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S
alable Computing: Pra
ti
e and Experien
eVolume 8, Number 1, p. i. http://www.s
pe.org ISSN 1895-1767© 2007 SWPSEDITORIAL: VIETNAM ON ITS WAY TO HIGH PERFORMANCE COMPUTINGIn Mar
h 2007 I had the pleasure to parti
ipate in the International Workshop on Advan
ed Computingand Appli
ations (ACOMP 2007) held in Ho Chi Minh City, the former Saigon in Vietnam. Neither was it the�rst workshop there nor was it my �rst visit to Ho Chi Minh City. The workshop series started in 2001 withfollow-ups in 2002, 2004, and 2005. In the years 2003 and 2006 our Vietnamese 
olleagues organised a 
onferen
eheld in Hanoi, the 
apital of Vietnam. While this 
onferen
e was more fo
used on mathemati
al optimization,the Spring workshops have always 
on
entrating on parallel and distributed 
omputing. These 
onferen
es are aresults from a 
ooperation between the Interdis
iplinary Centre of S
ienti�
 Computing (IWR) at the UniversityHeidelberg, Germany, and 
olleagues in Hanoi and Saigon. For more than a de
ade Prof. Georg Bo
k at theIWR and Prof. Hoang Xuan Phu (Hanoi) and Prof. Nguyen Thanh Son (HCMC) have been the driving for
ebehind this fruitful 
ooperation.While attending the workshops in 2001 and 2002 I was impressed by the 
reativity and fo
used hard workof the resear
hers in Vietnam.  This year's 
ontributions to the workshop highlight a new trend in Vietnamese
omputer s
ien
e, i.e. its orientation of resear
h towards Grid Computing.Remember, it is only sin
e 1975 that the 
ountry lives in pea
e after the Vietnam war. In 1986 the governingCommunist Party made a shift to an open market and installed the so-
alled Doi Moi (renovation) politi
s. The
ountry developed rapidly, making Vietnam one of the fastest growing e
onomies world-wide. In the 1980'sgifted s
ientists studied in foreign 
ountries and 
ondu
ted resear
h there in order to later go ba
k and build uptheir home 
ountry. Many of them went to so
ialist brother 
ountries, in parti
ular also to the former GermanDemo
rati
 Republi
.The fa
ulty for 
omputer s
ien
e at the Ho Chi Minh City University of Te
hnology (HCMUT) was estab-lished in 1986. The university itself has its foundation in the 50s however was named after Ho Chi Minh onlyafter the end of the war. It is now the leading university in tea
hing and resear
h a
tivities of Vietnam. How-ever, Southern HCMC University after the end of the war re
eived a high number of tea
hing and managementsta� from the Northern Hanoi University of Te
hnology. Remember that the 
ommunist North Vietnam wonthe war and the South was reuni�ed with the North in 1976. Being German I see parallels to our a
ademi
 lifeafter the reuni�
ation of West and East Germany in 1990.Although Hanoi University of Te
hnology also 
ondu
ts edu
ation and resear
h in 
omputer s
ien
e, thefo
us on high performan
e 
omputing is a spe
iality of the HCMC University. Having 25.000 students in total,the 
omputer s
ien
e fa
ulty with its 1.500 students plays an important role on the 
ampus. It embra
es 7resear
h groups on di�erent �elds like e.g. 
hip design and data mining. Parallel pro
essing and network
omputing is headed by Dr. Nguyen Thanh Son, who is now the Vi
e Re
tor of the University of Te
hnologyand Dr. Nam Thoai.At the workshop they presented their work in Grid 
omputing in �ve talks. This was 
omplemented byabout the same number of invited keynote talks given by speakers who play an important role in this �eld likeSatoshi Sekigu
hi, Dieter Kranzlmueller and others. Under the guidan
e of HCMUT and with �nan
ial supportby the Vietnamese Ministery for S
ien
e and Te
hnology, the Vietnamese resear
hers plan to set up a nationalGrid infrastru
ture (VN-Grid Initiative).The EDAGrid-proje
t at HCMUT aims at providing the ne
essary software 
omponents and organizational
on
epts. Based on the Globus Toolkit 4.x it de�nes a middleware for servi
e-
entri
 appli
ations. As thetele
ommuni
ation infrastru
ture of Vietnam is not yet that powerful as in other 
ountries, the �rst step willbe to de�ne so-
alled fat Grid nodes at the major universities of Vietnam. HCMUT 
ontributes the SupernodeII 
luster, whi
h 
omprises 64 nodes with two pro
essors ea
h. The software is well-known to us: GT 4.x, PBS,LSF and others. Grid based proje
ts at HCMUT fo
us on data management and on data mining. They run
ooperations with resear
hers from e.g. 
ivil engineering, 
hemistry and aerospa
e te
hnology.So Vietnam is qui
kly 
at
hing up with the international Grid 
ommunity�and not only with this one. Weare looking forward to fruitful dis
ussions and 
ooperations with our Vietnamese 
olleagues and of 
ourse alsohope to see submissions to SCPE.http://www.h
mut.edu.vn/http://www.
se.h
mut.edu.vn/http://www.
se.h
mut.edu.vn/ACOMP2007/Thomas Ludwig,Universität Heidelberg. i
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eVolume 8, Number 1, p. iii. http://www.s
pe.org ISSN 1895-1767© 2007 SWPSGUEST EDITOR'S INTRODUCTION.This issue is the se
ond of a two issue 
olle
tion of sele
ted papers from the AIMS (Agents, Intera
tions,Mobility, and Systems) 
onferen
e tra
k. AIMS began in 2002 as part of the ACM SAC (Symposium onApplied Computing) and 
ontinued for �ve years. The �rst 
onferen
e was held in Madrid (Spain). Subsequent
onferen
es were held in Melbourne (Florida, USA), Ni
osia (Cyprus), Santa Fe (New Mexi
o, USA), and Dijon(Fran
e). The tra
k was primarily 
reated to provide a venue for applied topi
s in software agents, but be
amethe only venue for papers on mobile agents, as the IEEE 
onferen
e on Mobile Agents was dis
ontinued after2002. The �rst issue fo
used on papers related to mobile agents. This se
ond issue fo
uses on software agentsand 
ontains eight papers.In the �rst paper, Alberti and 
olleagues address the problem of verifying agent intera
tion proto
ols thatdi
tate how agents 
ommuni
ate with ea
h other in a multi-agent system. They propose a system based onProlog that enfor
es So
ial Integrity Constraints�that govern how agents intera
t with other agents. They alsoapply their approa
h to the standard FIPA Contra
t-Net proto
ol.In the se
ond paper, Meneguzzi, Zorzo, Costa Móra, and Lu
k dis
uss how to in
orporate planning intothe Belief, Desires, Intentions (BDI) model based agent systems. Their approa
h attempts to supplement theBDI model with a planning approa
h in order to provide e�
ient means-end reasoning. A hybrid system witha blend of programming platforms integrates reasoning and graphplan generation. This integration addressesthe long awaited requirement for BDI pragmatism and provides a novel te
hnologi
al framework.The third paper by Albayrak, Wollny, Lommatzs
h, and Milosevi
 des
ribes an appli
ation of agent te
h-nology to information �ltering. Their system uses information agents to retrieve 
ontent from a number ofdiverse sour
es in
luding the web. This information is then �ltered for individual users via personal agents,based on the user pro�les. They also des
ribe their implementation to support browsing information via PDAsand 
ellphones.In the fourth paper, Hexmoor and M
laughlan address the issue of adjustable autonomy in the 
ontext of thePersonal Satellite Assistant (PSA)�a softball sized �ying robot onboard the spa
e station. The authors proposea 
omputational approa
h to adjustable autonomy, whi
h 
onsiders the tradeo�s between human interventionand guidan
e to an agent versus the agent's own autonomous behavior.The �fth paper by Peña and 
olleagues address the problem of proto
ol design for multi-agent systems.Unlike the logi
-based approa
h adopted by the �rst paper, this approa
h proposes a top-down me
hanismfor designing the proto
ols. They model the proto
ols with FSAs that are su

essively re�ned until they areredu
ed to simple message sequen
es.In the sixth paper, Zhang proposes an approa
h to proa
tive 
ommuni
ation to improve performan
e ofmulti-agent teamwork. The goal is to allow agents 
ooperating in a team to anti
ipate ea
h other's informationneeds in a proa
tive manner and to 
ommuni
ate the information to other agents.In the seventh paper, Lomonosov and Sitharam dis
uss the tradeo� between stability, optimality, and
omplexity for network games. Their approa
h is based on the Nash equilibrium, with stability being de�ned asthe ability to rea
h a Nash equilibrium and optimality being de�ned as the distan
e between to the equilibriumsolution and an optimal solution.The paper by Carlsson and Jönsson dis
usses 
ooperative strategies and their appli
ation to the iteratedprisoner's dilemma and the 
hi
ken game.De
ision support systems for resour
e management in the 
orporate world require sophisti
ated adminis-tration and management. Multiagent systems approa
h to this topi
 is the tenet of the paper by Symeonidis,et. al., in this issue. Customer management as well as resour
e tra
king and re
ommendation are 
ore issueddis
ussed.Mar
in Paprzy
ki,Niranjan Suri.
iii
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pe.org ISSN 1895-1767© 2007 SWPSSPECIFICATION AND VERIFICATION OF AGENT INTERACTION PROTOCOLS IN ALOGIC-BASED SYSTEM∗MARCO ALBERTI, FEDERICO CHESANI, DAVIDE DAOLIO, MARCO GAVANELLI, EVELINA LAMMA, PAOLAMELLO AND PAOLO TORRONIAbstra
t.A number of information systems 
an be des
ribed as a set of intera
ting entities, whi
h must follow intera
tion proto
ols.These proto
ols determine the behaviour and the properties of the overall system, hen
e it is of the uttermost importan
e that theentities behave in a 
onformant manner.A typi
al 
ase is that of multi-agent systems, 
omposed of a plurality of agents without a 
entralized 
ontrol. Complian
eto proto
ols 
an be hardwired in agent programs; however, this requires that only �
erti�ed� agents intera
t. In open systems,
omposed of autonomous and heterogeneous entities whose internal stru
ture is, in general, not a

essible (open agent so
ietiesbeing, again, a prominent example) intera
tion proto
ols should be spe
i�ed in terms of the observable behaviour, and 
omplian
eshould be veri�ed by an external entity.In this paper, we propose a Java-Prolog-CHR system for veri�
ation of 
omplian
e of 
omputational entities to proto
olsspe
i�ed in a logi
-based formalism (So
ial Integrity Constraints). We also show the appli
ation of the formalism and the systemto the spe
i�
ation and veri�
ation of three di�erent s
enarios: two spe
i�
ations show the feasibility of our approa
h in the
ontext of Multi Agent Systems (FIPA Contra
t-Net Proto
ol and Semi-Open so
ieties), while a third spe
i�
ation applies to thespe
i�
ation of a lower level proto
ol (Open-Conne
tion phase of the TCP proto
ol).1. Introdu
tion. Many information systems 
an be des
ribed as a set of mutually independent, intera
tingentities. A typi
al example is that of multi-agent systems. In su
h a s
enario the intera
tion is usually subje
tto some kind of intera
tion proto
ols, whi
h the agents should respe
t when intera
ting. This raises the obviousproblem of verifying that intera
tion proto
ols are a
tually followed.It is possible to design agents so that they will �spontaneously� 
omply to proto
ols, and, if possible,formally verify that at design time. For instan
e, in [13℄, Endriss et al. propose an approa
h where proto
olsare �imported� into individual agent poli
ies.However, this approa
h is not viable in open1 agent so
ieties, where intera
ting agents are autonomous andheterogeneous and, in general, their internal stru
ture 
annot be a

essed. In this 
ase, agents should be 
he
kedfor 
omplian
e to intera
tion proto
ols based on their observable behaviour, by a trusted external entity.In previous work [5℄, we proposed a 
omputational logi
-based formalism (based upon So
ial IntegrityConstraints, SICs) to spe
ify intera
tion proto
ols. So
ial Integrity Constraints are meant to 
onstrain the agentobservable behaviour rather than agents' internal (mental) state or poli
ies. In other words, this approa
h doesnot restri
t an agent's a

ess to so
ieties based on its internal stru
ture; regardless of its poli
ies, any agent 
ansu

essfully intera
t in a so
iety ruled by SICs, as long as its behaviour is 
ompliant. The formal semanti
s ofSo
ial Integrity Constraints [4℄ is based on abdu
tive logi
 programming [18℄.The purpose of this paper is to demonstrate the viability of So
ial Integrity Constraints as a formalism tospe
ify intera
tion between 
omputational entities, in
luding, but not limited to, agents in open so
ieties. Wewill use a modi�ed version of So
ial Integrity Constraints, whi
h better �ts our needs in terms of both simpli
ityof presentation, and expressiveness.The paper is stru
tured as follows. In Se
t. 2, we introdu
e the version of So
ial Integrity Constraints usedin this work, giving their syntax and an informal explanation of their semanti
s.In Se
t. 3 we spe
ify in terms of SICs a 
ontra
t net-based proto
ol for resour
e allo
ation and negotiationin multi-agent systems, 
alled FIPA CNP, and in Se
t. 4 we spe
ify a proto
ol for entering �semi-open� so
ieties,i. e., virtual environments 
hara
terized by the presen
e of a �gatekeeper� agent and a proto
ol that governs theagents' a

ess to the so
iety. In Se
t. 5 we demonstrate the usage of SICs to spe
ify a network 
ommuni
ationproto
ol, namely the three-way handshake opening of the TCP Internet Proto
ol.The arti
le ends with the presentation of the 
omplian
e veri�
ation system (Se
t. 6), and some notes aboutits Java+Prolog implementation.
∗This arti
le is an extended version of the one by Alberti, Daolio, Gavanelli, Lamma, Mello, and Torroni, published in Haddad,Omi
ini, and Wainwright, eds., Pro
eedings of the 19th ACM Symposium on Applied Computing, SAC 2004, Spe
ial Tra
k onAgents, Intera
tions, Mobility, and Systems (AIMS). Ni
osa, Cyprus, Mar
h 14-17, 2004. pp. 72-78. ACM Press (2004).
1We intend openness in so
ieties of agents as Artikis, Pitt and Sergot [7℄, where agents 
an be heterogeneous and possiblynon-
ooperative. 1



2 Mar
o Alberti, Federi
o Chesani et al.2. So
ial Integrity Constraints. We distinguish between a
tual behaviour (happened events) and desiredbehaviour (expe
tations), sin
e in non-ideal situations they do not always 
oin
ide. In this se
tion, we let thereader get a
quainted with our representation of events and we introdu
e So
ial Integrity Constraints (SICs) asa formalism used to express whi
h expe
tations are generated as 
onsequen
e of happened events.Happened Events and Expe
tations. Happened events are in the form
H(Description,Time)where Des
ription is a term (as intended in logi
 programming, see [20℄) representing the event that hashappened, and Time is an integer number representing the time at whi
h the event has happened. For example,

H(request(ai, aj, give(10$), d1), 7)represents the fa
t that agent ai requested agent aj to give 10$, in the 
ontext of intera
tion d1 (dialogueidenti�er) at time 7.All happened events form the history of a so
iety. Given the history of a so
iety at a given time, someevents will have to happen in order for intera
tion proto
ols to be satis�ed: we represent su
h events by meansof expe
tations, whi
h 
an be positive or negative. Positive expe
tations are of the form
E(Description,Time)and represent an event that is expe
ted to happen (typi
ally, an a
tion that an agent is expe
ted to take).Negative expe
tations are of the form

EN(Description,Time)and represent the fa
t that an event is expe
ted not to happen.Expe
tations may (and, typi
ally, will) 
ontain variables, to re�e
t the fa
t that the expe
ted event is notfully spe
i�ed; however, CLP [17℄ 
onstraints 
an be imposed on variables to restri
t their domain. For instan
e,
E(a

ept(ak, aj , give(M), d2), Ta) : M ≥ 10, Ta ≤ 15 (2.1)represents the expe
tation for agent ak to a

ept giving agent aj an amount M of money, in the 
ontext ofintera
tion d2 at time Ta; moreover,M is expe
ted to be at least 10$, and Ta to be at most 15.Sin
e we impose no restri
tions on the Des
ription term of an expe
tation, expe
tations 
an regard any kindof event that 
an be expressed by a Prolog-like term. However, expe
tations only regard point-time events; thusit is not possible to express 
on
isely that some proposition is expe
ted to be true along a given time interval.Sin
e we make no assumptions about the agents' internal stru
ture or poli
ies, their behaviour may or maynot satisfy expe
tations. We represent these two 
ases by means of the notions of ful�llment and violation. Wesay that an event mat
hes an expe
tation if and only if:

• their 
ontents unify (à la Prolog);
• all relevant CLP 
onstraints on variables (if any) are satis�ed.A positive expe
tation 
an get ful�lled by a mat
hing event, whereas a negative expe
tation 
an get violated bya mat
hing event.For instan
e, event

H(a

ept(ak, aj , give(20), d2), 15)ful�lls expe
tation (2.1); the same event would, instead, violate a negative expe
tations with the same 
ontentand CLP 
onstraints.If we assume at some point that no more events will ever o

ur, we say that the history is 
losed. In that
ase, all positive expe
tations that are not ful�lled are violated, and all negative expe
tations that are notviolated are ful�lled.



Spe
i�
ation and Veri�
ation of Agent Intera
tion Proto
ols 3Table 2.1BNF syntax of So
ial Integrity ConstraintsSIC::=χ→ φ
χ::=EventLiteral [∧ EventLiteral℄∗ [:CList℄
φ::=PriorityLevel [⇒ PriorityLevel℄∗PriorityLevel::=HeadDisjun
t [∨ HeadDisjun
t℄∗, PEventLiteral::=H(Term,T)HeadDisjun
t::=Expe
tation [∧ Expe
tation℄∗ [:CList℄Expe
tation::=E(Term,T) | EN(Term,T)So
ial Integrity Constraints. The way expe
tations are generated, given a (partial) history of a so
iety,is spe
i�ed by So
ial Integrity Constraints (SICs). In this arti
le, we adopt a modi�ed version of the SICsintrodu
ed in [2℄ (we dis
uss and motivate su
h modi�
ations in Se
t. 7).Table 2.1 reports the BNF syntax of SICs. Term is a logi
 programming term [20℄, P is an integer numberand T is a variable symbol or integer number. CList is a 
onjun
tion of CLP 
onstraints on variables.SICs are a kind of forward rules, stating what expe
tations should be generated on the basis of happenedevents. By means of SICs, it is possible to express that 
onjun
tions of expe
tations (HeadDisjun
ts in Table2.1) are alternative, and it is also possible to assign a priority, represented by an integer number, to ea
h list ofalternatives (PriorityLevels in Table 2.1).For instan
e, the following SIC:

H(e0, T0) ∧ H(e1, T1) : T0 < T1

→ E(e2, T2) : T2 < T1 ∨EN(e3, T3) : T3 < T0, 1

⇒ E(e4, T4) : T4 < T0, 2

(2.2)means that, if e0 happens before e1, then either of the two 
ases below hold:
• e2 should have happened before e1 or e3 should not have happened before e0,
• e4 should have happened before e0;and the �rst 
ase has higher priority than (or is preferred to) the se
ond one. Intuitively, a SIC means that,when a set of events mat
hing its body happens, then at least one of the �priority levels� in its 
on
lusionshould be satis�ed (the higher the priority, the better). In this 
ase, we say that the SIC is ful�lled ; otherwise,it is violated. While priorities have no e�e
t upon the ful�llment status of the so
iety, they 
ould instead beused by a possible 
omputational entity representing the so
iety to guide its members' behaviour towards somepreferred state. This 
an be useful when expe
tations are a

ounted for by agents deliberating about futurea
tions. At ea
h point in time there are in general several equally ful�lled sets of expe
tations. But if someare more preferred to others, an imaginary �so
ial reasoner� whi
h produ
es expe
tations based on events 
ouldthen evaluate and 
hoose whi
h sets of expe
tations better �t its goals, and transmit only them to the so
ietymembers. If su
h members take expe
tations into a

ount, the whole so
iety 
ould evolve towards preferredstates.The expe
tations in SIC (2.2) regard events that should have (or have not) happened before the time ofthe event that raises them: we 
all this kind of expe
tations ba
kward. Expe
tations that regard events thatare expe
ted to happen (or not to happen) after the event that raises them are named forward. We restri
tthe possible SICs by requiring that they 
ontain only either ba
kward expe
tations or forward expe
tations:in the �rst 
ase, we will 
all the SIC ba
kward, in the se
ond 
ase forward. We dis
uss this restri
tion inSe
t. 7.3. Spe
i�
ation of the FIPA Contra
t-Net. FIPA-CNP [1℄ is a proto
ol based on FIPA-ACL [14℄de�ned for regulating transa
tions between entities by negotiation. The proto
ol �ow, represented as an AUML[21℄ diagram in Fig. 3.1, starts with an Initiator whi
h issues a request for a resour
e (
fp, standing for 
allfor proposals) to other Parti
ipants. The Parti
ipants 
an reply by proposing a pri
e that satis�es the request(propose), or by refusing the request altogether (refuse). The Initiator must a

ept (a

ept-proposal) or reje
t(reje
t-proposal) the re
eived proposals. A Parti
ipant whose proposal has been a

epted must, by a givendeadline, inform the Initiator that it has provided the resour
e (by sending an inform-done message, or a moreinformative inform-result message) or that it has failed to provide it (failure).
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Fig. 3.1. FIPA-Contra
t-Net Intera
tion Proto
ol (AUML Diagram)3.1. De�nition by So
ial Integrity Constraints. The whole set of SICs used to de�ne FIPA-CN is
omposed of 14 ba
kward SICs and 3 forward SICs. This 
hoi
e of SICs is obviously not the only possibility.We are 
urrently investigating a general mapping of AUML proto
ol diagrams and other graphi
al formalismsto SICs, so as to allow for an automati
 translation. Some progress in this sense has been done with the GOSpelgraphi
 language [10℄ in the health 
are appli
ation domain.In the SICs in the remainder of this se
tion, I will represent the initiator, P a parti
ipant, R the resour
e,
Q the pri
e, D the dialogue identi�er, S the explanation of a result, and T, T1, . . . the time. We will not usepriority levels.Ba
kward SICs. Ba
kward SICs are used to express that an a
tion is only allowed if some other events have(not) o

urred before.SICs (3.1) and (3.2) state that propose and refuse are only allowed in reply to a 
fp.

H(tell(P, I, propose(R,Q), D), T ) →

E(tell(I, P, 
fp(R), D), T1) : T1 < T
(3.1)

H(tell(P, I, refuse(R), D), T ) →

E(tell(I, P, 
fp(R), D), T1) : T1 < T
(3.2)SICs (3.3) and (3.4) express mutual ex
lusion between propose and refuse.

H(tell(P, I, propose(R,Q), D), T ) →

EN(tell(P, I, refuse(R), D), T1) : T1 ≤ T
(3.3)
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H(tell(P, I, refuse(R), D), T ) →

EN(tell(P, I, propose(R,Q), D), T1) : T1 ≤ T
(3.4)SICs (3.5) and (3.6) state that a

ept-proposal and reje
t-proposal are only allowed in reply to a propose.

H(tell(I, P, a

ept-proposal(R,Q), D), T ) →

E(tell(P, I, propose(R,Q), D), T1) : T1 < T
(3.5)

H(tell(I, P, reje
t-proposal(R,Q), D), T ) →

E(tell(P, I, propose(R,Q), D), T1) : T1 < T
(3.6)SICs (3.7) and (3.8) express mutual ex
lusion between a

ept-proposal and reje
t-proposal.

H(tell(I, P, a

ept-proposal(R,Q), D), T ) →

EN(tell(I, P, reje
t-proposal(R,Q), D), T1) : T1 ≤ T
(3.7)

H(tell(I, P, reje
t-proposal(R,Q), D), T ) →

EN(tell(I, P, a

ept-proposal(R,Q), D), T1) : T1 ≤ T
(3.8)SICs (3.9), (3.10) and (3.11) say that inform-done, inform-result and failure are only allowed in reply to ana

ept-proposal.

H(tell(P, I, inform-done(R), D), T ) →

E(tell(I, P, a

ept-proposal(R,Q), D), T1) : T1 < T
(3.9)

H(tell(P, I, inform-result(R,S), D), T ) →

E(tell(I, P, a

ept-proposal(R,Q), D), T1) : T1 < T
(3.10)

H(tell(P, I, failure(R), D), T ) →

E(tell(I, P, a

ept-proposal(R,Q), D), T1) : T1 < T
(3.11)SICs (3.12), (3.13) and (3.14) express mutual ex
lusion between inform-done, inform-result and failure.

H(tell(P, I, inform-done(R), D), T ) →

EN(tell(P, I, failure(R), D), T1) : T1 ≤ T ∧

EN(tell(P, I, inform-result(R,S), D), T1) : T1 ≤ T

(3.12)
H(tell(P, I, inform-result(R,S), D), T ) →

EN(tell(P, I, failure(R), D), T1) : T1 ≤ T ∧

EN(tell(P, I, inform-done(R), D), T1) : T1 ≤ T

(3.13)
H(tell(P, I, failure(R), D), T ) →

EN(tell(P, I, inform-done(R), D), T1) : T1 ≤ T ∧

EN(tell(P, I, inform-result(R,S), D), T1) : T1 ≤ T

(3.14)
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eiving a 
fp, a Parti
ipant is expe
ted to issue a propose or arefuse by 200 time units.2
H(tell(I, P, 
fp(R), D), T ) →

E(tell(P, I, propose(R,Q), D), T1) : T1 < T + 200 ∨

E(tell(P, I, refuse(R), D), T2) : T2 < T + 200

(3.15)SIC (3.16) states that the Initiator is expe
ted to reply to a propose with an a

ept-proposal or a reje
t-proposalby 200 
lo
k ti
ks.
H(tell(P, I, propose(R,Q), D), T ) →

E(tell(I, P, a

ept-proposal(R,Q), D), T1) : T1 < T + 200∨

E(tell(I, P, reje
t-proposal(R,Q), D), T2) : T2 < T + 200

(3.16)SIC (3.17) states that a Parti
ipant is expe
ted to reply to an a

ept-proposal with an inform-done, aninform-result or a failure by 200 
lo
k ti
ks.
H(tell(I, P, a

ept-proposal(R,Q), D), T ) →

E(tell(P, I, inform-done(R), D), T1) : T1 < T + 200∨

E(tell(P, I, inform-result(R,S), D), T2) : T2 < T + 200∨

E(tell(P, I, failure(R), D), T2) : T2 < T + 200

(3.17)Note that, in all the three 
ases, ba
kward SICs make the alternative expe
tations mutually ex
lusive.4. Spe
i�
ation of a semi-open so
iety a

ess proto
ol. A

ording to [11℄, so
ieties 
an be 
lassi�edinto 4 groups, ea
h 
hara
terized by a di�erent degree of openness. In the following, we give an example of howour framework 
an model a semi-open so
iety, i. e., a so
iety that 
an be joined by an agent exe
uting an a

essproto
ol. In this example we imagine that a spe
ial gatekeeper agent is in 
harge of re
eiving joining requests,and it requests agents willing to enter to �ll in some registration form.The a

ess proto
ol is de�ned by the following SICs, in whi
h C represents the name of an agent willing tojoin in:
H(tell(C, gatekeeper, ask(register), D), T ) →

E(tell(gatekeeper, C, ask(form), D), T1) : T1 < T + 10
(4.1)

H(tell(C, gatekeeper, ask(register), D), T )∧

H(tell(gatekeeper, C, ask(form), D), T1) ∧ T < T1 →

E(tell(C, gatekeeper, send(form, F ), D), T2) : T2 < T1 + 10

(4.2)
H(tell(gatekeeper, C, ask(form), D), T1)∧

H(tell(C, gatekeeper, send(form, F ), D), T2) ∧ T1 < T2 →

E(tell(gatekeeper, C, accept(register), D), T3) : T3 < T2 + 10 ∨

E(tell(gatekeeper, C, reject(register), D), T3) : T3 < T2 + 10

(4.3)SIC (4.1) says: if C asks gatekeeper to join the so
iety (register), then the gatekeeper should ask for aregistration form; SIC (4.2) imposes that, after the �rst two messages, the agent should provide the form;and SIC (4.3) says that, after re
eiving the form, the gatekeeper should either accept or reject the registrationrequest.
2Time unit is an abstra
t 
on
ept, whose instantiation a
tually depends on the appli
ation. A time unit may represent forexample a 
lo
k ti
k, or a transa
tion time.
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ity, in the sequel we assume that member agents do not leave the so
iety. Then, thepresen
e in the history of an event of type:
H(tell(gatekeeper, C, accept(register), D), T )
an be regarded as C's �formal� a
t of �membership�, and it 
an be used in SICs as a 
ondition for generatingexpe
tations.For instan
e, SIC (3.15) from the FIPA-CNP (Se
t. 3.1) 
ould be modi�ed as follows to take membershipinto a

ount:

H(tell(gatekeeper, I, accept(register), D), TI)∧

H(tell(I, P, 
fp(R), D), T ) →

E(tell(P, I, propose(R,Q), D), T1) : T1 < T + 200 ∨

E(tell(P, I, refuse(R), D), T2) : T2 < T + 200

(4.4)5. Spe
i�
ation of the TCP proto
ol opening phase. In this se
tion, we present a spe
i�
ation of theopen-
onne
tion phase of the TCP proto
ol. We will fo
us on the well known �three-way handshake� opening,summarized below:1. a peer A sends to another peer B a syn segment;32. B replies by a
knowledging (with an a
k segment) A's syn segment, and by sending a syn segment inturn;3. A a
knowledges B's syn segment with a a
k segment, and starts sending data.The following two integrity 
onstraints des
ribe su
h a proto
ol:
H(tell(A,B, t
p(syn,null, NSynA,AckNumber), D), T 1) →

E(tell(B,A, t
p(syn, a
k, NSynB,NSynAAck), D), T 2) :

NSynAAck = NSynA+ 1 ∧ T 2 > T 1.

(5.1)SIC 5.1 says that if A sends to B a syn segment, whose sequen
e number is NSynA, then B is expe
ted tosend to A an a
k segment, whose a
knowledgment number is NSynA+ 1, at a later time.
H(tell(A,B, t
p(syn,null, NSynA,AckNumber), D), T 1)

∧ H(tell(B,A, t
p(syn, a
k, NSynB,NSynAAck), D), T 2) :

T 2 > T 1 ∧NSynAAck = NSynA+ 1 →

E(tell(A,B, t
p(null, a
k, NSynAAck,NSynBAck), D), T 3) :

T 3 > T 2 ∧NSynBAck = NSynB + 1.

(5.2)SIC 5.2 says that, if the previous two messages have been ex
hanged, then A is expe
ted to send to B ana
k segment a
knowledging B's syn segment, and with a
knowledgement number is NSynB+1, where NSynBis the sequen
e number of B's syn.A third integrity 
onstraint has been added, to verify the intera
tion between peers with di�erent responsetime. A faster peer in fa
t 
ould not wait enough for the a
knowledge message, and try to resend a syn messageto a slower peer. This situation 
an lead to several problems in the slower peer, whose queue of the in
omingmessages 
ould easily get saturated by requests.
H(tell(A,B, t
p(syn,null, NSynA,ANY ), D), T 1)

∧ ta(TA) →

EN(tell(A,B, t
p(syn,null, NSynA,ANY ), D), T 2) :

T 2 < T 1 ∧ T 2 > T 1 − TA.

(5.3)SIC 5.3 says that, if A has sent to B a syn segment to open a 
onne
tion, then A is expe
ted not to sendanother syn segment before TA time units, where TA is an appli
ation-spe
i�
 
onstant, de�ned by the ta/1predi
ate.The above spe
i�
ation has been used to 
he
k the intera
tion between experimental mobile phones and aserver.
3The term �segment� is used in the TCP spe
i�
ation to indi
ate bit 
on�guration or streams.
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tationType Veri�ed Expired State
E yes ful�lled
E no no wait
E no yes violated

EN yes violated
EN no no wait
EN no yes ful�lled6. Veri�
ation System. In this se
tion, we des
ribe a prototypi
al system that we have developed toverify the 
omplian
e of the agent behaviour to intera
tion proto
ols spe
i�ed by means of SICs.The system 
he
ks for 
omplian
e by a

omplishing two main tasks:1. it �res (a
tivates) SICs whose 
onditions be
ome true as relevant events o

urs;2. it de
ides whether a
tivated SICs are ful�lled or violated.The system is designed to work during the evolution of the so
iety, so it will only have, at ea
h instant, a partialhistory available, and it must take into a

ount that new events may happen in the future. For instan
e, let us
onsider again the sample expe
tation in Se
t. 2:

E(a

ept(ak, aj , give(M), d2), Ta) : M ≥ 10, Ta ≤ 15.Let us now suppose that, at time 12, no mat
hing event has yet o

urred. So, while this expe
tation hasnot been ful�lled, neither it has (yet) been violated: sin
e a mat
hing event 
ould still happen at time 13, 14or 15. It will a
tually be violated instead, in 
ase a mat
hing event fails to o

ur by time 15, be
ause the CLP
onstraint on the time variable be
omes unsatis�able as of time 16.More generally, it may not be possible to state whether a SIC is ful�lled or violated at the same time it�res; thus, we identify three possible states for an a
tivated SIC:
• ful�lled, if the SIC is ful�lled;
• violated, if the SIC is violated;
• wait, if the SIC is still neither ful�lled nor violated.The initial state for an a
tivated SIC is wait; happening events will eventually 
hange its state to ful�lled orviolated.If we pro
ess events in the 
orre
t order in time, in the 
ase of ba
kward SICs, the transition from a waitstate to a ful�lled or violated state is immediate, be
ause expe
tations in a ba
kward SIC regard events thatshould have (not) happened in the past and, thus, they 
an be immediately 
he
ked for ful�llment.6.1. Runtime identi�
ation of the state of a SIC. In the following, we explain how the state of aSIC 
hanges at runtime.The a
tivation of a SIC 
auses the 
reation of an instan
e of its �head� (organized in priority levels, ea
hbeing a disjun
tion of 
onjun
tion of expe
tations, as explained in Se
t. 2). Afterwards, the state of ea
h singleexpe
tation is de�ned, followed by the state of the priority levels, and �nally by the state of the SIC.State of an expe
tation. An expe
tation is 
alled �veri�ed� if there exists a mat
hing event in the so
iety his-tory. The state of a veri�ed positive expe
tation is ful�lled ; the state of a veri�ed negative expe
tation is violated.An expe
tation is 
alled �expired� if CLP 
onstraints over its time variable 
annot be any longer satis�ed(typi
ally, this is the 
ase with 
onstraints representing deadlines whi
h have expired). The state of an expiredand not veri�ed expe
tation is violated if the expe
tation is positive and ful�lled if the expe
tation is negative;the state of a not expired and not veri�ed expe
tation is instead wait.Table 6.1 summarises all these 
ases.State of a 
onjun
tion of expe
tations. The state of a 
onjun
tion of expe
tations is de�ned by the followingrules:1. if the state of at least one expe
tation in the 
onjun
tion is violated, then the state of the 
onjun
tionis violated ;2. if the state of all expe
tations in the 
onjun
tion is ful�lled, the state of the 
onjun
tion is ful�lled ;3. otherwise, the state is wait.
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tion of 
onjun
tions of expe
tations. The state of apriority level is then de�ned by the following rules:1. if the state of at least one of the disjun
ts is ful�lled, then the state of the priority level is ful�lled ;2. if the state of all of the disjun
ts is violated, then the state of the priority level is violated ;3. otherwise, the state is wait.State of a SIC. If all the priority levels of a SIC are violated, then the SIC is violated ; otherwise, the stateof the highest non-violated priority level of the SIC de�nes the state of the SIC.6.2. Veri�
ation of Complian
e. As shown in Se
t. 3.1 in relation to the FIPA CNP, ba
kward SICs
an express that events are only allowed if some other events have (not) happened before; sin
e their state 
anbe immediately resolved to ful�lled or violated, ba
kward SICs 
an be used to verify that an event is allowedas soon as it o

urs. In designing our system, we made a 
hoi
e to ignore the events that are not allowed.However, the system 
aptures the violation: in a ri
her so
ial model, we 
an imagine some authority to rea
tto the violation.The set of forward SICs asso
iated with a legal a
tion is then used to generate expe
tations about the futureevents in the so
iety (i. e., the heads of asso
iated forward SICs will be 
he
ked for ful�llment).In order to verify the ful�llment of SICs, we have de�ned two di�erent phases: the Event Driven phase andthe Clo
k Driven phase.Event-driven phase. An event-driven phase starts ea
h time a new event o

urs. The system a
tivates allba
kward SICs asso
iated with the event; if they are all ful�lled, then the event is re
ognized to be allowed andthus marked as �legal� and added to the history of the intera
tion. If some of the ba
kward SICs are violated,then the event is marked as �illegal�, sin
e it is not allowed, and it is not re
orded in the history of the so
iety.If the event is marked legal, the system pro
esses the new updated history by a
tivating the forward SICsasso
iated with the new event. Forward (a
tivated) SICs de�ne the expe
ted future behaviour of the so
iety,and they will be 
he
ked for ful�llment.Clo
k-driven phase. The 
lo
k-driven phase starts whenever a spe
ial event 
alled �
lo
k,� or �
urrent time,�is registered by the so
iety. The system pro
esses the set of a
tivated forward SICs identifying the state of ea
hone. If the state of a SIC is ful�lled, the SIC is removed from the list of pending (waiting) SICs. If the stateof a SIC is violated, the SIC is removed but a violation is raised. If the state is wait, the SIC is kept pendinguntil the next 
lo
k-driven phase or the next event-driven phase. Note that the time asso
iated to events andthe �
urrent time� event whi
h �res a 
lo
k-driven phase must syn
hronize.6.3. Implementation. The veri�
ation system has been implemented on top of SICStus Prolog's Con-straint Handling Rules (CHR) library [22℄.CHR[16℄ are essentially a 
ommitted-
hoi
e language 
onsisting of guarded rules that rewrite 
onstraintsin a store into simpler ones until they are solved. CHR de�ne both simpli�
ation (repla
ing 
onstraints bysimpler 
onstraints while preserving logi
al equivalen
e) and propagation (adding new, logi
ally redundant but
omputationally useful, 
onstraints) over user-de�ned 
onstraints.6.3.1. A
tivation of SICs. Ea
h event happened in the system is represented by the CHR 
onstrainth/2, where the arguments are a Prolog ground term representing the happened event and an integer numberrepresenting the time.Positive (resp. negative) expe
tations are represented by the Prolog term e (resp. en). Its arguments are:a Prolog term des
ribing the event expe
ted to happen (resp. not to happen), the time (typi
ally non ground),and a list of CLP 
onstraints over the variables in the des
ription.A PriorityLevel is represented by the Prolog term pr, whose arguments are the list of alternative HeadDis-jun
ts of the priority level and the integer number representing the priority (the lower the number, the higherthe priority). Priority levels generated by a SIC are 
olle
ted as the list argument of a plist term.The argument of the CHR 
onstraint le/1 is the list of all a
tivated plists (one for ea
h a
tivated SIC).Ea
h SIC is represented by a simpagation CHR. In general, simpagation rules have the form
H1, . . . , Hl\Hl+1, . . . , Hi ⇔ G1, . . . , Gj |B1, . . . , Bk (6.1)where l > 0, i > l, j ≥ 0, k ≥ 0 and where the multi-head H1, . . . , Hi is a nonempty sequen
e of CHR
onstraints, the guard G1, . . . , Gj is a sequen
e of built-in 
onstraints, and the body B1, . . . , Bk is a sequen
e ofbuilt-in and CHR 
onstraints. Operationally, when the 
onstraints in the head are in the 
onstraint store and
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e,the following CHR implements SIC (2.2):h(event0,T0), h(event1,T1) \ le(LExp) <=> T0<T1 &append(LExp,[plist([pr([and([ e(event2,T2,[min(T2,T1)℄) ℄),and([ en(event3,T3,[min(T3,T0)℄) ℄)℄,1),pr([and([ e(event4,T4,[min(T4,T0)℄) ℄)℄,2)℄,id1)℄, LExp1)| le(LExp1).If event0 and event1 have o

urred and are part of the �history,� the two CHR 
onstraints h(event0,T)and h(event1,T1) are in the 
onstraint store; if the guard T<T1 is true, then the rule is a
tivated. The store(the LExp list) of the heads of a
tivated SICs is updated appending a new plist(), whi
h 
ontains the list ofpriority levels (two in this example) in the head of the SIC. The CHR 
onstraint le/1, whi
h 
ontained the oldLExp before the a
tivation of the rule, is removed by simpagation and repla
ed by the same 
onstraint with thenew list LExp1 as argument.Note that two di�erent symbols are used to represent the CLP 
onstraint <: < if its arguments are thetimes of two happened events4, and min if they are instead the times of two expe
tations.The translation of a SIC into a simpagation CHR is rather straightforward, whi
h makes it easy to implementnew proto
ols.As further examples, we report below the CHR implementation of SIC (3.1) and SIC (3.15):h(tell(P,I,propose(R,Q),D),T) \le(LExp) <=>true &append(LExp,[plist([pr([and([e(tell(I,P,
fp(R),D),T1,[min(T1,T)℄)℄)℄,1)℄)℄, LExp1) | le(LExp1).h(tell(I,P,
fp(R),D),T) \le(LEv,LExp) <=>Td is T+200 &append(LExp,[plist([pr([and([e(tell(P,I,propose(R,Q),D),T1,[min(T1,Td)℄)℄),and([e(tell(P,I,refuse(R),D),T2,[min(T2,Td)℄)℄)℄,1)℄)℄,LExp1) | le(LExp1).
4In this 
ase, the times are 
ertainly ground and the Prolog prede�ned predi
ate 
an be applied to them.
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eventRecorderListenerFig. 6.1. UML diagram6.3.2. Identi�
ation of the state of SICs. The identi�
ation of the state of a SIC is 
oded in standardProlog. The system performs all the steps des
ribed in Se
t. 6.1. It analyses all its stored plists, thusimplementing the event-driven and 
lo
k-driven phases des
ribed above.6.3.3. Interfa
e to the veri�
ation system. In order to use the system in 
on
rete 
ase studies, aJava pa
kage (using the SICStus Prolog's Jasper library [22℄) has been implemented. This pa
kage has beendeveloped to be used as a Java wrapper for the veri�
ation system.The UML diagram of the system is represented in Fig. 6.1. To use the system the user must 
reate a histo-ryGenerator obje
t giving as parameter the path to a (
ompiled) Prolog �le 
ontaining the proto
ol de�nitionexpressed by SICs. The Java system implements the Event Driven phase re
eiving messages from the even-tRe
orderListener interfa
e and the 
lo
k-driven phase re
eiving �
urrent time� events from the timerListenerinterfa
e. The rest of the system implements the Java-Prolog interfa
e.7. Dis
ussion and related work. The syntax of So
ial Integrity Constraints proposed in this paper is amodi�ed version of that proposed in [2℄ and in [5℄. The modi�
ations have been made in order to ta
kle bothexpressiveness and implementation issues. Spe
i�
ally:
• we added priority levels to SICs (see Se
t. 2). This allows for a more �exible spe
i�
ation of proto
ols,enabling the proto
ol designer to devise alternative proto
ol �ows while being able to spe
ify preferen
esamong them;
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• we imposed the restri
tion of having only either ba
kward or forward expe
tation in a SIC (see Se
t. 2).While this improves e�
ien
y, on the downside it prevents from writing SICs su
h as

H(a, Ta)

→E(b, Tb) : Tb < Ta, 1

⇒E(c, Tc) : Tc ≤ Ta + τ, 2

(7.1)whi
h one might want to use to express that an event (b) that does not ful�ll a ba
kward expe
tation
an, with lower priority, still be allowed, provided that 
ertain �ba
kup� event (c) o

ur at some pointin the future. However, in our experien
e, SICs su
h as (7.1) are generally not ne
essary to expressproto
ols of 
ommon use.In [4℄ we have de�ned an abdu
tive semanti
s for SICs, in the 
ontext of agent so
ieties, and a more gen-eral framework, in whi
h the veri�
ation pro
edure is performed by an abdu
tive proof pro
edure [6℄, whoseimplementation has been integrated into a software 
omponent [3℄, interfa
ed to several multi-agent platformssu
h as Jade [8℄, PROSOCS [9℄, and tuProlog [12℄. Other authors have proposed alternative approa
hes to thespe
i�
ation and in some 
ases animation of intera
tion among agents. Notably, in [7℄, Artikis et al. present atheoreti
al framework for providing exe
utable spe
i�
ations of parti
ular kinds of multi-agent systems, 
alledopen 
omputational so
ieties, and they present a formal framework for spe
ifying and animating systems wherethe behaviour of the members and their intera
tions 
annot be predi
ted in advan
e, and for reasoning aboutand verifying the properties of su
h systems. A noteworthy di�eren
e with [7℄ is that we do not expli
itlyrepresent the institutional power of the members and the 
on
ept of valid a
tion. Permitted are all so
ial eventsthat do not determine a violation, i. e., all events that are not expli
itly forbidden are allowed.In [24℄, Yolum and Singh apply a variant of Event Cal
ulus [19℄ to 
ommitment-based proto
ol spe
i�
a-tion. The semanti
s of messages (i. e., their e�e
t on 
ommitments) is des
ribed by a set of operations whosesemanti
s, in turn, is des
ribed by predi
ates on events and �uents ; in addition, 
ommitments 
an evolve, in-dependently of 
ommuni
ative a
ts, in relation to events and �uents as pres
ribed by a set of postulates. Su
ha way of spe
ifying proto
ols is more �exible than traditional approa
hes based on a
tion sequen
es in that itpres
ribes no initial and �nal states or transitions expli
itly, but it only restri
ts the agent intera
tion in that, atthe end of a proto
ol run, no 
ommitment must be pending. Agents with reasoning 
apabilities 
an themselvesplan an exe
ution path suitable for their purposes (whi
h, in that work, is implemented by an abdu
tive event
al
ulus planner). Our notion of expe
tation is more general than that of 
ommitment found in [24℄ or in other
ommitment-based works, su
h as [15℄: it represents the ne
essity of a (past or future) event, and is not boundto have a debtor or a 
reditor, or to be brought about by an agent.8. Con
lusions. We have presented a framework for the spe
i�
ation and runtime veri�
ation of 
ompli-an
e of agent intera
tion to proto
ols. The spe
i�
ation at a so
ial level of intera
tion proto
ols 
onstrains theagent observable behaviour from the outside, rather than its internal state or stru
ture. This is a 
hara
teristi
of so
ial approa
hes to agent proto
ol spe
i�
ation, and it is parti
ularly suited for usage in open agent so
i-eties. Proto
ol spe
i�
ations use a 
omputational logi
-based formalism 
alled so
ial integrity 
onstraints. Thesystem's Java-Prolog-CHRbased implementation has been tested on di�erent types of proto
ols [23℄. In thisarti
le, we have demonstrated the usage of SICs in three 
ases: the FIPA CNP, taken from the agent literature,a made up proto
ol for joining semi-open so
ieties, and the well known three-way handshake phase of the TCPIP proto
ol for 
onne
tion establishment. The veri�
ation system, implemented in Prolog and CHR, 
an beused as a module in a Java-based system, thanks to the Java-Prolog interfa
e of SICStus Prolog. The modularstru
ture of the system makes it (hopefully) easy to adapt it to new appli
ations.9. A
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pe.org ISSN 1895-1767© 2007 SWPSINCORPORATING PLANNING INTO BDI SYSTEMSFELIPE RECH MENEGUZZI, AVELINO FRANCISCO ZORZO,MICHAEL DA COSTA MÓRA AND MICHAEL LUCKAbstra
t. Many ar
hite
tures of autonomous agent have been proposed throughout AI resear
h. The most 
ommon ar
hite
-tures, BDI, are pro
edural in that they do no planning, seriously 
urtailing an agent's ability to 
ope with unforeseen events. Inthis paper, we explore the relationship between propositional planning systems and the pro
ess of means-ends reasoning used byBDI agents and de�ne a mapping from BDI mental states to propositional planning problems and from propositional plans ba
kto mental states. In order to test the viability of su
h a mapping, we have implemented it in an extension of a BDI agent modelthrough the use of Graphplan as the propositional planning algorithm. The implemented prototype was applied to model a 
asestudy of an agent 
ontrolled produ
tion 
ell.Key words. Propositional Planning, Agent Models and Ar
hite
tures, BDI, X-BDI1. Introdu
tion. Development of autonomous rational agents has been one of the main drivers of arti�
ialintelligen
e resear
h for some time [37℄. Initial e�orts fo
used on disembodied means-ends reasoning with thedevelopment of problem-solving systems and generi
 planning systems, su
h as STRIPS [15℄, later evolvinginto the idea of embodied problem solving entities (i.e. agents) [37℄. In this line of resear
h, one of the mostwidely studied models of autonomous agents has been that supported by the mental states of beliefs, desiresand intentions [7℄, or the BDI model. While e�orts towards de�ning BDI ar
hite
tures have been sustained andsigni�
ant, resulting in both theoreti
al [34℄ and pra
ti
al ar
hite
tures [14℄, they have also led to a dis
onne
tbetween them.In parti
ular, theories of autonomous BDI agents often rely on logi
 models that assume in�nite 
omputa-tional power, while ar
hite
tures de�ned for runtime e�
ien
y have 
urtailed an agent's autonomy by for
ingthe agent to rely on a pre-
ompiled plan library. Although simple sele
tion of plans from a plan library is
omputationally e�
ient, at 
ompile time an agent is bound to the plans provided by the designer, limitingan agent's ability to 
ope with situations not foreseen at design time. Moreover, even if a designer is able tode�ne plans for every 
on
eivable situation in whi
h an agent �nds itself, su
h a des
ription is likely to be veryextensive, o�setting some of the e�
ien
y bene�ts from the plan library approa
h. The absen
e of planning
apabilities thus seriously 
urtails the abilities of autonomous agents. In 
onsequen
e, we argue that planningis an important 
apability of any autonomous agent ar
hite
ture in order to allow the agent to 
ope at runtimewith unforeseen situations.Though the e�
ien
y of planning algorithms has been a major obsta
le to their deployment in time-
riti
al appli
ations, many advan
es have been a
hieved in planning [43℄, and developments are ongoing [2℄.Considering that planning is an enabler of agent �exibility, and that there have been signi�
ant advan
es inplanning te
hniques, it is valuable and important for autonomous agent ar
hite
tures to employ planning toallow an agent to 
ope with situations that the designer was not able to foresee. This arti
le des
ribes anddemonstrates one su
h ar
hite
ture, whi
h integrates propositional planning with BDI, allowing agents to takeadvantage of the pra
ti
al reasoning 
apabilities (i.e. sele
ting and prioritising goals) of the BDI model, andrepla
ing the BDI means-ends reasoning (i.e. sele
ting a 
ourse of a
tion to a
hieve goals) with the �exibilityof generi
 planning. Our approa
h is underpinned by a mapping among BDI mental states and propositionalplanning formalisms, allowing any algorithm based on a similar formalism to be used as a means-ends reasoningpro
ess for a BDI agent. In order to demonstrate the viability of su
h an approa
h we take a spe
i�
 BDIagent model, namely the X-BDI model [27℄, and modify it to use propositional planning algorithms to performmeans-ends reasoning [30℄.The paper is organised as follows: Se
tion 2 
ontains an overview of the related work and main 
on
eptsused throughout this paper; Se
tion 3 des
ribes X-BDI and the extensions that allow it to use an externalplanning algorithm; Se
tion 4 
ontains a 
ase study used to demonstrate the implemented prototype; �nally,Se
tion 5 
ontains 
on
luding remarks about the results obtained in this work.2. Agents and Planners. In this se
tion we review ba
kground work on agents and planning systems,and 
on
lude with a dis
ussion of the integration of these te
hnologies in an agent ar
hite
ture, laying thegroundwork for the remainder of this arti
le. Se
tion 2.1 provides an overview of 
omputer agents and the BDImodel, used in the agent ar
hite
ture des
ribed later in this arti
le; Se
tion 2.2 introdu
es generi
 planning15



16 F. R. Meneguzzi, A. F. Zorzo et alalgorithms and problem representation; Se
tion 2.3 des
ribes the parti
ular planning algorithm used in theprototype des
ribed in Se
tion 3; �nally, we dis
uss how these te
hnologies 
an be pie
ed together in order toaddress some of their individual limitations.2.1. Agents. The growing 
omplexity of 
omputer systems has led to the development of in
reasingly moreadvan
ed abstra
tions for their representation. An abstra
tion of growing popularity for representing parts of
omplex 
omputer systems is the notion of 
omputer agents [13℄, so far as to be proposed as an alternative tothe Turing Ma
hine as an abstra
tion for the notion of 
omputation [19, 42℄. Although there is a variety ofde�nitions for 
omputer agents, most resear
hers agree with Jennings' de�nition of an agent as en
apsulated
omputer system, situated in some environment, and 
apable of �exible, autonomous a
tion in that environmentin order to meet its design obje
tives [19℄.In the 
ontext of multi-agent systems resear
h, one of the most widely known and studied models ofdeliberative agents uses beliefs, desires and intentions (BDI) as abstra
tions for the des
ription of a system'sbehaviour. The BDI model originated from a philosophi
al model of human pra
ti
al reasoning [6℄, laterformalised [11℄ and improved towards a more 
omplete 
omputational theory [34, 44℄. Though other approa
hesto the design of autonomous agents have been proposed [16℄, the BDI model or variations of it are used in manynew ar
hite
tures of autonomous agents [13, 31, 4, 40℄. More spe
i�
ally, the 
omponents that 
hara
terise theBDI model 
an be brie�y des
ribed as follows [28℄:
• beliefs represent an agent's expe
tation regarding the 
urrent world state or the possibility that a given
ourse of a
tion will lead to a given world state;
• desires represent a set of possibly in
onsistent preferen
es an agent has regarding a set of world states;and
• intentions represent an agent's 
ommitment regarding a given 
ourse of a
tion, 
onstraining the 
on-sideration of new obje
tives.The operation of a generi
 BDI interpreter 
an be seen as a pro
ess that starts with an agent 
onsidering itssensor input and updating its belief base. With this updated belief base, a set of goals from the agent's desiresis then sele
ted, and the agent 
ommits itself to a
hieving these goals. In turn, plans are sele
ted as the meansto a
hieve the goals through intentions whi
h represent the 
ommitment. Finally, these intentions are 
arriedout through 
on
rete a
tions 
ontained in the instantiated plans (or intentions). This pro
ess is illustrated inthe a
tivity diagram of Figure 2.1, whi
h shows the 
omponents of an agent that are used in ea
h of the mainpro
esses of BDI reasoning, namely: obtaining sensor input and updating beliefs; sele
ting a goal from amongthe desires; and adopting intentions to 
arry out the a
tions required to a
hieve the sele
ted goal.This last pro
ess of sele
ting and adopting intentions to a
hieve a goal is one of the most importantpro
esses of the BDI model, sin
e it a�e
ts not only the a
tions an agent 
hooses, but also the sele
tion of goals,as an agent must drop goals deemed impossible. This problem of determining whether an agent is 
apableof satisfying its obje
tives through some sequen
e of a
tions given an environment and a set of obje
tives issometimes 
hara
terised as the agent design problem [45℄. The most widely known BDI agent implementations[18, 33, 14℄ bypass this problem through the use of plan libraries in whi
h the 
ourses of a
tion for every possibleobje
tive an agent might have are stored as en
apsulated pro
edures. Agents using these approa
hes are said topursue pro
edural goals. However, the theories 
ommonly used to underpin the 
reation of new plans of a
tion atruntime assume an agent with unlimited resour
es, thus making their a
tual implementation impossible [37, 34℄.When an agent sele
ts target world-states and then uses some pro
ess at runtime to determine its 
ourse ofa
tion, it is said to pursue de
larative goals. Re
ent e�orts seek to deal with this problem in various ways, forinstan
e by de�ning alternate proof systems [27, 31℄ or using model 
he
king in order to validate the agent'splan library [5℄. An alternative approa
h to solving the problem is the use of planning algorithms to performmeans-ends reasoning at runtime [37, 26, 47℄.2.2. Planning Algorithms. Means-ends reasoning is a fundamental 
omponent of any rational agent[6℄ and is useful in the resolution of problems in a number of di�erent areas, su
h as s
heduling [38℄, militarystrategy [39℄, and multi-agent 
oordination [12℄. Indeed, the development of planning algorithms has beenone of the main goals of AI resear
h [35℄. In more detail, a planning problem is generi
ally de�ned by three
omponents [43℄:
• a formal des
ription of the start state;
• a formal des
ription of the intended goals; and
• a formal des
ription of the a
tions that may be performed.
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BeliefsBeliefs

ActionsActions

Sensor Update

Goal Selection

DesiresDesires

IntentionsIntentions

Intention Selection

ActionFig. 2.1. A
tivities of a generi
 BDI interpreter.A planning system takes these 
omponents and generates a set of a
tions ordered by some relation whi
h,when applied to the world in whi
h the initial state des
ription is true, makes the goals' des
ription true. Despitethe high 
omplexity proven for the general 
ase of planning problems1, re
ent advan
es in planning resear
hhave led to the 
reation of planning algorithms that perform signi�
antly better than previous approa
hes tosolving various problem 
lasses [43, 2℄. These new algorithms make use of two main te
hniques, either 
ombinedor separately:
• expansion and sear
h in a planning graph [3℄; and
• 
ompilation of the planning problem into a logi
al formula to be tested for satis�ability (SAT) [20℄.One su
h planning algorithm is Graphplan, whi
h we 
onsider in more detail below.2.3. Graphplan. Graphplan [3℄ is a planning algorithm based on the �rst of these te
hniques, expansionand sear
h in a graph. It is 
onsidered to be one of the most e�
ient planning algorithms 
reated re
ently[43, 38, 17℄, having been re�ned into a series of other algorithms, su
h as IPP (Interferen
e Progression Planner)[22℄ and STAN (STate ANalysis) [24℄. The e�
ien
y of Graphplan was empiri
ally demonstrated throughthe very signi�
ant results obtained by instan
es of Graphplan in the planning 
ompetitions of the AIPS(International Conferen
e on AI Planning and S
heduling) [21, 25℄.Planning in Graphplan is based on the 
on
ept of a graph data stru
ture 
alled the planning graph, in whi
hinformation regarding the planning problem is stored in su
h a way that the sear
h for a solution 
an be a

el-erated. Planning graph 
onstru
tion is e�
ient, having polynomial 
omplexity in graph size and 
onstru
tiontime with regard to problem size [3℄. A plan in the planning graph is essentially a �ow, in the sense of a network�ow, and the sear
h for a solution to the planning problem is performed by the planner using data stored in thegraph to speed up the pro
ess. The basi
 Graphplan algorithm (i.e. without the optimisations proposed by otherresear
hers [21, 25℄) is divided into graph expansion and solution extra
tion, whi
h take pla
e alternately until ei-ther a solution is found or the algorithm 
an prove that no solution exists. The way these two parts of Graphplanare used throughout planning is summarised in the a
tivity diagram of Figure 2.2, and explained below.Sin
e a plan is 
omposed of temporally ordered a
tions and, in between these a
tions there are world states,graph levels are divided into alternating proposition and a
tion levels, making it a dire
ted and levelled graph,

1Planning is known to be unde
idable [10℄ and planning problems, in the general 
ase, have PSPACE 
omplexity [9℄.
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Graph Expansion Solution Extraction

Consistent Goals? Yes

No Solution

No Plan FoundSolution ImpossibleFig. 2.2. Graphplan algorithm overview.as shown in Figure 2.3. Proposition levels are 
omposed of proposition nodes labelled with propositions, and
onne
ted to the a
tions in the subsequent a
tion level through pre-
ondition ar
s. Here, a
tion nodes arelabelled with operators and are 
onne
ted to the nodes in the subsequent proposition nodes by e�e
t ar
s.Every proposition level denotes literals that are possibly true at a given moment, so that the �rst propositionlevel represents the literals that are possibly true at time 1, the next proposition level represents the literalsthat are possibly true at time 2 and so forth. Similarly, a
tion levels denote operators that 
an be exe
uted at agiven moment in time in su
h a way that the �rst a
tion level represents the operators that may be exe
uted attime 1, the se
ond a
tion level represents the operators that may be exe
uted at time 2 and so forth. The graphalso 
ontains mutual ex
lusion relations (mutex ) between nodes (at the same graph level) so that they 
annotbe simultaneously present at the same graph level for the same solution. This gives them a fundamental rolein algorithm e�
ien
y, as they allow the sear
h for a solution to 
ompletely ignore a large number of possible�ows in the graph.
Level 0

Mutex

Action

Proposition

Level 4Level 3Level 2Level 1

Fig. 2.3. A planning graph example.After graph expansion, the graph is analysed by the solution extra
tion part of the algorithm, whi
h uses aba
kward 
haining strategy to traverse the graph, level by level, trying to �nd a �ow starting from the goals andleading to the initial 
onditions. An important optimising fa
tor in this phase is never to sear
h for a solution
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onsistent, sin
e they 
annot be mutually ex
lusive at the lastgraph level. Fundamental to Graphplan is its assuran
e that, whenever a plan for the proposed problem exists,the algorithm will �nd it, otherwise the algorithm will determine that the proposed problem is unsolvable [3℄.2.4. Dis
ussion. When one 
onsiders how BDI reasoning operates, it is straightforward to per
eive thatpropositional planning 
an be used as a means-ends reasoning 
omponent. From a representational point of view,BDI mental states 
an be 
onverted to planning problems without 
ompli
ation: beliefs translate into an initialstate spe
i�
ation, a
tions and 
apabilities translate into operator spe
i�
ations and sele
ted goals translate intoa goal state spe
i�
ation. At this simple level, the delegation of means-ends reasoning to an external planningpro
ess 
an improve the runtime e�
ien
y of existing BDI interpreters by leveraging advan
es in planningalgorithms resear
h.3. Introdu
ing pro
edural planning into X-BDI.3.1. Introdu
tion. Given the short
omings of traditional BDI ar
hite
tures in terms of runtime �exibility,and the performan
e problems of alternative ar
hite
tures, we de�ne an extended version of the X-BDI agentmodel [27℄, modi�ed to a

ommodate the use of an external planning 
omponent. Here, we fo
us on STRIPS-like(STanford Resear
h Institute Problem Solver) formalisms [15℄. Our formalism is based on the one introdu
edby Nebel [30℄, and, a

ording to the author, is a SIL formalism, i.e. the basi
 STRIPS plus the possibility touse in
omplete spe
i�
ations and literals in the des
ription of world states. It is important to point out that theformalism de�ned by Nebel [30℄ is more general, but sin
e we do not aim to provide a detailed study of planningformalisms, we use a simpler version. In parti
ular, we use a propositional logi
al language with variables onlyin the spe
i�
ation of operators, and with operators not being allowed to have 
onditional e�e
ts. In Nebel'sdes
ription of the the STRIPS formalism, one 
an noti
e that it deals only with atoms. Nevertheless, within thispaper more expressivity is desirable, in parti
ular, the possibility to use �rst order ground literals. It is possibleto avoid these limitations through the use of synta
ti
 transformations so that planners 
an operate over �rstorder ground literals. The main 
ontribution of our work lies in the e�
ien
y improvement of a de
larativeagent ar
hite
ture. The fa
t that this type of agent ar
hite
ture has traditionally been notoriously ine�
ienthighlights the relevan
e of this e�
ien
y gain.3.2. X-BDI. An X-BDI agent has the traditional 
omponents of a BDI agent, i.e. a set of beliefs, desiresand intentions. The agent model was originally de�ned in terms of the Extended Logi
 Programming with expli
itnegation (ELP) formalism 
reated by Alferes and Pereira [1℄, whi
h in
ludes a revision pro
edure responsiblefor maintaining logi
 
onsisten
y. We do not provide a des
ription of the formalism here, though we assume thepresen
e of its revision pro
edure in our des
ription of X-BDI. Given its extended logi
 de�nition, X-BDI alsohas a set of time axioms de�ned through a variation of the Event Cal
ulus [27, 23℄.The set of beliefs is simply a formalisation of fa
ts in ELP, individualised for a spe
i�
 agent. From theagent's point of view, it is assumed that its beliefs are not always 
onsistent, and whenever an event makes thebeliefs in
onsistent, they must be revised. The details of this pro
ess are unimportant in the understanding ofthe overall agent ar
hite
ture, but 
an be found in [1℄. The belief revision pro
ess in X-BDI is the result of theprogram revision pro
ess performed in ELP.Every desire in an X-BDI agent is 
onditioned to the body of a logi
 rule, whi
h is a 
onjun
tion of literals
alled Body. Thus, Body spe
i�es the pre-
onditions that must be satis�ed in order for an agent to desirea property. When Body is an empty 
onjun
tion, some property P is un
onditionally desired. Desires maybe temporally situated, i.e. 
an be desired at a spe
i�
 moment, or whenever their pre-
onditions are valid.Moreover, a desire spe
i�
ation 
ontains a priority value used in the formation of an order relation among desiresets.There are two possible types of intentions: primary intentions, whi
h refer to the intended properties,and relative intentions, whi
h refer to a
tions able to bring about these properties. An agent may not intendsomething in the past or that is already true, and intentions must in prin
iple be possible, i.e. there must be atleast one plan available whose result is a world state where the intended property is true.Now, we diverge from the original X-BDI ar
hite
ture in several respe
ts. First, the original reasoningpro
ess veri�ed the possibility of a property through the abdu
tion of an event 
al
ulus theory to validate theproperty. In brief, the logi
 representation of desires in the original X-BDI in
luded 
lauses spe
i�
ally markedfor revision in su
h a way that sequen
es of a
tions (whose pre
onditions and e�e
ts were des
ribed in event
al
ulus) 
ould be found true in the pro
ess of revising these 
lauses. This abdu
tion pro
ess was ne
essary



20 F. R. Meneguzzi, A. F. Zorzo et alfor the implementation of X-BDI planning framework in extended logi
, but the implementation of the logi
interpreter was notably ine�
ient for abdu
tive reasoning. In this work, the planning pro
ess is abstra
tedout from the operational de�nition of X-BDI, allowing any planning 
omponent that satis�es the 
onditions ofSe
tion 2.2 to be invoked by the agent. Thus, the notion of possibility of a desire is asso
iated with the existen
eof a plan to satisfy it.The reasoning pro
ess performed by X-BDI begins with the sele
tion of eligible desires, whi
h representunsatis�ed desires whose pre-
onditions are valid, though the elements of this set of desires are not ne
essarily
onsistent among themselves. A set of eligible desires that are both 
onsistent and possible is then sele
ted as
andidate desires, to whi
h the agent 
ommits itself to a
hieving by adopting them as primary intentions. Inorder to a
hieve the primary intentions, the planning pro
ess generates a sequen
e of temporally ordered a
tionsthat 
onstitute the relative intentions. This pro
ess is summarised in Figure 3.1.
Consistency

Maintenance

Perception

Planning

Action

Primary
Intentions

Relative
Intentions

Candidate
Desires

Elligible
Desires

Desires Beliefs

Deliberation

Fig. 3.1. X-BDI operation overview.Eligible desires have rationality 
onstraints that are similar to those imposed by Bratman [6℄ over intentionsin the sense that an agent will not desire something in the past or something the agent believes will happenwithout its interferen
e. Agent beliefs must also support the pre-
onditions de�ned in the desire Body. Withinthe agent's reasoning pro
ess these desires give rise to a set of mutually 
onsistent subsets ordered by a partialorder relation.The pro
ess of sele
ting 
andidate desires seeks to 
hoose from the eligible desires one subset that 
ontainsonly desires that are internally 
onsistent and possible. A possible desire in this sense is one that has a property
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P that 
an be satis�ed through a sequen
e of a
tions. In order to 
hoose among multiple sets of 
andidate desires,the original X-BDI uses ELP 
onstru
ts that allow desires to be prioritised in the revision pro
ess. Althoughwe depart from the original abdu
tion theory, we still use these priority values to de�ne a desire preferen
erelation. Through this preferen
e relation, a desire preferen
e graph that relates all subsets of eligible desires isgenerated.Candidate desires represent the most signi�
ant modi�
ation made in this paper regarding the original X-BDI [27℄. Originally, X-BDI veri�ed the possibility of a desire through the abdu
tion of an event 
al
ulus theoryin whi
h the belief in the validity of a desired property P 
ould be true. Su
h an abdu
tion pro
ess is, a
tually,a form of planning. Sin
e our main obje
tive in this paper is to distinguish the planning pro
ess previouslyhard-
oded within X-BDI, the notion of desire possibility must be re-de�ned. Therefore, we de�ne the set of
andidate desires to be the subset of eligible desires with the greater preferen
e value, and whose properties 
anbe satis�ed. Satis�ability is veri�ed through the exe
ution of a propositional planner that pro
esses a planningproblem in whi
h the initial state 
ontains the properties that the agent believes at the time of planning. The
P properties present in the 
andidate desires are used to generate the set of primary intentions. The modi�edreasoning pro
ess for X-BDI is illustrated in Figure 3.2.

Consistency

Maintenance

Action

Perception

Mapping

Elligible
Desires

Relative
Intentions

Propositional

Planning

Candidate
Desires

Primary
Intentions

Desires Beliefs

Deliberation

Fig. 3.2. Modi�ed X-BDI overview.Primary intentions 
an be seen as high-level plans, similar to the intentions in IRMA [7℄, and representingthe agent's 
ommitment to a 
ourse of a
tion. These primary intentions are systemati
ally re�ned up to the pointwhere an agent has a temporally ordered set of a
tions representing a 
on
rete plan towards the satisfa
tion of



22 F. R. Meneguzzi, A. F. Zorzo et alits goals. Relative intentions then 
orrespond to the temporally ordered steps of the 
on
rete plans generated tosatisfy the agent's primary intentions. Thus the notion of agent 
ommitment results from the fa
t that relativeintentions must not 
ontradi
t or annul primary intentions.3.3. Intention Revision. The 
omputational e�ort and the time required to re
onsider the whole set ofintentions of a resour
e-bounded agent is generally signi�
ant regarding the environment 
hange ratio. Intentionre
onsideration should therefore not o

ur 
onstantly, but only when the world 
hanges in su
h a way as tothreaten the plans an agent is exe
uting or when an opportunity to satisfy more important goals is dete
ted. Asa 
onsequen
e, X-BDI uses a set of re
onsideration triggers generated when intentions are sele
ted, and 
ausesthe agent to re
onsider its 
ourse of a
tion when a
tivated.These trigger 
onditions are de�ned to enfor
e Bratman's [6℄ rationality 
onditions for BDI 
omponents, asfollows. If all of the agent's primary intentions are satis�ed before the time planned for them to be satis�ed, theagent restarts the deliberative pro
ess, sin
e it has a
hieved its goals. On the other hand, if one of the primaryintentions is not a
hieved at the time planned for it, the agent must re
onsider its intentions be
ause its planshave failed. Moreover, if a desire with a higher priority than the 
urrently sele
ted desires be
omes possible, theagent re
onsiders its desires in order to take advantage of the new opportunity. Re
onsideration is 
ompletelybased on integrity 
onstraints over beliefs, and sin
e beliefs are revised at every sensoring 
y
le, it is possiblethat re
onsideration o

urs due the triggering of a re
onsideration restri
tion.3.4. Implementation. The prototype implemented for this work is 
omposed of three parts: the X-BDIkernel, implemented in Prolog; a planning system 
ontaining a C++ implementation of Graphplan; and a Javagraphi
al interfa
e used to ease the operation of X-BDI and to visualise its intera
tion with the environment.The ar
hite
ture is outlined in Figure 3.3.
Socket 2BDI GraphplanAgent Viewer

Java Prolog C++

Plan

Beliefs

Desires

X
IntentionsFig. 3.3. Solution Ar
hite
tureHere, the Agent Viewer interfa
e 
ommuni
ates with X-BDI through so
kets by sending the input from theenvironment in whi
h the agent is embedded and re
eiving the result of the agent's deliberation. Through theAgent Viewer the user 
an also spe
ify the agent in terms of its desires, a
tions and initial beliefs. On
e X-BDIre
eives the agent spe
i�
ation, it 
ommuni
ates with the planning module through operating system �les andthe Prolog/C++ interfa
e. The planner is responsible for generating a set of intentions for the agent. Whenthe agent deliberates, it 
onverts subsets of the agent's desired properties into propositional planning problemsand invokes the planning algorithm to solve these problems until either a plan that solves the highest prioritydesires is found, or the algorithm determines that it is not possible to solve any one of these problems.4. A BDI Produ
tion Cell. In this work we use a BDI agent in order to model a produ
tion 
ell as a
ase study, and as a means to verify the validity of the ar
hite
ture des
ribed in Se
tion 3. In parti
ular, therational utilisation of equipment in industrial fa
ilities is a 
omplex problem, espe
ially s
heduling its use. Thisproblem is 
ompli
ated when the fa
ility produ
es multiple 
omponent types, where ea
h type requires a subsetof the equipment available. In our test s
enario, the proposed produ
tion 
ell [46℄, illustrated in Figure 4.1,is 
omposed of seven devi
es: a feed belt, a deposit belt and four pro
essing units upon whi
h 
omponents aremoved to be pro
essed.Components enter the produ
tion 
ell for pro
essing through the feed belt and, on
e pro
essed by all theappropriate pro
essing units, they are removed from the 
ell through the deposit belt. Every pro
essing unit isresponsible for performing a di�erent kind of operation on the 
omponent being pro
essed, and 
an hold onlyone 
omponent at a given moment. Ea
h 
omponent introdu
ed into the 
ell 
an be pro
essed by one or morepro
essing units, determined by the type of 
omponent being pro
essed, and di�erent 
omponent types havedi�erent pro
essing priorities. The 
ontrol of the produ
tion 
ell is entrusted to a BDI agent implemented using
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Fig. 4.1. A BDI Produ
tion Cell.X-BDI, whi
h should s
hedule the work of the produ
tion 
ell in relation to its beliefs, desires and intentions,re-s
heduling whenever some 
hange in the system o

urs.The �rst step in modelling any problem using a STRIPS-like formalism is the 
hoi
e of the predi
ates usedto represent the problem's obje
t-types and its states. We de�ne the following predi
ates representing obje
tsin the 
ell:
• 
omponent(C) denotes that C is a 
omponent to be pro
essed;
• pro
Unit(P) denotes that P is a pro
essing unit, whi
h is also a devi
e;
• devi
e(D) denotes that D is a devi
e;
• feedBelt represents the feed belt ;
• depositBelt represents the deposit belt.Similarly, we have the following predi
ates representing system states:
• over(C,D) denotes that 
omponent C is over devi
e D;
• empty(P) denotes that pro
essing unit P is empty, i.e. has no 
omponent over it;
• pro
essed(C,P) denotes that 
omponent C has already been pro
essed by pro
essing unit P;
• finished(C) denotes that 
omponent C has already been pro
essed by all appropriate pro
essing unitsand has been removed from the produ
tion 
ell;Next, we de�ne the a
tions the agent is 
apable of performing in the 
ontext of the proposed problem, theseare summarised in Table 4.1. Informally, a
tion pro
ess(C,P) represents the pro
essing that a pro
essing unitP performs on a 
omponent C over it; 
onsume(C) represents the removal of 
omponent C from the produ
tion
ell through the deposit belt; and move(C,D1,D2) represents the motion of 
omponent C from devi
e D1 todevi
e D2. Table 4.1A
tion spe
i�
ation for the produ
tion 
ell agent.A
tion Pre
onditions E�e
tspro
ess(C,P) pro
Unit(P) pro
essed(C,P)
omponent(C)over(C,P)
onsume(C) 
omponent(C) ¬over(C,depositBelt)over(C,depositBelt) empty(depositBelt)finished(C)move(C,D1,D2) over(C,D1) over(C, D2)empty(D2) ¬over(C,D1)
omponent(C) ¬empty(D2)devi
e(D1) empty(D1)devi
e(D2)
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essing requirements of 
omponents and their priorities are modelled through desires. Thus, we 
anmodel an agent, pCell, whi
h needs to pro
ess 
omponent 
omp1 by pro
essing units pro
Unit1, pro
Unit2 andpro
Unit3 as soon as this 
omponent is inserted into the produ
tion 
ell using the spe
i�
ation of Listing 12.Listing 1Spe
i�
ation of desires related to pro
essing 
omp1.des(pCell,finished(
omp1),Tf,[0.7℄)if bel(pCell, 
omponent(
omp1)),bel(pCell, pro
essed(
omp1,pro
Unit1)),bel(pCell, pro
essed(
omp1,pro
Unit2)),bel(pCell, pro
essed(
omp1,pro
Unit3)),bel(pCell, -finished(
omp1)).des(pCell,pro
essed(
omp1,pro
Unit1),Tf,[0.6℄)if bel(pCell, 
omponent(
omp1)),bel(pCell, -pro
essed(
omp1,pro
Unit1)).des(pCell,pro
essed(
omp1,pro
Unit2),Tf,[0.6℄)if bel(pCell, 
omponent(
omp1)),bel(pCell, -pro
essed(
omp1,pro
Unit2)).des(pCell,pro
essed(
omp1,pro
Unit3),Tf,[0.6℄)if bel(pCell, 
omponent(
omp1)),bel(pCell, -pro
essed(
omp1,pro
Unit3)).Similarly, we 
an model the agent's need to pro
ess 
omponent blo
2 by pro
essing unit pro
Unit3 andpro
Unit4 by adding to the agent spe
i�
ation the desires of Listing 2.Listing 2Spe
i�
ation of desires related to pro
essing 
omp2.des(pCell,finished(
omp2),Tf,[0.6℄)if bel(pCell, 
omponent(
omp2)),bel(pCell, pro
essed(
omp2,pro
Unit3)),bel(pCell, pro
essed(
omp2,pro
Unit4)),bel(pCell, -finished(
omp2)).des(pCell,pro
essed(
omp2,pro
Unit3),Tf,[0.5℄)if bel(pCell, 
omponent(
omp2)),bel(pCell, -pro
essed(
omp2,pro
Unit3)).des(pCell,pro
essed(
omp2,pro
Unit4),Tf,[0.5℄)if bel(pCell, 
omponent(
omp2)),bel(pCell, -pro
essed(
omp2,pro
Unit4)).Finally, we model the agent's stati
 knowledge regarding the problem domain, in parti
ular the obje
t's
lasses and the initial world-state with the beliefs spe
i�ed in Listing 3.The arrival of a new 
omponent in the produ
tion 
ell is signalled by the sensors through the in
lusion of
omponent(
omp1) and over(
omp1,feedBelt) in the agent's belief database, a
tivating the agent's re
onsid-eration pro
ess. Given the desire's pre-
onditions previously de�ned, only the desires related to the followingproperties be
ome eligible:
2Tf is the time at whi
h the desire is valid, and the values 0.7 and 0.6 are the desires priorities.
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tion 
ell.bel(pCell, pro
Unit(pro
Unit1)).bel(pCell, pro
Unit(pro
Unit2)).bel(pCell, pro
Unit(pro
Unit3)).bel(pCell, pro
Unit(pro
Unit4)).bel(pCell, devi
e(pro
Unit1)).bel(pCell, devi
e(pro
Unit2)).bel(pCell, devi
e(pro
Unit3)).bel(pCell, devi
e(pro
Unit4)).bel(pCell, devi
e(depositBelt)).bel(pCell, devi
e(feedBelt)).bel(pCell, empty(pro
Unit1)).bel(pCell, empty(pro
Unit2)).bel(pCell, empty(pro
Unit3)).bel(pCell, empty(pro
Unit4)).bel(pCell, empty(depositBelt)).
• pro
essed(
omp1,pro
Unit1);
• pro
essed(
omp1,pro
Unit2);
• pro
essed(
omp1,pro
Unit3);These desires are then analysed by the pro
ess of sele
ting 
andidate desires. In this pro
ess, the agent'seligible desires and beliefs are used in the 
reation of planning problems that are sent to Graphplan for resolution.The result of this pro
essing is a plan that satis�es all the eligible desires, with the following steps:1. move(
omp1,feedBelt,pro
Unit2)2. pro
ess(
omp1,pro
Unit2)3. move(
omp1,pro
Unit2,pro
Unit1)4. pro
ess(
omp1,pro
Unit1)5. move(
omp1,pro
Unit1,pro
Unit3)6. pro
ess(
omp1,pro
Unit3)The existen
e of this plan indi
ates to X-BDI that the spe
i�ed set of eligible desires is possible, thus turningthe previous set of desires into 
andidate desires, whi
h generate primary intentions representing the agent's
ommitment. Next, relative intentions are generated using the steps in the re
ently 
reated plan, with oneintention for ea
h step of the plan. These lead the agent to perform the appropriate a
tions. On
e the a
tionsare exe
uted, the 
andidate desires from the previous deliberation are satis�ed. Moreover, the pre-
onditionof the desire to a

omplish finished(
omp1) be
omes true, rea
tivating the agent's deliberative pro
ess andgenerating the following plan:1. move(
omp1,pro
Unit3,depositBelt)2. 
onsume(
omp1)On
e more, this plan brings about some intentions and, eventually, leads the agent to a
t. Now, suppose thatduring the agent's operation, a new 
omponent in the produ
tion 
ell arrives. If this o

urred immediately afterthe deliberation that 
reated the �rst plan, it would be signaled by the agent's sensors through the in
lusion of
omponent(
omp2) and over(
omp2,feedBelt) in the beliefs database, whi
h would modify the eligible desires
hosen in the se
ond deliberation 
y
le to:
• finished(
omp1);
• pro
essed(
omp2,pro
Unit3);
• pro
essed(
omp2,pro
Unit4);These desires be
ome 
andidate desires be
ause Graphplan is 
apable of generating a plan that satis�es allthe desires. The new plan is:1. move(
omp1,pro
Unit3,depositBelt)2. move(
omp2,feedBelt,pro
Unit4)3. 
onsume(
omp1)



26 F. R. Meneguzzi, A. F. Zorzo et al4. pro
ess(
omp2,pro
Unit4)5. move(
omp2,pro
Unit4,pro
Unit3)6. pro
ess(
omp2,pro
Unit3)7. move(
omp2,pro
Unit3,depositBelt)8. 
onsume(
omp2)The steps of this plan thus generate relative intentions, eventually leading the agent to the exe
ution of itsa
tions.5. Con
lusions. In this paper, we have dis
ussed the relationship between propositional planning algo-rithms and means-end reasoning in BDI agents. To test the viability of using propositional planners to performmeans-ends reasoning in a BDI ar
hite
ture, we have des
ribed a modi�
ation to the X-BDI agent model.Throughout this modi�
ation, new de�nitions of desires and intentions were 
reated in order for the agentmodel to maintain the theoreti
al properties present in its original version, espe
ially regarding the de�nitionof desires and intentions impossibility. Moreover, it was ne
essary to de�ne a mapping between the stru
tural
omponents of a BDI agent and propositional planning problems. The result of implementing these de�nitionsin a prototype 
an be seen in the 
ase study of Se
tion 4, whi
h represents a problem that the means-endreasoning pro
ess of the original X-BDI 
ould not solve.Considering that most implementations of BDI agents use a plan library for means-end reasoning in orderto bypass the inherent 
omplexity of performing planning at runtime, X-BDI o�ers an innovative way of im-plementing more �exible agents through its fully de
larative spe
i�
ation. However, its planning me
hanism isnotably ine�
ient. For example, the 
ase study des
ribed in Se
tion 4 was not tra
table in the original X-BDIplanning pro
ess. Thus, the main 
ontribution of our work 
onsists in addressing this limitation through thede�nition of a mapping from BDI means-end reasoning to fast planning algorithms. Moreover, su
h an approa
henables the agent ar
hite
ture to be extended with any propositional planning algorithm that uses a formalism
ompatible with the proposed mapping, thus allowing an agent to use more powerful planners as they be
omeavailable, or to use more suitable planning strategies for di�erent problem 
lasses.Other approa
hes to performing runtime planning have also been proposed, the most notable re
ent ones bySardina et al. [36℄ and Wal
zak et al. [41℄. Sardina proposes the tight integration of the JACK agent framework[8℄ with the SHOP hierar
hi
al planner [29℄. This approa
h relies on new 
onstru
ts added to an otherwisepro
edural agent representation and takes advantage of the similarity of hierar
hi
al task network (HTN) plan-ning to BDI reasoning. The work of Wal
zak proposes the integration of JADEX [32℄ike℄What is JADEX?to a 
ustomised knowledge-based planner operating in parallel to agent exe
ution, using a similar pro
ess ofagent-state 
onversion to work of Meneguzzi et al. [26, 47℄, as well as the one presented in this paper.Some rami�
ations of this work are foreseen as future work, in parti
ular, the in
orporation of the variousGraphplan improvements, as well as the 
ondu
tion of tests using other propositional planning algorithms, SATbeing an example. It is 
lear that other agent ar
hite
tures 
an bene�t from the usage of planning 
omponentsto allow agents to 
ope with unforeseen events at runtime, as demonstrated by re
ent e�orts in planning agents[36, 41℄. Therefore, investigating how to integrate planning 
apabilities to AgentSpeak-based agents 
ould 
reateagents that 
an take advantage of both the fast response of pre-
ompiled plans and the �exibility of being ableto plan at runtime to 
ope with unforeseen situations.A
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t. As today the amount of a

essible information is overwhelming, the intelligent and personalized �ltering of availableinformation is a main 
hallenge. Additionally, there is a growing need for the seamless mobile and multi-modal system usagethroughout the whole day to meet the requirements of the modern so
iety (anytime, anywhere, anyhow). A personal informationagent that is delivering the right information at the right time by a

essing, �ltering and presenting information in a situation-aware matter is needed. Applying Agent-te
hnology is promising, be
ause the inherent 
apabilities of agents like autonomy, pro-and rea
tiveness o�er an adequate approa
h. We developed an agent-based personal information system 
alled PIA for 
olle
ting,�ltering, and integrating information at a 
ommon point, o�ering a

ess to the information by WWW, e-mail, SMS, MMS, andJ2ME 
lients. Push and pull te
hniques are 
ombined allowing the user to sear
h expli
itly for spe
i�
 information on the onehand and to be informed automati
ally about relevant information divided in pre-, work and re
reation slots on the other hand.In the 
ore of the PIA system advan
ed �ltering te
hniques are deployed through multiple �ltering agent 
ommunities for 
ontent-based and 
ollaborative �ltering. Information-extra
ting agents are 
onstantly gathering new relevant information from a variety ofsele
ted sour
es (internet, �les, databases, web-servi
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i�
 user, knowing the pro�le, the 
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k.Key words. intelligent and personalized �ltering, ubiquitous a

ess, re
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ause it is hidden in a hugeamount of unne
essary and irrelevant data. On the Internet there are well maintained sear
h engines thatare highly useful if you want to do full-text keyword-sear
h [1℄, but they are not able to support you in apersonalized way and typi
ally do not o�er any push-servi
es or in other words no information will be sentto you when you are not a
tive. Also, as they normally do not adapt themselves to mobile devi
es, they
annot be used throughout a whole day be
ause you are not sitting in front of a standard browser all thetime and when you return, these systems will treat you in the very same way as if you have never been therebefore (no personalization, no learning). Users who are not familiar with domain-spe
i�
 keywords won't beable to do su

essful resear
h, be
ause no support is o�ered. Prede�ned or auto-generated keywords for thesear
h-domains are needed to �ll that gap. As information demands are 
ontinuously in
reasing today and thegathering of information is time-
onsuming, there is a growing need for a personalized support (Figure 1.1).Labor-saving information is needed to in
rease produ
tivity at work and also there is an in
reasing aspirationfor a personalized o�er of general information, spe
i�
 domain knowledge, entertainment, shopping, �tness,lifestyle and health information. Existing 
ommer
ial personalized systems are far away from that fun
tionality,as they usually do not o�er mu
h more than allowing to 
hoose the kind of the layout or 
olle
ting some of theo�ered information 
hannels (and the information within is not personalized).To over
ome that situation you need a personal information agent (PIA) who knows the way of your thinkingand 
an really support you throughout the whole day by a

essing, �ltering and presenting information to you ina situation-aware matter (Figure 1.1). Some systems exist (Fab [2℄, Amalthaea [3℄, WAIR [4℄, P-Tango [5℄, Trip-Mat
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Fig. 1.1. Demand for a personal information agentFab [2℄ is an automati
 re
ommendation servi
e for information retrieval, whi
h is able to over time adaptto its users, who 
onsequently re
eive in
reasingly personalized do
uments. By maintaining both 
olle
tion andsele
tion agents, Fab system is a good test-bed for trying out di�erent �ltering strategies, whi
h either 
olle
tdo
uments from the Web that belong to the 
ertain topi
, or sele
t some of the 
olle
ted do
uments that aresuitable for a parti
ular user. The 
reation of pro�les through the 
ontent-based analysis, whi
h are afterwardsdire
tly 
ompared to �nd similar users for 
ollaborative re
ommendations, represents the unique synergy ofthese two frequently 
ombined �ltering te
hniques. Unfortunately, the usability of the whole system dependson the ability of the 
ontent based �ltering to generate the usable pro�les, being the serious drawba
k of theFab system.Sin
e information dis
overy and information �ltering are proven to be the suitable domains for applyingmulti-agent te
hnology, a personalized system, named Amalthaea [3℄ has been developed. It proa
tively tries todis
over from various distributed sour
es the information that is relevant to a user. The multi-agent te
hnologyis applied by maintaining two di�erent types of agents, being information �ltering and information dis
overyones. The ways how these agents are managing to learn the user's interests and habits, to maintain their
ompeten
e by adapting to the 
hanges in the user's information needs, and to explore the new domains thatmay be of interest to a user, depend on evolution programming, being maybe not so appli
able for the large-s
aleinformation retrieval tasks.Seeking the state of a user pro�le, whi
h best represents a
tual information interests and therefore maximizethe expe
ted value of the 
umulative user relevan
e feedba
k, is formulated in WAIR multi-agent system [4℄as the reinfor
ement learning problem. The insu�
ien
y of expli
it user ratings is tried to be over
ome byusing the 
lassi�
ation approa
h based on the neural network, whi
h exploits di�erent impli
it indi
ators ofinterests in order to estimate the real relevan
e feedba
k values. Unfortunately, the amount of the expli
itratings needed for training that 
lassi�er still seems to be too large. This 
learly limits the appli
ability of theWAIR system.To intelligently deliver a personalized newspaper, whi
h 
ontains only the arti
les of highest interest thatare individually sele
ted everyday for ea
h and every user, P-Tango [5℄ system proposes a framework for 
om-bining di�erent �ltering strategies. Although the 
urrently 
ombined strategies are only the 
ontent-based and
ollaborative ones, a proposed framework is signi�
ant, by reason of being extendible to any �ltering methods.In spite of this extensibility, we believe that the agent-based framework that we propose in this paper, o�ersbetter �exibility when the integration and afterwards the usage of new strategies is 
on
erned.As the information be
ame the one of most signi�
ant resour
es for business and resear
h, both periodi
allys
anning di�erent information sour
es and pushing the found relevant arti
les to interested users, have alsomotivated the development of PIAgent [7℄. While a usage of various extra
tor agents ea
h supporting a par-ti
ular information sour
e is more or less typi
al for agent-based �ltering systems (and it is also present in ourapproa
h), the uniqueness of PIAgent lies in its appli
ation of ba
k propagation neural network for separating
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les from others. Su
h a neural network approa
h has strength in optimisti
ally providing ex
ellent
lassi�
ation a

ura
y. Unfortunately, its big weakness in often expensive training that pra
ti
ally makes thePIAgent to be hardly appli
able for nowadays information retrieval tasks.The intelligent assistan
e to the user, who is browsing the Internet for the interesting information, is providedby the autonomous interfa
e agent, named Letizia [8℄. It tra
ks user behavior and uses various heuristi
s toanti
ipate, whi
h hyperlinks may lead to the potentially relevant do
uments, and whi
h should be ignored byreason of pointing to junk or not existing page. The 
ornerstone property of the Letizia system is in asking theuser neither to expli
itly state its interests by de�ning the query nor to provide the expli
it feedba
k about areal relevan
e of re
ommendations. Although this expli
it 
ommuni
ation with the user 
an speed up learning,the priority in designing the Letizia system has been given to both letting the user to browse without beinginterrupted and asking for help only when being unsure whi
h link to follow.The MIT Media Laboratory has also developed an agent, whose job is to 
hoose, from the links rea
hableon the 
urrent Web page, those that are likely to best satisfy the interests of multiple users. The agent is namedLet's Browse [9℄, by reason of providing the assistan
e to the group of humans in browsing, by suggestinghyperlinks likely to be of 
ommon interests. Although this system demonstrates how do
uments that are goodfor the group of users and that are in the neighborhood 
an be found, it generally does not respond to the
hallenge of �nding the data that is lo
ated anywhere on the Internet.The ability to both spe
ialize to user interests, adapt to preferen
e 
hanges and explore the newer infor-mation domains makes the foundation of the NewT [10℄, being one personalized multi-agent �ltering systemfor news arti
les. As user information interests are modeled as the population of the 
ompeting pro�les, theused learning me
hanisms are both relevan
e feedba
k, as well as the 
rossover and mutation geneti
 opera-tors. These re
ombination geneti
 operators are mainly responsible for the adaptation and exploration issuesby 
reating more �tted future populations. In the meantime, a user pro�le also learns through the appli
ationof the relevan
e feedba
k te
hniques. Taken together these learning me
hanisms make the so-
alled Baldwine�e
t [24℄, saying that a population evolves towards a �tter form mu
h faster, whenever its members are allowedto learn during their lifetime. Although the Baldwin evolution seems to be more powerful than the evolutionapproa
h used in Amalthaea, it has the same weaknesses whi
h limit its appli
ability for large-s
ale informationretrieval.Users may �nd it di�
ult both to 
reate the appropriate queries and to lo
ate the information of interestin the 
ase of having no spe
i�
 knowledge about the 
ontent of the underlying do
ument 
olle
tion. On theone hand, some systems aim to deploy e�
ient 
lustering algorithms, whi
h will dynami
ally produ
e the tableof 
ontents, needed to fa
ilitate the users' browsing a
tivities. The 
ornerstone idea is to by some means helpa user �rst to get an overview 
on
erning the available 
ontent, and then to a

urately express its informationneeds. On the other hand, WebWat
her [11℄ a
ts as the tour guide that provides the assistan
e, whi
h issimilar to the guidan
e of the human in the real museum. It a

ompanies users from page to page, suggestsappropriate hyperlinks, and learns from the obtained experien
e to improve its advi
e giving skills. Su
h asystem unfortunately 
an only lo
ally assist the user, whi
h brings the same drawba
ks being present in Letiziaand Let's Browse systems.Personal Email Assistant (PEA) [12℄ �lters in
oming mails and ranks them a

ording to their relevan
e inorder to help nowadays users, who easily end up with large part of their working day being spent with readingemails. PEA maintains the personal user model that 
onsists of several pro�les and uses the evolutionaryalgorithms to move that model 
onstantly 
loser to the 
urrent information needs. By doing that PEA aims atassisting users in dealing more e�e
tively with their daily load of emails so that valuable working time is savedfor more produ
tive and 
reative tasks. Even though the evolution strategies seems to be powerful enough fordealing with emails in the PEA system, their usage in the Internet-like environment still remains to be a great
hallenge.3. Design of PIA: The Personal Information Agent. To meet the dis
ussed requirements and tosupport the user in that matter, we designed a multi-agent system 
omposed of four 
lasses of agents: manyinformation extra
ting agents, agents that implement di�erent �ltering strategies, agents for providing di�erentkinds of presentation and one personal agent for ea
h user. Logi
ally, all this 
an be seen as a 
lassi
al three tierappli
ation (Figure 3.1). Con
erning the information extra
tion, general sear
h engines on the one hand but alsodomain-spe
i�
 portals on the other hand have to be integrated. Additional information sour
es (Databases,Files, Mailinglists et
.) should also be integrated easily at run-time.
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Several agents realize di�erent �ltering strategies (
ontent-based and 
ollaborative �ltering [16℄, [5℄) thathave to be 
ombined in an intelligent matter. Also agents for providing information a
tively via SMS, MMS,Fax, e-mail (push-servi
es) are needed. A Multi-a

ess servi
e platform has to manage the presentation of theresults tailored to the used devi
e and the 
urrent situation. The personal agent should 
onstantly improve theknowledge about his user by learning from the given feedba
k, whi
h is also taken for 
ollaborative �ltering, asinformation that has been rated as highly interesting might be useful for a user with a similar pro�le as well.As users usually are not very keen on giving expli
it feedba
k (ratings), impli
it feedba
k like the fa
t that theuser stored an arti
le 
an also be taken into a

ount [18℄.A keywordassistant should support the user in de�ning queries even if he is not familiar with a 
ertaindomain. PIA provides three strategies for �nding adequate keywords and for optimizing existing requests:1. Keywords prede�ned by experts for frequently requested topi
s (or 
ategories) 
an help the unexpe-rien
ed user to �nd the relevant keywords. The suggestions provided by domain experts are usually a goodstarting point for individual requests.2. An alternative method for �nding interesting keywords is the extra
tion of words and phrases frominteresting papers. This strategy helps the user to identify the key 
on
epts from a paper that 
an be usefulfor �nding other relevant do
uments. In 
ontrast to other approa
hes (like Googles Find similar do
uments)the keyword extra
tion gives the user the opportunity to adapt extra
ted keywords a

ording to the personalinterests and preferen
es.3. For optimizing existing queries the PIA system suggests keywords from similar requests. For 
omputingthe similarities between user requests the systems analyses the overlapping of user pro�les (based on stems) andthe 
orelation between the user ratings. Keywords that frequently o

ure in the requests of similar users aresuggested to the user as potentially relevant sear
h terms.The whole system is designed to be highly s
alable, easy to modify, to adapt and to improve and thereforean agent-based approa
h that allows to integrate or to remove agents even at run-time is a smart 
hoi
e.The di�erent �ltering te
hniques are needed to provide a

urate results, be
ause the weakness of individualte
hniques should be 
ompensated by the strengths of others. Do
uments should be logi
ally 
lustered by theirdomains to allow fast a

ess, and for ea
h do
ument several models [19℄ will be built, all in
luding stemming andstop-word elimination, but some tailored for very e�
ient retrieval at run-time and others to support advan
ed�ltering algorithms for a high a

ura
y.If the system noti
es that the 
ontent-based �ltering is not able to o�er su�
ient results, additional infor-mation should be o�ered by 
ollaborative �ltering, i. e. information that was rated as interesting by a user witha similar pro�le will be presented.With the push-servi
es, the user 
an de
ide to get new integrated relevant information immediately and ona mobile devi
e, but for users who do not want to get new information immediately, a personalized newsletteralso has to be o�ered. This newsletter is 
olle
ting new relevant information to be 
onveniently delivered bye-mails, allowing users to stay informed even if they are not a
tively using the system for some time.4. Deployment and evaluation.4.1. Overview. We implemented the system using Java and standard open sour
e database and web-te
hnology and based on the JIAC IV agent framework [20℄. JIAC IV is FIPA 2000 
ompliant [21℄, that is it is
onforming to the latest standards.It 
onsists of a 
ommuni
ation infrastru
ture as well as servi
es for administrating and organizing agents(Agent Management Servi
e, AMS and Dire
tory Fa
ilitator, DF). The JIAC IV framework provides a variety ofmanagement and se
urity fun
tions, management servi
es in
luding 
on�guration, fault management and eventlogging, se
urity aspe
ts in
luding authorization, authenti
ation and me
hanisms for measuring and ensuringtrust and therefore has been a good 
hoi
e to be used from the outset to the development of a real worldappli
ation.Within JIAC IV, agents are arranged on platforms, allowing the arrangement of agents that belong togetherwith the 
ontrol of at least one manager. A lot of visual tools are o�ered to deal with administration aspe
ts.Figure 3.2 shows a platform, in this 
ase with agents for the building of di�erent models spe
ialized for di�erentretrieval algorithms.The prototypi
al system is 
urrently running on Sun-Fire-880, Sun-Fire-480R and Sun Fire V65x, whereasthe main �ltering 
omputation, database- and web-server and information-extra
tion is pla
ed on di�erentma
hines for performan
e reasons.
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Fig. 3.1. The PIA System seen as a three tier appli
ation

Fig. 3.2. Several agents are building di�erent models spe
ilised for di�erent retrieval algorithmsNew 
ontent is stored, validated and 
onsolidated in a 
entral relational database (update-driven). In-formation 
an be a

essed by WWW, e-mail, SMS, MMS, and J2ME Clients, where the system adapts thepresentation a

ordingly, using the CC/PP (Preferen
es Pro�le) with a tailored layout for a mobile phone anda PDA (see Se
tion 4.6). The personalized newsletter and the push-servi
es are sent via e-mail, SMS or MMS.The user 
an use self-de�ned keywords for a request for information or 
hoose a 
ategory and therefore thesystem will use a list of keywords prede�ned by experts and updated smoothly by learning from 
ollaborative�ltering. A 
ombination of both is also possible. The keyword assistant is able to extra
t the most importkeywords of a given arti
le using the term frequen
y inverse do
ument frequen
y (TFIDF)-algorithm [22℄.
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4.2. Gathering new information. New information is 
onstantly inserted in the system by informationextra
tion agents, e.g. web-reader agents or agents that are sear
hing spe
i�ed databases or dire
tories. Addi-tional agents for the 
olle
tion of new 
ontent 
an easily be integrated even at runtime, as all that is ne
essaryfor a new agent is to register himself at the system, store the extra
ted information at a de�ned database tableand inform the modeling-manager agent about the insertion. As a �le reader-agent is 
onstantly observinga spe
ial dire
tory, manual insertion of do
uments 
an be done simply by drag-and-drop and an e-mail andupload-interfa
e also exists. Sour
e 
an also be integrated by Web servi
es. New Readers 
an be 
reated usinga easy-to-handle tool and another tool is enabling to 
onveniently observe the extra
tion-agents, as this is theinterfa
e to the outside that might be
ome 
riti
al if for example the data-format of a sour
e is 
hanged.4.3. Pre-pro
essing for e�
ient retrieval. The �rst step of pre pro
essing information for e�
ientretrieval is the use of distin
t tables in the global database for di�erent domains like e.g. news, agent-relatedpapers, et
. Depending on the �ltering request, tables with no 
han
e of being relevant 
an therefore be omitted.The next step is the building of several models for ea
h do
ument. Stemming and stop-word elimination isimplemented in every model but di�erent models are built by 
omputing a term importan
e either based onlyon lo
al frequen
ies, or based on term frequen
y inverse do
ument frequen
y (TFIDF) approa
h. Furthermorenumber of words that should be in
luded in models is di�erent whi
h makes models either more a

urate or moree�
ient. Created models are indexed either on do
ument or word level, whi
h fa
ilitate their e�
ient retrieval.The manager agent is assigning the appropriate modeling agents to start building their models but might de
ide(or the human system administrator 
an tell him) at runtime to delay latest time-
onsuming modeling a
tivityfor a while if system load is 
riti
al at a moment. This feature is important for a real-world appli
ation, asoverloading has been a main reason for the un-usability of advan
ed a
ademi
 systems.4.4. Filtering te
hnology. As the quality of results to a parti
ular �ltering request might heavily dependon the information domain (news, s
ienti�
 papers, 
onferen
e 
alls), di�erent �ltering 
ommunities are imple-mented. For ea
h domain, there is at least one 
ommunity whi
h 
ontains agents being tailored to do spe
i�
�ltering and managing tasks in an e�
ient way. Instead of having only �ltering agents (they will be des
ribedin Se
tion 4.5), ea
h and every 
ommunity has also one so-
alled manager agent that is mainly responsible fordoing 
oordination of �ltering tasks, as well as 
ooperation with other managers.The 
oordination is based on quality, CPU, DB and memory �tness values, whi
h are the measures beingasso
iated to ea
h �ltering agent [23℄. These measures respe
tively illustrate �ltering agent su

essfulness inthe past, its e�
ien
y in using available CPU and DB resour
es, and the amount of memory being required for�ltering. A higher CPU, DB or memory �tness value means that �ltering agent needs a parti
ular resour
e in asmaller extent for performing a �ltering task. This further means that an insu�
ien
y of a parti
ular resour
ehas a smaller in�uen
e on �ltering agents with a higher parti
ular �tness value.The introdu
ed di�erent �tness values together with the knowledge about the 
urrent system runtimeperforman
e 
an make 
oordination be situation aware (see also [23℄) in the way that when a parti
ular resour
eis highly loaded a priority in 
oordination should be given to �ltering agents for whi
h a parti
ular resour
e hasa minor importan
e. This situation aware 
oordination provides a way to balan
e response time and �lteringa

ura
y, whi
h is needed in over
oming the problem of �nding a perfe
t �ltering result after few hours or evenfew days of an expensive �ltering.Instead of assigning �ltering task to the agent with the best 
ombination of �tness values in the 
urrentruntime situation, manager is going to employ a proportional sele
tion prin
iple [24℄ where the probability forthe agent to be 
hosen to do a
tual �ltering is proportional to the mentioned 
ombination of its �tness values. Bynot always relying only on the most promising agents, but also sometimes o�ering a job to other agents, managergives a 
han
e to ea
h and every agent to improve its �tness values. While the adaptation of quality �tnessvalue 
an be a

omplished after the user feedba
k be
ame available, the other �tness values 
an be 
hangedimmediately after the �ltering was �nished through the response time analyses. The adaptation s
heme has ade
reasing learning rate that prevents already learnt �tness values of being destroyed, whi
h further means thatproven agents pay smaller penalties for bad jobs than the novi
e ones [17℄.The underlying 
oordination a
tivities, essentially responsible for the mentioned optimal exploitation ofavailable system resour
es, are represented on Figure 4.1, giving the simplest possible sele
tion s
enario. Underthe assumption that everything goes perfe
tly, the s
enario starts with a job 
reation and ends with a resultusage, being done by the User agent (U). The real 
oordination a
tivities, being performed in a meantime by the
hosen Manager (M), are �rst resour
e estimation, and afterwards strategy sele
tion. After the sele
ted Filtering
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apsulates the parti
ular sear
hing algorithm (deployed �ltering strategies are des
ribed inSe
tion 4.5), is produ
ed results, the manager M 
an adapt �tness values based on the measurement of theresponse time. The found �ltering results are �nally returned ba
k to the user agent U, and this simple s
enarioends.

Fig. 4.1. System ar
hite
ture illustrating agent 
ommuni
ation for resour
e-aware 
oordinationIn the 
ase where the re
eived �ltering task 
annot be su

essfully lo
ally a

omplished usually be
auseof belonging to unsupported information domain, manager agent has to 
ooperate with other 
ommunities.While 
oordination takes pla
e inside ea
h and every �ltering 
ommunity between manager and �ltering agents,
ooperation o

urs between 
ommunities among manager agents (see also Figure 4.2). The 
ooperation is basedon either �nding a 
ommunity whi
h supports given domain or in splitting re
eived task on sub-tasks where forea
h sub-task a 
ommunity with good support exists.The information is usually s
attered around many di�erent, more or less dynami
, distributed sour
es.Two 
ornerstone 
hallenges therefore be
ome both �nding whi
h sour
es should be 
onsulted for resolving theparti
ular request, as well as putting the found results together. While the 
hallenge of sear
hing for sour
esis known as the database sele
tion problem, the 
omposing of a �nal result set is often simply referred asthe information fusion. One light 
ooperation approa
h, already published in [25℄, and whi
h is based on theappli
ation of the intelligent 
ooperative agents, is going to be brie�y illustrated in the rest of this sub-se
tion.The fundamental 
ooperation idea is based on the installation of at least one �ltering 
ommunity aroundea
h database, as well as on setting up the sophisti
ated me
hanisms, whi
h enable that these 
ommunities 
ane�
iently help ea
h other while pro
essing the in
oming requests. Although the �ltering request 
an be sent toany �ltering 
ommunity, the most suitable 
ommunities will be autonomously found, and the request will bethen dispat
hed to them. The found results will be �nally 
olle
ted, and only the best ones will be returnedto the sender of the �ltering request. The most appealing property behind these 
ooperative pro
essing is thateverything is done transparently for the user, being not any more for
ed to manually think where the requestshould be sent, and whi
h obtained �ltering results are really the best ones.Example (Coordination & Cooperation) Figure 4.2 presents a high level overview of the �ltering frameworkbeing 
omposed of three di�erent �ltering 
ommunities (FC), where ea
h 
ommunity has one �lter manageragent (M) and di�erent number of spe
ialized �ltering agents (F). There are two di�erent databases (DB) withinformation from di�erent domains, and they are a

essed at least by one 
ommunity. On the �gure 
ooperationis illustrated as a 
ir
le with arrows whi
h 
onne
t manager agents.4.5. Filtering strategies. The 
ornerstone of the PIA system is in o�ering a framework that fa
ilitatesthe integration of di�erent �ltering strategies. Although this paper is not dealing with any parti
ular �ltering
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Fig. 4.2. Filtering framework with three di�erent 
ommunitiesstrategy, their short des
riptions will be given in the following paragraphs in order to make this paper self-
ontained and to 
lear the roles of the agents on Figure 3.2.By using the term frequen
y inverse do
ument frequen
y s
heme, the importan
e values of di�erent words
an be 
omputed, and ea
h and every do
ument 
an be modelled by a 
orresponding weighted ve
tor. While theso-
alled Large Filtering Strategy will always build a model with all words from a do
ument, Optimal Twenty,Optimal Ten, and Optimal Five Filtering Strategies will take into 
onsideration only twenty, ten, and �ve mostimportant words, respe
tively. The models, being 
reated by these optimal strategies, are thus smaller, and
onsequently 
an be faster both loaded into memory and 
ompared with a �ltering request. As they are omittingmany words, they might be at the same time potentially less a

urate, and the 
oordination engine has a 
han
eto de
ide whi
h one in the given situation 
an be the best solution.Sin
e the examination of every single do
ument for ea
h request be
omes infeasible even for a 
olle
tionwith the modest size, two di�erent indexing �ltering strategies have been also implemented. The �rst one,named Inverted List Filtering Strategy, 
reates for every word the list of do
uments having that word. Theinbuilt simpli�
ation, tending to dramati
ally redu
e a size of inverted lists, is made by not storing the positionsof words in the 
orresponding do
uments. While a strategy due to su
h a design de
ision be
omes moree�
ient, it loses its ability to support requests with a phrase. The se
ond Position Filtering Strategy willnot utilise su
h a simpli�
ation regarding not storing the positions, and thus will be able to a

urately �nddo
uments with requested phrases. As this se
ond strategy is naturally more expensive, the trade-o�, betweenproviding the a

urate results and responding qui
kly, be
omes evident and unavoidable for requests withphrases.The property of fuzzy 
lustering [24℄, to assign do
uments to multiple 
lusters together with spe
ifying adegree to whi
h a parti
ular arti
le belongs to a given 
luster, has been used as the inspiration for a realisationof a dedi
ated Fuzzy Filtering Strategy. While its strength is in keeping short 
luster summaries in the highspeed memory, its greatest weakness lies in a used simpli�
ation to 
luster do
uments in advan
e �xed 
lusters.The few di�erent versions of this fuzzy �ltering strategy are �nally implemented by limiting the amount of amemory that is utilised for 
ashing the 
luster summaries, having as the impli
ation that di�erent trade-o�sbetween the response time and the memory requirements are possible.
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reating its appropriate 
lone, whi
h will take intoa

ount only words from a manually 
reated di
tionary. By limiting the vo
abulary to few thousands insteadto more than half a million, underlying models are mu
h smaller, and thus the underlying strategies be
omemore e�
ient. Unfortunately, the paid pri
e lies in the lost of a support for all requests with words that are notpre-sele
ted, resulting in the potentially lower quality of found �ltering results. These 
lone strategies �nallyprovide even more fruitful playing ground for both 
ooperation and 
oordination me
hanisms, whi
h shouldprove their 
apabilities while resolving the mentioned trade-o� problems.4.6. Presentation. As one of the main design prin
iples has been to support the user throughout thewhole day, the PIA system provides several di�erent a

ess methods and adapts its interfa
es to the used devi
e(Figure 4.3). To ful�ll these requirements an agent platform (Multi A

ess Servi
e Platform) was developedthat optimizes the graphi
al user interfa
e for the a

ess by Desktop PCs, PDAs and smart phones.If the user wants to use the PIA system, the request is re
eived by the Multi A

ess Servi
e Platform(MASP). The MASP delegates the request to an agent, providing the logi
 for this servi
e. In the PIA systemthe requests are forwarded either to login agent or the personal agent. The 
hosen agent performs the servi
espe
i�
 a
tions and sends the MASP an abstra
t des
ription of the formular that should be presented to theuser. For this purpose the XML based Abstra
t Intera
tion Des
ription Language (AIDL) has been de�ned.Based on the abstra
t des
ription and the features of the used devi
e the MASP generates an optimized interfa
epresented to the user. The 
onversion is implemented as a XSLT transformation in whi
h the optimal XSLTstyle sheet is sele
ted based on the CC/PP information about the user's devi
e.The Multi A

ess Servi
e Platform provides a generi
 infrastru
ture for providing devi
e optimized interfa
esfor a big number of devi
es. The basi
 idea of MASP is to separate the appli
ation logi
 from the 
on
reteinterfa
e design. So the appli
ation developer does not have to 
ope with the spe
i�
 
hara
teristi
 of the ea
hrelevant devi
e and 
an 
on
entrate on the appli
ation spe
i�
 data �ow and intera
tion logi
.

Fig. 4.3. Information a

essed by browser or tailored for presentation on a PDA or a mobile phoneFor de�ning the interfa
e of an appli
ation the XML based Abstra
t Intera
tion Des
ription Language(AIDL) has been de�ned. The de�nition of a user intera
tion (typi
ally one web page) is stru
tures as a treeof prede�ned user interfa
e elements (e.g. label, input �eld). An exemplary page des
ription is shown inProgram 1.The abstra
t interfa
e des
ription 
an be easily transformed into HTML, PDA optimized HTML or WML.If the user wants to have a voi
e interfa
e, a style sheet for 
onverting the abstra
t user interfa
e des
riptioninto Voi
eXML has to be added to the MASP. Additional 
hanges at the appli
ation are not needed. In general,the support for new devi
es 
an be added without 
hanging or shutting down the appli
ation.
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Program 1 The abstra
t intera
tion des
ription of the PIA login page<?xml version="1.0" en
oding="UTF-8"?><s
enario name="loginPage"><input><UIElement><list name="rootNode"><UIElement><pageSetting name="user_language"><value>de</value></pageSetting></UIElement><UIElement><label name="login__piaLoginQXQ25"><value>PIA-Login</value></label></UIElement><UIElement><list name="login__data"><UIElement><label name="login__userName"><value>Benutzername:</value></label></UIElement><UIElement><fieldValue name="login__userName_default"><value>andreas</value></fieldValue></UIElement></list></UIElement>...<servi
eLink name="
reateA

ountServi
eLink"><provider address="t
pip://127.0.0.1:7325" name="PIAgent"/><servi
e name="MAPPresent"/><param name="s
enario">
reateA

ount</param></servi
eLink></list></UIElement></input></s
enario>The transformation of the abstra
t interfa
e des
ription is done using Extensible Stylesheet Language Trans-formations (XSLT). A XSLT transformation is typi
ally written by a designer who is an expert for 
reatingoptimized user interfa
es for a devi
e 
onsidering the preferen
es of the respe
tive audien
e. For simplifying thebuilding of XSLT transformations, the MASP provides a set of generi
 rules for transforming the frequent ele-ments of the abstra
t user interfa
e des
riptions into basi
 HTML or WML. Based on these rules more 
omplexand devi
e optimized XSLT transformations 
an be de�ned.An important feature of the utilised MASP is the support of Composite Capability/Preferen
e Pro�les(CC/PP). Considering the spe
i�
 features and properties (e.g. s
reen size, supported 
ss version, supportedimage formats) the user interfa
e designer 
an optimize the interfa
es to the properties of the respe
tive devi
e.For 
onverting media data into a devi
e adequate format, the MASP provides a 
omponent for s
aling and
onverting images and videos.The 
omponents and interfa
es of the Multi-A

ess-Servi
e Platform are shown in Figure 4.4. Users whowant to use the PIA servi
e intera
t with the Multi A

ess Point. The MAP 
ontains 
omponents for intera
-tion with the respe
tive devi
e (e.g. web server or voi
e server) and 
omponents for rendering the appli
ationinterfa
e optimized for supported devi
es. Approved rendering 
omponents for HTML, WML and Voi
eXMLbased user interfa
es exists; 
omponents for applet based 
omponents are under development. For the devi
eindependent interfa
e des
ription the MASP uses the Abstra
t Interfa
e Des
ription Language (AIDL) that isuse as interfa
e between interfa
e designer and appli
ation developer. The bridge between the appli
ation andthe Abstra
t Interfa
e Des
ription is provided by the Alter Ego Agent that 
ontains the intera
tion des
ription



Agent Te
hnology for Personalized Information Filtering:The PIA-System 39and spe
i�
 representation rules. Additionally the Media Ca
he 
omponent provides the media 
ontent as wellas 
onne
tivity to external media providers.

Fig. 4.4. The ar
hite
ture of the MASPBeside of the features provided by MASP the design of the user interfa
e must 
reate an easy to use systemeven on devi
es with a tiny s
reen and without a keyboard. That is why the PIA interfa
e provides additionalnavigation elements on 
omplex forms and minimizes the use of text input �elds. New results mat
hing a de�nedrequest are presented �rst as a list of short blo
ks 
ontaining only title, abstra
t and some meta-information (asthis is familiar to every user from well-known sear
h-engines). This information is also well readable on PDAsor even mobile phones. Important arti
les 
an be stored in a repository. This allows the user to 
hoose thearti
les on his PDA he wants to read later at his desktop PC.Depending on the personal options spe
i�ed by the user, old information found for a spe
i�
 query may bedeleted automati
ally step by step after a given time, that is, there is always up to date information that ispresented to the user (we 
all this smart mode). This is for example 
onvenient for getting personalized �lteringnews. The other option is to keep that information unlimited (global mode) for a query for e.g. basi
 s
ienti�
papers.For the push-servi
es (that is, the system is be
oming a
tive and sending the user information withoutan expli
it request), the user spe
i�es his working time (e.g. 9 am to 5 pm). This divides the day in a pre-,work, and a re
reation slot, where the PIA system assumes di�erent demands of information. For ea
h slot anadequate delivering te
hnology 
an be 
hosen (e-mail, sms, mms, fax or Voi
e). If you de
ide to subs
ribe tothe personalized newsletter, new relevant information for you will be 
olle
ted and sent by e-mail or fax on
ea day with a similar layout and stru
ture for 
onvenient reading if you have not seen it already by other pull-or push servi
es. Therefore you 
an also stay informed without having to log into the system and if you do notwant to get all new information immediately.5. Con
lusion and future work. The implemented system has an a

eptable runtime performan
e andshows that it is a good 
hoi
e to develop a personal information system using agent-te
hnology based on a solidagent-framework like JIAC IV. Currently, PIA system supports more than 120 di�erent web sour
es, grabsdaily around 3.000 new semi-stru
tured and unstru
tured do
uments, has almost 500.000 already pre-pro
essedarti
les, and a
tively helps about �fty s
ientists related to our laboratory in their information retrieval a
tivities.Their feedba
k and evaluation is a valuable input for the further improvement of PIA. In the near future weplan to in
rease the number of users to thousands, and therefore we plan to work on the further optimizationof the �ltering algorithms to be able to simultaneously respond to multiple �ltering requests. Also, we thinkabout integrating additional servi
es for the user that provide information tailored to his geographi
al position(GPS), a natural spee
h interfa
e and innovative ways to motivate the user to give pre
ise expli
it feedba
k, asthe learning ability of the system is depending on that information.
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ontinuously update its autonomy with respe
t tore
urring asyn
hronous problems with the aim of system-wide 
ollaboration e�
ien
y. The algorithm is demonstrated in a relevants
enario involving NASA spa
e station-based Personal Satellite Assistants, whi
h 
an handle dynami
 situation management thatfrustrates global 
ollaboration proto
ols.Key words. Agents, Autonomy, portable satellite assistant.1. Introdu
tion. Computer-
ontrolled systems feature prominently in large-s
ale proje
ts 
urrently un-der development by the military, 
ommer
ial, and s
ienti�
 agen
ies. Examples of these proje
ts in
lude theUS military's Network-Centri
 Warfare do
trine, IBM's Autonomi
 Computing initiative, and NASA's spa
estation proje
t. As these systems have in
reased in 
omplexity, self-governing 
omponents have 
ome to featureprominently in their design and 
ontrol. This 
hange in paradigm from dire
t human 
ontrol to indire
t humanoversight has for
ed designers to address issues involving the autonomy of these sub-systems.Autonomy is de�ned and used in multi-agent system resear
h [6, 7, 11, 12, 13℄ and other dis
iplines in
ludingso
iology [10℄ and philosophy [14, 15℄. It is important in multiagent intera
tions sin
e it relates the abilities ofan agent to its freedoms and 
hoi
es. The understanding and quanti�
ation of an agent's autonomy is requiredfor 
oherent interagent intera
tion.The 
on
ept of autonomy is 
losely related to the 
on
epts of power, 
ontrol, and dependen
e [5, 7℄. Thenotion of autonomy has been used in a variety of senses and has been studied in di�erent 
ontexts. It generallypresupposes some independen
e or restri
ted dependen
e. However, it 
an des
ribe many di�erent but related
on
epts. An agent 
an be autonomous with respe
t to another agent if it is beyond the in�uen
es of 
ontroland power of that agent. It 
an also be used to des
ribe quality of 
hoi
e and 
an even en
ompass self-imposed�sense of duty� 
on
epts.While autonomy 
an be intuitively understood, it unfortunately is a 
omplex topi
 whose exa
t de�nitionand implementation is rather elusive. However, by identifying �types� or �sub
lasses� of autonomy, spe
i�
aspe
ts of the 
on
ept 
an be de�ned and quanti�ed. The multiagent system designer 
an then utilize thesemodels to fo
us on the parti
ular attributes of autonomy that would be most bene�
ial for the parti
ularimplementation.Autonomy is de�ned in [6℄ as the agent's degree to whi
h its de
isions depend on external sour
es in
ludingother agents. This form of autonomy 
an be 
alled Cognitive Autonomy. This 
on
ept has been explored furtherin [7℄. This paper utilizes this de�nition of autonomy and promotes the relativisti
 view introdu
ed in [3, 4℄.Adjustable autonomy is a related notion that 
aptures the idea of a human operator intervening and guidinga
tions of a ma
hine [8℄. Another example of the work on adjustable autonomy is [1℄ with quantitative measureproposed in [2℄. In this, the degree of autonomy is de�ned as an agent's relative voting weight in de
ision-making.This approa
h has several advantages in
luding the allowan
e for expli
it representation and adjustment of agentautonomy.The remainder of this paper presents our work regarding 
omputation and determination of adjustableautonomy levels for 
ollaborative, problem-solving agents in a multi-agent system. Se
tion Two des
ribes ourapproa
h, in
luding the generalized algorithm. Se
tion Three portrays an implementation of this algorithm forNASA's PSA program. Experiments performed on this system are 
hroni
led in Se
tion Four. Se
tion Fivepresents the 
on
lusions drawn from this work.2. Approa
h. This paper addresses adjustable autonomy in a distributed system where agents dis
over,announ
e, and 
omplete asyn
hronously o

urring tasks. The tasks are generi
 and require multiple parti
ipant
ollaboration to solve. The 
ollaboration pro
ess is fa
ilitated through a four-stage bidding pro
ess:1. Announ
ement2. Priority
∗Southern Illinois University Carbondale, Illinois, 62901 {hexmoor, brianm}�
s.siu.edu41



42 Henry Hexmoor and Brian M
laughlan3. Permission4. A

eptan
eIn addition to providing a me
hanism for 
ollaboration on tasks, the algorithm must be able to s
ale welland handle dynami
 and 
omplex situations. That is, it must be able to handle multiple, 
on�i
ting tasks. Itmust be able to handle 
hanges to the problem topology su
h the introdu
tion or removal of key agents or tasks.Ideally, the algorithm will handle variations without ex
essive setba
k in its ongoing 
omputations.Announ
ementUpon dis
overy of a new task, the dis
overing agent�known here as the originating agent�broad
asts thedis
overy to the group. Ea
h agent maintains a list of announ
ed tasks. The task data stru
ture is shown inFigure 2.1.An agent will update the information about a task as it re
eives relevant information. For simpli�
ation,this paper assumes that all agents have some method of hearing announ
ements and other bidding relatedinformation, whether through dire
t or indire
t means. If this simpli�
ation is not the 
ase, the algorithm willyield as best a solution as is possible with the information available.Task IDLo
ationDis
overy TimeOriginatorWorker Count RequestPriority ListPermission ListA

eptan
e ListFig. 2.1. Task DataPriorityUpon re
eiving and ar
hiving the task announ
ement, an agent will reason about its obje
tive suitabilityto address the task. The agent may in
lude several attributes, e.g., ne
essary skills, energy usage, and the timethat the task has been a
tive. It in
orporates these fa
tors in assigning some meaningful priority to the task.It is important to note that, at this stage, the agent will not a

ount for alternative tasks. That is, it will notrank a task higher or lower a

ording to its personal preferen
es. Reasoning along subje
tive 
onsiderations willo

ur later. Upon determining its priority for the task, the agent will announ
e the s
ore to the other agents.In the most basi
 version of this system, only the originator needs to maintain all the priorities. However, aswill be des
ribed later, some enhan
ements are possible in whi
h agents 
an adjust their a

eptan
e based onthe priority s
ores made by other agents.PermissionThe originating agent 
olle
ts these priority s
ores and generates a permission list. In its simplest form, thepermission list is an ordered list of the priority s
ores. However, the algorithm utilized by the originating agent
an be mu
h more 
omplex, taking into a

ount abstra
t 
on
epts su
h as trust and a�nity the originating agenthas towards parti
ular agents or even known synergies among bidding agents. Ultimately, this permission list
ontains the bidding agents in the order of most to least desirable for joining the task. Although the originatingagent only needs a spe
i�
 number of agents to perform the task, it will 
reate an ordered list 
ontaining allbidding agents in the event that some of the most desirable agents will be unable or unwilling to parti
ipate.The originating agent publishes this list to the group.A

eptan
eUnlike many 
ontemporary systems su
h as online au
tions, a bid does not 
onstitute a 
ontra
t in thissystem. Ea
h agent is allowed to tentatively a

ept or reje
t the permission granted by the originating agent.Additionally, a tentative a

eptan
e is not enfor
eable. If an agent �nds a task for whi
h it is more suitable, itis free to abandon its 
urrent task. As will be shown later, it is assumed that the agent has taken into a

ountany disruption its a
tion would make on its 
urrent task if it were to a
t. Thus, the a

eptan
e be
omes anannoun
ement of whi
h task the agent is 
urrently 
onsidering to perform.
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eptan
e determination by a

ounting for several fa
tors in
luding its desireor suitability for this relative to other tasks, the level of permission granted by the originating agent for thisand other tasks, and the priority of alternative agents should the agent de
line to perform the task.The bidding agent takes into a

ount 
ompeting tasks at this stage rather than in the priority stage sothat it 
an provide benevolen
e for the system. For example 
onsider an agent X that has pla
ed bids on twotasks, Task 1 that has been announ
ed by agent A and Task 2 that has been announ
ed by agent B. Agent Xdetermines its priority for Task 1 to be quite low, but sees its priority for Task 2 to be high. Both agents A andB have published permission lists in whi
h agent X is among the top 
hoi
es. If agent X were to take a greedystan
e, it would a

ept the task for whi
h it gave the highest priority, in this 
ase Task 2. However, if it furtherinspe
ts the permission lists, it may dis
over that the agents that would be for
ed to perform Task 1 in agentX's absen
e are not parti
ularly well-suited for the task and would struggle, while the alternative agents forTask 2 are only slightly less-suitable than agent X and 
ould still perform adequately. To provide for optimalsystem performan
e, agent X 
ould 
hoose to a

ept Task 1 even though it would personally prefer Task 2.There are three 
aveats to a

epting tasks. First, an agent may only give its a

eptan
e to one task. If ithas already a

epted a previous task, it must announ
e its withdrawal from that previous task.Se
ond, an agent 
annot a

ept a task that has been lo
ked. A task is lo
ked if n higher-ranked agents havea

epted the task, where n is the requested number of agents for the task1.Third, an agent 
annot a

ept a task where it is not ranked in the �rst n non-reje
ting agents in thepermission list where n is the number of agents required to perform the task. That is, if a task needs threeagents, and agent X is ranked fourth, it 
annot a

ept the task unless one of the �rst three de
line it. Conversely,any agent may de
line a task regardless of its ranking in the permission list. These s
enarios are shown inFigure 2.2. Task 1:# Agents Requested: 3Permission: {C, D, A, E, X, Y, Z}A

eptan
e: { A, R, ?, ?, ?, R, ?}Fig. 2.2. Agent X 
annot a

ept the task until either agent A or E reje
ts it.AlgorithmAn algorithm has been developed to fa
ilitate this bidding s
heme. This algorithm is implemented at theagent level and runs 
ontinuously. The pseudo 
ode for this algorithm is shown in Algorithm 1.Some notes regarding this algorithm. In the �nal If statement, the agent does nothing if its 
hosen task
ould be �lled by more quali�ed agents. This for
es the agent to wait to see if the desired task will be
omeavailable. As an alternative, the agent 
ould 
hange this to a reje
tion and re
al
ulate a �se
ond best 
hoi
e�.Then, if the desired task be
omes available due to top-ranked agents reje
tions, it 
an 
hange its a

eptan
eba
k to the original task. This alternative keeps all agents busy, but it may 
ause additional start-up 
osts from
hanging tasksIt is the task originator's responsibility to ensure that the task does not get lost in the shu�e. To this end,the originating agent will periodi
ally broad
ast the 
urrent state of the task.Rather than rigidly de�ne the four phases of the bidding pro
ess, the algorithm allows ea
h agent topro
eed independently. This pre
ludes the need for 
oordination of phase 
hanges that may be di�
ult in someenvironments. However, this 
ould 
ause the originating agent to publish a permission list before all agents havegiven their priority s
ores. With the publi
ation of this list, the agents are free to begin the a

eptan
e pro
essbefore potentially ideal agents announ
e their priority. To prevent unne
essary shu�ing as new agents bumpout less ideal workers, the agents should take potential shu�ing into a

ount when bidding. Alternatively, if theagents 
an 
ommuni
ate with all other agents in the system, then the originating agent 
an delay publishingthe permission list until all agents have announ
ed their priorities.To illustrate the algorithm, 
onsider the following s
enario. To simplify the illustration, the s
enario willbe shown from the perspe
tive of the tasks.
1In the PSA appli
ation, �n� is three. I.e., three robots are required to triangulate sour
e of the problem.
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laughlanAlgorithm 1 Bidding S
heme Pseudo
odewhile 1 doSense surroundingsTask List updateAppend new dis
overed tasksAppend new heard tasksUpdate existing tasksfor Ea
h task t in Task List doCal
ulate and announ
e tpriorityif toriginator == self thenCal
ulate tpermission ListAnnoun
e task tend ifend forCal
ulate best non-lo
ked taskfor Ea
h task t in Task List doif t 6= best thenAnnoun
e reje
tionelseif Self rank < nth non-reje
ting thenAnnoun
e a

eptan
eelseDo nothingend ifend ifend forend whileAgents A and B have dis
overed and announ
ed Tasks 1 and 2, respe
tively. Agents A, B, C, and D arewithin responding distan
e to these tasks. Figure 2.3 shows the state of the tasks after the agents have begunto respond with their priority to the tasks and the originating agents have published permission lists. Forsimpli
ity, permission is granted based solely on announ
ed priority.Task 1 Task 2# Agents Needed: 2 # Agents Needed: 2Priority: {A,7},{B,3}, {C,8},{D,9} Priority: {A,1},{B,8}, {C,2},{D,7}Permission: D, C, A, B Permission: B, D, C, AA

eptan
e: ?, ?, ?, ? A

eptan
e: ?, ?, ?, ?Fig. 2.3. Permission List Publi
ationWith the publishing of the permission lists, agents are now free to begin a

epting or reje
ting the tasks asshown in Figure 2.4. Agents C and D are the most ideal 
andidates for Task 1. C will a

ept this task as Ba

epts Task 2. They will qui
kly reje
t the alternate tasks.However, D has been a

epted for both tasks. Greedily, it 
ould a

ept Task 1, but its reje
tion of Task 2would for
e Task 2 to be performed by A, a very unsuitable agent. It must de
ide on a 
ourse of a
tion�greedyor benevolent.Agent A 
annot announ
e its a

eptan
e of Task 1 despite its likely preferen
e toward it. Rather, it willwait to see what Agent D announ
es so that it will not have to begin its inept performan
e of Task 2 and thenpossibly swit
h mid-exe
ution to Task 1.Next, 
onsider how the algorithm will rea
t to a dynami
 situation. For this we introdu
e another agent,agent E. This agent hears the updates given by the two task originators and determines its priority for thetasks. Additionally, agent C dete
ts a new task, Task 3. This situation is shown in Figure 2.5.



Computationally Adjustable Autonomy 45Task 1 Task 2# Agents Needed: 2 # Agents Needed: 2Priority: {A,7},{B,3}, {C,8},{D,9} Priority: {A,1},{B,8}, {C,2},{D,7}Permission: D, C, A, B Permission: B, D, C, AA

eptan
e: ?, A, ?, R A

eptan
e: A, ?, R, ?Fig. 2.4. Partially A

eptedTask 1 Task 2 Task 3# Agents Needed: 2 # Agents Needed: 2 # Agents Needed: 2Priority: {A,7},{B,3}, Priority: {A,1},{B,8}, Priority: {A,7},{B,3},{C,8},{D,9}, {E,0} {C,2},{D,7}, {E,5} {C,9},{D,8}, {E,5}Permission: D, C, A, B, E Permission: B, D, E, C, A Permission: C, D, A, E, BA

eptan
e: ?, R, ?, R, R A

eptan
e: A, ?, ?, R, ? A

eptan
e: C, ?, ?, ?, ?Fig. 2.5. New Task and AgentIn this situation, C 
hooses its own task and reje
ts its previous a

eptan
e of Task 1. Additionally, Eimmediately sends reje
tion to Task 1 due to its absolute inability to perform the task as demonstrated fromits priority announ
ement of 0.This leaves several issues to be resolved. First, it allows A to a

ept its ideal Task 1 as it is now in the �rst2 non-reje
ting agents and does not need to wait for D's reje
tion.Agent D is now desired by all three tasks. It still has some determination to make before 
hoosing. Forinstan
e, D's 
hoi
e 
ould depend upon whether agent A 
hooses Task 1 or Task 3. It also depends upon whetherimportant tasks will be left without adequate workers.The exa
t method utilized for determining its 
hoi
e depends on how mu
h 
omplexity the system designerimbues in the agents' de
ision-making pro
ess. Ideal e�
ien
y is a di�
ult problem that is most likely beyondthe pra
ti
al s
ope of real-world agents regardless of the algorithm. However, the agent 
ould play the prisoner'sdilemma game to se
ond-guess what other agents may 
hoose. Perhaps the simplest and most 
omputationallye�
ient method when fa
ed with su
h in
omplete information would be for Agent D to take the greedy 
hoi
eand let the other agents adjust to maximize the remaining system performan
e.Additionally, this example illustrates a problem with all task allo
ation algorithms�maximizing utilitywhen not enough workers are present. If su
h a s
enario is likely in the system, the designer 
ould in
lude atask priority that would modify the agents' behavior su
h that they would be more likely to a

ept 
riti
al tasksand leave less vital tasks understa�ed.Despite the problems, this example demonstrates how the algorithm 
an adapt to 
hanges made mid-
al
ulation. Rather than toss out the bidding pro
ess and start over or ex
lude new agents and tasks from thepro
eedings, the agents make some qui
k adjustments and 
ontinue.3. An appli
ation: The Personal Satellite Assistant (PSA). A PSA is a small (basketball-sized)�ying robot that is under development at NASA Ames (at the Mo�et �eld AFB2) for deployment on theinternational spa
e station. These robots are an outgrowth of a need to free astronauts from routine tasks ofinventory 
ontrol, safety 
he
ks, and fault dete
tion and isolation. PSAs are loaded with a variety of sensorsin
luding equipment for gas and pressure sensing. In the remainder of this se
tion we des
ribe an implementationof our algorithm that allows PSAs to perform several appropriate tasks su
h as �re and gas leak (i. e., on- ando�-gassing) dete
tion while reasoning about their autonomy and level of 
ollaboration.As per the algorithm, the PSA that dete
ts the problem formulates a broad
ast alert to send to the otherPSAs. This is initiated when a PSA lo
ates an abnormality in its environment. The abnormality 
ould bea variation in the ambient temperature or an atmospheri
 imbalan
e su
h as high or low pressure, or ex
essoxygen, 
arbon dioxide, or nitrogen. The PSA sends the alert 
ontaining the type of problem and type of roomin whi
h the problem is lo
ated to persuade other agents to help it pinpoint the sour
e of the problem morea

urately. This pro
ess is similar to the method used in radio signal triangulation.
2We thank Yuri Gawdiak for a tour and dis
ussions in 2002.



46 Henry Hexmoor and Brian M
laughlanTo determine its suitability for this task, the PSA must a

ount for its energy resour
es. Ea
h PSA has alimited battery power that will be 
onsumed during transit as well as during the task exe
ution. It is assumedthat the PSA has a means of evaluating its resour
es R, whi
h in this 
ase is its battery 
harge. It will then
al
ulate its 
ost C to perform the task.C is initially 
omputed by 
al
ulating the distan
e to travel to the task and the subsequent distan
e to apower re
harge station. It does the system little good for a PSA to assist in lo
ating a problem only to run outof energy and shut down. The total distan
e to be moved is multiplied by the energy 
onsumption rate. Anestimation of the amount of energy required to perform the task is added to get the total 
ost C.
C =(Distan
e to target+Distan
e from target to re
harge) × Energy Consumption Rate

+ Energy required for taskIf C > R then an unfavorable priority is return indi
ating unavailability. Otherwise, when C ≤ R, thePSA 
an su

essfully help lo
ate the problem and still re
harge itself. In this 
ase, priority P is 
al
ulated by�rst 
onsidering what type of room in whi
h the problem is lo
ated. This is done sin
e some lo
ations areinherently more important than others. For instan
e, laboratories are relatively less important than the 
ontrol
enter. Additionally, the parti
ular anomaly dete
ted 
an in�uen
e the priority for a parti
ular room. Forexample, o�-gassing of oxygen in a equipment storage module would be less disastrous than the same problemin a habitation module. Conversely, high levels of magneti
 interferen
e may be dangerous for the equipmentbut 
ould be of little 
onsequen
e to humans inhabiting their quarters. The determined value, whi
h we denoteas Q, is used for 
al
ulating the job weight and is used in the �nal priority 
al
ulation for P.
Q = ln(Time + RoomProblemFactor)The natural log is used for this equation be
ause it 
auses Q to 
hange along a predi
table 
urve as either Timeor RoomProblemFa
tor in
reases.P is 
omputed by using distan
e as a s
alar and 
omparing the new job weight to the old job weight.

P = Qnew ×

(

1 −
Distan
e to new target

MAXDISTANCE

)

− Qold ×

(

1 −
Distan
e remaining to old target

MAXDISTANCE

)MAXDISTANCE is the maximum distan
e a PSA 
an move through the entire station. The distan
e plays animportant role in the 
al
ulation of P. This is due to the observation that the PSA with the smallest distan
eto move will be the most likely to arrive qui
kest. Thus, the time to 
omplete the task is lower with this PSA.As the PSAs pro
eed through the bidding pro
ess�priority de
laration, permission, and a

eptan
e�andthe 
hosen PSAs begin to arrive at the problem lo
ation, they will take a prism on the fa
e of the sear
h spa
eand begin s
anning. This will allow PSAs that arrive qui
ker to begin the sear
h pro
ess, while PSAs thatarrive later 
an help re�ne the results. Thus, a measure of 
ompletion 
an be taken at any point in time duringthe triangulation.4. Experiments. Experiments were performed utilizing the PSA s
enario. The lo
ations of problems andPSAs were arranged su
h that the system was relatively balan
ed. The Q value of ea
h problem was randomlygenerated. The number of PSAs in the system was su�
ient in ea
h test to meet the demands.The exa
t method of a

eptan
e was performed under two strategies. In strategy 1, agents 
hose to a

eptthe task in whi
h they were highest ranked for permission. Note that this does not ne
essarily mean that thePSA greedily 
hooses the task for whi
h it attributed the highest priority. Rather, it will 
hoose the task ofthe originator that most values the PSA's assistan
e. For instan
e, if a PSA is listed as �rst in the permissionlist, it will a

ept that over a task where it is listed se
ond. In strategy 2, PSAs perform as des
ribed in thealgorithm�they 
hoose to a

ept a task su
h that the sum of all priorities 
hosen is maximized. This strategyshould spread the quality of help a
ross the problems.The results of the experiments are shown in Figure 4.1 and shows that the two strategies produ
e verysimilar results. However, the �rst strategy gives slightly better performan
e in this parti
ular simulation and is
omputationally less intensive in general.The reason for this de
rease in performan
e lies in the nature of the de
ision making in the system as aresult of the additional pro
ess. By de
entralizing the de
ision-making, 
hoi
es are being made based upon lessthan the total amount of information in the system.
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Fig. 4.1. Quality of help for two strategiesFrom the perspe
tive of autonomy, the �rst strategy restri
ts the agents to a greater degree. The individualPSAs have less freedom in mobility and 
hoi
e of tasks. Priority only plays a role in the very �rst stage of thepro
ess. After that, it is up to the originating PSA. The se
ond method allows the bidding PSAs to undertakewhi
hever task is both best �tting to them and 
ompliant to the greater needs of the system.5. Con
lusion. As 
omputer 
ontrolled systems in
rease in 
omplexity, automated 
ollaboration of sub-systems be
omes more relevant and 
riti
al to system e�
ien
y. Utilizing the 
on
ept of adjustable autonomy�reasoning about 
ommitments in parti
ular�is a 
riti
al 
omponent to solving this problem. This work hasshown how reasoning about autonomy 
an form the basis of moment-to-moment 
ommitment making.We have shown an algorithm that 
an be utilized for dynami
 de
ision-making that is �exible enough tohandle agents that join or leave before tasks are 
ompleted, as well as being able to handle tasks that appearduring the exe
ution of other tasks.We have shown how this algorithm 
an be implemented in a relevant and 
urrent problem�that of taskmanagement of NASA's Personal Satellite Assistants on board the international spa
e station. The domain ofPSAs is a dynami
 environment where multiple and possibly 
on
urrent problems may develop, and is an areathat will bene�t from the teamwork made possible by this algorithm.Future work in this area 
an take many dire
tions. For instan
e, we 
ould 
onsider subje
tive attributessu
h as qualities of relationships and satisfa
tion of agents with the task assignment pro
ess. Additionally, we
an look at the appli
ation of autonomy determination in reasoning about teams [3, 16℄ and its e�e
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pe.org ISSN 1895-1767© 2007 SWPSA TOP DOWN APPROACH FOR DESCRIBING THE ACQUAINTACE ORGANISATIONOF MULTIAGENT SYSTEMS∗JOAQUÍN PEÑA†, RAFAEL CORCHUELO† AND ANTONIO RUIZ-CORTÉS†Abstra
t.When the proto
ol of a 
omplex Multi-Agent System (MAS) needs to be developed, the top-down approa
h emphasises tostart with abstra
t des
riptions that should be re�ned in
rementally until we a
hieve the detail level ne
essary to implement it.Unfortunately, there exist a semanti
 gap in intera
tion proto
ol methodologies be
ause most of them �rst, identify whi
h taskshas to be performed, and then use low level des
ription su
h as sequen
es of messages to detail them.In this paper, we propose an approa
h to bridge this gap proposing a set of te
hniques that are integrated in a methodology 
alledMaCMAS (Methodology for Analysing Complex Multiagent Systems). We model MAS proto
ols using several abstra
t views ofthe tasks to be performed, and provide a systemati
 method to rea
h message sequen
es des
riptions from task des
riptions. Thesetasks are represented by means of intera
tions that shall be re�ned systemati
ally into lower-level intera
tions with the te
hniquesproposed in this paper (simpler intera
tions are easier to des
ribe and implement using message passing.) Unfortunately, deadlo
ksmay appear due to proto
ol design mistakes or due to the re�nement pro
ess that we present. Thus, we also propose an algorithmto ensure that proto
ols are deadlo
k free.Key words. Top-down approa
h, agent proto
ol des
riptions, intera
tion re�nements, and deadlo
k dete
tion.1. Introdu
tion. Agent-Oriented Software Engineering (AOSE) is paving the way for a new paradigmin the Software Engineering �eld. This is the reason why a large amount of resear
h papers on this topi
 areappearing in the literature. One of the main resear
h lines in AOSE arena is devoted to developing methodologiesfor modelling intera
tion proto
ols (hereafter proto
ols) between agents.1.1. Motivation. When a large system is modeled, its 
omplexity be
omes a 
riti
al fa
tor that has to bemanaged properly to a
hieve 
lear, readable, reusable, and 
orre
t spe
i�
ations [8, 24, 30℄. In the literature,there exist various te
hniques to palliate this problem. The most important are the top down and the bottom upapproa
hs. The top down approa
h, whi
h is the fo
us of this paper, �rst tries to des
ribe software from a highlevel of abstra
tion, and then goes into further details until they are enough for implementing the system [32℄.When the proto
ol of a large MAS has to be developed, it is desirable to start with an abstra
t des
riptionthat 
an be re�ned in
rementally a

ording to the top down approa
h. In our opinion, there exist two drawba
ksin most existing methodologies:
• On the one hand, most of them provide top-down approa
hes for modeling and developing these sys-tems. These methodologies, general or proto
ol-
entri
, agree on using abstra
t messages and sequen
ediagrams to des
ribe proto
ols [3, 19, 37, 15℄. Although these messages represent a high level view of aproto
ol, whi
h shall be re�ned later, the tasks that are performed are formulated as a set of messages.This representation implies that the abstra
tion level falls dramati
ally sin
e a task that is done bymore than two agents requires several messages to be represented. This o

urs even if we 
onsider atask between two agents. For instan
e, an information request between two agents must be representedwith two messages at least (one to ask, and another to reply). This introdu
es a semanti
 gap betweentasks to be performed identi�ed at requirements and its internal design sin
e it is di�
ult to identifythe tasks represented in a sequen
e of messages. This representation be
omes an important problemregarding readability and manageability of large MAS.
• On the other hand, abstra
tions of proto
ols (intera
tions) that allow designers to en
apsulate pie
es ofa proto
ol that is exe
uted by an arbitrary number of agents has been proved adequate in this 
ontext[3, 4, 19, 20, 38℄. Unfortunately, intera
tions are generally used to hide unne
essary details about someviews of the proto
ol. This improves readability and promotes reusability of proto
ol patterns, but theyare not used for bridging the existing semanti
 gap between tasks and its representation.1.2. Contributions. In our proposal, we present a di�erent approa
h to use intera
tions, whi
h is basedon the ideas presented in [4, 26, 38℄. This approa
h is integrated on a methodology 
alled MaCMAS that 
overstop-down and bottom-up. The top down software pro
ess is sket
hed in Figure 1.1. As shown, our goal is to
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Fig. 1.1. Software pro
ess of re�nements.bridge this gap using intera
tion abstra
tions to model the tasks to be performed, and Finite State Automata(FSA), represented using UML 2.0, to model how to sequen
e them. Afterwards, we re�ne them systemati
allyinto simpler ones iteratively. This de
reases the level of abstra
tion so that the intera
tion we obtain are simpler.Thus, they are des
ribed internally as message sequen
es easily, e.g. using AUML [3℄.We have used a proto
ol abstra
tion 
alled multi-role intera
tion (mRI), whi
h was �rst proposed in [25℄.An mRI is an abstra
tion that en
apsulates a set of messages between an arbitrary number of agent roles.Furthermore, the re�nement pro
ess we use is based on the ideas presented in [10℄ sin
e the intera
tion we useis similar to su
h used in this work. The re�nement pro
ess relies on analysing the knowledge used by ea
h rolein an mRI and using this information to transform an mRI into several simpler mRIs automati
ally. An mRIis simpler when both the number of parti
ipant roles and the 
omputation made by it de
reases. The mainadvantages of re�ning mRIs are the followings:

• First, its internal des
ription is easier sin
e the 
omputation to perform in the obtained tasks aresimpler.
• Se
ond, it is easier to implement intera
tions with a low number of parti
ipant roles [12, page 206℄[2, 33, 21, 35℄.
• Finally, mRIs are 
riti
al deadlo
k free regions and they are mutually ex
lusive. Thus, if the numberof parti
ipant roles in
reases, the 
on
urren
y grain de
reases, what is 
learly not desirable [34℄.The main drawba
k of su
h re�nements is that they may lead to deadlo
ks. In this paper, we also proposea te
hnique to dete
t if a re�nement may introdu
e deadlo
ks (see Figure 1.1); it also 
hara
terises them bymeans of regular expressions that help �nding the re�nements that are not adequate in a given 
ontext. It isbased on analysing the FSA that represents the proto
ol of a role model and some previous work on deadlo
kdete
tion in the 
ontext of 
lient/server intera
tions [5, 14, 36℄. It improves on other results in that it 
an beautomated be
ause it does not require any knowledge about the implied, intuitive semanti
s of the intera
tionsas other approa
hes.This paper is organised as follows: in Se
tion 2 we present the related work about proto
ol modeling in MASand about intera
tion re�nements; in Se
tion 3, we summarise the methodology where this work is integrated;in Se
tion 4 we present the example that we use to illustrate our approa
h; in Se
tion 5 we present our ideas on
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ol modeling and we show the re�nement te
hniques appli
able; in Se
tion 6 we present our approa
h tothe automati
 deadlo
k dete
tion pro
ess; Se
tion 7, we show our main 
on
lusions. Finally, an appendix thatshows an implementation of the 
ase study using IP.2. Related work. In this se
tion we 
over the related work on proto
ol modelling and on re�nements.2.1. Proto
ol Modeling. As we showed in the previous se
tion, we think that most approa
hes modelproto
ols at low level of abstra
tion sin
e they require the designer to model 
omplex 
ooperations as message-based proto
ols. This issue has been identi�ed in the Gaia Methodology [38℄, and also in the work of Caireet. al. [4℄, where the proto
ol des
ription pro
ess starts with a high level view based on des
ribing tasks as
omplex 
ommuni
ation primitives (hereafter intera
tions). We think that the ideas presented in both papers areadequate for this kind of systems where intera
tions are more important than in obje
t-oriented programming.On the one hand, in the Gaia methodology, proto
ols are modeled using abstra
t textual templates. Ea
htemplate represents an intera
tion or task to be performed between an arbitrary number of parti
ipants. Fur-thermore, intera
tions are de
orated with the knowledge they pro
ess and the permissions ea
h role has, theirpurpose, their inputs and outputs, and so on.On the other hand, in [4℄, the authors propose a methodology in whi
h the �rst proto
ol view is a stati
view of the intera
tions in a system. Ea
h intera
tion is used by a set of agent roles and they are de
orated withthe knowledge ea
h role uses/supplies. Later, the internals of these intera
tions are des
ribed using AUML [3℄.As the methodologies 
ited above, we also use intera
tions to deal with the �rst stage of proto
ol modeling.Furthermore, we also represent a stati
 view of intera
tions and the knowledge that ea
h role 
onsumes andprodu
es in ea
h of them. Unfortunately, both methodologies do not provide an automati
 method for re�ning
omplex intera
tions into smaller intera
tions that are 
loser to the implementation level. In this paper, weelaborate on su
h a method.Furthermore, in methodologies that use sequen
e diagrams to model proto
ols, it has been also identi�edthe need for advan
ed multi-role intera
tions that en
apsulate a pie
e of proto
ol. Unfortunately, in most ofthem these intera
tions are used to de�ne reusable patterns of intera
tion or for hiding details in some 
omplexviews. Several examples of su
h use of intera
tions 
an be found in the literature: For instan
e, AUML nestedproto
ols [3℄ or mi
ro-proto
ols [19℄. These approa
hes provide the user with a set of tools to model 
omplex
o-operations; however, most designers use message�based des
riptions.2.2. Re�nements. The need for su
h proto
ol primitives has also been identi�ed in other areas su
h asdistributed systems [11, 7, 23℄. In this 
ontext su
h intera
tions have been studied for long, and there existadvan
ed te
hniques to re�ne them (syn
hrony loosening re�nements [10℄). Unfortunately, these re�nements
an lead to deadlo
k. Although the theory of re�nements has rea
hed a rather elaborate state in other 
ontexts,
f. [1℄, there are not many results on intera
tion re�nements or the 
hara
terisation of their anomalies. Themain reason is that 
lassi
al re�nements are 
ontext-free, whereas intera
tion re�nements are 
ontext�sensitive.Thus, the main problem is the establishment of their monotoni
ity properties [10℄, whereby their appli
ation tosubparts of a proto
ol preserves the 
orre
tness of the whole proto
ol with respe
t the set of valid syn
hronisationpatterns it des
ribes.The state�of�the�art te
hnique that fo
us on design time properties was presented in [12℄. It is based ondesigning a formal proof system (
ooperating proof ) that allows to prove a su�
ient 
ondition for monotoni
itythat ensures that a system 
omposed of intera
tions is deadlo
k free. It is based on analysing linked intera
tions,i.e., intera
tions that need to be exe
uted in sequen
e, to avoid deadlo
ks, whi
h was previously suggested in[9, 18℄. Unfortunately, this te
hnique is quite di�
ult to apply in pra
ti
e be
ause it requires in-depth knowledgeof the implied, intuitive meaning of the intera
tions, and no automati
 proof rules were designed for showingthe satisfa
tion of the su�
ient 
ondition.Our proposal 
an dete
t if a re�nement may lead to a deadlo
k situation automati
ally, and also 
hara
terisesthe set of tra
es that lead to it by means of regular expressions. It is based on FSA analysis used by manyresear
hers in the 
ontext of 
lient/server deadlo
k dete
tion of intera
tion models [5, 14, 36℄.3. Engineering MultiAgent Systems with MaCMAS. MaCMAs1 is a methodology for engineering
omplex multiagent systems that is integrated with several resear
h �elds, i.e. autonomi
 
omputing [31℄,software produ
t lines [27, 28℄ and evolving systems [29℄.
1see james.eii.us.es/MaCMAS/ for further details on MaCMAS
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Fig. 3.1. Pro
ess OverviewMaCMAS 
overs 
arefully the �ve prin
iples to deal with 
omplexity in software engineering where top-downand bottom-up are of high importan
e [16, 17, 30℄: abstra
tion, de
omposition/re�nements, 
omposition/ab-stra
tion, automation and reuse.In Figure 3.1, we show an overview of the main 
on
epts applied in MaCMAS from the software pro
esspoint of view. As shown, models of the system are stru
tured into a set of abstra
tion layers. Top models arethe most abstra
t while bottom models are the most re�ned models. MaCMAS provides also a set of verti
aland horizontal transformations. Verti
al transformations are applied to split models or to 
ompose models, andhorizontal transformations are used to re�ne and abstra
t models in order to 
over bottom-up and top-downsoftware pro
esses.As shown, for 
overing the rest of prin
iples, tra
eability between models at di�erent abstra
tion layers andreuse of models and their abstra
tions/re�nements is also provided.In MaCMAS, two kind of re�nements are proposed. One that is base on analyzing information on require-ment do
uments, 
on
retely system goals hierar
hies, to re
ommend the user of the CASE tool whi
h models
an be re�ned and whi
h is the best de
omposition re
ommended. The other re�nement, whi
h is the fo
us ofthis paper, is based on analyzing the dependen
ies between the elements in a model to re
ommend a re�nement.3.1. Models. In other to engineer MASs, MaCMAS provides a ri
h set of UML2.0-based models that 
anbe summarized in:a) Stati
 A
quaintan
e Organization View: This shows the stati
 intera
tion relationships between rolesin the system and the knowledge pro
essed by them. It 
omprises the following UML models:Role Models: shows an a
quaintan
e sub-organization as a set of roles 
ollaborating by means ofseveral mRIs. As mRIs allow abstra
t representation of intera
tions, we 
an use these modelsat whatever level of abstra
tion we desire. We use role models to represent autonomous andautonomi
 properties of the system at the level of abstra
tion we need.Parameterized Role Models : A parameterised role model permits us to represent reusable 
ollab-oration patterns parameterising some of their elements.Resour
es dependen
y model: A resour
es dependen
y model provides means for do
umenting thedependen
ies between knowledge entities and servi
es provided by roles in the 
ontext of an mRIand for do
umenting the dependen
ies between the knowledge of mRIs.Relating role models model: As a result of using de
omposition and 
omposition and of instanti-ating parameterised role models, we usually manage role models that are obtained from others.This model show the relationships between several role models.Ontology: shows the ontology shared by roles in a role model. It is used to add semanti
s to theknowledge owned and ex
hanged by roles.
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quaintan
e analysis dis
iplineb) Behavior of A
quaintan
e Organization View: The behavioral aspe
t of an organization shows thesequen
ing of mRIs in a parti
ular role model. It is represented by two equivalent models:Plan of a role: separately represents the plan of ea
h role in a role model showing how the mRIs ofthe role sequen
e. It is represented using UML 2.0 Proto
olStateMa
hines [22, p. 422℄. It is usedto fo
us on a 
ertain role, while ignoring others.Plan of a role model: represents the order of mRIs in a role model with a 
entralized des
ription. Itis represented using UML 2.0 StateMa
hines [22, p. 446℄. It is used to fa
ilitate easy understandingof the whole behavior of a sub-organization.
) Tra
eability view: This model shows how models in di�erent abstra
tion layers relate. It shows howmRIs are abstra
ted, 
omposed or de
omposed by means of 
lassi�
ation, aggregation, generalizationor rede�nition. Noti
e that we usually show only the relations between intera
tions be
ause they arethe fo
us of modeling, but all the elements that 
ompose an mRI 
an also be related. Finally, sin
ean mRI presents a dire
t 
orrelation with system goals, tra
eability models 
learly show how a 
ertainrequirement system goal is re�ned and materialized. This is main what helps us to bridge the gapbetween requirements and design.For the purpose of this paper, we only need to detail role models, role model plans, whi
h are shown in thefollowing se
tions.4. The Example. The example we use hereafter is a debit�
ard system. This problem 
an be viewed asone of the basi
 
oordination patterns in the agent e-
ommer
e world, and it involves three di�erent agent roles(hereafter roles): a point of sales role (PS) whi
h intera
ts with the user, a 
ustomer a

ount manager role(CA),and a mer
hant a

ount manager role (MA). When a 
ustomer uses his or her debit 
ard, the agent playing rolePS agrees with a CA agent and mer
hant a

ount agent on performing a sequen
e of tasks to transfer the moneyfrom the 
ustomer a

ount to the mer
hant a

ount, whi
h shall also be 
harged the 
osts of the transa
tion. If
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Fig. 5.1. Stati
 intera
tion view of the debit�
ard system.
Fig. 5.2. Plans of the roles in the debit�
ard system.the 
ustomer a

ount 
annot a�ord the pur
hase be
ause it has not enough money, the 
ustomer a

ount agentthen pays on hire�pur
hase.5. Modeling the Proto
ol with MaCMAS. As we showed above, our approa
h starts when the re-quirements system goals to be performed have been already obtained. Then, we model ea
h task as an mRI aswe show in the role model in Figure 5.1.These system goals in our example are modeled as the following mRIs: approv is used by the CA role toinform the other parties if it 
an a�ord a pur
hase; transfer is used to transfer money from the CA to theMA by means of the PS; mRI hire_p is used to buy on hire-pur
hase; �nally, there is a two-party mRI 
alled

next_sale, whi
h is not further detailed, whose goal is to en
apsulate the operations needed to read the sum tobe transferred and the 
ustomer data from his or her debit 
ard. For further details on the knowledge pro
essedby ea
h parti
ipants and in the mRI see the Appendix.On
e the mRIs are identi�ed and linked with their parti
ipant roles, we represent their possible sequen
es bymeans of FSAs (see Figure 5.2). When an mRI is exe
uted by more than one role it must appear a transition in allthe roles that perform it. Ea
h of these transitions represents the part of the mRIs that a role perform. Whereby,
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Fig. 5.3. De
oupling mRI transfer.to exe
ute an mRI we must transit from one state to another in all the roles that parti
ipate on it. Furthermore,with the algorithms presented in [25℄, whi
h we outline in se
tion 6, we 
an automati
ally infer a single FSA thatrepresents the role model proto
ol as a whole. This alternative representation 
an be used for better readability.Finally, ea
h mRI have to be de
orated with some additional information: su
h as the dependen
ies betweenthey knowledge it pro
ess, a guard for ea
h role, and so on. The knowledge dependen
y, as we show in thenext se
tion, 
an be analysed in order to re�ne mRIs. Furthermore, the guard of mRIs allows ea
h role tode
ide if it want to exe
ute the mRI or not, whi
h has been proved adequate to deal with proa
tivity of agents[7, 19, 25℄.5.1. Re�nements. The model we presented in previous se
tion takes advantage of 
omplex three�partymRIs, whi
h provides a high level design of the proto
ol. However, it should be re�ned in an attempt totransform its mRIs into a set of simpler ones that are 
loser to message sequen
es des
ription. That is to say,des
ribing them internally shall be easier. This is the next step in our approa
h.The re�nements are based on analysing the dependen
ies between the knowledge that roles use from othersin a parti
ular mRI. In order to automate the re�nement pro
ess the designer has to build a dependen
y graph(see Figures 5.3, 5.4 and 5.5) whi
h shall be analysed with the algorithms proposed in [18, 10℄. To illustratehow our te
hnique works we applied it to our example.The �rst re�nement we 
an apply is de
oupling [12℄. It 
an transform 
ertain n�party mRIs into an m�partymRI (m < n) followed by an mRI with n−m+ 1 parti
ipants. We 
an illustrate it by means of mRI transferin our example. Figure 5.3 shows a diagram in whi
h we have depi
ted the knowledge of its roles and theirdependen
ies. As shown, both the MA and CA need to update their balan
es a

ording to some informationin the knowledge of the PS. The idea is thus to de
ouple mRI transfer into two binary mRIs so that the CAupdates its balan
e before the MA. Thus, as we 
an see in Figure 5.3 mRI transfer1 will exe
uted by PS andCA, and transfer2 by PS and MA (see Figure 5.7 for the new sequen
es of exe
ution). We have applied thisre�nement to the mRI hire_p, as well.The se
ond re�nement we 
an apply is parti
ipant elimination [12℄. It 
onsists of eliminating those rolesfrom the set of parti
ipant roles of an mRI whose knowledge is not referred to by other roles and do not referto the knowledge of any other role. Figure 5.4 shows a diagram in whi
h we have depi
ted the knowledge ofthe roles parti
ipating in mRI approv and their relationships. Obviously, role MA 
an be eliminated from thismRI.Another re�nement 
alled splitting, whi
h 
annot be apply to our example, 
onsist in breaking an mRI intotwo mRIs if the knowledge a

essed by several groups of roles are disjoint as is depi
ted in Figure 5.5 with a�
titious mRI.The resulting role plans after applying all re�nements are presented in Figure 5.7. Apparently, they workswell but we 
an dis
over that the re�nements have introdu
ed a deadlo
k situation if we take a 
loser look.Consider a tra
e in whi
h the following mRIs are exe
uted: next_sale, approv, transfer1, and hire_p1. Thisexe
ution deadlo
ks be
ause of an unfortunate interleaving in whi
h, after approving a sale and 
harging theCA, this role is ready to intera
t with the PS by means of transfer2; however, the MA is readied then to
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titious mRI I.exe
ute both transfer1 and hire_p1. If hire_p1 is exe
uted now, it leads to a situation in whi
h no role 
an
ontinue be
ause PS is readying transfer2 and waits for the CA to ready it, the CA is readying approv andwaits for the PS to ready it, and the MA is waiting for any of them to ready transfer1 or hire_p1. Thissituation 
an be avoided if we use a guard for transferi and hire_pi that ensures that when one of these mRIis exe
uted the guard of the others shall be evaluated as false, but unfortunately this is not possible in general.These re�nements allow us to exe
ute several mRIs at the same time sin
e the the knowledge they 
omputedbefore re�nements is now 
omputed separately in di�erent mRIs. In addition, they simplify the number ofparti
ipant roles that ea
h mRI uses, whi
h lead us to easier implementations (the proto
ol to 
oordinate nparties is more di�
ult that su
h for two parties) [12, page. 206℄[2, 33, 21, 35℄. Finally, another advantage isthat the amount of knowledge to be pro
essed in ea
h mRI de
reases thus easing their internal design.For instan
e, the mRI transfer has been broken into two simpler mRIs: transfer1 and transfer2.
transfer1 
omputes the balan
e of the CA and transfer2 
omputes the balan
e of the MA. Thus, simpler
omputations are performed. Furthermore, the original mRI had three parti
ipant roles, and the new mRIshave only two, whose 
oordination/negotiation proto
ol is simpler to implement. The re�ned role model ispresented in Figure 5.6.6. Ensuring Deadlo
k Free Re�nements. Our approa
h to dete
t deadlo
ks is based on building anFSA and analysing its paths. Next, we present some results we need, and then we show how to 
onstru
t theFSA and how to analyse it.
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Fig. 5.6. Role model of the debit�
ard system after re�nements.
Fig. 5.7. Role plans after re�nement.As we 
an see in Figure 5.7, the de�nition of the proto
ol of ea
h role is done by means of FSAs. They 
anbe 
hara
terised as follows:Definition 6.1 (Finite State Automaton). A �nite state automaton (FSA) is a tuple of the form

(S,Σ, δ, s0, F ), where S is a set of states, Σ is a set of mRIs (the vo
abulary in FSA theory), δ : S × Σ → S isa transition fun
tion that represents an mRI exe
ution, s0 ∈ S is an initial state, and F ⊆ S is a set of �nalstates.Thus, let Ai = (Si,Σi, δi, s
0
i , Fi) (i = 1, 2, · · · , n) be the set of FSAs that represents ea
h role in a rolemodel. Starting from this information we 
an build a new FSA C = (S,Σ, δ, s0, F ) that represents the proto
olas a whole, where

• S = S1 × · · · × Sn

• Σ =
⋃n

i=1 Σi

• δ(a, {s1, . . . , sn}) = {s′1, . . . , s
′
n} i� ∀ i ∈ [1..n] · (a 6∈ Σi ∧ si = s′i) ∨ (a ∈ Σi ∧ δ(a, si) = s′i)
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• e0 = {e01, . . . , e

0
n}

• F = {F1, . . . , Fn}This algorithm has been presented in [25℄ and builds the new FSA exploring all the feasible exe
utions of mRI.Their states are 
omputed as the 
artessian produ
t of all state in FSA of roles. Then, for ea
h new state(
omposed of one state of ea
h role) we 
he
k if an mRI may be exe
uted (all their roles 
an do it from thatstate), and if so, we add it to the result. The FSA we obtain in our example is shown in Figure 6.1.6.1. Analysing the Resulting FSA. The �nal step 
onsists in analysing the resulting FSA by sear
hingfor deadlo
k states, i.e., states from whi
h a �nal state 
annot be rea
hed.We use a transition relation 
alled −→B to 
al
ulate these states. It is applied on tuples of the form
(C,N,X), where C denotes an FSA, N denotes the set of states to be analysed, and X denotes the set ofdeadlo
k states found so far. We formalise −→B by means of the following inferen
e rule:

s ∈ N ∧ s 6∈ X ∧ P = pred(s, C)

(C,N,X) −→B (C,N \ P,X ∪ P )Where the predi
ate pred is de�ned as follows:Definition 6.2 (Prede
essors). Let A be an FSA and s ∈ S a state. We denote its set of prede
essors by
pred(s,A) and de�ne it as follows:

pred(s,A) =

{s′ ∈ S | ∃σ ∈ Σ · δ(s′, σ) = s}This transition relation allows us to explore the set of states of an FSA starting at its �nal states and goingba
k to its prede
essors until no new unexplored state is found. The set of unexplored states at that step is theset of deadlo
k states be
ause there is no path in the FSA that links them to a �nal state. Therefore, we 
ande�ne a fun
tion deadlock that maps an FSA into its set of deadlo
k states as follows:
deadlock(C) = CS \N if N ⊆ CS∧

X ⊆ CS ∧ (C,CF , ∅) −→
!
B (C,N,X)Here, −→!

B denotes the normalisation of −→B , i.e., its repeated appli
ation to a given tuple until it 
annot be further applied to the result. Formally,
T →! T ′ ⇔ T −→∗

E T ′∧ 6 ∃T ′′ · T ′ −→E T ′′If deadlock returns an empty set, then the re�nements we have applied do not introdu
e any deadlo
ks.Otherwise, we need to 
hara
terise the exe
ution paths that may lead to them.Consider that deadlock(C) = {b1, b2, . . . , bk}, thus, we 
an build a new set of FSAs
Bi = (CS , CΣ, Cδ, Cs0 , {bi})(i = 1, 2, . . . , k).Noti
e that these FSAs have only a �nal state that is a deadlo
k state in the original FSA. Thus, if we use thealgorithms presented in [14℄ for transforming an FSA into its 
orresponding regular expression, we 
an obtainthe set of regular expressions that 
hara
terise the exe
ution paths that lead to deadlo
ks.If we analyse the FSA in Figure 6.1, we 
an easily 
he
k that its set of deadlo
k states is a singleton of theform {(3, 4, 7)}. Thus, if we make this the only �nal state, we 
an obtain the following regular expression that
hara
terises the exe
ution paths that lead to deadlo
ks:
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Fig. 6.1. Resulting FSA.
(next_sale | approv · transf1·
·transf2 | approv · hire_p1 · hire_p2)

∗ ·
· approv · transf1 · hire_p1Thus, when a set of re�nements are applied we 
an use the te
hnique presented above to sear
h for deadlo
ks,and if they appear, we 
hara
terise it by the deadlo
k regular expression. Then, we 
an use this 
hara
terizationto apply a di�erent set of re�nements and repeat this pro
ess until getting a deadlo
k free proto
ol. Finally,we obtain a set of new simpler mRIs that 
an be des
ribed internally and implemented easier. In our examplethe deadlo
k appears between mRI transfer and hirep and the problem 
an be easily solved not re�ning oneof them or applying another set of re�nements.7. Con
lusions. The des
ription of intera
tion proto
ols in 
omplex MASs may be a di�
ult, tediouspro
ess due to the large number of 
omplex tasks that agents must perform 
oordinately. Thus, in order topalliate this problem, we have proposed a re�nement te
hnique integrated in a methodology that is based onan interdis
iplinary te
hnique that builds on MAS and distributed systems resear
h results.Our te
hnique improves previous resear
h in that we add some proto
ol views between requirements analysisand the des
ription of a proto
ol by means of message sequen
es; we use intera
tions as �rst 
lass modelingelements. Furthermore, these des
riptions are easily re�ned to rea
h the needed abstra
tion level to be des
ribedinternally. Thus, we provide a progressive method to pro
eed from requirements analysis to message sequen
esdes
riptions. Furthermore, we have provided an automati
 method to dete
t deadlo
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tions(MPI) to des
ribe systems where several pro
esses have to 
oordinate [6, 10, 13℄. IP [12℄ is worthy of spe
ialattention sin
e, although its implementation is relatively simple, moreover it allows to 
he
k properties thanksits formal 
hara
ter. Following we will do a brief review of its statements and its more relevant 
hara
teristi
sfor our work, and �nally we will write the sour
e 
ode of the debit�
ard system example.An IP spe
i�
ation is built with a set of sequential pro
esses that 
ooperates between them using multipartyintera
tions. Its abstra
t syntax is the following:
S ::= I1[x:=e]

| [[]ni=1Bi & Ii[xi:=ei] → Si]
| ⋆[[]ni=1Bi & Ii[xi:=ei] → Si]
| S1;S2

| skipEa
h pro
esses will be able to parti
ipate in several intera
tions, but only one at the same time. Thestatement of intera
tion has the form I[x:=e] where I is the name of the intera
tion and x:=e is a sequen
eof parallel assignments in where we 
an 
onsult the state of the rest of parti
ipants in the intera
tion, usuallyreferred as 
ommuni
ation 
ode. Ea
h Intera
tion has a set of �xed parti
ipants in the set of pro
esses of thesystem, so that it 
an be exe
uted only when not any is exe
uting other intera
tion and all of them are in apoint of the spe
i�
ation where the questioned intera
tion 
an be exe
uted.TRANSFERS :: [PST() ‖ CustomerA

ount() ‖ Mer
hantA

ount()℄,wherePST() :: s: sale := null, ok : boolean;*[ v 6= null & approv[ ok := (

.balan
e ≥ s.pri
e)℄ →[ok & transfer[v := null℄ → skip[℄
¬ok & hire_p[℄ → skip℄[℄v = null & next_sale[. . . ℄ → skip℄,CustomerA

ount() :: 

: a

ount;*[ approv[℄ →[transfer[

.balan
e := 

.balan
e - s.pri
e℄ → skip[℄hire_p[

.hire_pur
hase(ma.ID)℄ → skip℄ ℄,Mer
hantA

ount() :: ma: a

ount;*[ approv[℄ →[transfer[ ma.balan
e := ma.balan
e + s.pri
e - v.m_
osts ℄ → skip[℄hire_p[ma.balan
e := ma.balan
e - s.m_
osts℄ → skip ℄℄. Fig. 7.1. IP spe
i�
ation of the debit�
ard system.For example, if we analyze the intera
tion transfer in the IP 
ode of the example in the �gure 7.1, we 
annoti
e it has in its parti
ipants2 with the PST, with the CustomerA

ount and with the Mer
hantA

ount. Thisintera
tion will not be exe
uted until all its parti
ipants will be in an adequate point of the spe
i�
ation and

2To determine the parti
ipants of an intera
tion we only have to see in whi
h pro
esses appears in the spe
i�
ation
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huelo and Antonio Ruiz-CortésTRANSFERS :: [PST() ‖ CustomerA

ount() ‖ Mer
hantA

ount()℄, wherePST() :: v: sale := null; ok : boolean;*[ v 6= null & approv[ ok := (

.balan
e ≥ s.pri
e)℄ →[ok & transfer1[℄ → transfer2[v := null℄[℄
¬ok & hire_p2[℄ → skip℄[℄v = null & next_sale[. . . ℄ → skip ℄,CustomerA

ount() :: 

: a

ount;*[approv[℄ →[transfer1[

.balan
e := 

.balan
e - s.pri
e℄ → skip[℄
hire_p1[

.hire_pur
hase(ma.ID℄ → skip ℄ ℄,Mer
hantA

ount() :: ma: a

ount;*[ ι[] →[transfer2[ ma.balan
e := ma.balan
e + s.pri
e - s.m_
osts℄ → skip[℄
hire_p1[ma.balan
e := ma.balan
e - s.m_
osts℄ → hire_p2[℄ ℄℄. Fig. 7.2. IP spe
i�
ation of the example after applying the re�nements.when this will happen, its parti
ipant will exe
ute its 
ommuni
ation 
ode. For example, the PST will 
al
ulatethe value of variable ok using the balan
e of the CustomerA

ount and the amount to transfer.IP also has statements to write non-deterministi
 
hoi
e with guards [[]ni=1Gi → Si] and loops with nonde-terministi
 
hoi
e with guards ∗[[]ni=1Gi → Si]. The guards are of the form B&a[x:=e], where B is a boolean
ondition involving the lo
al state of a pro
ess, and the rest is an usual intera
tion statement. The behaviour ofthese statements is very simple: The non-deterministi
 
hoi
e 
he
ks all the boolean 
onditions and wait then forthe intera
tions whose boolean 
ondition is true to have all its parti
ipants; if no one 
ould do so the statementwill not have any e�e
t. In loops the behaviour is similar, only that it will repeat the non-deterministi
 
hoi
euntil all the boolean 
onditions are false.Furthermore, in IP we 
an make the statements above to exe
ute sequen
e (S1;S2), and we 
an use thenull statement that is represented as skip.Finally, the 
ode resultant after applying all the re�nements des
ribed above is shown in Figure 7.2.Edited by: Mar
in Paprzy
ki, Niranjan SuriRe
eived: O
tober 1, 2006A

epted: De
ember 10, 2006
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pe.org ISSN 1895-1767© 2007 SWPSOBSERVATION-BASED PROACTIVE COMMUNICATION IN MULTI-AGENTTEAMWORKYU ZHANG∗Abstra
t. Multi-agent teamwork is governed by the same prin
iples that underlie human 
ooperation. This paper des
ribeshow to give agents the same 
ooperative 
apabilities, observability and proa
tivity, that humans use. We show how agents 
anuse observation of the environment and of teammates' a
tions to estimate the teammates' beliefs without generating unne
essarymessages; we also show how agents 
an anti
ipate information needs among the team members and proa
tively 
ommuni
atethe information, redu
ing the total volume of 
ommuni
ation. Finally, we present several experiments that validate the systemdeveloped, explore the e�e
tiveness of di�erent aspe
ts of observability and introdu
e the s
alability of the use of observability withrespe
t to the number of agents in a system.Key words. Multi-agent systems, teamwork, agent 
ommuni
ation, observability1. Introdu
tion. Re
ently, the fo
us of mu
h resear
h on multi-agent systems (MAS) has shifted fromstrong agen
y [26℄ to teamwork, whi
h is a 
ooperative e�ort by a team of agents to a
hieve a 
ommon orshared goal [23℄. Resear
h on multi-agent teamwork builds on �ndings about e�e
tive human team behaviorsand in
orporates them into intelligent agent te
hnologies. For example, the shared mental model, one of themajor aspe
ts of the psy
hologi
al underpinnings of teamwork, has been adopted widely as a 
on
eptual basis ofmulti-agent teamwork. Based on the shared mental model, an e�e
tive team often 
an anti
ipate the informationneeds of teammates and o�er pertinent information proa
tively [18, 22℄. Consequently, supporting proa
tiveinformation ex
hange among agents in a multi-agent teamwork setting is 
ru
ial [29℄. Substantial 
hallengesarise in a dynami
 environment be
ause agents need to deal with 
hanges. Although partial observability ofdynami
, multi-agent environments has gained mu
h attention [17, 11℄, little work has been done to address howto pro
ess what is observable and under whi
h 
onditions; how an agent's observability a�e
ts the individual'smental state and whole team performan
e; and how agents 
an 
ommuni
ate proa
tively with ea
h other in apartially observable environment.In this paper, we fo
us on how to in
lude represent observability in the des
ription of a plan, and howto in
lude it into the basi
 reasoning for proa
tive 
ommuni
ation. We de�ne several di�erent aspe
ts ofobservability (e.g., seeing a property, seeing another agent perform an a
tion, and believing another 
an see aproperty or a
tion are all di�erent), and propose an approa
h to the expli
it treatment of an agent's observabilitythat aims to a
hieve more e�e
tive information ex
hange among agents. We employ the agent's observabilityas the major means for individual agents to reason about the environment and other team members. We dealwith 
ommuni
ation with the `right' agent about the `right' thing at the `proper' time in the following ways:
• Reasoning about what information ea
h agent on a team will produ
e, and thus, what informationea
h agent 
an o�er others. This is a
hieved through: 1) analysis of the e�e
ts of individual a
tionsin the spe
i�ed team plans; 2) analysis of observability spe
i�
ation, indi
ating what and under whi
h
onditions ea
h agent 
an per
eive about the environment as well as the other agents.
• Reasoning about what information ea
h agent will need in the pro
ess of plan exe
ution. This is donethrough the analysis of the pre
onditions of the individual a
tions involved in the team plans.
• Reasoning about whether an agent needs to a
t proa
tively when produ
ing some information. Thede
ision is made in terms of: 1) whether or not the information is mutable a

ording to information
lassi�
ation; 2) whi
h agent(s) needs this information; and 3) whether or not an agent who needs thisinformation is able to obtain the information independently a

ording to the observation of environmentand other agents' behaviors.We also present several experiments that validate the system developed, explore the e�e
tiveness of di�erentaspe
ts of observability and introdu
e the s
alability of the use of observability with respe
t to the number ofagents in a system.The rest of this paper is organized as follows. Se
tion 2 reviews related work. Se
tion 3 is an overview of thesystem ar
hite
ture, whi
h is 
alled CAST-O. Se
tion 4 dis
usses how an agent's observability is represented,and how an agent's beliefs are maintained in the 
ourse of observations. Se
tion 5 des
ribes observation-based
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64 Yu Zhangproa
tive 
ommuni
ation among agents. Se
tion 6 is an empiri
al study based on a multi-agent Wumpus World.Se
tion 7 summarizes our work and dis
usses issues for further resear
h.2. Related Work. A single agent's observability and reasoning have re
eived resear
hers' attentions forsome time. Per
eption reasoning is one of these resear
h dire
tions [16, 24℄. For example, �seeing is believing�has been adopted for per
eption-based belief reason[2, 13℄. In re
ent years, observability has been used widelyto understand behaviors of multi-agent systems. One study of parti
ular interest is a logi
 for visibility, seeingand knowledge (VSK), whi
h explores relationships between what is true, visible, per
eived, and known; italso investigates a number of intera
tion axioms among agents, su
h as under whi
h 
ondition agent a seeseverything agent b sees or agent b knows everything agent a sees [27℄. However, VSK logi
 does not addresstwo major issues regarding agent 
ooperation: 1) an agent uses the e�e
ts of a
tions in reasoning what oth-ers are likely to know, but VSK does not provide a way to treat a
tions through observation; 2) VSK doesnot provide agents with an e�e
tive way to utilize their observation to manage 
ommuni
ation. Isozaki andKatsuno propose an algorithm to reason about agents' nested beliefs (whi
h are one's belief about the beliefof another), based on observatio[10℄. However, they do not represent the pro
ess of observation, su
h as what
an be seen and under whi
h 
onditions. Tambe and Kaminka use observation to monitor failed so
ial rela-tionships between agents [12℄, but they do not give details about how agents' belief about their teammates'mental states are updated. Viroli and Omi
ini devise a formal framework for observation that abstra
ts 
on-ditions that 
ause agents' intera
tive behavi [25℄. But, they don't say mu
h about how the observation toenvironment is pro
essed. All of above fall into the 
ategory �passive observation�, in the sense that ea
hagent evaluates observability 
onditions at the appropriate times. Our work also belongs to passive observa-tion. However, we aim to redu
e the amount of 
ommuni
ation by reasoning about agent observability, the
apability to observe environment and a
tions. We relate an agent's observability to its mental state, andthen use observation and belief about others' observabilities to estimate its teammates' mental states. Thatis, an agent 
an exploit knowledge about what it and its teammates 
an see to help de
ide when others mightor might not know some information. Ioerger has 
onsidered �a
tive observation�, in whi
h he invokes addi-tional `�nd-out' plans to seek values for unknown 
onditions knowledge of whose values would enable situationassessment [9℄.To date, 
ontrol paradigms for 
ooperative teamwork have allowed agents to 
ommuni
ate about their in-tentions, plans, and the relationships between them [23, 21℄. However, this 
omplex team 
ooperation behaviorrequires high-frequen
y 
ommuni
ation and 
omputation time, whi
h weakens teamwork e�
ien
y. Moreover,some resear
hers have found that 
ommuni
ation, while a useful paradigm, is expensive relative to lo
al 
om-putation [1℄; therefore te
hniques that redu
e extraneous 
ommuni
ation during teamwork pro
esses are ofparti
ular importan
e. On the other hand, there exist several 
ommuni
ation-less agent 
ooperation te
hniquessu
h as so
ial 
onventions [20℄, fo
al points [14℄, plan re
ognition [8℄, de
ision-theoreti
 modeling [15, 28℄, andgame-theoreti
 re
ursive modeling [5℄. In general, these te
hniques emphasize inferring others' a
tions impli
-itly or expli
itly, based on established norms for behavior or on knowledge about the preferen
es or interestsof others. However, strategies su
h as so
ial 
onventions or fo
al points totally eliminate 
ommuni
ation anduse 
onvention rules to guide agents' a
tions, strategies su
h as plan re
ognition or de
ision-theoreti
 nor-mally have high 
omputational 
omplexity in dealing with un
ertainty whi
h weakens teamwork e�
ien
y, andgame-theoreti
 re
ursive modeling is primarily suitable for two-member teams. Our approa
h to proa
tive 
om-muni
ation is di�erent in that agents are 
apable of predi
ting team-related information (by analyzing teamplans) and distributing su
h information only when it is ne
essary. The 
ommuni
ation need is redu
ed, byusing belief of what agents 
an observe, and hen
e don't have to be told.3. The CAST-O Ar
hite
ture. The CAST-O ar
hite
ture is an extension of CAST (CollaborativeAgents for Simulating Teamwork) [29℄. There are three aspe
ts to the extension: 1) representation of agentobservability about the environments and other agents' a
tions; 2) belief-maintenan
e in terms of observation;3) observation-based proa
tive 
ommuni
ation among agents.An agent team is 
omposed of a set of agents. The team members share the team knowledge that isrepresented in MALLET (Multi-Agent Logi
 Language for En
oding Teamwork), whi
h provides des
riptorsfor en
oding knowledge about teamwork pro
esses (i. e. individual/team plans and operations), as well asspe
i�
ations of team stru
tures (e.g., team members and roles) [30℄. Ea
h agent has an individual knowledgebase (KB) to spe
ify its beliefs about the environment and beliefs about teammates' mental states. Theenvironment simulation provides an interfa
e through whi
h the agents 
an intera
t with the environment. In
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tive Communi
ation in Multi-Agent Teamwork 65the pro
ess of plan exe
ution, individual agents 
an observe the environment and their teammates' behaviors,infer the teammates' mental states, 
ommuni
ate with ea
h other, and perform a
tions.Plans are at the 
enter of a
tivity. They des
ribe how individuals or teams 
an go about a
hieving variousgoals. Plans are 
lassi�ed into individual plans and team plans. Ea
h individual plan has a pro
ess 
onsistingof a set of operations, ea
h of whi
h is either a primitive operator, or a 
omposite operation (e.g., a sub-plan).Team plans are similar to individual plans, but they allow multiple agents or agent variables to be assigned to
arry out operations or plans (some of the requiring a team). A DO statement is used to assign one or severalagents to 
arry out spe
i�
 operators or sub-plans. The following is an example team plan for the multi-agentversion of Wumpus World (refer to se
tion 6 for more details):(tplan killwumpus()(pro
ess(par(seq(agent-bind ?
a (
onstraint (play-role ?
a 
arrier)))(DO ?
a (findwumpus ?w))) // 
arrier is assigned(seq(agent-bind ?fi (
onstraint ((play-role ?fi fighter)(
losest-to-wumpus ?fi ?w))))(DO ?fi (movetowumpus ?w)) // fighter who is 
losest to// wumpus is assigned(DO ?fi (shootwumpus ?w)))))) // shootwumpus is an operatorwhere findwumpus and movewumpus are individual plans, and shootwumpus is an individual operator spe
i�edas follows:Generally, operators are de�ned by their pre
onditions and e�e
ts, whi
h are logi
al 
onjun
tions. Anindividual a
tion is the exe
ution of an instantiated operator in a DO statement. It is represented as:<a
tion> ::= (DO <doer> (<operator-name> <args>))where <doer> is the agent assigned to the a
tion and <operator-name> and <args> are 
orrespondent to thename and arguments of the operator. Sample individual a
tions in the extended Wumpus World are as follows:(DO ?fi (shootwumpus ?w))(DO ?
a (pi
kupgold ?g))We assume that the pre
ondition of the a
tion must be believed by <doer> before the a
tion 
an beperformed and the e�e
t must be believed after the a
tion is performed. Sin
e a
tions are domain-dependent,when agents perform the a
tions, they send a signal to the environment simulation. Then the a
tions are visibleto any team member whose observability (see se
tion 4) permits it at the time the a
tions are performed.An essential feature that di�erentiates an agent team from a set of individual agents is that a team of agentsmay perform a joint a
tion, whi
h is the union of simultaneous individual a
tions performed by individualssharing 
ertain spe
i�
 mental properties [4℄. MALLET provides a des
riptor joint-do for agents performingthe joint a
tion, and spe
i�es three di�erent joint types: AND, OR or XOR [29℄. For example, we may de�nefollowing joint a
tion in the extended Wumpus World:(joint-do AND(DO ?
a (move ?x ?y))(DO ?fi (move ?x ?y)))whi
h means agents ?
a and ?fi move simultaneously.Given a team plan expressed in MALLET, we 
an expli
itly dedu
e information needs and produ
tion fromthe pre-
onds and e�e
ts of operators and impli
itly dedu
e others from the plan stru
ture, e.g., joint-do requires
oordination regarding starting time, or operations in parallel need 
oordination in terms of the starting andending of the par set of bran
hes. The latter, for example, might be determinable from observations, avoidingthe need for expli
it 
ommuni
ation. In addition, if multiple agents are 
apable of performing the same tasks,the MALLET team plan is likely to 
ontain agent sele
tion 
riteria (e.g., the 
losest agent to a wumpus shouldkill it). Again, this falls in the realm of impli
itly determinable 
oordination 
ommuni
ation. While this paperhas fo
used on the only the expli
itly determinable part of this (i. e., things derived from pre-
onds and e�e
ts
onditions), the basi
 stru
ture of the use of observation 
an be applied to more general situations.Another important setting for agents' teamwork is environment. The environment is 
omposed of obje
ts.Ea
h obje
t has some properties. A property is represented as follows:



66 Yu Zhang<property> ::= (<property-name> <obje
t> <args>)<obje
t> ::= <agent>|<non-agent>where <obje
t> 
ould be either agent or non-agent, and <args> is a list of arguments des
ribing the property.Sample properties in the extended Wumpus World are as follows:(lo
ation fi ?x ?y),(dead w1 ?state).The usefulness of properties derives from treating them as queries to the environment, using variables forany or all of the arguments. Uni�
ation will provide values, if any, for the free variables that make the querytrue; if there are no su
h values, then the value for the query will be false.During a teamwork pro
ess, the environment simulation provides an interfa
e through whi
h the agents 
anobserve the environment and their teammates' a
tions. The environment evolves from the state at one time tothe state at the next time with an a
tion possibly being taken during the time interval, saving only the 
urrentenvironment states. Ea
h agent maintains knowledge of the environment in its KB, updating this knowledge asneeded to 
arry out its plan or provide information to team members.4. Agent Observability. To express agent observability, we de�ne a query fun
tion CanSee(<observer><observable> <
ond>), where <observer> spe
i�es the agent doing the observing, <observable> identi-�es what is to be observed, and <
ond> spe
i�es the 
onditions under whi
h the <observer> 
an see the<observable>. When needed, the query is submitted to the knowledge base for evaluation after �rst formingthe 
onjun
tion of the arguments. As <observablea> and <
ond> may be predi
ates, missing values for vari-ables will be supplied via uni�
ation if there are any su
h values that allow the <
ond> to be satis�ed, or elsereturn FALSE. This allows an agent, for example, to determine the lo
ation (through variables) of a target ifthe 
onditions are satis�ed (e.g., the target is within range). Time is impli
it in this query and is taken to be thetime of the 
urrent step. Note that strong 
onstraints weaken agents' observability; weak 
onstraints strengthenagents observability. The strongest 
onstraint is FALSE, whi
h means that the agent 
an see nothing. Theweakest 
onstraint is TRUE, whi
h means that the agent 
an see everything.Su

essful teamwork requires interdependen
y among the agents [6℄. This suggests that an agent shouldknow at least some things about what other team members 
an see. However, an agent may not know forsure that another agent 
an see something. Rather, an agent may only believe, based on its 
urrent beliefs,that another agent 
an see something. We then use BelieveCanSee(<believer> <observer> <observable><
ond>) to mean that one agent believes another agent 
an see something under 
ertain 
ondition.We also make the assumption of �seeing is believing�. While philosophers may entertain doubts be
ause ofthe possibility of illusion, 
ommon sense indi
ates that, other things being equal, one should believe what onesees [13, 2℄. Thus, we assume that an agent believes an observed property persists until it believes the propertyhas been negated later.In the following subse
tions, we des
ribe the syntax and semanti
s of observability in more detail.4.1. The Syntax of Observability. The syntax we use for observability is given in Table 4.1. Forexample, the observability spe
i�
ation for a 
arrier in the extended Wumpus World is shown below, where 
a,r
a, �, r� represent the 
arrier, 
arrier's dete
tion radius, �ghter and �ghter's dete
tion radius, respe
tively.(CanSee 
a (lo
ation ?o ?x ?y)(lo
ation 
a ?x
 ?y
) (lo
ation ?o ?x ?y)(inradius ?x ?y ?x
 ?y
 r
a)) // The 
arrier 
an see the lo
ation property of an obje
t.(CanSee 
a (DO ?fi (shootwumpus ?w))(play-role fighter ?fi) (lo
ation 
a ?x
 ?y
) (lo
ation ?fi ?x ?y)(adja
ent ?x
 ?y
 ?x ?y)) // The 
arrier 
an see the shootwumpus a
tion of a fighter.(BelieveCanSee 
a fi (lo
ation ?o ?x ?y)(lo
ation fi ?xi ?yi) (lo
ation ?o ?x ?y)(inradius ?x ?y ?xi ?yi rfi)) // The 
arrier believes the fighter is able to see the// lo
ation property of an obje
t.
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ation in Multi-Agent Teamwork 67Table 4.1The Syntax of Observability1: < observability > := (CanSee < viewing >)∗2: (BelieveCanSee < believer >< viewing >)∗3: < viewing > := < observer >< observable >< cond >4: < believer > := < agent >5: < observer > := < agent >6: < observable > := < property > | < action >7: < property > := (< property − name >< object >< args >)8: < action > := (DO < doer > (< operator − name >< args >))9: < object > := < agent > | < non− agent >10: < doer > := < agent >(BelieveCanSee 
a fi (DO ?f (shootwumpus ?w))(play-role fighter ?f) ( ?f fi) (lo
ation 
a ?x
 ?y
)(lo
ation fi ?xi ?yi) (lo
ation ?f ?x ?y)(inradius ?xi ?yi ?x
 ?y
 r
a) (inradius ?x ?y ?x
 ?y
 r
a)(adja
ent ?x ?y ?xi ?yi)) // The 
arrier believes the fighter is able to see the// shootwumpus a
tion of another fighter.An agent has two kinds of knowledge, shared team knowledge, en
oded in MALLET, and individual knowl-edge, 
ontained in its knowledge base. The syntax of observability 
an be used either, as rules in an agent'sknowledge base [31℄, or as 
apability in
orporated into MALLET. In this paper, we en
ode observability as rulesin agents' knowledge bases.4.2. The Semanti
s of Observability. To give operational semanti
s to observability, we need to 
larifythe relationships of: 1) what an agent 
an see, what it a
tually sees, and what it believes from its seeing; 2)what an agent believes another agent 
an see, what it believes another agent a
tually sees, and what it believesanother agent believes from its seeing.In order to properly dis
uss the semanti
s, we need to introdu
e a notion of time, as pre
onditions ande�e
ts refer to di�erent points in time. For purposes of exposition, we will simply assume that time is a dis
reteand indexed in order by the natural numbers, and use the indi
es to referen
e points in time. Sin
e we aredealing with multiple agents, multiple a
tions may o

ur at the same time instant. We do not try to elaboratefurther on time in this paper, as there are a number of useful di�erent ways of dealing with issues su
h as thesyn
hronization among team members performing a
tions, and they are not 
entral to the point of the paper.Let Seet(a, ψ) express that agent a observes ψ at time t. There are two 
ases to 
onsider, �rst where ψ isa property, and se
ondly, where ψ is an a
tion. When ψ is a property, seeing ψ means determining the truthvalue of ψ, with uni�
ation of any free variables in ψ. If ψ is an a
tion, seeing ψ means that the agent believesthe doer believed the pre
ondition of ψ immediately before the a
tion o

urred and the doer believes the e�e
tof ψ immediately after performing the a
tion. We use the meta-predi
ate Holdt(
) to mean 
 holds in the world(environment simulation) at time t. We make the assumption below:
∀a, ψ, c, t, CanSee(a, ψ, c) ∧Holdt(c) → Seet(a, ψ) (4.1)whi
h means that if the 
ondition 
 holds at time t and agent a has the 
apability to observe ψ under 
ondition
, then agent a a
tually does determine the truth-value of ψ at time t.Next, we 
onsider the relation between seeing something and believing it. Belief is denoted by the modaloperator BEL and for its semanti
s we adopt the axioms K, D, 4, 5 in modal logi
. The assumption of �seeingis believing� is again stated separately for properties and a
tions. In the 
ase of properties, it is formalized inthe axiom below:

∀a, ϕ, t, Seet(a, ϕ) → [Holdt(ϕ) → BELt(a, ϕ)] ∧ [¬Holdt(ϕ) → BELt(a,¬ϕ)] (4.2)whi
h says that for any property ϕ seen by agent a, if ϕ holds, agent a believes ϕ; if ϕ does not hold, agent abelieves not ϕ (¬ϕ).



68 Yu ZhangAgent a's belief is more 
omplex when an a
tion, φ, is observed. Let Doer(φ), Prec(φ), Efft(φ) denotethe doer, the pre
ondition, and the e�e
t of a
tion φ. When agent a sees a
tion φ performed by some agent,agent a believes that the agent believed the pre
ondition and believes the e�e
t. This pro
ess is expressed bythe following axiom:
∀a, φ, t, Seet(a, φ) → BELt(a,BELt−1(Doer(φ), P rec(φ))) ∧

BELt(a,BELt(Doer(φ), Efft(φ))) (4.3)From the belief update perspe
tive in our 
urrent implementation where beliefs are assumed persistent, for any
p ∈ Prec(φ), agent a believes that Doer(φ) still believes p at time t (i. e. BELt(a,BELt(Doer(φ), p)))) unless
¬p is 
ontained in E�t(φ). This is similar for BelieveCanSee.An agent's belief about what another agent sees is based on the following axiom:

∀a, b, ψ, c, t, t′, BelieveCanSee(a, b, ψ, c)∧BELt(a,BELt′(b, c)) →

BELt(a, Seet′(b, ψ)) (4.4)whi
h means that if agent a believes that agent b is able to observe ψ under 
ondition 
, and agent a believes 
at time t', then agent a believes at time t that agent b saw (t'<t), sees (t'=t), or will see (t'>t, whi
h requiressome predi
tion 
apability for agent a) ψ at time t'. In our approa
h, ea
h agent fo
uses on the reasoning about
urrent observability, not in the past or in the future. Therefore, the axiom above 
an be simpli�ed as follows:
∀a, b, ψ, c, t, BelieveCanSee(a, b, ψ, c)∧BELt(a, c) → BELt(a, Seet(b, ψ)) (4.5)Note that agent a evaluates 
ondition 
 a

ording to its own beliefs.Combining this with the previous assumption that �seeing is believing�. we extend this to belief. We havetwo separate 
ases for properties and a
tions. When agent a believes agent b sees a property ϕ, a believes thatb believes ϕ:

∀a, b, ϕ, t, BELt(a, Seet(b, ϕ)) → BELt(a,BELt(b, ϕ)) (4.6)When agent a believes agent b sees an a
tion φ, a believes that b believes the doer believed the pre
onditionat the previous time step and believes the e�e
t at the 
urrent time step. This 
onsequen
e is expressed by thefollowing:
∀a, b, φ, t, BELt(a, Seet(b, φ)) →

BELt(a,BELt(b, BELt−1(Doer(φ), P rec(φ)))) ∧

BELt(a,BELt(b, BELt(Doer(φ), Efft(φ)))) (4.7)4.3. Belief Maintenan
e. From the semanti
s, agents' observability is 
losely tied to their beliefs aboutthe environment and other agents. Agents must update these beliefs when they perform, or reason about others',observation.4.3.1. Maintaining Belief About Self 's Observability. The axiom of �seeing is believing� bridges thegap between what an agent sees and what it believes. An agent maintains its beliefs in two aspe
ts: 1) for anobserved property, the agent believes the property; 2) for an observed a
tion, the agent believes that the doerbelieved the pre
ondition before the a
tion and the doer believes the e�e
t after the a
tion. The algorithm forupdating what an agent has observed, a

ording to the observability rules, is given in Figure 4.1.This algorithm builds beliefs in the believer's (i. e., agent self's), knowledge base by 
he
king the following:Observing a property
• When evaluating observability (CanSee self (<prop-name> <obje
t> <args>) <
ond>), self queries<
ond> to environment KB. The query returns a list of substitutions of variables, or null if <
ond> arenot satis�ed. When the returned tuple is not null, if the property holds in the environment, self updatesits knowledge base with belief (<prop-name> <obje
t> <args>) for ea
h variable bindings, otherwise,self updates its knowledge base with belief (not (<prop-name> <obje
t> <args>)) for ea
h variablebindings.
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• Observing an a
tionIn the 
ase of (CanSee self (<a
tion-name> Agd(6= self) <args>) <
ond>), the query <
ond> ismade with respe
t to environment KB as well. If the result of query is not null, self updates its beliefsby that self believes that agent Agd knew the pre
ondition, and that Agd infers the e�e
t. To handlethe temporal issue 
orre
tly, self updates Agd's belief about the pre
ondition �rst and then Agd's beliefabout the e�e
t. These beliefs are useful in 
ommuni
ation. For example, if agent a needs informationI and believes agent b believes I, a may ask b for I.updateSelfObs(self, KBself)/* Let self be the agent invoking the algorithms. We denote the knowledge basefor agent a by KBa, for the environment by KBenv .*/1: for ea
h rule in KBself of the form (CanSee self (prop obje
t args) 
ond)2: if 
ond is true in KBenv for some bindings of variables3: if (prop obje
t args) is true in KBenv for some bindings of variables4: update(KBself , (prop obje
t args))5: for ea
h su
h binding of values to the variables;6: else7: update(KBself , (not (prop obje
t args)))for ea
h su
h binding of values to the variables;8: for ea
h rule in KBself of the form (CanSee self (a
tion doer args) 
ond),if 
ond is true in KBenv for some binding of variables,9: for ea
h 
onjun
t of pre
ondition of a
tion10: update(KBself , (BEL doer 
onjun
t));11: for ea
h 
onjun
t of e�e
t of a
tion12: update(KBself , (BEL doer 
onjun
t));Fig. 4.1. An Algorithm of Maintaining Self s Belief by Dire
t Observation4.4. Maintaining Belief About Others' Observabilities. Figure 4.2 shows an algorithm for updatingwhat an agent 
an determine about what other agents 
an see.updateSelfBel(self, KBself )1: for ea
h rule of the form (BelieveCanSee self Ag (prop obje
t args) 
ond) that2: 
ond is true in KBself for some binding of arguments to agents Ag 6= self3: for ea
h su
h binding of arguments to the variables4: update(KBself , (BEL Ag (prop obje
t args)));5: for ea
h rule of the form (BelieveCanSee self Ag (a
tion doer args) 
ond) that6: 
ond is true in KBself for some binding of arguments to agents Ag 6= self7: for ea
h 
onjun
t of the pre
ondition of a
tion8: update(KBself , (BEL Ag (BEL doer 
onjun
t)));9: for ea
h 
onjun
t of the e�e
t of a
tion10: update(KBself , (BEL Ag (BEL doer 
onjun
t)));Fig. 4.2. An algorithm of maintaining belief about others observabilitiesThe algorithm re
ords whi
h agents are known to be able to see what, and updates what an agent believes,a

ording to the pre
ondition and e�e
t of the a
tions it observes other agents performing. For the agentto determine whether a pie
e of information is needed by others, it simulates the inferen
e pro
ess of others'observability to determine whi
h is known by others.
• Observing a propertyIn the 
ase of (BelieveCanSee self Ag( 6= self) <property> <
ond>), a query <
ond> is made withrespe
t to KBself . If the 
ondition is satis�ed, self believes Ag 
an see the property. However, self mayor may not have knowledge of <property>. For example, a 
arrier may believe a �ghter 
an smell awumpus if the �ghter is adja
ent to the wumpus, but the 
arrier does not itself smell the wumpus.
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• Observing an a
tion In the 
ase of (BelieveCanSee self Ag(6=self) (<a
tion-name> doer(6=self)<args>) <
ond>), <
ond> is evaluated with respe
t to KBself . Self adds tuples to KBself , indi
atingthat Ag believes that doer believed the pre
onditions of the a
tion, and believes the e�e
ts of the a
tion1.4.5. Exe
ution Model. At ea
h time step, every agent, denoted by self, has a fun
tion 
y
le: (possibly)observe, re
eive information from others, belief 
oheren
e, (possibly) send information to others, and a
t. If selfneeds an information item or produ
es an item needed by others, it will observe the world and other agents. Itthen 
he
ks messages and adjusts its beliefs for what it sees and what it is told. Self keeps tra
k of the otheragents' mental states by reasoning about what they see from observation, in order to de
ide when to assist theothers with the needed information proa
tively. Finally, self a
ts 
ooperatively with teammates and enters thenext time step.An algorithm for overall belief maintenan
e along with the fun
tion 
y
le is shown in Figure 4.3. Thealgorithm begins with updateWorld by self's last a
tion. We will not elaborate on how updateWorld workswhi
h is beyond the fo
us of this paper. Basi
ally, the environment simulation updates the environment KBafter re
eiving any a
tion from the agent. Be
ause the agent 
an infer the e�e
t of its own a
tion, the algorithmsaves the e�e
t as a new belief. UpdateSelfObs evaluates observability rules with information obtained from

KBenv and updates KBself with the results of the observation. UpdateSelfBel updates self's beliefs about whatothers' beliefs by observing environment and a
tions.updateKB(self, a
tion, KBself )/* The algorithm is exe
uted independently by ea
h agent, denoted self below,after the 
ompletion of ea
h step in the plan in whi
h the agent is involved.*/1: updateWorld(a
tion, self); //notify the environment to update KBenv2: for ea
h 
onjun
t in the e�e
t of a
tion3: update(KBself , 
onjun
t);4: if self produ
es/needs information I5: updateSelfObs(self, KBself ); //update KBself by observability6: updateSe�Bel(self, KBself ); //update KBself by beliefs about//others observabilities7: for ea
h 
oming information I8: update(KBself, I); //update KBself by 
ommuni
ationFig. 4.3. An overall belief-maintenan
e algorithmThe fun
tion update manages history and is responsible for 
oheren
e and persisten
e of belief in an agent'sKB. The agent's beliefs about the world are saved as primitive predi
ates as they were expressed originallyin the world. Su
h beliefs are generated from three sour
es: (1) belief from observation, i. e., a property selfobserves; (2) belief from inferen
e, i. e., 
onjun
ts inferred from the e�e
t of the a
tion self performs; (3) belieffrom 
ommuni
ation, i. e., messages other agents send to self by 
ommuni
ation. How does 
ommuni
ationa�e
t the agent's mental state? Van Linder et al. propose that the 
ommuni
ation 
an also be translated to abelief saved in the mental state in the same way as observation is [13℄. In any situation in whi
h belief is requiredfrom multiple sour
es, 
on�i
ts may arise, su
h as self simultaneously sees ¬ψ and hears ψ. A strategy is neededthat pres
ribes how to maintain the 
oheren
e of the knowledge base of an agent in the 
ase of 
on�i
ts amongin
oming information from di�erent sour
es. Castelfran
hi proposes that su
h a strategy should pres
ribe thatmore 
redible information should always be favored over less 
redible information [3℄. To de�ne a strategy
omplying with this idea, we propose that ea
h sour
e is asso
iated with a 
redit and the 
redit de
reases inthis order: sour
e from observation, sour
e from inferen
e, and sour
e from 
ommuni
ation. At 
ertain timepoint, when an agent gets 
on�i
t information from di�erent sour
es, it always believes what it sees.Sin
e the number of time steps 
ould be in�nite, an agent keeps only 
urrent beliefs in its mental state,ex
ept that the most re
ent one is kept, even if it is not generated 
urrently. That an agent does not dire
tlyobserve or infer some predi
ates from 
urrent observation does not mean it does not believe them. The agenthas memory of them from before. Memory is useful in proa
tive 
ommuni
ation; thus, if a pie
e of informationis infrequently 
hanged, at the time when agent a realizes that agent b needs the information, even if agent adoes not have the information, agent a 
an tell agent b the information in its memory.
1Note, however, that self does not ne
essarily know what there values are. This is useful, however, in 
ase self needs to make ana
tiveAsk.
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tive Communi
ation. The purpose of proa
tive 
ommuni
ation is to redu
e 
ommuni
ationoverhead and to improve the e�
ien
y or performan
e of a team. In our approa
h, proa
tive 
ommuni
ationis based on two proto
ols named proa
tiveTell and a
tiveAsk. These proto
ols are used by ea
h agent togenerate inter-agent 
ommuni
ations when information ex
hange is desirable. Proa
tive 
ommuni
ation answersthe following questions pertinent to agent proa
tivity during teamwork. First, when does an agent send theinformation to its teammates if it has a new pie
e of information (either from performing an a
tion or observing)?A simple solution 
ould be sending the information when requested. That is, the agent would only send theinformation after it has re
eived a request from another agent. Our approa
h is that the agent observes itsteammates, and 
ommits to proa
tive tell on
e it realizes that one of the teammates needs the information toful�ll its role and does not have it now. Meanwhile, if the agent needs some information, it does not passivelywait for someone else to tell it; it should ask for this information a
tively. Se
ond, what information is sent ina session of information ex
hange? There are two kinds of information that 
an be 
ommuni
ated. One is theinformation expli
itly needed by an agent to 
omplete a given plan, i. e., 
onjun
ts in a pre
ondition of plansor operators that the agent is going to perform. The other is the information impli
itly needed by the agent.For example, if agent a needs predi
ate p and knows p 
an be dedu
ed from predi
ate q, even if the providingagent does not know p, it still 
an tell agent a about q on
e it has q, be
ause it knows that agent a 
an dedu
ep from q. This paper, however, deals only with agents 
ommuni
ating information that is expli
itly needed.The proa
tiveTell and a
tiveAsk proto
ols are designed based on following three types of knowledge:
• Information needers and providers. In order to �nd a list of agents who might know or need someinformation, we analyze the pre
onditions and e�e
ts of operators and plans and generate a list ofneeders and a list of providers for every pie
e of information. The providers are agents who might knowsu
h information, and the needers are agents who might need to know the information.
• Relative frequen
y of information need vs. produ
tion. For any pie
e of information I, we de�ne twofun
tions, fC and fN . fC(I ) returns the frequen
y with whi
h I 
hanges. fN(I ) returns the frequen
ywith whi
h I is used by agents. We 
lassify information into two types: stati
2 and dynami
. If fC(I) ≤
fN (I), I is 
onsidered stati
 information; if fC(I) > fN (I), I is 
onsidered dynami
 information. Forstati
 information we use proa
tiveTell by providers, and for dynami
 information we use a
tiveAskedby needers3.

• Beliefs generated after observation. Agents take advantage of these beliefs to tra
k other team members'mental states and use beliefs of what 
an be observed and inferred to redu
e the volume of 
ommuni-
ation. For example, if a provider believes that a needer sees or infers information I, the provider willnot tell the needer.An algorithm for de
iding when and to whom to 
ommuni
ate for a
tiveAsk and proa
tiveTell4 is shown inFigure 5.1.Considering the intra
tability of general belief reasoning [7℄, our algorithm deals with beliefs nested nomore than one-layer. This is su�
ient for our 
urrent study on proa
tive behaviors of agents, whi
h fo
useson peer-to-peer proa
tive 
ommuni
ation among agents. For a
tiveAsk, an agent requests the informationfrom other agents who may know it, having determined it from the information �ow. The agent sele
ts aprovider among agents who know I and ask for I. For proa
tiveTell, the agent tells other agents who need I.An agent always assumes others know nothing until it 
an observe or reason that they do know a relevant item.Information sensed and beliefs about others' sensing 
apabilities be
ome the basis for this reasoning. First, theagent determines what another agent needs from the information �ows. Se
ond, the observation rules are usedto determine whether or not one agent knows that another agent 
an sense the needed information.6. Empiri
al Study. While one would think that if one gives an agent additional 
apabilities, its perfor-man
e would improve, and indeed this turns out to be 
orre
t, there are several other interesting aspe
ts of ours
heme to evaluate. For example, when there are several di�erent 
apabilities, the interesting question arisesof how mu
h improvement ea
h 
apability gives and whi
h 
apabilities are the most important to add in dif-ferent situations. Moreover, while it is obvious that one should not see de
reasing performan
e from in
reasing
2Here, stati
 information in
ludes not only the information never 
hanged, but also the information infrequently 
hanged butfrequently needed.
3In future work, we will address some statisti
al methods to 
al
ulate frequen
ies and hen
e will be able to provide more
omprehensive proa
tive 
ommuni
ation proto
ols.
4Note that there is no need to say anything anout previous time points, as those would have been handled when they were �rstentered. Furthermore, these is no need to 
onsider ¬I expli
itly; if ture, it will be entered as a fa
t on its own.
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tiveAsk(self, I, KBself , T)/* Let T be the time step when the algorithm is exe
uted.Independently exe
uted by ea
h agent (self) when itneeds the value of information I.*/1: 
andidateList=null;2: if (I is dynami
 and (I t) ∨ (¬I t) is not true in KBself for any t≤T)3: if there exists a x≥0 su
h that4: ((BEL Ag I T-x) ∨ (BEL Ag ¬I T-x)) is true in KBself5: let xs be the smallest su
h value of x;6: for ea
h agent Ag 6=self7: if ((BEL Ag I T-xs) ∨ (BEL Ag ¬I T-xs)) is true in KBself8: add Ag to 
andidateList;9: randomly sele
t Ag from 
andidateList;10: ask Ag for I;11: else12: randomly sele
t a provider13: ask the provider for I;proa
tiveTell(KBself , T)/* Independently exe
uted by ea
h agent (self), after it exe
utes updateKB.*/14: for ea
h 
onjun
t I for whi
h (I, T) is true in KBself and I is stati
15: for ea
h Agn needers16: if (BEL Agn I T) is not true in KBself17: tell Agn I; Fig. 5.1. Proa
tive Communi
ation Proto
ols
apabilities, there are still interesting questions of how mu
h performan
e in
rease 
an be obtained and howone 
an in
orporate the 
apabilities into the system in a 
omputationally tra
table manner. And, one there isan interest in how the s
heme s
ales with the number of agents involved. Our empiri
al study is intended toaddress these questions.To test our approa
h, we have extended the Wumpus World problem [19℄ into a multi-agent version. Theworld is 20 by 20 
ells and has 20 wumpuses, 8 pits, and 20 piles of gold. The goals of the team, fouragents, one 
arrier and three �ghters, are to kill wumpuses and get the gold. The 
arrier is 
apable of �nd-ing wumpuses and pi
king up gold. The �ghters are 
apable of shooting wumpuses. Every agent 
an sensea sten
h (from adja
ent wumpuses), a breeze (from adja
ent pits), and glitter (from the same position) ofgold. When a pie
e of gold is pi
ked up, both the glitter and the gold disappear from its lo
ation. Whena wumpus is killed, agents 
an determine whether the wumpus is dead only by getting the message fromothers, who kill wumpus or see shooting wumpus a
tion. The environment simulation maintains obje
t prop-erties and a
tions. Agents may also have additional sensing 
apabilities, de�ned by observability rules intheir KBs.There are two 
ategories of information needed by the team: 1) an unknown 
onjun
t that is part of thepre
ondition of a plan or an operator (e.g., �wumpus lo
ation� and �wumpus is dead�); 2) an unknown 
onjun
tthat is part of a 
onstraint (e.g., ��ghter lo
ation�, for sele
ting a �ghter 
losest to wumpus). The �wumpuslo
ation� and �wumpus is dead� are stati
 information and the ��ghter lo
ation� is dynami
 information. Agentsuse proa
tiveTell to impart stati
 information they just learned if they believe other agents will need it. Forexample, the 
arrier proa
tiveTells the �ghters the wumpus' lo
ation. Agents use a
tiveAsk to request dynami
information if they need it and believe other agents have it. For example, �ghters a
tiveAsk ea
h other abouttheir lo
ations and whether a wumpus is dead.We used two teams, Team A and Team B. Ea
h team was allowed to operate a �xed number of 150 steps.Ex
ept for the observability rules, 
onditions of both teams were exa
tly the same. In the absen
e of anytarget information (wumpus or gold), all agents reasoned about the environment to determine their priority ofpotential movements. If they were aware of a target lo
ation requiring a
tion on their part (shoot wumpus orpi
k up gold), they moved toward the target. In all 
ases, they avoided unsafe lo
ations.We report three experiments. The �rst explores how observability redu
es 
ommuni
ation load and improveteam performan
e in multi-agent teamwork. The se
ond fo
uses on the relative 
ontribution of ea
h type of
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e and Communi
ation Frequen
y in Sample Run. T1: number of wumpuses left alive, T2: amount of goldleft unfound, T3: total number of avtiveAsks used, T4: total number of proa
tiveTells used, T5: average number of a
tiveAsks perwumpus killed, T6: average number of proa
tiveTells per wumpus killed
T 1 T 2 T 3 T 4 T 5 T 6

TeamA 4.8 7.2 77.4 33.8 5.09 2.23
TeamB 15 14.6 67.6 28.8 13.6 5.9belief generated from observability to the su

esses of CAST-O as a whole. Finally, the third evaluates theimpa
t of observability on 
hanging 
ommuni
ation load with in
rease of team size.Two teams are de�ned as follows:

• Team A: The 
arrier 
an observe obje
ts within a radius of 5 grid 
ells, and ea
h �ghter 
an see obje
tswithin a radius of 3 grid 
ells.
• Team B: None of the agents have any seeing 
apabilities beyond the basi
 
apabilities des
ribed at thebeginning of the se
tion.We use measures of performan
e, whi
h re�e
t the number of wumpuses killed, the amount of 
ommuni
ationused and the gold pi
ked up. In order to make 
omparisons easier, we have 
hosen to have de
reasing valuesindi
ate improving performan
e, e.g., smaller numbers of 
ommuni
ation messages are better. To maintain thisuniformity with some parameters of interest, we use the quantity not a
hieved by the team rather than thenumber a
hieved, e.g., the number of wumpuses left alive rather than the number killed. The experiments wereperformed on 5 randomly generated worlds. The results are shown in Table 1.Table 1 shows that, as expe
ted, Team A killed more wumpuses and found more gold than Team B. Fromother experiments we have learned that the further the agents 
an see, the more wumpuses they kill. It isinteresting that the absolute number of 
ommuni
ations is higher for Team A with observabilities than that ofTeam B, thus 33.8 vs. 28.8 for proa
tiveTell and 77.4 vs. 67.6 for a
tiveAsk. The reason for the in
reased numberof proa
tiveTells is that in Team A, the 
arrier, who is responsible for �nding wumpuses and proa
tiveTellingwumpuses' lo
ations to �ghters, has further vision than that of the 
arrier in Team B. Hen
e the 
arrier in TeamA 
an see more wumpuses. This feature leads to more proa
tiveTells from the 
arrier to the �ghters in TeamA. The number of proa
tiveTells 
an be redu
ed by the 
arrier's beliefs about the �ghters' observability, i. e.,if the 
arrier believes the �ghters 
an see the wumpus' lo
ation, it will not proa
tiveTell the �ghters. However,sin
e the �ghters' dete
t range is smaller than that of the 
arrier, the redu
tion 
annot o�set the number ofextra proa
tiveTells. The reason for the in
reased number of a
tiveAsks in Team A is that the more wumpusesthey �nd, the more likely it be
omes that messages are sent among �ghters to de
ide who is 
losest to thewumpuses. Sin
e �ghters in Team A may �nd wumpuses by themselves, they need to ask other teammates ifthe wumpus is dead, to de
ide whether to kill it or not. Although the number of the messages 
ould be redu
edby fa
tors su
h as allowing the �ghter to see other �ghters' lo
ations and to see other �ghters killing a wumpus,the in
rease 
annot be totally o�set be
ause of the �ghters' short vision. Hen
e, it makes more sense to 
omparethe average number of messages per wumpus killed. In these terms, the performan
e of Team A, is mu
h betterthan that of Team B, thus 2.23 vs. 5.9 for proa
tiveTell and 5.09 vs. 13.6 for a
tiveAsk. Hen
e, our algorithmsfor managing the observability of agents have been e�e
tive.The results of this experiment produ
ed a bit of a surprise. By introdu
ing observabilities to agents,the amount of 
ommuni
ation a
tually in
reased slightly. This 
an be explained by the fa
t that be
auseobservability is a major means for an individual agent to obtain information about environment and teammembers; the more information obtained by the agent, the more messages were 
onveyed to help others. Theproper way to interpret the results, then, is to normalize them by the performan
e of the team, whi
h in this
ase is the average number of 
ommuni
ations per wumpus killed, denoted by ACPWK, in this example. Fromthis perspe
tive, the amount of 
ommuni
ation was redu
ed, as expe
ted, also validating our approa
h.6.1. Evaluating Di�erent Beliefs Generated from Observability. The se
ond experiment tested the
ontribution of di�erent aspe
ts of observability to the su

essful redu
tion of the 
ommuni
ation. These aspe
tsare belief about observed property, belief about the doer's belief about pre
onditions of observed a
tion, beliefabout the doer's belief about e�e
ts of observed a
tion and belief about another's belief about observed property.For simplify, we 
all them belief1, belief2, belief3 and belief4 
orrespondently. We test their 
ontributions by



74 Yu Zhang

Fig. 6.1. Average Communi
ation Per Killed Wumpus in Di�erent Combinations
ombining them. We used Team A and Team B in this experiment and kept all 
onditions the same as thoseof the �rst experiment. We used Team B, as referen
e to evaluate the e�e
tiveness of di�erent 
ombinations ofobservability with Team A. We named this test 
ombination 0, sin
e there is none of su
h four beliefs involvedin. For Team A, we tested another 4 
ombinations of these beliefs to show the e�e
tiveness of ea
h, in terms ofACPWK. These 
ombinations are:
• Combination 0: Team B, whi
h involves none of beliefs.
• Combination 1: In Team A, for ea
h agent, leave o� BelieveCanSee rules and do not pro
ess belief2and belief3 when maintaining beliefs after observation. Therefore every agent only has belief1 aboutthe world.
• Combination 2: Keep every 
ondition in 
ombination 1, ex
ept for enabling the belief2 pro
ess. This
ombination tests how belief2 improves the situation.
• Combination 3: Enabling the belief3 pro
ess in 
ombination 2. This 
ombination tests the e�e
t ofbelief3.
• Combination 4: Add BelieveCanSee rules into 
ombination 3. This 
ombination tests the e�e
t ofbelief4 as well as show e�e
tiveness of the beliefs as a whole.Ea
h 
ombination is run in the �ve randomly generated worlds. The average results of these runs are presentedin Figure 6.1, in whi
h one bar shows ACPWK for one 
ombination.First of all that, agents' belief1 (
ombination 1) is a major 
ontributor to e�e
tive 
ommuni
ation, for bothproa
tiveTell and a
tiveAsk. For proa
tiveTell, in (a), 
ompared to 
ombination 0, ACPWK signi�
antly dropsfrom 5.9 to 3.52. For a
tiveAsk, in (b), ACPWK drops from 13.8 to 11.1.The se
ond 
ase, belief2 (
ombination 2) does not produ
e any further redu
tion and hen
e is not e�e
tivefor proa
tiveTell, but produ
es improvement for a
tiveAsk. For proa
tiveTell, when a provider sees an a
tion,though it believes the doer knows the pre
ondition and e�e
t of the a
tion, it does not know the pre
onditionand e�e
t by itself. So for this example belief2 
an be of little help in proa
tiveTell. While for a
tiveAsk, belief2redu
es ACPWK from 11.1 to 9.36, be
ause with belief2, a needer will know who has a pie
e of informationexpli
itly. Then it 
an a
tiveAsk without ambiguity.Third, for the same reason that belief2 only works for a
tiveAsk, belief3 (
ombination 3) 
ontributes littleto proa
tiveTell but further de
reases ACPWK to 7.97 for a
tiveAsk.Fourth, belief4 (
ombination 4) has a major e�e
t on 
ommuni
ations that applies to both proto
ols. Itfurther drops ACPWK to 2.23 for proa
tiveTell and to 5.39 for a
tiveAsk. Belief4 is parti
ularly important forproa
tiveTell. For example, if the 
arrier believes that the �ghters see a wumpus' lo
ation, it will not tell them.This experiment examined the 
ontribution of ea
h belief dedu
ed from observability to the overall e�e
tive-ness of 
ommuni
ation. The result indi
ates three things. First, belief1 and belief4 have a strong e�e
t on thee�
ien
y of both proa
tiveTell and a
tiveAsk. Therefore, CanSee/BelieveCanSee a property, the observabilityfrom whi
h these two beliefs generated, 
an be generally applied to dual parts 
ommuni
ation involving bothTell and Ask. Se
ond, belief2 and belief3 have weak in�uen
e on the e�
ien
y of proa
tiveTell, this suggests
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Fig. 6.2. The Comparison of Proa
tiveTell with Di�erent Team Sizethat CanSee an a
tion may be applied to 
ommuni
ation whi
h in
urs more Ask than Tell, su
h as goal-dire
ted
ommuni
ation. Third, these beliefs work best together, be
ause ea
h of them provides a distin
t way for agentsto get information from the environment and other team members. Furthermore, they 
omplement ea
h other'srelative weaknesses, so using them together better serves the e�e
tiveness of the 
ommuni
ation as a whole.6.2. Evaluating the E�e
t of Observability Communi
ation Load with In
reased Team size.We designed the third experiment to show how 
ommuni
ation load s
ales with in
reased team size. Based onthe assumption that proa
tiveTell brings more 
ommuni
ation into play than a
tiveAsk, we 
hoose to test theproa
tiveTell proto
ol. A
tiveAsk is dire
ted to only one provider at 
ertain time, while the proa
tiveTell goesto all needers who do not have the information. If the test results are good for proa
tiveTell, we 
an expe
tthat they are valid for a
tiveAsk as well.We used the same sensing 
apabilities for Teams A and Team B as in the �rst experiment. However, wein
reased the number of team members by 1, 2 and 3, in two tests that we ran. In the �rst test, we in
reasedthe number of needers, (i. e. �ghters) and kept the same number of providers, (i. e. 
arriers). In the se
ondtest, we did it the other way around. In ea
h test, for ea
h in
rement and ea
h team, we ran the �ve randomlygenerated worlds and used the average value of ACPKW produ
ed in ea
h world.Figure 6.2 shows the trend of ACPKW as a fun
tion of in
reasing team size. In (a), Team B has an obviousin
rease in ACPKW with in
reasing the team size. However, Team A keeps the same ACPKW. The 
ause 
anbe attributed to two fa
tors: �rst, the amount of the in
reasing proa
tiveTells is held down be
ause if the 
arrierbelieves the �ghters 
an see wumpus, the 
arrier does not perform proa
tiveTell; se
ond, the more �ghters thereare, the more wumpuses will be killed, whi
h enlarges the numerator of ACPKW.In (b), in
reasing the number of providers breaks the 
onstant trend in Team A and shows an in
reasedACPWK. However, 
omparing this in
rease to that of Team B, it is a moderate number. In Team B, everyprovider in
rement means almost double the number of proa
tiveTells. The 
ommuni
ation load in
reasesbe
ause of dupli
ate proa
tiveTells of the same information by di�erent 
arriers. For example, ea
h 
arrieralways provides the wumpus' lo
ation to �ghters when observing a wumpus. The 
arriers la
k an e�e
tiveway to predi
t when a pie
e of information is produ
ed and by whom, whi
h is one of our main 
on
ernsof future work. This experiment shows that the team empowered with observability has a slower growth ofACPWK with in
rease of team size, whi
h may indi
ate that observability will improve team s
alability in somesense.7. Con
lusion. In this paper, we have presented an approa
h to dealing with agent observability forimproving performan
e and redu
ing inter-agent 
ommuni
ation. Ea
h CAST-O agent is allowed to have someobservability to see the environment, and to wat
h what others are doing inside its dete
tion range. Based onthe observation, the agent updates its knowledge base and infers what others may know at the 
urrent time.Reasoning about what others 
an see allows agents to de
ide whether to distribute information and to whom.We have proposed a proa
tive 
ommuni
ation me
hanism to 
onfer some advantage to related team membersfor realizing team intera
tion and 
ooperation proa
tively also. We have 
ondu
ted an in-depth empiri
al



76 Yu Zhangevaluation in an extended Wumpus World, 
omparing the relative numbers of proa
tiveTell, a
tiveAsk, andwumpuses killed for agent teams with and without observability.A major point to the proa
tive 
ommuni
ation approa
h with observabilities is that the underlying systemthat interprets the team plans of the agents does most of the work for handling the observation, inferen
e and
ommuni
ation. This need only be designed on
e. It is re-used as one moves from one domain to another. It isonly the expli
ation of the observability 
onditions that 
hanges from one domain to another, and this is essen-tially linearly proportional to the number of agents and �size� of the domain properties that are to be observed.Though 
urrently we are 
onsidering just the times of information produ
tion or need, the same approa
h 
anbe extended to un
ertainty in observability as well. Additionally, our present proa
tive information algorithmanalyzes the pre-
onditions and e�e
ts of operators for whi
h ea
h agent is responsible in the team plan. Thepurpose of doing so is to determine potentially useful information �ow among agents. However, this approa
his restri
tive. We would like to make the re
ognition of needed information more dynami
. One way to solvethis problem is to re
ognize the plans of other agents by observing a
tions of the other agents, and tra
king thesequen
e of sub-goals on whi
h they are working dynami
ally. Using this information together with the a
tionan agent has most re
ently performed, the most likely information needs of other agents 
an be dynami
allyestimated over a �nite time horizon. Then we 
an send other agents only unknown information that will beneeded in the near future.A
knowledgement. This work was supported in part by DoD MURI grant F49620-00-I-326 administeredthrough AFOSR. REFERENCES[1℄ T. Bal
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alable Computing: Pra
ti
e and Experien
eVolume 8, Number 1, pp. 79�86. http://www.s
pe.org ISSN 1895-1767© 2007 SWPSSTABILITY, OPTIMALITY AND COMPLEXITY OF NETWORK GAMES WITH PRICINGAND PLAYER DROPOUTSANDREW LOMONOSOV∗ AND MEERA SITHARAM†Abstra
t. We study basi
 properties of a 
lass of non
ooperative games whose players are sel�sh, distributed users of a networkand the game's broad obje
tive is to optimize Quality of Servi
e (QoS) provision. This 
lass of games was previously introdu
edby the authors and is a generalization of well-studied network 
ongestion games.The overall goal is to determine a minimal set of stati
 game rules based on pri
ing that result in stable and near optimal QoSprovision.We show the following. (i) Standard te
hniques for exhibiting stability or existen
e of Nash equilibria fail for these games�spe
i�
ally, neither are the utility fun
tions 
onvex, nor does a generalized potential fun
tion exist. (ii) The problem of �ndingwhether a spe
i�
 game instan
e in this 
lass has a Nash equilibrium is NP-
omplete.To o�set the apparent instability of these games, we show positive results. (iii) For natural sub
lasses of these games, althoughgeneralized potential fun
tions do not exist, approximate Nash equilibria do exist and are easy to 
ompute. (iv) These gamesperform well in terms of �pri
e of stability� and �pri
e of anar
hy.� I.e., all of these approximate Nash equilibria nearly optimize a
ommunal (or so
ial) welfare fun
tion, and there is atleast one Nash equilibrium that is optimal.Finally, we give 
omputer experiments illustrating the basi
 dynami
s of these games whi
h indi
ate that pri
e thresholds 
ouldspeed up 
onvergen
e to Nash equilibria.Key words. Congestion games, Sel�sh routing, Atomi
 unsplittable model, Nash Equilbria, Network pri
ing1. Introdu
tion. Re
ently mu
h resear
h has been done in applying game-theoreti
 
on
epts and generale
onomi
s te
hniques to analysis of 
omputer network tra�
 [2, 3, 5, 10, 11, 12, 16, 14, 20, 21, 24℄. For a generalsurvey see [1℄. Stability in games refers to whether the game rea
hes a Nash equilibrium, a state where no playerhas in
entive to move. Optimality is a measure of how 
lose a Nash equilibrium is to optimizing a so
ial or
ommunal welfare fun
tion, usually the sum of the individual players' utility fun
tions.We 
onsider primarily atomi
 games, where the number of players (network users) is �nite. The 
ase ofnon-atomi
 games where there is an in�nite number of in�nitesimally small players is easier to analyze. Forsimilar reasons, spittable games, where network users 
an split their volume onto many servi
e 
lasses are easierto analyze and have more orderly behavior than unsplittable games, where ea
h user is for
ed to pla
e all theirvolume onto the same 
lass.The atomi
 splittable network game model has been studied [20, 12℄, with early results in the transportationliterature. E�
ien
y (or optimality) of Nash equilibria in atomi
 splittable network games was studied in [24℄and [28℄.Here we 
onsider primarily the unsplittable 
ase that has also been studied for some time, for example [26℄.Most of the resear
h deals with 
ongestion games where payo� to a player depends only on the player'sstrategy and on the number of players 
hoosing the same strategy. Thanks to [26℄ it is known that su
hgames always have Nash equilibrium. Two 
ommon te
hniques that are used to demonstrate existen
e of NashEquilbria are the following. When the player utility fun
tions are 
onvex, Kakutani's �xed point theorem [25℄dire
tly shows existen
e. Also when su
h 
onvexity properties are not present, potential fun
tions, [18℄, 
ertainfun
tions that in
rease after every move, are used to show existen
e. These have a long history, for example, asLyapunov stability fun
tions 
lassi
ally used to des
ribe equilibria in dynami
al systems.The [23℄ network games have realisti
 features that make them somewhat di�erent from 
ongestion games:in parti
ular, players have non-
onvex utility fun
tions 
aused by a threshold of total tra�
 volume in servi
e
lasses that they are willing to tolerate. In addition in the [15℄ games, the players are allowed to refrain fromparti
ipation, or to dropout, if their tra�
 quality demands are not satis�ed. Hen
e existen
e of Nash equilibriaor potential fun
tions is not guaranteed for these 
lasses of games. However, we were able to show existen
e ofNash equilibria for some of these 
lasses of games by 
onstru
ting generalized potential fun
tions. (Generalized)potential fun
tions have also been used by others to study versions of 
ongestion and other games e.g., [7, 21, 22℄.For the 
lasses of games in [15, 16℄ we additionally showed that the Nash equilibria established via general-ized potential fun
tions are easy to 
ompute. In general, however, while potential fun
tions guarantee existen
eof Nash equilibrium, the problem of a
tually �nding su
h an equilibrium remains 
omputationally 
hallenging.
∗UGS In
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80 A. Lomonosov and M. SitharamIt has been shown [7℄ that the problem of �nding Nash Equilbrium in 
ongestion games is PLS-Complete,whi
h intuitively means �as hard to 
ompute as any obje
t whose existen
e is guaranteed by a potential fun
-tion�.Considerable resear
h has gone into the pri
e of anar
hy and pri
e of stability of Nash equilibria [27℄. Thesenotions des
ribe how far or how 
lose Nash equilbria 
an be to the System Optimum of a game, where systemoptimum is a 
on�guration (not ne
essarily a Nash equilibrium) that has greatest 
ommunal welfare.We showed that for the 
lasses of games with Nash equilibria in [15, 16℄, the 
ommunal welfare at theseequilibria was poor, i. e., they are far from the system optimum. To re
tify this, we further generalized our
lasses of games by introdu
ing pri
ing in
entives (not to be 
onfused with the word �pri
e� in the previousparagraph). The e�e
t of pri
ing on 
ongestion games has also been studied in [9, 6, 8℄. Our original goal wasto modify our original 
lass of games so that the Nash equilibria would be 
lose to system optima. However,the pri
ed games were shown to not have Nash equilibria, in general. We instead showed that there is trade-o�between game stability (existen
e of Nash Equilbria) and 
ommunal welfare a
hieved by su
h games. I.e., whilethe pri
ed games did not always have Nash equilibria, the Nash equilibria, when they existed, were 
lose to thesystem optima.This trade-o� has sin
e been formalized by examining approximate Nash equilibria i. e. states where noplayer 
an improve their individual welfare by more than a 
ertain fa
tor, and the value of 
ommunal welfare atsu
h approximate equilibria [4℄. For example, [2℄ demonstrated a tradeo� between welfare and stability when
osts fun
tions are semi
onvex.In this paper, our overall goal is to analyze our 
lasses of realisti
 network 
ongestion games with respe
t tothese stability and 
ommunal welfare measures; investigate me
hanisms for games to optimize these measures;and to pose formal questions about the stru
ture of game 
lasses imposed by su
h measures.More spe
i�
ally, the original 
lasses of games introdu
ed in [15℄ were: the 
lass Q where players were solelymotivated by their tra�
 quality demands and 
lasses PQ where players were also in�un
ed by pri
es imposedon tra�
. Stability of games in Q was demonstrated by means of general potential fun
tions, and 
on
reteexamples of instability of PQ were then given.In this paper, we establish the NP-
ompleteness of determining existen
e of Nash equilibria and for 
om-puting Nash Equilbria in PQ. We further study stability and 
ommunal welfare of (a modi�ed version of)approximate Nash equilibria in PQ, as 
ompared to 
lass Q (i. e. e�e
t of pri
ing on stability and so
ial welfarein our games).We also brie�y look at game dynami
s, i. e. number of steps that it a
tually takes to 
onverge to NashEquilbria for some of our games and 
ondu
t 
omputer experiments to study trade-o� between willingness topay and speed of 
onvergen
e.Se
tion 2 presents preliminary de�nitions, Se
tion 3 presents previous results on the 
lass Q of games,Se
tion 4 presents the main results of this paper 
on
erning the 
lass PQ, and Se
tion 5 
on
ludes by tabulatingand 
omparing the results of Se
tions 3 and 4, followed by open problems.2. De�nitions. A game (instan
e) G in the base 
lass of QoS provision network games is spe
i�ed by thegame parameters G = 〈n,m ∈ N, {λi ∈ R+ : 1 ≤ i ≤ n}, {bi,j ∈ R+ : 1 ≤ i ≤ n; 1 ≤ j ≤ m}, {pj : R+ →
R, 1 ≤ j ≤ m}〉. The best way to de�ne G is by identifying it with its �nite game 
on�guration graph (formallyde�ned below) whi
h 
onsists of a set of feasible game 
on�gurations (verti
es) and the valid or sel�sh gamemoves (oriented edges). The game G is played by n users or players ea
h wanting to send a tra�
 of λi unitsthrough one of m network servi
e 
lasses and (for 
onvenien
e of analysis) an over�ow or Dummy Class withindex 0, referred to as DC. Ea
h player i additionally has a volume threshold bi,j (to be des
ribed below) forea
h 
lass j. A pri
e fun
tion pj() for ea
h servi
e 
lass is a nonin
reasing fun
tion that maps the total (tra�
)volume in the 
lass to a unit pri
e. (Unit pri
e typi
ally de
reases with in
reasing 
ongestion or total volume inany servi
e 
lass). The pri
e for using DC is 0. A feasible 
on�guration Λ of G is fully spe
i�ed by an allo
ation
JΛ : {1, . . . , n} → {1, . . . ,m} whi
h des
ribes whi
h servi
e 
lass JΛ(i) that the user or player i has de
ided topla
e their 
hunk λi of tra�
. This allo
ation JΛ results in a total tra�
 volume qΛ,j =

∑

i:1≤i≤n∧JΛ(i)=j λi inea
h 
lass 1 ≤ j ≤ m at the game 
on�guration Λ. The set of feasible game 
on�gurations F form the vertexset of the game 
on�guration graph Ω. Individual utility fun
tion Ui(Λ) is a type of step fun
tion based on i'svolume threshold being met at the 
on�guration Λ, and on the unit pri
e in
urred by the player i in its 
lass
j = JΛ(i). Ui(Λ) is:

• 0 if j = 0 (user i is in DC)
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• −ǫ, for small ǫ > 0 if bi,j < qΛ,j (volume threshold ex
eeded)
• equal to λi(1 − pjqΛ,j) otherwise.It is assumed that the pri
e fun
tions are always appropriately normalized so that this quantity is always stri
tlypositive for all players i and their 
lasses JΛ(i) at any 
on�guration Λ. A typi
al utility fun
tion is shown onFigure 2.1. We say that user i is satis�ed at 
on�guration Λ if Ui(Λ) 6= 0, and not satis�ed otherwise. We de�ne

b
i

Utility

VolumeVolume

Price

Fig. 2.1. Utility as a fun
tion of volume, volume threshold and pri
ea fun
tion SatΛ(i) = 1 if UΛ(i) 6= 0, otherwise SatΛ(i) = 0. A sel�sh move by user i at a 
on�guration Λ1 is areallo
ation of i's volume λi from a departure 
lass j1 (i.e JΛ1
(i) = j1), to a a destination 
lass j2 resulting ina 
on�guration Λ2 (i.e, JΛ2

(i) = j2) that in
reases utility of this user, i.e, Ui(Λ1) < Ui(Λ2). Moves to DC bya user whose volume threshold is ex
eeded are 
alled user dropouts. Note that user dropouts qualify as sel�shmoves a

ording to our de�nition.Ea
h sel�sh move is an ordered pair of feasible game 
on�gurations (for example (Λ1,Λ2) ∈ F × F ), andrepresents an oriented edge of the game 
on�guration graph Ω. A generalized potential fun
tion is a fun
tionde�ned on 
on�gurations that in
reases after every player move. A game play for G is a sequen
e of validsel�sh moves in G, i.e (Λ1,Λ2), (Λ2,Λ3), . . . , (Λk−1,Λk), or a path in the game 
on�guration graph Ω. A NashEquilibrium or NE of a game G is a 
on�guration Λ su
h that there is no sel�sh move possible for any user i.Nash equilibria are exa
tly sink verti
es of a game 
on�guration graph Ω that have no outgoing edges towardother verti
es. For our 
lasses of games, the 
ommunal welfare fun
tion for 
on�guration Λ is de�ned as
C(Λ) = ΣiSatΛ(i)λi. The feasible game 
on�guration that has highest value of 
ommunal welfare fun
tion is
alled the System Optimum or SO. Let ΛN be a Nash Equilibrium that has the smallest value of 
ommunalwelfare fun
tion taken over all Nash Equilibriums, while ΛM be a Nash Equilibrium that has the largest value.As de�ned in say [27℄ a pri
e of anar
hy of a game is equal to C(ΛN )/C(Λ∗), where Λ∗ is SO. A pri
e of stabilityis equal to C(ΛM )/C(Λ∗).Class of games that do not have pri
ing, i. e. pj(x) = 0 for all 
lasses j and their volumes x is denotedby Q. In su
h games players are motivated only by their desire to satisfy their volume thresholds. Sub
lass
QE ⊂ Q is a 
lass of games with no pri
ing where all players have equal volume. Class of games that haveonly one pri
ing fun
tion p(x) for all 
lasses j and this fun
tion is stri
tly de
reasing (p(x) < p(y) ↔ x > y) isdenoted by PQ. Sub
lass PQE ⊂ PQ is a 
lass of games with single stri
tly de
reasing pri
e fun
tion whereall players have equal volume. Here we will give a pi
torial example, Figure 2.2, of some notions introdu
ed inthis se
tion. A game 
on�guration graph Ω and 
on�gurations Λ of a parti
ular game G are shown. Columnsrepresent 
lasses, re
tangles represent users, the size of a re
tangle 
orresponds to volume of a user, volumethresholds of users are indi
ated on the right. In this example the game G in 
lass PQ has 2 
lasses, 2 users Aand B that have equal volumes and the volume threshold of A is greater than that of B. Game 
on�gurationgraph Ω has 4 verti
es. This game G has no Nash equilibrium.Throughout this paper we assume wlog that every player i has the same volume threshold bi = bi,1 =
bi,2 = . . . bi,m in every 
lass j = 1 . . .m. We also assume that players are sorted in the in
reasing order of theirthresholds, i.e b1 ≤ b2 ≤ . . . ≤ bn. (The former assumption 
ould be easily generalized for all results in thispaper, the latter assumption is realisti
 and 
ommonly made [23℄).In proofs when des
ribing a game 
on�guration Λ, we will spe
ify values of game parameters n and m,provide a list of users in the form User(Volume, Volume Threshold) (for example A(5,12) means that User Ahas volume 5 and volume threshold 12), as well as spe
ify where these users are, i.e {JΛ(i)}.



82 A. Lomonosov and M. Sitharam
 B

bA

bB

 B

bA

bB

bA

bB

bA

bB

1 2DC

Configuration II

II III

IVI

Configuration

graph
1 2DC

A

Configuration I

1 2DC

Configuration III

1 2DC

Configuration IV

A

 B A  B

A

Fig. 2.2. Game 
on�guration graph and individual 
on�gurations3. Previously known properties of Q. We list relevant properties of the 
lass Q of games establishedin [15℄ 
on
erning existen
e, optimality and 
omplexity of 
omputing Nash equilibria.Theorem 3.1. Every game in Q has a generalized potential fun
tion and therefore every su
h game has aNash Equilbrium.Theorem 3.2. For any ǫ > 0 there is a game in Q that has pri
e of anar
hy and pri
e of stability equalto ǫ.Theorem 3.3. A Nash Equilibrium that is also a System Optimum of a game in QE 
an be found in timelinear in the game parameters.Theorem 3.4. Any Nash Equilibrium of any game G ∈ QE has 
ommunal welfare of at least a half of thatof G's System Optimum.Theorem 3.5. For any initial 
on�guration of every game in QE there is a sequen
e of sel�sh movesby players that will terminate at Nash Equilibrium after O(n2) steps. This sequen
e 
an be determined by
onsidering players in de
reasing order of their volume thresholds and letting them make their sel�sh 
hoi
es.4. New results. In this se
tion we 
onsider stability of games in 
lass PQ and various properties of theirNash equilibria. Results will be 
ompared to those of Q in Table 5.We begin by establishing the following simple result about the pri
es of anar
hy and stability of generalgames in the 
lass PQ, showing that they are not parti
ularly well behaved.Theorem 4.1. For any ǫ > 0 there is a game in PQ that has a unique Nash equilibrium, whose 
ommunalwelfare is ǫ, while the system optimum of this game has 
ommunal welfare equal to 1. This implies that pri
esof anar
hy and stability of su
h a game are equal to ǫ.Proof. Consider a game with one non-DC 
lass, and two players, A(ǫ, 1+ǫ) and B(1, 1). The only equilibriumthis game has is when player A is in 
lass 1 and player B is in DC, as opposed to the system optimum whentheir positions are reversed.4.1. Approximate Nash equilibria. As we have noted in the Introdu
tion and Figure 2.2, Nash equilib-ria do not ne
essarily exist in games PQ that involve pri
ing. One approa
h to examining su
h games involves
α−approximate Nash equilibria, de�ned in for example [4℄. A 
on�guration is said to be α−approximate Nashequilibrium if no player 
an move and de
rease her 
ost by more than an α multipli
ative fa
tor.Note that sin
e pri
ing fun
tions of PQ are arbitrary de
reasing linear fun
tions, we will instead use a moreappropriate notion of δ−approximate Nash equilibrium instead, where δ is an additive fa
tor.Let PQE be the subset of PQ where all players have volume ǫ = δ. In su
h a game a 
on�guration whereall players are satis�ed and all 
lasses have equal total volume would be a ǫ−approximate Nash equilibrium,sin
e no player would have an in
entive to move.When ǫ goes to zero and number of players goes to in�nity, the 
lass PQE will be denoted as PQ∞. This
lass of games has similar behavior to the 
lass of games where players are allowed to split their volume betweenseveral 
lasses.Theorem 4.2. A Nash equilibrium (δ−approximate Nash equilibrium) that is also system optimum 
an be
onstru
ted for any game in PQ∞ (PQE) in time of O(n).Proof. A greedy algorithm solves this problem. Here is the algorithm for PQE . Let b1 ≤ . . . ≤ bn; pla
eplayer n in 
lass 1, pla
e player n− 1 in 
lass 1 if bn−1 ≥ 2ǫ, otherwise pla
e player n− 1 in 
lass 2; pla
e player
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n− 2 in 
lass 1 if bn−2 ≥ 3ǫ et
. The resulting 
on�guration is a system optimum and a δ−approximate Nashequilibrium.Note that while the pre
eeding theorem guarantees existen
e of an approximate Nash equilibrium for games
PQE , it does not promise that every sequen
e of sel�sh moves will arrive at an approximate Nash equilibrium.Consider the following observation, whi
h also disproves existen
e of general potential fun
tions for all gamesin PQE . This is also true for games in PQ∞.Theorem 4.3. There is a game in PQE where there is a 
y
le of sel�sh moves.Proof. Let δ = 1. Consider a game with 2 non-DC 
lasses and 12 players:

A1(1, 9), A2(1, 9), A3(1, 9), B1(1, 6), B2(1, 6), B3(1, 6), C1(1, 3), . . . , C6(1, 3).Initial 
on�guration Λ: players C4, C5 and C6 are in 
lass 2, all other players are in 
lass 1. First players B1, B2and B3 move to 
lass 2, after that players C1, C2, C3 move to DC, then players A1, A2 and A3 move to 
lass 2and �nally players C1, C2, C3 move from DC to 
lass 1. The resulting 
on�guration is essentially isomorphi
 to
Λ, hen
e a 
y
le has o

urred.Now we will examine properties of 
orresponding Nash equilibria.Theorem 4.4. Pri
e of anar
hy of games in PQ∞ is equal to 1/2. Pri
e of stability of su
h games isequal 1.If pri
e of anar
hy and pri
e of stability were rede�ned over ǫ-approximate Nash equilibria instead of regularNash equilibria, then it would hold that pri
e of anar
hy of games in PQE is equal to 1/2 and pri
e of stabilityof su
h games is equal 1.Proof. Pri
e of stability follows from the fa
t that Nash equilibria 
onstru
ted in Theorem 4.2 are systemoptima.Pri
e of anar
hy 
an be demonstrated by following argument for games in PQE , and the proof for PQ∞ issimilar. Let Λ be a Nash equilibrium when all players have the same volume ǫ. Consider the unsatis�ed player
i that has the largest volume threshold bi. (If there are no unsatis�ed players then su
h a Nash equilibriumis a system optimum). Total tra�
 volume qj in every 
lass j is stri
tly greater than bi − ǫ, hen
e 
ommunalwelfare of Λ is greater than or equal to m(bi − ǫ) but 
ommunal welfare of system optimum 
annot be morethan 2(m(bi − ǫ)).4.2. Finding a Nash equilibrium. It was shown in [16℄ that the problem of �nding system optimumof a game in 
lass Q is NP-Complete. It was also shown that the problem of �nding a Nash equilibrium in
Q 
an be solved in O(n2) time. Similarly the problem of �nding a system optimum of a game in 
lass PQ isNP-Complete. Now we will examine the problem of �nding a Nash equilibrium (or determining that it does notexists) for games in PQ.Theorem 4.5. Problem of �nding Nash equilibrium for games in PQ is NP-Complete.Proof. Consider the following version of MAXIMUM SUBSET SUM problem�given set S = {s1, . . . , sn}and targets t1, t2, �nd A ⊆ S su
h that t1 ≤

∑

i∈A si ≤ t2. This problem 
an be redu
ed to problem of �ndinga Nash equilibrium as follows. There are n+ 1 players and two non-DC 
lasses. Players 1, . . . , n all have samethreshold b1 = b2 = . . . bn = t2, individual volumes λi = si. Player n+ 1 has volume λn+1 = t2 and threshold
bn+1 = t1 + t2. Then this game will have a Nash equilibrium if and only if the original MAXIMUM SUBSETSUM problem had a feasible solution.4.3. Pri
e thresholds. In [16℄ it was shown that games in 
lass Q will terminate in O(n2) steps, given
ertain assumptions on order of player moves. Here we will des
ribe a 
omputer experiment that examinedspeed of 
onvergen
e of games where there was no su
h ordering of player moves.This experiment involved a following natural assumption about players behavior. In pra
ti
e, there 
ouldbe a limit on how mu
h a user is willing to pay, and this 
on
ept 
an be easily added to our games, resulting inthe new 
lasses of games. This 
on
ept has a desirable e�e
t on the dynami
s of the game, as explained below.Formally, for players i we de�ne pri
e thresholds (in addition to the old volume thresholds) ti that have thefollowing property. If the pri
e in a 
lass ex
eeds player i's pri
e threshold, then player i is not satis�ed. Weassume that bi ≤ bj if and only if ti ≥ tj , i.e users who demand better quality of servi
e (smaller tra�
 volumein their 
lass) are willing to pay more.We 
onje
ture that in addition to being realisti
, su
h pri
e thresholds also tend to improve the speed of
onvergen
e to Nash equilibria. This is be
ause of players spending less time looping in non-terminal 
y
les.



84 A. Lomonosov and M. SitharamTo test this 
onje
ture we ran a 
omputer program simulating a game in 
lass PQ. Later we added pri
ingthresholds to the game whi
h has 
onsiderably improved time lapsed before 
onvergen
e to Nash equilibria.Game parameters were 
hosen su
h that Nash equilibrium would always exist. Parameters of the game were
M = number of 
lasses,M/T = number of types of users that have the same volume and volume threshold, K =number of users of the same type that 
an �t in one 
lass without ex
eeding their volume threshold. Volumeswere in in
rements of one, i.e there are T ∗K users that have volume 1 and volume threshold K, T ∗K usersthat have volume 2 and threshold 2K, . . . , T ∗K users that have volume M/T and threshold M ∗K/T . Thusthere are a total of M ∗K users. For example let K = 10,M = 20, T = 5. This means that there are 20 
lasses,4 types of users and at most 10 users of any one type 
an �t into one 
lass. Users are

A1(1, 10), . . . , A50(1, 10), B1(2, 20), . . . , B50(2, 20), C1(3, 30), . . . , C50(3, 30),

D1(4, 40), . . . , D50(4, 40).Initially all users are in the dummy 
lass (DC). A game pro
eeds by pi
king one of the M ∗ K users atrandom and this user moves either to the largest 
lass where his threshold would not be ex
eeded or to theDC. Even if this move ex
eeds the volume threshold of some other users in the destination 
lass of the movinguser, these unsatis�ed users 
annot move until it is their turn to move and turns are determined at random.Eventually a Nash equilibrium was always rea
hed, where all users of the �rst type were in T 
lasses, all usersof the se
ond type were in the se
ond set of T 
lasses et
. Results are shown in table 4.1. �Moves1� denotes thetotal number of user moves until Nash equilibrium was rea
hed.Later a simulation of pri
ing thresholds was added to the experiment. E�e
tively it would prohibit a user
i that has volume threshold bi to move into any 
lass j su
h that qj + λi < bi − ∆ where ∆ is some 
onstant.The reason for this is that 
lass j is too expensive for the ith user.Table 4.1K M T Moves1 ∆ Moves25 20 1 161,000 5 7,00010 20 1 17,077,000 10 9,00020 20 2 1,354,000 20 25,00050 20 1 56,000 50 35,000100 20 1 49,000 100 46,000100 20 10 3,000 100 5,0001000 20 10 35,000 1000 490005 40 1 2,360,000 5 190,0005 50 1 8,391,000 5 940000When ∆ = ∞ this is equivalent to the old experiment without pri
ing thresholds. In general introdu
tion ofsmall ∆ signi�
antly improved number of moves that was needed to rea
h the Nash equilibrium. See �Moves2�in the table 4.1.5. Con
lusions, Dire
tions. Here we summarize known results about Nash Equilibria for various sub-
lasses of Q and PQ.NE/GenPotential always exists Pri
e of anar
hy Pri
e of stability Complexity of �nding NE

Q Yes/Yes ǫ ǫ O(n2)
QE Yes/Yes 1/2 1 O(n)
PQ No/No ǫ ǫ NP-Complete
PQE Yes/No 1/2 1 O(n)
PQ∞ Yes/No 1/2 1 O(n)Existen
e of Nash Equilbria for Q (and QE , sin
e QE ⊂ Q) is shown in Theorem 3.1. Example of nonex-isten
e of Nash Equilbria in PQ is demonstrated in Figure 2.2. For PQE entry �Yes" refers to δ−approximateNash Equilibria, not regular Nash Equilibria. This (and PQ∞ 
ase) is shown in Theorem 4.2. The nonexisten
e
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tions for these 
lasses is shown in Theorem 4.3. Pri
es of anar
hy and stability of
Q are shown in Theorem 3.2, of QE in Theorem 3.4, of PQ in Theorem 4.1 (assuming that Nash Equilibriumexists), of PQE and PQ∞ in Theorem 4.4. Complexity of �nding a Nash Equilibrium in games of 
lass Q isshown in Theorem 3.5, 
ase of QE is Theorem 3.3, for games in PQ this problem is NP-Complete (Theorem 4.5),for games in PQE and PQ∞ result follows from Theorem 4.2.5.1. Open questions. The 
lass PQ 
ontains both games that have Nash equibria and those who do not.What is the stru
ture of games in 
lass PQ where Nash equilibria or approximate Nash equilibria (additiveor multipli
ative) are guaranteed to exist but they are hard to 
ompute? For example, are there PLS-
ompletegames in the 
lass PQ? For the sub
lasses su
h as PQE Nash equilibria existen
e is easy to determine, and(approximate) Nash equilibria are easy to 
ompute. Formally state and prove the 
onje
ture of Se
tion 4.3
on
erning the usage of pri
e thresholds and speed of 
onvergen
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alable Computing: Pra
ti
e and Experien
eVolume 8, Number 1, pp. 87�100. http://www.s
pe.org ISSN 1895-1767© 2007 SWPSTHE SUCCESS OF COOPERATIVE STRATEGIES IN THE ITERATED PRISONER'SDILEMMA AND THE CHICKEN GAMEBENGT CARLSSON∗ AND K. INGEMAR JÖNSSON†Abstra
t. The prisoner's dilemma has evolved into a standard game for analyzing the su

ess of 
ooperative strategies inrepeated games. With the aim of investigating the behavior of strategies in some alternative games we analyzed the out
ome ofiterated games for both the prisoner's dilemma and the 
hi
ken game. In the 
hi
ken game, mutual defe
tion is punished morestrongly than in the prisoner's dilemma, and yields the lowest �tness. We also ran our analyses under di�erent levels of noise. Theresults reveal a striking di�eren
e in the out
ome between the games. Iterated 
hi
ken game needed more generations to �nd awinning strategy. It also favored ni
e, forgiving strategies able to forgive a defe
tion from an opponent. In parti
ular the well-known strategy tit-for-tat has a poor su

essrate under noisy 
onditions. The 
hi
ken game 
onditions may be relatively 
ommonin other s
ien
es, and therefore we suggest that this game should re
eive more interest as a 
ooperative game from resear
herswithin 
omputer s
ien
e.Key words. Game theory, prisoner's dilemma, 
hi
ken game, noise, tit-for-tat1. Introdu
tion. Within 
omputer s
ien
e, biology, so
ial and e
onomi
 s
ien
es the issue of 
ooperationbetween individuals in an evolutionary 
ontext is widely dis
ussed. An evolutionary 
ontext means some 
on�i
tof interest between the parti
ipants preferrably modeled in a game theoreti
al 
ontext using 
on�i
ting games.A simple, but frequently used, game model is between two parti
ipants ea
h with two 
hoi
es, either to 
ooperateor to defe
t (a 2 ∗ 2 matrix game) played on
e or repeated. In multi agent systems iterated games have be
omea popular tool for analyzing so
ial behavior and 
ooperation based on re
ipro
ity ([3, 5, 4, 9℄). By allowinggames to be played several times and against several other strategies a �shadow of the future�, i. e. a non-zeroprobability for the agents to meet again in the future, is 
reated for the 
urrent game. This in
reases theopportunity for 
ooperative behavior to evolve (e.g., [4℄). A 
olle
tion of di�erent models of 
ooperation andaltruism was dis
ussed in Lehmann and Keller [14℄.Most iterative analyses on 
ooperation have fo
used on the payo� environment de�ned as the prisoner'sdilemma (PD) ([5, 9, 13, 20℄). In terms of payo�s, a PD is de�ned when T > R > P > S, where R = reward, S= su
ker, T = temptation and P = punishment. It should also hold that 2R > T + S a

ording to table 1.1a.The se
ond 
ondition means that the value of the payo�, when shared in 
ooperation, must be greater than itis when shared by a 
ooperator and a defe
tor. Be
ause it pays more to defe
t, no matter how the opponent
hooses to a
t, an agent is bound to defe
t, if the agents are not deriving advantage from repeating the game. If
2R < T +S is allowed there will be no upper limit for the value of the temptation. However, there is no de�nitereason for ex
luding this possibility. Carlsson and Johansson [11℄ argued that Rapoport and Chammah [23℄introdu
ed this 
onstraint for pra
ti
al more than theoreti
al reasons. PD belongs to a 
lass of games whereea
h player has a dominating strategy of playing defe
t in the single play PD.Chi
ken game (CG) is a similar but mu
h less studied game than PD, but see Tutzauer et al. [26℄ for are
ent study. CG is de�ned when T > R > S > P , i. e. mutual defe
tion is punished more in the CG thanin the PD. In the single-play form, the CG has no dominant strategy (although it has two Nash equilibria inpure strategies, and one mixed equilibrium), and thus no expe
ted out
ome as in the PD [16℄. Together withthe generous 
hi
ken game (GCG), also 
alled the battle of sexes [17℄ or 
oordination game, CG belongs to a
lass of games where neither player has a dominating strategy. For a GCG, playing defe
t in
reases the payo�for both of them, unless the other agent also plays defe
t (T > S > R > P ).In table 1.1b, R and P are assumed to be �xed to 1 and 0 respe
tively. This 
an be obtained through a twosteps redu
tion where all variables are �rst subtra
ted by P and then divided by R−P . This makes it possibleto des
ribe the games with only two parameters S′ = (S − P )/(R− P ) and T ′ = (T − P )/(R− P ). In fa
t we
an 
apture all possible 2x2 games in a two-dimensional plane.In �gure 1.1 the parameter spa
e for PD, CG and GCG de�ned by S′ and T ′, is shown. T ′ = 1 marks adividing line between 
on�i
t and 
ooperation. S′ = 0 marks the line between CG and PD. T ′ < 1 means thatplaying 
ooperate (R) is favored over playing defe
t (T ) when the other agent 
ooperates. This prevents an
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88 Bengt Carlsson and K. Ingemar JönssonTable 1.1Pay-o� matri
es for 2∗2 games where R = reward, S = su
ker, T = temptation and P = punishment. In b the four variables
R, S, T and P are redu
ed to two variables S′ = (S − P )/(R − P ) and T ′ = (T − P )/(R − P )a Cooperate Defe
t b Cooperate Defe
tCooperate R S Cooperate 1 (S − P )/(R − P )Defe
t T P Defe
t (T − P )/(R − P ) 0

Fig. 1.1. The areas 
overed by three kinds of 
on�i
ting games in a two-dimensional plane: prisoner's dilemma, 
hi
kengame and generous 
hi
ken gameagent from being �sel�sh� in a surrounding of 
ooperation. Con�i
ting games are expe
ted when T ′ > 1 be
auseof better out
ome playing temptation (T ).In an evolutionary 
ontext, the payo� obtained from a parti
ular game represents the 
hange in �tness(reprodu
tive su

ess) of a player. Maynard Smith [18℄ des
ribes an evolutionary resour
e allo
ation within a
2x2 game as a hawk and dove game. In the matri
es of table 1.1 a hawk 
onstitutes playing D, and a dove
onstitutes playing C. A hawk gets all the resour
es playing against a dove. Two doves share the resour
ewhereas two hawks es
alate a �ght about the resour
e. If the 
ost of obtaining the resour
e for the hawks isgreater than the resour
e there is a CG, otherwise there is a PD. In a generous CG (not a hawk and dove game)more resour
es are obtained for both agents when one agent defe
ts 
ompared to both playing 
ooperate ordefe
t.Re
ent analyses have fo
used on the e�e
ts of mistakes in the implementation of strategies. In parti
ular,su
h mistakes, usually 
alled noise, may allow evolutionary stability of pure strategies in iterated games [9℄. Twoseparate 
ases are generally 
onsidered: the trembling hand noise and misinterpretations. Within the tremblinghand noise ([24, 4℄) a perfe
t strategy would take into a

ount that agents o

asionally do not perform theintended a
tion1. In the misinterpretations 
ase an agent may not have 
hosen the �wrong� a
tion. Instead it isinterpreted as su
h by at least one of its opponents, resulting in agents keeping di�erent opinions about whathappened in the game. This introdu
tion of mistakes represents an important step, as real biologi
al systemsas well as 
omputer systems will usually involve un
ertainty at some level.Here, we study the behavior of strategies in iterated games within the prisoner's dilemma and 
hi
ken gamepayo� stru
tures, under di�erent levels of noise. We �rst give a ba
kground to our simulations, in
luding around robin tournament and a 
hara
terization of the strategies that we use. We then present the out
ome ofiterated population tournaments, and dis
uss the impli
ations of our results for game theoreti
al studies on theevolution of 
ooperation.

1In this metaphor an agent 
hooses between two buttons. The trembling hand may, by mistake, 
ause the agent to press thewrong button
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ess of Cooperative Strategies in the Iterated Prisoner's Dilemma and the Chi
ken Game 892. Games, Strategies, and Simulation Pro
edures.2.1. Games. A game 
an be modeled as a strategi
 or an extensive game. A strategi
 game is a modelof a situation in whi
h ea
h agent 
hooses his plan of a
tion on
e and for all, and all agents' de
isions aremade simultaneously while an extensive game spe
i�es the possible orders of events. The strategi
 agent is notinformed of the plan of a
tion 
hosen by any other agent while an extensive agent 
an 
onsider its plan of a
tionwhenever a de
ision has to be made. All the agents in our analyses are strategi
. All strategies may a�e
t themoves of the other agent, i. e. to play C or D, but not the payo� value, so the latter does not in�uen
e thestrategy. The kind of games that we simulate here have been 
alled e
ologi
al simulations, as distinguished fromevolutionary simulations in whi
h new strategies may arise in the 
ourse of the game by mutation ([3℄). However,e
ologi
al simulations in
lude all 
omponents ne
essary for the mimi
king of an evolutionary pro
ess: variationin types (strategies), sele
tion of these types resulting from the di�erential payo�s obtained in the 
ontests, anddi�erential propagation of strategies over generations. Consequently, we �nd the distin
tion between e
ologi
aland evolutionary simulations based on the 
riteria of mutation rather misleading.The PDs and CGs that we analyze are repeated games with memory, usually 
alled iterated games. Initerated games some ba
kground information is known about what happened in the game up to now. In oursimulation the strategies know the previous moves of their antagonist2. In all our simulations, intera
tionsamong players are pair-wise, i. e. a player intera
ts with only one player at a time2.2. Ni
e and Mean Strategies. Axelrod ([1, 5, 2, 3℄) 
ategorized strategies as ni
e or mean. A ni
estrategy never plays defe
tion before the other player defe
ts, whereas a mean strategy never plays 
ooperationbefore the opponent 
ooperates. Thus the ni
e and mean terminology des
ribes an agent's next move.A

ording to the 
ategorization of Axelrod Tit-for-tat, TfT, is a ni
e strategy, but it 
ould as well beregarded as a repeating strategy. Another 
ategory of strategies is a group of forgiving strategies 
onsisting ofSimpleton, Grofman, and Fair. They 
an, unlike TfT, avoid getting into mutual defe
tion by playing 
ooperate.If the opponent does not respond to this forgiving behavior they start to play defe
t again. Finally we separatea group of revenging strategies, whi
h retaliate a defe
tion at some point of the game with defe
tion for the restof the game. Friedman and Davis belong to this group of strategies.The prin
iple for the 
ategorization of strategies into ni
e and forgiving against defe
ting strategies, whi
huse threats and punishments, is un
lear. For instan
e, why is TfT not just treated as a strategy repeating thea
tion of the other strategy instead?2.3. Generous and Greedy Strategies. One alternative way of 
ategorizing strategies is to group themtogether as being generous, even-mat
hed, or greedy ([11, 10℄). If a strategy more often plays as a su
ker, nS ,than playing temptation, nT , then it is a generous strategy nS > nT . An even-mat
hed strategy has nS ≈ nTand a greedy strategy has nS < nT where nS and nT are the proportion an agent plays su
ker and temptation,respe
tively.Boerlijst, et al [8℄ uses a similar 
ategorization into good or bad standings. An agent is in good standing ifit has 
ooperated in the previous round or if it has defe
ted while provoked, i. e., if the agent is in good standingit should not be greedy unless the other agent was greedy the round before. In every other 
ase of defe
tionthe agent is in bad standing, i. e. it tries to be greedy. The generous and greedy 
ategorization uses a stableapproa
h, a on
e and for all 
ategorization3, 
ontrary to the more dynami
 good and bad standing dealing withwhat happened in the previous move.The stable approa
h of the generous and greedy 
ategorization makes it easier to analyze this model. Thebasis of the partition is that it is a zero-sum game at the meta-level in that the sum of proportions of thestrategies nS must equal the sum of the strategies nT . In other words, if there is a generous strategy, then theremust also be a greedy strategy.The 
lassi�
ation of a strategy 
an 
hange depending on the surrounding strategies. Let us assume we havethe following four strategies:
• Always Cooperate (AllC) has 100 per 
ent 
o-operate nR + nS when meeting another strategy. AllCwill never a
t as a greedy strategy.
• Always Defe
t (AllD) has 100 per
ent defe
t nT + nP when meeting another strategy. AllD will nevera
t as a generous strategy.

2One of the strategies, Fair, also remembers its own previous moves
3For a 
ertain set of strategies
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Fig. 2.1. Proportions of R, S, T and P for di�erent strategies. There is a generous strategy if nS > nT and a greedy strategyif nS < nT

• Tit-for-tat (TfT) always repeats the move of the other 
ontestant, making it a repeating strategy. TfTnaturally entails that nS ≈ nT .
• Random plays 
ooperate and defe
t approximately half of the time ea
h. The proportions of nS and
nT will be determined by the surrounding strategies.Random will be a greedy strategy in a surrounding of AllC and Random, and a generous strategy in asurrounding of AllD and Random. Both TfT and Random will behave as an even-mat
hed strategy in thepresen
e of only these two strategies as well as in a surrounding of all four strategies, with AllC and AllDparti
ipating in the same proportions. All strategies are even-mat
hed when there is only a single strategy left.The strategies used in our iterated prisoner's dilemma (IPD) and iterated 
hi
ken game (ICG), in all 14di�erent strategies plus playing Random, are presented in table 2.1. AllC, AllD and Random do not need anymemory fun
tion at all be
ause they always do the same thing (whi
h for Random means always randomize).TfT and ATfT need to look ba
k one move be
ause they repeat or reverse the move of its opponent. Most ofthe other strategies also need to look ba
k one move but may respond to defe
tion or show forgiveness.AllC de�nitely belongs to a group of generous strategies and so do 95% Cooperate (95%C), tit-for-two-tats(Tf2T), Grofman, Fair, and Simpleton, in this spe
i�
 environment.The even-mat
hed group of strategies in
ludes TfT, Random, and Anti-tit-for-tat (ATfT).Within the group of greedy strategies, Feld, Davis, and Friedman belong to a smaller family of strategiesdoing more 
o-operation moves than Random, i. e. having signi�
antly more than 50 % R or S. An analogousfamily 
onsists of Joss, Tester, and AllD. These strategies 
o-operate less frequently than does Random.What will happen to a parti
ular strategy depends both on the surrounding strategies and on the 
hara
-teristi
s of the strategy. For example, AllC will always be generous while 95%C will 
hange to a greedy strategywhen these two are the only strategies left. The des
ribed relation between strategies is independent of whatkind of game is played, but the a
tual out
ome of the game is related to the payo� matrix.2.4. Simulation Pro
edures. The set of strategies used in our �rst simulation in
ludes some of Axelrod'soriginal strategies and a few, later reported, su

essful strategies. Of 
ourse, these strategies represent only avery limited number of all possible strategies. However, the emphasis in our work is on di�eren
es between IPDand ICG. Whether there exists a single "`best of the game"' strategy is outside the s
ope of our analyses.Mistakes in the implementation of strategies (noise) were in
orporated by atta
hing a 
ertain probability pbetween 0.02 and 20% to play the alternative a
tion (C or D), and a 
orresponding probability (1 − p) to playthe original a
tion.
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ken Game 91Table 2.1Des
ription of the di�erent strategies used in the �rst simulation (see se
tion 3.1)Strategy First move Des
riptionAllC C Cooperates all the time95%C C Cooperates 95% of the timeTf2T C tit-for-two-tats, Cooperates until its opponent defe
ts twi
e,and then defe
ts until its opponent starts to 
ooperate againGrofman C Cooperates if R or P was played, otherwise it 
ooperates witha probability of 2/7Fair C A strategy with three possible states, - 'satis�ed' (C), 'apolo-gizing' (C) and 'angry' (D). It starts in the satis�ed state and
ooperates until its opponent defe
ts; then it swit
hes to itsangry state, and defe
ts until its opponent 
ooperates, beforereturning to the satis�ed state. If Fair a

identally defe
ts,the apologizing state is entered and it stays 
ooperating un-til its opponent forgives the mistake and starts to 
ooperateagainSimpleton C Like Grofman, it 
ooperates whenever the previous moveswere the same, but it always defe
ts when the moves di�ered(e.g.S)TfT C Tit-for-tat. Repeats the moves of the opponentFeld C Basi
ally a tit-for-tat, but with a linearly in
reasing (from 0with 0.25% per iteration up to iteration 200) probability ofplaying D instead of CDavis C Cooperates on the �rst 10 moves, and then, if there is a de-fe
tion, it defe
ts until the end of the gameFriedman C Cooperates as long as its opponent does so. On
e the oppo-nent defe
ts, Friedman defe
ts for the rest of the gameATfT D Anti-tit-for-tat. Plays the 
omplementary move of the oppo-nentJoss C A TfT-variant that 
ooperates with a probability of 90%,when opponent 
ooperated and defe
ts when opponent de-fe
tedTester D Alters D and C until its opponent defe
ts, then it plays a Cand TfTAll D D Defe
ts all the timeOur population tournament involves two sets of analyses. In the �rst set, the strategies are allowed to
ompete within a round robin tournament with the aim of obtaining a general evaluation of the tenden
y ofdi�erent strategies to play 
ooperate and defe
t. In a round robin tournament, ea
h strategy is paired on
e withall other strategies plus its twin. The results from the round robin tournament are used within the populationtournament but will not be presented here (for the results see [10℄). In the se
ond set, the 
ompetitive abilitiesof strategies in iterated population tournaments were studies within the IPD and the ICG. We also 
ondu
teda se
ond simulation of the IPD and the ICG where two sets of strategies were used. We used the strategies in�gure 2.2 represented by �nite automata [15℄. The play between two automata is a sto
hasti
 pro
ess where all�nite memory strategies 
an be represented by in
reasingly 
ompli
ated �nite automata. Memory-0 strategies,like AllC and AllD, do not involve any memory 
apa
ity at all. If the strategy in use only has to look ba
k atone draw, there is a memory-1 strategy (a 
hoi
e between two 
ir
les dependent of the other agent's move). Allthe strategies in �gure 2.2 belong to memory-0 or memory-1 strategies.Both sets of strategies in
lude AllD, AllC, TfT, ATfT and Random. In the �rst set of strategies, the
ooperative-set �ve AllC variants (100, 99.99, 99.9, 99 and 90% probability of playing C) are added. In these
ond set of strategies, the defe
tive-set the 
orresponding �ve AllD variants (100, 99.99, 99.9, 99 and 90%
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Fig. 2.2. a) AllD (and variants) b) TfT 
) ATfT d) AllC (and variants). On the transition edges, the left symbol 
orrespondto an a
tion done by a strategy against an opponent performing the right symbol, where an X denotes an arbitrary a
tion. Y inCy and Dy denotes a probability fa
tor for playing C and D respe
tivelyprobability of playing D) are added. Cy and Dy in �gure 2.2 show a probability fa
tor y 100, 99.99, 99.9, 99,90% or for the Random strategy 50% for playing C and D respe
tively.3. Population Tournament With Noise.3.1. First Simulation. We evaluated the strategies in table 2.1 by allowing them to 
ompete within around robin tournament.To obtain a more general treatment of IPD and ICG, we used several variants of payo� matri
es withinthese games, based on the general matrix of table 3.1. In this matrix, C stands for 
ooperate; D for defe
t and
q is a 
ost variable. Table 3.1Payo� values used in our simulation. q is a 
ost parameter. 0 < q < 0.5 de�nes a prisoner's dilemma game, while q > 0.5de�nes a 
hi
ken game Player 2Player 1 C DC 1.5 1D 2 1.5 - qThe payo� for a D agent playing against a C agent is 2, while the 
orresponding payo� for a C agent playingagainst a D agent is 1, et
. Two C agents share the resour
e and get 1.5 ea
h.The out
ome of a 
ontest with two D agents depends on q. For 0 < q < 0.5, a PD game is de�ned,and for q > 0.5 we have a CG. Simulations were run with the values for (1.5 − q) set to 1.4 and 1.1 forPD, and to 0.9, 0.6, and 0.0 for the CG (these values are 
hosen with the purpose to span a wide range ofthe games but are otherwise arbitrarily 
hosen). We also in
luded Axelrod's original matrix Ax (R = 3, S =
0, T = 5 and P = 1) and a 
ompromise dilemma game CD (R = 2, S = 2, T = 3 and P = 1). A CD islo
ated on the borderline between the CG area and the generous CG area. In the dis
ussion part we also
ompare the mentioned strategies with a 
oordination game CoG (R = 2, S = 0, T = 0 and P = 1), the onlygame with T ′ < 1. CoG is in
luded as a referen
e game and does not belong to the 
on�i
ting games. In�gure 3.1 all these games are shown within the two-dimensional plane. The CD is 
losely related to the 
hi
kengame and CoG is a game with two Nash equilibria, playing (C,C) or playing (D,D) (see also Johansson et
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Fig. 3.1. The di�erent game matri
es represented as dots in a 2-dimensional diagram. CoG is the 
oordination game, CDthe 
ompromise dilemma and Ax is the original Axelrod game. The unmarked dots represent 0.0, 0.6, 0.9, 1.1 and 1.4 from upperleft to lower rightal. [12℄). Ea
h game in the tournament was played on average 100 times (randomly stopped)4 and repeated5000 times.In the se
ond part of the simulation, strategies were allowed to 
ompete within a population tournamentfor the iterated games. These simulations were based on the same payo� matri
es for IPD and ICG as in theinitial round robin tournament. Based on the su

ess in the single round-robin tournaments, strategies wereallowed to reprodu
e 
opies into the next round robin tournament, 
reating a population tournament, i. e. aquality 
ompetition in the round-robin tournament (make a good s
ore) is transformed to an in
reased numberof 
opies in the population tournament. Ea
h of the �fteen strategies starts with 100 
opies resulting in atotal population of 1500. The number of 
opies for ea
h strategy 
hanges, but the total of 1500 
opies remains
onstant. The proportions of the di�erent strategies propagated into a new generation were based on the payo�s
ores obtained in the pre
eding round-robin tournament. A given strategy intera
ts with the other strategiesin the proportions that they o

ur in their global population. The games were allowed to 
ontinue until a singlewinning strategy was identi�ed, i. e. the whole population 
onsists of the same strategy, or until the number ofgenerations rea
hed 10,000. In most of the simulations, a winning strategy was found before rea
hing this limit.Also, if a pure population of agents with the random strategy are allowed to 
ompete with ea
h other ina population game, a single winning strategy will be found after a number of generations, i. e. there are smallsimulation variations between di�erent agents in their a
tual play of C and D moves. As seen in �gure 3.2, within
reased total population size of agents the number of generations for �nding a winning strategy in
reases.This almost linear in
rease (r = 0.99) is only marginally dependent of what game is played.Randomized strategies with 100 individuals are a

ording to �gure 3.2 supposed to halt, i. e. all 1500individuals belong to the same initial strategy, after approximately 2800 generations in a population game.Whi
h strategy that wins will vary between the games. There are two possible kinds of winning strategies: purestrategies that halt, and mixed strategies (two or more pure strategies) that do not halt. If there is an a
tive
hoi
e of a pure strategy it should halt before 2800 generations, be
ause otherwise playing random 
ould betreated as a winning pure strategy. There is no reason to believe that a single strategy winner should be foundby extending the simulation beyond 10000 generations. If there exists a pure solution, this solution should turnup mu
h earlier.The e�e
t of un
ertainty (noise) in the 
hoi
e of a
tions (C or D) by the agents within the tournamentswas analyzed by repeating the tournaments in environments of varying levels of noise. Tournaments were run
4If an agent knows exa
tly or with a 
ertain probability when a game will end, it may use su
h information to improve itsbehavior. Be
ause of this, the length of the games was determined probabilisti
, with an equal 
han
e of ending the game withea
h given move (see also [1℄)
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Fig. 3.2. Number of generations for �nding a winning strategy among 15 random strategies with a varying population sizeat 0, 0.02, 0.2, 2, and 20% noise. The probability of making a mistake was neither dependent on the sequen
eof behaviors up to a 
ertain generation, nor on the identity of the player. Noise will a�e
t the implementationof all strategies ex
ept for the strategy Random. We fo
used on three di�erent aspe
ts when 
omparing theIPDs and ICGs, whi
h will be further analyzed in the dis
ussion part:1. The number of generations for �nding a winning strategy.2. Di�eren
es in robustness for the investigated strategies.3. The behavior of the, generally regarded, 
ooperative strategy TfT in IPD and ICG.3.2. Se
ond Simulation. To obtain a more general treatment of IPD and ICG, we used several variantsof payo� matri
es within these games, based on the general matrix of table 3.2.Table 3.2A payo� matrix for PD and CG. C stands for 
ooperate, D for defe
t, and s1 and s2 are 
ost variables. If s1 > 1 it is a PD.If s1 < 1 it is a CG Cooperate (C) Defe
t (D)Cooperate (C) 1 1-s1Defe
t (D) 1+s2 0In the �rst set of simulations we investigated the su

essfulness of the agents using di�erent strategies (onestrategy per agent) in a round-robin tournament. Sin
e this is independent of the a
tual payo� value, the sameround-robin tournament 
an be used for both IPD and ICG. Every agent was paired with all the other agentsplus a 
opy of itself. Every meeting between agents in the tournament was repeated on average 100 times(randomly stopped) and played for 5000 times.The result from the two-by-two meetings between agents using di�erent strategies in the round robintournament was used in a population tournament. The tournament starts with a population of 100 agents forea
h strategy, making a total population of 900. The simulation halts when there is a winning strategy (all900 agents use the same strategy) or when the number of generations ex
eeds 10.000. Agents are allowed to
hange strategy and the population size remains the same during the whole 
ontest. For the IPD the followingparameters were used: s1 ∈ {1.1, 1.2 . . .2.0} and s2 ∈ {0.1, 0.2 . . .1.0, 2.0}, making a total of 110 di�erent games.For the ICG games with parameter settings s1 ∈ {0.1, 0.2 . . .0.9} and s2 ∈ {0.1, 0.2 . . .1.0, 2.0} a total of 99di�erent games were run. Ea
h game is repeated during 100 plays and the average su

ess is 
al
ulated for ea
hstrategy. For ea
h kind of game there is both the 
ooperative set and the defe
tive set explained in se
tion 2.4.
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ken Game 954. Results.4.1. First Simulation. In �gure 4.1 and �gure 4.2 the su

ess of individual strategies in IPD, ICG andCD population games at no noise and 0.2% of noise are shown. The repeating strategy TfT is represented bya solid line, the generous strategies Simpleton, Grofman, and Fair by dashed lines, and the greedy strategiesFriedman and Davis by dotted lines.In the IPD games TfT, Friedman and Davis are the most su

essful with no noise (�gure 4.1), while TfT,Grofman, Fair and Friedman are the most su

essful with 0.2% noise (�gure 4.2). For the other levels of noise(not shown in �gures) TfT, and for Axelrod's matrix also Tf2T, is dominating with 0.02%. With 2% noiseDavis and TfT dominates, and �nally AllD and Friedman are the dominating strategies with 20% noise.At no noise all three groups of strategies are approximately equally su

essful in ICG (�gure 4.1), witha minor advantage for the generous strategies Simpleton, Grofman, and Fair. This advantage in
reases within
reasing noise. The greedy strategies Friedman and Davis disappear at 0.02% noise and TfT at 0.2% noise(�gure 4.2) leaving the generous strategies alone at 0.2% and 2% noise. At 20% noise AllD supplements the setof su

essful strategies.

Fig. 4.1. Per
entage of runs won by strategies in the population games for di�erent 
hi
ken games (0.9, 0.6, 0), prisoner±dilemmas (1.4, Ax, 1.1) and the 
ompromise dilemma with 0% noiseThe greedy strategies Friedman and Davis 
ompletely outperform Simpleton, Grofman, Fair and TfT strate-gies in CD. With in
reasing noise ATfT (0.2-20% noise) and AllD (20% noise) be
ome more su

essful as partof a mixed set of strategies, be
ause CD does not �nd a single winner (Figure 10).Finally, in CoG Tf2T and TfT are dominating with 0% noise. Tf2T together with AllC and Grofman
onstitute all the winning strategies with 0.02%, 0.2% and 2% noise. 95%C is the only winner with 20% noise.With in
reased noise the group of Simpleton, Grofman, and Fair be
ome more and more su

essful inICG up to and in
luding 2% noise. When noise is introdu
ed, IPDs favor the repeated TfT. With in
reasednoise the greedy Friedman and Davis disappears for both ICG and IPD. Finally, with 20% noise AllD is thedominating strategy. More and more defe
ting strategies will dominate with in
reasing noise in IPD. Finally inCD the greedy strategies Friedman and Davis dominates. In 
ontrast to IPD and CD 
ooperating and generousstrategies dominate in ICG whi
h makes the ICG the best 
andidate for �nding robust strategies.On average there was 80% a

ordan
e (for all levels of noise) between winning strategies in di�erent ICG,i. e. four out of �ve strategies being the same. In the IPD there was a dis
repan
y with only on average 35% ofthe winning strategies being the same. The performan
e of the 0.4 and Ax matri
es are similar within the ICG.This was espe
ially notable for both matri
es without noise (on average 75%) and for the 0.4 matri
es with 2and 20% noise (on average 55%).
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Fig. 4.2. Per
entage of runs won by strategies in the population games for di�erent 
hi
ken games (0.9, 0.6, 0), prisoner±dilemmas (1.4, Ax, 1.1) and the 
ompromise dilemma with 0.2% noise

Fig. 4.3. Number of generations for �nding a winning strategy in 
hi
ken games, prisoner± dilemmas and 
ompromisedilemma at di�erent levels of noiseIn �gure 4.3, the number of generations needed to �nd a winning strategy is plotted for di�erent levelof noise. The dotted line shows the expe
ted generations (2800) for 
ompeting Random strategies mentionedearlier. At 0 or low levels of noise more generations are needed in the ICG for �nding a winner than in IPD.The lowest numbers of generations are needed with 2% of noise and the highest with 0% and 20% noise. Thereis no single strategy winner for the CD game with 0.2% noise and aboveIn summary; 
oordination games give mutual 
ooperation the highest results, whi
h favors ni
e, but to aless extent too forgiving, strategies. Compared to the ICG, IPD is less punishing towards mutual defe
tion,
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ken Game 97Table 4.1The di�eren
e between pure and mixed-strategies in IPD and ICG. For details see textIPD ICGCooperativeset Defe
tive set Cooperativeset Defe
tive setPure strategies TfT 78% AllD20% TfT 75% AllD20% TfT 3% TfT 2%Mixed strate-gies none none 2-strat 61% 3-strat 33% 2-strat 69% 3-strat 24%whi
h allows repeating and greedy strategies to be
ome more su

essful. Finally in the 
ompromise dilemma,where playing the opposite to the opponent is favored, greedy and/or a mixture of di�erent strategies arefavored. With in
reased noise (2% or below), generous strategies be
ome more and more su

essful in ICGwhile repeating and greedy strategies are more su

essful in IPD.4.2. Se
ond Simulation. In a surrounding of a 
ooperative or a defe
tive set of strategies a majordi�eren
e between pure and mixed strategies for IPD and ICG are shown in table 4.1. IPD has no su

essfulmixed strategies at all, while ICG favors mixed-strategies for an overwhelming majority of the games. Somedetails not shown in table 4.1 are dis
ussed below.For the 
ooperative set there is a single strategy winner after on average 167 generations. TfT wins 78%of the plays and is dominating in 91 out of 110 games5. AllD is dominating in the rest of the games and wins20% of the plays.For the defe
tive-set there is a single strategy winning in 47 generations on average. TfT is dominating 84games, AllD 21 games and 99.99D, playing D 99.99% of the time, 5 games out of 110 games in all. TfT wins75% of the plays, AllD 20% and 99.99D 4%.In the 
ooperative-set there are two formations of mixed strategies winning most of the games; one withtwo strategies and the other with three strategies involved. This means that when the play was �nished after10000 generations not a single play 
ould separate these strategies �nding a single winner. The two-strategyset ATfT and AllD wins 61% of the plays and the three-strategy set ATfT, AllD and AllCtot wins 33% of theplays. AllCtot means that one and just one of the strategies AllC, 99.99C, 99.9C, 99C or 90C is the winningstrategy. For 3% of the games there was a single TfT winner within relatively few generations (on average 754generations).In the defe
tive-set there is the same two formations winning most of the games. ATfT + AllDtot wins69% of the plays and ATfT + AllC + AllDtot wins 24% of the plays. AllDtot means that one and just one ofthe strategies AllD, 99.99D, 99.9D, 99D or 90D is the winning strategy. TfT is a single winning strategy in 2%of the plays, whi
h needs on average 573 generations before winning a play.In the C-variant set all AllC variants are generous and TfT is even mat
hed. AllD, ATfT and Random areall greedy strategies. In the D-variant set all AllD variants are greedy and TfT is still even-mat
hed. AllC,ATfT and Random are now representing generous strategies.In the IPD the even-mat
hed TfT is a dominating strategy in both the C- and D-variant set with the greedyAllD as the only primary alternative. So the IPD will end up being a fully 
ooperative game (TfT) or a fullydefe
ting game (AllD) after relatively few generations. This is the 
ase both for the C-variant set and, withineven fewer generations, for the D-variant set.In ICG there is instead a mixed solution between two or three strategies. In the C-variant ATfT and AllDform a greedy two-strategy set6. In the three-strategy variant the generous AllCtot join the other two. In all,generous strategies only 
onstitute about 10% of the mixed strategies. In the D-variant the generous ATfTforms various strategy sets with the greedy AllDtot.5. DISCUSSION. In our investigation we found ICG to be a strong 
andidate for being the major
ooperate game. ICG seems to fa
ilitate 
ooperation as mu
h as or even more than IPD, espe
ially under noisy
onditions. Axelrod regarded TfT to be a leading 
ooperative strategy, but in our investigation we found TfT
5A game is dominated by a 
ertain strategy if it wins more than 50 out of 100 plays
6With just ATfT and AllD left ATfT will behave as a generous strategy even though it starts o� as a greedy strategy in theC-variant environment
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ess under noisy 
onditions within ICG. These statements will be further addressed in thedis
ussion below.If it is true that more 
ooperating strategies are favored in ICG, we should also expe
t ni
e and forgivingstrategies to be su

essful in this game. In the ICG, both players that play defe
t are faring the worst, whi
hshould favor generous strategies. Both ICG and 
oordination game favors ni
e, non-revenging, strategies, butunlike 
oordination game ICG may forgive a defe
tion from the opponent. This makes ICG a primary 
andidatefor being the main 
ooperative game, favoring both ni
eness and forgivingness.Most studies today 
onsider the IPD as a 
ooperative game where ni
e and forgiving strategies are su

essful.A typi
al winning strategy, like TfT, ends up as an agent playing 
ooperate all the time. There are 
ontradi
toryarguments about 
ooperation within 
hi
ken games. The advantage of 
ooperation may be expe
ted to bestronger, be
ause the 
ost of defe
tion is higher than in the prisoner's dilemma. Lipman [16℄ suggests that inICG, mutual 
ooperation is less 
learly the best out
ome be
ause there is no dominant strategy. Ea
h agentprefers the equilibrium in whi
h it defe
ts and the other 
ooperates, but has no way to for
e the other agentto 
ooperate. A mixed strategy or a set of strategies, unlike a single dominant strategy, may favor mutual
ooperation. With pure and mixed strategies we here refer to the set of strategies (played by individuals)winning the population tournament. A mixed strategy is a 
ombination of two or more strategies from thegiven set of strategies i. e. an extended strategy set 
ould in
lude the former mixed strategy as a pure strategy.In the normalized matri
es sto
hasti
 memory-0 and memory-1 strategies are used. The main di�eren
ebetween IPD and ICG is best shown by the two strategies TfT and ATfT. TfT does the same as its opponent.This is a su

essful way of behaving if there is a pure-strategy solution be
ause it for
es the winning strategyto 
ooperate or defe
t, but not doing both. ATfT is doing very badly in IPD be
ause it tries to jump betweenplaying 
ooperate and defe
t.In ICG we have a totally di�erent assumption be
ause a mixed-strategy solution is favored (at least inthe present simulation). ATfT does the opposite as its opponent but 
annot by itself form a mixed-strategysolution. It has to rely on other 
ooperative or defe
t strategies. In all di�erent ICG ATfT is one of theremaining strategies, while TfT is only o

asionally winning a play.For a simple strategy setting like the 
ooperative and defe
tive-set, ICG will not �nd a pure strategy winnerat all but a mixture between two or more strategies, while IPD qui
kly �nds a single winner.Unlike the single play PD, whi
h always favors defe
t, the IPD will favor playing 
ooperate. In CG theadvantage of 
ooperation should be even stronger, be
ause it 
osts more to defe
t 
ompared to the PD, butin our simulation greedier strategies were favored with memory-0 and memory-1 strategies. We think this newparadox 
an be explained by a greater robustness of the 
hi
ken game. This robustness may be present if morestrategies, like the strategies in the two other simulations, are allowed and/or noise is introdu
ed. Robustnessis expressed by two or more strategies winning the game instead of a single winner or by a more sophisti
atedsingle winner. Su
h a winner 
ould be 
TfT, Pavlov, or Fair in the presen
e of noise, instead of TfT. Also, withminor ex
eptions this is also true for noise between 0.02% and 20%.An interesting ex
eption to the higher su

ess of 
ooperating strategies within ICG is the poor su

essunder noisy 
onditions of TfT. The vulnerability of TfT to errors in the implementation of a
tions within theIPD is well known and has been dis
ussed extensively ([3, 19, 4, 27, 7, 21, 22℄). The even poorer ability ofTfT to handle noise within the ICG, is however a novel �nding. The 
lassi
al des
ription by Axelrod [3℄ ofa su

essful strategy in a deterministi
 (non-noisy) environment is that it should be ni
e (not be the �rst todefe
t), provo
able (immediately punish defe
tion), forgiving (immediately re
ipro
ate 
ooperation), and simple(easily re
ognizable). Obviously, under noisy 
onditions TfT either behaves less ni
e, provo
able, forgiving, andsimple, or these 
hara
teristi
s are of less value in the ICG. Axelrod and Dion [4℄ suggested that the di�
ultyfor TfT to handle noise is an inherent 
onsequen
e of generosity: vulnerability to exploitation. Errors in theimplementation of strategies give rise to un
onditional 
ooperation, whi
h under
uts the e�e
tiveness of simpleand re
ipro
ating strategies. It also introdu
es mutual defe
tion among TfT players, redu
ing their obtainedpayo�s [22℄. In the long run, the average payo�s of two intera
ting TfT players in a noisy environment 
onvergeto that of two intera
ting Random players [19℄. Thus, the main problem for TfT in a noisy environment maybe to 
ope with 
opies of itself.A solution to the problem of noise for a strategy is to punish defe
tion in the other player less readily thandoes TfT. This 
an be done either by not immediately responding to an opponent's defe
tion or by avoidan
eof responding to the other player's defe
tion after one has made an unintended defe
tion [19℄; see also [27℄.Thus, some modi�ed versions of TfT, Contrite tit-for-tat (CTfT) and generous tit-for-tat (GTfT) have proved



The Su

ess of Cooperative Strategies in the Iterated Prisoner's Dilemma and the Chi
ken Game 99to 
ope mu
h better with noise than the original TfT ([27, 9℄). Bendor [6℄ 
on
ludes that un
ertainty sometimesa�e
ts ni
e strategies negatively but he also proposes that re
ipro
ating but untrustworthy strategies may startto 
ooperate be
ause of unintended a
tions.Several attempts have been made to 
lassify strategies a

ording to their willingness to play 
ooperateand defe
t, respe
tively, the 
lassi
al being Axelrod's [1℄ distin
tion between ni
e and mean strategies based onwhether a strategy's �rst draw is 
ooperate or defe
t, respe
tively. Under noisy 
onditions, the stati
 des
riptionof a strategy based on its behavior under non-noisy be
omes more or less meaningless. Naturally, a ni
e strategythen be
omes meaner, and a mean strategy be
omes ni
er, but the a
tual behavior is di�
ult to evaluate.6. CONCLUSION. In our opinion, the dis
ussion about the evolution of 
ooperative behavior has reliedtoo heavily on analyses within the prisoner's dilemma 
ontext. The di�eren
es in the out
ome of IPD and ICGshown in our study suggest that future game theoreti
al analyses on 
ooperation should explore alternativepayo� environments. The 
hi
ken game was dis
ussed as a spe
ial 
ase within the general hawk and dove
ontext by Maynard Smith [18℄, but for some reason subsequent game theoreti
al studies has almost ex
lusivelyfo
used on the prisoner's dilemma. This is unfortunate, sin
e the 
hi
ken game appears to us to be a veryinteresting game in explaining the evolution of 
ooperative behavior. If we give the involved agents the abilityto establish trust the di�eren
e between the two kinds of games are easier to understand. In the PD establishing
redibility between the agents means establishing trust, whereas in CG, it involves 
reating fear, i. e. avoidingsituations where there is too mu
h to lose [25℄. This makes ICG a strong 
andidate for being a major 
ooperategame together with IPD. We therefore hope that in future studies, more attention will be paid to the role of
hi
ken games in the evolution of agents with 
ooperative behavior within multi agent systems.REFERENCES[1℄ R. Axelrod, E�e
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alable Computing: Pra
ti
e and Experien
eVolume 8, Number 1, pp. 101�114. http://www.s
pe.org ISSN 1895-1767© 2007 SWPSA MULTI-AGENT INFRASTRUCTURE FOR ENHANCING ERP SYSTEMINTELLIGENCEANDREAS L. SYMEONIDIS†‡∗, KYRIAKOS C. CHATZIDIMITRIOU† , DIONYSIOS KEHAGIAS‡ , AND PERICLESA. MITKAS†‡Abstra
t. Enterprise Resour
e Planning systems e�
iently administer all tasks 
on
erning real-time planning and manufa
-turing, material pro
urement and inventory monitoring, 
ustomer and supplier management. Nevertheless, the in
orporation ofdomain knowledge and the appli
ation of adaptive de
ision making into su
h systems require extreme 
ustomization with a 
ost thatbe
omes una�ordable, espe
ially in the 
ase of SMEs. In this paper we present an alternative approa
h for in
orporating adaptivebusiness intelligen
e into the 
ompany's ba
kbone. We have designed and developed a highly re
on�gurable, adaptive, 
ost e�
ientmulti-agent framework that a
ts as an add-on to ERP software, employing Data Mining and Soft Computing te
hniques in order toprovide intelligent re
ommendations on 
ustomer, supplier and inventory management. In this paper, we present the ar
hite
tureand development details of the developed framework, and demonstrate its appli
ation on a real test 
ase.Key words. ERP systems, Data Mining, Soft Computing, Multi-Agent Systems, Adaptive De
ision Making1. Introdu
tion. Enterprise Resour
e Planning (ERP) systems are business management tools that au-tomate and integrate all 
ompany fa
ets, in
luding real-time planning, manufa
turing, sales, and marketing.These pro
esses produ
e large amounts of enterprise data that are, in turn, used by managers and employeesto handle all sorts of business tasks su
h as inventory 
ontrol, order tra
king, 
ustomer servi
e, �nan
ing andhuman resour
es [16℄.Despite the support 
urrent ERP systems provide on pro
ess 
oordination and data organization, mostof them � espe
ially lega
y systems � la
k advan
ed De
ision-Support (DS) 
apabilities, resulting therefore inde
reased 
ompany 
ompetitiveness. In addition, from a fun
tionality perspe
tive, most ERP systems are limitedto mere transa
tional IT systems, 
apable of a
quiring, pro
essing, and 
ommuni
ating raw or unsophisti
atedpro
essed data on the 
ompany's past and present supply 
hain operations [25℄. In order to optimize businesspro
esses in the ta
ti
al supply 
hain management level, the need for analyti
al IT systems that will work in 
lose
ooperation with the already installed ERP systems has already been identi�ed, and DS-enabled systems standout as the most su

essful gateway towards the development of more e�
ient and more pro�table solutions.Probing even further, Davenport [7℄ suggests that de
ision-making 
apabilities should a
t as an extension of thehuman ability to pro
ess knowledge and proposes the uni�
ation of knowledge management systems with the
lassi
al transa
tion-based systems, while Carlsson and Turban [3℄ 
laim that the integration of smart add-onmodules to the already established ERP systems 
ould make standard software more e�e
tive and produ
tivefor the end-users.The bene�ts of in
orporating su
h sophisti
ated DS-enabled systems inside the 
ompany's IT infrastru
tureare analyzed by Holsapple and Senna [14℄. The most signi�
ant, among others, are:1. Enhan
ement of the de
ision maker's ability to pro
ess knowledge.2. Improvement of reliability of the de
ision support pro
esses.3. Provision of eviden
e in support of a de
ision.4. Improvement or sustainability of organizational 
ompetitiveness.5. Redu
tion of e�ort and time asso
iated with de
ision-making, and6. Augmentation of the de
ision makers' abilities to ta
kle large-s
ale, 
omplex problems.Within the 
ontext of Small and Medium sized Enterprises (SMEs) however, applying analyti
al and math-emati
al methods as the means for optimization of the supply 
hain management tasks is highly impra
ti
al,being both money� and time�
onsuming [5, 31℄. This is why alternative te
hnologies, su
h as Data Mining andAgent Te
hnology have already been employed, in order to provide e�
ient DS-enabled solutions. The in
reased�exibility of multi-agent appli
ations, whi
h provide multiple lo
i of 
ontrol [30℄ 
an lead to less developmente�ort, while the 
ooperation primitives that Agent Te
hnology adopts point to MAS as the best 
hoi
e for ad-dressing 
omplex tasks in systems that require synergy of multiple entities. Moreover, DM has repeatedly been
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102 A. L. Symeonidis et al.used for Market Trend Analysis, User Segmentation, and Fore
asting. Knowledge derived from the appli
ationof DM te
hniques on existing ERP histori
al data 
an provide managers with useful information, whi
h mayenhan
e their de
ision-making 
apabilities.Going brie�y through related work, we see that DM and MAS have been used separately for e�
iententerprise management and de
ision support. Rygielski et. al. [24℄ have exploited DM te
hniques for CustomerRelationship Management (CRM), while Choy et. al. [4, 5℄ have used a hybrid ma
hine learning methodologyfor performing Supplier Relationship Management (SRM). On the other hand, MAS integrated with ERPsystems have been used for produ
tion planning [22℄, and for the identi�
ation and maintenan
e of oversightsand malfun
tions inside the ERP systems [15℄.Elaborating on previous work, we have integrated AT and DM advantages into a versatile and adaptivemulti-agent system that a
ts as an add-on to established ERP systems. Our approa
h employs Soft Computing,DM, Expert Systems, standard Supply Chain Management (SCM) and AT primitives, in order to provide intel-ligent re
ommendations on 
ustomer, supplier, and inventory issues. The system is designated to assist not onlythe managers of a 
ompany � �Managing by wire� approa
h [12℄ �, but also the lower-level, distributed de
isionmakers � �Cowboys� approa
h [18℄. Our framework utilizes the vast amount of 
orporate data stored insideERP systems to produ
e knowledge, by applying data mining te
hniques on them. The extra
ted knowledge isdi�used to all interested parties via the multi-agent ar
hite
ture, while domain knowledge and business rulesare in
orporated into the system by the use of rule-based agents. It merges the, already proven 
apabilitiesof data mining with the advantages of multi-agent systems in terms of autonomy and �exibility, and thereforepromises a great likelihood of su

ess.The rest of the paper is organized as follows. Se
tion 2 presents the extensive Re
ommendation Frameworkin detail and des
ribes the fun
tional 
hara
teristi
s of the di�erent types of agents that 
omprise it. Se
tion 3illustrates the basi
 fun
tional operations of IPRA, an already developed add-on in a real enterprise environment.Finally, Se
tion 4 summarizes the work presented, and 
on
ludes this paper.2. The Intelligent Re
ommendation Framework. The arrival of a new 
ustomer order designates theinitialization of the Intelligent Re
ommendation Framework (IRF) operation. All 
ustomer order preferen
esare, at �rst, gathered by the system operator via a front-end agent and are then transferred to the ba
kbone(order) agents for pro
essing. The order pro
essing agents are of di�erent types, ea
h one related to a spe
i�
entity of the supply 
hain (
ompany, 
ustomers, suppliers, produ
ts), and manage entity-spe
i�
 data. In orderto establish 
onne
tivity to the ERP system's database and a

ess ERP data, another agent has also beenimplemented. By the use of DM te
hniques, all related entities' pro�les are 
onstru
ted for the re
ommendationpro
edure to be based on. When all pro
esses are �nalized, the front-end agent returns to the operator theintelligent re
ommendations produ
ed by the framework, along with an explanatory memo. These re
ommen-dations are not designed to substitute the human operator, rather to aid him/her and the 
ompany to in
reasepro�t and e�
iently manage 
ustomer orders and 
ompany supplies.2.1. IRF Ar
hite
ture. The general IRF ar
hite
ture is illustrated in Figure 2.1. The IRF agents belongto one of six di�erent agent types (Q1 − Q6) and are listed in Table 2.1. The main 
hara
teristi
s and thefun
tionality of ea
h type are dis
ussed in the following paragraphs.Table 2.1The IRF agent types and their fun
tionalityAgent type Name Fun
tionality
Q1 COA � Customer Order Agent GUI agent
Q2 RA � Re
ommendation Agent Organization & De
ision Making agent
Q3 CPIA � Customer Pro�le Identi�
ation Agent Knowledge Extra
tion agent
Q4 SPIA � Supplier Pro�le Identi�
ation Agent Knowledge Extra
tion agent
Q5 IPIA � Inventory Pro�le Identi�
ation Agent Knowledge Extra
tion agent
Q6 ERPA � Enterprise Resour
e Planning Agent Interfa
e agent2.1.1. Customer Order Agent type (COA). COA is an interfa
e agent that may operate at thedistribution points, or at the telephone 
enter of an enterprise. COA enables the system operator to: a) transferinformation into and out of the system, b) input order details into the system, and 
) justify, by means ofvisualization tools, the proposed re
ommendations. When an order arrives into the system, COA provides the
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Fig. 2.1. The IRF ar
hite
tural diagramhuman agent with basi
 fun
tionalities for inserting information on the 
ustomer, the order details (produ
tsand their 
orresponding quantities), payment terms (
ash, 
he
k, 
redit et
.), ba
korder poli
ies and, �nally,the party (
lient or 
ompany) responsible for transportation 
osts. COA also en
ompasses a unit that displaysinformation in various forms to explain and justify the re
ommendations issued by the RA.2.1.2. Re
ommendation Agent type (RA). The RA is responsible for gathering the pro�les of theentities involved in the 
urrent order and for issuing re
ommendations. By distributing the pro�le requeststo the appropriate Information Pro
essing Layer agents (CPIA, SPIA and IPIA - ea
h one of them operatingon its own 
ontrol thread), and by exer
ising 
on
urren
y 
ontrol, this agent diminishes the 
y
le-time of there
ommendation pro
ess. RA is a rule-based agent implemented using the Java Expert System Shell (JESS) [9℄.Stati
 and dynami
 business rules 
an be in
orporated into the RA. The latter must be written into a do
umentthat the agent 
an read during its exe
ution phase. In this way, business rules 
an be modi�ed on-the-�y,without the need of re
ompiling, or even restarting the appli
ation.2.1.3. Customer Pro�le Identi�
ation Agent Type (CPIA). CPIA is designed to identify 
ustomerpro�les, utilizing the histori
al data maintained in the ERP system. The pro
ess 
an be des
ribed as follows:Initially, managers and appli
ation developers produ
e a model for generating the pro�les of 
ustomers. Theysele
t the appropriate 
ustomer attributes that 
an be mapped from the data residing in the ERP database;these are the attributes that are 
onsidered instrumental for reasoning on 
ustomer value. Then, they de
ide
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lassi�
ation of 
ustomers, i.e., added-value to the 
ompany, dis
ount due to past transa
tionset
. CPIA, by the use of 
lustering te
hniques, analyzes 
ustomer pro�les periodi
ally, and stores the out
omeof this analysis into a pro�le repository for posterior retrieval. When a CPIA is asked to provide the pro�leof a 
ustomer, the 
urrent attributes of the spe
i�
 
ustomer are requested from the ERP database and aremat
hed against those in the pro�le repository, resulting into the identi�
ation of the group the spe
i�
 
ustomerbelongs to. During the development phase, one or more CPIA agents 
an be instantiated, and the distin
tionof CPIAs into training and re
ommendation ones, results to qui
ker response times when learning and inferen
epro
edures overlap.2.1.4. Supplier Pattern Identi�
ation Agent Type (SPIA). SPIA is responsible for identifyingsupplier pro�les a

ording to the histori
al re
ords found in the ERP database. In a similar to CPIA manner,managers identify the key attributes for determining a supplier's value to the 
ompany and their 
redibility.SPIA then generates supplier pro�les and updates them periodi
ally. For every requested item in the 
urrentorder, the RA identi�es one or more potential suppliers and requests their pro�les from the SPIA. SPIA has toretrieve the 
urrent re
ords of all the suppliers, identify for ea
h one the best mat
h in the pro�le repository,and return the 
orresponding pro�les to the RA. Then RA 
an sele
t the most appropriate supplier 
ombination(a

ording to its rule engine), and re
ommend it to the human operator. SPIA is also responsible for fet
hingto RA information about a spe
i�
 supplier, su
h as statisti
al data on lead-times, quantities to be pro
uredet
. 2.1.5. Inventory Pro�le Identi�
ation Agent Type (IPIA). IPIA is responsible for identifying prod-u
t pro�les. Produ
t pro�les 
omprise raw data from the ERP database (i.e., produ
t pri
e, related store,remaining quantities), unsophisti
ated pro
essed data (for example statisti
al data on produ
t demand) andintelligent re
ommendations on produ
ts (su
h as related produ
ts that the 
ustomer may be willing to pur-
hase). On
e more, managers and appli
ation developers have to identify the 
ompany priorities and map thepro�le to the data maintained by the ERP. Besides the dire
tly�derived data, IPIA is responsible for identifyingbuying patterns. Market basket analysis 
an be performed with the help of asso
iation rule extra
tion te
h-niques. Sin
e this pro
ess is, in general, time-
onsuming, two or more IPIAs 
an be instantiated to separate there
ommendation from the learning pro
edure.2.1.6. Enterprise Resour
e Planning Agent Type (ERPA). ERPAs provide the middleware be-tween the MAS appli
ation and the ERP system. These agents behave like transdu
ers [11℄, be
ause theyare responsible for transforming data from heterogeneous appli
ations into message formats that agents 
an
omprehend. An ERPA handles all queries posted by CPIAs, IPIAs, and SPIAs by 
onne
ting to the ERPdatabase and fet
hing all the requested data. It works in 
lose 
ooperation with an XML 
onne
tor whi
hrelays XML-SQL queries to the ERP and re
eives data in XML format. ERPA is the only IRF agent type thatneeds to be 
on�gured properly, in order to meet the 
onne
tion requirements of di�erent ERP systems.2.1.7. Te
hnologies adopted. IRF has been developed with the use of Agent A
ademy (AA) [20, 27℄ aplatform for developing MAS ar
hite
tures and for enhan
ing their fun
tionality and intelligen
e through theuse of DM te
hniques. All the agents are developed over the Java Agent Development Framework (JADE) ([2℄,whi
h 
onforms to the FIPA spe
i�
ations [28℄, while the required ontologies have been developed through theAgent Fa
tory module (AF) of AA. Data mining has been performed on ERP data that are imported to AAin XML format, and are forwarded to the Data Miner (DM) of AA, a DM suite that expands the WaikatoEnvironment for Knowledge Analysis (WEKA) tool [29℄.The extra
ted knowledge stru
tures are represented in PMML (Predi
tive Model Markup Language), alanguage that e�
iently des
ribes 
lustering, 
lassi�
ation and asso
iation rule knowledge models [6℄. Theresulting knowledge has been in
orporated into the agents by the use of the Agent Training Module (ATM) ofAA. All ne
essary data �les (ERP data, agent behavior data, knowledge stru
tures, agent ontologies) are storedinto AA's main database, the Agent Use Repository (AUR). Agents 
an be periodi
ally re
alled for retraining,sin
e appropriate agent tra
king tools have been in
orporated into Agent A
ademy, in order to monitor agenta
tivity after their deployment.2.2. Installation and Runtime Work�ows. On
e a 
ompany 
hooses to add IRF to its already oper-ating ERP system, a few important steps have to be performed. The installation pro
edure of the IRF is shownin Figure 2.2.



A MAS for enhan
ing ERP intelligen
e 105
Business Process Assessment

Business Processes Analysis and Mapping

Business Rules Development Ontology Creation System Parameter Configuration XML-SQL Queries Construction

Agent Type Instantiation

System Ready

     Reconfiguration

      No Reconfiguration

Fig. 2.2. Installing IRF on top of an existing ERPAt �rst, the 
ompany's business pro
ess expert, along with the IRF appli
ation developers have to make adetailed analysis and assessment of the 
urrent 
ustomer order, inventory and produ
ts pro
urement pro
esses.The results are mapped to the re
ommendation pro
ess of the add-on and the relevant datasets are delineatedin the ERP.After modeling the re
ommendation pro
edure a

ording to the needs of the 
ompany, parallel a
tivitiesfor produ
ing required do
uments and templates for the 
on�guration of the MAS appli
ation follow. Fixedbusiness rules in
orporating 
ompany poli
y are transformed to expert system rules, XML-SQL queries arebuilt and stored in the XML do
uments repository, ontologies (in RDFS format) are developed for the messagesex
hanged and for the de
ision on the work�ow of the agents, agent types instantiation requirements arede�ned (at di�erent workstations and 
ardinalities) and other additional parameters are 
on�gured (i.e., simpleretraining time-thresholds, parameters for the data-mining algorithms, su
h as support and 
on�den
e formarket basket analysis et
).On
e bootstrapped, re
on�guration of the system parameters is quite easy, sin
e all related parameters aredo
uments that 
an be 
onveniently re-engineered. Figure 2.3 illustrates the work�ow of the SPIA, where allthe tasks des
ribed earlier in this se
tion, 
an be dete
ted. In 
ase IRF needs to be modi�ed due to a 
hange inthe 
ompany pro
esses, the re
on�guration path must be traversed. The IPIA and CPIA work�ows are similarand, thus, they are omitted.2.3. System Intelligen
e.2.3.1. Ben
hmarking 
ustomer and suppliers. In order to perform 
ustomer and supplier segregation,CPIA and SPIA use a hybrid approa
h that 
ombines data mining and soft 
omputing methodologies. Clusteringte
hniques and fuzzy inferen
ing are adopted, in order to de
ide on 
ustomer and supplier �quality�. Initially,the human experts sele
t the attributes on whi
h the pro�le extra
tion pro
edures will be based on. Theseattributes 
an either be so
io-demographi
, managerial or �nan
ial data, deterministi
 or probabilisti
. Werepresent the deterministi
 attributes, whi
h are dire
tly extra
ted from the ERP database by ERPA, as Deti,
i = 1, ...n, where n is the 
ardinality of the sele
ted deterministi
 attributes. On the other hand, we representthe average (AV G) and standard deviation values (STD) of probabilisti
 variables, whi
h are 
al
ulated byERPA, as AV Gj and STDj, j = 1..m, where m is the 
ardinality of the sele
ted probabilisti
 attributes Pj .
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COA sends order preferences to RA

RA requests order profiles

CPIA recieves request for customer's profiles

SPIA recieves request for suppliers' profiles

RA applies fixed business policies to profiles

COA communicates order to MAS operator

Query ERPA for all supplier data

Preprocess

Maximin

Kmeans

Characterize clusters through fuzzy inference

Query order specific supplier data

Preprocess

Match current with stored profiles

Send profiles to RA

[Profiles exist] 

IPIA recieves request for products' profiles

   Pre-specified time-window

   for analysis has exceeded 

Fig. 2.3. The Work�ow of SPIAEa
h 
ustomer/supplier is thus represented by a tuple:
< Det1, ..., Detn, AV G1, STD1, ..., AV Gm, STDm) > (2.1)where i = 1..n, j = 1..m, i + j > 0. Sin
e real-world databases 
ontain missing, unknown and erroneous data[13℄, ERPA prepro
esses data prior to sending the 
orresponding datasets to the Information Pro
essing LayerAgents. Typi
al prepro
essing tasks are tuple omission and �lling of missing values.After the datasets have been prepro
essed by ERPA, they are forwarded to CPIA and SPIA. Clustering isperformed in order to separate 
ustomers/suppliers into distin
t groups. The Maximin algorithm [17℄ is usedto provide the number of the 
enters K that are formulated by the appli
ation of the K-means algorithm [19℄.This way K disjoint 
ustomer/supplier 
lusters are 
reated.In order to de
ide on 
ustomer/supplier 
lusters' added-value, CPIA and SPIA employ an Adaptive FuzzyLogi
 Inferen
e Engine (AFLIE), whi
h 
hara
terizes the already 
reated 
lusters with respe
t to an out
omede�ned by 
ompany managers, i.e., supplier 
redibility. Domain knowledge is in
orporated into AFLIE [8℄,providing to IRF the 
apability of 
hara
terization.
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lusters are the inputs to AFLIE and they may have positive (ր) or negative(ց) preferred tenden
ies, depending on their bene�
iary or harmful impa
t on 
ompany revenue. On
e domainknowledge is introdu
ed to AFLIE in the form of preferred tenden
ies and desired outputs, the attributes arefuzzi�ed a

ording to Table 2.2. Table 2.2Fuzzy variable de�nition and Interestingness of dataset attributesVariable Fuzzy TupleInput Preferred Tenden
y
Deti ր 〈Deti, [LOW,MEDIUM,HIGH],

[Deti1 , Deti2 ], T riangular〉

Deti ց 〈Deti, [LOW,MEDIUM,HIGH],
[Deti1 , Deti2 ], T riangular〉

AV Gj ր 〈AV Gj, [LOW,MEDIUM,HIGH],
[AV Gj1 , AV Gj2 ], T riangular〉

AV Gj ց 〈AV Gj, [LOW,MEDIUM,HIGH],
[AV Gj1 , AV Gj2 ], T riangular〉Output Value Range

Y Varies from Y1 to Y2with a step of x
〈Y, [#(Y2 − Y1)/x In
remental Fuzzy Values],

[Y1, Y2], T riangular〉The probabilisti
 variables are handled in an adaptive way and are used as inputs only when Chebyshev'sinequality (Eq. 2.2) is satis�ed [21℄:
P{|Pj −AV Gj |ǫ} ≤

(STDj)
2

ǫ2
, for any ǫ> 0 (2.2)Eq. 2.2 ensures the 
on
entration of probabilisti
 variables near their mean value, in the interval (AV Gj −

ǫ, AV Gj + ǫ). No attributes with high distribution are taken as inputs to the �nal inferen
e pro
edure, avoidingtherefore de
ision polarization.The formulation of the inputs (3 values: [LOW,MEDIUM,HIGH ]) leads to 3ν Fuzzy Rules (FR), where
ν is the number of AFLIE inputs. FRs are of type:If X1 is LX1(k) and X2 is LX2(k) and...and Xn is LXn(k)Then Y is LY (l), k = 1..3, l = 1..q,where q is the 
ardinality of the fuzzy values of the output. Triangular membership fun
tions are adoptedfor all the inputs and outputs, whereas maximum defuzzi�
ation is used for 
risping the FRs.All inputs are assigned a Corresponding Value (CV ), ranging from −1 to 1, a

ording to their 
ompanybene�t 
riterion (Table 2.2). The Output Value (OV ) of Y is then 
al
ulated for ea
h FR as:

OV =
∑

i=1..n+m

wi · CVi (2.3)where wi is the weight of importan
e (0≤ wi ≤ 1) of the ith input attribute.The OV s are mapped to Fuzzy Values (FV ), a

ording to the degree of dis
rimination of the output de
isionvariables. By 
ategorizing the range of the output into q fuzzy values, the OV −→ FV mapping is based onthe following formula:
FV (OV ) = RND

[

OV · [
2(n+m)

q
]

] (2.4)where RND(x) is the rounding fun
tion of x to the 
losest integer (i. e., MEDIUM for x = 3,
MEDIUM_HIGH for x = 4 et
).
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lusters have been 
hara
terized, the 
orresponding OV s, along with the 
luster 
enters, are storedinside a pro�le repository for posterior retrieval. This pro
ess signals the end of the training phase of CPIAand SPIA.In real time, when a new order 
omes into the system, RA requests the 
orresponding 
ustomer pro�le andthe pro�les of the suppliers that are related to the ordered produ
ts. CPIA and SPIA request, in turn, theattributes of these entities from ERPA, and mat
h them against the pro�les stored inside the pro�le repository,by the use of the Assigned Cluster (AC) 
riterion. AC is a 
loseness-to-
luster-
enter fun
tion, given by thefollowing equation:
AC = min

i=1..k
{

√

√

√

√

n+m
∑

i=1

(ci − xcji)} (2.5)where k is the number of 
lusters, n the number of attributes, ci is the ith attribute value of the 
luster 
enterve
tor c = (c1, c2, ..., cn), and xcij the ith attribute value of the jth 
urrent ve
tor xcj = (xcj1, xcj2, ..., xcjn).The winning 
luster along with its OV is returned to RA.2.3.2. IPIA produ
ts pro�le. The IPIA plays a dual role in the system:1. It fet
hes information on pri
e, sto
k, statisti
al data about demand fa
ed by the ordered produ
ts,and 2. It provides re
ommendations on additional items to buy, based on asso
iation rule extra
tion te
h-niques.In order to provide adaptive re
ommendations on ordering habits, IPIA in
orporates knowledge extra
tedby the Apriori algorithm ([1, 10℄. The asso
iation rules extra
ted are stored inside the pro�le repository forlater retrieval.Spe
ial attention should be drawn to the fa
t that the transa
tions in
luded into the dataset to be mined mayspan several di�erent 
ustomer order periods. XML-SQL queries 
an be adapted to perform data mining eitherto the whole dataset or the datasets of spe
i�
 periods. Thus, IPIA is highly adaptable, both for 
ompaniesin the general mer
handize domain, but also for 
ompanies that sell seasonal goods (for example toys). There
ommendations of IPIA, as well as the information 
on
erning sto
k availability and pri
e, are sent to the RA.2.3.3. RA Intelligen
e. As mentioned earlier, RA is an expert agent that in
orporates �xed businesspoli
ies applied to 
ustomers, inventories, and suppliers. These rules are related, not only to raw data retrievedfrom the ERP database and order preferen
es provided by 
ustomers, but also to the extra
ted knowledgeprovided by the Information Pro
essing agents. There are three distin
t rule types that RA 
an realize:1. Simple 〈If . . . Then . . .〉 statements,2. Rules des
ribing mathemati
al formulas, and3. Rules providing solutions to sear
h problems and 
onstraint satisfa
tion problems.An example is provided below for ea
h one of these rule types:Example 1: Simple RulesAdditional dis
ounts or burdens to the total pri
e of an order 
an be implemented by the use of simple rules(knowledge extra
ted is denoted in bold):1. IF (TotalOrderRevenue >= 100) AND (CustomerValue = LOW )THEN TotalDiscount+ = 5%;2. IF (CustomerValue = LOW ) THEN TotalDiscount− = 5%;3. IF (ProductT ype = ChristmasProducts) AND (TotalQuantity >= 100)THEN ProductDiscount+ = 10%;4. IF (RecommendedProductsPurchased = True)THEN ProductDiscount+ = 5%;Example 2: Mathemati
al Formulas(a) Re-order/Order-up-to-level metri
 sS
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 (sS) provides e�
ient inventory management for either no-�xed
ost orders or �xed 
ost orders [16℄. In the 
ase of no-�xed 
ost orders (where s = S), the reorder point is
al
ulated as:
sS = AV GD ·AV GL+ z ·

√

AV GL · STDD2 + AV GD2 · STDL2 (2.6)where z is a 
onstant 
hosen from statisti
al tables to ensure the satisfa
tion of a pre-spe
i�ed value for the
ompany's servi
e level. Table 2.3 illustrates the value of z in 
orrelation with the desired servi
e level. In mostlega
y ERP systems su
h attributes have to be provided by users and 
annot be derived automati
ally.Table 2.3Servi
e Level and 
orresponding z ValueServi
e Level 90% 91% 92% 93% 94% 95% 96% 97% 98% 99% 99.9%
z 1.29 1.34 1.41 1.48 1.56 1.65 1.75 1.88 2.05 2.33 3.08

Ordered quantity
LOB UOB0% 100%

Do not split order and fulfill order later

Split order and fulfill  a part now and the rest later

Do not split order and fulfill order nowFig. 2.4. RA order splitting poli
y(b) Splitting Poli
yA splitting poli
y is applied when 
ompany sto
k availability 
annot satisfy order needs. Upon arrival of anew order, the quantity of ordered items and available sto
k are 
ross-
he
ked. If the requested quantities areavailable, the order is ful�lled immediately. Otherwise, the �nal supplying poli
y that the RA re
ommends isset a

ording to the s
hema illustrated in Figure 2.4.The LOB and UOB thresholds depend on the estimated 
ustomer value. In 
ase we 
hoose to in
orporateprodu
t dis
ount and 
ustomer priority into our splitting poli
y (for example, 
ustomers that enjoy betterdis
ount and have a higher priority to have a lower LOB and an higher UOB), we may adjust LOB and UOBa

ording to the following equations:
LOB = αl · exp[−(bplp̂+ bdld̂)] (2.7)
UOB = αu · exp(bpup̂+ bdud̂) (2.8)where p̂ is the priority normalized fa
tor, d̂ is the dis
ount normalized fa
tor, while the weighting fa
tors

〈αl, bpl, bdl, αu, bpu, bdu〉 are estimated in order to satisfy minimal requirements on LOB and UOB range.If available sto
k is below LOB% of the ordered quantity, the entire order is put on hold until the 
ompanyis supplied with adequate quantities of the ordered item. When item availability falls within the [LOB−UOB]%range of the ordered quantity, the order is split. All available sto
k is immediately delivered to the 
ustomer,whereas the rest is ordered from the appropriate suppliers. Finally, in 
ase the available sto
k ex
eeds UOB%of the ordered quantity, the order is immediately prepro
essed and the remaining order per
entage is ignored.Example 3: Problem Sear
hing(a) Problems that require heuristi
s appli
ation and/or 
onstraint satisfa
tionBased on raw data from the ERP and on knowledge provided by SPIA, Re
ommendation Agents 
an yieldsolutions to problems like the sele
tion of the most appropriate supplier with respe
t to their added-value,
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ompany store, or the identi�
ation and appli
ation of an established 
ontra
t.(b) Enhan
ed Customer Relationship ManagementUsing the knowledge obtained by 
ustomer 
lustering, RA 
an implement a variety of targeted dis
ountstrategies in the form of 
risp rules. Thus, the 
ompany has additional �exibility in its e�orts to retain valuable
ustomers and enti
e new ones with attra
tive o�ers [23℄.Table 2.4IPRA inputs and outputs
CPIA SPIA IPIA RA 

Input 
Preferred 

Tendency 
Input 

Preferred 

Tendency 
Input Input 

Account 

balance 
���� Account balance ���� 

Stock 

Availability Ordered Quantity 

Credit Limit ���� Credit Limit ���� Item price 
Stock 

Availability 

Turnover ���� Turnover ���� Supplier ids Re-order metric 

Average Order 

Periodicity 
���� 

Average Order 

Completion 
���� 

Average Item 

Turnover (AIT) 

for the last two 
years 

Supplier 

Geographic 
Location 

Standard 

deviation of 

Order 

Periodicity 

- 

Standard 

deviation of 

Order 

Completion 

- 

Monthly 

Standard 

Deviation of 

AIT 

Lower Order 

Break-point 

Average Order 

Income 
���� 

Average 

Payment Terms 
���� 

Upper Order 

Break-point 

Standard 

deviation of 

Order Income 
- 

Standard 

deviation of 

Payment Terms 
- 

Customer 

Geographic 

Location 

Average 

Payment Terms 
���� 

Supplier 

Geographic 

Location 

���� 

Standard 

deviation of 

Payment Terms 
- 

Customer 

Geographic 

Location 

���� 

  

 

 

IPRA Outputs 

Output Value Range Output Value Range Output Output 

DISCOUNT 

Varies from 0 

– 30%, using 

a step of 5% 

SPLITTING 

POLICY 

ADDITIONAL 

DISCOUNT 
PRIORITY 

Varies from 0 

– 3, using a 

step of 1 

CREDIBILITY 

Ranging from 

0 – 1, using a 

step based on 

the number of 

supplier 

clusters 

PROPOSED 

ORDER 

ITEMS 

CUSTOMER 

STATISTICS 

 3. An IRF Demonstrator. In order to demonstrate the e�
ien
y of IRF, we have developed IPRA [26℄,an Intelligent Re
ommender module that employs the methodology presented in Chapter 5. The system wasintegrated into the IT environment of a large retailer in the Greek market, hosting an ERP system with asu�
iently large data repository. IPRA was slightly 
ustomized to fa
ilitate a

ess to the existing Ora
le�database.Our system proved itself 
apable of managing over 25.000 transa
tion re
ords, resulting in the extra
tionof truly �smart� suggestions. The CPIA and the SPIA performed 
lustering of over 8.000 
ustomers (DIQ3dataset) and 500 suppliers (DIQ4
dataset), respe
tively, while IPIA performed asso
iation rule extra
tion on
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ustomer transa
tions (DIQ5
dataset).All the attributes used by the Information Pro
essing agents as inputs for DM, their 
orresponding preferredtenden
y, the inputs of the RA JESS engine, as well as the outputs of the IPRA system and their value range,are listed in Table 2.4.The Information Pro
essing agents of IPRA, in order to provide RA with valid 
ustomer and supplier
lusters, as well as interesting additional order items, performed DM on the relevant datasets. For the spe
i�

ompany, CPIA and SPIA have identi�ed ea
h �ve major 
lusters representing an equal number of 
ustomerand supplier groups, respe
tively. Resulting 
ustomer (supplier) 
lusters, as well as the dis
ount and priority(
redibility), 
al
ulated by the CPIA (SPIA) Fuzzy Inferen
e Engine for ea
h 
luster, are illustrated in Table3.1 and Table 3.2. Table 3.1The resulting 
ustomer 
lusters and the 
orresponding Dis
ount and Priority valuesCenter ID Population (%) Dis
ount (%) Priority0 0.002 20 High1 10.150 10 Medium2 46.600 15 Medium3 22.240 10 Medium4 20.830 5 LowTable 3.2The resulting supplier 
lusters and the 
orresponding Supplier Value towards the 
ompanyCenter ID Population (%) Value0 15.203 Low1 10.112 Medium2 25.646 Low3 34.521 Medium4 13.518 HighTable 3.3The generated asso
iation rules with the prede�ned support and 
on�den
e thresholds.Generated Rules Support Con�den
e25 2% 90%10 4% 90%IPIA, on the other hand, has extra
ted a number of asso
iation rules from the re
ords of previous orders,as shown in Table 3.3.

Fig. 3.1. GUI of Customer Order Agent with information on the new order
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eiving an order, the human agent 
olle
ts all the ne
essary information,in order to provide IPRA with input. Data 
olle
ted are handled by COA, the GUI agent of the system. Aninstan
e of the GUI is illustrated in Figure 3.1.

Fig. 3.2. The �nal IPRA Re
ommendationAll information on items and quantities to be ordered, ba
korder poli
y, payment method, and transporta-tion 
osts are given as input to IPRA. When the order pro
ess is initialized, COA forwards to the CPIA, SPIA,IPIA and RA respe
tively the already 
olle
ted information. CPIA 
he
ks on the 
luster the 
lient falls into,SPIA de
ides on the best supplier, (a

ording to his/her added-value), in 
ase an order has to be pla
ed tosatisfy 
ustomer demand, IPIA proposes additional items for the 
ustomer to order, and all these de
isions arepassed on to the RA, whi
h de
ides on the splitting poli
y, (if needed) and on additional dis
ount.Figure 3.2 illustrates the �nal re
ommendation 
reated. Detailed information on the order and its produ
ts,
ustomer suggested priority and dis
ount, 
ustomer 
lusters, supplier suggested value and supplier 
lusters,additional order items, suggested order poli
y and statisti
s, are at the disposal of the human agent, to evaluateand realize the transa
tion at the maximal bene�t of the 
ompany.4. Con
lusions. An ERP system, although indispensable, 
onstitutes a 
ostly investment and the pro
essof updating business rules or adding 
ustomization modules to it is often una�ordable, espe
ially for SMEs.The IRF methodology aspires to over
ome the already mentioned de�
ien
ies of non DS-enabled ERP systems,in a low-
ost yet e�
ient manner. Knowledge residing in a 
ompany's ERP 
an be identi�ed and dynami
allyin
orporated into versatile and adaptable CRM/SRM solutions. IRF integrates a number of enhan
ements intoa 
onvenient pa
kage and establishes an expedient vehi
le for providing intelligent re
ommendations to in
oming
ustomer orders and requests for quotes. Re
ommendations are independently and perpetually adapted, withoutan adverse impa
t on IRF run-time performan
e. IRF ar
hite
ture ensures reusability and re-
on�gurability,with respe
t to the underlying ERP. Table 3.4 summarizes the key enhan
ements provided by the augmentationof ERP systems with the IRF module. REFERENCES[1℄ A. Amir, R. Feldman, and R. Kashi, A new and versatile method for asso
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ements to ERPs
 IRF + ERP Legacy ERPs 

Static Business Rules 

Yes  

Provided as rule documents 

changed on the fly. 

Yes  

Hard-coded by the ERP vendor. 

Dynamic Business Rules Applied to data + knowledge Applied only to data 

Market Basket Analysis 

Yes  

Added online to the 

recommendation procedure 

No 

(Unless external MBA is performed) 

Recommendation 

Procedure 
Automatically generated Through reports 

Inventory Management 
Thresholds automatically 

adapted 

Thresholds inserted manually if 

applicable (Unless SCM module 

incorporated) 

Decision cycle-time 
Short  

(Not related to database size) 

Long 

(Related to database size) 

Distributed Decision 

Making 

Yes  

Recommendations can be used 

by lower level personnel 

No 

Adaptability High Low 

Autonomy Yes No 

Customers Intelligent 

Evaluation 
Yes 

No  

(Unless CRM module incorporated) 

Suppliers Intelligent 

Evaluation 
Yes 

No  
(Unless SRM module incorporated) 

Information Overload 

Reduction 
High 

Small  
(Through reports) 

Cost of enhancement 
Low  

(Use of AA platform) 

High  

(Customization/third party DS 

COTS) 

 [5℄ K. L. Choy, W. B. Lee, and V. Lo, Development of a 
ase based intelligent 
ustomer-supplier relationship managementsystem, Expert Systems with Appli
ations, 23 (2002), pp. 281�297.[6℄ Data Mining Group, Predi
tive model markup language spe
i�
ations (pmml), ver. 2.0., te
h. report, The DMG Consortium,2001.[7℄ T. H. Davenport, The future of enterprise system-enabled organizations, Information Systems Frontiers, 2 (2000), pp. 163�180.[8℄ A. A. Freitas, On rule interestingness measures, Knowledge-Based Systems, 12 (1999), pp. 309�315.[9℄ E. J. Friedman-Hill, Jess, The Java Expert System Shell, Sandia National Laboratories, Livermore, CA, USA, 1998.[10℄ V. Ganti, J. Gehrke, and R. Ramakrishnan, Mining very large databases, Computer, 32 (1999), pp. 38�45.[11℄ M. R. Genesereth and S. Ket
hpel, Software agents, Communi
ations of the ACM, 37 (1994), pp. 48�53.[12℄ S. H. Hae
kel and R. Nolan, Managing by wire, Harvard Business Review, O
tober 1994, pp. 122�132.[13℄ J. Han and M. Kamber, Data Mining: Con
epts and Te
hniques, Morgan Kaufmann Publishers, 2001.[14℄ C. W. Holsapple and M. P. Sena, Erp plans and de
ision-support bene�ts, De
ision Support Systems, (2004).[15℄ O. B. Kwon and J. J. Lee, A multi agent intelligent system for e�
ient erp maintenan
e, Expert Systems with Appli
a-tions, 21 (2001), pp. 191�202.[16℄ S. D. Levi, P. Kaminsky, and S. E. Levi, Designing and managing the supply 
hain, M
Graw-Hill, 2000.[17℄ C. G. Looney, Pattern Re
ognition Using Neural Networks: Theory and Algorithms for Engineers and S
ientists, OxfordUniversity Press, 1997.[18℄ T. W. Malone, Inventing the organizations of the twentieth �rst 
entury: 
ontrol, empowerment and information te
hnology,in Harvard Business Review Sept/O
t 1998, Harvard Business S
hool Press, 1998, pp. 263�284.[19℄ J. B. M
Queen, Some methods of 
lassi�
ation and analysis of multivariate observations, in Pro
eedings of Fifth BerkeleySymposium on Mathemati
al Statisti
s and Probability, L. M. L. Cam and J. Neyman, eds., 1967, pp. 281�297.[20℄ P. A. Mitkas, D. Kehagias, A. L. Symeonidis, and I. Athanasiadis, A framework for 
onstru
ting multi-agent appli-
ations and training intelligent agents, in Pro
eedings of the 4th International Workshop on Agent-Oriented SoftwareEngineering, Springer-Verlag, 2003, pp. 1�16.



114 A. L. Symeonidis et al.[21℄ A. Papoulis, Probability, Random Variables, and Sto
hasti
 Pro
esses, EDITION:2nd; M
Graw-Hill Book Company; NewYork, NY, 1984.[22℄ Y. Peng, T. Finin, Y. Labrou, B. Chu, W. Tolone, and A. Boughannam, A multi agent system for enterpriseintegration, Applied Arti�
ial Intelligen
e, 13 (1999), pp. 39�63.[23℄ R. T. Rust, V. A. Zeithaml, and K. Lemon, Driving 
ustomer Equity: How 
ustomer lifetime value is reshaping 
orporatestrategy, The Free Press, 2000.[24℄ C. Rygielsky, J. C. Wang, and D. C. Yen, Data mining te
hniques for 
ustomer relationship management, Te
hnologyin So
iety, 24 (2002), pp. 483�502.[25℄ J. Shapiro, Bottom-up vs. top-down approa
hes to supply 
hain modeling, Kluwer, 1999, pp. 737�759.[26℄ A. L. Symeonidis, D. Kehagias, and P. A. Mitkas, Intelligent poli
y re
ommendations on enterprise resour
e planningby the use of agent te
hnology and data mining te
hniques, Expert Systems with Appli
ations, 25 (2003), pp. 589�602.[27℄ A. L. Symeonidis, P. A. Mitkas, and D. Kehagias, Mining patterns and rules for improving agent intelligen
e throughan integrated multi-agent platform, in Pro
eedings of the 6th IASTED International Conferen
e on Arti�
ial Intelligen
eand Soft Computing, 2002.[28℄ The FIPA Foundations, Fipa-sl spe
i�
ations, 2000, �pa sl 
ontent language spe
i�
ation, te
h. report, The FIPA Consor-tium, Mar
h 2000.[29℄ I. H. Witten and E. Frank, Data Mining: Pra
ti
al Ma
hine Learning Tools and Te
hniques with Java Implementations,Morgan Kaufman, 2000.[30℄ M. Wooldridge, Intelligent agents, in Multiagent Systems: A Modern Approa
h to Distributed Arti�
ial Intelligen
e,G. Weiss, ed., The MIT Press, Cambridge, MA, USA, 1999, 
h. 1, pp. 27�78.[31℄ J. H. Worley, G. R. Castillo, L. Geneste, and B. Grabot, Adding de
ision support to work�ow systems by reusablestandard software 
omponents, Computers in Industry, 49 (2002), pp. 123�140.Edited by: Mar
in Paprzy
ki, Niranjan SuriRe
eived: O
tober 1, 2006A

epted: De
ember 10, 2006



S
alable Computing: Pra
ti
e and Experien
eVolume 8, Number 1, pp. 115�130. http://www.s
pe.org ISSN 1895-1767© 2007 SWPSDATA MANAGEMENT IN DISTRIBUTED SYSTEMS: A SCALABILITY TAXONOMYA VIJAY SRINIVAS AND D JANAKIRAM∗Abstra
t.Data management is a key aspe
t of any distributed system. This paper surveys data management te
hniques in variousdistributed systems, starting from Distributed Shared Memory (DSM) systems to Peer-to-Peer (P2P) systems. The 
entral fo
us ison s
alability, an important non-fun
tional property of distributed systems. A s
alability taxonomy of data management te
hniquesis presented. Detailed dis
ussion of the evolution of data management te
hniques in the di�erent 
ategories as well as the stateof the art is provided. As a result, several open issues are inferred in
luding use of P2P te
hniques in data grids and distributedmobile systems and the use of optimal data pla
ement heuristi
s from Content Distribution Networks (CDNs) for P2P grids.1. Introdu
tion. Data management is an important fa
et of distributed systems. Data managementen
ompasses the ability to des
ribe data, handle multiple 
opies (repli
ation or 
a
hing) of data obje
ts or�les, support for meta-data as well as data querying and a

essing. Di�erent approa
hes for data managementhave given importan
e to these di�erent aspe
ts and provide expli
it support, while other aspe
ts are impli
itlyor indire
tly supported. For instan
e, Distributed Shared Memory (DSM) systems and shared obje
t spa
eshandled 
onsisten
y of repli
ated data, but supported meta-data indire
tly through obje
t lookups.Orthogonal to the above mentioned issues of managing data, the main non-fun
tional 
hallenges are fault-toleran
e, s
alability and se
urity, as illustrated in [32℄. We survey various distributed systems from the per-spe
tive of s
alability of data management solutions and provide a s
alability taxonomy. We 
lassify datamanagement approa
hes into three 
ategories: Centralized/Naively Distributed (CND) te
hniques, Sophisti
at-ed/Intermediate Data (SID) management te
hniques and Large S
ale Data (LSD) management te
hniques. Wegive a brief view of the evolution of data management in ea
h of the 
ategories.CND te
hniques for data management were used by DSM systems su
h as TreadMarks [10℄, Munin [25℄ andshared obje
t spa
es su
h as Linda [24℄, Or
a [36℄ and T Spa
es [4℄. Many of these systems provide appli
ationtransparent repli
a 
onsisten
y management. They use 
entralized or naively distributed 
omponents to a
hievethe same. For instan
e, T Spa
es uses a 
entralized server for 
onsisten
y maintenan
e and for obje
t lookups,while Java Spa
es [81℄ uses a 
entralized transa
tion 
oordinator.SID te
hniques have been used mainly in data management in grid 
omputing systems su
h as [51℄, whi
hprovides a Repli
a Management Servi
e (RMS). Some of these systems are 
hara
terized by data sharing a
rossautonomous organizations at intermediate s
ale (possibly thousands of nodes). These approa
hes mainly managerepli
ated data in a grid 
omputing environment. Data grids [27℄ handle data management as �rst 
lass entitiesin addition to 
omputation issues. They are 
hara
terized by the size of the data sets, whi
h 
ould be orderof gigabytes or even terabytes. High Energy Physi
s (HEP) appli
ations su
h as GriPhyN [31℄ and CERN [79℄are examples of data grids. Other approa
hes that use SID te
hniques in
lude Content Distribution Networks(CDNs) and data management in distributed mobile systems. CDNs su
h as Akamai [43℄ have been proposedto deliver web 
ontent to users from 
loser to the edge of the Internet, enabling web servers to s
ale up. Datamanagement in distributed mobile systems are 
hara
terized by data sharing in the presen
e of mobile nodes,exempli�ed by systems su
h as Coda [74℄. The 
ommon feature a
ross these di�erent systems is the s
ale ofoperation (thousands of nodes) that distinguishes SID te
hniques for data management. Many of these systemsassume that failures are rare and reliable servers (distributed, not 
entralized) are available.LSD management te
hniques do not assume reliable servers. The distinguishing feature of LSD te
hniquesis that the exe
ution of servi
es is delegated to the edges of the Internet, resulting in high s
alability andfault-toleran
e. LSD te
hniques work well over the Internet and 
ould handle millions of nodes/data entities.Peer-to-Peer �le sharing systems su
h as Napster [57℄ and Gnutella [33℄, P2P �le storage management systemssu
h as PAST [15℄ and O
eanstore [49℄ as well as P2P extensions to Distributed DataBase Management Systems(DDBMS) su
h as PIER [38℄ and PeerDB [60℄ all fall into the LSD 
ategory.A taxonomy of data grids has been provided in [87℄. It 
ompares data grids with related data managementapproa
hes su
h as CDNs, DDBMS and P2P systems. A fun
tional perspe
tive of data management thatfo
uses on data lo
ation, integration, sharing and query pro
essing as well as the di�erent P2P systems that
∗Distributed & Obje
t Systems Lab, Dept. of Computer S
ien
e & Engg., Indian Institute of Te
hnology, Madras, India,http://dos.iitm.a
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116 A Vijay Srinivas and D Janakiramaddress these fun
tionalities is given in [50℄. A survey of P2P 
ontent distribution has been provided in [77℄.It examines P2P ar
hite
tures from the perspe
tive of non-fun
tional properties su
h as performan
e, se
urity,fairness, fault-toleran
e and s
alability. Our survey is broader and tries to provide the equivalent survey for grids,P2P systems, CDNs and DDBMS. We also provide a s
alability taxonomy that distinguishes our survey fromothers. Further, we dis
uss state of the art in several of these areas and dis
uss how ideas/
on
epts/te
hniquesfrom one area 
an be applied to others. The reader must keep in mind that though the authors have made ane�ort to be unbiased, the survey has limitations as it is per
eived through their looking glass.The rest of the paper is organized as follows. Se
tion 2 dis
usses the CND te
hniques for data managementand in
ludes DSMs and shared obje
t spa
es. Se
tion 3 dis
usses the SID te
hniques and in
ludes data manage-ment in grids, CDNs, and distributed mobile systems. Se
tion 4 dis
usses P2P data management te
hniques.Se
tion 5 explores the state of the art data management te
hniques in distributed systems. Se
tion 6 
on
ludesthe paper and in
ludes a taxonomy �gure and gives dire
tions for future resear
h.2. CND Te
hniques: Data Repli
ation in DSMs and Shared Obje
t Spa
es. DSM provides anillusion of globally shared memory, in whi
h pro
essors 
an share data, without the appli
ation developer needingto spe
ify expli
itly where data is stored and how it should be a

essed. DSM abstra
tion is parti
ularly usefulfor parallel 
omputing appli
ations, as demonstrated by TreadMarks [10℄. Collaborative appli
ations su
h ason-line 
hatting and 
ollaborative browsing would be easier to develop over a DSM.Page based DSMs 
an be more e�
ient, due to the availability of hardware support for dete
ting memorya

esses. But due to the larger granularity of sharing, page based DSMs may su�er from false sharing. Relaxed
onsisten
y models in
luding Release Consisten
y (RC) and its variants su
h as lazy RC allow false sharing to behidden more e�
iently than stri
t 
onsisten
y models [64℄. Munin [25℄ was an early DSM system whi
h fo
usedon redu
ing the 
ommuni
ation required for 
onsisten
y maintenan
e. It provides software implementation ofRC. TreadMarks [10℄ is another DSM system that provides an implementation of release 
onsisten
y. Java/DSM[91℄ provides a Java Virtual Ma
hine (JVM) abstra
tion over TreadMarks. It is an example of page based DSMs,similar to Munin and TreadMarks.Release 
onsisten
y is a widely known relaxed 
onsisten
y model for DSMs. Memory a

esses are dividedinto syn
hronization (syn
) and non-syn
hronization (nsyn
) operations. The nsyn
 operations are either dataoperations or spe
ial operations not used for syn
hronization. The syn
 operations are further divided intoa
quire and release operations. An a
quire is like a read operation to gain a

ess to a shared lo
ation. Arelease is the 
omplementary operation performed to allow a

ess to the shared lo
ation. A
quire and releaseoperations 
an be thought of as 
onventional operations on lo
ks. There are two variations of RC, RCsc�whi
hrealizes sequential 
onsisten
y and RCpc�whi
h realizes pro
essor 
onsisten
y. RCsc maintains program orderfrom an a
quire to any operation that follows it, from an operation to a release and between spe
ial operations.
RCpc is similar, ex
ept that write to read program order is not maintained for spe
ial operations. Eager RC,as the original RC be
ame subsequently known [48℄, requires ordinary shared memory a

ess to be performedonly when a subsequent release operation is due by the same pro
essor. Lazy RC (LRC) is a variation of RCin whi
h pro
essors further delay performing modi�
ations until subsequent a
quires by other pro
essors andmodi�
ations are made only by the a
quiring pro
essor. LRC intuitively assumes 
ompeting shared a

esses tobe separated by syn
hronization operations.2.1. Shared Obje
t Spa
es. Obje
t based DSMs (also known as shared obje
t spa
es) alleviate the falsesharing problem by letting appli
ations spe
ify granularity of sharing. Examples of obje
t based DSMs in
ludeLinda [24℄, Or
a [36℄, T Spa
es [4℄, JavaSpa
es [81℄ as well as an obje
t based DSM in the .NET environment[75℄. Or
a relies on an update me
hanism based on totally ordered group 
ommuni
ation to serialize a

essto repli
as. Even though a study has shown that the overhead of totally ordered group 
ommuni
ation a�e
tsappli
ation performan
e minimally [37℄1, the study was done on a Myrinet 
luster. Or
a has not been evaluatedon the Internet s
ale. T spa
es is a shared obje
t spa
e from IBM [4℄ that adds database fun
tionality toLinda tuplespa
e [24℄ and is implemented in Java to take advantage of its wider usability. In addition to thetraditional Linda primitives of in, out, read, T spa
es supports set oriented operators and a novel rendezvousoperator 
alled rhonda. Global shared obje
ts [90℄ allows heap obje
ts in a JVM to be shared a
ross nodes.Based on memory a

ess patterns of appli
ations, it also proposes various 
onsisten
y me
hanisms to be realizede�
iently. However, it uses lo
ks and per-obje
t lo
k managers for keeping repli
as 
onsistent. It does notaddress failures of the lo
k manager. Java Spa
es spe
i�
ation from Sun [81℄ provides a distributed persistent

1This is due to its 
hoi
e of whi
h obje
ts to repli
ate�those with high read/write ratios and e�
ient implementation of totallyordered group 
ommuni
ation.
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alability Taxonomy 117shared obje
t spa
e using Java RMI and Java serialization. It provides Linda-like operations on the tuple spa
eand uses Jini's transa
tion spe
i�
ation to a
hieve serializability of write operations. It also does not addressfault toleran
e, an important issue for Internet s
ale systems.2.1.1. Globe. Globe [3℄ attempted to address the 
hallenges of building software infrastru
ture for de-veloping appli
ations over the Internet. A key design obje
tive of Globe was to provide a uniform model fordistributed 
omputing. This means that Globe provides a uniform way to a

ess 
ommon servi
es (su
h asnaming, repli
ation and 
ommuni
ation) without sa
ri�
ing distribution transparen
y. Obje
ts in Globe en
ap-sulate poli
ies for repli
ation, migration, et
. Ea
h obje
t 
omprises multiple sub-obje
ts, allowing an obje
t tobe physi
ally distributed. The di�erent sub-obje
ts of an obje
t in
lude one ea
h for semanti
s (fun
tionality),
ommuni
ation (sending/re
eiving messages), repli
ation and 
ontrol �ow. This helps the programmer to sepa-rate fun
tionality from orthogonal non-fun
tional properties su
h as repli
ation. Obje
ts also help in realizingdistribution transparen
y by hiding implementation details behind well de�ned interfa
es. The implementationframework of Globe is �exible, meaning that di�erent implementations of the same interfa
es are possible. Italso provides an e�
ient me
hanism for obje
t lookups by using a tree based hierar
hi
al naming spa
e. Itmust be observed that distributed obje
t middleware su
h as CORBA [61℄ also provide similar servi
es su
h asnaming and trading. But they 
annot provide obje
t-spe
i�
 poli
ies that 
an be provided in Globe.2.2. Software Availability and Usage Summary. To the knowledge of the authors, T spa
es andJava Spa
es are widely used and are available as open sour
e software. Linda is a spe
i�
ation and has beenimplemented by several groups. Or
a and Globe are resear
h prototypes, information on their deployment anduse is not available.2.3. Observations. We have proposed a generi
 s
alability model for analyzing distributed systems in [6℄.It takes the view that s
alability of distributed systems should be analyzed 
onsidering related issues su
h as
onsisten
y, syn
hronization, and availability. We give below the essen
e of the model.
scalability = f(avail, sync, consis, workload, faultload)
• avail is availability�
an be quanti�ed as the ratio of the number of transa
tions a

epted versus thosesubmitted.
• 
onsis is 
onsisten
y, itself a fun
tion of update ordering and 
onsisten
y granularity. Update orderingrefers to the update ordering me
hanisms a
ross repli
as of an obje
t and 
an be one of 
ausal, seri-alizable or PRAM. Consisten
y granularity refers to the grain size at whi
h 
onsisten
y needs to bemaintained.
• syn
 refers to syn
hronization among the repli
as. The two dimensions of syn
hronization are how oftenthe repli
as are syn
hronized and the mode of syn
hronization (push/pull).
• workload 
an be broken down into workload intensity (number of transa
tions per se
ond or number of
lients) and workload servi
e demand 
hara
terization (CPU time for operations).
• faultload refers to the failure sequen
es and the number as well as lo
ation of the repli
as.The s
alability model given above is useful to identify bottlene
ks in distributed systems. By applying thes
alability model on shared obje
t spa
es, we have identi�ed the key bottlene
ks that inhibit existing sharedobje
t spa
es (with the ex
eption of Globe) from s
aling up to the Internet:
• Centralized ComponentsMany existing DSMs and shared obje
t spa
es have some 
entralized 
omponents that a�e
t theirs
alability. For instan
e, Or
a has a sequen
er for realizing totally ordered group 
ommuni
ation, whileothers like T Spa
es [4℄ have a 
entralized 
omponent for obje
t lookups.
• FailuresExisting shared obje
t spa
es do not handle failures. For instan
e, JavaSpa
es and global shared obje
tsdo not handle failures of transa
tion 
oordinator, while Or
a does not handle failure of the sequen
er.
• Obje
t LookupGiven an obje
t identi�er (id), e�
ient me
hanisms must exist that maps the id to the node that eitherstores a repli
a or stores meta-data about the repli
a. Existing shared obje
t spa
es su
h as T Spa
esuse 
entralized lookup me
hanisms. Obje
t lookup me
hanisms in distributed obje
t middleware su
has CORBA and DCOM also have di�
ulty in handling failures and s
aling up.
• Consisten
ySeveral existing DSM systems su
h as TreadMarks, Munin and shared obje
t spa
es su
h as JavaSpa
esprovide relaxed 
onsisten
y me
hanisms su
h as release 
onsisten
y and entry 
onsisten
y. Relaxed
onsisten
y me
hanisms have also been explored in other areas [66, 52℄. However, to our knowledge,



118 A Vijay Srinivas and D Janakiramthese me
hanisms have not been evaluated in Internet s
ale systems. Peer-to-Peer (P2P) systems whi
hhave been s
aled to the Internet, su
h as Pastry [69℄ and Tapestry [17℄ assume repli
as are read-only.3. SID Te
hniques for Data Management.3.1. Computing Grids. Globus [39℄ a de-fa
to standard toolkit for grid 
omputing systems, relies onexpli
it data transfers between 
lients and 
omputing servers. It uses the GridFTP proto
ol [19℄ that providesauthenti
ation based e�
ient data transfer me
hanism for large grids. Globus also allows data 
atalogues, butleaves 
atalogue 
onsisten
y to the appli
ation. The paper [51℄ explores the interfa
es required for a Repli
aManagement Servi
e (RMS) that a
ts as a 
ommon entry point for repli
a 
atalogue servi
e, meta-data a

essas well as wide area 
opy. It does not address 
onsisten
y issues per se. Further, the RMS is 
entralized and maynot s
ale up. The other grid paper that has addressed data management issues [29℄ outlines possible use-
asesand gives higher level view of the data management requirements in a grid. The quorum s
heme it des
ribes forhandling read-write may have to be modi�ed in an Internet kind of an environment to handle quorum dynami
s.Further, it does not address various granularities of repli
ation and uses lo
ks for syn
hronization. The paper [78℄also addresses read-write data 
onsisten
y in a grid environment based on a lazy update propagation algorithm.The update propagation algorithm is based on timestamps and may not s
ale up to work in a large s
ale gridenvironment (Update 
on�i
ts are handled manually by appli
ation programmer - non-trivial task). Attemptshave also been made to extend the existing 2Phase Commit (2PC) based algorithms [82℄. These would needglobal agreement and may be expensive in an Internet setting.3.2. Data Grids. A generi
 ar
hite
ture for handling large data sets in grid 
omputing environments hasbeen proposed in [27℄. It des
ribes the way data grid servi
es su
h as repli
ation and repli
a sele
tion 
an bebuilt over basi
 servi
es of data and meta-data a

ess. It assumes that repli
as (�le instan
es) are read-only.GriPhyN [31℄ attempts to support large-s
ale data management in High Energy Physi
s (HEP) appli
ationsas well as for astronomy and gravitational wave physi
s. GriPhyN provides users transparent a

ess to bothraw and pro
essed data (The term virtual data is used to refer to both). It 
an 
onvert raw data to pro
esseddata by s
heduling required 
omputations and data transfers. GriPhyN is built on top of Globus. It takesappli
ation meta-data and maps it into a Dire
ted A
y
li
 Graph (DAG), whi
h is an abstra
t representationof the required a
tions on data sets. A request planner takes the DAG and transforms it into a 
on
rete DAG,whi
h 
an be exe
uted by a grid s
heduling system su
h as Condor-G [42℄.CERN, the European organization for nu
lear resear
h, is also involved in handling 
omputation on largedata sets in the HEP area. Obje
t level as well as �le level repli
ation for data grids has been explored in[79℄, a CERN e�ort. It also assumes �les are read only and 
an be repli
ated without need for 
onsisten
yproto
ols. They support repli
a 
atalogs to handle meta-data. A
tual �le/obje
t transfers are a
hieved usingGridFTP [19℄.Data related a
tivities on the grid su
h as queuing, monitoring and s
heduling need to be 
arefully man-aged, as data 
ould be
ome bottlene
k for data intensive appli
ations. Currently, these data related tasks areperformed manually or by simple s
ripts. The main goal of Stork [85℄ was to make data a �rst 
lass 
itizen onthe grid. Data pla
ement jobs have di�erent 
hara
teristi
s from 
ompute intensive jobs and so, may have tobe treated di�erently. Stork is a separate s
heduler for s
heduling and managing data intensive jobs on grid.Data related a
tivities are represented in the form of a DAG. Stork 
an intera
t with higher level planners su
has Dire
ted A
y
li
 Graph Manager (DAGman) whi
h is a part of CondorG. Enhan
ements have been madeto DAGman to make it submit 
ompute intensive jobs to grid s
hedulers su
h as CondorG and data intensivejobs to Stork. Stork also supports di�erent heterogeneous storage systems and various data transfer proto
ols.Case studies have demonstrated the use of Stork as a pipeline between two heterogeneous storage systems andfor runtime adaptation of data transfers.3.3. Content Distribution Networks. Web servers had di�
ulty in handling the �ash 
rowd problem.The �ash 
rowd problem refers to a large number of requests 
oming in suddenly, overwhelming the server'sbandwidth, or CPU or ba
k-end transa
tion infrastru
ture. Web servers have bursty request nature, for instan
eduring a football mat
h in World Cup or during an ele
tion 
ounting pro
ess, resulting in the �ash 
rowdproblem. Content Distribution Networks (CDNs) su
h as Akamai [43℄ have been proposed to handle thisproblem and to enable web servers to s
ale up. A separate infrastru
ture of dedi
ated servers spread a
ross theInternet was built by several 
ompanies to o�oad 
ontent distribution from web servers or to deliver 
ontentfrom the edge of the Internet. Akamai's CDN 
onsists of over twelve thousand servers a
ross thousand di�erentnetworks. They use either URL rewriting or DNS interposition to redire
t 
lient requests to the proximal CDNserver.
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alability Taxonomy 119Studies have shown that 
a
hing is bene�
ial in CDNs as they mainly deliver images or videos (stati

ontent) [44℄. Akamai CDNs a
hieved 
a
he hit rates of nearly 88% in another study that 
ompared the CDNswith P2P �le sharing systems for distributing 
ontent [76℄. This shows that CDNs are bene�
ial for 
ontentdelivery and 
an redu
e response time for 
lients. However, another study has shown that the average responsetime for 
lients is not a�e
ted by employing CDNs [44℄. But they avoid worst 
ase of badly performing serversrather than routing 
lient requests to an optimal CDN server.Ca
he 
onsisten
y be
omes a 
hallenging issue in order to deliver non-stati
 
ontent to 
lients. Traditional
a
hing me
hanisms su
h as leasing [22℄ may not be dire
tly appli
able to CDNs. Origin servers would have tokeep tra
k of ea
h CDN proxy that 
a
hes an obje
t (web do
ument) from the server. It must also manage thelease related issues for that CDN proxy, in
luding notifying the CDN proxy on updates to the obje
t. The CDNproxy has to renew the lease to re
eive further noti�
ations. Me
hanisms for CDNs must be s
alable, requiringthe CDN proxies to 
ooperatively maintain 
onsisten
y. Cooperative leases has been proposed as a s
alableme
hanism for maintaining 
a
he 
onsisten
y in CDNs. [12, 11℄. Ea
h obje
t is assigned a ∆ parameter, whi
hindi
ates the time or the rate 1/∆ at whi
h an origin server noti�es interested CDN proxies of updates to thatobje
t. This allows 
onsisten
y to be relaxed implying that CDN proxy 
an be noti�ed only on
e every ∆ timeunits, instead of after every update. Leases are 
ooperative, meaning that a CDN proxy a
ts as a leader for aCDN proxy group for lease related intera
tions with an origin server. The leader is responsible for notifying theother CDN proxies. This redu
es both the state maintained at the origin server and the number of updates itmust send.3.4. Data Management in Distributed Mobile Systems. Distributed Mobile Systems (DMS) aredistributed systems in whi
h some nodes may be mobile and may have 
onstraints. These 
onstraints 
ouldbe battery or memory or 
omputing power related. Data 
ould either be stored on or be a

essed from mobiledevi
es. Di�erent kinds of management have been identi�ed, with respe
t to the level of transparen
y toappli
ations in [54℄. Client transparent adaptation allows appli
ations to seamlessly a

ess data without beingaware of mobility, with the system providing 
omplete support. The other extreme is a laisse-faire modelin whi
h adaptation is entirely at user level, with the system providing no support. There are a wealth ofstrategies between the two extremes, that allow appli
ations to be aware of mobility in varying degrees in
ludingappli
ation aware adaptation and extended 
lient server models.Coda [74℄ was one of the early �le systems that allows 
lients to seamlessly a

ess information, an example of
lient transparent adaptation. The main goal of Coda was to enable operations to be performed on a shared datarepository, even in the fa
e of dis
onne
ted operations. Dis
onne
tions may be frequent in DMS. Venus is the
a
he manager on ea
h 
lient that manages the 
a
he, hiding mobility from the appli
ation. Venus 
a
hes volumemappings, with a volume referring to a subtree of the Coda namespa
e. In the fa
e of 
onne
ted operations,Coda uses server repli
ation and 
allba
k based 
a
he 
oheren
e to ensure session semanti
s (
ontents will belatest when a session is starting and after it ends) for appli
ations. During dis
onne
tions, Venus relies on
a
he 
ontents and propagates failure to appli
ation when a 
a
he miss o

urs. When dis
onne
tion ends, Codareverts ba
k to server repli
ation by using reintegration operations using logs.Appli
ation aware adaption has been used in the Odyssey system [21℄. Odyssey provides a 
lean separationbetween the 
on
erns of the system and the appli
ation: system monitors resour
e dynami
s and noti�esappli
ations if required, but retains 
ontrol of resour
e allo
ation me
hanism; while appli
ations spe
ify mappingof resour
e levels to �delity levels. Fidelity is de�ned as the degree to whi
h 
lient data mat
hes with server's.It has multiple dimensions of 
onsisten
y, frame rate and image quality for video data as well as resolution forspatial data. Building a system that allows diverse �delity levels ne
essitates type awareness - 
lient 
ode isresponsible for handling parti
ular data types. This is a
hieved through the use of wardens, whi
h are spe
ialized
ode 
omponents that en
apsulate system level support at the 
lient. Wardens are subordinate to Vi
eroy, whi
his responsible for 
entralized resour
e management.Odyssey is an example of 
lient based appli
ation aware adaptation. Rover [13℄ is a system that allows
lient-server adaptation. This means that some 
ode required for adaption would also reside in server. Roveruses the 
on
ept of Relo
atable Dynami
 Obje
ts (RDOs) for data types handled by the appli
ation. Theappli
ation programmer splits the program 
ontaining RDOs into those that reside on the 
lient and those thatrun on servers. This requires that the adaptation 
ode be resident on origin servers. Another approa
h hasbeen taken to avoid this, named as proxy based adaptation. The adaptation is done by the proxy, whi
h a
tson behalf of 
lients. The Barwan proje
t [30℄ is an example. Flexible 
lient server model for appli
ation awareadaptation has been proposed in the Bayou system [84℄. It allows 
lients to read/write shared data. Con�i
tsresolution is handled by using appli
ation spe
i�
 dependen
y 
he
ks and merge pro
edures. It provides eventual
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onsisten
y, an unbounded 
onsisten
y me
hanism that allows repli
as to diverge, but be 
onsistent after anunspe
i�ed time.3.5. Software Availability and Usage Summary. Globus is a widely used toolkit and is available asan open sour
e software. Stork is a resear
h prototype, while GriPhyN and CERN have been deployed andused. Akamai's CDNs are widely deployed and used, while 
ooperative leases [12℄ is a resear
h prototype. Codaand Odyssey are the distributed mobile systems software that are widely deployed and used.4. Large S
ale Data Management Te
hniques.4.1. P2P Data Management. We �rst give an overview of P2P �le sharing systems starting fromthe initial unstru
tured P2P systems su
h as Napster to super-peer systems su
h as Kazaa before dis
ussingstru
tured P2P systems. We go on to dis
uss P2P storage management systems su
h as O
eanstore.4.1.1. P2P File Sharing Systems. P2P as an area be
ame popular only after the advent of Napster,a �le sharing system. Napster [57℄ was used for sharing musi
 �les. Meta-data about �les is stored in aglobal dire
tory, whi
h is stored in a 
entralized server. The meta-data stored information about musi
 �lesthemselves, whi
h were downloaded from peers. Gnutella [33℄ 
ame up with a de
entralized sear
h proto
olfor �le sharing appli
ations. Gnutella 
an be seen to be a purely de
entralized unstru
tured P2P system. Theterm �unstru
tured� refers to the la
k of stru
ture in the overlay, whi
h is mostly a random graph. Sear
h wasa
hieved by �ooding the network or by using random walks. Freenet added a me
hanism to route requeststo possible 
ontent lo
ations, based on best e�ort semanti
s. Freenet also adds a notion of anonymity to thedata shared. The main advantage of the unstru
tured P2P systems was that 
omplex queries 
ould be easilyhandled. By 
omplex queries, we mean queries su
h as �get all nodes with pro
essing speed > 3GHz and RAM
> 1GB and storage > 100GB�. This is be
ause the query is sent to ea
h node and evaluated expli
itly. However,deterministi
 guarantees for sear
hing are di�
ult to provide in these systems.Initial attempts at introdu
ing stru
ture to the overlay in P2P systems resulted in super-peer systems,with some nodes (whi
h have better 
apabilities) a
ting as super-peers. The other nodes a
t as 
lients tothe super-peers, whi
h form a P2P overlay among themselves. Super-peers made sear
hing more e�
ient for
omplex queries, by exploiting the heterogeneous nature of nodes (some nodes have better 
apabilities andmore importantly, better 
onne
tivity than others). An example of a popular super-peer system is Kazaa(http://www.kazaa.
om). However, handling super-peer failures requires repli
ating super-peers (otherwisethe 
lients may be
ome dis
onne
ted). K-repli
as 
an be 
reated in ea
h 
luster, resulting in redu
ed load onthe super-peers [93℄. However, this may make repli
as 
lient aware. Other design issues in super-peer systemsin
lude 
luster size and dynami
 layer management. A large 
luster size is good for aggregate bandwidth, butmay 
reate bottlene
ks. A small 
luster size avoids bottlene
ks, but may redu
e sear
h e�
ien
y. Dynami
layer management allows nodes to play super-peer or 
lient nodes adaptively, thereby making the super-peernetwork more e�
ient [95℄.The third generation of P2P systems introdu
ed stru
ture in the overlay network. The motivation 
amefrom providing deterministi
 sear
h guarantees, partitioning the load over the available ma
hines e�e
tively,s
aling to large numbers and a
hieving fault-toleran
e. The Distributed Hash Table (DHT) was mainly used asthe stru
ture for overlay formation. It was based on the Plaxton data stru
ture [23℄. Nodes are given identi�ers(ids) from an id spa
e. Appli
ation obje
ts are also given ids from the same spa
e. The DHT provides a mappingfrom the appli
ation obje
t id (key) to the node id that is responsible for that key. Ea
h node has a routingtable 
onsisting of neighbours and performs routing fun
tions to lookup obje
ts. Various DHTs have beenproposed, ea
h having di�erent routing algorithms and routing table maintenan
e. Geometri
 interpretationsof DHTs have been given in [45℄ (but the fo
us of that paper was mainly to study the stati
 resilien
e of DHTs).Chord [40℄ is based on a ring, while Content Addressable Network (CAN) is based on a hyper
ube, Plaxtondata stru
ture is based on a tree, while Pastry [69℄ is a hybrid geometry 
ombining the tree and the ring. Wedis
uss some of these stru
tured P2P systems in more detail below.Chord provides the lookup abstra
tion of DHTs through the method: lookup(key) whi
h maps a key toa node responsible for it. Chord uses 
onsistent hashing to assign m-bit identi�ers to both Chord nodes andappli
ation obje
ts. The ids are arranged in a ring fashion (modulo 2m). A key k maps to the �rst node whoseid is equal to or follows k in the identi�er spa
e (this node is known as su

essor(k)). Ea
h node maintains apointer to its su

essor in the ring. Routing pro
eeds along the ring till a key is straddled between two nodeids, with the se
ond node id being the destination. Ea
h node also maintains information on O(log(N)) (for
N nodes) other nodes in the form of a �nger table in order to speed up routing. Even if nodes in the �nger
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alability Taxonomy 121table were to fail, only e�
ien
y is a�e
ted, but not 
orre
tness. As long as ea
h node is able to 
onne
t to itssu

essor, routing is guaranteed to �nish in O(log(N)) time.CAN routes over a hyper
ube. Ea
h CAN node stores a 
hunk (or zone) of the hash table. Ea
h node alsostores information on adja
ent zones in the table. This is again to speed up routing. Lookup requests for aparti
ular key are routed towards a CAN node whose zone 
ontains that key. Requests are routed by 
orre
tingbits (n bits for a n-dimensional hyper
ube). Generally tree based DHTs su
h as the Plaxton data stru
tureallow bits to be 
orre
ted in order (from MSB to LSB of key), while hyper
ube based DHTs allow bit 
orre
tionin any order. This makes routing more resilient to node/link failures.Pastry 
an be viewed as having a hybrid geometry due to its use of tree based routing and ring like neighbourformation. It provides a route abstra
tion to appli
ations. The route(msg, key) ensures that the message witha given id is routed to a node with the 
losest mat
hing id as key among all live nodes. Ea
h node keeps tra
kof its immediate neighbours in the node id spa
e by maintaining leaf sets. They also store information about afew other nodes that have pre�x mat
hing ids in the form of a routing table. Pastry takes into a

ount networklo
ality in routing. This means that a given message will be routed to the nearest node that is alive and that hasthe 
losest mat
hing id as the key. Routing takes pla
e by pre�x mat
hing, with ea
h hop taking the messageone bit 
loser in the node id spa
e, resulting in O(log(N)) hops.4.1.2. P2P File Storage Systems. Ivy [56℄ is a read/write P2P �le system that provides an NFS-likeabstra
tion for programmers. Ivy provides NFS-like semanti
s in a failure free environment. Under networkpartitions and failures, Ivy uses logs to allow appli
ations to dete
t and resolve 
on�i
ts. Ivy logs are spe
i�
 toea
h parti
ipant and host. The logs are stored in DHash, a DHT based P2P blo
k storage system over whi
hIvy is built. Parti
ipants 
an read other logs, but write only his/her log while updating the �le system. Ivy usesversioning ve
tors to dete
t 
on�i
ting updates and provides information to appli
ation level 
on�i
t resolvers.Ivy system demonstrated a performan
e within 2-3 fa
tor of NFS performan
e in a WAN testbed.PAST [15℄ is an Internet based P2P storage utility. It o�ers persistent storage servi
es, availability, se
urityand s
alability. PAST provides insert, re
laim and retrieve operations on �les. Sin
e a �le 
annot be insertedmultiple times, �les are assumed to be immutable in PAST. It must be noted that PAST is an extension ofPastry to provide a �le storage system. On insertion of a �le into PAST, the �le is routed by Pastry to k-nodeswith 
losest mat
hing ids as the �le id and that are alive. The set k will be diverse with respe
t to lo
ation,
apabilities and 
onne
tivity due to the randomization of the identi�er spa
e. File availability is ensured aslong as all k nodes do not fail simultaneously. It provides se
urity using optional smart
ards that are based ona publi
-key 
ryptosystem.O
eanstore [49℄ is an Internet based �le system that provides persisten
e and availability of �les by usinga two-tiered system. The upper tier 
onsists of 
apable ma
hines with good 
onne
tivity. These ma
hines a
tas an inner 
ir
le of servers for serializing updates. The lower tier 
onsists of less 
apable ma
hines whi
h onlyprovide storage resour
es to the system. Pond [67℄ is an O
eanstore realization that provides fault tolerantdurable storage to appli
ations. It uses erasure 
oding to store data. Erasure 
oding [20℄ is a te
hnique thatallows a blo
k to be split into m fragments, whi
h are en
oded into n fragments (n > m). The key propertyof erasure 
oding is that it ensures that the blo
k 
an be re
onstru
ted from any m of the n 
oded fragments.O
eanstore uses Tapestry [17℄, another DHT, to store the erasure 
oded fragments (based on fragment number+ blo
k id). O
eanstore uses primary 
opy repli
ation to ensure 
onsisten
y of �le blo
ks. It handles read/writedata by a versioning me
hanism in whi
h any write operation 
reates a new version of the data. The problemis then redu
ed to one of �nding the most re
ent version of the �le.4.1.3. Observations. Ivy has the disadvantage that it leaves write 
on�i
t resolution to the appli
ation,limiting the s
alability. PAST provides a persistent 
a
hing and storage management layer on top of Pastry.It provides insert, lookup and re
laim operations on �les. However, it also assumes �les are immutable, as �les
annot be inserted multiple times with the same id. O
eanstore's versioning me
hanism has not been proveds
alable. The evaluations on O
eanstore and Pond [67℄ have not 
onsidered 
on�i
ting write operations andhave assumed there is a single write per data blo
k. Moreover, O
eanstore assumes an inner 
ir
le of reliableservers to ensure 
onsisten
y. Further, all the three storage systems (Ivy, PAST and O
eanstore) have beenbuilt over DHTs. DHTs provide support for only limited queries (exa
t mat
hing kind) and may not allowappli
ation spe
i�
 
riterion for data pla
ement. In the words of [47℄, virtualization (through DHTs) �destroyslo
ality and appli
ation spe
i�
 information�. However, there have been re
ent e�orts that enable DHTs tohandle advan
ed queries su
h as those handled in [18℄.



122 A Vijay Srinivas and D Janakiram4.2. P2P Extensions to DDBMS. A simplisti
 view of a traditional distributed database managementsystem is that it uses a 
entralized server to provide a global s
hema and ACID properties through transa
tions.Several approa
hes have extended these te
hniques to work in a de
entralized manner, to apply to Internetor P2P systems. A
tive XML [9℄ provides dynami
 XML do
uments over web servi
es for distributed dataintegration. It is a model for repli
ating (whole �le) and distributing (parts of a �le) XML do
uments byintrodu
ing lo
ation aware queries in X-Path and X-Query. It also provides a framework by whi
h peersperform de
entralized query pro
essing in the presen
e of distribution and repli
ation. It allows peers tooptimize lo
alized query evaluation 
osts, by a series of repli
ation steps.Edutella [58℄ attempts to design and implement a s
hema based P2P infrastru
ture for the semanti
 web.It uses W3C standards RDF and RDF S
hema as the s
hema language to annotate resour
es on the web. Ituses RDF-QEL as an expressive query ex
hange language to retrieve the data stored in the P2P network. Ituses super-peer routing indi
es that in
lude s
hema and other index information.Piazza [83℄ is a peer data management system that fa
ilitates de
entralized sharing of heterogeneous data.Ea
h peer 
ontributes s
hemas, mappings, data and/or 
omputation. Piazza provides query answering 
apabil-ities over a distributed 
olle
tion of lo
al s
hemas and pairwise mappings between them. It essentially providesa s
hema mediation me
hanism for data integration over a P2P system.P2P Information Ex
hange and Retrieval (PIER) [38℄ is a P2P query engine for query pro
essing in Internets
ale distributed systems. PIER provides a me
hanism for s
alable sharing and querying of �nger print infor-mation, used in network monitoring appli
ations su
h as intrusion dete
tion. It provides best e�ort results, asa
hieving ACID properties may be di�
ult in Internet s
ale systems. The query engine does not assume datais loaded into databases on all peers, but is available in their natural habitats in �le systems. PIER is realizedover CAN, the hyper
ube based P2P system.PeerDB [60℄ is an obje
t management system that provides sophisti
ated sear
hing 
apabilities. PeerDB isrealized over BestPeer [59℄, whi
h provides P2P enabling te
hnologies. PeerDB 
an be viewed as a network oflo
al databases on peers. It allows data sharing without a global s
hema by using meta-data for ea
h relationand attributes. The query pro
eeds in two phases: in the �rst phase, relations that mat
h the user's sear
hare returned by sear
hing on neighbours. After the user sele
ts the desired relations, the se
ond phase begins,where queries are dire
ted to nodes 
ontaining the sele
ted relations. Mobile agents are dispat
hed to performthe queries in both phases.4.3. Software Availability and Usage Summary. Gnutella and Napster have been widely deployedand used. Chord is a resear
h prototype that is also available as an open sour
e software. Pastry is also availableas an open sour
e software and has also been used widely. CAN and Ivy are resear
h prototypes about whi
hdeployment information is not available. PAST and O
eanstore are resear
h prototypes that have been deployedand used in the Planetlab testbed.Edutella is available as an open sour
e software. The authors do not have information on the deploy-ment/availability on other resear
h prototypes Piazza, PeerDB and A
tive XML. PIER has been deployed inthe Planetlab testbed.5. State of the Art Data Management.5.1. SID Te
hniques: State of the Art.5.1.1. P2P Te
hniques in Grids. JuxMem [2℄ provides a data sharing servi
e for grids by integratingDSM 
on
epts with P2P systems. It is realized over (Juxtapose) JXTA [34℄, an emerging framework fordeveloping P2P appli
ations. JuxMem uses 
luster advertisements to advertise the amount of memory ea
hpeer 
an provide to the global storage. It is organized into a federation of 
lusters, with ea
h 
luster havinga Cluster Manager (CM). The CM is responsible for storing all 
luster advertisements in its group. The CMsa
ross 
lusters form a DHT. A
tually, the amount of memory provided in the 
luster advertisement is hashedand the CM with the 
losest mat
hing id in the DHT stores this advertisement. When a 
lient asks for a blo
kof memory with a given rounded size (�xed sized blo
ks 
an only be supported), the size is hashed and the
luster advertisement whi
h provides that size is retrieved from the CM with the 
losest mat
hing id. The
luster advertisement has the details of the a
tual storage provider. Re
ent extensions to JuxMem [14℄ provideme
hanisms to de
ouple 
onsisten
y proto
ols from fault-toleran
e me
hanisms. This allows the use of standardDSM 
onsisten
y proto
ols to integrate fault-toleran
e 
omponents. In parti
ular, DSM 
onsisten
y s
hemessu
h as home based 
onsisten
y [41℄ whi
h assume a single home node for serializing 
on
urrent writes, 
an bemade fault-tolerant by having a group of nodes as the home node. This requires group membership proto
ols, as
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 multi
ast proto
ol, whi
h is a
hieved by using 
onsensus proto
ols based on Failure Dete
tors(FDs) [26℄. The data sharing me
hanisms of JuxMem have only been evaluated at the 
luster level.The repli
a lo
ation problem has been addressed in grids using P2P 
on
epts in [5℄. It proposes a P2Prealization of the Repli
a Lo
ation Servi
e (RLS), a key 
omponent of data grids. The Logi
al File Name (LFN)is hashed to give the identi�er for a repli
a. The node with the 
losest mat
hing id as the LFN hash 
ontainsthe LFN to Physi
al File Name (PFN) mapping. This is the meta-data stored in RLS for �le lookup. It alsoproposes an update proto
ol to handle 
onsisten
y of meta-data. The RLS realization is based on Kademlia[63℄. Kademlia is a stru
tured P2P system that uses a novel XOR metri
 for routing�distan
e between twonodes is de�ned as the eX
lusive OR (XOR) of their numeri
 ids. A Kademlia node forms log(n) neighbours,where neighbour i is at XOR distan
e [2i, 2i+1]. The neighbour set is same as that formed by a tree based DHTPRR [23℄. Even the failure-free routing in Kademlia is similar to PRR, in that bits are 
orre
ted from left toright. However, in the 
ase of failures, XOR metri
 allows bits to be 
orre
ted in any order. This implies thatthe stati
 resilien
e2 of Kademlia is better 
ompared to PRR [45℄.5.1.2. Repli
a Pla
ement in CDNs. Optimal pla
ement of repli
as in CDNs is a non-trivial task andhas not been addressed. QoS aware repli
a pla
ement was proposed in [92℄ to meet QoS requirements of
lients with the obje
tive of minimizing the repli
ation 
ost. The repli
ation 
ost in
ludes 
ost of storage and
onsisten
y management, while QoS is spe
i�ed in terms of distan
e metri
s su
h as hop 
ount. Two problemsare formulated: Repli
a-aware and Repli
a-blind. In repli
a-aware model, the CDN servers are aware of whereobje
t repli
as are stored in the CDN network. This helps the servers to redire
t 
lient requests to the nearestrepli
a. In the repli
a blind model, appli
ation or network level routing ensures 
lient requests are routed toCDN servers, with servers being transparent to repli
a lo
ation. Ea
h repli
a (CDN server) serves requests
oming to it. Dynami
 programming te
hniques are used to arrive at near optimal solutions for the optimalrepli
a pla
ement problem, whi
h is shown to be NP-
omplete.5.1.3. Distributed Mobile Storage System. Segank [80℄ provides an abstra
tion of a shared storagesystem for heterogeneous storage elements. The motivation was that traditional me
hanisms for managing datain distributed mobile environments su
h as Coda and Bayou, have time 
onsuming merge operations. In Coda,updates are released to the server before be
oming visible on 
lients. If servers are physi
ally far away, this
ould in
rease the time after whi
h updates be
ome visible. Bayou uses full repli
ation, leading to potentiallyexpensive merge operations. Segank handles data lo
ation problem when data 
ould be lo
ated on any subset ofdevi
es, by using a lo
ation and topology sensitive multi
ast-like (named as segank
ast) operation. It allows lazyP2P propagation of invalidation information to handle 
onsisten
y of repli
ated data. It also uses a distributedsnapshot me
hanism to ensure a 
onsistent image a
ross all devi
es for ba
kup. It must be observed thatSegank uses only unstru
tured P2P system 
on
epts. This implies that Segank 
annot provide deterministi
sear
h guarantees.5.2. Large S
ale Data Management: State of the Art. We shall explain the 
urrent state of the artin P2P data management along four dire
tions: integrating stru
tured and unstru
tured P2P systems providingQuality of Servi
e (QoS) guarantees in P2P systems, 
omposable 
onsisten
y for P2P systems and large s
aleDHT deployment. We also explain the state of the art in P2P DBMS.5.2.1. Integrating Stru
tured and Unstru
tured P2P Systems. An attempt has been made in [55℄to improve stru
tured P2P systems along three dire
tions where they were traditionally known to performworse 
ompared to unstru
tured P2P systems: handling 
hurn, exploiting heterogeneity and handling 
omplexqueries. In P2P systems, node/network dynami
s resulting in routing-table updates and/or data movement isknown as 
hurn. The paper [55℄ shows that MS Pastry, an implementation of Pastry, 
an handle 
hurn wellby using a periodi
 routing table maintenan
e proto
ol. This proto
ol updates failed routing table entries. Italso has a passive routing table repair proto
ol. They demonstrate that by exploiting stru
ture, MS Pastry
an handle 
hurn better than unstru
tured P2P systems. Heterogeneity is di�
ult to handle in stru
tured P2Psystems due to 
onstraints on data pla
ement and neighbour sele
tion. MS Pastry handles heterogeneity intwo ways: one by using super-peer 
on
epts; se
ond, by modifying neighbour sele
tion to handle 
apa
ity. MSPastry is also extended to handle 
omplex queries by introdu
ing new te
hniques for �ooding or random walks.Flooding is a
hieved by sending the message to all nodes in the routing table. Random walk is a
hieved by usinga tag 
ontaining the set of nodes to visit, a queue of nodes in the routing table row and a bound on numberof rows to traverse. A few other e�orts have also been made re
ently to make stru
tured P2P systems handle
2Stati
 Resilien
e measures the goodness of a DHT routing algorithm before re
overy me
hanisms take e�e
t



124 A Vijay Srinivas and D Janakiramrange queries [16℄, multi-dimensional queries [65℄ as well a query algebra [73℄. A S
alable Wide Area Resour
eDis
overy (SWORD) [62℄ has been built to realize resour
e dis
overy over WANs by supporting multi-attributerange queries over DHTs.Another approa
h to integrate stru
tured and unstru
tured P2P systems has been made in the Vishwa
omputing grid middleware [53℄. Vishwa uses the task management layer to handle initial task deploymentand load adaptability of the tasks. The task management layer is realized using unstru
tured P2P 
on
eptsand allows 
apability based resour
e 
lustering. The re
on�guration layer of Vishwa is realized as a stru
turedP2P layer and stores information needed to handle node/network failures. The two layered ar
hite
ture hasalso been used for data management in Virat [1, 7℄. Virat provides a shared obje
t spa
e abstra
tion over awide-area distributed system. Virat has been extended to a repli
a management middleware for P2P systems[8℄. The unstru
tured layer forms neighbours based on node 
apabilities (in terms of pro
essing power, memoryavailable, storage 
apa
ity and load 
onditions). A stru
tured DHT is built over this unstru
tured layer by usingthe 
on
ept of virtual nodes. Virat a
hieves dynami
 repli
a pla
ement on nodes with given 
apabilities, whi
hwould be very useful in 
omputing/data grids. Detailed performan
e 
omparison is also made with a repli
ame
hanism realized over OpenDHT [68℄, a state of the art stru
tured P2P system. It has been demonstratedthat the 99th per
entile response time for Virat does not ex
eed 600 ms, whereas for OpenDHT, it goes beyond2000 ms in an Internet testbed.5.2.2. Composable Consisten
y for P2P Systems. A �exible 
onsisten
y model known as 
ompos-able 
onsisten
y suitable for a variety of P2P appli
ations has been proposed in [72℄. The authors have initiallysurveyed 
onsisten
y requirements for P2P appli
ations su
h as personal �le a

ess, real time 
ollaborationand database or dire
tory servi
es. The survey showed that di�erent appli
ations need di�erent semanti
sfor read/write and for repli
a divergen
e. The main 
ontribution of [72℄ is the 
lassi�
ation of 
onsisten
yrequirements along �ve orthogonal dimensions: 
on
urren
y�degree of 
on�i
ting read/write a

ess; repli
asyn
hronization�degree of repli
a divergen
e; failure handling�data a

ess semanti
s in the presen
e of ina
-
essible repli
as; update visibility - time after whi
h lo
al updates may be made globally visible; view isolation�time after whi
h remote updates must be made lo
ally visible. A ri
h 
olle
tion of 
onsisten
y semanti
s forshared data 
an be 
omposed by 
ombining the above �ve options. Performan
e studies have shown that 
om-posable 
onsisten
y in the Swarm system outperforms CoDA [74℄ in a �le sharing s
enario, while for a repli
atedBerkeleyDB database, it provides di�erent 
onsisten
y me
hanisms from strong to time-based.5.2.3. Providing QoS Guarantees in P2P Systems. Guaranteeing Quality of Servi
e (QoS) parame-ters su
h as response time or throughput in P2P systems is a 
hallenging task. An initial attempt was made in[70℄ at using P2P system 
on
epts for Domain Name System (DNS), whi
h requires e�
ient data lo
ation. Itshowed that though P2P DNS 
ould provide better fault-toleran
e than 
onventional DNS, lookup performan
eof O(log(N)) provided by DHTs was far worse 
ompared to 
onventional DNS. Cooperative DNS (CoDoNS) [89℄was proposed to ta
kle three problems of 
onventional DNS: sus
eptibility to Denial of Servi
e (DoS) atta
ks;lookup delays, espe
ially for �ash 
rowds; la
k of 
a
he 
oheren
y, preventing qui
k servi
e relo
ation in emer-gen
ies. CoDoNS has been proposed as a ba
kward 
ompatible repla
ement for 
onventional DNS. It providesO(1) lookup time by using the proa
tive 
a
hing layer of Beehive [88℄. Beehive enables DHTs to a
hieve O(1)lookup performan
e by proa
tive repli
ation. Traditionally, pre�x mat
hing DHTs store an appli
ation obje
t atthe 
losest mat
hing node, with ea
h routing step su

essively mat
hing pre�xes, resulting in O(log(N)) lookupperforman
e. By aggressively 
a
hing the obje
t all along the lookup path, Beehive a
hieves O(1) lookup per-forman
e for that obje
t. Sin
e, Beehive asso
iates di�erent repli
ation levels for di�erent appli
ation obje
ts,an average lookup performan
e of O(1) is a
hieved. CoDoNS builds a DNS based on a self-organizing P2Poverlay formed a
ross organizations (if ea
h organization 
an provide a server for CoDoNS). CoDoNS asso
iatesa domain name with the node having the 
losest mat
hing id as the domain name's hashed id. If the homenode fails, the node with the next best mat
hing id takes over as the home node for that parti
ular domain.Performan
e studies over PlanetLab testbed show that CoDoNS a
hieves lower lookup laten
ies, 
an handleslashdot e�e
ts and 
an qui
kly disseminate updates. However, the use of DHTs as the basis leaves CoDoNSvulnerable to network partitions. For example, if an organization is partitioned from the outside world, while
onventional DNS would ensure that lo
al lookups worked 
orre
tly, with CoDoNS even lo
al lookups may fail(DHT lookup may go outside the lo
al network even for lo
al lookups�stret
h property of DHTs). This suggeststhat SkipNets [35℄ may be a better 
hoi
e for realizing DNS than DHTs. This is be
ause data in SkipNets isorganized by using string names whi
h guarantees routing lo
ality. This is in addition to the normal numeri
identi�er based organization used in DHTs.
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alability Taxonomy 1255.2.4. Large S
ale Deployment. OpenDHT [68℄ is a publi
 large s
ale DHT deployment that allows
lients to use DHTs without having to deploy them. It provides a shared storage spa
e abstra
tion using theget and put primitives. The main motivation for OpenDHT is that it is hard to deploy long running distributedsystem servi
es, espe
ially in the publi
 domain. OpenDHT is deployed on PlanetLab (http://www.planet-lab.org/), a global testbed for deploying planetary s
ale servi
es. OpenDHT is deployed on infrastru
ture nodeswhi
h alone parti
ipate in DHT routing and storage. Clients only use the storage spa
e through the get andput interfa
e on gateway (infrastru
ture) nodes. OpenDHT allows di�erent mutually untrusting appli
ations toshare the DHT. It ensures that 
lients get a fair share of storage resour
es without imposing arbitrary quotas�atrade-o� between fairness and �exibility. This is a
hieved by asso
iating a Time-to-Live (TTL) with appli
ationobje
ts and letting them expire if 
lients do not renew them. OpenDHT provides storage abstra
tion of DHTsin 
ontrast to the lookup abstra
tion of Chord or the routing abstra
tion of Pastry.It is realized over Bamboo DHT(bamboo-dht.org), that is similar to Pastry but has di�eren
es in handlingnode dynami
s. OpenDHT is not a shared obje
t spa
e. The level of abstra
tion provided to programmer isdi�erent. For instan
e, the programmer has to take 
are of obje
t serialization, RTTI (runtime type inferen
ing)et
. to realize an obje
t storage on top of the byte storage that OpenDHT provides. OpenDHT provides limited
onsisten
y for the shared byte spa
e. Con�i
t resolution (for 
on
urrent writes) is left to the appli
ation,similar to the Bayou system that ensures �eventual 
onsisten
y�, a very loose form of 
onsisten
y. But 
on�i
tresolution is a non-trivial task for the appli
ation programmer. The performan
e of OpenDHT (espe
ially worst
ase response time) su�ers due to the presen
e of stragglers or slow nodes. This has been improved by usingdelay aware and iterative routing in [71℄.5.2.5. State of the Art P2P DDBMS. Atlas P2P Ar
hite
ture (APPA) [86℄ is the 
urrent state of theart data management solution for large s
ale P2P systems. It uses a three layered ar
hite
ture, with the P2Pnetwork forming the lowest layer. This layer 
ould be realized using unstru
tured or stru
tured or super-peerbased P2P 
on
epts. Above this layer, the basi
 P2P servi
es layer is built. This provides P2P data sharing andretrieving (key based) in the P2P network, support for peer 
ommuni
ation, support for peer dynami
s (joinand leave) and group membership management. Over the basi
 servi
es layer advan
ed P2P data managementservi
es su
h as s
hema management, repli
ation, query pro
essing and se
urity are built. The shared data isin XML format and queries expressed in X-Queries in order to make use of web servi
es. It is realized overJXTA. It provides repli
a management by extending traditional 
entralized log based re
on
iliation te
hniquesfor P2P systems. It assumes the existen
e of a shared storage spa
e for distributed re
on
iliation by peers.This requires 
onsensus proto
ols for realization and may be expensive. It has not been evaluated in large s
alesystems.A re
ent e�ort has been made to provide a middleware based data repli
ation s
heme in [94℄ by usingSnapshot Isolation (SI) as the isolation level. In SI based DBMS, read operations of a transa
tion T are handledfrom a snapshot of the database (set of 
ommitted transa
tions when T started). This implies read operationsnever 
on�i
t with write operations and only write-write 
on�i
ts 
an o

ur, resulting in more 
on
urren
y and
onsequently better performan
e. It has been proposed at the 
luster level and may not be appli
able for P2Psystems due to its strong assumption of a totally ordered multi
ast.5.3. Software Availability and Usage Summary. Juxmem and Segank are resear
h prototypes. De-ployment information on Stru
tella is not available. Vishwa and Virat are resear
h prototypes that are availableas open binaries. OpenDHT has been deployed on the Planetlab testbed and is also available as an open sour
esoftware. APPA is a resear
h prototype.6. Con
lusions. We have presented a s
alability taxonomy of data management solutions in distributedsystems. We group data management work done in DSMs and shared obje
t spa
es in the Centralized/NaivelyDistributed (CND) data management 
ategory. The Sophisti
ated/Intermediate Data (SID) management te
h-niques in
lude data management in grid 
omputing systems and data grids as well as Content DistributionNetworks (CDNs) and data management in distributed mobile systems. These solutions s
ale better than CNDte
hniques by using distributed data management, instead of 
entralized approa
hes. They however, assumean inner set of reliable servers whi
h take 
are of 
onsisten
y and reliability issues. However, in order to takethe data management servi
es to the edges of the Internet, Large S
ale Data (LSD) management te
hniquesmake use of P2P 
on
epts. They 
onsequently provide better s
alability and fault-toleran
e, but at the 
ost ofrelaxing 
onsisten
y (most approa
hes provide probabilisti
 guarantees or eventual 
onsisten
y).The taxonomy is depi
ted in �gure 6.1. The �gure shows the state of the art e�orts in orange 
olor and thepossible future dire
tions also in blue. The future dire
tions are detailed below.
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Fig. 6.1. Pi
torial Representation of S
alability TaxonomyIt 
an be observed that LSD te
hniques su
h as Virat [8℄ handle large number of small data obje
ts. The
ase of handling large number of large data obje
ts arises when existing data grids be
ome purely P2P, insteadof using SID te
hniques. The existing LSD te
hniques may not work in this 
ase, as the size of data obje
ts 
allsfor spe
ial me
hanisms to handle some operations in
luding updates. In
remental updates or fun
tion shippingin 
ombination with LSD data management te
hniques may have to be explored.Another interesting avenue for exploration is the use of LSD te
hniques 
ombined with node mobility. Thesolutions whi
h have been proposed for handling data management in distributed mobile systems do not useP2P 
on
epts, but assume the presen
e of reliable servers that handle mobile 
lient requests. When mobilenodes form the P2P overlay, 
hurn 
ould be very high due to node mobility. This, 
oupled with the devi
e
onstraints, may open up a wealth of resear
h questions.Optimal data pla
ement te
hniques whi
h have been proposed for CDNs [92℄ 
an be used in P2P grids.Existing data management te
hniques in grids (or even P2P grids su
h as P-Grid [46℄) do not address optimalrepli
a pla
ement issues. The work [8℄ provides heuristi
s for repli
a pla
ement in P2P grids. But pla
ement ofrepli
as may not be exa
tly optimal. Thus, we see that te
hniques for data management in one 
ategory 
anbe applied to others to open up resear
h in large s
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t. e-Business and Enterprise Information Systems have held the spotlight sin
e Internet and World-Wide-Web 
ameout to the world. The e-Business appli
ations have been evolved from lega
y 
lient-server ar
hite
ture into n-tier ar
hite
ture, latelyeven into Enterprise Information Systems. There are two famous approa
hes to build the e-Business appli
ations, whi
h are J2EEand .NET. In this paper, e-Business and n-tier ar
hite
ture are illustrated. Besides, n-tier ar
hite
ture for Enterprise InformationSystems is introdu
ed, whi
h provide the a

ess to the disparate data sour
es. In addition, J2EE and .NET are 
ompared fore-Business appli
ations based on many 
riteria in
luding the methodologies to implement Enterprise Information Systems.Key words. Integrated Information Systems, Enterprise Information Systems, e-Business, J2EE, .NET, n-Tier ar
hite
ture1. Introdu
tion. e-Business systems have been popular in the world sin
e Internet and World-Wide-Web
ame out. IBM de�nes e-Business as the leveraging of network 
apabilities and te
hnologies in order to a
hieveand maintain the huge advantages for 
ustomers, suppliers, partners, and employees [9℄. e-Business a
tivities 
anbe 
lassi�ed into three 
ategories based on end-users of transa
tions, normally on the Internet: Intra-business,Business-to-
onsumer, and Business-to-business. Intra-business a
tivity is to share 
ompany information and
omputing resour
es among employees on the intranet su
h as knowledge management. Business-to-
onsumer,the most 
ommon a
tivity, is to provide servi
es to 
onsumers who is out of organizations su
h as 
ustomerresour
e management, e-Commer
e, and web au
tions et
. Business-to-business a
tivity is to improve inter-organizational partnerships and relationships su
h as supply 
hain integration [8℄.The needs of the lega
y e-Business systems were simple to maintain fun
tionality and stability on the
orporate 
omputing environment. However, the lega
y e-Business systems are not su�
ient for the 
urrent highvolume e-Business transa
tions. People need systems that handle high workloads and 
hanging requirementsby applying and adapting appli
ations qui
kly. Businesses have to improve e�
ien
y by integrating data andappli
ations a
ross the enterprise. Besides, the highest levels of performan
e and availability must be maintainedfor the 
riti
al businesses. Thus, n-tier ar
hite
ture for e-Business system has been presented. It partitionssystems and software to more �exible blo
ks that have di�erent roles in order to enable high performan
e,s
alability, and availability to businesses [2℄. Se
tion 1 of this paper introdu
es n-tier ar
hite
ture in detail.Either Java�espe
ially, J2EE (Java 2 Enterprise Edition)�or ASP (A
tive Server Pages) has been ex-
lusively used to build server site web systems for e-Business. J2EE is the one of editions in Java that is aplatform independent and obje
t-oriented language�Java is the produ
t of Sun Mi
rosystems. Thus, J2EE �tswell to build e-Business systems at both a development and a server site in both Unix (Linux) and Windowsoperating systems. Besides, the appli
ations of J2EE are normally built in Windows operating system andpublished into servers in any operating systems. Mi
rosoft Corporation provides ASP for e-Business systems.ASP appli
ations are integrated with the 
odes in Visual Basi
 or C++, et
. given by Mi
rosoft Corporationas the produ
ts. Therefore, ASP appli
ations are developed and published only in Windows operating systems.The Unix operating systems have dominated the server market of the large organizations su
h as bankingand entertainment industries be
ause Unix OS have been more stable than Windows so that it was 
hosen priorto Windows. Thus, e-Business systems of the server market have been mainly developed in J2EE instead of inASP. Mi
rosoft Corporation might want to 
ompete with Unix systems for the e-Business markets so that itintrodu
ed the 
on
ept of .NET on June 2000. And, .NET has been presented to the market in 2002. .NET isnot only platform independent�even it is limited for resear
h�but also programming language independent..NET has been popular for several years in the e-Business world and 
ompeted with J2EE�probably hasdominated the small businesses more than J2EE.In this paper, .NET and J2EE, the most popular e-Business development approa
hes, are 
ompared interms of programming language, platform independen
y, 
omponent model, appli
ation server, market proof,openness, and Database 
onne
tivity in
luding the 
onne
tivity to disparare data sour
es. Sin
e they are thestandards to build e-Business systems nowadays, this paper will be useful for people who want to see the defa
to distributed 
omputing environment for e-Business systems and who want to sele
t one of approa
hes. Inthe paper, Se
tion 2 introdu
es the e-Business ar
hite
tures. Se
tion 3 des
ribes the frameworks of J2EE and.NET in detail. Se
tion 4 
ompares J2EE and .NET in terms of several fa
tors in
luding the approa
h for
∗Computer Information Systems Department, California State University, Los Angeles 90032-8530, Los Angeles, CA, USA(jwoo5�
alstatela.edu). 131



132 Jongwook Wooinformation integration. Se
tion 5 illustrates the summary of the 
omparison based on the analysis in Se
tion 4.Se
tion 6 is the 
on
lusion and 
ulmination of the 
omparison for integrated information systems.2. e-Business Ar
hite
ture.2.1. n-tier Ar
hite
ture. The traditional Client-Server ar
hite
ture has a mainframe that in
ludes 
oreappli
ations and data. The mainframe is a

essed from thi
k 
lients that are big appli
ations that 
ontainpresentation and business logi
s. We 
an 
all it 2-tier ar
hite
ture as shown in Figure. 2.1. The 2-tier ar
hite
turehas many loads between 
lient and server be
ause of their tight interoperations for its presentation logi
, businesslogi
, and data a

ess logi
. As shown in Figure. 2.1, 
lient has not only the operations of presentation logi
but also the part or the full of business and data a

ess logi
s. This tight interoperation has generated manyissues in the 
urrent high volume business systems. It is not s
alable be
ause it should repla
e the entire systemwhen its 
apa
ity is ex
eeded. And, it is not �exible be
ause its presentation logi
, business logi
, and dataa

ess logi
 are tightly 
oupled. If the developer wants to modify its business logi
, he or she should modifythe entire logi
s. Besides, the developer must adapt or modify the business logi
 when it is integrated with theWorld-Wide-Web or other appli
ations [2℄.
Fig. 2.1. 2-tier Ar
hite
ture.The n-tier ar
hite
ture has addressed the issues of the 2-tier ar
hite
ture and be
ome the solution of the
urrent e-Business systems on Internet and World-Wide-Web. It partitions appli
ation fun
tionalities into nindependent layers, mainly three layers as in Figure. 2.2. Thus, it be
omes easier to integrate with the existingbusiness systems. The layer 1 is the presentation logi
 that is typi
ally hosted on Web server with web browser.The presentation logi
 is to send the request of 
lient and re
eive its response from business logi
. The responseis normally dynami
 or stati
 web pages formatted to present to the 
lient. The layer 2 is hosted on mid-tier(middleware) server as business logi
. It in
ludes the business fun
tions that are the main of the e-Businessappli
ations on the n-tier ar
hite
ture. It produ
es the response of the request from the 
lient and providesthe response to the 
lient. If the request is related to data a

ess, it will pass the data a

ess request to theba
k-end database server. The layer 3 is hosted on the ba
k-end database, XML, or other data sour
es as dataa

ess logi
. It is to handle the request of data sour
e from the business logi
. It has the fun
tions to a

essdata sour
es su
h as database, XML, �le systems, or EIS (Enterprise Information Systems) et
. Sin
e businesslogi
 is separated from presentation logi
 and database a

ess logi
 physi
ally, ea
h layer 
an be s
alable andupgradeable independently. And, even if a layer is modi�ed or repla
ed, the appli
ation of other layers do notneed to be re
reated. Besides, ea
h layer 
an be implemented with 
lustered servers for its logi
. The 
lusteringenables high-performan
e 
omputing, availability, and s
alability [2℄. Therefore, n-tier ar
hite
ture has beenthe way to implement the e-Business systems lately.
Fig. 2.2. n-tier Ar
hite
ture.
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hite
ture for Enterprise Information Systems. Most of the organizations and 
om-panies already have adopted n-tier Ar
hite
ture for their e-Businesses. Simply, they have the di�erent datasour
es and their data a

ess methods are di�erent. Thus, ea
h organization's individual solution has mademore di�
ult to share the information among the departments within an organization and among the organi-zations. However, there has been great need to provide integrated information these days in order to support
ooperative works among sta�s in agen
ies and to support their employees and 
ustomers. If the di�erentorganizations or the di�erent departments of an organization have the integrated information, the integratedinformation systems will bene�t the publi
.Integrated Information System 
an be de�ned as the system that merges information from the disparate(or heterogeneous) data sour
es despite di�ering 
on
eptual, 
ontextual, and typographi
al representation evenin distributed appli
ations. Figure. 2.3 shows the n-tier Ar
hite
ture with the layer of Information Integrationlogi
 that resides on middleware server between Business and Data Sour
e A

ess logi
.

Fig. 2.3. Information Integration n-tier Ar
hite
ture.3. The J2EE and .NET. J2EE and .NET are most popular programming language and framework inorder to implement n-tier ar
hite
ure. This se
tion illustrates the fundamental 
on
epts and frames of J2EEand .NET.3.1. J2EE. Java platform is 
omposed of APIs (Java Appli
ation Programming Interfa
es) and JVM(Java Virtual Ma
hine) as shown in Figure. 3.1. Java programs�J2SE (Java 2 platform Standard Edition)�are 
ompiled to Java byte 
odes that are exe
utable on JVM. JVM interprets the byte 
odes for native operatingsystem of the 
omputer system. In other words, the byte 
odes are translated to target languages�ma
hine
odes�in order to run on the 
omputer system. Thus, Java byte 
odes 
an be exe
utable on any operatingsystem if its JVM is installed. That is, Java is a platform independent language that redu
es the 
ost to adaptthe existing Java appli
ations to new platform.
Fig. 3.1. The Java Platform.Java APIs are a set of built-in libraries as byte 
odes. J2EE (Java 2 platform Enterprise Edition) de�nesthe standard APIs for n-tier ar
hite
ture [10℄. J2EE has been popular to implement e-Business appli
ationsbe
ause it is platform independent and has higher performan
e 
omparing to the lega
y CGI systems with Perl,PHP and C++ et
. Mi
rosoft Corporation's ASP is another 
ompetitor to build e-Business appli
ations but itis only for Mi
rosoft Windows system with the ex
lusive IIS web server that is the produ
t of Mi
rosoft. Thus,J2EE has been the popular method to build e-Business systems in the large s
aled market su
h as bank andentertainment.
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Fig. 3.2. Appli
ation Server for J2EE.J2EE is the extended APIs from J2SE. It is based on the J2EE 
omponents for modularization and tosimplify the development 
y
le by providing the details of appli
ation behaviors. Thus, it enhan
es a developerto fo
us on the business logi
 without implementing the expensive appli
ations su
h as transa
tion, se
urity,database management, and naming servi
e, et
. J2EE in
ludes the features of J2SE su
h as platform indepen-den
y and obje
t-oriented language. Besides, J2EE supports APIs for enterprise systems: JDBC for databasea

ess, EJB (Enterprise JavaBeans), Java Servlets, JSP (JavaServer Pages), XML, Java Mail, and Java Mes-saging et
. As are J2SE 
odes, J2EE sour
e 
odes are 
ompiled to Java byte 
odes and run on JVM that
onverts Java byte 
odes to the ma
hine 
odes. Most operating systems support JVM so that a 
ode runs onan operating system should be exe
utable on other operating systems, whi
h meets the poli
y of write-on
e-run-anywhere from Sun Mi
rosystems. In order to exe
ute J2EE 
odes, a J2EE appli
ation server is needed aswell as JVM as shown in Figure. 3.2. There are many appli
ation servers in the market su
h as BEA WebLogi
,IBM WebSphere, ATG Dynamo, RedHat JBoss, Apa
he TomCat, and Sun One Appli
ation server, et
. And, inorder to 
onne
t databases, JDBC driver is needed for ea
h database. Normally, ea
h database vendor providesits JDBC driver. Sun Mi
rosystems provides the J2EE spe
i�
ation for J2EE appli
ation servers in oder tomaintain write-on
e-run-anywhere.In Nov 2006, Sun Mi
rosystems announ
ed to be open sour
ing all of its Java Sour
e Implementationsunder GPL (General Publi
 Li
ense) version 2 li
ensing used by GNU/Linux Operating System [17℄. Theplatform implementations in
lude Java SE (JDK), Java ME (Mobile & Imbedded), and Java EE. Before that,there are open Java software proje
ts su
h as GNU Java [18℄ and Apa
he Harmony [19℄. Sin
e Sun opens Javaimplementations, the open Java platform 
an address the new markets for all Java devi
es more dramati
ally.3.2. .NET. Mi
rosoft Corporation is the most famous for Windows operating systems in the personal
omputer market. Mi
rosoft's ASP (A
tive Server Page) and languages in Visual Studio have been used tobuild e-Business appli
ations on Internet and World-Wide-Web. However, the appli
ations mainly depend onWindows operating system so that Mi
rosoft has lost the major portions of server market against Unix serversystems. It means that Mi
rosoft may lose the huge market of e-Business system against J2EE. Therefore,Mi
rosoft has presented .NET solution in June 2000. With .NET framework, Mi
rosoft 
an 
ompete with andhopefully may win over J2EE for e-Business appli
ations in large-s
aled markets.

Fig. 3.3. .NET Framework [Mi
ro℄.
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rosoft has fo
used on its 
omponents su
h as COM (Component Obje
t Model). Component is similarto obje
t and it is the independent unit that provides a fun
tion to a 
lient with an interfa
e of operation,property, and event. If a 
omponent is implemented, a developer 
an sell the 
omponent and modularizea 
ode with the number of 
omponents. Besides, the 
omponents modularized 
an be used in the distributed
omputing environment. The 
omponent model has been extended in .NET framework. Mi
rosoft has produ
edWindows produ
ts integrated with .NET framework su
h as Windows XP and 2003 server et
. .NET frameworksupports multi-language environment. At this moment, .NET framework supports Visual Basi
, C++, C♯, andJ♯ languages. Any 
ode written in one of these languages is 
ompiled to a MSIL (Mi
rosoft IntermediateLanguage) 
ode. Then, CRL (Common Runtime Language) of .NET framework interoperates the MSIL 
odesso that MSIL 
odes in any language 
an 
ommuni
ate ea
h other. CRL is to translate the MSIL 
odes to thema
hine 
odes as JVM does in Java. Besides, .NET framework may a

omplish the platform independen
yas Java does. Even though it only runs on Mi
rosoft Windows system at this moment, Mi
rosoft providesSSCLI (Shared Sour
e Common Language Implementation) to provides platform independen
y. Even thoughit is not 
lear if the platform independen
y is the target of .NET, Mi
rosoft has studied the possible platformindependen
y to build .NET framework exe
utable on FreeBSD and Ma
 OS X 10.2 operating systems [6℄.
Mono proje
t is originally an open development initiative sponsored by Novell in order to support .NETdevelopment to Unix OS. Mono platform provides the ne
essary software su
h as 
ompilers and libraries todevelop and run .NET 
lient and server on any platform. Mono proje
t provides both programming languageand platform independen
y. The platforms to run Mono are Linux, BSD, Solaris, MacOSX , Windows,and Unix et
. Multiple languages 
an be used with Mono platform, whi
h are C#.NET , Java, V B.NET ,

ASP.NET , Python, PHP , and JavaScript et
 [20℄.4. J2EE and .NET 
omparison. This se
tion 
ompares J2EE and .NET in terms of programminglanguage, platform independe
y, 
omponent model, database 
onne
tivity, market, openness, and appli
ationserver. Besides, they are 
ompared for information integration that re
eives the most spotlight in the worldthese days.4.1. Programming Language. J2EE is the enterprise edition of Java. J2EE te
hnology and its 
ompo-nent model is the extension of J2SE. J2EE provides simple enterprise development and deployment with theenterprise APIs su
h as JDBC, JNDI, Servlet, JSP, RMI, EJB, and JMS. The JDBC�we may regard it as JavaDatabase Conne
tivity�APIs are used to 
onne
t a Java 
ode to a data sour
e, that is, database that providesits JDBC driver. The JNDI (Java Naming and Dire
tory Interfa
e) APIs are to register distributed obje
tsand a

ess one of them. The Servlet APIs are to handle HTTP requests and responses between 
lients andservers su
h as appli
ation and database servers. The JSP is to 
reate dynami
 pages as an extended formatof Servlet by integrating presentation logi
 with HTML do
uments. The RMI (Remote Method Invo
ation)APIs are to exe
ute the methods of the remote obje
ts on networks. The EJB APIs are to build 
omponentsthat simplify the implementation of server site appli
ations su
h as session 
ontrols with Session Bean, dataa

ess and mapping logi
 with Entity Bean, and asyn
hronous messaging with Message Bean. EJB also 
anmodulate the appli
ations as 
omponent. The JMS (Java Messaging Servi
e) APIs are to provide syn
hronous
ommuni
ations between obje
ts. Besides, sin
e Java is an obje
t-oriented language, the 
odes written in J2EEare easy to extend and to maintain. Therefore, J2EE has been a wll-known solution for e-Business systemsmore than 10 years..NET is the produ
t of Mi
rosoft 
orporation. It is language independent so that the existing .NET pro-gramming languages su
h as C++.NET, V isualBasic.NET , ASP.NET , C♯.NET, and J♯.NET 
an interoperateea
h other on Common Runtime Library (CRL) of .NET framework. Mi
rosoft's V isualStudio.NET supportsthese languages with ea
h 
ompiler of the languages that supports CRL [3-5℄. Therefore, we 
an simply extendthe existing enterprise systems built in one of these languages by using any of those programming languages.Besides, .NET languages are obje
t-oriented languages that have the same bene�ts as J2EE. Thus, .NET frame-work is more extensible�in parti
ular, on Windows�than J2EE as it is programming language independentand obje
t-oriented.4.2. Platform Independen
y. Java is the platform independent language with JVM provided by SunMi
rosystems. Java 
odes in J2EE are 
ompiled to Java byte 
odes as in J2SE. The Java byte 
odes 
an run onany platform su
h as Unix (Linux) or Windows environment, in whi
h the platform has its JVM installed. JVM
onverts the byte 
odes to ma
hine 
odes of the platform. Almost all platforms have their JVMs to make Javabyte 
odes exe
utable on them. .NET framework may have a goal to a
hieve platform independen
y. However,it only works on Windows environment at this moment. There is the sour
e 
ode named SSCLI (Shared Sour
e



136 Jongwook WooCommon Language Implementation). It is the working implementation to provide a Platform Adaption Layer(PAL) for a
ademi
s and resear
hers. SSCLI is under a non
ommer
ial shared-sour
e li
ense and it will runon Mi
rosoft Windows XP, the FreeBSD OS, and Ma
 OS X 10.2 [5℄. If SSCLI is su

essful, 
odes on .NETframework will be run on FreeBSD OS and Ma
 OS X 10.2 as well as Windows OS. Therefore, .NET frameworkmay a
hieve the platform independen
y even though it does not run on most UNIX OSs.4.3. Component Model. Component in software 
an be de�ned as an independent unit to provide anoperation with the interfa
es su
h as operation, property, and event. If a 
omponent model is built for a 
ertainfun
tion, the 
omponent 
an be salable and integrated with other produ
ts. In addition, many 
omponents 
anbe developed in modules and run on distributed 
omputing environment. Ea
h 
omponent should be registeredin a naming server for distributed 
omputing environment. J2EE provides 
omponent model named EJB. Itruns on an EJB appli
ation server. The basi
 idea is to use the built-in appli
ations of EJB appli
ation serversu
h as expensive se
urity, transa
tion, and database integration fun
tions. If a developer pur
hase an EJBappli
ation server, the developer 
an only fo
uses on implementing his or her business logi
 with EJB insteadof spending on building those expensive fun
tions. It will save time and 
ost to develop a produ
t of theorganization. EJB appli
ation server normally in
ludes JNDI (Java Naming and Dire
tory Interfa
e) server.EJBs are registered to the JNDI server so that an EJB obje
ts registered 
an be found in the JNDI serverwhenever they are 
alled in a 
ode.Mi
rosoft Corporation has developed a 
omponent model su
h as COM (Component Obje
t Model). It is aMi
rosoft spe
i�
ation for 
omponent interoperability. It has been extended to DCOM (Distributed ComponentObje
t Model) in 1990s. About 1997, COM+ plan was announ
ed by Mi
rosoft, whi
h is an extension of COM.COM+ builds on COM's integrated servi
es and features. It also makes it easier for developers to 
reate and usesoftware 
omponents in any language [4℄. Mi
rosoft Corporation has applied the existing 
omponent 
on
ept to.NET framework. .NET framework is an integral Windows 
omponent for building and running the softwareappli
ations and Web servi
es. However, .NET 
omponents are only registered in the Windows registry. Thus,it 
annot be seperated from te
hnology and support of Mi
rosoft produ
ts.4.4. Database 
onne
tion. JDBC te
hnology is an API to a

ess virtually any tabular data sour
e fromJava 
odes. If a data sour
e su
h as database is linked to JDBC driver, Java 
odes 
an a

ess the database.Normally, ea
h database vendor provides its JDBC driver as the database produ
t. When a Java 
ode is builtfor database a

ess appli
ation, it needs to refer to 
lasses of JDBC API of the JDBC driver that is a

essiblefrom the 
ode. In addition to JDBC, an entity bean of EJB has database 
onne
tion interfa
es. A developer
an easily implement an entity bean that 
onne
ts a database without building JDBC 
onne
tion logi
. Thus,the developer 
an only fo
us on implementing business logi
 so that it will save the 
ost of his or her produ
t.OLE (Obje
t Linking and Embedding) DB is a standard interfa
e of Mi
rosoft with whi
h a developer 
anrefer to any data sour
e. It is built in as a part of the .NET framework. ADO (A
tiveX Data Obje
t).NETis on top of OLE DB as another layer. ADO.NET is a database obje
t model that is 
omposed of manystandard 
lasses to refer to data from any database. The integrated developing environment (IDE) su
h asVisual Studio .NET normally supports the OLE DB database provider of ea
h database. Sin
e the provideruses 
ertain ADO.NET 
lasses to 
onne
t a database, the developer 
an easily establish the database 
onne
tionappli
ation in .NET.4.5. Appli
ation Server. Java 
odes run on JVM. However, J2EE 
odes are not exe
utable on JVMalone. It needs an appli
ation server that makes the 
odes exe
utable. J2EE 
odes on an appli
ation serverare mainly for web appli
ations�you may regard them as e-Business appli
ations. The popular appli
ationservers in the market now are BEA WebLogi
, IBM WebSphere, ATG Dynamo, and Ora
le appli
ation serveret
. Besides, there are free appli
ation servers su
h as Apa
he TomCat and RedHat JBoss. Sin
e there aremany vendors that implement appli
ation servers, some J2EE 
odes runnable on an appli
ation server arenot exe
utable on other servers. It violates the motive of Java language. Thus, Sun Mi
rosystems providesJ2EE spe
i�
ation to keep the write-on
e-run-anywhere motto. Thus, any J2EE appli
ation will run on theappli
ation server if the vendor follows the dire
tion of the spe
i�
ation when implementing the appli
ationserver. The server that meets the spe
i�
ation is 
alled the Sun 
erti�ed J2EE appli
ation serverTo run .NET appli
ations on the lega
y Windows OS, .NET framework is needed that 
an be downloadedfrom the Mi
rosoft Corporation web site [3℄. Otherwise, we 
an pur
hase and install Windows server 2003 to run.NET appli
ations. For web appli
ations, normally, ASP.NET is used for a 
lient site�web browser�to a

essthe dynami
 fun
tions built in other .NET languages at a server site. ASP.NET only runs on Mi
rosoft IISweb server. It means that Mi
rosoft Corporation ex
lusively dominates the ASP.NET market with IIS server.
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 and dynami
 web pages so that we 
an 
all it appli
ation server. Sin
ethere are some issues in IIS server, for example, se
urity and open sour
e needs, Mi
rosoft provides Cassini thatis sour
e-available Web server platform and written entirely in C♯. Thus, a developer 
an modify the internalfun
tions of Cassini for his or her need and implement the .NET 
ompatible appli
ation server. Cassini supports
ASP.NET and other basi
 fun
tions su
h as dire
tory browsing on HTTP 1.1. You 
an demonstrate Cassinion the .NET Framework [1℄.4.6. Openness. There have been many approa
hes for Java Open Sour
e. Sun has had an OpenSolarisproje
t to develop SolarisOS by releasing most of the Solaris sour
e 
ode under the Common Development andDistribution Li
ense (CDDL) [21℄. However, many open sour
e 
ommunities 
ritisize that OpenSolaris proje
tdoes not have the true open sour
e 
ommunity pro
esses. Sun provided Java open sour
e for OpenSolarisproje
t. And, GNUJava proje
t has supported Java language with Java Compiler and VM et
 [18℄. Apachealso laun
hed Harmony proje
t to support platform independent JavaSE5JDK under Apache li
ense [19℄.On Nov 2006, Sun announ
ed to open Java sour
e for SE, ME, and EE under GNUGPL li
ense [17℄. And,many open sour
e 
ommunities believe that it 
an be useful for Java world amazingly.

Mono proje
t is to provide open sour
e software for .NET on Unix platform sponsored by Novell. Itprovides .NET 
ompiler and libraries et
. Besides, it is a
tually both platform and language independentplatform even though it needs more studies to be 
ompatible to the platforms and langauges [20℄.4.7. Information Integration. There has been great need to integrate and share the information amongdisparate data sour
es within the same or among many di�erent organizations. We 
an de�ne the disparatedata sour
es as databases from di�eren vendors, �le systems, and XML et
. The integrated information systemhas many demands to satisfy se
urity and reliable requirements, as well as data priva
y, quality, and ownership.In addition, it has the 
omplexity of integrating disparate data. Enterprise Information Integration (EII) is onete
hni
al approa
h that addresses integration 
omplexity. EII is the pro
ess of using data abstra
tion to ta
klethe data a

ess 
hallenges and 
omplexity asso
iated with the disparate data sour
es in e-Business.In Java, there have been several approa
hes to resolve the problem to integrate the disparate data sour
es forn-tier ar
hite
ture su
h as JDO, JAXB, EMF and SDO. With these approa
hes, Java developers 
an only fo
uson the business logi
 without wasting resour
es for data management appli
ations. JDO stands for Java DataObje
ts standardized by JCP (Java Community Pro
ess). It provides an API to a

ess data in data sour
es su
has database and �le systems et
. EMF (E
lipse Modeling Framework) generates a unifying metamodel basedon a data model de�ned using Java interfa
es, XML s
hema, and UML 
lass diagrams. JAXB stands for JavaAPI for XML Data Binding. It is release by JCP and used to generate Java obje
ts in memory 
orrespondingto XML data [11, 12℄.SDO stands for Servi
e Data Obje
ts. It was originally developed as a joint 
ollaboration between BEA andIBM and is now being developed by BEA, IBM, Ora
le, SAP, Siebel, Sybase and XCalia et
. SDO is abstra
tsdata in order to utilize multiple disparate data sour
es, whi
h in
ludes databases, entity EJB 
omponents,XML, Web Servi
es, Java Conne
tor Ar
hite
ture, and JSP pages [11-13℄. SDO provides SDO API as JDO.However, SDO is more general than JDO so that SDO 
an be used for between any tiers on n-tier ar
hite
turewhile JDO is for data a

ess tier only. JDO 
an be even 
onsidered as a data sour
e for SDO. Both SDO andEMF present data representation. SDO is 
reated by EMF 
ode generation and is a fa
ade over EMF as partof EMF proje
t. JAXB only fo
uses on Java-to-XML binding while SDO takes 
are of any data sour
e. Thus,SDO has been re
eived many lights as it provides only a single and simple interfa
e to a variety of disparatedata. And, it 
an be also appli
able to SOA (Servi
e Oriented Ar
hite
ture) su
h as Web Servi
es [12℄.Mi
rosoft introdu
ed A
tiveX Data Obje
ts (ADO) on the release of VB 5. ADO was built to provide a

essto disparate data sour
es on distributed 
omputing, that is, n-tier ar
hite
ture. ADO.NET is the expansion ofADO by using XML. There are proprietaries as ADO.NET providers su
h as Simba Te
hnologies, DataDire
tTe
hnologies, and OpenLink Software that present drivers and bridges to other data sour
es [15℄. ADO.NETis the produ
t of Mi
rosoft. Java SDO API is JSR (Java Spe
i�
ation Request) 235 that is the request to beJava standard API.5. Summary. Up to Se
tion 4, we see the approa
h of J2EE and .NET to build e-Business appli
ations.It is des
ribed how J2EE API and .NET produ
ts are used on n-tier ar
hite
ture in Figure. 4.1. To build thepresentation logi
 of e-Business appli
ation, JSP and servlet of J2EE API and ASP.NET of .NET framework
an be used. For the business logi
, EJB�espe
ially Session Bean�and standard Java 
lasses for J2EE andC++.NET, C♯.NET, and V B.NET et
. for .NET 
an be appli
able to build the business fun
tions. And, thereis information integration logi
 between business and data a

ess logi
s. In J2EE, JDO, EMF, and JAXB 
an
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Fig. 4.1. J2EE and .NET on Enterprise n-tier Ar
hite
ture.be used as ADO.NET in .NET. For information integration of J2EE, SDO 
an resides on between any tiers.Finally, the developer 
an implement the database a

ess logi
 with EJB�espe
ially Entity Bean�and JDBC
lasses for J2EE and ADO.NET for .NET.Figure. 5.1 summarizes the 
omparison between J2EE and .NET for the 
riteria of e-Business appli
ationsas analyzed in Se
tion 4. The 
riteria are how to handle dynami
 web 
ontents, how to a

ess database, platformindependen
y, possible programming languages to build the appli
ations, to see if there is a 
omponent modeland if it is proven in the market, how mu
h the 
ost to use them, how to integrate heterogeneous data sour
es,how is openness, and performan
e. In the market, J2EE has been proven for more than 10 years and .NEThas been only for several years. However, .NET has been used by many 
ompanies and organizations so thatit is already proven too. In terms of the 
ost to build and exe
ute appli
ations, J2EE 
an be less expensivesin
e it is free and there are free appli
ation servers to make the J2EE 
odes run, for example, JBoss. But,in .NET, people need to buy a VisualStudio.NET IDE (Integrated Development Environment) and IIS Webserver in order to build solid appli
ations. As the alternative and 
heap methodologies to develope ASP.NETappli
ations, Cassini as appli
ation server and WebMatrix [16℄ as IDE are not good enough to implement thesolid produ
ts.J2EE is platform independent. .NET is the Mi
rosoft language independent but not platform independent.However, there is Mono proje
t to make .NET 
ode exe
utable on Unix platform. J2EE 
ommunity has workedon integrated data sour
e as ADO.NET so that SDO has 
ome out to the world. In order to get the bene�tof open sour
e as Linux has done, Sun provided open sour
e for Java.For the performan
e, the Middleware Company presents the report insisting on that .NET has betterperforman
e on the Pet Store ben
hmark tuned for .NET than J2EE on the ben
hmark [7℄. However, sin
e theben
hmark is optimized for .NET and exe
uted on Windows OS while J2EE runs on JVM of Windows OS, theresult should be a matter of 
ourse. For the better fairness, the performan
es of .NET and J2EE appli
ationsshould be measured with the well optimized ben
hmark for both .NET and J2EE on the di�erent platformsu
h as Unix, whi
h is almost impossible at this moment.

Fig. 5.1. Summary: J2EE and .NET.6. Con
lusion. As e-Business appli
ations have been implemented, the importan
e of the informationintegration among the 
ollaborative groups has been grown. In this paper, n-tier ar
hite
ture of e-Business isdes
ribed. Then, Enterprise Information Systems ar
hite
ture is introdu
ed. The most popular approa
hes areillustrated to build the appli
ations on n-tier ar
hite
ture: J2EE and .NET. J2EE is the spe
i�
ation providedby Sun Mi
rosystems. J2EE is more �exible be
ause J2EE API is free and anyone 
an implement J2EE
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ation server that meets the spe
i�
ation given by Sun. .NET of Mi
rosoft Corporation is the produ
t.Thus, it is only dedi
ated to Mi
rosoft produ
ts. If 
onsidering the appli
ations on Windows only, .NET ismore �exible than J2EE be
ause it is programming language independent. J2EE and .NET are 
ompared interms of dynami
 web 
ontent, database 
onne
tivity, platform and language independen
y, 
omponent model,market, 
ost, openness, and heterogeneous data sour
e integration methodologies. However, it is not easy to
ompare the performan
e of J2EE and .NET be
ause .NET is not exe
utable on the other platforms yet. Thepaper should be the useful referen
e to establish e-Business and Enterprise Information Systems for both pro�tand non-pro�t organizations whi
h do not have the te
hni
al and ar
hite
tural ideas for the systems.Note. Figure. 6.1 is the table for a
ronyms used in this paper.
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lude the methodology ofdesigning parallel algorithms. Con
lusively, while the book is useful to give an introdu
tion to parallel models141



142 Book Reviesand algorithms and 
ompare them to sequential ones, students would still need to utilize other sour
es onparallel 
omputing to obtain more knowledge on this domain. Elham S. Khorasani,Department of Computer S
ien
eSouthern Illinois UniversityCarbondale, IL 62901, USA



AIMS AND SCOPEThe area of s
alable 
omputing has matured and rea
hed a point where new issues and trends require a pro-fessional forum. SCPE will provide this avenue by publishing original refereed papers that address the presentas well as the future of parallel and distributed 
omputing. The journal will fo
us on algorithm development,implementation and exe
ution on real-world parallel ar
hite
tures, and appli
ation of parallel and distributed
omputing to the solution of real-life problems. Of parti
ular interest are:Expressiveness:
• high level languages,
• obje
t oriented te
hniques,
• 
ompiler te
hnology for parallel 
omputing,
• implementation te
hniques and their e�-
ien
y.System engineering:
• programming environments,
• debugging tools,
• software libraries.Performan
e:
• performan
e measurement: metri
s, evalua-tion, visualization,
• performan
e improvement: resour
e allo
ationand s
heduling, I/O, network throughput.

Appli
ations:
• database,
• 
ontrol systems,
• embedded systems,
• fault toleran
e,
• industrial and business,
• real-time,
• s
ienti�
 
omputing,
• visualization.Future:
• limitations of 
urrent approa
hes,
• engineering trends and their 
onsequen
es,
• novel parallel ar
hite
tures.Taking into a

ount the extremely rapid pa
e of 
hanges in the �eld SCPE is 
ommitted to fast turnaroundof papers and a short publi
ation time of a

epted papers.INSTRUCTIONS FOR CONTRIBUTORSProposals of Spe
ial Issues should be submitted to the editor-in-
hief.The language of the journal is English. SCPE publishes three 
ategories of papers: overview papers,resear
h papers and short 
ommuni
ations. Ele
troni
 submissions are preferred. Overview papers and short
ommuni
ations should be submitted to the editor-in-
hief. Resear
h papers should be submitted to the editorwhose resear
h interests mat
h the subje
t of the paper most 
losely. The list of editors' resear
h interests 
anbe found at the journal WWW site (http://www.s
pe.org). Ea
h paper appropriate to the journal will berefereed by a minimum of two referees.There is no a priori limit on the length of overview papers. Resear
h papers should be limited to approx-imately 20 pages, while short 
ommuni
ations should not ex
eed 5 pages. A 50�100 word abstra
t should bein
luded.Upon a

eptan
e the authors will be asked to transfer 
opyright of the arti
le to the publisher. Theauthors will be required to prepare the text in LATEX2ε using the journal do
ument 
lass �le (based on theSIAM's siamltex.
lo do
ument 
lass, available at the journal WWW site). Figures must be prepared inen
apsulated PostS
ript and appropriately in
orporated into the text. The bibliography should be formattedusing the SIAM 
onvention. Detailed instru
tions for the Authors are available on the SCPE WWW site athttp://www.s
pe.org.Contributions are a

epted for review on the understanding that the same work has not been publishedand that it is not being 
onsidered for publi
ation elsewhere. Te
hni
al reports 
an be submitted. Substantiallyrevised versions of papers published in not easily a

essible 
onferen
e pro
eedings 
an also be submitted. Theeditor-in-
hief should be noti�ed at the time of submission and the author is responsible for obtaining thene
essary 
opyright releases for all 
opyrighted material.


