absolute values. The Che
kS
hedule and Con�rmS
hedule involve 
he
king 
onstraintson the availability of the instrument, with the availability of the expert. For the MMC, it is identi�ed asa requirement that an instrument and an expert are available over the same time period, and that thisfalls within the duration of the requested experiment. The Che
kS
hedule task validates that su
h anoverlap exists, and the Con�rmS
hedule task generates a message to the S
heduling agent 
on�rmingthe S
hedule is valid. The ValidateRequest task is used by the Expert agent to 
on�rm that a givenrequest from a User agent does not violate any existing s
hedules that have already been de
ided. TheExpert agent a
hieves this by intera
ting with the S
heduler agent, and 
he
king the stored s
hedules.
• Instrument Agent: This agent a
ts as a wrapper for a mi
ros
ope, and is used to identify parti
ulara

ess parameters required to request it for an experiment.
• Experiment Agent: This agent 
an intera
t with a User agent or an Expert agent to help them pre-pare an experiment. It supports the generation of proposals by a User agent, and the veri�
ation or
he
king of these by an Expert agent. Its primary purpose is to a
t as a support agent for helpingformulate proposals, and help the User and Expert agents negotiate over parameters identi�ed in a pro-posal. The Experiment agent undertakes three servi
es: PrepareProposal, Che
kProposalRequestand ValidateProposalRequest. The PrepareProposal task is a
tivated by a User agent, and involvesthe Experiment agent helping to 
omplete missing parameters in the proposal being sent to it. TheChe
kProposalRequest is used by an Expert agent to ensure that the parameters requested in a pro-posal are valid. The ValidateProposalRequest is used by the Experiment agent to undertake the abovetwo servi
es based on its lo
al database of fa
ts. The database is an external program that must beprovided by the developer of the system.
• S
heduling Agent: This agent maintains a list of all valid s
hedules at any time, and 
an undertakethree servi
es: Re
eiveRequest, ConfirmRequest and ValidateS
hedule. The Re
eiveRequest taskinvolves a

epting a request to verifying a proposal from an Expert agent. The S
heduling agent a
tsas a sub-ordinate of the Expert agent, and provides support to the Expert agent to rea
h a parti
ulargoal. The ValidateS
hedule task involves verifying the requested s
hedule against its database to ensurethat the requested s
hedule does not 
on�i
t any already assigned. The Con�rmRequest task is thenused to send a message to the given Expert agent to 
on�rm or deny the request.
• Fa
ilitator and Name Server Agents: These agents a
ts as utility agents, mapping an agent lo
ation toits IP address (for the Name Server agent), and identifying servi
es that a given agent 
an undertake,in some respe
ts similar to a yellow page servi
e (for the Fa
ilitator agent).
• Globus Gateway Agent: The Globus/OGSA gateway agent enables an Experiment agent to laun
h jobson remote instruments. Job management 
an be supported via the MatML data model. The gatewayagent also makes use of the Fa
ilitator and Name Server to lo
ate and 
ommuni
ate with other agents.A prototype system was implemented using the Zeus agent development tools [32℄.5.1. Barriers and Dis
ussion. Servi
es supported by agents need to intera
t with infrastru
ture servi
esprovided through tools su
h as Globus/OGSA�although this is only ne
essary to support exe
ution of s
ienti�

odes. Agents must therefore intera
t with existing Grid servi
es via one or more gateways. Performan
e issuesbe
ome signi�
ant when deploying agents to manage servi
es�as no dire
t intera
tion between servi
es exist.Existing Web servi
es te
hnologies�su
h as the use of SOAP�
an have signi�
ant overheads, primarily due tothe HTTP transport used and the parsing of XML based messages�espe
ially when en
oding data types alongwit the 
ontent (a useful study on SOAP performan
e 
an be found in [33℄). Standards su
h as DIME [19℄may provide some performan
e improvement. Therefore, although the use of Web Servi
es infrastru
ture mayprovide an important route for a wider use of Grid infrastru
ture, the performan
e impli
ations introdu
ed bysu
h te
hnologies still need to be over
ome (the s
ienti�
 
odes 
urrently deployed via Grid middleware haveperforman
e as a key requirement). Although many s
ientists may be willing to relinquish this requirement inthe prototyping phase of their work�deploying produ
tion 
odes in this way may not be possible. Many WebServi
es standards are also at an early stage of development at the present time, and most experimentation
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h Issues and Challenges 93is still being undertaken behind �rewalls. It is also not apparent how the UDDI (servi
e registries) are to bemanaged, and by whom. Should there be a few �root� UDDI registries (like 
urrent Domain Name Servers), orshould the registration me
hanism be more distributed? Some of these 
on
erns need to be evaluated in the
ontext of Grid registration servi
es (
urrently utilising Globus/OGSA), to enable more e�e
tive sharing of GridServi
es a
ross appli
ations. We also see a number of similarities between the Peer-2-Peer (P2P) approa
h [1℄and agent systems�as both fo
us on servi
e provision through a de
entralised model of 
y
le sharing or �lesharing. Whereas agent systems fo
us on the semanti
s of the shared servi
es, the fo
us in P2P systems is onthe e�
ien
y of the routing me
hanism used.The use of the servi
e oriented approa
h for deploying s
ienti�
 
odes also requires the delegation of 
ontrolto a remote servi
e. This is espe
ially true when servi
e aggregation is being undertaken by an agent. It istherefore important to identify how ownership is delegated in the 
ontext of su
h a 
omposition pro
ess, andhow a servi
e 
ontra
t must be de�ned and enfor
ed for the aggregate servi
e. One in
entive for supportingsu
h an aggregation of servi
es may be based on the 
on
ept of a �virtual e
onomy� [30℄�whereby servi
es 
anhave asso
iated 
osts of a

ess and deployment. Although a useful model (and one whi
h 
losely resemblesthe 
urrent usage of 
omputational resour
es at national 
entres)�it is un
lear how servi
es are pri
ed, andwhat roles are ne
essary within su
h an e
onomy. Should these roles be 
entrally assigned and managed in thesame way as index servi
es are being used today, or 
an they be distributed a
ross multiple sites? Another
losely related issue is the types of relationships that must exist between servi
es within su
h an e
onomy�forinstan
e, should we be able to support the myriad di�erent �nan
ial trading s
hemes that exist in our markets,and more importantly, what enfor
ement me
hanisms need to be provided to ensure that these trading s
hemesare being observed.6. Con
lusion. Issues in developing servi
e oriented Grids are outlined. We indi
ate why agents providea useful abstra
tion for managing servi
es in this 
ontext, and resear
h 
hallenges that need to be addressedto make more e�e
tive use of agents. The need to agree upon 
ommon data models/ontologies is signi�-
ant, and we view this as a signi�
ant future undertaking to make Grids more widely deployable. The needfor parti
ular appli
ation 
ommunities to agree and implement 
ommon servi
e representations is thereforeimportant�as is the need to agree upon a 
ommon ontology for de�ning generi
 servi
es. A system for manag-ing user a

ess to s
ienti�
 instruments is outlined�identifying the servi
es supported and intera
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© 2005 SWPSA FEEDBACK CONTROL MECHANISM FOR BALANCING I/O- ANDMEMORY-INTENSIVE APPLICATIONS ON CLUSTERSXIAO QIN∗ , HONG JIANG† , YIFENG ZHU† , AND DAVID R. SWANSON†Abstra
t. One 
ommon assumption of existing models of load balan
ing is that the weights of resour
es and I/O bu�er sizeare stati
ally 
on�gured and 
annot be adjusted based on a dynami
 workload. Though the stati
 
on�guration of these parametersperforms well in a 
luster where the workload 
an be modeled and predi
ted, its performan
e is poor in dynami
 systems in whi
hthe workload is unknown. In this paper, a new feedba
k 
ontrol me
hanism is proposed to improve overall performan
e of a 
lusterwith a general and pra
ti
al workload in
luding I/O-intensive and memory-intensive load. This me
hanism is also shown to bee�e
tive in 
omplementing and enhan
ing the performan
e of a number of existing dynami
 load-balan
ing s
hemes. To 
apturethe 
urrent and past workload 
hara
teristi
s, the primary obje
tives of the feedba
k me
hanism are: (1) dynami
ally adjustingthe resour
e weights, whi
h indi
ate the signi�
an
e of the resour
es, and (2) minimizing the number of page faults for memory-intensive jobs while in
reasing the utilization of the I/O bu�ers for I/O-intensive jobs by manipulating the I/O bu�er size. Resultsfrom extensive tra
e-driven simulation experiments show that 
ompared with a number of s
hemes with �xed resour
e weights andbu�er sizes, the feedba
k 
ontrol me
hanism delivers a performan
e improvement in terms of the mean slowdown by up to 282%(with an average of 125%).Key words. Feedba
k 
ontrol, I/O-intensive appli
ations, 
luster, load balan
ing1. Introdu
tion. S
heduling [16, 19℄ and load balan
ing [1, 10℄ te
hniques in parallel and distributedsystems have been investigated to improve system performan
e with respe
t to throughput and/or individualresponse time. S
heduling s
hemes assign work to ma
hines to a
hieve better resour
e utilization, whereasload-balan
ing poli
ies 
an migrate a newly arrived job or a running job preemptively to another ma
hines ifneeded.Sin
e 
lusters-a type of loosely 
oupled parallel system-have be
ome widely used for s
ienti�
 and 
ommer-
ial appli
ations, several distributed load-balan
ing s
hemes in 
lusters have been presented in the literature,primarily 
onsidering CPU [9, 10℄, memory [1, 23℄, or a 
ombination of CPU and memory [26, 27℄. Althoughthese load-balan
ing poli
ies have been very e�e
tive in in
reasing the utilization of resour
es in distributedsystems (and thus improving system performan
e), they have ignored one type of resour
e, namely disk (anddisk I/O). The impa
t of disk I/O on overall system performan
e is be
oming signi�
ant as more and morejobs with high I/O demand are running on 
lusters. This makes storage devi
es a likely performan
e bottle-ne
k. Therefore, we believe that for any dynami
 load balan
ing s
heme to be e�e
tive in this new appli
ationenvironment, it must be made I/O-aware.Typi
al examples of I/O-intensive appli
ations in
lude long running simulations of time-dependent phe-nomena that periodi
ally generate snapshots of their state [22℄, ar
hiving of raw and pro
essed remote sensingdata [4℄, multimedia and web-based appli
ations. These appli
ations share a 
ommon feature in that theirstorage and 
omputational requirements are extremely high. Therefore, the high performan
e of I/O-intensiveappli
ations heavily depends on the e�e
tive usage of storage, in addition to that of CPU and memory. Com-pounding the performan
e impa
t of I/O in general, and disk I/O in parti
ular, the steady widening gap betweenCPU and I/O speed makes load imbalan
e in I/O in
reasingly more 
ru
ial to overall system performan
e. Tobridge this gap, I/O bu�ers allo
ated in the main memory have been su

essfully used to redu
e disk I/O 
osts,thus improving the throughput of I/O systems.This paper proposes a feedba
k 
ontrol me
hanism to dynami
ally 
on�gure resour
e weights and I/Obu�ers in su
h a way that the weights are 
apable of re�e
ting the signi�
an
e of system resour
es, and thememory utilization is improved for I/O- and memory-intensive workload.The rest of the paper is organized as follows. Related work in the literature is reviewed in Se
tion 2. Se
tion 3des
ribes system model, and Se
tion 4 proposes the feedba
k 
ontrol me
hanism. Se
tion 5 evaluates theperforman
e of the me
hanism. Finally, Se
tion 6 
on
ludes the paper by summarizing the main 
ontributionsand 
ommenting on future dire
tions of this work.
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96 X. Qin et al.2. Related Work. There exists a large base of ex
ellent resear
h related to distributed load balan
ingmodels, and to name just a few: sender or re
eiver-initiated di�usion [5, 24℄, the gradient model [6, 13, 14℄,and the hierar
hi
al balan
ing model Pollak [24℄. Eager et al. studied both re
eiver and sender initiateddi�usion, and the results of their study showed that re
eiver-initiated poli
ies are preferable at high systemloads if the overheads of task transfer under the two poli
ies are 
omparable [5℄. The gradient model makesuse of a gradient proximity map of underloaded pro
essors to guide the migration of tasks from overloaded tounderloaded pro
essors [6, 13, 14℄. Underloaded nodes dynami
ally update the gradient proximity map, whereasoverloaded nodes initiate task migrations. Pollark proposed a s
alable approa
h for dynami
 load balan
ing inlarge parallel and distributed systems on a multi-level 
ontrol hierar
hy [15℄. The hierar
hi
al s
heme a
hievesigni�
ant performan
e gain due to the parallelism in the low level of the hierar
hy and the possibility toaggregate information in the higher level of the 
ontrol tree [15℄.The issue of distributed load balan
ing for CPU and memory resour
es has been extensively studied andreported in the literature. For example, Har
hol-Balter et al. [9℄ proposed a CPU-based preemptive migrationpoli
y that was more e�e
tive than non-preemptive migration poli
ies. Zhang et al. [27℄ fo
used on load sharingpoli
ies that 
onsider both CPU and memory servi
es among the nodes of a 
luster. Throughout this paper, theCPU-memory-based load balan
ing poli
y presented in [27℄ will be referred to as CM. The simulation resultsshow that the CM poli
y not only improves performan
e of memory-intensive jobs, but also maintains the sameload sharing quality of the CPU-based poli
ies for CPU-intensive jobs [27℄.A large body of work 
an be found in the literature that addresses the issue of balan
ing the load of disksystems [11, 18℄. S
heuermann et al. [18℄ studied two issues in parallel disk systems, namely striping and loadbalan
ing, and showed their relationship to response time and throughput. Lee et al. [11℄ proposed two �leassignment algorithms that minimize the varian
e of the servi
e time at ea
h disk, in addition to balan
ingthe load a
ross all disks. Sin
e the problem of balan
ing the utilizations a
ross all disks is isomorphi
 to themultipro
essor s
heduling problem [7℄, a greedy multipro
essor-s
heduling algorithm, 
alled LPT [8℄, 
an beapplied to disk load balan
ing [11℄. Thus, LPT greedily assigns a pro
ess to the pro
essor with the lightest I/Oload [11℄. Throughout this paper, we refer to the approa
hes that dire
tly apply LPT to I/O load balan
ing asthe IO poli
y. The I/O load balan
ing poli
ies in these studies have been shown to be e�e
tive in improvingoverall system performan
e by fully utilizing the available hard drives.Very re
ently, three load balan
ing models, whi
h 
onsider I/O, CPU and memory resour
es simultaneously,were presented [21, 26℄. In [21℄, a dynami
 load-balan
ing s
heme, tailored for the spe
i�
 requirements of theQuestion/Answer appli
ation, was proposed along with a performan
e analysis of the approa
h. Xiao et al.proposed e�e
tive load sharing strategies by minimizing both CPU idle time and the number of page faults in
lusters [26℄.However, the load-balan
ing models presented in [21, 26℄ are similar in the sense that the weights ofsystem resour
es and bu�er size are stati
ally 
on�gured with a dynami
al workload. In 
ontrast, the newfeedba
k 
ontrol me
hanism proposed in this study judi
iously 
on�gures these parameters in a

ordan
e withthe workload of the 
luster. Tra
e-driven simulations show that, 
ompared with the CM and IO poli
ies, theproposed s
heme with a feedba
k 
ontrol me
hanism signi�
antly enhan
es the overall performan
e of a 
lustersystem under both memory-intensive and I/O-intensive workload.Some work has been done to make use of feedba
k 
ontrol me
hanisms in operating systems and distributedenvironments [12, 20℄. For example, Steere et al. proposed a s
heduling s
heme that dynami
ally adjusts CPUallo
ation and period of threads using the feedba
k of an appli
ation's rates of progress with respe
t to itsinputs and/or outputs [20℄. Li and Nahrstedt studied a feedba
k 
ontrol algorithm to support end-to-end QoSin a distributed environment [12℄. However, the feedba
k 
ontrols of resour
e weights and bu�er sizes havenot been addressed in these works. In 
ontrast, this paper has presented the experimental results that verifythe bene�ts of the proposed feedba
k 
ontrol me
hanism for both resour
e weights and bu�er sizes in a highlydynami
 environment.3. System Model. We 
onsider the issue of feedba
k 
ontrol method to improve the performan
e of loadbalan
ing s
hemes in a 
luster 
onne
ted by a high-speed network, where ea
h node not only maintains itsindividual job queue that holds jobs until they �nish exe
ution, but also per
eives reasonably up-to-date globalload information by periodi
ally ex
hanging load status with other nodes. Jobs arrive at ea
h node dynami
allyand independently, and share three main resour
es, namely, CPU, main memory, and disk I/O. It is assumedthat a round-robin s
heduling (time-sharing) is employed as the CPU s
heduling poli
y [9, 27℄, and the disk of
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h node is modeled as a single M/G/1 queue [11℄. Sin
e jobs may be delayed be
ause of waiting in queues(to share resour
es with other jobs) or being migrated to remote nodes, the slowdown imposed on a job u isde�ned as below, slowdown(u) =
tf (u)− ta(u)

tCPU (u) + tIO(u)
(3.1)where tf (u) and ta(u) are the �nish and arrival times of the job, and tCPU (u) and timeIO(u) are the timesspent by job u on CPU and I/O, respe
tively, without any resour
e sharing.In expression 3.1, the numerator 
orresponds to the total time the job spends running, a

essing I/O,waiting, or migrating, and the denominator 
orresponds to the exe
ution time for job u in a dedi
ated setting.The de�nition of slowdown is an extension of the one used in [9, 26, 27℄, where I/O a

ess time is not 
onsidered.For simpli
ity, we assume that all nodes are homogeneous, having identi
al 
omputing power, memory 
a-pa
ity, and disk I/O performan
e 
hara
teristi
s. This simplifying assumption should not restri
t the generalityof the proposed model, be
ause if a 
luster is heterogeneous, the relative load of a given job imposed on a nodewith high pro
essing 
apability is less than that imposed on a node with low performan
e. The proposed s
hememay be extended to handle heterogeneous system by in
orporating a simple 
onversion me
hanism for relativeload [16℄.We also assume the network in our model is fully 
onne
ted and homogenous in the sense that 
ommuni
ationdelay between any pair of nodes is the same. This simpli�
ation of the network is 
ommonly used in manyload-balan
ing models [9, 26, 27℄. Additionally, we assume that the input data of ea
h job has been stored onthe lo
al disk of the node to whi
h the job is submitted. This assumption is 
onservative in nature, sin
e we
ondu
ted an experiment to show that, under I/O-intensive workload, the performan
e of the proposed s
hemeswith su
h assumption is approximately 10% less e�e
tive than that of the s
hemes without it.For a newly arrived job u at a node i, load balan
ing s
hemes attempt to ship it to a remote node with thelightest load if node i is heavily loaded, otherwise job u is admitted into node i and exe
uted lo
ally. To avoiduseless migration that may potentially degrade the system performan
e, the load balan
ing s
hemes 
onsidertransferring a job only if the load dis
repan
y between the sour
e node and the destination node is greater thanthe load of the newly arrived job plus the migration 
ost, therefore guaranteeing that ea
h migration improvesthe expe
ted slowdown of the job. If an appropriate 
andidate remote node is not available or the migration isevaluated to be useless, the load balan
ing s
hemes will not initiate the job migration.4. Adaptive Load Balan
ing S
heme.4.1. Weighted Average Load-balan
ing S
heme. In this se
tion, we present WAL, a weighted averageload-balan
ing s
heme. Ea
h job is des
ribed by its requirements for CPU, memory, and I/O, whi
h are measuredby the number of jobs running in the nodes, Mbytes, and number of disk a

esses per ms, respe
tively. For anewly arrived job u at a node i, the WAL-FC s
heme balan
es the system load in the following �ve steps.1. First, the load of node i is updated by adding job u's load, assigning the newborn job to the lo
al node.2. Se
ond, a migration is to be initiated if node i's load is overloaded. Node i is overloaded, if: (1) its loadis the highest; and (2) the ratio between its load and the average load a
ross the system is greater thana threshold, whi
h is set to 1.25 in our experiments. This optimal value, whi
h is 
onsistent with theresult reported in [25℄, is obtained from an experiment where the threshold is varied from 1.0 to 2.0.3. Third, a 
andidate node j with the lowest load is 
hosen. In the 
ase where there are more than twonodes with the lowest load, we randomly sele
t one node to break the tie. If a 
andidate node is notavailable, WAL-FC will be terminated and no migration will be 
arried out.4. Fourth, WAL-FC determines if job u is eligible for migration. A job is eligible for migration if itsmigration is able to potentially redu
e the job's slowdown.5. Finally, job u is migrated to the remote node j, and the load of nodes i and j is updated in a

ordan
ewith job u's load.WAL-FC 
al
ulates the weighted average load index in the �rst step. The load index of ea
h node i isde�ned as the weighted average of CPU and I/O load, thus:load(i) = WCPU × loadCPU (i) + WIO × loadIO(i), (4.1)where loadCPU (i) is CPU load de�ned as the number of running jobs and loadIO(i) is the I/O load de-�ned as the summation of the individual impli
it and expli
it I/O load 
ontributed by jobs assigned to
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e weights used to indi
ate the signi�
an
e of the 
orresponding re-sour
e.It is noted that the memory load is expressed by the impli
it I/O load imposed by page faults. Let lpage(i, u)and lIO(i, u) denote the impli
it and expli
it I/O load of job u assigned to node i, respe
tively. loadIO(i) 
anbe de�ned by equation 4.2, where Mi is a set of jobs running on node i:loadIO(i) =
∑

u∈Mi

lpage(i, u) +
∑

u∈Mi

lIO(i, u). (4.2)Let rMEM (u) denote the memory spa
e requested by job u, and nMEM (i) represent the memory spa
e inbytes that is available to all jobs running on node i. It is to be noted that the memory spa
e, nMEM (i), 
anbe 
on�gured in a

ordan
e with the bu�er size that is adaptively tuned by the feedba
k 
ontrol me
hanismproposed in Se
tion 4.2. When the node's available memory spa
e is larger than or equal to the memory demand,there is no impli
it I/O load imposed on the disk. Conversely, when the memory spa
e of a node is unable tomeet the memory requirements of the jobs, the node en
ounters a large number of page faults, leading to a highimpli
it I/O load. Impli
it I/O load depends on three fa
tors, namely, the available user memory spa
e, thepage fault rate, and the memory spa
e requested by the jobs assigned to node i. More pre
isely, lpage(i, u) 
anbe de�ned as follows, where µi denotes the page fault rate of the node, and loadMEM (i) is the memory loaddenoted as the sum of the memory requirements of the jobs running on node i.
lpage(i, u) =

{

0 if loadMEM (i) ≤ nMEM (i),
µi×

P

v∈Mi
rMEM (v)

nMEM (i) otherwise. (4.3)
lIO(i, u) in Equation 4.2 is a fun
tion of I/O a

ess rate, denoted λu), and I/O bu�er hit rate h(i, u) thatwill be dis
ussed in Se
tion 4.1. Thus, lIO(i, u) is approximated by the following expression:

lIO(i, u) = λu × (1− h(i, u)). (4.4)In what follows, we quantitatively determine whether a job is eligible for migration. When a job u isassigned to node i, its expe
ted response time r(i, u) 
an be 
omputed in Equation 4.5.
r(i, u) = tu × E(Li) + tu × λu × E(si

disk +
Λi

disk × E((si
disk)2)

2(1− ρi
disk)

), (4.5)where tu and λu are the 
omputation time and I/O a

ess rate of job u, respe
tively. E(si
disk) and E((si

disk)2)are the mean and mean-square I/O servi
e time in node i, and ρi
disk is the utilization of the disk in node i.

E(Li) represents the mean CPU queue length Li, and Λi
disk denotes the aggregate I/O a

ess rate in node i.Sin
e the expe
ted response time of an eligible migrant on the sour
e node has to be greater than the sum ofits expe
ted response time on the destination node and the migration 
ost, job u is eligible for migration if:

r(i, u) > r(j, u) + cu, (4.6)where j represents a destination node, and cu is the migration 
ost (time) modeled as follows,
cu = e + du × (

1

bij
net

+
1

bi
disk

+
1

bj
disk

), (4.7)where e is the �xed 
ost of migrating the job and loading it into the memory on another node, bij
net denotes theavailable bandwidth of the network link between node i and j, bi

disk is the available disk bandwidth in node i.In pra
ti
e, bij
net and bj

disk 
an be measured by a performan
e monitor [3℄. A

ordingly, the simulator dis
ussedin Se
tion 5 estimates bij
net and bj

disk by storing the most re
ent values of the disk and network bandwidth. durepresents the amount of data initially stored on disk to be pro
essed by job u. Thus, the se
ond term on theright hand side of Equation 4.7 represents the migration time spent on transmitting data over the network andon a

essing sour
e and destination disks.



A Feedba
k Control Me
hanism for Balan
ing I/O- and Memory-Intensive Appli
ations 994.2. Problem Des
ription and Examples. The feedba
k 
ontrol me
hanism that aims at minimizingthe mean slowdown fo
uses on adjusting the resour
e weights and the bu�er sizes. To help des
ribe the problemof �xed resour
e weights and I/O bu�er sizes, we �rst present the following examples that motivate the proposedsolution to improve the system performan
e.Assume a 
luster with six identi
al nodes [9, 17, 26, 27℄, to whi
h the IO load-balan
ing poli
y is applied.The average page-fault rate and I/O a

ess rate are 
hosen to be 2.0 No./ms (Number/Millise
ond) and 2.8No./ms, respe
tively. The total memory size for ea
h node is 640 Mbyte, and other parameters of the 
lusterare given in Se
tion 5.1. We modi�ed the tra
es used in [9, 27℄, adding a randomly generated I/O a

ess rate toea
h job. The tra
es used in [9℄ have been 
olle
ted from one workstation on six di�erent time intervals. In thetra
es used in our experiments, the CPU and memory demands remain un
hanged, and the memory demandof ea
h job is 
hosen based on a Pareto distribution with the mean size of 4 Mbytes [27℄.To evaluate the impa
t of resour
e weights (see Equation 4.1) on the system performan
e, we 
ondu
ted asimulation experiment where the resour
e weights were stati
ally set. Figure 4.1 plots the relationship betweenthe resour
e weight of I/O and the mean slowdown experien
ed by all the jobs in the tra
e. The result indi
atesthat the mean slowdown 
onsistently de
reases as the I/O resour
e weight in
reases from 0 to 1 with in
rementsof 0.2. We attributed this observation to the fa
t that, under I/O-intensive workload 
onditions, the I/Oresour
e weight with a high value is able to a

urately re�e
t the signi�
an
e of the disk I/O resour
es in thesystem.
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Fig. 4.1. Mean slowdowns as a fun
tion of the I/O re-sour
e weight. Average page-fault rate = 2.0No./ms, averageI/O a
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Fig. 4.2. Mean slowdowns as a fun
tion of the bu�er size.Average page-fault rate is 5.0 No./ms, average I/O a

ess rateis 2.3No./msThe memory of ea
h node is divided into two portions, with one serving as I/O bu�er and the other beingused to store working sets of running jobs. Without loss of generality, we assume that the bu�er sizes of sixnodes are identi
al. We 
ondu
ted a se
ond experiment, in whi
h the bu�er sizes were stati
ally 
on�gured.Figure 4.2 shows the bu�er size 
hosen in the experiment and the 
orresponding mean slowdowns obtained fromthe simulator.The 
urve in Figure 4.2 reveals that the bu�er size has a large e�e
t on the mean slowdowns of the IO-awarepoli
y. When bu�er size is smaller than 210 MByte, the slowdown de
reases with the in
reasing value of thebu�er size. In 
ontrast, the slowdown in
reases as the bu�er size in
reases if the bu�er size is greater than 210MByte. Optimally, the mean slowdown of this given workload rea
hes the minimum value when bu�er size is210 MByte. A large bu�er size results in a high bu�er hit rate and redu
es I/O pro
essing time, thereby 
ausinga positive e�e
t on the performan
e. On the other hand, given a �xed value of the total available main memorysize, a larger bu�er size implies a smaller the amount of memory used to store the working sets of runningjobs, whi
h in turn leads to a larger number of page faults. In general, a large bu�er size may introdu
e bothpositive and negative e�e
t on the mean slowdown at the same time, and the overall performan
e depends onthe resultant e�e
t.Although the stati
 
on�guration of resour
e weights and bu�er sizes is an approa
h to tuning the per-forman
e of 
lusters where workload 
onditions 
an be modeled and predi
ted, this approa
h performs poorlyand ine�
iently for highly dynami
 environments where workloads are unknown at 
ompile time. Therefore, afeedba
k 
ontrol algorithm is developed in this study to adaptively 
on�gure resour
e weights and bu�er sizes.



100 X. Qin et al.4.3. A Feedba
k Control Me
hanism. The high level view of the ar
hite
ture for the feedba
k 
ontrolme
hanism is presented in Figure 4.3, where the ar
hite
ture 
omprises a load-balan
ing s
heme, a resour
es-sharing 
ontroller, and a feedba
k 
ontroller. The resour
e-sharing 
ontroller 
onsists of a CPU s
heduler, amemory allo
ator and an I/O 
ontroller. The slowdown of a newly 
ompleted job and the history slowdownsare fed ba
k to the feedba
k 
ontroller, whi
h then determines the required 
ontrol a
tion ∆WIO and ∆bufsize.
∆WIO > 0 means the IO-weight needs to be in
reased, and otherwise the IO-weight should be de
reased. Sin
ethe sum of WCPU and WIO is 1, the 
ontrol a
tion ∆WCPU 
an be obtained a

ordingly. Similarly, ∆bufsize > 0means the bu�er size needs to be in
reased, and otherwise the bu�er size is to be de
reased.
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Fig. 4.3. Ar
hite
ture of the feedba
k 
ontrol me
hanismThe �rst goal of the feedba
k 
ontroller is to manipulate the resour
e weights in a way that makes it possibleto minimize the mean slowdown of jobs. The system model for an open loop balan
er is approximately givenby the following equation, slowdown(z) = −wg(L)WIO(z) + wd(L), (4.8)where wg(L) and wd(L) are the gain fa
tor and disturban
e fa
tor of the I/O resour
e weight under workload L,respe
tively. The values of wg and wd largely depend on workload 
onditions and the applied load-balan
ingpoli
y. Thus, wg and wd 
an be obtained based on simulation models for open-loop load balan
ers. The 
ontrolrule for the resour
e weight is formally modeled below,
∆WIO,u = Gw(1 −

Su

Su−1

)
∆WIO,u−1

|∆WIO,u−1|
, (4.9)

WIO,u = WIO,u−1 + ∆WIO, (4.10)where ∆WIO,u is the 
ontrol a
tion, Su denotes the average slowdown, ∆WIO,u−1

|∆WIO,u−1|
indi
ates whether the previous
ontrol a
tion has in
reased or de
reased the resour
e weight, and Gw denotes the 
ontroller gain for the I/Oresour
e weight. In the experiments presented shortly in the next se
tion, Gw is tuned to be 0.5 for betterperforman
e. Let WIO,u be the resour
e weight upon the arrival of job at the system, the resour
e weight willbe updated to WIO,u−1 + ∆WIO. Without loss of generality, we make use of a linear model to 
apture the
hara
teristi
s of varying workload 
onditions. The model is given by the following equation,slowdown(z) = −wg0(L)WIO(z) + wd0 + ∆wd, (4.11)The feedba
k 
ontroller attempts to manipulate the resour
e weights in the following three steps. First,when a job u is a

omplished, the 
ontroller 
al
ulates the slowdown su of this newly 
ompleted job, Se
ond,

su is stored in the slowdown history table, and the average slowdown Su is 
omputed a

ordingly. Note that
Su re�e
ts a spe
i�
 pattern of the re
ent slowdowns in the dynami
 workload. The table size is a tunableparameter, and the oldest slowdown will be repla
ed by the latest one if the history table over�ows. In oursimulation model presented in Se
tion 5.1, the history table size is �xed to 50. Finally, the 
ontroller generates
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ontrol a
tions ∆WIO,u and ∆WCPU,u, whi
h are based on the previous 
ontrol a
tion along with the 
omparisonbetween Su and Su−1. More pre
isely, the performan
e is regarded to be improved by the previous 
ontrol a
tionif Su−1 > Su, therefore the 
ontroller 
ontinues in
reasing WIO if it has been in
reased by the previous 
ontrola
tion, otherwise WIO is de
reased. Similarly, Su−1 < Su means that the performan
e has been worsened sin
ethe latest 
ontrol a
tion, suggesting that WIO has to be in
reased if the previous 
ontrol a
tion has redu
ed
WIO, and vi
e versa.Besides 
on�guring the weights, the se
ond goal of the feedba
k 
ontrol me
hanism is to dynami
ally setthe bu�er size of ea
h node based on the unpredi
table workload. The me
hanism is aiming at improving bu�erutilizations and redu
ing the number of page faults by maintaining an e�e
tive usage of memory spa
e forrunning jobs and their data.We 
an derive the slowdown based on a model that 
aptures the 
orrelation between the bu�er size and theslowdown. For simpli
ity, the model 
an be 
onstru
ted as follows,slowdown(z) = −bg(L)bufsize(z) + bd(L), (4.12)where bg(L) and bd(L) are the bu�er size gain fa
tor and disturban
e fa
tor under workload L, respe
tively.The 
ontrol rule for bu�er sizes is formulated as,

∆bufsizeu = Gb(Su−1 − Su)
∆bufsizeu−1

|∆bufsizeu−1|
, (4.13)where ∆bufsizeu is the 
ontrol a
tion, ∆bufsizeu−1

|∆bufsizeu−1
| indi
ates whether the previous 
ontrol a
tion has in
reasedor de
reased the resour
e weight, and Cb denotes the 
ontroller gain. Gw is tuned to be 0.5 in order todeliver better performan
e. Let bufsizeu−1 be the 
urrent bu�er size, the bu�er size is 
al
ulated as bufsizeu =bufsizeu−1 + ∆bufsizeu.As 
an be seen from 4.3, the feedba
k 
ontrol generates 
ontrol a
tion ∆bufsize in addition to ∆WCPU and

∆WIO. The adaptive bu�er size makes noti
eable impa
ts on both the memory allo
ator and I/O 
ontroller,whi
h in turn a�e
t the overall performan
e (See Figure 4.2). The feedba
k 
ontroller generates a 
ontrol a
tion
∆bufsize based on the previous 
ontrol a
tion along with the 
omparison between Su and Su−1. Spe
i�
ally,
Su−1 > Su, means the performan
e is improved by the previous 
ontrol a
tion, thereby in
reasing the bu�er sizeif it has been in
reased by the previous 
ontrol a
tion, otherwise the bu�er size is redu
ed. Likewise, Su−1 < Su,indi
ates that the latest bu�er 
ontrol a
tion leads to a worse performan
e, implying that the bu�er size hasto be in
reased if the previous 
ontrol a
tion has redu
ed the bu�er size, otherwise the 
ontroller de
reases thebu�er size.The extra time spent in performing feedba
k 
ontrol is negligible and, therefore, the overhead introdu
ed bythe feedba
k 
ontrol me
hanism is ignored in our simulation experiments. The reason is be
ause the 
omplexityof the me
hanism is low, and it takes a 
onstant time to make a feedba
k 
ontrol de
ision.5. Experiments and Results. To evaluate the performan
e of the proposed load-balan
ing s
heme witha feedba
k 
ontrol me
hanism, we have 
ondu
ted a tra
e-driven simulation, in whi
h the performan
e metri
used is slowdown that is de�ned earlier in se
tion 3. We have evaluated the performan
e of the followingload-balan
ing poli
ies:1. CM: the CPU-memory-based load-balan
ing poli
y [27℄ without using bu�er feedba
k 
ontroller. If thememory is imbalan
ed, CM assigns the newly arrived job to the node that has the least a

umulatedmemory load. When CPU load is imbalan
e and memory load is well balan
ed, CM attempts to balan
eCPU load.2. IO: the IO-based poli
y [11℄ without using the feedba
k 
ontrol me
hanism. The IO poli
y uses a loadindex that represents only the I/O load. For a job arriving in node i, the IO s
heme greedily assignsthe job to the node that has the least a

umulated I/O load.3. WAL: the Weighted Average Load-balan
ing s
heme without the feedba
k 
ontroller [21℄.4. WAL-FC: the Weighted Average Load-balan
ing s
heme with the feedba
k 
ontrol me
hanism.5. NLB: The non-load-balan
ing poli
y without using the feedba
k 
ontroller.5.1. Simulation Model. Before presenting the empiri
al results, the tra
e-driven simulation model andthe workload are presented.
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 load balan
ing, Har
hol-Balter and Downey [9℄ implemented a tra
e-driven simulatorfor a distributed system with 6 nodes in whi
h round-robin s
heduling is employed. The load balan
ing poli
ystudied in that simulator is CPU-based. Zhang et. al [27℄ extended the simulator, in
orporating memoryre
ourses into the simulation system. Based on the simulator presented in [27℄, our simulator in
orporatesthe following new features: (1) The above poli
es are implemented in the simulator. (2) The inter
onne
t isassumed to be a fully 
onne
ted network. (3) A simple disk model is added into the simulator. (4) An I/O bu�ermodel, whi
h will be presented shortly in this se
tion, is implemented on top of the disk model. The tra
es usedin the simulation are modi�ed from [9℄[27℄, and it is assumed that the I/O a

ess rate is randomly 
hosen ina

ordan
e with a uniform distribution. We assume that the I/O a

ess rate of ea
h job is independent of thejob's memory spa
e requirement and CPU servi
e time. Although this simpli�
ation de�ates any 
orrelationsbetween I/O requirement and other job 
hara
teristi
s, we 
an examine the impa
t of I/O requirement onsystem performan
e by 
on�guring the mean I/O a

ess rate as a workload parameter.The simulated system is 
on�gured with parameters listed in Table 5.1. The parameters for CPU, memory,disks, and network are 
hosen in su
h a way that they resemble a typi
al 
luster of the 
urrent day.Table 5.1Data Chara
teristi
sParameters Value Parameters ValueCPU Speed 800 MIPS Page Fault Servi
e Time 8.1 msRAM Size 640 MByte Seek and Rotation time 8.0 msInitial Bu�er Size 160 MByte Disk Transfer Rate 40MB/Se
.Context swit
h time 0.1 ms Network Bandwidth 1GbpsDisk a

esses of ea
h job are modeled as a Poisson pro
ess. Data sizes dRW
u of the I/O requests in job uare randomly generated based on a Gamma distribution with the mean size of 250 KByte and the standarddeviation of 50 Kbyte. The sizes 
hosen in this way re�e
t typi
al data 
hara
teristi
s for MPEG-1 data [2℄,whi
h is retrieved by many multimedia appli
ations.Sin
e bu�er 
an be used to redu
e the disk I/O a

ess frequen
y (See Equation 4.4), we approximatelymodel the bu�er hit probability of I/O a

ess for job u running on node i by the following formula:

h(i, u) =

{

ru

ru+1 if dbuf (i, u) ≥ ddata(u),
ru

ru+1 ×
dbuf (i,u)
ddata(u) otherwise, (5.1)where ru is the data re-a

ess rate, dbuf (i, u) is the bu�er size allo
ated to job u, and ddata(u) is the amountof data job u retrieves from or stored to the disk, given a bu�er with in�nite size. I/O bu�er in a node is aresour
e shared by multiple jobs in the node, and the bu�er size a job 
an obtain in node i at run time heavilydepends on the jobs' a

ess patterns, 
hara
terized by I/O a

ess rate and average data size of I/O a

esses.

ddata(u) linearly depends on a

ess rate, 
omputation time and average data size of I/O a

esses dRW
u , and

ddata(u) is inversely proportional to I/O re-a

ess rate. dbuf (i, u) and ddata(u) are estimated using the followingtwo equations:
dbuf (i, u) =

λudRW
u dbuf (i)

∑

k∈Mi
λkdRW

u

, (5.2)
ddata(u) =

λutudRW
u

ru + 1
. (5.3)From Equations 5.1, 5.2 and 5.3, hit rate h(i, u) be
omes:

h(i, u) =

{

ru

ru+1 if dbuf (i, u) ≥ ddata(u),
rudbuf (i)

tu

P

j∈Mi
λjdRW

j

otherwise. (5.4)Figure 5.1 shows the e�e
ts of bu�er size on the bu�er hit probabilities of the NLB, CM and IO poli
ies.When bu�er size is smaller than 150 Mbyte, the bu�er hit probability in
reases almost linearly with the bu�er
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reasing rate of the bu�er hit probability drops when the bu�er size is greater than 150 Mbyte,suggesting that further in
reasing the bu�er size 
an not signi�
antly improve the bu�er hit probability whenthe bu�er size approa
hes to a level at whi
h a large portion of the I/O data 
an be a

ommodated in thebu�er.
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Fig. 5.1. Bu�er Hit Probability as a fun
tion of theBu�er Size, page-fault rate is 4.0 No./ms, I/O a

ess rate is2.2No./ms.
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Fig. 5.2. Mean slowdowns as a fun
tion of the page-faultrate, I/O a

ess rate of 0.1 No./ms.5.2. Memory Intensive Workload. To simulate a memory intensive workload, the I/O a

ess rateis �xed to a 
omparatively low level of 0.1 No./ms. The page-fault rate is set from 7.2 No./ms to 8.8No./ms with in
rements of 0.2 No./ms. The performan
e of CM is omitted, sin
e it is very 
lose to thatof WAL.Figure 5.2 reveals that the mean slowdowns of all the poli
ies in
rease with the page-fault rate. This isbe
ause as I/O demands are �xed, high page-fault rate leads to a high utilization of disks, 
ausing longer waitingtime on I/O pro
essing.When the page-fault rate is high, WAL outperforms IO and NLB, and the WAL-FC has better perfor-man
e than both WAL and IO. For example, the WAL poli
y redu
es slowdowns over the IO poli
y by upto 37.2% (with an average of 31.5%), and the WAL-FC poli
y improves the performan
e in terms of meanslowdown over IO by up to a fa
tor of 4 (400%). The reason is that the IO poli
y only attempts to bal-an
e expli
it I/O load, ignoring the impli
it I/O load that resulted from page faults. When the expli
it I/Oload is low, balan
ing expli
it I/O load does not make a signi�
ant 
ontribution to balan
ing the overall sys-tem load. In addition, NLB is 
onsistently the worst among the six poli
ies, sin
e NLB leaves three sharedresour
es extremely imbalan
ed and does not improve the bu�er utilization by the adaptive 
on�guration ofbu�er sizes.More interestingly, the poli
ies that use the feedba
k 
ontrol me
hanism algorithm 
onsiderably improvethe performan
e over those without employing the feedba
k 
ontroller. For example, WAL-FC improves thesystem performan
e over WAL by up to 274% (with an average of 220%). Consequently, the slowdowns of NLB,WAL, and IO are more sensitive to the page-fault rate than WAL-FC.5.3. I/O-Intensive Workload. To stress the I/O-intensive workload in this experiment, the I/O a

essrate is �xed at a high value of 2.8 No./ms, and the page-fault rate is 
hosen from 1.6 No./ms to 2.1 No./mswith in
rements of 0.1No./ms. The low page-fault rates imply that, even when the requested memory spa
e islarger than the allo
ated memory spa
e, page faults do not o

ur frequently. This workload re�e
ts a s
enariowhere memory-intensive jobs exhibit high temporal and spatial lo
ality of a

ess. Figure 5.3 plots slowdown asa fun
tion of the page-fault rate. The results of IO are omitted from Figure 5.3, sin
e they are nearly identi
alto those of WAL.First, the results show that the WAL s
heme signi�
antly outperforms the NLB and CM poli
ies, suggestingthat NLB and CM are not suitable for I/O intensive workload. For example, as shown in Figure 5.3, WALimproves the performan
e of CM in terms of the mean slowdown by up to a fa
tor of 9 (with an average of476%). This is be
ause the CM poli
ies only balan
e CPU and memory load, ignoring the imbalan
ed I/O loadof 
lusters under the I/O intensive workload.
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Fig. 5.3. Mean slowdown as a fun
tion of the page-fault rate, I/O a

ess rate is 2.8 No./ms.Se
ond, Figure 5.3 shows that WAL-FC signi�
antly outperforms WAL. For example, WAL-FC delivers aperforman
e improvement over WAL by up to 282% (with an average of 125%). Again, this is be
ause the WAL-FC s
heme applies the feedba
k 
ontroller to meet the high I/O demands by 
hanging the weights and the I/Obu�er sizes to a
hieve a high bu�er hit probability. This result suggests that improving the I/O bu�er utilizationby using the feedba
k 
ontrol me
hanism 
an potentially alleviate the performan
e degradation resulted fromthe imbalan
ed I/O load.Third, the results further show the slowdowns of NLB and CM are very sensitive to the page-fault rate.In other words, the mean slowdowns of NLB and CM all in
rease noti
eably with the in
reasing value ofI/O load. One reason is, as I/O load are �xed, a high page-fault rate leads to high disk utilization, 
aus-ing longer waiting time on I/O pro
essing. A se
ond reason is, when the I/O load is imbalan
ed, the ex-pli
it I/O load imposed on some node will be very high, leading to a longer paging fault pro
essing time.Conversely, the page-fault rate makes insigni�
ant impa
t on the performan
e of WAL, and WAL-FC. Sin
ethe high I/O load imposed on the disks is diminished either by balan
ing the I/O load or by improvingthe bu�er utilization. This observation suggests that the feedba
k 
ontrol me
hanism is 
apable of boostingthe performan
e of 
lusters under I/O-intensive workload even in the absen
e of any dynami
 load-balan
ings
hemes.5.4. Memory and I/O intensive Workload. The two previous se
tions presented the best 
ases forthe proposed s
heme sin
e the workload was either highly memory-intensive or I/O-intensive but not both. Inthese extreme s
enarios, the feedba
k 
ontrol me
hanism provides more bene�ts to 
lusters than load-balan
ingpoli
ies do. This se
tion attempts to show another interesting 
ase in whi
h the 
luster has a workload withboth high memory and I/O intensive jobs. The I/O a

ess rate is set to 1.5 No./ms. The page fault rate isfrom 7.2 No./ms to 8.4 No./ms with in
rements of 0.2 No./ms.Figure 5.4 shows that the performan
es of CM, IO, and WAL are 
lose to one another. This is be
ausethe tra
e, used in this experiment, 
omprises a good mixture of memory-intensive and I/O-intensive jobs.Hen
e, while CM takes advantage of balan
ing CPU-memory load, IO 
an enjoy bene�ts of balan
ing I/Oload. Interestingly, under this spe
i�
 memory and I/O intensive workload, the resultant e�e
t of balan
ingCPU-memory load is almost identi
al to that of balan
ing I/O load.A se
ond observation is that, under the memory and I/O intensive workload, load-balan
ing s
hemes a
hievehigher level of improvements over NLB. The reason is that when both memory and I/O demands are high, thebu�er sizes in a 
luster are unlikely to be 
hanged, as there is a memory 
ontention among memory-intensiveand I/O-intensive jobs. Thus, instead of �u
tuating widely to optimize the performan
e, the bu�er sizes �nally
onverge to a value that minimizes the mean slowdown.Third, in
orporating the feedba
k 
ontrol me
hanism in the existing load-balan
ing s
hemes is able tofurther boost the performan
e. For example, 
ompared with WAL, WAL-FC further de
reases the slowdownby up to 54.5% (with an average of 30.3%). This result suggests that, to sustain a high performan
e in
lusters, 
ompounding a feedba
k 
ontroller with an appropriate load-balan
ing poli
y is desirable and stronglyre
ommend.
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Fig. 5.4. Mean slowdowns as a fun
tion of the page-faultrate, I/O a

ess rate of 1.5 No./ms. 0
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Fig. 5.5. Mean slowdown as a fun
tion of the size ofaverage data size. Page fault rate is 0.5 No./ms, and I/O rateis 2.6 No./ms.5.5. Average Data Size. In the previous experiments, the data sizes are 
hosen based on typi
al mul-timedia appli
ations. It is noted that I/O load depends on I/O a

ess rate and the average data size of I/Orequests, whi
h in turn rely on the I/O a

ess patterns of appli
ations. The purpose of this experiment is tostudy the performan
e improvements a
hieved by the feedba
k 
ontrol me
hanism for other types of appli
a-tions if they exhibit di�erent 
hara
teristi
s. Spe
i�
ally, Figure 5.5 shows the impa
t of average data size onthe performan
e of the feedba
k 
ontrol me
hanism. The page fault rate and the I/O a

ess rate are set to0.5 No./ms and 2.6 No./ms., respe
tively. The average data size is 
hosen from 100 KByte to 400 KByte within
rements of 50 KByte.Figure 5.5 indi
ates that, for three examined load-balan
ing poli
ies, the mean slowdown in
reases as theaverage data size in
reases. This is be
ause, under 
ir
umstan
e that both page fault rate and I/O a

essrate are �xed, a large average data size yields a high utilization of disks, 
ausing longer waiting times on I/Opro
essing. More importantly, Figure 5.5 shows that the performan
e improvement gained by the feedba
k
ontrol me
hanism be
omes more noti
eable when the average data size is large. This result suggests that theproposed approa
h is not only bene�
ial for multimedia appli
ations, but also turns out to be useful for a varietyof appli
ations that are data intensive in nature.6. Con
lusions. In this paper, we have proposed a feedba
k 
ontrol me
hanism to dynami
ally adjustthe weights of re
ourses and the bu�er sizes in a 
luster with a general and pra
ti
al workload that in
ludesmemory and I/O intensive workload 
onditions. The primary obje
tive of the proposed approa
h is to minimizethe number of page faults for memory-intensive jobs while improving the bu�er utilization of I/O-intensivejobs. The feedba
k 
ontroller judi
iously 
on�gures the weights to a
hieve an optimal performan
e. Meanwhile,under a workload where the memory demand is high, the bu�er sizes are de
reased to allo
ate more memoryfor memory-intensive jobs, thereby leading to a low page-fault rate.To evaluate the performan
e of the me
hanism, we 
ompared the proposed WAL-FC s
heme with WAL,CM, and IO. For 
omparison purposes, the NLB poli
y that does not 
onsider load balan
ing is also simu-lated. A tra
e-driven simulation provides extensive empiri
al results demonstrating that WAL-FC is e�e
tivein enhan
ing performan
e of existing dynami
 load-balan
ing poli
ies under memory-intensive or I/O-intensiveworkload. In parti
ular, when the workload is memory-intensive, WAL-FC redu
es the mean slowdown overthe CM and IO poli
ies by up to a fa
tor of 9. Further, we have made the following observations:1. When the page-fault rate is higher and the I/O rate is very low, WAL and CM outperform IO andNLB, and WAL-FC has better performan
e than WAL;2. When I/O demands are high, WAL and IO are signi�
antly superior to CM and NLB. And WAL-FChas noti
eably better performan
e than that of IO;3. Under an I/O intensive workload, the mean slowdowns of NLB and CM all in
rease noti
eably withI/O load. Conversely, the page-fault rate makes insigni�
ant impa
t on the performan
e of IO, WAL,and WAL-FC.4. Under the workload with a good mixture of memory and I/O intensive jobs, WAL-FC a
hieves highlevel of improvements over NLB.
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e improvement gained by the feedba
k 
ontrol me
hanism be
omes pronoun
ed whenthe average data size is relatively large. Future studies in this area may be performed in severaldire
tions. First, the feedba
k 
ontrol me
hanism will be implemented in a 
luster system. Se
ond, wewill study the stability of the proposed feedba
k 
ontroller. Finally, it will be interesting to study howqui
kly the feedba
k 
ontroller 
onverges to the optimal value in 
lusters.7. A
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