SCALABLE COMPUTING
Practice and Experience

Special Issue: Foundational Underpinnings for
Pragmatic Agent-based Systems

Editors: Marcin Paprzycki, Niranjan Suri

Volume 8, Number 1, March 2007

ISSN 1895-1767

SWPS

EDITOR-IN-CHIEF

. . EDITORIAL BOARD
Marcin Paprzycki

Institute of Computer Science Peter Arbenz, Swiss Federal Inst. of Technology, Ziirich,

Warsaw School of Social Psychology arbenz@inf .ethz.ch

ul. Chodakowska 19/31 Dorothy Bollman, University of Puerto Rico,

03-815 Warszawa Poland bollman@cs.uprm.edu

marcin.paprzycki@swps.edu.pl Luigi Brugnano, Universita di Firenze, brugnano@math.unifi.it

http://mpaprzycki.swps.edu.pl Bogdan Czejdo, Loyola University, New Orleans,

MANAGINIG AND czejdo@beta.loyno.edu

TECHNICAL EDITOR Frederic Desprez, LIP ENS Lyon, Frederic.Desprez@inria.fr

David Du, University of Minnesota, du@cs.umn.edu

Yakov Fet, Novosibirsk Computing Center, fet@ssd.sscc.ru

Len Freeman, University of Manchester,
len.freeman@manchester.ac.uk

Alexander Denisjuk
Elblag University
of Humanities and Economy

ul. Lotnicza 2
82-300 Elblag, POLAND Ian Gladwell, Southern Methodist University,

denisjuk@euh-e.edu.pl gladwell@seas.smu.edu

Andrzej Goscinski, Deakin University, ang@deakin.edu.au

Book REVIEW EDITOR Emilio Hernandez, Universidad Simén Bolivar, emilio@usb.ve
Shahram Rahimi David Keyes, Old Dominion University, dkeyes@odu. edu
Department of Computer Science Vadim Kotov, Carnegie Mellon University, vkotov@cs.cmu.edu
Southern Illinois University Janusz Kowalik, Gdansk University, j.kowalik@comcast.net
Mailcode 4511, Carbondale Thomas Ludwig, Ruprecht-Karls-Universitit Heidelberg,
Tlinois 62901-4511, USA t.ludwig@computer.org

rahimi@cs.siu.edu Svetozar Margenov, CLPP BAS, Sofia,

g R B margenov@parallel.bas.bg
OFTWARE REVIEWS LDITORS Oscar Naim, Oracle Corporation, oscar.naim@oracle.com
Hong Shen Lalit M. Patnaik, Indian Institute of Science,

Graduate School lalit@micro.iisc.ernet.in
of Information Science,

Japan Advanced Institute
of Science & Technology
1-1 Asahidai, Tatsunokuchi,
Ishikawa 923-1292, JAPAN

shen@jaist.ac.ip

Dana Petcu, Western University of Timisoara, petcu@info.uvt.ro

Shahram Rahimi, Southern Illinois University,
rahimi@cs.siu.edu

Hong Shen, The University of Adelaide,
hong@cs.adelaide.edu.au

Siang Wun Song, University of Sdo Paulo, song@ime.usp.br
Domenico Talia

ISI-CNR c¢/o DEIS
Universita della Calabria
87036 Rende, CS, ITALY

talia@si.deis.unical.it

Boleslaw Szymariski, Rensselaer Polytechnic Institute,
szymansk@cs.rpi.edu

Domenico Talia, University of Calabria, talia@deis.unical.it

Roman Trobec, Jozef Stefan Institute, roman.trobec@ijs.si

Carl Tropper, McGill University, carl@cs.mcgill.ca

Pavel Tvrdik, Czech Technical University,
tvrdik@sun.felk.cvut.cz

Marian Vajtersic, University of Salzburg,
marian@cosy.sbg.ac.at

MANAGING Co-EDITOR

Pawel B. Myszkowski
Institute of Applied Informatics
University of Information
Technology and Management
Copernicus

Inowroctawska 56

Wroctaw 53-648, POLAND

myszkowskiQwsiz.wroc.pl

Jan van Katwijk, Technical University Delft,
J.vanKatwijk@its.tudelft.nl

Lonnie R. Welch, Ohio University, welch@ohio.edu

Janusz Zalewski, Florida Gulf Coast University,
zalewski@fgcu.edu

SUBSCRIPTION INFORMATION: please visit http://www.scpe.org

Scalable Computing: Practice and Experience

Volume 8, Number 1, March 2007

TABLE OF CONTENTS

Editorial: Vietnam on its way to High Performance Computing i
Thomas Ludwig

SPECIAL ISSUE PAPERS:

Guest Editor’s Introduction iii
Marcin Paprzycki, Niranjan Suri

Specification and Verification of Agent Interaction Protocols in a

Logic-based System 1
Marco Alberti, Federico Chesani, Davide Daolio, Marco Gavanelli,
Evelina Lamma, Paola Mello and Paolo Torroni

Incorporating Planning into BDI Systems 15
Felipe Rech Meneguzzi, Avelino Francisco Zorzo, Michael da Costa Mora
and Michael Luck

Agent Technology for Personalized Information Filtering: The PIA

System 29
Sahin Albayrak, Stefan Wollny, Andreas Lommatzsch
and Dragan Milosevic

Computationally Adjustable Autonomy 41
Henry Hexmoor and Brian Mclaughlan

A Top Down Approach for Describing the Acquaintace Organisation of
Multiagent Systems 49
Joaquin Pena, Rafael Corchuelo and Antonio Ruiz-Cortés

Observation-Based Proactive Communication in Multi-Agent Teamwork 63
Yu Zhang

Stability, Optimality and Complexity of Network Games with Pricing
and Player Dropouts 79
Andrew Lomonosov and Meera Sitharam

The Success of Cooperative Strategies in the Iterated Prisoner’s
Dilemma and the Chicken Game 87
Bengt Carlsson and K. Ingemar Jonsson

A Multi-agent Infrastructure for Enhancing ERP system Intelligence 101
Andreas L. Symeonidis, Kyriakos C. Chatzidimitriou, Dionysios Kehagias
and Pericles A. Mitkas

OVERVIEW PAPER:

Data Management in Distributed Systems: A Scalability Taxonomy 115
A Vijay Srinivas and D Janakiram

SOFTWARE REVIEW:

The Comparison of J2EFE and .NET for Enterprise Information Systems 131
Jongwook Woo

Book REVIEW:

Algorithms Sequential € Parallel: A Unified Approach 141

(© SWPS, Warszawa 2007

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 8, Number 1, p. i. http://wuw.scpe.org © 2007 SWPS

o,..

EDITORIAL: VIETNAM ON ITS WAY TO HIGH PERFORMANCE COMPUTING

In March 2007 I had the pleasure to participate in the International Workshop on Advanced Computing
and Applications (ACOMP 2007) held in Ho Chi Minh City, the former Saigon in Vietnam. Neither was it the
first workshop there nor was it my first visit to Ho Chi Minh City. The workshop series started in 2001 with
follow-ups in 2002, 2004, and 2005. In the years 2003 and 2006 our Vietnamese colleagues organised a conference
held in Hanoi, the capital of Vietnam. While this conference was more focused on mathematical optimization,
the Spring workshops have always concentrating on parallel and distributed computing. These conferences are a
results from a cooperation between the Interdisciplinary Centre of Scientific Computing (IWR) at the University
Heidelberg, Germany, and colleagues in Hanoi and Saigon. For more than a decade Prof. Georg Bock at the
IWR and Prof. Hoang Xuan Phu (Hanoi) and Prof. Nguyen Thanh Son (HCMC) have been the driving force
behind this fruitful cooperation.

While attending the workshops in 2001 and 2002 I was impressed by the creativity and focused hard work
of the researchers in Vietnam. aThis year’s contributions to the workshop highlight a new trend in Vietnamese
computer science, i.e. its orientation of research towards Grid Computing.

Remember, it is only since 1975 that the country lives in peace after the Vietnam war. In 1986 the governing
Communist Party made a shift to an open market and installed the so-called Doi Moi (renovation) politics. The
country developed rapidly, making Vietnam one of the fastest growing economies world-wide. In the 1980’s
gifted scientists studied in foreign countries and conducted research there in order to later go back and build up
their home country. Many of them went to socialist brother countries, in particular also to the former German
Democratic Republic.

The faculty for computer science at the Ho Chi Minh City University of Technology (HCMUT) was estab-
lished in 1986. The university itself has its foundation in the 50s however was named after Ho Chi Minh only
after the end of the war. It is now the leading university in teaching and research activities of Vietnam. How-
ever, Southern HCMC University after the end of the war received a high number of teaching and management
staff from the Northern Hanoi University of Technology. Remember that the communist North Vietnam won
the war and the South was reunified with the North in 1976. Being German I see parallels to our academic life
after the reunification of West and East Germany in 1990.

Although Hanoi University of Technology also conducts education and research in computer science, the
focus on high performance computing is a speciality of the HCMC University. Having 25.000 students in total,
the computer science faculty with its 1.500 students plays an important role on the campus. It embraces 7
research groups on different fields like e.g. chip design and data mining. Parallel processing and network
computing is headed by Dr. Nguyen Thanh Son, who is now the Vice Rector of the University of Technology
and Dr. Nam Thoai.

At the workshop they presented their work in Grid computing in five talks. This was complemented by
about the same number of invited keynote talks given by speakers who play an important role in this field like
Satoshi Sekiguchi, Dieter Kranzlmueller and others. Under the guidance of HCMUT and with financial support
by the Vietnamese Ministery for Science and Technology, the Vietnamese researchers plan to set up a national
Grid infrastructure (VN-Grid Initiative).

The EDAGrid-project at HCMUT aims at providing the necessary software components and organizational
concepts. Based on the Globus Toolkit 4.x it defines a middleware for service-centric applications. As the
telecommunication infrastructure of Vietnam is not yet that powerful as in other countries, the first step will
be to define so-called fat Grid nodes at the major universities of Vietnam. HCMUT contributes the Supernode
IT cluster, which comprises 64 nodes with two processors each. The software is well-known to us: GT 4.x, PBS,
LSF and others. Grid based projects at HCMUT focus on data management and on data mining. They run
cooperations with researchers from e.g. civil engineering, chemistry and aerospace technology.

So Vietnam is quickly catching up with the international Grid community and not only with this one. We
are looking forward to fruitful discussions and cooperations with our Vietnamese colleagues and of course also
hope to see submissions to SCPE.

http://www.hcmut.edu.vn/

http://www.cse.hcmut.edu.vn/

http://www.cse.hcmut.edu.vn/ACOMP2007/

Thomas Ludwig,
Universitit Heidelberg.

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 8, Number 1, p. iii. http://www.scpe.org © 2007 SWPS

o,..

GUEST EDITOR’S INTRODUCTION.

This issue is the second of a two issue collection of selected papers from the AIMS (Agents, Interactions,
Mobility, and Systems) conference track. AIMS began in 2002 as part of the ACM SAC (Symposium on
Applied Computing) and continued for five years. The first conference was held in Madrid (Spain). Subsequent
conferences were held in Melbourne (Florida, USA), Nicosia (Cyprus), Santa Fe (New Mexico, USA), and Dijon
(France). The track was primarily created to provide a venue for applied topics in software agents, but became
the only venue for papers on mobile agents, as the IEEE conference on Mobile Agents was discontinued after
2002. The first issue focused on papers related to mobile agents. This second issue focuses on software agents
and contains eight papers.

In the first paper, Alberti and colleagues address the problem of verifying agent interaction protocols that
dictate how agents communicate with each other in a multi-agent system. They propose a system based on
Prolog that enforces Social Integrity Constraints—that govern how agents interact with other agents. They also
apply their approach to the standard FIPA Contract-Net protocol.

In the second paper, Meneguzzi, Zorzo, Costa Méra, and Luck discuss how to incorporate planning into
the Belief, Desires, Intentions (BDI) model based agent systems. Their approach attempts to supplement the
BDI model with a planning approach in order to provide efficient means-end reasoning. A hybrid system with
a blend of programming platforms integrates reasoning and graphplan generation. This integration addresses
the long awaited requirement for BDI pragmatism and provides a novel technological framework.

The third paper by Albayrak, Wollny, Lommatzsch, and Milosevic describes an application of agent tech-
nology to information filtering. Their system uses information agents to retrieve content from a number of
diverse sources including the web. This information is then filtered for individual users via personal agents,
based on the user profiles. They also describe their implementation to support browsing information via PDAs
and cellphones.

In the fourth paper, Hexmoor and Mclaughlan address the issue of adjustable autonomy in the context of the
Personal Satellite Assistant (PSA) a softball sized flying robot onboard the space station. The authors propose
a computational approach to adjustable autonomy, which considers the tradeoffs between human intervention
and guidance to an agent versus the agent’s own autonomous behavior.

The fifth paper by Pefia and colleagues address the problem of protocol design for multi-agent systems.
Unlike the logic-based approach adopted by the first paper, this approach proposes a top-down mechanism
for designing the protocols. They model the protocols with FSAs that are successively refined until they are
reduced to simple message sequences.

In the sixth paper, Zhang proposes an approach to proactive communication to improve performance of
multi-agent teamwork. The goal is to allow agents cooperating in a team to anticipate each other’s information
needs in a proactive manner and to communicate the information to other agents.

In the seventh paper, Lomonosov and Sitharam discuss the tradeoff between stability, optimality, and
complexity for network games. Their approach is based on the Nash equilibrium, with stability being defined as
the ability to reach a Nash equilibrium and optimality being defined as the distance between to the equilibrium
solution and an optimal solution.

The paper by Carlsson and Jonsson discusses cooperative strategies and their application to the iterated
prisoner’s dilemma and the chicken game.

Decision support systems for resource management in the corporate world require sophisticated adminis-
tration and management. Multiagent systems approach to this topic is the tenet of the paper by Symeonidis,
et. al., in this issue. Customer management as well as resource tracking and recommendation are core issued
discussed.

Marcin Paprzycki,
Niranjan Suri.

iii

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 8, Number 1, pp. 1-13. http://www.scpe.org © 2007 SWPS

o,..

SPECIFICATION AND VERIFICATION OF AGENT INTERACTION PROTOCOLS IN A
LOGIC-BASED SYSTEM*

MARCO ALBERTI, FEDERICO CHESANI, DAVIDE DAOLIO, MARCO GAVANELLI, EVELINA LAMMA, PAOLA
MELLO AND PAOLO TORRONI

Abstract.

A number of information systems can be described as a set of interacting entities, which must follow interaction protocols.
These protocols determine the behaviour and the properties of the overall system, hence it is of the uttermost importance that the
entities behave in a conformant manner.

A typical case is that of multi-agent systems, composed of a plurality of agents without a centralized control. Compliance
to protocols can be hardwired in agent programs; however, this requires that only “certified” agents interact. In open systems,
composed of autonomous and heterogeneous entities whose internal structure is, in general, not accessible (open agent societies
being, again, a prominent example) interaction protocols should be specified in terms of the observable behaviour, and compliance
should be verified by an external entity.

In this paper, we propose a Java-Prolog-CHR system for verification of compliance of computational entities to protocols
specified in a logic-based formalism (Social Integrity Constraints). We also show the application of the formalism and the system
to the specification and verification of three different scenarios: two specifications show the feasibility of our approach in the
context of Multi Agent Systems (FTPA Contract-Net Protocol and Semi-Open societies), while a third specification applies to the
specification of a lower level protocol (Open-Connection phase of the TCP protocol).

1. Introduction. Many information systems can be described as a set of mutually independent, interacting
entities. A typical example is that of multi-agent systems. In such a scenario the interaction is usually subject
to some kind of interaction protocols, which the agents should respect when interacting. This raises the obvious
problem of verifying that interaction protocols are actually followed.

It is possible to design agents so that they will “spontaneously” comply to protocols, and, if possible,
formally verify that at design time. For instance, in [13], Endriss et al. propose an approach where protocols
are “imported” into individual agent policies.

However, this approach is not viable in open' agent societies, where interacting agents are autonomous and
heterogeneous and, in general, their internal structure cannot be accessed. In this case, agents should be checked
for compliance to interaction protocols based on their observable behaviour, by a trusted external entity.

In previous work [5], we proposed a computational logic-based formalism (based upon Social Integrity
Constraints, SICs) to specify interaction protocols. Social Integrity Constraints are meant to constrain the agent
observable behaviour rather than agents’ internal (mental) state or policies. In other words, this approach does
not restrict an agent’s access to societies based on its internal structure; regardless of its policies, any agent can
successfully interact in a society ruled by SICs, as long as its behaviour is compliant. The formal semantics of
Social Integrity Constraints [4] is based on abductive logic programming [18].

The purpose of this paper is to demonstrate the viability of Social Integrity Constraints as a formalism to
specify interaction between computational entities, including, but not limited to, agents in open societies. We
will use a modified version of Social Integrity Constraints, which better fits our needs in terms of both simplicity
of presentation, and expressiveness.

The paper is structured as follows. In Sect. 2, we introduce the version of Social Integrity Constraints used
in this work, giving their syntax and an informal explanation of their semantics.

In Sect. 3 we specify in terms of SICs a contract net-based protocol for resource allocation and negotiation
in multi-agent systems, called FIPA CNP, and in Sect. 4 we specify a protocol for entering “semi-open” societies,
i. e., virtual environments characterized by the presence of a “gatekeeper” agent and a protocol that governs the
agents’ access to the society. In Sect. 5 we demonstrate the usage of SICs to specify a network communication
protocol, namely the three-way handshake opening of the TCP Internet Protocol.

The article ends with the presentation of the compliance verification system (Sect. 6), and some notes about
its Java+Prolog implementation.

*This article is an extended version of the one by Alberti, Daolio, Gavanelli, Lamma, Mello, and Torroni, published in Haddad,
Omicini, and Wainwright, eds., Proceedings of the 19th ACM Symposium on Applied Computing, SAC 2004, Special Track on
Agents, Interactions, Mobility, and Systems (AIMS). Nicosa, Cyprus, March 14-17, 2004. pp. 72-78. ACM Press (2004).

IWe intend openness in societies of agents as Artikis, Pitt and Sergot [7], where agents can be heterogeneous and possibly
non-cooperative.

2 Marco Alberti, Federico Chesani et al.

2. Social Integrity Constraints. We distinguish between actual behaviour (happened events) and desired
behaviour (ezpectations), since in non-ideal situations they do not always coincide. In this section, we let the
reader get acquainted with our representation of events and we introduce Social Integrity Constraints (SICs) as
a formalism used to express which expectations are generated as consequence of happened events.

Happened Events and Erpectations. Happened events are in the form
H(Description, Time)

where Description is a term (as intended in logic programming, see [20]) representing the event that has
happened, and Time is an integer number representing the time at which the event has happened. For example,

H(request(a;, aj, give(108), d1),7)

represents the fact that agent a; requested agent a; to give 108, in the context of interaction d; (dialogue
identifier) at time 7.

All happened events form the history of a society. Given the history of a society at a given time, some
events will have to happen in order for interaction protocols to be satisfied: we represent such events by means
of expectations, which can be positive or negative. Positive expectations are of the form

E(Description, Time)

and represent an event that is expected to happen (typically, an action that an agent is expected to take).
Negative expectations are of the form

EN(Description, Time)

and represent the fact that an event is expected not to happen.
Expectations may (and, typically, will) contain variables, to reflect the fact that the expected event is not
fully specified; however, CLP [17] constraints can be imposed on variables to restrict their domain. For instance,

E(accept(ay, aj, give(M),ds), T,) : M >10,T, <15 (2.1)

represents the expectation for agent a; to accept giving agent a; an amount M of money, in the context of
interaction dy at time T,; moreover, M is expected to be at least 10$, and T, to be at most 15.

Since we impose no restrictions on the Description term of an expectation, expectations can regard any kind
of event that can be expressed by a Prolog-like term. However, expectations only regard point-time events; thus
it is not possible to express concisely that some proposition is expected to be true along a given time interval.

Since we make no assumptions about the agents’ internal structure or policies, their behaviour may or may
not satisfy expectations. We represent these two cases by means of the notions of fulfillment and violation. We
say that an event matches an expectation if and only if:

e their contents unify (a la Prolog);
e all relevant CLP constraints on variables (if any) are satisfied.
A positive expectation can get fulfilled by a matching event, whereas a negative expectation can get violated by
a matching event.
For instance, event

H(accept(ar, a;, give(20), d2), 15)

fulfills expectation (2.1); the same event would, instead, violate a negative expectations with the same content
and CLP constraints.

If we assume at some point that no more events will ever occur, we say that the history is closed. In that
case, all positive expectations that are not fulfilled are violated, and all negative expectations that are not
violated are fulfilled.

Specification and Verification of Agent Interaction Protocols 3

TaBLE 2.1
BNF syntaz of Social Integrity Constraints

SIC::=x — ¢
x::=EventLiteral [A EventLiteral]* [:CList]
¢::=PriorityLevel [= PriorityLevel]*
PriorityLevel::—HeadDisjunct [V HeadDisjunct]*, P
EventLiteral::—H(Term,T)
HeadDisjunct::—Expectation [A Expectation]* [:CList]
Expectation::=E(Term,T) | EN(Term,T)

Social Integrity Constraints. The way expectations are generated, given a (partial) history of a society,
is specified by Social Integrity Constraints (SICs). In this article, we adopt a modified version of the SICs
introduced in [2] (we discuss and motivate such modifications in Sect. 7).

Table 2.1 reports the BNF syntax of SICs. Term is a logic programming term [20], P is an integer number
and T is a variable symbol or integer number. CList is a conjunction of CLP constraints on variables.

SICs are a kind of forward rules, stating what expectations should be generated on the basis of happened
events. By means of SICs, it is possible to express that conjunctions of expectations (HeadDisjuncts in Table
2.1) are alternative, and it is also possible to assign a priority, represented by an integer number, to each list of
alternatives (PriorityLevels in Table 2.1).

For instance, the following SIC:

H(eo,To) A H(el,Tl) 2Ty <11
— E(EQ,TQ) Ty <TY V EN(Eg,Tg) 2 T35 < Tp, 1 (2.2)
= E(64,T4) 2Ty < Tp,2

means that, if eg happens before ey, then either of the two cases below hold:

e ¢, should have happened before e; or es should not have happened before e,

e ¢4 should have happened before eg;
and the first case has higher priority than (or is preferred to) the second one. Intuitively, a SIC means that,
when a set of events matching its body happens, then at least one of the “priority levels” in its conclusion
should be satisfied (the higher the priority, the better). In this case, we say that the SIC is fulfilled; otherwise,
it is wviolated. While priorities have no effect upon the fulfillment status of the society, they could instead be
used by a possible computational entity representing the society to guide its members’ behaviour towards some
preferred state. This can be useful when expectations are accounted for by agents deliberating about future
actions. At each point in time there are in general several equally fulfilled sets of expectations. But if some
are more preferred to others, an imaginary “social reasoner” which produces expectations based on events could
then evaluate and choose which sets of expectations better fit its goals, and transmit only them to the society
members. If such members take expectations into account, the whole society could evolve towards preferred
states.

The expectations in SIC (2.2) regard events that should have (or have not) happened before the time of
the event that raises them: we call this kind of expectations backward. Expectations that regard events that
are expected to happen (or not to happen) after the event that raises them are named forward. We restrict
the possible SICs by requiring that they contain only either backward expectations or forward expectations:
in the first case, we will call the SIC backward, in the second case forward. We discuss this restriction in
Sect. 7.

3. Specification of the FIPA Contract-Net. FIPA-CNP [1] is a protocol based on FIPA-ACL [14]
defined for regulating transactions between entities by negotiation. The protocol flow, represented as an AUML
[21] diagram in Fig. 3.1, starts with an Initiator which issues a request for a resource (¢fp, standing for call
for proposals) to other Participants. The Participants can reply by proposing a price that satisfies the request
(propose), or by refusing the request altogether (refuse). The Initiator must accept (accept-proposal) or reject
(reject-proposal) the received proposals. A Participant whose proposal has been accepted must, by a given
deadline, inform the Initiator that it has provided the resource (by sending an inform-done message, or a more
informative inform-result message) or that it has failed to provide it (failure).

4 Marco Alberti, Federico Chesani et al.

FIFA-Caontracthat-P rotooal)

| Initiator | | Partizipant
| i
' |
I

cfp m i

1

!

i

| Fn refusa

] .

| dead-

1 -

: < lina

i

b

!]

1 2 proposs

rajact proposal kj

acoapt-proposal I=j-k

failura

imfiorm-dona : inform

Inform-rasult : infarm

Fia. 3.1. FIPA-Contract-Net Interaction Protocol (AUML Diagram)

3.1. Definition by Social Integrity Constraints. The whole set of SICs used to define FIPA-CN is
composed of 14 backward SICs and 3 forward SICs. This choice of SICs is obviously not the only possibility.
We are currently investigating a general mapping of AUML protocol diagrams and other graphical formalisms
to SICs, so as to allow for an automatic translation. Some progress in this sense has been done with the GOSpel
graphic language [10] in the health care application domain.

In the SICs in the remainder of this section, I will represent the initiator, P a participant, R the resource,
Q@ the price, D the dialogue identifier, S the explanation of a result, and T, 7},... the time. We will not use
priority levels.

Backward SICs. Backward SICs are used to express that an action is only allowed if some other events have
(not) occurred before.

SICs (3.1) and (3.2) state that propose and refuse are only allowed in reply to a cfp.

H(tell(P, I, propose(R,Q), D), T) —

3.1
E(tell(I, P, cfp(R), D), Ty) : Ty < T (8.1)
H(tell(P, I, refuse(R), D), T) — (3.2)
E(tell(I, P, cfp(R), D), Ty) : Ty <T '
SICs (3.3) and (3.4) express mutual exclusion between propose and refuse.
H(tell(P, I, propose(R,Q), D), T) — (3.3)

EN (tell(P, I, refuse(R), D), Ty) : Ty <T

Specification and Verification of Agent Interaction Protocols 5

H(tell(P, 1, refuse(R), D), T) —

3.4
EN(tell(P, I, propose(R,Q), D), T1) : Th <T (34)
SICs (3.5) and (3.6) state that accept-proposal and reject-proposal are only allowed in reply to a propose.
H(tell(I, P, accept-proposal(R, Q), D), T) — (3.5)
E(tell(P, I, propose(R,Q), D), Ty) : Ty < T '
H(tell(I, P, reject-proposal(R, Q), D), T) — (3.6)
E(tell(P, I, propose(R,Q),D),T1): Ty <T '
SICs (3.7) and (3.8) express mutual exclusion between accept-proposal and reject-proposal.
H(tell(I, P, accept-proposal(R, Q), D), T) — (3.7)
EN (tell(I, P, reject-proposal(R, Q), D), Th) : Ty <T ’
H(tell(I, P, reject-proposal(R, Q), D), T) — (3.8)

EN(tell(I, P, accept-proposal(R,Q), D), Ty) : Ty <T

SICs (3.9), (3.10) and (3.11) say that inform-done, inform-result and failure are only allowed in reply to an
accept-proposal.

H(tell(P, I, inform-done(R), D), T) —

3.9
E(tell(I, P, accept-proposal(R,Q), D), Ty) : Ty < T (39)
H(tell(P, I, inform-result(R, S), D), T) — (3.10)
E(tell(I, P, accept-proposal(R,Q), D), T1) : Ty < T '
H(tell(P, I, failure(R), D), T) — (3.11)

E(tell(I, P, accept-proposal(R,Q), D), Ty) : Ty < T

SICs (3.12), (3.13) and (3.14) express mutual exclusion between inform-done, inform-result and failure.

3

H(tell(P, I, inform-done(R), D), T) —
EN(tell(P, I, failure(R), D), Ty) : Ty <T A (3.12)
EN(tell(P, I, inform-result(R, S), D), Ty): Ty <T

H(tell(P, I, inform-result(R,S), D), T) —
EN(tell(P, I, failure(R), D), T1) : Ty <T A (3.13)
EN(tell(P, I, inform-done(R), D), Ty) : Ty <T

H(tell(P, I, failure(R), D), T) —
EN(tell(P, I, inform-done(R), D), Ty) : Ty <T A (3.14)
EN(tell(P, I, inform-result(R,S), D), Ty): Ty <T

6 Marco Alberti, Federico Chesani et al.

Forward SICs. SIC (3.15) says that, after receiving a c¢fp, a Participant is expected to issue a propose or a
refuse by 200 time units.?

H(tell(I, P, cfp(R), D), T) —
E(tell(P, I, propose(R,Q), D), Ty) : Ty < T + 200 Vv (3.15)
E(tell(P, I, refuse(R), D), Ts) : To < T + 200

SIC (3.16) states that the Initiator is expected to reply to a propose with an accept-proposal or a reject-proposal
by 200 clock ticks.

H(tell(P, I, propose(R,Q), D), T) —
E(tell(I, P, accept-proposal(R, Q), D), Ty) : Ty < T + 200V (3.16)
E(tell(I, P, reject-proposal(R, Q), D), Ts) : To < T + 200

SIC (3.17) states that a Participant is expected to reply to an accept-proposal with an inform-done, an
inform-result or a failure by 200 clock ticks.

H(tell
E(tell
E(tell
E(tell

—~

I, P, accept-proposal(R,Q), D), T) —

P, I, inform-done(R), D), Ty) : Ty < T + 200V

P, I, inform-result(R, S), D), Ts) : To < T + 200V
P, 1, failure(R), D), Tz) : Ty < T + 200

(3.17)

—~ —~

Note that, in all the three cases, backward SICs make the alternative expectations mutually exclusive.

4. Specification of a semi-open society access protocol. According to [11], societies can be classified
into 4 groups, each characterized by a different degree of openness. In the following, we give an example of how
our framework can model a semi-open society, i. e., a society that can be joined by an agent executing an access
protocol. In this example we imagine that a special gatekeeper agent is in charge of receiving joining requests,
and it requests agents willing to enter to fill in some registration form.

The access protocol is defined by the following SICs, in which C represents the name of an agent willing to
join in:

H(tell(C, gatekeeper, ask(register), D), T) —
E(tell(gatekeeper, C, ask(form), D), Ty) : Ty < T + 10

H(tell(C, gatekeeper, ask(register), D), T)A
H(tell(gatekeeper, C, ask(form), D), Ty) NT < Ty — (4.2)
E(tell(C, gatekeeper, send(form, F), D), Ty) : To < Ty 4+ 10

(tell
(tell
(tell
(tell

gatekeeper, C, ask(form), D), T1)A\

C, gatekeeper, send(form, F), D), To) NTy < Ty —

gatekeeper, C, accept(register), D), T5) : Ts < To + 10 V
D), Ty): T3 < To + 10

H
H

=~ =

B (4.3)

E

/=~ =

gatekeeper, C,reject(register),

SIC (4.1) says: if C' asks gatekeeper to join the society (register), then the gatekeeper should ask for a
registration form; SIC (4.2) imposes that, after the first two messages, the agent should provide the form;
and SIC (4.3) says that, after receiving the form, the gatekeeper should either accept or reject the registration
request.

2Time unit is an abstract concept, whose instantiation actually depends on the application. A time unit may represent for
example a clock tick, or a transaction time.

Specification and Verification of Agent Interaction Protocols 7

For the sake of simplicity, in the sequel we assume that member agents do not leave the society. Then, the
presence in the history of an event of type:
H(tell(gatekeeper, C, accept(register), D), T)

can be regarded as C’s “formal” act of “membership”, and it can be used in SICs as a condition for generating

expectations.
For instance, SIC (3.15) from the FIPA-CNP (Sect. 3.1) could be modified as follows to take membership
into account:

H(tell(gatekeeper, I, accept(register), D), Tr)A
H(tell(I, P, cfp(R), D), T) —

E(tell(P, I, propose(R,Q), D), T1) : Ty < T + 200 V
E(tell(P, I, refuse(R), D), T3) : To < T + 200

(4.4)

5. Specification of the TCP protocol opening phase. In this section, we present a specification of the
open-connection phase of the TCP protocol. We will focus on the well known “three-way handshake” opening,
summarized below:

1. a peer A sends to another peer B a syn segment;’
2. B replies by acknowledging (with an ack segment) A’s syn segment, and by sending a syn segment in
turn;
3. A acknowledges B’s syn segment with a ack segment, and starts sending data.
The following two integrity constraints describe such a protocol:

H(tell(A, B, tep(syn, null, NSynA, AckNumber), D), T1) —
E(tell(B, A, tep(syn, ack, NSynB, NSynAAck),D),T2) : (5.1)
NSynAAck = NSynA+1AT2>T1.

SIC 5.1 says that if A sends to B a syn segment, whose sequence number is NSynA, then B is expected to
send to A an ack segment, whose acknowledgment number is NSynA + 1, at a later time.

H(tell(A, B, tep(syn, null, NSynA, AckNumber), D), T1)

AN H(tell(B, A, tep(syn, ack, NSynB, NSynAAck), D), T2) :

T2 >T1ANNSynAAck = NSynA+1— (5.2)
E(tell(A, B, tep(null, ack, NSynAAck, NSynBAck), D), T3) :

T3 >T2NNSynBAck = NSynB + 1.

SIC 5.2 says that, if the previous two messages have been exchanged, then A is expected to send to B an
ack segment acknowledging B’s syn segment, and with acknowledgement number is NSynB+ 1, where NSynB
is the sequence number of B’s syn.

A third integrity constraint has been added, to verify the interaction between peers with different response
time. A faster peer in fact could not wait enough for the acknowledge message, and try to resend a syn message
to a slower peer. This situation can lead to several problems in the slower peer, whose queue of the incoming
messages could easily get saturated by requests.

H(tell(A, B, tep(syn, null, NSynA, ANY), D), T1)
Nta(TA) —

EN(tell(A, B, tep(syn, null, NSynA, ANY), D), T2) :
T2<T1INT2>T1-TA.

(5.3)

SIC 5.3 says that, if A has sent to B a syn segment to open a connection, then A is expected not to send
another syn segment before T'A time units, where T'A is an application-specific constant, defined by the ta/1
predicate.

The above specification has been used to check the interaction between experimental mobile phones and a
server.

3The term “segment” is used in the TCP specification to indicate bit configuration or streams.

8 Marco Alberti, Federico Chesani et al.

TaBLE 6.1
State of an expectation

Type | Verified | Expired State
E yes fulfilled
E no no wait
E no yes violated

EN yes violated
EN no no wait
EN no yes fulfilled

6. Verification System. In this section, we describe a prototypical system that we have developed to
verify the compliance of the agent behaviour to interaction protocols specified by means of SICs.
The system checks for compliance by accomplishing two main tasks:
1. it fires (activates) SICs whose conditions become true as relevant events occurs;
2. it decides whether activated SICs are fulfilled or violated.
The system is designed to work during the evolution of the society, so it will only have, at each instant, a partial
history available, and it must take into account that new events may happen in the future. For instance, let us
consider again the sample expectation in Sect. 2:

E(accept(ay, aj, give(M),d2), T,) : M > 10,T, < 15.

Let us now suppose that, at time 12, no matching event has yet occurred. So, while this expectation has
not been fulfilled, neither it has (yet) been violated: since a matching event could still happen at time 13, 14
or 15. It will actually be violated instead, in case a matching event fails to occur by time 15, because the CLP
constraint on the time variable becomes unsatisfiable as of time 16.
More generally, it may not be possible to state whether a SIC is fulfilled or violated at the same time it
fires; thus, we identify three possible states for an activated SIC:
e fulfilled, if the SIC is fulfilled;
e violated, if the SIC is violated;
e wait, if the SIC is still neither fulfilled nor violated.
The initial state for an activated SIC is wait; happening events will eventually change its state to fulfilled or
violated.
If we process events in the correct order in time, in the case of backward SICs, the transition from a wait
state to a fulfilled or violated state is immediate, because expectations in a backward SIC regard events that
should have (not) happened in the past and, thus, they can be immediately checked for fulfillment.

6.1. Runtime identification of the state of a SIC. In the following, we explain how the state of a
SIC changes at runtime.

The activation of a SIC causes the creation of an instance of its “head” (organized in priority levels, each
being a disjunction of conjunction of expectations, as explained in Sect. 2). Afterwards, the state of each single
expectation is defined, followed by the state of the priority levels, and finally by the state of the SIC.

State of an expectation. An expectation is called “verified” if there exists a matching event in the society his-
tory. The state of a verified positive expectation is fulfilled; the state of a verified negative expectation is violated.

An expectation is called “expired” if CLP constraints over its time variable cannot be any longer satisfied
(typically, this is the case with constraints representing deadlines which have expired). The state of an expired
and not verified expectation is violated if the expectation is positive and fulfilled if the expectation is negative;
the state of a not expired and not verified expectation is instead wait.

Table 6.1 summarises all these cases.

State of a conjunction of expectations. The state of a conjunction of expectations is defined by the following
rules:

1. if the state of at least one expectation in the conjunction is wviolated, then the state of the conjunction
is violated;

2. if the state of all expectations in the conjunction is fulfilled, the state of the conjunction is fulfilled;

3. otherwise, the state is wait.

Specification and Verification of Agent Interaction Protocols 9

State of a priority level. A priority level is a disjunction of conjunctions of expectations. The state of a
priority level is then defined by the following rules:
1. if the state of at least one of the disjuncts is fulfilled, then the state of the priority level is fulfilled;
2. if the state of all of the disjuncts is wviolated, then the state of the priority level is violated;
3. otherwise, the state is wait.
State of a SIC. If all the priority levels of a SIC are violated, then the SIC is violated; otherwise, the state
of the highest non-violated priority level of the SIC defines the state of the SIC.

6.2. Verification of Compliance. As shown in Sect. 3.1 in relation to the FIPA CNP, backward SICs
can express that events are only allowed if some other events have (not) happened before; since their state can
be immediately resolved to fulfilled or violated, backward SICs can be used to verify that an event is allowed
as soon as it occurs. In designing our system, we made a choice to ignore the events that are not allowed.
However, the system captures the violation: in a richer social model, we can imagine some authority to react
to the violation.

The set of forward SICs associated with a legal action is then used to generate expectations about the future
events in the society (i. e., the heads of associated forward SICs will be checked for fulfillment).

In order to verify the fulfillment of SICs, we have defined two different phases: the FEvent Driven phase and
the Clock Driven phase.

Event-driven phase. An event-driven phase starts each time a new event occurs. The system activates all
backward SICs associated with the event; if they are all fulfilled, then the event is recognized to be allowed and
thus marked as “legal” and added to the history of the interaction. If some of the backward SICs are violated,
then the event is marked as “illegal”, since it is not allowed, and it is not recorded in the history of the society.

If the event is marked legal, the system processes the new updated history by activating the forward SICs
associated with the new event. Forward (activated) SICs define the expected future behaviour of the society,
and they will be checked for fulfillment.

Clock-driven phase. The clock-driven phase starts whenever a special event called “clock,” or “current time,”
is registered by the society. The system processes the set of activated forward SICs identifying the state of each
one. If the state of a SIC is fulfilled, the SIC is removed from the list of pending (waiting) SICs. If the state
of a SIC is violated, the SIC is removed but a violation is raised. If the state is wait, the SIC is kept pending
until the next clock-driven phase or the next event-driven phase. Note that the time associated to events and
the “current time” event which fires a clock-driven phase must synchronize.

6.3. Implementation. The verification system has been implemented on top of SICStus Prolog’s Con-
straint Handling Rules (CHR) library [22].

CHR|[16] are essentially a committed-choice language consisting of guarded rules that rewrite constraints
in a store into simpler ones until they are solved. CHR define both simplification (replacing constraints by
simpler constraints while preserving logical equivalence) and propagation (adding new, logically redundant but
computationally useful, constraints) over user-defined constraints.

6.3.1. Activation of SICs. Each event happened in the system is represented by the CHR constraint
h/2, where the arguments are a Prolog ground term representing the happened event and an integer number
representing the time.

Positive (resp. negative) expectations are represented by the Prolog term e (resp. en). Its arguments are:
a Prolog term describing the event expected to happen (resp. not to happen), the time (typically non ground)
and a list of CLP constraints over the variables in the description.

A PriorityLevel is represented by the Prolog term pr, whose arguments are the list of alternative HeadDis-
juncts of the priority level and the integer number representing the priority (the lower the number, the higher
the priority). Priority levels generated by a SIC are collected as the list argument of a plist term.

The argument of the CHR constraint 1e/1 is the list of all activated plists (one for each activated SIC).

Each SIC is represented by a simpagation CHR. In general, simpagation rules have the form

Hl,...,Hl\Hl_;,_l,...,Hi<:>G1,...,Gj|Bl,...,Bk (6.1)

where [> 0,4 > [, j > 0, k > 0 and where the multi-head Hy,..., H; is a nonempty sequence of CHR
constraints, the guard G, ..., G, is a sequence of built-in constraints, and the body B;, ..., By is a sequence of
built-in and CHR constraints. Operationally, when the constraints in the head are in the constraint store and

10 Marco Alberti, Federico Chesani et al.

the guard is true, Hy, ..., H; remain in the store, and Hjy1, ..., H; are substituted by By, ..., Bi. For instance,
the following CHR implements SIC (2.2):

h(event0,T0), h(event1,T1) \ le(LExp) <=> TO<T1 &
append (LExp,
[plist ([
pr(l
and([e(event2,T2, [min(T2,T1)]) 1),
and([en(event3,T3, [min(T3,T0)]) 1)
1,1,
pr (L
and([e(event4,T4,[min(T4,T0)]) 1)
1,2)
1,id1)], LExpl)
| le(LExpl).

If event0 and event1 have occurred and are part of the “history,” the two CHR constraints h(event0,T)
and h(event1,T1) are in the constraint store; if the guard T<T1 is true, then the rule is activated. The store
(the LExp list) of the heads of activated SICs is updated appending a new plist(), which contains the list of
priority levels (two in this example) in the head of the SIC. The CHR constraint le/1, which contained the old
LExp before the activation of the rule, is removed by simpagation and replaced by the same constraint with the
new list LExpl as argument.

Note that two different symbols are used to represent the CLP constraint <: < if its arguments are the
times of two happened events?, and min if they are instead the times of two expectations.

The translation of a SIC into a simpagation CHR is rather straightforward, which makes it easy to implement
new protocols.

As further examples, we report below the CHR implementation of SIC (3.1) and SIC (3.15):

h(tell(P,I,propose(R,Q),D),T) \
le(LExp) <=>
true &
append (LExp,
[plist ([
pr(l
and ([
e(tell(I,P,cfp(R),D),T1, [min(T1,T)]1)
D
1,1
1)1, LExpl) | le(LExpl).
h(tell(I,P,cfp(R),D),T) \
le(LEv,LExp) <=>
Td is T+200 &
append (LExp,
[plist ([
pr(l
and ([
e(tell(P,I,propose(R,Q),D),T1, [min(T1,Td)])
D,
and ([
e(tell(P,I,refuse(R),D),T2, [min(T2,Td)])
D
1,1
D1,
LExpl) | le(LExpl).

4In this case, the times are certainly ground and the Prolog predefined predicate can be applied to them.

Specification and Verification of Agent Interaction Protocols 11

Interface
historyGeneratorListener
A
Class L. |
historyGenerator
Interface Interface
expectationsEngineListener timerInterface
A)
! i
] Class o]
expectationsEngine
Interface Interface
messageDispatchListener timerListener
Class

messageDispatcher

Interface
eventRecorderInterface

Interface
eventRecorderListener

Fig. 6.1. UML diagram

6.3.2. Identification of the state of SICs. The identification of the state of a SIC is coded in standard
Prolog. The system performs all the steps described in Sect. 6.1. It analyses all its stored plists, thus
implementing the event-driven and clock-driven phases described above.

6.3.3. Interface to the verification system. In order to use the system in concrete case studies, a
Java package (using the SICStus Prolog’s Jasper library [22]) has been implemented. This package has been
developed to be used as a Java wrapper for the verification system.

The UML diagram of the system is represented in Fig. 6.1. To use the system the user must create a histo-
ryGenerator object giving as parameter the path to a (compiled) Prolog file containing the protocol definition
expressed by SICs. The Java system implements the Event Driven phase receiving messages from the even-
tRecorderListener interface and the clock-driven phase receiving “current time” events from the timerListener
interface. The rest of the system implements the Java-Prolog interface.

7. Discussion and related work. The syntax of Social Integrity Constraints proposed in this paper is a
modified version of that proposed in [2] and in [5]. The modifications have been made in order to tackle both
expressiveness and implementation issues. Specifically:

e we added priority levels to SICs (see Sect. 2). This allows for a more flexible specification of protocols,
enabling the protocol designer to devise alternative protocol flows while being able to specify preferences
among them;

12 Marco Alberti, Federico Chesani et al.

e we imposed the restriction of having only either backward or forward expectation in a SIC (see Sect. 2).
While this improves efficiency, on the downside it prevents from writing SICs such as

H(a, Ty,)
—>E(b, Ty) Ty, < Ty, 1 (7.1)
=E(¢,T.): T. < T, + 1,2

which one might want to use to express that an event (b) that does not fulfill a backward expectation
can, with lower priority, still be allowed, provided that certain “backup” event (¢) occur at some point
in the future. However, in our experience, SICs such as (7.1) are generally not necessary to express
protocols of common use.

In [4] we have defined an abductive semantics for SICs, in the context of agent societies, and a more gen-
eral framework, in which the verification procedure is performed by an abductive proof procedure [6], whose
implementation has been integrated into a software component [3], interfaced to several multi-agent platforms
such as Jade [8], PROSOCS [9], and tuProlog [12]. Other authors have proposed alternative approaches to the
specification and in some cases animation of interaction among agents. Notably, in 7], Artikis et al. present a
theoretical framework for providing executable specifications of particular kinds of multi-agent systems, called
open computational societies, and they present a formal framework for specifying and animating systems where
the behaviour of the members and their interactions cannot be predicted in advance, and for reasoning about
and verifying the properties of such systems. A noteworthy difference with [7] is that we do not explicitly
represent the institutional power of the members and the concept of valid action. Permitted are all social events
that do not determine a violation, i. e., all events that are not explicitly forbidden are allowed.

In [24], Yolum and Singh apply a variant of Event Calculus [19] to commitment-based protocol specifica-
tion. The semantics of messages (i. e., their effect on commitments) is described by a set of operations whose
semantics, in turn, is described by predicates on events and fluents; in addition, commitments can evolve, in-
dependently of communicative acts, in relation to events and fluents as prescribed by a set of postulates. Such
a way of specifying protocols is more flexible than traditional approaches based on action sequences in that it
prescribes no initial and final states or transitions explicitly, but it only restricts the agent interaction in that, at
the end of a protocol run, no commitment must be pending. Agents with reasoning capabilities can themselves
plan an execution path suitable for their purposes (which, in that work, is implemented by an abductive event
calculus planner). Our notion of expectation is more general than that of commitment found in [24] or in other
commitment-based works, such as [15]: it represents the necessity of a (past or future) event, and is not bound
to have a debtor or a creditor, or to be brought about by an agent.

8. Conclusions. We have presented a framework for the specification and runtime verification of compli-
ance of agent interaction to protocols. The specification at a social level of interaction protocols constrains the
agent observable behaviour from the outside, rather than its internal state or structure. This is a characteristic
of social approaches to agent protocol specification, and it is particularly suited for usage in open agent soci-
eties. Protocol specifications use a computational logic-based formalism called social integrity constraints. The
system’s Java-Prolog- CHRbased implementation has been tested on different types of protocols [23]. In this
article, we have demonstrated the usage of SICs in three cases: the FIPA CNP, taken from the agent literature,
a made up protocol for joining semi-open societies, and the well known three-way handshake phase of the TCP
IP protocol for connection establishment. The verification system, implemented in Prolog and CHR, can be
used as a module in a Java-based system, thanks to the Java-Prolog interface of SICStus Prolog. The modular
structure of the system makes it (hopefully) easy to adapt it to new applications.

9. Acknowledgments. This research has been partially supported by the National MIUR PRIN 2005
projects No 2005-011293, Specification and verification of agent interaction protocols, °, and No 2005-015491,
Vincoli e preferenze come formalismo unificante per ’analisi di sistemi informatici e la soluzione di problemi
reali, © and by the National FIRB project TOCALIT".

Shttp://www.ricercaitaliana.it/prin/dettaglio_completo_prin_en-2005011293.htm
Shttp://www.sci.unich.it/ bista/projects/prin2006/
"http://www.dis.uniromal.it/ tocai/

(1]
(2]

(3]
[4]

[5]
(6]
[7]

(8]

[9]

[10]

[11]

[12]
[13]

[14]
[15]

[16]
[17]
[18]
[19]
[20]
[21]

[22]
[23]

[24]

Specification and Verification of Agent Interaction Protocols 13

REFERENCES

FIPA Contract Net Interaction Protocol, Tech. Report SC00029H, Foundation for Intelligent Physical Agents, 2002. Available
at http://wuw.fipa.org

M. ALBerti, A. CiampoLINI, M. GavaNELLI, E. Lamma, P. MELLO, aND P. TorroONI, A social ACL semantics by deontic
constraints, in Multi-Agent Systems and Applications ITI. Proceedings of the 3rd International Central and Eastern
European Conference on Multi-Agent Systems, CEEMAS 2003, V. Mafik, J. Miiller, and M. Péchoucek, eds., vol. 2691
of Lecture Notes in Artificial Intelligence, Prague, Czech Republic, June 16-18 2003, Springer-Verlag, pp. 204-213.

M. ALBerTi, M. GavaNeLrLl, E. Lamma, F. CHesani, P. MeLLo, anp P. Torroni, Compliance verification of agent
interaction: a logic-based software tool., Applied Artificial Intelligence, 20 (2006), pp. 133-157.

M. ArBERTI, M. GavaNELLIl, E. Lamma, P. MELLO, AND P. TorRroONI1, An Abductive Interpretation for Open Societies, in
AT*IA 2003: Advances in Artificial Intelligence, Proceedings of the 8th Congress of the Italian Association for Artificial
Intelligence, Pisa, A. Cappelli and F. Turini, eds., vol. 2829 of Lecture Notes in Artificial Intelligence, Springer-Verlag,
Sept. 23 26 2003, pp. 287 299.

, Specification and Verification of Agent Interactions using Social Integrity Constraints, Electronic Notes in Theoretical

Computer Science, 85 (2003).

, The SCIFF abductive proof-procedure, in Proceedings of the 9th National Congress on Artificial Intelligence, AT*TA
2005, vol. 3673 of Lecture Notes in Artificial Intelligence, Springer-Verlag, 2005, pp. 135 147.

A. Artikis, J. Pirr, aNp M. SeErcor, Animated specifications of computational societies, in Proceedings of the First
International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-2002), Part ITI, C. Castelfranchi
and W. Lewis Johnson, eds., Bologna, Italy, July 15 19 2002, ACM Press, pp. 1053 1061.

F. BeLLiFEMINE, F. BERGENTI, G. CAIRE, AND A. Pogal, Jade - a java agent development framework, in Multi-Agent
Programming: Languages, Platforms and Applications, R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni,
eds., vol. 15 of Multiagent Systems, Artificial Societies, and Simulated Organizations, Springer-Verlag, 2005, pp. 125-147.

A. Bracciarl, U. Enpriss, N. DEmeETRIOU, A. C. Kakas, W. Lu, anp K. Staruis, Crafting the mind of prosocs agents,
Applied Artificial Intelligence, 20 (2006), pp. 105 131.

F. Cursani, A. CramporLiNI, P. MELLO, M. MONTALI, AND S. STORARI, Testing guidelines conformance by translating
a graphical language to computational logic, in ECAI 2006 Workshop on Al techniques in healthcare:evidence based
guidelines and protocols, Riva del Garda, Italy, August 2006. http://www.openclinical.org/cgp2006_2.html

P. Davipsson, Categories of artificial societies, in Engineering Societies in the Agents World II, A. Omicini, P. Petta,
and R. Tolksdorf, eds., vol. 2203 of Lecture Notes in Artificial Intelligence, Springer-Verlag, Dec. 2001, pp. 1-9. 2nd
International Workshop (ESAW’01), Prague, Czech Republic, July 7, 2001, Revised Papers.

E. DenTi, A. Owmicini, anND A. Riccr, Multi-paradigm Java-Prolog integration in tuProlog, Science of Computer
Programming, 57 (2005), pp. 217-250.

U. Enbpriss, N. Mauvuper, F. Sapri, aNnp F. Toni, Protocol conformance for logic-based agents, in Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico (IJCAI-03), G. Gottlob and
T. Walsh, eds., Morgan Kaufmann Publishers, Aug. 2003.

FIPA: Foundation for Intelligent Physical Agents. Home Page: http://wuw.fipa.org/

N. Fornara anD M. CoromBETTI, Operational specification of a commitment-based agent communication language, in
Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-2002),
Part 11, C. Castelfranchi and W. Lewis Johnson, eds., Bologna, Italy, July 15 19 2002, ACM Press, pp. 535 542.

T. FrOuwirrH, Theory and practice of constraint handling rules, Journal of Logic Programming, 37 (1998), pp. 95 138.

J. Jarrar AND M. MaHER, Constraint logic programming: a survey, Journal of Logic Programming, 19-20 (1994),
pp- 503 582.

A. C. Kakas, R. A. Kowawrski, aND F. Toni1, The role of abduction in logic programming, in Handbook of Logic in
Artificial Intelligence and Logic Programming, D. M. Gabbay, C. J. Hogger, and J. A. Robinson, eds., vol. 5, Oxford
University Press, 1998, pp. 235-324.

R. A. KowaLskl AND M. SercoT, A logic-based calculus of events, New Generation Computing, 4 (1986), pp. 67 95.

J. W. Lrovp, Foundations of Logic Programming, Springer-Verlag, 2nd extended ed., 1987.

J. MuLLER AND J. OpEeLL, Agent UML: A formalism for specifying multiagent software systems, International Journal of
Software Engineering and Knowledge Engineering, 11(3) (2001), pp. 207 230.

SICStus prolog user manual, release 3.11.0, Oct. 2003. http://www.sics.se/isl/sicstus/

The SOCS protocol repository, 2005. Available at
http://edub9.deis.unibo.it:8079/S0CSProtocolsRepository/jsp/index. jsp

P. YoLum AND M. SiNGH, Flexible protocol specification and ezecution: applying event calculus planning using commitments,
in Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-
2002), Part II, C. Castelfranchi and W. Lewis Johnson, eds., Bologna, Ttaly, July 15-19 2002, ACM Press, pp. 527-534.

Edited by: Marcin Paprzycki, Niranjan Suri
Received: October 1, 2006
Accepted: December 10, 2006

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 8, Number 1, pp. 15-28. http://www.scpe.org © 2007 SWPS

o,..

INCORPORATING PLANNING INTO BDI SYSTEMS

FELIPE RECH MENEGUZZI, AVELINO FRANCISCO ZORZO,
MICHAEL DA COSTA MORA AND MICHAEIL LUCK

Abstract. Many architectures of autonomous agent have been proposed throughout AI research. The most common architec-
tures, BDI, are procedural in that they do no planning, seriously curtailing an agent’s ability to cope with unforeseen events. In
this paper, we explore the relationship between propositional planning systems and the process of means-ends reasoning used by
BDI agents and define a mapping from BDI mental states to propositional planning problems and from propositional plans back
to mental states. In order to test the viability of such a mapping, we have implemented it in an extension of a BDI agent model
through the use of Graphplan as the propositional planning algorithm. The implemented prototype was applied to model a case
study of an agent controlled production cell.

Key words. Propositional Planning, Agent Models and Architectures, BDI, X-BDI

1. Introduction. Development of autonomous rational agents has been one of the main drivers of artificial
intelligence research for some time [37]. Initial efforts focused on disembodied means-ends reasoning with the
development of problem-solving systems and generic planning systems, such as STRIPS [15], later evolving
into the idea of embodied problem solving entities (i.e. agents) [37]. In this line of research, one of the most
widely studied models of autonomous agents has been that supported by the mental states of beliefs, desires
and intentions [7], or the BDI model. While efforts towards defining BDI architectures have been sustained and
significant, resulting in both theoretical [34] and practical architectures [14], they have also led to a disconnect
between them.

In particular, theories of autonomous BDI agents often rely on logic models that assume infinite computa-
tional power, while architectures defined for runtime efficiency have curtailed an agent’s autonomy by forcing
the agent to rely on a pre-compiled plan library. Although simple selection of plans from a plan library is
computationally efficient, at compile time an agent is bound to the plans provided by the designer, limiting
an agent’s ability to cope with situations not foreseen at design time. Moreover, even if a designer is able to
define plans for every conceivable situation in which an agent finds itself, such a description is likely to be very
extensive, offsetting some of the efficiency benefits from the plan library approach. The absence of planning
capabilities thus seriously curtails the abilities of autonomous agents. In consequence, we argue that planning
is an important capability of any autonomous agent architecture in order to allow the agent to cope at runtime
with unforeseen situations.

Though the efficiency of planning algorithms has been a major obstacle to their deployment in time-
critical applications, many advances have been achieved in planning [43]|, and developments are ongoing |[2].
Considering that planning is an enabler of agent flexibility, and that there have been significant advances in
planning techniques, it is valuable and important for autonomous agent architectures to employ planning to
allow an agent to cope with situations that the designer was not able to foresee. This article describes and
demonstrates one such architecture, which integrates propositional planning with BDI, allowing agents to take
advantage of the practical reasoning capabilities (i.e. selecting and prioritising goals) of the BDI model, and
replacing the BDI means-ends reasoning (i.e. selecting a course of action to achieve goals) with the flexibility
of generic planning. Our approach is underpinned by a mapping among BDI mental states and propositional
planning formalisms, allowing any algorithm based on a similar formalism to be used as a means-ends reasoning
process for a BDI agent. In order to demonstrate the viability of such an approach we take a specific BDI
agent model, namely the X-BDI model [27], and modify it to use propositional planning algorithms to perform
means-ends reasoning [30].

The paper is organised as follows: Section 2 contains an overview of the related work and main concepts
used throughout this paper; Section 3 describes X-BDI and the extensions that allow it to use an external
planning algorithm; Section 4 contains a case study used to demonstrate the implemented prototype; finally,
Section 5 contains concluding remarks about the results obtained in this work.

2. Agents and Planners. In this section we review background work on agents and planning systems,
and conclude with a discussion of the integration of these technologies in an agent architecture, laying the
groundwork for the remainder of this article. Section 2.1 provides an overview of computer agents and the BDI
model, used in the agent architecture described later in this article; Section 2.2 introduces generic planning

15

16 F. R. Meneguzzi, A. F. Zorzo et al

algorithms and problem representation; Section 2.3 describes the particular planning algorithm used in the
prototype described in Section 3; finally, we discuss how these technologies can be pieced together in order to
address some of their individual limitations.

2.1. Agents. The growing complexity of computer systems has led to the development of increasingly more
advanced abstractions for their representation. An abstraction of growing popularity for representing parts of
complex computer systems is the notion of computer agents [13], so far as to be proposed as an alternative to
the Turing Machine as an abstraction for the notion of computation [19, 42]. Although there is a variety of
definitions for computer agents, most researchers agree with Jennings’ definition of an agent as encapsulated
computer system, situated in some environment, and capable of flexible, autonomous action in that environment
in order to meet its design objectives [19].

In the context of multi-agent systems research, one of the most widely known and studied models of
deliberative agents uses beliefs, desires and intentions (BDI) as abstractions for the description of a system’s
behaviour. The BDI model originated from a philosophical model of human practical reasoning [6], later
formalised [11] and improved towards a more complete computational theory [34, 44]. Though other approaches
to the design of autonomous agents have been proposed [16], the BDI model or variations of it are used in many
new architectures of autonomous agents [13, 31, 4, 40]. More specifically, the components that characterise the
BDI model can be briefly described as follows [28]:

e beliefs represent an agent’s expectation regarding the current world state or the possibility that a given
course of action will lead to a given world state;

e desires represent a set of possibly inconsistent preferences an agent has regarding a set of world states;
and

e intentions represent an agent’s commitment regarding a given course of action, constraining the con-
sideration of new objectives.

The operation of a generic BDI interpreter can be seen as a process that starts with an agent considering its
sensor input and updating its belief base. With this updated belief base, a set of goals from the agent’s desires
is then selected, and the agent commits itself to achieving these goals. In turn, plans are selected as the means
to achieve the goals through intentions which represent the commitment. Finally, these intentions are carried
out through concrete actions contained in the instantiated plans (or intentions). This process is illustrated in
the activity diagram of Figure 2.1, which shows the components of an agent that are used in each of the main
processes of BDI reasoning, namely: obtaining sensor input and updating beliefs; selecting a goal from among
the desires; and adopting intentions to carry out the actions required to achieve the selected goal.

This last process of selecting and adopting intentions to achieve a goal is one of the most important
processes of the BDI model, since it affects not only the actions an agent chooses, but also the selection of goals,
as an agent must drop goals deemed impossible. This problem of determining whether an agent is capable
of satisfying its objectives through some sequence of actions given an environment and a set of objectives is
sometimes characterised as the agent design problem [45]. The most widely known BDI agent implementations
[18, 33, 14] bypass this problem through the use of plan libraries in which the courses of action for every possible
objective an agent might have are stored as encapsulated procedures. Agents using these approaches are said to
pursue procedural goals. However, the theories commonly used to underpin the creation of new plans of action at
runtime assume an agent with unlimited resources, thus making their actual implementation impossible [37, 34].
When an agent selects target world-states and then uses some process at runtime to determine its course of
action, it is said to pursue declarative goals. Recent efforts seek to deal with this problem in various ways, for
instance by defining alternate proof systems [27, 31] or using model checking in order to validate the agent’s
plan library [5]. An alternative approach to solving the problem is the use of planning algorithms to perform
means-ends reasoning at runtime [37, 26, 47].

2.2. Planning Algorithms. Means-ends reasoning is a fundamental component of any rational agent

[6] and is useful in the resolution of problems in a number of different areas, such as scheduling [38], military
strategy [39], and multi-agent coordination [12]. Indeed, the development of planning algorithms has been
one of the main goals of Al research [35]. In more detail, a planning problem is generically defined by three
components [43]:

e a formal description of the start state;

e a formal description of the intended goals; and

e a formal description of the actions that may be performed.

The Role Of Planning In Bdi Systems 17

Sensor Update }— — — —

ve)
@
=
o
7]

—

L

Goal Selection < — — ——

T Tow

| N N Desires
N

| ~

| N

e [
Intention Selection
4@6 — — — — Actions

Fia. 2.1. Activities of a generic BDI interpreter.

i 1

Intentions

A planning system takes these components and generates a set of actions ordered by some relation which,
when applied to the world in which the initial state description is true, makes the goals’ description true. Despite
the high complexity proven for the general case of planning problems', recent advances in planning research
have led to the creation of planning algorithms that perform significantly better than previous approaches to
solving various problem classes [43, 2]. These new algorithms make use of two main techniques, either combined
or separately:

e expansion and search in a planning graph [3]; and
e compilation of the planning problem into a logical formula to be tested for satisfiability (SAT) [20].
One such planning algorithm is Graphplan, which we consider in more detail below.

2.3. Graphplan. Graphplan [3] is a planning algorithm based on the first of these techniques, expansion
and search in a graph. It is considered to be one of the most efficient planning algorithms created recently
[43, 38, 17], having been refined into a series of other algorithms, such as IPP (Interference Progression Planner)
[22] and STAN (STate ANalysis) [24]. The efficiency of Graphplan was empirically demonstrated through
the very significant results obtained by instances of Graphplan in the planning competitions of the AIPS
(International Conference on AI Planning and Scheduling) [21, 25].

Planning in Graphplan is based on the concept of a graph data structure called the planning graph, in which
information regarding the planning problem is stored in such a way that the search for a solution can be accel-
erated. Planning graph construction is efficient, having polynomial complexity in graph size and construction
time with regard to problem size [3]. A plan in the planning graph is essentially a flow, in the sense of a network
flow, and the search for a solution to the planning problem is performed by the planner using data stored in the
graph to speed up the process. The basic Graphplan algorithm (i.e. without the optimisations proposed by other
researchers [21, 25]) is divided into graph expansion and solution extraction, which take place alternately until ei-
ther a solution is found or the algorithm can prove that no solution exists. The way these two parts of Graphplan
are used throughout planning is summarised in the activity diagram of Figure 2.2, and explained below.

Since a plan is composed of temporally ordered actions and, in between these actions there are world states,
graph levels are divided into alternating proposition and action levels, making it a directed and levelled graph,

IPlanning is known to be undecidable [10] and planning problems, in the general case, have PSPACE complexity [9].

18 F. R. Meneguzzi, A. F. Zorzo et al

No Solution
) i ? | . .
() Graph Expansion ' Consistent Goals? Yes Solution Extraction '
No Solution Impossibl Plan Found

®

Fia. 2.2. Graphplan algorithm overview.

as shown in Figure 2.3. Proposition levels are composed of proposition nodes labelled with propositions, and
connected to the actions in the subsequent action level through pre-condition arcs. Here, action nodes are
labelled with operators and are connected to the nodes in the subsequent proposition nodes by effect arcs.

Every proposition level denotes literals that are possibly true at a given moment, so that the first proposition
level represents the literals that are possibly true at time 1, the next proposition level represents the literals
that are possibly true at time 2 and so forth. Similarly, action levels denote operators that can be executed at a
given moment in time in such a way that the first action level represents the operators that may be executed at
time 1, the second action level represents the operators that may be executed at time 2 and so forth. The graph
also contains mutual exclusion relations (mutex) between nodes (at the same graph level) so that they cannot
be simultaneously present at the same graph level for the same solution. This gives them a fundamental role
in algorithm efficiency, as they allow the search for a solution to completely ignore a large number of possible
flows in the graph.

Level 0 Level 1 Level 2 Level 3 Level 4

O Proposition

O D Action
> Mutex

Fic. 2.3. A planning graph example.

After graph expansion, the graph is analysed by the solution extraction part of the algorithm, which uses a
backward chaining strategy to traverse the graph, level by level, trying to find a flow starting from the goals and
leading to the initial conditions. An important optimising factor in this phase is never to search for a solution

The Role Of Planning In Bdi Systems 19

unless all the goal propositions are present and consistent, since they cannot be mutually exclusive at the last
graph level. Fundamental to Graphplan is its assurance that, whenever a plan for the proposed problem exists,
the algorithm will find it, otherwise the algorithm will determine that the proposed problem is unsolvable [3].

2.4. Discussion. When one considers how BDI reasoning operates, it is straightforward to perceive that
propositional planning can be used as a means-ends reasoning component. From a representational point of view,
BDI mental states can be converted to planning problems without complication: beliefs translate into an initial
state specification, actions and capabilities translate into operator specifications and selected goals translate into
a goal state specification. At this simple level, the delegation of means-ends reasoning to an external planning
process can improve the runtime efficiency of existing BDI interpreters by leveraging advances in planning
algorithms research.

3. Introducing procedural planning into X-BDI.

3.1. Introduction. Given the shortcomings of traditional BDI architectures in terms of runtime flexibility,
and the performance problems of alternative architectures, we define an extended version of the X-BDI agent
model [27], modified to accommodate the use of an external planning component. Here, we focus on STRIPS-like
(STanford Research Institute Problem Solver) formalisms [15]. Our formalism is based on the one introduced
by Nebel [30], and, according to the author, is a Sz, formalism, i.e. the basic STRIPS plus the possibility to
use incomplete specifications and literals in the description of world states. It is important to point out that the
formalism defined by Nebel [30] is more general, but since we do not aim to provide a detailed study of planning
formalisms, we use a simpler version. In particular, we use a propositional logical language with variables only
in the specification of operators, and with operators not being allowed to have conditional effects. In Nebel’s
description of the the STRIPS formalism, one can notice that it deals only with atoms. Nevertheless, within this
paper more expressivity is desirable, in particular, the possibility to use first order ground literals. It is possible
to avoid these limitations through the use of syntactic transformations so that planners can operate over first
order ground literals. The main contribution of our work lies in the efficiency improvement of a declarative
agent architecture. The fact that this type of agent architecture has traditionally been notoriously inefficient
highlights the relevance of this efficiency gain.

3.2. X-BDI. An X-BDI agent has the traditional components of a BDI agent, i.e. a set of beliefs, desires
and intentions. The agent model was originally defined in terms of the Extended Logic Programming with explicit
negation (ELP) formalism created by Alferes and Pereira [1]|, which includes a revision procedure responsible
for maintaining logic consistency. We do not provide a description of the formalism here, though we assume the
presence of its revision procedure in our description of X-BDI. Given its extended logic definition, X-BDI also
has a set of time axioms defined through a variation of the Event Calculus |27, 23].

The set of beliefs is simply a formalisation of facts in ELP, individualised for a specific agent. From the
agent’s point of view, it is assumed that its beliefs are not always consistent, and whenever an event makes the
beliefs inconsistent, they must be revised. The details of this process are unimportant in the understanding of
the overall agent architecture, but can be found in [1]. The belief revision process in X-BDI is the result of the
program revision process performed in ELP.

Every desire in an X-BDI agent is conditioned to the body of a logic rule, which is a conjunction of literals
called Body. Thus, Body specifies the pre-conditions that must be satisfied in order for an agent to desire
a property. When Body is an empty conjunction, some property P is unconditionally desired. Desires may
be temporally situated, i.e. can be desired at a specific moment, or whenever their pre-conditions are valid.
Moreover, a desire specification contains a priority value used in the formation of an order relation among desire
sets.

There are two possible types of intentions: primary intentions, which refer to the intended properties,
and relative intentions, which refer to actions able to bring about these properties. An agent may not intend
something in the past or that is already true, and intentions must in principle be possible, i.e. there must be at
least one plan available whose result is a world state where the intended property is true.

Now, we diverge from the original X-BDI architecture in several respects. First, the original reasoning
process verified the possibility of a property through the abduction of an event calculus theory to validate the
property. In brief, the logic representation of desires in the original X-BDI included clauses specifically marked
for revision in such a way that sequences of actions (whose preconditions and effects were described in event
calculus) could be found true in the process of revising these clauses. This abduction process was necessary

20 F. R. Meneguzzi, A. F. Zorzo et al

for the implementation of X-BDI planning framework in extended logic, but the implementation of the logic
interpreter was notably inefficient for abductive reasoning. In this work, the planning process is abstracted
out from the operational definition of X-BDI, allowing any planning component that satisfies the conditions of
Section 2.2 to be invoked by the agent. Thus, the notion of possibility of a desire is associated with the existence
of a plan to satisfy it.

The reasoning process performed by X-BDI begins with the selection of eligible desires, which represent
unsatisfied desires whose pre-conditions are valid, though the elements of this set of desires are not necessarily
consistent among themselves. A set of eligible desires that are both consistent and possible is then selected as
candidate desires, to which the agent commits itself to achieving by adopting them as primary intentions. In
order to achieve the primary intentions, the planning process generates a sequence of temporally ordered actions
that constitute the relative intentions. This process is summarised in Figure 3.1.

Perception

Consistency

Maintenance

Elligible
Desires

Candidate
Desires

Primary
Intentions

Fia. 3.1. X-BDI operation overview.

Eligible desires have rationality constraints that are similar to those imposed by Bratman [6] over intentions
in the sense that an agent will not desire something in the past or something the agent believes will happen
without its interference. Agent beliefs must also support the pre-conditions defined in the desire Body. Within
the agent’s reasoning process these desires give rise to a set of mutually consistent subsets ordered by a partial
order relation.

The process of selecting candidate desires seeks to choose from the eligible desires one subset that contains
only desires that are internally consistent and possible. A possible desire in this sense is one that has a property

The Role Of Planning In Bdi Systems 21

P that can be satisfied through a sequence of actions. In order to choose among multiple sets of candidate desires,
the original X-BDI uses ELP constructs that allow desires to be prioritised in the revision process. Although
we depart from the original abduction theory, we still use these priority values to define a desire preference
relation. Through this preference relation, a desire preference graph that relates all subsets of eligible desires is
generated.

Candidate desires represent the most significant modification made in this paper regarding the original X-
BDI [27]. Originally, X-BDI verified the possibility of a desire through the abduction of an event calculus theory
in which the belief in the validity of a desired property P could be true. Such an abduction process is, actually,
a form of planning. Since our main objective in this paper is to distinguish the planning process previously
hard-coded within X-BDI, the notion of desire possibility must be re-defined. Therefore, we define the set of
candidate desires to be the subset of eligible desires with the greater preference value, and whose properties can
be satisfied. Satisfiability is verified through the execution of a propositional planner that processes a planning
problem in which the initial state contains the properties that the agent believes at the time of planning. The
P properties present in the candidate desires are used to generate the set of primary intentions. The modified
reasoning process for X-BDI is illustrated in Figure 3.2.

Perception

Consistency

Maintenance

Elligible
Desires

Propositional
Planning

Candidate
Desires

Primary
Intentions

Mapping

Action

Fia. 3.2. Modified X-BDI overview.

Primary intentions can be seen as high-level plans, similar to the intentions in IRMA [7], and representing
the agent’s commitment to a course of action. These primary intentions are systematically refined up to the point
where an agent has a temporally ordered set of actions representing a concrete plan towards the satisfaction of

22 F. R. Meneguzzi, A. F. Zorzo et al

its goals. Relative intentions then correspond to the temporally ordered steps of the concrete plans generated to
satisfy the agent’s primary intentions. Thus the notion of agent commitment results from the fact that relative
intentions must not contradict or annul primary intentions.

3.3. Intention Revision. The computational effort and the time required to reconsider the whole set of
intentions of a resource-bounded agent is generally significant regarding the environment change ratio. Intention
reconsideration should therefore not occur constantly, but only when the world changes in such a way as to
threaten the plans an agent is executing or when an opportunity to satisfy more important goals is detected. As
a consequence, X-BDI uses a set of reconsideration triggers generated when intentions are selected, and causes
the agent to reconsider its course of action when activated.

These trigger conditions are defined to enforce Bratman’s [6] rationality conditions for BDI components, as
follows. If all of the agent’s primary intentions are satisfied before the time planned for them to be satisfied, the
agent restarts the deliberative process, since it has achieved its goals. On the other hand, if one of the primary
intentions is not achieved at the time planned for it, the agent must reconsider its intentions because its plans
have failed. Moreover, if a desire with a higher priority than the currently selected desires becomes possible, the
agent reconsiders its desires in order to take advantage of the new opportunity. Reconsideration is completely
based on integrity constraints over beliefs, and since beliefs are revised at every sensoring cycle, it is possible
that reconsideration occurs due the triggering of a reconsideration restriction.

3.4. Implementation. The prototype implemented for this work is composed of three parts: the X-BDI
kernel, implemented in Prolog; a planning system containing a C++ implementation of Graphplan; and a Java
graphical interface used to ease the operation of X-BDI and to visualise its interaction with the environment.
The architecture is outlined in Figure 3.3.

Java Prolog Beliefs C++
Desjres

ocket X2BDI Graphplan

Intentions | =

[da)

Agent Viewer

Plan

Fiac. 3.3. Solution Architecture

Here, the Agent Viewer interface communicates with X-BDI through sockets by sending the input from the
environment in which the agent is embedded and receiving the result of the agent’s deliberation. Through the
Agent Viewer the user can also specify the agent in terms of its desires, actions and initial beliefs. Once X-BDI
receives the agent specification, it communicates with the planning module through operating system files and
the Prolog/C-++ interface. The planner is responsible for generating a set of intentions for the agent. When
the agent deliberates, it converts subsets of the agent’s desired properties into propositional planning problems
and invokes the planning algorithm to solve these problems until either a plan that solves the highest priority
desires is found, or the algorithm determines that it is not possible to solve any one of these problems.

4. A BDI Production Cell. In this work we use a BDI agent in order to model a production cell as a
case study, and as a means to verify the validity of the architecture described in Section 3. In particular, the
rational utilisation of equipment in industrial facilities is a complex problem, especially scheduling its use. This
problem is complicated when the facility produces multiple component types, where each type requires a subset
of the equipment available. In our test scenario, the proposed production cell [46], illustrated in Figure 4.1,
is composed of seven devices: a feed belt, a deposit belt and four processing units upon which components are
moved to be processed.

Components enter the production cell for processing through the feed belt and, once processed by all the
appropriate processing units, they are removed from the cell through the deposit belt. Every processing unit is
responsible for performing a different kind of operation on the component being processed, and can hold only
one component at a given moment. Each component introduced into the cell can be processed by one or more
processing units, determined by the type of component being processed, and different component types have
different processing priorities. The control of the production cell is entrusted to a BDI agent implemented using

The Role Of Planning In Bdi Systems 23

@ @
o o
Processing Processing
i Unit 1 Unit 3 —
— | —
i © i @ Befest
[L1
M
1 1
VT, L]
Processing Processing
Unit 2 Unit 4

FiGg. 4.1. A BDI Production Cell.

X-BDI, which should schedule the work of the production cell in relation to its beliefs, desires and intentions,
re-scheduling whenever some change in the system occurs.

The first step in modelling any problem using a STRIPS-like formalism is the choice of the predicates used
to represent the problem’s object-types and its states. We define the following predicates representing objects
in the cell:

e component (C) denotes that C is a component to be processed;
e procUnit (P) denotes that P is a processing unit, which is also a device;
e device(D) denotes that D is a device;
e feedBelt represents the feed belt;
e depositBelt represents the deposit belt.
Similarly, we have the following predicates representing system states:
e over(C,D) denotes that component C is over device D;
e empty(P) denotes that processing unit P is empty, ¢.e. has no component over it;
e processed(C,P) denotes that component C has already been processed by processing unit P;
e finished(C) denotes that component C has already been processed by all appropriate processing units
and has been removed from the production cell;

Next, we define the actions the agent is capable of performing in the context of the proposed problem, these
are summarised in Table 4.1. Informally, action process(C,P) represents the processing that a processing unit
P performs on a component C over it; consume (C) represents the removal of component C from the production
cell through the deposit belt; and move(C,D1,D2) represents the motion of component C from device D1 to
device D2.

TABLE 4.1
Action specification for the production cell agent.

Action Preconditions Effects
process(C,P) procUnit (P) processed(C,P)
component (C)
over(C,P)
consume (C) component (C) —over (C,depositBelt)
over (C,depositBelt) empty (depositBelt)
finished(C)
move (C,D1,D2) over(C,D1) over (C, D2)
empty (D2) —over (C,D1)
component (C) —empty (D2)
device(D1) empty(D1)
device(D2)

24 F. R. Meneguzzi, A. F. Zorzo et al

The processing requirements of components and their priorities are modelled through desires. Thus, we can
model an agent, pCell, which needs to process component comp1 by processing units procUnit1, procUnit2 and
procUnit3 as soon as this component is inserted into the production cell using the specification of Listing 12.

ListinGg 1
Specification of desires related to processing compl.

des(pCell,finished(compl),Tf,[0.7])

if bel(pCell, component(compl)),
bel(pCell, processed(compl,procUnitl)),
bel(pCell, processed(compl,procUnit2)),
bel(pCell, processed(compl,procUnit3)),
bel(pCell, -finished(compl)).

des(pCell,processed(compl,procUnitl) ,Tf, [0.6])
if bel(pCell, component(compl)),
bel(pCell, -processed(compl,procUnitl)).

des(pCell,processed(compl,proclnit2) ,Tf, [0.6])
if bel(pCell, component(compl)),
bel(pCell, -processed(compl,procUnit2)).

des(pCell,processed(compl,proclnit3),Tf, [0.6])
if bel(pCell, component(compl)),
bel(pCell, -processed(compl,procUnit3)).

Similarly, we can model the agent’s need to process component bloc2 by processing unit procUnit3 and
procUnit4 by adding to the agent specification the desires of Listing 2.

LisTiNGg 2
Specification of desires related to processing comp2.

des(pCell,finished(comp2),Tf, [0.6])
if bel(pCell, component(comp2)),
bel(pCell, processed(comp2,procUnit3)),
bel(pCell, processed(comp2,procUnit4)),
bel(pCell, -finished(comp2)) .

des(pCell,processed(comp2,procUnit3),Tf, [0.5])
if bel(pCell, component(comp2)),
bel(pCell, -processed(comp2,procUnit3)).

des(pCell,processed(comp2,procUnit4) ,Tf, [0.5])
if bel(pCell, component(comp2)),
bel(pCell, -processed(comp2,procUnit4)).

Finally, we model the agent’s static knowledge regarding the problem domain, in particular the object’s
classes and the initial world-state with the beliefs specified in Listing 3.

The arrival of a new component in the production cell is signalled by the sensors through the inclusion of
component (comp1) and over (compl,feedBelt) in the agent’s belief database, activating the agent’s reconsid-
eration process. Given the desire’s pre-conditions previously defined, only the desires related to the following
properties become eligible:

2Tf is the time at which the desire is valid, and the values 0.7 and 0.6 are the desires priorities.

The Role Of Planning In Bdi Systems 25

LisTiNGg 3
Domain knowledge for the production cell.

bel(pCell, procUnit(procUnitl)).
bel(pCell, procUnit(procUnit2)).
bel(pCell, procUnit(procUnit3)).
bel(pCell, procUnit(procUnit4)).
bel(pCell, device(procUnitl)).
bel(pCell, device(procUnit2)).
bel(pCell, device(procUnit3)).
bel(pCell, device(procUnit4)).
bel(pCell, device(depositBelt)).
bel(pCell, device(feedBelt)).
bel(pCell, empty(procUnitl)).
bel(pCell, empty(procUnit2)).
bel(pCell, empty(procUnit3)).
bel(pCell, empty(procUnit4)).
bel(pCell, empty(depositBelt)).

e processed(compl,procUnitl);
e processed(compl,proclUnit2);
e processed(compl,proclUnit3);

These desires are then analysed by the process of selecting candidate desires. In this process, the agent’s
eligible desires and beliefs are used in the creation of planning problems that are sent to Graphplan for resolution.
The result of this processing is a plan that satisfies all the eligible desires, with the following steps:

1. move(compl,feedBelt,proclUnit2)
process (compl,procUnit2)
move (compl,procUnit2,procUnitl)
process (compl,procUnitl)
move (compl,procUnitl,procUnit3)
6. process(compl,procUnit3)

Ol W

The existence of this plan indicates to X-BDI that the specified set of eligible desires is possible, thus turning
the previous set of desires into candidate desires, which generate primary intentions representing the agent’s
commitment. Next, relative intentions are generated using the steps in the recently created plan, with one
intention for each step of the plan. These lead the agent to perform the appropriate actions. Once the actions
are executed, the candidate desires from the previous deliberation are satisfied. Moreover, the pre-condition
of the desire to accomplish finished(comp1) becomes true, reactivating the agent’s deliberative process and
generating the following plan:

1. move(compl,procUnit3,depositBelt)
2. consume (compl)

Once more, this plan brings about some intentions and, eventually, leads the agent to act. Now, suppose that
during the agent’s operation, a new component in the production cell arrives. If this occurred immediately after
the deliberation that created the first plan, it would be signaled by the agent’s sensors through the inclusion of
component (comp2) and over (comp2,feedBelt) in the beliefs database, which would modify the eligible desires
chosen in the second deliberation cycle to:

e finished(compl);
e processed(comp2,proclUnit3);
e processed(comp2,procUnit4);

These desires become candidate desires because Graphplan is capable of generating a plan that satisfies all
the desires. The new plan is:

1. move(compl,procUnit3,depositBelt)
2. move (comp2,feedBelt,procUnit4)
3. consume (compl)

26 F. R. Meneguzzi, A. F. Zorzo et al

process (comp2,procUnit4)

move (comp2, procUnit4,procUnit3)
process (comp2,procUnit3)

move (comp2,procUnit3,depositBelt)
8. consume (comp2)

N o ot

The steps of this plan thus generate relative intentions, eventually leading the agent to the execution of its
actions.

5. Conclusions. In this paper, we have discussed the relationship between propositional planning algo-
rithms and means-end reasoning in BDI agents. To test the viability of using propositional planners to perform
means-ends reasoning in a BDI architecture, we have described a modification to the X-BDI agent model.
Throughout this modification, new definitions of desires and intentions were created in order for the agent
model to maintain the theoretical properties present in its original version, especially regarding the definition
of desires and intentions impossibility. Moreover, it was necessary to define a mapping between the structural
components of a BDI agent and propositional planning problems. The result of implementing these definitions
in a prototype can be seen in the case study of Section 4, which represents a problem that the means-end
reasoning process of the original X-BDI could not solve.

Considering that most implementations of BDI agents use a plan library for means-end reasoning in order
to bypass the inherent complexity of performing planning at runtime, X-BDI offers an innovative way of im-
plementing more flexible agents through its fully declarative specification. However, its planning mechanism is
notably inefficient. For example, the case study described in Section 4 was not tractable in the original X-BDI
planning process. Thus, the main contribution of our work consists in addressing this limitation through the
definition of a mapping from BDI means-end reasoning to fast planning algorithms. Moreover, such an approach
enables the agent architecture to be extended with any propositional planning algorithm that uses a formalism
compatible with the proposed mapping, thus allowing an agent to use more powerful planners as they become
available, or to use more suitable planning strategies for different problem classes.

Other approaches to performing runtime planning have also been proposed, the most notable recent ones by
Sardina et al. [36] and Walczak et al. [41]. Sardina proposes the tight integration of the JACK agent framework
[8] with the SHOP hierarchical planner [29]. This approach relies on new constructs added to an otherwise
procedural agent representation and takes advantage of the similarity of hierarchical task network (HTN) plan-
ning to BDI reasoning. The work of Walczak proposes the integration of JADEX [32]ike]What is JADEX?
to a customised knowledge-based planner operating in parallel to agent execution, using a similar process of
agent-state conversion to work of Meneguzzi et al. [26, 47|, as well as the one presented in this paper.

Some ramifications of this work are foreseen as future work, in particular, the incorporation of the various
Graphplan improvements, as well as the conduction of tests using other propositional planning algorithms, SAT
being an example. It is clear that other agent architectures can benefit from the usage of planning components
to allow agents to cope with unforeseen events at runtime, as demonstrated by recent efforts in planning agents
[36, 41]. Therefore, investigating how to integrate planning capabilities to AgentSpeak-based agents could create
agents that can take advantage of both the fast response of pre-compiled plans and the flexibility of being able
to plan at runtime to cope with unforeseen situations.

Acknowledgments. We wish to acknowledge X, Y and Z for the support in this work.

REFERENCES

[1] J. J. AvreErES AND L. M. PEREIRA, Reasoning with Logic Programming, Springer Verlag, 1996.

[2] S. Biunpo, K. L. Myers, anp K. Rausan, eds., Proceedings of the Fifteenth International Conference on Automated
Planning and Scheduling (ICAPS 2005), June 5-10 2005, Monterey, California, USA, AAAT, 2005.

[3] A. L. BLum anp M. L. Furst, Fast planning through planning graph analysis, Artificial Intelligence, 90 (1997), pp. 281 300.

[4] R. H. Borbpini, M. Dastant, J. Dix, aND A. E. FALLAH-SEGHROUCHNI, Multi-Agent Programming: Languages, Platforms
and Applications, vol. 15 of Multiagent Systems, Artificial Societies, and Simulated Organizations, Springer, 2005.

[5] R. H. Borbini, M. Fisuger, C. ParpaviLa, aND M. WOOLDRIDGE, Model checking AgentSpeak, in Proceedings of the
2nd International Conference on Autonomous Agents and Multiagent Systems (AAMAS-03), Melbourne, Australia, July
2003, ACM Press, pp. 409 416.

[6] M. E. BraTmaN, Intention, Plans and Practical Reason, Harvard University Press, Cambridge, MA, 1987.

[7] M. E. Brarman, D. J. IsraeL, anp M. E. PoLrack, Plans and resource-bounded practical reasoning, Computational
Intelligence, 4 (1988), pp. 349-355.

(8]

9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]
[18]

[19]
[20]

[21]
[22]
[23]
[24]
[25]
[26]

[27]

28]
[29]
[30]
[31]
[32]

[33]

[34]
[35]
[36]
[37]
[38]

[39]

The Role Of Planning In Bdi Systems 27

P. BuserTa, R. RONNQuUIsT, A. HopasoN, aND A. Lucas, Jack intelligent agents components for intelligent agents in
java. AgentLink Newsletter, January 1999. White paper, http://www.agent-software.com.au

T. BYLANDER, The computational complexity of propositional STRIPS planning, Artificial Intelligence, 69 (1994), pp. 165—
204.

D. CuapmAN, Planning for conjunctive goals, Artificial Intelligence, 32 (1987), pp. 333-377.

P. R. CoueN anp H. J. LEVESQUE, Intention is choice with commitment, Artificial Intelligence, 42 (1990), pp. 213 261.

J. S. Cox, E. H. DURFEE, aAND T. BartoLD, A distributed framework for solving the multiagent plan coordination problem,
in AAMAS ’05: Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems,
New York, NY, USA, 2005, ACM Press, pp. 821-827.

W. V. bEr Hoek aAND M. WoOOLDRIDGE, Towards a logic of rational agency, Logic Journal of the IGPL, 11 (2003), pp. 133—
157.

M. p’INVERNO AND M. Luck, Engineering AgentSpeak(L): A formal computational model, Journal of Logic and Computation,
8 (1998), pp. 233 260.

R. Fikes anp N. NiussoN, STRIPS: A new approach to the application of theorem proving to problem solving, Artificial
Intelligence, 2 (1971), pp. 189 208.

M. GrORGEFF, B. PELL, M. E. PoLrLack, M. TaMBE, AND M. WooLDRIDGE, The belief-desire-intention model of agency,
in Proceedings of the 5th International Workshop on Intelligent Agents V : Agent Theories, Architectures, and Languages
(ATAL-98), J. Miiller, M. P. Singh, and A. S. Rao, eds., vol. 1555, Springer-Verlag: Heidelberg, Germany, 1999, pp. 1 10.

J. HorFMANN AND B. NEBEL, The FF planning system: Fast plan generation through heuristic search, Journal of Artificial
Intelligence Research (JAIR), 14 (2001), pp. 253 302.

F. F. INnGraND, M. P. GEORGEFF, AND A. S. Rao, An architecture for real-time reasoning and system control, TEEE
Expert, Knowledge-Based Diagnosis in Process Engineering, 7 (1992), pp. 33 44.

N. R. JennNINGS, On agent-based software engineering, Artificial Intelligence, 117 (2000), pp. 277-296.

H. Kaurz anDp B. SELMAN, Planning as satisfiability, in Proceedings of the Tenth European Conference on Artificial Intel-
ligence, Chichester, UK, 1992, Wiley, pp. 359 363.

J. KOHLER, Solving complex planning tasks through extraction of subproblems, in Proceedings of the Fourth International
Conference on Artificial Intelligence Planning Systems, R. Simmons, M. Veloso, and S. Smith, eds., Pittsburg, 1998,
AAATI Press, pp. 62-69.

J. KonLer, B. NEBEL, J. HOFFMANN, AND Y. DimorouLos, Eztending planning graphs to an ADL subset, in Proceedings
of the 4th European Conference on Planning, S. Steel, ed., vol. 1348 of Lecture Notes in Computer Science, Springer
Verlag, Germany, 1997, pp. 273 285.

R. A. KowaLskl AND M. J. SErRGOT, A logic-based calculus of events, New Generation Computing, 4 (1986), pp. 67-95.

D. Long anp M. Fox, Efficient implementation of the plan graph in STAN, Journal of Artificial Intelligence Research
(JAIR), 10 (1999), pp. 87 115.

D. Long anp M. Fox,, Automatic synthesis and use of generic types in planning, in Proceedings of the Fifth International
Conference on Artificial Intelligence Planning Systems, Breckenridge, Colorado, 2000, AAAI Press, pp. 196 205.

F. R. MENEGuzz1, A. F. Zorzo, AND M. D. C. M6RA, Propositional planning in BDI agents, in Proceedings of the 2004
ACM Symposium on Applied Computing, Nicosia, Cyprus, 2004, ACM Press, pp. 58 63.

M. p. C. Mo6ra, J. G. P. Lopres, R. M. Vicari, anp H. Corrno, BDI models and systems: Bridging the gap., in
Intelligent Agents V, Agent Theories, Architectures, and Languages, Fifth International Workshop, ATAL ’98, vol. 1555
of LNCS, Springer, Paris, France, 1999, pp. 11 27.

J. P. MUOLLER, The design of intelligent agents: A layered approach, in The Design of Intelligent Agents: A Layered Approach,
vol. 1177 of Lecture Notes in Computer Science, Springer Verlag, Germany, 1996.

D. S. Nau, Y. Cao, A. LotEm, aND H. MuRoz-Avira, Shop: Simple hierarchical ordered planner., in TJCAT, 1999,
pp. 968 975.

B. NEBEL, On the compilability and expressive power of propositional planning formalisms, Journal of Artificial Intelligence
Research (JAIR), 12 (2000), pp. 271 315.

N. NipE AND S. TakaTA, Deduction systems for BDI logics using sequent calculus, in Proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent Systems, ACM Press, 2002, pp. 928-935.

A. PokaHr, L. BrauBacH, AND W. LAMERSDORF, Jadex: Implementing a bdi-infrastructure for jade agents, EXP in
search of innovation (Special Issue on JADE), 3 (2003), pp. 76-85.

A. S. Rao, AgentSpeak(L): BDI agents speak out in a logical computable language, in Proceedings of the Seventh European
Workshop on Modelling Autonomous Agents in a Multi-Agent World, W. V. de Velde and J. W. Perram, eds., vol. 1038
of LNCS, Springer, Eindhoven, The Netherlands, 1996, pp. 42 55.

A. S. Rao aND M. P. GEORGEFF, Formal models and decision procedures for multi-agent systems, Tech. Report 61,
Australian Artificial Intelligence Institute, 171 La Trobe Street, Melbourne, Australia, 1995. Technical Note.

S. J. RusserL anp P. Norvia, Artificial Intelligence: A Modern Approach, Prentice Hall, New Jersey, 1994.

S. SARDINA, L. DE Sitva, aAND L. Panguawm, Hierarchical Planning in BDI Agent Programming Languages: A Formal
Approach, in AAMAS ’06: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems, Hakodate, Japan, 2006, ACM Press, pp. 1001-1008.

M. Scuur AND M. WoOLDRIDGE, The control of reasoning in resource-bounded agents, The Knowledge Engineering Review,
16 (2001).

D. E. SmitH AND D. S. WELD, Temporal planning with mutual exclusion reasoning, in Proceedings of the 17th International
Joint Conference on Artificial Intelligence (IJCAI), 1999, pp. 326 337.

J. R. Surpu, J. M. D. HiLL, anp U. W. PoocH, Anticipatory planning support system, in WSC ’00: Proceedings of
the 32nd conference on Winter simulation, San Diego, CA, USA, 2000, Society for Computer Simulation International,
pp. 950-957.

28

[40]
[41]
[42]
[43]
[44]
[45]

[46]

[47]

B
A.

A.

A.

F. R. Meneguzzi, A. F. Zorzo et al

. VAN RiEmspuik, M. Dastani, F. DigNnum, anDp J.-J. C. MEYER, Dynamics of declarative goals in agent programming.,

in LNCS, vol. 3476, 2004, pp. 1 18.
Warczak, .. BRauBacH, A. PokaHR, AND W. LAMERSDORF, Augmenting BDI Agents with Deliberative Planning
Techniques, in The Fifth International Workshop on Programming Multiagent Systems (PROMAS-2006), 2006.

P. WEGNER, Why interaction is more powerful than algorithms, Communications of the ACM, 40 (1997), pp. 80-91.

D. S. WELD, Recent Advances in Al Planning, Al Magazine, 20 (1999), pp. 93 123.

M.

M. WooLbpripGE, The Computational Complezity of Agent Design Problems, in Proceedings of the Fourth International

WOOLDRIDGE, Reasoning about Rational Agents, The MIT Press, 2000.

Conference on Multi-Agent Systems (ICMAS 2000), E. Durfee, ed., IEEE Press, 2000, pp. 341-348.

F. Zorzo, I.. A. Cassor, A. I.. Nopari, I.. A. OLIVEIRA, AND L. R. MoRraits, Scheduling safety-critical systems using
a partial order planning algorithm, in Advances in Logic, Artificial Intelligence and Robotics, Sao Paulo, Brazil, 2002,
10S Press, pp. 33-40.

F. Zorzo anp F. R. MENEGUzzI, An agent model for fault-tolerant systems, in SAC ’05: Proceedings of the 2005 ACM
symposium on Applied computing, New York, NY, USA, 2005, ACM Press, pp. 60-65.

Edited by: Marcin Paprzycki, Niranjan Suri
Received: October 1, 2006
Accepted: December 10, 2006

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 8, Number 1, pp. 29-40. http://www.scpe.org © 2007 SWPS

o,..

AGENT TECHNOLOGY FOR PERSONALIZED INFORMATION FILTERING: THE PIA
SYSTEM

SAHIN ALBAYRAK*, STEFAN WOLLNY!, ANDREAS LOMMATZSCH¥, AND DRAGAN MILOSEVIC?

Abstract. As today the amount of accessible information is overwhelming, the intelligent and personalized filtering of available
information is a main challenge. Additionally, there is a growing need for the seamless mobile and multi-modal system usage
throughout the whole day to meet the requirements of the modern society (anytime, anywhere, anyhow). A personal information
agent that is delivering the right information at the right time by accessing, filtering and presenting information in a situation-
aware matter is needed. Applying Agent-technology is promising, because the inherent capabilities of agents like autonomy, pro-
and reactiveness offer an adequate approach. We developed an agent-based personal information system called PIA for collecting,
filtering, and integrating information at a common point, offering access to the information by WWW, e-mail, SMS, MMS, and
J2ME clients. Push and pull techniques are combined allowing the user to search explicitly for specific information on the one
hand and to be informed automatically about relevant information divided in pre-, work and recreation slots on the other hand.
In the core of the PTA system advanced filtering techniques are deployed through multiple filtering agent communities for content-
based and collaborative filtering. Information-extracting agents are constantly gathering new relevant information from a variety of
selected sources (internet, files, databases, web-services etc.). A personal agent for each user is managing the individual information
provisioning, tailored to the needs of this specific user, knowing the profile, the current situation and learning from feedback.

Key words. intelligent and personalized filtering, ubiquitous access, recommendation systems, agents and complex systems,
agent-based deployed applications, evolution, adaptation and learning.

1. Introduction. Nowadays, desired information often remains unfound, because it is hidden in a huge
amount of unnecessary and irrelevant data. On the Internet there are well maintained search engines that
are highly useful if you want to do full-text keyword-search [1], but they are not able to support you in a
personalized way and typically do not offer any push-services or in other words no information will be sent
to you when you are not active. Also, as they normally do not adapt themselves to mobile devices, they
cannot be used throughout a whole day because you are not sitting in front of a standard browser all the
time and when you return, these systems will treat you in the very same way as if you have never been there
before (no personalization, no learning). Users who are not familiar with domain-specific keywords won’t be
able to do successful research, because no support is offered. Predefined or auto-generated keywords for the
search-domains are needed to fill that gap. As information demands are continuously increasing today and the
gathering of information is time-consuming, there is a growing need for a personalized support (Figure 1.1).
Labor-saving information is needed to increase productivity at work and also there is an increasing aspiration
for a personalized offer of general information, specific domain knowledge, entertainment, shopping, fitness,
lifestyle and health information. Existing commercial personalized systems are far away from that functionality,
as they usually do not offer much more than allowing to choose the kind of the layout or collecting some of the
offered information channels (and the information within is not personalized).

To overcome that situation you need a personal information agent (PIA) who knows the way of your thinking
and can really support you throughout the whole day by accessing, filtering and presenting information to you in
a situation-aware matter (Figure 1.1). Some systems exist (Fab [2], Amalthaea [3], WAIR [4], P-Tango [5], Trip-
Matcher [6], PTAgent [7], Letizia [8], Let’s Browse [9], Newt [10], WebWatcher [11], PEA [12], BAZAR [13]) that
implement advanced algorithmic technology, but did not become widely accepted, maybe because of real world
requirements like availability, scalability and adaptation to current and future standards and mobile devices.

In this paper we present an agent-based approach for the efficient, seamless and tailored provisioning of
relevant information on the basis of end-users’ daily routine. As we assume the reader will be familiar with
agent-technology (see [14, 15] for a good introduction), we will concentrate on the practical usage and the real-
world advantages of agent-technology. After briefly describing the existing systems from which the scientific
publications are available, we describe the design and architecture and afterwards depict the system in Section 4.

2. Related work. The following paragraphs are going to briefly present some of the already mentioned
systems (Fab, Amalthaea, WAIR, P-Tango, PIAgent, Letizia, Let’s Browse, Newt, WebWatcher and PEA), for
which we believe that are related to our work.

*DAI-Labor, Technical University Berlin, Germany (sahin@dai-lab.de)
THigh Performance Computing, Zuse Institute Berlin, Germany (wollny@zib.de)
¥DAI-Labor, Technical University Berlin, Germany ({andreas, dragan}@dai-lab.de)

29

30 S. Albayrak and S. Wollny and A. Lommatzsch and D. Milosevic

B information demand _
=3
é ; ; [Specialized knowledge]
@ personal profile
S (explicit/implicit)
<
[
E
[2)
= — Leisure time:
® Nz Mailing By TV program, exhibition,
g ‘ Lists movies, parties
a [l
P —
= Databases
3
é ‘.9 Hard
? & disk Ubiquitous user interface
Integration of Intelligent, situation-aware filters Integrated push services
heterogeneous sources Personalized recommendations Learning from user feedback

Fic. 1.1. Demand for a personal information agent

Fab [2] is an automatic recommendation service for information retrieval, which is able to over time adapt
to its users, who consequently receive increasingly personalized documents. By maintaining both collection and
selection agents, Fab system is a good test-bed for trying out different filtering strategies, which either collect
documents from the Web that belong to the certain topic, or select some of the collected documents that are
suitable for a particular user. The creation of profiles through the content-based analysis, which are afterwards
directly compared to find similar users for collaborative recommendations, represents the unique synergy of
these two frequently combined filtering techniques. Unfortunately, the usability of the whole system depends
on the ability of the content based filtering to generate the usable profiles, being the serious drawback of the
Fab system.

Since information discovery and information filtering are proven to be the suitable domains for applying
multi-agent technology, a personalized system, named Amalthaea [3] has been developed. It proactively tries to
discover from various distributed sources the information that is relevant to a user. The multi-agent technology
is applied by maintaining two different types of agents, being information filtering and information discovery
ones. The ways how these agents are managing to learn the user’s interests and habits, to maintain their
competence by adapting to the changes in the user’s information needs, and to explore the new domains that
may be of interest to a user, depend on evolution programming, being maybe not so applicable for the large-scale
information retrieval tasks.

Seeking the state of a user profile, which best represents actual information interests and therefore maximize
the expected value of the cumulative user relevance feedback, is formulated in WAIR multi-agent system [4]
as the reinforcement learning problem. The insufficiency of explicit user ratings is tried to be overcome by
using the classification approach based on the neural network, which exploits different implicit indicators of
interests in order to estimate the real relevance feedback values. Unfortunately, the amount of the explicit
ratings needed for training that classifier still seems to be too large. This clearly limits the applicability of the
WAIR system.

To intelligently deliver a personalized newspaper, which contains only the articles of highest interest that
are individually selected everyday for each and every user, P-Tango [5] system proposes a framework for com-
bining different filtering strategies. Although the currently combined strategies are only the content-based and
collaborative ones, a proposed framework is significant, by reason of being extendible to any filtering methods.
In spite of this extensibility, we believe that the agent-based framework that we propose in this paper, offers
better flexibility when the integration and afterwards the usage of new strategies is concerned.

As the information became the one of most significant resources for business and research, both periodically
scanning different information sources and pushing the found relevant articles to interested users, have also
motivated the development of PIAgent [7]. While a usage of various extractor agents each supporting a par-
ticular information source is more or less typical for agent-based filtering systems (and it is also present in our
approach), the uniqueness of PIAgent lies in its application of back propagation neural network for separating

Agent Technology for Personalized Information Filtering:The PTA-System 31

relevant articles from others. Such a neural network approach has strength in optimistically providing excellent
classification accuracy. Unfortunately, its big weakness in often expensive training that practically makes the
PTAgent to be hardly applicable for nowadays information retrieval tasks.

The intelligent assistance to the user, who is browsing the Internet for the interesting information, is provided
by the autonomous interface agent, named Letizia [8]. It tracks user behavior and uses various heuristics to
anticipate, which hyperlinks may lead to the potentially relevant documents, and which should be ignored by
reason of pointing to junk or not existing page. The cornerstone property of the Letizia system is in asking the
user neither to explicitly state its interests by defining the query nor to provide the explicit feedback about a
real relevance of recommendations. Although this explicit communication with the user can speed up learning,
the priority in designing the Letizia system has been given to both letting the user to browse without being
interrupted and asking for help only when being unsure which link to follow.

The MIT Media Laboratory has also developed an agent, whose job is to choose, from the links reachable
on the current Web page, those that are likely to best satisfy the interests of multiple users. The agent is named
Let’s Browse [9], by reason of providing the assistance to the group of humans in browsing, by suggesting
hyperlinks likely to be of common interests. Although this system demonstrates how documents that are good
for the group of users and that are in the neighborhood can be found, it generally does not respond to the
challenge of finding the data that is located anywhere on the Internet.

The ability to both specialize to user interests, adapt to preference changes and explore the newer infor-
mation domains makes the foundation of the NewT [10], being one personalized multi-agent filtering system
for news articles. As user information interests are modeled as the population of the competing profiles, the
used learning mechanisms are both relevance feedback, as well as the crossover and mutation genetic opera-
tors. These recombination genetic operators are mainly responsible for the adaptation and exploration issues
by creating more fitted future populations. In the meantime, a user profile also learns through the application
of the relevance feedback techniques. Taken together these learning mechanisms make the so-called Baldwin
effect [24], saying that a population evolves towards a fitter form much faster, whenever its members are allowed
to learn during their lifetime. Although the Baldwin evolution seems to be more powerful than the evolution
approach used in Amalthaea, it has the same weaknesses which limit its applicability for large-scale information
retrieval.

Users may find it difficult both to create the appropriate queries and to locate the information of interest
in the case of having no specific knowledge about the content of the underlying document collection. On the
one hand, some systems aim to deploy efficient clustering algorithms, which will dynamically produce the table
of contents, needed to facilitate the users’ browsing activities. The cornerstone idea is to by some means help
a user first to get an overview concerning the available content, and then to accurately express its information
needs. On the other hand, WebWatcher [11] acts as the tour guide that provides the assistance, which is
similar to the guidance of the human in the real museum. It accompanies users from page to page, suggests
appropriate hyperlinks, and learns from the obtained experience to improve its advice giving skills. Such a
system unfortunately can only locally assist the user, which brings the same drawbacks being present in Letizia
and Let’s Browse systems.

Personal Email Assistant (PEA) [12] filters incoming mails and ranks them according to their relevance in
order to help nowadays users, who easily end up with large part of their working day being spent with reading
emails. PEA maintains the personal user model that consists of several profiles and uses the evolutionary
algorithms to move that model constantly closer to the current information needs. By doing that PEA aims at
assisting users in dealing more effectively with their daily load of emails so that valuable working time is saved
for more productive and creative tasks. Even though the evolution strategies seems to be powerful enough for
dealing with emails in the PEA system, their usage in the Internet-like environment still remains to be a great
challenge.

3. Design of PIA: The Personal Information Agent. To meet the discussed requirements and to
support the user in that matter, we designed a multi-agent system composed of four classes of agents: many
information extracting agents, agents that implement different filtering strategies, agents for providing different
kinds of presentation and one personal agent for each user. Logically, all this can be seen as a classical three tier
application (Figure 3.1). Concerning the information extraction, general search engines on the one hand but also
domain-specific portals on the other hand have to be integrated. Additional information sources (Databases,
Files, Mailinglists etc.) should also be integrated easily at run-time.

32 S. Albayrak and S. Wollny and A. Lommatzsch and D. Milosevic

Several agents realize different filtering strategies (content-based and collaborative filtering [16], [5]) that
have to be combined in an intelligent matter. Also agents for providing information actively via SMS, MMS,
Fax, e-mail (push-services) are needed. A Multi-access service platform has to manage the presentation of the
results tailored to the used device and the current situation. The personal agent should constantly improve the
knowledge about his user by learning from the given feedback, which is also taken for collaborative filtering, as
information that has been rated as highly interesting might be useful for a user with a similar profile as well.
As users usually are not very keen on giving explicit feedback (ratings), implicit feedback like the fact that the
user stored an article can also be taken into account [18].

A keywordassistant should support the user in defining queries even if he is not familiar with a certain
domain. PIA provides three strategies for finding adequate keywords and for optimizing existing requests:

1. Keywords predefined by experts for frequently requested topics (or categories) can help the unexpe-
rienced user to find the relevant keywords. The suggestions provided by domain experts are usually a good
starting point for individual requests.

2. An alternative method for finding interesting keywords is the extraction of words and phrases from
interesting papers. This strategy helps the user to identify the key concepts from a paper that can be useful
for finding other relevant documents. In contrast to other approaches (like Googles Find similar documents)
the keyword extraction gives the user the opportunity to adapt extracted keywords according to the personal
interests and preferences.

3. For optimizing existing queries the PTA system suggests keywords from similar requests. For computing
the similarities between user requests the systems analyses the overlapping of user profiles (based on stems) and
the corelation between the user ratings. Keywords that frequently occure in the requests of similar users are
suggested to the user as potentially relevant search terms.

The whole system is designed to be highly scalable, easy to modify, to adapt and to improve and therefore
an agent-based approach that allows to integrate or to remove agents even at run-time is a smart choice.
The different filtering techniques are needed to provide accurate results, because the weakness of individual
techniques should be compensated by the strengths of others. Documents should be logically clustered by their
domains to allow fast access, and for each document several models [19] will be built, all including stemming and
stop-word elimination, but some tailored for very efficient retrieval at run-time and others to support advanced
filtering algorithms for a high accuracy.

If the system notices that the content-based filtering is not able to offer sufficient results, additional infor-
mation should be offered by collaborative filtering, i. e. information that was rated as interesting by a user with
a similar profile will be presented.

With the push-services, the user can decide to get new integrated relevant information immediately and on
a mobile device, but for users who do not want to get new information immediately, a personalized newsletter
also has to be offered. This newsletter is collecting new relevant information to be conveniently delivered by
e-mails, allowing users to stay informed even if they are not actively using the system for some time.

4. Deployment and evaluation.

4.1. Overview. We implemented the system using Java and standard open source database and web-
technology and based on the JTAC IV agent framework [20]. JIAC IV is FIPA 2000 compliant [21], that is it is
conforming to the latest standards.

It consists of a communication infrastructure as well as services for administrating and organizing agents
(Agent Management Service, AMS and Directory Facilitator, DF). The JTAC IV framework provides a variety of
management and security functions, management services including configuration, fault management and event
logging, security aspects including authorization, authentication and mechanisms for measuring and ensuring
trust and therefore has been a good choice to be used from the outset to the development of a real world
application.

Within JIAC IV, agents are arranged on platforms, allowing the arrangement of agents that belong together
with the control of at least one manager. A lot of visual tools are offered to deal with administration aspects.
Figure 3.2 shows a platform, in this case with agents for the building of different models specialized for different
retrieval algorithms.

The prototypical system is currently running on Sun-Fire-880, Sun-Fire-480R and Sun Fire V65x, whereas
the main filtering computation, database- and web-server and information-extraction is placed on different
machines for performance reasons.

Agent Technology for Personalized Information Filtering:The PIA-System 33

Malls . .m Content o

be |ntegrated mo
[] Yy %
el e e e 1 -]
)/ s
-]
PIA-format (XML) 2
s 88 o,
e 800 =5 g
= 33
o (5
(CBF,CF....) \~ ‘~\\ 3
N Sen —
\
- ‘PIPIPHP
g t Push-
< 1 Services
] (SMS, MMS,
: e-mail,...)
Keywordassistant 1
¥
Mulﬂ-access
s«'wceplatform =
(Browssr, PDA, ﬁ
Handy....]
2
élf;’
=
j’; User
= Agent platform
[]
éextraktion agent ﬁ filtering agent - information flow
Emodelling agent &efs""al agent -=-» control flow

Fic. 3.1. The PIA System seen as a three tier application

PIA: Pl-Agem-Plﬂform

Fia. 3.2. Several agents are building different models specilised for different retrieval algorithms

New content is stored, validated and consolidated in a central relational database (update-driven). In-
formation can be accessed by WWW, e-mail, SMS, MMS, and J2ME Clients, where the system adapts the
presentation accordingly, using the CC/PP (Preferences Profile) with a tailored layout for a mobile phone and
a PDA (see Section 4.6). The personalized newsletter and the push-services are sent via e-mail, SMS or MMS.
The user can use self-defined keywords for a request for information or choose a category and therefore the
system will use a list of keywords predefined by experts and updated smoothly by learning from collaborative
filtering. A combination of both is also possible. The keyword assistant is able to extract the most import
keywords of a given article using the term frequency inverse document frequency (TFIDF)-algorithm [22].

34 S. Albayrak and S. Wollny and A. Lommatzsch and D. Milosevic

4.2. Gathering new information. New information is constantly inserted in the system by information
extraction agents, e.g. web-reader agents or agents that are searching specified databases or directories. Addi-
tional agents for the collection of new content can easily be integrated even at runtime, as all that is necessary
for a new agent is to register himself at the system, store the extracted information at a defined database table
and inform the modeling-manager agent about the insertion. As a file reader-agent is constantly observing
a special directory, manual insertion of documents can be done simply by drag-and-drop and an e-mail and
upload-interface also exists. Source can also be integrated by Web services. New Readers can be created using
a easy-to-handle tool and another tool is enabling to conveniently observe the extraction-agents, as this is the
interface to the outside that might become critical if for example the data-format of a source is changed.

4.3. Pre-processing for efficient retrieval. The first step of pre processing information for efficient
retrieval is the use of distinct tables in the global database for different domains like e.g. news, agent-related
papers, etc. Depending on the filtering request, tables with no chance of being relevant can therefore be omitted.
The next step is the building of several models for each document. Stemming and stop-word elimination is
implemented in every model but different models are built by computing a term importance either based only
on local frequencies, or based on term frequency inverse document frequency (TFIDF) approach. Furthermore
number of words that should be included in models is different which makes models either more accurate or more
efficient. Created models are indexed either on document or word level, which facilitate their efficient retrieval.
The manager agent is assigning the appropriate modeling agents to start building their models but might decide
(or the human system administrator can tell him) at runtime to delay latest time-consuming modeling activity
for a while if system load is critical at a moment. This feature is important for a real-world application, as
overloading has been a main reason for the un-usability of advanced academic systems.

4.4. Filtering technology. As the quality of results to a particular filtering request might heavily depend
on the information domain (news, scientific papers, conference calls), different filtering communities are imple-
mented. For each domain, there is at least one community which contains agents being tailored to do specific
filtering and managing tasks in an efficient way. Instead of having ouly filtering agents (they will be described
in Section 4.5), each and every community has also one so-called manager agent that is mainly responsible for
doing coordination of filtering tasks, as well as cooperation with other managers.

The coordination is based on quality, CPU, DB and memory fitness values, which are the measures being
associated to each filtering agent [23]. These measures respectively illustrate filtering agent successfulness in
the past, its efficiency in using available CPU and DB resources, and the amount of memory being required for
filtering. A higher CPU, DB or memory fitness value means that filtering agent needs a particular resource in a
smaller extent for performing a filtering task. This further means that an insufficiency of a particular resource
has a smaller influence on filtering agents with a higher particular fitness value.

The introduced different fitness values together with the knowledge about the current system runtime
performance can make coordination be situation aware (see also [23]) in the way that when a particular resource
is highly loaded a priority in coordination should be given to filtering agents for which a particular resource has
a minor importance. This situation aware coordination provides a way to balance response time and filtering
accuracy, which is needed in overcoming the problem of finding a perfect filtering result after few hours or even
few days of an expensive filtering.

Instead of assigning filtering task to the agent with the best combination of fitness values in the current
runtime situation, manager is going to employ a proportional selection principle [24] where the probability for
the agent to be chosen to do actual filtering is proportional to the mentioned combination of its fitness values. By
not always relying only on the most promising agents, but also sometimes offering a job to other agents, manager
gives a chance to each and every agent to improve its fitness values. While the adaptation of quality fitness
value can be accomplished after the user feedback became available, the other fitness values can be changed
immediately after the filtering was finished through the response time analyses. The adaptation scheme has a
decreasing learning rate that prevents already learnt fitness values of being destroyed, which further means that
proven agents pay smaller penalties for bad jobs than the novice ones [17].

The underlying coordination activities, essentially responsible for the mentioned optimal exploitation of
available system resources, are represented on Figure 4.1, giving the simplest possible selection scenario. Under
the assumption that everything goes perfectly, the scenario starts with a job creation and ends with a result
usage, being done by the User agent (U). The real coordination activities, being performed in a meantime by the
chosen Manager (M), are first resource estimation, and afterwards strategy selection. After the selected Filtering

Agent Technology for Personalized Information Filtering:The PIA-System 35

agent (F) that encapsulates the particular searching algorithm (deployed filtering strategies are described in
Section 4.5), is produced results, the manager M can adapt fitness values based on the measurement of the
response time. The found filtering results are finally returned back to the user agent U, and this simple scenario
ends.

(| &
Lreatl()ll =
L‘.’>

resource
estlmatlon

strategy g
selection
Y ﬁtncss

> adaptation

) filtering

Fia. 4.1. System architecture illustrating agent communication for resource-aware coordination

In the case where the received filtering task cannot be successfully locally accomplished usually because
of belonging to unsupported information domain, manager agent has to cooperate with other communities.
While coordination takes place inside each and every filtering community between manager and filtering agents,
cooperation occurs between communities among manager agents (see also Figure 4.2). The cooperation is based
on either finding a community which supports given domain or in splitting received task on sub-tasks where for
each sub-task a community with good support exists.

The information is usually scattered around many different, more or less dynamic, distributed sources.
Two cornerstone challenges therefore become both finding which sources should be consulted for resolving the
particular request, as well as putting the found results together. While the challenge of searching for sources
is known as the database selection problem, the composing of a final result set is often simply referred as
the information fusion. One light cooperation approach, already published in [25], and which is based on the
application of the intelligent cooperative agents, is going to be briefly illustrated in the rest of this sub-section.

The fundamental cooperation idea is based on the installation of at least one filtering community around
each database, as well as on setting up the sophisticated mechanisms, which enable that these communities can
efficiently help each other while processing the incoming requests. Although the filtering request can be sent to
any filtering community, the most suitable communities will be autonomously found, and the request will be
then dispatched to them. The found results will be finally collected, and only the best ones will be returned
to the sender of the filtering request. The most appealing property behind these cooperative processing is that
everything is done transparently for the user, being not any more forced to manually think where the request
should be sent, and which obtained filtering results are really the best ones.

Ezample (Coordination € Cooperation) Figure 4.2 presents a high level overview of the filtering framework
being composed of three different filtering communities (FC), where each community has one filter manager
agent (M) and different number of specialized filtering agents (F). There are two different databases (DB) with
information from different domains, and they are accessed at least by one community. On the figure cooperation
is illustrated as a circle with arrows which connect manager agents.

4.5. Filtering strategies. The cornerstone of the PTA system is in offering a framework that facilitates
the integration of different filtering strategies. Although this paper is not dealing with any particular filtering

36 S. Albayrak and S. Wollny and A. Lommatzsch and D. Milosevic

ARRRR AR R R R AR RS

HoHo Do Do Do
PoPo DoPodo

Fic. 4.2. Filtering framework with three different communities

strategy, their short descriptions will be given in the following paragraphs in order to make this paper self-
contained and to clear the roles of the agents on Figure 3.2.

By using the term frequency inverse document frequency scheme, the importance values of different words
can be computed, and each and every document can be modelled by a corresponding weighted vector. While the
so-called Large Filtering Strategy will always build a model with all words from a document, Optimal Twenty,
Optimal Ten, and Optimal Five Filtering Strategies will take into consideration only twenty, ten, and five most
important words, respectively. The models, being created by these optimal strategies, are thus smaller, and
consequently can be faster both loaded into memory and compared with a filtering request. As they are omitting
many words, they might be at the same time potentially less accurate, and the coordination engine has a chance
to decide which one in the given situation can be the best solution.

Since the examination of every single document for each request becomes infeasible even for a collection
with the modest size, two different indexing filtering strategies have been also implemented. The first one,
named Inverted List Filtering Strategy, creates for every word the list of documents having that word. The
inbuilt simplification, tending to dramatically reduce a size of inverted lists, is made by not storing the positions
of words in the corresponding documents. While a strategy due to such a design decision becomes more
efficient, it loses its ability to support requests with a phrase. The second Position Filtering Strategy will
not utilise such a simplification regarding not storing the positions, and thus will be able to accurately find
documents with requested phrases. As this second strategy is naturally more expensive, the trade-off, between
providing the accurate results and responding quickly, becomes evident and unavoidable for requests with
phrases.

The property of fuzzy clustering [24], to assign documents to multiple clusters together with specifying a
degree to which a particular article belongs to a given cluster, has been used as the inspiration for a realisation
of a dedicated Fuzzy Filtering Strategy. While its strength is in keeping short cluster summaries in the high
speed memory, its greatest weakness lies in a used simplification to cluster documents in advance fixed clusters.
The few different versions of this fuzzy filtering strategy are finally implemented by limiting the amount of a
memory that is utilised for cashing the cluster summaries, having as the implication that different trade-offs
between the response time and the memory requirements are possible.

Agent Technology for Personalized Information Filtering:The PIA-System 37

Every mentioned filtering strategy is also exploited for creating its appropriate clone, which will take into
account only words from a manually created dictionary. By limiting the vocabulary to few thousands instead
to more than half a million, underlying models are much smaller, and thus the underlying strategies become
more efficient. Unfortunately, the paid price lies in the lost of a support for all requests with words that are not
pre-selected, resulting in the potentially lower quality of found filtering results. These clone strategies finally
provide even more fruitful playing ground for both cooperation and coordination mechanisms, which should
prove their capabilities while resolving the mentioned trade-off problems.

4.6. Presentation. As one of the main design principles has been to support the user throughout the
whole day, the PIA system provides several different access methods and adapts its interfaces to the used device
(Figure 4.3). To fulfill these requirements an agent platform (Multi Access Service Platform) was developed
that optimizes the graphical user interface for the access by Desktop PCs, PDAs and smart phones.

If the user wants to use the PIA system, the request is received by the Multi Access Service Platform
(MASP). The MASP delegates the request to an agent, providing the logic for this service. In the PTA system
the requests are forwarded either to login agent or the personal agent. The chosen agent performs the service
specific actions and sends the MASP an abstract description of the formular that should be presented to the
user. For this purpose the XML based Abstract Interaction Description Language (AIDL) has been defined.
Based on the abstract description and the features of the used device the MASP generates an optimized interface
presented to the user. The conversion is implemented as a XSLT transformation in which the optimal XSLT
style sheet is selected based on the CC/PP information about the user’s device.

The Multi Access Service Platform provides a generic infrastructure for providing device optimized interfaces
for a big number of devices. The basic idea of MASP is to separate the application logic from the concrete
interface design. So the application developer does not have to cope with the specific characteristic of the each
relevant device and can concentrate on the application specific data flow and interaction logic.

Eavorten Extras 2

(2] 0| sehen ' crovoren @Meden £2)| (-

124:7180jsky/begin.

HOME 7PIA SERVICES 7PROJECT INFORMATION

25.07.2004 500 o

AAMAS2004
The Third Intern,
Datum:

19.07.2004

E£15'2004
Fourth Interm \
Datum:

28.06.2004

AL'04: The Sevents
AI'04 the seventeent
Datum:

17.05.2004 4

A
Fic. 4.3. Information accessed by browser or tailored for presentation on a PDA or a mobile phone

For defining the interface of an application the XML based Abstract Interaction Description Language
(AIDL) has been defined. The definition of a user interaction (typically one web page) is structures as a tree
of predefined user interface elements (e.g. label, input field). An exemplary page description is shown in
Program 1.

The abstract interface description can be easily transformed into HTML, PDA optimized HTML or WML.
If the user wants to have a voice interface, a style sheet for converting the abstract user interface description
into VoiceXML has to be added to the MASP. Additional changes at the application are not needed. In general,
the support for new devices can be added without changing or shutting down the application.

38 S. Albayrak and S. Wollny and A. Lommatzsch and D. Milosevic

Program 1 The abstract interaction description of the PIA login page

<?xml version="1.0" encoding="UTF-8"7>
<scenario name="loginPage">
<input>
<UIElement>
<list name="rootNode">
<UIElement>
<pageSetting name="user_language'">
<value>de</value>
</pageSetting>
</UIElement>
<UIElement>
<label name="login__piaLoginQXQ25">
<value>PIA-Login</value>
</label>
</UIElement>
<UIElement>
<list name="login__data">
<UIElement>
<label name="login__userName">

<value>Benutzername:</value>

</label>

</UIElement>

<UIElement>
<fieldValue name="login__userName_default">

<value>andreas</value>

</fieldValue>

</UIElement>

</list>
</UIElement>

<serviceLink name="createAccountServiceLink">
<provider address="tcpip://127.0.0.1:7325" name="PIAgent"/>
<service name="MAPPresent"/>
<param name="scenario">createAccount</param>
</serviceLink>
</list>
</UIElement>
</input>
</scenario>

The transformation of the abstract interface description is done using Extensible Stylesheet Language Trans-
formations (XSLT). A XSLT transformation is typically written by a designer who is an expert for creating
optimized user interfaces for a device considering the preferences of the respective audience. For simplifying the
building of XSLT transformations, the MASP provides a set of generic rules for transforming the frequent ele-
ments of the abstract user interface descriptions into basic HTML or WML. Based on these rules more complex
and device optimized XSLT transformations can be defined.

An important feature of the utilised MASP is the support of Composite Capability /Preference Profiles
(CC/PP). Considering the specific features and properties (e.g. screen size, supported css version, supported
image formats) the user interface designer can optimize the interfaces to the properties of the respective device.
For converting media data into a device adequate format, the MASP provides a component for scaling and
converting images and videos.

The components and interfaces of the Multi-Access-Service Platform are shown in Figure 4.4. Users who
want to use the PTA service interact with the Multi Access Point. The MAP contains components for interac-
tion with the respective device (e.g. web server or voice server) and components for rendering the application
interface optimized for supported devices. Approved rendering components for HTML, WML and VoiceXML
based user interfaces exists; components for applet based components are under development. For the device
independent interface description the MASP uses the Abstract Interface Description Language (AIDL) that is
use as interface between interface designer and application developer. The bridge between the application and
the Abstract Interface Description is provided by the Alter Ego Agent that contains the interaction description

Agent Technology for Personalized Information Filtering:The PIA-System 39

and specific representation rules. Additionally the Media Cache component provides the media content as well
as connectivity to external media providers.

) @
/Multi Access Point\ 4 g\ /AIter Eqo A ent\ %
; o
< g2 T
= =3 C)
> o o =
c @ 2
® oo 5
o S8 =
® = =

< 25 .

> S g |[Media Cache 2
o - |
n 30)
@ § 3
3 g
) o

___/ A A 4 &av

Fic. 4.4. The architecture of the MASP

Beside of the features provided by MASP the design of the user interface must create an easy to use system
even on devices with a tiny screen and without a keyboard. That is why the PIA interface provides additional
navigation elements on complex forms and minimizes the use of text input fields. New results matching a defined
request are presented first as a list of short blocks containing only title, abstract and some meta-information (as
this is familiar to every user from well-known search-engines). This information is also well readable on PDAs
or even mobile phones. Important articles can be stored in a repository. This allows the user to choose the
articles on his PDA he wants to read later at his desktop PC.

Depending on the personal options specified by the user, old information found for a specific query may be
deleted automatically step by step after a given time, that is, there is always up to date information that is
presented to the user (we call this smart mode). This is for example convenient for getting personalized filtering
news. The other option is to keep that information unlimited (global mode) for a query for e.g. basic scientific
papers.

For the push-services (that is, the system is becoming active and sending the user information without
an explicit request), the user specifies his working time (e.g. 9 am to 5 pm). This divides the day in a pre-,
work, and a recreation slot, where the PIA system assumes different demands of information. For each slot an
adequate delivering technology can be chosen (e-mail, sms, mms, fax or Voice). If you decide to subscribe to
the personalized newsletter, new relevant information for you will be collected and sent by e-mail or fax once
a day with a similar layout and structure for convenient reading if you have not seen it already by other pull-
or push services. Therefore you can also stay informed without having to log into the system and if you do not
want to get all new information immediately.

5. Conclusion and future work. The implemented system has an acceptable runtime performance and
shows that it is a good choice to develop a personal information system using agent-technology based on a solid
agent-framework like JTAC TV. Currently, PTA system supports more than 120 different web sources, grabs
daily around 3.000 new semi-structured and unstructured documents, has almost 500.000 already pre-processed
articles, and actively helps about fifty scientists related to our laboratory in their information retrieval activities.
Their feedback and evaluation is a valuable input for the further improvement of PIA. In the near future we
plan to increase the number of users to thousands, and therefore we plan to work on the further optimization
of the filtering algorithms to be able to simultaneously respond to multiple filtering requests. Also, we think
about integrating additional services for the user that provide information tailored to his geographical position
(GPS), a natural speech interface and innovative ways to motivate the user to give precise explicit feedback, as
the learning ability of the system is depending on that information.

40

(1]
(2]
(3]
[4]
[5]

[6]

[7]
(8]

[9]

[10]
[11]

[12]
[13]
[14]
[15]

[16]

[17]

[18]

[19]
[20]

[21]
[22]

23]

[24]
25]

S. Albayrak and S. Wollny and A. Lommatzsch and D. Milosevic

REFERENCES

S. BriN anND L. Pace, The anatomy of a large-scale hyper textual (Web) search engine, in Proc. 7th International World
Wide Web Conference on Computer Networks, 30(1-7), 1998, pp. 107-117.

M. BavraBanovic anD S. Yoav, FAB: Content-Based Collaborative Recommendation, Communication of the ACM, 40(3),
1997, pp. 66-72.

A. Moukas, Amalthaea: Information Discovery and Filtering using a Multi agent Evolving Ecosystem, in Practical Appli-
cation of Intelligent Agents & Multi-Agent Technology, London 1998.

B. Zuanag, anNp Y. SEO, Personalized Web-Document Filtering Using Reinforcement Learning, Applied Artificial Intelligence,
15(7), 2001, pp. 665—685.

M. CrayPooOL AND A. GOKHALE AND T. MIRANDA AND P. MURNIKOV AND D. NETES AND N. SARTIN, Combining Content-
Based and Collaborative Filters in an Online Newspaper, in Proc. ACM SIGIR Workshop on Recommender Systems,
Berkeley, CA, August 19, 1999.

J. DELcGapo AND R. Davipson, Knowledge bases and user profiling in travel and hospitality recommender systems, in Proc.
of the ENTER 2002 Conference, Innsbruck, Austria, 2002, pp. 1-16.

D. Kuroprka aAND T. SERRIES, Personal Information Agent, in Proc. Informatik Jahrestagung 2001, pp. 940 946.

H. LiEBERMAN, Letizia: An Agent That Assists Web Browsing, in Proc. International Joint Conference on Artificial Intelli-
gence, Montreal, August 1995.

H. LieBERMAN AND N. VAN Dyke AND A. VivacQua, Let’s Browse: A Collaborative Browsing Agent, Knowledge-Based
Systems, 12(8), 1999, pp. 427-431.

B. SHETH, A Learning Approach to Personalized Information Filtering, M.Sc. Thesis, MIT dept, USA, 1994.

T. JoacHiMs AND D. FreiTac AND T. MiTcHELL, WebWatcher: A Tour Guide for the World Wide Web, in Proc. IJCAIT
(1), 1997, pp. 770 777.

W. WINIWARTER, PEA—A Personal Email Assistant with Evolutionary Adaptation, International Journal of Information
Technology, 5(1), 1999.

C. THomas aND G. FISCcHER, Using agents to improve the usability and usefulness of the world wide web, in Proc. 5th
International Conference on User Modelling, 1996, pp. 5-12.

N. JENNINGS AND M. WOOLDRIDGE, Agent-oriented software engineering, Handbook of Agent Technology (ed. J. Bradshaw),
AAAT/MIT Press, 2000.

R. SESSELER AND S. ALBAYRAK, Agent-based Marketplaces for Electronic Commerce, in Proc. International Conference on
Artificial Intelligence, TC-AT 2001.

P. Resnick AND J. NEOPHYTOS AND M. SucHAk AND P. BErasTrOM AND J. RiepL, GroupLens: An open architecture
for collaborative filtering of net news, in Proc. ACM Conference on Computer-Supported Cooperative Work, 1994, pp.
175-186.

S. ALBAYRAK AND D. Mivrosevic, Self Improving Coordination in Multi Agent Filtering Framework, in Proc.
IEEE/WIC/ACM International Joint Conference on Intelligent Agent technology (IAT 04) and Web Intelligence (WI
04), Beijing, China, September 2004.

D. Nicnous, Implicit Rating and Filtering, in Proc. 5th DELOS Workshop on Filtering and Collaborative Filtering, Budapest,
Hungary, 1997, pp. 31 36.

D. Tauritz, Adaptive Information Filtering: concepts and algorithms, Ph.D. dissertation, Leiden University, 2002.

S. Fricke anD K. Bsurka anp J. Keiser AND T. ScHMIDT AND R. SESSELER AND S. ALBAYRAK, Agent-based Telematic
Services and Telecom Applications, Communications of the ACM, 2001.

Foundation for Intelligent Physical Agents, www.fipa.org 2004.

L. Jinag anp H. HuanGg aAND H. SHi, Improved Feature Selection Approach TFIDF in Text Mining, in Proc. 1st International
Conference on Machine Learning and Cybernetics, Beijing, 2002.

S. ALBAYRAK AND D. MirLoskvic, Situation-aware Coordination in Multi Agent Filtering Framework, in Proc. 19th Inter-
national Symposium on Computer and Information Sciences (ISCIS 04), Antalya, Turkey, 2004.

M. ZBiaNIEW AND D. FocGeL, How to Solve It: Modern Heuristics, Springer-Verlag New York, Inc., New York, NY, 2000.

S. ALBAYRAK AND D. Miroskvic, Cooperative Community Selection in Multi Agent Filtering Framework, in Proc.
TEEE/WIC/ACM International Joint Conference on Intelligent Agent technology (TAT 05) and Web Intelligence (WT 05),
Compiegne University of Technology, France, 2005, pp. 527 535.

Edited by: Marcin Paprzycki, Niranjan Suri
Received: October 1, 2006
Accepted: December 10, 2006

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 8, Number 1, pp. 41-48. http://www.scpe.org © 2007 SWPS

o,..

COMPUTATIONALLY ADJUSTABLE AUTONOMY

HENRY HEXMOOR* AND BRIAN MCLAUGHLAN*

Abstract. Reasoning about autonomy is an integral component of collaboration among computational units of distributed
systems. This paper introduces an agent-level algorithm that allows an agent to continuously update its autonomy with respect to
recurring asynchronous problems with the aim of system-wide collaboration efficiency. The algorithm is demonstrated in a relevant
scenario involving NASA space station-based Personal Satellite Assistants, which can handle dynamic situation management that
frustrates global collaboration protocols.

Key words. Agents, Autonomy, portable satellite assistant.

1. Introduction. Computer-controlled systems feature prominently in large-scale projects currently un-
der development by the military, commercial, and scientific agencies. Examples of these projects include the
US military’s Network-Centric Warfare doctrine, IBM’s Autonomic Computing initiative, and NASA’s space
station project. As these systems have increased in complexity, self-governing components have come to feature
prominently in their design and control. This change in paradigm from direct human control to indirect human
oversight has forced designers to address issues involving the autonomy of these sub-systems.

Autonomy is defined and used in multi-agent system research [6, 7, 11, 12, 13] and other disciplines including
sociology [10] and philosophy [14, 15]. It is important in multiagent interactions since it relates the abilities of
an agent to its freedoms and choices. The understanding and quantification of an agent’s autonomy is required
for coherent interagent interaction.

The concept of autonomy is closely related to the concepts of power, control, and dependence [5, 7]. The
notion of autonomy has been used in a variety of senses and has been studied in different contexts. It generally
presupposes some independence or restricted dependence. However, it can describe many different but related
concepts. An agent can be autonomous with respect to another agent if it is beyond the influences of control
and power of that agent. It can also be used to describe quality of choice and can even encompass self-imposed
“sense of duty” concepts.

While autonomy can be intuitively understood, it unfortunately is a complex topic whose exact definition
and implementation is rather elusive. However, by identifying “types” or “subclasses” of autonomy, specific
aspects of the concept can be defined and quantified. The multiagent system designer can then utilize these
models to focus on the particular attributes of autonomy that would be most beneficial for the particular
implementation.

Autonomy is defined in [6] as the agent’s degree to which its decisions depend on external sources including
other agents. This form of autonomy can be called Cognitive Autonomy. This concept has been explored further
in [7]. This paper utilizes this definition of autonomy and promotes the relativistic view introduced in [3, 4].

Adjustable autonomy is a related notion that captures the idea of a human operator intervening and guiding
actions of a machine [8]. Another example of the work on adjustable autonomy is [1] with quantitative measure
proposed in [2]. In this, the degree of autonomy is defined as an agent’s relative voting weight in decision-making.
This approach has several advantages including the allowance for explicit representation and adjustment of agent
autonomy.

The remainder of this paper presents our work regarding computation and determination of adjustable
autonomy levels for collaborative, problem-solving agents in a multi-agent system. Section Two describes our
approach, including the generalized algorithm. Section Three portrays an implementation of this algorithm for
NASA’s PSA program. Experiments performed on this system are chronicled in Section Four. Section Five
presents the conclusions drawn from this work.

2. Approach. This paper addresses adjustable autonomy in a distributed system where agents discover,
announce, and complete asynchronously occurring tasks. The tasks are generic and require multiple participant
collaboration to solve. The collaboration process is facilitated through a four-stage bidding process:

1. Announcement
2. Priority

*Southern Illinois University Carbondale, Illinois, 62901 {hexmoor, brianm}@cs.siu.edu

41

42 Henry Hexmoor and Brian Mclaughlan

3. Permission
4. Acceptance

In addition to providing a mechanism for collaboration on tasks, the algorithm must be able to scale well
and handle dynamic and complex situations. That is, it must be able to handle multiple, conflicting tasks. It
must be able to handle changes to the problem topology such the introduction or removal of key agents or tasks.
Ideally, the algorithm will handle variations without excessive setback in its ongoing computations.

Announcement

Upon discovery of a new task, the discovering agent known here as the originating agent broadcasts the
discovery to the group. Each agent maintains a list of announced tasks. The task data structure is shown in
Figure 2.1.

An agent will update the information about a task as it receives relevant information. For simplification,
this paper assumes that all agents have some method of hearing announcements and other bidding related
information, whether through direct or indirect means. If this simplification is not the case, the algorithm will
yield as best a solution as is possible with the information available.

Task 1D

Location

Discovery Time
Originator

Worker Count Request
Priority List
Permission List,
Acceptance List

Fig. 2.1. Task Data

Priority

Upon receiving and archiving the task announcement, an agent will reason about its objective suitability
to address the task. The agent may include several attributes, e.g., necessary skills, energy usage, and the time
that the task has been active. It incorporates these factors in assigning some meaningful priority to the task.
It is important to note that, at this stage, the agent will not account for alternative tasks. That is, it will not
rank a task higher or lower according to its personal preferences. Reasoning along subjective considerations will
occur later. Upon determining its priority for the task, the agent will announce the score to the other agents.
In the most basic version of this system, only the originator needs to maintain all the priorities. However, as
will be described later, some enhancements are possible in which agents can adjust their acceptance based on
the priority scores made by other agents.

Permission

The originating agent collects these priority scores and generates a permission list. In its simplest form, the
permission list is an ordered list of the priority scores. However, the algorithm utilized by the originating agent
can be much more complex, taking into account abstract concepts such as trust and affinity the originating agent
has towards particular agents or even known synergies among bidding agents. Ultimately, this permission list
contains the bidding agents in the order of most to least desirable for joining the task. Although the originating
agent only needs a specific number of agents to perform the task, it will create an ordered list containing all
bidding agents in the event that some of the most desirable agents will be unable or unwilling to participate.
The originating agent publishes this list to the group.

Acceptance

Unlike many contemporary systems such as online auctions, a bid does not constitute a contract in this
system. Each agent is allowed to tentatively accept or reject the permission granted by the originating agent.
Additionally, a tentative acceptance is not enforceable. If an agent finds a task for which it is more suitable, it
is free to abandon its current task. As will be shown later, it is assumed that the agent has taken into account
any disruption its action would make on its current task if it were to act. Thus, the acceptance becomes an
announcement of which task the agent is currently considering to perform.

Computationally Adjustable Autonomy 43

The bidding agent makes her acceptance determination by accounting for several factors including its desire
or suitability for this relative to other tasks, the level of permission granted by the originating agent for this
and other tasks, and the priority of alternative agents should the agent decline to perform the task.

The bidding agent takes into account competing tasks at this stage rather than in the priority stage so
that it can provide benevolence for the system. For example consider an agent X that has placed bids on two
tasks, Task 1 that has been announced by agent A and Task 2 that has been announced by agent B. Agent X
determines its priority for Task 1 to be quite low, but sees its priority for Task 2 to be high. Both agents A and
B have published permission lists in which agent X is among the top choices. If agent X were to take a greedy
stance, it would accept the task for which it gave the highest priority, in this case Task 2. However, if it further
inspects the permission lists, it may discover that the agents that would be forced to perform Task 1 in agent
X’s absence are not particularly well-suited for the task and would struggle, while the alternative agents for
Task 2 are only slightly less-suitable than agent X and could still perform adequately. To provide for optimal
system performance, agent X could choose to accept Task 1 even though it would personally prefer Task 2.

There are three caveats to accepting tasks. First, an agent may only give its acceptance to one task. If it
has already accepted a previous task, it must announce its withdrawal from that previous task.

Second, an agent cannot accept a task that has been locked. A task is locked if n higher-ranked agents have
accepted the task, where n is the requested number of agents for the task'.

Third, an agent cannot accept a task where it is not ranked in the first n non-rejecting agents in the
permission list where n is the number of agents required to perform the task. That is, if a task needs three
agents, and agent X is ranked fourth, it cannot accept the task unless one of the first three decline it. Conversely,
any agent may decline a task regardless of its ranking in the permission list. These scenarios are shown in
Figure 2.2.

Task 1:

Agents Requested: 3
Permission: {C, D, A, E, X, Y, Z}
Acceptance: { A, R, 7,7, 7 R, 7}

Fic. 2.2. Agent X cannot accept the task until either agent A or E rejects it.

Algorithm

An algorithm has been developed to facilitate this bidding scheme. This algorithm is implemented at the
agent level and runs continuously. The pseudo code for this algorithm is shown in Algorithm 1.

Some notes regarding this algorithm. In the final If statement, the agent does nothing if its chosen task
could be filled by more qualified agents. This forces the agent to wait to see if the desired task will become
available. As an alternative, the agent could change this to a rejection and recalculate a “second best choice”.
Then, if the desired task becomes available due to top-ranked agents rejections, it can change its acceptance
back to the original task. This alternative keeps all agents busy, but it may cause additional start-up costs from
changing tasks

It is the task originator’s responsibility to ensure that the task does not get lost in the shuffle. To this end,
the originating agent will periodically broadcast the current state of the task.

Rather than rigidly define the four phases of the bidding process, the algorithm allows each agent to
proceed independently. This precludes the need for coordination of phase changes that may be difficult in some
environments. However, this could cause the originating agent to publish a permission list before all agents have
given their priority scores. With the publication of this list, the agents are free to begin the acceptance process
before potentially ideal agents announce their priority. To prevent unnecessary shuffling as new agents bump
out less ideal workers, the agents should take potential shuffling into account when bidding. Alternatively, if the
agents can communicate with all other agents in the system, then the originating agent can delay publishing
the permission list until all agents have announced their priorities.

To illustrate the algorithm, consider the following scenario. To simplify the illustration, the scenario will
be shown from the perspective of the tasks.

IIn the PSA application, “n” is three. T.e., three robots are required to triangulate source of the problem.

44 Henry Hexmoor and Brian Mclaughlan

Algorithm 1 Bidding Scheme Pseudocode
while 1 do
Sense surroundings
Task List update
Append new discovered tasks
Append new heard tasks
Update existing tasks
for Each task t in Task List do
Calculate and announce t,,iority
if toriginator —— self then
Calculate tpermission List
Announce task t
end if
end for
Calculate best non-locked task
for Each task t in Task List do
if t # best then
Announce rejection
else
if Self rank < n** non-rejecting then
Announce acceptance
else
Do nothing
end if
end if

end for

end while

Agents A and B have discovered and announced Tasks 1 and 2, respectively. Agents A, B, C, and D are
within responding distance to these tasks. Figure 2.3 shows the state of the tasks after the agents have begun
to respond with their priority to the tasks and the originating agents have published permission lists. For
simplicity, permission is granted based solely on announced priority.

Task 1 Task 2

Agents Needed: 2 # Agents Needed: 2

Priority: {A,7},{B,3}, {C,8},{D,9} Priority: {A,1},{B,8}, {C,2},{D,7}
Permission: D, C, A, B Permission: B, D, C, A
Acceptance: 7,7, 7,7 Acceptance: 7,7, 7,7

Fia. 2.3. Permission List Publication

With the publishing of the permission lists, agents are now free to begin accepting or rejecting the tasks as
shown in Figure 2.4. Agents C and D are the most ideal candidates for Task 1. C will accept this task as B
accepts Task 2. They will quickly reject the alternate tasks.

However, D has been accepted for both tasks. Greedily, it could accept Task 1, but its rejection of Task 2
would force Task 2 to be performed by A, a very unsuitable agent. It must decide on a course of action—greedy
or benevolent.

Agent A cannot announce its acceptance of Task 1 despite its likely preference toward it. Rather, it will
wait to see what Agent D announces so that it will not have to begin its inept performance of Task 2 and then
possibly switch mid-execution to Task 1.

Next, consider how the algorithm will react to a dynamic situation. For this we introduce another agent,
agent E. This agent hears the updates given by the two task originators and determines its priority for the
tasks. Additionally, agent C detects a new task, Task 3. This situation is shown in Figure 2.5.

Computationally Adjustable Autonomy 45

Task 1 Task 2

Agents Needed: 2 # Agents Needed: 2

Priority: {A,7},{B,3}, {C,8},{D,9} Priority: {A,1}{B,8}, {C,2},{D.7}
Permission: D, C, A, B Permission: B, D, C, A
Acceptance: 7, A, 7, R Acceptance: A, 7, R, ?

Fia. 2.4. Partially Accepted

Task 1 Task 2 Task 3

Agents Needed: 2 # Agents Needed: 2 # Agents Needed: 2
Priority: {A,7},{B,3}, Priority: {A,1},{B,8}, Priority: {A,7},{B,3},
{C,8}.{D.9}, {E.0} {C21,1D,7}. {E5) {C9LID3}. {E5)
Permission: D, C, A, B, E Permission: B, D, E, C; A Permission: C, D, A, E, B
Acceptance: 7, R, ?, R, R Acceptance: A, ?, 7 R, ? Acceptance: C, 7,7, 7,7

Fic. 2.5. New Task and Agent

In this situation, C chooses its own task and rejects its previous acceptance of Task 1. Additionally, E
immediately sends rejection to Task 1 due to its absolute inability to perform the task as demonstrated from
its priority announcement of 0.

This leaves several issues to be resolved. First, it allows A to accept its ideal Task 1 as it is now in the first
2 non-rejecting agents and does not need to wait for D’s rejection.

Agent D is now desired by all three tasks. It still has some determination to make before choosing. For
instance, D’s choice could depend upon whether agent A chooses Task 1 or Task 3. It also depends upon whether
important tasks will be left without adequate workers.

The exact method utilized for determining its choice depends on how much complexity the system designer
imbues in the agents’ decision-making process. Ideal efficiency is a difficult problem that is most likely beyond
the practical scope of real-world agents regardless of the algorithm. However, the agent could play the prisoner’s
dilemma game to second-guess what other agents may choose. Perhaps the simplest and most computationally
efficient method when faced with such incomplete information would be for Agent D to take the greedy choice
and let the other agents adjust to maximize the remaining system performance.

Additionally, this example illustrates a problem with all task allocation algorithms—maximizing utility
when not enough workers are present. If such a scenario is likely in the system, the designer could include a
task priority that would modify the agents’ behavior such that they would be more likely to accept critical tasks
and leave less vital tasks understaffed.

Despite the problems, this example demonstrates how the algorithm can adapt to changes made mid-
calculation. Rather than toss out the bidding process and start over or exclude new agents and tasks from the
proceedings, the agents make some quick adjustments and continue.

3. An application: The Personal Satellite Assistant (PSA). A PSA is a small (basketball-sized)
flying robot that is under development at NASA Ames (at the Moffet field AFB?) for deployment on the
international space station. These robots are an outgrowth of a need to free astronauts from routine tasks of
inventory control, safety checks, and fault detection and isolation. PSAs are loaded with a variety of sensors
including equipment for gas and pressure sensing. In the remainder of this section we describe an implementation
of our algorithm that allows PSAs to perform several appropriate tasks such as fire and gas leak (i. e., on- and
off-gassing) detection while reasoning about their autonomy and level of collaboration.

As per the algorithm, the PSA that detects the problem formulates a broadcast alert to send to the other
PSAs. This is initiated when a PSA locates an abnormality in its environment. The abnormality could be
a variation in the ambient temperature or an atmospheric imbalance such as high or low pressure, or excess
oxygen, carbon dioxide, or nitrogen. The PSA sends the alert containing the type of problem and type of room
in which the problem is located to persuade other agents to help it pinpoint the source of the problem more
accurately. This process is similar to the method used in radio signal triangulation.

2We thank Yuri Gawdiak for a tour and discussions in 2002.

46 Henry Hexmoor and Brian Mclaughlan

To determine its suitability for this task, the PSA must account for its energy resources. Each PSA has a
limited battery power that will be consumed during transit as well as during the task execution. It is assumed
that the PSA has a means of evaluating its resources R, which in this case is its battery charge. It will then
calculate its cost C to perform the task.

C is initially computed by calculating the distance to travel to the task and the subsequent distance to a
power recharge station. It does the system little good for a PSA to assist in locating a problem only to run out
of energy and shut down. The total distance to be moved is multiplied by the energy consumption rate. An
estimation of the amount of energy required to perform the task is added to get the total cost C.

C =(Distance to target + Distance from target to recharge) x Energy Consumption Rate

+ Energy required for task

If C > R then an unfavorable priority is return indicating unavailability. Otherwise, when C < R, the
PSA can successfully help locate the problem and still recharge itself. In this case, priority P is calculated by
first considering what type of room in which the problem is located. This is done since some locations are
inherently more important than others. For instance, laboratories are relatively less important than the control
center. Additionally, the particular anomaly detected can influence the priority for a particular room. For
example, off-gassing of oxygen in a equipment storage module would be less disastrous than the same problem
in a habitation module. Conversely, high levels of magnetic interference may be dangerous for the equipment
but could be of little consequence to humans inhabiting their quarters. The determined value, which we denote
as Q, is used for calculating the job weight and is used in the final priority calculation for P.

Q = In(Time + RoomProblemFactor)

The natural log is used for this equation because it causes Q to change along a predictable curve as either Time
or RoomProblemFactor increases.
P is computed by using distance as a scalar and comparing the new job weight to the old job weight.

P = Qnew <1 ~ MAXDISTANCE MAXDISTANCE

Distance to new target Distance remaining to old target
) — Qola X (1 -)

MAXDISTANCE is the maximum distance a PSA can move through the entire station. The distance plays an
important role in the calculation of P. This is due to the observation that the PSA with the smallest distance
to move will be the most likely to arrive quickest. Thus, the time to complete the task is lower with this PSA.

As the PSAs proceed through the bidding process priority declaration, permission, and acceptance and
the chosen PSAs begin to arrive at the problem location, they will take a prism on the face of the search space
and begin scanning. This will allow PSAs that arrive quicker to begin the search process, while PSAs that
arrive later can help refine the results. Thus, a measure of completion can be taken at any point in time during
the triangulation.

4. Experiments. Experiments were performed utilizing the PSA scenario. The locations of problems and
PSAs were arranged such that the system was relatively balanced. The Q value of each problem was randomly
generated. The number of PSAs in the system was sufficient in each test to meet the demands.

The exact method of acceptance was performed under two strategies. In strategy 1, agents chose to accept
the task in which they were highest ranked for permission. Note that this does not necessarily mean that the
PSA greedily chooses the task for which it attributed the highest priority. Rather, it will choose the task of
the originator that most values the PSA’s assistance. For instance, if a PSA is listed as first in the permission
list, it will accept that over a task where it is listed second. In strategy 2, PSAs perform as described in the
algorithm—they choose to accept a task such that the sum of all priorities chosen is maximized. This strategy
should spread the quality of help across the problems.

The results of the experiments are shown in Figure 4.1 and shows that the two strategies produce very
similar results. However, the first strategy gives slightly better performance in this particular simulation and is
computationally less intensive in general.

The reason for this decrease in performance lies in the nature of the decision making in the system as a
result of the additional process. By decentralizing the decision-making, choices are being made based upon less
than the total amount of information in the system.

Computationally Adjustable Autonomy 47

0.985 S“Q
0.965

0.945
0.925
0.905
0.885
0.865
0.845
0825 +—+——

~ ™ O M~ O

———— Strategy 1
--@- - - Strategy 2

Quality of Help

Number of Problems

Fia. 4.1. Quality of help for two strategies

From the perspective of autonomy, the first strategy restricts the agents to a greater degree. The individual
PSAs have less freedom in mobility and choice of tasks. Priority only plays a role in the very first stage of the
process. After that, it is up to the originating PSA. The second method allows the bidding PSAs to undertake
whichever task is both best fitting to them and compliant to the greater needs of the system.

5. Conclusion. As computer controlled systems increase in complexity, automated collaboration of sub-
systems becomes more relevant and critical to system efficiency. Utilizing the concept of adjustable autonomy—
reasoning about commitments in particular—is a critical component to solving this problem. This work has
shown how reasoning about autonomy can form the basis of moment-to-moment commitment making.

We have shown an algorithm that can be utilized for dynamic decision-making that is flexible enough to
handle agents that join or leave before tasks are completed, as well as being able to handle tasks that appear
during the execution of other tasks.

We have shown how this algorithm can be implemented in a relevant and current problem—that of task
management of NASA’s Personal Satellite Assistants on board the international space station. The domain of
PSAs is a dynamic environment where multiple and possibly concurrent problems may develop, and is an area
that will benefit from the teamwork made possible by this algorithm.

Future work in this area can take many directions. For instance, we could consider subjective attributes
such as qualities of relationships and satisfaction of agents with the task assignment process. Additionally, we
can look at the application of autonomy determination in reasoning about teams [3, 16] and its effect on this
algorithm.

REFERENCES

K. S. BarBer anD C. MarTIN, Agent Autonomy: Specification, Measurement, and Dynamic Adjustment, In Proceedings of
the Autonomy Control Software Workshop, Agents '99, May 1-5, Seattle, WA., 1999, pp. 8-15.
[2] K. S. BarBeRr, A. GoteL, aAND C. MARTIN, Dynamic Adaptive Autonomy in Multi-Agent Systems, In Journal of Experimental
and Theoretical Artificial Intelligence, 12(2), Taylor and Francis, 2000, pp. 129-147.
G. BeaveErs AND H. HExMOOR, Teams of Agents, In Proceedings of the IEEE Systems, Man, and Cybernetics Conference,
IEEE, 2001.
[4] S. Brainov, anp H. HEXMOOR, Quantifying Relative Autonomy in Multiagent Interaction, In IJCAT-01 Workshop, Autonomy,
Delegation, and Control, ACM, 2001.
. S. Bramnov anp T. SanpuoLM, Power, Dependence and Stability in Multiagent Plans. In Proceedings of AAAT/TAAT
1999, AAAIL, 1999, pp. 11 16.
[6] C. CASTELFRANCHI, Guaranties for Autonomy in Cognitive Agent Architecture, In N. Jennings and M. Wooldridge, eds., Agent
Theories, Architectures, and Languages, Spinger-Verlag, 1995, pp. 56 70.
[7] C. CastELFRANCHI, Founding Agent’s Autonomy on Dependence Theory, In proceedings of ECAI’01, Berlin, 2000, pp. 353 357.
[8] G. Dorais, P. Bonasso, D. KorTENKAMP, B. PELL, AND D. SCHRECKENGHOST, Adjustable Autonomy for Human-Centered
Autonomous Systems on Mars, Presented at Mars Society Conference, ATAA, 1998.
9] G. DworkiN, The Theory and Practice of Autonomy, Cambridge University Press, 1988.
[10] H. HExmoOR, A Cognitive Model of Situated Autonomy, In Proceedings of PRICAI-2000 Workshop on Teams with Adjustable
Autonomy, Australia, 2000a.
[11] H. Hexmoor, Case Studies of Autonomy, In proceedings of FLAIRS 2000, J. Etherege and B. Manaris, eds., Orlando, FL.,
AAATI, 2000b, pp. 246-249.

=
=

48 Henry Hexmoor and Brian Mclaughlan

[12] H. Hexmoor, D. Korrenkamp, Autonomy Conirol Software, An introductory article of the special issue of Journal of
Experimental and Theoretical Artificial Intelligence, Kluwer, 2000.

[13] S. Trant, S. K. Suukra, R. K. GupTa, Online strategies for dynamic power management in systems with multiple power-
saving states. ACM Trans. Embedded Comput. Syst. 2(3), ACM, 2003, pp. 325 346.

[14] MELE, Autonomous Agents: From Self-Control to Autonomy, Oxford University Press, 1995.

[15] J. Scuneewinp, The Invention of Autonomy: A History of Modern Moral Philosophy, Cambridge Univ. Press, 1997.

[16] M. TamBe, D. PynapaTH, C. Cuauvar, A. Das, aND G. KaMiNka, Adaptive agent architectures for heterogeneous team
members, In Proceedings of the International Conference on Multi-agent Systems (ICMAS 2000), Boston, MA, 2000.

Edited by: Marcin Paprzycki, Niranjan Suri
Received: October 1, 2006
Accepted: December 10, 2006

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 8, Number 1, pp. 49-62. http://www.scpe.org © 2007 SWPS

o,..

A TOP DOWN APPROACH FOR DESCRIBING THE ACQUAINTACE ORGANISATION
OF MULTIAGENT SYSTEMS*

JOAQUIN PENAT, RAFAEL CORCHUELO? AND ANTONIO RUIZ-CORTEST

Abstract.

When the protocol of a complex Multi-Agent System (MAS) needs to be developed, the top-down approach emphasises to
start with abstract descriptions that should be refined incrementally until we achieve the detail level necessary to implement it.
Unfortunately, there exist a semantic gap in interaction protocol methodologies because most of them first, identify which tasks
has to be performed, and then use low level description such as sequences of messages to detail them.

In this paper, we propose an approach to bridge this gap proposing a set of techniques that are integrated in a methodology called
MaCMAS (Methodology for Analysing Complex Multiagent Systems). We model MAS protocols using several abstract views of
the tasks to be performed, and provide a systematic method to reach message sequences descriptions from task descriptions. These
tasks are represented by means of interactions that shall be refined systematically into lower-level interactions with the techniques
proposed in this paper (simpler interactions are easier to describe and implement using message passing.) Unfortunately, deadlocks
may appear due to protocol design mistakes or due to the refinement process that we present. Thus, we also propose an algorithm
to ensure that protocols are deadlock free.

Key words. Top-down approach, agent protocol descriptions, interaction refinements, and deadlock detection.

1. Introduction. Agent-Oriented Software Engineering (AOSE) is paving the way for a new paradigm
in the Software Engineering field. This is the reason why a large amount of research papers on this topic are
appearing in the literature. One of the main research lines in AOSE arena is devoted to developing methodologies
for modelling interaction protocols (hereafter protocols) between agents.

1.1. Motivation. When a large system is modeled, its complexity becomes a critical factor that has to be
managed properly to achieve clear, readable, reusable, and correct specifications [8, 24, 30]. In the literature,
there exist various techniques to palliate this problem. The most important are the top down and the bottom up
approachs. The top down approach, which is the focus of this paper, first tries to describe software from a high
level of abstraction, and then goes into further details until they are enough for implementing the system [32].

When the protocol of a large MAS has to be developed, it is desirable to start with an abstract description
that can be refined incrementally according to the top down approach. In our opinion, there exist two drawbacks
in most existing methodologies:

e On the one hand, most of them provide top-down approaches for modeling and developing these sys-
tems. These methodologies, general or protocol-centric, agree on using abstract messages and sequence
diagrams to describe protocols [3, 19, 37, 15]. Although these messages represent a high level view of a
protocol, which shall be refined later, the tasks that are performed are formulated as a set of messages.
This representation implies that the abstraction level falls dramatically since a task that is done by
more than two agents requires several messages to be represented. This occurs even if we consider a
task between two agents. For instance, an information request between two agents must be represented
with two messages at least (one to ask, and another to reply). This introduces a semantic gap between
tasks to be performed identified at requirements and its internal design since it is difficult to identify
the tasks represented in a sequence of messages. This representation becomes an important problem
regarding readability and manageability of large MAS.

e On the other hand, abstractions of protocols (interactions) that allow designers to encapsulate pieces of
a protocol that is executed by an arbitrary number of agents has been proved adequate in this context
[3, 4, 19, 20, 38]. Unfortunately, interactions are generally used to hide unnecessary details about some
views of the protocol. This improves readability and promotes reusability of protocol patterns, but they
are not used for bridging the existing semantic gap between tasks and its representation.

1.2. Contributions. In our proposal, we present a different approach to use interactions, which is based
on the ideas presented in [4, 26, 38]. This approach is integrated on a methodology called MaCMAS that covers
top-down and bottom-up. The top down software process is sketched in Figure 1.1. As shown, our goal is to

*This work has been partially supported by the European Commission (FEDER) and Spanish Government under CICYT project
Web-Factories (TIN2006-00472) and T1C200302737C0201
TUniversity of Seville, {joaquinp, corchu}@lsi.us.es, aruiz@us.es

49

50 Joaquin Pefia, Rafael Corchuelo and Antonio Ruiz-Cortés

‘./Z'(i_

Requirements Goal Acq. Org.

Stateznent Hlerelirchy M?del Resources
Tl v T Dep. Model
S -~ PP
_____ ~
s " Rmm, _e- N
e ’!Efff=:=:_~ AN yes
s ~~_~:-_::::_§~:\
—3 Y . ST

Determining Select Boild

feasible decom Obtain order of ’ @
p.
decomp. - Decomposed decomp. mRIs ,"Build Role\’, — O no
\

\ e Role Model / Detect
i e E -V \ "l Modell Plan ’,/ deadlocks Deadlocks?
! Pid \ - ' \ e ' / 1 LY
' L P - v N/ v ’ ! o
, E ¢ K Pl
7 rd
g‘ , ’
Available
Feasible Selected Deadlock
sequences
decompositions Decomp. Role 1_/[?‘_31?1_) dgte cted Role Mo\d\ e} Plan States
_____________ S v
B LTS Y Y > @I
Compose
Acq. Org Acq. Org.
Mo del Model

Fia. 1.1. Software process of refinements.

bridge this gap using interaction abstractions to model the tasks to be performed, and Finite State Automata
(FSA), represented using UML 2.0, to model how to sequence them. Afterwards, we refine them systematically
into simpler ones iteratively. This decreases the level of abstraction so that the interaction we obtain are simpler.
Thus, they are described internally as message sequences easily, e.g. using AUML [3].

We have used a protocol abstraction called multi-role interaction (mRI), which was first proposed in [25].
An mRI is an abstraction that encapsulates a set of messages between an arbitrary number of agent roles.
Furthermore, the refinement process we use is based on the ideas presented in [10] since the interaction we use
is similar to such used in this work. The refinement process relies on analysing the knowledge used by each role
in an mRI and using this information to transform an mRI into several simpler mRIs automatically. An mRI
is simpler when both the number of participant roles and the computation made by it decreases. The main
advantages of refining mRIs are the followings:

e First, its internal description is easier since the computation to perform in the obtained tasks are

simpler.
e Second, it is easier to implement interactions with a low number of participant roles [12, page 206]
[2, 33, 21, 35].

e Finally, mRIs are critical deadlock free regions and they are mutually exclusive. Thus, if the number
of participant roles increases, the concurrency grain decreases, what is clearly not desirable [34].

The main drawback of such refinements is that they may lead to deadlocks. In this paper, we also propose

a technique to detect if a refinement may introduce deadlocks (see Figure 1.1); it also characterises them by

means of regular expressions that help finding the refinements that are not adequate in a given context. It is

based on analysing the FSA that represents the protocol of a role model and some previous work on deadlock

detection in the context of client/server interactions [5, 14, 36]. It improves on other results in that it can be

automated because it does not require any knowledge about the implied, intuitive semantics of the interactions
as other approaches.

This paper is organised as follows: in Section 2 we present the related work about protocol modeling in MAS

and about interaction refinements; in Section 3, we summarise the methodology where this work is integrated;

in Section 4 we present the example that we use to illustrate our approach; in Section 5 we present our ideas on

A Top Down Approach for Describing the Acquaintace Organisation of Multiagent Systems 51

protocol modeling and we show the refinement techniques applicable; in Section 6 we present our approach to
the automatic deadlock detection process; Section 7, we show our main conclusions. Finally, an appendix that
shows an implementation of the case study using IP.

2. Related work. In this section we cover the related work on protocol modelling and on refinements.

2.1. Protocol Modeling. As we showed in the previous section, we think that most approaches model
protocols at low level of abstraction since they require the designer to model complex cooperations as message-
based protocols. This issue has been identified in the Gaia Methodology [38], and also in the work of Caire
et. al. [4], where the protocol description process starts with a high level view based on describing tasks as
complex communication primitives (hereafter interactions). We think that the ideas presented in both papers are
adequate for this kind of systems where interactions are more important than in object-oriented programming.

On the one hand, in the Gaia methodology, protocols are modeled using abstract textual templates. Each
template represents an interaction or task to be performed between an arbitrary number of participants. Fur-
thermore, interactions are decorated with the knowledge they process and the permissions each role has, their
purpose, their inputs and outputs, and so on.

On the other hand, in [4], the authors propose a methodology in which the first protocol view is a static
view of the interactions in a system. Each interaction is used by a set of agent roles and they are decorated with
the knowledge each role uses/supplies. Later, the internals of these interactions are described using AUML |[3].

As the methodologies cited above, we also use interactions to deal with the first stage of protocol modeling.
Furthermore, we also represent a static view of interactions and the knowledge that each role consumes and
produces in each of them. Unfortunately, both methodologies do not provide an automatic method for refining
complex interactions into smaller interactions that are closer to the implementation level. In this paper, we
elaborate on such a method.

Furthermore, in methodologies that use sequence diagrams to model protocols, it has been also identified
the need for advanced multi-role interactions that encapsulate a piece of protocol. Unfortunately, in most of
them these interactions are used to define reusable patterns of interaction or for hiding details in some complex
views. Several examples of such use of interactions can be found in the literature: For instance, AUML nested
protocols [3] or micro-protocols [19]. These approaches provide the user with a set of tools to model complex
co-operations; however, most designers use message based descriptions.

2.2. Refinements. The need for such protocol primitives has also been identified in other areas such as
distributed systems [11, 7, 23]. In this context such interactions have been studied for long, and there exist
advanced techniques to refine them (synchrony loosening refinements [10]). Unfortunately, these refinements
can lead to deadlock. Although the theory of refinements has reached a rather elaborate state in other contexts,
cf. [1], there are not many results on interaction refinements or the characterisation of their anomalies. The
main reason is that classical refinements are context-free, whereas interaction refinements are context—sensitive.
Thus, the main problem is the establishment of their monotonicity properties [10], whereby their application to
subparts of a protocol preserves the correctness of the whole protocol with respect the set of valid synchronisation
patterns it describes.

The state—of-the—art technique that focus on design time properties was presented in [12]. It is based on
designing a formal proof system (cooperating proof) that allows to prove a sufficient condition for monotonicity
that ensures that a system composed of interactions is deadlock free. It is based on analysing linked interactions,
i.e., interactions that need to be executed in sequence, to avoid deadlocks, which was previously suggested in
[9, 18]. Unfortunately, this technique is quite difficult to apply in practice because it requires in-depth knowledge
of the implied, intuitive meaning of the interactions, and no automatic proof rules were designed for showing
the satisfaction of the sufficient condition.

Our proposal can detect if a refinement may lead to a deadlock situation automatically, and also characterises
the set of traces that lead to it by means of regular expressions. It is based on FSA analysis used by many
researchers in the context of client/server deadlock detection of interaction models [5, 14, 36].

3. Engineering MultiAgent Systems with MaCMAS. MaCMAs! is a methodology for engineering
complex multiagent systems that is integrated with several research fields, i.e. autonomic computing [31],
software product lines [27, 28] and evolving systems [29].

lsee james.eii.us.es/MaCMAS/ for further details on MaCMAS

52 Joaquin Pefia, Rafael Corchuelo and Antonio Ruiz-Cortés

Focus of
this paper
Macro-Level ‘ Requirements
\ Abst. Layer 1
C AN =
op Abst. Layer 2 ecomp./
Abst. — IR Ref.
o _g Abst. Layer 3 i
C" le) !
4 b
=5 @ = ?
o = ces
a =
Ld ,<
)
= @[Abst. Layer n-1 ?
Abst. Layer n |
Micro-Level Requirements

Fia. 3.1. Process Overview

MaCMAS covers carefully the five principles to deal with complexity in software engineering where top-down
and bottom-up are of high importance [16, 17, 30]: abstraction, decomposition/refinements, composition/ab-
straction, automation and reuse.

In Figure 3.1, we show an overview of the main concepts applied in MaCMAS from the software process
point of view. As shown, models of the system are structured into a set of abstraction layers. Top models are
the most abstract while bottom models are the most refined models. MaCMAS provides also a set of vertical
and horizontal transformations. Vertical transformations are applied to split models or to compose models, and
horizontal transformations are used to refine and abstract models in order to cover bottom-up and top-down
software processes.

As shown, for covering the rest of principles, traceability between models at different abstraction layers and
reuse of models and their abstractions/refinements is also provided.

In MaCMAS, two kind of refinements are proposed. One that is base on analyzing information on require-
ment documents, concretely system goals hierarchies, to recommend the user of the CASE tool which models
can be refined and which is the best decomposition recommended. The other refinement, which is the focus of
this paper, is based on analyzing the dependencies between the elements in a model to recommend a refinement.

3.1. Models. In other to engineer MASs, MaCMAS provides a rich set of UML2.0-based models that can
be summarized in:
a) Static Acquaintance Organization View: This shows the static interaction relationships between roles
in the system and the knowledge processed by them. It comprises the following UML models:

Role Models: shows an acquaintance sub-organization as a set of roles collaborating by means of
several mRIs. As mRIs allow abstract representation of interactions, we can use these models
at whatever level of abstraction we desire. We use role models to represent autonomous and
autonomic properties of the system at the level of abstraction we need.

Parameterized Role Models : A parameterised role model permits us to represent reusable collab-
oration patterns parameterising some of their elements.

Resources dependency model: A resources dependency model provides means for documenting the
dependencies between knowledge entities and services provided by roles in the context of an mRI
and for documenting the dependencies between the knowledge of mRIs.

Relating role models model: As a result of using decomposition and composition and of instanti-
ating parameterised role models, we usually manage role models that are obtained from others.
This model show the relationships between several role models.

Ontology: shows the ontology shared by roles in a role model. It is used to add semantics to the
knowledge owned and exchanged by roles.

A Top Down Approach for Describing the Acquaintace Organisation of Multiagent Systems 53

ﬁ Analysis

* System Analyst

P Build Intial Acg Org, ()
DQD Layer Completion ()

P Reuse ()
B Traceability maintenance ()

o

Static Acquaintance Traceability Dynamic Acquaintance
Organisation Models Model Organisation Models
Relating Parameterised Resources Role Model
Role Model Role Models Role Model Dependecies Ontology Role Plan
Model
Complexlty Top- down Ss. Decomp. Comp. Reuse Open Systems
Do Bottom-up Guidelines Gmdelmes Guidelines Guidelines

Guidelines Guidelines

Fia. 3.2. Acquaintance analysis discipline

b) Behavior of Acquaintance Organization View: The behavioral aspect of an organization shows the
sequencing of mRIs in a particular role model. It is represented by two equivalent models:

Plan of a role: separately represents the plan of each role in a role model showing how the mRIs of
the role sequence. It is represented using UML 2.0 ProtocolStateMachines [22, p. 422]. It is used
to focus on a certain role, while ignoring others.

Plan of a role model: represents the order of mRlIs in a role model with a centralized description. It
is represented using UML 2.0 StateMachines [22, p. 446]. It is used to facilitate easy understanding
of the whole behavior of a sub-organization.

c) Traceability view: This model shows how models in different abstraction layers relate. It shows how
mRIs are abstracted, composed or decomposed by means of classification, aggregation, generalization
or redefinition. Notice that we usually show only the relations between interactions because they are
the focus of modeling, but all the elements that compose an mRI can also be related. Finally, since
an mRI presents a direct correlation with system goals, traceability models clearly show how a certain
requirement system goal is refined and materialized. This is main what helps us to bridge the gap
between requirements and design.

For the purpose of this paper, we only need to detail role models, role model plans, which are shown in the
following sections.

4. The Example. The example we use hereafter is a debit card system. This problem can be viewed as
one of the basic coordination patterns in the agent e-commerce world, and it involves three different agent roles
(hereafter roles): a point of sales role (PS) which interacts with the user, a customer account manager role(CA),
and a merchant account manager role (MA). When a customer uses his or her debit card, the agent playing role
PS agrees with a CA agent and merchant account agent on performing a sequence of tasks to transfer the money
from the customer account to the merchant account, which shall also be charged the costs of the transaction. If

54 Joaquin Pefia, Rafael Corchuelo and Antonio Ruiz-Cortés

wRolen
Custormer_sAccount (CA)

+balance : float

PR getBalancefout return @ flo —_ =
- Approve_szale w, zetBalancelbalance :floatT - F"e’rform_hire_putcha?t-
S \‘\
s
Goal: \ \\\V Goal: \
! P attern: Fattern: \
!
| In: COut: In: Ohut:
\ CC.balance |CAbalance | MAbalance |MAbalance
PS.price 1} PS.costs
PSoprice
5 P
wGuards -
IFS. ok
e — «Ruolexs
= Start_next_saleﬂ‘ - - wRalen Merchant _fecount (ha)
Foint_of_Sales(F5) - T = |
Goal: \ o s Transfer_moneyh" +balance : float
+ok : boolean
L FPattemn: ‘ Pt 2 oeR Bk \ setBalancelbalance : float)
) = getBalance(out return :flo?
y (e Out- +costs ; float ! aut: \
) Userproducts | PS. price
! In: Out:
/{ | F5.price CA.balance
s CAbalance [(CAbalance
,“ \ MAbalance

Y MAbalance

FPS ok

Fic. 5.1. Static interaction view of the debit—card system.

:! Start_next_sale

Approve_sale

Transfer_maney Perfarm_hire_purchase

Transter_money [PS.ok] | ,APP1Ove_sale | Farorm_hire_purchaze [IPS.0k]

Ferform_hire_purchase | APprove_sale Transfer_money
Customer Account Merchant Account Point of Sales

Fic. 5.2. Plans of the roles in the debit—card system.

the customer account cannot afford the purchase because it has not enough money, the customer account agent
then pays on hire—purchase.

5. Modeling the Protocol with MaCMAS. As we showed above, our approach starts when the re-
quirements system goals to be performed have been already obtained. Then, we model each task as an mRI as
we show in the role model in Figure 5.1.

These system goals in our example are modeled as the following mRIs: approv is used by the CA role to
inform the other parties if it can afford a purchase; transfer is used to transfer money from the CA to the
MA by means of the PS; mRI hire_p is used to buy on hire-purchase; finally, there is a two-party mRI called
next sale, which is not further detailed, whose goal is to encapsulate the operations needed to read the sum to
be transferred and the customer data from his or her debit card. For further details on the knowledge processed
by each participants and in the mRI see the Appendix.

Once the mR1Is are identified and linked with their participant roles, we represent their possible sequences by
means of FSAs (see Figure 5.2). When an mRI is executed by more than one role it must appear a transition in all
the roles that perform it. Each of these transitions represents the part of the mRIs that a role perform. Whereby,

A Top Down Approach for Describing the Acquaintace Organisation of Multiagent Systems 59
Knowledge used by transfer Knowledge used by transfer,

|

T T T T T S TN
)
. v

F////////////////////////// //W/////////////////////’I

[///// 7 ////// 2

N\

GRS, g —_
2 o i MaEMTaOROaOaOaGSG e
e ////;f;f;f;f;f;/////y%%gfw/ — ///// A e I e
Knowledge Knowledge Knowledge Knowledge Knowledge Knowledge
of PS of CA of MA of PS of CA of MA
Knowledge used by transfer,
a) Before refinement b) After refinement

Fic. 5.3. Decoupling mRI transfer.

to execute an mRI we must transit from one state to another in all the roles that participate on it. Furthermore,
with the algorithms presented in [25], which we outline in section 6, we can automatically infer a single FSA that
represents the role model protocol as a whole. This alternative representation can be used for better readability.

Finally, each mRI have to be decorated with some additional information: such as the dependencies between
they knowledge it process, a guard for each role, and so on. The knowledge dependency, as we show in the
next section, can be analysed in order to refine mRIs. Furthermore, the guard of mRIs allows each role to
decide if it want to execute the mRI or not, which has been proved adequate to deal with proactivity of agents
[7, 19, 25].

5.1. Refinements. The model we presented in previous section takes advantage of complex three—party
mRIs, which provides a high level design of the protocol. However, it should be refined in an attempt to
transform its mRIs into a set of simpler ones that are closer to message sequences description. That is to say,
describing them internally shall be easier. This is the next step in our approach.

The refinements are based on analysing the dependencies between the knowledge that roles use from others
in a particular mRI. In order to automate the refinement process the designer has to build a dependency graph
(see Figures 5.3, 5.4 and 5.5) which shall be analysed with the algorithms proposed in [18, 10]. To illustrate
how our technique works we applied it to our example.

The first refinement we can apply is decoupling [12]. It can transform certain n party mRIs into an m party
mRI (m < n) followed by an mRI with n —m + 1 participants. We can illustrate it by means of mRI transfer
in our example. Figure 5.3 shows a diagram in which we have depicted the knowledge of its roles and their
dependencies. As shown, both the MA and CA need to update their balances according to some information
in the knowledge of the PS. The idea is thus to decouple mRI transfer into two binary mRIs so that the CA
updates its balance before the MA. Thus, as we can see in Figure 5.3 mRI transfer; will executed by PS and
CA, and transfers by PS and MA (see Figure 5.7 for the new sequences of execution). We have applied this
refinement to the mRI hire p, as well.

The second refinement we can apply is participant elimination [12]. It consists of eliminating those roles
from the set of participant roles of an mRI whose knowledge is not referred to by other roles and do not refer
to the knowledge of any other role. Figure 5.4 shows a diagram in which we have depicted the knowledge of
the roles participating in mRI approv and their relationships. Obviously, role MA can be eliminated from this
mRI.

Another refinement called splitting, which cannot be apply to our example, consist in breaking an mRI into
two mRIs if the knowledge accessed by several groups of roles are disjoint as is depicted in Figure 5.5 with a
fictitious mRI.

The resulting role plans after applying all refinements are presented in Figure 5.7. Apparently, they works
well but we can discover that the refinements have introduced a deadlock situation if we take a closer look.
Consider a trace in which the following mRIs are executed: next sale,approv,transfery, and hire_p;. This
execution deadlocks because of an unfortunate interleaving in which, after approving a sale and charging the
CA, this role is ready to interact with the PS by means of transfers; however, the MA is readied then to

56 Joaquin Pefia, Rafael Corchuelo and Antonio Ruiz-Cortés

Knowledge used by aprob Knowledge used by aprob

Knowledge Knowledge Knowledge
of PS of CA of MA

Knowledge Knowledge Knowledge
of PS of CA of MA

a) Before refinement b) After refinement

Fic. 5.4. Eliminating role from approv.

Knowledge used by 1 Knowledge used by 1,

y
7 ///%/é////ﬁ
0O

/
/ /;a

G
77

7
7

7

e

Knowledge
of

Knowledge \ Knowledge/ | Knowledge
of of of

Knowledge used by I,
a) Before refinement b) After refinement

Fia. 5.5. Splitting fictitious mRI I.

execute both transfer; and hire p;. If hire_p; is executed now, it leads to a situation in which no role can
continue because PS is readying transfers and waits for the CA to ready it, the CA is readying approv and
waits for the PS to ready it, and the MA is waiting for any of them to ready transfer; or hire p;. This
situation can be avoided if we use a guard for transfer; and hire p; that ensures that when one of these mRI
is executed the guard of the others shall be evaluated as false, but unfortunately this is not possible in general.

These refinements allow us to execute several mRIs at the same time since the the knowledge they computed
before refinements is now computed separately in different mRIs. In addition, they simplify the number of
participant roles that each mRI uses, which lead us to easier implementations (the protocol to coordinate n
parties is more difficult that such for two parties) [12, page. 206][2, 33, 21, 35]. Finally, another advantage is
that the amount of knowledge to be processed in each mRI decreases thus easing their internal design.

For instance, the mRI transfer has been broken into two simpler mRIs: transfer; and transfers.
transfer; computes the balance of the CA and transfers computes the balance of the MA. Thus, simpler
computations are performed. Furthermore, the original mRI had three participant roles, and the new mRIs
have only two, whose coordination/negotiation protocol is simpler to implement. The refined role model is
presented in Figure 5.6.

6. Ensuring Deadlock Free Refinements. Our approach to detect deadlocks is based on building an
FSA and analysing its paths. Next, we present some results we need, and then we show how to construct the
FSA and how to analyse it.

A Top Down Approach for Describing the Acquaintace Organisation of Multiagent Systems

_ — = iz uards B
g e IPS ok
-

= _—T
- . " | - -
4 P erform _hire_purchase_ref 1 " i ~ Aprove_sale_ref |~
|
. 4
7 CaEk h : «Roles Goal: X
! Pattem: %— Custormer_Acoourt (0.4) ' I ‘
4 Ire Out: ; +halance l Ire Out
) cA D MA.pay_mre_purmaae(cCA.lD/] +D PSprice |PS.ok
S A
", T
o~ .
-\--l"“‘--‘k‘-‘l._a__ _\- =
«Roles —— —
q -
Poirt_of_sales(P 5
- - (P=) # Transfer_mon ey_ref_‘i\
e +0k
7 Startnext_sale Ty +price ; Goal: \l
+ooss P attern:
4 Goal ; =5
b -]
/ I I | In: _ Oout:
[PS . price | CAbalance
Oout «Guards %
N PSprice «Roles P Sk N
~ .
- Merchant_Account (W A) s
+balance
g = -
+pay_hire_purchase() “Transfer_money_ref_2 ~
e -~ < / Goal: l"
! P attern:)
/P erform_hire_purchase _ref_2 ™, t
| In: Out:
1 oal: 11 Y P S price MA balan oz
» Pattern: Synchronization / PS5 costs
" 5
T
H‘L""-'__

FiG. 5.6. Role model of the debit—card system after refinements.

Start_next_s al Transter_maney_ref 2
_next sale

4
Transfer_money_ref_2 1 /] r

_

Aprove_sale_ef

Perform_hire_purchase_ref_1 [F3.0k] Aprove_s ale_ref Transfer_meney_ref_1
Parform_hire_purchase_ref_ 2

(=]
___J

Perfarm_hire_purchase_ref 2 Perfarm_hire_purchase_ref 1

ransfer_money_ref_1 [PS.0k]

’ I

[

Point of Sales Customer Account Merchant Account

FiG. 5.7. Role plans after refinement.

As we can see in Figure 5.7, the definition of the protocol of each role is done by means of FSAs. They can
be characterised as follows:

DEFINITION 6.1 (Finite State Automaton). A finite state automaton (FSA) is a tuple of the form
(S,%,6,5°, F), where S is a set of states, ¥ is a set of mRIs (the vocabulary in FSA theory), § : S x ¥ — S is

a transition function that represents an mRI execution, s € S is an initial state, and F C S is a set of final
states.

Thus, let A; = (S;,%:,0;, 8%, F;) (i = 1,2,---,n) be the set of FSAs that represents each role in a role

model. Starting from this information we can build a new FSA C' = (S, 3, 0, so, F') that represents the protocol
as a whole, where

e S=51x--x8,
o X=UiL, %
o S(a,{s1,...,sn})={s1,...,s) it Vie[ln] - (¢« €ZiNsi=5;)V(a€X;,Nd(a,s;) =5,

58 Joaquin Pefia, Rafael Corchuelo and Antonio Ruiz-Cortés

o co={el,.... e

e F={F,....,F,}
This algorithm has been presented in [25] and builds the new FSA exploring all the feasible executions of mRI.
Their states are computed as the cartessian product of all state in FSA of roles. Then, for each new state
(composed of one state of each role) we check if an mRI may be executed (all their roles can do it from that
state), and if so, we add it to the result. The FSA we obtain in our example is shown in Figure 6.1.

6.1. Analysing the Resulting FSA. The final step consists in analysing the resulting FSA by searching
for deadlock states, i.e., states from which a final state cannot be reached.

We use a transition relation called —p to calculate these states. It is applied on tuples of the form
(C,N, X), where C denotes an FSA, N denotes the set of states to be analysed, and X denotes the set of
deadlock states found so far. We formalise — p by means of the following inference rule:

seNANs¢g X AP =pred(s,C)
(C,N,X) —p (C,N\P,XUP)

Where the predicate pred is defined as follows:
DEFINITION 6.2 (Predecessors). Let A be an FSA and s € S a state. We denote its set of predecessors by
pred(s, A) and define it as follows:

pred(s, A) =
{€S|3oeX i 0)=s}

This transition relation allows us to explore the set of states of an FSA starting at its final states and going
back to its predecessors until no new unexplored state is found. The set of unexplored states at that step is the
set of deadlock states because there is no path in the FSA that links them to a final state. Therefore, we can
define a function deadlock that maps an FSA into its set of deadlock states as follows:

deadlock(C) = Cs \ N it N C CgA

X CCs A (C,Cr,0) —'5 (C,N, X)
Here, —>!B denotes the normalisation of —p, i.e., its repeated application to a given tuple until it can
not be further applied to the result. Formally,

T—'T'&T—pTANAT T —pT"

If deadlock returns an empty set, then the refinements we have applied do not introduce any deadlocks.
Otherwise, we need to characterise the execution paths that may lead to them.
Consider that deadlock(C) = {b1,bs,...,bx}, thus, we can build a new set of FSAs

B; = (Cs, Cs,Cs,Cyo, {bz})(l =1,2,.. .,k).

Notice that these FSAs have only a final state that is a deadlock state in the original FSA. Thus, if we use the
algorithms presented in [14] for transforming an FSA into its corresponding regular expression, we can obtain
the set of regular expressions that characterise the execution paths that lead to deadlocks.

If we analyse the FSA in Figure 6.1, we can easily check that its set of deadlock states is a singleton of the
form {(3,4,7)}. Thus, if we make this the only final state, we can obtain the following regular expression that
characterises the execution paths that lead to deadlocks:

A Top Down Approach for Describing the Acquaintace Organisation of Multiagent Systems 59

next_sale

transfer,

transfer,

Fia. 6.1. Resulting FSA.

(next_sale | approv - transfi-
‘transfa | approv - hire _py - hire _ps)* -
-approv - transfy - hire_py

Thus, when a set of refinements are applied we can use the technique presented above to search for deadlocks,
and if they appear, we characterise it by the deadlock regular expression. Then, we can use this characterization
to apply a different set of refinements and repeat this process until getting a deadlock free protocol. Finally,
we obtain a set of new simpler mRIs that can be described internally and implemented easier. In our example
the deadlock appears between mRI transfer and hire, and the problem can be easily solved not refining one
of them or applying another set of refinements.

7. Conclusions. The description of interaction protocols in complex MASs may be a difficult, tedious
process due to the large number of complex tasks that agents must perform coordinately. Thus, in order to
palliate this problem, we have proposed a refinement technique integrated in a methodology that is based on
an interdisciplinary technique that builds on MAS and distributed systems research results.

Our technique improves previous research in that we add some protocol views between requirements analysis
and the description of a protocol by means of message sequences; we use interactions as first class modeling
elements. Furthermore, these descriptions are easily refined to reach the needed abstraction level to be described
internally. Thus, we provide a progressive method to proceed from requirements analysis to message sequences
descriptions. Furthermore, we have provided an automatic method to detect deadlocks.

REFERENCES

[1] R. Back, A calculus of refinements for program derivations. Acta Informatica, 25(6):593 624, 1988.

[2] R. Bagrobpia, Synchronization of asynchronous processes in CSP. Transactions on Programming Languages and Systems,
11(4):585 597, Oct. 1989.

[3] B. Bauger, J. MuLLER, AND J. OpELL, Agent uml: A formalism for specifying multiagent interaction. In M. Wooldridge
and P. Ciancarini, editors, Proceedings of 22nd International Conference on Software Engineering (ISCE), LNCS, pages
91 103, Berlin, 2001. Springer-Verlag.

[4] G. CaIrg, F. LeaL, P. Cuainno, R. Evans, F. Garuo, J. Gomez, J. Pavon, P. KEARNEY, J. STARK, AND P. MASSONET,
Agent oriented analysis using MESSAGE/UML. In Proceedings of Agent-Oriented Software Engineering (AOSE’01),
pages 101-108, Montreal, Canada, May 2001.

[5] J. C. CorBETT, Evaluating deadlock detection methods for concurrent software. IEEE Transactions on Software Engineering,
22(3):161-180, March 1996.

60

[6]
[7]

[8]
[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]
23]
[24]

[25]

[26]
27]

28]

[29]
30]

31]

[32]
33]

[34]
[35]

[36]

E.
. ELrap anD N. Francez, Decomposition of distributed programs into communication-closed layers. Science of Computer

Jg o 0 zZ &

Joaquin Pefia, Rafael Corchuelo and Antonio Ruiz-Cortés

CorcHUELO, D. Ruiz, M. Toro, aAND A. DURAN, Avances en la coordinacion de objetos activos. Nowdtica, 143:34 37,
Jan. Feb. 2000.

. C. Cruz, OpenCol.aS a coordination framework for Col.aS dialects. In Proceedings of COORDINATION 2002, York,

United Kingdom, 2002.
DuksTrRA, A Discipline of Programming. Prentice-Hall, 1976.

Programmaing, 2:55-173, 1982.

Francez anp 1. FormaN, Synchrony loosening transformations for interacting processes. In J. Baeten and J. Klop,
editors, Proceedings of Concurr’91l: Theories of concurrency— Unification and extension, number 527 in LNCS, pages
27-30, Amsterdam, The Netherlands, Aug. 1991. Springer-Verlag.

. FraNCcEzZ AND 1. FOrRMAN, Interacting processes: A multiparty approach to coordinated distributed programming. Addison

Wesley, 1996.

. Francez anDp 1. R. FormaN, Interacting Processes. Addison Wesley, 1996.

A. R. Hoarge, Communicating sequential processes. In R. M. McKeag and A. M. Macnaghten, editors, On the construction
of programs an advanced course, pages 229 254. Cambridge University Press, 1980.

. E. HopcroFT AND J. D. UrLMAN, Introduction to Automata Theory, Languages, and Computation. Addison-Wesley,

Reading, Massachusetts, 1979.

. IaLEsias, M. GARrr1JO, AND J. GONzALEZ, A survey of agent-oriented methodologies. In J. Miiller, M. P. Singh, and A. S.

Rao, editors, Proceedings of the 5th International Workshop on Intelligent Agents V : Agent Theories, Architectures,
and Languages (ATAL-98), volume 1555, pages 317 330. Springer-Verlag: Heidelberg, Germany, 1999.

. JENNINGS, An agent-based approach for building complex software systems. Communications of the ACM, 44(4):35-41,

2001.

KaragrorGOs aND N. MrHANDJIEV, A design complexity evaluation framework for agent-based system engineering
methodologies. In A. Omicini, P. Petta, and J. Pitt, editors, Fourth International Workshop Engineering Societies in the
Agents World, volume 3071 of Lecture Notes in Computer Science, pages 258 274. Springer, 2004.

. Karz, I. Forman, aND W. EvangerisT, Language constructs for distributed systems. In IFIP TC2 Working Conference

on Programming Concepts and Methods, Galilea, Israel, Apr. 1990.

Koning, M.HugrT, J. WEI, anp X. Wana, Extended modeling languages for interaction protocol design. In
M. Wooldridge, P. Ciancarini, and G. Weiss, editors, Proceedings of Second Internationa Workshop on Agent-Oriented
Software Engineering (AOSE’02), LNCS, Montreal, Canada, May, 2001. Springer—Verlag.

. J. LEvesQuEg, P. R. CoHEN, anND J. H. T. NuNEs, On acting together. In Proceedings of the Eighth National Conference

on Artificial Intelligence (AAAI-90), pages 94-99, Boston, MA, 1990.

. NaTarajan, A distributed synchronisation scheme for communicating processes. The Computer Journal, 29(2):109-117,

Apr. 1986.
M. G. (OMG), Unified modeling language: Superstructure. version 2.0. Final adopted specification ptc/03-08-02, OMG,
August 2003. www.omg.org

. PapaporouLros aND F. ArBaB, Coordination models and languages. In Advances in Computers, volume 46. Academic

Press, 1998.
L. Parnas, On the criteria to be used in decomposing system into modules. Communications of the ACM, 15(12):1053—
1058, December 1972.

. PeENA, R. CorcHUELO, AND J. L. ArJsona, Towards Interaction Protocol Operations for Large Multi-agent Systems. In

Proceedings of the 2nd Int. Workshop on Formal Approaches to Agent-Based Systems (FAABS 2002), volume 2699 of
LNAI pages 79 91, NASA-GSFC, Greenbelt, MD, USA, 2002. Springer Verlag.

. PENA, R. CorcHUELO, AND J. .. ArRJONA, A top down approach for mas protocol descriptions. In ACM Symposium on

Applied Computing SAC’03, pages 45 49, Melbourne, Florida, USA, 2003. ACM Press.

. PENA, M. G. HINcHEY AND A. Ruiz-CorrEs, Multiagent system product lines: Challenges and benefits. Communications

of the ACM, 49(12), December 2006.

. PENA, M. G. HincHEY, A. Ruiz-CorTEs AND P. TrRINIDAD, Building the core architecture of a nasa multiagent system

product line. In 7th International Workshop on Agent Oriented Software Engineering 2006, page to be published,
Hakodate, Japan, May, 2006. LNCS.

. PeNA, M. G. HincHEY, M. REsinas, R. STERRITT, AND J. L. RasH, Designing and managing evolving systems using

a mas-product-line approach. Journal of Science of Computer Programming, 2006.

. Pexa, R. Levy, anD R. CorcuHUELO, Towards clarifying the importance of interactions in agent-oriented software

engineering. International Iberoamerican Journal of Al 9(25):19 28, 2005.

. PeENa, M. G. HiNcHEY, AND R. STERRITT, Towards modeling, specifying and deploying policies in autonomous and

autonomic systems using an aose methodology. In EASE ’06: Proceedings of the Third IEEE International Workshop
on Engineering of Autonomic and Autonomous Systems (EASE’06), pages 37 46, Washington, DC, USA, 2006. IEEE
Computer Society.

R. PreEssmaN, Software Engineering: a Practitioner’s Approach. MacGraw Hill, New York, N.Y., 2nd edition, 1986.

F.

SCHNEIDER, Synchronization in distributed programs. ACM Transactions on Programming Languages and Systems,
4(2):125 148, Apr. 1982.

M. SiNngHAL, Deadlock detection in distributed systems. Computer Magazine of the Computer Group News of the IEEFE,

J.

22(11):37 48, 1989.
Van DE SNeEpscHEUT, Synchronous communication between asynchronous components. Information Processing Letters,
13(3):127-130, Dec. 1981,

M. Y. Varpi anND P. WoLPER, An automata-theoretic approach to automatic program verification (preliminary report). In

Proceedings 1st Annual IEEE Symp. on Logic in Computer Science, LICS’86, Cambridge, MA, USA, 16—18 June 1986,
pages 332 344. IEEE Computer Society Press, Washington, DC, 1986.

A Top Down Approach for Describing the Acquaintace Organisation of Multiagent Systems 61

[37] M. Woob anp S. A. DeLoacH, An overview of the multiagent systems engineering methodology. In Proceedings of the
First International Workshop on Agent-Oriented Software Engineering, number 1957 in LCNS, Limerick, Ireland, 2001.
Springer-Verlag.

[38] M. WoorpripGe, N. R. Jennings, aND D. Kinny, The gaia methodology for agent-oriented analysis and design. Au-
tonomous Agents and Multi- Agent Systems, 3(3):285-312, 2000.

Appendix A. IP Code of the example. It exists several languages based on the Multi-party Interactions
(MPI) to describe systems where several processes have to coordinate [6, 10, 13]. IP [12] is worthy of special
attention since, although its implementation is relatively simple, moreover it allows to check properties thanks
its formal character. Following we will do a brief review of its statements and its more relevant characteristics
for our work, and finally we will write the source code of the debit—card system example.

An TP specification is built with a set of sequential processes that cooperates between them using multiparty
interactions. Its abstract syntax is the following:

S = Il [H]

| [~ B; & L[zi=ei] — Si]
| [, Bi & Li[Ti=e;] — Si]
| S1; 52

| skip

Each processes will be able to participate in several interactions, but only one at the same time. The
statement of interaction has the form I[Zi=e| where I is the name of the interaction and Zi=e is a sequence
of parallel assignments in where we can consult the state of the rest of participants in the interaction, usually
referred as communication code. Each Interaction has a set of fixed participants in the set of processes of the
system, so that it can be executed only when not any is executing other interaction and all of them are in a
point of the specification where the questioned interaction can be executed.

TRANSFERS :: |[PST() || CustomerAccount() || MerchantAccount()],
where
PST() :: s: sale := null, ok : boolean;
*[v # null & approv| ok :— (cc.balance > s.price)] —
[ok & transfer[v :— null] — skip

I
—ok & hire p||] — skip]

1
v — null & next_sale|...] — skip],
CustomerAccount() :: cc: account;
*[approv[] —
[transfer|[cc.balance := cc.balance - s.price] — skip
[]
hire p[cc.hire purchase(ma.ID)] — skip] |,
MerchantAccount() :: ma: account;
*[approv[] —
[transfer| ma.balance :— ma.balance + s.price - v.m_ costs | — skip

[]

hire p[ma.balance := ma.balance - s.m_ costs] — skip |
|
Fia. 7.1. IP specification of the debit card system.
For example, if we analyze the interaction transfer in the IP code of the example in the figure 7.1, we can
notice it has in its participants? with the PST, with the CustomerAccount and with the MerchantAccount. This

interaction will not be executed until all its participants will be in an adequate point of the specification and

2To determine the participants of an interaction we only have to see in which processes appears in the specification

62 Joaquin Pefia, Rafael Corchuelo and Antonio Ruiz-Cortés

TRANSFERS :: [PST() || CustomerAccount() || MerchantAccount()], where
PST() :: v: sale :— null; ok : boolean;
*[v # null & approv| ok := (cc.balance > s.price)|] —
[ok & transferi|] — transfers|v := null]
l
-0k & hire pof] — skip
|
l

v = null & next_sale|...] — skip |,
CustomerAccount() :: cc: account;
*[approv]] —
[transferi|cc.balance :— cc.balance - s.price] — skip
l
hire pi[cc.hire_purchase(ma.ID] — skip | |,
MerchantAccount() :: ma: account;
ol =
[transfers| ma.balance :— ma.balance + s.price - s.m_ costs| — skip

l

hire pj[ma.balance := ma.balance - s.m_costs| — hire_ps| |

]

Fia. 7.2. IP specification of the example after applying the refinements.

when this will happen, its participant will execute its communication code. For example, the PST will calculate
the value of variable ok using the balance of the CustomerAccount and the amount to transfer.

IP also has statements to write non-deterministic choice with guards [[|’.;G; — S;] and loops with nonde-
terministic choice with guards [[]’;G; — S;]. The guards are of the form B&a[z=e|, where B is a boolean
condition involving the local state of a process, and the rest is an usual interaction statement. The behaviour of
these statements is very simple: The non-deterministic choice checks all the boolean conditions and wait then for
the interactions whose boolean condition is true to have all its participants; if no one could do so the statement
will not have any effect. In loops the behaviour is similar, only that it will repeat the non-deterministic choice

until all the boolean conditions are false.

Furthermore, in IP we can make the statements above to execute sequence (S7;S2), and we can use the

null statement that is represented as skip.

Finally, the code resultant after applying all the refinements described above is shown in Figure 7.2.

Edited by: Marcin Paprzycki, Niranjan Suri
Received: October 1, 2006
Accepted: December 10, 2006

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 8, Number 1, pp. 63-77. http://www.scpe.org © 2007 SWPS

o,..

OBSERVATION-BASED PROACTIVE COMMUNICATION IN MULTI-AGENT
TEAMWORK

YU ZHANG*

Abstract. Multi-agent teamwork is governed by the same principles that underlie human cooperation. This paper describes
how to give agents the same cooperative capabilities, observability and proactivity, that humans use. We show how agents can
use observation of the environment and of teammates’ actions to estimate the teammates’ beliefs without generating unnecessary
messages; we also show how agents can anticipate information needs among the team members and proactively communicate
the information, reducing the total volume of communication. Finally, we present several experiments that validate the system
developed, explore the effectiveness of different aspects of observability and introduce the scalability of the use of observability with
respect to the number of agents in a system.

Key words. Multi-agent systems, teamwork, agent communication, observability

1. Introduction. Recently, the focus of much research on multi-agent systems (MAS) has shifted from
strong agency [26] to teamwork, which is a cooperative effort by a team of agents to achieve a common or
shared goal [23]. Research on multi-agent teamwork builds on findings about effective human team behaviors
and incorporates them into intelligent agent technologies. For example, the shared mental model, one of the
major aspects of the psychological underpinnings of teamwork, has been adopted widely as a conceptual basis of
multi-agent teamwork. Based on the shared mental model, an effective team often can anticipate the information
needs of teammates and offer pertinent information proactively [18, 22]. Consequently, supporting proactive
information exchange among agents in a multi-agent teamwork setting is crucial [29]. Substantial challenges
arise in a dynamic environment because agents need to deal with changes. Although partial observability of
dynamic, multi-agent environments has gained much attention [17, 11], little work has been done to address how
to process what is observable and under which conditions; how an agent’s observability affects the individual’s
mental state and whole team performance; and how agents can communicate proactively with each other in a
partially observable environment.

In this paper, we focus on how to include represent observability in the description of a plan, and how
to include it into the basic reasoning for proactive communication. We define several different aspects of
observability (e.g., seeing a property, seeing another agent perform an action, and believing another can see a
property or action are all different), and propose an approach to the explicit treatment of an agent’s observability
that aims to achieve more effective information exchange among agents. We employ the agent’s observability
as the major means for individual agents to reason about the environment and other team members. We deal
with communication with the ‘right’” agent about the ‘right’ thing at the ‘proper’ time in the following ways:

e Reasoning about what information each agent on a team will produce, and thus, what information
each agent can offer others. This is achieved through: 1) analysis of the effects of individual actions
in the specified team plans; 2) analysis of observability specification, indicating what and under which
conditions each agent can perceive about the environment as well as the other agents.

e Reasoning about what information each agent will need in the process of plan execution. This is done
through the analysis of the preconditions of the individual actions involved in the team plans.

e Reasoning about whether an agent needs to act proactively when producing some information. The
decision is made in terms of: 1) whether or not the information is mutable according to information
classification; 2) which agent(s) needs this information; and 3) whether or not an agent who needs this
information is able to obtain the information independently according to the observation of environment
and other agents’ behaviors.

We also present several experiments that validate the system developed, explore the effectiveness of different
aspects of observability and introduce the scalability of the use of observability with respect to the number of
agents in a system.

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3 is an overview of the
system architecture, which is called CAST-O. Section 4 discusses how an agent’s observability is represented,
and how an agent’s beliefs are maintained in the course of observations. Section 5 describes observation-based

*Department of Computer Science, Trinity University, San Antonio, TX, 78216, USA.
63

64 Yu Zhang

proactive communication among agents. Section 6 is an empirical study based on a multi-agent Wumpus World.
Section 7 summarizes our work and discusses issues for further research.

2. Related Work. A single agent’s observability and reasoning have received researchers’ attentions for
some time. Perception reasoning is one of these research directions [16, 24]|. For example, “seeing is believing”
has been adopted for perception-based belief reason|2, 13]. In recent years, observability has been used widely
to understand behaviors of multi-agent systems. One study of particular interest is a logic for visibility, seeing
and knowledge (VSK), which explores relationships between what is true, visible, perceived, and known; it
also investigates a number of interaction axioms among agents, such as under which condition agent a sees
everything agent b sees or agent b knows everything agent a sees [27]. However, VSK logic does not address
two major issues regarding agent cooperation: 1) an agent uses the effects of actions in reasoning what oth-
ers are likely to know, but VSK does not provide a way to treat actions through observation; 2) VSK does
not provide agents with an effective way to utilize their observation to manage communication. Isozaki and
Katsuno propose an algorithm to reason about agents’ nested beliefs (which are one’s belief about the belief
of another), based on observatio[10]. However, they do not represent the process of observation, such as what
can be seen and under which conditions. Tambe and Kaminka use observation to monitor failed social rela-
tionships between agents [12], but they do not give details about how agents’ belief about their teammates’
mental states are updated. Viroli and Omicini devise a formal framework for observation that abstracts con-
ditions that cause agents’ interactive behavi [25]. But, they don’t say much about how the observation to
environment is processed. All of above fall into the category “passive observation”, in the sense that each
agent evaluates observability conditions at the appropriate times. Our work also belongs to passive observa-
tion. However, we aim to reduce the amount of communication by reasoning about agent observability, the
capability to observe environment and actions. We relate an agent’s observability to its mental state, and
then use observation and belief about others’ observabilities to estimate its teammates’ mental states. That
is, an agent can exploit knowledge about what it and its teammates can see to help decide when others might
or might not know some information. loerger has considered “active observation”, in which he invokes addi-
tional ‘find-out’ plans to seek values for unknown conditions knowledge of whose values would enable situation
assessment [9].

To date, control paradigms for cooperative teamwork have allowed agents to communicate about their in-
tentions, plans, and the relationships between them [23, 21]. However, this complex team cooperation behavior
requires high-frequency communication and computation time, which weakens teamwork efficiency. Moreover,
some researchers have found that communication, while a useful paradigm, is expensive relative to local com-
putation [1]; therefore techniques that reduce extraneous communication during teamwork processes are of
particular importance. On the other hand, there exist several communication-less agent cooperation techniques
such as social conventions [20], focal points [14], plan recognition [8], decision-theoretic modeling [15, 28], and
game-theoretic recursive modeling [5]. In general, these techniques emphasize inferring others’ actions implic-
itly or explicitly, based on established norms for behavior or on knowledge about the preferences or interests
of others. However, strategies such as social conventions or focal points totally eliminate communication and
use convention rules to guide agents’ actions, strategies such as plan recognition or decision-theoretic nor-
mally have high computational complexity in dealing with uncertainty which weakens teamwork efficiency, and
game-theoretic recursive modeling is primarily suitable for two-member teams. Our approach to proactive com-
munication is different in that agents are capable of predicting team-related information (by analyzing team
plans) and distributing such information only when it is necessary. The communication need is reduced, by
using belief of what agents can observe, and hence don’t have to be told.

3. The CAST-O Architecture. The CAST-O architecture is an extension of CAST (Collaborative
Agents for Simulating Teamwork) [29]. There are three aspects to the extension: 1) representation of agent
observability about the environments and other agents’ actions; 2) belief-maintenance in terms of observation;
3) observation-based proactive communication among agents.

An agent team is composed of a set of agents. The team members share the team knowledge that is
represented in MALLET (Multi-Agent Logic Language for Encoding Teamwork), which provides descriptors
for encoding knowledge about teamwork processes (i. e. individual/team plans and operations), as well as
specifications of team structures (e.g., team members and roles) [30]. Each agent has an individual knowledge
base (KB) to specify its beliefs about the environment and beliefs about teammates’ mental states. The
environment simulation provides an interface through which the agents can interact with the environment. In

Observation-Based Proactive Communication in Multi-Agent Teamwork 65

the process of plan execution, individual agents can observe the environment and their teammates’ behaviors,
infer the teammates’ mental states, communicate with each other, and perform actions.

Plans are at the center of activity. They describe how individuals or teams can go about achieving various
goals. Plans are classified into individual plans and team plans. Each individual plan has a process consisting
of a set of operations, each of which is either a primitive operator, or a composite operation (e.g., a sub-plan).
Team plans are similar to individual plans, but they allow multiple agents or agent variables to be assigned to
carry out operations or plans (some of the requiring a team). A DO statement is used to assign one or several
agents to carry out specific operators or sub-plans. The following is an example team plan for the multi-agent
version of Wumpus World (refer to section 6 for more details):

(tplan killwumpus ()

(process
(par
(seq
(agent-bind 7ca (constraint (play-role 7ca carrier)))
(D0 7ca (findwumpus ?w))) // carrier is assigned
(seq
(agent-bind 7fi (constraint ((play-role ?7fi fighter)
(closest-to-wumpus 7fi 7w))))
(DO ?fi (movetowumpus 7w)) // fighter who is closest to
// wumpus is assigned
(DO ?fi (shootwumpus ?7w)))))) // shootwumpus is an operator
where findwumpus and movewumpus are individual plans, and shootwumpus is an individual operator specified
as follows:

Generally, operators are defined by their preconditions and effects, which are logical conjunctions. An
individual action is the execution of an instantiated operator in a DO statement. It is represented as:

<action> ::= (DO <doer> (<operator—name> <args>))

where <doer> is the agent assigned to the action and <operator-name> and <args> are correspondent to the
name and arguments of the operator. Sample individual actions in the extended Wumpus World are as follows:
(DO 7fi (shootwumpus 7w))
(DO ?ca (pickupgold 7g))

We assume that the precondition of the action must be believed by <doer> before the action can be
performed and the effect must be believed after the action is performed. Since actions are domain-dependent,
when agents perform the actions, they send a signal to the environment simulation. Then the actions are visible
to any team member whose observability (see section 4) permits it at the time the actions are performed.

An essential feature that differentiates an agent team from a set of individual agents is that a team of agents
may perform a joint action, which is the union of simultaneous individual actions performed by individuals
sharing certain specific mental properties [4]. MALLET provides a descriptor joint-do for agents performing
the joint action, and specifies three different joint types: AND, OR or XOR [29]. For example, we may define
following joint action in the extended Wumpus World:

(joint-do AND
(DO ?ca (move ?x 7y))
(DO 7fi (move 7x 7y)))
which means agents 7ca and ?7fi move simultaneously.

Given a team plan expressed in MALLET, we can explicitly deduce information needs and production from
the pre-conds and effects of operators and implicitly deduce others from the plan structure, e.g., joint-do requires
coordination regarding starting time, or operations in parallel need coordination in terms of the starting and
ending of the par set of branches. The latter, for example, might be determinable from observations, avoiding
the need for explicit communication. In addition, if multiple agents are capable of performing the same tasks,
the MALLET team plan is likely to contain agent selection criteria (e.g., the closest agent to a wumpus should
kill it). Again, this falls in the realm of implicitly determinable coordination communication. While this paper
has focused on the only the explicitly determinable part of this (i. e., things derived from pre-conds and effects
conditions), the basic structure of the use of observation can be applied to more general situations.

Another important setting for agents’ teamwork is environment. The environment is composed of objects.
Each object has some properties. A property is represented as follows:

66 Yu Zhang

<property> ::= (<property-name> <object> <args>)

<object> ::= <agent>|<non-agent>
where <object> could be either agent or non-agent, and <args> is a list of arguments describing the property.
Sample properties in the extended Wumpus World are as follows:

(location fi ?7x 7y),

(dead w1l 7state).

The usefulness of properties derives from treating them as queries to the environment, using variables for
any or all of the arguments. Unification will provide values, if any, for the free variables that make the query
true; if there are no such values, then the value for the query will be false.

During a teamwork process, the environment simulation provides an interface through which the agents can
observe the environment and their teammates’ actions. The environment evolves from the state at one time to
the state at the next time with an action possibly being taken during the time interval, saving only the current
environment states. Each agent maintains knowledge of the environment in its KB, updating this knowledge as
needed to carry out its plan or provide information to team members.

4. Agent Observability. To express agent observability, we define a query function CanSee (<observer>
<observable> <cond>), where <observer> specifies the agent doing the observing, <observable> identi-
fies what is to be observed, and <cond> specifies the conditions under which the <observer> can see the
<observable>. When needed, the query is submitted to the knowledge base for evaluation after first forming
the conjunction of the arguments. As <observablea> and <cond> may be predicates, missing values for vari-
ables will be supplied via unification if there are any such values that allow the <cond> to be satisfied, or else
return FALSE. This allows an agent, for example, to determine the location (through variables) of a target if
the conditions are satisfied (e.g., the target is within range). Time is implicit in this query and is taken to be the
time of the current step. Note that strong constraints weaken agents’ observability; weak constraints strengthen
agents observability. The strongest constraint is FALSE, which means that the agent can see nothing. The
weakest constraint is TRUE, which means that the agent can see everything.

Successful teamwork requires interdependency among the agents [6]. This suggests that an agent should
know at least some things about what other team members can see. However, an agent may not know for
sure that another agent can see something. Rather, an agent may only believe, based on its current beliefs,
that another agent can see something. We then use BelieveCanSee(<believer> <observer> <observable>
<cond>) to mean that one agent believes another agent can see something under certain condition.

We also make the assumption of “seeing is believing”. While philosophers may entertain doubts because of
the possibility of illusion, common sense indicates that, other things being equal, one should believe what one
sees [13, 2|. Thus, we assume that an agent believes an observed property persists until it believes the property
has been negated later.

In the following subsections, we describe the syntax and semantics of observability in more detail.

4.1. The Syntax of Observability. The syntax we use for observability is given in Table 4.1. For
example, the observability specification for a carrier in the extended Wumpus World is shown below, where ca,
rca, fi, rfi represent the carrier, carrier’s detection radius, fighter and fighter’s detection radius, respectively.

(CanSee ca (location 7o 7x 7y)
(location ca ?xc ?yc) (location 7o ?x 7y)
(inradius ?7x 7y 7xc 7yc rca)
) // The carrier can see the location property of an object.

(CanSee ca (DO 7fi (shootwumpus 7w))
(play-role fighter 7fi) (location ca ?xc 7yc) (location 7fi ?x 7y)
(adjacent ?xc 7yc ?x ?y)

) // The carrier can see the shootwumpus action of a fighter.

(BelieveCanSee ca fi (location 7o 7x 7y)
(location fi ?7xi ?yi) (location 7o ?x 7y)
(inradius ?7x 7y 7xi ?yi rfi)

) // The carrier believes the fighter is able to see the
// location property of an object.

Observation-Based Proactive Communication in Multi-Agent Teamwork 67

TaBLE 4.1
The Syntaz of Observability

1: < observability > :— (CanSee < viewing >)x*

2: (BelieveCanSee < believer >< viewing >)x*

3: < viewing > := < observer >< observable >< cond >

4: < believer > = < agent >

5: < observer > i < agent >

6: < observable > := < property > | < action >

7 < property > := (< property — name >< object >< args >)

8 < action > = (DO < doer > (< operator — name >< args >))
9: < object > = < agent > | < non — agent >

10: < doer > i < agent >

(BelieveCanSee ca fi (DO 7f (shootwumpus ?w))
(play-role fighter 7f) (7f fi) (location ca 7xc ?yc)
(location fi 7xi ?yi) (location ?f ?7x 7y)
(inradius 7xi ?yi 7xc ?yc rca) (inradius 7x 7y ?xc 7yc rca)
(adjacent 7x 7y 7xi 7yi)

) // The carrier believes the fighter is able to see the
// shootwumpus action of another fighter.

An agent has two kinds of knowledge, shared team knowledge, encoded in MALLET, and individual knowl-
edge, contained in its knowledge base. The syntax of observability can be used either, as rules in an agent’s
knowledge base [31], or as capability incorporated into MALLET. In this paper, we encode observability as rules
in agents’ knowledge bases.

4.2. The Semantics of Observability. To give operational semantics to observability, we need to clarify
the relationships of: 1) what an agent can see, what it actually sees, and what it believes from its seeing; 2)
what an agent believes another agent can see, what it believes another agent actually sees, and what it believes
another agent believes from its seeing.

In order to properly discuss the semantics, we need to introduce a notion of time, as preconditions and
effects refer to different points in time. For purposes of exposition, we will simply assume that time is a discrete
and indexed in order by the natural numbers, and use the indices to reference points in time. Since we are
dealing with multiple agents, multiple actions may occur at the same time instant. We do not try to elaborate
further on time in this paper, as there are a number of useful different ways of dealing with issues such as the
synchronization among team members performing actions, and they are not central to the point of the paper.

Let Seei(a, 1) express that agent a observes ¢ at time ¢. There are two cases to consider, first where v is
a property, and secondly, where 1) is an action. When ¢ is a property, seeing 1) means determining the truth
value of ¢, with unification of any free variables in 1. If v is an action, seeing ¥ means that the agent believes
the doer believed the precondition of ¥ immediately before the action occurred and the doer believes the effect
of ¢ immediately after performing the action. We use the meta-predicate Hold;(c) to mean ¢ holds in the world
(environment simulation) at time ¢. We make the assumption below:

Ya, v, c,t, CanSee(a,), c) N Hold:(c) — Sees(a, 1)) (4.1)

which means that if the condition ¢ holds at time ¢ and agent a has the capability to observe 1) under condition
¢, then agent a actually does determine the truth-value of ¢ at time ¢.

Next, we consider the relation between seeing something and believing it. Belief is denoted by the modal
operator BEL and for its semantics we adopt the axioms K, D, 4, 5 in modal logic. The assumption of “seeing
is believing” is again stated separately for properties and actions. In the case of properties, it is formalized in
the axiom below:

Ya, p,t, Seei(a, p) — [Holdi(¢) — BELi(a,)] A [mHoldi(p) — BEL(a, ~p)] (4.2)

which says that for any property ¢ seen by agent a, if ¢ holds, agent a believes ; if ¢ does not hold, agent a
believes not ¢ (—¢).

68 Yu Zhang

Agent a’s belief is more complex when an action, ¢, is observed. Let Doer(¢), Prec(¢), Ef ft(¢) denote
the doer, the precondition, and the effect of action ¢. When agent a sees action ¢ performed by some agent,
agent a believes that the agent believed the precondition and believes the effect. This process is expressed by
the following axiom:

Ya, o, t, Seei(a,d) — BEL(a, BEL;_1(Doer(¢), Prec())) A
BELq(a, BEL,(Doer(), Ef f:(6))) (4.3)

From the belief update perspective in our current implementation where beliefs are assumed persistent, for any
p € Prec(¢), agent a believes that Doer(¢) still believes p at time ¢ (i. e. BELy(a, BEL(Doer(¢),p)))) unless
—p is contained in Efft(¢). This is similar for BelieveCanSee.

An agent’s belief about what another agent sees is based on the following axiom:

Va,b,v, e, t,t', BelieveCanSee(a,b,1,c) N BELi(a, BELy (b, c)) —
BEL¢(a, Seey (b, 1)) (4.4)

which means that if agent a believes that agent b is able to observe 1) under condition ¢, and agent a believes ¢
at time ¢’ then agent a believes at time ¢ that agent b saw (#'<t), sees (+'—t), or will see (#*>¢, which requires
some prediction capability for agent a) 1 at time ¢’ In our approach, each agent focuses on the reasoning about
current observability, not in the past or in the future. Therefore, the axiom above can be simplified as follows:

Ya,b,,c, t, BelieveCanSee(a, b, 1, c) N BELt(a,c) — BEL(a, See:(b, 1)) (4.5)

Note that agent a evaluates condition ¢ according to its own beliefs.

Combining this with the previous assumption that “seeing is believing”. we extend this to belief. We have
two separate cases for properties and actions. When agent a believes agent b sees a property ¢, a believes that
b believes ¢:

Ya,b, p,t, BEL(a, See(b,)) — BEL(a, BEL(b, p)) (4.6)

When agent a believes agent b sees an action ¢, a believes that b believes the doer believed the precondition
at the previous time step and believes the effect at the current time step. This consequence is expressed by the
following:

Ya,b, ¢, t, BELi(a, Seei(b, ¢)) —
BEL(a, BEL(b, BEL,_1(Doer(¢), Prec(¢)))) A
BELy(a, BEL:(b, BEL:(Doer(6), Ef f1(6))) (47)

4.3. Belief Maintenance. From the semantics, agents’ observability is closely tied to their beliefs about
the environment and other agents. Agents must update these beliefs when they perform, or reason about others’,
observation.

4.3.1. Maintaining Belief About Self’s Observability. The axiom of “seeing is believing” bridges the
gap between what an agent sees and what it believes. An agent maintains its beliefs in two aspects: 1) for an
observed property, the agent believes the property; 2) for an observed action, the agent believes that the doer
believed the precondition before the action and the doer believes the effect after the action. The algorithm for
updating what an agent has observed, according to the observability rules, is given in Figure 4.1.

This algorithm builds beliefs in the believer’s (i. e., agent self’s), knowledge base by checking the following:
Observing a property

e When evaluating observability (CanSee self (<prop-name> <object> <args>) <cond>), self queries
<cond> to environment KB. The query returns a list of substitutions of variables, or null if <cond> are
not satisfied. When the returned tuple is not null, if the property holds in the environment, self updates
its knowledge base with belief (<prop-name> <object> <args>) for each variable bindings, otherwise,
self updates its knowledge base with belief (not (<prop-name> <object> <args>)) for each variable
bindings.

Observation-Based Proactive Communication in Multi-Agent Teamwork 69

e Observing an action
In the case of (CanSee self (<action-name> Agd(# self) <args>) <cond>), the query <cond> is
made with respect to environment KB as well. If the result of query is not null, self updates its beliefs
by that self believes that agent Agd knew the precondition, and that Agd infers the effect. To handle
the temporal issue correctly, self updates Agd’s belief about the precondition first and then Agd’s belief
about the effect. These beliefs are useful in communication. For example, if agent a needs information
I and believes agent b believes I, a may ask b for L.

updateSelfObs(self, KBself)

/* Let self be the agent invoking the algorithms. We denote the knowledge base
for agent a by KBy, for the environment by K Beny.*/

1: for each rule in K By of the form (CanSee self (prop object args) cond)

2: if cond is true in K Bep, for some bindings of variables

3: if (prop object args) is true in K Beno for some bindings of variables
4: update(K Bseif, (prop object args))

5: for each such binding of values to the variables;

6: else

T update(K Bseif, (not (prop object args)))

for each such binding of values to the variables;
8: for each rule in K By of the form (CanSee self (action doer args) cond),
if cond is true in K Bey, for some binding of variables,
9: for each conjunct of precondition of action

10: update(K Bseif, (BEL doer conjunct));
11: for each conjunct of effect of action
12: update(K Bsei¢, (BEL doer conjunct));

Fic. 4.1. An Algorithm of Maintaining Self s Belief by Direct Observation

4.4. Maintaining Belief About Others’ Observabilities. Figure 4.2 shows an algorithm for updating
what an agent can determine about what other agents can see.

updateSelfBel(self, K Bcif)
1: for each rule of the form (BelieveCanSee self Ag (prop object args) cond) that
2: cond is true in K Bye¢ for some binding of arguments to agents Ag # sel f
3: for each such binding of arguments to the variables
update(K By, (BEL Ag (prop object args)));
: for each rule of the form (BelieveCanSee self Ag (action doer args) cond) that
cond is true in K Bgey for some binding of arguments to agents Ag # sel f
for each conjunct of the precondition of action
update(K Bseis, (BEL Ag (BEL doer conjunct)));
for each conjunct of the effect of action
0: update(K B, (BEL Ag (BEL doer conjunct)));

i e i

Fia. 4.2. An algorithm of maintaining belief about others observabilities

The algorithm records which agents are known to be able to see what, and updates what an agent believes,
according to the precondition and effect of the actions it observes other agents performing. For the agent
to determine whether a piece of information is needed by others, it simulates the inference process of others’
observability to determine which is known by others.

e Observing a property
In the case of (BelieveCanSee self Ag(# self) <property> <cond>), a query <cond> is made with
respect to K By ¢. If the condition is satisfied, self believes Ag can see the property. However, self may
or may not have knowledge of <property>. For example, a carrier may believe a fighter can smell a
wumpus if the fighter is adjacent to the wumpus, but the carrier does not itself smell the wumpus.

70 Yu Zhang

e Observing an action In the case of (BelieveCanSee self Ag(#self) (<action-name> doer (#self)
<args>) <cond>), <cond> is evaluated with respect to K By ¢. Self adds tuples to K B¢, indicating
that Ag believes that doer believed the preconditions of the action, and believes the effects of the action®.

4.5. Execution Model. At each time step, every agent, denoted by self, has a function cycle: (possibly)
observe, receive information from others, belief coherence, (possibly) send information to others, and act. If self
needs an information item or produces an item needed by others, it will observe the world and other agents. It
then checks messages and adjusts its beliefs for what it sees and what it is told. Self keeps track of the other
agents’ mental states by reasoning about what they see from observation, in order to decide when to assist the
others with the needed information proactively. Finally, self acts cooperatively with teammates and enters the
next time step.

An algorithm for overall belief maintenance along with the function cycle is shown in Figure 4.3. The
algorithm begins with updateWorld by self’s last action. We will not elaborate on how updateWorld works
which is beyond the focus of this paper. Basically, the environment simulation updates the environment KB
after receiving any action from the agent. Because the agent can infer the effect of its own action, the algorithm
saves the effect as a new belief. UpdateSelfObs evaluates observability rules with information obtained from
K Beny and updates K Bge p with the results of the observation. UpdateSelfBel updates self’s beliefs about what
others’ beliefs by observing environment and actions.

updateKB(self, action, K Bseiy)
/* The algorithm is executed independently by each agent, denoted self below,
after the completion of each step in the plan in which the agent is involved.*/
updateWorld(action, self); //notify the environment to update K Beny
. for each conjunct in the effect of action
update(K Bsei ¢, conjunct);
if self produces/needs information 7
updateSelfObs(self, K Bseir); //update K Bses by observability
updateSeflBel(self, K Bscif); //update K Bsei¢ by beliefs about
//others observabilities
. for each coming information /
update(KBself, I); //update K Bsey by communication

DU WY

0o =~

Fic. 4.3. An overall belief-maintenance algorithm

The function update manages history and is responsible for coherence and persistence of belief in an agent’s
KB. The agent’s beliefs about the world are saved as primitive predicates as they were expressed originally
in the world. Such beliefs are generated from three sources: (1) belief from observation, i. e., a property self
observes; (2) belief from inference, i. e., conjuncts inferred from the effect of the action self performs; (3) belief
from communication, i. e., messages other agents send to self by communication. How does communication
affect the agent’s mental state? Van Linder et al. propose that the communication can also be translated to a
belief saved in the mental state in the same way as observation is [13]. In any situation in which belief is required
from multiple sources, conflicts may arise, such as self simultaneously sees =t and hears 1. A strategy is needed
that prescribes how to maintain the coherence of the knowledge base of an agent in the case of conflicts among
incoming information from different sources. Castelfranchi proposes that such a strategy should prescribe that
more credible information should always be favored over less credible information [3]. To define a strategy
complying with this idea, we propose that each source is associated with a credit and the credit decreases in
this order: source from observation, source from inference, and source from communication. At certain time
point, when an agent gets conflict information from different sources, it always believes what it sees.

Since the number of time steps could be infinite, an agent keeps only current beliefs in its mental state,
except that the most recent one is kept, even if it is not generated currently. That an agent does not directly
observe or infer some predicates from current observation does not mean it does not believe them. The agent
has memory of them from before. Memory is useful in proactive communication; thus, if a piece of information
is infrequently changed, at the time when agent a realizes that agent b needs the information, even if agent a
does not have the information, agent a can tell agent b the information in its memory.

INote, however, that self does not necessarily know what there values are. This is useful, however, in case self needs to make an
activeAsk.

Observation-Based Proactive Communication in Multi-Agent Teamwork 71

5. Proactive Communication. The purpose of proactive communication is to reduce communication
overhead and to improve the efficiency or performance of a team. In our approach, proactive communication
is based on two protocols named proactiveTell and activeAsk. These protocols are used by each agent to
generate inter-agent communications when information exchange is desirable. Proactive communication answers
the following questions pertinent to agent proactivity during teamwork. First, when does an agent send the
information to its teammates if it has a new piece of information (either from performing an action or observing)?
A simple solution could be sending the information when requested. That is, the agent would only send the
information after it has received a request from another agent. Our approach is that the agent observes its
teammates, and commits to proactive tell once it realizes that one of the teammates needs the information to
fulfill its role and does not have it now. Meanwhile, if the agent needs some information, it does not passively
wait for someone else to tell it; it should ask for this information actively. Second, what information is sent in
a session of information exchange? There are two kinds of information that can be communicated. One is the
information explicitly needed by an agent to complete a given plan, i. e., conjuncts in a precondition of plans
or operators that the agent is going to perform. The other is the information implicitly needed by the agent.
For example, if agent a needs predicate p and knows p can be deduced from predicate ¢, even if the providing
agent does not know p, it still can tell agent a about ¢ once it has ¢, because it knows that agent a can deduce
p from ¢. This paper, however, deals only with agents communicating information that is explicitly needed.

The proactiveTell and activeAsk protocols are designed based on following three types of knowledge:

e Information needers and providers. In order to find a list of agents who might know or need some
information, we analyze the preconditions and effects of operators and plans and generate a list of
needers and a list of providers for every piece of information. The providers are agents who might know
such information, and the needers are agents who might need to know the information.

e Relative frequency of information need vs. production. For any piece of information I, we define two
functions, fo and fy. fo(I) returns the frequency with which I changes. fx(I) returns the frequency
with which T is used by agents. We classify information into two types: static? and dynamic. If fo (1) <
fn (D), Iis considered static information; if fo(I) > fn(I), I is considered dynamic information. For
static information we use proactiveTell by providers, and for dynamic information we use activeAsked
by needers?.

e Beliefs generated after observation. Agents take advantage of these beliefs to track other team members’
mental states and use beliefs of what can be observed and inferred to reduce the volume of communi-
cation. For example, if a provider believes that a needer sees or infers information I, the provider will
not tell the needer.

An algorithm for deciding when and to whom to communicate for activeAsk and proactiveTell* is shown in
Figure 5.1.

Considering the intractability of general belief reasoning [7], our algorithm deals with beliefs nested no
more than one-layer. This is sufficient for our current study on proactive behaviors of agents, which focuses
on peer-to-peer proactive communication among agents. For activeAsk, an agent requests the information
from other agents who may know it, having determined it from the information flow. The agent selects a
provider among agents who know I and ask for I. For proactiveTell, the agent tells other agents who need L
An agent always assumes others know nothing until it can observe or reason that they do know a relevant item.
Information sensed and beliefs about others’ sensing capabilities become the basis for this reasoning. First, the
agent determines what another agent needs from the information flows. Second, the observation rules are used
to determine whether or not one agent knows that another agent can sense the needed information.

6. Empirical Study. While one would think that if one gives an agent additional capabilities, its perfor-
mance would improve, and indeed this turns out to be correct, there are several other interesting aspects of our
scheme to evaluate. For example, when there are several different capabilities, the interesting question arises
of how much improvement each capability gives and which capabilities are the most important to add in dif-
ferent situations. Moreover, while it is obvious that one should not see decreasing performance from increasing

2Here, static information includes not only the information never changed, but also the information infrequently changed but
frequently needed.

3In future work, we will address some statistical methods to calculate frequencies and hence will be able to provide more
comprehensive proactive communication protocols.

4Note that there is no need to say anything anout previous time points, as those would have been handled when they were first
entered. Furthermore, these is no need to consider =7 explicitly; if ture, it will be entered as a fact on its own.

72 Yu Zhang

activeAsk(self, I, KBse¢, T)

/* Let T be the time step when the algorithm is executed.
Independently executed by each agent (self) when it

needs the value of information 1*/

1: candidateList=null;

2: if (I'is dynamic and (I't) V (—It) is not true in K Bge s for any t<T)
3. if there exists a x>0 such that

4: ((BEL Ag I T-x) V (BEL Ag —I T-x)) is true in K Baeis

5 let xs be the smallest such value of x;

6: for each agent Ag#self

7 if (BEL Ag I T-xs) V (BEL Ag —I T-xs)) is true in K Bges
8 add Ag to candidateList;

9: randomly select Ag from candidateList;
10: ask Ag for I
11: else

12: randomly select a provider
13: ask the provider for I;

proactiveTell(K Bgers, T)

/* Independently executed by each agent (self), after it executes updateKB.*/
14: for each conjunct I for which (I, T) is true in K Bseiy and I is static

15: for each Agn needers

16: if (BEL Agn I T) is not true in K Bgef

17: tell Agn I

Fia. 5.1. Proactive Communication Protocols

capabilities, there are still interesting questions of how much performance increase can be obtained and how
one can incorporate the capabilities into the system in a computationally tractable manner. And, one there is
an interest in how the scheme scales with the number of agents involved. Our empirical study is intended to
address these questions.

To test our approach, we have extended the Wumpus World problem [19] into a multi-agent version. The
world is 20 by 20 cells and has 20 wumpuses, 8 pits, and 20 piles of gold. The goals of the team, four
agents, one carrier and three fighters, are to kill wumpuses and get the gold. The carrier is capable of find-
ing wumpuses and picking up gold. The fighters are capable of shooting wumpuses. Every agent can sense
a stench (from adjacent wumpuses), a breeze (from adjacent pits), and glitter (from the same position) of
gold. When a piece of gold is picked up, both the glitter and the gold disappear from its location. When
a wumpus is killed, agents can determine whether the wumpus is dead only by getting the message from
others, who kill wumpus or see shooting wumpus action. The environment simulation maintains object prop-
erties and actions. Agents may also have additional sensing capabilities, defined by observability rules in
their KBs.

There are two categories of information needed by the team: 1) an unknown conjunct that is part of the
precondition of a plan or an operator (e.g., “wumpus location” and “wumpus is dead”); 2) an unknown conjunct
that is part of a constraint (e.g., “fighter location”, for selecting a fighter closest to wumpus). The “wumpus
location” and “wumpus is dead” are static information and the “fighter location” is dynamic information. Agents
use proactiveTell to impart static information they just learned if they believe other agents will need it. For
example, the carrier proactiveTells the fighters the wumpus’ location. Agents use activeAsk to request dynamic
information if they need it and believe other agents have it. For example, fighters activeAsk each other about
their locations and whether a wumpus is dead.

We used two teams, Team A and Team B. Each team was allowed to operate a fixed number of 150 steps.
Except for the observability rules, conditions of both teams were exactly the same. In the absence of any
target information (wumpus or gold), all agents reasoned about the environment to determine their priority of
potential movements. If they were aware of a target location requiring action on their part (shoot wumpus or
pick up gold), they moved toward the target. In all cases, they avoided unsafe locations.

We report three experiments. The first explores how observability reduces communication load and improve
team performance in multi-agent teamwork. The second focuses on the relative contribution of each type of

Observation-Based Proactive Communication in Multi-Agent Teamwork 73

TaBLE 6.1
Team Performance and Communication Frequency in Sample Run. T1: number of wumpuses left alive, T'2: amount of gold
left unfound, T3: total number of avtiveAsks used, Tj: total number of proactiveTells used, T5: average number of activeAsks per
wumpus killed, T6: average number of proactiveTells per wumpus killed

T1 | T2 |T3 | T4 | Th T6

TeamA | 4.8 | 7.2 774 | 33.8 | 5.09 | 2.23
TeamB | 15 | 146 | 67.6 | 28.8 | 13.6 | 5.9

belief generated from observability to the successes of CAST-O as a whole. Finally, the third evaluates the
impact of observability on changing communication load with increase of team size.

Two teams are defined as follows:

e Team A: The carrier can observe objects within a radius of 5 grid cells, and each fighter can see objects
within a radius of 3 grid cells.

e Team B: None of the agents have any seeing capabilities beyond the basic capabilities described at the
beginning of the section.

We use measures of performance, which reflect the number of wumpuses killed, the amount of communication
used and the gold picked up. In order to make comparisons easier, we have chosen to have decreasing values
indicate improving performance, e.g., smaller numbers of communication messages are better. To maintain this
uniformity with some parameters of interest, we use the quantity not achieved by the team rather than the
number achieved, e.g., the number of wumpuses left alive rather than the number killed. The experiments were
performed on 5 randomly generated worlds. The results are shown in Table 1.

Table 1 shows that, as expected, Team A killed more wumpuses and found more gold than Team B. From
other experiments we have learned that the further the agents can see, the more wumpuses they kill. It is
interesting that the absolute number of communications is higher for Team A with observabilities than that of
Team B, thus 33.8 vs. 28.8 for proactiveTell and 77.4 vs. 67.6 for activeAsk. The reason for the increased number
of proactiveTells is that in Team A, the carrier, who is responsible for finding wumpuses and proactiveTelling
wumpuses’ locations to fighters, has further vision than that of the carrier in Team B. Hence the carrier in Team
A can see more wumpuses. This feature leads to more proactiveTells from the carrier to the fighters in Team
A. The number of proactiveTells can be reduced by the carrier’s beliefs about the fighters’ observability, i. e.,
if the carrier believes the fighters can see the wumpus’ location, it will not proactiveTell the fighters. However,
since the fighters’ detect range is smaller than that of the carrier, the reduction cannot offset the number of
extra proactiveTells. The reason for the increased number of activeAsks in Team A is that the more wumpuses
they find, the more likely it becomes that messages are sent among fighters to decide who is closest to the
wumpuses. Since fighters in Team A may find wumpuses by themselves, they need to ask other teammates if
the wumpus is dead, to decide whether to kill it or not. Although the number of the messages could be reduced
by factors such as allowing the fighter to see other fighters’ locations and to see other fighters killing a wumpus,
the increase cannot be totally offset because of the fighters’ short vision. Hence, it makes more sense to compare
the average number of messages per wumpus killed. In these terms, the performance of Team A, is much better
than that of Team B, thus 2.23 vs. 5.9 for proactiveTell and 5.09 vs. 13.6 for activeAsk. Hence, our algorithms
for managing the observability of agents have been effective.

The results of this experiment produced a bit of a surprise. By introducing observabilities to agents,
the amount of communication actually increased slightly. This can be explained by the fact that because
observability is a major means for an individual agent to obtain information about environment and team
members; the more information obtained by the agent, the more messages were conveyed to help others. The
proper way to interpret the results, then, is to normalize them by the performance of the team, which in this
case is the average number of communications per wumpus killed, denoted by ACPWK, in this example. From
this perspective, the amount of communication was reduced, as expected, also validating our approach.

6.1. Evaluating Different Beliefs Generated from Observability. The second experiment tested the
contribution of different aspects of observability to the successful reduction of the communication. These aspects
are belief about observed property, belief about the doer’s belief about preconditions of observed action, belief
about the doer’s belief about effects of observed action and belief about another’s belief about observed property.
For simplify, we call them beliefl, belief2, belief3 and belief4 correspondently. We test their contributions by

74 Yu Zhang

: g
1 138

; . 5.9 315
=2 1 kel
= 2 1.4
P x
e 5 10 9.36
54 352 352 352 < 7.97
[}
£ 223 E 5.39
S 2
S 2 & 91
Q [0
) g
g 3
o ‘ ‘ ‘ ‘ < 0 ‘ ‘ ‘ ‘

0 1 2 3 4 0 1 2 3 4

Combination Combination
(a) proactiveTell protocol (b) activeAsk protocol

Fic. 6.1. Average Communication Per Killed Wumpus in Different Combinations

combining them. We used Team A and Team B in this experiment and kept all conditions the same as those
of the first experiment. We used Team B, as reference to evaluate the effectiveness of different combinations of
observability with Team A. We named this test combination 0, since there is none of such four beliefs involved
in. For Team A, we tested another 4 combinations of these beliefs to show the effectiveness of each, in terms of
ACPWK. These combinations are:

e Combination 0: Team B, which involves none of beliefs.

e Combination 1: In Team A, for each agent, leave off BelieveCanSee rules and do not process belief2
and belief3 when maintaining beliefs after observation. Therefore every agent only has beliefl about
the world.

e Combination 2: Keep every condition in combination 1, except for enabling the belief2 process. This
combination tests how belief2 improves the situation.

e Combination 3: Enabling the belief3 process in combination 2. This combination tests the effect of
belief3.

e Combination 4: Add BelieveCanSee rules into combination 3. This combination tests the effect of
belief4 as well as show effectiveness of the beliefs as a whole.

Each combination is run in the five randomly generated worlds. The average results of these runs are presented
in Figure 6.1, in which one bar shows ACPWK for one combination.

First of all that, agents’ beliefl (combination 1) is a major contributor to effective communication, for both
proactiveTell and activeAsk. For proactiveTell, in (a), compared to combination 0, ACPWK significantly drops
from 5.9 to 3.52. For activeAsk, in (b), ACPWK drops from 13.8 to 11.1.

The second case, belief2 (combination 2) does not produce any further reduction and hence is not effective
for proactiveTell, but produces improvement for activeAsk. For proactiveTell, when a provider sees an action,
though it believes the doer knows the precondition and effect of the action, it does not know the precondition
and effect by itself. So for this example belief2 can be of little help in proactiveTell. While for activeAsk, belief2
reduces ACPWK from 11.1 to 9.36, because with belief2, a needer will know who has a piece of information
explicitly. Then it can activeAsk without ambiguity.

Third, for the same reason that belief2 only works for activeAsk, belief3 (combination 3) contributes little
to proactiveTell but further decreases ACPWK to 7.97 for activeAsk.

Fourth, belief4 (combination 4) has a major effect on communications that applies to both protocols. It
further drops ACPWK to 2.23 for proactiveTell and to 5.39 for activeAsk. Belief4 is particularly important for
proactiveTell. For example, if the carrier believes that the fighters see a wumpus’ location, it will not tell them.

This experiment examined the contribution of each belief deduced from observability to the overall effective-
ness of communication. The result indicates three things. First, beliefl and belief4 have a strong effect on the
efficiency of both proactiveTell and activeAsk. Therefore, CanSee/BelieveCanSee a property, the observability
from which these two beliefs generated, can be generally applied to dual parts communication involving both
Tell and Ask. Second, belief2 and belief3 have weak influence on the efficiency of proactiveTell, this suggests

Observation-Based Proactive Communication in Multi-Agent Teamwork 75

e
z 9 5 25
< 8 - | a []
[=
s 7 | | 2 a20
£ g b 22]
o 5 = E 15
=2 o >
§54 83 | |
g) gg 10
s 2 . . . 5% 4 .
g 1 5] L 4 A4
g2 o . . . Z ol . . .
1 2 3 4 5 1 2 3 4 5
Team size presented by number of needers Team size presented by number of providers
&Team A MTeam B ®Team A MTeam B

(a) needers increment (b) providers increment

Fia. 6.2. The Comparison of ProactiveTell with Different Team Size

that CanSee an action may be applied to communication which incurs more Ask than Tell, such as goal-directed
communication. Third, these beliefs work best together, because each of them provides a distinct way for agents
to get information from the environment and other team members. Furthermore, they complement each other’s
relative weaknesses, so using them together better serves the effectiveness of the communication as a whole.

6.2. Evaluating the Effect of Observability Communication Load with Increased Team size.
We designed the third experiment to show how communication load scales with increased team size. Based on
the assumption that proactiveTell brings more communication into play than activeAsk, we choose to test the
proactiveTell protocol. ActiveAsk is directed to only one provider at certain time, while the proactiveTell goes
to all needers who do not have the information. If the test results are good for proactiveTell, we can expect
that they are valid for activeAsk as well.

We used the same sensing capabilities for Teams A and Team B as in the first experiment. However, we
increased the number of team members by 1, 2 and 3, in two tests that we ran. In the first test, we increased
the number of needers, (i. e. fighters) and kept the same number of providers, (i. e. carriers). In the second
test, we did it the other way around. In each test, for each increment and each team, we ran the five randomly
generated worlds and used the average value of ACPKW produced in each world.

Figure 6.2 shows the trend of ACPKW as a function of increasing team size. In (a), Team B has an obvious
increase in ACPKW with increasing the team size. However, Team A keeps the same ACPKW. The cause can
be attributed to two factors: first, the amount of the increasing proactiveTells is held down because if the carrier
believes the fighters can see wumpus, the carrier does not perform proactiveTell; second, the more fighters there
are, the more wumpuses will be killed, which enlarges the numerator of ACPKW.

In (b), increasing the number of providers breaks the constant trend in Team A and shows an increased
ACPWK. However, comparing this increase to that of Team B, it is a moderate number. In Team B, every
provider increment means almost double the number of proactiveTells. The communication load increases
because of duplicate proactiveTells of the same information by different carriers. For example, each carrier
always provides the wumpus’ location to fighters when observing a wumpus. The carriers lack an effective
way to predict when a piece of information is produced and by whom, which is one of our main concerns
of future work. This experiment shows that the team empowered with observability has a slower growth of
ACPWK with increase of team size, which may indicate that observability will improve team scalability in some
sense.

7. Conclusion. In this paper, we have presented an approach to dealing with agent observability for
improving performance and reducing inter-agent communication. Each CAST-O agent is allowed to have some
observability to see the environment, and to watch what others are doing inside its detection range. Based on
the observation, the agent updates its knowledge base and infers what others may know at the current time.
Reasoning about what others can see allows agents to decide whether to distribute information and to whom.
We have proposed a proactive communication mechanism to confer some advantage to related team members
for realizing team interaction and cooperation proactively also. We have conducted an in-depth empirical

76 Yu Zhang

evaluation in an extended Wumpus World, comparing the relative numbers of proactiveTell, activeAsk, and
wumpuses killed for agent teams with and without observability.

A major point to the proactive communication approach with observabilities is that the underlying system
that interprets the team plans of the agents does most of the work for handling the observation, inference and
communication. This need only be designed once. It is re-used as one moves from one domain to another. It is
only the explication of the observability conditions that changes from one domain to another, and this is essen-
tially linearly proportional to the number of agents and “size” of the domain properties that are to be observed.

Though currently we are considering just the times of information production or need, the same approach can
be extended to uncertainty in observability as well. Additionally, our present proactive information algorithm
analyzes the pre-conditions and effects of operators for which each agent is responsible in the team plan. The
purpose of doing so is to determine potentially useful information flow among agents. However, this approach
is restrictive. We would like to make the recognition of needed information more dynamic. One way to solve
this problem is to recognize the plans of other agents by observing actions of the other agents, and tracking the
sequence of sub-goals on which they are working dynamically. Using this information together with the action
an agent has most recently performed, the most likely information needs of other agents can be dynamically
estimated over a finite time horizon. Then we can send other agents only unknown information that will be
needed in the near future.

Acknowledgement. This work was supported in part by DoD MURI grant F49620-00-1-326 administered
through AFOSR.

REFERENCES

[1] T. Barcu anp R. C. ARrkiN, Communication in reactive multi-agent robotic systems,, Autonomous Robots, 1 (1994),
pp. 27-53.
[2] J. BeLL aND Z. Huana, Seeing is believing, in Proceedings of Common Sense 98, 1998, pp. 391 327.
[3] C. CasTELFRANCHI, Guarantees for autonomy in cognitive agent architecture, Intelligent Agents, (1996), pp. 56-70.
[4] P. R. CouenN anp H. J. LeEvesQue, Teamwork, Nous, Special Issue on Cognitive Science and Artificial Intelligence, 25
(1991), pp. 487-512.
[5] P. J. Gmyrrasiewicz, E. H. Durree, anp D. K. Weng, A decision-theoretic approach to coordinating multi-agent
interactions., in Proceedings of 12th International Joint Conference on Artificial Intelligence, 1991.
[6] B. J. Grosz, Collaborating systems, Al Magazine, 17 (1996).
[7] J. Y. HALPERN AND Y. A. Mosgs, A guide to completeness and complezity for modal logics of knowledge and belief, Artificial
Intelligence, (1992), pp. 319-379.
[8] M. J. HuBer anp E. H. DurrEeg, Deciding when to commit to action during observation-based coordination, in Proceedings
of the 1st International Conference on Multi-agent Systems, 1995, pp. 163-170.
[9] T. R. IoerGcer anD L. He, Modeling command and control in multi-agent systems, in 8th International Command and
Control Research and Technology Symposium (ICCRTS), June 17-19 2003.
[10] H. Isozaki anp H. Karsuno, Observability-based nested belief computation for multi-agent systems and its normalization,
Intelligent Agent TV, (2000), p. LNAT 1757.
[11] G. A. Kawminka, D. V. PynapaTH, AND M. TamBE, Monitoring deployed agent teams, in Proceedings of International
Conference on Autonomous Agents, 2001.
G. A. Kaminka aND M. TamBE, Robust agent teams via socially-attentive monitoring, Journal of Artificial Intelligence
Research, 12 (2000), pp. 105 147.
[13] B. V. LinpeER, W. V. D. HoEK, AND J. MEYER, Seecing is believingdATand so hearing and jumping, Topics in Artificial
Intelligence, LNAI 992 (1995), pp. 402 413.
[14] S. K. M. FENSTER AND J. S. ROsSENSCHEIN, Coordination without communication: Ezperimental validation of focal point
techniques,, in Proceedings of the 1st International Conference on Multi-agent Systems,, 1995, pp. 102 108.
[15] M. G. M. GENESERETH AND J. RoSENCHEIN, Cooperation without communication,, tech. rep., Stanford Heuristic Program-
ming project, Computer Science Department, Stanford University,, 1984.
[16] D. Musto anp K. KoNoLiGE, Reasoning about perception, in Proceedings of the AAAI Spring Symposium on Reasoning
About Mental States, 1993, pp. 90-95.
[17] D. Pynaparu anp M. TamBe, Multiagent teamwork: Analyzing the optimality and complezity of key theories and models,
in Proceedings of the 1st Autonomous Agents and Multiagent System Conference, 2002.
[18] W. B. Rousg, J. A. CanNnoN-BowEgrs, aAND E. Savas, The role of mental models in team performance in complex systems,
IEEE Transactions on Systems, Man, Cybernetics, 22 (1992), pp. 1296 1308.
[19] S. RusserL anp P. Norvia, Artificial Intelligence: A Modern Approach, NJ: Prentice Hall, 2002.
[20] Y. SHoHAM AND M. TENNENHOLTZ, On the synthesis of useful social laws for artificial agents societies (preliminary report),
in Proceedings of the 9th National Conference on Artificial Intelligence, 1992.
[21] F. StoneE AND M. VELOSO, Task decomposition, dynamic role assignment, and low-bandwidth communication for real-time
strategic teamwork, Artificial Tntelligence, 110 (1999), pp. 241-273.
[22] K. P. Sycara anp M. C. Lewis, Forming shared mental models, in Proceedings of 13th Annual Meeting of the Cognitive
Science Society, 1991, pp. 400-405.

[12]

23]
[24]

[25]
[26]
[27]
28]
[29]
[30]

[31]

Observation-Based Proactive Communication in Multi-Agent Teamwork 77

M. TawmBg, Towards flexible teamwork, Journal of Artificial Intelligence Research, 7 (1997), pp. 83 124.

A. D. VaL, P. M.-R. II, anp Y. SuoHAM, Qualitative reasoning about perception and belief, in Proceedings of 15th
International Joint Conference on Artificial Intelligence, 1997, pp. 508-513.

M. Virorl aND A. OmICINI, An observation approach to the semantics of agent communication languages, Applied Artificial
Intelligence, 16 (2002), pp. 775-793.

M. WooLbpriDGE AND N. R. JENNINGS, Intelligent agents: Theory and practice, The Knowledge Engneering Review, 10
(1995), pp. 115-152.

M. WooLDRIDGE AND A. Lomuscio, Multi-agent vsk logic, Proceedings of the 17th Eurapean Workshop on Logics in Al
(2000).

P. Xuan, V. LESSER, AND S. ZILBERSTEIN, Communication decisions in multi-agent cooperation: Model and experiments,
in Proceedings of the 5th international conference on autonomous agents, 2001, pp. 616 623.

J. YEN, X. Fan, anD R. A. Vourz, A theoretical framework on proactive information exchange in agent teamwork, Artificial
Intelligence Journal, 169 (2005), pp. 23 97.

J. YeNn, X. FaN, R. Wang, S. Sun, aNnD R. A. Vourz, Context-centric needs anticipation using information needs graphs,
Journal of Applied Intelligence, 24 (2006), pp. 75 89.

Y. Zuanc AND R. A. Vourz, Modeling cooperation by observation in agent team, in Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics (SMC’05), 2005, pp. 536 541.

Edited by: Marcin Paprzycki, Niranjan Suri
Received: October 1, 2006
Accepted: December 10, 2006

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 8, Number 1, pp. 79-86. http://www.scpe.org © 2007 SWPS

o,..

STABILITY, OPTIMALITY AND COMPLEXITY OF NETWORK GAMES WITH PRICING
AND PLAYER DROPOUTS

ANDREW LOMONOSOV* AND MEERA SITHARAMT

Abstract. We study basic properties of a class of noncooperative games whose players are selfish, distributed users of a network
and the game’s broad objective is to optimize Quality of Service (QoS) provision. This class of games was previously introduced
by the authors and is a generalization of well-studied network congestion games.

The overall goal is to determine a minimal set of static game rules based on pricing that result in stable and near optimal QoS
provision.

We show the following. (i) Standard techniques for exhibiting stability or existence of Nash equilibria fail for these games
specifically, neither are the utility functions convex, nor does a generalized potential function exist. (ii) The problem of finding
whether a specific game instance in this class has a Nash equilibrium is NP-complete.

To offset the apparent instability of these games, we show positive results. (iii) For natural subclasses of these games, although
generalized potential functions do not exist, approzimate Nash equilibria do exist and are easy to compute. (iv) These games
perform well in terms of “price of stability” and “price of anarchy.” T.e., all of these approximate Nash equilibria nearly optimize a
communal (or social) welfare function, and there is atleast one Nash equilibrium that is optimal.

Finally, we give computer experiments illustrating the basic dynamics of these games which indicate that price thresholds could
speed up convergence to Nash equilibria.

Key words. Congestion games, Selfish routing, Atomic unsplittable model, Nash Equilbria, Network pricing

1. Introduction. Recently much research has been done in applying game-theoretic concepts and general
economics techniques to analysis of computer network traffic [2, 3, 5, 10, 11, 12, 16, 14, 20, 21, 24]. For a general
survey see [1]. Stability in games refers to whether the game reaches a Nash equilibrium, a state where no player
has incentive to move. Optimality is a measure of how close a Nash equilibrium is to optimizing a social or
communal welfare function, usually the sum of the individual players’ utility functions.

We consider primarily atomic games, where the number of players (network users) is finite. The case of
non-atomic games where there is an infinite number of infinitesimally small players is easier to analyze. For
similar reasons, spittable games, where network users can split their volume onto many service classes are easier
to analyze and have more orderly behavior than unsplittable games, where each user is forced to place all their
volume onto the same class.

The atomic splittable network game model has been studied [20, 12], with early results in the transportation
literature. Efficiency (or optimality) of Nash equilibria in atomic splittable network games was studied in [24]
and [28].

Here we consider primarily the unsplittable case that has also been studied for some time, for example [26].

Most, of the research deals with congestion games where payoff to a player depends only on the player’s
strategy and on the number of players choosing the same strategy. Thanks to [26] it is known that such
games always have Nash equilibrium. Two common techniques that are used to demonstrate existence of Nash
Equilbria are the following. When the player utility functions are convex, Kakutani’s fixed point theorem [25]
directly shows existence. Also when such convexity properties are not present, potential functions, [18], certain
functions that increase after every move, are used to show existence. These have a long history, for example, as
Lyapunov stability functions classically used to describe equilibria in dynamical systems.

The [23] network games have realistic features that make them somewhat different from congestion games:
in particular, players have non-convex utility functions caused by a threshold of total traffic volume in service
classes that they are willing to tolerate. In addition in the [15] games, the players are allowed to refrain from
participation, or to dropout, if their traffic quality demands are not satisfied. Hence existence of Nash equilibria
or potential functions is not guaranteed for these classes of games. However, we were able to show existence of
Nash equilibria for some of these classes of games by constructing generalized potential functions. (Generalized)
potential functions have also been used by others to study versions of congestion and other games e.g., [7, 21, 22].

For the classes of games in [15, 16] we additionally showed that the Nash equilibria established via general-
ized potential functions are easy to compute. In general, however, while potential functions guarantee existence
of Nash equilibrium, the problem of actually finding such an equilibrium remains computationally challenging.

*UGS Inc., 10824 Hope Street, Cypress, CA 90630 USA(lomonosoQugs.com).
TCISE, University of Florida, Gainesville, FT, 32611, USA(sitharam@cise.ufl.edu).

79

80 A. Lomonosov and M. Sitharam

It has been shown [7] that the problem of finding Nash Equilbrium in congestion games is PLS-Complete,
which intuitively means “as hard to compute as any object whose existence is guaranteed by a potential func-
tion”.

Considerable research has gone into the price of anarchy and price of stability of Nash equilibria [27]. These
notions describe how far or how close Nash equilbria can be to the System Optimum of a game, where system
optimum is a configuration (not necessarily a Nash equilibrium) that has greatest communal welfare.

We showed that for the classes of games with Nash equilibria in [15, 16], the communal welfare at these
equilibria was poor, i. e., they are far from the system optimum. To rectify this, we further generalized our
classes of games by introducing pricing incentives (not to be confused with the word “price” in the previous
paragraph). The effect of pricing on congestion games has also been studied in [9, 6, 8]. Our original goal was
to modify our original class of games so that the Nash equilibria would be close to system optima. However,
the priced games were shown to not have Nash equilibria, in general. We instead showed that there is trade-off
between game stability (existence of Nash Equilbria) and communal welfare achieved by such games. Le., while
the priced games did not always have Nash equilibria, the Nash equilibria, when they existed, were close to the
system optima.

This trade-off has since been formalized by examining approxzimate Nash equilibria i. e. states where no
player can improve their individual welfare by more than a certain factor, and the value of communal welfare at
such approximate equilibria [4]. For example, [2] demonstrated a tradeoff between welfare and stability when
costs functions are semiconvex.

In this paper, our overall goal is to analyze our classes of realistic network congestion games with respect to
these stability and communal welfare measures; investigate mechanisms for games to optimize these measures;
and to pose formal questions about the structure of game classes imposed by such measures.

More specifically, the original classes of games introduced in [15] were: the class Q where players were solely
motivated by their traffic quality demands and classes PQ where players were also influnced by prices imposed
on traffic. Stability of games in Q was demonstrated by means of general potential functions, and concrete
examples of instability of PQ were then given.

In this paper, we establish the NP-completeness of determining existence of Nash equilibria and for com-
puting Nash Equilbria in PQ. We further study stability and communal welfare of (a modified version of)
approximate Nash equilibria in PQ, as compared to class Q (i. e. effect of pricing on stability and social welfare
in our games).

We also briefly look at game dynamics, i. e. number of steps that it actually takes to converge to Nash
Equilbria for some of our games and conduct computer experiments to study trade-off between willingness to
pay and speed of convergence.

Section 2 presents preliminary definitions, Section 3 presents previous results on the class Q of games,
Section 4 presents the main results of this paper concerning the class PQ, and Section 5 concludes by tabulating
and comparing the results of Sections 3 and 4, followed by open problems.

2. Definitions. A game (instance) G in the base class of QoS provision network games is specified by the
game parameters G = (n,m € N,{\; € R : 1 <i <n}{bj; € R":1<i<mnl<j<m}{p:R" —
R,1 < j <m}). The best way to define G is by identifying it with its finite game configuration graph (formally
defined below) which consists of a set of feasible game configurations (vertices) and the valid or selfish game
moves (oriented edges). The game G is played by n users or players each wanting to send a traffic of A; units
through one of m network service classes and (for convenience of analysis) an overflow or Dummy Class with
index 0, referred to as DC. Each player i additionally has a volume threshold b; ; (to be described below) for
each class j. A price function p;() for each service class is a nonincreasing function that maps the total (traffic)
volume in the class to a unit price. (Unit price typically decreases with increasing congestion or total volume in
any service class). The price for using DC is 0. A feasible configuration A of G is fully specified by an allocation
Ja:{1,...,n} = {1,...,m} which describes which service class Jx (i) that the user or player i has decided to
place their chunk A; of traffic. This allocation Jj results in a total traffic volume qa ; = Zi:lgign/\JA(i):j A; in
each class 1 < j < m at the game configuration A. The set of feasible game configurations F' form the vertez
set of the game configuration graph Q. Individual utility function U;(A) is a type of step function based on i’s
volume threshold being met at the configuration A, and on the unit price incurred by the player 7 in its class
j=Ja@). Ui(A) is:

e 0if j =0 (user i is in DC)

Stability, Optimality and Complexity of Network Games 81

o —¢, for small € > 0if b; ; < ga,; (volume threshold exceeded)

e equal to A\;(1 — pjqa,;) otherwise.
It is assumed that the price functions are always appropriately normalized so that this quantity is always strictly
positive for all players i and their classes Jj () at any configuration A. A typical utility function is shown on
Figure 2.1. We say that user i is satisfied at configuration A if U;(A) # 0, and not satisfied otherwise. We define

Price Utility

Volume bi Volume

Fig. 2.1. Utility as a function of volume, volume threshold and price

a function Saty (i) = 1 if Up (i) # 0, otherwise Sata (i) = 0. A selfish move by user i at a configuration A; is a
reallocation of i’s volume \; from a departure class j; (i.e Ja, (i) = j1), to a a destination class jo resulting in
a configuration Ay (i.e, Jp, (i) = j2) that increases utility of this user, i.e, U;(A1) < U;(A2). Moves to DC by
a user whose volume threshold is exceeded are called user dropouts. Note that user dropouts qualify as selfish
moves according to our definition.

Each selfish move is an ordered pair of feasible game configurations (for example (A1,A3) € F x F), and
represents an oriented edge of the game configuration graph Q. A generalized potential function is a function
defined on configurations that increases after every player move. A game play for G is a sequence of valid
selfish moves in G, i.e (A1,A2), (A2, As), ..., (Ak—1,Ak), or a path in the game configuration graph Q. A Nash
Equilibrium or NE of a game G is a configuration A such that there is no selfish move possible for any user 1.
Nash equilibria are exactly sink vertices of a game configuration graph €2 that have no outgoing edges toward
other vertices. For our classes of games, the communal welfare function for configuration A is defined as
C(A) = %;Satp(i)A;. The feasible game configuration that has highest value of communal welfare function is
called the System Optimum or SO. Let Ay be a Nash Equilibrium that has the smallest value of communal
welfare function taken over all Nash Equilibriums, while A; be a Nash Equilibrium that has the largest value.
As defined in say [27] a price of anarchy of a game is equal to C(An)/C(A.), where A, is SO. A price of stability
is equal to C(Apr)/C(Ay).

Class of games that do not have pricing, i. e. p;(x) = 0 for all classes j and their volumes x is denoted
by Q. In such games players are motivated only by their desire to satisfy their volume thresholds. Subclass
Q¢ C Q is a class of games with no pricing where all players have equal volume. Class of games that have
only one pricing function p(z) for all classes j and this function is strictly decreasing (p(z) < p(y) < = > y) is
denoted by PQ. Subclass PQg C PQ is a class of games with single strictly decreasing price function where
all players have equal volume. Here we will give a pictorial example, Figure 2.2, of some notions introduced in
this section. A game configuration graph €2 and configurations A of a particular game G are shown. Columns
represent classes, rectangles represent users, the size of a rectangle corresponds to volume of a user, volume
thresholds of users are indicated on the right. In this example the game G in class PQ has 2 classes, 2 users A
and B that have equal volumes and the volume threshold of A is greater than that of B. Game configuration
graph Q has 4 vertices. This game G has no Nash equilibrium.

Throughout this paper we assume wlog that every player ¢ has the same volume threshold b; = b;;1 =
bio = ...bim in every class j = 1...m. We also assume that players are sorted in the increasing order of their
thresholds, i.e by < ba < ... < b,. (The former assumption could be easily generalized for all results in this
paper, the latter assumption is realistic and commonly made [23]).

In proofs when describing a game configuration A, we will specify values of game parameters n and m,
provide a list of users in the form User(Volume, Volume Threshold) (for example A(5,12) means that User A
has volume 5 and volume threshold 12), as well as specify where these users are, i.e {Ja(i)}.

82 A. Lomonosov and M. Sitharam

II I .
o0 - b by — by — D
- o by — by — by
I v E H
A - _ _
Configuration D_C O ; T R pc 1 2 DC 1 2
graph
Configuration I Configuration II Configuration III Configuration IV

Fic. 2.2. Game configuration graph and individual configurations

3. Previously known properties of Q. We list relevant properties of the class Q of games established
in [15] concerning existence, optimality and complexity of computing Nash equilibria.

THEOREM 3.1. Every game in Q has a generalized potential function and therefore every such game has a
Nash Equilbrium.

THEOREM 3.2. For any € > 0 there is a game in Q that has price of anarchy and price of stability equal
to e.

THEOREM 3.3. A Nash Equilibrium that is also a System Optimum of a game in Qg can be found in time
linear in the game parameters.

THEOREM 3.4. Any Nash Equilibrium of any game G € Q¢ has communal welfare of at least a half of that
of G’s System Optimum.

THEOREM 3.5. For any initial configuration of every game in Qg there is a sequence of selfish mowves
by players that will terminate at Nash Equilibrium after O(n?) steps. This sequence can be determined by
considering players in decreasing order of their volume thresholds and letting them make their selfish choices.

4. New results. In this section we consider stability of games in class PQ and various properties of their
Nash equilibria. Results will be compared to those of Q@ in Table 5.

We begin by establishing the following simple result about the prices of anarchy and stability of general
games in the class PQ, showing that they are not particularly well behaved.

THEOREM 4.1. For any € > 0 there is a game in PQ that has a unique Nash equilibrium, whose communal
welfare is €, while the system optimum of this game has communal welfare equal to 1. This implies that prices
of anarchy and stability of such a game are equal to €.

Proof. Consider a game with one non-DC class, and two players, A(e, 14€) and B(1,1). The only equilibrium
this game has is when player A is in class 1 and player B is in DC, as opposed to the system optimum when
their positions are reversed. 0

4.1. Approximate Nash equilibria. As we have noted in the Introduction and Figure 2.2, Nash equilib-
ria do not necessarily exist in games PQ that involve pricing. One approach to examining such games involves
a—approzimate Nash equilibria, defined in for example [4]. A configuration is said to be a—approzimate Nash
equilibrium if no player can move and decrease her cost by more than an « multiplicative factor.

Note that since pricing functions of PQ are arbitrary decreasing linear functions, we will instead use a more
appropriate notion of d—approximate Nash equilibrium instead, where ¢ is an additive factor.

Let PQg¢ be the subset of PQ where all players have volume ¢ = §. In such a game a configuration where
all players are satisfied and all classes have equal total volume would be a e—approzimate Nash equilibrium,
since no player would have an incentive to move.

When € goes to zero and number of players goes to infinity, the class PQ¢ will be denoted as PQ.,. This
class of games has similar behavior to the class of games where players are allowed to split their volume between
several classes.

THEOREM 4.2. A Nash equilibrium (§—approzimate Nash equilibrium) that is also system optimum can be
constructed for any game in PQo (PQg) in time of O(n).

Proof. A greedy algorithm solves this problem. Here is the algorithm for PQg. Let by < ... < by; place
player n in class 1, place player n — 1 in class 1 if b,_1 > 2¢, otherwise place player n — 1 in class 2; place player

Stability, Optimality and Complexity of Network Games 83

n — 2 in class 1 if b,_o > 3e etc. The resulting configuration is a system optimum and a d—approximate Nash
equilibrium. 0O

Note that while the preceeding theorem guarantees existence of an approximate Nash equilibrium for games
PQg¢, it does not promise that every sequence of selfish moves will arrive at an approximate Nash equilibrium.
Counsider the following observation, which also disproves existence of general potential functions for all games
in PQg. This is also true for games in PQ.,.

THEOREM 4.3. There is a game in PQg¢ where there is a cycle of selfish moves.

Proof. Let 6 = 1. Consider a game with 2 non-DC classes and 12 players:

A1(1,9), A5(1,9), A3(1,9), By (1,6), Bo(1,6), B5(1,6),C1(1,3),...,Cs(1,3).

Initial configuration A: players Cy, C5 and Cg are in class 2, all other players are in class 1. First players By, By
and Bs move to class 2, after that players C1,Cy, C3 move to DC, then players A;, As and Az move to class 2
and finally players C7, Cy, C5 move from DC to class 1. The resulting configuration is essentially isomorphic to
A, hence a cycle has occurred. O

Now we will examine properties of corresponding Nash equilibria.

THEOREM 4.4. Price of anarchy of games in PQq is equal to 1/2. Price of stability of such games is
equal 1.

If price of anarchy and price of stability were redefined over e-approzimate Nash equilibria instead of reqular
Nash equilibria, then it would hold that price of anarchy of games in PQg is equal to 1/2 and price of stability
of such games is equal 1.

Proof. Price of stability follows from the fact that Nash equilibria constructed in Theorem 4.2 are system
optima.

Price of anarchy can be demonstrated by following argument for games in PQg¢, and the proof for PQ, is
similar. Let A be a Nash equilibrium when all players have the same volume e. Consider the unsatisfied player
¢ that has the largest volume threshold b;. (If there are no unsatisfied players then such a Nash equilibrium
is a system optimum). Total traffic volume g; in every class j is strictly greater than b; — €, hence communal
welfare of A is greater than or equal to m(b; — €) but communal welfare of system optimum cannot be more
than 2(m(b; —e€)). O

4.2. Finding a Nash equilibrium. It was shown in [16] that the problem of finding system optimum
of a game in class Q is NP-Complete. It was also shown that the problem of finding a Nash equilibrium in
Q can be solved in O(n?) time. Similarly the problem of finding a system optimum of a game in class PQ is
NP-Complete. Now we will examine the problem of finding a Nash equilibrium (or determining that it does not
exists) for games in PQ.

THEOREM 4.5. Problem of finding Nash equilibrium for games in PQ is NP-Complete.

Proof. Consider the following version of MAXIMUM SUBSET SUM problem—given set S = {s1,...,8,}
and targets t1,to, find A C S such that ¢; < EieA s; < to. This problem can be reduced to problem of finding
a Nash equilibrium as follows. There are n + 1 players and two non-DC classes. Players 1,...,n all have same
threshold by = by = ... b, = tg, individual volumes \; = s;. Player n + 1 has volume A\, 1 = t2 and threshold
bn4+1 = t1 4+ t2. Then this game will have a Nash equilibrium if and only if the original MAXIMUM SUBSET
SUM problem had a feasible solution. O

4.3. Price thresholds. In [16] it was shown that games in class Q will terminate in O(n?) steps, given
certain assumptions on order of player moves. Here we will describe a computer experiment that examined
speed of convergence of games where there was no such ordering of player moves.

This experiment involved a following natural assumption about players behavior. In practice, there could
be a limit on how much a user is willing to pay, and this concept can be easily added to our games, resulting in
the new classes of games. This concept has a desirable effect on the dynamics of the game, as explained below.
Formally, for players ¢ we define price thresholds (in addition to the old volume thresholds) ¢; that have the
following property. If the price in a class exceeds player i’s price threshold, then player 7 is not satisfied. We
assume that b; < b; if and only if ¢; > ¢;, i.e users who demand better quality of service (smaller traffic volume
in their class) are willing to pay more.

We conjecture that in addition to being realistic, such price thresholds also tend to improve the speed of
convergence to Nash equilibria. This is because of players spending less time looping in non-terminal cycles.

84 A. Lomonosov and M. Sitharam

To test this conjecture we ran a computer program simulating a game in class PQ. Later we added pricing
thresholds to the game which has considerably improved time lapsed before convergence to Nash equilibria.
Game parameters were chosen such that Nash equilibrium would always exist. Parameters of the game were
M = number of classes, M /T = number of types of users that have the same volume and volume threshold, K =
number of users of the same type that can fit in one class without exceeding their volume threshold. Volumes
were in increments of one, i.e there are T x K users that have volume 1 and volume threshold K, T % K users
that have volume 2 and threshold 2K, ..., T * K users that have volume M /T and threshold M *« K/T. Thus
there are a total of M * K users. For example let K = 10, M = 20,7 = 5. This means that there are 20 classes,
4 types of users and at most 10 users of any one type can fit into one class. Users are

A1(1,10), ..., As0(1,10), B1(2,20), ..., Bso(2,20),C1(3,30),...,Cs(3, 30),

Dy (4,40), . .., Dso(4, 40).

Initially all users are in the dummy class (DC). A game proceeds by picking one of the M x K users at
random and this user moves either to the largest class where his threshold would not be exceeded or to the
DC. Even if this move exceeds the volume threshold of some other users in the destination class of the moving
user, these unsatisfied users cannot move until it is their turn to move and turns are determined at random.
Eventually a Nash equilibrium was always reached, where all users of the first type were in T classes, all users
of the second type were in the second set of T' classes etc. Results are shown in table 4.1. “Moves1” denotes the
total number of user moves until Nash equilibrium was reached.

Later a simulation of pricing thresholds was added to the experiment. Effectively it would prohibit a user
i that has volume threshold b; to move into any class j such that ¢; + A\; < b; — A where A is some constant.
The reason for this is that class j is too expensive for the i*" user.

TaBLE 4.1

K M T Movesl A Moves2
5 20 1 161,000 5 7,000
10 20 1 17,077,000 10 9,000
20 20 2 1,354,000 20 25,000
50 20 1 56,000 50 35,000
100 20 1 49,000 100 46,000
100 20 10 3,000 100 5,000
1000 20 10 35,000 1000 49000

5 40 1 2,360,000 5 190,000
5 50 1 8,391,000 5 940000

When A = oo this is equivalent to the old experiment without pricing thresholds. In general introduction of
small A significantly improved number of moves that was needed to reach the Nash equilibrium. See “Moves2”
in the table 4.1.

5. Conclusions, Directions. Here we summarize known results about Nash Equilibria for various sub-

classes of Q and PO.

NE/GenPotential always exists Price of anarchy | Price of stability | Complexity of finding NE
Q Yes/Yes € € O(n?)
Q¢ Yes/Yes 1/2 1 O(n)
PQ No/No € € NP-Complete
PQg Yes/No 1/2 1 O(n)
PQoo Yes/No 1/2 1 O(n)

Existence of Nash Equilbria for Q (and Qg, since Qg C Q) is shown in Theorem 3.1. Example of nonex-
istence of Nash Equilbria in PQ is demonstrated in Figure 2.2. For PQg¢ entry “Yes" refers to §—approximate
Nash Equilibria, not regular Nash Equilibria. This (and P Q. case) is shown in Theorem 4.2. The nonexistence

Stability, Optimality and Complexity of Network Games 85

of generalized potential functions for these classes is shown in Theorem 4.3. Prices of anarchy and stability of
Q are shown in Theorem 3.2, of Q¢ in Theorem 3.4, of PQ in Theorem 4.1 (assuming that Nash Equilibrium
exists), of PQg and PQ., in Theorem 4.4. Complexity of finding a Nash Equilibrium in games of class Q is
shown in Theorem 3.5, case of Q¢ is Theorem 3.3, for games in P Q this problem is NP-Complete (Theorem 4.5)
for games in PQ¢ and P Q. result follows from Theorem 4.2.

3

5.1. Open questions. The class PQ contains both games that have Nash equibria and those who do not.

What is the structure of games in class PQ where Nash equilibria or approximate Nash equilibria (additive
or multiplicative) are guaranteed to exist but they are hard to compute? For example, are there PLS-complete
games in the class PQ? For the subclasses such as PQg¢ Nash equilibria existence is easy to determine, and
(approximate) Nash equilibria are easy to compute. Formally state and prove the conjecture of Section 4.3
concerning the usage of price thresholds and speed of convergence to Nash equilibria.

REFERENCES

[1] E. Avrman, T. BouLoGne, R. EL-Azouzi, T. JIMENEZ AND L. WYNTER, A survey on networking games in telecommuni-
cations, Comput. Oper. Res., pages 286-311, 2006.

[2] E. AnsHerLevicH, A. Dasaupta, J. KLEINBERG, E. TArDOS, T. WEXLER AND T. ROUGHGARDEN, THE PRICE OF STABILITY
FOR NETWORK DEsiGN wiTH Fair CosT ALrLocaTioN, FOCS ’04: Proceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’04), pages 295-304, 2004.

[3] B. AwerBucH, Y. Azar anD A. EpstrinN, Large The price of routing unsplittable flow, STOC ’05: Proceedings of the
thirty-seventh annual ACM symposium on Theory of computing, pages 57-66, 2005.

[4] H. Cuen anDp T. ROUGHGARDEN, Network design with weighted players, ACM Symposium on parallel algorithms and
architecture, pages 29-38, 2006.

[5] R. Coccui aNp D. EsTRIN AND S. SHENKER, Pricing in Computer Networks: Motivation, IEEE/ACM Transactions on
Networking, Vol. 1, No. 6, December 1993, pages 614-627.

[6] R. CoLe, Y. Dopis aND T. ROUGHGARDEN, Pricing network edges for heterogeneous selfish users, STOC ’03: Proceedings
of the thirty-fifth annual ACM symposium on Theory of computing, pages 521 530, 2003.

[7] A. FaBrikanT, C. PapapIMITRIOU AND K. Tatwar, The complezity of pure Nash equilibria, STOC ’04: Proceedings of the

thirty-sixth annual ACM symposium on Theory of computing, pages 604 612, 2004.

[8] L. FreiscHER, K. JAIN aAND M. Maubian, Tolls for Heterogeneous Selfish Users in Multicommodity Networks and Gen-
eralized Congestion Games, FOCS ’04: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’04), pages 277-285, 2004.

[9] L. FLeiSCHER, Linear tolls suffice: new bounds and algorithms for tolls in single source networks, Theor. Comput. Sci., (348),
pages 217 225, 2005.

[10] D. Forakis, S. C. KonToaiannis, E. Koutsoupias, M. MavroNicoLas AND P. G. Spirakis, The Structure and Com-
plexity of Nash Equilibria for a Selfish Routing Game, ICALP ’02: Proceedings of the 29th International Colloquium on
Automata, Languages and Programming, pages 123-134, 2002.

[11] D. Forakis, S. Kontoaiannis, P. Spirakis, Selfish unsplittable flows, Theor. Comput. Sci., (348), pages 226 239, 2005.

[12] Y. Koriuis, A. LAazar, AND A. ORDA, Architecting noncooperative networks, IEEE Journal of Selected Areas in Communi-
cations, (13) pages 1241 1251, 1995.

[13] E. Koutsoupias anp C. H. PapapiMiTrIOU, Worst-case equilibria, Symposium on Theoretical Aspects of Computer Science,
pages 404-413, 1999.

[14] , Optimal transport strategies for best-effort traffic over priced connections, Technical report, Technion, 2000.

[15] A. Lomonosov, M. SiTHARAM AND K. PARKk, Stability vs optimality tradeoff in game theoretic mechanisms for QoS provi-
sion, SAC ’03: Proceedings of the 2003 ACM symposium on Applied computing, pages 28 32, 2003.

[16] , Network QoS games: stability vs optimality tradeoff, J. Comput. Syst. Sci., (69), pages 281-302, 2004.

[17] I. MiLcHTAlcH, Congestion games with player-specific payoff functions, Games and Economic Behavior (13), pages 111 124,
1996.

[18] D. MonNDERER AND L. SHAPLEY, Potential Games, Games and Economic Behavior (14), pages 124 143, 1996.

[19] N. Nisan anp A. RoNEN, Algorithmic mechanism design, Proc. 31st ACM Symp. on Theory of Computing, pages 129 140,
1999.

[20] A. Orpa, R. Rom, anp N. SHiMKIN, Compelitive routing in multiuser communication networks, IEEE/ACM Transactions
on Networking, (1), pages 510-521, 1993.

, Computing correlated equilibria in multi-player games, STOC ’05: Proceedings of the thirty-seventh annual ACM
symposium on Theory of computing, pages 49-56, 2005.

[22] C. Papabpimitriou aAND T. ROUGHGARDEN, Computing equilibria in multi-player games, SODA ’05: Proceedings of the
sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 82 91, 2005.

[23] K. Park, M. SitHARAM, AND S. CHEN, Quality of service provision in noncooperative networks: Helerogeneous preferences,
Proceedings of the First Int. Conf. on Information and Computation Economics ICE’98, 1998.

[24] K. Park, M. SitHARAM, AND S. CHEN, Quality of service provision in noncooperative networks with diverse user require-
ments, Decision Support Systems, Special Issue on Information and Computation Economies, vol. 28, pages 101 122,
2000.

[25] J. B. Rosen, Ezistence and uniqueness of equilibrium points for concave n-person games, Econometrica, pages 520-534,
1965.

[21]

86 A. Lomonosov and M. Sitharam

[26] R. W. RosentHAL, A Class of games possessing pure strategy nash equilibria, International Journal of Game Theory, pages
65 67, 1973.

[27] T. ROUGHGARDEN, Selfish Routing and the Price of Anarchy, The MIT Press, 2005.

[28] T. RoucHGARDEN AND E. Tarpos, How bad is selfish routing? IEEE Symposium on Foundations of Computer Science,
pages 93-102, 2000.

, Mechanism design and the Internet, Presentation in DIMACS Workshop on Computational Issues in Game Theory

and Mechanism Design, 2001.

[29]

Edited by: Marcin Paprzycki, Niranjan Suri
Received: October 1, 2006
Accepted: December 10, 2006

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 8, Number 1, pp. 87-100. http://www.scpe.org © 2007 SWPS

o,..

THE SUCCESS OF COOPERATIVE STRATEGIES IN THE ITERATED PRISONER’S
DILEMMA AND THE CHICKEN GAME

BENGT CARLSSON* AND K. INGEMAR JONSSONT

Abstract. The prisoner’s dilemma has evolved into a standard game for analyzing the success of cooperative strategies in
repeated games. With the aim of investigating the behavior of strategies in some alternative games we analyzed the outcome of
iterated games for both the prisoner’s dilemma and the chicken game. In the chicken game, mutual defection is punished more
strongly than in the prisoner’s dilemma, and yields the lowest fitness. We also ran our analyses under different levels of noise. The
results reveal a striking difference in the outcome between the games. Iterated chicken game needed more generations to find a
winning strategy. It also favored nice, forgiving strategies able to forgive a defection from an opponent. In particular the well-
known strategy tit-for-tat has a poor successrate under noisy conditions. The chicken game conditions may be relatively common
in other sciences, and therefore we suggest that this game should receive more interest as a cooperative game from researchers
within computer science.

Key words. Game theory, prisoner’s dilemma, chicken game, noise, tit-for-tat

1. Introduction. Within computer science, biology, social and economic sciences the issue of cooperation
between individuals in an evolutionary context is widely discussed. An evolutionary context means some conflict
of interest between the participants preferrably modeled in a game theoretical context using conflicting games.
A simple, but frequently used, game model is between two participants each with two choices, either to cooperate
or to defect (a 2% 2 matrix game) played once or repeated. In multi agent systems iterated games have become
a popular tool for analyzing social behavior and cooperation based on reciprocity ([3, 5, 4, 9]). By allowing
games to be played several times and against several other strategies a “shadow of the future”, i. e. a non-zero
probability for the agents to meet again in the future, is created for the current game. This increases the
opportunity for cooperative behavior to evolve (e.g., [4]). A collection of different models of cooperation and
altruism was discussed in Lehmann and Keller [14].

Most iterative analyses on cooperation have focused on the payoff environment defined as the prisoner’s
dilemma (PD) ([5, 9, 13, 20]). In terms of payoffs, a PD is defined when T"> R > P > S, where R — reward, S
— sucker, T" — temptation and P — punishment. It should also hold that 2R > T + S according to table 1.1a.
The second condition means that the value of the payoff, when shared in cooperation, must be greater than it
is when shared by a cooperator and a defector. Because it pays more to defect, no matter how the opponent
chooses to act, an agent is bound to defect, if the agents are not deriving advantage from repeating the game. If
2R < T+ S is allowed there will be no upper limit for the value of the temptation. However, there is no definite
reason for excluding this possibility. Carlsson and Johansson [11] argued that Rapoport and Chammah [23]
introduced this constraint for practical more than theoretical reasons. PD belongs to a class of games where
each player has a dominating strategy of playing defect in the single play PD.

Chicken game (CG) is a similar but much less studied game than PD, but see Tutzauer et al. [26] for a
recent study. CG is defined when 7" > R > S > P, i. e. mutual defection is punished more in the CG than
in the PD. In the single-play form, the CG has no dominant strategy (although it has two Nash equilibria in
pure strategies, and one mixed equilibrium), and thus no expected outcome as in the PD [16]. Together with
the generous chicken game (GCG), also called the battle of sexes [17] or coordination game, CG belongs to a
class of games where neither player has a dominating strategy. For a GCG, playing defect increases the payoff
for both of them, unless the other agent also plays defect (T'> S > R > P).

In table 1.1b, R and P are assumed to be fixed to 1 and 0 respectively. This can be obtained through a two
steps reduction where all variables are first subtracted by P and then divided by R — P. This makes it possible
to describe the games with only two parameters S’ = (S — P)/(R — P) and T" = (T — P)/(R — P). In fact we
can capture all possible 222 games in a two-dimensional plane.

In figure 1.1 the parameter space for PD, CG and GCG defined by S’ and T”, is shown. T = 1 marks a
dividing line between conflict and cooperation. S’ = 0 marks the line between CG and PD. T" < 1 means that
playing cooperate (R) is favored over playing defect (7') when the other agent cooperates. This prevents an

*School of Engineering, Blekinge Institute of Technology, S-372 25 Ronneby, Sweden, +46 457 385813, bengt.carlsson@bth.se
TDepartment of Mathematics and Sciences, Kristianstad University, S-291 88 Kristianstad, Sweden. +46 44 203429,
ingemar. jonsson@mna.hkr.se

87

88 Bengt Carlsson and K. Ingemar Jénsson

TasBLE 1.1
Pay-off matrices for 2+2 games where R = reward, S = sucker, T = temptation and P = punishment. In b the four variables
R, S, T and P are reduced to two variables S’ = (S — P)/(R— P) and T' = (T — P)/(R — P)

a Cooperate | Defect b Cooperate Defect
Cooperate R S Cooperate 1 (S—=P)/(R—-P)
Defect T r Defect (T'—-P)/(R-P) 0
5 -
S o

“Generous” chicken game

A
CITCECLL ZEAITE

Less conflict 24~ Prisoner’s dilemma
because R > -
(Coopergtion 4

favored)

.3 ,

Fic. 1.1. The areas covered by three kinds of conflicting games in a two-dimensional plane: prisoner’s dilemma, chicken
game and generous chicken game

agent from being “selfish” in a surrounding of cooperation. Conflicting games are expected when T” > 1 because
of better outcome playing temptation (7).

In an evolutionary context, the payoff obtained from a particular game represents the change in fitness
(reproductive success) of a player. Maynard Smith [18] describes an evolutionary resource allocation within a
222 game as a hawk and dove game. In the matrices of table 1.1 a hawk constitutes playing D, and a dove
constitutes playing C. A hawk gets all the resources playing against a dove. Two doves share the resource
whereas two hawks escalate a fight about the resource. If the cost of obtaining the resource for the hawks is
greater than the resource there is a CG, otherwise there is a PD. In a generous CG (not a hawk and dove game)
more resources are obtained for both agents when one agent defects compared to both playing cooperate or
defect.

Recent analyses have focused on the effects of mistakes in the implementation of strategies. In particular,
such mistakes, usually called noise, may allow evolutionary stability of pure strategies in iterated games [9]. Two
separate cases are generally considered: the trembling hand noise and misinterpretations. Within the trembling
hand noise (|24, 4]) a perfect strategy would take into account that agents occasionally do not perform the
intended action'. In the misinterpretations case an agent may not have chosen the “wrong” action. Instead it is
interpreted as such by at least one of its opponents, resulting in agents keeping different opinions about what
happened in the game. This introduction of mistakes represents an important step, as real biological systems
as well as computer systems will usually involve uncertainty at some level.

Here, we study the behavior of strategies in iterated games within the prisoner’s dilemma and chicken game
payoff structures, under different levels of noise. We first give a background to our simulations, including a
round robin tournament and a characterization of the strategies that we use. We then present the outcome of
iterated population tournaments, and discuss the implications of our results for game theoretical studies on the
evolution of cooperation.

Mn this metaphor an agent chooses between two buttons. The trembling hand may, by mistake, cause the agent to press the
wrong button

The Success of Cooperative Strategies in the Iterated Prisoner’s Dilemma and the Chicken Game 89

2. Games, Strategies, and Simulation Procedures.

2.1. Games. A game can be modeled as a strategic or an extensive game. A strategic game is a model
of a situation in which each agent chooses his plan of action once and for all, and all agents’ decisions are
made simultaneously while an extensive game specifies the possible orders of events. The strategic agent is not
informed of the plan of action chosen by any other agent while an extensive agent can consider its plan of action
whenever a decision has to be made. All the agents in our analyses are strategic. All strategies may affect the
moves of the other agent, i. e. to play C or D, but not the payoff value, so the latter does not influence the
strategy. The kind of games that we simulate here have been called ecological simulations, as distinguished from
evolutionary simulations in which new strategies may arise in the course of the game by mutation ([3]). However,
ecological simulations include all components necessary for the mimicking of an evolutionary process: variation
in types (strategies), selection of these types resulting from the differential payoffs obtained in the contests, and
differential propagation of strategies over generations. Consequently, we find the distinction between ecological
and evolutionary simulations based on the criteria of mutation rather misleading.

The PDs and CGs that we analyze are repeated games with memory, usually called iterated games. In
iterated games some background information is known about what happened in the game up to now. In our
simulation the strategies know the previous moves of their antagonist?. In all our simulations, interactions
among players are pair-wise, i. e. a player interacts with only one player at a time

2.2. Nice and Mean Strategies. Axelrod ([1, 5, 2, 3]) categorized strategies as nice or mean. A nice
strategy never plays defection before the other player defects, whereas a mean strategy never plays cooperation
before the opponent cooperates. Thus the nice and mean terminology describes an agent’s next move.

According to the categorization of Axelrod Tit-for-tat, TfT, is a nice strategy, but it could as well be
regarded as a repeating strategy. Another category of strategies is a group of forgiving strategies consisting of
Simpleton, Grofman, and Fair. They can, unlike TfT, avoid getting into mutual defection by playing cooperate.
If the opponent does not respond to this forgiving behavior they start to play defect again. Finally we separate
a group of revenging strategies, which retaliate a defection at some point of the game with defection for the rest
of the game. Friedman and Davis belong to this group of strategies.

The principle for the categorization of strategies into nice and forgiving against defecting strategies, which
use threats and punishments, is unclear. For instance, why is TfT not just treated as a strategy repeating the
action of the other strategy instead?

2.3. Generous and Greedy Strategies. One alternative way of categorizing strategies is to group them
together as being generous, even-matched, or greedy ([11, 10]). If a strategy more often plays as a sucker, ng,
than playing temptation, np, then it is a generous strategy ng > np. An even-matched strategy has ng =~ np
and a greedy strategy has ng < np where ng and np are the proportion an agent plays sucker and temptation,
respectively.

Boerlijst, et al [8] uses a similar categorization into good or bad standings. An agent is in good standing if
it has cooperated in the previous round or if it has defected while provoked, i. e., if the agent is in good standing
it should not be greedy unless the other agent was greedy the round before. In every other case of defection
the agent is in bad standing, i. e. it tries to be greedy. The generous and greedy categorization uses a stable
approach, a once and for all categorization®, contrary to the more dynamic good and bad standing dealing with
what happened in the previous move.

The stable approach of the generous and greedy categorization makes it easier to analyze this model. The
basis of the partition is that it is a zero-sum game at the meta-level in that the sum of proportions of the
strategies ng must equal the sum of the strategies np. In other words, if there is a generous strategy, then there
must also be a greedy strategy.

The classification of a strategy can change depending on the surrounding strategies. Let us assume we have
the following four strategies:

e Always Cooperate (AllC) has 100 per cent co-operate ng + ng when meeting another strategy. AllC
will never act as a greedy strategy.

e Always Defect (AlID) has 100 percent defect ny + np when meeting another strategy. AllD will never
act as a generous strategy.

20ne of the strategies, Fair, also remembers its own previous moves
3For a certain set of strategies

90 Bengt Carlsson and K. Ingemar Jénsson

100%
0%
a0%
70% o
f0%
50% A
40% A

30%

Propottion (%) of . 3, Tand P

20% A

ng

Foar & F S S F S F
78 2 o Y S N F @s
o & .
&"&& ¢ T T ‘c“’i@‘\“’
e &y & L3

Fia. 2.1. Proportions of R, S, T and P for different strategies. There is a generous strategy if ng > np and a greedy strategy
if ng < nr

e Tit-for-tat (TfT) always repeats the move of the other contestant, making it a repeating strategy. TfT
naturally entails that ng ~ nr.

e Random plays cooperate and defect approximately half of the time each. The proportions of ng and
np will be determined by the surrounding strategies.

Random will be a greedy strategy in a surrounding of AlIC and Random, and a generous strategy in a
surrounding of AlID and Random. Both TfT and Random will behave as an even-matched strategy in the
presence of only these two strategies as well as in a surrounding of all four strategies, with AlIIC and AlID
participating in the same proportions. All strategies are even-matched when there is only a single strategy left.

The strategies used in our iterated prisoner’s dilemma (IPD) and iterated chicken game (ICG), in all 14
different strategies plus playing Random, are presented in table 2.1. AIIC, AIID and Random do not need any
memory function at all because they always do the same thing (which for Random means always randomize).
TfT and ATIT need to look back one move because they repeat or reverse the move of its opponent. Most of
the other strategies also need to look back one move but may respond to defection or show forgiveness.

AlIC definitely belongs to a group of generous strategies and so do 95% Cooperate (95%C), tit-for-two-tats
(T2T), Grofman, Fair, and Simpleton, in this specific environment.

The even-matched group of strategies includes TfT, Random, and Anti-tit-for-tat (AT{T).

Within the group of greedy strategies, Feld, Davis, and Friedman belong to a smaller family of strategies
doing more co-operation moves than Random, i. e. having significantly more than 50 % R or S. An analogous
family consists of Joss, Tester, and AlID. These strategies co-operate less frequently than does Random.

What will happen to a particular strategy depends both on the surrounding strategies and on the charac-
teristics of the strategy. For example, AlIIC will always be generous while 95%C will change to a greedy strategy
when these two are the only strategies left. The described relation between strategies is independent of what
kind of game is played, but the actual outcome of the game is related to the payoff matrix.

2.4. Simulation Procedures. The set of strategies used in our first simulation includes some of Axelrod’s
original strategies and a few, later reported, successful strategies. Of course, these strategies represent only a
very limited number of all possible strategies. However, the emphasis in our work is on differences between IPD
and ICG. Whether there exists a single "‘best of the game"’ strategy is outside the scope of our analyses.

Mistakes in the implementation of strategies (noise) were incorporated by attaching a certain probability p
between 0.02 and 20% to play the alternative action (C or D), and a corresponding probability (1 — p) to play
the original action.

The Success of Cooperative Strategies in the Iterated Prisoner’s Dilemma and the Chicken Game 91

TaBLE 2.1
Description of the different strategies used in the first simulation (see section 3.1)

Strategy First move | Description

AllC C Cooperates all the time

95%C C Cooperates 95% of the time

Tf2T C tit-for-two-tats, Cooperates until its opponent defects twice,
and then defects until its opponent starts to cooperate again

Grofman C Cooperates if R or P was played, otherwise it cooperates with
a probability of 2/7

Fair C A strategy with three possible states, - ’satisfied’ (C), ’apolo-

gizing’ (C) and ’angry’ (D). It starts in the satisfied state and
cooperates until its opponent defects; then it switches to its
angry state, and defects until its opponent cooperates, before
returning to the satisfied state. If Fair accidentally defects,
the apologizing state is entered and it stays cooperating un-
til its opponent forgives the mistake and starts to cooperate

again

Simpleton C Like Grofman, it cooperates whenever the previous moves
were the same, but it always defects when the moves differed
(e-g-S)

TfT C Tit-for-tat. Repeats the moves of the opponent

Feld C Basically a tit-for-tat, but with a linearly increasing (from 0

with 0.25% per iteration up to iteration 200) probability of
playing D instead of C

Dayvis C Cooperates on the first 10 moves, and then, if there is a de-
fection, it defects until the end of the game

Friedman C Cooperates as long as its opponent does so. Once the oppo-
nent defects, Friedman defects for the rest of the game

ATIT D Anti-tit-for-tat. Plays the complementary move of the oppo-
nent

Joss C A TfT-variant that cooperates with a probability of 90%,
when opponent cooperated and defects when opponent de-
fected

Tester D Alters D and C until its opponent defects, then it plays a C
and TIT

All D D Defects all the time

Our population tournament involves two sets of analyses. In the first set, the strategies are allowed to
compete within a round robin tournament with the aim of obtaining a general evaluation of the tendency of
different strategies to play cooperate and defect. In a round robin tournament, each strategy is paired once with
all other strategies plus its twin. The results from the round robin tournament are used within the population
tournament but will not be presented here (for the results see [10]). In the second set, the competitive abilities
of strategies in iterated population tournaments were studies within the IPD and the ICG. We also conducted
a second simulation of the IPD and the ICG where two sets of strategies were used. We used the strategies in
figure 2.2 represented by finite automata [15]. The play between two automata is a stochastic process where all
finite memory strategies can be represented by increasingly complicated finite automata. Memory-0 strategies,
like AIIC and AlID, do not involve any memory capacity at all. If the strategy in use only has to look back at
one draw, there is a memory-1 strategy (a choice between two circles dependent of the other agent’s move). All
the strategies in figure 2.2 belong to memory-0 or memory-1 strategies.

Both sets of strategies include AlID, AILIC, TfT, AT{T and Random. In the first set of strategies, the

cooperative-set, five AlIC variants (100, 99.99, 99.9, 99 and 90% probability of playing C) are added. In the
second set of strategies, the defective-set the corresponding five AlID variants (100, 99.99, 99.9, 99 and 90%

92 Bengt Carlsson and K. Ingemar Jénsson

wgE) =@ O

G5 pr €0

Fig. 2.2. a) AlID (and variants) b) TfT ¢) ATfT d) AllC (and variants). On the transition edges, the left symbol correspond
to an action done by a strategy against an opponent performing the right symbol, where an X denotes an arbitrary action. Y in
Cy and Dy denotes a probability factor for playing C and D respectively

probability of playing D) are added. Cy and D, in figure 2.2 show a probability factor y 100, 99.99, 99.9, 99,
90% or for the Random strategy 50% for playing C and D respectively.

3. Population Tournament With Noise.

3.1. First Simulation. We evaluated the strategies in table 2.1 by allowing them to compete within a
round robin tournament.

To obtain a more general treatment of IPD and ICG, we used several variants of payoff matrices within
these games, based on the general matrix of table 3.1. In this matrix, C stands for cooperate; D for defect and
q is a cost variable.

TaBLE 3.1
Payoff values used in our simulation. q is a cost parameter. 0 < q < 0.5 defines a prisoner’s dilemma game, while ¢ > 0.5
defines a chicken game

Player 2
Player 1 C D
C 1.5 1
D 2 15-q

The payoff for a D agent playing against a C agent is 2, while the corresponding payoff for a C agent playing
against a D agent is 1, etc. Two C agents share the resource and get 1.5 each.

The outcome of a contest with two D agents depends on ¢q. For 0 < ¢ < 0.5, a PD game is defined,
and for ¢ > 0.5 we have a CG. Simulations were run with the values for (1.5 — ¢) set to 1.4 and 1.1 for
PD, and to 0.9, 0.6, and 0.0 for the CG (these values are chosen with the purpose to span a wide range of
the games but are otherwise arbitrarily chosen). We also included Axelrod’s original matrix Ax (R = 3,5 =
0,7 =5 and P = 1) and a compromise dilemma game CD (R = 2,5 = 2,7 =3 and P = 1). A CD is
located on the borderline between the CG area and the generous CG area. In the discussion part we also
compare the mentioned strategies with a coordination game CoG (R = 2,5 = 0,7 = 0 and P = 1), the only
game with 77 < 1. CoG is included as a reference game and does not belong to the conflicting games. In
figure 3.1 all these games are shown within the two-dimensional plane. The CD is closely related to the chicken
game and CoG is a game with two Nash equilibria, playing (C,C) or playing (D,D) (see also Johansson et

The Success of Cooperative Strategies in the Iterated Prisoner’s Dilemma and the Chicken Game 93

F 3 \

1

1" !

S i _

: Generous Chicken game
1
1
i CD

1 e
! "l, Chicken game

0 1! | oI
: Y

Cog A
® - IAx o L

: Prlsbu‘er s dilemma
! .
1 *
i .
I Ay
1 ~
1 AN
}
1
1

Fia. 3.1. The different game matrices represented as dots in a 2-dimensional diagram. CoG is the coordination game, CD
the compromise dilemma and Az is the original Azelrod game. The unmarked dots represent 0.0, 0.6, 0.9, 1.1 and 1.4 from upper
left to lower right

al. [12]). Each game in the tournament was played on average 100 times (randomly stopped)? and repeated
5000 times.

In the second part of the simulation, strategies were allowed to compete within a population tournament
for the iterated games. These simulations were based on the same payoff matrices for IPD and ICG as in the
initial round robin tournament. Based on the success in the single round-robin tournaments, strategies were
allowed to reproduce copies into the next round robin tournament, creating a population tournament, i. e. a
quality competition in the round-robin tournament (make a good score) is transformed to an increased number
of copies in the population tournament. Each of the fifteen strategies starts with 100 copies resulting in a
total population of 1500. The number of copies for each strategy changes, but the total of 1500 copies remains
constant. The proportions of the different strategies propagated into a new generation were based on the payoff
scores obtained in the preceding round-robin tournament. A given strategy interacts with the other strategies
in the proportions that they occur in their global population. The games were allowed to continue until a single
winning strategy was identified, i. e. the whole population consists of the same strategy, or until the number of
generations reached 10,000. In most of the simulations, a winning strategy was found before reaching this limit.

Also, if a pure population of agents with the random strategy are allowed to compete with each other in
a population game, a single winning strategy will be found after a number of generations, i. e. there are small
simulation variations between different agents in their actual play of C and D moves. As seen in figure 3.2, with
increased total population size of agents the number of generations for finding a winning strategy increases.
This almost linear increase (r = 0.99) is only marginally dependent of what game is played.

Randomized strategies with 100 individuals are according to figure 3.2 supposed to halt, i. e. all 1500
individuals belong to the same initial strategy, after approximately 2800 generations in a population game.
Which strategy that wins will vary between the games. There are two possible kinds of winning strategies: pure
strategies that halt, and mixed strategies (two or more pure strategies) that do not halt. If there is an active
choice of a pure strategy it should halt before 2800 generations, because otherwise playing random could be
treated as a winning pure strategy. There is no reason to believe that a single strategy winner should be found
by extending the simulation beyond 10000 generations. If there exists a pure solution, this solution should turn
up much earlier.

The effect of uncertainty (noise) in the choice of actions (C or D) by the agents within the tournaments
was analyzed by repeating the tournaments in environments of varying levels of noise. Tournaments were run

41f an agent knows exactly or with a certain probability when a game will end, it may use such information to improve its
behavior. Because of this, the length of the games was determined probabilistic, with an equal chance of ending the game with
each given move (see also [1])

94 Bengt Carlsson and K. Ingemar Jénsson

10000

2000

8000

7000

6000

5000

r=099
4000

3000
................... j;},(”
2000

1000

Mumber of generations

0 : : : : : :
0 50 100 150 200 250 300 350

Population size for each strategy

Fic. 3.2. Number of generations for finding a winning strategy among 15 random strategies with a varying population size

at 0, 0.02, 0.2, 2, and 20% noise. The probability of making a mistake was neither dependent on the sequence
of behaviors up to a certain generation, nor on the identity of the player. Noise will affect the implementation
of all strategies except for the strategy Random. We focused on three different aspects when comparing the
IPDs and ICGs, which will be further analyzed in the discussion part:

1. The number of generations for finding a winning strategy.

2. Differences in robustness for the investigated strategies.

3. The behavior of the, generally regarded, cooperative strategy TfT in IPD and ICG.

3.2. Second Simulation. To obtain a more general treatment of IPD and ICG, we used several variants
of payoff matrices within these games, based on the general matrix of table 3.2.

TABLE 3.2
A payoff matriz for PD and CG. C stands for cooperate, D for defect, and s1 and s2 are cost variables. If s1 > 1 it is a PD.
If sy <1itisa CG

Cooperate (C) | Defect (D)
Cooperate (C) 1 1-s1
Defect (D) 1+s2 0

In the first set of simulations we investigated the successfulness of the agents using different strategies (one
strategy per agent) in a round-robin tournament. Since this is independent of the actual payoff value, the same
round-robin tournament can be used for both IPD and ICG. Every agent was paired with all the other agents
plus a copy of itself. Every meeting between agents in the tournament was repeated on average 100 times
(randomly stopped) and played for 5000 times.

The result from the two-by-two meetings between agents using different strategies in the round robin
tournament was used in a population tournament. The tournament starts with a population of 100 agents for
each strategy, making a total population of 900. The simulation halts when there is a winning strategy (all
900 agents use the same strategy) or when the number of generations exceeds 10.000. Agents are allowed to
change strategy and the population size remains the same during the whole contest. For the IPD the following
parameters were used: s; € {1.1,1.2...2.0} and s2 € {0.1,0.2...1.0,2.0}, making a total of 110 different games.
For the ICG games with parameter settings s; € {0.1,0.2...0.9} and s3 € {0.1,0.2...1.0,2.0} a total of 99
different games were run. Each game is repeated during 100 plays and the average success is calculated for each
strategy. For each kind of game there is both the cooperative set and the defective set explained in section 2.4.

The Success of Cooperative Strategies in the Iterated Prisoner’s Dilemma and the Chicken Game 95

4. Results.

4.1. First Simulation. In figure 4.1 and figure 4.2 the success of individual strategies in IPD, ICG and
CD population games at no noise and 0.2% of noise are shown. The repeating strategy TfT is represented by
a solid line, the generous strategies Simpleton, Grofman, and Fair by dashed lines, and the greedy strategies
Friedman and Davis by dotted lines.

In the IPD games TfT, Friedman and Davis are the most successful with no noise (figure 4.1), while TfT,
Grofman, Fair and Friedman are the most successful with 0.2% noise (figure 4.2). For the other levels of noise
(not shown in figures) TfT, and for Axelrod’s matrix also Tf2T, is dominating with 0.02%. With 2% noise
Davis and TfT dominates, and finally AIID and Friedman are the dominating strategies with 20% noise.

At no noise all three groups of strategies are approximately equally successful in ICG (figure 4.1), with
a minor advantage for the generous strategies Simpleton, Grofman, and Fair. This advantage increases with
increasing noise. The greedy strategies Friedman and Davis disappear at 0.02% noise and TfT at 0.2% noise
(figure 4.2) leaving the generous strategies alone at 0.2% and 2% noise. At 20% noise AlID supplements the set
of successful strategies.

&0
M- ——
!
K — — — — — —+——
f
Fried
gopr-—————————————————-° fﬁmﬂ;/___
L /
i N —— — — — — — — T
s /
TN —
!
___Gfmma.a_J__T/__
1]

14 Axelrod 1.1 0s 06 0 [win}

Fia. 4.1. Percentage of runs won by strategies in the population games for different chicken games (0.9, 0.6, 0), prisoners
dilemmas (1.4, Az, 1.1) and the compromise dilemma with 0% noise

The greedy strategies Friedman and Davis completely outperform Simpleton, Grofman, Fair and T{T strate-
gies in CD. With increasing noise ATfT (0.2-20% noise) and AlID (20% noise) become more successful as part
of a mixed set of strategies, because CD does not find a single winner (Figure 10).

Finally, in CoG Tf2T and TfT are dominating with 0% noise. Tf2T together with AlIC and Grofman
constitute all the winning strategies with 0.02%, 0.2% and 2% noise. 95%C is the only winner with 20% noise.

With increased noise the group of Simpleton, Grofman, and Fair become more and more successful in
ICG up to and including 2% noise. When noise is introduced, IPDs favor the repeated TfT. With increased
noise the greedy Friedman and Davis disappears for both ICG and IPD. Finally, with 20% noise AlID is the
dominating strategy. More and more defecting strategies will dominate with increasing noise in IPD. Finally in
CD the greedy strategies Friedman and Davis dominates. In contrast to IPD and CD cooperating and generous
strategies dominate in ICG which makes the ICG the best candidate for finding robust strategies.

On average there was 80% accordance (for all levels of noise) between winning strategies in different ICG,
i. e. four out of five strategies being the same. In the IPD there was a discrepancy with only on average 35% of
the winning strategies being the same. The performance of the 0.4 and Ax matrices are similar within the ICG.
This was especially notable for both matrices without noise (on average 75%) and for the 0.4 matrices with 2
and 20% noise (on average 55%).

96 Bengt Carlsson and K. Ingemar Jénsson

Won games (%)

0B

Fia. 4.2. Percentage of runs won by strategies in the population games for different chicken games (0.9, 0.6, 0), prisoners
dilemmas (1.4, Az, 1.1) and the compromise dilemma with 0.2% noise

10000

9000 +

3000 A

7000 +

B000 +

3000 4

4000 +

Wumber of generations

3000

2000 +

1000 1

noise (%)

Fic. 4.3. Number of generations for finding a winning strategy in chicken games, prisoners dilemmas and compromise
dilemma at different levels of noise

In figure 4.3, the number of generations needed to find a winning strategy is plotted for different level
of noise. The dotted line shows the expected generations (2800) for competing Random strategies mentioned
earlier. At 0 or low levels of noise more generations are needed in the ICG for finding a winner than in IPD.
The lowest numbers of generations are needed with 2% of noise and the highest with 0% and 20% noise. There
is no single strategy winner for the CD game with 0.2% noise and above

In summary; coordination games give mutual cooperation the highest results, which favors nice, but to a
less extent too forgiving, strategies. Compared to the ICG, IPD is less punishing towards mutual defection,

The Success of Cooperative Strategies in the Iterated Prisoner’s Dilemma and the Chicken Game 97

TaBLE 4.1
The difference between pure and mized-strategies in IPD and ICG. For details see text

IPD ICG
Cooperative Defective set Cooperative Defective set
set set
Pure strategies | TfT 78% AIID | TfT 75% AID || TfT 3% TfT 2%
20% 20%
Mixed strate- | none none 2-strat 61% 3- | 2-strat 69% 3-
gies strat 33% strat 24%

which allows repeating and greedy strategies to become more successful. Finally in the compromise dilemma,
where playing the opposite to the opponent is favored, greedy and/or a mixture of different strategies are
favored. With increased noise (2% or below), generous strategies become more and more successful in ICG
while repeating and greedy strategies are more successful in IPD.

4.2. Second Simulation. In a surrounding of a cooperative or a defective set of strategies a major
difference between pure and mixed strategies for IPD and ICG are shown in table 4.1. IPD has no successful
mixed strategies at all, while ICG favors mixed-strategies for an overwhelming majority of the games. Some
details not shown in table 4.1 are discussed below.

For the cooperative set there is a single strategy winner after on average 167 generations. TfT wins 78%
of the plays and is dominating in 91 out of 110 games®. AlID is dominating in the rest of the games and wins
20% of the plays.

For the defective-set there is a single strategy winning in 47 generations on average. TfT is dominating 84
games, AlID 21 games and 99.99D, playing D 99.99% of the time, 5 games out of 110 games in all. TfT wins
75% of the plays, AIID 20% and 99.99D 4%.

In the cooperative-set there are two formations of mixed strategies winning most of the games; one with
two strategies and the other with three strategies involved. This means that when the play was finished after
10000 generations not a single play could separate these strategies finding a single winner. The two-strategy
set ATfT and AlID wins 61% of the plays and the three-strategy set AT{T, AlID and AllCtot wins 33% of the
plays. AllCtot means that one and just one of the strategies AlIC, 99.99C, 99.9C, 99C or 90C is the winning
strategy. For 3% of the games there was a single TfT winner within relatively few generations (on average 754
generations).

In the defective-set there is the same two formations winning most of the games. ATIT + AllDtot wins
69% of the plays and ATfT + AlIC + AllDtot wins 24% of the plays. AllDtot means that one and just one of
the strategies AlID, 99.99D, 99.9D, 99D or 90D is the winning strategy. TfT is a single winning strategy in 2%
of the plays, which needs on average 573 generations before winning a play.

In the C-variant set all AllC variants are generous and TfT is even matched. AllID, ATfT and Random are
all greedy strategies. In the D-variant set all AlID variants are greedy and TfT is still even-matched. AllC,
ATIT and Random are now representing generous strategies.

In the IPD the even-matched TfT is a dominating strategy in both the C- and D-variant set with the greedy
AlID as the only primary alternative. So the IPD will end up being a fully cooperative game (TfT) or a fully
defecting game (AlID) after relatively few generations. This is the case both for the C-variant set and, within
even fewer generations, for the D-variant set.

In ICG there is instead a mixed solution between two or three strategies. In the C-variant AT{T and AllID
form a greedy two-strategy set®. In the three-strategy variant the generous AllCtot join the other two. In all,
generous strategies only constitute about 10% of the mixed strategies. In the D-variant the generous AT{T
forms various strategy sets with the greedy AllDtot.

5. DISCUSSION. In our investigation we found ICG to be a strong candidate for being the major
cooperate game. ICG seems to facilitate cooperation as much as or even more than IPD, especially under noisy
conditions. Axelrod regarded TfT to be a leading cooperative strategy, but in our investigation we found TfT

5A game is dominated by a certain strategy if it wins more than 50 out of 100 plays
SWith just ATfT and AlID left ATfT will behave as a generous strategy even though it starts off as a greedy strategy in the
C-variant environment

98 Bengt Carlsson and K. Ingemar Jénsson

to have poor success under noisy conditions within ICG. These statements will be further addressed in the
discussion below.

If it is true that more cooperating strategies are favored in ICG, we should also expect nice and forgiving
strategies to be successful in this game. In the ICG, both players that play defect are faring the worst, which
should favor generous strategies. Both ICG and coordination game favors nice, non-revenging, strategies, but
unlike coordination game ICG may forgive a defection from the opponent. This makes ICG a primary candidate
for being the main cooperative game, favoring both niceness and forgivingness.

Most studies today consider the IPD as a cooperative game where nice and forgiving strategies are successful.
A typical winning strategy, like TfT, ends up as an agent playing cooperate all the time. There are contradictory
arguments about cooperation within chicken games. The advantage of cooperation may be expected to be
stronger, because the cost of defection is higher than in the prisoner’s dilemma. Lipman [16] suggests that in
ICG, mutual cooperation is less clearly the best outcome because there is no dominant strategy. Each agent
prefers the equilibrium in which it defects and the other cooperates, but has no way to force the other agent
to cooperate. A mixed strategy or a set of strategies, unlike a single dominant strategy, may favor mutual
cooperation. With pure and mixed strategies we here refer to the set of strategies (played by individuals)
winning the population tournament. A mixed strategy is a combination of two or more strategies from the
given set of strategies i. e. an extended strategy set could include the former mixed strategy as a pure strategy.

In the normalized matrices stochastic memory-0 and memory-1 strategies are used. The main difference
between IPD and ICG is best shown by the two strategies TfT and AT{T. TfT does the same as its opponent.
This is a successful way of behaving if there is a pure-strategy solution because it forces the winning strategy
to cooperate or defect, but not doing both. AT{T is doing very badly in IPD because it tries to jump between
playing cooperate and defect.

In ICG we have a totally different assumption because a mixed-strategy solution is favored (at least in
the present simulation). ATfT does the opposite as its opponent but cannot by itself form a mixed-strategy
solution. It has to rely on other cooperative or defect strategies. In all different ICG ATIT is one of the
remaining strategies, while TfT is only occasionally winning a play.

For a simple strategy setting like the cooperative and defective-set, ICG will not find a pure strategy winner
at all but a mixture between two or more strategies, while IPD quickly finds a single winner.

Unlike the single play PD, which always favors defect, the IPD will favor playing cooperate. In CG the
advantage of cooperation should be even stronger, because it costs more to defect compared to the PD, but
in our simulation greedier strategies were favored with memory-0 and memory-1 strategies. We think this new
paradox can be explained by a greater robustness of the chicken game. This robustness may be present if more
strategies, like the strategies in the two other simulations, are allowed and/or noise is introduced. Robustness
is expressed by two or more strategies winning the game instead of a single winner or by a more sophisticated
single winner. Such a winner could be ¢TfT, Pavlov, or Fair in the presence of noise, instead of TfT. Also, with
minor exceptions this is also true for noise between 0.02% and 20%.

An interesting exception to the higher success of cooperating strategies within ICG is the poor success
under noisy conditions of TfT. The vulnerability of TfT to errors in the implementation of actions within the
IPD is well known and has been discussed extensively ([3, 19, 4, 27, 7, 21, 22]). The even poorer ability of
TfT to handle noise within the ICG, is however a novel finding. The classical description by Axelrod [3]| of
a successful strategy in a deterministic (non-noisy) environment is that it should be nice (not be the first to
defect), provocable (immediately punish defection), forgiving (immediately reciprocate cooperation), and simple
(easily recognizable). Obviously, under noisy conditions TfT either behaves less nice, provocable, forgiving, and
simple, or these characteristics are of less value in the ICG. Axelrod and Dion [4] suggested that the difficulty
for TfT to handle noise is an inherent consequence of generosity: vulnerability to exploitation. Errors in the
implementation of strategies give rise to unconditional cooperation, which undercuts the effectiveness of simple
and reciprocating strategies. It also introduces mutual defection among TfT players, reducing their obtained
payoffs [22]. In the long run, the average payoffs of two interacting TfT players in a noisy environment converge
to that of two interacting Random players [19]. Thus, the main problem for TfT in a noisy environment may
be to cope with copies of itself.

A solution to the problem of noise for a strategy is to punish defection in the other player less readily than
does TfT. This can be done either by not immediately responding to an opponent’s defection or by avoidance
of responding to the other player’s defection after one has made an unintended defection [19]; see also [27].
Thus, some modified versions of TfT, Contrite tit-for-tat (CTfT) and generous tit-for-tat (GTfT) have proved

The Success of Cooperative Strategies in the Iterated Prisoner’s Dilemma and the Chicken Game 99

to cope much better with noise than the original TfT (|27, 9]). Bendor [6] concludes that uncertainty sometimes
affects nice strategies negatively but he also proposes that reciprocating but untrustworthy strategies may start
to cooperate because of unintended actions.

Several attempts have been made to classify strategies according to their willingness to play cooperate
and defect, respectively, the classical being Axelrod’s [1] distinction between nice and mean strategies based on
whether a strategy’s first draw is cooperate or defect, respectively. Under noisy conditions, the static description
of a strategy based on its behavior under non-noisy becomes more or less meaningless. Naturally, a nice strategy
then becomes meaner, and a mean strategy becomes nicer, but the actual behavior is difficult to evaluate.

6. CONCLUSION. In our opinion, the discussion about the evolution of cooperative behavior has relied
too heavily on analyses within the prisoner’s dilemma context. The differences in the outcome of IPD and ICG
shown in our study suggest that future game theoretical analyses on cooperation should explore alternative
payoff environments. The chicken game was discussed as a special case within the general hawk and dove
context by Maynard Smith [18], but for some reason subsequent game theoretical studies has almost exclusively
focused on the prisoner’s dilemma. This is unfortunate, since the chicken game appears to us to be a very
interesting game in explaining the evolution of cooperative behavior. If we give the involved agents the ability
to establish trust the difference between the two kinds of games are easier to understand. In the PD establishing
credibility between the agents means establishing trust, whereas in CG, it involves creating fear, i. e. avoiding
situations where there is too much to lose [25]. This makes ICG a strong candidate for being a major cooperate
game together with IPD. We therefore hope that in future studies, more attention will be paid to the role of
chicken games in the evolution of agents with cooperative behavior within multi agent systems.

REFERENCES

[1] R. AxeLroDp, Effective choice in the prisoner’s dilemma, Conflict Resolution, 24 (1980), pp. 3 25.
[2] R. AxELROD, More effective choice in the prisoner’s dilemma, Journal of Conflict Resolution, 24 (1980), pp. 379-403.
[3] , The Evolution of Cooperation, Basic Books Inc., 1984.
[4] R. AxerLrop AND D. DioN, The further evolution of cooperation, Nature, 242 (1988), pp. 1385-1390.
[5] R. AxeLrop anp H. W.D., The evolution of cooperation, Science, 211 (1981).
[6] J. BENDOR, Uncertainty and the evolution of cooperation, Journal of Conflict Resolution, 37 (1993), pp. 709-734.
[7] J. BEnpOR, R. KraMER, AND S. S., When in doubt. .. cooperation in a noisy prisoner’s dilemma, Journal of Conflict
Resolution, 35 (1991), pp. 691 719.
[8] N. M. BorrrLusT, M.C. anp K. StaMUND, Equal pay for all prisoners. / the logic of contrition, tech. rep., ITASA Interim
Report IR-97-73, 1996.
[9] R. Bovp, Mistakes allow evolutionary stability in the repeated prisoner’s dilemma game, Journal of Theoretical Biology, 136
(1989), pp. 47 56.
[10] B. CarwLssoN, Simulating how to cooperate in iterated chicken game and iterated prisoner’s dilemma, in Agent Engineering,
J. Liu, N. Zhong, Y. Tang, and P. Wang, eds., vol. 43 of Machine Perception and Artificial Intelligence, World Scientific,
1998, pp. 285-292.
[11] B. CARLSSON AND S. JOHANSSON, An ilerated hawk-and-dove game, in Agents and Multi-Agent Systems, W. Wobcke,
M. Pagnucco, and C. Zhang, eds., vol. 1441 of Lecture Notes in Artificial Intelligence, Springer Verlag, 1998, pp. 179 192.
[12] S. Jonansson, B. CarLssoN, AND M. BowmaN, Modelling strategies as generous and greedy in prisoner’s dilemma like
games, in Simulated Evolution and Learning, B. McKay, X. Yao, C. Newton, J. Kim, and T. Furuhashi, eds., vol. 1585
of Lecture notes in artificial intelligence, Springer Verlag, 1998, pp. 285-292.
[13] J. Koesraa, Sez, the prisoner’s dilemma game, and the evolutionary inevitability of cooperation, Journal of Theoretical
Biology, 189 (1997), pp. 53-61.
[14] L. Leaman~ anp L. KeLLER, The evolution of cooperation and altruism - a general framework and a classification of models,
Journal of Evolutionary Biology, 19 (2006), pp. 1365 1376.
[15] K. LINDGREN, FEvolutionary dynamics in game-theory models, in The Economy as an Evolving, Complex System IT, W. Arthur,
D. Lane, and S. Durlauf, eds., Addison Wesley, 1997, pp. 337 367.

[16] B. Lipman, Cooperation among egoists in prisoner’s dilemma and chicken game, Public Choice, 51 (1986), pp. 315-331.

[17] R. Luce anp H. Rairra, Games and Decisions, Dover Publications, 1957.

[18] J. MayNARD SwmiTH, Evolution and the theory of games, Cambridge University Press, 1982.

[19] P. MoLaNDER, The optimal level of generosity in a selfish uncertain environment, Journal of Conflict Resolution, 29 (1985),
pp. 611 618.

[20] K. NisuiMmura anp S. D.W., Tterated prisoner’s dilemma: Pay-off variance, Journal of Theoretical Biology, 188 (1997),
pp- 1 10.

[21] M. Nowak anp K. Siacmunb, Tit for tat in heterogeneous populations, Nature, 355 (1992), pp. 250-253.

[22] , A strategy of win-stay, lose-shift that outperforms tit-for-tat in the prisoner’s dilemma game, Nature, 364 (1993),

pp- 56-58.

[23] A. Raprororr aND A. CuamMMAH, Prisoner’s Dilemma A Study in Conflict and Cooperation, The University of Michigan
Press, 1965.

100 Bengt Carlsson and K. Ingemar Jénsson

[24] R. SeLreEN, Reezamination of the perfectness concept for equilibrium points in extensive games, International Journal of
Game Theory, 4 (1975), pp. 25 55.

[25] G. SNYDER, prisoner’s dilemma and chicken models in international politics, International Studies Quartely, 15 (1971),
pp. 66 103.

[26] F. Turzauer, M. CHoJNACKI, AND P. HoFFMANN, Network structure, strategy evolution and the game of chicken, Social
Networks, 28 (2006), pp. 377 396.

[27] J. Wu anp R. AXELROD, How to cope with noise in the iterated prisoner’s dilemma, Journal of Conflict Resolution, 39
(1995), pp. 183 189.

Edited by: Marcin Paprzycki, Niranjan Suri
Received: October 1, 2006
Accepted: December 10, 2006

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 8, Number 1, pp. 101-114. http://www.scpe.org © 2007 SWPS

o,..

A MULTI-AGENT INFRASTRUCTURE FOR ENHANCING ERP SYSTEM
INTELLIGENCE

ANDREAS L. SYMEONIDIST*, KYRIAKOS C. CHATZIDIMITRIOUT, DIONYSIOS KEHAGIASY, AND PERICLES
A. MITKAST

Abstract. Enterprise Resource Planning systems efficiently administer all tasks concerning real-time planning and manufac-
turing, material procurement and inventory monitoring, customer and supplier management. Nevertheless, the incorporation of
domain knowledge and the application of adaptive decision making into such systems require extreme customization with a cost that
becomes unaffordable, especially in the case of SMEs. In this paper we present an alternative approach for incorporating adaptive
business intelligence into the company’s backbone. We have designed and developed a highly reconfigurable, adaptive, cost efficient
multi-agent framework that acts as an add-on to ERP software, employing Data Mining and Soft Computing techniques in order to
provide intelligent recommendations on customer, supplier and inventory management. In this paper, we present the architecture
and development details of the developed framework, and demonstrate its application on a real test case.

Key words. ERP systems, Data Mining, Soft Computing, Multi-Agent Systems, Adaptive Decision Making

1. Introduction. Enterprise Resource Planning (ERP) systems are business management tools that au-
tomate and integrate all company facets, including real-time planning, manufacturing, sales, and marketing.
These processes produce large amounts of enterprise data that are, in turn, used by managers and employees
to handle all sorts of business tasks such as inventory control, order tracking, customer service, financing and
human resources [16].

Despite the support current ERP systems provide on process coordination and data organization, most
of them especially legacy systems lack advanced Decision-Support (DS) capabilities, resulting therefore in
decreased company competitiveness. In addition, from a functionality perspective, most ERP systems are limited
to mere transactional IT systems, capable of acquiring, processing, and communicating raw or unsophisticated
processed data on the company’s past and present supply chain operations [25]. In order to optimize business
processes in the tactical supply chain management level, the need for analytical IT systems that will work in close
cooperation with the already installed ERP systems has already been identified, and DS-enabled systems stand
out as the most successful gateway towards the development of more efficient and more profitable solutions.
Probing even further, Davenport [7] suggests that decision-making capabilities should act as an extension of the
human ability to process knowledge and proposes the unification of knowledge management systems with the
classical transaction-based systems, while Carlsson and Turban [3] claim that the integration of smart add-on
modules to the already established ERP systems could make standard software more effective and productive
for the end-users.

The benefits of incorporating such sophisticated DS-enabled systems inside the company’s IT infrastructure
are analyzed by Holsapple and Senna [14]. The most significant, among others, are:

1. Enhancement of the decision maker’s ability to process knowledge.
Improvement of reliability of the decision support processes.
Provision of evidence in support of a decision.
Improvement or sustainability of organizational competitiveness.
Reduction of effort and time associated with decision-making, and
6. Augmentation of the decision makers’ abilities to tackle large-scale, complex problems.

Within the context of Small and Medium sized Enterprises (SMEs) however, applying analytical and math-
ematical methods as the means for optimization of the supply chain management tasks is highly impractical,
being both money and time consuming [5, 31]. This is why alternative technologies, such as Data Mining and
Agent Technology have already been employed, in order to provide efficient DS-enabled solutions. The increased
flexibility of multi-agent applications, which provide multiple loci of control [30] can lead to less development
effort, while the cooperation primitives that Agent Technology adopts point to MAS as the best choice for ad-
dressing complex tasks in systems that require synergy of multiple entities. Moreover, DM has repeatedly been

Gk

*Corresponding author

TElectrical and Computer Engineering Dept., Aristotle University of Thessaloniki, GR541 24, Thessaloniki, GREECE

tIntelligent Systems and Software Engineering Laboratory, Informatics and Telematics Institute - CERTH, GR570 01, Thessa-
loniki, GREECE, {asymeon,diok}@iti.gr, kyrxaQee.auth.gr, mitkas@auth.gr

101

102 A. L. Symeonidis et al.

used for Market Trend Analysis, User Segmentation, and Forecasting. Knowledge derived from the application
of DM techniques on existing ERP historical data can provide managers with useful information, which may
enhance their decision-making capabilities.

Going briefly through related work, we see that DM and MAS have been used separately for efficient
enterprise management and decision support. Rygielski et. al. [24] have exploited DM techniques for Customer
Relationship Management (CRM), while Choy et. al. [4, 5] have used a hybrid machine learning methodology
for performing Supplier Relationship Management (SRM). On the other hand, MAS integrated with ERP
systems have been used for production planning [22], and for the identification and maintenance of oversights
and malfunctions inside the ERP systems [15].

Elaborating on previous work, we have integrated AT and DM advantages into a versatile and adaptive
multi-agent system that acts as an add-on to established ERP systems. Our approach employs Soft Computing,
DM, Expert Systems, standard Supply Chain Management (SCM) and AT primitives, in order to provide intel-
ligent recommendations on customer, supplier, and inventory issues. The system is designated to assist not only
the managers of a company “Managing by wire” approach [12] , but also the lower-level, distributed decision
makers “Cowboys” approach [18]. Our framework utilizes the vast amount of corporate data stored inside
ERP systems to produce knowledge, by applying data mining techniques on them. The extracted knowledge is
diffused to all interested parties via the multi-agent architecture, while domain knowledge and business rules
are incorporated into the system by the use of rule-based agents. It merges the, already proven capabilities
of data mining with the advantages of multi-agent systems in terms of autonomy and flexibility, and therefore
promises a great likelihood of success.

The rest of the paper is organized as follows. Section 2 presents the extensive Recommendation Framework
in detail and describes the functional characteristics of the different types of agents that comprise it. Section 3
illustrates the basic functional operations of IPRA, an already developed add-on in a real enterprise environment.
Finally, Section 4 summarizes the work presented, and concludes this paper.

2. The Intelligent Recommendation Framework. The arrival of a new customer order designates the
initialization of the Intelligent Recommendation Framework (IRF) operation. All customer order preferences
are, at first, gathered by the system operator via a front-end agent and are then transferred to the backbone
(order) agents for processing. The order processing agents are of different types, each one related to a specific
entity of the supply chain (company, customers, suppliers, products), and manage entity-specific data. In order
to establish connectivity to the ERP system’s database and access ERP data, another agent has also been
implemented. By the use of DM techniques, all related entities’ profiles are constructed for the recommendation
procedure to be based on. When all processes are finalized, the front-end agent returns to the operator the
intelligent recommendations produced by the framework, along with an explanatory memo. These recommen-
dations are not designed to substitute the human operator, rather to aid him/her and the company to increase
profit and efficiently manage customer orders and company supplies.

2.1. IRF Architecture. The general IRF architecture is illustrated in Figure 2.1. The IRF agents belong
to one of six different agent types (Q1 — Q) and are listed in Table 2.1. The main characteristics and the
functionality of each type are discussed in the following paragraphs.

TaBLE 2.1
The IRF agent types and their functionality

Agent type Name Functionality
Q1 COA — Customer Order Agent GUI agent
Q2 RA - Recommendation Agent Organization & Decision Making agent
Q3 CPTA — Customer Profile Identification Agent Knowledge Extraction agent
Qa SPIA Supplier Profile Identification Agent Knowledge Extraction agent
Qs IPIA Inventory Profile Identification Agent Knowledge Extraction agent
Qs ERPA Enterprise Resource Planning Agent Interface agent

2.1.1. Customer Order Agent type (COA). COA is an interface agent that may operate at the
distribution points, or at the telephone center of an enterprise. COA enables the system operator to: a) transfer
information into and out of the system, b) input order details into the system, and c) justify, by means of
visualization tools, the proposed recommendations. When an order arrives into the system, COA provides the

A MAS for enhancing ERP intelligence 103

& & & H

Custgmers Custgmers Custgmers Custgmers
End Users g

Opegator Opegator Opelator Opegator
q Ci Ci Ci Ci
Gralp:m;fal User Order Order Order Order
AIERETED Agent Agent Agent Agent
Layer i L
Organization > Recommendatior* <

& Agent
Decision Making
Layer
Customer Inventory Supplier
Information Pattern Pattern Pattern
Processing Identificatio! Identification Identification
Layer Agent Agent Agent

ERP
Agen .

Middleware Layer

XML-SQL
Connector

Data Source
Layer

Fig. 2.1. The IRF architectural diagram

human agent with basic functionalities for inserting information on the customer, the order details (products
and their corresponding quantities), payment terms (cash, check, credit etc.), backorder policies and, finally,
the party (client or company) responsible for transportation costs. COA also encompasses a unit that displays
information in various forms to explain and justify the recommendations issued by the RA.

2.1.2. Recommendation Agent type (RA). The RA is responsible for gathering the profiles of the
entities involved in the current order and for issuing recommendations. By distributing the profile requests
to the appropriate Information Processing Layer agents (CPIA, SPTA and IPTA - each one of them operating
on its own control thread), and by exercising concurrency control, this agent diminishes the cycle-time of the
recommendation process. RA is a rule-based agent implemented using the Java Expert System Shell (JESS) [9].
Static and dynamic business rules can be incorporated into the RA. The latter must be written into a document
that the agent can read during its execution phase. In this way, business rules can be modified on-the-fly,

without the need of recompiling, or even restarting the application.

2.1.3. Customer Profile Identification Agent Type (CPIA). CPIA is designed to identify customer
profiles, utilizing the historical data maintained in the ERP system. The process can be described as follows:
Initially, managers and application developers produce a model for generating the profiles of customers. They
select the appropriate customer attributes that can be mapped from the data residing in the ERP database;
these are the attributes that are considered instrumental for reasoning on customer value. Then, they decide

104 A. L. Symeonidis et al.

on the desired classification of customers, i.e., added-value to the company, discount due to past transactions
etc. CPIA, by the use of clustering techniques, analyzes customer profiles periodically, and stores the outcome
of this analysis into a profile repository for posterior retrieval. When a CPIA is asked to provide the profile
of a customer, the current attributes of the specific customer are requested from the ERP database and are
matched against those in the profile repository, resulting into the identification of the group the specific customer
belongs to. During the development phase, one or more CPIA agents can be instantiated, and the distinction
of CPIAs into training and recommendation ones, results to quicker response times when learning and inference
procedures overlap.

2.1.4. Supplier Pattern Identification Agent Type (SPIA). SPIA is responsible for identifying
supplier profiles according to the historical records found in the ERP database. In a similar to CPIA manner,
managers identify the key attributes for determining a supplier’s value to the company and their credibility.
SPTA then generates supplier profiles and updates them periodically. For every requested item in the current
order, the RA identifies one or more potential suppliers and requests their profiles from the SPTA. SPTA has to
retrieve the current records of all the suppliers, identify for each one the best match in the profile repository,
and return the corresponding profiles to the RA. Then RA can select the most appropriate supplier combination
(according to its rule engine), and recommend it to the human operator. SPIA is also responsible for fetching
to RA information about a specific supplier, such as statistical data on lead-times, quantities to be procured
etc.

2.1.5. Inventory Profile Identification Agent Type (IPIA). IPIA is responsible for identifying prod-
uct profiles. Product profiles comprise raw data from the ERP database (i.e., product price, related store,
remaining quantities), unsophisticated processed data (for example statistical data on product demand) and
intelligent recommendations on products (such as related products that the customer may be willing to pur-
chase). Once more, managers and application developers have to identify the company priorities and map the
profile to the data maintained by the ERP. Besides the directly—derived data, IPTA is responsible for identifying
buying patterns. Market basket analysis can be performed with the help of association rule extraction tech-
niques. Since this process is, in general, time-consuming, two or more IPIAs can be instantiated to separate the

recommendation from the learning procedure.

2.1.6. Enterprise Resource Planning Agent Type (ERPA). ERPAs provide the middleware be-
tween the MAS application and the ERP system. These agents behave like transducers [11], because they
are responsible for transforming data from heterogeneous applications into message formats that agents can
comprehend. An ERPA handles all queries posted by CPIAs, IPIAs, and SPIAs by connecting to the ERP
database and fetching all the requested data. It works in close cooperation with an XML connector which
relays XML-SQL queries to the ERP and receives data in XML format. ERPA is the only IRF agent type that
needs to be configured properly, in order to meet the connection requirements of different ERP systems.

2.1.7. Technologies adopted. IRF has been developed with the use of Agent Academy (AA) [20, 27] a
platform for developing MAS architectures and for enhancing their functionality and intelligence through the
use of DM techniques. All the agents are developed over the Java Agent Development Framework (JADE) (]2],
which conforms to the FIPA specifications [28], while the required ontologies have been developed through the
Agent Factory module (AF) of AA. Data mining has been performed on ERP data that are imported to AA
in XML format, and are forwarded to the Data Miner (DM) of AA, a DM suite that expands the Waikato
Environment for Knowledge Analysis (WEKA) tool [29].

The extracted knowledge structures are represented in PMML (Predictive Model Markup Language), a
language that efficiently describes clustering, classification and association rule knowledge models [6]. The
resulting knowledge has been incorporated into the agents by the use of the Agent Training Module (ATM) of
AA. All necessary data files (ERP data, agent behavior data, knowledge structures, agent ontologies) are stored
into AA’s main database, the Agent Use Repository (AUR). Agents can be periodically recalled for retraining,
since appropriate agent tracking tools have been incorporated into Agent Academy, in order to monitor agent
activity after their deployment.

2.2. Installation and Runtime Workflows. Once a company chooses to add IRF to its already oper-
ating ERP system, a few important steps have to be performed. The installation procedure of the IRF is shown
in Figure 2.2.

A MAS for enhancing ERP intelligence 105

Business Process Assessment

Gusiness Processes Analysis and Mappin%

Business Rules Development Gntology CreatioDGystem Parameter ConfiguratioDGML-SQL Queries ConstructioD

Reconfiguration
Agent Type Instantiation
No Reconfiguration
System Ready
~ ~
~ ~
~
~ ~
~

Y

)

Fic. 2.2. Installing IRF on top of an existing ERP

At first, the company’s business process expert, along with the IRF application developers have to make a
detailed analysis and assessment of the current customer order, inventory and products procurement processes.
The results are mapped to the recommendation process of the add-on and the relevant datasets are delineated
in the ERP.

After modeling the recommendation procedure according to the needs of the company, parallel activities
for producing required documents and templates for the configuration of the MAS application follow. Fixed
business rules incorporating company policy are transformed to expert system rules, XML-SQL queries are
built and stored in the XML documents repository, ontologies (in RDF'S format) are developed for the messages
exchanged and for the decision on the workflow of the agents, agent types instantiation requirements are
defined (at different workstations and cardinalities) and other additional parameters are configured (i.e., simple
retraining time-thresholds, parameters for the data-mining algorithms, such as support and confidence for
market basket analysis etc).

Once bootstrapped, reconfiguration of the system parameters is quite easy, since all related parameters are
documents that can be conveniently re-engineered. Figure 2.3 illustrates the workflow of the SPIA, where all
the tasks described earlier in this section, can be detected. In case IRF needs to be modified due to a change in
the company processes, the reconfiguration path must be traversed. The IPTA and CPIA workflows are similar
and, thus, they are omitted.

2.3. System Intelligence.

2.3.1. Benchmarking customer and suppliers. In order to perform customer and supplier segregation,
CPIA and SPIA use a hybrid approach that combines data mining and soft computing methodologies. Clustering
techniques and fuzzy inferencing are adopted, in order to decide on customer and supplier “quality”. Initially,
the human experts select the attributes on which the profile extraction procedures will be based on. These
attributes can either be socio-demographic, managerial or financial data, deterministic or probabilistic. We
represent the deterministic attributes, which are directly extracted from the ERP database by ERPA, as Det;,
i =1,...n, where n is the cardinality of the selected deterministic attributes. On the other hand, we represent
the average (AVG) and standard deviation values (ST D) of probabilistic variables, which are calculated by
ERPA, as AVG; and STD;, j = 1..m, where m is the cardinality of the selected probabilistic attributes P;.

106 A. L. Symeonidis et al.

GOA sends order preferences to RD

RA requests order profiles

for analysis has exceeded

Pre-specified time-window ﬁ

Guery ERPA for all supplier data

Preprocess

GPIA recieves request for customer's profileg

Guery order specific supplier data
Preprocess

@atch current with stored proﬂlea

Gharacterize clusters through fuzzy inferenca

Send profiles to RA

GA applies fixed business policies to proﬁle§

|

COA communicates order to MAS operator

.

Fia. 2.3. The Workflow of SPIA

Each customer/supplier is thus represented by a tuple:
< Detq, ..., Det,, AVGl, STDl, ey AVGm, STDm) > (21)

where ¢ = 1..n, j = 1..m, i + j > 0. Since real-world databases contain missing, unknown and erroneous data
[13], ERPA preprocesses data prior to sending the corresponding datasets to the Information Processing Layer
Agents. Typical preprocessing tasks are tuple omission and filling of missing values.

After the datasets have been preprocessed by ERPA| they are forwarded to CPIA and SPIA. Clustering is
performed in order to separate customers/suppliers into distinct groups. The Maximin algorithm [17] is used
to provide the number of the centers K that are formulated by the application of the K-means algorithm [19].
This way K disjoint customer/supplier clusters are created.

In order to decide on customer/supplier clusters’ added-value, CPIA and SPIA employ an Adaptive Fuzzy
Logic Inference Engine (AFLIE), which characterizes the already created clusters with respect to an outcome
defined by company managers, i.e., supplier credibility. Domain knowledge is incorporated into AFLIE [8],
providing to IRF the capability of characterization.

A MAS for enhancing ERP intelligence 107

The attributes of the resulting clusters are the inputs to AFLIE and they may have positive () or negative
("\,) preferred tendencies, depending on their beneficiary or harmful impact on company revenue. Once domain
knowledge is introduced to AFLIE in the form of preferred tendencies and desired outputs, the attributes are
fuzzified according to Table 2.2.

TABLE 2.2
Fuzzy variable definition and Interestingness of dataset atiributes

Variable Fuzzy Tuple

Input Preferred Tendency

(Det;, [LOW, MEDIUM, HIGH],

Det;

i 7 [Det;, , Det;,], Triangular)
Det. N (Det;, [LOW, MEDIUM, HIGH],
‘ [Det;, , Det;,], Triangular)

AV Gy, [LOW,MEDIUM,HIGH]

A . (s)))
VG 7 [AVGj,, AVGj,], Triangular)

AV G N (AVGy, [LOW,MEDIUM, HIGH],
J [AVGj,, AV G},], Triangular)

Output Value Range
v Varies from Y7 to Ya (Y, [#(Y2 — Y1) /x Incremental Fuzzy Values],
with a step of z Y1, Y2], Triangular)

The probabilistic variables are handled in an adaptive way and are used as inputs only when Chebyshev’s
inequality (Eq. 2.2) is satisfied [21]:

(STD

J
€2

2
P{|P; — AVG,le} <) ,for any e> 0 (2.2)
Eq. 2.2 ensures the concentration of probabilistic variables near their mean value, in the interval (AVG; —
¢, AVG, +¢). No attributes with high distribution are taken as inputs to the final inference procedure, avoiding
therefore decision polarization.
The formulation of the inputs (3 values: [LOW, M EDIUM, HIGH]) leads to 3V Fuzzy Rules (FR), where

v is the number of AFLIE inputs. F'Rs are of type:

If X;is LX; (k) and X5 is LX2(k) and...and X, is LX,, (k)
Then Y is LY (1), k = 1.3, | = 1..q,

where ¢ is the cardinality of the fuzzy values of the output. Triangular membership functions are adopted
for all the inputs and outputs, whereas maximum defuzzification is used for crisping the F'Rs.

All inputs are assigned a Corresponding Value (C'V'), ranging from —1 to 1, according to their company
benefit criterion (Table 2.2). The Output Value (OV') of Y is then calculated for each F'R as:

ov= > w0V (2.3)

1=1..n+m

where w; is the weight of importance (0< w; < 1) of the i input attribute.

The OV s are mapped to Fuzzy Values (F'V'), according to the degree of discrimination of the output decision
variables. By categorizing the range of the output into ¢ fuzzy values, the OV — F'V mapping is based on
the following formula:

(2.4)

FV(OV) = RND [OV : [72(" i m)]]

q

where RN D(z) is the rounding function of = to the closest integer (i. e., MEDIUM for z = 3,
MEDIUM HIGH for x = 4 etc).

108 A. L. Symeonidis et al.

After all clusters have been characterized, the corresponding OV's, along with the cluster centers, are stored
inside a profile repository for posterior retrieval. This process signals the end of the training phase of CPIA
and SPTA.

In real time, when a new order comes into the system, RA requests the corresponding customer profile and
the profiles of the suppliers that are related to the ordered products. CPIA and SPIA request, in turn, the
attributes of these entities from ERPA, and match them against the profiles stored inside the profile repository,
by the use of the Assigned Cluster (AC) criterion. AC' is a closeness-to-cluster-center function, given by the
following equation:

where k is the number of clusters, n the number of attributes, ¢; is the i*" attribute value of the cluster center
vector ¢ = (c1, ¢, ..., ¢n), and xc;; the ith attribute value of the j* current vector xc; = (wcj1, 2¢)2, ..., TCjn).
The winning cluster along with its OV is returned to RA.

2.3.2. IPIA products profile. The IPTA plays a dual role in the system:

1. It fetches information on price, stock, statistical data about demand faced by the ordered products,
and

2. It provides recommendations on additional items to buy, based on association rule extraction tech-
niques.

In order to provide adaptive recommendations on ordering habits, IPTA incorporates knowledge extracted
by the Apriori algorithm ([1, 10]. The association rules extracted are stored inside the profile repository for
later retrieval.

Special attention should be drawn to the fact that the transactions included into the dataset to be mined may
span several different customer order periods. XML-SQL queries can be adapted to perform data mining either
to the whole dataset or the datasets of specific periods. Thus, TPTA is highly adaptable, both for companies
in the general merchandize domain, but also for companies that sell seasonal goods (for example toys). The
recommendations of IPTA, as well as the information concerning stock availability and price, are sent to the RA.

2.3.3. RA Intelligence. As mentioned earlier, RA is an expert agent that incorporates fixed business
policies applied to customers, inventories, and suppliers. These rules are related, not only to raw data retrieved
from the ERP database and order preferences provided by customers, but also to the extracted knowledge
provided by the Information Processing agents. There are three distinct rule types that RA can realize:

1. Simple (If...Then...) statements,

2. Rules describing mathematical formulas, and

3. Rules providing solutions to search problems and constraint satisfaction problems.
An example is provided below for each one of these rule types:

Example 1: Simple Rules
Additional discounts or burdens to the total price of an order can be implemented by the use of simple rules
(knowledge extracted is denoted in bold):

1. IF (TotalOrder Revenue >= 100) AND (CustomerValue = LOW)
THEN Total Discount+ = 5%;

2. IF (CustomerValue = LOW) THEN Total Discount— = 5%;

3. IF (ProductType = ChristmasProducts) AND (TotalQuantity >= 100)
THEN ProductDiscount+ = 10%;

4. IF (RecommendedProductsPurchased = True)
THEN ProductDiscount+ = 5%;

Example 2: Mathematical Formulas
(a) Re-order/Order-up-to-level metric sS

A MAS for enhancing ERP intelligence 109

The re-order/order-up-to-level-point metric (s5) provides efficient inventory management for either no-fixed
cost orders or fixed cost orders [16]. In the case of no-fixed cost orders (where s = 5), the reorder point is
calculated as:

sS=AVGD - AVGL + z -/ AVGL - STDD? + AVGD? - STDL? (2.6)

where z is a constant chosen from statistical tables to ensure the satisfaction of a pre-specified value for the
company’s service level. Table 2.3 illustrates the value of z in correlation with the desired service level. In most
legacy ERP systems such attributes have to be provided by users and cannot be derived automatically.

TABLE 2.3
Service Level and corresponding z Value

Service Level 90% 91% 92% 93% 94% 95% 96% 97% 98% 99% 99.9%
z 1.29 134 1.41 148 156 1.65 1.75 1.88 2.06 2.33 3.08

Ordered quantity
0% LoB vos 100%

[Do not split order and fulfill order later

[0 Split order and fulfill a part now and the rest later

B Do not split order and fulfill order now

Fia. 2.4. RA order splitting policy

(b) Splitting Policy

A splitting policy is applied when company stock availability cannot satisfy order needs. Upon arrival of a
new order, the quantity of ordered items and available stock are cross-checked. If the requested quantities are
available, the order is fulfilled immediately. Otherwise, the final supplying policy that the RA recommends is
set according to the schema illustrated in Figure 2.4.

The LOB and UOB thresholds depend on the estimated customer value. In case we choose to incorporate
product discount and customer priority into our splitting policy (for example, customers that enjoy better
discount and have a higher priority to have a lower LOB and an higher UOB), we may adjust LOB and UOB
according to the following equations:

LOB = oy - exp|—(byip + baid)] (2.7)

UOB = oy, - exp(bpup + baud) (2.8)

where p is the priority normalized factor, d is the discount normalized factor, while the weighting factors
(e, bpi, baty Ay, bpu, baw) are estimated in order to satisfy minimal requirements on LOB and UOB range.

If available stock is below LOB% of the ordered quantity, the entire order is put on hold until the company
is supplied with adequate quantities of the ordered item. When item availability falls within the [LOB—-UOB]%
range of the ordered quantity, the order is split. All available stock is immediately delivered to the customer,
whereas the rest is ordered from the appropriate suppliers. Finally, in case the available stock exceeds UOB%
of the ordered quantity, the order is immediately preprocessed and the remaining order percentage is ignored.

Example 3: Problem Searching
(a) Problems that require heuristics application and/or constraint satisfaction

Based on raw data from the ERP and on knowledge provided by SPTA, Recommendation Agents can yield
solutions to problems like the selection of the most appropriate supplier with respect to their added-value,

110 A. L. Symeonidis et al.
proximity to the depleted company store, or the identification and application of an established contract.

(b) Enhanced Customer Relationship Management

Using the knowledge obtained by customer clustering, RA can implement a variety of targeted discount
strategies in the form of crisp rules. Thus, the company has additional flexibility in its efforts to retain valuable
customers and entice new ones with attractive offers [23].

TABLE 2.4
IPRA inputs and outpuls

CPIA SPIA IPIA RA
Preferred Preferred
Input Tendéncy Input Tendency Input Input
Account Stock .
balance N Account balance N Availability Ordered Quantity
Credit Limit 2 Credit Limit 2 Ttem pri Stock
redit Limil redit Limi em price Availability
Turnover rd Turnover rd Supplier ids Re-order metric
Average Item Supplier
Average Order N Average Order N Turnover (AIT) Geop I; hic
Periodicity Completion for the last two L rap
ocation
years
Standard Standard Monthly L Ord
deviation of - deviation of - Standard Bowe]: rder
Order Order Deviation of reak-point
Average Order 2 Average N Upper Order
Income Payment Terms Break-point
Standard Standard Customer
deviation of - deviation of - Geographic
Order Income Payment Terms Location
Supplier
Average N Geographic N
Payment Terms :
Location
Standard
deviation of -
Payment Terms
Customer
Geographic N
Location
IPRA Outputs
Output Value Range Output Value Range Output Output
Varies from 0
DISCOUNT | - 30%, using Ranging from SPLITTING
a step of 5% 0-1,usinga POLICY
P ste l;ased on PROPOSED
. CREDIBILITY thepnumber of ORDER ADDITIONAL
Varies f.rom 0 i ITEMS DISCOUNT
PRIORITY — 3, using a supphier
step of 1 clusters CUSTOMER
STATISTICS

3. An IRF Demonstrator. In order to demonstrate the efficiency of IRF, we have developed IPRA [26],
an Intelligent Recommender module that employs the methodology presented in Chapter 5. The system was
integrated into the IT environment of a large retailer in the Greek market, hosting an ERP system with a
sufficiently large data repository. TPRA was slightly customized to facilitate access to the existing Oracle™
database.

Our system proved itself capable of managing over 25.000 transaction records, resulting in the extraction
of truly “smart” suggestions. The CPIA and the SPIA performed clustering of over 8.000 customers (Drg,
dataset) and 500 suppliers (D, dataset), respectively, while IPIA performed association rule extraction on

A MAS for enhancing ERP intelligence 111

14125 customer transactions (Djq, dataset).

All the attributes used by the Information Processing agents as inputs for DM, their corresponding preferred
tendency, the inputs of the RA JESS engine, as well as the outputs of the IPRA system and their value range,
are listed in Table 2.4.

The Information Processing agents of IPRA, in order to provide RA with valid customer and supplier
clusters, as well as interesting additional order items, performed DM on the relevant datasets. For the specific
company, CPTA and SPIA have identified each five major clusters representing an equal number of customer
and supplier groups, respectively. Resulting customer (supplier) clusters, as well as the discount and priority
(credibility), calculated by the CPIA (SPIA) Fuzzy Inference Engine for each cluster, are illustrated in Table
3.1 and Table 3.2.

TaBLE 3.1
The resulting customer clusters and the corresponding Discount and Priority values

Center ID Population (%) Discount (%) Priority

0 0.002 20 High

1 10.150 10 Medium

2 46.600 15 Medium

3 22.240 10 Medium

4 20.830 5 Low
TAaBLE 3.2

The resulting supplier clusters and the corresponding Supplier Value towards the company

Center ID Population (%) Value

0 15.203 Low

1 10.112 Medium

2 25.646 Low

3 34.521 Medium

4 13.518 High
TaBLE 3.3

The generated association rules with the predefined support and confidence thresholds.

Generated Rules Support Confidence

25 2% 90%
10 4% 90%

IPTA, on the other hand, has extracted a number of association rules from the records of previous orders,
as shown in Table 3.3.

il Customer Order Agent) ;Iglil

Customer Id 14416 Payment method Credit 120 days hd
Transportation Cost | Client v | Backorder Policy Split Order hd
ProductiD | Product Name Quantity ProductiD | ProductName | Product QTY

5667 Scrabble - 67457 Monopaoly |100
67457 Monopaly 57567 Trivial Pursuit |50

57567 Trivial Pursuit m 55667 |Scrabble 30
66443 Chess Board

67654 Battleships
99495 Tabu
3R548 Snln ¥

[processoer || ent |

Fia. 3.1. GUI of Customer Order Agent with information on the new order

112 A. L. Symeonidis et al.

As already mentioned, upon receiving an order, the human agent collects all the necessary information,
in order to provide IPRA with input. Data collected are handled by COA, the GUI agent of the system. An
instance of the GUI is illustrated in Figure 3.1.

ol
Customer|D PaymentTern [¢]
Order Priority Medium Discount 10% More Info...
initialPrice [1248 | FinalPice [1120]
PR T=T | _ProductiD_|_Description |___QTY1__ [DeliveryDays1|__GTY2 _[Delfvery Days 2]
67457 Monopaly 15 3 0 0
R - S R
Price : 340

Items

Productld | Description | Suppot% |Confidence % | Checkto add |

l- 54224 Battleships 5% a0% 7] Add o Order

mss W Availabilly \ ‘ 36548 Othello 5% 90% [
|Prauucl Imo” Customer Stats ”Backlu Order Placemam”\nw Supplier Info ” Exit I

/ i \
Supplier Order Recommendation =101 x|

100% " Supply Proposition
Product ID Description SupplierID_|_Product @TY | Delivery Days | Supplier Value
57567 Trivial Pursuit 316 237 5 Medium

87%
5%
62%
50% |
& Y |Backlo Order Placemnml ffiew Customer Imal I Exit I
12% I .
|

Fia. 3.2. The final IPRA Recommendation

All information on items and quantities to be ordered, backorder policy, payment method, and transporta-
tion costs are given as input to IPRA. When the order process is initialized, COA forwards to the CPTA, SPTA,
IPTA and RA respectively the already collected information. CPIA checks on the cluster the client falls into,
SPIA decides on the best supplier, (according to his/her added-value), in case an order has to be placed to
satisfy customer demand, IPIA proposes additional items for the customer to order, and all these decisions are
passed on to the RA, which decides on the splitting policy, (if needed) and on additional discount.

Figure 3.2 illustrates the final recommendation created. Detailed information on the order and its products,
customer suggested priority and discount, customer clusters, supplier suggested value and supplier clusters,
additional order items, suggested order policy and statistics, are at the disposal of the human agent, to evaluate
and realize the transaction at the maximal benefit of the company.

4. Conclusions. An ERP system, although indispensable, constitutes a costly investment and the process
of updating business rules or adding customization modules to it is often unaffordable, especially for SMEs.
The IRF methodology aspires to overcome the already mentioned deficiencies of non DS-enabled ERP systems,
in a low-cost yet efficient manner. Knowledge residing in a company’s ERP can be identified and dynamically
incorporated into versatile and adaptable CRM/SRM solutions. IRF integrates a number of enhancements into
a convenient package and establishes an expedient vehicle for providing intelligent recommendations to incoming
customer orders and requests for quotes. Recommendations are independently and perpetually adapted, without
an adverse impact on IRF run-time performance. IRF architecture ensures reusability and re-configurability,
with respect to the underlying ERP. Table 3.4 summarizes the key enhancements provided by the augmentation
of ERP systems with the IRF module.

REFERENCES

[1] A. Amir, R. FeELDMAN, aAND R. KasHi, A new and versatile method for association generation, Information Systems, 22
(1999), pp. 333 347.

[2] F. BeLuiIFEMINE, A. Pocal, AND R. Rimassa, Developing multi-agent systems with JADE, Lecture Notes in Computer
Science, 1986 (2001), pp. 89 101.

[3] C. CarLssoN aND E. TurBaN, Dss: directions for the next decade, Decision Support Systems, 33 (2002), pp. 105-110.

[4] K. L. Cuoy, B. Leg, anp V. Lo, Design of an intelligent supplier relationship management system: a hybrid case based
neural network approach, Expert Systems with Applications, 24 (2003), pp. 225-237.

A MAS for enhancing ERP intelligence

TaBLE 3.4

113

IRF enhancements to ERPs

IRF + ERP Legacy ERPs
Static Busi Rul i e Yes
atic Business es
u u Provided as rule documents Hard-coded by the ERP vendor.
changed on the fly.

Dynamic Business Rules Applied to data + knowledge Applied only to data

Yes No
Market Basket Analysis i

y Added on?lne to the (Unless external MBA is performed)
recommendation procedure

Recommendation .
Procedure Automatically generated Through reports

Inventory Management

Thresholds automatically
adapted

Thresholds inserted manually if
applicable (Unless SCM module

incorporated)
Decision cycle-time Short Long
Y (Not related to database size) (Related to database size)
. . Yes
Distributed Decision . No
Making Recommendations can be used
by lower level personnel

Adaptability High Low
Autonomy Yes No
Customers Intelligent Yes No
Evaluation (Unless CRM module incorporated)
Suppliers Intelligent Yes No
Evaluation (Unless SRM module incorporated)
Information Overload Hich Small
Reduction g (Through reports)

Low High
Cost of enhancement (Use of AA platform) (Custonuzat(lJ(())n?él;rd party DS

[5] K. L. Cuoy, W. B. Leg, anp V. Lo, Development of a case based intelligent customer-supplier relationship management

(6]
[7]

[8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]
[17]

[18]
[19]

[20]

system, Expert Systems with Applications, 23 (2002), pp. 281-297.

Data MiNING GROUP, Predictive model markup language specifications (pmml), ver. 2.0., tech. report, The DMG Consortium,

2001.
T.
180.
A
E.
A%
M
S.
J.
C.
O

tions, 21 (2001), pp. 191 202.

H. Davenporr, The future of enterprise system-enabled organizations, Information Systems Frontiers, 2 (2000), pp. 163—

. A. FrEITas, On rule interestingness measures, Knowledge-Based Systems, 12 (1999), pp. 309-315.
J. Friepman-HiLL, Jess, The Java Ezrpert System Shell, Sandia National Laboratories, Livermore, CA, USA, 1998.
. GanTI, J. GEHRKE, AND R. RAMAKRISHNAN, Mining very large databases, Computer, 32 (1999), pp. 38-45.
. R. GenNesgreTH AND S. KercupreL, Software agents, Communications of the ACM, 37 (1994), pp. 48 53.
H. HaeckieL AND R. NorLaN, Managing by wire, Harvard Business Review, October 1994, pp. 122 132.
Han anD M. KaMBER, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, 2001.
W. HorsappLE AND M. P. SENA, Erp plans and decision-support benefits, Decision Support Systems, (2004).
. B. Kwon anp J. J. Ler, A multi agent intelligent system for efficient erp maintenance, Expert Systems with Applica-

S. D. Levi, P. KaMinsky, aAND S. E. Levi, Designing and managing the supply chain, McGraw-Hill, 2000.
C. G. LooNEY, Pattern Recognition Using Neural Networks: Theory and Algorithms for Engineers and Scientists, Oxford

University Press, 1997.

T. W. MALONE, Inventing the organizations of the twentieth first century: control, empowerment and information technology,
in Harvard Business Review Sept/Oct 1998, Harvard Business School Press, 1998, pp. 263 284.

J. B. McQUEEN, Some methods of classification and analysis of multivariate observations, in Proceedings of Fifth Berkeley
Symposium on Mathematical Statistics and Probability, L. M. L. Cam and J. Neyman, eds., 1967, pp. 281 297.

P. A. Mitkas, D. KeHaGias, A. L.. SYMEONIDIS, AND I. ATHANASIADIS, A framework for constructing multi-agent appli-
cations and training intelligent agents, in Proceedings of the 4th International Workshop on Agent-Oriented Software
Engineering, Springer-Verlag, 2003, pp. 1-16.

114

[21]
[22]
23]
[24]

[25]
[26]

27]

28]
[29]
30]

[31]

A. L. Symeonidis et al.

A. Parouuis, Probability, Random Variables, and Stochastic Processes, EDITION:2nd; McGraw-Hill Book Company; New
York, NY, 1984.

Y. Peng, T. Finin, Y. LaBrou, B. Cru, W. ToLoNE, AND A. BouGHANNAM, A multi agent system for enterprise
integration, Applied Artificial Intelligence, 13 (1999), pp. 39 63.

R. T. Rust, V. A. ZeiTHAML, AND K. LEMON, Driving customer Equity: How customer lifetime value is reshaping corporate
strategy, The Free Press, 2000.

C. RyagieLsky, J. C. WanNg, anp D. C. YEN, Data mining techniques for customer relationship management, Technology
in Society, 24 (2002), pp. 483 502.

SHAPIRO, Bottom-up vs. top-down approaches to supply chain modeling, Kluwer, 1999, pp. 737-759.
. L. Symeoninis, D. KeHaGias, aAND P. A. MiTkas, Intelligent policy recommendations on enterprise resource planning
by the use of agent technology and data mining techniques, Expert Systems with Applications, 25 (2003), pp. 589 602.
. L. SymeonNIDIs, P. A. MiTtkas, aND D. KEHAGIAS, Mining patterns and rules for improving agent intelligence through
an integrated multi-agent platform, in Proceedings of the 6th IASTED International Conference on Artificial Intelligence
and Soft Computing, 2002.
THE FIPA FouNpaTiONs, Fipa-sl specifications, 2000, fipa sl content language specification, tech. report, The FIPA Consor-
tium, March 2000.

I. H. WitTEN AND E. FRANK, Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations,
Morgan Kaufman, 2000.

M. WooLDRIDGE, Intelligent agents, in Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence,
G. Weiss, ed., The MIT Press, Cambridge, MA, USA, 1999, ch. 1, pp. 27 78.

J. H. WorLEY, G. R. CasTiLLo, .. GENESTE, AND B. GraABOT, Adding decision support to workflow systems by reusable
standard software components, Computers in Industry, 49 (2002), pp. 123 140.

> =

>

Edited by: Marcin Paprzycki, Niranjan Suri
Received: October 1, 2006
Accepted: December 10, 2006

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 8, Number 1, pp. 115-130. http://www.scpe.org © 2007 SWPS

o,..

DATA MANAGEMENT IN DISTRIBUTED SYSTEMS: A SCALABILITY TAXONOMY

A VIJAY SRINIVAS AND D JANAKIRAM*

Abstract.

Data management is a key aspect of any distributed system. This paper surveys data management techniques in various
distributed systems, starting from Distributed Shared Memory (DSM) systems to Peer-to-Peer (P2P) systems. The central focus is
on scalability, an important non-functional property of distributed systems. A scalability taxonomy of data management techniques
is presented. Detailed discussion of the evolution of data management techniques in the different categories as well as the state
of the art is provided. As a result, several open issues are inferred including use of P2P techniques in data grids and distributed
mobile systems and the use of optimal data placement heuristics from Content Distribution Networks (CDNs) for P2P grids.

1. Introduction. Data management is an important facet of distributed systems. Data management
encompasses the ability to describe data, handle multiple copies (replication or caching) of data objects or
files, support for meta-data as well as data querying and accessing. Different approaches for data management
have given importance to these different aspects and provide explicit support, while other aspects are implicitly
or indirectly supported. For instance, Distributed Shared Memory (DSM) systems and shared object spaces
handled consistency of replicated data, but supported meta-data indirectly through object lookups.

Orthogonal to the above mentioned issues of managing data, the main non-functional challenges are fault-
tolerance, scalability and security, as illustrated in [32]. We survey various distributed systems from the per-
spective of scalability of data management solutions and provide a scalability taxonomy. We classify data
management approaches into three categories: Centralized /Naively Distributed (CND) techniques, Sophisticat-
ed/Intermediate Data (SID) management techniques and Large Scale Data (LSD) management techniques. We
give a brief view of the evolution of data management in each of the categories.

CND techniques for data management were used by DSM systems such as TreadMarks [10], Munin [25] and
shared object spaces such as Linda [24], Orca [36] and T Spaces [4]. Many of these systems provide application
transparent replica consistency management. They use centralized or naively distributed components to achieve
the same. For instance, T Spaces uses a centralized server for consistency maintenance and for object lookups,
while Java Spaces [81] uses a centralized transaction coordinator.

SID techniques have been used mainly in data management in grid computing systems such as [51], which
provides a Replica Management Service (RMS). Some of these systems are characterized by data sharing across
autonomous organizations at intermediate scale (possibly thousands of nodes). These approaches mainly manage
replicated data in a grid computing environment. Data grids [27] handle data management as first class entities
in addition to computation issues. They are characterized by the size of the data sets, which could be order
of gigabytes or even terabytes. High Energy Physics (HEP) applications such as GriPhyN [31] and CERN [79]
are examples of data grids. Other approaches that use SID techniques include Content Distribution Networks
(CDNs) and data management in distributed mobile systems. CDNs such as Akamai [43] have been proposed
to deliver web content to users from closer to the edge of the Internet, enabling web servers to scale up. Data
management in distributed mobile systems are characterized by data sharing in the presence of mobile nodes,
exemplified by systems such as Coda [74]. The common feature across these different systems is the scale of
operation (thousands of nodes) that distinguishes SID techniques for data management. Many of these systems
assume that failures are rare and reliable servers (distributed, not centralized) are available.

LSD management techniques do not assume reliable servers. The distinguishing feature of LSD techniques
is that the execution of services is delegated to the edges of the Internet, resulting in high scalability and
fault-tolerance. LSD techniques work well over the Internet and could handle millions of nodes/data entities.
Peer-to-Peer file sharing systems such as Napster [57] and Gnutella [33], P2P file storage management systems
such as PAST [15] and Oceanstore [49] as well as P2P extensions to Distributed DataBase Management Systems
(DDBMS) such as PIER [38] and PeerDB [60] all fall into the LSD category.

A taxonomy of data grids has been provided in [87]. It compares data grids with related data management
approaches such as CDNs, DDBMS and P2P systems. A functional perspective of data management that
focuses on data location, integration, sharing and query processing as well as the different P2P systems that

*Distributed & Object Systems Lab, Dept. of Computer Science & Engg., Indian Institute of Technology, Madras, India,
http://dos.iitm.ac.in,{avs, djram@cs.iitm.ernet.in}

115

116 A Vijay Srinivas and D Janakiram

address these functionalities is given in [50]. A survey of P2P content distribution has been provided in [77].
It examines P2P architectures from the perspective of non-functional properties such as performance, security,
fairness, fault-tolerance and scalability. Our survey is broader and tries to provide the equivalent survey for grids,
P2P systems, CDNs and DDBMS. We also provide a scalability taxonomy that distinguishes our survey from
others. Further, we discuss state of the art in several of these areas and discuss how ideas/concepts/techniques
from one area can be applied to others. The reader must keep in mind that though the authors have made an
effort to be unbiased, the survey has limitations as it is perceived through their looking glass.

The rest of the paper is organized as follows. Section 2 discusses the CND techniques for data management
and includes DSMs and shared object spaces. Section 3 discusses the SID techniques and includes data manage-
ment in grids, CDNs, and distributed mobile systems. Section 4 discusses P2P data management techniques.
Section 5 explores the state of the art data management techniques in distributed systems. Section 6 concludes
the paper and includes a taxonomy figure and gives directions for future research.

2. CND Techniques: Data Replication in DSMs and Shared Object Spaces. DSM provides an
illusion of globally shared memory, in which processors can share data, without the application developer needing
to specify explicitly where data is stored and how it should be accessed. DSM abstraction is particularly useful
for parallel computing applications, as demonstrated by TreadMarks [10]. Collaborative applications such as
on-line chatting and collaborative browsing would be easier to develop over a DSM.

Page based DSMs can be more efficient, due to the availability of hardware support for detecting memory
accesses. But due to the larger granularity of sharing, page based DSMs may suffer from false sharing. Relaxed
consistency models including Release Consistency (RC) and its variants such as lazy RC allow false sharing to be
hidden more efficiently than strict consistency models [64]. Munin [25] was an early DSM system which focused
on reducing the communication required for consistency maintenance. It provides software implementation of
RC. TreadMarks [10] is another DSM system that provides an implementation of release consistency. Java/DSM
[91] provides a Java Virtual Machine (JVM) abstraction over TreadMarks. It is an example of page based DSMs,
similar to Munin and TreadMarks.

Release consistency is a widely known relaxed consistency model for DSMs. Memory accesses are divided
into synchronization (sync) and non-synchronization (nsync) operations. The nsync operations are either data
operations or special operations not used for synchronization. The sync operations are further divided into
acquire and release operations. An acquire is like a read operation to gain access to a shared location. A
release is the complementary operation performed to allow access to the shared location. Acquire and release
operations can be thought of as conventional operations on locks. There are two variations of RC, RCs,—which
realizes sequential consistency and RCp. which realizes processor consistency. RC,. maintains program order
from an acquire to any operation that follows it, from an operation to a release and between special operations.
RC). is similar, except that write to read program order is not maintained for special operations. Eager RC,
as the original RC became subsequently known [48], requires ordinary shared memory access to be performed
only when a subsequent release operation is due by the same processor. Lazy RC (LRC) is a variation of RC
in which processors further delay performing modifications until subsequent acquires by other processors and
modifications are made only by the acquiring processor. LRC intuitively assumes competing shared accesses to
be separated by synchronization operations.

2.1. Shared Object Spaces. Object based DSMs (also known as shared object spaces) alleviate the false
sharing problem by letting applications specify granularity of sharing. Examples of object based DSMs include
Linda [24], Orca [36], T Spaces [4], JavaSpaces [81] as well as an object based DSM in the .NET environment
[75]. Orca relies on an update mechanism based on totally ordered group communication to serialize access
to replicas. Even though a study has shown that the overhead of totally ordered group communication affects
application performance minimally [37]', the study was done on a Myrinet cluster. Orca has not been evaluated
on the Internet scale. T spaces is a shared object space from IBM [4] that adds database functionality to
Linda tuplespace [24] and is implemented in Java to take advantage of its wider usability. In addition to the
traditional Linda primitives of in, out, read, T spaces supports set oriented operators and a novel rendezvous
operator called rhonda. Global shared objects [90] allows heap objects in a JVM to be shared across nodes.
Based on memory access patterns of applications, it also proposes various consistency mechanisms to be realized
efficiently. However, it uses locks and per-object lock managers for keeping replicas consistent. It does not
address failures of the lock manager. Java Spaces specification from Sun [81] provides a distributed persistent

IThis is due to its choice of which objects to replicate those with high read/write ratios and efficient implementation of totally
ordered group communication.

Data Management in Distributed Systems: A Scalability Taxonomy 117

shared object space using Java RMI and Java serialization. It provides Linda-like operations on the tuple space
and uses Jini’s transaction specification to achieve serializability of write operations. It also does not address
fault tolerance, an important issue for Internet scale systems.

2.1.1. Globe. Globe [3] attempted to address the challenges of building software infrastructure for de-
veloping applications over the Internet. A key design objective of Globe was to provide a uniform model for
distributed computing. This means that Globe provides a uniform way to access common services (such as
naming, replication and communication) without sacrificing distribution transparency. Objects in Globe encap-
sulate policies for replication, migration, etc. Each object comprises multiple sub-objects, allowing an object to
be physically distributed. The different sub-objects of an object include one each for semantics (functionality),
communication (sending/receiving messages), replication and control flow. This helps the programmer to sepa-
rate functionality from orthogonal non-functional properties such as replication. Objects also help in realizing
distribution transparency by hiding implementation details behind well defined interfaces. The implementation
framework of Globe is flexible, meaning that different implementations of the same interfaces are possible. It
also provides an efficient mechanism for object lookups by using a tree based hierarchical naming space. It
must be observed that distributed object middleware such as CORBA [61] also provide similar services such as
naming and trading. But they cannot provide object-specific policies that can be provided in Globe.

2.2. Software Availability and Usage Summary. To the knowledge of the authors, T spaces and
Java Spaces are widely used and are available as open source software. Linda is a specification and has been
implemented by several groups. Orca and Globe are research prototypes, information on their deployment and
use is not available.

2.3. Observations. We have proposed a generic scalability model for analyzing distributed systems in [6].
It takes the view that scalability of distributed systems should be analyzed considering related issues such as
consistency, synchronization, and availability. We give below the essence of the model.

scalability = f(avail, sync, consis, workload, faultload)

e qawail is availability can be quantified as the ratio of the number of transactions accepted versus those
submitted.

e consis is consistency, itself a function of update ordering and consistency granularity. Update ordering
refers to the update ordering mechanisms across replicas of an object and can be one of causal, seri-
alizable or PRAM. Consistency granularity refers to the grain size at which consistency needs to be
maintained.

e sync refers to synchronization among the replicas. The two dimensions of synchronization are how often
the replicas are synchronized and the mode of synchronization (push/pull).

e workload can be broken down into workload intensity (number of transactions per second or number of
clients) and workload service demand characterization (CPU time for operations).

e faultload refers to the failure sequences and the number as well as location of the replicas.

The scalability model given above is useful to identify bottlenecks in distributed systems. By applying the
scalability model on shared object spaces, we have identified the key bottlenecks that inhibit existing shared
object spaces (with the exception of Globe) from scaling up to the Internet:

e (Centralized Components
Many existing DSMs and shared object spaces have some centralized components that affect their
scalability. For instance, Orca has a sequencer for realizing totally ordered group communication, while
others like T Spaces [4] have a centralized component for object lookups.

e Failures
Existing shared object spaces do not handle failures. For instance, JavaSpaces and global shared objects
do not handle failures of transaction coordinator, while Orca does not handle failure of the sequencer.

e Object Lookup
Given an object identifier (id), efficient mechanisms must exist that maps the id to the node that either
stores a replica or stores meta-data about the replica. Existing shared object spaces such as T Spaces
use centralized lookup mechanisms. Object lookup mechanisms in distributed object middleware such
as CORBA and DCOM also have difficulty in handling failures and scaling up.

e Consistency
Several existing DSM systems such as TreadMarks, Munin and shared object spaces such as JavaSpaces
provide relaxed consistency mechanisms such as release consistency and entry consistency. Relaxed
consistency mechanisms have also been explored in other areas [66, 52|. However, to our knowledge,

118 A Vijay Srinivas and D Janakiram

these mechanisms have not been evaluated in Internet scale systems. Peer-to-Peer (P2P) systems which
have been scaled to the Internet, such as Pastry [69] and Tapestry [17] assume replicas are read-only.

3. SID Techniques for Data Management.

3.1. Computing Grids. Globus [39] a de-facto standard toolkit for grid computing systems, relies on
explicit data transfers between clients and computing servers. It uses the GridFTP protocol [19] that provides
authentication based efficient data transfer mechanism for large grids. Globus also allows data catalogues, but
leaves catalogue consistency to the application. The paper [51] explores the interfaces required for a Replica
Management Service (RMS) that acts as a common entry point for replica catalogue service, meta-data access
as well as wide area copy. It does not address consistency issues per se. Further, the RMS is centralized and may
not scale up. The other grid paper that has addressed data management issues [29] outlines possible use-cases
and gives higher level view of the data management requirements in a grid. The quorum scheme it describes for
handling read-write may have to be modified in an Internet kind of an environment to handle quorum dynamics.
Further, it does not address various granularities of replication and uses locks for synchronization. The paper [78]
also addresses read-write data consistency in a grid environment based on a lazy update propagation algorithm.
The update propagation algorithm is based on timestamps and may not scale up to work in a large scale grid
environment (Update conflicts are handled manually by application programmer - non-trivial task). Attempts
have also been made to extend the existing 2Phase Commit (2PC) based algorithms [82]. These would need
global agreement and may be expensive in an Internet setting.

3.2. Data Grids. A generic architecture for handling large data sets in grid computing environments has
been proposed in [27]. It describes the way data grid services such as replication and replica selection can be
built over basic services of data and meta-data access. It assumes that replicas (file instances) are read-only.

GriPhyN [31] attempts to support large-scale data management in High Energy Physics (HEP) applications
as well as for astronomy and gravitational wave physics. GriPhyN provides users transparent access to both
raw and processed data (The term virtual data is used to refer to both). It can convert raw data to processed
data by scheduling required computations and data transfers. GriPhyN is built on top of Globus. It takes
application meta-data and maps it into a Directed Acyclic Graph (DAG), which is an abstract representation
of the required actions on data sets. A request planner takes the DAG and transforms it into a concrete DAG,
which can be executed by a grid scheduling system such as Condor-G [42].

CERN, the European organization for nuclear research, is also involved in handling computation on large
data sets in the HEP area. Object level as well as file level replication for data grids has been explored in
[79], a CERN effort. It also assumes files are read only and can be replicated without need for counsistency
protocols. They support replica catalogs to handle meta-data. Actual file/object transfers are achieved using
GridFTP [19].

Data related activities on the grid such as queuing, monitoring and scheduling need to be carefully man-
aged, as data could become bottleneck for data intensive applications. Currently, these data related tasks are
performed manually or by simple scripts. The main goal of Stork [85] was to make data a first class citizen on
the grid. Data placement jobs have different characteristics from compute intensive jobs and so, may have to
be treated differently. Stork is a separate scheduler for scheduling and managing data intensive jobs on grid.
Data related activities are represented in the form of a DAG. Stork can interact with higher level planners such
as Directed Acyclic Graph Manager (DAGman) which is a part of CondorG. Enhancements have been made
to DAGman to make it submit compute intensive jobs to grid schedulers such as CondorG and data intensive
jobs to Stork. Stork also supports different heterogeneous storage systems and various data transfer protocols.
Case studies have demonstrated the use of Stork as a pipeline between two heterogeneous storage systems and
for runtime adaptation of data transfers.

3.3. Content Distribution Networks. Web servers had difficulty in handling the flash crowd problem.
The flash crowd problem refers to a large number of requests coming in suddenly, overwhelming the server’s
bandwidth, or CPU or back-end transaction infrastructure. Web servers have bursty request nature, for instance
during a football match in World Cup or during an election counting process, resulting in the flash crowd
problem. Content Distribution Networks (CDNs) such as Akamai [43] have been proposed to handle this
problem and to enable web servers to scale up. A separate infrastructure of dedicated servers spread across the
Internet was built by several companies to offload content distribution from web servers or to deliver content
from the edge of the Internet. Akamai’s CDN consists of over twelve thousand servers across thousand different
networks. They use either URL rewriting or DNS interposition to redirect client requests to the proximal CDN
server.

Data Management in Distributed Systems: A Scalability Taxonomy 119

Studies have shown that caching is beneficial in CDNs as they mainly deliver images or videos (static
content) [44]. Akamai CDNs achieved cache hit rates of nearly 88% in another study that compared the CDNs
with P2P file sharing systems for distributing content [76]. This shows that CDNs are beneficial for content
delivery and can reduce response time for clients. However, another study has shown that the average response
time for clients is not affected by employing CDNs [44]. But they avoid worst case of badly performing servers
rather than routing client requests to an optimal CDN server.

Cache consistency becomes a challenging issue in order to deliver non-static content to clients. Traditional
caching mechanisms such as leasing [22] may not be directly applicable to CDNs. Origin servers would have to
keep track of each CDN proxy that caches an object (web document) from the server. It must also manage the
lease related issues for that CDN proxy, including notifying the CDN proxy on updates to the object. The CDN
proxy has to renew the lease to receive further notifications. Mechanisms for CDNs must be scalable, requiring
the CDN proxies to cooperatively maintain consistency. Cooperative leases has been proposed as a scalable
mechanism for maintaining cache consistency in CDNs. [12, 11]. Each object is assigned a A parameter, which
indicates the time or the rate 1/A at which an origin server notifies interested CDN proxies of updates to that
object. This allows consistency to be relaxed implying that CDN proxy can be notified only once every A time
units, instead of after every update. Leases are cooperative, meaning that a CDN proxy acts as a leader for a
CDN proxy group for lease related interactions with an origin server. The leader is responsible for notifying the
other CDN proxies. This reduces both the state maintained at the origin server and the number of updates it
must send.

3.4. Data Management in Distributed Mobile Systems. Distributed Mobile Systems (DMS) are
distributed systems in which some nodes may be mobile and may have constraints. These constraints could
be battery or memory or computing power related. Data could either be stored on or be accessed from mobile
devices. Different kinds of management have been identified, with respect to the level of transparency to
applications in [54]. Client transparent adaptation allows applications to seamlessly access data without being
aware of mobility, with the system providing complete support. The other extreme is a laisse-faire model
in which adaptation is entirely at user level, with the system providing no support. There are a wealth of
strategies between the two extremes, that allow applications to be aware of mobility in varying degrees including
application aware adaptation and extended client server models.

Coda [74] was one of the early file systems that allows clients to seamlessly access information, an example of
client transparent adaptation. The main goal of Coda was to enable operations to be performed on a shared data
repository, even in the face of disconnected operations. Disconnections may be frequent in DMS. Venus is the
cache manager on each client that manages the cache, hiding mobility from the application. Venus caches volume
mappings, with a volume referring to a subtree of the Coda namespace. In the face of connected operations,
Coda uses server replication and callback based cache coherence to ensure session semantics (contents will be
latest when a session is starting and after it ends) for applications. During disconnections, Venus relies on
cache contents and propagates failure to application when a cache miss occurs. When disconnection ends, Coda
reverts back to server replication by using reintegration operations using logs.

Application aware adaption has been used in the Odyssey system [21]. Odyssey provides a clean separation
between the concerns of the system and the application: system monitors resource dynamics and notifies
applications if required, but retains control of resource allocation mechanism; while applications specify mapping
of resource levels to fidelity levels. Fidelity is defined as the degree to which client data matches with server’s.
It has multiple dimensions of consistency, frame rate and image quality for video data as well as resolution for
spatial data. Building a system that allows diverse fidelity levels necessitates type awareness - client code is
responsible for handling particular data types. This is achieved through the use of wardens, which are specialized
code components that encapsulate system level support at the client. Wardens are subordinate to Viceroy, which
is responsible for centralized resource management.

Odyssey is an example of client based application aware adaptation. Rover [13] is a system that allows
client-server adaptation. This means that some code required for adaption would also reside in server. Rover
uses the concept of Relocatable Dynamic Objects (RDOs) for data types handled by the application. The
application programmer splits the program containing RDOs into those that reside on the client and those that
run on servers. This requires that the adaptation code be resident on origin servers. Another approach has
been taken to avoid this, named as proxy based adaptation. The adaptation is done by the proxy, which acts
on behalf of clients. The Barwan project [30] is an example. Flexible client server model for application aware
adaptation has been proposed in the Bayou system [84]. It allows clients to read/write shared data. Conflicts
resolution is handled by using application specific dependency checks and merge procedures. It provides eventual

120 A Vijay Srinivas and D Janakiram

consistency, an unbounded consistency mechanism that allows replicas to diverge, but be consistent after an
unspecified time.

3.5. Software Availability and Usage Summary. Globus is a widely used toolkit and is available as
an open source software. Stork is a research prototype, while GriPhyN and CERN have been deployed and
used. Akamai’s CDNs are widely deployed and used, while cooperative leases [12] is a research prototype. Coda
and Odyssey are the distributed mobile systems software that are widely deployed and used.

4. Large Scale Data Management Techniques.

4.1. P2P Data Management. We first give an overview of P2P file sharing systems starting from
the initial unstructured P2P systems such as Napster to super-peer systems such as Kazaa before discussing
structured P2P systems. We go on to discuss P2P storage management systems such as Oceanstore.

4.1.1. P2P File Sharing Systems. P2P as an area became popular only after the advent of Napster,
a file sharing system. Napster [57] was used for sharing music files. Meta-data about files is stored in a
global directory, which is stored in a centralized server. The meta-data stored information about music files
themselves, which were downloaded from peers. Gnutella [33] came up with a decentralized search protocol
for file sharing applications. Gnutella can be seen to be a purely decentralized unstructured P2P system. The
term “unstructured” refers to the lack of structure in the overlay, which is mostly a random graph. Search was
achieved by flooding the network or by using random walks. Freenet added a mechanism to route requests
to possible content locations, based on best effort semantics. Freenet also adds a notion of anonymity to the
data shared. The main advantage of the unstructured P2P systems was that complex queries could be easily
handled. By complex queries, we mean queries such as “get all nodes with processing speed > 3GHz and RAM
> 1GB and storage > 100GB”. This is because the query is sent to each node and evaluated explicitly. However,
deterministic guarantees for searching are difficult to provide in these systems.

Initial attempts at introducing structure to the overlay in P2P systems resulted in super-peer systems,
with some nodes (which have better capabilities) acting as super-peers. The other nodes act as clients to
the super-peers, which form a P2P overlay among themselves. Super-peers made searching more efficient for
complex queries, by exploiting the heterogeneous nature of nodes (some nodes have better capabilities and
more importantly, better connectivity than others). An example of a popular super-peer system is Kazaa
(http://www.kazaa.com). However, handling super-peer failures requires replicating super-peers (otherwise
the clients may become disconnected). K-replicas can be created in each cluster, resulting in reduced load on
the super-peers [93]. However, this may make replicas client aware. Other design issues in super-peer systems
include cluster size and dynamic layer management. A large cluster size is good for aggregate bandwidth, but
may create bottlenecks. A small cluster size avoids bottlenecks, but may reduce search efficiency. Dynamic
layer management allows nodes to play super-peer or client nodes adaptively, thereby making the super-peer
network more efficient [95].

The third generation of P2P systems introduced structure in the overlay network. The motivation came
from providing deterministic search guarantees, partitioning the load over the available machines effectively,
scaling to large numbers and achieving fault-tolerance. The Distributed Hash Table (DHT) was mainly used as
the structure for overlay formation. It was based on the Plaxton data structure [23]. Nodes are given identifiers
(ids) from an id space. Application objects are also given ids from the same space. The DHT provides a mapping
from the application object id (key) to the node id that is responsible for that key. Each node has a routing
table consisting of neighbours and performs routing functions to lookup objects. Various DHTs have been
proposed, each having different routing algorithms and routing table maintenance. Geometric interpretations
of DHTs have been given in [45] (but the focus of that paper was mainly to study the static resilience of DHTS).
Chord [40] is based on a ring, while Content Addressable Network (CAN) is based on a hypercube, Plaxton
data structure is based on a tree, while Pastry [69] is a hybrid geometry combining the tree and the ring. We
discuss some of these structured P2P systems in more detail below.

Chord provides the lookup abstraction of DHTs through the method: lookup(key) which maps a key to
a node responsible for it. Chord uses consistent hashing to assign m-bit identifiers to both Chord nodes and
application objects. The ids are arranged in a ring fashion (modulo 2™). A key k maps to the first node whose
id is equal to or follows k in the identifier space (this node is known as successor(k)). Each node maintains a
pointer to its successor in the ring. Routing proceeds along the ring till a key is straddled between two node
ids, with the second node id being the destination. Each node also maintains information on O(log(N)) (for
N nodes) other nodes in the form of a finger table in order to speed up routing. Even if nodes in the finger

Data Management in Distributed Systems: A Scalability Taxonomy 121

table were to fail, only efficiency is affected, but not correctness. As long as each node is able to connect to its
successor, routing is guaranteed to finish in O(log(V)) time.

CAN routes over a hypercube. Each CAN node stores a chunk (or zone) of the hash table. Each node also
stores information on adjacent zones in the table. This is again to speed up routing. Lookup requests for a
particular key are routed towards a CAN node whose zone contains that key. Requests are routed by correcting
bits (n bits for a n-dimensional hypercube). Generally tree based DHTs such as the Plaxton data structure
allow bits to be corrected in order (from MSB to LSB of key), while hypercube based DHTs allow bit correction
in any order. This makes routing more resilient to node/link failures.

Pastry can be viewed as having a hybrid geometry due to its use of tree based routing and ring like neighbour
formation. It provides a route abstraction to applications. The route(msg, key) ensures that the message with
a given id is routed to a node with the closest matching id as key among all live nodes. Each node keeps track
of its immediate neighbours in the node id space by maintaining leaf sets. They also store information about a
few other nodes that have prefix matching ids in the form of a routing table. Pastry takes into account network
locality in routing. This means that a given message will be routed to the nearest node that is alive and that has
the closest matching id as the key. Routing takes place by prefix matching, with each hop taking the message
one bit closer in the node id space, resulting in O(log(N)) hops.

4.1.2. P2P File Storage Systems. Ivy [56] is a read/write P2P file system that provides an NFS-like
abstraction for programmers. Ivy provides NFS-like semantics in a failure free environment. Under network
partitions and failures, Ivy uses logs to allow applications to detect and resolve conflicts. Ivy logs are specific to
each participant and host. The logs are stored in DHash, a DHT based P2P block storage system over which
Ivy is built. Participants can read other logs, but write only his/her log while updating the file system. Ivy uses
versioning vectors to detect conflicting updates and provides information to application level conflict resolvers.
Ivy system demonstrated a performance within 2-3 factor of NFS performance in a WAN testbed.

PAST [15] is an Internet based P2P storage utility. It offers persistent storage services, availability, security
and scalability. PAST provides insert, reclaim and retrieve operations on files. Since a file cannot be inserted
multiple times, files are assumed to be immutable in PAST. It must be noted that PAST is an extension of
Pastry to provide a file storage system. On insertion of a file into PAST, the file is routed by Pastry to k-nodes
with closest matching ids as the file id and that are alive. The set k£ will be diverse with respect to location,
capabilities and connectivity due to the randomization of the identifier space. File availability is ensured as
long as all k nodes do not fail simultaneously. It provides security using optional smartcards that are based on
a public-key cryptosystem.

Oceanstore [49] is an Internet based file system that provides persistence and availability of files by using
a two-tiered system. The upper tier consists of capable machines with good connectivity. These machines act
as an inner circle of servers for serializing updates. The lower tier consists of less capable machines which only
provide storage resources to the system. Pond [67] is an Oceanstore realization that provides fault tolerant
durable storage to applications. It uses erasure coding to store data. Erasure coding [20] is a technique that
allows a block to be split into m fragments, which are encoded into n fragments (n > m). The key property
of erasure coding is that it ensures that the block can be reconstructed from any m of the n coded fragments.
Oceanstore uses Tapestry [17], another DHT, to store the erasure coded fragments (based on fragment number
+ block id). Oceanstore uses primary copy replication to ensure consistency of file blocks. It handles read/write
data by a versioning mechanism in which any write operation creates a new version of the data. The problem
is then reduced to one of finding the most recent version of the file.

4.1.3. Observations. Ivy has the disadvantage that it leaves write conflict resolution to the application,
limiting the scalability. PAST provides a persistent caching and storage management layer on top of Pastry.
It provides insert, lookup and reclaim operations on files. However, it also assumes files are immutable, as files
cannot be inserted multiple times with the same id. Oceanstore’s versioning mechanism has not been proved
scalable. The evaluations on Oceanstore and Pond [67] have not considered conflicting write operations and
have assumed there is a single write per data block. Moreover, Oceanstore assumes an inner circle of reliable
servers to ensure consistency. Further, all the three storage systems (Ivy, PAST and Oceanstore) have been
built over DHTs. DHTs provide support for only limited queries (exact matching kind) and may not allow
application specific criterion for data placement. In the words of [47], virtualization (through DHTs) “destroys
locality and application specific information”. However, there have been recent efforts that enable DHTs to
handle advanced queries such as those handled in [18].

122 A Vijay Srinivas and D Janakiram

4.2. P2P Extensions to DDBMS. A simplistic view of a traditional distributed database management
system is that it uses a centralized server to provide a global schema and ACID properties through transactions.
Several approaches have extended these techniques to work in a decentralized manner, to apply to Internet
or P2P systems. Active XML [9] provides dynamic XML documents over web services for distributed data
integration. It is a model for replicating (whole file) and distributing (parts of a file) XML documents by
introducing location aware queries in X-Path and X-Query. It also provides a framework by which peers
perform decentralized query processing in the presence of distribution and replication. It allows peers to
optimize localized query evaluation costs, by a series of replication steps.

Edutella [58] attempts to design and implement a schema based P2P infrastructure for the semantic web.
It uses W3C standards RDF and RDF Schema as the schema language to annotate resources on the web. It
uses RDF-QEL as an expressive query exchange language to retrieve the data stored in the P2P network. It
uses super-peer routing indices that include schema and other index information.

Piazza [83] is a peer data management system that facilitates decentralized sharing of heterogeneous data.
Each peer contributes schemas, mappings, data and/or computation. Piazza provides query answering capabil-
ities over a distributed collection of local schemas and pairwise mappings between them. It essentially provides
a schema mediation mechanism for data integration over a P2P system.

P2P Information Exchange and Retrieval (PIER) [38] is a P2P query engine for query processing in Internet
scale distributed systems. PIER provides a mechanism for scalable sharing and querying of finger print infor-
mation, used in network monitoring applications such as intrusion detection. It provides best effort results, as
achieving ACID properties may be difficult in Internet scale systems. The query engine does not assume data
is loaded into databases on all peers, but is available in their natural habitats in file systems. PIER is realized
over CAN, the hypercube based P2P system.

PeerDB [60] is an object management system that provides sophisticated searching capabilities. PeerDB is
realized over BestPeer [59], which provides P2P enabling technologies. PeerDB can be viewed as a network of
local databases on peers. It allows data sharing without a global schema by using meta-data for each relation
and attributes. The query proceeds in two phases: in the first phase, relations that match the user’s search
are returned by searching on neighbours. After the user selects the desired relations, the second phase begins,
where queries are directed to nodes containing the selected relations. Mobile agents are dispatched to perform
the queries in both phases.

4.3. Software Availability and Usage Summary. Gnutella and Napster have been widely deployed
and used. Chord is a research prototype that is also available as an open source software. Pastry is also available
as an open source software and has also been used widely. CAN and Ivy are research prototypes about which
deployment information is not available. PAST and Oceanstore are research prototypes that have been deployed
and used in the Planetlab testbed.

Edutella is available as an open source software. The authors do not have information on the deploy-
ment /availability on other research prototypes Piazza, PeerDB and Active XML. PIER has been deployed in
the Planetlab testbed.

5. State of the Art Data Management.
5.1. SID Techniques: State of the Art.

5.1.1. P2P Techniques in Grids. JuxMem [2] provides a data sharing service for grids by integrating
DSM concepts with P2P systems. It is realized over (Juxtapose) JXTA [34], an emerging framework for
developing P2P applications. JuxMem uses cluster advertisements to advertise the amount of memory each
peer can provide to the global storage. It is organized into a federation of clusters, with each cluster having
a Cluster Manager (CM). The CM is responsible for storing all cluster advertisements in its group. The CMs
across clusters form a DHT. Actually, the amount of memory provided in the cluster advertisement is hashed
and the CM with the closest matching id in the DHT stores this advertisement. When a client asks for a block
of memory with a given rounded size (fixed sized blocks can only be supported), the size is hashed and the
cluster advertisement which provides that size is retrieved from the CM with the closest matching id. The
cluster advertisement has the details of the actual storage provider. Recent extensions to JuxMem [14] provide
mechanisms to decouple consistency protocols from fault-tolerance mechanisms. This allows the use of standard
DSM consistency protocols to integrate fault-tolerance components. In particular, DSM consistency schemes
such as home based consistency [41] which assume a single home node for serializing concurrent writes, can be
made fault-tolerant by having a group of nodes as the home node. This requires group membership protocols, as

Data Management in Distributed Systems: A Scalability Taxonomy 123

well as an atomic multicast protocol, which is achieved by using consensus protocols based on Failure Detectors
(FDs) [26]. The data sharing mechanisms of JuxMem have only been evaluated at the cluster level.

The replica location problem has been addressed in grids using P2P concepts in [5]. It proposes a P2P
realization of the Replica Location Service (RLS), a key component of data grids. The Logical File Name (LFN)
is hashed to give the identifier for a replica. The node with the closest matching id as the LFN hash contains
the LFN to Physical File Name (PFN) mapping. This is the meta-data stored in RLS for file lookup. It also
proposes an update protocol to handle consistency of meta-data. The RLS realization is based on Kademlia
[63]. Kademlia is a structured P2P system that uses a novel XOR metric for routing distance between two
nodes is defined as the eXclusive OR (XOR) of their numeric ids. A Kademlia node forms log(n) neighbours,
where neighbour i is at XOR distance [2¢, 2¢+1]. The neighbour set is same as that formed by a tree based DHT
PRR [23]. Even the failure-free routing in Kademlia is similar to PRR, in that bits are corrected from left to
right. However, in the case of failures, XOR metric allows bits to be corrected in any order. This implies that
the static resilience? of Kademlia is better compared to PRR [45].

5.1.2. Replica Placement in CDNs. Optimal placement of replicas in CDNs is a non-trivial task and
has not been addressed. QoS aware replica placement was proposed in [92] to meet QoS requirements of
clients with the objective of minimizing the replication cost. The replication cost includes cost of storage and
consistency management, while QoS is specified in terms of distance metrics such as hop count. Two problems
are formulated: Replica-aware and Replica-blind. In replica-aware model, the CDN servers are aware of where
object replicas are stored in the CDN network. This helps the servers to redirect client requests to the nearest
replica. In the replica blind model, application or network level routing ensures client requests are routed to
CDN servers, with servers being transparent to replica location. Each replica (CDN server) serves requests
coming to it. Dynamic programming techniques are used to arrive at near optimal solutions for the optimal
replica placement problem, which is shown to be NP-complete.

5.1.3. Distributed Mobile Storage System. Segank [80] provides an abstraction of a shared storage
system for heterogeneous storage elements. The motivation was that traditional mechanisms for managing data
in distributed mobile environments such as Coda and Bayou, have time consuming merge operations. In Coda,
updates are released to the server before becoming visible on clients. If servers are physically far away, this
could increase the time after which updates become visible. Bayou uses full replication, leading to potentially
expensive merge operations. Segank handles data location problem when data could be located on any subset of
devices, by using a location and topology sensitive multicast-like (named as segankcast) operation. It allows lazy
P2P propagation of invalidation information to handle consistency of replicated data. It also uses a distributed
snapshot mechanism to ensure a consistent image across all devices for backup. It must be observed that
Segank uses only unstructured P2P system concepts. This implies that Segank cannot provide deterministic
search guarantees.

5.2. Large Scale Data Management: State of the Art. We shall explain the current state of the art
in P2P data management along four directions: integrating structured and unstructured P2P systems providing
Quality of Service (QoS) guarantees in P2P systems, composable consistency for P2P systems and large scale
DHT deployment. We also explain the state of the art in P2P DBMS.

5.2.1. Integrating Structured and Unstructured P2P Systems. An attempt has been made in [55]
to improve structured P2P systems along three directions where they were traditionally known to perform
worse compared to unstructured P2P systems: handling churn, exploiting heterogeneity and handling complex
queries. In P2P systems, node/network dynamics resulting in routing-table updates and/or data movement is
known as churn. The paper [55] shows that MS Pastry, an implementation of Pastry, can handle churn well
by using a periodic routing table maintenance protocol. This protocol updates failed routing table entries. It
also has a passive routing table repair protocol. They demonstrate that by exploiting structure, MS Pastry
can handle churn better than unstructured P2P systems. Heterogeneity is difficult to handle in structured P2P
systems due to constraints on data placement and neighbour selection. MS Pastry handles heterogeneity in
two ways: one by using super-peer concepts; second, by modifying neighbour selection to handle capacity. MS
Pastry is also extended to handle complex queries by introducing new techniques for flooding or random walks.
Flooding is achieved by sending the message to all nodes in the routing table. Random walk is achieved by using
a tag containing the set of nodes to visit, a queue of nodes in the routing table row and a bound on number
of rows to traverse. A few other efforts have also been made recently to make structured P2P systems handle

2Static Resilience measures the goodness of a DHT routing algorithm before recovery mechanisms take effect

124 A Vijay Srinivas and D Janakiram

range queries [16], multi-dimensional queries [65] as well a query algebra [73]. A Scalable Wide Area Resource
Discovery (SWORD) [62] has been built to realize resource discovery over WANs by supporting multi-attribute
range queries over DHTs.

Another approach to integrate structured and unstructured P2P systems has been made in the Vishwa
computing grid middleware [53]. Vishwa uses the task management layer to handle initial task deployment
and load adaptability of the tasks. The task management layer is realized using unstructured P2P concepts
and allows capability based resource clustering. The reconfiguration layer of Vishwa is realized as a structured
P2P layer and stores information needed to handle node/network failures. The two layered architecture has
also been used for data management in Virat [1, 7]. Virat provides a shared object space abstraction over a
wide-area distributed system. Virat has been extended to a replica management middleware for P2P systems
[8]. The unstructured layer forms neighbours based on node capabilities (in terms of processing power, memory
available, storage capacity and load conditions). A structured DHT is built over this unstructured layer by using
the concept of virtual nodes. Virat achieves dynamic replica placement on nodes with given capabilities, which
would be very useful in computing/data grids. Detailed performance comparison is also made with a replica
mechanism realized over OpenDHT [68], a state of the art structured P2P system. It has been demonstrated
that the 99th percentile response time for Virat does not exceed 600 ms, whereas for OpenDHT, it goes beyond
2000 ms in an Internet testbed.

5.2.2. Composable Consistency for P2P Systems. A flexible consistency model known as compos-
able consistency suitable for a variety of P2P applications has been proposed in [72]. The authors have initially
surveyed consistency requirements for P2P applications such as personal file access, real time collaboration
and database or directory services. The survey showed that different applications need different semantics
for read/write and for replica divergence. The main contribution of [72] is the classification of consistency
requirements along five orthogonal dimensions: concurrency—degree of conflicting read/write access; replica
synchronization—degree of replica divergence; failure handling—data access semantics in the presence of inac-
cessible replicas; update visibility - time after which local updates may be made globally visible; view isolation
time after which remote updates must be made locally visible. A rich collection of consistency semantics for
shared data can be composed by combining the above five options. Performance studies have shown that com-
posable consistency in the Swarm system outperforms CoDA [74] in a file sharing scenario, while for a replicated
BerkeleyDB database, it provides different consistency mechanisms from strong to time-based.

5.2.3. Providing QoS Guarantees in P2P Systems. Guaranteeing Quality of Service (QoS) parame-
ters such as response time or throughput in P2P systems is a challenging task. An initial attempt was made in
[70] at using P2P system concepts for Domain Name System (DNS), which requires efficient data location. It
showed that though P2P DNS could provide better fault-tolerance than conventional DNS, lookup performance
of O(log(N)) provided by DHTs was far worse compared to conventional DNS. Cooperative DNS (CoDoNS) [89]
was proposed to tackle three problems of conventional DNS: susceptibility to Denial of Service (DoS) attacks;
lookup delays, especially for flash crowds; lack of cache coherency, preventing quick service relocation in emer-
gencies. CoDoNS has been proposed as a backward compatible replacement for conventional DNS. It provides
O(1) lookup time by using the proactive caching layer of Beehive [88]. Beehive enables DHTs to achieve O(1)
lookup performance by proactive replication. Traditionally, prefix matching DHTs store an application object at
the closest matching node, with each routing step successively matching prefixes, resulting in O(log(N)) lookup
performance. By aggressively caching the object all along the lookup path, Beehive achieves O(1) lookup per-
formance for that object. Since, Beehive associates different replication levels for different application objects,
an average lookup performance of O(1) is achieved. CoDoNS builds a DNS based on a self-organizing P2P
overlay formed across organizations (if each organization can provide a server for CoDoNS). CoDoNS associates
a domain name with the node having the closest matching id as the domain name’s hashed id. If the home
node fails, the node with the next best matching id takes over as the home node for that particular domain.
Performance studies over PlanetLab testbed show that CoDoNS achieves lower lookup latencies, can handle
slashdot effects and can quickly disseminate updates. However, the use of DHTs as the basis leaves CoDoNS
vulnerable to network partitions. For example, if an organization is partitioned from the outside world, while
conventional DNS would ensure that local lookups worked correctly, with CoDoNS even local lookups may fail
(DHT lookup may go outside the local network even for local lookups —stretch property of DHTSs). This suggests
that SkipNets [35] may be a better choice for realizing DNS than DHTs. This is because data in SkipNets is
organized by using string names which guarantees routing locality. This is in addition to the normal numeric
identifier based organization used in DHTs.

Data Management in Distributed Systems: A Scalability Taxonomy 125

5.2.4. Large Scale Deployment. OpenDHT [68] is a public large scale DHT deployment that allows
clients to use DHTs without having to deploy them. It provides a shared storage space abstraction using the
get and put primitives. The main motivation for OpenDHT is that it is hard to deploy long running distributed
system services, especially in the public domain. OpenDHT is deployed on PlanetLab (http://www.planet-
lab.org/), a global testbed for deploying planetary scale services. OpenDHT is deployed on infrastructure nodes
which alone participate in DHT routing and storage. Clients only use the storage space through the get and
put interface on gateway (infrastructure) nodes. OpenDHT allows different mutually untrusting applications to
share the DHT. It ensures that clients get a fair share of storage resources without imposing arbitrary quotas—a
trade-off between fairness and flexibility. This is achieved by associating a Time-to-Live (TTL) with application
objects and letting them expire if clients do not renew them. OpenDHT provides storage abstraction of DHTs
in contrast to the lookup abstraction of Chord or the routing abstraction of Pastry.

It is realized over Bamboo DHT (bamboo-dht.org), that is similar to Pastry but has differences in handling
node dynamics. OpenDHT is not a shared object space. The level of abstraction provided to programmer is
different. For instance, the programmer has to take care of object serialization, RTTI (runtime type inferencing)
etc. to realize an object storage on top of the byte storage that OpenDHT provides. OpenDHT provides limited
counsistency for the shared byte space. Conflict resolution (for concurrent writes) is left to the application,
similar to the Bayou system that ensures “eventual consistency”, a very loose form of consistency. But conflict
resolution is a non-trivial task for the application programmer. The performance of OpenDHT (especially worst
case response time) suffers due to the presence of stragglers or slow nodes. This has been improved by using
delay aware and iterative routing in [71].

5.2.5. State of the Art P2P DDBMS. Atlas P2P Architecture (APPA) [86] is the current state of the
art data management solution for large scale P2P systems. It uses a three layered architecture, with the P2P
network forming the lowest layer. This layer could be realized using unstructured or structured or super-peer
based P2P concepts. Above this layer, the basic P2P services layer is built. This provides P2P data sharing and
retrieving (key based) in the P2P network, support for peer communication, support for peer dynamics (join
and leave) and group membership management. Over the basic services layer advanced P2P data management
services such as schema management, replication, query processing and security are built. The shared data is
in XML format and queries expressed in X-Queries in order to make use of web services. It is realized over
JXTA. Tt provides replica management by extending traditional centralized log based reconciliation techniques
for P2P systems. It assumes the existence of a shared storage space for distributed reconciliation by peers.
This requires consensus protocols for realization and may be expensive. It has not been evaluated in large scale
systems.

A recent effort has been made to provide a middleware based data replication scheme in [94] by using
Snapshot Isolation (SI) as the isolation level. In SI based DBMS, read operations of a transaction T are handled
from a snapshot of the database (set of committed transactions when T started). This implies read operations
never conflict with write operations and only write-write conflicts can occur, resulting in more concurrency and
consequently better performance. It has been proposed at the cluster level and may not be applicable for P2P
systems due to its strong assumption of a totally ordered multicast.

5.3. Software Availability and Usage Summary. Juxmem and Segank are research prototypes. De-
ployment information on Structella is not available. Vishwa and Virat are research prototypes that are available
as open binaries. OpenDHT has been deployed on the Planetlab testbed and is also available as an open source
software. APPA is a research prototype.

6. Conclusions. We have presented a scalability taxonomy of data management solutions in distributed
systems. We group data management work done in DSMs and shared object spaces in the Centralized /Naively
Distributed (CND) data management category. The Sophisticated/Intermediate Data (SID) management tech-
niques include data management in grid computing systems and data grids as well as Content Distribution
Networks (CDNs) and data management in distributed mobile systems. These solutions scale better than CND
techniques by using distributed data management, instead of centralized approaches. They however, assume
an inner set of reliable servers which take care of consistency and reliability issues. However, in order to take
the data management services to the edges of the Internet, Large Scale Data (LSD) management techniques
make use of P2P concepts. They consequently provide better scalability and fault-tolerance, but at the cost of
relaxing consistency (most approaches provide probabilistic guarantees or eventual consistency).

The taxonomy is depicted in figure 6.1. The figure shows the state of the art efforts in orange color and the
possible future directions also in blue. The future directions are detailed below.

126 A Vijay Srinivas and D Janakiram

Data IManagement in

1str1but d Systems\

L3D

Distiuted
Early Shared utmg Mohile
jb'ect Spaces atems
Orca I'v'I é’)ver
Linda Treadmarks Cooperatrre Y Odyesey
T Spaces JavaDSh Leases [46,47]

P2F/
DDE\-‘IS
PIE

Pip«—"

State of Art

Systems Edutella
PeerDBE
P1.1ture. 1arza
Directions

PAST
Cceanstore

,,,,,,,,,,,,,,
with
: :
e 3
RRCCR L s S

Fia. 6.1. Pictorial Representation of Scalability Tazonomy

It can be observed that LSD techniques such as Virat [8] handle large number of small data objects. The
case of handling large number of large data objects arises when existing data grids become purely P2P; instead
of using SID techniques. The existing LSD techniques may not work in this case, as the size of data objects calls
for special mechanisms to handle some operations including updates. Incremental updates or function shipping
in combination with LSD data management techniques may have to be explored.

Another interesting avenue for exploration is the use of LSD techniques combined with node mobility. The
solutions which have been proposed for handling data management in distributed mobile systems do not use
P2P concepts, but assume the presence of reliable servers that handle mobile client requests. When mobile
nodes form the P2P overlay, churn could be very high due to node mobility. This, coupled with the device
constraints, may open up a wealth of research questions.

Optimal data placement techniques which have been proposed for CDNs [92] can be used in P2P grids.
Existing data management techniques in grids (or even P2P grids such as P-Grid [46]) do not address optimal
replica placement issues. The work [8] provides heuristics for replica placement in P2P grids. But placement of
replicas may not be exactly optimal. Thus, we see that techniques for data management in one category can
be applied to others to open up research in large scale data management.

REFERENCES

[1] A Vijay SriNivas, M VENKATESHWARA REDDY, AND D JANAKIRAM, Designing a Replication Service for Large Peer-to-Peer
Data Grids, IEEE Distributed Systems Online, 7 (2006).

[2] GaBrieL Antoniu, Luc BouaE, aND MarHIEU JAN, JUXMEM: An Adaptive Supportive Platform for Data Sharing on
the Grid, Scalable Computing: Practice and Experience, 6 (2005), pp. 45-55.

[3] MAARTEN VAN STEEN AND PHILIP HOMBURG AND ANDREW S. TANENBAUM, Globe: A Wide-Area Distributed System, IEEE
Concurrency, 7 (1999), pp. 70-78.

[4] P Wyckorr, S W McLauvahry, T J LEaman, anp D A Forp, T Spaces, IBM Systems Journal, 37 (1998), pp. 454 474.

[5] A. Cuazapis, A. Zissimos, AND N. Koziris, A Peer-to-Peer Replica Management Service for High- Throughput Grids, in
Proceedings of the International Conference on Parallel Processing (ICPP), Washington, DC, USA, June 2005, IEEE
Computer Society, pp. 443-451.

[7]

(8]

9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

j21]
[22]
123]
[24]
[25]

[26]

[27]

28]

[29]

30]

[31]

[32]

Data Management in Distributed Systems: A Scalability Taxonomy 127

A Vijay SrINIVAS AND D JanakiraMm, A Model for Characterizing the Scalability of Distributed Systems, ACM SIGOPS
Operating Systems Review, 39 (2005), pp. 64 72.

A V1iJAY SRINIVAS AND D JANAKIRAM, A Peer-to-Peer Framework for Collaborative Data Sharing Owver the Internet, Tech.
Report IITTM-CSE-DOS-2005-28, accepted for publication in IEEE International Conference on Collaborative Computing:
Networking, Applications and Worksharing (CollobarateCom 2006), TEEE Computer Society Press.

A V1iJAay SRINIVAS AND D JaNAKIRAM, Node Capability Aware Replica Management for Peer-to-Peer Grids, Technical Report
ITTM-CSE-DOS-2006-04, Distributed & Object Systems Lab, Indian Institute of Technology, Communicated to IEEE
Transactions on Software Engineering.

S. ABiTEBOUL, A. BoniraTi, G. CoBENA, I. MaNoLEscu, aND T. MirLo, Dynamic XML documents with distribution and
replication, in SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD international conference on Management of data,
New York, NY, USA, 2003, ACM Press, pp. 527 538.

C. Amza, A. Cox, S. Dwarkapas, P. KeLener, H. Lu, R. Rajamony, W. Yu, anpD W. ZWAENEPOEL, TreadMarks:
Shared Memory Computing on Networks of Workstations, IEEE Computer, 29 (1996), pp. 18 28.

ANooP GEORGE NiINaAN, PurusHOTTAM KULKARNI, PRASHANT SHENOY, KRITHI RAMAMRITHAM, AND RENU TEWARI,
Scalable Consistency Maintenance in Content Distribution Networks Using Cooperative Leases, IEEE Transactions on
Knowledge and Data Engineering, 15 (2003), pp. 813-828.

ANoop NiNaAN, PurusHortam KULKARNI, PRASHANT SHENOY, KRITHI RAMAMRITHAM, AND RENU TEwARI, Cooperative
Leases: Scalable Consistency Maintenance in Content Distribution Networks, in WWW ’02: Proceedings of the 11th
international conference on World Wide Web, New York, NY, USA, 2002, ACM Press, pp. 1-12.

AnTHONY D JoseprH, JosHua A TAUBER, AND M Frans KaasHOEek, Mobile Computing with the Rover Toolkit, IEEE
Transactions on Computers, 46 (1997), pp. 337-352.

G. AntonNiu, J.-F. DEVERGE, AND S. MonNNET, How to Bring Together Fault Tolerance and Data Consistency to Enable
Grid Data Sharing, Concurrency and Computation: Practice and Experience, 17 (2006). To appear.

AnTONY ROWSTRON AND PETER DRUSCHEL, Storage management and caching in PAST, a large-scale, persistent peer-to-peer
storage utility, in SOSP '01: Proceedings of the eighteenth ACM symposium on Operating systems principles, New York,
NY, USA, 2001, ACM Press, pp. 188-201.

ARTUR ANDRZEJAK AND ZHICHEN XU, Scalable, Efficient Range Queries for Grid Information Services, in P2P ’02: Proceed-
ings of the Second International Conference on Peer-to-Peer Computing, Washington, DC, USA, 2002, IEEE Computer
Society, pp. 33 40.

B. Y. Zuao, L. Huang, J. StrIBLING, S. C. RuEA, A. D. JoseprH, anD J. D. KuBiatowicz, Tapestry: A Resilient
Global-Scale Overlay for Service Deployment, IEEE Journal on Selected Areas in Communications, 22 (2004), pp. 41 53.

D. Bauger, P. HurLEY, R. PLETKA, AND M. WALDVOGEL, Bringing efficient advanced queries to distributed hash tables,
in LCN ’04: Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04),
Washington, DC, USA, 2004, IEEE Computer Society, pp. 6 14.

BiLL Arrcock, JoE BESTER, JOHN BRESNAHAN, ANN L. CHERVENAK, [aN FosTER, CarRL KESSELMAN, SAM MEDER,
VERONIKA NEFEDOVA, DARCY QUESNEL, AND STEVEN TUECKE, Data Management and Transfer in High-Performance
Computational Grid Environments, Parallel Computing, 28 (2002), pp. 749-771.

J. BLoMmER, M. KavLrange, R. Karp, M. KarpriNskl, M. LuBy, aAND D. ZUCKERMAN, An zor-based erasure-resilient coding
scheme, 1995.

Brian D NoBLE, M SATYANARAYANAN, DuSHYANTH NARAYANAN, James Eric Ticton, Jason Frinn, anp Kevin R.
WaALKER, Agile Application-Aware Adaptation for Mobility, in SOSP ’97: Proceedings of the sixteenth ACM symposium
on Operating Systems Principles, New York, NY, USA, 1997, ACM Press, pp. 276-287.

C GrAY aND D CHERITON, Leases: an Efficient Fault-Tolerant Mechanism for Distributed File Cache Consistency, in SOSP
’89: Proceedings of the twelfth ACM symposium on Operating systems principles, New York, NY, USA, 1989, ACM
Press, pp. 202 210.

C GreEG PraxtoN, RajMOHAN RAJARAMAN, AND ANDREA W RicHA, Accessing Nearby Copies of Replicated Objects in a
Distributed Environment, in SPAA ’97: Proceedings of the ninth annual ACM symposium on Parallel Algorithms and
Architectures, New York, NY, USA, 1997, ACM Press, pp. 311-320.

N. CARRIERO AND D. GELENTER, Linda in Context, Communications of the ACM, 4 (1989), pp. 444-458.

J. B. CARTER, Design of the Munin Distributed Shared Memory System, Journal of Parallel and Distributed Computing, 29
(1995), pp. 219-227.

T. D. CuHaNDRA AND S. Touea, Unreliable Failure Detectors for Reliable Distributed Systems, Journal of the ACM, 43
(1996), pp. 225-267.

CHERVENAK, A, FosTeRr, I, KeEsseLman, C, SaLisBury, C, aND TUECKE, S, The Data Grid: Towards an Architecture for
the Distributed Management and Analysis of Large Scientific Datasets, Journal of Network and Computer Applications,
23 (2001), pp. 187-200.

U. DavaL, K. RamamriTHAM, AND T. M. ViJAYARAMAN, eds., Proceedings of the 19th International Conference on Data
FEngineering, March 5-8, 2003, Bangalore, India, IEEE Computer Society, 2003.

Dirk DALILLMANN AND BEN SeGAL, Models for Replica Synchronisation and Consistency in a Data Grid, in HPDC ’01:
Proceedings of the 10th TEEE International Symposium on High Performance Distributed Computing (HPDC-10°01),
Washington, DC, USA, 2001, IEEE Computer Society, p. 67.

Eric A BREwER, Ranpy H Karz, ELan AmIR], HARI BALAKRISHNAN, YATIN CHAWATHE, ARMANDO Fox, STEVEN D
GriBBLE, Topp Hobpes, Giao NGUYEN, VENKATA N PADMANABHAN, MARK STEMM, SRINIVASAN SESHAN, Tom HEN-
DERSON, JOosHUA A TAUBER, AND M Frans Kaasuorek, A Network Architecture for Heterogeneous Mobile Computing,
TEEE Personal Communications, 5 (1998), pp. 8-24.

Ewa DeeLman, CarL KesseLmaN, GAUurRANG MEHTA, LEILA MESHKAT, LAURA PeEArRLMAN, KENT BLACKBURN, PHIL
EHRENS, ALBERT LAzzARINI, Roy WiLLiaMS, AND ScoTT KORANDA, GriPhyN and LIGO, Building a Virtual Data
Grid for Gravitational Wave Scientists, in Proceedings of the 11 th IEEE International Symposium on High Performance
Distributed Computing HPDC-11 20002 (HPDC’02), Washington, DC, USA, 2002, IEEE Computer Society, p. 225.

A. FiNnkeLsTEIN, C. Gryce, aAND J. LEwis-BowegN, Relating Requirements and Architectures: A Study of Data-Grids,

128

33]
[34]
[35]

[36]

37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]
[52]

[53]

[54]

[55]

[56]

[57]
[58]

[59]

[60]

A Vijay Srinivas and D Janakiram

Journal of Grid Computing, 2 (2004), pp. 207 222.

GNuTELLA, The Gnutella protocol specification v0.4. http://www9.limewire.com/developer/gnutella protocol 0.4.pdf
2000.

L. Gong, JXTA: A Network Programming Environment, IEEE Internet Computing, 5 (2001), pp. 88 95.

HarvEy, NicHoras J. A., JoNEs, MICHAEL B., SArROIU, STEFAN, THEIMER, MARVIN, AND WoLMAN, ALEC, Skipnet: A
scalable overlay network with practical locality properties, in Proceedings of the Fourth USENIX Symposium on Internet
Technologies and Systems (USITS ’03), Seattle, United States, March 2003, USENIX Association.

Henri E Barn, M Frans KaasHOEK, AND ANDREW S TaNENBAUM, Orca: A Language for Parallel Programming of Dis-
tributed Systems, IEEE Transactions on Software Engineering, 18 (1992), pp. 190-205.

Henr! E BaL, Raour BHoEpiang, RurGEr HoFmaN, CERIEL JacoBs, KoEN LANGENDOEN, TiMm RuUHL, AND M FRrANS
KaasHOEK, Performance evaluation of the orca shared-object system, ACM Transactions on Computer Systems, 16
(1998), pp. 1-40.

R. Huessch, J. M. HeLLErsTEIN, N. Lannam, B. T. Loo, S. SHENKER, AND l. Stoica, Querying the Internet with
PIER., in VLDB 2003, Proceedings of 29th International Conference on Very Large Data Bases, September 9-12, 2003,
Berlin, Germany, J. C. Freytag, P. C. Lockemann, S. Abiteboul, M. J. Carey, P. G. Selinger, and A. Heuer, eds., Morgan
Kaufmann, 2003, pp. 321-332.

I. FosTteEr AND C. KESSELMAN, Globus: A Metacomputing Infrastructure Toolkit, Intl Journal of Supercomputer Applica-
tions, 11 (1997), pp. 115 128.

I. Stoica, R. Morris, D. KargERr, M. F. KaasHoEk, aAND H. BALAKRISHNAN, Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications, IEEE/ACM Transactions on Networking, 11 (2003), pp. 17 32.

L. IrToDE, J. P. SingH, anND K. L1, Scope Consistency: a Bridge Between Release Consistency and Entry Consistency, in
SPAA ’96: Proceedings of the eighth annual ACM symposium on Parallel algorithms and architectures, New York, NY,
USA, 1996, ACM Press, pp. 277-287.

J. Frey, T. TannenBaum, M. Livny, I. FosTER, AND S. TuEeckE, Condor-G: A Computation Management Agent for
Multi-Institutional Grids, in HPDC ’01: Proceedings of the 10th IEEE International Symposium on High Performance
Distributed Computing (HPDC-10°01), Washington, DC, USA, 2001, TEEE Computer Society, p. 55.

JounN DiLLeYy, BrRucke Maacas, Jay ParikH, HArRaLD Prokor, RAMESH SITARAMAN, AND BiLL WEIHL, Globally Distributed
Content Delivery, IEEE Internet Computing, 06 (2002), pp. 50-58.

K. L. Jounnson, J. F. Carr, M. S. Day, anp M. F. Kaasuorek, The measured performance of content distribution
networks, Computer Communications, 24 (2001), pp. 202-206.

K Gummabi, R GumMabpi, S GrIBBLE, S RATNASAMY, S SHENKER, AND I. Stoica, The Impact of DHT Routing Geometry
on Resilience and Prozimity, in SIGCOMM ’03: Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications, New York, NY, USA, 2003, ACM Press, pp. 381-394.

KaArRL ABERER, PHILIPPE CUDRE-MAUROUX, ANWITAMAN DarTA, ZORAN DESPOTOVIC, MANFRED HAUSWIRTH, MAG-
DALENA PUNCEvVA, AND ROMAN ScHMIDT, P-Grid: a Self-Organizing Structured P2P System, ACM SIGMOD Record,
32 (2003), pp. 29 33.

P. J. KELEHER, B. BHATTACHARJEE, AND B. D. SitacH1, Are Virtualized Overlay Networks Too Much of a Good Thing?,
in IPTPS ’01: Revised Papers from the First International Workshop on Peer-to-Peer Systems, London, UK, 2002,
Springer-Verlag, pp. 225-231.

KourosH GHARACHORLOO, DANIEL LeNOski, JAMES Laubpon, PuiLLip GiBBons, ANoorp Gupta, AND JoHN HEN-
NESSY, Memory Consistency and Event Ordering in Scalable Shared-Memory Multiprocessors, in ISCA ’90: Proceed-
ings of the 17th annual international symposium on Computer Architecture, New York, NY, USA, 1990, ACM Press,
pp- 15 26.

J. KuBiatowicz, D. BinpEL, Y. CHEN, S. CzErwiNskI, P. Eatron, D. GeeLs, R. GummaDpi, S. RHEA, H. WEATHER-
spooN, C. WELLS, AND B. Zuao, OceanStore: an Architecture for Global-Scale Persistent Storage, SIGARCH Computer
Architecture News, 28 (2000), pp. 190-201.

L G ALex SunG, NABEEL AHMED, R. ANDHERMAN L1, MOHAMED ALI SOLIMAN, AND DaAvip HADALLER, A Survey of Data
Management in Peer-to-Peer Systems. CS856 Web Data Management, 2005. School of Computer Science, University of
Waterloo.

L Guy, P Kunszt, E LAURE, H STOCKINGER, AND K STOCKINGER, Replica Management in Data Grids. Technical Report,
GGF Working Draft, 2002.

M. Auamap anD R. KorbaLg, Scalable Consistency Protocols for Distributed Services, IEEE Transactions on Parallel and
Distributed Systems, 10 (1999), pp. 888-903.

M. V. Reppy, A. V. Srinivas, T. GopriNaTH, AND D. JANAKIRAM, Vishwa: A Reconfigurable Peer-to-Peer Middleware
for Grid Computing, in 35th International Conference on Parallel Processing, IEEE Computer Society Press, 2006,
pp- 381-390.

MAHADEV SATYANARAYANAN, Accessing Information on Demand at any Location. Mobile Information Access, IEEE Personal
Communications, 3 (1996), pp. 26-33.

MicuEL CasTrRO, MANUEL CoOstA, AND ANTONY ROWSTRON, Debunking Some Myths About Structured and Unstructured
Overlays, in Proceedings of the 2nd Usenix Symposium on Networked System Design and Implementation, Boston,MA,
May 2005.

A. MuTHITACHAROEN, R. Morris, T. M. Gir, anp B. CHEN, Tvy: a Read/Write Peer-to-Peer File System, SIGOPS
Operating Systems Review, 36 (2002), pp. 31 44.

NAPSTER, Napster media sharing system. http://www.napster.com

W. NeJprL, W. SIBERSKI, AND M. SINTEK, Design issues and challenges for RDF- and schema-based peer-to-peer systems,
SIGMOD Record, 32 (2003), pp. 41 46.

W. S. Ng, B. C. Oor, anxp K.-L. Tan, BestPeer: A Self-Configurable Peer-to-Peer System., in Proceedings of the 18th
International Conference on Data Engineering, 26 February - 1 March 2002, San Jose, CA, IEEE Computer Society, 2002,
p- 272.

W. S. Nqg, B. C. Ooi1, K.-L.. Tan, aND A. ZHou, PeerDB: A P2P-based System for Distributed Data Sharing., in Dayal

[61]
[62]

[63]

[64]

[65]

[66]
[67]

[68]

[69]

[70]

[71]
[72]
[73]

[74]

[75]

[76]
[77]

[78]

[79]

[80]

[81]
82]
(83]
(84]

[85]

[86]
(87

(88]

[89]

Data Management in Distributed Systems: A Scalability Taxonomy 129

et al. [28], pp. 633 644.

OBJECT MANAGEMENT GrOUP, The Common Object Request Broker: Architecture and Specification. 2. 3. 1, October 1999.

OPPENHEIMER, D., ALBRECHT, J., PATTERSON, D., AND VAHDAT, A., Design and Implementation Tradeoffs for Wide-area
Resource Discovery, in Proceedings. 14th IEEE International Symposium on High Performance Distributed Computing,
2005. HPDC-14, Washington, DC, USA, July 2005, IEEE Computer Society, pp. 113-124.

PeTAR MAYMOUNKOV AND DaviD Mazires, Kademlia: A Peer-to-Peer Information System Based on the XOR Metric,
in TPTPS ’01: Revised Papers from the First International Workshop on Peer-to-Peer Systems, London, UK, 2002,
Springer-Verlag, pp. 53 65.

PeTER J KELEHER, The Relative Importance of Concurrent Writers and Weak Consistency Models, in ICDCS ’96: Proceed-
ings of the 16th International Conference on Distributed Computing Systems (ICDCS ’96), Washington, DC, USA, 1996,
IEEE Computer Society, p. 91.

PrasaNnNA GANESAN, BEVERLY YaNG, aAND HEcTOrR GARcia-MoLiNa, One Torus to Rule Them All: Multi- Dimensional
Queries in P2P Systems, in WebDB ’04: Proceedings of the 7th International Workshop on the Web and Databases, New
York, NY, USA, 2004, ACM Press, pp. 19-24.

M. RaynaL, G. RHIA-KIME, AND M. AHAMAD, Serializable to Causal Transactions for Collaborative Applications, in Pro-
ceedings of the 23rd Euromicro Conference, Budapest, Hungary, September 1997.

S. RuEA, P. Earon, D. Geers, H. WEATHERSPOON, B. ZHao, anND J. KuBiatrowicz, Pond: The OceanStore Prototype,
in Proceedings of the Conference on File and Storage Technologies, USENIX Association, 2003.

S. RuEA, B. GobprreEy, B. Karp, J. KuBiaTtowicz, S. RATNAsAMY, S. SHENKER, [. Stoica, anp H. Yu, OpenDHT: a
public DHT service and its uses, in SIGCOMM ’05: Proceedings of the 2005 conference on Applications, technologies,
architectures, and protocols for computer communications, New York, NY, USA, 2005, ACM Press, pp. 73-84.

A. RowsTRON AND P. DruUSCHEL, Pastry: Scalable, Distributed Object Location and Routing for Large-Scale Peer-to-Peer
Systems, in Proceedings of the 18th TFTP/ACM International Conference on Distributed Systems Platforms (Midleware
2001), Heidelberg, Germany, November 2001, pp. 329 350.

Russ Cox, ATHICHA MUTHITACHAROEN, AND ROBERT MORRIS, Serving DNS Using a Peer-to-Peer Lookup Service, in IPTPS
’01: Revised Papers from the First International Workshop on Peer-to-Peer Systems, London, UK, 2002, Springer-Verlag,
pp. 155 165.

S. RuEA, B. G. CHuN, J. KUBIATOWICZ, AND S. SHENKER, Fizing the Embarrassing Slowness of OpenDHT on PlanetLab,
in Proceedings of USENIX WORLDS 2005, USENIX Association, 2005.

SAI SUSARLA AND JOHN CARTER, Flexible Consistency for Wide area Peer Replication, in Proceedings of the 25th Interna-
tional Conference on Distributed Computing Systems (ICDCS), Washington, DC, USA, 2005, IEEE Computer Society.

K.-U. SarTLER, P. RoscH, E. BucamanN, anD K. Bouwm, A Physical Query Algebra for DHT-based P2P Systems, in
Proceedings of the 6th Workshop on Distributed Data and Structures, Lausanne, Switzerland, July 2004.

M. SATYANARAYANAN, J. J. KisTLER, P. Kumar, M. E. Okasaki, E. H. SiecerL, anp D. C. Steerg, Coda: A Highly
Awailable File System for a Distributed Workstation Environment, IEEE Transactions on Computers, 39 (1990), pp. 447—
459.

T. SEIDMANN, Replicated Distributed Shared Memory For The .NET Framework, in Proceedings of 1st Int.Workshop on C#
and .NET Technologies on Algorithms, Computer Graphics, Visualization, Computer Vision and Distributed Computing,
Plzen, Czech Republic, February 2003.

STEFAN SArROIU, KrRISHNA P GumMmaDIi, RicHarD J Dunn, STEVEN D GriBBLE, AND HENRY M. LEvy, An Analysis of
Internet Content Delivery Systems, SIGOPS Operating Systems Review, 36 (2002), pp. 315 327.

STEPHANOS ANDROUTSELLIS- THEOTOKIS AND Diominis SPINELLIS, A Survey of Peer-to-Peer Content Distribution Technolo-
gies, ACM Computing Surveys, 36 (2004), pp. 335 371.

H. STOCKINGER, Distributed Database Management Systems and the Data Grid, in MSS ’01: Proceedings of the Eighteenth
IEEE Symposium on Mass Storage Systems and Technologies, Washington, DC, USA, 2001, IEEE Computer Society,
p- 1.

H. STOCKINGER, A. SamMARr, K. Horrman, W. E. ALLcock, 1. FosteRr, AND B. TiERNEY, File and Object Replication in
Data Grids., Cluster Computing, 5 (2002), pp. 305-314.

SUMEET SoBTI, NITIN GARG, FENGZHOU ZHENG, JUNWEN LaAI, YILEI SHAO, CHI ZHANG, ELISHA ZI1SKIND, ARVIND KRISH-
NAMURTHY, AND RanpoLpH Y. WaNG, Segank: A Distributed Mobile Storage System, in FAST ’04: Proceedings of the
3rd USENIX Conference on File and Storage Technologies, Berkeley, CA, USA, 2004, USENIX Association, pp. 239-252.

SuN Microsystewms, JS JavaSpaces Service Specification.
http://java.sun.com/products/jini/2.0/doc/specs/html/js-spec.html 2001.

SusHANT GoOEeL, HEMA SHARDA, AND Davip TaANIAR, Atomic Commitment and Resilience in Grid Database Systems,
International Journal of Grid and Utility Computing, 1 (2005), pp. 46—60.

I. TatariNnov, Z. Ives, J. Mabnavan, A. Harevy, D. Suciu, N. Darwvi, X. Dong, Y. Ka pryska, G. MIKLAU, AND
P. Mork, The Piazza Peer Data Management Project, SIGMOD Record, 32 (2003).

D. B. TeErry, K. PETERSEN, M. SPREITZER, AND M. THEIMER, The Case for Non-transparent Replication: Ezamples
from Bayou., IEEE Data Engineering Bulletin, 21 (1998), pp. 12 20.

TrEvFIK Kosar AND MIrRoON LivNy, Stork: Making Data Placement a First Class Citizen in the Grid, in ICDCS ’04:
Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04), Washington, DC,
USA, 2004, TEEE Computer Society, pp. 342-349.

P. VaLpburiez anp E. Pacirri, Data Management in Large-Scale P2P Systems., in VECPAR, M. J. Daydé, J. Dongarra,
V. Hernandez, and J. M. L. M. Palma, eds., vol. 3402 of Lecture Notes in Computer Science, Springer, 2004, pp. 104 118.

S. VENuUGoOPAL, R. Buvva, anp K. RamaMOHANARAO, A Tazonomy of Data Grids for Distributed Data Sharing,
Management and Processing, ACM Computing Surveys, (2006). To appear.

VENUGOPALAN RAMASUBRAMANIAN AND EMIN G SIRER, FEzploiting Power Law Query Distributions for O(1) Lookup
Performance in Peer to Peer Owverlays, in Proceedings of the First Symposium on Networked Systems Design and
Implementation (NSDT), USENIX Association, 2004.

, The Design and Implementation of a Next Generation Name Service for the Internet, in SIGCOMM ’04: Proceedings

130 A Vijay Srinivas and D Janakiram

of the 2004 conference on Applications, technologies, architectures, and protocols for computer communications, New
York, NY, USA, 2004, ACM Press, pp. 331 342.

[90] WEwLIAN FANnG, CHO-L1 WANG, aAND Francis C M Lau, On the Design of Global Object Space for Efficient Multi-threading
Java Computing on Clusters, Parallel Computing, 29 (2003), pp. 1563 1587.

[91] WEmMIN YU AND ArLaN Cox, Java/DSM: A Platform for Heterogeneous Computing, in ACM 1997 Workshop on Java for
Science and Engineering Computation, June 1997.

[92] Xurvan TanG AND JIANLIANG XU, QoS-Aware Replica Placement for Content Distribution, IEEE Transactions on Parallel
and Distributed Systems, 16 (2005), pp. 921 932.

[93] B. Yana anD H. GARciA-MoLINA, Designing a super-peer network., in Dayal et al. 28], pp. 49-62.

[94] Y1 Lin, BETTINA KEMME, MARTA PATINO-MARTINEZ, AND RicARDO JIMENEZ-PERIS, Middleware Based Data Replication
Providing Snapshot Isolation, in SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international conference on
Management of data, New York, NY, USA, 2005, ACM Press, pp. 419-430.

[95] L. ZHENYUN ZHUANG AND MEMBER-YUNHAO Liu, Dynamic Layer Management in Superpeer Architectures, 1EEE
Transactions Parallel and Distributed Systems, 16 (2005), pp. 1078-1091.

Edited by: Thomas Ludwig
Received: May 25, 2006
Accepted: October 11, 2006

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 8, Number 1, pp. 131-140. http://www.scpe.org © 2007 SWPS

o,..

THE COMPARISON OF J2EE AND .NET FOR ENTERPRISE INFORMATION SYSTEMS

JONGWOOK WOO*

Abstract. e-Business and Enterprise Information Systems have held the spotlight since Internet and World-Wide-Web came
out to the world. The e-Business applications have been evolved from legacy client-server architecture into n-tier architecture, lately
even into Enterprise Information Systems. There are two famous approaches to build the e-Business applications, which are J2EE
and .NET. In this paper, e-Business and n-tier architecture are illustrated. Besides, n-tier architecture for Enterprise Information
Systems is introduced, which provide the access to the disparate data sources. In addition, J2EFE and .NET are compared for
e-Business applications based on many criteria including the methodologies to implement Enterprise Information Systems.

Key words. Integrated Information Systems, Enterprise Information Systems, e-Business, J2EE, .NET, n-Tier architecture

1. Introduction. e-Business systems have been popular in the world since Internet and World-Wide-Web
came out. IBM defines e-Business as the leveraging of network capabilities and technologies in order to achieve
and maintain the huge advantages for customers, suppliers, partners, and employees [9]. e-Business activities can
be classified into three categories based on end-users of transactions, normally on the Internet: Intra-business,
Business-to-consumer, and Business-to-business. Intra-business activity is to share company information and
computing resources among employees on the intranet such as knowledge management. Business-to-consumer,
the most common activity, is to provide services to consumers who is out of organizations such as customer
resource management, e-Commerce, and web auctions etc. Business-to-business activity is to improve inter-
organizational partnerships and relationships such as supply chain integration [8].

The needs of the legacy e-Business systems were simple to maintain functionality and stability on the
corporate computing environment. However, the legacy e-Business systems are not sufficient for the current high
volume e-Business transactions. People need systems that handle high workloads and changing requirements
by applying and adapting applications quickly. Businesses have to improve efficiency by integrating data and
applications across the enterprise. Besides, the highest levels of performance and availability must be maintained
for the critical businesses. Thus, n-tier architecture for e-Business system has been presented. It partitions
systems and software to more flexible blocks that have different roles in order to enable high performance,
scalability, and availability to businesses [2]. Section 1 of this paper introduces n-tier architecture in detail.

Either Java—especially, J2EE (Java 2 Enterprise Edition)—or ASP (Active Server Pages) has been ex-
clusively used to build server site web systems for e-Business. J2EFE is the one of editions in Java that is a
platform independent and object-oriented language Java is the product of Sun Microsystems. Thus, J2EFE fits
well to build e-Business systems at both a development and a server site in both Unix (Linux) and Windows
operating systems. Besides, the applications of J2EE are normally built in Windows operating system and
published into servers in any operating systems. Microsoft Corporation provides ASP for e-Business systems.
ASP applications are integrated with the codes in Visual Basic or C++, etc. given by Microsoft Corporation
as the products. Therefore, ASP applications are developed and published only in Windows operating systems.

The Unix operating systems have dominated the server market of the large organizations such as banking
and entertainment industries because Unix OS have been more stable than Windows so that it was chosen prior
to Windows. Thus, e-Business systems of the server market have been mainly developed in J2EFE instead of in
ASP. Microsoft Corporation might want to compete with Unix systems for the e-Business markets so that it
introduced the concept of .NET on June 2000. And, .NET has been presented to the market in 2002. .NET is
not only platform independent even it is limited for research but also programming language independent.
.NET has been popular for several years in the e-Business world and competed with J2EE probably has
dominated the small businesses more than J2FE.

In this paper, .NET and J2FE, the most popular e-Business development approaches, are compared in
terms of programming language, platform independency, component model, application server, market proof,
openness, and Database connectivity including the connectivity to disparare data sources. Since they are the
standards to build e-Business systems nowadays, this paper will be useful for people who want to see the de
facto distributed computing environment for e-Business systems and who want to select one of approaches. In
the paper, Section 2 introduces the e-Business architectures. Section 3 describes the frameworks of J2EE and
.NET in detail. Section 4 compares J2EFE and .NET in terms of several factors including the approach for

*Computer Information Systems Department, California State University, Los Angeles 90032-8530, Los Angeles, CA, USA
(jwoob@calstatela.edu).

131

132 Jongwook Woo

information integration. Section 5 illustrates the summary of the comparison based on the analysis in Section 4.
Section 6 is the conclusion and culmination of the comparison for integrated information systems.

2. e-Business Architecture.

2.1. n-tier Architecture. The traditional Client-Server architecture has a mainframe that includes core
applications and data. The mainframe is accessed from thick clients that are big applications that contain
presentation and business logics. We can call it 2-tier architecture as shown in Figure. 2.1. The 2-tier architecture
has many loads between client and server because of their tight interoperations for its presentation logic, business
logic, and data access logic. As shown in Figure. 2.1, client has not only the operations of presentation logic
but also the part or the full of business and data access logics. This tight interoperation has generated many
issues in the current high volume business systems. It is not scalable because it should replace the entire system
when its capacity is exceeded. And, it is not flexible because its presentation logic, business logic, and data
access logic are tightly coupled. If the developer wants to modify its business logic, he or she should modify
the entire logics. Besides, the developer must adapt or modify the business logic when it is integrated with the
World-Wide-Web or other applications [2].

Presentation Logic
Business Logic
Database Access Leg

Business Logic
Database Access Logic

Service Request

Service Provided

Fia. 2.1. 2-tier Architecture.

The n-tier architecture has addressed the issues of the 2-tier architecture and become the solution of the
current e-Business systems on Internet and World-Wide-Web. It partitions application functionalities into n
independent layers, mainly three layers as in Figure. 2.2. Thus, it becomes easier to integrate with the existing
business systems. The layer 1 is the presentation logic that is typically hosted on Web server with web browser.
The presentation logic is to send the request of client and receive its response from business logic. The response
is normally dynamic or static web pages formatted to present to the client. The layer 2 is hosted on mid-tier
(middleware) server as business logic. It includes the business functions that are the main of the e-Business
applications on the n-tier architecture. It produces the response of the request from the client and provides
the response to the client. If the request is related to data access, it will pass the data access request to the
back-end database server. The layer 3 is hosted on the back-end database, XML, or other data sources as data
access logic. It is to handle the request of data source from the business logic. It has the functions to access
data sources such as database, XML, file systems, or EIS (Enterprise Information Systems) etc. Since business
logic is separated from presentation logic and database access logic physically, each layer can be scalable and
upgradeable independently. And, even if a layer is modified or replaced, the application of other layers do not
need to be recreated. Besides, each layer can be implemented with clustered servers for its logic. The clustering
enables high-performance computing, availability, and scalability [2]. Therefore, n-tier architecture has been
the way to implement the e-Business systems lately.

Service Request Service Request

Backend
Server

Business Logi Data Source Access
rovided Service Provided

Presentation Logis
Service

FiGg. 2.2. n-tier Architecture.

Enterprise Information Systems 133

2.2. n-tier Architecture for Enterprise Information Systems. Most of the organizations and com-
panies already have adopted n-tier Architecture for their e-Businesses. Simply, they have the different data
sources and their data access methods are different. Thus, each organization’s individual solution has made
more difficult to share the information among the departments within an organization and among the organi-
zations. However, there has been great need to provide integrated information these days in order to support
cooperative works among staffs in agencies and to support their employees and customers. If the different
organizations or the different departments of an organization have the integrated information, the integrated
information systems will benefit the public.

Integrated Information System can be defined as the system that merges information from the disparate
(or heterogeneous) data sources despite differing conceptual, contextual, and typographical representation even
in distributed applications. Figure. 2.3 shows the n-tier Architecture with the layer of Information Integration
logic that resides on middleware server between Business and Data Source Access logic.

Service Request

Backend
Server

Da 0 € Access Logic

Service Request Service Request

Middleware Middleware
Server Sel'ver

Buysifiess Logl ation Integration

Presentation Logis
oy

Service Provided Service Provided Service Provided

Fia. 2.3. Information Integration n-tier Architecture.

3. The J2EFE and .NET. J2EE and .NET are most popular programming language and framework in
order to implement n-tier architecure. This section illustrates the fundamental concepts and frames of J2EE
and .NET.

3.1. J2EE. Java platform is composed of APIs (Java Application Programming Interfaces) and JVM
(Java Virtual Machine) as shown in Figure. 3.1. Java programs—J2SE (Java 2 platform Standard Edition)—
are compiled to Java byte codes that are executable on JVM. JVM interprets the byte codes for native operating
system of the computer system. In other words, the byte codes are translated to target languages—machine
codes in order to run on the computer system. Thus, Java byte codes can be executable on any operating
system if its JVM is installed. That is, Java is a platform independent language that reduces the cost to adapt
the existing Java applications to new platform.

Java Program

Java API

Java Virtual Machine

Our Computer Systems

Fic. 3.1. The Java Platform.

Java APIs are a set of built-in libraries as byte codes. J2EE (Java 2 platform Enterprise Edition) defines
the standard APIs for n-tier architecture [10]. J2EE has been popular to implement e-Business applications
because it is platform independent and has higher performance comparing to the legacy CGI systems with Perl,
PHP and C++ etc. Microsoft Corporation’s ASP is another competitor to build e-Business applications but, it
is only for Microsoft Windows system with the exclusive IIS web server that is the product of Microsoft. Thus,
J2EFE has been the popular method to build e-Business systems in the large scaled market such as bank and
entertainment.

134 Jongwook Woo

J2EE Program

J2EE API

J2EE Application Server

Java Virtual Machine

Our Computer Systems

Fia. 3.2. Application Server for J2EE.

J2EFE is the extended APIs from J2SE. Tt is based on the J2EE components for modularization and to
simplify the development cycle by providing the details of application behaviors. Thus, it enhances a developer
to focus on the business logic without implementing the expensive applications such as transaction, security,
database management, and naming service, etc. J2EFE includes the features of J2SE such as platform indepen-
dency and object-oriented language. Besides, J2EE supports APIs for enterprise systems: JDBC for database
access, EJB (Enterprise JavaBeans), Java Servlets, JSP (JavaServer Pages), XML, Java Mail, and Java Mes-
saging etc. As are J2SFE codes, J2EFE source codes are compiled to Java byte codes and run on JVM that
converts Java byte codes to the machine codes. Most operating systems support JVM so that a code runs on
an operating system should be executable on other operating systems, which meets the policy of write-once-
run-anywhere from Sun Microsystems. In order to execute J2FEE codes, a J2EFE application server is needed as
well as JVM as shown in Figure. 3.2. There are many application servers in the market such as BEA WebLogic,
IBM WebSphere, ATG Dynamo, RedHat JBoss, Apache TomCat, and Sun One Application server, etc. And, in
order to connect databases, JDBC driver is needed for each database. Normally, each database vendor provides
its JDBC driver. Sun Microsystems provides the J2EE specification for J2EE application servers in oder to
maintain write-once-run-anywhere.

In Nov 2006, Sun Microsystems announced to be open sourcing all of its Java Source Implementations
under GPL (General Public License) version 2 licensing used by GNU/Linux Operating System [17]. The
platform implementations include Java SE (JDK), Java ME (Mobile & Imbedded), and Java EE. Before that,
there are open Java software projects such as GNU Java [18] and Apache Harmony [19]. Since Sun opens Java
implementations, the open Java platform can address the new markets for all Java devices more dramatically.

3.2. .NET. Microsoft Corporation is the most famous for Windows operating systems in the personal
computer market. Microsoft’s ASP (Active Server Page) and languages in Visual Studio have been used to
build e-Business applications on Internet and World-Wide-Web. However, the applications mainly depend on
Windows operating system so that Microsoft has lost the major portions of server market against Unix server
systems. It means that Microsoft may lose the huge market of e-Business system against J2EFE. Therefore,
Microsoft has presented . NET solution in June 2000. With .NET framework, Microsoft can compete with and
hopefully may win over J2EE for e-Business applications in large-scaled markets.

Framework, Language, Tools

VB, C#, J#, C++, etc. Visual
Studio .
Common Language Specification NET
ASP .NET Web Forms, Web Windows
Service, Mobile Internet Toolkit Forms

ADO .NET and XML

Common Language Runtime

0S

|
Base Class Library |
|

Fia. 3.3. .NET Framework [Micro].

Enterprise Information Systems 135

Microsoft has focused on its components such as COM (Component Object Model). Component is similar
to object and it is the independent unit that provides a function to a client with an interface of operation,
property, and event. If a component is implemented, a developer can sell the component and modularize
a code with the number of components. Besides, the components modularized can be used in the distributed
computing environment. The component model has been extended in .NET framework. Microsoft has produced
Windows products integrated with . NET framework such as Windows XP and 2003 server etc. .NET framework
supports multi-language environment. At this moment, .NET framework supports Visual Basic, C++, Cf, and
Ji languages. Any code written in one of these languages is compiled to a MSIL (Microsoft Intermediate
Language) code. Then, CRL (Common Runtime Language) of .NET framework interoperates the MSIL codes
so that MSIL codes in any language can communicate each other. CRL is to translate the MSIL codes to the
machine codes as JVM does in Java. Besides, .NET framework may accomplish the platform independency
as Java does. Even though it only runs on Microsoft Windows system at this moment, Microsoft provides
SSCLI (Shared Source Common Language Implementation) to provides platform independency. Even though
it is not clear if the platform independency is the target of .NET, Microsoft has studied the possible platform
independency to build .NET framework executable on FreeBSD and Mac OS X 10.2 operating systems [6].

Mono project is originally an open development initiative sponsored by Novell in order to support .NET
development to Unixz OS. Mono platform provides the necessary software such as compilers and libraries to
develop and run .NET client and server on any platform. Mono project provides both programming language
and platform independency. The platforms to run Mono are Linux, BSD, Solaris, MacOSX, Windows,
and Unix etc. Multiple languages can be used with Mono platform, which are C#.NET, Java, VB.NET,
ASP.NET, Python, PHP, and JavaScript etc [20].

4. J2EE and .NET comparison. This section compares J2EE and .NET in terms of programming
language, platform independecy, component model, database connectivity, market, openness, and application
server. Besides, they are compared for information integration that receives the most spotlight in the world
these days.

4.1. Programming Language. J2EF is the enterprise edition of Java. J2EFE technology and its compo-
nent model is the extension of J2SE. J2EFE provides simple enterprise development and deployment with the
enterprise APIs such as JDBC, JNDI, Servlet, JSP, RMI, EJB, and JMS. The JDBC—we may regard it as Java
Database Connectivity APIs are used to connect a Java code to a data source, that is, database that provides
its JDBC driver. The JNDI (Java Naming and Directory Interface) APIs are to register distributed objects
and access one of them. The Servlet APIs are to handle HT'TP requests and responses between clients and
servers such as application and database servers. The JSP is to create dynamic pages as an extended format
of Servlet by integrating presentation logic with HT M L documents. The RMI (Remote Method Invocation)
APIs are to execute the methods of the remote objects on networks. The EJB APIs are to build components
that simplify the implementation of server site applications such as session controls with Session Bean, data
access and mapping logic with Entity Bean, and asynchronous messaging with Message Bean. EJB also can
modulate the applications as component. The JMS (Java Messaging Service) APIs are to provide synchronous
communications between objects. Besides, since Java is an object-oriented language, the codes written in J2EE
are easy to extend and to maintain. Therefore, J2EFE has been a wll-known solution for e-Business systems
more than 10 years.

.NET is the product of Microsoft corporation. It is language independent so that the existing .NET pro-
gramming languages such as C++.NET, Visual Basic. NET, ASP.NET, C4§. NET, and J§. NET can interoperate
each other on Common Runtime Library (CRL) of .NET framework. Microsoft’s VisualStudio.N ET supports
these languages with each compiler of the languages that supports CRL [3-5]. Therefore, we can simply extend
the existing enterprise systems built in one of these languages by using any of those programming languages.
Besides, .NET languages are object-oriented languages that have the same benefits as J2EE. Thus, .NET frame-
work is more extensible in particular, on Windows than J2FEFE as it is programming language independent
and object-oriented.

4.2. Platform Independency. Java is the platform independent language with JVM provided by Sun
Microsystems. Java codes in J2EE are compiled to Java byte codes as in J2SE. The Java byte codes can run on
any platform such as Unix (Linux) or Windows environment, in which the platform has its JVM installed. JVM
converts the byte codes to machine codes of the platform. Almost all platforms have their JVMs to make Java
byte codes executable on them. .NET framework may have a goal to achieve platform independency. However,
it only works on Windows environment at this moment. There is the source code named SSCLI (Shared Source

136 Jongwook Woo

Common Language Implementation). It is the working implementation to provide a Platform Adaption Layer
(PAL) for academics and researchers. SSCLI is under a noncommercial shared-source license and it will run
on Microsoft Windows XP, the FreeBSD OS, and Mac OS X 10.2 [5]. If SSCLI is successful, codes on .NET
framework will be run on FreeBSD OS and Mac OS X 10.2 as well as Windows OS. Therefore, .NET framework
may achieve the platform independency even though it does not run on most UNIX OSs.

4.3. Component Model. Component in software can be defined as an independent unit to provide an
operation with the interfaces such as operation, property, and event. If a component model is built for a certain
function, the component can be salable and integrated with other products. In addition, many components can
be developed in modules and run on distributed computing environment. Each component should be registered
in a naming server for distributed computing environment. J2EFE provides component model named EJB. It
runs on an EJB application server. The basic idea is to use the built-in applications of EJB application server
such as expensive security, transaction, and database integration functions. If a developer purchase an EJB
application server, the developer can only focuses on implementing his or her business logic with EJB instead
of spending on building those expensive functions. It will save time and cost to develop a product of the
organization. EJB application server normally includes JNDI (Java Naming and Directory Interface) server.
EJBs are registered to the JNDI server so that an EJB objects registered can be found in the JNDI server
whenever they are called in a code.

Microsoft Corporation has developed a component model such as COM (Component Object Model). It is a
Microsoft specification for component interoperability. It has been extended to DCOM (Distributed Component
Object Model) in 1990s. About 1997, COM+ plan was announced by Microsoft, which is an extension of COM.
COM+ builds on COM’s integrated services and features. It also makes it easier for developers to create and use
software components in any language [4]. Microsoft Corporation has applied the existing component concept to
.NET framework. .NET framework is an integral Windows component for building and running the software
applications and Web services. However, .NET components are only registered in the Windows registry. Thus,
it cannot be seperated from technology and support of Microsoft products.

4.4. Database connection. JDBC technology is an API to access virtually any tabular data source from
Java codes. If a data source such as database is linked to JDBC driver, Java codes can access the database.
Normally, each database vendor provides its JDBC driver as the database product. When a Java code is built
for database access application, it needs to refer to classes of JDBC API of the JDBC driver that is accessible
from the code. In addition to JDBC, an entity bean of EJB has database connection interfaces. A developer
can easily implement an entity bean that connects a database without building JDBC connection logic. Thus,
the developer can only focus on implementing business logic so that it will save the cost of his or her product.

OLE (Object Linking and Embedding) DB is a standard interface of Microsoft with which a developer can
refer to any data source. It is built in as a part of the .NET framework. ADO (ActiveX Data Object). NET
is on top of OLE DB as another layer. ADO.NET is a database object model that is composed of many
standard classes to refer to data from any database. The integrated developing environment (IDE) such as
Visual Studio .NET normally supports the OLE DB database provider of each database. Since the provider
uses certain ADO.N ET classes to connect a database, the developer can easily establish the database connection
application in .NET.

4.5. Application Server. Java codes run on JVM. However, J2EE codes are not executable on JVM
alone. It needs an application server that makes the codes executable. J2EE codes on an application server
are mainly for web applications—you may regard them as e-Business applications. The popular application
servers in the market now are BEA WebLogic, IBM WebSphere, ATG Dynamo, and Oracle application server
etc. Besides, there are free application servers such as Apache TomCat and RedHat JBoss. Since there are
many vendors that implement application servers, some J2EE codes runnable on an application server are
not executable on other servers. It violates the motive of Java language. Thus, Sun Microsystems provides
J2EE specification to keep the write-once-run-anywhere motto. Thus, any J2EE application will run on the
application server if the vendor follows the direction of the specification when implementing the application
server. The server that meets the specification is called the Sun certified J2EE application server

To run .NET applications on the legacy Windows OS, .NET framework is needed that can be downloaded
from the Microsoft Corporation web site [3]. Otherwise, we can purchase and install Windows server 2003 to run
.NET applications. For web applications, normally, ASP.N ET is used for a client site—web browser—to access
the dynamic functions built in other .NET languages at a server site. ASP.NFET only runs on Microsoft ITS
web server. It means that Microsoft Corporation exclusively dominates the ASP.N ET market with IIS server.

Enterprise Information Systems 137

The IIS server handles both static and dynamic web pages so that we can call it application server. Since
there are some issues in IIS server, for example, security and open source needs, Microsoft provides Cassini that
is source-available Web server platform and written entirely in Cf. Thus, a developer can modify the internal
functions of Cassini for his or her need and implement the . NET compatible application server. Cassini supports
ASP.NET and other basic functions such as directory browsing on HT'TP 1.1. You can demonstrate Cassini
on the .NET Framework [1].

4.6. Openness. There have been many approaches for Java Open Source. Sun has had an OpenSolaris
project to develop SolarisOS by releasing most of the Solaris source code under the Common Development and
Distribution License (CDDL) [21]. However, many open source communities critisize that OpenSolaris project
does not have the true open source community processes. Sun provided Java open source for OpenSolaris
project. And, GNU Java project has supported Java language with Java Compiler and VM etc [18]. Apache
also launched Harmony project to support platform independent JavaSE5JDK under Apache license [19].
On Nov 2006, Sun announced to open Java source for SE, M E, and EE under GNUGPL license [17]. And,
many open source communities believe that it can be useful for Java world amazingly.

Mono project is to provide open source software for .NET on Uniz platform sponsored by Nowvell. It
provides .NET compiler and libraries etc. Besides, it is actually both platform and language independent
platform even though it needs more studies to be compatible to the platforms and langauges [20].

4.7. Information Integration. There has been great need to integrate and share the information among
disparate data sources within the same or among many different organizations. We can define the disparate
data sources as databases from differen vendors, file systems, and XML etc. The integrated information system
has many demands to satisfy security and reliable requirements, as well as data privacy, quality, and ownership.
In addition, it has the complexity of integrating disparate data. Eunterprise Information Integration (EII) is one
technical approach that addresses integration complexity. EII is the process of using data abstraction to tackle
the data access challenges and complexity associated with the disparate data sources in e-Business.

In Java, there have been several approaches to resolve the problem to integrate the disparate data sources for
n-tier architecture such as JDO, JAXB, EMF and SDO. With these approaches, Java developers can only focus
on the business logic without wasting resources for data management applications. JDO stands for Java Data
Objects standardized by JCP (Java Community Process). It provides an API to access data in data sources such
as database and file systems etc. EMF (Eclipse Modeling Framework) generates a unifying metamodel based
on a data model defined using Java interfaces, XML schema, and UML class diagrams. JAXB stands for Java
APT for XML Data Binding. It is release by JCP and used to generate Java objects in memory corresponding
to XML data [11, 12].

SDO stands for Service Data Objects. It was originally developed as a joint collaboration between BEA and
IBM and is now being developed by BEA, IBM, Oracle, SAP, Siebel, Sybase and XCalia etc. SDO is abstracts
data in order to utilize multiple disparate data sources, which includes databases, entity EJB components,
XML, Web Services, Java Connector Architecture, and JSP pages [11-13]. SDO provides SDO API as JDO.
However, SDO is more general than JDO so that SDO can be used for between any tiers on n-tier architecture
while JDO is for data access tier only. JDO can be even considered as a data source for SDO. Both SDO and
EMF present data representation. SDO is created by EMF code generation and is a facade over EMF as part
of EMF project. JAXB only focuses on Java-to-XML binding while SDO takes care of any data source. Thus,
SDO has been received many lights as it provides only a single and simple interface to a variety of disparate
data. And, it can be also applicable to SOA (Service Oriented Architecture) such as Web Services [12].

Microsoft introduced ActiveX Data Objects (ADQO) on the release of VB 5. ADO was built to provide access
to disparate data sources on distributed computing, that is, n-tier architecture. ADO.N ET is the expansion of
ADO by using XML. There are proprietaries as ADO.N ET providers such as Simba Technologies, DataDirect
Technologies, and OpenLink Software that present drivers and bridges to other data sources [15]. ADO.NET
is the product of Microsoft. Java SDO API is JSR (Java Specification Request) 235 that is the request to be
Java standard API.

5. Summary. Up to Section 4, we see the approach of J2EE and .NET to build e-Business applications.
It is described how J2EE API and .NET products are used on n-tier architecture in Figure. 4.1. To build the
presentation logic of e-Business application, JSP and servlet of J2EE API and ASP.NET of .NET framework
can be used. For the business logic, EJB—especially Session Bean—and standard Java classes for J2EE and
C++.NET, C§.NET, and VB.NET etc. for .NET can be applicable to build the business functions. And, there
is information integration logic between business and data access logics. In J2EFE, JDO, EMF, and JAXB can

138 Jongwook Woo

Information

Presentation Logic Business Logic
Integration Logic

EJB (Session

JSP Servlet Bean), Java JDO, JAXB,

spo EMF s

SDO Classes

Cu++ .NET,
ASP .NET S ADO .NET

Fic. 4.1. J2EFE and .NET on Enterprise n-tier Architecture.

be used as ADO.NET in .NET. For information integration of J2EFE, SDO can resides on between any tiers.
Finally, the developer can implement the database access logic with EJB especially Entity Bean and JDBC
classes for J2EE and ADO.NET for .NET.

Figure. 5.1 summarizes the comparison between J2FE and .NET for the criteria of e-Business applications
as analyzed in Section 4. The criteria are how to handle dynamic web contents, how to access database, platform
independency, possible programming languages to build the applications, to see if there is a component model
and if it is proven in the market, how much the cost to use them, how to integrate heterogeneous data sources,
how is openness, and performance. In the market, J2EFE has been proven for more than 10 years and .NET
has been only for several years. However, .NET has been used by many companies and organizations so that
it is already proven too. In terms of the cost to build and execute applications, J2EFE can be less expensive
since it is free and there are free application servers to make the J2EFE codes run, for example, JBoss. But,
in .NET, people need to buy a VisualStudio. NET IDE (Integrated Development Environment) and I1IS Web
server in order to build solid applications. As the alternative and cheap methodologies to develope ASP.NET
applications, Cassini as application server and WebMatrix [16] as IDE are not good enough to implement the
solid products.

J2EE is platform independent. .NET is the Microsoft language independent but not platform independent.
However, there is Mono project to make .NET code executable on Uniz platform. J2EE community has worked
on integrated data source as ADO.NET so that SDO has come out to the world. In order to get the benefit
of open source as Linux has done, Sun provided open source for Java.

For the performance, the Middleware Company presents the report insisting on that .NET has better
performance on the Pet Store benchmark tuned for .NET than J2EE on the benchmark [7]. However, since the
benchmark is optimized for .NET and executed on Windows OS while J2EE runs on JVM of Windows OS, the
result should be a matter of course. For the better fairness, the performances of .NET and J2EE applications
should be measured with the well optimized benchmark for both .NET and J2EFE on the different platform
such as Unix, which is almost impossible at this moment.

J2EE .NET
Dynamic Web Content JSP ASP.NET
DB Access JDBC ADO.NET
Platform Independency Yes Yes (Mono project)
Languages Java C++, C#, Visual Basic, J#
Component Model Yes (EJB) Yes
Market Proven Yes yes
Cost of product Some freeware No freeware
Integrate Disparate Data JDO, SDO ADO.NET
Sources
Openness Java Open Source Mono
Performance ? ?

Fia. 5.1. Summary: J2EE and .NET.

6. Conclusion. As e-Business applications have been implemented, the importance of the information
integration among the collaborative groups has been grown. In this paper, n-tier architecture of e-Business is
described. Then, Enterprise Information Systems architecture is introduced. The most popular approaches are
illustrated to build the applications on n-tier architecture: J2FE and .NET. J2FE is the specification provided
by Sun Microsystems. J2EE is more flexible because J2EFE API is free and anyone can implement J2FE

Enterprise Information Systems 139

application server that meets the specification given by Sun. .NET of Microsoft Corporation is the product.
Thus, it is only dedicated to Microsoft products. If considering the applications on Windows only, .NET is
more flexible than J2EE because it is programming language independent. J2EE and .NET are compared in
terms of dynamic web content, database connectivity, platform and language independency, component model,
market, cost, openness, and heterogeneous data source integration methodologies. However, it is not easy to
compare the performance of J2EE and .NET because .NET is not executable on the other platforms yet. The
paper should be the useful reference to establish e-Business and Enterprise Information Systems for both profit
and non-profit organizations which do not have the technical and architectural ideas for the systems.

Note. Figure. 6.1 is the table for acronyms used in this paper.

Acronym
ADO ActiveX Data Object
APlIs Application Programming Interfaces
ASP Active Server Pages
CDDL Common Development and Distribution License
COM Component Object Model
CRL Common Runtime Language
DCOM Distributed Component Object Model
Ell Enterprise Information Integration
EJB Enterprise JavaBeans
EMF Eclipse Modeling Framework
GPL General Public License
IDE Integrated Development Environment
JCP Java Community Process
JMS Java Messaging Service
JNDI Java Naming and Directory Interface
JSP JavaServer Pages
JSR Java Specification Request
J2EE Java 2 platform Enterprise Edition
J2SE Java 2 platform Standard Edition
JVM Java Virtual Machine
MSIL Microsoft Intermediate Language
OLE Object Linking and Embedding
PAL Platform Adaption Layer
RMI Remote Method Invocation
SOA Service Oriented Architecture
SSCLI Shared Source Common Language Implementation

Fic. 6.1. Table for Acronyms

REFERENCES

[1] Cassini Sample Web Server, http://wuw.asp.net/Default.aspx?tabindex=7&tabid=41 Microsoft Corporation, 2003.
[2] Building a Better e-Business Infrastructure: n-tier Architecture Improves Scalability, Availability and Ease of Integration,
http://www.intel.com/eBusiness/pdf/busstrat/industry/wp012302.pdf Intel e-Business Center White Paper, 2001.
[3] Owerview of .NET Framework, http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/cpguide/html/cpovrintroductiontonetframeworksdk.asp .NET Framework Developer’s Guide,
Microsoft Corporation, 2003.
[4] COM+, http://wuw.microsoft.com/com/tech/COMPlus.asp Microsoft Corporation, 2002.
[5] Got Dot NET (.NET Framework Website), http://www.gotdotnet.com/team/lang/ Microsoft Corporation, 2003.
[6] Cd/JScript/CLI Implementations Shared Source Licensing Program,
http://www.microsoft.com/resources/sharedsource/Licensing/CSharp_JScript_CLI.mspx Microsoft Corporation,
June 2003.
[7] The Petstore Revisited: J2EE vs .NET Application Server Performance Benchmark,
http://www.middleware-company.com/j2eedotnetbench Middleware Company, Oct. 2002.
[8] InprAN Naick, Luca Amaro, Jason K O’BrieN, Jim NicoLsoN, aND Tsutomu Ova, Design Considerations: From Cli-
ent/Server Applications to e-business Applications, http://www.redbooks.ibm.com/redbooks/SG245503.html Dec 1999.
[9] Brian R. SwmitH, CHArLES AckEeirl, THomas G. BraDFORD, PrRABHAKAR GOPALAN, JENNIFER MAYNARD, AND
ABDULAMIR MRYH1J, IBM e-business Technology, Solution, and Design Overview,
http://www.redbooks.ibm.com/redbooks/SG246248.html August 2003.
[10] Jawa 2 Platform, Enterprise Edition (J2EE), http://java.sun.com/j2ee/ Sun Microsystems, Inc, 2003.
[11] C. M. Saracco, JacQues LABRIE, AND STEPHEN BRrODSKY, Using Service Data Objects with Enterprise Information
Integration Technology, IBM Developer Works, July 2004.
[12] BerrTrRAND PORTIER AND FRANK BUDINSKY, Introduction to Service Data Objects, IBM Developer Works, Sept 2004.
[13] Service Data Objects, Dev2Dev at BEA World, Jan 2006.

140 Jongwook Woo

[14] Jonawook Woo, The Comparison of J2EE and .NET for e-Business, The 2005 International Conference on e-Business,
Enterprise Information Systems, e-Government, and Outsourcing, EEE 2005, Las Vegas, Nevada, June 20-23, 2005.

[15] Kirk A. Evans, AsHwIN KAMANNNA, AND JOEL MUELLER, XML and ASP .NET, published by New Riders, First Edition,
April 2002.

[16] WebMatriz, http://www.asp.net/webmatrix/ 2006 Microsoft Corporation.

[17] OpenJDK, http://www.sun.com/software/opensource/java 2007 Sun Microsystems, Inc.

[18] GNU Java, http://wwu.gnu.org/software/java/ GNU Free Software Foundations.

[19] Harmony, http://harmony.apache.org/ 2006 The Apache Software Foundation.

[20] Mono, http://www.mono-project.com Mono Project.

[21] OpenSolaris, http://opensolaris.org/os/ 2006 Sun Microsystems, Inc.

Edited by: Domenico Talia
Received: May 25, 2006
Accepted: January 20, 2007

ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 8, Number 1, pp. 141-142. http://www.scpe.org © 2007 SWPS

o,..

BOOK REWIES

EDITED BY SHAHRAM RAHIMI

Algorithms Sequential € Parallel: A Unified Approach
Russ Miller and Laurence Boxer

Prentice Hall, Upper Saddle River,

New Jersey 07458

330 pages, $40.77

ISBN: 0-13-086373-4

This book covers some fundamental computer science algorithms and discusses the implementation issues
for both sequential and parallel models. The book is aimed to be used for a senior-level undergraduate or
an introductory-level graduate course in computer science in order to help the students to understand the
application and analysis of algorithmic paradigms to both sequential and parallel models of computing. It can
be viewed as a complementary course to “Data Structure & Algorithms” or “Introduction to Algorithms”, which
are offered in undergraduate level.

The book is organized in three parts. The first part is some background materials for the course and is
comprised of three chapters. The first chapter introduces the concept of asymptotic analysis which is used
frequently through out the book for analysis of algorithms. Chapter 2 briefly reviews fundamentals of induction
and recursion and Chapter 3 introduces the Master method as a powerful system for evaluating recurrence
equations that are used for analysis of many algorithms in the book.

The second part of the book gives an introduction to models of computation. Chapter 4 motivates the
natural use of parallel models of computing by presenting the sorting networks and analyzing the Bitonic-sort
algorithm using sequential and parallel models. Chapter 5 introduces basic models of computation. It starts out
with RAM as a traditional sequential model of computation and then introduces PRAM as a shared memory
model of parallel computing and gives several examples of algorithms that utilize this model. The chapter ends
up by introducing the distributed memory machines and some interconnection networks including linear array,
ring, mesh, tree, pyramid and hypercube. In addition, this chapter introduces terminology such as granularity,
cost, speed up and efficiency.

The third part of the book is the main part of the book and consists of chapter 6 to 13. This part covers
a variety of algorithms in several application domains and discusses the implementation and analysis of these
algorithms using different computational models introduced in chapter 5. Chapter 6 considers the problem of
matrix multiplication and Gaussian Elimination on RAM, PRAM and mesh models. Chapter 7 introduces the
parallel prefix operation and discusses the implementation and analysis of its sample applications for a number
of computation models such as RAM, PRAM, mesh and hypercube. Chapter 8 covers the pointer jumping tech-
niques and shows how some list based algorithms can be efficiently implemented in parallel. Chapter 9 presents
the divide-and-conquer and shows the application of divide-and-conquer to problems involving data movement
including sort, concurrent read and write and so forth. These algorithms and their analysis are presented for
a number of sequential and parallel models. Chapters 10, 11 focus on the implementation and analysis of basic
algorithms in the area of computational geometry and image processing. Chapter 12 dwells on implementation
of some fundamental graph algorithms such as graph traversal, labeling, minimum cost and shortest path on
RAM, PRAM and mesh models. Finally chapter 13, which is an optional chapter, concerns with some basic
numerical problems such as evaluating a polynomial, approximation by Taylor series, trapezoidal integration
and so forth. The focus of chapter is on sequential algorithms for polynomial evaluation and approximation of
definite integrals.

The book is well-organized and covers a wide variety of fundamental computer science algorithms in several
application domains. It helps the students to understand the implementation of algorithms in different parallel
models and compare them to their sequential counterparts. However, there are some drawbacks that could
be noted. Although the analysis of parallel algorithms deals with communication models and performance
measurement, the book does not cover these areas in sufficient details. The number of parallel models and
interconnection networks mentioned in the book are limited and the book does not include the methodology of
designing parallel algorithms. Conclusively, while the book is useful to give an introduction to parallel models

141

142

Book Revies

and algorithms and compare them to sequential ones, students would still need to utilize other sources on
parallel computing to obtain more knowledge on this domain.

Elham S. Khorasani,
Department of Computer Science
Southern Illinois University
Carbondale, IL 62901, USA

AIMS AND SCOPE

The area of scalable computing has matured and reached a point where new issues and trends require a pro-
fessional forum. SCPE will provide this avenue by publishing original refereed papers that address the present
as well as the future of parallel and distributed computing. The journal will focus on algorithm development,
implementation and execution on real-world parallel architectures, and application of parallel and distributed
computing to the solution of real-life problems. Of particular interest are:

Expressiveness: Applications:
e high level languages,

object oriented techniques,

compiler technology for parallel computing,

implementation techniques and their effi-

e database,
[)
[)
. [)
ciency.
[)
[)
[)
[)

control systems,
embedded systems,

fault tolerance,

. . industrial and business,
System engineering:

e programming environments,
e debugging tools,
e software libraries.

real-time,
scientific computing,
visualization.

Performance:
e performance measurement: metrics, evalua-
tion, visualization,
e performance improvement: resource allocation e engineering trends and their consequences,
and scheduling, I/0, network throughput. e novel parallel architectures.

Future:

e limitations of current approaches,

Taking into account the extremely rapid pace of changes in the field SCPE is committed to fast turnaround
of papers and a short publication time of accepted papers.

INSTRUCTIONS FOR CONTRIBUTORS

Proposals of Special Issues should be submitted to the editor-in-chief.

The language of the journal is English. SCPE publishes three categories of papers: overview papers,
research papers and short communications. Electronic submissions are preferred. Overview papers and short
communications should be submitted to the editor-in-chief. Research papers should be submitted to the editor
whose research interests match the subject of the paper most closely. The list of editors’ research interests can
be found at the journal WWW site (http://www.scpe.org). Each paper appropriate to the journal will be
refereed by a minimum of two referees.

There is no a priori limit on the length of overview papers. Research papers should be limited to approx-
imately 20 pages, while short communications should not exceed 5 pages. A 50-100 word abstract should be
included.

Upon acceptance the authors will be asked to transfer copyright of the article to the publisher. The
authors will be required to prepare the text in INTEX 2¢ using the journal document class file (based on the
STAM’s siamltex.clo document class, available at the journal WWW site). Figures must be prepared in
encapsulated PostScript and appropriately incorporated into the text. The bibliography should be formatted
using the STAM convention. Detailed instructions for the Authors are available on the SCPE WWW site at
http://www.scpe.org.

Contributions are accepted for review on the understanding that the same work has not been published
and that it is not being considered for publication elsewhere. Technical reports can be submitted. Substantially
revised versions of papers published in not easily accessible conference proceedings can also be submitted. The
editor-in-chief should be notified at the time of submission and the author is responsible for obtaining the
necessary copyright releases for all copyrighted material.

