
SCALABLE COMPUTING

Practice and Experience

Special Issue: Large Scale Computations on

Grids
Editor: Przemys law Stpiczyński

Volume 7, Number 2, June 2006

ISSN 1895-1767

Editor-in-Chief

Marcin Paprzycki
Institute of Computer Science
Warsaw School of Social Psychology
ul. Chodakowska 19/31
03-815 Warszawa
Poland
marcin.paprzycki@swps.edu.pl

http://mpaprzycki.swps.edu.pl

Managinig Editor

Pawe l B. Myszkowski
Institute of Applied Informatics
University of Information Technology
and Management Copernicus
Inowroc lawska 56
Wroc law 53-648, POLAND
myszkowski@wsiz.wroc.pl

Book Review Editor

Shahram Rahimi
Department of Computer Science
Southern Illinois University
Mailcode 4511, Carbondale
Illinois 62901-4511, USA
rahimi@cs.siu.edu

Software Reviews Editors

Hong Shen
Graduate School
of Information Science,
Japan Advanced Institute
of Science & Technology
1-1 Asahidai, Tatsunokuchi,
Ishikawa 923-1292, JAPAN
shen@jaist.ac.ip

Domenico Talia
ISI-CNR c/o DEIS
Università della Calabria
87036 Rende, CS, ITALY
talia@si.deis.unical.it

Technical Editor

Alexander Denisjuk
Elbląg University
of Humanities and Economy
ul. Lotnicza 2
82-300 Elbląg, POLAND
denisjuk@euh-e.edu.pl

Editorial Board

Peter Arbenz, Swiss Federal Inst. of Technology, Zürich,
arbenz@inf.ethz.ch

Dorothy Bollman, University of Puerto Rico,
bollman@cs.uprm.edu

Luigi Brugnano, Università di Firenze,
brugnano@math.unifi.it

Bogdan Czejdo, Loyola University, New Orleans,
czejdo@beta.loyno.edu

Frederic Desprez, LIP ENS Lyon, Frederic.Desprez@inria.fr

David Du, University of Minnesota, du@cs.umn.edu

Yakov Fet, Novosibirsk Computing Center, fet@ssd.sscc.ru

Len Freeman, University of Manchester,
len.freeman@manchester.ac.uk

Ian Gladwell, Southern Methodist University,
gladwell@seas.smu.edu

Andrzej Goscinski, Deakin University, ang@deakin.edu.au

Emilio Hernández, Universidad Simón Boĺıvar, emilio@usb.ve

David Keyes, Old Dominion University, dkeyes@odu.edu

Vadim Kotov, Carnegie Mellon University, vkotov@cs.cmu.edu

Janusz Kowalik, Gdańsk University, j.kowalik@comcast.net

Thomas Ludwig, Ruprecht-Karls-Universität Heidelberg,
t.ludwig@computer.org

Svetozar Margenov, CLPP BAS, Sofia,
margenov@parallel.bas.bg

Oscar Náım, Oracle Corporation, oscar.naim@oracle.com

Lalit M. Patnaik, Indian Institute of Science,
lalit@micro.iisc.ernet.in

Dana Petcu, Western University of Timisoara,
petcu@info.uvt.ro

Shahram Rahimi, Southern Illinois University,
rahimi@cs.siu.edu

Hong Shen, Japan Advanced Institute of Science & Technology,
shen@jaist.ac.ip

Siang Wun Song, University of São Paulo, song@ime.usp.br

Boles law Szymański, Rensselaer Polytechnic Institute,
szymansk@cs.rpi.edu

Domenico Talia, University of Calabria, talia@deis.unical.it

Roman Trobec, Jozef Stefan Institute, roman.trobec@ijs.si

Carl Tropper, McGill University, carl@cs.mcgill.ca

Pavel Tvrdik, Czech Technical University,
tvrdik@sun.felk.cvut.cz

Marian Vajtersic, University of Salzburg,
marian@cosy.sbg.ac.at

Jan van Katwijk, Technical University Delft,
J.vanKatwijk@its.tudelft.nl

Lonnie R. Welch, Ohio University, welch@ohio.edu

Janusz Zalewski, Florida Gulf Coast University,
zalewski@fgcu.edu

SUBSCRIPTION INFORMATION: please visit http://www.scpe.org

Scalable Computing: Practice and Experience

Volume 7, Number 2, June 2006

TABLE OF CONTENTS

Special Issue Introduction: Large Scale Computations on Grids i
Przemys law Stpiczyński

Special Issue Papers:

A Web Computing Environment for Parallel Algorithms in Java 1
Olaf Bonorden, Joachim Gehweiler and Friedhelm Meyer auf der Heide

Heuristic Load Balancing for CFD Codes Executed in Heterogeneous
Computing Environments 15

Dana Petcu, Daniel Vizman and Marcin Paprzycki

Benchmarking of a Joint IRISGrid/EGEE Testbed with a
Bioinformatics Application 25

J. Herrera, E. Huedo, R. S. Montero and I. M. Llorente

Mathematical Service Discovery: Architecture, Implementation and
Performance 35

Simone A. Ludwig, Omer F. Rana, William Naylor and Julian Padget

Research Papers:

Parallel Implementation of Uniformization to Compute the Transient
Solution of Stochastic Automata Networks 53

Häıscam Abdallah

A SIMD Environment for Genetic Algorithms with Interconnected
Subpopulations 65

Devaraya Prabhu, Bill P. Buckles and Frederick E. Petry

Parallel Standard ML with Skeletons 87
Norman Scaife, Greg Michaelson and Susumu Horiguchi

A Class of Parallel Multilevel Sparse Approximate Inverse
Preconditioners for Sparse Linear Systems 93

Kai Wang, Jun Zhang and Chi Shen

Book Reviews:

Parallel Scientific Computation: A Structured Approach using BSP and MPI 107

c© SWPS, Warszawa 2006

Scalable Computing: Practice and Experience

Volume 7, Number 2, p. i. http://www.scpe.org
ISSN 1895-1767

c© 2006 SWPS

SPECIAL ISSUE INTRODUCTION: LARGE SCALE COMPUTATIONS ON GRIDS

The first Workshop on Large Scale Computations on Grids (LaSCoG’05) took place in Poznan, Poland,
in conjunction with Sixth International Conference on Parallel Processing and Applied Mathematics (PPAM
2005). It was devoted to various aspects of developing, analyzing and executing large-scale applications on
computational grids including large-scale algorithms, symbolic and numeric computations, data models for
large-scale applications, science portals, data visualization, performance analysis, evaluation and prediction.

The LaSCoG’05 Organizing Committee received nine submissions and after refereeing six of them were
accepted for presentation during the Workshop and published in the Proceedings of PPAM 2005 (Lecture Notes
in Computer Science vol. 3911). However, these papers were limited to eight pages, thus we decided to publish
extended versions of the contributions. Finally, four papers were selected for publication in this special issue of
the journal Scalable Computing: Practice and Experience:

• A Web Computing Environment for Parallel Algorithms in Java, by O. Bonorden, J. Gehweiler and
F. Meyer auf der Heide;
• Mathematical Service Discovery: Architecture, Implementation and Performance, by S. A. Ludwig,

O. F. Rana, W. Naylor and J. Padget;
• Benchmarking of a Joint IRISGrid/EGEE Testbed with a Bioinformatics Application, by J. Herrera,

E. Huedo, R. S. Montero and I. M. Llorente;
• Heuristic Load Balancing for CFD Codes Executed in Heterogeneous Computing Environments, by

D. Petcu, D. Vizman and M. Paprzycki.
Sometimes one can hear (or read) that grid computing is “not enough of a scientific discipline” and practical

developments should be widely supported by more theoretical research. The extended versions of the LaSCoG
papers selected for publications in this special issue can be considered as fine examples of such theoretical
studies. The authors applied some formal methods as research techniques and obtained very interesting results
from both practical and theoretical point of view.

Przemys law Stpiczyński
Maria Curie-Sklodowska University
Poland

i

Scalable Computing: Practice and Experience

Volume 7, Number 2, pp. 1–14. http://www.scpe.org
ISSN 1895-1767

c© 2006 SWPS

A WEB COMPUTING ENVIRONMENT FOR PARALLEL ALGORITHMS IN JAVA

OLAF BONORDEN∗ , JOACHIM GEHWEILER∗ , AND FRIEDHELM MEYER AUF DER HEIDE∗

Abstract. We present a web computing library (PUBWCL) in Java that allows to execute tightly coupled, massively parallel
algorithms in the bulk-synchronous (BSP) style on PCs distributed over the internet whose owners are willing to donate their
unused computation power. PUBWCL is realized as a peer-to-peer system and features migration and restoration of BSP processes
executed on it. The use of Java guarantees a high level of security and makes PUBWCL platform-independent. In order to estimate
the loss of efficiency inherent in such a Java-based system, we have compared it to our C-based PUB-Library.

As the unused computation power of the participating PCs is unpredictable, we need novel strategies for load balancing that
have no access to future changes of the computation power available for the application. We develop, analyze, and compare different
load balancing strategies for PUBWCL. In order to handle the influence of the fluctuating available computation power, we classify
the external work load.

During our evaluation of the load balancing algorithms we simulated the external work load in order to have repeatable testing
conditions. With the best performing load balancing strategy we could save 39% of the execution time on average and even up to
50% in particular cases, in our test environment.

Key words. Bulk-Synchronous Parallel (BSP) Model, Web Computing, Volunteer-Based Computing, Scheduling, Load Bal-
ancing, Fault Tolerance, Java, Thread Migration

1. Introduction. Bearing in mind how many PCs do exist distributed all over the world, one can easily
imagine that all their idle times together represent a huge amount of unused computation power. There are
already several approaches geared to utilize this unused computation power, for example:

• distributed.net [3]
• Great Internet Mersenne Prime Search (GIMPS) [7]
• Search for Extraterrestrial Intelligence (SETI@home) [18]

A common characteristic of most of these approaches is that the computational problem to be solved has to
be divided into many small subproblems by a central server; clients on all the participating PCs download a
subproblem, solve it, send the results back to the server, and continue with the next subproblem. Since there
is no direct communication between the clients, only independent subproblems can be solved by the clients in
parallel.

Our contribution. We have developed a web computing library (PUBWCL) that removes this restriction;
in particular, it allows to execute tightly coupled, massively parallel algorithms in the bulk-synchronous (BSP)
style on PCs distributed over the internet. PUBWCL is written in Java to guarantee a high level of security
and to be platform independent.

When utilizing the unused computation power in a web computing environment, one has to deal with
unpredictable fluctuations of the available computation power on the particular computers. Especially in a set
of tightly coupled parallel processes, one single process receiving little computation power can slow down the
whole application. A way to balance the load is to migrate these “slow” processes. PUBWCL therefore features
migration of the BSP processes executed on it. In particular, we have implemented and analyzed four different
load balancing strategies. PUBWCL furthermore features restoration of the BSP processes in order to increase
fault tolerance.

Related work. Like PUBWCL, Oxford BSPlib [8] and Paderborn University BSP Library (PUB) [2, 13] are
systems to execute tightly coupled, massively parallel algorithms according to the BSP model (see Section 2).
They are written in C and are available for several platforms. These BSP libraries are optimized for application
on monolithic parallel computers and clusters of workstations. These systems have to be centrally administered,
whereas PUBWCL runs on the internet, taking advantage of Java’s security model and portability.

The Bayanihan BSP implementation [16] follows the master-worker-paradigm: The master decomposes the
BSP program to be executed into pieces of work, each consisting of one superstep in one BSP process. The
workers download a packet consisting of the process state and the incoming messages, execute the superstep,
and send the resulting state together with the outgoing messages back to the master. When the master has
received the results of the current superstep for all BSP processes, it moves the messages to their destination

∗Heinz Nixdorf Institute, Computer Science Departement, Paderborn University, 33095 Paderborn, Germany,
{bono, joge, fmadh}@uni-paderborn.de

1

2 Joachim Gehweiler et al.

packets. Then the workers continue with the next superstep. With this approach all communication between
the BSP processes passes though the server, whereas the BSP processes communicate directly in PUBWCL.

In [11], the problem of scheduling BSP processes on idle times of the processors is formalized as an online
problem. It is shown that in the worst case, the competitive ratio, i. e., the factor by which the BSP algorithm
is executed slower in the online setting, compared to an optimal offline setting, is arbitrarily large. The main
contribution are two models that restrict the way how the unused computation power of the system changes
over time, and algorithms with very small competitive ratio for these models. Our formalization of external
work load in Section 6 is inspired by these results.

Organization of paper. The rest of the paper is organized as follows: In Sections 2 and 3, we give an overview
of the used parallel computing model and the Java thread migration mechanism. In Section 4, we describe our
web computing library. In Sections 5 and 6, we describe the implemented load balancing strategies and analyze
the external work load. In Section 7, we evaluate the performance of our Java-based implementation and discuss
the results obtained from experiments with our load balancing strategies. Section 8 concludes this paper.

2. The BSP Model. In order to simplify the development of parallel algorithms, Leslie G. Valiant has
introduced the Bulk-Synchronous Parallel (BSP) model [20] which forms a bridge between the hardware to
use and the software to develop. It gives the developer an abstract view of the technical structure and the
communication features of the hardware to use (e. g. a parallel computer, a cluster of workstations or a set of
PCs interconnected by the internet).

A BSP computer is defined as a set of processors with local memory, interconnected by a communica-
tion mechanism (e. g. a network or shared memory) capable of point-to-point communication, and a barrier
synchronization mechanism (cf. Fig. 2.1).

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM
...

PID 0 PID 1 PID 2 PID p-2 PID p-1

Interconnection Network�

Fig. 2.1. BSP computer

A BSP program consists of a set of BSP processes and a sequence of supersteps—time intervals bounded by
the barrier synchronization. Within a superstep each process performs local computations and sends messages to
other processes; afterwards it indicates by calling the sync method that it is ready for the barrier synchronization.
When all processes have invoked the sync method and all messages are delivered, the next superstep begins.
Then the messages sent during the previous superstep can be accessed by its recipients. Fig. 3.1 illustrates this.

3. Thread Migration in Java. Complex algorithms often require much computation power, which means
that they run for quite a long time, even on a parallel computer. Thus, we have the following problem in a web
computing environment: If the owner of one of the PCs, whose unused computation power is donated, needs
all his resources himself again, the BSP process running on that machine will take much more time to complete
the current superstep. As shown in Fig. 3.1, this will delay the execution of the whole BSP program due to the
barrier synchronization.

Thus, the execution time of a parallel program can be significantly improved if it is possible to migrate its
processes at run-time to other hosts with currently more available computation power. Different load balancing
strategies, that are used to decide when to migrate which BSP processes to which PUBWCL client, are presented
in Section 5.

From the operating system’s point of view, BSP processes are threads, so we actually need to migrate Java
threads. There are three ways how this can be accomplished:

• modification of the Java Virtual Machine (VM) [12],
• bytecode transformations [15, 19],
• sourcecode transformations [17, 4].

A Web Computing Environment for Parallel Algorithms in Java 3

Processor 0 ...Processor 1 Processor 2 Processor p-2 Processor p-1

Barrier Synchronization

Barrier Synchronization

one superstep

local
computations

sending a
message

Fig. 3.1. Delayed synchronization

Modifying the Java VM is not advisable because everybody would have to replace his installation of the original
Java VM with one from a third party, just to run a migratable Java program.

Inside PUBWCL, we use JavaGo RMI [17, 10] which is an implementation of the sourcecode transformation
approach. It extends the Java programming language with three features:

• Migrations are performed using the keyword go (passing a filename instead of a hostname as parameter
creates a backup copy of the execution state).
• All methods, inside which a migration may take place, have to be declared migratory.
• The depth, up to which the stack will be migrated, can be bounded using the undock statement.

The JavaGo compiler jgoc translates this extended language into Java sourcecode, using the unfolding technique
described in [17]. Migratable programs are executed by dint of the wrapper javago.Run. In order to continue
the execution of a migratable program, an instance of javago.BasicServer has to run on the destination host.

Since the original implementation of JavaGo is not fully compatible with the Java RMI standard, we use
our own adapted version JavaGo RMI.

4. The Web Computing Library. People willing to join the Paderborn University BSP-based Web
Computing Library (PUBWCL) system, have to install a PUBWCL client. With this client, they can donate
their unused computation power and also run their own parallel programs.

Architecture of the system. PUBWCL is a hybrid peer-to-peer system: The execution of parallel programs
is carried out on peer-to-peer basis, i. e., among the clients assigned to a task. Administrative tasks (e. g. user
management) and the scheduling (i. e. assignment of clients and selection of appropriate migration targets),
however, are performed on client-server-basis. Clients in private subnets connect to the PUBWCL system via
the proxy component. The interaction of the components is illustrated in Fig. 4.1.

Since the clients may join or leave the PUBWCL system at any time, the login mechanism is lease-based,
i. e., a login session expires after some timeout if the client does not regularly report back at the server.

4 Joachim Gehweiler et al.

Fig. 4.1. The architecture of PUBWCL.

Though a permanent internet connection is required, changes of dynamically assigned IP addresses can
be handled. This is accomplished by using Global Unique Identifiers (GUIDs) to unambiguously identify the
clients: when logging in, each client is assigned a GUID by the server. This GUID can be resolved into the
client’s current IP address and port.

Executing a parallel program. If users want to execute their own parallel programs, they must be registered
PUBWCL users (otherwise, if they only want to donate their unused computation power, it is sufficient to use
the guest login). To run a BSP program, it simply has to be copied into a special directory specified in the
configuration file. Then one just needs to enter the name of the program and the requested number of parallel
processes into a dialog form. Optionally, one may pass command line arguments to the program or choose a
certain load balancing algorithm.

Fig. 4.2. Executing a BSP program in PUBWCL.

The server then assigns the parallel program to a set of clients and sends a list of these clients to the user’s
client (cf. Fig. 4.2). From now on, the execution of the parallel program is supervised by the user’s client.
On each of the assigned clients a PUBWCL runtime environment is started and the user’s parallel program

A Web Computing Environment for Parallel Algorithms in Java 5

is obtained via dynamic code downloading. The output of the parallel program and, possibly, error messages
including stack traces are forwarded to the user’s client.

All processes of parallel programs are executed in an own PUBWCL runtime environment in a separate
process, so that it is possible to cleanly abort single parallel processes (e. g. in case of an error in a user program).

Security aspects. The Java Sandbox allows to grant code specific permissions depending on its origin. For
example, access to (part of) the file system or network can be denied. In order to guarantee a high level of
security, we grant user programs only read access to a few Java properties which are needed to write completely
platform independent code (e. g. line.separator etc.).

Details on the internals of the library as well as a guide how to configure it can be found in [14] and [5].

4.1. The Programming Interface. User programs intended to run on PUBWCL have to be BSP pro-
grams ([1] is an excellent guide to parallel scientific compuation using BSP). Thereto the interface BSPProgram

must be implemented, i. e., the program must have a method with this signature:

public void bspMain(BSP bspLib, String[] args)

throws AbortedException

Its first parameter is a reference to the PUBWCL runtime environment which supports the BSP interface; the
second parameter is an array containing the command line parameters passed to the BSP program.

In order to write a migratable program, the interface BSPMigratableProgramhas to be implemented instead,
which means that the main method has this different signature:

public migratory void bspMain(BSPMigratable bspLib,

String[] args) throws AbortedException, NotifyGone

The following BSP library functions can be accessed via the BSP resp. BSPMigratable interface which is imple-
mented by the PUBWCL runtime environment:

In non-migratable programs, the barrier synchronization is entered by calling:

public void sync()

The migratable version additionally creates backup copies of the execution state and performs migrations if
suggested by the load balancing strategy:

public migratory void syncMig() throws NotifyGone

A message, wich can be any serializable Java object, can be sent with these methods; thereby the latter two
methods are for broadcasting a message to an interval resp. an arbitrary subset of the BSP processes:

public void send(int to, Serializable msg)

throws IntegrityException

public void send(int pidLow, int pidHigh, Serializable msg)

throws IntegrityException

public void send(int[] pids, Serializable msg)

throws IntegrityException

Messages sent in the previous superstep can be accessed with these methods, where the find* methods are for
accessing messages of a specific sender:

public int getNumberOfMessages()

public Message getMessage(int index)

throws IntegrityException

public Message[] getAllMessages()

public Message findMessage(int src, int index)

throws IntegrityException

public Message[] findAllMessages(int src)

throws IntegrityException

When receiving a message, it is encapsulated in a Message object. The message itself as well as the sender ID
can get obtained with these methods:

public Serializable getContent()

public int getSource()

In order to terminate all the processes of a BSP program, e. g. in case of an error, the following method has to
be called; the Throwable parameter will be transmitted to the PUBWCL user who has started the program:

public void abort(Throwable cause)

6 Joachim Gehweiler et al.

Any output to stdout or stderr should be printed using the following methods as they display it on the PUBWCL
client of the user who has started the program rather than on the computer where the process is actually running:

public void printStdOut(String line)

public void printStdErr(String line)

To access data from files, the following method should be used. In particular, any file in the BSP program
folder of the user’s client can be read with it:

public InputStream getResourceAsStream(String name)

throws ChainedException

In migratable programs, there is also a method available which may be called to mark additional points inside
long supersteps where a migration is safe (i. e. no open files etc.):

public migratory boolean mayMigrate() throws NotifyGone

Furthermore, there are some service functions to obtain the number of processes of the BSP program, the own
process ID, and so on.

Listing 1 shows an example program which demonstrates the basic BSP features, especially how to send
and receive messages.

Listing 1

Example program demonstrating message passing.

1 import de.upb .sfb376 .a1.*;

2 import de.upb .sfb376 .a1.bsp .*;

3

4 public class MessagePassing implements BSPProgram

5 {

6 public void bspMain (BSP bsp , String [] args) {

7 int i, left , right ;

8 Message msg;

9 Message [] msgs;

10

11 // calculate neighbours

12 left = (bsp.getPID () + bsp .getNumberOfProcessors () - 1) % bsp. getNumberOfProcessors ()

;

13 right = (bsp .getPID () + 1) % bsp .getNumberOfProcessors ();

14

15 try {

16 bsp.send(left , new Integer (1));

17 bsp.send(right , new Integer (2));

18 } catch(IntegrityException ie) {

19 bsp. printStdErr ("an error occurred during ’send ’: ‘‘ + ie.getMessage ());

20 }

21 bsp .sync ();

22

23 // get all messages , method 1

24 for (i=0; i<bsp. getNumberOfMessages (); i++) {

25 try {

26 msg = bsp.getMessage (i);

27 bsp.printStdOut (" recieved ‘‘ + msg .getContent () + ‘‘ from pid ‘‘ + msg.getSource

() + ‘‘ in superstep ‘‘ + msg .getSuperstep());

28 } catch (IntegrityException ie) {

29 bsp.printStdErr ("an error occurred during ’getMessage ’: ‘‘ + ie.getMessage ());

30 }

31 }

32

33 // get all messages , method 2

34 msgs = bsp.getAllMessages();

35 bsp .printStdOut ("recieved in total ‘‘ + msgs.length + ‘‘ messages ");

36

37 // get messages from some specified pid , method 1

38 try {

39 i = 0;

40 while ((msg = bsp.findMessage (0, i++)) != null)

41 bsp.printStdOut (" recieved ‘‘ + msg .getContent () + ‘‘ from pid 0 in superstep ‘‘ +

msg.getSuperstep());

42 } catch(IntegrityException ie) {

43 bsp. printStdErr ("an error occurred during ’findMessage ’: ‘‘ + ie.getMessage ());

44 }

A Web Computing Environment for Parallel Algorithms in Java 7

45

46 // get messages from some specified pid , method 2

47 try {

48 msgs = bsp.findAllMessages (0) ;

49 bsp .printStdOut ("recieved ‘‘ + msgs.length + ‘‘ messages from pid 0");

50 } catch(IntegrityException ie) {

51 bsp .printStdErr ("an error occurred during ’findAllMessages ’: ‘‘ + ie.getMessage ());

52 }

53 }

54 }

5. Load Balancing. As already pointed out in Section 3, one single process receiving little computation
power can slow down the execution of the whole BSP program due to the barrier synchronization. Migrating
these “slow” BSP processes can therefore significantly improve the execution time of the BSP program. Before
we present our load balancing algorithms, we need some preliminaries for scheduling.

First of all, we can derive the following constraint from the properties of a BSP algorithm. Since all the
BSP processes are synchronized at the end of each superstep, we can reduce the scheduling problem for a BSP
algorithm with n supersteps to n subproblems, namely scheduling within a superstep.

Second, we assume that we only have to deal with “good” BSP programs, i. e., all of the p BSP processes
require approximately the same amount of computational work. Thus the scheduler has to assign p equally
heavy pieces of work.

Finally, we have another restriction. Due to privacy reasons we cannot access the breakdown of the CPU
usage, i. e., we especially do not know how much computation power is consumed by the user and how much
computation power is currently assigned to our BSP processes.

Parameters for scheduling. Since we cannot directly access the breakdown of the CPU usage, we have to
estimate (1) how much computation power the BSP processes currently assigned to a client do receive, and (2)
how much computation power a BSP process would receive when (additionally) assigned to a client.

As from the second superstep on, the first question can simply be answered by the ratio of the computation
time consumed during the previous superstep and the number of concurrently running BSP processes.

In order to answer the second question, all clients regularly measure the Available Computation Power
(ACP). This value is defined as the computation power an additionally started BSP process would receive on a
particular client, depending on the currently running processes and the external work load. We obtain this value
by regularly starting a short benchmark process and measuring the computation power it receives. Though it
is not possible to determine the CPU usage from the ACP value, this value is platform independent and thus
comparable among all clients.

Since the first approach is more accurate, we will use it wherever possible, i. e., mainly, to decide whether
a BSP process should migrate or has to be restarted. The ACP value will be used to determine the initial
distribution of the BSP processes and to choose clients as migration targets and as hosts for restarted BSP
processes.

5.1. The load balancing algorithms. We have implemented and analyzed the following four load bal-
ancing strategies, among them two parallel algorithms and two sequential ones.

Algorithm PwoR. The load balancing algorithm Parallel Execution without Restarts (PwoR) executes all
processes of a given BSP program concurrently.

The initial distribution is determined by dint of the ACP values. Whenever a superstep is completed, all
clients are checked whether the execution of the BSP processes on them took more than r times the average
execution duration (a suitable value for r will be chosen in Section 7.2); in this case the BSP processes are
redistributed among the active clients such that the expected execution duration for the next superstep is
minimal, using as little migrations as possible.

Algorithm PwR. Using the the load balancing algorithm Parallel Execution with Restarts (PwR), the execu-
tion of a superstep is performed in phases. The duration of a phase is r times the running time of the ⌈s ·p∗⌉-th
fastest of the (remaining) BSP processes, where p∗ is the number of processes of the BSP program that have
not yet completed the current superstep. Suitable values for the parameters r > 1 and 0 < s < 1 will be chosen
in Section 7.2. At the end of a phase, all incomplete BSP processes are aborted. In the next phase, they are
restarted on faster clients. Whereas too slow BSP processes are migrated only after the end of the superstep
using the PwoR algorithm, they are restarted already during the superstep using PwR.

8 Joachim Gehweiler et al.

At the end of each (except the last) superstep, the distribution of the BSP processes is optimized among the
set of currently used clients by dint of the processes’ execution times in the current superstep. The optimization
of the distribution is performed such that the number of migrations is minimal.

Algorithm SwoJ. While the two load balancing strategies PwoR and PwR execute all BSP processes in
parallel, the load balancing algorithm Sequential Execution without Just-in-Time Assignments (SwoJ) executes
only one process of a BSP program per client at a time; the other BSP processes are kept in queues.

Like PwR, SwoJ operates in phases. At the end of a phase all uncompleted BSP processes are aborted and
reassigned. Thereby the end of a phase is reached after r times the duration, in which the x-th fastest client
has completed all assigned BSP processes, where x is a fraction s of the number of the affected clients. At the
end of a superstep, the distribution of the BSP processes is optimized like in PwR.

Algorithm SwJ. Like SwoJ, the load balancing algorithm Sequential Execution with Just-in-Time Assign-
ments (SwJ) executes only one process of a BSP program per client at a time and keeps the other processes in
queues, too. The main difference, however, is that these queues are being balanced. More precisely, whenever
a client has completed the execution of the last BSP process in its queue, a process is migrated to it from the
queue of the most overloaded client (if there exists at least one overloaded client). Thereby a client is named
“overloaded” in relation to another client if completing all but one BSP processes in the queue with the current
execution speed of the particular client would take longer than executing one BSP process on the other client.
Thereby the execution speed of a client is estimated by dint of the running time of the BSP process completed
on it most recently.

BSP processes are aborted only if the corresponding queues on all affected clients are empty and if the
processes do not complete within r times the duration of a process on the x-th fastest client, weighted by the
number of BSP processes on the particular clients; thereby, again, x is a fraction s of the number of the affected
clients.

6. The External Work Load. In order to understand the fluctuation of the external work load, we have
analyzed totaling more than 100 PCs in altogether four departments of three German universities over a period
of 21 resp. 28 days. The CPU frequencies varied from 233 MHz to 2.8 GHz. The installed operating systems
were Debian Linux, RedHat Enterprise Linux, and SuSE Linux.

While analyzing the load, we have noticed that the CPU usage typically shows a continuous pattern for
quite a time, then changes abruptly, then again shows a continuous pattern for some time, and so on. The
reason therefore is that many users often perform uniform activities (e. g. word processing, programming, and
so on) or no activity (e. g. at night or during lunch break).

A given CPU usage graph (e. g. of the length of a week) can thus be split into blocks, in which the CPU
usage is somewhat steady or shows a continuous pattern. These blocks typically have a duration of some hours,
but also durations from only half an hour (e. g. lunch break) up to several days (e. g. a weekend) do occur.

Based on the above observations we have designed a model to describe and classify the external work load.
We describe the CPU usage in such a block by a rather tight interval with radius α ∈ R (α < 1

2) around a
median load value λ ∈ R (0 ≤ λ − α, λ + α ≤ 1), as illustrated in Fig. 6.1. The rates for the upper and
lower deviations are bounded by β+ ∈ R resp. β− ∈ R (β+, β− < 1

2). We will refer to such a block as a
(λ, α, β+, β−, T)-load sequence in the following.

In order to describe the frequency and duration of the deviations, we subdivide the load sequences into
small sections of length T , called load periods. The values β+ and β− must be chosen such that the deviation
rates never exceed them for an arbitrary starting point of a load period within the load sequence.

Let D ∈ R
+ be the execution duration of a superstep of a BSP process in the case that we receive the full

computation power of the used machine. Given that T is much shorter than the duration of a superstep, we
can obtain this result:

Theorem 6.1. If a superstep of length D of a BSP process is executed completely within a (λ, α, β+, β−, T)-
load sequence, the factor between its minimal and maximal possible duration is at most q′ ∈ R

+ with

q′ ≤ δ(D) · 1− (1− β−)(λ − α)

1− (β+ + (1− β+)(λ + α))

where δ(D) tends to 1 with D →∞. For q ∈ R
+, q ≥ q′ we call a (λ, α, β+, β−, T)-load sequence q-bounded.

Proof: Let d(t) : R
+
0 7→ R

+ denote the actually required execution time of the superstep depending on
the external load if the execution starts at time t ∈ R

+
0 .

A Web Computing Environment for Parallel Algorithms in Java 9

0

1

t

+ 2 T + 3 T

2α λ

t 0 t 0+t 0t 0 T

L(t)

Fig. 6.1. A three-load-period-long interval of a load sequence.

First, we show that:

D

1− (1− β−)(λ − α)
− ε1 ≤ d(t) ≤ D

1− (β+ + (1− β+)(λ + α))
+ ε2 (6.1)

where:

ε1 = β− T
λ− α

1− (λ− α)
and ε2 = β+ T

As we are given that the superstep is executed completely within a (λ, α, β+, β−, T)-load sequence, the external
work load is bounded by:

ℓmin := β− · 0 + (1− β−)(λ− α) (6.2)

resp.

ℓmax := β+ · 1 + (1 − β+)(λ + α) (6.3)

Dividing the execution duration D by these bounds, we get (6.1). It remains to show that our estimations for
the corrections values ε1 and ε2 hold. These values are needed because d(t) is not necessarily a multiple of T .

Since a load period may begin at any point within a load sequence, we can assume w.l.o.g. that the execution
of the superstep starts at the beginning of a load period. Thus, we only have a fractionally utilized load period
at the end of the superstep.

Let x ∈ R, 0 < x < 1, be the fraction to which this load period is used. If there were no correction values,
this would mean that at most a fraction x of the deviations in the load period would affect the execution of the
superstep. But this is not necessarily the case as the deviations can occur at arbitrary points within the load
period by definition. Thus, we have to choose ε1 and ε2 such that an arbitrary amount of the deviations can
interfere with the execution of the superstep.

Fig. 6.2 shows the influences of the upper deviations (the gray area is the computation power that the BSP
process receives): If all the upper deviations occur in the first part of the load period, the end of the execution
is delayed by up to ε2 = β+ T .1

In order to estimate the influences of the lower deviations, have a look at Fig. 6.3: The gray areas again are
the computation power that the BSP process receives. The dark gray rectangle of case a) has been cut off in
case b) and been replaced by a rectangle with the same area in the lower deviation. Thus, the execution duration

1This estimation actually is a bit too pessimistic as a fraction x of the deviations is already contained in (6.1) without the
correction values.

10 Joachim Gehweiler et al.

0

1

t

2α λ

λ(t)

+t 0t 0 T+t 0 xT

a)

0

1

t

2α λ

λ(t)

+t 0t 0 T+t 0 xT

b)

+ ε2

Fig. 6.2. The influences of the upper deviations in the last load period.

0

1

t

2α λ

λ(t)

+t 0t 0 T+t 0 xT

a)

0

1

t

2α λ

λ(t)

+t 0t 0 T+t 0 xT

b)

-ε1

Fig. 6.3. The influences of the lower deviations in the last load period.

in case b) is shortened by the width of the dark gray rectangle of case a), which can be obtained by dividing
the area of the dark gray rectangle of case b) by the height of the one of case a), i. e., ε1 = β− T λ−α

1−(λ−α) .1

Now we obtain the following estimation from (6.1) for some q′ ∈ R
+:

D

1− (β+ + (1− β+)(λ + α))
+ ε2 = q′

(

D

1− (1 − β−)(λ− α)
− ε1

)

⇔ D + ε2(1 − (β+ + (1− β+)(λ + α)))

1− (β+ + (1− β+)(λ + α))
= q′ · D − ε1(1− (1− β−)(λ − α))

1− (1− β−)(λ − α)

⇔ q′ =
1− (1 − β−)(λ − α)

1− (β+ + (1− β+)(λ + α))
· D + ε2(1 − (β+ + (1− β+)(λ + α)))

D − ε1(1− (1− β−)(λ − α))

Now we define:

δ(D) :=
D + ε2(1− (β+ + (1 − β+)(λ + α)))

D − ε1(1− (1− β−)(λ− α))

As we have ε1 = β− T λ−α
1−(λ−α) and ε2 = β+ T for some fixed T , we get:

lim
D→∞

δ(D)→ 1

This concludes the proof. ⊓⊔
Theorem 6.1 guarantees that the running times of BSP processes, optimally scheduled based on the execution

times of the previous superstep, differ at most by a factor q2 within a load sequence. This fact will be utilized
by the load balancing strategies.

A Web Computing Environment for Parallel Algorithms in Java 11

Evaluating the collected data. When sectioning a given CPU usage sequence into load sequences, our goal
is to obtain load sequences with a q-boundedness as small as possible and a duration as long as possible, while
the rate of unusable time intervals should be as small as possible. Obviously, these three optimization tar-
gets depend on each other. We have processed the data collected from our PCs described in the beginning of
this section (over 6.8 million samples) with a Perl program which yields an approximation for this non-trivial
optimization problem.

The results. The average idle time over a week ranged from approx. 35% up to 95%, so there is obviously a
huge amount of unused computation power. Time intervals of less than half an hour and such where the CPU
is nearly fully utilized by the user or its usage fluctuates too heavily, are no candidates for a load sequence. The
rate of wasted idle time in such intervals is less than 3%.

Choosing suitable values for the parameters of the load sequences, it was possible to section the given CPU
usage sequences into load sequences such that the predominant part of the load sequences was 1.6-bounded.

On most PCs, the average duration of a load sequence was 4 hours or even much longer. Assuming the
execution of a process, started at an arbitrary point during a load sequence, takes 30 minutes, the probability
that it completes within the current load sequence is thus at least 87.5%. A detailed analysis of the results in
each of the four networks can be found in [6].

Generating load profiles. In order to compare the load balancing strategies under the same circumstances,
i. e., especially with exactly the same external work load, and to make experimental evaluations repeatable,
we have extracted totaling eight typical load profiles from two of the networks, each using these time spans:
Tuesday forenoon (9:00 a.m. to 1:00 p.m.), Tuesday afternoon (2:00 p.m. to 6:00 p.m.), Tuesday night (2:00
a.m. to 6:00 a.m.), and Sunday afternoon (2:00 p.m. to 6:00 p.m.). Besides, we have generated four artificial
load profiles according to our model, using typical values for the parameters. A detailed discussion of the load
profiles can be found in [6].

7. Experimental Evaluation. In the following we present a comparision of our Java-based library against
a C-based implementation and the evaluation of our load balancing algorithms.

7.1. Performance Evaluation. In order to determine the performance drawback of PUBWCL in com-
parison to a BSP implementation in C, we have conducted benchmark tests with both PUBWCL and PUB
under the same circumstances: We used a cluster of 48 dual Intel Pentium III Xeon 850 MHz machines, that
were exclusively reserved for our experiments to avoid influences by external work load. The computers were
interconnected by a switched Fast Ethernet. The used benchmark program was a sequence of 10 equal super-
steps. Per superstep, each BSP process did a number of integer operations and sent a number of messages. We
performed tests using every possible combination of these parameters:

• 8, 16, 24, 32, 48 BSP processes
• 10, 20, 30 messages per BSP process and superstep
• 10 kB, 50 kB, 100 kB message size
• 0, 108, 2 · 108, 3 · 108, . . . , 109 integer operations per BSP process and superstep

Selected results of the benchmark tests are shown in Fig. 7.1. As you can see, both BSP libraries scale well,
and there is a performance drawback of a factor 3.3. Note that the running time of this benchmark program is
dominated by the sequential work. Communication tests with no sequential work showed a performance impact
of a factor up to 8.7.

When porting existing BSP programs to PUBWCL, you cannot directly compare the running times due
to the overhead of the Java memory management. For example, we ported our C-based solver for the 3-
Satisfiability-Problem (3-SAT), which is a simple parallelized version of the sequential algorithm in [9], to
PUBWCL. As in the case of the benchmark program, the algorithm is dominated by the sequential work. But
in contrast to the benchmark program, it continuously creates, clones, and disposes complex Java objects. This
is much slower than allocating, copying, and freeing structures in the corresponding C-program and has led to
a performance drawback of a factor 5.4.

7.2. Evaluation of the Load Balancing Algorithms. In order to analyze our load balancing strategies,
we have conducted experiments on 15 PCs running Windows XP Professional, among them 7 PCs with 933
MHz and 8 ones with 1.7 GHz. The PUBWCL server and the client used to control the experiments ran on a
seperate PC.

We have simulated the external work load according to the load profiles mentioned in Section 6 and run

12 Joachim Gehweiler et al.

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

ti
m

e
 [
s
]

million operations per superstep

8 processes (PUBWCL)
24 processes (PUBWCL)
48 processes (PUBWCL)

8 processes (PUB)
24 processes (PUB)
48 processes (PUB)

Fig. 7.1. Results of the benchmark tests.

the clients with the /belownormal priority switch, i. e., they could only consume the computation power left
over by the load simulator.

The experiments were performed using a BSP benchmark program consisting of 80 equally weighted pro-
cesses and 8 identical supersteps. Per superstep, each BSP process did 2 · 109 integer operations and sent (and
received) 64 messages of 4 kB size each.

Results using PwoR. First we have to choose a suitable value for parameter r: At the beginning of a
superstep the BSP processes are (re-) distributed over the clients such that they should complete execution at
the same time. Supposing that, on any of the involved PCs, the current (q-bounded) load sequence does not
end before completion of the superstep, none of the BSP processes should take longer than q times the average
execution time. That means, choosing r = q = 1.6 guarantees that BSP processes are not migrated if the
available computation power only varies within the scope of a q-bounded load sequence.

In comparison to experiments with no load balancing algorithm (i. e. initial distribution according to the
ACP values and no redistribution of the processes during runtime), we could save 21% of the execution time
averaged and even up to 36% in particular cases.

Comparing the execution times of the particular supersteps, we noticed that the execution time significantly
decreases in the second superstep. The reason therefore is that the execution times of the previous superstep
provide much more accurate values for load balancing than the estimated ACP values.

Results using PwR. Our experiments with the PwR algorithm resulted in noticealby longer execution times
than those with the PwoR algorithm. We could obtain the best results with the parameters set to r = 2 and
s = 1

8 ; other choices led to even worse results.

On the one hand, this result is surprising as one would expect that PwR performs better than PwoR
because it restarts BSP processes after some threshold instead of waiting for them for an arbitrarily long time.
But on the other hand, restarting a BSP process is of no advantage if it would have completed on the original
client within less time than its execution time on the new client. Our results show that the external work load
apparently is not ‘sufficiently malicious’ for PwR to take advantage of its restart feature.

A Web Computing Environment for Parallel Algorithms in Java 13

Results using SwoJ. Like with the PwR algorithm, r = 2 and s = 1
8 is a good choice for the parameters

because: In Section 6 we showed that a load sequence does not end inside a superstep with a probability of
at least 87.5%. Thus the probability that a new load sequence with more available computation power starts
inside a superstep is at most 1

16 . As we will use the normalized BSP process execution time on the x-th fastest
client (where x is a fraction s of the number of affected clients) as a reference value for the abortion criterion,
we ensure that no new load sequence has begun on this client with high probability by setting s = 1

8 (instead of
s = 1

16). Provided that no new load sequence begins during the superstep, the factor between the fastest and
the slowest normalized BSP process execution time on the particular clients is at most q2. For a q-boundedness
of q = 1.6 this yields q2 = 2.56. We have actually chosen r = 2 because of our defensive choice of s.

Using these parameters, we could save 14% of the execution time averaged and even up to 25% in particular
cases in comparison to the experiments with the PwoR algorithm; the savings in comparison to the experiments
with no load balancing algorithm were even 32% averaged and up to 45% in isolated cases.

Results using SwJ. For the choice of the parameters, the same aspects as in the SwoJ case apply. In
comparison to our experiments with the SwoJ algorithm we could save another 10% of the execution time
averaged and even up to 27% in isolated cases; the savings in comparison to the experiments with no load
balancing algorithm were even 39% averaged and up to 50% in particular cases.

Fig. 7.2. Running times depending on the load balancing algorithm.

8. Conclusion. We have developed a web computing library that allows to execute BSP programs in
a peer-to-peer network, utilizing only the computation power left over on the participating PCs. It features
migration and restoration of the BSP processes in order to rebalance the load and increase fault tolerance
because the available computation power fluctuates and computing nodes may join or leave the peer-to-peer
system at any time.

We have implemented and analyzed different load balancing strategies for PUBWCL. The load balancing
strategy SwJ performs better than SwoJ which, in turn, performs better than PwoR (cf. Fig. 7.2). In comparison
to using no load balancing, we can save up to 50% of the execution duration using SwJ.

Due to security and portability reasons one has to use a virtual machine like Java’s one, so a performance
drawback cannot be avoided. The slowdown depends on the type of the BSP algorithm.

In order to further improve PUBWCL, work is in progress to realize PUBWCL as a pure peer-to-peer
system in order to dispose of the bottleneck at the server, and to replace Java RMI in PUBWCL with a more
efficient, customized protocol.

Additionally, we are working on an extension of PUBWCL which allows redundant execution of BSP
processes, i. e., processes are started redundantly, but only the results of the fastest one are committed whereas
the remaining processes are aborted when the first one completes. This will allow us to improve the load
balancing strategies by starting additional instances of slow BSP processes on faster clients instead of just
restarting them. Since, using the SwJ algorithm, typically only a very small fraction of the BSP processes was

14 Joachim Gehweiler et al.

restarted, this would mean only a low overhead but would significantly reduce the probability that they would
have to be restarted another time.

Acknowledgement. Partially supported by DFG-SFB 376 “Massively Parallel Computation” and EU
IST-2004-15964 (AEOLUS).

REFERENCES

[1] R. H. Bisseling, Parallel Scientific Computation: A Structured Approach using BSP and MPI, Oxford University Press,
2004.

[2] O. Bonorden, B. Juurlink, I. von Otte, and I. Rieping, The Paderborn University BSP (PUB) library, Parallel Com-
puting, 29 (2003), pp. 187–207.

[3] distributed.net. http://www.distributed.net/
[4] S. Fünfrocken, Transparent migration of Java-based mobile agents, in Mobile Agents, 1998, pp. 26–37.
[5] J. Gehweiler, Entwurf und Implementierung einer Laufzeitumgebung für parallele Algorithmen in Java, Studienarbeit,

Universität Paderborn, 2003.
[6] J. Gehweiler, Implementierung und Analyse von Lastbalancierungsverfahren in einer Web-Computing-Umgebung, Diplo-

marbeit, Universität Paderborn, 2005.
[7] Great internet mersenne prime search (GIMPS). http://www.mersenne.org/

[8] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao, T. Suel, T. Tsantilas, and

R. H. Bisseling, BSPlib: The BSP programming library, Parallel Computing, 24 (1998), pp. 1947–1980.
[9] J. Hromkovic and W. M. Oliva, Algorithmics for Hard Problems, Springer-Verlag New York, Inc., Secaucus, NJ, USA,

2002.
[10] JavaGgo RMI. http://www.joachim-gehweiler.de/en/software/javago.php

[11] S. Leonardi, A. Marchetti-Spaccamela, and F. Meyer auf der Heide, Scheduling against an adversarial network, in
SPAA ’04: Proceedings of the sixteenth annual ACM symposium on Parallelism in algorithms and architectures, ACM
Press, 2004, pp. 151–159.

[12] M. J. M. Ma, C.-L. Wang, and F. C. M. Lau, Delta execution: A preemptive Java thread migration mechanism, Cluster
Computing, 3 (2000), pp. 83–94.

[13] The Paderborn University BSP library. http://wwwcs.uni-paderborn.de/~pub/

[14] The Paderborn University BSP-based Web Computing Library. http://wwwcs.uni-paderborn.de/~pubwcl/
[15] T. Sakamoto, T. Sekiguchi, and A. Yonezawa, Bytecode transformation for portable thread migration in Java, in

ASA/MA, 2000, pp. 16–28.
[16] L. F. G. Sarmenta, An adaptive, fault-tolerant implementation of BSP for Java-based volunteer computing systems, in

Lecture Notes in Computer Science, vol. 1586, 1999, pp. 763–780.
[17] T. Sekiguchi, H. Masuhara, and A. Yonezawa, A simple extension of Java language for controllable transparent migration

and its portable implementation, in Coordination Models and Languages, 1999, pp. 211–226.
[18] Search for extraterrestrial intelligence (SETI@home). http://setiathome.berkeley.edu/

[19] E. Truyen, B. Robben, B. Vanhaute, T. Coninx, W. Joosen, and P. Verbaeten, Portable support for transparent
thread migration in Java, in ASA/MA 2000: Proceedings of the Second International Symposium on Agent Systems and
Applications and Fourth International Symposium on Mobile Agents, London, UK, 2000, Springer-Verlag, pp. 29–43.

[20] L. G. Valiant, A bridging model for parallel computation, Communications of the ACM, 33 (1990), pp. 103–111.

Edited by: Przemys law Stpiczyński.
Received: March 31, 2006.
Accepted: May 28, 2006.

Scalable Computing: Practice and Experience

Volume 7, Number 2, pp. 15–23. http://www.scpe.org
ISSN 1895-1767

c© 2006 SWPS

HEURISTIC LOAD BALANCING FOR CFD CODES EXECUTED IN HETEROGENEOUS
COMPUTING ENVIRONMENTS

DANA PETCU∗, DANIEL VIZMAN† , AND MARCIN PAPRZYCKI‡

Abstract. A graph partitioning-based heuristic load-balancing algorithm known as the Largest Task First with Minimum
Finish Time and Available Communication Costs is modified to take into account the dynamic nature and heterogeneity of current
large-scale distributed computing environments, like Grids. The modified algorithm is applied to facilitate load balancing of a
known CFD code used to model crystal growth.

Key words. load balancing, grid and cluster computing, computational intensive problems

1. Introduction. One of the important new challenges in computational sciences is related to the rapid
increase in size and computational power of heterogeneous computing platforms, like Grids. To be able to fully
realize potential performance of parallel applications running on those platforms will require extra research
effort. Opposite to a standard parallel computing environment (understood as a single parallel computer),
Grid environment is highly unpredictable: available resources have different capacities, they can be added and
removed practically at any time (and without warning), and availability of computational resources fluctuates
over time (as individual node utilization changes). Therefore any application running in the Grid must react
properly to those fluctuations, i. e. by utilizing dynamic load balancing.

One of research fields that is a possible candidate to attain good performance when using dynamic load
balancing is computational fluid dynamics (CFD). Here, codes are computationally demanding, both in terms
of memory usage and also in the number of arithmetic calculations and thus are large enough to be naturally
partitioned into a number of sub-tasks. Furthermore, most natural methods of improving accuracy of a solution
to the CFD problem are: (1) refining a mesh or (2) shortening the time step. Either of these approaches
results in further substantial increase of both computational cost and total memory usage. Therefore, a natural
tendency can be observed, to use whatever computational resources are available to the user.

Parallel CFD codes have been typically developed assuming their execution on a standard parallel computer,
i. e. a homogeneous set of processors connected via a fast network. Recent ascent of Web and Grid-based tech-
nologies requires re-evaluation of these assumptions. Computational Grids are combining very large numbers of
heterogeneous processors; through substantially slower (and heterogeneous in bandwidth) network connections.
Furthermore, the migration process of CFD codes designed for parallel computing architectures towards Grids
must take into account not only the heterogeneity of the new environment but also constant dynamic evolution
of the pool of available computational resources. At the same time we have to acknowledge that, from the
pragmatic point of view, assumption that it may be possible to fully rewrite the existing codes from the scratch
is usually not a viable option, because of the cost involved in such an endeavor. Therefore a different approach
has to be proposed to successfully port existing CFD codes to the grid.

In this context let us observe that a large body of research has been already devoted to dynamic load
balancing in heterogeneous environments, and more recently in Grid environments. In this paper we will argue
that this approach may provide us with an efficient way of solving CFD problems in the Grid. In the next section
we present a short overview of related dynamic load balancing strategies. Section 3 describes the particular CFD
code of our interest and its recent parallel implementation. Then, in Section 4, we present the load balancing
algorithm that was modified to deal with specific conditions imposed by Grid environment, while Sections 5
discusses results of some tests.

2. Short overview of dynamic load balancing strategies. Different algorithms for load balancing
have been proposed over the last twenty years. In this context, several studies were devoted to the classification
of load balancing schemes, for instance [20]. More recently, load balancing strategies used in heterogeneous
computing environments have been applied when designing and implementing applications in Grid environments.
For example, in [5] a dynamic load-balancing scheme is used for a geophysical application running on a Grid

∗Institute e-Austria Timişoara, and Computer Science Department, Western University of Timişoara, B-dul Vasile Parvan 4,
300223 Timişoara, Romania (petcu@info.uvt.ro).

†Physics Department, Western University of Timişoara, Romania
‡Computer Science Institute, SWPS, Warsaw, Poland

15

16 D. Petcu, D. Vizman and M. Paprzycki

platform. Other approaches to dynamic load balancing were reported for a protein molecules docking application
[3] or applied within a hydro-dynamics model computations [21].

Overall, load balancing algorithms can be classified into two categories: static or dynamic. In static
algorithms, decisions related to load balancing are made at a compile time, when resource requirements are
estimated and work appropriately divided. Dynamic load balancing algorithms allocate and reallocate resources
at runtime based on current resource availability and information about tasks to be executed. Obviously, this
approach is very likely to be more adequate to a Grid environment than a static one. Specifically, when
considering a heterogeneous and dynamically changing computing environment, the load balancing algorithm
should take into account at least the following parameters: memory requirements, computation costs in cycles,
currently available memory, currently available idle cycles and current communication costs. In this context, a
simple tool implementing a dynamic loop scheduling strategy to address load imbalance which may be induced
by the heterogeneity of processors was recently reported in [4].

Looking from a slightly different perspective, approaches to load-balancing in distributed systems can be
also classified into the following three categories: (1) graph-theoretic, (2) mathematical programming based,
and (3) heuristic.

Graph-theoretic algorithms consider graphs representing the inter-task dependencies and apply graph par-
titioning methodologies to obtain approximately equal partitions of the graph such that the inter-node commu-
nication is minimized. A CFD simulation using such an approach is described in [8].

The mathematical programming method, views the load-balancing as an optimization problem and solves
it using techniques originating from that domain.

Finally, heuristic methods provide fast solutions to the load balancing problem (even though usually sub-
optimal ones) when the time to obtain the exact optimal solution is prohibitive. For example, in [2] a genetic
algorithm is used as an iterative method to obtain near optimal solutions to a combinatorial optimization
problem that is applied to job scheduling on the Grid.

One of the interesting implementation of heuristic approaches to lad balancing (in particular in the case
of CFD problems) is the EVAH package [6]. It was developed to predict performance scalability of Grid ap-
plications executing on large numbers of processors. It consists of a set of allocation heuristics that consider
the specific constraints inherent in multi-block CFD problems. In our work we are interested in a particu-
lar algorithm available within the EVAH package. The Largest-Task-First with Minimum-Finish-Time and
Available-Communication-Costs (LTF MFT ACC) method combines graph partitioning approach to load bal-
ancing with a heuristic scheme. Efficiency tests performed with the LFT MFT ACC on an Origin2000 system
and reported in [6] showed that it can provide an acceptable load balancing faster than other solutions. However,
the main drawback of the original algorithm available within the EVAH package is that it assumes homogeneity
of available resources.

It is also possible to approach the load balancing problem from the load management perspective. In this
case possible approaches can be divided into (1) system level, and (2) user-level. A system-level centralized
management strategy, which works over all running applications, uses schedulers to manage loads in the system.
It is typically based on rules associated with job types or load classes.

An example of the user-level individual management of loads in a parallel computing environment is the
Dynamic Load Balancing (DLB [12]) tool that lets the system balance loads without going through centralized
load management and, furthermore, provides application level load balancing for individual parallel jobs. System
load measurement of the DLB is modified using average load history provided by computing systems rather
than by tracking processing of tasks. To illustrate the performance of the DLB tool, a CFD test case was used
as an example (see [12] for more details).

In this paper we propose a modification of the LTF MFT ACC algorithm that can be applied in the case
of a heterogeneous computing environment. Inspired by the DLB tool, our algorithm takes into account (1)
the history of computation times on different nodes, (2) the communication requirements, and (3) the current
network speeds. To study the robustness of the proposed improvements, the modified algorithm was used to
port an existing parallel CFD code into a heterogeneous computing environment.

Finally, let us note that, according [10], load balancing algorithms can be defined by their implementation of
the following policies: (1) information policy that specifies what workload information is to be collected, when
it is to be collected and from where; (2) triggering policy that determines the appropriate period to start a load
balancing operation; (3) resource type policy that classifies a resource as server or receiver of tasks according
to its availability status; (4) location policy that uses the results of the resource type policy to find a suitable

Heuristic Load Balancing For CFD Codes 17

Fig. 3.1. Crystal growth: (a) device; (b) control volumes; (c) blocks of control volumes; (d) code outputs—isoterms and
animation frames

partner for a server or receiver; (5) selection policy that defines tasks that should be migrated from overloaded
resources to least utilized resources.

In what follows we refer only to the information and selection policies of the proposed load balancing
algorithm, the other policies being subject of future work. In our work we utilize results presented in a useful
study on information policy recently reported in [1].

3. Crystal growth simulation. Modeling materials processing systems often involves situations where
a number of distinct materials and phases with significantly different thermo-physical and transport properties
have to be taken into account. Understanding of complex transport phenomena in these systems is of vital
importance for the design and fabrication of various desired products as well as optimization and control of
the manufacturing process. Numerical simulations prove to be an effective tool for understanding of transport
mechanisms. Three-dimensional simulations are necessary to yield a reliable description of the flow behavior.
Typical computational methods applied to these problems include finite difference, finite volume, finite element,
and spectral methods.

In particular, let us consider the Czochralski process [17] of bulk crystal growth that features a rod holding
an oriented crystal seed which is lowered through the top surface of the molten liquid contained in a crucible.
With thermal control to maintain the upper surface of the fluid at the melt temperature, growth begins on
the seed and when the crystal reaches a specified diameter, the rod is slowly withdrawn to continue growth
(Figure 3.1.a). The flow in the melt, from which the crystal is pulled, is transient and, depending on the size of
the crucible, mostly turbulent.

The silicon melt flow into a rotating crucible is governed by three-dimensional partial differential equations
describing mass, momentum, and heat transport. Solution methods that employ finite volume (see e.g. [7])
require generation of the solution grid that conforms to the geometry of the flow region (a grid of small volume
elements for which the average values of flow quantities are stored). An important issue for the quality of the
numerical simulations is the choice of the grid. Here, both the numerical resolution and the internal structure
of the grid are very important. The second item that has to be considered, is the refining of the grid in the
proximity of walls of the melt container, which is necessary to properly resolve boundary layers of the flow.

The finite volume code STHAMAS 3D (developed partially by the second author at the Institute of Mate-
rials Science in Erlangen) allows three-dimensional time-dependent simulations on a block-structured numerical
grid. A matched multiblock method is used in simulations; the grid lines match each other at the block con-
junction. A multiblock structured grid system [19] uses advanced linear solvers, for the inner iteration, and

18 D. Petcu, D. Vizman and M. Paprzycki

a multigrid technique for the outer iterations. Furthermore, the computational domain is divided into blocks
consisting of control volumes (from hundreds to millions; see Figure 3.1.b), while the SIP (Stone’s strongly
implicit procedure [18]) is used to solve the system of linear equation resulting from the discretization of PDEs
for three-dimensional problems (it is applicable to seven-diagonal coefficient matrices that are obtained when
central-difference approximation is used to discretize the problem). SIMPLE algorithm (Semi-Implicit Method
for Pressure-Linked Equations, [13]) is used for the pressure correction and the implicit Euler method is ap-
plied for time integration. Note that the SIP and the SIMPLE were studied and compared with other solvers
and shown to be very robust (in [9] the efficiency of multigrid SIMPLE based algorithms was examined when
computing incompressible flows).

A simple example of the graphical output of the code is presented in Figure 3.1.d.

Time-dependence and three-dimensionality coupled with extensive parameter variations require a very large
amount of computational resources and result in very long solution times. The most time-consuming part of
the sequential code STHAMAS 3D is the numerical solution obtained, using the SIP applied to different blocks.
In order to decrease the response time of STHAMAS 3D, a parallel version was recently developed by the
first two authors and presented in [14]. It is based on a parallel version of the SIP solver, where simultaneous
computations are performed on different blocks mapped to different processors (different colors in Figure 3.1.c).
After each inner iteration, information exchanges are performed at the level of block surfaces (using calls to
the MPI library). Thus far, the new parallel STHAMAS 3D was tested only utilizing homogeneous computing
environments, in particular, on a cluster of workstations and a parallel computer.

For completeness it should be noted that a different parallel version of a crystal growth simulation has been
reported in [11]. It utilizes a parallel version of the SSOR preconditioner and the BiCGSTAB iterative solver.

4. The modified algorithm for load balancing. The STHAMAS 3D code can be effectively utilized
on a parallel computer. However, it has to adapted to be equally robust in a distributed and non-homogeneous
computing environment. To achieve this goal we have decided to look into dynamic load balancing procedures
offered with the, above described, EVAH package [6].

In the Largest Task First with Minimum Finish Time and Available Communication Costs algorithm
(LTF MFT ACC, Figure 4.1) the size of a task is defined as the computation time required to perform that
task (ti in Figure 4.1). According to the Largest Task First (LTF) policy, to achieve load balancing the algorithm
first sorts tasks in descending order by size (execution time). Then it systematically allocates tasks to processors
respecting the rule of Minimum Finish Time (LTF MFT). Note that the overhead involved in task distribution,
caused by data exchanges between tasks, is also taken into account (in Figure 4.1 the communication cost
between the sender processor o and the receiver processor q is denoted by coq). The LTF MFT ACC utilizes
communication costs which are estimated from the inter-task data volume exchange and the inter-processor
communication rate.

Inputs:
Task times: ti, i = 1, . . . , N,
Communication time between tasks: coq, o 6= q, o, q = 1, . . . , P

Output:
Distribution of the N blocks on P processors: p(i) ∈ {1, . . . , P}, i = 1, . . . , N

To do:
Sort ti, i = 1, N in descending order
Set costs: Cp = 0, p = 1, . . . , P
For each ti, i = 1, . . . , N do

Find the processor q with minimum load: ?q, Cq = minp=1,...,P Cp

Associate block i with processor q: p(i)← q
Modify the costs: Cq ← Cq + ti
For each processor o 6= q having assigned a task j communicating with task i:

Co ← Co + coq

Cq ← Cq + cqo

Fig. 4.1. Initial LTF MFT ACC algorithm

Heuristic Load Balancing For CFD Codes 19

Input:
Old distribution of the N tasks on P processors: p(i) ∈ {1, . . . , P}, i = 1, . . . , N

Output:
New distribution of the N tasks on P processors: p′(i) ∈ {1, . . . , P}, i = 1, . . . , N

Preparation phase:
Record the task times: Ti, i = 1, . . . , N
Record the quantity of data to be send/receive between tasks: Vj,k, j, k = 1, . . . , N
Estimate communication time between each pair of processors depending on the quantity of transmitted

data: Send(p, q, dim), Recv(p, q, dim), p, q = 1, . . . , P, p 6= q
Record the time spent to perform a standard test: cp, p = 1, . . . , P
Compute the relative speeds of computers: wp ← cp/ minp=1,...,P cp, p = 1, . . . , P
Normalize computation time for each task: ti ← Ti/wp(i), i = 1, . . . , N

To do:
Sort ti, i = 1, N in descending order
Set costs: Cp = 0, p = 1, . . . , P
For each ti, i = 1, . . . , N :
Find the processor q with minimum load: ?q, Cq = minp=1,...,P Cp

Associate task i with processor q: p′(i)← q
Modify the costs: Cq ← Cq + wqti
For each processor o 6= q having assigned a task j sending a message to task i:

Co ← Co + Send(o, q, V (j, i))
Cq ← Cq + Recv(q, o, V (j, i))

For each processor o 6= q having assigned a task j receiving a message from task i:
Co ← Co + Recv(o, q, V (i, j))
Cq ← Cq + Send(q, o, V (i, j))

Fig. 4.2. Modified LTF MFT ACC algorithm

Note that the original LTF MFT ACC algorithm, described in [6], was proposed for a computational en-
vironment with homogeneous resources. Therefore, the computational time ti, for the task i, is “independent”
from the processor where the task i is being executed. To take into account the variation of the computational
power of grid resources, we have modified the LTF MFT ACC as depicted in Figure 4.2 (an extended discussion
of the algorithm can be found in [16]).

For the dynamic load balancing to be effective, performance data concerning environment within which the
algorithm is executed has to be collected. Therefore, when the load balancing procedure is activated, several
counters are started to measure:

— the computer power, represented as the time of performing a cycle involving floating point operations; this
information is further used to rank the resources;

— the computation time spent working on each task; this information and the relative computer power are
used to assess the time that is going to be spent working on that task by other processors;

— the required volume of data to be exchanged between communicating tasks represented as the number of
elementary data elements;

— samples of communication times between each pair of processors collected for several volumes data—
additional required communication times are estimated by linear interpolation.

Note that the modified algorithm must work as well as the initial one in the case of the homogeneous
environment (when wp = 1, p = 1, . . . , P).

The first main difference between the original and the modified algorithm can be seen in the input values:
while the initial algorithm supposes the knowledge of the computation and communication times (can be pro-
vided as an input or theoretically estimated), the modified algorithm utilizes the original iterative process until
a certain moment, when the load balancing procedure is called, so that a task distribution is already available
and the computation and communication times are have been estimated utilizing this distribution. Registration
of those times is similar to the one found in the DLB [12] that uses as inputs for its load balancing strategy

20 D. Petcu, D. Vizman and M. Paprzycki

the timing of computation for parallel tasks and the dimension of data to be communicated—those times are
referring to an average load history provided by computing systems that are parts of the grid environment that
is used to solve the problem.

The second main difference is concerns the splitting of the communication time into two different compo-
nents: the message sending time is registered as the cost at the message source and the message receiving time
is registered as the cost at the message destination. This splitting is motivated by the fact that the message
exchange is asynchronous and there is a possible time overlap between computations and communications, so
the non-blocking sending event can take place some time before the receiving event.

5. Influence of processor heterogeneity—case study. In what follows we want to show that the first
difference results in a better load balancing solution than the one provided by the initial algorithm. Let us
start from a simple “theoretical” illustration and assume that (as in the above described case of crystal growth
modeling) a grid of small volume elements (for which the approximated values of flow are stored) that conforms
to the geometry of the flow region is generated. More precisely, a multiblock structured grid of volume elements
with 6 blocks with different number of volumes is used (see the example from Figure 3.1.c). Here, inner iterations
in each block are associated with a task. Figure 5.1 shows a graph representation of the relationships between
those tasks.

Fig. 5.1. Relationships between tasks

The smallest time registered in the system is represented by a time unit in the graph (respectively the
communication time between blocks 5 and 6). Computation times registered for the inner iterations performed
within each block before an outer iteration (not including any message exchanges) are shown inside graph
vertices. The communication overhead generated by sending messages from one block to another is shown along
the graph edges. In order to simplify the example we consider that in the solution process there are no delays
in message exchanges (the receiver does not wait for incoming messages). To further simplify the example, we
consider that the exchange values represent the total combined value of the send and the receive times that
take place before an outer iteration.

Let us now consider the case of using P = 3 processors. When the computing environment is homogeneous,
the LTF MFT ACC algorithm distributes tasks as follows:

processor 1: tasks 1, 4
processor 2: tasks 2, 5
processor 3: tasks 3, 6

the longest execution time being the one of processor 1. This time is dominated by the task times: over 200
time units.

When the computing environment is heterogeneous, the first four tasks will be performed resulting in
different computing times. We consider the case of w1 = 1.5, w2 = 1.8, w3 = 1. Thus, processor 3 is the fastest
one and processor 2 is the slowest one. The LTF MFT ACC algorithm can provide an initial distribution of
the tasks according to a theoretical estimation of the computation time (proportional to the number of volumes
inside each block) and the communication time (proportional to the volume of data to be exchanged at block
interfaces). In the considered case task distribution suggested by the LTF MFT ACC algorithm will be the
same as the above described one, the longest time being still the one of the processor 1: over 300 time units
(150 time units for each task).

The modified LTF MFT ACC algorithm can be applied only when an initial distribution is available and
the computation and communication times are registered for this distribution. We can consider that the initial

Heuristic Load Balancing For CFD Codes 21

distribution is the one provided by the initial algorithm. Dividing the registered computation times to calculate
relative speedups we will obtain approximately the same values as these registered in the graph described in
Figure 5.1. Then the new distribution suggested by the modified algorithm will be:

processor 1: tasks 1, 5
processor 2: tasks 2, 6
processor 3: tasks 3, 4

the longest time being the one of processor 2: over 270 time units (180 time units for the task 2 and 90 time
units for task 6), which is an improvement compared to what the initial algorithm resulted in.

In the described case the communication time is not influencing the decision how to distribute tasks. If the
ratio of computation time to communication time will be smaller than the above considered one it is possible
to have another task distribution. In such a case it is important to also take into account the different speeds
of the message exchanges between processors that can be captured by the second proposed modification of the
initial algorithm. This case will not be discussed further.

6. Experiment. The proposed modified algorithm was applied to dynamically balance load of the compu-
tational effort of the parallel version of the STHAMAS 3D in a heterogeneous computing environment. Detailed
test results have been presented in [15]; we mention here the most significant of them.

First, let us provide some background information related to other algorithms mentioned in our paper. The
initial LTF MFT ACC algorithm was applied in [6] to a selected CFD problem—a Navier-Stokes simulation of
vortex dynamics in the complex wake of a region around hovering rotors. The overset grid system consisted
of 857 blocks and approximately 69 million grid points. The experiments running on the 512-processor SGI
Origin2000 distributed-shared-memory system showed that the EVAH algorithm performs better than other
heuristic algorithms.

Similarly, the CFD test case from the [12] was a solution of a heat transfer problem in a three-dimensional
grid consisting of 27-block partitions with 40x40x40 grid points in each block (1.7 millions of grid points). For
a range of relative speeds of computers from 1÷ 1.55 a 21% improvement in the elapsed time was registered.

In our work we have considered a three-dimensional grid applied to the crystal growth simulation escribed
above. We used 38-block-partitions with a variable number of grid points: the largest one had 25x25x40 points,
while the smallest one had 6x25x13 points (total of 0.3 millions of grid points in the simulation).

We have utilized two computing environments: a homogeneous and a heterogeneous one. The homogeneous
computing environment was a Linux cluster of 8 dual PIV Xeon 2GHz Processors with 2Gb RAM and a
Myrinet2000 interconnection (http://www.oscer.edu). The heterogeneous computing environment was a Linux
network of 17 PCs with variable computational power, from Intel Celeron running at 0.6GHz, with 128Mb RAM
to Intel PIV running at 3GHz and with 1Gb RAM (the interval of the relative speeds of computers is 1÷ 2.9);
these machines were connected through an Ethernet 10 Mbs interconnection (http://www.risc.uni-linz.ac.at).

Initially block-partitions were distributed uniformly between the processors (e.g. in the case of two pro-
cessors, first 19 blocks were send to the first processor, and the remaining 19 blocks were send to the second
processor).

Due to the different number of grid points in individual blocks, the initial algorithm running in the homo-
geneous environment recommended a new distribution of nodes. The proposed re-distribution of nodes resulted
in a reduction of 17% of the time spent by the code in the inner iteration (Figure 6.1.a).

In the case of the heterogeneous environment, the LTF MFT ACC algorithm performed better: we observed
a time reduction ranging from 14% to 20% of the time spent by the CFD code in the inner iteration. A further
reduction of the time was obtained when applying the modified LTF MFT ACC algorithm—varying from 20%
to 31% (Figure 6.1.b). Comparing time results with these obtained for the initial distribution, a total time
reduction attained in our experiments varied from 33% to 45%. We have also found out that the total overhead
introduced by the proposed load balancing algorithm was about 6% of the running time.

7. Concluding remarks. The proposed load balancing technique shows to be useful in the considered
case, a version of a CFD code running within heterogeneous computing environment. Tests must be further
performed to compare several dynamic load balancing techniques with the proposed one, not only in what
concerns the influence of the computer power variations as considered in this paper, but also of the network
speed variation and memory availability. A larger testbed will be used in the near future to perform such tests.

22 D. Petcu, D. Vizman and M. Paprzycki

Fig. 6.1. Load balancing results : (a) in the case of 4 processors of the homogeneous environment, the LTF MFT ACC
algorithm reduces the differences between the computation time spent by each processor in the inner iteration; (b) in the case of 2,
4, 8 and 16 processors of the heterogeneous environment, the LTF MFT ACC reduces the time per inner iteration, but a further
significant reduction is possible using the modified LTF MFT ACC algorithm

Acknowledgments. This work was partially supported by the NanoSim project in the frame of Romanian
CEEX Programme.

We would like to thank the Oklahoma University Supercomputing Center and the Research Institute for
Symbolic Computing for providing us with access to their computing resources during this study.

REFERENCES

[1] M. Beltran, J.L. Bosque, and A. Guzman, Information policies for load balancing on heterogeneous systems, in Procs.
IEEE/ACM Internat. Symp. Cluster Computing and the Grid (2005) pp. 970-976.

[2] J. Cao, D. P. Spooner, S. A. Jarvis, S. Saini, and G. R. Nudd, Agent-based grid load balancing using performance-driven
task scheduling, in Procs.IPDPS03, IEEE Computer Press (2003).

[3] S. Chen1, W. Zhang, F. Ma, J. Shen, and M. Li, A novel agent-based load balancing algorithm for Grid computing, in
Procs. GCC 2004, H. Jin, Y. Pan, N. Xiao, and J. Sun (Eds.), LNCS 3252 (2004), pp. 156-163.

[4] R.L. Carino and I. Banicescu, A load balancing tool for distributed parallel loops, Cluster Computing, 8 (2005), pp. 313-321.
[5] R. David, S. Genaud, A. Giersch, B. Schwarz, and E. Violard, Source code transformations strategies to load-balance

grid applications, in Procs. GRID 2002, M. Parashar (ed.), LNCS 2536, Springer (2002), pp. 82–87.
[6] M. J. Djomehri, R. Biswas, N. Lopez-Benitez, Load balancing strategies for multi-block overset grid applications, NAS-03-

007, available at http://www.nas.nasa.gov/News/Techreports/2003/PDF/nas-03-007.pdf

[7] J. H. Ferziger, M. Perić, Computational Methods for Fluid Dynamics, Springer Verlag, Berlin (1996).
[8] H. Gao, A. Schmidt, A. Gupta, P. Luksch, Load balancing for spatial-grid based parallel numerical simulations on clusters

of SMPs, in Procs. Euro PDP03, IEEE Computer Press (2003), pp. 75–82.
[9] O. Iliev, M. Scäfer, A numerical study of the efficiency of SIMPLE-type algorithms in computing incompressible flows on

streched grids, in Procs. LSSC99, M. Griebel, S. Margenov, P. Yalamov (eds.), Notes on Numerical Fluid Mechanics 73,
Vieweg (2000), pp. 207–214.

[10] H.D. Karatza, Job scheduling in heterogeneous distributed systems, Journal of Systems and Software, 56 (2001), pp. 203-212.
[11] D. Lukanin, V. Kalaev, A. Zhmakin, Parallel simulation of Czochralski crystal growth, in Procs. PPAM 2003,

R. Wyrzykowski et al, LNCS 3019 (2004), pp. 469–474.
[12] R. U. Payli, E. Yilmaz, A. Ecer, H.U. Akay, and S. Chien, DLB A dynamic load balancing tool for grid computing, in

Procs. Parallel CFD04, G. Winter, A. Ecer, F. N. Satofuka, P. Fox (eds.), Elsevier (2005), pp. 391–399
[13] M. Perić, A finite volume method for the prediction of three-dimensional fluid flow in complex ducts, Ph.D. Thesis, University

of London (1985).
[14] D. Petcu, D. Vizman, J. Friedrich, and M. Popescu, Crystal growth simulation on clusters, in Procs. of HPC2003,

I. Banicescu (ed.), Simulation Councils Inc. San Diego (2003), pp. 41–46
[15] D. Petcu, D. Vizman, and M. Paprzycki, Porting CFD codes towards grids—a case study, in Procs. of PPAM 2005,

R. Wyrzykowski et al (eds.), LNCS 3911 (2006), in print.
[16] D. Petcu, Adapting a partitioning-based heuristic load-balancing algorithm to heterogeneous computing environments, in

Procs. SYNASC 2005, IEEE Computer Society Press, Los Alamitos, pp. 170–173.
[17] P. A. Sackinger, R. A. Brown, J. J. Brown, A finite element method for analysis of fluid flow, heat transfer and free

interfaces in Czochralski crystal growth, Internat. J. Numer. Methods in Fluids 9 (1989), pp. 453–492.
[18] H. L. Stone, Iterative solution of implicit approximations of multidimensional partial differential equations, SIAM J. Num.

Anal. 5 (1968), pp. 530–558.

Heuristic Load Balancing For CFD Codes 23

[19] D. Sun, A multiblock and multigrid technique for simulations of material processing, Ph.D. Thesis, State University of New
York (2001).

[20] C. Z. Xu, F. C. M. Lau, Load Balancing in Parallel Computers: Theory and Practice, Kluwer Academic Publishers, Boston
(1996).

[21] S. Yu, J. Casey, and W. Zhou, A load balancing algorithm for Web based server Grids, in Procs. GCC 2003, M. Li et al.
(Eds.), LNCS 3033 (2004), pp. 121-128.

Edited by: Przemys law Stipiczyński.
Received: May 5, 2006.
Accepted: May 28, 2006.

Scalable Computing: Practice and Experience

Volume 7, Number 2, pp. 25–32. http://www.scpe.org
ISSN 1895-1767

c© 2006 SWPS

BENCHMARKING OF A JOINT IRISGRID/EGEE TESTBED WITH A
BIOINFORMATICS APPLICATION

J. HERRERA∗ , E. HUEDO∗ , R. S. MONTERO∗ , AND I. M. LLORENTE∗

Abstract. Loosely-coupled Grid environments, based only on Globus services, allow a straightforward resource sharing, as
the resources are accessed by using de facto standard protocols and interfaces, while providing non trivial levels of quality of
service. This paper describes the execution of a Bioinformatics application over a highly distributed and heterogeneous testbed.
This testbed is composed of resources devoted to EGEE and IRISGrid projects and has been integrated by taking advantage of
the modular, decentralized and “end-to-end” architecture of the GridW ay framework. Results obtained from the experiments have
been analyzed using a performance model for high throughput computing applications.

1. Introduction. Different Grid infrastructures are being deployed within growing national and transna-
tional research projects. The final goal of these projects is to provide the end user with much higher performance
than that achievable on any single site. However, from our point of view, it is arguable that some of these projects
embrace the Grid philosophy, and to what extent. This philosophy, proposed by Foster [7], defines a grid as a
system (i) not subject to a centralized control and (ii) based on standard, open and general-purpose interfaces
and protocols, (iii) while providing some level of quality of service (QoS), in terms of security, throughput,
response time or the coordinated use of different resource types. In current projects, there is a tendency to
ignore the first two requirements in order to get higher levels of QoS. However, these requirements are even
more important because they are the key to the success of the Grid.

The Grid philosophy leads to computational environments, which we call loosely-coupled grids, mainly char-
acterized by [3]: autonomy (of the multiple administration domains), heterogeneity, scalability and dynamism.
In a loosely-coupled grid, the different layers of the infrastructure should be separated from each other, being
only communicated with a limited and well defined set of interfaces and protocols. This layers are [3]: Grid
fabric, core Grid middleware, user-level Grid middleware, and Grid applications.

The coexistence of several projects, each with its own middleware developments, adaptations or extensions,
arise the idea of using them simultaneously (from an user’s viewpoint) or contribute the same resources to more
than one project (from an administrator’s viewpoint). One approach could be the development of gateways
between different middleware implementations [1]. Other approach, more in line with the Grid philosophy, is the
development of client tools that can adapt to different middleware implementations. We hope this could lead to a
shift of functionality from resources to brokers or clients, allowing the resources to be accessed in a standard way
and easing the task of sharing resources between organizations and projects. We should consider that the Grid
not only involves the technical challenge of constructing and deploying this vast infrastructure, it also brings up
other issues related to security and resource sharing policies [13] as well as other socio-political difficulties [15].

Practically, the majority of the Grid infrastructures are being built on protocols and services provided by
the Globus Toolkit1, becoming a de facto standard in Grid computing. Globus architecture follows an hourglass
approach, which is indeed an “end-to-end” principle [2]. Therefore, instead of succumbing to the temptation
of tailoring the core Grid middleware to our needs (since in such case the resulting infrastructure would be
application specific), or homogenizing the underlying resources (since in such case the resulting infrastructure
would be a highly distributed cluster), we propose to strictly follow the “end-to-end” principle. Clients should
have access to a wide range of resources provided through a limited and standardized set of protocols and
interfaces. In the Grid, these are provided by the core Grid middleware, Globus, just as, in the Internet,
they are provided through the TCP/IP protocols. Moreover, the “end-to-end” principle reduces the firewall
configuration to a minimum, which is also welcome by the security administrators.

One of the most ambitious projects to date is EGEE2 (Enabling Grids for E-sciencE), which is creating
a production-level Grid infrastructure providing a level of performance and reliability never achieved before.
EGEE currently uses the LCG3 (LHC Computing Grid) middleware, which is based on Globus. Other much

∗Departamento de Arquitectura de Computadores y Automática. Facultad de Informática, Universidad Complutense de Madrid.
28040 Madrid, Spain. {jherrera, ehuedo}@fdi.ucm.es, {rubensm, llorente}@dacya.ucm.es

1http://www.globus.org
2http://www.eu-egee.org
3http://lcg.web.cern.ch

25

26 J. Herrera, E. Huedo, R. S. Montero and I. M. Llorente

Table 2.1

IRISGrid and EGEE resources contributed to the experiment.

Testbed Site Resource Processor Speed Nodes RM

IRISGrid RedIRIS heraclito Intel Celeron 700MHz 1 Fork
platon 2×Intel PIII 1.4GHz 1 Fork
descartes Intel P4 2.6GHz 1 Fork
socrates Intel P4 2.6GHz 1 Fork

DACYA-UCM aquila Intel PIII 700MHz 1 Fork
cepheus Intel PIII 600MHz 1 Fork
cygnus Intel P4 2.5GHz 1 Fork
hydrus Intel P4 2.5GHz 1 Fork

LCASAT-CAB babieca Alpha EV67 450MHz 30 PBS
CESGA bw Intel P4 3.2GHz 80 PBS
IMEDEA llucalcari AMD Athlon 800MHz 4 PBS
DIF-UM augusto 4×Intel Xeon† 2.4GHz 1 Fork

caligula 4×Intel Xeon† 2.4GHz 1 Fork
claudio 4×Intel Xeon† 2.4GHz 1 Fork

BIFI-UNIZAR lxsrv1 Intel P4 3.2GHz 50 SGE

EGEE LCASAT-CAB ce00 Intel P4 2.8GHz 8 PBS
CNB mallarme 2×Intel Xeon 2.0GHz 8 PBS
CIEMAT lcg02 Intel P4 2.8GHz 6 PBS
FT-UAM grid003 Intel P4 2.6GHz 49 PBS
IFCA gtbcg12 2×Intel PIII 1.3GHz 34 PBS
IFIC lcg2ce AMD Athlon 1.2GHz 117 PBS
PIC lcgce02 Intel P4 2.8GHz 69 PBS

†These resources actually present two physical CPUs but they appear as four logical CPUs due to hyper-threading

more modest project is IRISGrid4 (the Spanish Grid Initiative), whose main objective is the creation of a stable
national Grid infrastructure. The first version of the IRISGrid testbed is based only on Globus services, and it
has been widely used through the GridW ay framework5.

For the purposes of this paper we have used a Globus-based testbed to run a Bioinformatics application
through the GridW ay framework. This testbed was built up from resources inside IRISGrid and EGEE projects.
The aim of this paper is to demonstrate the application of an “end-to-end” principle in a Grid infrastructure,
and the feasibility of building loosely-coupled Grid environments based only on Globus services, while obtaining
non trivial levels of quality of service through an appropriate user-level Grid middleware.

The structure of the paper follows the layered structure of Grid systems, from bottom-up. The Grid fabric
is described Section 2. Section 3 describes the core Grid middleware. Section 4 introduces the functionality and
characteristics of the GridW ay framework, used as user-level Grid middleware. Section 5 describes the target
application. Section 6 presents the experimental results, which are analyzed through a benchmarking model in
Section 7. Finally, Section 8 ends up with some conclusions.

2. Grid Fabric: IRISGrid and EGEE resources. This work has been possible thanks to the collab-
oration of those research centers and universities that temporarily shared some of their resources in order to
set up a geographically distributed testbed. The testbed results in a very heterogeneous infrastructure, since it
presents several middlewares, architectures, processor speeds, resource managers (RM), network links, etc. A
brief description of the participating resources is shown in Table 2.1.

Some centers are inside IRISGrid, which is composed of around 40 research groups from different spanish
institutions. Seven sites participated in the experiment by donating a total number of 195 CPUs. Other centers

4http://www.irisgrid.es
5http://www.gridway.org

Benchmarking of a Joint IRISGrid/EGEE Testbed with a Bioinformatics Application 27

Fig. 2.1. Geographical distribution and interconnection network of sites.

participate in the EGEE project, which is composed of more than 100 contracting and non-contracting partners.
Seven spanish centers participated by donating a total number of 333 CPUs.

Together, the testbed is composed of 13 sites (note that LCASAT-CAB is both in IRISGrid and EGEE)
and 528 CPUs. In the experiments below, we limited to four the number of jobs simultaneously submitted to
the same resource, with the aim of not saturating the whole testbed, so only 64 CPUs were used at the same
time. All sites are connected by RedIRIS, the Spanish Research and Academic Network. The geographical
location and interconnection links of the different sites are shown in Figure 2.1.

3. Core Grid Middleware: Globus. Globus services allow secure and transparent access to resources
across multiple administrative domains, and serve as building blocks to implement the stages of Grid schedul-
ing [14]. Table 3.1 summarizes the core Grid middleware components existing in both IRISGrid and EGEE
resources used in the experiments. In the case of EGEE, we only used Globus basic services, ignoring any
higher-level services, like the resource broker or the replica location service.

Table 3.1

Core Grid middleware.

Component IRISGrid EGEE

Security
Infrastructure

IRISGrid CA and
manually generated
grid-mapfile

DATAGRID-ES CA and
automatically generated
grid-mapfile

Resource
Management

GRAM with shared home
directory in clusters

GRAM without shared
home directory in clusters

Information
Services

IRISGrid GIIS and local
GRIS, using the MDS
schema

CERN BDII and local
GRIS, using the GLUE
schema

Data
Management

GASS and GridFTP GASS and GridFTP

28 J. Herrera, E. Huedo, R. S. Montero and I. M. Llorente

We had to introduce some changes in the security infrastructure in order to perform the experiments. For
authentication, we used a user certificate issued by DATAGRID-ES CA, so we had to give trust to this CA on
IRISGrid resources. Regarding authorization, we had to add an entry for the user in the grid-mapfile in both
IRISGrid and EGEE resources.

4. User-Level Grid Middleware: GridW ay. User-level middleware is required in the client side to
make it easier and more efficient the execution of applications. Such client middleware should provide the end
user with portable programming paradigms and common interfaces.

In a Globus-based environment, the user is responsible for manually performing all the submission steps [14]
in order to achieve any functionality. To overcome this limitation, GridW ay [11] was designed with a submit &
forget philosophy in mind. The core of the GridW ay framework is a personal submission agent that performs
all scheduling stages and watches over the correct and efficient execution of jobs on Globus-based Grids. The
GridW ay framework provides adaptive scheduling and execution, as well as fault tolerance capabilities to handle
the dynamic Grid characteristics.

A key aspect in order to follow the “end-to-end” principle is how job execution is performed. In EGEE, file
transfers are initiated by a job wrapper running in the compute nodes, therefore they act as client machines,
so needing network connectivity and client tools to interact with the middleware. In GridW ay, however, job
execution is performed in three steps by the following modules:

1. prolog : It prepares the remote system by creating a experiment directory and transferring the input
files from the client.

2. wrapper: It executes the actual job and obtains its exit status code.
3. epilog : It finalizes the remote system by transferring the output files back to the client and cleaning up

the experiment directory.

This way, GridW ay doesn’t rely on the underlying middleware to perform preparation and finalization tasks.
Moreover, since both prolog and epilog are submitted to the front-end node of a cluster and wrapper is submitted
to a compute node, GridW ay doesn’t require any middleware installation nor network connectivity in the
compute nodes.

Other projects [5, 6, 8, 16] have also addressed resource selection, data management, and execution adap-
tation. We do not claim innovation in these areas, but remark the advantages of our modular, decentralized
and “end-to-end” architecture for job adaptation to a dynamic environment.

In this case, we have taken full advantage of the modular architecture of GridW ay, as we didn’t have
to directly modify the source code of the submission agent. We extended the resource selector in order to
understand the GLUE schema used in EGEE. The wrapper module also had to be modified in order to perform
an explicit file staging between the front-end and the compute nodes in EGEE clusters.

5. Grid Application: Computational Proteomics. One of the main challenges in Computational
Biology concerns the analysis of the huge amount of protein sequences provided by genomic projects at an ever
increasing pace. In the following experiments, we will consider a Bioinformatics application aimed at predicting
the structure and thermodynamic properties of a target protein from its amino acid sequence [10].

The algorithm, tested in the 5th round of Critical Assessment of techniques for protein Structure Prediction
(CASP5)6, aligns with gaps the target sequence with all the 6150 non-redundant structures in the Protein Data
Bank (PDB)7, and evaluates the match between sequence and structure based on a simplified free energy
function plus a gap penalty item. The lowest scoring alignment found is regarded as the prediction if it satisfies
some quality requirements. In such cases, the algorithm can be used to estimate thermodynamic parameters of
the target sequence, such as the folding free energy and the normalized energy gap.

To speed up the analysis and reduce the data needed, the PDB files are pre-processed to extract the contact
matrices, which provide a reduced representation of protein structures. The algorithm is then applied twice,
the first time as a fast search, in order to select the 200 best candidate structures, and the second time with
parameters allowing a more accurate search of the optimal alignment.

We have applied the algorithm to the prediction of thermodynamic properties of families of orthologous
proteins, i. e. proteins performing the same function in different organisms. The biological results of the
comparative study of several families of orthologous proteins are presented elsewhere [4].

6http://PredictionCenter.llnl.gov/casp5/
7http://www.pdb.org

Benchmarking of a Joint IRISGrid/EGEE Testbed with a Bioinformatics Application 29

Fig. 6.1. Testbed dynamic throughput during the five experiments and theoretical throughput of the most powerful site.

The experiment files consists of: the executable (0.5MB) provided for all the resource architectures in the
testbed, the PDB files shared and compressed (12.2MB) to reduce the transfer time, the parameter files (1KB),
and the file with the sequence to be analyzed (1KB). The final name of the executable and the file with the
sequence to be analyzed is obtained at runtime for each task and each host, respectively.

6. Experiences and Results. The experiments presented here consist in the analysis of a family of
80 orthologous proteins of the Triose Phosphate Isomerase enzyme (an enzyme is a special case of protein).
Five experiments were conducted in different days during a week. The average turnaround time for the five
experiments was 43.37 minutes.

Figure 6.1 shows the dynamic throughput achieved during the five experiments alongside the theoretical
throughput of the most powerful site, where the problem could be solved in the lowest time, in this case DIF-UM
(taking into account that the number of active jobs per resource was limited to four). The throughput achieved
on each experiment varies considerably, due to the dynamic availability and load of the testbed. For example,
resource ce00 at site LCASAT-CAB was not available during the execution of the first experiment. Moreover,
fluctuations in the load of network links and computational resources induced by non-Grid users affected to a
lesser extent in the second experiment, as it was performed at midnight.

7. Grid Benchmarking Model. In this section we apply a benchmarking methodology to analyze the
performance of computational Grid infrastructures in the execution of a High Throughput Computing (HTC)
applications [12]. In order to assess this model we will use the execution of the Bioinformatics application
explained in previous sections. The benchmarking process used here provides a way to investigate performance
properties of Grid environments, to predict the performance of this category of applications, and compare
different platforms by inserting performance models in the benchmarking process.

7.1. Workload Characterization. In order to obtain the workload characterization of a grid, we have
considered the formerly mentioned Bioinformatics application, that comprises the execution of a set of indepen-
dent tasks, each of which performs the same calculation over a subset of parameter values. In the execution of
this kind of applications, a grid can be considered, from the computational point of view, as an array of het-
erogeneous processors. Therefore, the number of tasks completed as function of time is given by the following
equation:

n(t) =
∑

i∈G

Ni

⌊

t

Ti

⌋

(7.1)

where Ni is the number of processors in the Grid (G) that can compute a task in Ti seconds.

30 J. Herrera, E. Huedo, R. S. Montero and I. M. Llorente

The best characterization of the Grid can be obtained if we take the line that represents the average behavior
of the system. The next formula represents this line using the r∞ and n1/2 parameters defined by Hockney and
Jesshope [9]:

n(t) = r∞t− n1/2 with m = r∞ and b = −n1/2 (7.2)

These parameters are called:
• Asymptotic performance (r∞): the maximum rate of performance in task executed per second. In the

case of an homogeneous array of N processors with an execution time per task T , we have r∞ = N/T .
• Half-performance length (n1/2): the number of task required to obtain the half of asymptotic per-

formance. This parameter is also a measure of the amount of parallelism in the system as seen by
the application. In the homogeneous case, for an embarrassingly distributed application we obtain
n1/2 = N/2.

The following equation defines the performance of the system (tasks completed per time) on actual appli-
cations with a finite number of tasks based on the linear relation of Eq. 7.2:

r(n) = n(t)/t =
r∞

1 + n1/2/n
(7.3)

The half-performance length (n1/2) provides a quantitative measure of the homogeneity in a grid. We can
define the degree of homogeneity (v) as

v =
2n1/2

N
. (7.4)

This parameter varies from v = 1 in the homogeneous case, to v ≈ 0 when the actual number of processors in
the Grid is much greater than the apparent number of processors (highly heterogeneous).

7.2. Benchmarking Methodologies. Previously, we have defined the r∞ and n1/2 parameters to obtain
a Grid model. These parameters can be determined in two ways:

• Intrusive benchmarking. The system parameters are calculated by linear fitting to the experimental
results obtained in the execution of large-scale HTC applications. In order to empirically determine
r∞ and n1/2 the benchmarking process should be intrusive to exercise all the resources in the testbed
(n >> N).
• Non-intrusive benchmarking. In general, it may not be feasible to run such an intrusive high throughput

benchmark for large Grid environments. In this situation, the r∞ and n1/2 parameters can be computed
using 7.3 and raw performance data (average wall time per task, Ti) of each resource. Let us consider

Ti = T xfr
i + T exe

i + T sch
i , where T xfr

i and T exe
i are the average file transfer and execution times in host

i; and T sch
i is the scheduling time which represents the resource selection overhead. We can rewrite

Eq. 7.1 as:

n(t) =
∑

i∈G

Ni

⌊

t

T xfr
i + T exe

i + T sch
i

⌋

. (7.5)

This equation can be used to obtain the non-intrusive r∞ and n1/2 parameters by fitting the best straight
line. We can also estimate the influence of the resource selection overhead by comparing the non-intrusive r∞
and n1/2, with those obtained by setting T sch to 0 in Eq. 7.5.

7.3. Experiments and Results. We begin the analysis presenting the intrusive and non-intrusive mea-
surement made on testbed of the parameters r∞ and n1/2. Figure 7.1 shows the experimental performance
obtained in the first two executions of the mentioned Bioinfomatics application, along with that predicted by
Eq. 7.3. The r∞ and n1/2 have been calculated by linear fitting to: (i) experimental results obtained in the
execution of the application; (ii) Eq. 7.5 using the average file transfer and execution times of each host and
T sch = 60s; and also (iii) Eq. 7.5 with T sch = 0s.

This figure shows the effects of the resource selection on the optimum performance. The resource selection
process reduces the asymptotic performance of the Grid, because of a delay between different tasks submitted

Benchmarking of a Joint IRISGrid/EGEE Testbed with a Bioinformatics Application 31

Fig. 7.1. Measurements of r∞ and n1/2 on the testbed based on experimental data, and raw resource performance (left-hand
charts). Experimental performance of the Bioinformatic application, along with that predicted by Eq. 7.3 (right-hand charts).

to the same host. This delay is mainly due to the Globus MDS update frequency and the GridW ay resource
broker. However, it does not affect to the n1/2 parameter, since the brokering overhead increases the execution
time (Ti) by the same amount in all the resources.

Table 7.1 shows the values of the r∞ and n1/2 coefficients for each execution of the experiments. For the
shake of the completeness, we also include the turnaround time (TGrid). Based on the intrusive results, the
testbed is characterized by an average asymptotic performance of 2.31 tasks per minute. Furthermore, in order
to achieve the half of this asymptotic performance it is necessary to execute, on average, 15.34 tasks. And so,
the apparent number of resources to the application is approximately 30.68, with an execution time of 13.26
minutes per task.

In Table 7.1, we can also see the degree of homogeneity (v) for the intrusive and non-intrusive case. Thus,
the average of the intrusive v is 0.61 (low homogeneity degree), and the average of non-intrusive v is 0.9, closer
to the homogeneous case (v = 1). This difference is mainly due to the experiments not saturating the testbed,
as can be seen in the right-hand charts of Figure 7.1. Moreover, this difference is also consequence of calculating
non-intrusive v by applying the model under ideal conditions, therefore yielding in an homogenization of the
results.

Table 7.1

Turnaround time TGrid, r∞(tasks/minute), n1/2 (tasks), and degree of heterogeneity coefficient v for each experiment.

Intrusive Non-Intrusive

Experiment r∞ n1/2 v r∞ n1/2 v TGrid

1 2.38 15.02 0.58 2.85 23.20 0.89 42.00
2 2.61 17.48 0.70 2.79 22.54 0.90 33.82
3 2.04 17.04 0.71 2.74 21.52 0.90 46.05
4 2.14 13.88 0.51 2.67 23.64 0.88 50.37
5 2.40 13.27 0.53 2.95 22.73 0.91 44.87

8. Conclusions. Loosely-coupled grids allow a straightforward resource sharing since resources are ac-
cessed and exploited through de facto standard protocols and interfaces, similar to the early stages of the
Internet. This way, the loosely-coupled model allows an easier, scalable and compatible deployment.

32 J. Herrera, E. Huedo, R. S. Montero and I. M. Llorente

We have shown that the “end-to-end” principle works at the client side (i. e. the user-level Grid middleware)
of a Grid infrastructure. Our proposed user-level Grid middleware, GridW ay, can work with Globus, as a
standard core Grid middleware, over any Grid fabric in a loosely-coupled way. The smooth process of integration
of two so different testbeds, although both are based on Globus, demonstrates that the GridW ay approach (i. e.
the Grid way), based on a modular, decentralized and “end-to-end” architecture, is appropriate for the Grid.
Moreover, the Grid performance model for High Throughput Computing Applications validates the experimental
results obtained.

Acknowledgments. This research was supported by Consejeŕıa de Educación of Comunidad de Madrid,
Fondo Europeo de Desarrollo Regional (FEDER) and Fondo Social Europeo (FSE) through BIOGRIDNET
Research Program S-0505/TIC/000101, by BSCH/UCM through research grant PR27/05-14035-BSCH and by
Ministerio de Ciencia y Tecnoloǵıa, through the research grant TIC 2003-01321. The authors participate in the
EGEE project.

We would like to thank all the institutions involved in the IRISGrid initiative and the EGEE project, in
particular those who collaborated in the experiments. They are Red Académica y de Investigación Nacional
(RedIRIS), Departamento de Arquitectura de Computadores y Automática (DACyA) at Universidad Com-
plutense de Madrid (UCM), Laboratorio de Computación Avanzada, Simulación y Aplicaciones Telemáticas
(LCASAT) at Centro de Astrobioloǵıa (CAB), Centro de Supercomputación de Galicia (CESGA), Instituto
Mediterráneo de Estudios Avanzados (IMEDEA), Facultad de Informática (DIF) at Universidad de Mur-
cia (UM), Instituto de Biocomputación y F́ısica de Sistemas Complejos (BIFI) at Universidad de Zaragoza
(UNIZAR), Instituto de F́ısica de Cantabria (IFCA), Instituto de F́ısica Corpuscular (IFIC), Centro Nacional
de Biotecnoloǵıa (CNB), Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT),
Departamento de F́ısica Teórica (FT) at Universidad Autónoma de Madrid (UAM) and Port d’Informació
Cient́ıfica (PIC).

We would like to also thank Ugo Bastolla, staff scientist in the Bioinformatics Unit at Centro de Astrobi-
oloǵıa (CAB) and developer of the Bioinformatics application used in the experiments.

REFERENCES

[1] R. J. Allan, J. Gordon, A. McNab, S. Newhouse, and M. Parker, Building Overlapping Grids, tech. rep., University of
Cambridge, Oct. 2003.

[2] E. B. Carpenter, RFC 1958: Architectural Principles of the Internet, June 1996.
[3] M. Baker, R. Buyya, and D. Laforenza, Grids and Grid Technologies for Wide-Area Distributed Computing, Software –

Practice and Experience, 32 (2002), pp. 1437–1466.
[4] U. Bastolla, A. Moya, E. Viguera, and R. van Ham, Genomic Determinants of Protein Folding Thermodynamics in

Prokaryotic Organisms, Journal of Molecular Biology, 343 (2004), pp. 1451–1466.
[5] F. Berman, R. Wolski, H. Casanova, et al., Adaptive Computing on the Grid Using AppLeS, IEEE Trans. Parallel and

Distributed Systems, 14 (2003), pp. 369–382.
[6] R. Buyya, D.Abramson, and J. Giddy, A Computational Economy for Grid Computing and Its Implementation in the

Nimrod-G Resource Broker, Future Generation Computer Systems, 18 (2002), pp. 1061–1074.
[7] I. Foster, What Is the Grid? A Three Point Checklist, GRIDtoday, 1 (2002).

http://www.gridtoday.com/02/0722/100136.html

[8] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, Condor/G: A Computation Management Agent for
Multi-Institutional Grids, Cluster Computing, 5 (2002), pp. 237–246.

[9] R. Hockney and C. Jesshope, Parallel Computers 2:Architecture Programming and Algorithms, Adam Hilgee Ltd., 1998.
[10] E. Huedo, U. Bastolla, R. S. Montero, and I. M. Llorente, A Framework for Protein Structure Prediction on the

Grid, New Generation Computing, 23 (2005), pp. 277–290.
[11] E. Huedo, R. S. Montero, and I. M. Llorente, A Framework for Adaptive Execution on Grids, Intl. J. Software—Practice

and Experience (SPE), 34 (2004), pp. 631–651.
[12] R. S. Montero, E. Huedo, and I. M. Llorente, Benchmarking of High Ttroughput Computing Applications on Grids,

Parallel Computing, (2006). in press.
[13] O. San José, L. M. Suárez, E. Huedo, R. S. Montero, and I. M. Llorente, Resource Performance Management on

Computational Grids, in Proc. 2nd Intl. Symp. Parallel and Distributed Computing (ISPDC 2003), IEEE CS, 2003,
pp. 215–221.

[14] J. M. Schopf, Ten Actions when Superscheduling, Tech. Rep. GFD-I.4, Scheduling Working Group—The Global Grid
Forum, 2001.

[15] J. M. Schopf and B. Nitzberg, Grids: The Top Ten Questions, Scientific Programming, special issue on Grid Computing,
10 (2002), pp. 103–111.

[16] S. Vadhiyar and J. Dongarra, A Performance Oriented Migration Framework for the Grid, in Proc. 3rd Intl. Symp.
Cluster Computing and the Grid (CCGrid 2003), IEEE CS, 2003, pp. 130–137.

Benchmarking of a Joint IRISGrid/EGEE Testbed with a Bioinformatics Application 33

Edited by: Przemys law Stpiczyński.
Received: April 3, 2006.
Accepted: May 28, 2006.

Scalable Computing: Practice and Experience

Volume 7, Number 2, pp. 35–51. http://www.scpe.org
ISSN 1895-1767

c© 2006 SWPS

MATHEMATICAL SERVICE DISCOVERY: ARCHITECTURE, IMPLEMENTATION AND
PERFORMANCE

SIMONE A. LUDWIG∗, OMER F. RANA† , WILLIAM NAYLOR‡ , AND JULIAN PADGET§

Abstract. Service discovery and matchmaking in a distributed environment has been an active research issue since at least
the mid 1990s. Previous work on matchmaking has typically presented the problem and service descriptions as free or structured
(marked-up) text, so that keyword searches, tree-matching or simple constraint solving are sufficient to identify matches. In this
paper, we discuss the problem of matchmaking for mathematical services, where the semantics play a critical role in determining
the applicability or otherwise of a service. A matchmaking architecture supporting the use of match plug-ins is first described,
followed by the types of plug-ins that can be supported. The matched services are ranked based on the score obtained from each
plug-in, with the user being able to decide which plug-in is most significant in the context of their particular application. We
consider the effect of pre- and post-conditions of mathematical service descriptions on matching, and how and why to reduce
queries into DNF and CNF before matching. Application examples demonstrate in detail how the matching process works for
all four algorithms. Additionally, an evaluation of the ontological mode is provided, regarding performance of loading ontologies,
query response time and the overall scalability is conducted. The performance results are used to demonstrate scalability issues in
supporting ontology-based discovery within a Web Services environment.

Key words. mathematical Web Services, matchmaking, match score, performance, scalability.

1. Introduction. The amount of machine-oriented data on the Web is increasing rapidly as semantic Web
technologies achieve greater up-take. Humans typically use Google to search for suitable services, but they can
filter out the irrelevant and spot the useful. Therefore, while UDDI (the Web Services registry) with keyword
searching essentially offers something similar, it is a long way from being very helpful. Often, it is difficult to
formulate a query in a precise way, therefore resulting in the results of search engines not being suitable for
automated services—as many of the matches returned by the search may not be directly relevant to the query.
A human user is therefore necessary to evaluate the outcome of a search, and make manual selection between
the set of results that have been returned. Conversely, when using automated registry services, the options for
specifying a query are limited, therefore resulting in a service that has limited usability.

To address this concern, much research has taken place on intelligent brokerage, such as Infosleuth [2],
LARKS [3], and IBROW [4]. It is perhaps telling that much of the literature appears to focus on architectures
for brokerage, which are as such domain-independent, rather than concrete or domain-specific techniques for
identifying matches between a task or problem description and a capability or service description. Approaches
to matching in the literature fall into two broad categories:

• syntactic matching, such as textual comparison or the presence of keywords in free text. In these
approaches, the terms used in the query are matched with those in the service description. Either
the existence (or not) of terms is used to undertake a comparison, or any attributes or data values
associated with these terms are also compared.
• semantic matching, which typically seems to mean finding elements in structured (marked-up) data and

perhaps additionally the satisfaction of constraints specifying ranges of values or relationships between
one element and another.

For many problems this is both appropriate and adequate, indeed it is not clear what more one could do, but in
the particular domain of mathematical services the actual mathematical semantics are critical to determining
the suitability (or otherwise) of the capability for the task. The requirements are neatly captured in [5] by the
following condition:

Tin ≥ Cin ∧ Tout ≤ Cout ∧ Tpre ⇒ Cpre ∧ Cpost ⇒ Tpost (1.1)

where T refers to the task, C to the capability, in are inputs, out are outputs, pre are pre-conditions and post
are post-conditions. What the condition expresses is that the signature constrains the task inputs to be at
least as great as the capability inputs (i. e. enough information), that the inverse relationship holds for the

∗School of Computer Science, Cardiff University, UK (Simone.Ludwig@cs.cardiff.ac.uk)
†School of Computer Science, Cardiff University, UK (O.F.Rana@cs.cardiff.ac.uk)
‡Department of Computer Science, University of Bath, UK (wn@bath.ac.uk)
§Department of Computer Science, University of Bath, UK (jap@bath.ac.uk)

35

36 Simone A. Ludwig et. al

outputs and there is a pairwise implication between the respective pre- and post-conditions. This however leaves
unaddressed the matter of establishing the validity of that implication.

In the MONET [6, 8] and GENSS [9] projects the objective is mathematical problem solving through service
discovery and composition by means of intelligent brokerage. Mathematical capability descriptions turn out to
be both a blessing and a curse: precise service description are possible thanks to the use of the OpenMath [10]
mathematical semantic mark-up, but service matching can rapidly turn into intractable (symbolic) mathematical
calculations unless care is taken.

As Grid computing adopts the Service Oriented Architecture for service usage and deployment, a match-
maker can be seen as another infrastructure service—deployed as part of a discovery infrastructure. Many of the
capabilities of a “matchmaker” are similar to those of a “broker”, as adopted in many existing Grid computing
applications. However, a key distinction we make is that a broker does not provide any support for scheduling
or executing a service once it has been discovered. The focus here is on numerical services, as they are generally
much better understood, and therefore may also serve as useful benchmarks for evaluating a system. Further-
more, multiple instances of mathematical services (implemented by a variety of different vendors) can be found,
thereby providing the capability to choose between similar services made available over different deployment
platforms.

This paper discusses our experience with developing such a domain-specific matchmaking approach for
mathematical services. We suggest the use of a different matchmaking mechanisms to answering the implication
question posed above. The set of ontologies provided by the MONET project have been used to specify a query.
This query is subsequently used to undertake a search against the services that have been registered in a registry.
Performance issues are also discussed. In the next section we discuss the description of mathematical services,
in section 3 we describe the web services-based matchmaking architecture and detail the roles of the components
within it, in section 4 we provide application examples outlining integer factorisation. Performance results are
presented in section 5, and in section 6 we summarise and conclude this paper.

2. Description of Mathematical Services. The OpenMath [10] has been introduced as a means to
describe properties of mathematical objects (for exchange between computer programs). OpenMath is a mark
up language for representing the semantics (as opposed to the presentation) of mathematical objects in an
unambiguous way. It may be expressed using an XML syntax. OpenMath expressions are composed of a
small number of primitives. The definition of these may be found in [10], for instance: OMA (OpenMath
Application), OMI (OpenMath Integer), OMS (OpenMath Symbol) and OMV (OpenMath Variable). Symbols
are used to represent objects defined in the Content Dictionaries (to be discussed). Applications specify that
the first child is a function or operator to be applied to the following children. As an example, the expression
x + 1 might look like:1

<om:OMA>

<om:OMS cd="arith1" name="plus"/>

<om:OMV name="x"/>

<om:OMI> 1 </om:OMI>

</om:OMA>

where the symbol plus is defined in the Content Dictionary (CD) arith1. Content Dictionaries are definition
repositories in the form of files defining a collection of related symbols and their meanings, together with
various Commented Mathematical Properties (for human consumption) and Formal Mathematical Properties
(for machine consumption). The symbols may be uniquely referenced by the CD name and symbol name via
the attributes cd and name respectively, as in the above example. Another way of thinking of a CD is as a
small, specialised ontology.

MathML comes in two forms:
• for presentation (rendering in browsers) and
• for content (semantics),

and both are W3C recommendations. The specification ([11] section 5.1) and [12] identify ambiguities in pre-
sentation MathML. Content MathML is designed to handle the semantics of a limited subset of mathematics
up to K-12 level, mathematics beyond this may be encoded by using OpenMath and the semantics tag, al-
ternatively parallel markup may be utilised [11]. There are various ways in which OpenMath can help in
matchmaking:

1Throughout the paper, the prefix om is used to denote the namespace: http://www.openmath.org/OpenMath

Searching for Mathematical Services 37

• OpenMath can be used to encode the mathematical part of a problem to be solved in a query, for
example a differential equation or an integral.
• OpenMath may be used to encode the input parameters to be sent to a service and the values returned

by the service.
• The function of a service (together with the signature of the input parameters, and output objects) may

be described in OpenMath, these may then be encoded using specialist tags to form a mathematical
service description; described in Mathematical Service Description Language (MSDL) [13].

MSDL is an extension of WSDL that was developed as part of the MONET project [6], incorporating more
information about a service, in particular pre- and post-conditions, taxonomic references etc.

3. Mathematical Matchmaking. Matchmaking allows potential producers of information to advertise
their capability, and subsequently consumers of information to send messages describing their information
needs. These descriptions, represented in rich, machine-interpretable description languages, are unified by the
matchmaker to identify potential matches [7]. A Web Services-based matchmaking architecture is presented,
describing the role played by different components within the architecture. Also described are the schemas and
ontologies that may be used as part of the producer advertisement or consumer requirement.

3.1. Schemas and Ontologies. The XML document schemas we are using in GENSS are, at the moment,
those developed for the MONET project. There are three main schemas:

• Mathematical Service Description Language (MSDL)
• Mathematical Problem Description Language (MPDL) and
• Mathematical Query Description Language (MQDL)

whose purposes are apparent in the second word in each case. The obvious question, even criticism, is why
develop this range of languages when there is DAML-S [14] and OWL-S [15]? The answer is purely practical:
at the time of the MONET project (April 2002 to March 2004) OWL and OWL-S were still subject to change
and there were hardly any tools available, while DAML and DAML-S were clearly about to be made obsolete
by OWL/OWL-S and the tool situation was hardly any better. Thus a pragmatic decision was made to take
the principles needed to enable the MONET deliverables from DAML/OWL and embed them in some simple
restricted languages over which the project had full control. Thus we see the adoption of pre- and post-condition
driven descriptions of capabilities and tasks, following the ideas set out in DAML/OWL and being explored in
various semantic brokerage projects such as InfoSleuth [2], RETSINA [3] and IBROW [16], while embedding
WSDL in MSDL to provide the necessary information about how to invoke the service. It is our intention
to explore how we can move from MSDL towards OWL/OWL-S during the lifetime of the current GENSS
project, since this will greatly aid interoperability and enable the utilisation of the increasing range of tools (for
OWL/OWL-S) that have become available.

History is also the explanation for the ontology language we use. OpenMath [10] provided an early use of
XML for providing an application-specific description—before the availability of RDF. Nevertheless, OpenMath
stands as probably the most developed ontology of mathematics, because in contrast to MATHML-C [11] it is
extensible through the mechanism of content dictionaries which were developed to handle the absence of mod-
ularisation facilities or namespaces in the original XML. The OpenMath 2 standard [18] replaces DTDs with
schemas, provides compatibility with RDF tools, utilises XML namespaces and generally aims to bring Open-
Math in line with developments in ontology representation over the last five years, whilst keeping where feasible,
backwards compatibility with OpenMath 1.1. Thus we make use of OpenMath as the primary representation
language for mathematical content in our work.

3.2. Related Matchmaking Approaches. A variety of matchmaking systems have been reported in
literature, we review some related systems below.

The SHADE (SHAred Dependency Engineering) matchmaker [19] operates over logic-based and structured
text languages. The aim is to dynamically connect information sources. The matchmaking process is based
on KQML (Knowledge Query and Manipulation Language) communication [20]. Content languages of SHADE
are a subset of KIF (Knowledge Interchange Format) [21] as well as a structured logic representation called
MAX (Meta-reasoning Architecture for “X”). Matchmaking is carried out solely by matching the content of
advertisements and requests. There is no knowledge base and no inference performed. The SHADE matchmaker
is implemented entirely as a forward-chaining rule-based program using MAX. This allows adding features such
as new rules dynamically.

38 Simone A. Ludwig et. al

COINS (COmmon INterest Seeker) [19] is a matchmaker which operates over free text. The motivation for
the COINS is the need for matchmaking over large volumes of unstructured text on the Web or other Wide
Area Networks and the impracticality of using traditional matchmakers in such an application domain. Initially
the free text matchmaker was implemented as the central part of the COINS system but it turned out that it
was also useful as a general purpose facility. As in SHADE the access language is KQML. The System for the
Mechanical Analysis and Retrieval of Text (SMART) [22] information retrieval system is used to process free
text. The text is converted into a document vector using SMART’s stemming and “noise” word removal. Then
the document vectors are compared using an inverse document frequency algorithm.

LARKS (Language for Advertisement and Request for Knowledge Sharing) [3] was developed to enable in-
teroperability between heterogeneous software agents and had a strong influence on the DAML-S specification.
The system uses ontologies defined by a concept language ITL (Information Terminology Language). The tech-
nique used to calculate the similarity of ontological concepts involves the construction of a weighted associative
network, where the weights indicate the belief in relationships. While it is argued that the weights can be set
automatically by default, it is clear that the construction of realistically weighted relationships requires human
involvement, which becomes a hard task when thousands of agents are available.

InfoSleuth [2] is a system for discovery and retrieval of information in open and dynamically changing envi-
ronments. The brokering function provides reasoning over the advertised syntax and the semantics. InfoSleuth
aims to support cooperation among several software agents for information discovery, where agents have roles
as core, resource or ontology agents. A central service is the broker agent which is equipped with a matchmaker
which matches agents that require services with agents that can provide those services. To apply this procedure
an advertising agent has to register with the broker agent. The broker inserts the agent’s description into its
broker repository. The broker can then execute queries by requesting agents. These queries are formulated by
agents who need other agents to fulfil their tasks.

The GRAPPA [23] (Generic Request Architecture) system allows multiple types of matchmaking mecha-
nisms to be employed within a system. It is based on receiving arbitrary matchmaking offers and requests,
where each offer and request consist of multiple criteria. Matching is achieved by applying distance functions
which compute the similarities between the individual dimensions of an offer and a request. Using particular
aggregate functions, the similarities are condensed to a single value and reported to the user.

The MathBroker (and MathBroker II) project(s) at RISC-Linz have some elements in common with those
described here, including providing semantic descriptions of mathematical services. They too use MSDL, how-
ever it seems that most of the matchmaking is achieved through traversing taxonomies, while actual reasoning
about the pre- and post-conditions is still an open problem.

Most of the projects above have focused on providing a generic matchmaker, capable of being adapted for
a particular application. However, the motivation for many such projects has primarily been e-commerce (as
a means to match buyers with sellers, for instance). Some projects are also focused on the use of a particular
multi-agent interaction language (such as KQML), to enable communication between the matchmaker and
other agents. Our approach, however, is centered on the implementation of a matchmaker that is specific to
mathematical relations. Similar to GRAPPA, our matchmaker can support multiple comparison techniques.

3.3. Matchmaking Requirements. To achieve matchmaking:

• we want sufficient input information in the task to satisfy the capability, while the outputs of the
matched service should contain at least as much information as the task is seeking, and
• the task pre-conditions should be more than satisfied by the capability pre-conditions, while the post-

conditions of the capability should be more than satisfied by the post-conditions of the task.

These constraints reflect work in component-based software engineering and are, in fact, derived from [24].
They are also more restrictive than is necessary for our setting, by which we mean that some inputs re-
quired by a capability can readily be inferred from the task, such as the lower limit on a numerical in-
tegration or the dependent variable in a symbolic integration. Conversely, a numerical integration routine
might only work from 0 to the upper limit, while the lower limit of the problem is non-zero. A capabil-
ity that matches the task can be synthesised from the composition of two invocations of the capability with
the fixed lower limit of 0. Clearly the nature of the second solution is quite different from the first, but
both serve to illustrate the complexity of this domain. It is precisely this richness too that dictates the na-
ture of the matchmaking architecture, because as these two simple examples show, very different reasoning
capabilities are required to resolve the first and the second. Furthermore, we believe that given the na-

Searching for Mathematical Services 39

Fig. 3.1. Matchmaking Architecture

ture of the problem, it is only very rarely that a task description will match exactly a capability descrip-
tion and so a range of reasoning mechanisms must be applied to identify candidate matches. This results
in:

Requirement 1: A plug-in architecture supporting the incorporation of an arbitrary number
of matchers.

The second problem is a consequence of the above: there will potentially be several candidate matches and
some means of indicating their suitability is desirable, rather than picking the first or choosing randomly. Thus:

Requirement 2: A ranking mechanism is required that takes into account pure technical
(as discussed above in terms of signatures and pre- and post-condition) and quantitative and
qualitative aspects—and even user preferences.

3.4. Matchmaking Architecture. Our matchmaking architecture is outlined in Figure 3.1 and comprises
the following parts:

• Client interface: which may be employed by the user to specify their service request. The client interface
may be a Web browser, or may be a special purpose interface that has been embedded within an existing
application.
• Matchmaker: which contains a reasoning engine and the matching module. The reasoning engine relies

on the existence of one or more domain specific ontologies.
• Matching algorithm Web Services: where the logic of the matching mechanism is defined. These Web

Services primarily provide the plug-in capability that has been identified in Requirement 1 above.
Currently, there is no mechanism to combine multiple match algorithms. Each algorithm therefore
must be used independently.
• Mathematical ontologies: such as OpenMath CDs, GAMS etc. These ontologies need to be used

alongside the matchmaker and the reasoner.
• Registry service: where the mathematical service descriptions are stored. A registry in this context

contains the set of “advertisement” (or metadata) that define numerical algorithms that have been
made available for use. In our architecture, we assume that these algorithms have been implemented
as Web Services. The registry does not contain any executables, only references to executables that are
maintained elsewhere.
• Mathematical Web Services: available on third party sites, accessible over the Web. These are the real

executables associated with descriptions that are maintained in the registry.

40 Simone A. Ludwig et. al

The interactions of a search request are as follows:

• a user contacts the matchmaker, then
• the matchmaker loads the matching algorithms specified by the user; in the case of an ontological

match, further steps are necessary;
• the matchmaker contacts the reasoner which in turn loads the corresponding ontology;
• having additional match values results in the registry being queried, to see whether it contains services

which match the request and finally
• service details are returned to the user via the matchmaker. These details generally include an end

point reference for the service that is being maintained on a remote file system.

The parameters stored in the registry (a database) are service name, URL/end point reference, taxonomy/on-
tology, input, output, pre- and post-conditions. Using contact details of the service from the registry, the user
can then call the Web Service and interact with it. Each component of the architecture is now described in
more detail.

3.4.1. Matching Algorithms. Currently four matching algorithms have been implemented within the
matchmaker:

• structural match;
• syntax and ontological match;
• algebraic equivalence match;
• value substitution match.

These matchers are complementary and constitute the polyalgorithmic approach mentioned in the abstract.
The structural match only compares the OpenMath symbol element structures (e.g. OMA, OMS, OMV etc.). The
syntax and ontological match algorithm goes a step further and compares the OpenMath symbol elements and
the content dictionary values of OMS elements. If a syntax match is found, which means that the values of the
content dictionary are identical, then no ontology match is necessary. If an ontology match is required, the
query structure is matched using the content dictionary hierarchy. The algebraic equivalence match and value
substitution match do actual mathematical reasoning using the OpenMath structure.

The structural match works as follows: the pre- and post-conditions are extracted and an SQL query is
constructed to find the same OpenMath structure of the pre- or post-conditions of the service descriptions in
the database.

The ontological match is performed similarly, however, the OpenMath elements are compared with
an ontology [25] representing the OpenMath elements. The matchmaking mechanism allows a more efficient
matchmaking process by using mathematical ontologies such as the one for sets shown in Figure 3.2. OWL-
JessKB [26] was used to implement the ontological match. It is intended to facilitate reading Ontology Web
Language (OWL) files, interpreting the information as per OWL and RDF languages, and allowing the user to
query on that information. To give an example the user query contains the OpenMath element:

<om:OMS cd=’setname1’ name=’Z’/>

and the service description contains the OpenMath element:

<om:OMS cd=’setname1’ name=’P’/>

which refer to the set of integers and the set of positive prime numbers respectively.

The query finds the entities Z and P and determines the similarity value depending on the distance between
the two entities (inclusive, on one side) which in this case is SV = 1

n = 0.5, where n is the number of nodes
in the ontology that separate Z from P. As can be seen from figure 3.2 this is 2—the figure also identifies that
concept P is subsumed by concept Z. Our use of distance in this context therefore differs from how it is used in
general when evaluating similarity between concepts within an ontology. A detailed description of the match
making algorithm can be found in [1].

For both the ontological and structural match, it is necessary that the pre- and post- conditions are in some
standard form. For instance, consider the algebraic expression x2 − y2, this could be represented in OpenMath
as:

<om:OMOBJ><om:OMA>

<om:OMS cd="arith1" name="minus"/>

<om:OMA>

<om:OMS cd="arith1" name="power"/>

<om:OMV name="x"/>

Searching for Mathematical Services 41

Fig. 3.2. Set Ontology Fragment

<om:OMI>2</om:OMI>

</om:OMA>

<om:OMA>

<om:OMS cd="arith1" name="power"/>

<om:OMV name="y"/>

<om:OMI>2</om:OMI>

</om:OMA></om:OMA>

</om:OMOBJ>

however, x2 − y2 = (x + y)(x− y), leading to the ontologically and structurally different markup:
<om:OMOBJ><om:OMA>

<om:OMS cd="arith1" name="times"/>

<om:OMA>

<om:OMS cd="arith1" name="plus"/>

<om:OMV name="x"/>

<om:OMV name="y"/>

</om:OMA>

<om:OMA>

<om:OMS cd="arith1" name="minus"/>

<om:OMV name="x"/>

<om:OMV name="y"/>

</om:OMA></om:OMA>

</om:OMOBJ>

Both are “right”, it just depends on what information is wanted, so there can in general be no canonical form.
So in order to address the above observation, we must look deeper into the mathematical structure of the
expressions which make up the post-conditions. Most of the conditions examined may be expressed in the form:
Q(L(R)) where:

• Q is a quantifier block, e.g. ∀x∃y s.t. · · ·
• L is a block of logical connectives, e.g. ∧,∨,⇒, · · ·
• R is a block of relations, e.g. =,≤,≥, 6=, · · ·

Processing the Quantifier Block. In most cases, the quantifier block will just be a range restriction. In other
cases it may be possible to use quantifier elimination to replace the quantifier block by an augmented logical
block. Quantifier elimination is a problem for which code exists in many computer algebra systems; e.g. RedLog
in Reduce.

Processing the Logical Block. Once the quantifier elimination has been performed on the query descriptions
and the service descriptions, the resulting logical blocks must be converted into normal forms. The logical block

42 Simone A. Ludwig et. al

of both the service and query descriptions are converted to disjunctive normal form (DNF—that is a form which
only contains a disjunction of conjunctions of terms and term negations). We need to now calculate a value
which determines how well equation (1.1) is satisfied. That is to say, the pre-conditions of the service must
be satisfied by the pre-conditions of the query and the post-conditions of the query must be satisfied by the
post-conditions of the service. In all the following , we consider pre- and post- conditions in DNF, so x ∈ Cpre

means x is a conjunct in the DNF for the service pre-condition. Superfluous service pre-conditions (query
post-conditions) do not effect whether the function may be performed. It is necessary, however, that there
are no extra query pre-conditions (service post-conditions) as this might allow the client to provide conditions
incompatible with the service pre-condition (service post-condition). This may be formalised in the following:

∀x1 ∈ Tpre ∃y1 ∈ Cpre s.t. x1 ⇒ y1 (3.1)

and

∀x2 ∈ Cpost ∃y2 ∈ Tpost s.t. x2 ⇒ y2 (3.2)

One way of proceeding is to treat the pre- and post- conditions separately in order to get two similarity
values Spre and Spost. If it so happens that the pre- and post- conditions are equally important, then the average
of these values will provide a good measure for the similarity value, however this will not always be the case,
and other feasible measures are to weight Spre and Spost linearly with the number of matching disjuncts in the
pre-condition match as opposed to the post-condition match. This can be justified by observing that there are
a linear number of different ways for the conditions to match.

We shall denote the DNF for Cpre (or Tpost) by R = R1∨· · ·∨Rn and for Cpost (or Tpre) by S = S1∨· · ·∨Sñ.
To calculate a value ∈ [0.0, 1.0] indicating how well equations 3.1, 3.2 are satisfied, we shall use the formula:

similarity(R, S) =
∑

i=1..ñ

M1(R, Si)
1

ñ
(3.3)

where M1 is a function which indicates how well the expression Si ⇒ R holds. This is equivalent to stating how
well Si matches with one of the conjuncts making up R. A good formula to calculate this is:

M1(R, Si) = max
j=1··n

{M2(Rj , Si)} (3.4)

where M2 is a similarity function for conjuncts. We may calculate a value for M(Ri, Sj) as:

M2(Rj , Si) =
∑

k=1··δ

m(Rj , Si,k)
1

δ
(3.5)

where δ is the number of terms in Si, Si,k are terms in Si and:

m(Rj , Si,k) returns 1.0 if Si,k matches a term in Rj ,
0.0 otherwise.

(3.6)

Processing the Relations Block. In order to perform the term matches necessary to calculate 3.6 we shall
consider two possible methods. It is useful to note that a term is of the general form: TL ≻ TR where ≻ is
some relation i. e. a predicate on two arguments. In the case that TL and TR are real values, we may proceed as
follows: we have two terms we wish to compare QL ≻ QR and SL ≻ SR, we first isolate an output variable r, this
will give us terms r ≻ Q and r ≻ S. There are two approaches which we now try in order to prove equivalence
of r ≻ Q and r ≻ S:

• Algebraic equivalence: With this approach we try to show that the expression Q − S = 0 using
algebraic means. There are many cases were this approach will work, however it has been proved [27]
that in general this problem is undecidable. Another approach involves substitution of r determined
from the condition r ≻ S into r ≻ Q, and subsequently proving their equivalence.
• Value substitution: With this approach we try to show that Q − S = 0 by substituting random

values for each variable in the expression, then evaluating and checking to see if the valuation we get
is zero. This is evidence that Q− S = 0, but is not conclusive, since we may have been unlucky in the
case that the random values coincide with a zero of the expression.

Searching for Mathematical Services 43

3.4.2. Service Registry. The mathematical service descriptions are stored in a database comprising the
following tables: service name, taxonomy, input, output, pre- and post-conditions, and omsymbol. For the
matching of pre- and post-conditions, the tables omsymbol, precond and postcond are used. The other tables
give additional details about a service once the matching is done, in order for the user to select the appropriate
service from the returned list.

3.4.3. Matchmaker. For all services in the database, first the pre-conditions are read and for each the
matching algorithm selected is applied—which returns a similarity value. For all similarity values of pre-
conditions a match value is calculated and stored. The same procedure is then used for the post-conditions.
For each service the match values for all pre- and post-conditions are calculated and stored together with
the service details. The methods are those detailed in section 3.4.1 resulting in a match score in the inter-
val [0, 1].

4. Application Example. For the case study we only consider the four matching modes. The Factorisor
service we shall look at is a service which finds all prime factors of an Integer. The Factorisor has the following
post-condition:

<om:OMOBJ>

<om:OMA>

<om:OMS cd =’relation1’ name =’eq’/>

<om:OMV name =’n’/>

<om:OMA>

<om:OMS cd =’fns2’ name =’apply_to_list’/>

<om:OMS cd =’arith1’ name =’times’/>

<om:OMV name =’lst_fcts’/>

</om:OMA>

</om:OMA>

</om:OMOBJ>

where n is the number we wish to factorise and lst_fcts is the output list of factors.

As the structural and ontological modes compare the OpenMath structure of queries and services, and the
algebraic equivalence and substitution modes perform mathematical reasoning, the case study needs to reflect
this by providing two different types of queries.

For the structural and ontological mode let us assume that the user specifies the following query:

<om:OMOBJ>

<om:OMA>

<om:OMS cd =’fns2’ name =’apply_to_list’/>

<om:OMS cd =’arith1’ name =’plus’/>

<om:OMV name =’lst_fcts’/>

</om:OMA>

</om:OMOBJ>

For the structural match, the query would be split into the following OM collection: OMA, OMS, OMS, OMV and /OMA

in order to search the database with this given pattern. The match score of the post-condition results in a value
of 0.27778 using the equations described earlier.

The syntax and ontology match works slightly different as it also considers the values of the OM symbols.
In our example we have three OM symbol structures. There are two instances of OMS and one of OMV. First the
query and the service description are compared syntactically. If there is no match, then the ontology match is
called for the OMS structure. The value of the content dictionary (CD) and the value of the name are compared
using the ontology of that particular CD. In this case the result is a match score of 0.22222. If the OM structure
of the service description is exactly the same as the query then the structural match score is the same as for
the syntax and ontology match.

The post-condition for the Factorisor service represents:

n =

l
∏

i=1

lst fctsi where l = |lst fcts| (4.1)

44 Simone A. Ludwig et. al

Considering the algebraic equivalence and the value substitution, a user asking for a service with post-condition:2

∀i|1 ≤ i ≤ |lst fcts| ⇒ n mod lst fctsi = 0 ∧ (4.2)

m /∈ {lst fcts1, · · · , lst fctsl} ⇒ n mod |m| 6= 0

should get a match to this Factorisor service.
To carry out the algebraic equivalence match we use a proof checker to show that:

• equation (4.1) ⇒ equation (4.2): This is clear since the value of n (the RHS of equation 4.1) may be
substituted into equation (4.2) and the resulting equality will be true for each value in lst fcts.
• equation (4.2) ⇒ equation (4.1): The first term in the conjunct holds by the definition of mod, whilst

the second term says that there are no other numbers which divide n.
To compute the value substitution match we must gather evidence for the equivalense of expressions 4.1 and
4.2 by taking a number of random values and substituting these into the pre- and post-conditions, since we are
checking the truth of relations, these will be trivially satisfied (or not). This will however only give us evidence
for the equivalence of the conditions, as we may have chosen values for which the expressions just happened
to be true. So this technique can only give a probability of correctness. In order to know the probability of
correctness after a certain number of independent tests, it is necessary to know the size of the zero sets for the
expressions which make up the pre- and post-conditions. Another limitation of this technique, is that (in its
simplest form) it can only be applied to real valued expressions. We shall consider how the technique may be
applied to the above problem:

• We first need to decide on the length of the list for our random example. A good basis would be to
take |lst fcts| = ⌈log2(n)⌉, this represents a bound on the number of factors in the input number.
• We then collect that number of random numbers, each of size bounded by

√
n.

• Then we calculate their product, from equation (4.1), this gives a new value for n.
• We may now check equation (4.2). We see that it is true for every value in lst fcts.

If we try this for a few random selections, we obtain evidence for the equivalence of equations (4.1) and (4.2).

5. Measurements. Of the four matching algorithms specified in section 3.4.1, our performance measure-
ments are primarily focused on the “ontological match”. This is because this mechanism provides the most
computationally intensive match requirement. Structural match can already be undertaken with a variety of
XML-based tools—that make use of XPath query, for instance. Similarly, algebraic equivalence also relies on
the use of an ontological match to rewrite a mathematical expression prior to undertaking a match.

A set of measurements are described that: (1) evaluate the time it takes to load the MONET ontologies—
briefly described in section 5.1, (2) the associated query response times and (3) the overall scalability of the
ontological mode. Scalability analysis involved increasing the number of services hosted in the registry to
100,000.

5.1. The MONET Ontologies. The ontology importation graph in Figure 5.1 essentially outlines the
relationships between the various ontologies3 (the Ontology Web Language (OWL) is used to describe each
ontology) that were originally developed in the MONET project [31] for the purpose of demonstrating the basic
end-to-end functionality from problem statement, through service discovery and invocation, to the delivery of re-
sults. It should be emphasized that with two notable exceptions—OpenMath and GAMS—these are not general-
purpose ontologies but were engineered to meet a specific short-term need. Nevertheless, significant care went
into their relative organization with a view to future developments. From the application’s perspective, there is
just the one ontology called MONET and that imports all the others, which is where we find the real content:

• GAMS (Guide to Available Mathematical Software): is described as “A cross-index and virtual
repository of mathematical and statistical software components of use in computational science and
engineering”4 and provides a human browseable taxonomy of mostly numerical software, for example
the extract given in Figure 5.2 is that used to classify numerical quadrature routines. As this extract
makes clear, GAMS is represented as textual data and is intended for human consumption. Thus for
program use an OWL analogue was generated making each node in the taxonomy into an OWL class,
as shown in Figure 5.3.

2In this example, all factors are assumed prime (this could be given as another post-condition).
3http://users.cs.cf.ac.uk/Simone.Ludwig/ontologies/monet/monet.owl
4http://gams.nist.gov/

Searching for Mathematical Services 45

Fig. 5.1. Relationship between MONET Ontologies

• Symbolic: The GAMS taxonomy has a single category (“O”) for symbolic computation that contains
just four links to general-purpose computer algebra packages and one link to the ACM TOMS collected
algorithms. Because a major focus of MONET was the combined application of numerical and symbolic
techniques, this branch has undergone some extension to enable the description and advertisement of a
range of symbolic mathematical services, such as group theory operations, indefinite integration, power
series and algebraic geometry.
• OpenMath: This is not OpenMath5 that we have used for mathematical semantic markup, but rather

the interface to that ontology. Because OpenMath development started many years before OWL it does
not (yet) use many of the current ontology technologies and is simply an XML-based encoding format
for the representation of mathematical expressions and objects. Terms (referred to as “Constants”)
of the language have semantics attached to them and are called symbols (e.g., sin, integral, matrix,
etc.), and groups of related symbols are collected in content dictionaries (CDs). What the OpenMath
component of the MONET ontology defines is OWL classes for each of the symbols in the current
OpenMath CDs.
• Hardware: This is used to describe either machine types or individual machines. The idea is that a

user might request that a service run on a particular architecture (e.g. Sun Enterprise 10000), a general
class of machine (e.g. shared memory), or a machine with a certain number of processors. Here is a
fragment that describes a Sun shared memory machine:
<owl:Class rdf:ID="Enterprise10000">

<rdfs:subClassOf>

<owl:Class rdf:about="#SharedMemory"/>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Class rdf:about="#Sun"/>

</rdfs:subClassOf>

</owl:Class>

• Software: allows a user to express a preference for a service that makes use of a particular programming
language or software library, for example it represents a variety of programming languages (FORTRAN
77, FORTRAN 2000, C, etc.) and numerous packages (NAG library version 7 in C, Maple release 8,
etc.).
• Problems: may be described in terms of inputs and outputs, pre-conditions and post-conditions, and

make use of pre-defined XML schema [32]. Within this ontology, each problem is represented as a
class, which can have properties indicating bibliography entries and their generalizations. The most
interesting property is openmath head whose range is an object from the OpenMathSymbol class. This
represents a particular symbol which can be used to construct an instance of the problem in question.

5http://www.openmath.org

46 Simone A. Ludwig et. al

H2. Quadrature (numerical evaluation of definite integrals)

H2a. One-dimensional integrals

H2a1. Finite interval (general integrand)

H2a1a. Integrand available via user-defined procedure

H2a1a1. Automatic (user need only specify required accuracy)

H2a1a2. Nonautomatic

Fig. 5.2. An extract from the on-line GAMS taxonomy

<owl:Class rdf:ID="GamsH2">

<rdfs:comment>GAMS classification, Differentiation, integration,

Quadrature (numerical evaluation of definite integrals)

</rdfs:comment>

<rdfs:label>Quadrature (numerical evaluation of definite integrals)</rdfs:label>

<rdfs:subClassOf rdf:resource="#GamsH"/>

</owl:Class>

\dots

<owl:Class rdf:ID="GamsH2a">

<rdfs:comment>GAMS classification, Differentiation, integration,

Quadrature (numerical evaluation of definite integrals),

One-dimensional integrals

</rdfs:comment>

<rdfs:label>One-dimensional integrals</rdfs:label>

<rdfs:subClassOf>

<owl:Class rdf:about="#GamsH2"/>

</rdfs:subClassOf>

</owl:Class>

Fig. 5.3. An extract from the OWL representation of GAMS

• Algorithms: there are two sub-classes in this ontology: (1) Algorithm: which describes well-known
algorithms for mathematical computations, and (2) Complexity: which provides classes necessary for
representing complexity information associated with an Algorithm.
• Directives: this ontology is a collection of classes which identify the task that is performed by the

service as described in [32]—for example to decide, solve or prove a particular mathematical expression.
• Theory: this ontology collects classes that represent available formalized theories in digital libraries of

mathematics.
• Bibliography: represents entries in well-known indices such as Zentralblatt MATH [33] and Math-

SciNet [34] and allows them to be associated with particular algorithms.
• Encoding: this ontology contains a (small) collection of classes which represent the formats used for

encoding mathematical objects.
• Monet: As stated at the beginning of this section, MONET imports all the ontologies described

above.

5.2. Methodology. The ontological mode of the matchmaker is based on OWLJessKB—a memory-based
reasoning tool that may be used over ontologies specified in OWL. To store service descriptions, a MySQL
database was used, residing on a different machine. OWLJessKB uses the Java Expert System Shell (JESS) [36]
as its underlying reasoner. The OWLJessKB implementation loads multiple ontologies (the location of each
is specified as a URL) into memory from a remote Web server. Reasoning in this instance involves exe-
cuting one or more JESS rules over the ontology. JESS makes use of the Rete algorithm [37], which is
intended to improve the speed of forward-chained rule systems (this is achieved by limiting the effort re-
quired to recompute the conflict set after a rule is fired). However, it has high memory requirements due
to the loading of the ontology into the Rete object. Once it is created and set, it is fast to call rules and
queries in order to infer the semantic relations of the ontology loaded. A key limiting factor in OWLJessKB
is the time to load the ontology into primary memory (RAM), and the total RAM size on the host plat-
form.

Searching for Mathematical Services 47

The implementation used for the ontological mode is the OWLJessKB version owljesskb20040223.jar 6. The
test environment included an Intel Pentium III processor 996MHz, 512MB RAM, and Windows XP Professional,
running Java SDK 1.5.0 and Jess 6.1p8.
Measurements—Loading ontologies: These measurements include memory tests for OWLJessKB as heap
size value were set for the loading of different ontology sizes. Additional measurements were carried out to
evaluate the performance of loading the ontologies for the OWLJessKB implementation.
Measurements—Query response times: Four different query types were chosen. These were the following:
(1) Simple assertion: Find all instances of a class x;
(2) Simple assertion: Verify whether instance x exists;
(3) Assertion individual: Confirm if constraint y is satisfied via a single object;
(4) Assertion aggregate: Confirm if constraint y is satisfied for an entire group.
Measurements—Scalability: These measurements involved analyzing the performance of query response
times for populated registries, starting with 100 services stored and going up to 100,000 services. Hence,
scalability is evaluated as the change in query response behaviour as additional services were added to the
registry.

5.3. Results.

5.3.1. Loading Ontology Performance. The previously described MONET ontologies (Figure 5.1) were
chosen for the performance measurements. The MONET ontologies consist of 2031 classes, 78 slots and 10 facets.
When increasing the ontology size, only the classes within the ontology were considered and expanded. Different
ontology sizes were used having the number of classes as shown in Table 5.1.

Table 5.1

Ontology Sizes

Ontology size No. of classes
1 2031

1.5 3046
2 4062

2.5 5077
3 6092

3.5 7107
4 8122

During preliminary measurement tests it was found that the OWLJessKB implementation needs the heap
size in the Java Virtual Machine to be modified to load all ontology sizes. The first set of measurements were
undertaken to investigate the necessary heap size required for the different ontologies. Figure 5.4 shows the
memory heap size for varying ontology sizes. It shows a linear distribution starting from 109MB for ontology
size 1 and ending at 847MB for ontology size 4. The regression line and the derived equation shown in the
figure allow to calculate the memory heap size needed for a particular ontology size.

The maximum heap size was set to 1 GB, which was found to be a sufficient value for the measurements
shown in Figure 5.4. The following set of measurements show the load time of the OWLJessKB implementation.
Ten test runs were conducted for each ontology size.

5.3.2. Query Performance. The next set of measurements were carried out having four queries (simple
assertion finding all instances of a class x, simple assertion asking whether instance x exists, assertion individual
and assertion aggregate) to test the response times of varying ontology sizes for both target systems. The
maximum heap size in the target system was set to 1 GB. For each query ten test runs were conducted and the
average values were taken.

Queries for the OWLJessKB implementation need to be specified in the JESS notation, which is the fol-
lowing:
(defquery query-sub-class ‘‘Find all sub-classes"

(triple

(predicate ‘‘http://www.w3.org/2000/01/rdf-schema#

6http://edge.cs.drexel.edu/assemblies/software/owljesskb/

48 Simone A. Ludwig et. al

Fig. 5.4. Memory heap size

Fig. 5.5. Load time

subClassOf")

(subject ‘‘http://monet.nag.co.uk/owl#

service_algorithm")

(object ?y)))

A service stored in the registry is nagopt—fitting the GAMS taxonomy G1a1a [6] (a variant of unconstrained
optimisation) and using OpenMath as its I/O format. In this case the description also indicates that the service
uses NAG’s implementation of the safeguarded quadratic-interpolation algorithm.
<service name="nagopt">

<classification>

<gams_class>GamsG1a1a</gams_class>

<problem>constrained_minimisation</problem>

<input_format>OpenMath</input_format>

<output_format>OpenMath</output_format>

<directive>find</directive>

</classification>

<implementation>

<software>NAG_C_Library_7</software>

<platform>PentiumSystem</platform>

Searching for Mathematical Services 49

Fig. 5.6. Query Performance

Fig. 5.7. Scalability of populated services

<algorithm>Safeguarded_Quadratic-Interpolation</algorithm>

</implementation>

</service>

In Figure 5.6 the response time of the four queries are shown. No increase in query response time for larger
ontology sizes can be seen, which means that the ontology size does not increase the query response time. The
average deviation (specifying measurement accuracy) is 1.8 ms. Please note that Q1, Q4 times identical after
ontology of size 2.

5.3.3. Scalability Performance. Measurements were taken populating the registry with an increasing
number of services. Ontology size 1 was taken for this set of measurements, with a maximum heap size of
1 GB. The registry was populated with 100, 200, 500, 1,000, 2,000, 5,000, 10,000, 20,000, 50,000 and 100,000
services (therefore, Figure 5.7 use a logarithmic scale). In Figure 5.7 a linear distribution between query time
and number of services can be seen. However, the time measurements for 100, 200 and 500 services in Query 1,
2 and 4 are scattered around 10 ms and 20 ms, this is due to the measurement accuracy.

6. Conclusion and Further Work. We have presented an approach to matchmaking in the context of
mathematical semantics. The additional semantic information greatly assists in identifying suitable services in

50 Simone A. Ludwig et. al

some cases, but also significantly complicates matters in others, due to their inherent richness. Consequently,
we have put forward an extensible matchmaker architecture supporting the dynamic loading of plug-in matchers
that may employ a variety of reasoning techniques, including theorem provers and computer algebra systems as
well as information retrieval from textual documentation of mathematical routines (this last is under develop-
ment at present). Although our set of application examples is as yet quite small, the results are promising and
we foresee the outputs of the project being of widespread utility in both the e-Science and Grid communities, as
well as more generally advancing semantic matchmaking technology. The performance measurements conducted
showed the scalability of the system with the drawback of a relatively long ontology load time. Although the
focus here is on matchmaking mathematical capabilities, the descriptive power, deriving from quantification
and logic combined with the extensibility of OpenMath creates the possibility for an extremely powerful general
purpose mechanism for the description of both tasks and capabilities. In part, this appears to overlap, but also
to complement the descriptive capabilities of OWL and, in much the same way as it was applied in MONET,
we expect to utilise OWL reasoners as plug-in matchers in the architecture we have set out.

REFERENCES

[1] S. A. Ludwig, O. F. Rana, J. Padget and W. Naylor, Matchmaking Framework for Mathematical Web Services, Journal
of Grid Computing, Springer Verlag, 2006.

[2] M. Nodine, W. Bohrer and A. H. Ngu, Semantic brokering over dynamic heterogenous data sources in InfoSleuth, Pro-
ceedings of the 15th International Conference on Data Engineering, pp. 358-365, 1999.

[3] K. Sycara and S. Widoff and M. Klusch and J. Lu, Larks: Dynamic matchmaking among heterogeneous software agents
in cyberspace, Journal of Autonomous Agents and Multi Agent Systems, Kluwer, 2002.

[4] V. R. Benjamins and B. Wielinga and J. Wielemaker and D. Fensel, Towards Brokering Problem-Solving Knowledge on
the Internet, Ed. Dieter Fensel and Rudi Studer, Proceedings of the 11th European Workshop on Knowledge Acquisition,
Modeling and Management (EKAW-99), LNAI1621, Springer, 1999.

[5] M. Gomez and E. Plaza, Extended matchmaking to maximize capability reuse, Proceedings of The Third International Joint
Conference on Autonomous Agents and Multi Agent Systems, ACM Press, 2004.

[6] MONET Consortium, MONET Home Page, Available from \tthttp://monet.nag.co.uk 2002.
[7] D. Kuokka and L. Harada, Matchmaking for information integration, Journal of Intelligent Information Systems, Feb 1996.
[8] O. Caprotti and M. Dewar and J. Davenport and J. Padget, Mathematics on the (Semantic) Net, Proceedings of the

European Symposium on the Semantic Web, Springer Verlag, 2004.
[9] The GENSS Project, GENSS Home Page, Available from http://genss.cs.bath.ac.uk 2004.

[10] OpenMath Society, OpenMath website, Available from http://www.openmath.org, 2002.
[11] W3C MathML, Mathematical Markup Language (MathML) Version 2.0, W3C, Available from http://www.w3.org/TR/

MathML2/, 2003.
[12] W. Naylor and S. Watt, Meta-stylesheets for the conversion of mathematical documents into multiple forms, Annals of

Mathematics and Artificial Intelligence Journal, vol. 38, no. 1–3, May, 2003.
[13] S. Buswell and O. Caprotti and M. Dewar, Mathematical Service Description Language, Available from the MONET

website: http://monet.nag.co.uk/cocoon/monet/publicdocs/monet-msdl-final.pdf, 2003.
[14] A. Ankolekar, M. Burstein, J.R. Hobbs, O. Lassila, D.L Martin, S.A. McIlraithe, S. Narayanan, M. Paolucci,

T. R. Payne, K. Sycara, H. Zeng, DAML-S: Semantic Markup for Web Services, Proceedings of 1st International
Semantic Web Conference (ISWC 02), 2002.

[15] W3C Coalition, OWL-S: Semantic Markup for Web Services, In Technical White paper (OWL-S version 1.0), 2003.
[16] V. R. Benjamins, E. Plaza, E. Motta, D. Fensel, R. Studer, B. Wielinga, G. Schreiber, Z. Zdrahal and S. Decker,

An Intelligent Brokering Service for Knowledge-Component Reuse on the World-WideWeb, Proceedings of the 11th Banff
Knowledge Acquisition for Knowledge-Based System Workshop (KAW98), Banff, Canada, 1998.

[17] R. J. Brachman and J. G. Schmolze, An overview of the KL-ONE knowledge representation system, Cognitive Science,
9(2): 171–216, 1985.

[18] The OpenMath Society, The OpenMath Standard, The OpenMath Society, Available from http://www.openmath.org/cocoon/

openmath/standard/om20/index.html, 2004.
[19] D. Kuokka and L. Harada, Integrating information via matchmaking, Journal of Intelligent Information Systems 6(2-3),

pp. 261–279, 1996.
[20] T. Finin and R. Fritzson and D. McKay and R. McEntire, KQML as an agent communication language, Proceedings of

3rd International Conference on Information and Knowledge Management, pp. 456–463, 1994.
[21] M. Genesereth and R. Fikes, Knowledge interchange format, version 3.0 reference manual, Computer Science Department,

Stanford University, Available from http://www-ksl.stanford.edu/knowledge-sharing/papers/kif.ps, 1992.
[22] G. Salton, Automatic Text Processing, Addison-Wesley, 1989.
[23] D. Veit, Matchmaking in Electronic Markets, An Agent-Based Approach towards Matchmaking in Electronic Negotiations,

Springer, LNCS2882, 2003.
[24] A. Moormann Zaremski and J. M. Wing, Specification Matching of Software Components, ACM Transactions on Software

Engineering and Methodology, 1997.
[25] J. F. Sowa, Ontology, Metadata, and Semiotics, Conceptual Structures: Logical, Linguistic, and Computational Issues,

Lecture Notes in AI #1867, Springer-Verlag, 2000.
[26] J. Kopena, OWLJessKB, Available at http://edge.cs.drexel.edu/assemblies/software/owljesskb/, 2004.

Searching for Mathematical Services 51

[27] D. Richardson, Some Unsolvable Problems Involving Elementary Functions of a Real Variable, Journal of Computational
Logic, 1968.

[28] W3C WSDL, Web Services Description Language (WSDL) 1.1, Available from http://www.w3.org/TR/wsdl, 2004.
[29] L. Verlet, Computer Experiments on Classical Fluids I. Thermodynamical Properties of Lennard-Jones Molecules, Phys.

Rev., Vol. 159, pp. 98–103, 1967.
[30] Maozhen Li, O.F.Rana, David W. Walker, Wrapping MPI-Based Legacy Codes as Java/CORBA Components, Future

Generation Computer System(FGCS): The Int. Journal of Grid Computing: Theory, Methods and Applications, vol. 18,
Issue 2, pages 213–223, October 2001.

[31] O. Caprotti, M. Dewar and D. Turi, Mathematical service matching using Description Logic and OWL, In Proceedings
of 3rd Int’l Conference on Mathematical Knowledge Management (MKM’04), Vol:3119, pages 144–151. Springer-Verlag,
2004.

[32] O. Caprotti, D. Carlisle, A. Cohen and M. Dewar, Problem Ontology: final version, The MONET Consortium Technical
Report Deliverable D11. Available from: http://monet.nag.co.uk

[33] Zentralblatt MATH. Available from: http://www.emis.de/ZMATH/

[34] American Mathematical Society, MathSciNet: Mathematical Reviews on the Web. Available from: http://www.ams.org/

mathscinet.
[35] S. A. Ludwig, O. F. Rana, W. Naylor and J. Padget, Matchmaking of Mathematical Web Services, In Proceedings of 6th

International Conference on Parallel Processing and Applied Mathematics, Poznań, Poland, September 2005.
[36] Ernest J. Friedman-Hill, Java Expert Systems Shell. Available from: http://herzberg.ca.sandia.gov/jess/docs/61/

index.html

[37] C. Forgy, Rete: A fast algorithm for the many pattern/many object pattern match problem. Journal of Artificial Intelligence,
19: 17–37, 1982.

[38] I. Horrocks, U. Sattler and S. Tobies, Reasoning with individuals for the description logic SHIQ. Proceedings of the 17th
International Conference on Automated Deduction (CADE-17), Springer-Verlag, 2000.

Edited by: Przemys law Stpiczyński.
Received: April 6, 2006.
Accepted: May 28, 2006.

Scalable Computing: Practice and Experience

Volume 7, Number 2, pp. 53–63. http://www.scpe.org
ISSN 1895-1767

c© 2006 SWPS

PARALLEL IMPLEMENTATION OF UNIFORMIZATION TO COMPUTE THE
TRANSIENT SOLUTION OF STOCHASTIC AUTOMATA NETWORKS

HAÏSCAM ABDALLAH∗

Abstract. Analysis of Stochastic Automata Networks (SAN) is a well established approach for modeling the behaviour of
computing networks and systems, particularly parallel systems. The transient study of performance measures leads us to time and
space complexity problems as well as error control of the numerical results. The SAN theory presents some advantages such as
avoiding to build the entire infinitesimal generator and facing the time complexity problem thanks to the tensor algebra properties.

The aim of this study is the computation of the transient state probability vector of SAN models. We first select and modify
the (stable) uniformization method in order to compute that vector in a sequential way. We also propose a new efficient algorithm
to compute a product of a vector by a tensor sum of matrices. Then, we study the contribution of parallelism in front of the
increasing execution time for stiff models by developing a parallel algorithm of the uniformization. The latter algorithm is efficient
and allows to process, within a fair computing time, systems with more than one million states and large mission time values.

Key words. Parallel systems, stochastic automata networks, transient solution, uniformization, parallelism.

1. Introduction. This paper presents a parallel version of the transient analysis for Continuous Time
Markov Chains (CTMCs) via Stochastic Automata Networks (SANs). The computation of the transient dis-
tribution of CTMC gives the main performance measures such as reliability and availability. Generally, we are
facing the problem of computation time due to the explosive growth of the state space and the stiffness. SANs,
introduced by Brigitte Plateau [1], may be a good solution to that problem.

The use of SANs is becoming important in performance modeling issues related to parallel and distributed
computer systems [2]. Those systems are often viewed as collections of components that operate more or less
independently. They require only infrequent interaction such as synchronizing their actions or operating at
different rates depending on the state of parts of the overall system. The components are modeled as individual
stochastic automata that interacts with each other. A module (automaton) is modeled by a set of states, and the
event or action of the module is modeled by a transition from a state to another. A single automaton represents
only the state of one module; additional information is used to express interactions among the modules. On each
transition, a label gives information about the timing and the probability of events occurrence. The transitions
and the events are described by some matrices, for each automaton. We focus on synchronizing dependence,
i. e., local and events matrices are constant. Under appropriate Markovian assumptions, the behaviour of the set
of automata may be modeled by a CTMC, which state space is the cartesian product of the all the space states
of the automata. It has been shown that the infinitesimal generator of the resulting CTMC, also known as the
descriptor, can be obtained automatically into a compact formula, by means of Kronecker (tensor) algebra [3].
The consequence is that the state transition matrix is not stored, not even generated.

We are interested in the computation of the transient solution of SANs while they are very often analyzed
in the stationary or quasi-stationary cases [4, 5]. The challenge is to choose a method that, at the same time,
bounds the global error and deals with the time complexity. Moreover, the algorithms of that method must be
parallelizable. Some studies have been done in the transient case, when the state space is reasonable. Among
them, IRK3 (Implicit Runge-Kutta method of order 3) has been used [6, 7]. This method deals efficiently with
stiff models, for large mission time t. But unfortunately, its time complexity is unpredictable and the global
error is difficult to bound. A consequence of this latter drawback is that an accuracy cannot be chosen a priori.
The Uniformized Power technique (UP) has also been proposed [8]. This method is very fast for systems with
large values of t, but only usable in the case of moderate state spaces. The Standard Uniformization method
(SU) has proved its efficiency for reasonable values of t, even when the state space size is important [9, 10].
This efficiency is altered when t increases. The main advantage of this technique is the possibility of bounding
the global error and predicting the time complexity. The most part of the algorithms are sequential.

In this study, we first adapt the SU method to compute the transient solution of SANs. Next, we make a
parallel implementation of the SU method in order to deal with the case of large values of t. We also derive a
new parallel algorithm which computes the multiplication of a vector by a Kronecker tensor sum of matrices.
This implementation uses an efficient parallel multiplication of a vector by a tensor product of matrices [11].

∗Dpt MASS, Université de Rennes 2 Place du Recteur Henri Le Moal, CS 24307 35043 Rennes cedex, France,
haiscam.abdallah@uhb.fr

53

54 Häıscam Abdallah

The resulting global algorithm has a speedup which remains in average greater than 80%. It allows us to deal
efficiently with problems that has not been solved yet. The structure of the paper is as follows. Section 2 sets
the problem and includes a detailed sequential analysis. Section 3 is dedicated to the parallel algorithms. The
numerical results on an Asynchronous Transfer Mode (ATM) network are presented in Section 4. The paper is
concluded with Section 5.

2. Problem formulation. We consider a SAN that consists of N individual automata, A(k), k =
1, . . . , N . The number of states in the kth automaton is denoted by nk for k = 1, 2, . . . , N . Let X(k),
for k = 1, . . . , N , be the unidimensional CTMC associated with the automaton A(k), Q(k) the infinitesimal
generator of X(k) and Π(k)(0) its initial distribution vector. Let us denote by Π(k)(t) the state probability vector
of X(k) at time t. The overall model (the SAN) is described by a multidimensional CTMC X = {Xt, t ≥ 0},
which state space and size are respectively E =

∏N
k=1 E(k) and M =

∏N
k=1 nk. Its infinitesimal generator

(descriptor) and its initial distribution are denoted by Q and Π(0). At time t, the transient distribution of the
CTMC X is given by the vector Π(t). Our goal is the computation of Π(t) for a given value of the system’s
mission time t. The vector Π(t) is solution of the first homogenous linear differential equations, known as
Chapman-Kolmogorov equations:

∂

∂t
Π(t) = Π(t)Q; Π(0) given. (2.1)

When the automata are independent, the descriptor Q is the tensor sum of the N infinitesimal generators
Q(k), k = 1, . . . , N , resulting from the local transitions:

Q =

N
⊕

k=1

Q(k).

It follows that:

Π(t) =
N
⊗

k=1

Π(k)(t). (2.2)

Relation (2.2) leads us to the computation of vector Π(k)(t), k = 1, . . . , N , for CTMCs with moderate state
space size nk. An efficient method, like SU or UP, can be selected according to the problem’s size and mission
time t.

2.1. Dependent automata. Let T be the total number of the system’s synchronizing events and for all

i = 1, . . . , T , E
(k)
i+ the matrix of event i over automaton A(k), k = 1, . . . , N ; E

(k)
i− is the regularisation matrix.

The descriptor Q is then expressed as an ordinary sum of a local part and a synchronizing part [3, 4]:

Q =

N
⊕

k=1

Q(k) +

2T
∑

i=1

N
⊗

k=1

E
(k)
i where E

(k)
i ∈

{

E
(k)
i+ , E

(k)
i−

}

. (2.3)

It is important to note that
⊕N

k=1 Q(k) can be transformed into ordinary sum of tensor products of matrices as
follows

N
⊕

k=1

Q(k) =

N
∑

k=1

In1 ⊗ · · · ⊗ Ink−1
⊗Q(k) ⊗ Ink+1

⊗ · · · ⊗ InN
, (2.4)

where Ink
, k = 1, . . . , N , is the nk order identity matrix. Consequently, the descriptor Q can be written under

the form:

Q =

N+2T
∑

i=1

N
⊗

k=1

Q
(k)
i , with Q

(k)
i ∈ {Ini

, Q(k), E
(k)
i }. (2.5)

Most of the time, expression (2.5) is used to solve the overall model (the CTMC X), in order to transform
the problem into the computation of a product vector-matrix, where the matrix is a tensor product of several

Parallel Implementation of Uniformization to Compute the Transient Solution of Stochastic Automata Networks 55

matrices. We adopt expression (2.3) to compute the transient distribution. Indeed, we develop, at the end of
this section, a specific algorithm that computes the product of a vector by a tensor sum of matrices. This
algorithm has the same time complexity as that which computes the product of a vector by a tensor product of
matrices. Consequently, compared to (2.5), the form (2.3) allows an important saving in time complexity.

Let us remind that the major problem is the choice of methods that solve (2.1) taking into account the
global error. An efficient error control mechanism is used by UP and SU methods. The UP technique performs
well for CTMCs with large values of t and moderate state spaces while the SU method works better for CTMCs
with moderate values of t and large state spaces. The basic idea is, first of all, to implement the SU method for
the SAN and next, analyze the contribution of parallelism when t increases.

For Q = (qij)i,j=1, ..., M given, the expression of Π(t) obtained by the SU method is [6, 12]:

Π(t) =

∞
∑

n=0

p(n, qt)Π(0)P̃n, (2.6)

where q ≥ max1≤i≤M | qii |, p(n, qt) = e−qt (qt)n

n! , and P̃ = I + Q/q; I is the M order identity matrix.
The previous infinite sum can be truncated at a step NT such that

1−
NT
∑

n=0

p(n, qt) ≤ ε, (2.7)

where ε is a tolerance, given a priori by the user. That tolerance also bounds the global error on Π(t) by SU.
Let us note that for a given value of ε, NT is always greater than qt.

Let Π̃(n), n = 1, . . . , NT , be the vector Π(0)P̃ (n). These NT vectors are computed by the following recurrence
relation:

Π̃(n) = Π̃(n−1)P̃ , n ≥ 1 ; Π̃(0) = Π(0). (2.8)

From a time complexity point of view, the computation of Π(t) requires one vector-matrix product by iteration
(relation (2.8)). Using a compact storage for Q, the time complexity may be reduced to O(NT η) where η is the
number of non zero elements in Q.

The SAN methodology has a first advantage of avoiding to build the whole generator Q. Using relations
(2.3) and (2.8), we have:

Π̃(n) = Π̃(n−1) +
1

q

[

Π̃(n−1) ⊕N
k=1 Q(k)

]

+
1

q

2T
∑

i=1

[

Π̃(n−1) ⊗N
k=1 E

(k)
i

]

, n ≥ 1, (2.9)

with Π̃(0) = Π(0) = ⊗N
k=1Π(k)(0) given.

Another advantage of the SAN is the possibility of developing specific sequential and parallel algorithms to
compute a vector-tensor product or sum of matrices. Those algorithms are often faster than the classical ones
for which Q is entirely given (cf. 2.2.2 and 3).

2.2. Sequential approach.

2.2.1. Product of a vector by a tensor product of matrices. The computation of the vector y =
x
⊗N

k=1 A(k) given the vector x and the N (small) matrices A(k), can be done by expressing each element

of
⊗N

k=1 A(k) as a product of N elements of A(k), k = 1, ..., N . The time complexity of the algorithm is

O(N
∏N

k=1 η(A(k))), where η(A(k)) is the number of non-zero elements in the matrix A(k).
Because this time complexity is generally very large and the matrix A(k) (here Q(k)) have a small value of
η(A(k)), an algorithm based on the perfect shuffle is used [1, 13]. Such an algorithm, called TENS, has the
following time complexity

O

(

M

N
∑

k=1

η
(

A(k)
)

nk

)

(2.10)

56 Häıscam Abdallah

Let αk = η(A(k))
nk

be the mean number of non-zero terms in rows or columns of A(k) and let us set it to α. It

is clear that an algorithm based on the perfect shuffle is better than a classical one if α > N
1

N−1 . The SANs
satisfy very often the case.

2.2.2. Product of a vector by a tensor sum of matrices. For computing the vector z = x
⊕N

k=1 A(k),

we transform
⊕N

k=1 A(k) into an ordinary sum of tensor product of matrices using relation (2.4). More precisely,
if we define

Mu
l =

l
∏

k=u

nk (2.11)

and n̄k = M/nk, we have

x

N
⊕

k=1

A(k) =

N
∑

k=1

x
(

IMk−1
1
⊗A(k) ⊗ IMN

k+1

)

. (2.12)

The computation of the vector z is based on the product

x
(

IMk−1
1
⊗A(k) ⊗ IMN

k+1

)

. (2.13)

At each iteration k, all the matrices, except A(k), are set to identity matrix. Algorithm 1, called TENSk (kth

iteration of TENS), is a particular case of a perfect shuffle to compute (2.13). In this algorithm, we consider
nleft = Mk−1

1 and nright = MN
k+1. The time complexity of the algorithm TENSk is O

(

n̄k . η
(

A(k)
))

. Lines 5-8

Input : nk, A(k), x, nleft, nright

Output : Y = x
(

IMk−1
1
⊗A(k) ⊗ IMK

k+1

)

1: base← 0 ; jump← nk.nright

2: for block = 0, . . . , nleft − 1 do
3: for offset = 0, . . . , nright − 1 do
4: index← base + offset
5: for h = 0, . . . , nk − 1 do
6: Zh ← xindex

7: index← index + nright

8: end for
9: Z ′ = Z.A(k)

10: index← base + jump
11: for h = 0, . . . , nk − 1 do
12: Yindex ← Yindex + Z ′

h

13: index← index + jump
14: end for
15: end for
16: base← base + jump
17: end for

Algorithm 1: Algorithm TENSk for computing Y = x
(

IMk−1
1
⊗A(k) ⊗ IMN

k+1

)

and 11-16 describe the permutations required by this algorithm. If TENS+ is the algorithm which computes
z by calling N times TENSk, the time complexity of such an algorithm is

O

(

N
∑

k=1

n̄k . η
(

A(k)
)

)

= O

(

M

N
∑

k=1

η
(

A(k)
)

nk

)

(2.14)

It is important to note that this time complexity is identical to that of the computation of x
⊗N

k=1 A(k) given
by relation (2.10). In the following section, we give a parallel version of this algorithm.

Parallel Implementation of Uniformization to Compute the Transient Solution of Stochastic Automata Networks 57

3. Parallel implementation. Our goal is the parallelization of the computation algorithm of the vector
Π(t) based on relation (2.9). Taking into account the quantity of data (matrices and vectors) to be processed, it
is quite necessary to choose a program scheme in which each processor owns some data, to which it applies some
instruction streams. These instruction streams can be chosen identical for all the processors (SPMD: Single
Program, Multiple Data). This scheme is easier to implement than the case where several algorithms are built,
one for each processor (MIMD: Multiple Instruction streams, Multiple Data). We place ourselves in the SPMD
mode. A crucial problem in this kind of implementation is the load balancing. Each node must have the
same amount of work in order to assure a certain equilibrium and efficiency. It is therefore important to use a
good decomposition and task repartition technique. This repartition must minimize a function, relative to the
execution time of the program over P processors.

In order to make a parallel implementation in SPMD mode over P processors, we need a data decomposition
into P subsets, determining each processor’s task. This task is mainly composed with computation phases ended
by synchronization phases.

The first part of our work consists in implementing relation (2.9) over P processors. At each step, this
relation is essentially made with matrix-vector products, where the matrix is a tensor product or a tensor sum
of matrices. First, we are going to deal with the tensor product case. Next, we shall proceed with the tensor
sum. We shall end by the global algorithm.

3.1. Product of a vector by a tensor product of matrices. In order to compute y = x
⊗N

k=1 A(k)

over P processors, we are going to use the algorithm proposed in [11]. The data are distributed according to
the following scheme:

— Decomposition of P in N integers d1, d2, . . . , dN such that dk divides nk. Let us notice that this
decomposition is not unique, but all the possible decompositions are equivalent from a time complexity
point of view. Nevertheless, a good criterium of choosing a decomposition instead of another is that
the sum of the terms must be minimum.

— For each k ∈ {1, . . . , N}, build a partition of Gk = {1, . . . , nk} in dk subsets Gkl, l = 1, . . . , dk, i. e.,

dk
⋃

l=1

Gkl = Gk.

That partition must be made respecting the load balancing between the P processors.
Let us consider the following indexation scheme.

(l1, l2, . . . , lN−1, lN) = l[1,N] ⇋ (. . . ((l1)n2 + l2)n3 . . .) =

N
∑

k=1

lkMN
k+1, (3.1)

where Mu
l is given by relation (2.11). For any processor p, considering relation (3.1), we have the following

correspondence:

p ⇋ w[1,N]

and thus the vector allocation is done the following way:

w[1,N] ←− y(l1, l2,..., lN), with lk ∈ Gkwk
, k = 1, . . . , N.

The proposed algorithm is recursive with N steps. It is based on the canonical factorization of the tensor
product, such that at each step, only one matrix of the product is used. Each processor uses its own data for its
computations, then sends the results to the processors that will need them in the following step. In the same
time, it receives the data it will need for the next step. The communications between processors are expressed
using simple primitives:

send: a processor send a message to a single processor.
receive: a processor receives a message from a single processor.
broadcast: a processor send a message to several processors.

These primitives are efficiently implemented over almost all the existing architectures [14]. The described
algorithm uses an overlapping of communications and computations, avoiding bufferization. Another advantage

58 Häıscam Abdallah

of that algorithm is a message is sent to a processor if and only if it needs it. The number of communications
is therefore reduced to the minimum.

The execution time of a parallel program depends essentially on the communications. The transmission
time of a message ofM bytes between two processors p1 and p2 over a distance d = dist(p1, p2) is represented
by the linear model [15]:

t(d,M) =M.tc(d,M) + τ(d,M),

where tc(d,M) is the transmission time of one byte and τ(d,M) is the start-up time. It depends on d, but both
of the parameter may be function of M if the computer uses different protocols of communication according
message size (e. g. Intel iPSC/860). Finally, the execution time is the product of one communication time (the
above linear function) by the number of communications.

The algorithm of a product vector-tensor product of matrices, that we shall refer to as PARATENS, executes
at most Γ(P) communication steps, Γ(P) being the number of communication steps necessary to broadcast a
message to P processors. This number depends on the topology, for example Γ(P) = log(P), for hypercube
topology. Let us note that the arguments of PARATENS are the vector and the matrices of the tensor product.

3.2. Product of a vector by a tensor sum of matrices. Let us remind that (relation (2.4)):

N
⊕

k=1

A(k) =

N
∑

k=1

(

IMk−1
1
⊗A(k) ⊗ IMN

k+1

)

. (3.2)

The obvious way of computing z = x
⊕N

k=1 A(k) is as follows: at each iteration k, all the matrices arguments,
except one, are set to identity. Then, PARATENS is used to complete the step. This results in executing
PARATENS N times. But, we notice that at any iteration k, the expression

V
(

IMk−1
1
⊗A(k) ⊗ IMN

k+1

)

is computed, where V is the vector resulting from the iteration k − 1. Therefore, the result may be obtained
by executing an algorithm such that the execution time is equal to that of PARATENS. That algorithm, called
PARATENS+, is presented below (Algorithm 2). In this algorithm, PARATENSk denotes the procedure
that carries out the kth iteration of PARATENS.

Input: x, nk, A(k), k = 1, . . . , N
Output: z = x

⊕N
k=1 A(k)

Y = 0
for k = 1, . . . , N do

Y ← Y + PARATENSk(nk, A(k), Y)
end for

Algorithm 2: Parallel algorithm of the product vector-tensor sum of matrices

3.3. Implementation of the global algorithm. Algorithm 3 computes the vector Π(t) over P pro-
cessors. The first step of this algorithm consists in computing the uniformized rate q by following way. By
definition,

q ≥ max
i
| qii |, i = 1, . . . , MN

1 ,

where qii are the diagonal elements of the descriptor Q (relation (2.3)). Because the square matrix Q is an
infinitesimal generator, then we have

qii =

M
∑

j=1

qij , j 6= i,

Parallel Implementation of Uniformization to Compute the Transient Solution of Stochastic Automata Networks 59

Input: Q(k), E
(k)
i , Π(0), t, ε

Output: Π(t)

Compute q and NT * Relation (2.7)*\
Compute Q/q
e0 ← 1 ; Π̃p(0)← Πp

0 ; Πp(t)← Πp
0

for j = 1, . . . , NT do
ej ← qt

j ej−1

PARATENS+(Q(1), . . . , Q(N), Π̃(j−1)) * Π̃(j−1) ⊕N
k=1 Q(k) *\

for k=1,. . . ,2T do

PARATENS(E
(1)
k , . . . , E

(N)
k , Π̃(j−1)) * Π̃(j−1) ⊗N

k=1 E
(k)
i *\

end for * Results in Π̃(j)p

for each processor p *\

Πp(t)← Πp(t) + ejΠ̃(j)p

end for

Algorithm 3: Parallel algorithm of the computation of Π(t) over P processors

where M = MN
1 is the size of the matrix Q. Finally,

q ≥ max
i
|

M
∑

j=1

qij |, i = 1, . . . , M.

The rate q is obtained by computation of the vector

Y = Q×

1
...
1

,

where all the diagonal elements of Q are substituted by zero. Next, we choose q such that

q = max
i
| Yi |, i = 1, . . . , M.

The computation of Π(t) requires, at each step, one execution of PARATENS+ and 2T executions of
PARATENS. The time complexity of the global algorithm is minimum due to the fact that all the algorithms
are optimum in communications number.

4. Numerical results.

4.1. The ATM example. In this example, we describe a congestion control of an ATM (Asynchronous
Transfer Mode) network. The ATM [16] was conceived to face the transmission of new types of data (voice,
video, etc.). It is a specific packet oriented transfer mode based on fixed length cells of 53 bytes. These cells
result from the splitting of the input streams. A source connected to the network inserts its cells into free spaces
not used by the other sources. High speed connections of this kind may exceed 600Mbits/s.

A crucial problem in such networks is the congestion control. Moreover, this problem must be treated with
integration of quick adaptation and reaction to high speed connections. This problem is responsible for loss
of information (buffers saturation) and transmission time increase. Solving this problem consists in reducing
the congestion with a preventive and adaptive method. The classical techniques are not always applicable,
on account of the high speed in the ATM networks. It is therefore necessary to establish adapted control
mechanisms. The congestion control in ATM network may be executed at different level according to the kind
of information carried and the traffic’s characteristics. Three levels are possible:

— Admission level
— Burst level
— Cell level.

At admission level, the system determines whether a connection can be progressed or should be rejected based
on the resource availability in the network: it is an access control. At burst level, a control mechanism (such as

60 Häıscam Abdallah

the leaky bucket) checks, permanently, that the input flow respects the negotiated traffic contract: it is a flow
control. At cell level, the control is done using the CLP bit (Cell Loss Priority) contained in the header of each
cell. This bit makes the difference between cells according to their priority. In congestion case, low priority cells
are destroyed. Only high priority cells are kept in the network.

The Leaky Bucket (LB) [17] is an access control mechanism in the ATM network. This control is performed
using tokens. These tokens are given to each cell when it enters the network. This mechanism may be im-
plemented in several ways. We focus on the one called the Virtual Leaky Bucket (VLB) [18]. In this kind of
LB, three buffers are needed. The first one welcomes the user’s cells, and the others are respectively used for
green and red tokens. When a cell arrives in the first buffer Bc, if that one is not full, it is kept there waiting
to be served. A service to a cell consists in giving it a green token coming from the buffer Bg. This token
represents its permission to access into the network. Otherwise, if Bc is full, the cell may be lost (rejected),
even if the network has sufficient resources to accept it, without altering the quality of service. In order to avoid
this situation, red tokens are generated by the buffer Br. A threshold S is fixed. If Bg is empty while there
are less than S cells in Bc, those cells should wait for new green tokens to be generated, before they enter the
network. On the contrary, if there are more than S cells in Bc when Bg is empty, they should be able to access
the network with red tokens if, of course, Br is not empty. This mechanism is described by figure 4.1.

λc

λr λg

µ 1 Cell + 1 tokenCells

Red tokens Green tokens

Br Bg

Bc

Fig. 4.1. The Virtual Leaky Bucket

The ATM mechanism is modeled by a SAN composed with three automata A(1), A(2) and A(3). These
automata represent respectively the content of buffers Bc, Bg and Br. Each automaton A(k) is supposed to
haves nk states, k = 1, 2, 3. These states are numbered from 0 to nk − 1. The threshold of buffer Bc is set to
S. The events that occur in the system are as follows:

• Local events
— arrival of a cell with rate λc, a local event to A(1)

— arrival of a green token with rate λg, a local event to A(2)

— arrival of a red token with rate λr, a local event to A(3).
• Synchronizing events

— s1: departure of a cell with a green token (rate µ), acting on both A(1) and A(2)

— s2: departure of a cell with a red token (rate µ), acting on both A(1) and A(3).

Figure 4.2 shows the behaviour of each automaton for the case where n1 = 4, n2 = n3 = 3 and S = 1.

The transitions in A(1) are either cells arrivals (with rate λc) or cells departures (service). A departure is
also synchronization transition because a cell leaves Bc with a token (green if the number of cells in Bc is less

Parallel Implementation of Uniformization to Compute the Transient Solution of Stochastic Automata Networks 61

A(1)

A(2)

A(3)

0 1 2 3

(s1, µ, 1)× (s2, µ, 1) (s1, µ, 1)× (s2, µ, 1)

λc λc λc

(s1, µ, 1)

0 1 2

(s1, µ, 1) (s1, µ, 1)

(s2, µ, 1)
λg λg

0 1 2

(s2, µ, 1) (s2, µ, 1)

λr λr

Fig. 4.2. The automata transitions diagram of the SAN associated to the Virtual Leaky Bucket

than S and red if not). The service rate is always µ and the occurrence probability (routing probability) is 1,
only one choice being possible. The transitions in A(2) and A(3) are arrivals (with rates λg or λr) of green or
red tokens or their departures. A token departure means that a cell has been served, therefore synchronization
events s1 and s2 stand. These transitions have rate µ and also an occurrence probability equals to 1. The fact
that a red token is usable only when Bg is empty is modeled by the loop around state 0 of automaton A(2).

The SAN modeling the VLB is determined by the descriptor Q and the initial distribution Π(0) as follows.
Let be, for k = 1, 2, 3,

Q(k) the infinitesimal generator associated to automaton A(k),

E
(k)
1 the positive event matrix of event s1 over automaton A(k), and

E
(k)
2 the positive event matrix of event s2 over automaton A(k).

The descriptor is given by

Q = Q(1) ⊕Q(2) ⊕Q(3) + E
(1)
1 ⊗ E

(2)
1 ⊗ E

(3)
1 + E

(1)
2 ⊗ E

(2)
2 ⊗ E

(3)
2 .

If Π(k)(0), k = 1, 2, 3, denotes the initial distribution of the kth automaton A(k), we have Π
(k)
1 (0) = 1 and for

i ≥ 2, Π
(k)
i (0) = 0. The global initial distribution (of the SAN) is Π(0) such that Π(0) = ⊗3

k=1Π(k)(0).

62 Häıscam Abdallah

4.2. Performance analysis. In order to compute the vector Π(t) for our SAN model, we consider n1 =
256, n2 = 128 and n3 = 32. This situation means that buffers Bc, Bg and Br have a limited capacity of 255, 127
et 31 respectively. The threshold S is fixed to 200. Thus, the descriptor Q has an order M = 220 and the system

has 1.048.576 states. It is important to note that only the matrices Q(k) and E
(k)
i , k = 1, 2, 3 and i = 1, 2,

are stored by using a compact storage scheme. The rates values are such that λb = λc = λ = 0.5 and µ = 1.
For evaluating the performance of our global algorithm, we execute it on a cray t3e, a distributed memory
parallel machine. It possesses up to 256 processing elements, each running at 300 MHZ. The computations of
the program (written in Fortran) are done in numerical arithmetic double precision.

We first focus on the CPU time of our algorithm as function of the mission time t and the number of
processors P . We consider t = 10i, i = 0, . . . , 5 and P = 32, 64, 128. Next, we compute the speedup SP and the
efficiency EP as function of P . For the SU method, the value of ε is fixed to 10−10 (cf. relation (2.7)).

Table 4.1

CPU time (s) for computing Π(t) as function of t and P

t 1 10 102 103 104 105

P=32 61.72 222.17 1745.45 14599.34 137696.21 (e) 1350907.9 (e)
P=64 30.55 137.76 912 7628.15 71945 (e) 705842.6 (e)
P=128 1.6 7.96 48.16 427.93 3791.89 37201.16

Table 4.1 includes the CPU time values for computing Π(t) as function of t and P . In this table, the
notation (e) means that corresponding CPU time values are estimated taking advantage of the SU method for
estimating a priori the time complexity. A lecture of this table shows that even when t = 105, the vector Π(t)
can be evaluated with 128 processors in about 10 CPU hours. This table also shows the feasibility limits of
some problems as function of the state space size M , mission time t, and number of processors P . Speedup

Table 4.2

Speedup and efficiency as function of P

P 32 64 128
SP 29 54 100
EP 0.90 0.84 0.78

and efficiency, as function of P , are given in Table 4.2. The values of SP increases with P ; the CPU times is
then inversely proportional to P . Table 4.2 shows that the value of EP remains in average greater than 80%,
meaning a good use of processors and a low communication time.

It is important to note that the given numerical results depend on the SAN model. The speedup SP

decreases when N increases [19]. It is then possible to aggregate some automata [20] in order to obtain the
same value of N . The mean number α of non-zero terms in rows or columns of matrices used in the tensor
sums and products increases without modifying significantly the efficiency EP . If we consider complex SANs for
which N is large (N increases), it is difficult to predict the expected speedup starting from the given application.
More complex applications constitute the goal of our future work.

5. Conclusion. In this study, we addressed the problem of transient solution of SAN. This modelisation
methodology allows to treat complex parallel systems by avoiding the built of the entire infinitesimal generator.
In the computation of the transient state probability vector, we faced the problem of computation time, espe-
cially, for large mission time values. We first adapted the SU method to compute this vector and developed an
new sequential algorithm which computes a product of a vector by a tensor sum of matrices. Next, we imple-
mented a parallel algorithm of the SU method in order to deal with the increasing of the time complexity with
the mission time. The parallel version of this implementation uses an efficient algorithm computing a product of
a vector by a tensor product of matrices and a parallel version of the presented algorithm. The interest of used
algorithms is the minimization of communication time between processors. We presented numerical results of a
SAN modeling an ATM network with 1048000 states and large mission time values. Some CPU time values are
given as function of mission time and number of processors. We also given speedup and efficiency as function
of number of processors. Even a decreasing of the efficiency when the number of processors increases, the value
of this efficiency remains, in average, greater than 80%.

Parallel Implementation of Uniformization to Compute the Transient Solution of Stochastic Automata Networks 63

REFERENCES

[1] B. Plateau, On the Stochastic Structure of Parallelism and Synchronisation Models for Distributed Algorithms, Performance
Evaluation, 13(5):142–154, 1985.

[2] W. J. Stewart, K. Atif, and B. Plateau, The numerical solution of stochastic automata networks, European Journal of
Operation Research, 86:503–525, 1995.

[3] B. Plateau, On the Stochastic Structure of Parallelism and Synchronisation Model for Distributed Systems, ACM SIG-
METRICS conference On Measurement and Modeling of Computer Systems, pages 147–153, May 1985.

[4] B. Plateau and K. Atif, Stochastic Automata Networks for Modelling Parallel Systems, IEEE Transactions On Software
Engineering, 17(10):1093–1108, 1991.

[5] M. S. Bebbington, Parallel implementation of an aggregation/disaggregation method for evaluating quasi-stationary be-
haviour in continuous-time Markov chains, Parallel Computing, 23:1545–1559, 1997.

[6] J. K. Muppala M. Malhotra, K. S. Trivedi, Stiffness-tolerant methods for transient analysis of stiff Markov chains,
Microelectronic Reliability, 34(11):1825–1841, 1994.

[7] K. S. Trivedi and A. L. Riebman, Numerical Transient Analysis of Markov Models, Computer and Operations Research,
15(1):19–36, 1988.

[8] H. Abdallah and R. Marie, The Uniformized Power Method for Transient Solutions of Markov Processes, Computers and
Operations Research, 20(5):515–526, April 1993.

[9] C. Lindemann, M. Malhotra and K. S. Trivedi, Numerical Methods for Reliability Evaluation of Markov Closed Fault-
Tolerant Systems, IEEE Transactions on Reliability, 44(4):694–704, 1995.

[10] H. Abdallah and M. Hamza, Sensitivity analysis of instantaneous transient measures of highly reliable systems 11th

European Simulation Symposium (ESS’99), Erlangen-Nuremberg, Germany, october 26-28, pages 652–656, 1999.
[11] C. Tadonki and B. Philippe, Parallel Multiplication of a Vector by a Kronecker Product of Matrices (part I), Parallel and

Distributed Computing Practices, 2(4):413–427, December 1999.
[12] H. Abdallah and M. Hamza, Sensitivity analysis of the expected accumulated reward using uniformization and IRK3

methods, Second Conference on Numerical Analysis and Applications (NAA’2000), Rousse, Bulgaria, June 11-15, 2000.
[13] M. Davio, Kronecker Products and Shuffle Algebra IEEE Transactions on Computers, 30:116–125, 1981.
[14] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computing. Prentice-Hall, Englewood Cliffs, N. J., 1988.
[15] S. M. Mller A. Bingert, A. Formella and W. J. Paul, Isolating the Reasons for the Performance of Parallel Machines

on Numerical Programs, In International Workshop on Automatic Distributed Memory Parallelization, Automatic Data
Distribution and Automatic Parallel Performace Prediction, pages 34–64, Austin, Texas, USA, 1993.

[16] B. Weiss ATM. Hermes, Paris, 1995.
[17] I. Cidon and I. S. Gopal, An approach to Integrated High-Speed Private Network, International Journal on Digital and

Analogical Systems, 1:77–86, 1988.
[18] M. Hirano and N. Watanabe, Characteristics of a cell multiplexer for bursty ATM traffic, IEEE ICC’89, pages 1321–1325,

1989.
[19] C. Tadonki and B. Philippe, Parallel Multiplication of a Vector by a Kronecker Product of Matrices (part II), Parallel and

Distributed Computing Practices, 3(3), September 2000.
[20] O. Gusak, T. Dayar, and J. M. Fourneau, Lumpable continuous-time stochastic automata networks, International

Conference on Mathematical Modeling and Scientific Computing, Middle East Technical University and Selcuk University,
Ankara and Konya, Turkey, April 2001.

Edited by: Roman Trobec
Received: January 15th, 2002
Accepted: June 26th, 2002

Scalable Computing: Practice and Experience

Volume 7, Number 2, pp. 65–86. http://www.scpe.org
ISSN 1895-1767

c© 2006 SWPS

A SIMD ENVIRONMENT FOR GENETIC ALGORITHMS WITH INTERCONNECTED
SUBPOPULATIONS

DEVARAYA PRABHU∗ AND BILL P. BUCKLES† AND FREDERICK E. PETRY†

Abstract. The algorithmic form of GAs conforms well to SIMD computing environments with relatively minor adjustments
to the operators. In this paper we consider in detail a GA implementation on a MasPar machine. The question of the degree
to which control parameters affecting intercommunication impact performance is addressed using ANOVA methods. The purpose
is to supplant anecdotal experience with statistical evidence. A set of control parameters—topology, migration operator, migra-
tion radius, and migration probability—were chosen together with four representative levels of each. Metrics for three response
variables—efficiency, diversity, and schema propagation—were developed that allowed insight into the behavior under the various
parametric conditions. These were incorporated into three 4 × 4 × 4 × 4 randomized factorial experiment designs. Among other
things, it was determined that the interconnection topology is not in itself a significant factor but the extent of connectivity and
frequency of communication are. An important outcome of this study is that, while the individual factors are significant, the factors
do not interact in unexpected ways.

Key words. Genetic algorithms, massively parallel computation, communicating subpopulations, migration, Royal Road
functions, experiment design.

1. Introduction. Because of the complexity of large optimization problems, the value of parallel realiza-
tions of optimization algorithms has become quite evident [10, 11]. In particular, in this paper we present a
study of an approach to parallel genetic algorithms.

Amenability to parallelization has always been viewed as a major strength of Genetic Algorithms (GAs).
GAs operate on populations of individuals. When the population is distributed into (perhaps overlapping)
subpopulations, the introduction of new operators is possible as well as altering the semantics of existing ones.
We consider a GA to be parallel if its operators reflect the new interactions that are enabled by the presence of
subpopulations.

Furthermore, we are interested in the case for which there are thousands, not dozens, of subpopulations.
When there are a massive number of subpopulations, there are larger number of local behaviors competing
for the opportunity to expand and their expansion is more acutely observable. The operators that affect
subpopulation interactions are defined in part by parameters. In some cases, the number of alternative values
for these parameters increase as the number of subpopulations increase. Thus choices made by algorithm
designers must be more informed. These two factors, measurability of effects and the need for insights, make
massively parallel GAs a useful domain of investigation.

One aspect of this paper is the methodology that is applied, namely, experimental design methods [21, 29].
It has the purpose of establishing the quantitative significance of various factors, singly and in combination, that
affect performance. This is in contrast to the “typical” GA experiment that quantifies performance prediction
but only qualifies the factors affecting the prediction. The method used here, we believe, should be used more
often because, beyond quantification, it is able to elicit evidence of the effects of factor interaction. That is,
how the effect of factors change when used in combination with others.

The SIMD parallel genetic algorithm is analyzed. Its structure tends to be uniform across many applica-
tions and platforms thus identification of factors to investigate requires less subjective judgment. Many SIMD
computers are in use and the architecture itself is now re-emerging in the context of special-purpose VLSI
plug-ins.

Using experiment design methods tends to require many individual trials over a small number of factors.
In this case, more than 2,500 individual instances of the algorithm comprised the single experiment reported.
The outcome showed all factors investigated – network topology, migration policy, migration probability, and
migration radius—were significant at confidence levels ranging from 90% to 99%. A key question was: Do
these factors interact with each other in a simple additive fashion or in a more complex manner? It was found
that the interactive effects were sufficiently close to additive that no special precautions by the practitioner are
necessary.

∗i2 Technologies, 1603 LBJ Freeway, Suite 780, Dallas TX 75234
†The Center for Intelligent and Knowledge-based Systems, Department of Electrical Engineering & Computer Science, Tulane

University, New Orleans, LA 70118. Dev Prabhu@i2.com {buckles, petry}@eecs.tulane.edu

65

66 Prabhu, Buckles, and Petry

2. Background.

2.1. Sequential GAs. Genetic algorithms originated from the studies of cellular automata, conducted
by John Holland [22]. A GA is a search procedure modeled on the mechanics of natural selection rather than
a simulated reasoning process. Domain knowledge is embedded in the abstract representation of a candidate
solution termed an organism. Organisms are grouped into sets called populations. Successive populations are
called generations. A generation GA creates an initial generation, G(0), and for each generation, G(t), generates
a new one, G(t + 1). An abstract view of the algorithm is

generate initial population, G(0)
evaluate G(0)
t := 0
repeat

t := t + 1
generate G(t) using G(t− 1)
evaluate G(t)

until solution is found.

The operation “evaluate G(t)” refers to the assignment of a figure of merit to each of the population’s organisms.
In simple GAs, an alternative exists to replacing an entire population at once; that alternative is to replace one
organism in the population whenever a new organism is created. This variant is known as a steady state GA.

In most applications, an organism consists of a single chromosome. A chromosome of length n is a vector
of the form 〈x1, x2, . . . , xn〉. where each xi is an allele, or gene. The domain of values from which xi is chosen is
called the alphabet of the problem. Frequently, the alphabet used consists of the binary digits {0, 1}. We can
view a specific chromosome as representative of many patterns. Using # as “don’t care,” an example pattern or
schema over the binary alphabet is 〈##110#〉. The chromosomes 〈111100〉 and 〈101100〉 are specific instances
of this and other schemata; for example, 〈##100〉. The order of a schema is the number of non-# symbols it
contains. Its length is the distance from the first to the last non-# position. Thus, the length of 〈#1#0#1〉 is
four, and its order is three.

GAs differ from traditional search techniques in several ways

• First, GAs optimize the trade-off between exploring new points in the search space and exploiting
the information discovered thus far. This was proven using an analogy with the k-armed bandit (an
extension of the one-armed bandit) problem.
• Second, GAs have the property of implicit parallelism. Implicit parallelism means that the GA’s effect

is equivalent to an extensive search of hyperplanes of the given space, without directly testing all
hyperplane values. Each schema denotes a hyperplane.
• Third, GAs are randomized algorithms, in that they use operators whose results are governed by

probability. The results for such operations are based on the value of a random number.
• Fourth, GAs operate on several solutions simultaneously, gathering information from current search

points to direct subsequent search. Their ability to maintain multiple solutions concurrently makes
GAs less susceptible to the problems of local maxima and noise.

As noted, GAs are randomized—but not random—search algorithms. Each organism represents a point
(that is, an intersection of hyperplanes) in the search space. Randomization must balance two competing
concerns, exploration and exploitation. A solution cannot be tested unless it appears as an organism. Therefore,
a reasonable number of solutions must be explored. On the other hand, unlimited exploration would not
be efficient search. The strength of highly fit organisms must be exploited and allowed to propagate in the
population. Yet, giving too much precedence to such organisms results in premature termination at a local
optimum.

We can compare GA recombination operators to controlled breeding among, say, thoroughbred horses.
The objective is to combine highly fit organisms to produce a still more fit individual. Both the selection of
“parents” and the steps within the recombination operators are randomized. Parent selection dynamics are
based on an application-dependent measure of an organism known as the fitness function, fi (fi is a figure of
merit, computed using any domain knowledge that applies). In principle, this is the only point in the algorithm
at which domain knowledge is necessary. Organisms are chosen using the fitness value as a guide; organisms
having higher fitness values are chosen more often. Selecting organisms based on fitness value is a major factor

Interconnected Subpopulations in SIMD Environment 67

in the strength of GAs. The greater the fitness value of an organism, the more likely that the organism will be
selected for recombination.

There are two popular approaches for implementing selection. The first, roulette selection, assigns a prob-
ability to each organism, i, computed as the proportion

Fi = fi/
∑

j

fj

A parent is then randomly selected, based on this probability. A second method, deterministic sampling, assigns
to each organism, i, a value

Ci = RND(Fi × n) + 1

where n organisms reside in the population (RND means round to integer). The selection operator then assures
that each organism participates as a parent exactly Ci times.

Parents participate in the later recombination operations. Alleles from the parents are mixed via an operator
called a crossover rule, of which many exist. Simple one-point crossover of chromosomes from two parents at a
random point, j, is illustrated by

〈xi x2 · · ·xj xj+i xj+2 · · ·xn〉 (2.1)

+ (2.2)

〈y1 y2 · · · yj yj+1 yj+2 · · · yn〉 (2.3)

= (2.4)

〈x1 x2 · · · yj yj+1 yj+2 · · · yn〉 (2.5)

where the result is a chromosome of the offspring and is placed in the next generation.
A mutation is the random change of an allele from one alphabet value to another. For a problem over

the binary alphabet, the original allele is exchanged for its complement. The mutation operator offers the
opportunity for new genetic material to be introduced into a population. From the theoretical perspective, it
assures that—given any population—the entire search space is connected. The new genetic material does not
originate from the parents and is not introduced into the child by crossover. Rather, it occurs after crossover a
small percentage of the time.

Several stopping criteria exist for the algorithm. The algorithm may be halted when all organisms in a
generation are identical, when fi = fj for all i and j, or when |fi − fj | < TOL for some small value TOL and
all i and j. An alternative criterion would halt after a fixed number of evaluations and take the best solution
found.

2.2. Parallel GAs. Parallel versions of GAs have, more often than not, different semantics from the
canonical serial algorithm [6, 45]. In other words, the behavior of the algorithm in terms of the computational
actions taken as well as the the results generated for any given set of inputs can be expected to differ for
the two versions. In contrast, for most other algorithms, parallelization usually implies a parallel version
of the algorithm which maintains the semantics of the serial version. Not surprisingly, early parallel GA
implementations (e.g. [34]) focused mainly on achieving computational speedup. There have been a variety of
applications of parallel GAs including topics such as fuzzy logic controller design [1], VLSI routing [25], financial
market computations [32], SAT methods [15], land use modeling [49], and many others [2].

The changed semantics of a parallel GA is primarily the result of the way in which the population mem-
bers are distributed among subpopulations as well as the nature and the extent of interactions among such
subpopulations. A serial GA which uses a single centralized population and global access to all its members
(as evidenced by panmictic selection) simply constitutes one end of a spectrum of possibilities [8]. At the other
end of that spectrum lies a fine-grained parallel GA with completely decentralized population (resulting in
singleton subpopulations) and a local neighborhood-based selection. Most other parallel GAs can be seen as
being somewhere in between these two cases. They employ a varying extent of decentralization of the global
population and access among the resulting subpopulations during selection. The subpopulations resulting from
the distribution of the global population members can be called demes, a very evocative term from the field of
population biology. Parallel GA literature also refers to them as islands [48, 27].

68 Prabhu, Buckles, and Petry

The interaction among the demes can take two forms: migration and overlapping selection [7]. Migration
refers to the process of periodic import of population members from neighboring demes into the local subpopu-
lation. In the artificial setting of parallel GAs, this involves a sequence of export-import-replace actions. First,
every deme must decide on candidates for export or emigration from the local subpopulation, which in turn
can be imported by the neighboring demes. Next, a deme can decide to import or immigrate some of such can-
didate emigrants available in the neighboring demes. The frequency of import is determined by the migration
probability. Since most parallel GA models enforce fixed size populations, a necessary third step would be to
incorporate the newly imported members into the local subpopulation by replacing local members.

A different kind of interaction among the demes is based on the notion of selection using effectively over-
lapping subpopulations. In this scheme, during the selection and reproduction stage of GAs, some of the
neighboring subpopulations are also taken into consideration along with the local subpopulation. Thus, using
k neighboring demes and a subpopulation size of n at each deme, selection and reproduction step results in
sampling n members from the pool of size (k + 1)×n. Depending on such overlap, the effective subpopulations
employed over all the demes constitute either a partition or a covering set of the global population. Obviously,
a meaningful migration operation in such a model can be designed only by considering the demes which are not
in the same selection pool.

2.3. Related Research. Here we focus on parallel GAs that support the deme concept. It was recognized
early that a variety of choices existed with respect to the spatial distribution of population members [41, 5].
At one end of the spectrum are so-called coarse-grained parallel GAs [3]. In this case, the global population
is divided into a few distinct non-overlapping subpopulations. Communication among them is accomplished
by periodic migration [12, 13]. Selection within a subpopulation is an issue but there are no inter-deme selec-
tion issues. If a parallel computer is applied to coarse-grained GA simulation, a MIMD architecture is most
appropriate [43].

Rigorous experimentation with coarse-grained GAs was first performed by Tanese [44]. She examined
the frequency and subpopulation fraction for migration. It was discovered that moderate values of each are
the most effective. She also noted something else that was peculiar: Even in the absence of any inter-deme
communication, the parallel GA with small subpopulations performed better than the serial GA. Forrest et al.,
in follow-up work [17], determined that this was an artifact of the problem to which the GA was applied (a
subset of Walsh functions). The coarse-grained approach allows considerable freedom such as varying control
parameters, e.g., crossover rate, between subpopulations [44], varying the representation from one subpopulation
to the next [37], and even dynamically varying the subpopulation sizes and number of subpopulations [46, 20].

In contrast, a fine-grained parallel GA is, strictly speaking, one in which the number of demes is the same
as the population size. That is, each deme consists of one individual. A classic example is one reported by
Manderick et al. [26]. In this class of GAs the principal issue is selection policy (radius, for example) [14].
A SIMD architecture is the more appropriate parallel computer for fine-grained GA simulations. Some other
terms that have been used for fine-grained GAs include cellular GAs [47] and diffusion GAs [33]. The fine-
grained approach has also been applied to evolution strategies to study different selection schemes [18]. Cellular
programming of cellular automata is an approach that is also related to fine-grained parallel GAs [40, 9].

Mühlenbein initially developed a fine-grained GA [30] on a double-ring grid that incorporated hill-climbing.
Later, the system was extended [31] in a manner that incorporated non-singleton subpopulations with both
inter-deme selection and migration issues and so was not strictly fine-grained. The algorithm we have used is
also not strictly fine-grained, but tends in that direction [35]. Small subpopulations were isolated with respect
to selection but connected with respect to migration. This was in accordance with the controlled variables we
wished to study. Otherwise, the algorithm as illustrated in Figure 2.1 has all the recognizable elements of a
serial GA.

3. Logical Architecture. This experiment focuses primarily on the interactions of subpopulations. Such
interactions are constrained by the connectivity among the subpopulations and the consequent neighborhood
structure within the logical architecture of the parallel GA. The physical architecture does not prohibit any
specific logical architecture. Suppose that n nodes are given. Any graph that weakly connects them induces a
topology. The topologies considered in this study further assume that the graph is not directed. Specifically,
the four topologies considered are shown in Figure 3.1. Choice of a topology results in a neighborhood for each
node. A neighborhood can be compact or not. A compact neighborhood of size r consists of a reference node
together with all other subpopulations reachable by traversing at most r links of the topology. A noncompact

Interconnected Subpopulations in SIMD Environment 69

Set the number of subpopulations;

Set the topology and migration radius;

For all nodes synchronously Do:

{
Randomly generate initial subpopulations;

Evaluate all members of initial subpopulations;

While termination conditions not met, Do:

{
/* Migration stage */

Export: for every node copy a candidate to export;

Choose a subset of nodes based on migration neighborhood;

For these nodes synchronously Do:

{
Import: Pick zero or one from the import candidates based on

migration probability;

Replace: Replace a local member by candidate chosen;

}
endFor

/* Reproduction stage */

Selection: For each node, assign fitness-based target

sampling rates; /* ideal value for re-use as parent */

Sampling: Sample members based on target sampling rates;

/* Transformation stage */

Crossover: Stochastically recombine pairs generating offspring pair;

Mutation: Stochastically make small changes in offspings;

/* Evaluation and iteration stage */

Evaluate each new individual;

Replace parent subpopulation by offsprings; /* generational GA */

}
endWhile

}
endFor

Fig. 2.1. The parallel genetic algorithm

neighborhood consists of any other strongly connected subgraph of the topology. Figure 3.2 shows an example
of compact neighborhoods for r = 1 and r = 2 for a node in a 4-neighbor torus topology.

Selection using overlapping subpopulations—a form of subpopulation interaction—is based on the notion
of compact neighborhoods. We define the selection neighborhood of size rs, termed selection radius, for a node
to be the corresponding compact neighborhood of that node. Let KS denote the set of subpopulations in the
neighborhood. By extending the chances of reproduction in the local node to members of all the subpopulations
in the selection neighborhood, overlapping subpopulations can be effectively simulated based on the selection
neighborhood. We consider only the cases for which rs = 0, that is, the selection neighborhood is the local
subpopulation.

Subpopulation interaction by migration provides access to members of subpopulations that lie outside the
selection neighborhood. Given a selection radius of rs, we define the migration neighborhood of size rm to be the
noncompact neighborhood resulting from deleting the selection neighborhood from the compact neighborhood
of size (rs + rm) where rm is termed migration radius. In other words, if we denote KS+M to be the set of

70 Prabhu, Buckles, and Petry

Fig. 3.1. Subpopulations in ring, tree, 4- and 8-neighbor torus topologies. Open-ended arrows denote wrap-around connectivity.

Fig. 3.2. Compact neighborhoods for a node of a four-torus topology. The nodes in the inner shaded area are included for
r = 1. The nodes in both the shaded areas are included for r = 2.

subpopulations for the size (rs + rm), then the set of subpopulations available for the migration operation is
defined by (KS+M − KS). Figure 3.3 illustrates a migration neighborhood for rs = 1 and rm = 1. For a
zero-valued selection radius, the migration neighborhood reduces to the compact neighborhood of size rm, sans
the reference node.

4. Experimental Design. Many empirical studies reported in the computer literature compare one
method with another or the effect of one factor. This is in contrast to the natural sciences in which it is
common to simultaneously study the effects of a number of factors and their interactions. The study here is
closer in spirit to the principles of statistical experiment design as first used in agricultural, and then manufac-
turing, settings. At least one previous study [39] of GAs has adopted a similar strategy.

Specifically, we employed an (m1×m2×m3×m4)− factorial design with complete randomization of trials.
That is to say, there were four factors (independent variables) with m1, m2, m3, and m4 levels, respectively. A
level is a quantitative or qualitative value at which a factor is tested. An experiment consists of a set of trials.
A trial is a test involving each factor set at one of its levels. (In this experiment, a trial consists of one complete
run.) Each trial corresponds to a single measurement of a response variable (dependent variable). Trials at
the same factor levels are repeated several times with different initial conditions in order to obtain meaningful
statistical properties.

Trials in an experiment must be conducted using a specific problem. An appropriate problem is one that is
both generic and which provides insight into the behavior of the algorithm. Holland’s revised version of Royal
Road functions meets these criteria [24]. The Royal Road function chosen is particularly large and difficult
to optimize. It is sufficiently difficult to exhibit meaningfully different behavior under different experimental

Interconnected Subpopulations in SIMD Environment 71

Fig. 3.3. Migration neighborhood for a node in four-torus topology, given rs = 1. The nodes in the shaded area are included
by a migration radius of rm = 1.

conditions as is needed in studies such as this. The Royal Road functions were designed to reward the discovery
of lowest level building blocks of the optimal solution as well as the successful recombination of such blocks into
higher level blocks in a hierarchical fashion. Royal Road functions have been widely used in a number of areas,
for example, crossover variations [42], dual GAs [50] and applications such as learning of neural networks [23].

Here we briefly describe the function adopting the symbols and terminology used by Holland [28] and
Jones [24]. For this problem, populations are formed from individuals over the binary alphabet. The structure
of the solutions in the population is uniformly specified by the triple 〈b, g, k〉. Each genome is composed of 2k

basic blocks of length (b + g). Thus, each individual consisted of 240 genes using the parameter values shown
in Table 4.1. Within each block, allele values at pre-specified b positions (block bits) are relevant for fitness
computation and the allele values of the remaining g positions (gap bits) do not affect the fitness. Such basic
blocks are called level-0 blocks. A level-0 block is considered complete when all of its block bits take the value 1.
Even-odd pairs of level-0 blocks comprise level-1 blocks. Level-i blocks, for 1 ≤ i ≤ k, are comprised of even-odd
pairs of level-(i-1) blocks. Further, any level-i block is considered complete if the two adjacent blocks forming
its constituent level-(i-1) even-odd pair are both complete.

The computation of the Royal Road function used itself can be described in two parts, typically referred
to as the part and the bonus computations. part computes a value with respect to level-0 blocks using two
parameters, m∗ and v. Let j stand for the number of 1s present in the b block bits for a given level-0 block in
the genome. Now, the part contribution for that block is given by (j × v), if j ≤ m∗, and by ((m∗ − j)×−v),
if m∗ < j < b. The contribution is zero (0) if j = b. The full part value is computed by summation over all the
level-0 blocks. The intentional penalties for near-optimal blocks at the lowest level make this problem harder
for hill-climbing algorithms.

The bonus computation rewards the presence of complete blocks at each level i, 0 ≤ i ≤ k, and is specified
by the parameters u∗ and u. Recall that only the presence of a corresponding even-odd pair of complete blocks
of level-(i-1) can generate a complete block at level-i. Let j stand for the number complete blocks present in the
genome for a given level-i. The bonus contribution for level-i is zero, if j = 0 and is given by (u∗ + (j− 1)× u)
for j > 0. The complete bonus value for the genome is computed by summation over all the levels. The fitness
function itself is again a sum of part and bonus values. The parameter values used in this study are shown in
Table 4.1 and they are similar to the values suggested by Holland.

4.1. Factors. The four factors studied are given in Table 4.2. Each was tested at four levels, leading to a
4× 4× 4× 4 factorial experiment. Two factors—migration radius and migration probability—are quantitative.
Two—topology and migration operator—are qualitative. Thus the experiment consisted of 256 combinations
of different levels of factors, or “cells”. Each such cell was sampled ten times resulting in a total of 2560 runs
of the parallel GA using the same set of ten random seeds for each cell. The sequence of runs was determined
in a fully randomized fashion. The parameters held constant over the experiment are listed in Table 4.3. The
values in Table 4.3 were chosen following an extensive study of the SIMD algorithm literature. They appear to
be robust and generally accepted in applications. Each subpopulation exported one individual (by copy) during
each generation. When a subpopulation chose to import, it imported one individual from the set of candidates

72 Prabhu, Buckles, and Petry

Table 4.1

Parameters for the Royal Road function.

Parameters Value

k 4
b 8
g 7

m∗ 4
v 0.02
u∗ 1.0
u 0.3

Table 4.2

Experimental Factors

Factor Symbol Levels

Topology G { G 0 = Ring, G 1 = Tree,
G 2 = 4-Torus, G 3 = 8-Torus }

Migration Radius R { R 0 = 1, R 1 = 3, R 2 = 5, R 3 = 7 }
Migration Operator O { O 0 = Import-random & Replace-random,

O 1 = Import-random & Replace-worst,
O 2 = Import-best & Replace-random,
O 3 = Import-best & Replace-worst }

Migration Probability P { P 0 = 0.0, P 1 = 0.33, P 2 = 0.66, P 3 = 1.0 }

available. The experiments were performed on the MasPar MP-216 at NASA/GSFC using MPGA [36], a
massively parallel GA package developed by the authors.

4.2. Response Variables. The effect of the factors was tested using response variables corresponding to
population diversity, schemata propagation, and search efficiency. More than one method was employed [35],
but here we restrict the discussion to one representative method for each.

An objective in a GA, parallel or serial, is to obtain a balance between population diversity and the speed of
convergence, i. e., exploration and exploitation. Therefore studying the effect of the factors on the population
diversity is important. To measure diversity we use a metric similar in spirit to the one described by Collins [13,
pages 118–120].

δ =
1

l
×

l
∑

i=1

1− 2×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0.5−

m
∑

j=1

n
∑

k=1

Bit(i, k, j)

m× n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4.1)

where, l is the length of the chromosome in bits, m is the number of subpopulations, and n is the number of
chromosomes in each subpopulation. Bit(i, k, j) denotes the value of the ith bit of the kth member in the jth
subpopulation. δ is in the range [0, 1] where zero (0) is the response for a global population consisting of one
individual replicated and one (1) is the response when the global population is maximally diverse, i. e., at each
position all alleles are uniformly distributed.

Schemata propagation is used here to mean the extent to which a fit schema is present among all the
subpopulations. A priori choice of a single schema to be monitored is not practical because there are a number
of search paths from different schemata that lead to an optimum. Taking advantage of the problem symmetry,
eight complementary schemata were chosen for monitoring. These schemata are shown in Figure 4.1. At selected
generations the subpopulations were examined for presence of the schemata. In the results of Section 5 the final
measurement is used.

The response value was not simply the fraction of subpopulations in which a schema was found. It was
computed as the number of subpopulations containing instance(s) of the schema less the subset of those demes

Interconnected Subpopulations in SIMD Environment 73

Table 4.3

GA parameters used in the experiment.

Parameters Value

Number of subpopulations 16,384
Subpopulation size 10
Number of maximum generations 100
Export operator Export-current-best
Selection radius 0
Selection operator Ranking
Elitism No
Sampling operator Stochastic universal sampling
Mutation operator Bit-mutation
Mutation probability 0.005 per bit
Crossover operator Two-point crossover
Crossover probability 0.7

having no neighbors (with respect to the topology) also containing instance(s). That is, only those subpopula-
tions in which the schema could plausibly have occurred as a result of migration are counted. The maximum for
the eight candidate schemata was chosen as the basis for the response. This accounts for the various search paths
the GA might traverse. The response variable was normalized to be the fraction of the number of applicable
subpopulations meeting the propagation criteria.

1 1· · · 1 #· · · # #· · · # #· · · # #· · ·# #· · ·# #· · ·# #· · ·#
2 #· · · # 1· · · 1 #· · · # #· · · # #· · ·# #· · ·# #· · ·# #· · ·#
3 #· · · # #· · · # 1· · · 1 #· · · # #· · ·# #· · ·# #· · ·# #· · ·#
4 #· · · # #· · · # #· · · # 1· · · 1 #· · ·# #· · ·# #· · ·# #· · ·#
5 #· · · # #· · · # #· · · # #· · · # 1· · ·1 #· · ·# #· · ·# #· · ·#
6 #· · · # #· · · # #· · · # #· · · # #· · ·# 1· · ·1 #· · ·# #· · ·#
7 #· · · # #· · · # #· · · # #· · · # #· · ·# #· · ·# 1· · ·1 #· · ·#
8 #· · · # #· · · # #· · · # #· · · # #· · ·# #· · ·# #· · ·# 1· · ·1

Legend: 1· · · 1 ⇒ 11111111#######11111111#######

#· · · # ⇒ ##############################

Fig. 4.1. The list of schemata monitored.

Finally, search efficiency is measured in terms of the time taken to reach the optimum. In this case, the
number of generations taken to find the globally optimal solution is recorded. If a particular trial failed to
locate the optimum, the preset value of maximum number of generations was used. Typically, the value for
efficiency tends to be domain-specific. However, it is hoped that the premise underlying the design of the Royal
Road functions—building-block hypothesis—renders the results a significance sufficiently independent of specific
applications.

5. Results and Analysis. An important aspect of this paper is the experimentation and analysis of
variance methods employed. It is more common to see less formal experiments having a different objective—
performance prediction. The formal experimental design approach used here discovers which factors affect

74 Prabhu, Buckles, and Petry

performance. A factor may affect performance by itself, in combination with other factors, or both. The most
important result here, given that each factor investigated affected performance as might be expected, is that
there were no unusual effects that occurred when factors were used in combination. That is, the effects in
combination are a linear combination of the effects of each single factor.

5.1. ANOVA. An illustrative ANOVA is shown in Table 5.1. A complete table for each response variable
is in the appendix. The source column lists the factor (e.g., R or migration radius) or factor combination
(e.g., O × P or migration operator with migration probability) that was tested for its effects. The last column
(Computed F) is a statistic that is compared to standard tables to extract the degree of confidence that the
source factor or source combination has a significant influence on the response. Further description of the
ANOVA tables and the columns can be found in the appendix.

Table 5.1

Abbreviated ANOVA for global allelic diversity

Source DF Sum Sq Mean Sq Computed F

1 R 3 3.8493 1.2831 40437.7601
2 P 3 81.5102 27.1701 856282.9984
3 R×O 9 0.4826 0.0536 1689.9835
4 O × P 9 7.1838 0.7982 25155.7570
5 G×R×O 27 0.1644 0.0061 191.8747
6 G×O × P 27 1.0641 0.0394 1242.1203
7 G×R×O × P 81 0.3613 0.0045 140.5775

Since a large computed F -statistic value relative to the corresponding critical value indicates that the effect
under scrutiny is significant under normal circumstances, the ANOVA tables shown would lead one to conclude
that all the factors and their interactions have significant effect on the response variables. This is, in fact,
conclusive with respect to the single factor rows in Table 5.1 and the tables in the appendix. However, it is not
conclusive with respect to the factor interaction effects. Their appearance of significance may be a carry-over
effect of the individual factor effects. The standard recourse in such instances is to scrutinize in greater detail
the effects. Generally, a graphical approach is used and that approach is taken in the following sections. For
completeness, we examine the individual factors this way as well as the factor interactions.

5.2. Effects of individual factors. Note that in the ANOVA analysis, Tables A.1, A.2, and A.3, the
computed F -statistic values for migration probability factor are the greatest. Migration probability, in fact,
clearly affects all three responses as is evident from Figure 5.1. In the single factor graphs, the feature one looks
for in order to confirm visually that a factor affects performance is a curve with a slope other than zero. The
response values (Y -axis) for these and succeeding plots are described in Section 4.2. To summarize, the Y -axis
of the top graph of Figures 5.1-5.4 is the value from Eq. 4.1. The Y -axis of the middle graph of the figures is
the fraction of subpopulations in which a key schema occurs (plausibly) by means of migration. Finally, the
Y -axis of the bottom graph is the number of generations required for convergence. For single-factor plots, each
data point is an average over all possible combinations of other factors, i. e., each point is an average of 640
values. The error bars depict the standard deviation.

Figure 5.1 emphatically demonstrates that subpopulations when interconnected behave differently than
when isolated, i. e., P = 0. Further, up to a point, the level of intercommunication, as reflected by the
magnitude of migration probability, makes a difference. In the absence of migration, i. e., zero probability,
there is little exploitation (i. e., maximal diversity), schema proliferation only by chance rediscovery, and poor
search efficiency. In contrast, moderate to high migration probabilities result in significantly different behavior
with respect to all response variables. As is seen in the following subsections, migration probability also exhibits
significant interaction with other factors.

In Figure 5.2, it can be seen that the migration operator also affects all three responses. The effects,
however, are less dramatic compared to the effect of migration probability. Recall that the migration operator
components include an import policy and a replacement policy. Figure 5.2 suggests that the former is more
important than the latter. In each plot the first data point is similar to the second and the third data point is
similar to the last. See again Table 4.2 to correlate the data points with migration policies.

Interconnected Subpopulations in SIMD Environment 75

0.00

0.20

0.40

0.60

0.80

1.00

P 0 P 1 P 2 P 3

Cell
means

of
diversity

Levels of factor P (migration probability)

Effect of factor P (migration probability) on diversity

3

3

3
3

0.00

0.20

0.40

0.60

0.80

1.00

P 0 P 1 P 2 P 3

Cell
means

of
schema
prop.

Levels of factor P (migration probability)

Effect of factor P (migration probability) on schemata propagation

3

3

3
3

0

20

40

60

80

100

P 0 P 1 P 2 P 3

Cell
means

of
gens
to

optimum

Levels of factor P (migration probability)

Effect of factor P (migration probability) on search efficiency
3

3

3

3

Fig. 5.1. Effect of factor P (Migration Probability) on the response variables

Figures 5.3 and 5.4 indicate that the independent effects of topology and migration radius are minimal.
The changes in responses between the first and the second data points of each plot might best be explained in
terms of changes in the degree of connectivity. The similarity among the remaining data points suggest that
further increases in the degree of connectivity have little effect.

5.3. Effects of multiple factor interactions. One method for examining in more detail the higher order
interactions is to visually compare different components of the effect under scrutiny, using two factors at a time.
The cell means of the response variable are plotted against one of the factors, for each level of the second factor.
All the cell means are averaged over all the combinations of levels of the remaining factors.

To illustrate the approach, the effects of the two factor interactions—migration radius vs. migration operator
and migration operator vs. migration probability—on the response variable measuring diversity are shown in
Figures 5.5 and 5.6 respectively. The null hypothesis here is: The effects of factor level combinations are an

76 Prabhu, Buckles, and Petry

0.00

0.20

0.40

0.60

0.80

1.00

O 0 O 1 O 2 O 3

Cell
means

of
diversity

Levels of factor O (migration operator)

Effect of factor O (migration operator) on diversity

3
3

3 3

0.00

0.20

0.40

0.60

0.80

1.00

O 0 O 1 O 2 O 3

Cell
means

of
schema
prop.

Levels of factor O (migration operator)

Effect of factor O (migration operator) on schemata propagation

3
3

3 3

0

20

40

60

80

100

O 0 O 1 O 2 O 3

Cell
means

of
gens
to

optimum

Levels of factor O (migration operator)

Effect of factor O (migration operator) on search efficiency

3
3

3 3

Fig. 5.2. Effect of factor O (Migration Operator) on the response variables

additive (linear) combination of the individual factor levels. The visual feature one looks for to “not reject the
null hypothesis” is roughly parallel lines. The four plots in Figure 5.5 are roughly parallel to each other, thus
the interaction effect is not significant with respect to diversity. Figure 5.6 shows an example that might suggest
some factor interaction but the lines are parallel statistically speaking.

When we consider any three-factor interaction, one should examine all the plots that can be generated by
choosing two factors at a time for each level of the third factor. For any response variable there are twelve
graphs for each of the four possible three-factor interactions. If most of those graphs show parallel plots, we
can conclude the effect of the interaction is insignificant. A similar procedure can be carried out to determine
the significance of the four-factor interaction.

The complete analysis for three response variables of a 4 × 4 × 4 × 4 experiment uses more than 450 such
graphs. Here we selectively present those which best illuminate the behavior. More details and a complete set
of graphs can be found in [35].

Interconnected Subpopulations in SIMD Environment 77

0.00

0.20

0.40

0.60

0.80

1.00

G 0 G 1 G 2 G 3

Cell
means

of
diversity

Levels of factor G (subpopulation topology)

Effect of factor G (subpopulation topology) on diversity

3
3 3 3

0.00

0.20

0.40

0.60

0.80

1.00

G 0 G 1 G 2 G 3

Cell
means

of
schema
prop.

Levels of factor G (subpopulation topology)

Effect of factor G (subpopulation topology) on schemata propagation

3

3
3 3

0

20

40

60

80

100

G 0 G 1 G 2 G 3

Cell
means

of
gens
to

optimum

Levels of factor G (subpopulation topology)

Effect of factor G (subpopulation topology) on search efficiency

3

3
3 3

Fig. 5.3. Effect of factor G (Subpopulation Topology) on the response variables

Since the migration probability and migration operator have the greatest single factor effects, as can be
expected, they exhibit the most pronounced second-order effects. The second order effect of O×P on diversity
is shown in Figure 5.6. Similar behavior can be observed with respect to the other response variables. In
Figure 5.6, there is evidence explaining the interaction of O × P . Namely, the import policy impacts the
migration effect to a greater extent than the replacement policy. Also, reinforcing our expectations, a migration
probability of zero produces the most distinctively different results.

Given that O × P is the most significant second order interaction, we show first an example of a three-
factor interaction not involving both simultaneously. Figure 5.7 depicts some of the effects of the interaction
among migration radius, migration operator, and topology, i. e., R×O×G, on the response variable measuring
schemata propagation. It compares the first factor against the second while keeping the third factor constant at
some level. In this figure, only the first graph, which corresponds to ring topology, indicates some significance.

78 Prabhu, Buckles, and Petry

0.00

0.20

0.40

0.60

0.80

1.00

R 0 R 1 R 2 R 3

Cell
means

of
diversity

Levels of factor R (migration radius)

Effect of factor R (migration radius) on diversity

3
3 3 3

0.00

0.20

0.40

0.60

0.80

1.00

R 0 R 1 R 2 R 3

Cell
means

of
schema
prop.

Levels of factor R (migration radius)

Effect of factor R (migration radius) on schemata propagation

3

3 3 3

0

20

40

60

80

100

R 0 R 1 R 2 R 3

Cell
means

of
gens
to

optimum

Levels of factor R (migration radius)

Effect of factor R (migration radius) on search efficiency

3

3
3 3

Fig. 5.4. Effect of factor R (Migration Radius) on the response variables

0.00

0.20

0.40

0.60

0.80

1.00

R 0 R 1 R 2 R 3

Cell
means

of
diversity

Levels of factor R (migration radius)

O 0 33 3 3 3
O 1 +

+ + + +
O 2 2

2

2 2 2

O 3 ×

×
× × ×

Fig. 5.5. Effect of RxO interaction on diversity

Interconnected Subpopulations in SIMD Environment 79

0.00

0.20

0.40

0.60

0.80

1.00

O 0 O 1 O 2 O 3

Cell
means

of
diversity

Levels of factor O (migration operator)

P 0 3

3 3 3 3

P 1 +

+
+

+ + P 2 2

2

2

2 2 P 3 ×
× × × ×

Fig. 5.6. Effect of OxP interaction on diversity

This is probably a reflection of the effect migration radius has in a low-connectivity architecture. The plots in
terms of other response variables indicate essentially the same behavior.

Contrast Figure 5.7 with Figure 5.8 in which the effects of the interaction among migration radius, migration
operator, and migration probability on schemata propagation are shown. While the R×O×P interaction effect
is not highly pronounced in the figure, it does assert itself in the second plot. This again is further corroboration
of the importance of the import policy component of the migration operator.

The computed F -statistic for the fourth order interaction is low in a relative sense in each of the ANOVA
Tables A.1, A.2, and A.3 shown in the appendix. This leads one to suspect that the interaction effect is minimal.
Figure 5.9, which illustrates the fourth order interaction partially, supports this observation. The plots are in
terms of the search efficiency response but the graphs of other response variables lead one to the same conclusion.

5.4. Global Behavior. Recall that in the experiments, the number of cells was 256 (4× 4× 4× 4). Since
we took 10 samples for each cell (using the same set of 10 random seeds across all the cells) a total of 2,560
runs were made. Of the 2,560 runs, the algorithm found the maximum royal road (RR) level of 4 in 1,316
runs, reached RR level 3 in 1, 834 runs, and reached RR level 2 in 1,920 runs. It reached the first level in all
runs. (While we are speaking here of global behavior, let us remind the reader the 640 runs that it failed to
climb above level 1 are the same runs for which the migration probability was zero, i. e., the subpopulations
were isolated. Table 5.2 summarizes the global behavior. We suggest that the measure “Evaluations (Avg.)”

Table 5.2

Summary across experiments.

RR Level Reached in . . . That is . . .
Fuction

Evaluations (Avg.)
Generations

(Avg.)

1 2,560 runs 100% of runs 163,840 1.00
2 1,920 runs 75% of runs 2,723,840 16.63
3 1,834 runs 72% of runs 6,102,459 37.25
4 1,316 runs 51% of runs 7,809,790 47.67

(the number of function evaluations required to reach a specific level) is not as informative as the number of
generations given that 16,384 evaluations are done in parallel. That is 16,384 evaluations occur between points
at which the level noted.

In general, suppose someone were to budget or use the same computational effort using a non-parallel GA.
An example would be a GA with population size of 100 running for 81,920 generations. Would that setup reeach
RR level 4 much faster than the 8,192,000 evaluations used in the MPGA of Table 5.2? That is, would the
algorithmic performance of such a setup, as measured by machine cycles needed to find the optimal fitness vlaue,
be much better? We think that is extremely likely to be true. For example, you might reach the same fitness
value by 5,000 generations. However, the wall-clock time for 5,000 generations will be prohibitive, especially
for complex fitness functions. On the other hand, the actual number of fitness function evaluations is not that
important for massively parallel GAs because the required wall-clock time is small.

80 Prabhu, Buckles, and Petry

0.00

0.20

0.40

0.60

0.80

1.00

R 0 R 1 R 2 R 3

Cell
means

of
schema
prop.

Levels of factor R (migration radius)

RxO interaction for ring topology (G 0)

O 0 3

3
3 3 3

O 1 +

+
+ + +

O 2 2

2

2
2

2

O 3 ××

× × ×

0.00

0.20

0.40

0.60

0.80

1.00

R 0 R 1 R 2 R 3

Cell
means

of
schema
prop.

Levels of factor R

RxO interaction for tree topology (G 1)

O 0 3

3

3
3 3

O 1 +

+
+ + + O 2 22

2 2 2

O 3 ×
×

× × ×

0.00

0.20

0.40

0.60

0.80

1.00

R 0 R 1 R 2 R 3

Cell
means

of
schema
prop.

Levels of factor R

RxO interaction for 4-torus topology (G 2)

O 0 3

3
3 3 3

O 1 +

+ + + +
O 2 2

2
2 2 2

O 3 ×

× × × ×

0.00

0.20

0.40

0.60

0.80

1.00

R 0 R 1 R 2 R 3

Cell
means

of
schema
prop.

Levels of factor R

RxO interaction for 8-torus topology (G 3)

O 0 3

3
3 3 3

O 1 +
+ + + +

O 2 2

2 2 2 2

O 3 ×

× × × ×

Fig. 5.7. Partial effect of RxOxG interaction on schemata propagation

6. Conclusions. The motivation of this study was to rigorously but empirically examine the behavior
of GAs in a SIMD environment. Such an environment imposes constraints on the parallelization including
uniformity of representation, commonality of operators, and synchronous execution. With this objective in
mind, a reasonable set of control parameters and response metrics were devised and a rigorous randomized
experiment was performed. Approaching an empirical study from a statistical experiment design is highly
effective with respect to the objectives of this study. One purpose of this paper is to demonstrate the method-
ology.

Interconnected Subpopulations in SIMD Environment 81

0.00

0.20

0.40

0.60

0.80

1.00

R 0 R 1 R 2 R 3

Cell
means

of
schema
prop.

Levels of factor R

RxO interaction for migration probability 0.0 (P 0)

O 0 3

3 3 3 3

O 1 +

+ + + +

O 2 2

2 2 2 2

O 3 ×

× × × ×

0.00

0.20

0.40

0.60

0.80

1.00

R 0 R 1 R 2 R 3

Cell
means

of
schema
prop.

Levels of factor R

RxO interaction for migration probability 0.33 (P 1)

O 0 3

3
3 3 3

O 1 +

+
+ + +

O 2 2
2

2
2 2

O 3 ×
×

× × ×

0.00

0.20

0.40

0.60

0.80

1.00

R 0 R 1 R 2 R 3

Cell
means

of
schema
prop.

Levels of factor R

RxO interaction for migration probability 0.66 (P 2)

O 0 3

3

3
3

3
O 1 ++

+
+ +

O 2 2

2

2 2 2

O 3 ×

×
× × ×

0.00

0.20

0.40

0.60

0.80

1.00

R 0 R 1 R 2 R 3

Cell
means

of
schema
prop.

Levels of factor R

RxO interaction for migration probability 1.0 (P 3)

O 0 3

3

3
3 3

O 1 +

+
+ + +

O 2 2

2
2 2 2

O 3 ×

× × × ×

Fig. 5.8. Partial effect of RxOxP interaction on schemata propagation

The results demonstrate that migration probability and the choice of migration operator have the greatest
impact. This applies to both individual and interaction effects. With respect to the migration operator, the
import policy (import random vs. import best) appears more important than the replacement policy. Concerning
the other factors, (topology and migration radius), the real effect is due to the degree of connectivity and both
factors contribute to this implicit factor. Looking beyond the individual factors and at the degree of connectivity,
it seems that above moderate levels, additional increases in connectivity have little additional effect. Finally, the

82 Prabhu, Buckles, and Petry

0

20

40

60

80

100

R 0 R 1 R 2 R 3

Cell
means

of
gens
to

optimum

Levels of factor R

RxOxGxP interaction for ring topology and 1.0 migration probability

O 0 3

3 3

3
3

O 1 +

+

+
+

+ O 2 2

2

2

2 2 O 3 ×

×

× × ×

0

20

40

60

80

100

R 0 R 1 R 2 R 3

Cell
means

of
gens
to

optimum

Levels of factor R

RxOxGxP interaction for tree topology and 1.0 migration probability

O 0 3
3

3

3
3

O 1 +
+

+
+ +

O 2 2
2

2
2 2

O 3 ××
× × ×

0

20

40

60

80

100

R 0 R 1 R 2 R 3

Cell
means

of
gens
to

optimum

Levels of factor R

RxOxGxP interaction for 4-torus topology and 1.0 migration probability

O 0 3

3

3
3 3

O 1 +

+
+ + +

O 2 2

2

2
2 2

O 3 ×
×

× × ×

0

20

40

60

80

100

R 0 R 1 R 2 R 3

Cell
means

of
gens
to

optimum

Levels of factor R

RxOxGxP interaction for 8-torus topology and 1.0 migration probability

O 0 3

3

3 3 3

O 1 +

+
+ + +

O 2 2

2

2 2 2

O 3 ×
×

× × ×

Fig. 5.9. Partial effect of RxOxGxP interaction on search efficiency.

results lend strong credence to a conclusion already largely accepted: There is a distinct behavioral difference
between isolated subpopulations and those that communicate.

There are issues that are open to further study. Selection radius is one of them. Varying the selection radius
has the effect of controlling the number of breeding pools to which an individual can belong. The migration
operator, treated here as a single factor, deserves more detailed analysis. It consists of an import policy and
a replacement policy. Each was instantiated using two options in the experiment. Other options are possible
and the policies could be treated as stand-alone control parameters. Additionally, one might consider an export

Interconnected Subpopulations in SIMD Environment 83

policy. On the other side of the ledger, the choice of topology does not seem to be an important one as long as
the communication is bidirectional. The native topologies of SIMD architectures, such as a 4- or 8-torus, can
be used without impacting the performance.

Acknowledgement. The authors wish to thank Dr. Janet Rice of the Tulane School of Public Health for
invaluable guidance in both design of the experiment and interpretation of the results. This work was supported
in part by a grant from Naval Oceanographic and Atmospheric Research Laboratory, Stennis Space Center, MS,
Grant # N00014-89-J-6003, in part by the NASA High Performance Computing and Communications Program
(Earth and Space Sciences Project) Grant NAG 5-2216, and in part by EPSCoR grant NSF/LEQSF-ADP-04.

REFERENCES

[1] E. Alba and C. Cotta, Evolution of complex data structures, Informatica y Automatica, 30 (1997), pp. 42–60.
[2] E. Alba and J. M. Troya, A survey of parallel distributed genetic algorithms, Complexity, 4 (1999), pp. 31–52.
[3] S. L. amd W. Punch and E. Goodman, Coarse-grain parallel genetic algorithms: Categorization and new approach, in 6th

IEEE Symp. On Parallel and Distributed Processing, IEEE Press, 1994, pp. 28–37.
[4] R. Belew and L. Booker, eds., Proc. of Fourth Intern. Conf. on Genetic Algorithms, San Diego, CA, April 1991, Morgan

Kaufmann.
[5] E. Cantú-Paz, A survey of parallel genetic algorithms, Calculateurs Paralleles, Reseaux et Systems Repartis, 10 (1998),

pp. 141–171.
[6] , Efficient and Accurate Parallel Genetic Algorithms, Kluwer Academic Publishers, 2000.
[7] , Migration policies, selection pressure, and parallel evolutionary algorithms, Journal of Heuristics, 7 (2001), pp. 311–

334.
[8] E. Cantú-Paz and D. Goldberg, On the scalability of parallel genetic algorithms, Evolutionary Computation, 7 (1999),

pp. 429–449.
[9] M. Capcarrere, M. Tomassini, A. Tettamanzi, and M. Sipper, A statistical study of a class of cellular evolutionary

algorithms, Evolutionary Computation, 7 (1999), pp. 255–274.
[10] Y. Censor and S. Zenois, Parallel Optimization: Theory, Algorithms and Applications, Oxford University Press, 1998.
[11] , Parallel algorithms in optimization, in Handbook of Applied Optimization, M. Resende and P. Pardalos, eds., Oxford

University Press, 2002, pp. 544–559.
[12] J. P. Cohoon, S. U. Hedge, W. M. Martin, and D. Richards, Punctuated equilibria: a parallel genetic algorithm, in

Grefenstette [19], pp. 148–154.
[13] R. J. Collins, Studies in Artificial Evolution, PhD thesis, University of California, Los Angeles, 1992.
[14] R. J. Collins and D. R. Jefferson, Selection in massively parallel genetic algorithms, in Belew and Booker [4], pp. 249–256.
[15] G. Folino, C. Pizzuti, and G. Spezzano, A parallel hybrid method for SAT that couples genetic algorithms and local search,

IEEE Trans. on Evolutionary Computation, 5 (2001), pp. 323–333.
[16] S. Forrest, ed., Proc. of Fifth Intern. Conf. on Genetic Algorithms, Urbana, IL, 1993.
[17] S. Forrest and M. Mitchell, The performance of genetic algorithms on Walsh polynomials: Some anomalous results and

their explanation, in Belew and Booker [4], pp. 182–189.
[18] M. Gorges-Schleuter, An analysis of local selection in evolution strategies, in Proc. of Genetic and Evolutionary Compu-

tation Conf., Morgan Kaufmann, 1999, pp. 847–854.
[19] J. J. Grefenstette, ed., Proc. of Second Intern. Conf. on Genetic Algorithms, Lawrence Erlbaum Associates, 1987.
[20] G. Harik, E. Cantú-Paz, D. Goldberg, and R. Miller, The gambler’s ruin problem genetic algorithms and the sizing of

populations, Evolutionary Computation, 7 (1999), pp. 231–253.
[21] C. R. Hicks, Fundamental Concepts in the Design of Experiments, Holt, Rinehart and Winston, 1973.
[22] J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor MI, 1975.
[23] T. Ichimura and Y. Kuriyama, Learning of Neural Networks with Parallel Hybrid GA Using a Royal Road Function, IEEE

International Joint Conference on Neural Networks, 1998, ppp. 1131–1136
[24] T. Jones, A description of Holland’s Royal Road Function, Evolutionary Computation, 2 (1994), pp. 409–415.
[25] J. Lienig, A parallel genetic algorithm for performance-driven VLSI routing, IEEE Trans. On Evolutionary Computation, 1

(1997), pp. 329–339.
[26] B. Manderick and P. Spiessens, Fine-grained parallel genetic algorithms, in Schaffer [38], pp. 428–433.
[27] W. Martin, J. Lienig, and J. Cohoon, Island (migration) models, in Handbook of Evolutionary Computation, T. Bäck,

D. Fogel, and Z. Michalewicz, eds., Oxford University Press, 1997, pp. C6:5–8–15.
[28] M. Mitchell, S. Forrest, and J. Holland, The Royal Road for genetic algorithms: Fitness landscapes and GA perfor-

mance, in Proc. 1st European Conf. on Artificial Life, MIT Press, 1992, pp. 245–254.
[29] D. C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, 1996.
[30] H. Mühlenbein, Parallel genetic algorithms, population genetics and combinatorial optimization, in Schaffer [38], pp. 416–

421.
[31] H. Mühlenbein, M. Schomich, and J. Born, The parallel genetic algorithm as function optimizer, Parallel Computing, 17

(1992), pp. 619–632.
[32] M. Oussaidene, B. Chopard, O. Pictet, and M. Tommassini, Parallel genetic programming and its application to trading

model induction, Parallel Computing, 23 (1997), pp. 1183–1198.
[33] C. Pettey, Population structures: diffusion (cellular) models, in Handbook of Evolutionary Computation, T. Bäck, D. Fogel,

and Z. Michalewicz, eds., Oxford University Press, 1997, pp. C6:4–1–6.
[34] C. Pettey, M. Leuze, and J. Grefenstette, A parallel genetic algorithm, in Grefenstette [19], pp. 155–161.

84 Prabhu, Buckles, and Petry

[35] D. Prabhu, A study in massively parallel genetic algorithms with application to image interpretation, Tech. Rep. Tech Report
99-5, EECS Dept., Tulane University, New Orleans, 1999.

[36] D. Prabhu, B. P. Buckles, and F. E. Petry, MPGA: User’s guide, tech. rep., Department of Computer Science, Tulane
University, New Orleans, 1995.

[37] W. F. Punch, R. C. Averill, E. D. Goodman, S. C. Lin, and Y. Ding, Using genetic algorithms to design laminated
composite structures, IEEE Expert, (1995), pp. 42–49.

[38] J. D. Schaffer, ed., Proc. of Third Intern. Conf. on Genetic Algorithms, Fairfax, VA, 1989, Morgan Kaufmann.
[39] J. D. Schaffer, R. A. Caruana, L. J. Eshelman, and R. Das, A study of control parameters affecting online performances

of genetic algorithms for function ptimization, in Schaffer [38], pp. 51–60.
[40] M. Sipper, Evolution of Parallel Cellular Machines: The Cellular Programming Approach, Springer Verlag, 1997.
[41] J. Stender, Parallel genetic algorithms theory and applications, in Frontiers in Artificial Intelligence and Applications,

J. Stender, ed., IOS Press, 1993.
[42] H. Suzuki and H. Sawai, Crossover accelerates evolution in GAs with a Royal Road function, in Proc. Genetic and Evolu-

tionary Computation Conference, 2001, pp. 405–412.
[43] R. Tanese, Parallel genetic algorithms for a hypercube, in Grefenstette [19], pp. 177–183.
[44] , Distributed genetic algorithms, in Schaffer [38], pp. 434–440.
[45] M. Tomassini, Parallel and distributed evolutionary algorithms: A review, in Evolutionary Algorithms in Engineering and

Computer Science, K. Miettien, M. Mäkekä, P. Neittaanmäki, and J. Périaux, eds., J. Wiley and Sons, 1999, pp. 113–133.
[46] S. Tsutsu and Y. Fujimoto, Forking genetic algorithm with blocking and shrinking modes (fGA), in Forrest [16], pp. 206–213.
[47] D. Whitley, Cellular genetic algorithms, in Forrest [16], pp. 658–666.
[48] D. Whitley, S. Rana, and R. Heckendorn, Exploiting seperability in search: The island model genetic algorithm, Journal

of Computing and Information Technology, 7 (1999), pp. 33–47.
[49] S. Wong, C. Wong, and C. Tong, A parallelized genetic algorithm for the calibration of the Lowry Model, Parallel Com-

puting, 27 (2001), pp. 1523–1536.
[50] S. Yang, Primal-dual genetic algorithms for Royal Road functions, in Proc. of the 15th IFAC World Congress, Barcelona,

Spain, 21-26 July 2002, pp. 439–446.

Appendix A.

Analysis of Variance (ANOVA) for various experimental designs is adequately covered in numerous texts
(e.g. [21, 29]). The experiment design used here is known as randomized factorial. There are four factors and
four levels of each, thus 44 level combinations. For each level of each factor, g, r, o, p, the outcome of a single
repetition, k, is represented by ygropk. For this experiment, g ∈ {1, 2, 3, 4}, r ∈ {1, 2, 3, 4}, and o ∈ {1, 2, 3, 4},
and p ∈ {1, 2, 3, 4}, and k ∈ {1, 2, . . . , 10}, yielding 10 × 44 individual trials. The degrees of freedom are (one
less) than than the number of choices possible for a component. For total trials (line 17 in Tables A.1-A.3)
there are 2,559 (10 × 44 − 1) degrees of freedom. For any given factor (lines 1–4 in Tables A.1–A.3) there are
three (four levels – 1) degrees of freedom. For combinations of factors, the degrees of freedom are the product
of the degrees for individual factors (i. e., nine for pairs, 27 for triples, and 81 for the combination of all four
factors).

Table A.1

ANOVA for global allelic diversity

Source DF Sum Sq Mean Sq Computed F

1 G 3 4.2971 1.4324 45141.8887
2 R 3 3.8493 1.2831 40437.7601
3 O 3 14.6118 4.8706 153500.4667
4 P 3 81.5102 27.1701 856282.9984
5 G×R 9 0.6086 0.0676 2131.1502
6 G×O 9 0.9484 0.1054 3321.1950
7 G× P 9 1.5872 0.1764 5558.0741
8 R×O 9 0.4826 0.0536 1689.9835
9 R× P 9 1.6751 0.1861 5865.8867

10 O × P 9 7.1838 0.7982 25155.7570
11 G×R×O 27 0.1644 0.0061 191.8747
12 G×R× P 27 0.4341 0.0161 506.6511
13 G×O × P 27 1.0641 0.0394 1242.1203
14 R×O × P 27 0.8969 0.0332 1046.8983
15 G×R ×O × P 81 0.3613 0.0045 140.5775
16 Errors 2304 0.0731 0.0000
17 Totals 2559 119.7481

Interconnected Subpopulations in SIMD Environment 85

Table A.2

ANOVA for schemata propagation

Source DF Sum Sq Mean Sq Computed F

1 G 3 16.6509 5.5503 25888.3304
2 R 3 8.4362 2.8121 13116.4494
3 O 3 27.5620 9.1873 42852.7267
4 P 3 340.6299 113.5433 529602.2027
5 G× R 9 2.4828 0.2759 1286.7461
6 G×O 9 0.7596 0.0844 393.6835
7 G× P 9 6.8043 0.7560 3526.3902
8 R×O 9 0.1485 0.0165 76.9467
9 R× P 9 3.6515 0.4057 1892.4426

10 O × P 9 22.7254 2.5250 11777.6365
11 G×R×O 27 0.8185 0.0303 141.4041
12 G×R× P 27 1.5875 0.0588 274.2432
13 G×O × P 27 3.7258 0.1380 643.6473
14 R ×O × P 27 2.2732 0.0842 392.7038
15 G×R×O × P 81 1.7956 0.0222 103.3959
16 Errors 2304 0.4940 0.0002
17 Totals 2559 440.5459

Table A.3

ANOVA for search efficiency

Source DF Sum Sq Mean Sq Computed F

1 G 3 254008.7824 84669.5941 9667.5576
2 R 3 149389.6855 49796.5618 5685.7616
3 O 3 579318.1168 193106.0389 22048.8096
4 P 3 1124711.5105 374903.8368 42806.4464
5 G×R 9 7361.0035 817.8893 93.3864
6 G×O 9 46817.6848 5201.9650 593.9593
7 G× P 9 89067.4410 9896.3823 1129.9670
8 R×O 9 42775.2691 4752.8077 542.6746
9 R× P 9 50002.2004 5555.8000 634.3602

10 O × P 9 242684.8566 26964.9841 3078.8566
11 G×R×O 27 3590.1730 132.9694 15.1824
12 G×R × P 27 25966.8418 961.7349 109.8107
13 G×O × P 27 68730.3230 2545.5675 290.6524
14 R×O × P 27 41988.8262 1555.1417 177.5658
15 G×R×O × P 81 34339.4254 423.9435 48.4058
16 Errors 2304 20178.7000 8.7581
17 Totals 2559 2780930.8402

The fundamental idea in design of experiments is that if a factor has no significance, then the distribution
of all responses is the same as the distribution of responses for a given level of the factor. That is, we could
check the total mean against the mean for a specific factor level. Parametric comparisons in statistics more
frequently employ an equivalent method: Determine if there are differences in the variances (mean squares)
among factor levels. Let yg.... be the average of responses for a particular option, g, for the topology across all
other factors and repetitions. Similarly, let y..... be the overall average for all (in this case, 2,560) responses. To
describe via example, the sum of squares for line 1 of Tables A.1-A.3 is

∑

g

n(yg.... − y.....)
2

86 Prabhu, Buckles, and Petry

where n is the number of replications (10 in our case). The mean square is the sum of squares divided by
the degrees of freedom. The total sum of squares is

∑

g

∑

r

∑

o

∑

p

∑

p(ygropk − (y).....)
2. The “easy” way to

compute the error sum of squares is subtract the individual factor sums from the total sum.
Variances are compared by dividing the factor mean square by the error mean square (the F -statistic).

Standard tabulations of critical F -statistic values can then be consulted to determine if the effect of a factor
or an interaction on the given response variable is significant. ANOVA results for the response variables
measuring population diversity, schemata propagation, and search efficiency are shown in Tables A.1, A.2,
and A.3, respectively.

Edited by: Marcin Paprzycki.
Received: February 10, 2003.
Accepted: June 16, 2003.

Scalable Computing: Practice and Experience

Volume 7, Number 2, pp. 87–91. http://www.scpe.org
ISSN 1895-1767

c© 2006 SWPS

PARALLEL STANDARD ML WITH SKELETONS

NORMAN SCAIFE∗, GREG MICHAELSON† , AND SUSUMU HORIGUCHI‡

Abstract. We present an overview of our system for automatically extracting parallelism from Standard ML programs using
algorithmic skeletons. This system identifies a small number of higher-order functions as sites of parallelism and the compiler uses
profiling and transformation techniques to exploit these.

Key words. automated parallelization, higher-order functions, algorithmic skeletons.

1. Introduction. The exploitation of parallelism in programs is greatly eased by tools based on implicit
parallelism. The PMLS compiler realises higher order functions (HOFs) in Standard ML (SML) programs as
parallel algorithmic skeletons. An SML program is treated as a prototype of the final parallel implementation.
Static analysis and dynamic instrumentation, combined with performance models for skeletons, enable the
identification of useful parallelism. Prototype transformation is employed to try and optimise parallelism.
Where exploitable parallelism cannot be identified, program synthesis is used to introduce new instances of
HOFs. Here, we describe the compiler and the methodology it is intended to support.

2. A Skeletons Methodology. The compiler was originally motivated by extensive exploration of algo-
rithmic skeletons for the construction of parallel computer vision systems from functional prototypes [12, 17].
Since that time our compiler has matured into a more general-purpose parallel programming language based on
SML, a mature functional language with a stable formal definition [13]. Although our methods are applicable to
low-level programming such as image processing they are most useful for high-level programming with complex
algorithmic structures. For prototyping, SML provides closeness to formalisms for proof and transformation.
For parallel prototyping, SML’s strictness is better suited than the laziness of Haskell [10] as it results in more
predictable behaviour.

We focus on common low-level HOFs such as map and fold which are ubiquitous in functional programs.
Explicit HOF names are used as the basis for identification:

fun map f [] = []

| map f (h::t) = f h::map f t

fun fold (f:’a*’a->’a) b [] = b

| fold f b (h::t) = f (h,fold f b t)

fun filter p [] = []

| filter p (h::t) = if p h then filter p t else h::filter p t

fun compose (f:’b list -> ’c list) (g:’a list -> ’b list) x = f (g x)

fun tuple2 (fa,fb) = (fa (),fb ())

map and fold HOFs may be synthesised from arbitrary recursive functions [7], and implemented in parallel in
a variety of ways [9]. filter can be implemented constructively from map with minimal overhead. Function
composition can be realized in parallel provided the argument is a decomposable datatype. Tuple parallelism
can be implemented by turning tuples into suspensions:

(a,b) ⇔ tuple2 (fn => a,fn => b)

Transformations may be defined over these base functions to implement simple identification, distribution
and equivalences. For example, we can mitigate communications costs by aggregation:

(map f) o (map g) ⇔ map (f o g)

If a fold function argument is not associative, we can sometimes extract partial parallelism using map:

fold (fn (h,t) => f (g h) t) b l ⇔ fold f b (map g l)

∗School of Information Science, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa, Japan, 923-1292
(norman@jaist.ac.jp).

†Department of Computing and Electrical Engineering, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS,
(greg@cee.hw.ac.uk).

‡School of Information Science, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa, Japan 923-1292
(hori@jaist.ac.jp)

87

88 N. Scaife et al.

We can switch between alternative implementations of the same skeleton:

map f ⇔ fold (fn (h,t) => f h::t) []

Finally, we can move sites of argument instantiation to allow pre-computation before distribution:

hof (f x) ⇔ let val x’ = f x in hof x’ end

Given the high computational complexity of program transformation systems we need a fast method of
assessing the impact of transformations upon parallel performance. Using the SML definition in conjunction
with an SML interpreter we can accurately summarise the semantic behaviour of an executing SML program.
This behaviour can then be related to the execution times of compiled programs.

Cost models for algorithmic skeletons have been well-studied [16, 14]. Combining the profiling information
with data size measurements results in the ability to instantiate these cost models giving predictions of the
effect of transformations.

Partitioning transformations into; identification, optimisation, and restructuring, we propose a methodology
for parallel functional prototyping which can be summarised as follows:

1. A sequential prototype is transformed using restructuring and identification transformations to lift as
many HOF instances from arbitrary code as possible.

2. The computational loads for HOF instance functions and communication costs for their arguments and
results are determined.

3. This data is applied to models for the equivalent algorithmic skeletons to determine the viability of
potential parallel implementations.

4. If no parallelism is predicted, the prototype is transformed using optimisation and retsructuring trans-
formations. to optimise the computational versus communication costs in the models.

5. Where useful parallelism is predicted the HOFs should be realised as, possibly nested, algorithmic
skeleton instantiations.

3. The Parallel SML with Skeletons (PMLS) Compiler.

3.1. Design. Our experience with the PUFF [4] and SkelML [3] compilers, combined with that gained in
developing parallel computer vision systems led to the design of a more general parallelizing compiler for SML
[11], with the following properties:

• The full SML Core language is supported.
• Dynamic profiling provides parallel performance prediction.
• Heuristics-guided transformations drive performance optimisation.
• Transformations may be generated using automated proof synthesis.
• Skeletons can be nested but are not first-class objects.
• The compiler targets a broad range of general-purpose parallel computers.

The spine of the PMLS compiler was constructed from 1997 to 2000, incorporating map and fold skeletons.
The performance prediction has been developed to a state where usably accurate predictions are provided for
these two skeletons. Further skeletons are under development but are not currently modelled. At present we
can present results for the manual analysis of exemplars and are currently automating this process.

3.2. Implementation. The host compilers are the ML Kit [2] for the front end, profiling and transfor-
mation systems, and Objective Caml [5] for backend compilation and execution. This combination allows the
transformational compiler to be implemented on a separate machine so that the backend can be kept small and
retargetable.

3.3. Analysis. During our analysis, the SML syntax tree is mapped onto a static network of processors.
We generate an abstract network description of the program which defines the relationship between the HOFs
in the sequential prototype and between executing skeletons in the parallel version. A two-phase algorithm is
implemented whereby the skeleton information is added to the existing types and then the type information is
stripped out leaving the network description:

val ff3 = map (fn x => x + 1) [1,2,3]

val ff3 :: node(map,base list,[(int->base),base list])

Parallel SML With Skeletons 89

The handling of free values complicates our analysis. We wish to avoid the transmision of functional data at
runtime as large free value bindings can overload the communications. For non-functional free values, lambda-
lifting [8] is sufficient. Functions are augmented with additional formal parameters for their free variables
and calls to those functions are extended with the corresponding free variables as the actual parameters. For
skeleton instances, the free values are registered with the runtime system and transmitted to the point of
function application.

For free functionals we use defunctionalization [1]. In this technique, closures are lifted to the top level of the
language and represented by datatypes. This allows free functionals to be handled in the same way as free data
but creates a global overhead of a datatype dereference for every function application. The defunctionalization
of SML is problematical, however. The published algorithms all require forward code-references which would
necessitate runtime registration of functions with attendant jump tables for SML. We adopt a solution whereby
the entire program is turned into a single mutually-recursive block.

Finally, we generate launch-code for the skeletons which replace HOFs. This involves detecting free values,
replacing the HOF with the skeleton call and reconstructing the type information. Our analysis thus converts
the following code:

fun ff (y,z) = x + y + z

val result = fold ff (~x) [1,2,3]

into:

fun ff1 (x) (y,z) = x + y + z

val _ = register ‘‘ff1" ff1

val result =

(fn _ => (pfold : string -> int -> int list -> int) ‘‘ff1" (~x) [1,2,3])

(register ‘‘ff1_fvs" (x))

3.4. Dynamic profiling. PMLS includes an integrated dynamic profiling mechanism [15]. The ML Kit
interpreter has been modified to annotate the syntax tree with counts of rules in the semantics which are fired
during execution. Given a suitable set of training programs it is possible to assign a weight to each rule in
the semantics. The test programs cause as many of the different rules to be fired as possible and the actual
execution times for the test programs form the dependent variable for weight determination. This system can
be expressed in matrix form as Pw = x, where P is an r×n matrix where r is the number of rules and n the
number of program executions, w is a vector of weights and x is the vector of execution times. We solve this
equation for the training-set, giving a set of weights which can be applied to a new, unknown profile of rule
counts to give a predicted execution time. It is important to select a suitable set of test programs whereby each
rule has a significant representation and no rules dominate the entire data set.

Currently, we can use either numerical analysis methods or genetic algorithm techniques to solve the above
equation for our training-set. The numerical methods give more accurate fits but suffer from numerical instability
which limits the range of validity of the generated weights. The genetic solution is extremely slow and much
less accurate but has less numerical instability. At best this technique only gives a rule-of-thumb estimate of the
sequential performance of an arbitrary section of code, typically within about a 200% margin. This is sufficient,
however, to drive a performance-improving transformation system.

3.5. Transformation. PMLS transformations are defined by associating equivalent SML constructs (ei-
ther expressions or declarations). The transformations are elaborated and type information is preserved on
transformation application. The resulting system allows simple identification and optimization:

dtrans T2008 (FF,F,H,T,TAIL) = fun FF [] = TAIL

| FF (H::T) = F::FF T

==> fun FF l = (map (fn H => F) l)@TAIL

end

trans T202 (F,G,L) = fn (F,G,L) => map F (map G L)

==> fn (F,G,L) => map (fn x => F (G x)) L

We are currently constructing the transformation engine using the performance prediction results to rank
improving transformations and prune non-useful ones.

90 N. Scaife et al.

3.6. HOF Synthesis. To support the programmer with automatic detection of HOFs, Cook investigated
automatic extraction of HOFs using proof-planning techniques [7]. The λ-CLAM proof-planner is employed to
locate instances of map, fold and scan using higher-order unification and middle-out reasoning. Currently, we
use the HOF synthesizer as a pre-processor. For example, the following functions:

fun squares [] = []

| squares ((h:int)::t) = h*h::squares t

fun squs2d [] = []

| squs2d (h::t) = squares h::squs2d t

yield the following equivalent programs:

fn x => map (fn y => map (fn (z:int) => z*z) y) x

fn x => map (fn y => foldr (fn (z:int,u) => z*z::u) [] y) x

fn x => map (fn y => squares y) x

4. Performance. We have employed PMLS to parallelise a wide range of SML programs. Substantial
exemplars include island model genetic algorithms, arbitrary length integer matrix multiplication, linear equa-
tion solving and ray tracing. In general, skeleton parallelism tends to be coarse grain. For such exemplars,
PMLS offers useful, scalable speedup, typically on up to 16 processors. These applications are all regular par-
allelism but we hope to tackle more complex irregular problems with future enhancements to the compiler.
The performance of our compiler compares favourably with other similar approaches [9]. The following table
summarizes the comparison on a Beowulf class workstation cluster (SRT=sequential runtime, PRT=parallel
runtime, SP=speedup):

Eden GpH PMLS

SRT PRT SP SRT PRT SP SRT PRT SP
matmult 38.5s 13.2s 2.9 30.3s 8.9s 3.4 22.8s 4.3s 5.2
linsolv 491.7s 35.1s 14.0 307.9s 25.9s 11.9 190.8s 16.1s 11.9
raytracer 177.4s 13.4s 13.3 163.3s 24.1s 6.8 172.1s 11.4s 15.2

PMLS can generate native code for a variety of CPUs. Consistent cross-platform performance as been
shown on the Cray T3E, Fujitsu AP3000, Sun Enterprise, IBM SP2 and Beowulf-class workstation clusters.

5. Concluding Remarks. PMLS demonstrates the potential of exploiting implict parallelism through
the combination of a variety of static and dynamic program analysis techniques targeted at skeleton-oriented
parallel implementation. This results in a simple method of introducing parallelism with minimal burdens upon
the programmer. Our approach is novel in; matching parallel topology to algorithm rather than algorithm to
topology, basing profiling on semantic entities rather than absolute or simulated times, and closely coupling
instrumentation, analysis and transformation. PMLS is primarily a research vehicle. Current challenges include;
combining speed with stability in performance prediction, broadening the range of exploitable HOFs, and
exploiting parallelism in the presence of conditionals.

Acknowledgement. This work was supported by the Japan JSPS Postdoctoral Fellowship P00778 and
UK EPSRC grants GR/J07884 and GR/L42889.

REFERENCES

[1] J. M. Bell, F. Bellegarde, and J. Hook, Type-driven defunctionalization, In Proceedings of the ACM SIGPLAN ICFP
’97, pages 25–37. ACM, Jun 1997.

[2] L. Birkedal, N. Rothwell, M. Tofte, and D. N. Turner, The ML Kit (Version 1), Technical Report 93/14, Department
of Computer Science, University of Copenhagen, 1993.

[3] T. Bratvold, Skeleton-based Parallelisation of Functional Programmes, PhD thesis, Dept. of Computing and Electrical
Engineering, Heriot-Watt University, 1994.

[4] D. Busvine, Detecting Parallel Structures in Functional Programs, PhD thesis, Heriot-Watt University, Riccarton, Edinburgh,
1993.

[5] E. Chailloux, P. Manoury, and B. Pagano, Développement d’applications avec Objective Caml, O’Reilly, Paris, Apr 2000.
[6] A. Cook, A. Ireland, and G. Michaelson, Higher-order Function Synthesis through Proof Planning, In Proceedings of

16th Annual International Conference on Automated Software Engineering (ASE 2001), pages 307–310, San Diego, USA,
Nov 2001. IEEE Computer Society.

Parallel SML With Skeletons 91

[7] A. Cook, A. Ireland, G. Michaelson and N. Scaife, Discovering Applications of Higher Order Functions Through Proof
Planning, Formal Aspects of Computing, V. 17(1), pp. 38–57,2005.

[8] T. Johnsson, Lambda Lifting: Transforming Programs to Recursive Equations, In J.-P. Jouannaud, editor, Functional
Programming Languages and Computer Architecture, volume 201 of LNCS, pages 190–302. Springer, 1985.

[9] H-W. Loidl, F. Rubio, N. Scaife, K. Hammond, S. Horiguchi, U. Klusik, R. Loogen, G. J. Michaelson, R. Peña,

Á. J. Rebón Portillo, S. Priebe, and P. W. Trinder, Comparing Parallel Functional Languages: Programming and
Performance, Higher-order and Symbolic Computation, 16(3), pp. 203–251, 2003.

[10] H-W. Loidl, P.W. Trinder, K. Hammond, S.B. Junaidu, R.G. Morgan, and S.L Peyton Jonem es, Engineering Parallel
Symbolic Programs in GPH, Concurrency—Practice and Experience, 11:701–752, 1999.

[11] G. Michaelson, N. Scaife, P. Bristow, and P. King, Nested Algorithmic Skeletons from Higher-Order Functions. Parallel
Algorithms and Applications special issue on High Level Models and Languages for Parallel Processing, 16(2–3):181–206,
2001.

[12] G. J. Michaelson and N. R. Scaife, Prototyping a parallel vision system in Standard ML. Journal of Functional Program-
ming, 5(3):345–382, Jul 1995.

[13] R. Milner, M. Tofte, R. Harper, and D. MacQueen, The Definition of Standard ML (Revised), MIT Press, 1997.
[14] R. Rangaswami, A Cost Analysis for a Higher-Order Parallel Programming Model, PhD thesis, University of Edinburgh,

1995.
[15] N. Scaife, S. Horiguchi, G. Michaelson and P. Bristow, A Parallel SML Compiler Based on Algorithmic Skeletons,

Journal of Functional Programming, V. 15(4), pp. 615–650, 2005.
[16] D. B. Skillicorn and W. Cai, A Cost Calculus for Parallel Functional Programming, Journal of Parallel and Distributed

Programming, 28(1):65–84, 1995.
[17] A. M. Wallace, G. J. Michaelson, N. Scaife, and W. J. Austin, A Dual Source, Parallel Architecture for Computer

Vision, The Journal of Supercomputing, 12(1/2):37–56, Jan/Feb 1998.

Edited by: H. Shen.
Received: June 3, 2002.
Accepted: December 19, 2002.

Scalable Computing: Practice and Experience

Volume 7, Number 2, pp. 93–106. http://www.scpe.org
ISSN 1895-1767

c© 2006 SWPS

A CLASS OF PARALLEL MULTILEVEL SPARSE APPROXIMATE INVERSE
PRECONDITIONERS FOR SPARSE LINEAR SYSTEMS

KAI WANG ∗, JUN ZHANG† , AND CHI SHEN‡

Abstract. We investigate the use of the multistep successive preconditioning strategies (MSP) to construct a class of parallel
multilevel sparse approximate inverse (SAI) preconditioners. We do not use independent set ordering, but a diagonal dominance
based matrix permutation to build a multilevel structure. The purpose of introducing multilevel structure into SAI is to enhance
the robustness of SAI for solving difficult problems. Forward and backward preconditioning iteration and two Schur complement
preconditioning strategies are proposed to improve the performance and to reduce the storage cost of the multilevel preconditioners.
One version of the parallel multilevel SAI preconditioner based on the MSP strategy is implemented. Numerical experiments for
solving a few sparse matrices on a distributed memory parallel computer are reported.

Key words. Sparse matrices, parallel preconditioning, sparse approximate inverse, multilevel preconditioning, multistep
successive preconditioning.

1. Introduction. Large sparse unstructured matrices arise from various computer simulation and mod-
eling problems. For example, the discretization of systems of partial differential equations by finite difference,
finite element, or finite volume methods leads to large systems of simultaneous linear equations, whose coeffi-
cient matrix is sparse. In current industrial and engineering applications, the size of the sparse linear systems of
practical interest is between a few thousands to a few millions. The solution computation of such large problems
typically consumes a major portion of CPU time of many supercomputers used in large scale simulations.

To be more specific, we consider the solution of linear systems of the form Ax = b, where b is the right-hand
side vector, x is the unknown vector, and A is a large sparse nonsingular matrix of order n. For solving this class
of problems, preconditioned Krylov subspace methods are considered to be one of the most promising candidates
[2, 36]. A preconditioned Krylov subspace method consists of a Krylov subspace solver and a preconditioner. It
is believed that the quality of the preconditioner influences and in many cases dictates the performance of the
preconditioned Krylov subspace solver [30, 52]. As the order of the sparse linear systems of interest continues
to grow, parallel iterative solution techniques that can utilize the computing power of multiple processors have
to be employed. Although the parallel implementations of most Krylov subspace methods have been studied for
years and very good software packages are available [5, 34, 46], the research on robust parallel preconditioners
that are suitable for distributed memory architectures is being actively pursued [11, 13, 21, 48].

The incomplete LU (ILU) factorizations have been used as general purpose preconditioners for solving
general sparse matrices [28]. Since the ILU preconditioners are based on various Gauss elimination procedures,
they are inherently sequential in both the construction and the application phases. The ILU factorizations
may be used as localized preconditioners to extract parallelism when domain decomposition methods are used
to solve large sparse linear systems [31, 47]. However, the computed preconditioners are approximations to a
block Jacobi preconditioner. The convergence rate (performance) of such domain decomposition preconditioners
deteriorates as the number of processors increases [45]. For many difficult problems, the localized ILU (block
Jacobi) preconditioners are not robust.

Using a multilevel structure, the performance of the ILU preconditioners can be improved. There are several
variants of multilevel ILU preconditioners [3, 10, 11, 32, 39, 50, 54]. One class of multilevel preconditioners is
based on exploiting the idea of successive (block) independent set orderings, which afford parallelism in both
the preconditioner construction and application phases [35, 38, 39, 40, 42, 43, 44].

Sparse approximate inverse (SAI) is another class of preconditioning techniques which can be used for
solving large sparse linear systems on parallel systems [6, 7]. Several versions of SAI techniques have been
developed [8, 14, 19, 21, 55]. These preconditioners possess high degree of parallelism in the preconditioner
application phase and are shown to be effective for certain type of problems. Parallel implementations of
SAI preconditioners are available [4, 12, 13, 22, 48]. For difficult problems, the SAI preconditioners may be less
robust, compared to the ILU preconditioners. Based on the success achieved by applying the multilevel structure

∗ kwang0@cs.uky.edu, URL: http://www.csr.uky.edu/~kwang0
†The corresponding author. jzhang@cs.uky.edu, http://www.cs.uky.edu/~jzhang
‡ Laboratory for High Performance Scientific Computing and Computer Simulation, Department of Computer Science, University

of Kentucky, Lexington, KY 40506–0046, USA, cshen@cs.uky.edu

93

94 Kai Wang et al.

to ILU preconditioners, the idea of combining strengths of the multilevel methods and the SAI techniques looks
attractive. In fact, some authors have already proposed to improve the robustness of SAI techniques by using
multilevel structures or to enhance the parallelism of multilevel preconditioners by using SAI [9, 29, 49, 53].
But none of these studies is done on a distributed memory computer system.

Recently, a multistep successive preconditioning strategy (MSP) was proposed in [48] to compute robust
preconditioners based on SAI. MSP computes a sequence of low cost sparse matrices to achieve the effect of
a high accuracy preconditioner. The resulting preconditioner has a lower storage cost and is more robust and
more efficient than the standard SAI preconditioners.

In this paper, we investigate the use of the MSP strategy to construct a class of multilevel SAI precondi-
tioners. Because of the inherent parallelism provided by MSP, we need not use an independent set ordering.
We use forward and backward preconditioning strategy to improve the performance of the multilevel precondi-
tioner. In addition MSP provides a convenient approach to creating approximate Schur complement matrices
with different accuracy. We implement a two Schur complement matrix preconditioning strategy to reduce the
storage cost of the multilevel preconditioner.

This paper is organized as follows. Section 2 outlines the procedure for constructing a multilevel precondi-
tioner based on MSP. Section 3 discusses some implementation details and strategies to improve the performance
of our multilevel preconditioner. Section 4 reports some numerical experiments with the multilevel precondi-
tioners on a distributed memory parallel computer. A brief summary is given in Section 5.

2. Preconditioner Construction. We recount the multistep successive preconditioning (MSP) strategy
introduced in [48], and explain the concept of multilevel preconditioning techniques briefly. We then discuss the
idea of using MSP in the multilevel structure to construct a multilevel SAI preconditioner. Our aim is to build
a hybrid preconditioner with increased robustness and inherent parallelism.

2.1. Multistep successive preconditioning. In order to speed up the convergence rate of the iterative
methods, we may transform the original linear system into an equivalent one MAx = Mb, where M is a
nonsingular matrix of order n. If M is a good approximation to A−1 in some sense, M is called a sparse
approximate inverse (SAI) of A [6, 7]. Several techniques have been developed to construct SAI preconditioners
[8, 7, 14, 17, 21, 55]. Each of them has its own merits and drawbacks. In many cases, the inverse of a sparse
matrix may be a dense matrix, a high accuracy SAI preconditioner may have to be a dense matrix. The basic
idea behind MSP is to find a multi-matrix form preconditioner and to achieve a high accuracy sparse inverse step
by step. In each step we compute an SAI inexpensively and hope to build a high accuracy SAI preconditioner in
a few steps. MSP can be applied to almost any existing SAI techniques [48]. The following is an MSP algorithm
with a static sparsity pattern based SAI.

Algorithm 2.1. Multistep Successive SAI Preconditioning [48].

0. Given the number of steps l > 0, and a threshold tolerance ǫ
1. Let A1 = A
2. For i = 1, . . . , (l − 1), Do
3. Sparsify Ai with respect to ǫ
4. Compute an SAI according to the sparsified sparsity pattern of Ai, Mi ≈ A−1

i

5. Drop small entries of Mi with respect to ǫ
6. Compute Ai+1 = Mi Ai

7. EndDo
8. Sparsify Al with respect to ǫ
9. Compute an SAI according to the sparsified sparsity pattern of Al, Ml ≈ A−1

l

10. Drop small entries of Ml with respect to ǫ

11.
∏l

i=1 Mi is the desired preconditioner for Ax = b

There are a few heuristic strategies to choose the sparsity pattern for an SAI preconditioner. Both static
and dynamic sparsity pattern approaches have been investigated [14, 15, 25]. Usually the dynamic sparsity
pattern strategies can compute better SAI preconditioners with a given storage cost. But they may be more
expensive and more difficult to implement on parallel computers.

The static sparsity pattern strategy is attractive to implement on distributed memory parallel computers
[12, 48]. A particularly useful and effective strategy is to use the sparsified pattern of the matrix A (or A2, A3, · · ·)

A Class of Parallel Multilevel Sparse Approximate Inverse Preconditioners 95

to achieve higher accuracy [12]. Here “sparsified” refers to a preprocessing phase in which certain small entries
of the matrix are removed before its sparsity pattern is extracted. In order to keep the computed matrix sparse,
small size entries in the computed matrix Mi are dropped (postprocessing phase) at each step of MSP. We note
here that Algorithm 2.1 is slightly different from the one developed in [48], in which different parameters are
used for the preprocessing and postprocessing phases. Since these parameters are usually chosen to be of the
same value [48], only one parameter is used in Algorithm 2.1.

Algorithm 2.1 generates a sequence of matrices M1, M2, · · · , Ml inexpensively. They together form an SAI
for A, i. e., MlMl−1 · · ·M1 ≈ A−1. From the numerical results in [48] we know that in addition to enhanced
robustness, MSP outperforms standard SAI in both the computational and storage costs.

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���

���
���
���

Fig. 2.1. Recursive matrix structure of a 4 level preconditioner.

2.2. Multilevel preconditioning. For an illustration purpose, we show in Fig. 2.1 the recursive matrix
structure of a 4 level preconditioner. Usually, the construction of a multilevel preconditioner consists of two
phases. First, at each level the matrix is permuted into a two by two block form, according to some criterion
or ordering strategy,

Aα ∼ PαAαPT
α =

(

Dα Fα

Eα Cα

)

, (2.1)

where Pα is the permutation matrix and α is the level reference. For simplicity, we denote both the permuted
and the unpermuted matrices by Aα. Second, the matrix is decomposed into a two level structure by a block
LU factorization,

(

Dα Fα

Eα Cα

)

=

(

Iα 0
EαD−1

α Iα

)(

Dα Fα

0 Aα+1

)

, (2.2)

where Iα is the generic identity matrix at level α. Aα+1 = Cα − EαD−1
α Fα is the Schur complement matrix,

which forms the reduced system. The whole process, permuting matrix and performing block LU factorization,
can be repeated with respect to Aα+1 recursively to generate a multilevel structure. The recursion is stopped
when the last reduced system AL is small enough to be solved effectively.

The preconditioner application process consists of a level by level forward elimination, the coarsest level
solution, and a level by level backward substitution. Suppose the right hand side vector b and the solution
vector x are partitioned according to the permutation in (2.1), we have, at each level,

xα =

(

xα,1

xα,2

)

, bα =

(

bα,1

bα,2

)

.

The forward elimination is performed by solving a temporary vector yα, i. e., for α = 0, 1, . . . ,L− 1, by solving

(

Iα 0
EαD−1

α Iα

)(

yα,1

yα,2

)

=

(

bα,1

bα,2

)

, with

{

yα,1 = bα,1,
yα,2 = bα,2 − EαD−1

α yα,1.

96 Kai Wang et al.

The last reduced system may be solved to a certain accuracy by a preconditioned Krylov subspace iteration to
get an approximate solution xL. After that, a backward substitution is performed to obtain the preconditioning
solution by solving, for α = L − 1, . . . , 1, 0,

(

Dα Fα

0 Aα+1

)(

xα,1

xα,2

)

=

(

yα,1

yα,2

)

, with

{

xα,2 = A−1
α+1yα,2,

xα,1 = D−1
α (yα,1 − Fαxα,2),

where xα,2 is actually the coarser level solution.

2.3. Multilevel preconditioner based on MSP. A straightforward way to build a multilevel SAI
preconditioner is to compute an SAI matrix Mα for the submatrix Dα, and to use Mα to substitute D−1

α in
Eq. (2.2). We have

(

Dα Fα

Eα Cα

)

≈
(

Iα 0
EαMα Iα

)(

Dα Fα

0 Aα+1

)

,

The approximate Schur complement matrix is computed as Aα+1 = Cα − EαMαFα. Continue doing this for
Aα+1 at the next level, a multilevel preconditioner based on SAI can be constructed. Correspondingly, the
forward and backward substitutions in the preconditioner application phase change to

{

yα,1 = bα,1,
yα,2 = bα,2 − EαMαyα,1,

and

{

xα,2 = A−1
α+1yα,2,

xα,1 = Mα(yα,1 − Fαxα,2).
(2.3)

Because Mα is only an approximation to D−1
α , Cα − EαMαFα is not the exact Schur complement matrix, but

an approximation of it. The computed value xα according to (2.3) will deviate from the true value, even if
A−1

α+1 can be computed exactly. The larger the difference between Mα and D−1
α , the more the deviation of xα

will have. Thus we prefer an accurate SAI of Dα during the construction of the multilevel preconditioner.
Through suitable permutation, it is possible to find a Dα with some special structure so that a sparse inverse

of Dα can be computed inexpensively and accurately. A (block) independent set strategy is used in [35, 39, 41, 40]
for building the multilevel ILU preconditioners, in which Dα consists of small block diagonal matrices. Thus
an accurate (I)LU factorization can be applied to these blocks independently. An independent set related
strategy to find a well-conditioned Dα is also used in [49] to construct a multilevel factored SAI preconditioner.
Unfortunately block independent set algorithms may be difficult to implement on distributed memory parallel
computers. Most published parallel multilevel ILU preconditioners are two level implementations [27, 37, 43],
truly parallel multilevel implementations have been reported only recently [24, 44].

For SAI based multilevel preconditioners, there is no need to exploit independent set ordering to extract
parallelism, although a block diagonal matrix is certainly easy to invert [53]. What we want is to form a
well-conditioned Dα. A diagonally dominant matrix is well-conditioned and may be inverted accurately. This
suggests us to find a Dα matrix with a good diagonal dominance property so that D−1

α can be computed
inexpensively and accurately. In our implementation, at each level we use a diagonal dominance based strategy
to force the rows with small size diagonal entries into the next level system and keep the relatively large diagonal
entries in the current level. At the next level another well-conditioned subsystem is found by pushing the rows
with unfavorable property into its next level system. This diagonal dominance based strategy is more like a
divide and conquer strategy. Each time a difficult to solve problem is divided into two parts. One part is easier
to solve than the other. We solve the easier part and employ the Schur complement strategy to deal with the
other part.

We can improve the approximation of D−1
α by using MSP. At each level, we compute a series of sparse

matrices such that

MαlMαl−1 · · ·Mα1 ≈ D−1
α , (2.4)

where l is the number of steps. The corresponding Schur complement matrix can be formed as

Cα − EαMαlMαl−1 · · ·Mα1Fα. (2.5)

3. Implementation Details. To solve a sparse linear system on a parallel computer, the coefficient
matrix is first partitioned by a graph partitioner and is distributed to different processors (approximately)
evenly. Suppose the matrix is distributed to each processor according to a row-wise partitioning [26], each
processor holds k rows of the global matrix to form a local matrix.

A Class of Parallel Multilevel Sparse Approximate Inverse Preconditioners 97

Matrix permutation. We give a simple diagonal dominance based strategy to find a well-conditioned Dα

matrix. This can be accomplished by computing a diagonal dominance measure for each row of the matrix based
on the diagonal value and the sum of the absolute nonzero values of the row [50], i. e., ti = |aii|/

∑

j∈Nz(i) |aij |.
Here Nz(i) is the index set of the nonzeros of the ith row. If the ith row is a zero row (locally) in a processor,
we set ti = 0. Then the rows with the largest diagonal dominance measures are permuted to form the upper
block matrices Dα.

Let φ be a parameter between 0 and 1, which is referred to as the reduction ratio. We keep the k · φ rows
with the largest diagonal dominance measures at the current level and let k · (1− φ) rows go to the next level.
When φ is close to 1, the reduced system (next level matrix) will be small. We can maintain load balancing by
using the same φ in each processor.

We should also point out that in our implementation, the number of levels is not an input parameter
like in the other multilevel methods, e.g., BILUM [39]. The multilevel setup algorithm builds the multilevel
structure automatically, using φ as the constraint. One option is to let the construction phase stop when each
processor has only 1 unknown. The last reduced system may be easy to solve. But this may generate too many
levels.

To improve the performance of the diagonal dominance based permutation, a local pivoting strategy can be
used before we compute the diagonal dominance measures. The local pivoting strategy finds the largest entry in
each row of the local matrix, and permutes this entry to the main diagonal. So that most of the main diagonal
entries in the local matrix will be larger than the offdiagonal entries in the same row. The submatrix Dα after
the diagonal dominance based permutation is more diagonally dominant and better conditioned.

Forward and backward preconditioning. When examining the forward and backward steps in (2.3), we find
that the operation x̃α = Mαbα appears twice. In exact form, this operation should be xα = D−1

α bα. So the
value x̃α is only an approximation of the true value xα. The more accurately that x̃α approximates xα, the
better a preconditioner we have. We can improve the computed value x̃α by a preconditioned GMRES iteration
on MαDαxα = Mαbα and using x̃α as the initial guess. We call this preconditioning iteration as a forward and
backward preconditioning (FBP) iteration.

Because the reduced systems (Schur complement matrices) are not computed exactly, there is no need to
perform many FBP iterations to obtain a very accurate value of x̃α. A few sweeps are sufficient to make the
approximate inverse of Dα comparably accurate with respect to other parts of the preconditioning matrix.

Schur complement preconditioning. When using MSP to compute the SAI of a matrix, a larger number of
steps will produce a better approximation [48]. The final form of the preconditioner is a multi-matrix form
and these matrices are stored individually. The combined storage cost of MSP is not too large if each matrix
is sparse. This is one of the advantages of MSP over the standard SAI [48]. When using MSP to generate a
multilevel preconditioner, these sparse matrices have to be multiplied out to compute the reduced system Aα+1

as in (2.5). This may result in a dense Schur complement matrix.
A compromise can be reached in this situation by computing two Schur complement matrices with different

accuracy by using different drop tolerances [29]. The more sparse one is used as the coarse level system to
generate the coarse level preconditioner, and is discarded after serving that purpose. The more accurate and
denser Schur complement matrix is kept as a part of the preconditioning matrix and is used in the preconditioner
application phase. In our multilevel MSP preconditioner, we use a similar strategy to control the storage cost.
Here the two Schur complement matrices are not computed by using different drop tolerances but by using
different steps in MSP.

Suppose that MSP generates a series of matrices as in (2.4). We construct the explicit Schur complement
matrix (for the reduced system) by using only the first few steps of (2.4), e.g., only Mα1, we have Cα−EαMα1Fα.
Because Mα1 is usually very sparse according to [48], this Schur complement matrix may be sparse (at least more
sparse than the Schur complement matrix (2.5)) and can be computed inexpensively. In the preconditioning
phase, we may use the more accurate Schur complement matrix (2.5) in an implicit form. To further improve
the accuracy of the Schur complement solution, we may iterate on the implicit Schur complement matrix (2.5)
with the lower level preconditioner. This strategy is called Schur complement preconditioning [51]. During the
Schur complement preconditioning phase, we only perform a series of matrix vector products. We can see that
if each of these matrices is sparse, the combined storage cost is not too high.

Stored preconditioning matrices. At each level α of the multilevel preconditioner, we should store Eα,
Fα, and the computed MSP matrices MαlMαl−1 · · ·Mα1 for the forward and backward substitutions in the
preconditioning process. In addition, the matrix Dα is needed in the FBP iterations. If the Schur complement

98 Kai Wang et al.

preconditioning is implemented, the matrix Cα should also be kept. Therefore, the sparsity ratio, which is the
storage cost of the preconditioning matrices divided by the storage cost of the original matrix, is at least 1.
Some strategies may reduce the storage cost, e.g., the matrices D0, E0, F0 and C0 do not need to be stored, they
can be recovered by a permutation from the original matrix [51]. In our current prototype implementation, we
do not use this strategy. At each Krylov subspace iteration, the permutation to recover these four submatrices
may be expensive on distributed memory parallel computers.

4. Experimental Results. We implement our parallel multilevel MSP preconditioner (MMSP) based on
the strategies outlined in the previous sections. At each level, we use a diagonal dominance measure based
strategy to permute the matrix into a two by two block form. A static sparsity pattern based MSP is used to
compute an SAI of Dα. During the preconditioning phase, we perform forward and backward preconditioning
(FBP) iterations to improve the performance of MMSP. The last level reduced system is solved by a GMRES
iteration preconditioned by MSP. We use the MSP code developed in [48] to build our MMSP code, which
is written in C with a few LAPACK routines [1] written in Fortran. The interprocessor communications are
handled by MPI [20]. We conduct a few numerical experiments to show the performance of MMSP. We also
compare MMSP with MSP to show the improved robustness and efficiency due to the introduction of the
multilevel structure.

The computations are carried out on a 32 processor (750 MHz) subcomplex of an HP superdome (super-
cluster) with distributed memory at the University of Kentucky. Unless otherwise indicated explicitly, four
processors are used in our numerical experiments.

For all preconditioning iterations, which include the outer (main) preconditioning iterations, FBP iterations,
Schur complement preconditioning iterations, and the coarsest level solver, we use a flexible variant of restarted
parallel GMRES (FGMRES) [33, 34].

In all tables containing numerical results, “φ” is the reduction ratio; “step” indicates the number of steps
used in MSP; “iter” shows the number of outer iterations for the preconditioned FGMRES(50) to reduce the
2-norm residual by 8 orders of magnitude. We also set an upper bound of 2000 for the FGMRES iteration, a
symbol “-” in a table indicates lack of convergence; “density” stands for the sparsity ratio; “setup” is the total
CPU time in seconds for constructing the preconditioner; “solve” is the total CPU time in seconds for solving
the given sparse linear system; “total” is the sum of “setup” and “solve”; “ǫ” is the parameter used in MMSP
and MSP to sparsify the computed SAI matrices.

4.1. Test problems. We first introduce the test problems used in our experiments. The right hand sides
of all linear systems are constructed by assuming that the solution is a vector of all ones. The initial guess is a
zero vector.

Convection-diffusion problem. A three dimensional convection-diffusion problem (defined on a unit cube)

uxx + uyy + uzz + 1000 (p ux + q uy + r uz) = 0 (4.1)

is used to generate some large sparse matrices to test the scalability of MMSP. Here the convection coefficients
are chosen as p = x(x−1)(1−3y)(1−2z), q = y(y−1)(1−2z)(1−2x), r = z(z−1)(1−2x)(1−2y). The Reynolds
number for this problem is 1000. Eq. (4.1) is discretized by using the standard 7 point central difference scheme
and the 19 point fourth order compact difference scheme [23]. The resulting matrices are referred to as the 7
point and 19 point matrices respectively.

General sparse matrices. We also use MMSP to solve the sparse matrices listed in Table 4.1.
The BARTHT1A matrix is from a 2D high Reynolds number airfoil problem with turbulence modeling. The
WIGTO966 matrix comes from an Euler equation model and was supplied by L. Wigton from Boeing. (Both
BARTHT1A and WIGTO966 matrices are available from the corresponding author). The FIDAP matrices are
extracted from the test problems provided in the FIDAP package [18]. They arise from coupled finite element
discretization of Navier-Stokes equations modeling incompressible fluid flows. The UTM matrices are real non-
symmetric matrices arising from nuclear fusion plasma simulations in a tokamak reactor. The UTM matrices
and the FIDAP matrices can be downloaded from the MatrixMarket of the National Institute of Standards and
Technology.1 We remark that, based on our experience, most of these matrices are considered difficult to solve
by standard SAI preconditioners.

1http://math.nist.gov/MatrixMarket.

A Class of Parallel Multilevel Sparse Approximate Inverse Preconditioners 99

Table 4.1

Information about the general sparse matrices used in the experiments (n is the order of a matrix, nnz is the number of
nonzero entries).

matrices n nnz description

BARTHT1A 14075 481125 Navier-Stokes flow at high Reynolds number
FIDAP012 3973 80151 Flow in lid-driven wedge
FIDAP024 2283 48733 Nonsymmetric forward roll coating
FIDAP028 2603 77653 Two merging liquids with one external interior interface
FIDAP031 3909 115299 Dilute species deposition on a tilted heated plate
FIDAP040 7740 456226 3D die-swell (square die Re = 1, Ca = ∞)
FIDAPM03 2532 50380 Flow past a cylinder in free stream (Re = 40)
FIDAPM08 3876 103076 Developing flow, vertical channel (angle = 0, Ra = 1000)
FIDAPM09 4683 95053 Jet impingment cooling
FIDAPM11 22294 623554 3D steady flow, heat exchanger
FIDAPM13 3549 71975 Axisymmetric poppet value
FIDAPM33 2353 23765 Radiation heat transfer in a square cavity
UTM1700A 1700 21313 Nuclear fusion plasma simulations
UTM1700B 1700 21509 Nuclear fusion plasma simulations
UTM3060 3060 42211 Nuclear fusion plasma simulations
WIGTO966 3864 238253 Euler equation model

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Number of forward backward iterations

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

0 10 20 30 40 50 60
2

4

6

8

10

12

14

16

18

20

Number of forward backward iterations

C
P

U
 t

im
e

(s
e

c
o

n
d

s
)

Fig. 4.1. Convergence behavior of MMSP using different number of FBP iterations for solving the UTM1700B matrix
(φ = 0.67, step = 2, ǫ = 0.05, density = 3.48, level = 7). Left: the number of outer iterations versus the number of FBP iterations.
Right: the total CPU time versus the number of FBP iterations.

4.2. Performance of MMSP.

Forward and backward preconditioning. Fig. 4.1 depicts the convergence behavior and the CPU time with
respect to the number of FBP iterations for solving the UTM1700B matrix. Here, the FBP iteration performs a
few FGMRES(50) iterations to reduce the 2-norm of the relative residual. The number of iterations is an input
parameter. From Fig. 4.1, we can see that when we increase the number of FBP iterations from 0 to 5, the
number of outer FGMRES iterations decreases rapidly from more than 2000 to around 200. Correspondingly
the total CPU time decreases from more than 20 seconds to around 3 seconds. However, we find that doing
more than 5 FBP iterations does not result in significant difference in the convergence of MMSP, the number
of outer iterations only decreases to around 100. The CPU time actually increases from 3 to 11 seconds. We
conclude that the FBP iteration can improve the convergence of MMSP. But a large number of FBP iterations
is not cost effective, since the other parts of the preconditioner are not computed exactly. In Fig. 4.1, the best
result is obtained with 5 FBP iterations. In the following tests, we fix the number of FBP iterations at 5. We

100 Kai Wang et al.

Table 4.2

Solving the BARTHT1A matrix with different MMSP levels (φ = 0.67, step = 3, ǫ = 0.02).

level size density iter setup solve total

2 4692 5.13 1843 22.5 417.1 439.6

4 524 6.88 238 18.0 71.8 89.8

6 60 6.86 140 17.3 41.8 59.1

8 8 6.86 137 17.3 40.1 57.4

Table 4.3

Solving the WIGTO966 matrix with different values of φ (step = 2).

φ level ǫ density iter setup solve total

0.67 7 0.05 2.61 - 2.1 - -

0.50 10 0.05 5.67 184 3.8 9.7 13.5

0.40 14 0.05 9.03 81 7.8 5.2 13.1

0.33 17 0.05 12.14 45 13.3 3.5 16.8

0.25 23 0.05 17.72 33 26.4 3.1 29.5

0.25 23 0.50 10.74 1083 12.6 86.8 99.4

point out that the optimum value of this parameter may be problem dependent, and 5 FBP iterations may not
be the best for all problems.

Reduction ratio and number of levels.. The sizes of the current level matrix and the next level (reduced)
matrix are controlled by the reduction ratio φ. φ is an important parameter for deciding the number of levels
and influences the performance of MMSP. Here we give some experimental results concerning the reduction
ratio and the number of MMSP levels.

The data in Table 4.2 are from solving the BARTHT1A matrix using φ = 0.67. We let the multilevel
construction stop when the number of levels reaches a predefined value. The column “size” in the table indicates
the size of the last reduced (coarsest) system, which is solved by a preconditioned FGMRES(5) iteration when
the 2-norm residual is reduced by a factor of 108 or the maximum number of 5 iterations is reached.

It can be seen that a 2 level MMSP, with the last reduced system of 4692 unknowns, needs 1843 iterations
and 439.6 seconds to converge. An 8 level MMSP, with the last reduced system of only 8 unknowns, converges
in 137 iterations and in 57.4 seconds. In particular, we observe that both the setup time and the solution time
are reduced with more levels. The smaller setup time with more levels is due to the fact that a less expensive
SAI is constructed for a smaller last level reduced system with more levels.

This experiment indicates that an MMSP with more levels is advantageous for this test problem. In our
following experiments, the construction of MMSP stops when there is only one unknown left in each processor.
So the number of levels controlled by the reduction ratio φ is − log(1−φ) n, where n is the subproblem size in
each processor. For the same problem, different reduction ratio may result in different number of MMSP levels.

Next we use the WIGTO966 matrix to show the influence of φ value on the performance of MMSP. The
results are given in Table 4.3. We can see that when φ = 0.67, a 7 level MMSP is constructed in 2.1 seconds but
does not converge. When φ decreases from 0.50 to 0.25, the corresponding number of MMSP levels increases
from 10 to 23 and the number of MMSP iterations decreases from 184 to 33, which means that MMSP is more
robust when a small φ value is used. Unfortunately, a small φ value also incurs a large storage cost because
more matrices are stored in MMSP.

In the last two rows of Table 4.3, we use the same φ = 0.25 but different ǫ values (0.05 and 0.5). The
computed two MMSPs have the same number of levels. The storage cost (density) of the second one is 10.74,
compared to 17.72 of the first one. However, the second one needs more iterations (1083) and more solution
time (86.8 seconds) to converge. Its performance is worse than that reported in the row 2, where the number
of levels is 10, the density is 5.67, and MMSP only needs 184 iterations and 9.7 seconds to converge.

The previous two tests imply that it is not advantageous to set the value of φ to be too large or too small.
In the following tests, we use φ = 0.67.

In Table 4.4 we show the diagonal dominance and the 2-norm condition number of the matrices Aα and
Dα at the first four levels of MMSP for the FIDAP031 matrix. “ddiag” in the table is the ratio of the number
of diagonally dominant rows in a given matrix. “cond” is the condition number. We can see that a comparably

A Class of Parallel Multilevel Sparse Approximate Inverse Preconditioners 101

Table 4.4

The diagonal dominance ratio and the condition number of the matrices at each level of MMSP for the FIDAP031 matrix
(φ = 0.67, step = 2, ǫ = 0.05,density = 2.48).

Aα Dα

level size ddiag cond size ddiag cond
1 3909 0.05 1.0 ∗ 106 2606 0.36 6.3 ∗ 104

2 1303 0.06 7.9 ∗ 103 868 0.17 62.9

3 435 0.01 5.3 ∗ 103 290 0.36 33.59

4 145 0.43 84.79 96 0.81 26.78

Table 4.5

Comparison of MMSP with different MSP steps for solving two FIDAP matrices (φ = 0.67, ǫ = 0.01).

matrices level step density iter setup solve total

FIDAPM09 8 1 3.40 - 0.9 - -
8 2 6.61 - 4.5 - -
8 3 9.82 248 11.1 13.8 24.9

FIDAPM33 7 1 3.21 - 0.6 - -
7 2 8.14 43 2.0 0.7 2.6
7 3 14.93 31 5.4 0.7 6.2

well-conditioned and diagonally dominant matrix Dα can be found at each level by the diagonal dominance
based strategy. E.g., at the first level, the condition number of the original matrix is 1.0 ∗ 106 and the diagonal
dominance ratio is 0.05. After the permutation we can get a matrix D1 with a condition number 6.3 ∗ 104 and a
diagonal dominance ratio 0.36. The matrix D1 is easier to solve than the matrix A. This is how the multilevel
preconditioner works. Instead of preconditioning an ill-conditioned matrix directly, it transforms the matrix
into some well-conditioned parts and preconditions these matrix parts level by level.

Number of steps. The data in Table 4.5 show the influence of different MSP steps on the performance of
MMSP. For the FIDAPM09 matrix, MMSP does not converges with 1 and 2 MSP steps. It converges with
3 MSP steps in 248 iterations. For the FIDAPM33 matrix, MMSP converges with 2 and 3 MSP steps, but
fails in the 1 MSP step case. Just as we expected, a larger number of MSP steps builds a more robust MMSP
preconditioner.

Schur complement preconditioning. In Table 4.5, we see that the storage cost of MMSP with 3 MSP
steps is large and the implementation may be impractical in large scale applications. The Schur complement
preconditioning strategy may alleviate this problem to some extent [51]. We rerun the two test problems in
Table 4.5 using the two Schur complement matrix strategy. The two Schur complement matrix strategy is only
implemented at the first level. Here we use the FIDAPM09 matrix as an example to explain how the strategy
works. In the setup phase, a 3 step MSP is used to form the SAI of D1, i. e., M3M2M1 ≈ D−1

1 . Then the explicit
Schur complement matrix C1 − E1M1F1 is computed as the next level matrix. In the preconditioning phase,
we iterate on the implicit Schur complement matrix C1 − E1M3M2M1F1 by FGMRES(50) preconditioned by
the lower level part of MMSP constructed from C1 − E1M1F1. The test results are shown in Table 4.6, where
“step” is the number of MSP steps in the implicit Schur complement matrix. We only allow at most 50 Schur
complement preconditioning iterations.

From Tables 4.5 and 4.6 we can see that the two Schur complement matrix strategy reduces the sparsity
ratio of MMSP for solving the FIDAPM09 matrix from 9.82 to 4.79. For solving the FIDAPM33 matrix, the
sparsity ratio of the 2 MSP step case is reduced from 8.14 to 4.51 and that of the 3 MSP step case is reduced
from 14.93 to 6.65. In addition, the setup (construction) time is also reduced to some extent with the two
Schur complement matrix strategy. We consider the two Schur complement matrix strategy as an effective
way to reduce the memory cost of MMSP. However, the solution time increases because the Schur complement
preconditioning strategy utilizes a lot of matrix vector products in the preconditioning phase. We provide the
Schur complement preconditioning strategy as an option in our MMSP code in case we have to use a large
number of MSP steps for some difficult problems and if the memory cost is more critical than the CPU time.

4.3. Comparison of MSP and MMSP. In Table 4.7, we compare MSP and MMSP for solving a
few sparse matrices. For MSP, we adjust the parameter ǫ and the number of steps and try to give the best

102 Kai Wang et al.

Table 4.6

Results of the two Schur complement matrix strategy, compared to Table 4.5.

matrices level step density iter setup solve total

FIDAPM09 8 3 4.79 94 2.5 66.6 69.1

FIDAPM33 7 2 4.51 19 0.7 9.1 9.9
7 3 6.65 15 1.8 7.7 9.5

performance results for solving these matrices. For MMSP we fix ǫ = 0.05 and step = 2. The number in the
parentheses of MSP is the number of steps, and the number in the parentheses of MMSP is the number of
MMSP levels.

Table 4.7

Comparison of MSP and MMSP for solving a few sparse matrices.

matrices preconditioner ǫ density iter setup solve total

FIDAP024 MSP(3) 0.01 4.87 188 14.4 1.8 16.3
MMSP(7) 0.05 3.05 39 0.8 0.6 1.4

FIDAPM08 MSP(3) 0.01 3.28 729 48.3 3.4 51.7
MMSP(8) 0.05 3.02 192 1.1 4.5 5.6

FIDAP012 MSP(-) - - - - -
MMSP(8) 0.05 3.38 57 1.1 1.2 2.3

FIDAP040 MSP(-) - - - - -
MMSP(8) 0.05 3.46 39 4.3 4.0 8.3

FIDAPM03 MSP(-) - - - - - -
MMSP(7) 0.05 3.35 62 0.8 1.0 1.8

FIDAPM11 MSP(-) - - - - - -
MMSP(9) 0.05 6.81 200 16.3 85.1 101.4

FIDAPM13 MSP(-) - - - - - -
MMSP(8) 0.05 3.58 86 1.1 1.7 2.8

UTM1700A MSP(-) - - - - - -
MMSP(7) 0.05 3.45 145 0.7 1.9 2.6

UTM3060 MSP(-) - - - - - -
MMSP(8) 0.05 4.02 474 1.0 7.9 8.9

Only 2 of the 9 tested matrices can be solved by MSP. The MMSP can solve these two matrices with smaller
sparsity ratios and only 10 percent of the CPU time. In addition, MSP fails to solve the other 7 matrices, which
can be solved by MMSP effectively.

Fig. 4.2 shows the convergence behavior of the first 100 MMSP and MSP iterations for solving the FIDAP028
matrix. We can see that MSP reduces the relative residual norm by almost 8 orders of magnitude in 100
iterations. But MMSP reduces the relative residual norm by almost 16 orders of magnitude. From the results
of Table 4.7 and Fig. 4.2, we conclude that MMSP is more efficient and more robust than MSP.

4.4. Scalability tests. The main computational costs in MMSP are the matrix-matrix product and
matrix-vector product operations. These operations can be performed in parallel efficiently on most distributed
memory parallel architectures.

We use the 3D convection-diffusion problem (4.1) to test the implementation scalability of MMSP. The
results in Fig. 4.3 are from solving a 7-point matrix with n = 1003 and nnz = 6940000 using different number
of processors. Due to the local memory limitation of our parallel computer, we can only run the test with at
least 4 processors. For easy visualization, we set the speedup in the 4 processor case to be 4. From Fig. 4.3 we
can see that MMSP scales well. In particular, we point out that the convergence behavior of MMSP is different
from that of MSP. We know that the number of MSP iterations is not influenced by the number of processors
when the problem size is fixed [47, 48]. The number of MMSP iterations is affected by the number of processors.
This is because the permutation of the matrix at each level depends on the ordering of the unknowns. Different
number of processors results in different ordering of the unknowns for the same problem. As it is well known,
the performance of (ILU type) preconditioners is affected by the matrix ordering [16]. Fortunately, the number
of MMSP iterations does not seem to be strongly influenced by the number of processors.

A Class of Parallel Multilevel Sparse Approximate Inverse Preconditioners 103

0 10 20 30 40 50 60 70 80 90 100
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of iterations

2−
no

rm
 re

la
tiv

e
re

si
du

al

MSP
MMSP

Fig. 4.2. Convergence behavior of MMSP and MSP for solving the FIDAP028 matrix in 100 iterations (MMSP: density =
2.83, ǫ = 0.05, level = 7, step = 2; MSP: density = 5.34, step = 3, ǫ = 0.005).

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

Number of processors

N
u

m
b

e
r

o
f
it
e

ra
ti
o

n
s

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
4

8

12

16

20

24

28

Number of processors

S
p

e
e

d
u

p

Fig. 4.3. Scalability test of MMSP when solving a 7 point matrix with n = 1003, nnz = 6940000 (ǫ = 0.1, step = 2, level =
10, density = 2.03). Left: the number of MMSP iterations versus the number of processors. Right: the speedup of MMSP as a
function of the number of processors.

In Fig. 4.4, the scaled scalability of MMSP is tested by solving a series of 19-point matrices. We try to keep
the number of unknowns in each processor to be approximately 253. When we change the number of processors,
the problem size increases at the same time. To be comparable, we also give the scaled scalability of MSP in
the same figure. The parameters used are step = 1, level = 10, ǫ = 0.1 for MMSP, and step = 2, ǫ = 0.05 for
MSP. From Fig. 4.4, We find that MMSP shows better scaled scalability than MSP for this test problem. The
behavior of MMSP are more stable than that of MSP.

5. Summaries. We have developed a class of parallel multilevel sparse approximate inverse (SAI) precon-
ditioners based on MSP for solving general sparse matrices. A prototype implementation is tested to show the
robustness and computational efficiency of this class of multilevel preconditioners.

From the numerical results presented, we can see that the forward and backward preconditioning (FBP)
iteration is an effective strategy for enhancing the performance of MMSP. A few FBP iterations improve the
convergence of MMSP. A suitable number of FBP iterations makes MMSP converge fast.

104 Kai Wang et al.

5 10 15 20 25 30
0

30

60

90

120

150

Number of processors

N
u

m
b

e
r

o
f
it
e

ra
ti
o

n
s

MSP
MMSP

5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

Number of processors
C

P
U

 t
im

e
(s

e
c
o

n
d

s
)

MSP
MMSP

Fig. 4.4. Scaled scalability test of MMSP and MSP for solving a series of 19 point matrices with n ≈ 253 in each processor.
Left: the number of iterations versus the number of processors. Right: the total CPU time versus the number of processors.

The number of MMSP levels influences the convergence and storage cost of the preconditioner. A large
number of levels results in a fast MMSP preconditioner with a high storage cost. A small number of levels
results in an inexpensive preconditioner with a low storage cost. The same statement is valid with respect to
the number of MSP steps used at each level of MMSP. We can use a two Schur complement matrix strategy to
reduce the storage cost.

Compared with MSP, MMSP is more robust and costs less to construct. The scalability of MMSP seems
to be good. But the convergence of MMSP may be affected by the number of processors employed, due to the
local matrix reordering implemented to enhance the factorization stability.

Acknowledgements. Kai Wang’s research work was funded by the U. S. National Science Foundation
under grants CCR-9902022 and ACI-0202934. Jun Zhang’s research work was supported in part by the U.S.
National Science Foundation under grants CCR-9902022, CCR-9988165, CCR-0092532, and ACI-0202934, by
the U. S. Department of Energy Office of Science under grant DE-FG02-02ER45961, by the Japanese Research
Organization for Information Science & Technology, and by the University of Kentucky Research Committee.
Chi Shen’s research work was funded by the U.S. National Science Foundation under grants CCR-9902022 and
CCR-0092532.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,

S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide. SIAM, Philadelphia, PA, 2 edition, 1995.
[2] O. Axelsson, Iterative Solution Methods. Cambridge Univ. Press, Cambridge, 1994.
[3] R. E. Bank and C. Wagner, Multilevel ILU decomposition. Numer. Math., 82(4):543–576, 1999.
[4] S. T. Barnard, L. M. Bernardo, and H. D. Simon, An MPI implementation of the SPAI preconditioner on the T3E. Int.

J. High Perf. Comput. Appl., 13:107–128, 1999.
[5] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van

der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM Publications,
Philadelphia, PA, 1993.

[6] M. W. Benson and P. O. Frederickson, Iterative solution of large sparse linear systems arising in certain multidimensional
approximation problems. Utilitas Math., 22:127–140, 1982.

[7] M. W. Benson, J. Krettmann, and M. Wright, Parallel algorithms for the solution of certain large sparse linear systems.
Int. J. Comput. Math., 16:245–260, 1984.

[8] M. Benzi and M. Tuma, A sparse approximate inverse preconditioner for nonsymmetric linear systems. SIAM J. Sci.
Comput., 19(3):968–994, 1998.

[9] M. Bollhǒfer and M. Mehrmann, Algebraic multilevel methods and sparse approximate inverses. SIAM J. Matrix Anal.
Appl., 24(1):191–218, 2002.

A Class of Parallel Multilevel Sparse Approximate Inverse Preconditioners 105

[10] E. F. F. Botta and F. W. Wubs, Matrix renumbering ILU: an effective algebraic multilevel ILU preconditioner for sparse
matrices. SIAM J. Matrix Anal. Appl., 20(4):1007–1026, 1999.

[11] T. F. Chan and V. Eijkhout, ParPre: a parallel preconditioners package reference manual for version 2.0.17. Technical
Report CAM 97-24, Department of Mathematics, UCLA, Los Angeles, CA, 1997.

[12] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM J. Sci. Comput.,
21(5):1804–1822, 2000.

[13] E. Chow, Parallel implementation and practical use of sparse approximate inverse preconditioners with a priori sparsity
patterns. Int. J. High Perf. Comput. Appl., 15:56–74, 2001.

[14] E. Chow and Y. Saad, Approximate inverse preconditioners via sparse-sparse iterations. SIAM J. Sci. Comput., 19(3):995–
1023, 1998.

[15] J. D. F. Cosgrove, J. C. Diaz, and A. Griewank, Approximate inverse preconditionings for sparse linear systems. Int. J.
Comput. Math., 44:91–110, 1992.

[16] I. S. Duff and G. A. Meurant, The effect of reordering on preconditioned conjugate gradients. BIT, 29:635–657, 1989.
[17] A. C. N. van Duin, Scalable parallel preconditioning with the sparse approximate inverse of triangular matrices. SIAM J.

Matrix Anal. Appl., 20:987–1006, 1999.
[18] M. Engelman, FIDAP: Examples Manual, Revision 6.0. Technical report, Fluid Dynamics International, Evanston, IL, 1991.
[19] N. I. M. Gould and J. A. Scott, Sparse approximate-inverse preconditioners using norm-minimization techniques. SIAM

J. Sci. Comput., 19(2):605–625, 1998.
[20] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the Message-Passing Interface.

MIT, Boston, 2 edition, 1999.
[21] M. Grote and T. Huckle, Parallel preconditioning with sparse approximate inverses. SIAM J. Sci. Comput., 18:838–853,

1997.
[22] M. Grote and H. D. Simon, Parallel preconditioning and approximate inverse on the Connection machines. In R. F.

Sincovec, D. E. Keyes, M. R. Leuze, L. R. Petzold, and D. A. Reed, editors, Proceedings of the Sixth SIAM Conference
on Parallel Processing for Scientific Computing, pages 519–523, Philadelphia, PA, 1993. SIAM.

[23] M. M. Gupta and J. Zhang, High accuracy multigrid solution of the 3D convection-diffusion equation. Appl. Math. Comput.,
113(2-3):249–274, 2000.

[24] G. Karypis and V. Kumar, Parallel threshold-based ILU factorization. Technical Report 96-061, Department of Computer
Science, University of Minnesota, Minneapolis, MN, 1996.

[25] L. Y. Kolotilina, Explicit preconditioning of systems of linear algebraic equations with dense matrices. J. Soviet Math.,
43:2566–2573, 1988.

[26] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Computing. Benjamin/Cummings Pub. Co.,
Redwood City, CA, 1994.

[27] Z. Li, Y. Saad, and M. Sosonkina, pARMS: a parallel version of the algebraic recursive multilevel solver. Technical Report
UMSI 2002-100, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN, 2001.

[28] J. A. Meijerink and H. A. van der Vorst, An iterative solution method for linear systems of which the coefficient matrix
is a symmetric M-matrix. Math. Comp., 31:148–162, 1977.

[29] G. Meurant, A multilevel AINV preconditioner. Numer. Alg., 29(1-3):107–129, 2002.
[30] N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen, How fast are nonsymmetric matrix iterations? SIAM Matrix Anal.

Appl., 13(3):778–795, 1992.
[31] K. Nakajima and H. Okuda, Parallel iterative solvers with localized ILU preconditioning for unstructured grids on work-

station clusters. Int. J. Comput. Fluid Dynamics, 12:315–322, 1999.
[32] A. Reusken, On the approximate cyclic reduction preconditioner. SIAM J. Sci. Comput., 21(2):565–590, 1999.
[33] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Statist. Comput., 14(2):461–469, 1993.
[34] Y. Saad, Parallel sparse matrix library (P SPARSLIB): The iterative solvers module. In Advances in Numerical Methods

for Large Sparse Sets of Linear Equations, volume Number 10, Matrix Analysis and Parallel Computing, PCG 94, pages
263–276, Yokohama, Japan, 1994. Keio University.

[35] Y. Saad, ILUM: a multi-elimination ILU preconditioner for general sparse matrices. SIAM J. Sci. Comput., 17(4):830–847,
1996.

[36] Y. Saad, Iterative Methods for Sparse Linear Systems. PWS Publishing, New York, NY, 1996.
[37] Y. Saad and M. Sosonkina, Distributed Schur complement techniques for general sparse linear systems. SIAM J. Sci.

Comput., 21(4):1337–1356, 1999.
[38] Y. Saad and B. Suchomel, ARMS: an algebraic recursive multilevel solver for general sparse linear systems. Numer. Linear

Alg. Appl., 9(5):359–378, 2002.
[39] Y. Saad and J. Zhang, BILUM: block versions of multielimination and multilevel ILU preconditioner for general sparse

linear systems. SIAM J. Sci. Comput., 20(6):2103–2121, 1999.
[40] Y. Saad and J. Zhang, BILUTM: a domain-based multilevel block ILUT preconditioner for general sparse matrices. SIAM

J. Matrix Anal. Appl., 21(1):279–299, 1999.
[41] Y. Saad and J. Zhang, Diagonal threshold techniques in robust multi-level ILU preconditioners for general sparse linear

systems. Numer. Linear Algebra Appl., 6(4):257–280, 1999.
[42] Y. Saad and J. Zhang, Enhanced multilevel block ILU preconditioning strategies for general sparse linear systems. J.

Comput. Appl. Math., 130(1-2):99–118, 2001.
[43] C. Shen and J. Zhang, Parallel two level block ILU preconditioning techniques for solving large sparse linear systems. Paral.

Comput., 28(10):1451–1475, 2002.
[44] C. Shen, J. Zhang, and K. Wang, Distributed block independent set algorithms and parallel multilevel ILU preconditioners.

Technical Report No. 358-02, Department of Computer Science, University of Kentucky, Lexington, KY, 2002.
[45] B. Smith, P. Bjørstad, and W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential

Equations. Cambridge University Press, New York, NY, 1996.

106 Kai Wang et al.

[46] B. Smith, W. D. Gropp, and L. C. McInnes, PETSc 2.0 user’s manual. Technical Report ANL-95/11, Argonne National
Laboratory, Argonne, IL, 1995.

[47] K. Wang, S. B. Kim, J. Zhang, K. Nakajima, and H. Okuda, Global and localized parallel preconditioning techniques for
large scale solid Earth simulations. Future Generation Comput. Systems, 19(4):443–456, 2003.

[48] K. Wang and J. Zhang, MSP: a class of parallel multistep successive sparse approximate inverse preconditioning strategies.
SIAM J. Sci. Comput., 24(4):1141–1156, 2003.

[49] K. Wang and J. Zhang, Multigrid treatment and robustness enhancement for factored sparse approximate inverse precon-
ditioning. Appl. Numer. Math., 43(4):483–500, 2002.

[50] J. Zhang, A multilevel dual reordering strategy for robust incomplete LU factorization of indefinite matrices. SIAM J. Matrix
Anal. Appl., 22(3):925–947, 2000.

[51] J. Zhang, On preconditioning Schur complement and Schur complement preconditioning. Electron. Trans. Numer. Anal.,
10:115–130, 2000.

[52] J. Zhang, Preconditioned Krylov subspace methods for solving nonsymmetric matrices from CFD applications. Comput.
Methods Appl. Mech. Engrg., 189(3):825–840, 2000.

[53] J. Zhang, Sparse approximate inverse and multilevel block ILU preconditioning techniques for general sparse matrices. Appl.
Numer. Math., 35(1):67–86, 2000.

[54] J. Zhang, A class of multilevel recursive incomplete LU preconditioning techniques. Korean J. Comput. Appl. Math.,
8(2):213–234, 2001.

[55] J. Zhang, A sparse approximate inverse technique for parallel preconditioning of general sparse matrices. Appl. Math.
Comput., 130(1):63–85, 2002.

Edited by: L. Brugnano.
Received: November 7, 2003.
Accepted: May 28, 2004.

Scalable Computing: Practice and Experience

Volume 7, Number 2, pp. 107–108. http://www.scpe.org
ISSN 1895-1767

c© 2006 SWPS

BOOK REWIES

EDITED BY SHAHRAM RAHIMI

Parallel Scientific Computation: A Structured Approach using BSP and MPI

Rob H. Bisseling

Hardcover: 324 pages

Oxford University Press, USA (May 6, 2004)

Language: English

ISBN: 0198529392

In spite of many efforts, no solid framework exists for developing parallel software that is portable and
efficient across various parallel architectures. The lack of such framework is mostly due to the absence of a
universal model of parallel computation, which can play a role similar to that which Von Neumanns model
plays for the sequential computing, and inhibit the diversity of the existing parallel architecture and parallel
programming models.

Bulk Synchronous Parallel (BSP) is a parallel computing model proposed by Valiant in 1989, which pro-
vides a useful and elegant theoretical framework for bridging the gap between parallel hardware and software.
This model comprises a computer archicture (BSP computer), a class of algorithms (BSP algorithm), and a
performance model (BSP cost function). The attraction of BSP model lays in its simplicity. A BSP computer
consists of collection of processors, each with private memory, and a communication network. A BSP algorithm
consists of a sequence of supersteps. A superstep contains either a number of computation steps or a number
of communication steps, followed by global barrier synchronization. A BSP performance cost function is based
on four parameters: number of processors (p), processor computing rate (r), the ratio between the computation
time and communication time (g), and the synchronization cost (l).

In Parallel Scientific Computation: A Structured Approach using BSP and MPI, Rob Bisseling provides a
practical introduction to the area of numerical scientific computation by using BSPlib communication library
in parallel algorithm design and parallel programming. Each chapter contains: an abstract; a brief discussion of
sequential algorithm included to make the material self-contain; the design and analysis of a parallel algorithm;
an annotated program text; illustrative experimental results of an implementation on a particular parallel
computer; bibliographic notes; theoretical and practical exercises. The source files of the printed program texts,
together with a set of test programs that demonstrate their use, form a package called BSPedupack, which
is available at the official home page of the book. Researchers, students, and savvy professionals, schooled in
hardware or software, will value Bisseling’s self-study approach to parallel scientific programming. After all, this
is the first textbook provides a comprehensive overview of the technical aspects of building parallel programs
using BSP.

The book opens with an overview of BSP model and BSPlib, which tell you how to get started with writing
BSP programs, and how to benchmark your computer as a BSP computer. Chapter 2 on dense LU decompo-
sition presents a regular computation with communication patterns that are common in matrix computations.
Chapter 3 on the FFT also treats a regular computation but one with a more complex flow of data. Chapter
4 presents the multiplication of a sparse matrix and dense vector. Appendix C presents MPI programs in the
order of the corresponding BSP programs appear in the main text.

The book includes a reasonable amount of real world examples, which support the theoretical aspects of
the discussions. It is easy to follow and includes logical and consistent exposition and clear descriptions of basic
and advanced techniques.

Being a textbook, it contains various exercises and project assignments at the end of each chapter. However,
sample solutions for these exercises are still not available. Perhaps an accompanying CD carrying the sample
solutions and tutorials for use in the classroom would have added to the academic value of the book. However,
the bibliographic notes given at the ends of each chapter, as well as the references at the end of the book, are
quite useful for those interested in exploring the subject of BSP development further.

The book is contemporary, well presented, and balanced between concepts and the technical depth required
for developing parallel algorithms. Although the book takes a simple performance view of parallel algorithms
design, readers should have some basic knowledge of parallel computing, data structures, and C programming.

107

108 Book Revies

Overall, the book is suitable as a textbook for one-term undergraduate or graduate courses, as a self-study
book, or as technical training material for professionals.

Ami Marowka,
Department of Software Engineering,
Shenkar College of Engineering and
Design,
Ramat-Gan, Israel.

AIMS AND SCOPE

The area of scalable computing has matured and reached a point where new issues and trends require a pro-
fessional forum. SCPE will provide this avenue by publishing original refereed papers that address the present
as well as the future of parallel and distributed computing. The journal will focus on algorithm development,
implementation and execution on real-world parallel architectures, and application of parallel and distributed
computing to the solution of real-life problems. Of particular interest are:

Expressiveness:
• high level languages,
• object oriented techniques,
• compiler technology for parallel computing,
• implementation techniques and their effi-

ciency.

System engineering:
• programming environments,
• debugging tools,
• software libraries.

Performance:
• performance measurement: metrics, evalua-

tion, visualization,
• performance improvement: resource allocation

and scheduling, I/O, network throughput.

Applications:

• database,

• control systems,

• embedded systems,

• fault tolerance,

• industrial and business,

• real-time,

• scientific computing,

• visualization.

Future:

• limitations of current approaches,

• engineering trends and their consequences,

• novel parallel architectures.

Taking into account the extremely rapid pace of changes in the field SCPE is committed to fast turnaround
of papers and a short publication time of accepted papers.

INSTRUCTIONS FOR CONTRIBUTORS

Proposals of Special Issues should be submitted to the editor-in-chief.
The language of the journal is English. SCPE publishes three categories of papers: overview papers,

research papers and short communications. Electronic submissions are preferred. Overview papers and short
communications should be submitted to the editor-in-chief. Research papers should be submitted to the editor
whose research interests match the subject of the paper most closely. The list of editors’ research interests can
be found at the journal WWW site (http://www.scpe.org). Each paper appropriate to the journal will be
refereed by a minimum of two referees.

There is no a priori limit on the length of overview papers. Research papers should be limited to approx-
imately 20 pages, while short communications should not exceed 5 pages. A 50–100 word abstract should be
included.

Upon acceptance the authors will be asked to transfer copyright of the article to the publisher. The
authors will be required to prepare the text in LATEX 2ε using the journal document class file (based on the
SIAM’s siamltex.clo document class, available at the journal WWW site). Figures must be prepared in
encapsulated PostScript and appropriately incorporated into the text. The bibliography should be formatted
using the SIAM convention. Detailed instructions for the Authors are available on the PDCP WWW site at
http://www.scpe.org.

Contributions are accepted for review on the understanding that the same work has not been published
and that it is not being considered for publication elsewhere. Technical reports can be submitted. Substantially
revised versions of papers published in not easily accessible conference proceedings can also be submitted. The
editor-in-chief should be notified at the time of submission and the author is responsible for obtaining the
necessary copyright releases for all copyrighted material.

