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Editors: Anne Benôıt and Frédéric Loulergue

High Performance Reconfigurable

Computing
Editors: Dorothy Bollman, Javier Dı́az and

Francisco Rodriguez-Henriquez

Volume 8, Number 4, December 2007

ISSN 1895-1767



Editor-in-Chief

Marcin Paprzycki
Systems Research Institute
Polish Academy of Science
marcin.paprzycki@ibspan.waw.pl

Managinig and
TEXnical Editor

Alexander Denisjuk
Elbląg University of Humanities and
Economy
ul. Lotnicza 2
82-300 Elbląg, Poland
denisjuk@euh-e.edu.pl

Book Review Editor

Shahram Rahimi
Department of Computer Science
Southern Illinois University
Mailcode 4511, Carbondale
Illinois 62901-4511
rahimi@cs.siu.edu

Software Review Editor

Hong Shen
School of Computer Science
The University of Adelaide
Adelaide, SA 5005
Australia
hong@cs.adelaide.edu.au

Domenico Talia
DEIS
University of Calabria
Via P. Bucci 41c
87036 Rende, Italy
talia@deis.unical.it

Editorial Board

Peter Arbenz, Swiss Federal Institute of Technology, Zürich,
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Anne Benôıt and Frédéric Loulergue

High performance reconfigurable computing. Introduction to the
Special Issue vii

Dorothy Bollman, Javier Dı́az and Francisco Rodriguez-Henriquez

Practical Aspects of High-Level Parallel Programming.
Special Issue Papers:

MUSKEL: an expandable skeleton environment 325
Marco Aldinucci, Marco Danelutto and Patrizio Dazzi

A Buffering Layer to Support Derived Types and Proprietary Networks
for Java HPC 343

Mark Baker, Bryan Carpenter and Aamir Shafi

High performance reconfigurable computing. Special Issue Papers:

Rapid Area-Time Estimation Technique for Porting C-based
Applications onto FPGA platforms 359

My Chuong Lieu, Siew Kei Lam, Thambipillai Srikanthan

Performance of a LU decomposition on a multi-FPGA system
compared to a low power commodity microprocessor system 373

T. Hauser, A. Dasu, A. Sudarsanam and S. Young

A computing architecture for correcting perspective distortion in
motion-detection based visual systems 387

Sonia Mota, Eduardo Ros and Francisco de Toro

Throughput Improvement of Molecular Dynamics Simulations Using
Reconfigurable Computing 395

Sadaf R. Alam, Pratul K. Agarwal, Jeffrey S. Vetter and Melissa C. Smith

Complexity Analysis for 4-Input/1-Output FPGAs Applied to
Multiplier Designs 411

Nazar Abbas Saqib

Research Papers:

Time Quantum GVT: A Scalable Computation of the Global Virtual
Time in Parallel Discrete Event Simulations 423

Gilbert G. Chen and Boleslaw K. Szymanski



Book Reviews:

Languages and Machines: An Introduction to the Theory of Computer Science 437
Reviewed by Chet Langin

Reconfigurable Computing. Accelerating Computation with Field-Programmable
Gate Arrays 437

Reviewed by Edusmildo Orozco

© SWPS, Warszawa 2007



Scalable Computing: Practice and Experience
Volume 8, Number 4, pp. i–iv. http://www.scpe.org

ISSN 1895-1767© 2007 SWPS

EDITORIAL: THE PRESENT AND THE FUTURE OF RECONFIGURABLE DEVICES
FOR SPACE APPLICATIONS

1. Introduction. Space missions present important scientific and technological challenges. Electronic
systems used in space applications require low power consumption, small weight and small size. Designers
should take into account that each gram sent to space requires a very large amount of money. Furthermore,
the electronics must be highly reliable in order to work for years in hostile environments [1]. One of the main
inconveniences with instruments designed for space is that they must be resistant to radiation. This requirement
depends mostly on the type of mission and its duration.

FPGAs began space missions by acting as “glue” logic. Only one chip could do the work of several more
(controllers, clock divisors, decoders. . . ). Currently, FPGAs technologies are more and more versatile and
reconfigurable devices can be used as complex controllers, or as the main control system, combining several
system functions on a single chip, including microprocessors functionality and small size memory. Because
of the special environmental conditions in these kinds of missions, the designers are forced to utilize suitable
devices adapted to support radiation and extreme temperatures. As a consequence, it is not possible to use
the latest technologies in a space mission, because the use of these technologies in a space environment use is
complex. In spite of this, the number of space missions has been increasing, and electronics manufacturers now
have sections that are dedicated to the aerospace market. This is one of the reasons that has motivated the
rapid evolution in the use of FPGAs devices.

In this editorial we present the current state of reconfigurable hardware and the feasible future evolution
of this technology in this field. We review the configurable devices that are suitable for flight. We give some
examples of missions where FPGAs have been used successfully and finally, we draw some conclusions about
the use of these devices.

2. Review of FPGAs for space applications. As commented before, the devices onboard a spacecraft
must be light, small size, with very low power consumption, radiation resistant, and as a main requirement,
they must guarantee very high reliability. The choice of a suitable device depends mostly on the kind of mission,
the environment and on the life span. The requirements for a satellite that will be working in space for one
year are radically different from requirements for a spacecraft going to Mars and working for six years [2].

The farther we go, the more difficult it is to find suitable devices. This motivates the choice of devices
that are known to be reliable and have a good track record over multiple missions. An example is the Intel
8086 processor, which is still used for space missions like the Mars Pathfinder and GIADA in Rosetta [3]. The
same reasoning can be applied to FPGA devices. The ones that we can use are unfortunately not those that
represent the latest technology advances. Nevertheless, FPGAs that are suitable for space have evolved and
today designers can find products with a million usable equivalent gates that are suitable for flight.

Space agencies (NASA and ESA) offer public parts lists with preferred devices to go onboard a space mission
[4, 5]. But these lists are not completely exhaustive, because they do not have all the space devices. In the
lists, we can see European devices are nonvolatile, whereas NASA preferred devices are reprogrammable Few
reprogrammable devices have been used on European spacecrafts due to their sensitivity to single event upsets
(SEUs). But recently, FPGA vendors have begun to develop SEU mitigation techniques to make their devices
usable in space applications [6].

There are two main FPGA manufacturers: Actel and Xilinx, although there are more vendors offering
FPGAs for flight: Aeroflex and Atmel. In this editorial we focus on Actel and Xilinx. Actel offers non
reprogrammable FPGAs for space applications, with the SX and Axcelerator families. They are antifuse-based
devices [7], non reprogrammable, but radiation tolerant, with total ionization dose (TID) up to 300K rads. The
main features are 250MHz system performance and from 48k up to 108k system gates for the SX family, and
350MHz system performance and 250k to 4 million system gates for the Axcelerator family. The advantages
of these devices are the availability of prototyping using non-qualified devices, and Single Even upset (SEU)
mitigation techniques such as triple modular redundancy (TMR) implemented automatically on the chip. These
devices also feature error detection and correction (EDAC) for internal memory, and they are “power on and
go”, that is, they do not need other components to start working, because the program is already on the device
when the system is powered on. In reprogrammable devices, it is necessary to add some other chip containing
the program, so when the system is powered on, the program has to be written onto the FPGA.
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ii The present and the future of reconfigurable devices for space applications

Xilinx offers reprogrammable devices based on the QPro-R Virtex and QPro-R Virtex II devices [8]. They
are claimed to be powerful and flexible alternatives to mask-programmed gate arrays. The main features are
reprogrammability, 200 MHz system performance and system gates from 300K to 1M gates for Virtex and 300
MHz system performance and 1M to 6M gates for Virtex II devices. The TID is 100KRads for the first family
and 200KRads for the second one. The advantage of these devices is the reprogramability itself and, because
there are no significant differences compared to the commercial versions, the standard devices could be used for
reducing system prototyping cost.

Some FPGA vendors (i.e. Atmel and Xilinx) provide the possibility of migrating FPGA designs to ASICs.
This can be used, for example, in a constellation of satellites.

Traditionally only antifuse devices (such as the one provided by Actel) have been used for the space missions.
The applicability of reprogrammable devices (such as the one offered by Xilinx) has started to be in use in the
last years [9].

If we compare these two types of FPGAs (antifuse and reprogrammable devices), there are also other
features that should be taken into account. On the one hand, antifuse families offer TRM implementation in
an automatic way, and SEU protection for internal registers, whilst reprogrammable devices do not [7, 8]. On
the other hand, reprogrammable devices offer a high integration density. In addition, they provide advanced
interfacing solutions with a broad range of electrical standards, clock management features and internal memory
capacity [10]. Nevertheless, this family requires an external device to load the bitstream at power on. This
means more components and an additional risk during a very critical moment like the start up of the system.
As a consequence, the choice between these two alternative devices depends on the application, and should be
taken after a careful analysis of the mission requirements.

3. FPGAs used in space missions. In this section we will review some space missions that have suc-
cessfully used FPGAs, and are already on space.

The Institute de Astrophysics of Andalućıa has been involved in several space missions; the most extended
experience is with OSIRIS and GIADA instruments, and we will refer these.

There are many differences between designing for space and designing for another application. Space de-
signers must take into account the final implementation of their designs, that is, the logic generated from
their code. This can be different from working in other area, where only the final result is significant. In
space, the logic is important because of the necessity of preventing SEU and other radiation effects, making
the instrument as safe as possible [11]. The OSIRIS instrument of the Rosetta mission is an optical spec-
troscopic and Infrared remote imaging system. It has several parts, and FPGAs have been used to improve
the design. In the CCD readout box, there are two FPGAs, one for the clocks, and the other to handle
high speed serial [12]. The mechanism controller board (MCB) of the two OSIRIS optical cameras also has
two FPGAs to implement the digital control circuits [13]. Data gathering, packaging, transmission and com-
mand decoding are performed within the FPGAs (Actel RH1280). In this case, FPGAs have made signifi-
cant advances, allowing the reduction of mass and making the design simpler. In fact. the motor controller
FPGA makes an “a dco” controller optimized for this instrument with different and very specific functionali-
ties.

The GIADA instrument, also of the Rosetta mission is a grain impact analyzer and dust accumulator
experiment. It uses one FPGA to control the data obtained from the proximity electronics [3, 2]. This makes
possible the use of an Intel 8086 processor, because there are tasks done by the FPGA, leaving the processor
free to do other operations. All the FPGAs used in GIADA are Actel, RH1280. The use of Actel RH1280 allows
significant reduction of power consumption and also makes the design simpler, because one chip implements
the same function as a microcontroller with all the peripheries and EDAC techniques for mitigating SEU. The
mass and size are obviously small in this solution.

Spirit and Discovery missions utilize XQVR1000 and XQR4062XLs from Xilinx. The XQR4062XLs were
used during the descent and landing of the rovers on the surface of Mars, while XQVR1000s were used to control
all of the brushed DC and stepper motors for the wheels, steering, antennas, camera, and other instruments on
the rovers themselves [9].

Almost all future space missions that are presently being developed are going to use FPGAs onboard. An
example of those in which the IAA is working is, for example, MEDUSA, the acronym for martian environmental
dust systematic analyzer. It will analyze the dust on the surface of Mars, onboard the EXOMARS mission [14].
The main electronics will include an FPGA from Actel, with a programmable finite state machine inside, the
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clock generation control, and all the controllers for communication, digital acquisition, data handling, and an
embedded overall controller.

Other future projects include: (1) the SOPHI experiment which willl be onboard the solar orbiter mission.
It is a polarimetric helyospheric image magnetograph for studying the sun. (2) the SODA experiment which
will be onboard the Solar Orbiter mission also. It is an instrument devoted to study cosmic dust. (3) BELA is
a Laser Altimeter going onboard the Bepi-Colombo mission. In all these missions FPGAs will play a relevant
role making the system electronics simple and of high reliability at the same time.

4. Conclusions. Design for space environment is complicated due to the very high requirements. Factors
such as weight, power and size must be taken into account. Among all of these, the most important requirement
is reliability and one of the most important problems is the effect of radiation. For these reasons it is necessary
to use devices especially built for space environments. The manufactures have specific areas for the aerospace
market and this has motivated space agencies to have preferred parts lists to help designers to choose the devices
to use onboard.

In the past, devices were more primitive. Therefore, FPGAs were used as glue logic. To use them, designers
utilized schematic as a popular design technique. Nowadays, configurable devices can be employed as many
complex systems on just one chip. We can find devices with a million gates on the market, and it is not the
practice to use schematic, because of the complexity. For these reasons, designers are turning to hdl languages,
which offer less control of the logic used, but yield a design simpler than a scheme.

There are two main types of configurable devices. One time programmable devices (OTP) like that offered
by Actel, and reprogrammable devices like that offered for Xilinx. Both have advantages and disadvantages,
and care should be taken before choosing one device.

Companies like Actel now have new FPGA devices, based on flash technology. These devices have all the
advantages from reprogramability, and from “Power and Go”. They are still not qualified for space, but in
the future it is reasonable to believe they will be. In addition, new technological advances such as dynamic
reconfiguration can represent an important step in the future of space missions. This would offer the possibility
of making substantial changes in hardware on the fly, giving options to add new functionalities or function
modes, and replacing software patches.

One important feature that we believe will be of relevant importance for the future of FPGA devices in
space mission is their capability of developing programmable system-on-chip (PSoC) in just one single device.
Nowadays there are FPGA synthesizable versions of processors such as the Leon processor [15], which has been
qualified for space applications [16]. Codesign techniques could be applied to split the different tasks in such
a way that algorithm and scheduling tasks are implemented in the processor while low level controlling tasks
are developed using the device logic gates. Moreover, traditional glue logic tasks could still be done on the
same chip. For demanding extensive computations, the FPGA logic could be used to developing a custom
coprocessor to help the processor in these computations, making possible full parallel processing. This feature
is not achievable using a single microprocessor., But using programmable hardware, we can do several tasks
simultaneously.

FPGAs play a relevant role in space missions, and it is reasonable to believe that in the future the use of
these devices will be even more extensive. Their capabilities to act as glue logic and as overall controllers, all in
a single chip, make them the perfect devices to go onboard space craft. We believe FPGA devices will be the
predominant digital device for space missions in the near future.
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INTRODUCTION TO THE SPECIAL ISSUE: PRACTICAL ASPECTS OF HIGH-LEVEL
PARALLEL PROGRAMMING

As Computational Science applications are more and more demanding, both on computing power and com-
plexity of development, it is necessary to provide programming languages and tools which offer a high degree
of abstraction to ease the programming of parallel, distributed and grid computing systems. Moreover, these
high-level languages are very often based on formal semantics. It is thus possible to certify the correctness of
critical parts of the applications.

This special issue of Scalable Computing: Practice and Experience presents recent work of researchers in
these fields. These articles are a selection of extended and revised versions of papers presented at the third
international workshop on Practical Aspects of High-Level Parallel Programming (PAPP), affiliated to the Inter-
national Conference on Computational Science (ICCS 2006). The PAPP workshop is aimed both at researchers
involved in the development of high level approaches for parallel and grid computing and computational science
researchers who are potential users of these languages and tools. The topics of the PAPP workshop include
high-level models (CGM, BSP, MPM, LogP, etc.) and tools for parallel and grid computing; high-level parallel
language design, implementation and optimisation; functional, logic, constraint programming for parallel, dis-
tributed and grid computing systems; algorithmic skeletons, patterns and high-level parallel libraries; generative
(e.g. template-based) programming with algorithmic skeletons, patterns and high-level parallel libraries; appli-
cations in all fields of high-performance computing (using high-level tools); and benchmarks and experiments
using such languages and tools.

The Java programming language increases the productivity of programmers for example by taking care of
memory management, by providing a wide collection of data structures (safer with the recent introduction of
genericity in the language), and many other features. JIT compilation techniques make Java virtual machines
quite efficient. Thus Java is an interesting choice as a basis for high-level parallelism. The two papers selected
from the PAPP 2006 workshop focus on parallel programming with Java. In their paper MUSKEL: an expandable
skeleton environment, Marco Aldinucci, Marco Danelutto and Patrizio Dazzi propose a new skeleton language,
Muskel, based on data flow technology. It implements both the usual predefined skeletons and user-defined
parallelism exploitation patterns. Muskel is a pure Java implementation, and relies on the annotation and RMI
facilities of Java. A Buffering Layer to Support Derived Types and Proprietary Networks for Java HPC by Mark
Baker, Bryan Carpenter and Aamir Shafi, presents a new MPI-like binding for Java. MPJ Express combines
two strength which can usually not be found in other MPI bindings for Java: it supports the implementation of
derived datatypes and it is implemented in pure Java. The buffering layer used to provide these features also
gives a way to implement efficient proprietary networks communication devices.

We would like to thank all the people who made the PAPP workshop possible: the organizers of the
ICCS conference, the other members of the programme committee: Marco Aldinucci (CNR/Univ. of Pisa,
Italy), Olav Beckmann (Imperial College London, UK), Alexandros Gerbessiotis (NJIT, USA), Stephen Gilmore
(Univ. of Edinburgh, UK), Clemens Grelck (Univ. of Luebeck, Germany), Christoph Herrmann (Univ. of Passau,
Germany), Zhenjiang Hu (Univ. of Tokyo, Japan), Casiano Rodriguez Leon (Univ. La Laguna, Spain), Alexander
Tiskin (Univ. of Warwick, UK). We also thank the referees external to the PC for their efficient help. Finally
we thank all authors who submitted papers for their interest in the workshop, the quality and variety of the
research topics they proposed.
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INTRODUCTION TO THE SPECIAL ISSUE: HIGH PERFORMANCE RECONFIGURABLE
COMPUTING

High performance reconfigurable computing has become a crucial tool for designing application-specific proces-
sors/cores in a number of areas. Improvements in reconfigurable devices such as FPGAs (field programmable
gate arrays) and their inclusion in current computing products have created new opportunities, as well as new
challenges for high performance computing (HPC).

An FPGA is an integrated circuit that contains tens of thousands of building blocks, known as configuration
logic blocks (CLBs) connected by programmable interconnections. FPGAs tend to be an excellent choice when
dealing with algorithms that can benefit from the high parallelism offered by the FPGA fine-grained architecture.
In particular, one of the most valuable features of FPGAs is their reconfigurability, i.e., the fact that they can be
used for different purposes at different stages of a computation and they can be, at least partially, reprogrammed
at run-time.

HPC applications with reconfigurable computing (RC) have the potential to deliver enormous performance,
thus they are especially attractive when the main design goal is to obtain high performance at a reasonable
cost. Furthermore they are suitable for use in embedded systems. This is not the case for other alternatives
such as grid-computing.

The problem of accelerating HPC applications with RC can be compared to that of porting uniprocessor
applications to massively parallel processors (MPPs). However, MPPs are better understood to most software
developers than reconfigurable devices. Moreover, tools for porting codes to reconfigurable devices are not yet
as well developed as for porting sequential code to parallel code. Nevertheless, in recent years considerable
progress has been in developing HPC applications with RC in such areas as signal processing, robotics, graph-
ics, cryptography, bioinformatics, evolvable and biologically-inspired hardware, network processors, real-time
systems, rapid ASIC prototyping, interactive multimedia, machine vision, computer graphics, robotics, and
embedded applications, to name a few. This special issue contains a sampling of the progress made in some of
these areas.

In the first paper, Lieu My Chuong, Lam Siew Kei, and Thambillai Srikanthan propose a framework that can
rapidly and accurately estimate the hardware area- time measures for implementing C-applications on FPGAs.
Their method is able to predict the delays with average accuracy of the 97%. The estimation computation
of this approach can be done in the order of milliseconds. This is an essential step to facilitate rapid design
exploration for FGPA implementations and significantly helps in the implementation of FPGA systems using
high-level description languages.

In the second paper, T. Hausert, A. Dsu, A. Sudarsanam, and S. Young design an FPGA based system to
solve linear systems for scientific applications. They analyze the FPGA performance per wait (MFLOPS/W) and
compare the performance with microprocessor-based approaches. Finally as the main outcome of this analysis,
they propose helpful recommendations for speeding up FPGA computations with low power consumption.

In the third paper, S. Mota, E. Ros, and F. de Toro describe a computing architecture that finely pipelines
all the processing stages of a space variant mapping strategy to reduce the distortion effect on a motion-detection
based vision system. As an example, they describe the results of correcting perspective distortion in a monitoring
system for vehicle overtaking processes.

In the fourth paper, Sadaf R. Alam, Pratul K. Agarwal, Melissa C. Smith, and Jeffrey S. Vetter describe
an FPGA acceleration of molecular dynamics using the Particle-Mesh Ewald method. Their results show that
time-to-solution of medium scale biological system simulations are reduced by a factor of 3X and they predict
that future FPGA devices will reduce the time-to-solution by a factor greater than 15X for large scale biological
systems.

In the fifth paper, Nazar A. Saqib presents a space complexity analysis of two Karatsuba-Ofman multiplier
variants. He studies the number of FPGA hardware resources employed by those two multipliers as a function
of the operands’ bitlength. He also provides a comparison table against the school (classical) multiplier method,
where he shows that the Karatsuba-Ofman method is much more economical than the classical method for
operand bitlengths greater than thirty two bits. The complexity analysis presented in this paper is validated
experimentally by implementing the multiplier designs on FPGA devices.

The help of the follow reviewers, who ensured the quality of this issue, is gratefully acknowledged:
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MUSKEL: A SKELETON LIBRARY SUPPORTING SKELETON SET EXPANDABILITY∗

MARCO ALDINUCCI† AND MARCO DANELUTTO† AND PATRIZIO DAZZI‡

Abstract. Programming models based on algorithmic skeletons promise to raise the level of abstraction perceived by pro-
grammers when implementing parallel applications, while guaranteeing good performance figures. At the same time, however, they
restrict the freedom of programmers to implement arbitrary parallelism exploitation patterns. In fact, efficiency is achieved by
restricting the parallelism exploitation patterns provided to the programmer to the useful ones for which efficient implementations,
as well as useful and efficient compositions, are known. In this work we introduce muskel, a full Java library targeting workstation
clusters, networks and grids and providing the programmers with a skeleton based parallel programming environment. muskel is
implemented exploiting (macro) data flow technology, rather than the more usual skeleton technology relying on the use of imple-
mentation templates. Using data flow, muskel easily and efficiently implements both classical, predefined skeletons, and user-defined
parallelism exploitation patterns. This provides a means to overcome some of the problems that Cole identified in his skeleton
“manifesto” as the issues impairing skeleton success in the parallel programming arena. We discuss fully how user-defined skeletons
are supported by exploiting a data flow implementation, experimental results and we also discuss extensions supporting the further
characterization of skeletons with non-functional properties, such as security, through the use of Aspect Oriented Programming
and annotations.

Key words. algoritmical skeletons, data flow, structured parallel programming, distributed computing, security.

1. Introduction. Structured parallel programming models provide the user (programmer) with native
high-level parallelism exploitation patterns that can be instantiated, possibly in a nested way, to implement a
wide range of applications [13, 23, 24, 8, 6]. In particular, such programming models do not allow programmers to
program parallel applications at the “assembly level”, i. e. by directly interacting with the distributed execution
environment via communication or shared memory access primitives and/or via explicit scheduling and code
mapping. Rather, the high-level native, parametric parallelism exploitation patterns provided encapsulate and
abstract from these parallelism exploitation related details. For example, to implement an embarrassingly
parallel application processing all the data items in an input stream or file, the programmer simply instantiates
a “task farm” skeleton by providing the code necessary to process (sequentially) each input task item. The
system, either a compiler and run time tool based implementation or a library based one, takes care of devising
the appropriate distributed resources to be used, to schedule tasks on the resources and to distribute input
tasks and gather output results according to the process mapping used. By contrast, when using a traditional
system, the programmer has usually to explicitly program code for distributing and scheduling the processes on
the available resources and for moving input and output data between the processing elements involved. The cost
of this appealingly high-level way of dealing with parallel programs is paid in terms of programming freedom.
The programmer is normally not allowed to use arbitrary parallelism exploitation patterns, but he must use
only the ones provided by the system, usually including all those reusable patterns that happen to have efficient
distributed implementations available. This is aimed mainly at avoiding the possibility for the programmer to
write code that could potentially impair the efficiency of the implementation provided for the available, native
parallel patterns. This is a well-known problem. Cole recognized its importance in his “manifesto” paper [13].

In this work we discuss a methodology that can be used to provide parallel application programmers with
both the possibility of using predefined skeletons in the usual way and, at the same time, the possibility of imple-
menting their own, additional skeletons, where the predefined ones do not suffice. The proposed methodology,
which is based on data flow, preserves most of the benefits typical of structured parallel programming models.
According to the proposed methodology, predefined, structured parallel exploitation patterns are implemented
by translating them into data flow graphs executed by a scalable, efficient, distributed macro data flow inter-
preter (the term macro data flow refers to the fact that the computation of a single data flow instruction can
be a substantial computation). User-defined, possibly unstructured parallelism exploitation patterns can be
programmed by explicitly defining data flow graphs. These data flow graphs can be used in the skeleton system
in any place where predefined skeletons can be used, thus providing the possibility of seamlessly integrating
both kinds of parallelism exploitation within the same program.

∗This work has been partially supported by Italian national FIRB project no. RBNE01KNFP GRID.it and by the FP6 Network
of Excellence CoreGRID funded by the European Commission (Contract IST-2002-004265).
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User-defined data flow graphs provide users with the possibility of programming new skeletons. However, in
order to introduce a new skeleton, users need concentrate only on the data flow within the new skeleton, rather
than on the implementation issues typically related to the efficient implementation of structured parallelism
exploitation patterns. This greatly improves the efficacy of the parallel application development process as
compared to classical parallel programming approaches such as MPI and OpenMP that instead provide users
with very low level mechanisms and give them complete responsibility for efficiently and correctly using these
mechanisms to implement the required parallelism exploitation patterns.

After describing how user defined skeletons are introduced and supported within our experimental skeleton
programming environment, we will also briefly discuss other tools we are currently considering to extend the
prototype skeleton environment. These tools extend the possibility for users to control some non-functional
features of parallel programs in a relatively high-level way. In particular we will introduce the possibility of
using Java 1.5 annotations and AOP (Aspect-Oriented Programming) techniques to associate to the skeletons
different non-functional properties such as security or parallelism exploitation related properties.

2. Template based vs. data flow based skeleton systems. A skeleton based parallel programming
environment provides programmers with a set of predefined and parametric parallelism exploitation patterns.
The patterns are parametric in the kind of basic computation executed in parallel and, possibly, in the execution
parallelism degree or in some other execution related parameters. For example, a pipeline skeleton takes as pa-
rameters the computations to be computed at the pipeline stages. In some skeleton systems these computations
can be either sequential computations or parallel ones (i. e. other skeletons) while in other systems (mainly the
ones developed at the very beginning of the skeleton related research activity) these computations may only be
sequential ones.

The first attempts to implement skeleton programming environments all relied on the implementation
template technology. Original Cole skeletons [12], Darlington’s group skeleton systems [18, 20, 19], Kuchen’s
Muesli [23, 26] and our group’s P3L [7] and ASSIST [36] all use this implementation schema. As discussed in [27],
in an implementation template based skeleton system each skeleton is implemented using a parametric process
network chosen from those available in a template library for that particular skeleton and for the kind of target
architecture at hand (see [28], which discusses several implementation templates, all suitable for implementing
task farms, that is embarrassingly parallel computations implemented according to a master-worker paradigm).
The template library is designed once and for all by the skeleton system designer and captures the state of
the art knowledge relating to implementation of the parallelism exploitation patterns modeled by the skeletons.
Therefore the compilation process of a skeleton program, according to the implementation template model, can
be summarized as follows:

1. the skeleton program is parsed and a skeleton tree representing the precise skeleton structure of the
user application is derived. The skeleton tree has nodes marked with one of the available skeletons, and
leaves marked with sequential code (sequential skeletons).

2. The skeleton tree is traversed, in some order, and templates from the library are assigned to each of the
skeleton nodes, apart from the sequential ones, which always correspond to the execution of a sequential
process on the target machine. During this phase, parameters of the templates (e.g. the parallelism
degree or the kind of communication mechanisms used) are fixed, possibly using heuristics associated
with the library entries.

3. The annotated skeleton tree is used to generate the actual parallel code. Depending on the system this
may involve a traditional compilation step (e.g. in P3L when using the Anacleto compiler [11] or in
ASSIST when using the astcc compiler tools [2, 1]) or use of a skeleton library hosting templates (e.g.
Muesli [26] and eSkel [14] exploiting MPI).

4. The parallel code is eventually run on the target architecture, possibly exploiting some kind of loader/
deploy tool.

Figure 2.1 summarizes the process of deriving running code from skeleton source code using template technology.

More recently, an implementation methodology based on data flow has been proposed [15]. In this case
the skeleton source code is used to compile a data flow graph and the data flow graph is then executed on
the target architecture using a suitable distributed data flow interpreter engine. The approach has been used
both in our group, in the implementation of Lithium [35, 6], and in Serot’s SKIPPER skeleton environment
[30]. In both cases the data flow approach was used to support fixed skeleton set programming environments.
We adopted the very same implementation approach in the muskel full Java skeleton library, but in muskel
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Fig. 2.1. Skeleton program execution according to the implementation template approach.

(as shown in the rest of this paper) the data flow implementation is also used to support extensible skeleton
sets.

When data flow technology is exploited to implement skeletons, the compilation process of a skeleton
program can be summarized as follows:

1. the skeleton program is parsed and a data flow graph is derived. The data flow graph represents the
pure data flow behaviour of the skeleton tree in the program.

2. For each of the input tasks, a copy of the data flow graph is instantiated, with the task appearing
as an input token to the graph. The new graph is delivered to the distributed data flow interpreter
“instruction pool”.

3. The distributed data flow interpreter fetches fireable instructions from the instruction pool and the
instructions are executed on the nodes in the target architecture. Possibly, optimizations are taken into
account (based on heuristics) that try to avoid unnecessary communications (e.g. caching tokens that
will eventually be reused) or to adapt the computation grain of the program to the target architecture
features (e.g. delivering more than a single fireable instruction to remote nodes to decrease the impact
of communication set up latency, or multiprocessing the remote nodes to achieve communication and
computation overlap).

Figure 2.2 summarizes the steps leading from skeleton source code to the running code using this data flow
approach. It is worth pointing out that macro data flow implementation of skeletons is “pure data flow” compli-
ant: no side effects, such as those deriving from the usage of global variables, are supported, nor can data flow
graphs compiled from one skeleton in the program affect/modify the graphs compiled from the other skeletons
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Fig. 2.2. Skeleton program execution according to the data flow approach.

in the program. This can be perceived as a limitation if we assume a non-structured parallel programming
perspective. However, this represents a strong point in the structured parallel programming perspective as it
guarantees that macro data flow graphs separately generated from skeletons appearing in the source code can
be composed/unfolded safely in the global macro data flow graph eventually run on the distributed macro data
flow interpreter.

The two approaches just outlined appear very different, but they have been successfully used to implement
different skeleton systems. To support what will be presented in §4.2, we wish first to point out a quite subtle
difference in the two approaches.

On the one hand, when using implementation templates, the process network eventually run on the target
architecture is very similar to the one the user has in mind when instantiating skeletons in the source code.
In some systems the “optimization” phase of Fig. 2.1 is actually empty and the program eventually run on
the target architecture is built by simple juxtaposition of the process networks making up the templates of the
skeletons used in the program. Even when the optimization phase does actually modify the process network
structure (in Fig. 2.1 the master/slave service process of the two consecutive farms are optimized/collapsed, for
instance), the overall structure of the process network does not change very much.

On the other hand, when a data flow approach is used the process network run on the target architecture
has almost nothing to do with the skeleton tree described by the programmer in the source code. Rather, the
skeleton tree is used to implement the parallel computation in a correct and efficient way, exploiting a set of
techniques and mechanisms that are much closer to the techniques and mechanisms used in operating systems
rather than to those used in the execution of parallel programs, both structured and unstructured. From a
slightly different perspective, this can be interpreted as follows:
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Fig. 3.1. Sample muskel code: sketch of all (but the sequential portions of code) the code needed to set up and execute a
two-stage pipeline with parallel stages (farms).

• skeletons in the program “annotate” sequential code by providing the meta information required to
efficiently implement the program in parallel;
• the support tools of the skeleton programming environment (the data flow graph compiler and the

distributed data flow interpreter, in this case) “interprets” the meta information to accurately and effi-
ciently implement the skeleton program, exploiting (possibly at run time, when the target architecture
features are known) the whole set of known mechanisms supporting implementation optimization (e.g.
caches, prefetching, node multiprocessing, etc.).

Viewed in this way, the data flow implementation for parallel skeleton programs presents a new perspective
in the design of parallel programming systems where parallelism is dealt with as a “non-functional” feature,
introduced by programmers via annotations or exploiting Aspect-Oriented Programming (AOP) techniques,
and handled by the compiling/runtime support tools in the most convenient and efficient way with respect to
the target architecture at hand (see §4.2).

3. muskel. muskel is a full Java skeleton programming environment derived from Lithium [6]. Currently, it
provides only the stream parallel skeletons of Lithium, namely stateless task farm and pipeline. These skeletons
can be arbitrarily nested, to program pipelines with farm stages, for example, and they process a single stream of
input tasks to produce a single stream of output tasks. muskel implements skeletons using data flow technology
and Java RMI facilities. The programmer using muskel can express parallel computations by simply using
the provided Pipeline and Farm classes. For example, to express a parallel computation structured as a two-
stage pipeline with a farm in each of the stages, the user should write code such as that shown in Fig. 3.1.
f and g are two classes implementing the Skeleton interface, i. e. supplying a compute method with the
signature Object compute(Object t) computing f and g, respectively. The Skeleton interface represents the
“sequential” skeleton, that is the skeleton always executed sequentially and only used to wrap sequential code
in such a way that it can be used in other, non-sequential skeletons.

In order to execute the program, the programmer first sets up a Manager object. Then, using appropriate
methods, he indicates to the manager the program to execute, the performance contract required (in this case,
the parallelism degree required for the execution), what is in charge of providing the input data (the input
stream manager, which is basically an iterator providing the classical boolean hasNext() and Object next()
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methods) and what is in charge of processing the output data (the output stream manager, providing only
a void deliver(Object) method processing a single result of the program). Finally, he can request parallel
program execution simply by issuing an eval call to the manager. When the call terminates, the output file
has been produced.

Actually, the eval method execution happens in steps. First, the application manager looks for available
processing elements using a simplified, multicast based peer-to-peer discovery protocol, and recruits the required
remote processing elements. Each remote processing element runs a data flow interpreter. Then the skeleton
program (the main of the example) is compiled into a macro data flow graph (capitalizing on normal form
results shown in [3, 6]) and a thread is forked for each of the remote processing elements recruited. Then the
input stream is read. For each task item, an instance of the macro data flow graph is created and the task item
token is stored in the proper place (initial data flow instruction(s)). The graph is placed in the task pool, the
repository for data flow instructions to be executed. Each thread looks for a fireable instruction in the task pool
and delivers it for execution to the associated remote data flow interpreter. The remote interpreter instance
associated to the thread is initialized by being sent the serialized code of the data flow instructions, once and for
all, before the computation actually starts. Once the remote interpreter terminates the execution of the data
flow instruction, the thread either stores the result token in the appropriate “next” data flow instruction(s) in
the task pool, or it directly writes the result to the output stream, invoking the deliver method of the output
stream manager. Currently, the task pool is a centralized one, associated with the centralized manager. We are
currently investigating the possibility to distribute both task pool and manager so as to remove this bottleneck.
The manager takes care of ensuring that the performance contract is satisfied. If a remote node “disappears”
(e.g. due to a network failure, or to the node failure/shutdown), the manager looks for another node and starts
dispatching data flow instructions to the new node instead [16]. As the manager is a centralized entity, if it
fails, the whole computation fails. However, the manager is usually run on the user machine, which is assumed
to be safer than the remote nodes recruited as remote interpreter instances.

The policies implemented by the muskel managers are best effort. The muskel library tries to do its best
to accomplish user requests. If it is not possible to completely satisfy the user requests, the library establishes
the closest configuration to the one implicitly specified by the user with the performance contract. In the
example above, the library tries to recruit 10 remote interpreters. If only n < 10 remote interpreters are found,
the parallelism degree is set exactly to n. In the worst case, that is if no remote interpreter is found, the
computation is performed sequentially, on the local processing element.

In the current version of the muskel prototype, the only performance contract actually implemented is the
ParDegree one, asking for the use of a constant number of remote interpreters in the execution of the program.
The prototype has been designed to support at least another kind of contract: the ServiceTime one. This
contract can be used to specify the maximum amount of time expected between the delivery of two program
result tokens. Thus, with a call such as manager.setContract(new ServiceTime(500)), the user may request
delivery of one result every half a second (time is in ms, as usual in Java). We do not discuss in more detail
the implementation of the distributed data flow interpreter here. The interested reader can refer to [15, 16].
Instead, we will present more detail of the compilation of skeleton code into data flow graphs.

A muskel parallel skeleton code is described by the grammar:

P ::= seq(className) | pipe(P, P) | farm(P)

where the classNames refer to classes implementing the Skeleton interface, and a macro data flow instruction
(MDFi) is a tuple:

MDFi ≡ Id× Id× Id× In ×Ok

where the first Id : paper.tex, v1.352007/03/2316 : 45 : 59marcodExp represents the MDFi identifier distin-
guishing that MDFi from other MDFi in the graph, the second represents the graph id (both are either integers
or the special NoId identifier), the third the identifier of the Skeleton code computed by the MDFi; and, fi-
nally, I and O are the input tokens and the output token destinations, respectively. An input token is a pair
〈value, presenceBit〉 and an output token destination is a pair 〈destInstructionId, destTokenNumber〉. With these
assumptions, a data flow instruction such as 〈a, b, f, 〈〈123, true〉, 〈null, false〉〉, 〈〈i, j〉〉〉 is the instruction with
identifier a belonging to the graph with identifier b. It has two input tokens, one present (the integer 123) and
one not present yet. It is not fireable, as one token is missing. When the missing token is delivered to this
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instruction, either from the input stream or from another instruction, the instruction becomes fireable. To be
computed, the two tokens must be given to the compute method of the f class. The method computes a single
result that will be delivered to the instruction with identifier i in the same graph, in the position corresponding
to input token number j. The process compiling the skeleton program into the data flow graph can therefore be
more formally described as follows. We define a pre-compile function PC : P× Id→ (Id→ MDFi⋆) as follows:

PC[P]g =






λi. {〈newId(), g, f, 〈〈null, false〉〉, 〈〈i, 1 〉〉〉} if P = seq (f)
PC[P1]g if P = farm(P1 )
λi.((PC[P1]gid (getId(T ))) ∪ (T (i)))

where T = PC[P2]gid if P = pipe (P1, P2)

where λx.T is the usual lambda notation for functions and getID() returns the id of the first instruction in its
argument graph, that is, the one assuming to receive the input token from outside the graph.
Then, we define the compile function C : P→ MDFi⋆ as follows:

C[P ] = PC[P ]newGid() (NoId)

where newId() and newGid() are stateful functions returning a fresh (i. e. unused) instruction and graph
identifier, respectively. The compile function therefore returns a graph, with a fresh graph identifier, containing
all the data flow instructions defining the skeleton program. The result tokens are identified as those whose
destination is NoId. For example, the compilation of the main program pipe(farm(seq(f)), farm(seq(g))) produces
the data flow graph:

{〈2, 1, f, 〈〈null, false〉〉, 〈〈1, 1〉〉〉 , 〈1, 1, g, 〈〈null, false〉〉, 〈〈NoId, 1〉〉〉}

(assuming that identifiers and token positions start from 1).
When the application manager is told to compute the program, via an eval() method call, the input file

stream is read looking for tasks to be computed. Each task found is used to replace the data field of the initial
data flow instruction in a new C[P ] graph. In the example above, this results in the generation of a set of
independent graphs such as:

{〈2, i, f, 〈〈null, false〉〉, 〈〈1, 1〉〉〉 , 〈1, i, g, 〈〈null, false〉〉, 〈〈NoId, 1〉〉〉}

for all the tasks ranging from task1 to taskn.
All the resulting instructions are put in the task pool of the distributed interpreter in such a way that

the control threads taking care of “feeding” the remote data flow interpreter instances can start fetching the
fireable instructions. The output tokens generated by instructions with destination tag equal to NoId are
delivered directly to the output file stream by the threads receiving them from the remote interpreter instances.
Those with a non-NoId flag are delivered to the appropriate instructions in the task pool, which will eventually
become fireable.

4. Expanding muskel skeleton facilities. In this section, we will discuss how the skeleton facilities
provided by muskel can be extended to accomplish particular user requirements. Two issues are considered.
First, the mechanisms used to allow programmers to define their own skeletons are discussed, along with their
muskel implementation. Using these mechanisms, the programmers may declare and use arbitrary, possibly
“unstructured”1 new skeletons. Then, we discuss how alternative mechanisms based on Java annotations
and/or AOP techniques are currently being used to provide further expandability of the muskel skeleton set,
in particular characterizing existing skeletons with new, non-functional features.

4.1. User-defined skeletons. In order to introduce completely new parallelism exploitation patterns,
muskel provides programmers with mechanisms that can be used to design arbitrary macro data flow graphs.
A macro data flow graph can be defined creating some Mdfi (macro data flow instruction) objects and connecting
them in a MdfGraph object.

For example, the code in Fig. 4.1 is that needed to program a data flow graph with two instructions. The
first computes the inc1 compute method on its input token and delivers the result to the second instruction.
The second computes the sq1 compute method on its input token and delivers the result to a generic “next”
instruction (this is modelled by giving the destination token tag a Mdfi.NoInstrId tag). The Dest type in
the code represents the destination of output tokens as triples containing the graph identifier, the instruction

1With respect to classical skeleton frameworks.
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Fig. 4.1. Custom/user-defined skeleton declaration.

identifier and the destination input token targeted in this instruction. Macro data flow instructions are built
by specifying the manager they refer to, their identifier, the code executed (must be a Skeleton object) the
number of input and output tokens and a vector with a destination for each of the output tokens.

We do not present all the details of arbitrary macro data flow graph construction here (a complete de-
scription is provided with the muskel documentation). The example is just to give the flavor of the tools
provided in the muskel environment. Bear in mind that the simple macro data flow graph of Fig. 4.1 is
actually the same macro data flow graph obtained by compiling a primitive muskel skeleton call such as:
Skeleton main = new Pipeline(new Inc(), new Sq()) More complex user-defined macro data flow graphs
may include instructions delivering tokens to an arbitrary number of other instructions, as well as instructions
gathering input tokens from several distinct other instructions. In general, the mechanisms of muskel permit
the definition of any kind of graph with macro data flow instructions computing sequential (side effect free)
code wrapped in a Skeleton class. Any parallel algorithm that can be modeled with a data flow graph can
therefore be expressed in muskel2. Non deterministic MDFi are not yet supported (e.g. one that merges input
tokens from two distinct sources) although the firing mechanism in the interpreter can be easily adapted to
support this kind of macro data flow instructions. Therefore, new skeletons added through the macro data flow
mechanism always model pure functions.

MdfGraph objects are used to create new ParCompute objects. ParCompute objects can be used in any
place where a Skeleton object is used. Therefore, user-defined parallelism exploitation patterns can be used
as pipeline stages or as farm workers, for instance. The only limitation on the graphs that can be used in a
ParCompute object consists in requiring that the graph has a unique input token and a unique output token.

When executing programs with user-defined parallelism exploitation patterns the process of compiling
skeleton code to macro data flow graphs is slightly modified. When an original muskel skeleton is compiled,
the process described in §3 is applied. When a user-defined skeleton is compiled, the associated macro data
flow graph is directly taken from the ParCompute instance variables where the graph supplied by the user is
maintained. Such a graph is linked to the rest of the graph according to the rules appropriate to the skeleton
where the user-defined skeleton appears.

To show how the whole process works, let us suppose we want to pre-process each input task in such a way
that for each task ti a new task

t′i = h1(f1(ti), g2(g1(f1(ti))))

2Note, however, that common, well know parallel application skeletons are already modelled by pre-defined muskel Skeletons.
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Fig. 4.2. Mixed sample macro data flow graph (left): the upper part comes from a user-defined macro data flow graph (it
cannot be derived using primitive muskel skeletons) and the lower part is actually coming from a three stage pipeline with two
sequential stages (the second and the third one) and a parallel first stage (the user-defined one). GUI tool designing the upper
graph (right).

is produced. This computation cannot be programmed using the stream parallel skeletons currently provided
by muskel. In particular, current pre-defined skeletons in muskel allow only processing of one input to produce
one output, and therefore there is no way to implement the graph described here. In this case we wish to process
the intermediate results through a two-stage pipeline to produce the final result. To do this the programmer can
set up a new graph using code similar to the one shown in Fig. 3.1 and then use that new ParCompute object as
the first stage of a two-stage pipeline whose second stage happens to be the postprocessing two-stage pipeline.
When compiling the whole program, the outer pipeline is compiled first. As the first stage is a user-defined
skeleton, its macro data flow graph is directly taken from the user-supplied one. The second stage is compiled
according to the (recursive) procedure described in §3 and eventually the (unique) last instruction of the first
graph is modified in such a way that it sends its only output token to the first instruction in the second stage
graph. The resulting graph is outlined in Fig. 4.2 (left).

Making good use of the mechanisms allowing definition of new data flow graphs, the programmer can
arrange to express computations with arbitrary mixes of user-defined data flow graphs and graphs coming from
the compilation of structured, stream parallel skeleton computations. The execution of the resulting data flow
graph is supported by the muskel distributed data flow interpreter in the same way as the execution of any
other data flow graph derived from the compilation of a skeleton program. At the moment the muskel prototype
allows user-defined skeletons to be used as parameters of primitive muskel skeletons, but not vice versa. We
are currently working to extend muskel to alow the latter.

While the facility to include user-defined skeletons provides substantial flexibility, we recognize that the
current way of expressing new macro data flow graphs is error prone and not very practical. Therefore we have
designed a graphic tool that allows users to design their macro data flow graphs and then compile them to
actual Java code as required by muskel and shown above. Fig. 4.2 (right) shows the interface presented to the
user. In this case, the user is defining the upper part of the graph in the left part of the same Figure. It is worth
pointing out that all that is needed in this case is to connect output and input token boxes appropriately, and
to configure each MDFi with the name of the sequential Skeleton used. The smaller window on the right lower
corner is the one used to configure each node in the graph (that is, each MDFi). This GUI tool produces an
XML representation of the graph. Then, another Java tool produces the correct muskel code implementing the
macro data flow graph as a muskel ParCompute skeleton. As a result, users are allowed to extend, if required,
the skeleton set by just interacting with the GUI tool and “compiling” the graphic MDF graph to muskel code
by clicking on one of the buttons in the top toolbar.

As a final example, consider the code of Fig. 4.3. This code outlines how a new Map2 skeleton, performing
in parallel the same computation on all the portions of an input vector, can be defined and used. It is worth
pointing out how user-defined skeletons, once properly debugged and fine-tuned, can simply be incorporated in
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Fig. 4.3. Introducing a new, user-defined skeleton: a map working on vectors and with a fixed, user-defined parallelism degree.

the muskel skeleton library and used seamlessly, as the primitive muskel ones, but for the fact that (as shown
in the code) the constructor needs the manager as a parameter. This is needed so as to be able to link together
the macro data flow graphs generated by the compiler and those supplied by the user. It is worth noting that
skeletons such as a general form of Map are usually provided in the fixed skeleton set of any skeleton system
and users usually do not need to implement them. However, as muskel is an experimental skeleton system, we
concentrate the implementation efforts on features such as the autonomic managers, portability, security and
expandability rather than providing a complete skeleton set. As a consequence, muskel has no predefined map
skeleton and the example of user defined skeleton just presented suitably illustrates the methodology used to
expand the “temporary” restricted skeleton set of the current version of muskel depending on the user needs.
The Map2 code shown here implements a “fixed parallelism degree” map, that is the number of “workers” used
to compute in parallel the skeleton does not depend on the size of the input data. It is representative of a
more general Mapskeleton taking a parameter specifying the number of workers to be used. However, in order
to support the implementation of a map skeleton with the number of workers defined as a function of the input
data, some kind of support for the dynamic generation of macro data flow graphs is needed, which is not present
in the current muskel prototype.

4.2. Non-functional features. We briefly discuss here how annotations and aspect-oriented program-
ming techniques and mechanisms can be used to introduce convenient ways of expressing non-functional features
of parallel skeleton programs in muskel. Unlike the work discussed in the previous section, which has already
been implemented in the current muskel prototype, this is more on-going work. We have preliminary results
demonstrating the approach is feasible and we are currently working to transfer the experimental techniques to
the “production” muskel prototype.
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Fig. 4.4. AspectJ code modeling normal form in muskel.

In this context, let us consider as non-functional features all that is not related to the control flow that
the programmer needs to set up to compute the final program result. For instance, we consider as non-
functional features the necessity to secure code and data management in a program execution, the application
of optimization rules transforming the user-supplied program into an equivalent, possibly more efficient one, or
the hints given by programmers as to the features to exploit during the execution of the parallel skeleton code.

We wish to outline how these features can be implemented in the muskel framework using some innovative
programming techniques.

First consider security issues. When executing a muskel program on a network of workstations, it may
be the case that the workstations used happen to be in different local networks, possibly interconnected by
public, untrusted network segments. Also, it may be the case that the user running the program does not have
complete control of the machines used to run the remote data flow interpreter instances, and therefore cannot
exclude malicious user activity on the remote machines aimed at reading or modifying the program or the data
involved in the parallel program run. Therefore, it is appropriate to provide mechanisms that can be used in
the muskel support to authenticate and encrypt all the communications happening during a muskel program
run, both those relating to the transmission of the (serialized) program code and those relating to input and
output token communications. As an example, an ssl transport layer can be used instead of plain TCP/IP to
implement the muskel communications. However, the use of the ssl transport layer involves a communication
cost which is definitely higher than the cost involved in plain TCP/IP configurations (see results shown in §5).
Therefore, the user may wish to denote in the program which are the sensitive data or code segments that must
not be transmitted in clear on untrusted networks. Java annotations can be used to the purpose, as follows:

• the programmer annotates (using some @SensitiveCode and @SensitiveData annotations) those
Skeletons whose code must be properly secured and those data that must be kept secret;
• then the Manager, in the eval implementation may use reflection to access these annotations and to

process them properly. That is, in the case of Skeleton objects annotated as @SensitiveCode it
provides for distribution of the code using ssl tunnelled RMI, in the case of tasks/tokens annotated
as @SensitiveData it provides for invocation of remote compute execution again using ssl tunnelled
RMI, while in all other cases it uses plain RMI over unencrypted, more efficient TCP/IP connections.

Now consider a different kind of non-functional feature: source-to-source program optimization rules. For
example, let us consider our previous result on skeleton program normal form. Such result [3] can be informally
stated as follows: an arbitrary muskel program whose structure is a generic skeleton tree made out of pipelines,
farms and sequential skeletons may be transformed into a new, equivalent one, whose parallel structure is a farm
with each worker made up of the sequential composition of the sequential skeletons appearing in the original
skeleton tree taken left to right. This second program is the skeleton program normal form and happens to
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Fig. 4.5. AspectJ code handling performance contracts in muskel.

perform better than the original one in the general case and in the same way in the worst case (this with
respect to the service time). As an example, the code of Fig. 3.1 can be transformed into the equivalent normal
form code: Skeleton main = new Farm(new Seq(f,g)); where Seq is basically a pipeline whose stages are
executed sequentially on a single processor.

In Lithium, normal form can be used by explicitly inserting statements in the source code. This means
that the user must change the source code to use the normal form or the non-normal form version of the
same program. Using AOP (and AspectJ, in particular) we can define an aspect dealing with normal form
transformation by defining a pointcut on the execution of the setProgram Manager method and associating to
the pointcut the action performing normal form transformation on the source code in the aspect, such as the
one of Fig. 4.4. As a consequence, the user can decide whether to use the original or the normal form version of
the program just by choosing the standard Java compiler or the AspectJ one. The fact that the program is left
unchanged means the programmer may debug the original program and have the normal form one debugged
too as a consequence, provided the AOP code in the normal form aspect is correct, of course. Moreover, if
normal form is handled by aspects as discussed above, it is better to handle also related features by means of
suitable aspects. For example, if the user provided a performance contract (a parallelism degree, in the simpler
case) and then used the AspectJ compiler to request normal form execution of the program, it turns out to be
quite natural to imagine a further aspect handling the performance contract consequently. Fig. 4.5 shows the
AspectJ code handling this feature. In this case, contracts are stored as soon as they have been issued by the
programmer, with the first pointcut, then, when normalization has been required (second pointcut) and program
parallel evaluation is required, the contract is handled consequently (third pointcut); in this case it is either left
unchanged or a new contract is derived from the original one according to some normal form related procedure.

At the moment we are experimenting with both annotations and AOP techniques to provide the muskel

programmer with better tools supporting more and more possibilities to customize parallelism exploitation in
muskel programs.
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Fig. 4.6. muskel performance versus number of remote interpreters on a homogeneous cluster. Left) Efficiency of SyntApp

for several computation grains. Right) Speedup of ImgFilter2 compared with ideal speedup.

In particular, we have investigated the possibility of relieving the programmer of the need to specify farm
skeletons at all. Instead of declaring farm skeletons, programmers may simply annotate as @Parallel the
Skeleton objects and the run time support directly manages to transform calls to the compute methods of such
objects into farms [17]. This is not a completely new technique, but it can be used to evaluate the effectiveness of
the approach, compared both to the original muskel farm handling and to a similar approach defining Skeleton

objects to be computed in parallel in a farm by properly setting up a farm aspect with actions establishing task
farm like computation patterns upon the invocation of the Skeleton compute method.

5. Experimental results. We ran some experiments aimed at validating the muskel prototype supporting
user defined skeletons. The results shown refer to two applications. SyntApp is a synthetic application processing
1K distinct input tasks and designed in such a way that the macro data flow instructions appearing in the graph
had a precise “average grain” (i. e. average ratio among the time spent computing the instruction at the remote
interpreter and the time spent communicating data to and from the remote interpreter, G = Tw/Tc). ImgFilter2

is an image processing application based on the pipeline skeleton, which applies two filters in sequence to 30
input images. All input images are true-color (24 bit color depth) of 640x480 pixels size. ImgFilter2 basically
applies “blur” and “oil” filters (available at http://jiu.sourceforge.net) from the Java Imaging Utilities in
sequence as two stages of a pipeline. Note that these are area filter operations, i. e. the computation of each
pixel’s color does not only impact its direct neighbours, but also an adjustable area of neighboring pixels. By
choosing five neighboring pixels in each direction as filter workspaces, we made the application more complex
and enforced several iterations over the input data within each pipeline stage, which makes our filtering example
a good representative of a compute intensive application [5].

Two types of parallel platforms are used for experimentation. The first is a dedicated Linux cluster at
the University of Pisa. The cluster hosts 24 nodes: one node devoted to cluster administration and 18 nodes
(P3@800MHz) exclusively devoted to parallel program execution. The second is a grid-like environment, in-
cluding two organizations: the University of Pisa (di.unipi.it) and an institute of the Italian National Research
Council in Pisa (isti.cnr.it). The server set is composed of several different Intel Pentium and Apple Pow-
erPC computers, running Linux and Mac OS X respectively (the detailed configuration is shown in Figure 5.1
left). In this case traditional measures like efficiency and speedup versus number of machines cannot be used
due to the machines’ power heterogeneity. To take the varying computing power of different machines into
account, the performance increase is documented by means of the BogoPower measure, defined as the sum of
individual BogoPower contributions of machines participating in the application run. The BogoPower of each
machine is measured in terms of tasks/s the sequential version of the application can compute on the machine.
BogoPower enables the comparison between an application’s actual parallel performance and the application’s
ideal performance for each run [5].

Figure 4.6 summarizes the typical performance results of the enhanced interpreter. The left plot is relative
to runs of SyntApp on the homogeneous cluster. The experiment shows that, in case of low grain, muskel
rapidly loses efficiency with the number of machines involved in the computation. When the grain is high
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enough (G = 200 or more) the efficiency is definitely close to the ideal one. The right plot shows the speedup
of ImgFilter2 on the same homogeneous cluster, instead.

Figure 5.1 right plots the completion time of ImgFilter2 executed on an heterogeneous network of Linux/Pen-
tium and MacOsX PowerPC machines, whose relative performance is shown in the left part of the same Figure.
The measured completion times show the same shape as the theoretical ones, confirming that the muskel run
time efficiently and automatically balances the load when different (with respect to computing power) resources
are used to allocate the muskel distributed macro data flow interpreter.

In addition to the evaluation of the scalability of the muskel prototype, we also have taken into account the
possibility of using different mechanisms to support distributed data flow interpreter execution. We implemented
several versions of muskel on top of ProActive [29], each exploiting different mechanisms, primitive to the
ProActive library, to deploy and run remote macro data flow interpreter instances. In particular, we used
ProActive XML deployment descriptors as well as RMI ssh tunnelling. When possible, we exploited the option
to pre-allocate JVMs running the remote interpreter instances on the remote processing elements, to speed up
program startup. The results showed that in the case where the remote JVMs are preallocated, the performance
is definitely comparable to the performance of plain muskel. In the case of use of RMI tunelling through ssh,
however, larger grain macro data flow instructions (close to 10 times larger grain) are needed to achieve almost
perfect speedup.

As discussed in §3, appropriate security mechanisms, defined using Java 1.5 annotations, should be used to
guarantee that data and code moved to and from the remote data flow interpreter instances are kept confidential
and that intruders cannot use remote data flow interpreter instances to execute non-authorized macro data flow
code. We conducted some experiments to evaluate the effectiveness of introducing selective security annotations
in the code. We prepared a stripped muskel prototype version, using ssl to secure interaction between the main
code running on the user machine and the remote data flow interpreter instances. With the muskel prototype
exploiting ssl [34], we managed to measure the scalability penalty paid to introduce security. We verified
that “secure” muskel scales close to ideal values when using up to 32 nodes for the remote macro data flow
interpreter instances, similarly to plain muskel. However, due to the encrypting/decrypting activity taking place
at the sending/receiving nodes, larger (i. e.more compute intensive) macro data flow instructions are required
to achieve ideal scalability (see Figure 5.2 left). Also, we measured the load distribution in runs involving
half “secure” and half “non-secure” remote interpreter instances. Communications with the secure interpreter
instances are performed using plain TCP/IP, while communications with the non-secure ones are performed
using SSL. With higher and higher amounts of data transferred to and from the remote interpreters more and
more computation is performed on the secure nodes. This is due to the auto scheduling strategy of muskel
that always dispatches computations to the free remote interpreter instances. As more data is transmitted,
more time is spent securing communications through SSL and more time is spent computing a single MDFi.
Therefore less MDFi are actually executed at the non-secure nodes (see Figure 5.2 right). The results shown
are perfectly in line with what is stated in §4: securing muskel communications is quite costly and therefore it
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Fig. 5.2. Effect of providing security in the distributed data flow interpreter: scalability of the muskel prototype using plain
TCP/IP sockets vs. the one using SSL for different computational grains. W represent the average time spent computing a single
MDFi, C the average amount of data sent/received to/from remote processing elements to compute the single MDFi

is better to avoid securing communications not involving sensitive data and/or code. And this can be done by
exploiting the annotation mechanisms just outlined in §4. Further details concerning security issues in muskel

are discussed in [4].

6. Related work. Macro data flow implementation for the algorithmical skeleton programming environ-
ments was introduced by the authors in the late 90’s [15] and subsequently has been used in other contexts
related to skeleton programming environments [31]. Cole suggested in [13] that “we must construct our sys-
tems to allow the integration of skeletal and ad-hoc parallelism in a well defined way”, and that structured
parallel programming environments should “accommodate diversity”, that is “we must be careful to draw a
balance between our desire for abstract simplicity and the pragmatic need for flexibility”. Actually, his eSkel
[9, 14] MPI skeleton library addresses these problems by allowing programmers to program their own pecu-
liar MPI code within each process in the skeleton tree. Programmers can ask to have a stage of a pipeline
or a worker in a farm running on k processors. Then, the programmer may use the k process communica-
tors returned by the library for the stage/worker to implement its own parallel pipeline stage/worker process.
As far as we know, this is the only other attempt to integrate ad hoc, unstructured parallelism exploita-
tion in a structured parallel programming environment. The implementation of eSkel, however, is based on
process templates, rather than on data flow. Other skeleton libraries, such as Muesli [23, 24, 26], provide
programmers with quite extensive flexibility in skeleton programming following a different approach. They
provide a number of data parallel data structures along with elementary, collective data parallel operations
that can be arbitrarily nested to get more and more complex data parallel skeletons. However, this flexi-
bility is restricted to the data parallel part, and it is, in any case, limited by the available collective opera-
tions.

CO2P3S [25] is a design pattern based parallel programming environment written in Java and targeting
symmetric multiprocessors. In CO2P3S, programmers are allowed to program their own parallel design patterns
(skeletons) by interacting with the intermediate implementation level [10]. Again, this environment does not
use data flow technology but implements design patterns using proper process network templates.

JaSkel [21] provides a skeleton library implementing the same skeleton set as muskel. In JaSkel, however,
skeletons look much more like implementation templates, according to the terminology used in §2. However,
it appears that the user can exploit the full OO programming methodology to specialize the skeletons to his
own needs. As the user is involved in the management of support code too (e.g. he has to specify the master
process/thread of a task farm skeletons) JaSkel can be classified as a kind of “low level, extensible” skeleton
system, although it is not clear from the paper whether entirely new skeletons can be easily added to the system
(actually, it looks like it is not possible at all).

There are several works proposing aspect-oriented techniques for parallel programming. [22] discusses an
approach using AOP to separate concerns in scientific code. In [33, 32] a use of AOP is proposed aimed at
separating the concerns of partitioning and distributing data and performing concurrent computations. This is
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far from the usage we think to make of AOP techniques in this work, however, in that it requires a much more
“template oriented” approach with respect to the one followed in muskel.

7. Conclusions. We discussed muskel, a full Java, parallel programming library providing users with the
possibility to use skeletons to structure their parallel applications and exploiting macro data flow implemen-
tation technology. We discussed how muskel supports expandability of the skeleton set, as advocated by Cole
in his “manifesto” paper [13]. In particular, we discussed how muskel supports both the introduction of new
skeletons, modeling parallelism exploitation patterns not originally covered by the primitive muskel skeletons,
and the introduction of non-functional features, i. e. features related to parallel program execution but not
directly related to the functional computation of the application results. The former possibility is supported
by allowing users to define new skeletons providing the arbitrary data flow graph executed in the skeleton and
by allowing muskel to seamlessly integrate such new skeletons with the primitive ones. The latter possibility
is supported by exploiting more innovative programming techniques such as annotations and aspect-oriented
programming. This second part is under development, while the first is already available in the muskel proto-
type.

We also presented experimental results validating the whole muskel approach to expandability and cus-
tomizability of its skeleton set. As far as we know, this is the most significant effort in the skeleton community
to tackle problems deriving from a fixed skeleton set. Only Schaeffer and his group at the University of Alberta
implemented a system were users can, in controlled ways, insert new parallelism exploitation patterns in the
system [10], although the approach followed there is a bit different, in that users are encouraged to intervene
directly in the run time support implementation, to introduce new skeletons, while in muskel new skeletons
may be introduced using the intermediate macro data flow language as the skeleton “assembly” language.

Finally, we discussed how relatively new programming techniques, including annotations and AOP, can be
usefully exploited in muskel to support details and features related to parallel program execution.

Preliminary versions of muskel have been released under GPL and are currently available on the muskel
web site at htpp://www.di.unipi.it/~marcod/muskel. The new version, supporting the features discussed in
this paper, is currently being developed. The support for new skeletons is already completed (and it is available,
as a beta release, on the web site) and the other features will be released soon.
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Abstract. MPJ Express is our implementation of MPI-like bindings for Java. In this paper we discuss our intermediate
buffering layer that makes use of the so-called direct byte buffers introduced in the Java New I/O package. The purpose of this
layer is to support the implementation of derived datatypes. MPJ Express is the first Java messaging library that implements
this feature using pure Java. In addition, this buffering layer allows efficient implementation of communication devices based on
proprietary networks such as Myrinet. In this paper we evaluate the performance of our buffering layer and demonstrate the
usefulness of direct byte buffers. Also, we evaluate the performance of MPJ Express against other messaging systems using Myrinet
and show that our buffering layer has made it possible to avoid the overheads suffered by other Java systems such as mpiJava that
relies on the Java Native Interface.

Key words. Java, MPI, MPJ express, MPJ, mpiJava

1. Introduction. The challenges of making parallel hardware usable have, over the years, stimulated the
introduction of many novel languages, language extensions, and programming tools. Lately though, practical
parallel computing has mainly adopted conventional (sequential) languages, with programs developed in rel-
atively conventional programming environments usually supplemented by libraries such as MPI that support
a parallel programming paradigm. This is largely a matter of economics: creating entirely novel development
environments matching the standards programmers expect today is expensive, and contemporary parallel ar-
chitectures predominately use commodity microprocessors that can best be exploited by off-the-shelf compilers.

This argues that if we want to “raise the level” of parallel programming, one practical approach is to move
towards advanced commodity languages. Compared with C or Fortran, the advantages of the Java programming
language include higher-level programming concepts, improved compile-time and run-time checking, and as
a result, faster problem detection and debugging. Its “write once, run anywhere” philosophy allows Java
applications to be executed on almost all popular platforms. It also supports multi-threading and provides
simple primitives like wait() and notify() that can be used to synchronize access to shared resources. Recent
Java Development Kits (JDKs) provide greater functionality in this area, including semaphores and atomic
variables. In addition, Java’s automatic garbage collection, when exploited carefully, relieves the programmer
of many of the pitfalls of lower-level languages. During the early days of Java, it was criticized for its poor
performance [4]. The main reason was that Java executed as an interpreted language. The situation has
improved with the introduction of Just-In-Time (JIT) compilers, which translate bytecode into the native
machine code that then gets executed.

MPJ Express [14] is a thread safe Java HPC communication library and runtime system that provides a
high quality implementation of the mpiJava 1.2 [6] bindings—an MPI-like API for Java. An important goal of
our messaging system is to implement higher MPI [15] abstractions including derived datatypes in pure Java.
In addition, we note the emergence of low-latency and high-bandwidth proprietary networks that have had a
big impact on modern messaging libraries. In the presence of such networks, it is not practical to only use
pure Java for communication. To tackle these issues of supporting derived datatypes and proprietary networks,
we provide an intermediate buffering layer in MPJ Express. Providing an efficient implementation layer is a
challenging aspect of a Java HPC messaging software. The low-level communication devices and higher levels of
the messaging software use this buffering layer to write and read messages. The heterogeneity of these low-level
communication devices poses additional design challenges. To appreciate this fully, assume that the user of a
messaging library sends ten elements of an integer array. The C programming language can retrieve the memory
address of this array and pass it to the underlying communication device. If the communication device is based
on TCP, it can then pass this address to the socket’s write() method. For proprietary networks like Myrinet
[16], this memory region can be registered for Direct Memory Access (DMA) transfers, or copied to a DMA
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capable part of memory and sent using low level Myrinet communication methods. Until quite recently doing
this kind of thing in Java was difficult.

The JDK 1.4 introduced the Java New I/O (NIO) [11] package. In NIO, read and write methods on files
and sockets (for example) are mediated through a family of buffer classes handled by the Java Virtual Machine
(JVM). The underlying ByteBuffer class essentially implements an array of bytes, but in such a way that the
storage can be outside the JVM heap (so called direct byte buffers).

So now if a user of a Java messaging system sends an array of ten integers, they can be copied to a
ByteBuffer, which is used as an argument to the SocketChannel’s write() method. Similary, if the user
intends to communicate derived datatypes, the individual basic datatype elements of this derived type can be
packed onto a contiguous ByteBuffer. The higher and lower levels of the software can use generic functionality
provided by a buffering layer to communicate both basic and advanced datatypes, including Java objects and
derived types. For proprietary networks like Myrinet, NIO provides a viable option because it is now possible to
get memory addresses of direct byte buffers, which can be used to register memory regions for DMA transfers.
Using direct buffers may eliminate the overhead [18] incurred by additional copying when using the Java Native
Interface (JNI) [9]. On the other hand, it may be preferable to create a native buffer using JNI. These buffers
can be useful for a native MPI or a proprietary network device.

For these reasons, we have designed an extensible buffering layer that allows various implementations based
on different storage mediums, such as direct or indirect ByteBuffers, byte arrays, or memory allocated in
the native C code. The higher levels of MPJ Express use the buffering layer through an interface. This
implies that functionality is not tightly coupled to the storage medium. The motivation behind developing
different implementations of buffers is to achieve optimal performance for lower level communication devices.
The creation time of these buffers can affect the overall communication time, especially for large messages. Our
buffering strategy uses a pooling mechanism to avoid creating a buffer instance for each communication method.
Our current implementation is based on Knuth’s buddy algorithm [12], but it is possible to use other pooling
techniques.

A closely related buffering API with similar gather and scatter functionality was originally introduced for
Java in the context of the Adlib communication library used by HPJava [13]. In our current work, we have
extended this API to support the derived datatypes in a fully functional MPI interface.

The main contribution of this paper is the in-depth analysis of the design and implementation of our
buffering layer that allows high performance communication and supports implementing derived datatypes at
the higher level. MPJ Express is the first Java messaging library that supports derived datatypes using pure
Java. In addition, we have evaluated the performance of MPJ Express on Myrinet—a popular high performance
interconnect. Also, we demonstrate the usefulness of direct byte buffers in Java messaging systems.

The remainder of this paper is organized as follows. Section 2 discusses the details of the MPJ Express
buffering layer. Section 3 describes the implementation of derived datatypes in MPJ Express. In Section 4, we
evaluate the performance of our buffering strategies, this is followed by a comparison of MPJ Express against
other messaging systems on Myrinet. We conclude the paper and discuss future research work in Section 5.

1.1. Related Work. Under the general umbrella of exploiting Java in “high level” parallel programming,
there are environments for skeleton-based parallel programming that are implemented in Java, or support Java
programming. These include muskel [8] and Lithium [1]. At the present time muskel appears to be focussed on
a coarse grained data flow style of parallelism, rather than the sort of Single Program Multiple Data (SPMD)
parallelism addressed by MPI-like systems such as MPJ Express. Lithium encompasses SPMD parallelism
through its map skeleton. So far as we can tell, Lithium is agnostic about how the processes in the “map”
communicate amongst themselves, and in principle we see no reason why they could not use MPJ Express for
this purpose. To this extent Lithium and our approach could be seen as complementary.

In a similar vein, Alt and Gortlatch [2] developed a prototype system for Grid programming using Java
and RMI. Again the issues addressed in their work are somewhat orthogonal from the concerns of the present
paper. But it is possible that some of their ideas for discovery of parallel compute hosts could be exploited by
a future version of MPJ Express. Such approaches might supercede what we call the runtime system of the
present MPJ Express—responsible for initiating node tasks on remote hosts.

In another related strand of research, there are systems that provide Java implementations of Valiant’s Bulk
Synchronous Parallel computing model (BSP). These include JBSP [10] and PUBWCL [5]. In the sense that
these are providing a messaging platform to essentially do data parallel programming in Java, they compete more
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directly with MPJ Express. They are distinguished from our work in focussing on a more specific programming
model. MPI-based approaches embrace a significantly different, and in some respects wider, class of parallel
programming models (on some platforms one could, of course, sensibly implement BSP in terms of MPI).

mpiJava [3] is a Java messaging system that uses JNI to interact with the underlying native MPI library.
Being a wrapper library, mpiJava does not use a clearly distinguished buffering layer. After packing a message
onto a contiguous buffer, a reference to this buffer is passed to the native C library. But in achieving this,
additional copying may be required between the JVM and the native C library. This overhead is especially
noticeable for large messages, if the JVM does not support pinning of memory.

Javia [7] is a Java interface to the Virtual Interface Architecture (VIA). An implementation of Javia exposes
communication buffers used by the VI architecture to Java applications. These communication buffers are
created outside the Java heap and can be registered for DMA transfers. This buffering technique makes it
possible to achieve performance within 99% of the raw hardware.

An effort similar to Javia is Jaguar [18]. This uses compiled-code transformations to map certain Java byte-
codes to short, in-lined machine code segments. These two projects, Jaguar and Javia, were the motivating fac-
tors to introduce the concept of direct buffers in the NIO package. The design of our buffering layer is based on di-
rect byte buffers. In essence, we are applying the experiences gained by Jaguar and Javia to design a general and
efficient buffering layer that can be used for pure Java and proprietary devices in Java messaging systems alike.

2. The Buffering Layer in MPJ Express. In this section, we discuss our approach to designing and
implementing our MPJ Express buffering layer that is supported by a pooling mechanism. The self-contained
API developed as a result is called the MPJ Buffering (mpjbuf) API. The functionality provided includes
packing and unpacking of user data. The primary difficulty in implementing this is that the sockets do not
directly access the memory and thus are unable to write or read the basic datatypes. The absence of pointers
and the type safety features of the Java language make the implementation even more complex. Most of the
complex operations used at the higher levels of the library, such as communicating objects and gather or scatter
operations, are also supported by this buffering layer.

Before we go into the details of the buffering layer implementation, it is important to consider how this API
is used. The higher-level of MPJ Express, specifically the point-to-point send methods, pack the user message
onto a mpjbuf buffer. Once the user data, which may be primitive datatypes or Java objects, has been packed
onto a mpjbuf buffer, the reference of this buffer is passed to lower communication devices that communicate
data from the static and dynamic storage structures. At the receiving side the communication devices receive
data into a mpjbuf buffer storing them in static and dynamic storage structures. Once the message has been
received, the point-to-point receive methods unpack the mpjbuf buffer data onto user specified arrays.

2.1. The Layout of Buffers. An mpjbuf buffer object contains two data storage structures. The first is a
static storage structure, in which the underlying storage primitive is an implementation of the RawBuffer inter-
face. An implementation of the static storage structure, called NIOBuffer, uses direct or indirect ByteBuffers.
The second is a dynamic storage structure where a byte array is the storage primitive. The static portion
of the mpjbuf buffer has predefined size, and can contain only primitive datatypes. The dynamic portion of
the mpjbuf buffer is used to store serialized Java objects, where it is not possible to determine the size of the
serialized objects beforehand.

A message consists of zero or more sections stored physically on the static or dynamic storage structure.
Each section can hold elements of the same type, basic datatypes or Java objects. A section consists of a
header, followed by the actual data payload. The data stored in a static buffer can be represented as big-
endian or little-endian. This is determined by the encoding property of the buffer, which takes the value
java.nio.ByteOrder.BIG ENDIAN or java.nio.ByteOrder.LITTLE ENDIAN. The encoding property of a newly
created buffer is determined by the return value of the method java.nio.ByteOrder.nativeOrder(). A
developer may change the format to match the encoding property of the underlying hardware, which results in
efficient numeric representation at the JVM layer.

As shown in Figure 2.1, a message consists of zero or more sections. The message consists of a message
header followed by the data payload. Padding of up to 7 bytes may follow a section if the total length of the
section (header + data) is not a multiple of ALIGNMENT UNIT, which has a value of 8. The general layout
of an individual section stored on the static buffer is shown in Figure 2.2.

Figure 2.2 shows that the length of a message header is 8 bytes. The value of the first byte defines the
elements type contained in the section. The possible values for static and dynamic buffers are listed in Table 2.1
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and Table 2.2, respectively. The next three bytes are not currently used, and reserved for possible future use.
The following four bytes contain the number of elements contained in this section, i. e. the section length. This
numerical value is represented according to the encoding property of the buffer. The size of the header in bytes
is SECTION OVERHEAD, which has a value of 8. If the section is static, the header is followed by the values
of the elements, again represented according to the encoding property of the buffer. If the section is dynamic,
the “Section data” is absent from Figure 2.2 because the data is in the dynamic buffer which is a byte array.
The Java serialization classes (java.io.ObjectOutputStream and java.io.ObjectInputStream) dictate the
format of the dynamic buffer.

A buffer object has two modes: write and read. The write mode allows the user to copy the data onto the
buffer, and the read mode allows the user to read the data from the buffer. It is not permitted to read from the
buffer when it is in write mode. Similarly, it is not permitted to write to a buffer when it is in read mode.

2.2. The Buffering API. The most important class of the package used for packing and unpacking data is
mpjbuf.Buffer. This class provides two storage options: static and dynamic. Implementations of static storage
use the interface mpjbuf.RawBuffer. It is possible to have alternative implementations of static section depend-
ing on the actual raw storage medium. In addition, it also contains an attribute of type byte[] that represents
the dynamic section of the message. Figure 2.3 shows two implementations of the mpjbuf.RawBuffer interface.
The first, mpjbuf.NIOBuffer is an implementation based on ByteBuffers. The second, mpjbuf.NativeBuffer
is an implementation for the native MPI device, which allocates memory in the native C code. Figure 2.3 shows
the primary buffering classes in the mpjbuf API.

The higher and lower levels of MPJ Express use only a few of methods provided by the mpjbuf.Buffer

class to pack and unpack message data. In addition, the class also provides some utility methods. Some of the
main functions are shown in Figure 2.4. Note that identifier type used in the figure represents all Java basic
datatypes and objects.
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Table 2.1
Datatypes Supported by a Static Buffer

Datatype Corresponding Values
Integer mpjbuf.Type.INT

Byte mpjbuf.Type.BYTE

Short mpjbuf.Type.SHORT

Boolean mpjbuf.Type.BOOLEAN

Long mpjbuf.Type.LONG

Float mpjbuf.Type.FLOAT

Double mpjbuf.Type.DOUBLE

Table 2.2
Datatypes Supported by a Dynamic Buffer

Datatype Corresponding Values
Java objects mpjbuf.Type.OBJECT

Integer mpjbuf.Type.INT DYNAMIC

Byte mpjbuf.Type.BYTE DYNAMIC

Short mpjbuf.Type.SHORT DYNAMIC

Boolean mpjbuf.Type.BOOLEAN DYNAMIC

Long mpjbuf.Type.LONG DYNAMIC

Float mpjbuf.Type.FLOAT DYNAMIC

Double mpjbuf.Type.DOUBLE DYNAMIC

The write() and read() methods shown in Figure 2.4 are used to write and read contiguous Java arrays of
all the primitive datatypes including object arrays. The write() method copies numEls values of the src array
starting from srcOff onto the buffer. Conversely, the read() method copies numEls values from the buffer and
writes them onto dest array starting from srcOff.

The gather() and scatter() methods are used to write and read non-contiguous Java arrays of all the
primitive datatypes including object arrays. The gather() method copies numEls values of the src array
starting from indexes[idxOff] to indexes[idxOff+numEls] onto the buffer. Conversely, the scatter()

method copies numEls values from the buffer and writes them onto dest array starting from indexes[idxOff]

to indexes[idxOff+numEls].
The strGather() and strScatter() methods transfer data from or to a subset of elements of a Java array,

but in these cases the selected subset is a multi-strided region of the array. These are useful operations for
dealing with multi-dimensional data structures, which often occur in scientific programming.

To create sections, the mpjbuf.Buffer class provides utility methods like putSectionHeader(), which takes
a datatype as an argument (possible datatypes are shown in Table 2.1 and Table 2.2). This method can only be
invoked when the buffer is in a write mode. Once the section header has been created, the data can be copied
onto the buffer using the write() method for contiguous user data or gather() and strGather() methods
for non-contiguous user data. While the buffer is in read mode, the user can invoke getSectionHeader() and
getSectionSize() methods to read the header information of a message. This is followed by invoking the
read() method to read data, or scatter() and strScatter() methods to read non-contiguous data.

The newly created buffer is always in a write mode. In this mode, the user may copy the data to the buffer
and then call commit(), which puts the buffer in a read mode. The user can now read the data from the buffer
and put it back into write mode for any possible future use by calling the clear().

2.3. Memory Management. We have implemented our own application level memory management
mechanism based on the buddy allocation scheme [12]. The motivation was to avoid creating an instance
of a buffer (mpjbuf.Buffer) for every communication operation like Send() or Recv(), which may dominate
the total communication cost, especially for large messages. We can make efficient use of resources by pooling
buffers for future reuse, instead of letting the garbage collector reclaim the buffers and create them all over again.

Currently the pooling mechanism is specific to direct and indirect ByteBuffers that are used for storing
static data when mpjbuf.NIOBuffer (an implementation of mpjbuf.RawBuffer) is used for static sections.



348 Mark Baker, Bryan Carpenter, and Aamir Shafi

package

mpjbuf

RawBuffer

Buffer

NIOBuffer

NativeBuffer

Fig. 2.3. Primary Buffering Classes in mpjbuf

package mpjbuf ;

public class Buffer {

.. .. ..

// Write and Read Methods

public void write(type [] source, int srcOff, int numEls)

public void read(type [] dest, int dstOff, int numEls)

// Gather and Scatter Methods

public void gather(type [] source, int numEls, int idxOff, int [] indexes)

public void scatter(type [] dest, int numEls, int idxOff, int [] indexes)

// Strided Gather and Scatter Methods

public void strGather(type [] source, int srcOff, int rank, int exts,

int strs, int [] shape)

public void strScatter(type [] dest, int dstOff, int rank, int exts,

int strs, int [] shape)

public void putSectionHeader(Type type)

public Type getSectionHeader()

public int getSectionSize()

public ByteOrder getEncoding()

public void setEncoding(ByteOrder encoding)

public void commit()

public void clear()

public void free()

.. .. ..

}

Fig. 2.4. The Functionality Provided by the mpjbuf.Buffer class

2.3.1. Review of The Buddy Algorithm. In this section, we will briefly review Knuth’s buddy algo-
rithm in the context of MPJ Express. In our implementation, the available memory is divided into a series of
buffers. Each buffer has a storage medium associated with it—direct or indirect ByteBuffer. Initially, there is
no buffer associated with the BufferFactory. Whenever a user requests a buffer, the factory checks whether
there is a buffer with size greater than the requested size. If a buffer does not exist or does not have free space,
a new buffer is created. For managing the buffers, there is a doubly linked list called FreeList. This FreeList
refers to buffers at all possible levels starting from 0 to ⌈log2(REGION SIZE)⌉. The level of a buffer can be
thought of an integer, which increases as ⌈log2(s)⌉ increases if s is the requested buffer size.
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Fig. 2.5. Allocating a Mbyte Buffer
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Fig. 2.6. De-allocating a Mbyte Buffer

After finding or creating an appropriate buffer that can serve this request, the algorithm attempts to find a
free buffer at the requested or higher level. If the buffer found is at a higher level, it is divided into two buddies
and this process is repeated until we reach the required level. The BufferFactory returns the first free buffer
at this level. Every allocated buffer is aware of its offset and its size. Figure 2.5 shows the allocation events for
a Mbyte block when the initial region size is 8 Mbytes.

When the buffer is de-allocated, an attempt is made to find the buddy of this buffer. If the buddy is free,
the two buffers are merged together to form a buffer at the higher level. Once we have a buffer at the higher
level, we execute the same process recursively until we do not find a buddy for the buffer at the higher level.
Figure 2.6 shows the de-allocation events when a Mbyte block is returned to the buffer factory.

2.3.2. Two implementations of the Buddy Allocation Scheme for mpjbuf. In the MPJ Express
buffering API, it is possible to plug in different implementations of buffer pooling. A particular strategy can
be specified during the initialisation of mpjbuf.BufferFactory. Each implementation can use different data
structures like trees or doubly linked lists. In the current implementation, the primary storage buffer for mpjbuf
is an instance of mpjbuf.NIOBuffer. Each mpjbuf.NIOBuffer has an instance of ByteBuffer associated with
it. The pooling strategy boils down to reusing ByteBuffers encapsulated in NIOBuffer.

Our implementation strategies are able to create smaller thread-safe ByteBuffers from the initial Byte-
Buffer associated with the region. We achieve this by using ByteBuffer.slice() for creating a new byte
buffer.

In the buddy algorithm, the region of available storage is conceptually divided into blocks of different levels,
hierarchically nested in a binary tree. A free block at level n can be split into two blocks of level n − 1, half
the size. These sibling blocks are called buddies. To allocate a number of bytes s, a free block is found and
recursively divided into buddies until a block at level ⌈log2(s)⌉ is produced. When a block is freed, one checks
to see if its buddy is free. If so, buddies are merged (recursively) to consolidate free memory.
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Our first implementation (hereafter called Buddy1) is developed with the aim of keeping a small memory
footprint for the application. This is possible because a buffer only needs to know its offset in order to find
its buddy. This offset can be stored at the start of the allocated memory chunk. If a user requests s bytes,
the first strategy allocates s + BUDDY OV ERHEAD bytes buffer. The additional BUDDY OV ERHEAD
bytes will be used to store the buffer offset. Also, the data structures do not store buffer abstractions like
mpjbuf.NIOBuffer in the linked lists.

Figure 2.7 outlines the implementation details of our first pooling strategy. FreeList is a list of Buffer-
Lists, which contains buffers at different levels. Here, level refers to the different sizes of buffer available. If
a buffer is of size s, then its corresponding level will be ⌈log2(s)⌉. Initially, there is no region associated with
FreeList. An initial chunk of memory of size M is allocated. At this point, BufferLists are created starting
from 0 to log2(M). When buddies are merged, a buffer is added to the BufferList at the higher level and the
buffer itself and its buddy are removed from the BufferList at the lower level. Conversely, when a buffer is
divided to form a pair of buddies, a newly created buffer and its buddy are added to the BufferList at the
lower level while removing a buffer that is divided from the higher level BufferList.

An interesting aspect of this implementation is that FreeList and BufferLists grow as new regions are
created to match user requests.

Our second implementation (hereafter called Buddy2) stores higher-level buffer abstractions (mpjbuf.NIO-
Buffer) in BufferLists. Unlike the first strategy, each region has its own FreeList and has a pointer to the
next region as shown in Figure 2.8. While finding an appropriate buffer for a user, this implementation works
sequentially starting from the first region until it finds the requested buffer or creates a new region. We expect
some overhead associated with this sequential search. Another downside of this implementation is a bigger
memory footprint.

3. The Implementation of Derived Datatypes in MPJ Express. Derived datatypes were introduced
in the MPI specification to allow communication of heterogeneous and non-contiguous data. It is possible to
achieve some of the same goals by communicating Java objects, but there are concerns about the cost of object
serialization—MPJ Express relies on the JDK’s default serialization.

Figure 3.1 shows datatype related class hierarchy in MPJ Express. The superclass Datatype is an abstract
class that is implemented by five classes. The most commonly used implementation is BasicType that provides
initialization routines for basic datatypes including Java objects.

There are four types of derived datatypes: contiguous, indexed, vector, and struct. Figure 3.1 shows an
implementation for each derived datatype including Contiguous, Indexed, Vector, and Struct.
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Fig. 3.1. The Datatype Class Hierarchy in MPJ Express

The MPJ Express library makes extensive use of the buffering API to implement derived datatypes. Each
datatype class contains a specific implementation of the Packer interface. The class hierarchy for the imple-
mentation of different Packers is shown in Figure 3.2.

Recall that the buffering API provides three kinds of read and write operations. These methods are
normally available for use through classes that implement the Packer interface. We discuss various imple-
mentations that in turn rely on variants of read and write methods provided by the buffering API. The first
are the normal write() and read() methods. The implementation of the Packer interface that uses this
set of methods is the template SimplePackerType. The templates are used to generate Java classes for all
primitive datatypes and objects. The second template class that is an implementation of the Packer interface
is called GatherPackerType that uses gather() and scatter() methods of mpjbuf.Buffer class. The last
template class is MultiStridedPackerType that uses the third set of methods provided by the buffering layer
namely strGather() and strScatter(). Other implementations of the Packer interface are NullPacker and
GenericPacker. The classes like ContiguousPacker, IndexedPacker, StructPacker, and VectorPacker in
turn implement the abstract GenericPacker class.

Figure 3.3 shows the main packing and unpacking methods provided by the Packer interface.

The Packer interface is used by the sending and receiving methods to pack and unpack the messages.
Consider the example of sending a message consisting of an array of integers. In this case, the datatype
argument used for the standard a Send() method is MPI.INT that is an instance of BasicType class. A handle
to a related Packer object can be obtained by calling the method getPacker(). The object MPI.INT is also
used to get a reference to mpjbuf.Buffer instance by invoking the method createWriteBuffer(). Later a
variant of the pack() method, shown in Figure 3.3, is used to pack the message onto a buffer that is used for
communication by the underlying communication devices.

Similarly, when receiving a message with Recv(), the datatype object like MPI.INT is used to get the
reference to an associated Packer object. A variant of the unpack() method is used unpack the message from
mpjbuf.Buffer onto the user specified array.

The contiguous datatype consists of elements that are of same the type and at contiguous locations. Fig-
ure 3.4 shows a contiguous datatype with four elements. Each element of this datatype consists of an array of
five elements. Although each element is shown as a row in a matrix, physically the datatype will be stored at
contiguous locations such as an array of byte buffer.
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<<interface>>
Packer

<<template>>
GatherPackerType

GenericPacker <<template>>
MultistridedPacker

Type

NullPacker

IndexedPacker StructPacker VectorPackerContiguousPacker

<<template>>
SimplePackerType

Fig. 3.2. The Packer Class Hierarchy in MPJ Express

public interface Packer {

.. .. ..

public abstract void pack(mpjbuf.Buffer mpjbuf, Object msg, int offset)

public abstract void pack(mpjbuf.Buffer mpjbuf, Object msg, int offset,

int count)

public abstract void unpack(mpjbuf.Buffer mpjbuf, Object msg, int offset)

public abstract void unpack(mpjbuf.Buffer mpjbuf, Object msg, int offset,

int count)

public abstract void unpack(mpjbuf.Buffer mpjbuf, Object msg, int offset)

public abstract void unpack(mpjbuf.Buffer mpjbuf, Object msg, int offset,

int count)

public abstract void unpackPartial(mpjbuf.Buffer mpjbuf, int length,

Object msg, int offset)

.. .. ..

}

Fig. 3.3. The Packer Interface
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Fig. 3.4. Forming a Contiguous Datatype Object
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}

vector ->

array ->

D=4

Fig. 3.5. Forming a Vector Datatype Object

}indexed ->

array ->

B=4 B=3 B=2 B=1

D=3D=2D=1

Fig. 3.6. Forming an Indexed Datatype Object

The vector datatype consists of elements that are of the same type and are found at non-contiguous loca-
tions. Figure 3.5 shows how to build an element of vector datatype from an array of primitive datatype with
blockLength=1 and stride=4 (labelled D in the figure). The data is copied onto a contiguous section of memory
before the actual transfer.

A more general datatype is indexed that allows specifying multiple block lengths and strides (also called
displacement). An example is shown in Figure 3.6 with increasing displacement (starting from 0 and labelled D)
and decreasing block length (starting from 4 and labelled B). The most general datatype is struct that not only
allows varying block lengths and strides but also different basic datatypes, unlike the indexed datatype.

4. Performance Evaluation. In this section we first evaluate the performance of our buffering layer
focusing on the allocation time. This is followed by a comparison of MPJ Express using combinations of
direct and indirect byte buffers with our pooling strategies to find out which technique provides the best
performance. We calculate transfer time and throughtput for increasing message sizes to evaluate buffering
techniques. Towards the end of the section, we evaluate the performance of MPJ Express against MPICH-MX
and mpiJava on Myrinet. Again, this test requires the calculation of transfer time and throughput for different
message sizes.

The transfer time and throughput is calculated using a modified ping-pong benchmark. While using con-
ventional ping-pong benchmarks, we noticed variability in timing measurements. The reason is that the network
card drivers used on our cluster have a higher network latency—64 µs. The network latency of the card drivers
is an attribute that determines the polling interval for checking new messages. In our modified technique, we
introduced random delays before the receiver sends the message back to the sender. Using this approach, we
were able to negate the effect of network card latency.

The test environment for collecting the performance results was a cluster at the University of Portsmouth
consisting of 8 dual Intel Xeon 2.8 GHz PCs using the Intel E7501 chipset. The PCs were equipped with 2
Gigabytes of ECC RAM with 533 MHz Front Side Bus (FSB). The motherboard (SuperMicro X5DPR-iG2) was
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equipped with 2 onboard Intel Gigabit LAN adaptors with one 64-bit 133 MHz PCI-X slot and one 64-bit 66
MHz PCI slot. The PCs were connected together through a 24-port Ethernet switch. In addition, two PCs were
connected back-to-back via the onboard Intel Gigabit adaptors. The PCs were running the Debian GNU/Linux
with the 2.4.32 Linux kernel. The software used for the Intel Gigabit adaptor was the proprietary Intel e-1000
device driver. The JDK version used for tests on mpiJava and MPJ Express was Sun JDK 1.5 (Update 6). The
C compiler used was GNU GCC 3.3.5.

4.1. Buffering Layers Performance Evaluation. In this section, we compare the performance of our
two buffering strategies with direct allocation of ByteBuffers. We are also interested in exploring the perfor-
mance difference between using direct and indirect byte buffers in MPJ Express communication methods. There
are six combinations of our buffering strategies that will be compared in our first test—Buddy1, Buddy2, and
a simple allocation scheme, each using direct and indirect byte buffers.

4.1.1. Simple Allocation Scheme Time Comparison. In our first test, we compare isolated buffer
allocation times for our six allocation approaches. Only one buffer is allocated at one time throughout the tests.
This means that after measuring allocation time for a buffer, it is de-allocated in the case of our buddy schemes
(forcing buddies to merge into original chunk of 8 Mb before the next allocation occurs), or the reference is
freed in the case of straightforward ByteBuffer allocation.

Figure 4.1 shows a comparison of allocation times. It should first be noted that all the buddy-based
schemes are dramatically better than relying on the JVMs management of ByteBuffer. This essentially means
that without a buffer pooling mechanism, creation of intermediate buffers for sending or receiving messages
in a Java messaging system can have detrimental effect on the performance. Results are averaged over many
repeats, and the overhead of garbage collection cycles are included in the results in an averaged sense; this is a
fair representation of what will happen in a real application. Generally we attribute the dramatic increase in
average allocation time for large ByteBuffers to forcing proportionately many garbage collection cycles. All
the buddy variants (by design) avoid this overhead. The allocation times for buddy based schemes decrease
for larger buffer sizes because less time is spent in traversing the data structures to find an appropriately sized
buffer. The size of the initial region is 8 Mb—resulting in the least allocation time for this buffer size. The best
strategy in almost all cases is Buddy1 using direct buffers.

Quantitative measurements of the memory footprint suggest the current implementation of Buddy2 also has
about a 20% larger footprint because of the extra objects stored. In its current state of development, Buddy2
is clearly outperformed by Buddy1. But there are good reasons to believe that with further development, a
variant of Buddy2 could be faster than Buddy1. This will be the subject of future work.

4.1.2. Incorporating Buffering Strategies into MPJ Express. In this test, we compare transfer
times and throughput measured by a simple ping-pong benchmark using each of the different buffering strategies.
These tests were performed on Fast Ethernet. The reason for performing this test is to see if there are any
performance benefits of using direct ByteBuffers. From the source-code of the NIO package, it appears that
the JVM maintains a pool of direct ByteBuffers for internal purposes. These buffers are used for reading and
writing messages into the socket. A user provides an argument to SocketChannel’s write() or read() method.
If this buffer is direct, it is used for writing or reading messages. If this buffer is indirect, a direct byte buffer is
acquired from direct byte buffer pool and the message is copied first before writing it to or reading it from the
socket. Thus, we expect to see an overhead of this additional copying for indirect buffers.

Figure 4.2 shows transfer time comparison on Fast Ethernet with different combinations of buffering in MPJ
Express. Normally transfer time comparison is useful for evaluating the performance on smaller messages. We
do not see any significant performance difference for small messages.

Figure 4.3 shows the throughput comparison. Here, MPJ Express achieves maximum throughput when
using direct buffer in combination with either of the buddy implementations. We expect to see this performance
overhead related to indirect buffers to be more significant for faster networks like Gigabit Ethernet and Myrinet.
The drop in throughput at 128 Kb message size is because of the change in communication protocol from eager
send to rendezvous.

4.2. Evaluating MPJ Express using Myrinet. In this test we evaluate the performance of MPJ
Express against MPICH-MX and mpiJava by calculating the transfer time and throughput. We used MPJ
Express (version 0.24), MPICH-MX (version 1.2.6..0.94), and mpiJava (version 1.2.5) on Myrinet. We also
added mpjdev [13] to our comparison to better understand the performance of MPJ Express. MPJ Express uses
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mpjdev, which in turn relies on mxdev on Myrinet. These tests were conducted on the same cluster using the
2 Gigabit Myrinet eXpress (MX) library [17] version 1.1.0.

Figure 4.4 and Figure 4.5 show the transfer time and throughput comparison. The latency of MPICH-MX
is 4 µs. MPJ Express and mpiJava have a latency of 23 µs and 12 µs, respectively. The maximum throughput
of MPICH-MX was 1800 Mbps with 16 Mbyte messages. MPJ Express achieves a maximum of 1097 Mbps
for the same message size. mpiJava achieves a maximum of 1347 Mbps for 64 Kbyte messages. After this,
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there is a drop, bringing throughput down to 868 Mbps at 16 Mbyte message. Throughput starts decreasing
as the message size increases from 64 Kbytes. This is primarily due to copying data between the JVM and OS.
Although we are using JNI in the MPJ Express Myrinet device, we have been able to avoid this overhead by
using direct byte buffers. However, other overheads of JNI, such as the increased calling time of methods are
visible in the results. The mpjdev device, that sits on top of mxdev, attains a maximum throughput of 1826
Mbps for 16 Mbyte messages, which is more than that of MPICH-MX. Our device layer is able to make the most
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of Myrinet. This shows the usefulness of our buffering API, because the message has already been copied onto a
direct byte buffer. It is clear that a combination of using direct byte buffers and JNI incurs virtually no overhead.

The difference in the performance of MPJ Express and mpjdev shows the packing and unpacking overhead
incurred by the buffering layer. Besides this overhead, this buffering layer helps MPJ Express to avoid the main
data copying overhead of JNI—MPJ Express achieves a greater bandwidth than mpiJava. Secondly, such a
buffering layer is necessary to provide communication of derived datatypes. A possible fix for this overhead is
to extend mpiJava 1.2 and the MPJ API to support communication to and from ByteBuffers.

5. Conclusions and Future Work. MPJ Express is our implementation of MPI-like bindings for the
Java language. As part of this system, we have implemented a buffering layer that exploits direct byte buffers
for efficient communication on proprietary networks, such as Myrinet. Using this kind of buffer has enabled us
to avoid the overheads of JNI. In addition, our buffering layer helps to implement derived datatypes in MPJ
Express. Arguably, communicating Java objects can achieve the same effect as communicating derived types,
but we have concerns related to notoriously slow Java object serialization.

In this paper, we have discussed the design and implementation of our buffering layer, which uses our own
implementation of buddy algorithm for buffer pooling. For a Java messaging system, it is useful to rely on an
application level memory management technique instead of relying on the JVM’s garbage collector, because
constant creation and destruction of buffers can be a costly operation. We benchmarked our two pooling
mechanisms against each other using combinations of direct and indirect byte buffers. We found that one of the
pooling strategies (Buddy1) is faster than the other with a smaller memory footprint. Also, we demonstrated
the performance gain of using direct byte buffers. We have evaluated the performance of MPJ Express against
other messaging systems. MPICH-MX achieves the best performance followed by MPJ Express and mpiJava.
By noting the difference between MPJ Express and the mpjdev layer, we have identified a certain degree of
overhead caused by additional copying in our buffering layer. We aim to resolve this problem by introducing
methods that communicate data to and from ByteBuffers.

We released a beta version of our software in early September 2005. The current version provides commu-
nication functionality based on a thread-safe Java NIO device.The current release also contains our buffering
API with the two implementations of buddy allocation scheme. This API is self-contained and can be used by
other Java applications for application level explicit memory management.

MPJ Express can be downloaded from http://mpj-express.org.
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RAPID AREA-TIME ESTIMATION TECHNIQUE FOR PORTING C-BASED
APPLICATIONS ONTO FPGA PLATFORMS∗

MY CHUONG LIEU†, SIEW KEI LAM†, THAMBIPILLAI SRIKANTHAN†

Abstract. High-level area-time estimation is an essential step to facilitate rapid design exploration for FPGA implementations.
Existing works in high-level area-time estimation usually ignore the physical effects of the design after place and route, which have
a notable impact on the maximum achievable speed of the design. In this paper, we propose a framework to rapidly estimate
the area-time measures of mapping C-applications onto FPGA. The framework relies on the Trimaran compiler to generate an
optimized high-level IR (Intermediate Representation) of the C-applications. Area-time estimation of the IR is then performed
using a proposed estimation model that is based on an architecture template with application-specific heterogeneous functional
units. In order to accurately predict the delay of the design after place and route, we introduce a new metric for the estimation
that models the criticality of the design’s interconnectivity. Experimental results based on a set of embedded functions show that
the proposed area estimation can achieve comparable results with the synthesis results of a commercial FPGA tool in the order
of milliseconds. For the C functions used in our experiments, the proposed delay estimation leads to an average error of about
3% when compared to the post place and route results. In addition, we demonstrate the robustness of the proposed framework
which provides consistent results for different FPGA families. The contribution of this paper is a scalable methodology for rapid
estimation of cost-benefit metrics of C-based algorithms to be accelerated on FPGA-based high-performance computing platform.

Key words. FPGA, C-based application, area time estimation, hardware accelerator

1. Introduction. FPGAs (Field-Programmable Gate Arrays) have become an attractive solution to meet
the technological and market challenges in embedded processing. Traditional hybrid platforms that incorporate
ASIC and microprocessors are migrating towards FPGA platforms (e.g. Xilinx Virtex-II Pro [1] and Altera
Stratix [2]) to take advantage of the reconfigurable benefits of FPGA. This trend is supported by the availability
of efficient EDA (Electronic Design Automation) tools and the increasingly stringent TTM (Time-To-market)
requirements. In order to exploit the strengths in both the microprocessor and FPGA, efficient hardware-
software partitioning strategies must be incorporated in the emerging design flows. However, commercially
available design flows do not enable designers to make design explorations for effective hardware-software par-
titioning. This is chiefly due to a lack of an essential step that can estimate the performance-cost for mapping
a software component to hardware early in the design cycle.

In this paper, we propose a framework that can rapidly and accurately estimate the hardware area-time
measures for implementing C-applications onto the FPGA. We have chosen C as the input to our framework as
it is widely used for embedded processing. The front-end of the framework relies on the high-level optimization
and scheduling capabilities of the Trimaran compiler infrastructure [3]. In order to facilitate effective area-
time estimations, we have adopted an architecture template for implementing the applications, which is similar
to the one proposed in [4]. The architecture template resembles a VLIW-like architecture that incorporates
application-specific heterogeneous functional units and register-files, with dedicated interconnection buses.

High-level estimation is performed using an area-time estimation model, which relies on a set of pre-
characterized parameters of the components in the architecture template. Previously reported works in high-
level area-time estimation often do not consider the interconnect delay of the design after place and route. We
will demonstrate that this oversight will lead to high uncertainties in the estimation results. Our proposed
approach overcomes this limitation by incorporating a new metric that models the placement complexity of the
design’s interconnectivity.

The paper is organized as follows. In the following section, we describe related works in the area of high-level
estimation for FPGA implementation. This is followed by an overview of the proposed framework. Section 4
describes the parametric characterization of the architecture template components, and the proposed area-time
estimation models. Next, results analysis is provided to demonstrate the benefits of our framework, and we
conclude in Section 6.

2. Related Works. Due to the need to expedite the development of complex applications in hardware, a
number of commercial tools that synthesizes high-level languages to FPGA have emerged in recent years. These
tools differ in several aspects such as high-level language support, high-level optimization features and the target
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system. For example, Mitrion-C from Mitronics [5] and RCToolbox from DSPLogic [7] supports the Mitrion-C
and Matlab programming language respectively, while HandleC from Celoxica [6] and Impulse-C from Impulse
Accelerated Technologies [8] support a subset of the ANSI-C language that is extended with constructs for
specifying the hardware definitions. These tools cannot be directly employed for most embedded applications
that are programmed using ANSI-C. Although the C2H tool from Altera [9] supports ANSI-C applications,
the hardware representations that are generated are specific to the Altera FPGA devices only. This limits the
generality of the tool across different platforms. Other tools such as Catapult from Mentor Graphics [11] and
Trident [10] support ANSI applications and are not device specific.

The problem of high-level area-time estimation for hardware implementations has received considerable
interest in the research community for nearly 20 years. Research efforts in this area are motivated by the
need to evaluate the hardware performance-cost indices of various design options early in the design phase,
in order to reduce the time-consuming implementation cycles. Figure 2.1 highlights the major steps in a
typical high-level estimation flow, which are 1) Transformation of application written in high-level language to
IR; 2) Architecture independent estimation; 3) Architecture independent synthesis; 4) Architecture dependent
estimation. It is worth noting that previously reported works typically do not address all these steps in their
area-time estimation approach. The first step in the estimation flow typically involves the transformation of a
high-level representation of an application (e.g. C, System-C, Matlab, behavioral HDL or JAVA specifications)
to an IR (Intermediate Representation). This transformation includes high-level compiler optimizations such as
loop transformations to extract the hidden parallelism in the sequential C statements. For example, the SUIF
[12] compilers have been widely used to transform C-based application into CFGs (Control Flow Graphs) and
DFGs (Data Flow Graphs).

Fig. 2.1. High-Level Estimation FLow

Architecture independent estimation attempts to calculate the hardware resources and latency in terms
of clock cycles without performing scheduling. These approaches commonly rely on probabilities or integer
linear programming models based on the high-level application characteristics in order to predict the number
of functional-units or minimum clock cycles. The work presented in [13] performs architecture independent
estimation to obtain a lower-bound execution time of a DFG in the presence of hardware constraints to facilitate
efficient design space exploration. Similarly, [14] estimates the minimum number of resources that are required
to execute a DFG within a control step constraint. Others [15] employ Matlab codes as inputs to estimate the
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hardware resources by summing the area of the required operators based on the execution probabilities in the
application.

Architecture independent synthesis typically performs scheduling of the IR and resource binding to obtain
accurate high-level metrics, which include the number of clock cycles and hardware resources. The hardware
area-time of the application is then calculated or estimated from these metrics. The architecture independent
synthesis approach in [16] considers the effects of various loop transformation techniques. Bilavarn et al [17]
presented a method that employs architecture independent synthesis for design exploration. However, maximum
clock frequency estimation was based solely on the longest latency of the execution unit and ignores post place
and route physical effects. Cardoso proposed a methodology for estimating FPGA implementations of Java
byte-codes in [18]. He highlighted the limitations of high-level delay estimation due to the lack of circuit details.

Architecture dependent estimation techniques commonly employ simple hardware models to speed-up the
estimation process. The hardware cost is estimated in terms of LUTs (Look-Up Tables), while the performance
is often estimated in terms of clock latencies. The technique presented in [19] adopts an analytical approach to
estimate the FPGA area for implementing the DFG. The estimation is based on a set of formulas that models
the components and corresponding hardware area of the DFG operations. Their approach reported credible
results with a maximum error of 10% and the estimation can be achieved in the order of milliseconds. However,
they have not considered delay estimation. In [15] , the number of required flip-flops is estimated by calculating
the maximum number of required registers. The Rent Rule and Feuer’s formula have been employed to estimate
the post place and route interconnect delay. This approach leads to large uncertainty of up to 9 ns. This high
uncertainty can become unacceptable for designs that need to be clocked at high frequency (e.g. 100 MHz). It
is noteworthy that our proposed area-time estimation accounts for the physical implementation characteristics
and is not susceptible to the speed of the design.

3. Overview of Framework. Figure 3.1 describes an overview of the proposed framework for high-
level area-time estimation. The open-source Trimaran compiler infrastructure, which supports state of the art
compiler research in ILP (Instruction Level Parallelism) based architectures, is relied upon to expose the hidden
parallelism in the sequential C statements, and to perform high-level optimizations and scheduling [3]. This
front-end process takes several seconds (typically less than 10s for 1 single C-function compilation) depending on
applications and functions sizes. We have adopted the application-specific architecture template that is similar
to the one proposed in [4] as shown in figure 3.2. It is worth mentioning that this architecture template can
be adapted for pipelined and non-pipelined data-paths by configuring the application-specific interconnection.
The Trimaran machine description is augmented with the heterogeneous functional units in the architecture
template. These functional units include a combination of two or more basic operators (e.g. adder, shifter,
multiplier, logic operator, comparator and memory-access unit). Only the functional units that are required for
a particular application will be incorporated into the architecture.

The output of the Trimaran is an ILP schedule of the application (e.g. the type of functional units that will
be executed in each clock cycle and the data-dependency between these functional units). Based on this schedule
information, we perform a simple hardware binding process that attempts to bind operations with the most
common input-outputs to the same functional units. This aims to reduce the complexity of the interconnectivity
between registers and functional units. In order to perform area-time estimation, information pertaining to the
control-path and data-path are segregated from the ILP schedule after hardware binding. In this paper, we
focus on area-time estimation for the data-path only.

A one-time area-time characterization of the components in the architecture template is required to facilitate
area-time estimation of the data-path. An estimation model is then employed along with this information to
estimate the performance-cost measures of the application by taking into account the physical implementation
effects. In order to evaluate the accuracy of our estimation approach, a process to auto-generate the RTL
(Register Transfer Level) codes from the control-data path information has been incorporated in the framework.
The RTL code can then be subjected to the FPGA implementation tool (i. e. Xilinx ISE) to obtain the actual
post place and route report for results comparison with the proposed estimation approach.

4. Area-Time Estimation. In this section, we will provide detailed description of the process to charac-
terize the components and the proposed area-time estimation model.

4.1. Hardware Characterization of Architecture Template’s Components. We have used the
Xilinx ISE synthesis engine to characterize the hardware components in the architecture template and other
relevant information. Table 4.1 illustrates the hardware components (and other relevant information) and the
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Fig. 3.1. Propose High-level Estimation Framework

Fig. 3.2. VLIW-like architechture Template

corresponding area-time measures for the Virtex-II Pro device (xc2vp70-6ff1704). The data-paths are assumed
to be 16-bit or 32-bit, as the hardware implementation serves to accelerate the base ISA (Instruction Set
Architecture) operations of the microprocessor.

In order to perform interconnect characterization, we have implemented a number of circuits to obtain the
average post place and route interconnect delay. The circuits are constructed based on the data-path that is
shown in figure 4.1, which resembles the architecture template consisting of a single functional unit. A range
of designs, each consisting of up to 8 duplicate circuits similar to the one in figure 4.1, is subjected to physical
implementation using the Xilinx ISE tool. We utilized the Xplore Script provided by Xilinx [20] that iteratively
executes the place-and-route process to achieve the maximum clock speed. Figure 4.2 shows the maximum
delay for the range of designs from which we calculated the average delay after place and route. The average
interconnect delay is then computed using Equation 4.1, where Logic Delay is the sum of Clk2q, Mux4to1,
functional unit delay, and FF-Set-up time that are listed in Table 4.1. The average interconnect-delay for the
target device is found to be 0.42 ns, and this value will be used by the proposed method for delay estimation.

InterconnectDelay = (Avg(MaxDelay)− LogicDelay)/3 (4.1)

It is noteworthy that the proposed high-level estimation approach can also be adopted for different target
FPGA families by performing a one-time hardware characterization for the particular device.

4.2. Area Estimation. In order to perform area estimation, we obtained the number of functional units
and the number of registers (flip-flops) from the ILP schedule after hardware binding. The estimated number of
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Table 4.1
Characterized Components for Xilinx FPGA Virtex2p-6

Components Area(LUT) Delay (ns)
16bit-Addsub 16 2.139
16-bit multiplier by LUT 121 8.165
16-bit left/right/signed-unsigned shifter 76 2.376
16-bit Logic Operator (4 operations) 16 0.313
16-bit Multiplexer 2 to 1 16 0.313
16-bit Multiplexer 4 to 1 32 0.653
16-bit Multiplexer 8 to 1 64 0.972
16-bit Multiplexer 16 to 1 128 1.291
FFCLK2Q (Clock to output delay of FF) 0.234
FFSetup (Setup time of FF) 0.243

Fig. 4.1. Sample Circuit for Characterizing Average Interconnect Delay

LUTs is computed by summing up the number of LUTs for the functional units based on the pre-characterized
information. As each slice of Xilinx Virtex2 pro contains 2 Look-up tables (LUT) and 2 flip-flops, we estimate
the total slices as in 4.2:

Estimated number of slices = (#LUT + #FF )/2 (4.2)

The estimation for the number of slices assumes that each slice is fully utilized to implement the functional
units and registers. Experimental results reveal that the proposed estimation method is very accurate for LUT
and Flip-Flop estimation. In addition, the estimation of the slices is comparable with ISE logic synthesis results
and results reported in previous work [15].

4.3. Delay Estimation. The difficulty in delay estimation lies in the prediction of the interconnect delay
before the physical design steps (i. e. placement and routing). There have been several reported works in
the area of interconnect delay estimation such as [21] [22] and we will briefly discuss them before describing
the proposed delay estimation approach. It is worth mentioning that these previous works are not integrated
as part of a high-level estimation framework, but are used mainly to aid optimization decisions in the CAD
flow. The work presented in [21] can achieve very accurate estimations of the interconnect delay by analyzing
the physical characteristics of the designs. However, due to the complexity of the approach, the estimation
results are achieved in the order of seconds and minutes. Karnik and Kang [23] presented an empirical routing
delay model for estimating interconnection delays in FPGA. These methods require low-level metrics of circuit
such as net fan-out and routing congestion which is not desirable for efficient high-level estimation [18]. Their
method resulted in an estimated delay with 20% errors. Hutton highlighted that that delay estimation based
on theoretical models, generally produces inferior results when compared to those computed based on empirical
data [24]. Manohararajah et. al. reported an interesting finding that the predictability of FPGA implementation
is mainly governed by the placement rather than routing process [25].

The physical characteristics that has been commonly used for post place and route delay estimation includes:
1) Design size [23] [15], 2) Circuit shape [26], and 3) Fan-in/out [23]. The placement and routing effort is mainly
influenced by the interconnectivity in the designs rather than the size or shape of the design due to the fine-
grained architecture of FPGA. Hence the first two characteristics is not a reliable indicator on the complexity
of the place and route process. We have carried out experiments to show that these characteristics do not lead
to reliable predictability of the post place and route delay. The fan-in/out of a register is defined as the number



364 My Chuong Lieu, Siew Kei Lam, Thambipillai Srikanthan

Fig. 4.2. Maximum post place and route delays for eight designs comprising of multiple of sample circuits (see figure 4.1)

of input/output connections of that register. Compared to the first two characteristics, the fan-in/out provides
a better indication on the interconnect complexity of the design. However, during place and route, the CAD
tools often perform register duplication to mitigate the fan in/out effect. Our experiments show that although
register-duplication can lead to improved timing in some cases, it could also increase the routing congestion
of the circuit. This was inferred in our experiments for some designs, whereby the final delay after register
duplication is higher than the delay obtained from implementations that obviates register duplication. Due to
this uncertainty, we have assumed that the applications employed in our experiments have moderate register
reusability and hence, we do not incorporate the fan-in/out characteristic in our delay estimation model.

In this section, we introduce a delay estimation model that takes into account the post place and route
characteristics of the design. Our proposed delay estimation model incorporates a new metric that is based on
the relative path delays of the design. In contrast to the method in [21], our proposed method can estimate at
a higher abstraction level and achieve reasonable results in less than a second. In addition, we will demonstrate
that the maximum estimation error of the proposed model is less than 8% for the experiments considered.

4.3.1. Proposed Approach. A path is a connection of a sequence of logic units that begins and ends at
a register, as shown in figure 4.3. Let’s define Dpath(i) as the delay of a path i in a RTL design, Dmax as the
critical path of that design, and Dmean as the mean delay of the paths in the design. Calculations for Dpath,
Dmax, and Dmean are defined below, which constitutes to a simple delay estimation model. If place and route
effects are ignored, the minimum clock period is approximate as Dmax. We compared the estimated delay of 45
random algorithms using the simple delay model with actual results after place and route for the Xilinx Spartan
and Virtex-II Pro device. The estimation error shown in figure 4.4 exhibits a consistent error pattern for the
two devices. This serves as the motivation for us to use the simple delay model as a basis for post place and
route estimation as it can be employed across different devices. The consistency of the delay predictability on
the two different devices implies that the inherent characteristics of the design can be used for estimation. The
delay of path i (Dpath(i)) for all the paths in the circuit is computed as follows:

Fig. 4.3. A typical delay path from register to register

Dpath(i) = FFClk2q + Dint + Dcomp + FFsetup

Dmax = Max of all Dpath

Dmean = Mean of all Dpath

Dcomp is the characterized delay of the component in Table 4.1

(Usually: Mux→ Functional Unit → Mux)

Dint is the characterized interconnect delay between the components.
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Fig. 4.4. Estimation error of critical paths for 2 FPGA families

As mentioned earlier, our proposed delay estimation model incorporates a new metric that is based on the
relative path delays of the design. It has been previously reported that the placement process plays a more
important role on the predictability of the final delay (assuming that there is no constraints on the number
of FPGA routing resources)[25]. In addition, timing-driven placement relies on the criticality of the nets, and
hence the effect of the nets criticality can lead to reliable predictability of the interconnection delay. Based on
this, we introduce the lambda metric to compute the relative lengths of nets which capture the complexity of
the placement effort for a particular design:

λ =
Dmean

Dmax

(4.3)

λ captures the slack distribution of the nets in the designs. If a circuit has one net that is much longer than
the rest (i. e. low-λ), the CAD tool will require lesser effort to place the shorter paths such that they do not
exceed the delay of the longest path. On the other hand for a circuit with high-λ, the CAD tool will have less
freedom to move the paths around without violating the delay of the longest path. Hence, we expect designs
with low-λ design to be more predictable than designs with high-λ. Our strategy is to identify through empirical
means, the threshold value that will categorize a design as low-λ or high-λ designs. Let’s define this threshold
value as Λ. The estimated delay of a design with low-λ is computed as the maximum path length, while a design
with high-λ is computed by multiplying the mean path length with a constant factor. The constant factor was
empirically found to be close to 1/Λ. The following describes our proposed delay estimation model, where Dest

is the estimated delay.

Dest =

{
Dmax if λ ≤ Λ
Dmean ×

1
Λ otherwise

(4.4)

4.3.2. Determining Value of Λ. We compared the estimated delay using the simple delay model with
the actual place and route results for 45 random algorithms. Figure 4.5 shows the estimation error and the
corresponding λ of the designs. It can be observed that there exist a high correlation between the predictability
and λ. In particular, it is shown that for low λ , the simple delay model can be applied with about 90%
confidence. Large errors or low predictability are found in region where λ is high. We empirically define Λ to
be 0.78 from the dataset.

5. Result Analysis. Table 5.1 describes the properties of the C functions that have been used to eval-
uate the proposed framework for high level area-time estimation. These applications (apart from the random
algorithm) are commonly used in embedded applications.

1A dummy algorithm which has high parallelism. It computes 1 output from 4 inputs through several operations
2Only inner-most loop is considered
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Fig. 4.5. Estimation Error (Predictability) versus λ

Table 5.1
Connectivity Characteristics of Sample Circuits

Funtions DMean λ Max Avg Max Ave
(ns) Fanout Fanout Fanin Fanin

Random Algorithm1 8.66 0.76 6 1.66 2 0.89
Matrix multiplier2 4.25 0.44 2 1.06 1 0.59
mpeg2- bdist1 motion 4.82 0.46 13 2.13 4 1.22
mpeg2- bdist2 motion 4.84 0.47 13 2.07 4 1.20
mpeg2- dct type estimation 4.87 0.51 5 1.43 2 0.81
mpeg2- dist1 motion 5.73 0.88 11 2.43 5 1.08
mpeg2- dist2 motion 5.38 0.50 19 3.25 9 1.92
mpeg2- idctcol 5.63 0.53 15 1.70 2 0.91
mpeg2- idctrow 5.88 0.55 15 1.70 2 0.86
sha transform 4.94 0.84 14 2.60 7 1.65
adpcm coder 4.84 0.73 10 2.54 8 1.35
adpcm decoder 4.64 0.67 9 2.16 9 1.22

5.1. Area Estimation. Table 5.2 compares the proposed area estimation (Pro) with results obtained
from the Xilinx ISE tool after synthesis (Syn) and after place and route (PAR). The last four columns show
the estimation errors of our method and that of logic synthesis, when compared with the post place and route
values. It is evident that the proposed area estimation achieves up to an average of 98% accuracy, with a worst
case error of 8% in terms of LUT comparison. For the estimation of slices, the average error of the proposed
method is 12%. It is noteworthy that area estimation in terms of FPGA slices is a difficult task and the majority
of the previous works reported their estimation results in terms of LUTs and flip-flops [27] [18] [19]. In general,
our proposed area estimation for both LUTs and slices is comparable to the results of the logic synthesis tool.
In addition, the proposed estimation can be completed in order of milliseconds, while the compilation time of
the commercial synthesis tool takes several minutes (because of the level of abstraction).

5.2. Delay Estimation. The maximum delay of the above mentioned C-functions were estimated using
the simple delay model (Sim) and the proposed model (Pro), and compared with actual post place and route
values. In addition, we have used the ISE Xilinx tool to synthesize and implement the generated RTL codes in
order to obtain the estimated delay after synthesis (Syn) and the actual delay after place and route (PAR). The
results show that the proposed approach (Pro) outperforms the simple delay model and the synthesis tool for
estimating the post place and route delay. In particular, the proposed delay estimation achieves better results
in terms of both maximum and average accuracy. The maximum and average estimation error of the proposed
approach is only 4.6% and 2.8% respectively. It can be observed from figure 5.1 that the simple delay model can
provide accurate estimation results for designs with low λ cases. However, in designs with high-λ (i. e. 6 and
10), the simple delay model and the synthesis tool (Syn) incurs very high estimation error (i. e. up to 14%). In
these cases, the proposed estimation approach is capable of providing significantly better accuracy due to the
inclusion of the new metric λ that can be easily obtained for high-level estimation.

5.3. Estimation Runtime. The experiments were carried out on the Pentium 4 3GHz workstation, and
the Xilinx ISE 8.1 tool was used to obtain the synthesis and post-place-and-route results. Table 5.4 compares the
estimation time with the execution time of the Xilinx tool for synthesis and PAR. On an average, the proposed
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Table 5.3
Delay Estimation Result

Absolute Values Error Compared to PAR
Sim Syn Pro. PAR Sim Syn Pro
(ns) (ns) (ns) (ns) % % %

Random Algorithm 11.47 11.22 11.47 11.13 3.07 0.75 3.07
Matrix multiplier 9.61 9.62 9.61 9.46 1.56 1.65 1.56
mpeg2- bdist1 motion 10.37 10.41 10.37 9.95 4.21 4.61 4.21
mpeg2- bdist2 motion 10.37 11.54 10.37 10.61 2.27 8.77 2.27
mpeg2- dct type estimation 9.61 9.74 9.61 9.91 3.00 1.65 3.00
mpeg2- dist1 motion 6.55 6.65 7.35 7.70 15.00 13.69 4.55
mpeg2- dist2 motion 10.71 10.97 10.71 10.42 2.75 5.20 2.75
mpeg2- idctcol 10.71 11.22 10.71 10.94 2.13 2.49 2.13
mpeg2- idctrow 10.71 11.22 10.71 11.10 3.49 1.06 3.49
sha transform 5.83 5.98 6.33 6.22 6.26 3.88 1.86
adpcm coder 6.62 6.45 6.62 6.37 3.86 1.32 3.86
adpcm decoder 6.93 6.81 6.93 6.91 0.39 1.42 0.39
Average Error 4.00 3.87 2.76

Fig. 5.1. Estimation error with designs arranged in increasing of λ

estimation process completes in the order of milliseconds except in cases 3, 4, 6, 7. In these cases, parsing of the
Trimaran’s textual output takes up to 2 seconds to complete, while the actual hardware binding and estimation
process is performed in milliseconds. Overall, our technique achieves the estimation results about 350 times
faster than the synthesis process, and about 3000 times faster than the PAR process.

5.4. Evaluation of the Framework for different FPGA Families. In order to evaluate the robustness
of the proposed framework, we carried out experiments with the Spartan-3 FPGA. The following processes are
repeated with the new target FPGA device: 1) characterization of components and interconnect, 2) identification
of the value of λ and 3) area-time estimation. Due to the less sophisticated FPGA routing fabric in Spartan-3,
we have obtained λ = 0.72. Table 5.5 and 5.6 show the quality of estimation compared to actual place and route
values. The average errors of delay were found to be 3.4% while synthesis tool’s estimation error is 8.5%. The
results of the proposed area estimation are reasonably good compared to the results obtain from the synthesis
tool. In figure 5.2, the designs are rearranged in increasing order of λ. It can be observed that there is a large
estimation error obtained using the simple model and ISE synthesis tool for designs with high value of λ. In
contrast, the estimation error incurred with the proposed technique is consistent across the different functions.
This implies that the proposed estimation technique leads to a higher degree of predictability when compared
to the simple model and synthesis tool.

6. Conclusions. FPGA-based high-level area-time estimation that ignores the physical design effects after
place and route may lead to very high inaccuracies. In this paper, we have presented a high-level estimation
framework that can predict the area-time measures of C-based applications with post place and route effects
taken into account. It is worth mentioning that the original C applications can be directly used in the proposed
framework without any further modifications. Our area estimation has been shown to achieve comparable
results with that obtained from a commercial synthesis tool. We have proposed a new metric for our delay
estimation model that captures the placement complexity of the circuit. For the experiments considered, when
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Table 5.4
Estimation Runtime Compared to Synthesis And Actual PAR time

Functions Estimation ISE Syn PAR
Time (s) Time (s) Time (s)

1 Random Algorier 0.26 237 960
2 Matrix Multiplier 0.08 31 285
3 mpeg2- bdist1 motion 2.54 255 676
4 mpeg2- bdist2 motion 2.59 110 814
5 mpeg2- dct type estimation 0.2 35 613
6 mpeg2- dist1 motion 2.89 82 3612
7 mpeg2- dist2 motion 2.71 112 687
8 mpeg2- idctcol 0.23 141 2620
9 mpeg2- idctrow 0.17 107 690
10 sha transform 0.25 152 3600
11 adpcm coder 0.2 81 780
12 adpcm decoder 0.15 61 2700

Fig. 5.2. Estimation error with designs arranged in increasing of λ

compared to post place and route results obtained from a commercial tool, our proposed delay estimation
achieves an average accuracy of 97% with a worst case error of only 4.5%. This result is significantly better
than previously reported works in high-level delay estimation and the estimation process can be completed in
the order of milliseconds. In addition, we have shown that the proposed framework provide consistent results
for devices from the Xilinx Virtex and Spartan families.
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Table 5.6
Delay estimation for Spartan3-4 Family

Sim Syn Pro. PAR Sim Syn Pro
(ns) (ns) (ns) (ns) (%) (%) (%)

Random Algorithm 16.26 17.17 17.02 16.51 1.51 4.02 3.10
Matrix multiplier 13.54 14.14 13.54 13.28 1.97 6.53 1.97
mpeg2- bdist1 motion 14.72 15.85 14.72 14.36 2.49 10.33 2.49
mpeg2- bdist2 motion 15.90 17.42 15.90 15.49 2.62 12.45 2.62
mpeg2- dct type estimation 13.54 14.71 13.54 14.41 6.06 2.04 6.06
mpeg2- dist1 motion 9.16 10.62 10.94 12.06 24.08 12.00 9.33
mpeg2- dist2 motion 15.08 16.62 15.08 14.98 0.65 10.93 0.65
mpeg2- idctcol 15.08 17.17 15.08 15.94 5.37 7.78 5.37
mpeg2- idctrow 15.08 17.17 15.08 15.45 2.38 11.18 2.38
sha transform 8.13 9.45 9.21 9.04 9.98 4.55 1.89
adpcm coder 8.76 10.08 9.45 9.29 5.65 8.57 1.74
adpcm decoder 8.13 9.73 8.45 8.727 6.81 11.52 3.19
Average Error 5.80 8.49 3.40
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PERFORMANCE OF A LU DECOMPOSITION ON A MULTI-FPGA SYSTEM
COMPARED TO A LOW POWER COMMODITY MICROPROCESSOR SYSTEM∗

T. HAUSER† , A. DASU‡ , A. SUDARSANAM‡ , AND S. YOUNG‡

Abstract. Lower/Upper triangular (LU) factorization plays an important role in scientific and high performance computing.
This paper presents an implementation of the LU decomposition algorithm for double precision complex numbers on a star topology
based multi-FPGA platform. The out of core implementation moves data through multiple levels of a hierarchical memory system
(hard disk, DDR SDRAMs and FPGA block RAMS) using completely pipelined data paths in all steps of the algorithm. Detailed
performance numbers for all phases of the algorithm are presented and compared to a highly optimized implementation for a low
power microprocessor based system. We also compare the performance/Watt for the FPGA and the microprocessor system. Finally,
recommendations will be given on how improvements of the FPGA design would increase the performance of the double precision
complex LU factorization on the FPGA based system.

Key words. LU factorization, multi-FPGA system, benchmarking

1. Introduction. High-performance reconfigurable computers (HPRC) [20, 5] based on conventional pro-
cessors and field-programmable gate arrays (FPGAs) [31] promise better performance, especially when taking
the power consumption into account. Recently, HPRCs have shown orders of magnitude improvements in
performance, e.g. power and speed, over conventional high-performance computers (HPCs) in some compute
intensive integer applications but showing similar success on floating point based problems has been limited [32].

Scientific computing applications demand double-precision arithmetic because of numerical stability and
large dynamic range requirements. Solving linear systems and linear algebra plays an important role in scientific
and high performance computing. The LAPACK library [1, 2, 10, 12, 13, 36, 3, 7] is a high quality library of
linear equation solvers and considerable work has been done to achieve very good performance on different high
performance computing platforms. The introduction of hierarchical memory systems, which feature multiple
levels of cache storage with different sizes and access speeds, has tended to degrade the performance of these
linear algebra routines compared to the peak performance. Obtaining good performance with such systems
required the formulation of those algorithms in terms of operations on blocks, so that cache misses could be
minimized [16].

The goal of this paper is to benchmark and compare the performance of a block based algorithm on a HPRC
platform to a highly optimized implementation on a commodity microprocessor. and provide suggestions for
the improvement of the FPGA platform to better support floating point linear algebra algorithms. Our work
is based on the algorithms described in [10] which is adapted to a specific class of HPRCs. Hardware-based
matrix operator implementation has been addressed by several researchers. Ahmed El-Amawy [15] proposes a
systolic array architecture consisting of (2N2 − N) processing elements which computes the inverse in O(N)
time, where N is the order of the matrix. However, there are no results to show that the large increase in area
(for large values of N) is compensated by the speed of this implementation.

Power efficiency is a critical issue in current high performance computing facilities and a critical issue for
developing cost effective small-footprint clusters [22] as it directly influences the cooling requirements of each
cluster node and of the overall cluster rack and server room layout. A 48 core, low power cluster [29], designed
to run on 20 Amp electric circuit, is an example of per-node low power requirements. Each of our quad-core
processor nodes consumes approximately 78 Watts during normal operation under our group’s cluster workloads.
We describe the design and implementation of the LU factorization algorithm for a double precision complex
matrix on a HPRC system and compare it to a highly tuned implementation for a commodity microprocessor.
The matrices considered for the factorization are so large that the factorization has to be performed out of core
on the FPGA system. In addition to comparing the wall clock times, power efficiency of the FPGA versus the
microprocessor using the millions of floating point operations per Watt (MFlops/Watt) metric is provided.

The paper is structured as follows. Section 2 describes the general multi-FPGA system architecture the
algorithm is designed for and the details of the Starbridge HC-62 system. Section 3 presents an overview of the
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Fig. 2.1. Star topology based multi-FPGA system with four FPGAs

algorithm used and how it is mapped on the HPRC architecture. In Sections 4 and 5 we discuss the benchmark
results and compare it to the commodity microprocessor implementation. Section 6 presents an overview over
related work for floating point computation on HPRC architectures and Section 7 provides the lessons learned
from this implementation.

2. Multi-FPGA system architecture.

2.1. Star networked FPGAs with external storage. The hardware system topology we have con-
sidered for analysis and mapping of the LU factorization algorithm is the Star Network Topology. We assume
that in this topology, multiple FPGA devices can communicate to a central host microprocessor through a
concentrator/router FPGA. In addition, each FPGA is assumed to have its own local external storage such as
DRAM chips. We refer to this structure henceforth as “Star Networked FPGAs with Local Storage” or SNFLS
topology. Figure 2.1 shows a SNFLS systems with four compute FPGAs (PE2-PE5) with locally attached
DRAM, one router FPGA and the host system. Several variations in the topology, such as the manner how
physical memory devices are distributed across FPGAs, how the accelerator FPGA board is connected to a host
system, etc. can have impacts on the performance of a system.

2.2. Starbridge HC-62 system. The system used for the implementation and benchmarks contains a
HC-64 board from Starbridge systems, consisting of eight programmable FPGAs, attached to a host PC with
an Intel x86 processor. There are two FPGA chips that are used for interface functions. The first is an Xpoint
switch chip, and the second is a primary function chip, PE1. The Xpoint FPGA provides a link between the
other FPGAs and the PCI bus. It provides a 256-bit fully populated synchronous cross-point router with each
of the four FPGA elements PE2 through PE5 at 82.4 Gigabits/second. The four FPGAs are connected through
a 128-bit data bus to the Xpoint and PE1 chips, and each contain two 128-bit serial multiplier objects. A group
of four FPGA connected together with 50-bit parallel lines is called a quad group. Each quad group is internally
connected with a 50-bit exclusive chip to chip bus at 96.6 gigabits per second. The memory chips attached to
each PE are arranged in four banks around the chip. The main memory is made up of 8-72 Gigabytes SDRAM
modules, with a bandwidth of 95 Gigabytes with 36 independent 64 bit ports. Each PE is a Xilinx Virtex-II
chip. It consists of 33,792 slices, with each slice consisting of 2 Flip-Flops (FFs) and 2 Look-Up Tables (LUTs).
The chip also contains 144 18x18 ASIC multipliers and 144 Block RAMs (BRAMS) and each RAM contains
18K bits of memory.

3. Matrix Factorization implementation for a multi-FPGA system.

3.1. Block-partitioned LU factorization algorithm. The LU factorization applies a sequence of Gaus-
sian eliminations to form A = LU , where A, L and U are N×N matrices. Note, that in our algorithm a
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permutation matrix is not necessary, since all matrices from the problem addressed are diagonally dominant
and the condition number of our matrices is of O(1). L is a unit lower triangular matrix with 1’s on the main
diagonal, U is an upper triangular matrix. Our algorithm is applied recursively by partitioning the matrix A(k),
which is a n×n submatrix of size n = N − (k−1) ·nb at the k-th step into four blocks, where nb is our blocking
size.
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in our implementation U
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The use of the inverse of L
(k)
11 is more efficient according to Ditkowski [11], since the condition number

of our matrices is always of O(1).

4. Update the remaining block Ã
(k)
22 , which then becomes the matrix Ak for the next iteration k + 1.
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The LU factorization is completed when the matrix A(k) becomes so small that only step 1 is left to
compute.

3.2. Mapping of the LU algorithm onto a multi-FPGA system. The SNFLS architecture as shown
in Figure 2.1 is particularly suited for the block-based dense matrix LU factorization, as this algorithm has no
need for inter-block communication in any of the sub-steps. Input data can be loaded into each of the DRAMs
and processed and written back to the host. By analyzing the algorithm, it can be observed that there is data
re-use at both the intra-block as well at the inter-block level. Therefore, a set of blocks can be initially loaded
onto the DRAMs from PC memory and one block can be loaded onto an FPGA’s BRAM for execution. We
assume that most of the data resides on the hard disk of the host microprocessor, and these storage devices are
slow, since they need to communicate with FPGA DRAMs through the PCI-X bus. The data is first transferred
from hard disk to host processor memory. Then it is routed through the host-FPGA bus and saved on each
FPGA’s DRAM.

The top level control flow can be handled by the host processor which will split the matrix into multiple
parts for each step. On-chip memory of the host processor can be used as a buffer to handle the difference in
the speed of data transfer between Host’s-Hard Disk and an FPGA. Data transfer between off-chip DRAM and
the FPGA is modeled as a sequence of I/O operations. During a single I/O operation, a block of data can be
transferred from off-chip DRAM to the FPGA. This block is of size nb×nb, where nb is the block size in the LU
decomposition algorithm. The value of nb should be chosen so that the amount of data transferred is neither
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too small, nor too large. A too small value of nb is wasting opportunities for parallelism whereas a too large
value will exceed the capacity of the DRAM.

When data is transferred from host memory to DRAM, one of the factors that can limit the amount of data
transferred per I/O operation is the DRAM size. Information about the latency of transferring data from host
memory to DRAM should be used while scheduling the various operations.

The proposed design outlines the order in which the various blocks of data are transferred from/to the host
memory to/from the FPGA board. The number of blocks transferred will depend on the DRAM size associated
with each FPGA. The following sequence of control steps determines the order of their access.

For the case of a single-FPGA accelerated system, a basic block of size nb × nb forms the input and the
module corresponding to the algorithm in which a single block is processed needs to be realized in FPGA
hardware. In the proposed approach, data path units found inside the inner-most loop are identified and these
units are replicated as many times as possible on a given FPGA device. The number of parallel instances is
limited by resource availability of a single FPGA, as the proposed design limits the processing of a single block
of data to be performed within a single FPGA. This constraint is added so that the data transfer logic can be
localized to a single FPGA permitting easy scalability if more FPGAs are added to the system, but topology is
retained.

From preliminary investigation, it was concluded that a single moderate size FPGA (such as a Xilinx Virtex
2-6000) can provide some amount of data path parallelism if the data types are single precision and real. But
even these expensive devices do not have sufficient resources to support data path parallelism within a chip if the
data types are complex and double precision floating point. In such cases since intra-block parallelism is limited,
there is a need to extract inter-block parallelism by using multiple FPGAs to execute several blocks in parallel.

For effective use of all three levels of memory in the system, initial data is assumed to be stored in the hard
disk that is connected to the host processor. Each FPGA contains block RAMs (BRAMS) that form the first
level of the memory hierarchy and provide seamless bandwidth to computation modules on the device. Resource
utilization of BRAMs depends on multiple factors that include block size, amount of parallelism required, data
type etc and is limited by the amount of on-chip memory available. Off-chip DRAMs form the second level of
memory hierarchy and bandwidth between compute engine and DRAM is limited by the interconnection between
FPGA and DRAM. Hard disks (connected via the host computer) form the third level in memory hierarchy.

Since the matrices generally are so big that computing the LU decomposition on a single PE is prohibitively
expensive, the different steps are distributed onto several FPGAs so don’t processing can take part in parallel.
Steps 1 is processed on the host PC since it is only computed once and then the result is distributed to the
different FPGAs. Figure 3.1a shows how steps 2 and 3 can be mapped to multiple FPGAs. Half of the FPGAs

are assigned to process the submatrix A
(k)
21 . This matrix is than partitioned in as many parts as FPGAs are

available for processing. The same approach is taken to process A
(k)
12 . Figure 3.1b shows how the matrix A

(k)
22 is

distributed to multiple PEs. Together with the part of A
(k)
22 that is assigned to a PE, the corresponding parts

of A
(k)
21 and A

(k)
12 necessary to compute the results Ã

(k)
22 are also copied to the PE.

4. Benchmarking results of a double-precision complex LU decomposition. We implemented the
algorithm described in Section 3 using Viva 3.0. Viva, developed by Starbridge systems, is a graphic-based hard-
ware design tool to generate and synthesize the hardware designs for the LU decomposition algorithm. Xilinx
mapping and place-and-route tools were used to generate the bit streams for the designs that then were loaded
onto the target hardware platform. Our implementation was benchmarked on a Starbridge Hypercomputer
board HC-36 (see Section 2.2). Although the IP cores for individual arithmetic units can be clocked at 100MHz
or higher, the vendor caps the board to run only at 66MHz. Matrix sizes varied from 1000x1000, 2000x2000,
4000x4000 and 8000x8000. Each element in once of the matrices is a 64-bit double precision (52- mantissa;
11-exponent; 1-sign) complex number. In the discussion of the performance result the following four phases in
the computation are differentiated:

1. Reconfiguration: The FPGA needs to be reconfigured for each of the four steps of the LU factorization.
2. FPGA processing: This time includes the transfer from DRAM to BRAM and all computational pro-

cessing on the FPGA and the transfer back to DRAM.
3. PC to DRAM: This time describes the time takes to transfer data from the host PC to the DRAM of

the FPGA accelerator.
4. DRAM to PC: This is the time it takes to transfer the data back to the PC.
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(a) Step 2 and Step 3 mapping to multiple FPGAs (b) Step 4 mapping to multiple FPGAs

Fig. 3.1. Mapping of different steps of the algorithm to multiple FPGAs

Fig. 4.1. Wall clock times for the different phases of the LU implementation for increasing problem sizes N on one FPGA
shown on a log scale (nb = 1)

4.1. Performance depending on problem size. In Figure 4.1, run-times for several problem sizes are
compared for each of the different phases of the algorithm. The run times are displayed on a logarithmic scale
because otherwise it would be difficult to recognize the small contributions of the reconfiguration, PC to DRAM
transfer and DRAM to PC phases to the overall time of the algorithm.

In Figure 4.1 the overall dominating time is the processing time in the FPGA. The reconfiguration time
doubles from 19.05 seconds to 38.25 and to 76.65 when doubling the problem size, because the number of
reconfigurations scales linearly with the problem size. The processing time scales with O(N3) as seen from the
timing results. Also, the processing time scales much faster with the problem size then the memory transfer
times and the reconfiguration time. Figure 4.1 clearly demonstrates that the dominating time on the FPGA
system is the “FPGA processing” time.
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4.2. Performance Depending on Block Size. The block size nb is an important parameter of the
block partitioned LU factorization algorithm. This parameter determines how big the pieces are the FPGA can
process on. In Figure 4.2, the influence of different block sizes nb on the performance is shown.

Fig. 4.2. Wall clock times of different phases of the LU implementation for increasing block size nb on one FPGA (N = 8192)

The block size nb cannot be increased above 64 because of the limitation on the number of block RAMs on
the used FPGA. Increasing the block size increases the performance of the algorithm not only in the compute
engine but it also reduces the number of blocks transferred and the number of reconfigurations. These are
overhead operations which do not contribute to the overall progress of the computation but are necessary for
the implementation of the algorithm.

4.3. Performance depending on number of FPGAs. In Figure 4.3 the wall clock times for the
different phases of the LU algorithm are presented, when the number of FPGAs is increased.

Similar to figure 4.1, the dominating time is the processing time in the FPGA. The memory transfer time
stays constant because of the the star topology of the hardware. All data has to go through the PCI bus
to the DRAM of the individual FPGA. Therefor no speedup can be achieved for the memory transfer. The
reconfiguration time actually increases when the number of FPGAs is increased.

The speedup S, defined as

S =
Ts

T n
p

, (4.1)

is given in table 4.1. Ts is the time on a system with one FPGA and T n
p is the time of the parallel algorithm

on n FPGAs. The result show that the overall speedup does not scale linearly with increasing the number of
FPGAs. While performance on each FPGA is highly deterministic, one can and correctly expect a linear scaling
in speedup if only FPGA processing times are inspected. But because of the overhead of the data transfer and
reconfiguration the speedup is reduced significantly.

Table 4.1
Speedup computed from increasing the number of FPGAs for block size 64, matrix size 8192

1 FPGA 2 FPGAs 4 FPGAs

Overall time 3870.24 2484.06 1862.41
Speedup overall time - 1.55 2
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Fig. 4.3. Wall clock times of the LU decomposition using 1, 2 and 4 FPGAs for processing in log scale

Table 5.1
Comparison of wall clock time between Intel®Xeon®X3210 microprocessor and FPGA implementation with block size = 64

CPU 1 CPU 2 CPU 4
Size 1 thread FPGA 2 threads FPGAs 4 threads FPGAs

1024 0.499 13.56 0.249 16.24 0.318 26.03
2048 3.767 72.95 1.896 61.67 1.066 73.47
4096 29.49 505.7 14.862 348.74 8.021 305.69
8192 232.8 3870.24 117.2 2484.06 61.73 1862.41

5. Performance comparison to a commodity microprocessor.

5.1. Microprocessor based system architecture and LU implementation. For comparison the per-
formance and power consumption was measured on a low power commodity CPU cluster which was specifically
designed to run on a single 20A 110V circuit [29]. Since the problem sizes considered are relatively small a single
compute node of this cluster was used to get the performance numbers for the microprocessor based system.
The compute node consists of the following components:

• Quad-Core Intel®Xeon®X3210 processors
• 8 Gigabytes RAM
• 4 Gigabit ports
• No Hard Drive

The implementation of the LU decomposition on the cluster node uses the Intel®MKL library version
9.1 [23], specifically the LAPACK routine “zgetrf”. This library is highly optimized for Intel®processors and
provides highly scalable implementations for multiple threads.

5.2. Wall clock time comparison between FPGA and microprocessor based system. The bench-
mark results are summarized in Table 5.1.

These results show that the microprocessor has a performance advantage of about 30 times. The perfor-
mance of the FPGA implementation could be improved by a factor of two by switching from the floating point
objects provided by VIVA to Xilinx Coregen IP cores (see also section 5.3).

5.3. System performance modeling. To estimate impacts of changes of system parameters, e.g. in-
terconnect bandwidth, or changes of the FPGA hardware, we have also developed a performance model. This
section discusses in short some of the results obtained through the performance model, when using a more
advanced FPGA platform. Our performance model contains a set of system parameters which can be obtained
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Fig. 5.1. LU timing results for Virtex-II 6000 and Virtex-4 LX160 from our performance model

for any FPGA from their respective data-sheets. Hence, our model can be extended to support any multi-FPGA
platform. Here we compare the performance model result for a Xilinx Virtex-4 LX160 FPGA with the overall
timing results from our benchmark platform using Xilinx Virtex-II 6000 FPGAs. For each target FPGA the
number of data paths, P , is set such that the resource utilization of the FPGA is maximum. We found P = 5
for the Virtex-4 and P = 1 for the Virtex-1 device. In addition we included the effect of switching from the
floating point objects provided by the Viva Corelib to the Xilinx IP Coregen library in our performance model
results.

Figure 5.1 shows the comparative results for the two target platforms for different values of the problem
size, N and a blocking size of b = 16. It is seen that the Virtex-4 implementation is almost four times faster
than the Virtex-II implementation. There is a two-fold increase. One is due to the larger slice count available
and the other is use of a better design library.

5.4. Power consumption.

5.4.1. Power consumption of FPGA board. Table 5.2 shows the power consumption of the FPGA
board alone. It shows that there is an increase of power consumption with the number of FPGAs used in the
computation and the block size.

5.4.2. Power consumption of FPGA system. The overall system, consisting of the host PC and the
FPGA board, has a power consumption profile as shown in Table 5.3. An interesting observation is the power
consumption for larger problem sizes which seems to go down with the block size nb. Especially for the largest
test case of 4096× 4096 elements the increase in block size shows a reduction in power by ten Watts.

5.4.3. Power consumption microprocessor based system. For comparison the power consumption
was measured on the low power commodity cluster using one, two and four threads as also shown in Table 5.4.
Since there are two compute nodes in one 1U chassis, it was not possible to measure the power consumption
of just one compute node. So the same benchmark was run on each of the two compute nodes within one
chassis, and the power consumption measured was divided by two to obtain the result for one compute node.
Therefor, one chassis was plugged into a separate circuit, and the power was measured using a power analyzer
called Watts UP. The results showed that a single node has the following power consumption irrespective of
problem size:
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Table 5.2
FPGA board power consumption

Problem size N block size nb number of FPGAs Power

1024 32 1 1.23
1024 32 2 2.70
1024 32 4 6.19

1024 64 1 1.28
1024 64 2 2.85
1024 64 4 6.24

2048 32 1 1.82
2048 32 2 3.04
2048 32 4 6.68

2048 64 1 1.67
2048 64 2 3.29
2048 64 4 6.97

4096 32 1 2.01
4096 32 2 3.73
4096 32 4 7.07

4096 64 1 1.87
4096 64 2 3.63
4096 64 4 7.27

Table 5.3
The Hypercomputer HC System power consumption.

Problem size N block size nb number of FPGAs Power

1024 32 1 18.88
1024 32 2 24.78
1024 32 4 27.14

1024 64 1 23.60
1024 64 2 27.14
1024 64 4 30.68

2048 32 1 17.70
2048 32 2 23.60
2048 32 4 31.68

2048 64 1 14.16
2048 64 2 22.42
2048 64 4 27.14

4096 32 1 16.52
4096 32 2 25.96
4096 32 4 35.40

4096 64 1 10.62
4096 64 2 16.52
4096 64 4 25.96

5.5. Performance per Watt comparison between FPGA and microprocessor based system.
From figure 5.2, we can observe that for smaller problem sizes, the performance/watt of the Quad core system
is far superior to the Hypercomputer system, because the commodity x86 host processor in the HC system
dominates the power consumption. But for larger problem sizes, this inequality tends to reduce but not by
much. On the other hand, when one considers only the FPGA board, its performance/watt is significantly
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Table 5.4
The Hypercomputer HC System power consumption.

Operating conditions of compute node Power (Watts)

idle 75.5
boot up 131

1 thread benchmark run 113.5
2 thread benchmark run 138.5
4 thread benchmark run 176.5

Fig. 5.2. Performance/watt comparison of FPGA board and FPGA system with respect to a low power Quad core Xeon
system for various matrix sizes

superior compared to the Quad core system. This can be attributed to the extremely low power consumption
of the FPGA devices. These results show that even for a cluster which was specifically designed for low power
usage the FPGA system has a clear power advantage.

6. Related and complementary work. Hardware-based matrix operator implementation has been ad-
dressed by several researchers. Ahmed-El Amawy [15] proposes a systolic array architecture consisting of
(2N2−N) processing elements which computes the inverse in O(N) time, where N is the order of the matrix.
However, there are no results to show that the large increase in area (for large values of N) is compensated for
by the benefits obtained in speed by this implementation.

Lau et. al [25] attempt to find the inverse of sparse, symmetric and positive definite matrices using designs
based on Single Instruction Multiple Data (SIMD) and Multiple Instruction Multiple Data (MIMD) architec-
tures. This method is limited to a very specific sub-set of matrices and not applicable for a generic matrix and
hence has limited practical utility. Edman and Owall [14] also targeted only triangular matrices.

Choi and Prasanna [8] implement LU decomposition on Xilinx Virtex II FPGAs (XC2V1500), using a
systolic array architecture consisting of 8/16 processing units. This work is extended to inversion and supports
16-bit fixed point operations.
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Data et. al [9] propose a single and double precision floating point LU decomposition implementation based
on a systolic array architecture described in [8]. The systolic array architecture is a highly parallel realization
and requires only a limited communication bandwidth. However, every element in the systolic array needs to
have local memory and a control unit in addition to a computation unit, which adds significant overhead.

Wang and Ziavras [34] propose a novel algorithm to compute a LU decomposition for sparse matrices. This
algorithm partitions the matrix into smaller parts and computes LU decomposition for each of them. The
algorithm to combine the results makes use of the fact that most of the sub-blocks of the matrix would be zero
blocks. However, this method cannot be extended to find LU decomposition for dense matrices.

Research efforts towards parallel implementations of LU decomposition largely deal with sparse linear
systems. In some cases these implementations make use of a software package called SuperLU DIST, which
may be run on parallel distributed memory platforms [26, 30]. Other work using similar software package
routines are found in [17]. A common platform that has been used for sparse matrix systems involving LU
factorizations is the hypercube [4, 6]. Other implementations involving parallel LU linear system factorization
and solutions may be found in [18, 24, 34, 35].

As the number of logic elements available on FPGAs increase, FPGA based platforms are becoming more
popular for use with linear algebra operations [19, 33, 37]. FPGA platforms offer either a distributed memory
system or a shared memory system with large amounts of design flexibility. One such design, presented in [19],
utilizes FPGA based architecture with the goal of minimizing power requirements.

Any application implemented on an FPGA that uses external memory must provide some means of control-
ling the memory structure to store/access memory in an efficient manner. A common application that requires
control of external memory is image processing. One group from Braunschweig, Germany has designed an
SDRAM controller for a high-end image processor. This controller provides fixed address pattern access for
stream applications and random address pattern access for events like a cache miss [28]. Another image process-
ing application being worked on by a group from Tsinghua University in Beijing utilizes a memory controller
specifically designed to reduce the latency associated with random access of off chip memory [27]. A design
made to handle multiple streams of data was made by a group from the University of Southern California and
the Information Sciences Institute. In this design each port in the data path as a FIFO queue attached to
it. These data paths are also bound to an address generation unit used to generate a stream of consecutive
addresses for the data stream [21].

The design presented in this paper is similar to the above mentioned work in the fact that it must both
fetch and write data to an external memory device. However, in terms of complexity, the design in this paper is
much simpler in that it provides specific streams of data at specific times for the LU processing engine. In such
light it is not very flexible. However, simplicity has worked to the advantage that the design is easily replicated
across multiple processing nodes. Another advantage that comes with simplicity is the low resource count the
memory controllers take - roughly 13% of the available FPGA slices. This leaves much more room for the LU
processing engine than a more complex design would.

7. Conclusion. In this paper we have presented detail performance numbers of a block based LU factor-
ization algorithm on a multi FPGA system and compared the performance to a low power cluster compute node.
The benchmarking results show that measured by raw compute performance the commodity microprocessor out
performs the FPGA system by a factor of 30 for the current implementation and by 15 by moving to Xilinx
Coregen IP cores. This is definitely an effect of the higher clock frequency and the floating point hardware on
the microprocessor.

The performance picture changes when comparing the performance/Watts metric. Comparing the MFlops/
Watt for the FPGA board, the FPGA board outperforms the low power microprocessor. This is similarly and
effect of the lower clock frequency of the FPGA components. In the case of the complete HC system, which
was not designed for low power usage, the host microprocessor system consumes most of the power and the
power advantage of the FPGA board is lost. This shows that for a low power system the host system has to
be a very low power system. This can be done since the host system does not have to perform any expensive
computational tasks, but only needs to interface to disks and the FPGA board. Therefore, a really low power
system could be used which would improve the performance of the FPGA based system dramatically.

During the design and benchmarking several weaknesses of the HPRC system and the FPGAs for scien-
tific computing were uncovered. The following recommendations are proposed towards building better FPGA
hardware for linear algebra and scientific computing:
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• Single precision and double precision embedded ASICs in an FPGA system could increase the perfor-
mance of FPGAs for scientific computing dramatically.
• Parallel access to BRAMs would enable better performance of the LU algorithm.
• Increasing the block size nb in our implementation is limited by number of BRAMs on the FPGA chip,

but the performance benchmarks show that increasing the block size, increases the performance of the
compute intensive part of the algorithm. Therefore, increasing the number of BRAMs on the FPGA
would increase the performance for our LU implementation.
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A COMPUTING ARCHITECTURE FOR CORRECTING PERSPECTIVE DISTORTION IN
MOTION-DETECTION BASED VISUAL SYSTEMS∗

SONIA MOTA† , EDUARDO ROS‡ , AND FRANCISCO DE TORO§

Abstract. The projection of 3D scenarios onto 2D surfaces produces distortion on the resulting images that affects the accuracy
of low-level motion primitives. Independently of the motion detection algorithm used, post-processing stages that use motion data
are dominated by this distortion artefact. Therefore we need to devise a way of reducing the distortion effect in order to improve the
post-processing capabilities of a vision system based on motion cues. In this paper we adopt a space-variant mapping strategy, and
describe a computing architecture that finely pipelines all the processing operations to achieve high performance reliable processing.
We validate the computing architecture in the framework of a real-world application, a vision-based system for assisting overtaking
manoeuvres using motion information to segment approaching vehicles. The overtaking scene from the rear-view mirror is distorted
due to perspective, therefore a space-variant mapping strategy to correct perspective distortion arterfaces becomes of high interest
to arrive at reliable motion cues.

Key words. Real-time computing, high performance computing, fine grain pipeline, image processing.

1. Introduction. Animals and human beings have powerful tools for processing information. Recent ad-
vances in biological neural circuits and processing schemes is one of the reasons of a new tendency in engineering
that emulates specific biological computation schemes, this is the research paradigm called neuromorphic en-
gineering. The objective is to achieve more effective machines with a huge potential impact on industry and
society [1, 2, 3, 4].

Vision is one of the most important senses for animals’ survival. In particular, visual motion detection
is the most important information source and constitutes a complex and accurate system. The long-medium
term goal is to implement devices based on vertebrates’ visual systems, because of their astonishing efficiency
in analysing dynamic scenes. However, current vision models based on vertebrates require high computational
cost while most real-time applications cannot be addressed with traditional computer vision strategies due to
their complexity.

But adapting bio-inspired processing schemes on silicon is a complex task. The neural system has synaptic
plasticity (the connection from neuron A to neuron B changes in order to stabilize specific neural activity
patterns in the brain, for instance with neural adaptation strategies such as Hebbian learning [5]) that allows
response to changes to different stimulus or environments. Furthermore the connectivity among neurons in
biological tissues takes place in three dimensions. In contrast, the silicon systems allow only two-dimensional
connectivity among computational threads and lack abilities such as local synaptic plasticity.

Biological systems use efficiently massive parallel processing to overcome the slow chemical-based computing
that takes place in neurons. This advantage of biological systems is shared by current FPGA devices. Different
researchers are working in this direction, i. e. bio-inspired visual systems implemented on FPGAs devices with
massively parallel computation using fine grain processing architectures [6, 7, 8, 9]. This approach allows real-
time image processing and represents a first step towards solutions to particular problems in a wide range of
applications

However, even biological systems need to project 3D scene onto a 2D surface (for instance, a retina or a
camera sensor) before extracting data. Due to the 2D projection the scene is distorted by perspective. This
affects motion processing, a moving object, although moving at a constant speed, seems to accelerate and
its size increases as it approaches the camera. This apparent enlargement adds an expanding motion to the
translational one, and the perception of different velocities in different regions of an object.

Biological systems use low level stereo information or other visual modalities in higher level processing stages
to deal with the perspective distortion. But uni-modal motion-based artificial systems require other strategies
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to compensate this effect. We propose a scheme that corrects perspective distortion so that motion information
can be used in a reliable manner: Space-variant mapping (SVM) method. It is possible to compensate for the
effect of perspective by remapping the image before extracting motion. This processing unit can be connected
to the whole motion detection system as a pre-processing stage of the image.

The rest of this paper is organized as follows: section 2 introduces the space variant mapping method;
section 3 describes the hardware implementation and cost; and section 4 presents an example of perspective
distortion correction in a real-world task, an overtaking monitoring system. Furthermore, the perspective
distortion correction is described using two different methods: space variant mapping (SVM) and another bio-
inspired method based on neural integration of information that we use in order to validate the results and
compare the two different approaches.

2. Space-variant mapping method. The space-variant-mapping (SVM) method is the selected strategy
for dealing with perspective distortion. The Space Variant Mapping [10, 11] is an affine coordinate transfor-
mation that aims at reversing the process of projection of a 3-D scene onto a 2-D surface. It is possible to
invert the projection equations and to compensate the effect of perspective by remapping the original image.
In this approach (a) parallel lines and equal distances in the real scene are remapped to parallel lines and equal
distances in the processed (remapped) image and (b) it is assumed that the depth of the scene, i. e. distance
to the camera projected on its optical axis, varies linearly.

Generally, distances closer to the image plane are projected onto larger segments. Using these assumptions
the SVM approach re-samples the original image. We assume a specific camera configuration targeting the
left vision field with respect to the optical axis. In this case, the required remapping is done by expanding
the left-hand side of the image (corresponding to the part of the scene furthest away from the camera) and
collapsing the right-hand side (corresponding to the part of the scene closest to the camera). The coordinates
at the distorted space are transformed in new coordinates at the remapped space. The operations involved in
the process are additions, multiplications, divisions and trigonometric operations (sine and tangent).

Fig. 2.1. (a) Coordinates transformation; (b) Original and remapped image of an overtaking sequence.

Figure 2.1a shows the coordinates transformation that is required in order to correct the perspective dis-
tortion due to the projection of the 3D scene onto a 2D surface. Figure 2.1b shows an example of a re-sampled
image from the real-world application described in Section 4.

The blurred appearance of the left-hand side of the image is generated by the interpolation process necessary
to resize a small portion of the original image into a larger area. The interpolation method used here is the
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truncated Taylor expansion, known as local Jet [12]. In the remapped scenario the mean speed of a car that is
actually overtaking at a constant relative speed is more constant along the sequence. Furthermore, each point
that belongs to the rigid body moves approximately at the same speed (Figure 2.2). On the other hand, on
the right-hand side of the remapped image, we are subsampling the original image, which means that aliasing
effects may occur.

Fig. 2.2. Space Variant Mapping makes stable the speed along the sequence. On the left plot we represent the x position of
the centre of the car along the constant-speed overtaking sequence. We see that although the overtaking sequence speed is constant
the curve is deformed (constant speed is represented by a line) due to the perspective distortion. On the other hand, the right plot
shows the same result on a remapped sequence. In this case the obtained overtaking speed is constant (accurately approximated by
a line with a slope that encodes the speed).

The advantage of SVM is that the effect of perspective is compensated through the remapping scheme and
the acceleration artefact is removed. In the real-time application described in Section 4, we have manually
marked the overtaking car position along a scene, in this way it is easy to compute the centre of the marked
area, i. e. the overtaking car, and its speed. Figure 2.2 shows the compensation effect on the speed of the centre
of the overtaking car.

Furthermore SVM reduces the difference between the extracted speeds of the front and rear of an overtaking
car. Finally, the remapped image is easier to interpret using motion estimation information.

3. Hardware implementation. We use conventional cameras that provide 30 frames per second and
256 gray levels. The processed image size is of 640 x 480 pixels. The prototyping computing platform has 2
SRAM banks and a Xilinx Virtex-II FPGA (XC2V1000 device) [13]. This device allocates 1 million system
gates distributed in 5,120 slices and 40 embedded memory blocks of a total of 720 Kbits.

The whole system has been implemented on the FPGA device (see Figure 3.1). This system includes the
processing stages (space variant mapping, motion detection algorithm [14] and specific circuits for packing and
unpacking temporal data) and the interface elements (frame-grabber, memory management units and VGA
output interface).

The complete system is designed with independent processing modules. The architecture design adopts a
fine grain pipeline structure for all modules. Specific communication channels are used in order to connect the
modules with each other.

In this way, space variant mapping (SVM) constitutes a pre-processing stage before the motion estimation
module. The architecture of the whole system allows changing modules of the datapath if necessary, i. e. we
can use different modules implementing diverse motion-detection algorithms with the same system.

SVM architecture is also implemented as a fine grain pipeline structure to ensure a successful connection
with the motion extraction module at 1 pixel per clock cycle. Motion primitives are computed using a fine grain
pipeline structure that consumes 1 cycle per stage. If necessary, it is possible to reduce the parallelism in the
SVM module (and consequently its efficiency) to fit the processing performance of the motion-detection module
requirements (if other motion estimation schemes are used). Alternatively, we can replicate the SVM module
and split the image to send parts of the original image to the different SVM units increasing the processing
velocity if further performance is required. Therefore the architecture is modular and scalable. Figure 3.1 shows
the data flow of the integrated system.
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Fig. 3.1. Complete system: motion detection after correcting the distortion by space variant mapping preprocessing.

SVM uses several multiscalar units consistent with the goal. To transform each pixel coordinates the
operations that take place are additions, multiplications, divisions and trigonometric operations (sines and
tangents). To compute sine and tangent we use a look up tables, and to compute the divisions we use optimized
cores customized for our application. Each core computes one division and consumes one cycle. We use two
division cores. Figure 3.2 shows the pipeline structure of the modules related with perspective distortion
correction. Rectangles represent multiscalar units. Rectangles on a column are working in parallel. Rectangles
on a row represent different pipeline stages. Numbers in brackets are the number of micropipelined stages. The
final block represents the motion estimation datapath.

Fig. 3.2. Data flow and pipelined structure of the perspective distortion correction datapath.

The SVM module takes 12 pipeline stages, and only one division core that produces 28 clock cycles of
latency.

Table 1 summarizes the main performance and hardware cost of the system implemented. The hardware
costs in the table are estimates extracted from the ISE environment. Note that the maximum clock frequency
advised by the ISE environment is limited to 36.1 MHz (Table 1). This is because we use a specific core for the
division that limits the global frequency of the whole pipelined structure. However, the circuit frequency fully
allows computation at camera frame-rate.

One of the important bottlenecks for FPGA processing capability is the external memory access. There are
several reasons to use the external SRAM: first of all, conventional cameras interlace the image (they send even
rows first and then odd rows of a scanned image). Therefore, in order to compute the image it is necessary to
previously de-interlace the image, i. e. to arrange the rows in properly appearance order. Furthermore, SRAM
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Table 3.1
Hardware cost of the different stages of the described system. The global clock of the design is running at 31.5 MHz, although

the table includes the maximum frequency allowed by each stage. The data of the table has been extracted using the ISE environment.

Pipeline Stage Number of Slices % Device Occupation Max. Fclk.(MHz)
Frame-Grabber 753 14 75.9

Memory Management Units 581 11 53.8
Space-Variant Mapping 838 16 36.1

access is shared by space variant mapping modules and motion detection modules. Finally, the synchronization
among different modules related to different clock frequencies (frame-grabber, VGA, etc.) is done with external
memories.

Using exclusively embedded memory blocks becomes not possible due to the image size. Therefore, the
necessity of storing data in external SRAM banks forces us to design a module that allows the writing and
reading to/from the SRAM banks as efficiently as possible. This process of storing/recover data is sequential
and consumes 2 cycles per pixel (1 cycle is consumed in assigning the address and 1 cycle is consumed in
transferring the data). The access control is carefully designed. We define different reading and writing ports
using a double-buffer technique to avoid temporization problems. We use a micropipelined architecture to access
two different ports. A state machine feeds the reading/writing ports sequentially, achieving a performance of
one data per cycle. Furthermore, it is feasible to store several pixels at each memory address due to the memory
word size. In this way we can reduce the number of external memory accesses. For this purpose we use specific
packing and unpacking circuits in the pipelined architecture (see Figures 3 and 4).

4. Real-world application. One of the most dangerous operations in driving is to overtake another
vehicle. The driver’s attention is on the road, and sometimes he does not use the rear-view mirror or it is
unhelpful when an overtaking car is at the blind spot. Therefore an automatic alarm system is of interest in
these scenarios.

Systems based on vision would be very effective in driving assistance; in fact the driver himself uses vision
and represents a good proof of the concept. We place a camera onto the real-view mirror to cover the blind
spot area. If an overtaking vehicle approaches the host car it is detected as forward moving features, while
the rest of the patterns in the camera visual field move backwards due to the ego-motion of the host vehicle.
Therefore motion provides useful cues to achieve an efficient segmentation in this application framework. In this
context, the sequences taken with a camera fixed onto the driver’s rear-view mirror are strongly deformed by the
perspective, and reducing the deformation effect is necessary in order to enhance the segmentation capabilities
of a motion-based vision system.

We define two different methods to deal with the perspective distortion. On one side, we use space variant
mapping method, and on the other side, for validation purposes we use an alternative bio-inspired method based
on neural integration of information.

Many studies suggest that the integration of local information allows the discrimination of objects in a
noisy background [15, 16, 17, 18]. The mechanism of this integration in biological systems is almost unknown.
We define velocity channels based on motion patterns of the image that seem to correspond to independent
moving objects (rigid bodies) [19]. Each velocity channel computes a population of features moving coherently
(by sharing velocity and direction in a local area). The velocity channels are processed in a competitive manner
and the one that integrates a maximum number of features moving coherently in an area becomes salient. In
this way, low quality motion-detection estimations, i. e. errors, are filtered.

The system has been tested on real overtaking sequences in a wide speed range.

The “centre of mass” of obtained features (moving coherently) is used to validate the quality of moving
features. We manually mark the overtaking car by drawing a rectangle (around it). We calculate the distance
between the centre of mass and the centre of the rectangle. This distance is normalized by dividing it by the
radius of the minimum circle containing the rectangle in each frame. This distance is what we call Quality
Measure (QM). If the centre of mass falls into this circle this QM is below 1. In this case we assume that we
are detecting the overtaking vehicle accurately. In other cases the QM is higher than 1, motion detection has
dominant noisy patterns (motion detection is assumed to be of low quality) leading to incorrect estimations.
Figure 4.1a shows the QM along the sequence when velocity channels method is adopted, and Figure 4.1b shows
QM throughout the sequence when the space-variant mapping method is adopted.
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Fig. 4.1. Quality measurement plot of a sequence adopting: (a) Velocity-channels method; (b) Space-variant-mapping method.

When the velocity channels method (VC) is used, motion detection is accurate from frame 138 to 175, and
when the space variant mapping (SVM) method is adopted, motion detection is accurate from frame 89 to the
end of the sequence. In fact accurate detection occurs when the overtaking vehicle begins to be dangerously
close (see Figure 4.1).

We used four sequences to test the space variant mapping scheme. The results are summarized in Figure 4.2.
The first and the fourth sequences were taken with a CCD camera on a sunny day. In the first sequence the
overtaking car approaches from the distance and in the fourth, it suddently appears into our line of vision. The
second and third sequences are HDR ones. The second one corresponds to a cloudy day with some mist and the
other was taken in twilight conditions. These two sequences show overtaking processes by far-away cars with
their lights on.

Figure 4.2 shows that motion detection is done properly from a vehicle size of 10660 pixels with the VC
method and 3216 pixels with the SVM method. This size is only approximate, taken as it is from the size of
the confidence rectangle used to calculate QM. The data in the next column represents the number of features
detected moving rightwards, on which the estimation is based.

In the HDR sequences the cars have their lights on, and adverse weather conditions reduce noisy detection.
The best detected features belong to the overtaking car lights and allow an early success in the tracking task
with both methods.

SVM constitutes a good method for medium distances in all weather conditions, even when the cars have
no lights on that facilitate their detection.

5. Conclusions. We have presented a perspective distortion correction for a vision-based segmentation
system.

Using a real-world sequence of a car moving at constant speed we showed that the SVM considerably reduces
the spurious acceleration effect due to perspective projection and improves motion estimation results.

We have compared the results of Space-variant mapping method with a bio-inspired one based on neural
integration of information. Adopting space variant mapping method the results based on motion information
are improved.

We have designed a pipelined computing architecture that takes full advantage of inherent parallelism of
FPGA technology. In this way we achieve computing speeds of 36.1 Mpixels (for instance, around 30 frames
per second with 1280x960 image resolution) that allow fully computation at camera frame-rate (25-30 frames
per second).

The architecture is modular and scalable.

This contribution is a good case of study that illustrates how very diverse processing stages can be finely
pipelined in order to achieve high performance.



A computing architecture for correcting perspective distortion in motion-detection based visual systems 393

Fig. 4.2. Results of the two methods applied to four different sequences. “1st frame of successful tracking” represents image
number in a sequence from which the motion detection is of high quality, i. e. QM is below 1. “Vehicle size” is the number of
pixels inside the manually drawn rectangle that contains the overtaking car in the “1st frame of successful tracking”.

Finally the hardware resources of the system are not very high. Therefore, the presented approach can be
considered a moderate cost module for the real world application of the overtaking car monitor.
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THROUGHPUT IMPROVEMENT OF MOLECULAR DYNAMICS SIMULATIONS USING
RECONFIGURABLE COMPUTING∗
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Abstract. A number of grand-challenge scientific applications are unable to harness Terflops-scale computing capabilities of
massively-parallel processing (MPP) systems due to their inherent scaling limits. For these applications, multi-paradigm computing
systems that provide additional computing capability per processing node using accelerators are a viable solution. Among various
generic and custom-designed accelerators that represent a data-parallel programming paradigm, FPGA devices provide a number
of performance enhancing features including concurrency, deep-pipelining and streaming in a flexible manner. We demonstrate
acceleration of a production-level biomolecular simulation, in which typical speedups are less than 20 on even the most powerful su-
percomputing systems, on an FPGA-enabled system with a high-level programming interface. Using accurate models of our FPGA
implementation and parallel efficiency results obtained on the Cray XT3 system, we project that the time-to-solution is reduced sig-
nificantly as compared to the microprocessor-only execution times. A further advantage of computing with FPGA-enabled systems
over microprocessor-only implementations is performance sustainability for large-scale problems. The computational complexity of
a biomolecular simulation is proportional to its problem sizes, hence the runtime on a microprocessor increases at a much faster
rate as compared to FPGA-enabled systems which are capable of providing very high throughput for compute-intensive operations
thereby sustaining performance for large-scale problems.

Key words. field programmable gate arrays, molecular modeling, performance modeling and projections

1. Introduction. Despite the tremendous computing power, flexibility, and power and cost efficiency of the
FPGA devices, their use in scientific high performance computing (HPC) has been limited to numerical functions
and kernels that are implemented in a hardware description language (HDL) [30, 39]. The idiosyncrasies of the
HDLs and limited support for floating-point (FP) operations restrict the ability of scientific code developers to
port their algorithms and applications, let alone to exploit the full potential of these devices. In this paper, we
present an analysis and FPGA implementation of a biomolecular calculation called the Particle-Mesh Ewald
(PME) method using High-Level Languages (HLLs), and report application speedup results. This specific
PME method is part of a widely-used molecular dynamics (MD) framework called AMBER [1, 21]. AMBER,
a collection of programs including system preparation, simulation and analysis, allows application scientists
to carry out complete experiments of biomolecular systems. MD techniques allow application scientists to
study the dynamics of large macromolecules, including biological systems such as proteins, nucleic acids (DNA,
RNA) membranes. The sander module of AMBER is the most commonly used module for system simulations;
furthermore, system simulations are the most time-consuming part of an experiment. Within the sander module,
there are a number of algorithms for simulating a system. The PME method is used in most explicit solvent
experiments including the simulations for protein structure, dynamics and functions [23].

Motivation. A number of strategies have been employed in attempts to accelerate the PME calculations
on traditional supercomputing platforms such that scientists can simulate their experiments at native time and
length scales. Currently, even the fastest computers are 104–106 magnitudes short of what is desired for even
investigations of a medium-scale simulation. Our analysis revealed that the PME algorithm implementation in
the sander module in the AMBER framework version 8.0 does not scale beyond 32 and 64 processors on the
most powerful supercomputers including the IBM Blue Gene/L and the Cray XT3 systems [16]. Although no
system-specific optimization are considered in these experiments, the applications have been compiled using
the double-hummer optimization flags offered by the IBM XL compilers on the Blue Gene/L system and SSE
optimization flags of the PGI compiler on Cray XT platforms. A number of researchers have identified the
factors that limit the performance and scaling of PME algorithms on microprocessors and massively-parallel
systems [21], [22]. Figure 1.1 shows the scaling characteristics of the PME calculations in the strong scaling
mode (fixed problem size) and Figure 1.2 shows the performance in the weak scaling mode on the Blue Gene/L
system. Pico-seconds per simulation day (psec/day) is the science-based metric used by application scientists
to measure a simulation performance. A high value of psec/day is essential for longer time scale simulations.
Analysis of the PME implementation reveals two major limiting factors. First, the message volume is roughly
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Fig. 1.1. AMBER (PME method) scaling in the strong
scaling mode with a 62K atoms system.

Fig. 1.2. AMBER (PME method) scaling for four dif-
ferent system sizes: 62K, 144K, 194K and 300K atoms on
the Blue Gene/L (BGL) system.

constant with the number of processors or MPI tasks. This limits parallel speedup to a maximum of 12x to 15x
over microprocessor runtimes, even for systems like Blue Gene/L and Cray XT3 that provide relatively high
communication bandwidth ratios compared to common SMP cluster systems. Second, the application’s memory
capacity requirements do not scale with the number of processors, since all processors store the positions of all
atoms [16, 21, 22, 40]. This is especially challenging for the emerging multi-core systems.

Fig. 1.3. Scaling of PMEMD (Amber 9) simulations on contemporary massively parallel systems

In order to address these known limitations of sander, another module known as Particle Mesh Ewald
Molecular Dynamics (PMEMD) has been developed with the major goal of improving performance of PME
in molecular dynamics simulations and minimizations by Robert E. Duke and Lee G. Pedersen. PMEMD
is implemented in Fortran 90 and MPI. We have experimented with the scaling characteristics of PMEMD
available with Amber version 9.0. The scaling results in Figure 1.3 show an improved degree of scaling on the
contemporary MPP platforms including the Cray XT systems (XT3 and XT4) and the next generation Blue
Gene system, the Blue Gene P (BGP). At the same time however, we note that on a system like Cray XT, which
has a contemporary dual-core AMD Opteron processor and a high bandwidth network, parallel efficiencies start
degrading on 64-128 processor cores or MPI tasks. Scaling limits are relatively higher on the BGP platform that
contains a relatively low frequency processor. Moreover, some end users have reported statistically significant
differences in sander and PMEMD results when simulations are run for very long time scales. A number of
experiments therefore rely on the sander module in order to maintain consistency between experiments.
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A special purpose system, called MDGRAPE, attempts to address memory and network latency issues of
MD calculations with specialized execution pipelines for non-bond calculations [41]. Our reconfigurable design
scheme addresses a similar issue but in a more cost-effective and flexible manner. In contrast to our approach,
MDGRAPE is optimized for a small subset of MD calculations within the AMBER framework and requires end
users to understand its customized software infrastructure. Our implementation is flexible, and extensible, and
encompasses more MD computation logic.

Contributions. In order to address the aforementioned issues regarding parallel efficiencies of MD simu-
lations, we are investigating the acceleration of the PME method on FPGA-enabled supercomputing systems
using a high-level language, Fortran—a widely used language for scientific computing. Currently, the SRC
MAPstation, Cray XD1, and SGI RASC systems are all available with FPGA devices. The SRC platforms are
the only systems that provide a tightly-coupled coherent programming environment allowing users to program
the FPGAs using both Fortran and C programming languages [12]. Since the sander module in AMBER is
written in Fortran 90, we targeted the SRC-6E MAPstation taking advantage of the Fortran support. The
Series E MAPstation pairs a dual 2.8 GHz Xeon microprocessor with a MAP processor consisting of two user-
configurable XilinxXC2VP100 FPGA devices [13] running at 100 MHz, a control processor, and seven 4MB
SRAM banks referred to as On-Board Memory (OBM).

We characterized the computation and memory requirements of the PME calculations with extensive profil-
ing and benchmarking on existing microprocessors and parallel systems. Due to the logic capacity of the SRC-6E
FPGA devices, we accelerated only the direct PME calculations which account for over 80% of the total ex-
ecution time in most bio-molecular simulations. Initially, using single-precision FP calculations we achieved
a computation speedup (not including overheads) of over 3x for two biological systems of sizes 24K and 62K
atoms when compared to the same systems running on the microprocessor-only system. Then, after carefully
characterizing the memory requirements, we managed to reduce the data transfer overheads and sustain a total
application speedup of 3x compared to the microprocessor-only runtimes. Finally, we further increased the
application speedup, by overlapping the ‘direct’ and ‘reciprocal’ PME calculations [22]. The FPGA devices
execute the ‘direct’ part of the calculation while the ‘reciprocal’ part is executed by the host microprocessor.

Since the performance of the FPGA devices are increasing at a much faster rate than commodity micro-
processors [43, 44] and the SRC-6E contains relatively old FPGA devices (two generations old), we developed a
performance model to predict performance for our current implementation on future FPGA devices [17]. These
models have been extended to the parallel implementation of sander that employs message-passing (MPI) pro-
gramming paradigm. We validate the extended model with the MPI profile and timing data collected on the
Cray XT3, a high-bandwidth MPP platform. This model is parameterized by the application’s input parame-
ters, which determine the problem size, and the target device parameters including the FPGA clock frequency,
memory capacity, and I/O bandwidth. Using this performance model, we estimate that the next-generation
FPGA devices will provide an additional speedup of greater than 2x beyond our current improvements for
overall application performance – a speedup of greater than 15x relative to contemporary microprocessors, with
increasing biological system sizes. On parallel systems, we demonstrate that the time to solution on 16-to-32
FPGA-enabled nodes would be equivalent to the largest configuration of contemporary MPP supercomputers.

Paper Outline. The layout of the paper is as follows: Section 2 provides a background discussion of FPGA
accelerator devices and bio-molecular simulations. In Section 3 we discuss related research efforts for accelerating
MD simulations on reconfigurable devices. Section 4 presents the implementation details. Performance analysis
of the current implementation on the SRC-6E system is given in section 5. Section 6 describes the performance
model and performance projections on current-generation FPGA devices and on future FPGA configurations
and biological experiments. Conclusions and future plans are outlined in section 7.

2. Background.

FPGA Accelerator Technologies. The concept of Reconfigurable Computing (RC) originated in the
1960s in a paper by Gerald Estrin. In his paper he proposed the concept of a computer made of a standard
processor and an array of “reconfigurable” hardware. In this paradigm, the main processor would control the
behavior of the reconfigurable hardware, which would be tailored to perform a specific task. Once the task was
complete, the hardware could be reconfigured to do some other task. The advantage of this hybrid structure
lies in the combination of its software-like flexibility with hardware-like speed. It was not until the last decade
that the electronic technology matured enough to make these systems, also known as reconfigurable computing
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(RC), possible. As shown in Figure 2.1, High-performance Reconfigurable Computing (HPRC) platforms consist
of a number of RC nodes connected by some interconnection network (ICN); the computing nodes typically
consist of a general-purpose processor coupled to the RC hardware via some communication interface (e.g. PCI,
memory bus, rapid array, HyperTransport, etc.).

Fig. 2.1. High-performance Reconfigurable Computer (HPRC) Architecture

The HPRC platform allows users to exploit fine and coarse grain parallelism within the RC device and
across the parallel compute nodes. A variety of RC cards have been developed during the past decade [2, 3,
8, 9, 10, 25, 32, 34]. The early success of some of these offerings paved the way for HPC vendors such as the
Cray XD1 [5] and the SGI RASC system [11] to enter the market with HPRC platforms featuring high-end
processors more tightly coupled with the reconfigurable devices. Other vendors such as SRC with their line of
MAPstations [12] and Opteron socket products from DRC Computers [6] and XtremeData [14] have entered
the market with cluster-ready platforms. The systems from these vendors often include a more developed
programming environment and clusters can be built incrementally (node by node).

For all the HPRC systems mentioned thus far, the RC element of the system is in the form of an RC
board or module and the primary architectural difference is the manner in which it is coupled with the rest
of the system. Each of the above-mentioned platforms has a different communication interface between the
general-purpose processors and the reconfigurable hardware devices in addition to other variations including
the host processor, memory hierarchy, FPGA devices, clock frequency, etc.

Biomolecular Simulations. Numerous applications use MD for biomolecular simulations. These appli-
cations include AMBER [1], GROMACS [7], LAMMPS [36], and NAMD [29]. MD and related techniques can
be defined as computer simulation methodology where the time evolution of a set of interacting particles is
modeled by integrating the equation of motion. The underlying MD technique is based upon the law of classical
mechanics, and most notably Newton’s law, F = ma [31].The MD steps performed in AMBER consist of three
calculations: determining the energy of a system and the forces on atoms centers, moving the atoms according
to the forces, and adjusting temperature and pressure. Most MD models treat atoms classically as points with
mass and charge. The atomic points interact with other atomic points through pair-wise interactions from
chemical bonds, electrostatic interactions and van der Waals interactions.

A typical bimolecular simulation contains atoms for solute, ions, and solvent molecules. The force on each
atom is represented as the combination of the contribution from forces due to atoms that are chemically bonded
to it and non-bond forces due to all other atoms. The simplified overall energy equation is:
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where the first three terms are the bonded terms and the latter two are referred as non-bonded terms. The
non-bond energy is broken into two contributions: van der Waals and electrostatic interactions. The number
of bonds, bond angles, and bond dihedrals during the classical simulations are kept constants. For a medium
system, there are only a few thousand bonds and angles compared to millions of the non-bonded interactions;
the calculations involving the bonded terms are extremely fast on conventional systems. The double sum of the
non-bond terms makes the number of these calculations scale with an order of N2, where N is the number of
atoms. Simulations of larger systems (larger N) are therefore extremely expensive.

In the case of periodic boundary conditions (PCB), where the system is treated with a periodic arrangement
of repeated unit cells to model the effect of large surrounding solvent without increasing the number of particles,
the non-bonded sums become large. In a finite PCB, the simulation box is replicated a fix number of times
in all directions to form a lattice (Figure 2.2). In practice, MD simulations evaluate potentials using a cutoff
distance scheme for computational efficiency, where each particle interacts with the nearest other N−1 particles
in a sphere of radius cutoff. Figure 2.2 shows a 2-dimentional view of a simulation cell replicated in the three
directions of space; atoms within cutoff will be involved in computing the non-bonded interactions.

Atom pairs that are separated by a distance greater than the cutoff limit (typically 10 Angstroms for
AMBER simulations) are not included in the sums. The cutoff limits the number of non-bond interactions in
the sum to be N ∗ (number of atoms in the cutoff sphere) as compared to N ∗ (N − 1) interactions without the
cutoff. For the van der Waals interactions, the cutoff error is small, but the electrostatic sum has a very large
error, 10% or greater, when a 10 Angstroms cutoff is introduced. Figure 2.3 illustrates the magnitude of the
problem for a system.

The total non-bond energy, the sum of the van der Waals and the electrostatic energies are of comparable
magnitude near the equilibrium distance. But at 10 Angstroms, the electrostatic are still strong while the van
der Waals energy is essentially vanished. Ignoring the electrostatic interactions that are beyond 10 Angstroms
can introduce a large error in the energy and forces resulting in artificial force magnitudes. The Particle
Mesh-Ewald (PME) method provides a solution to this problem by solving all electrostatic forces; it uses an
atom-based cutoff [22, 23] reducing the number of non-bonded interactions to N log(N).

Fig. 2.2. Two-dimensional view of a simulation cell
replicated in the three-dimension space.

Fig. 2.3. The van der Waals and electrostatic contributions to
the non-bond energy are shown as a function of the inter atomic
distance [22].

The Ewald method expands the simple sum of Coulomb’s Law (electrostatic) terms into the following terms:

E(electrostatic) = E(direct) + E(reciprocal) + E(correct)

Except for the error correction function, the direct sum is identical to the sum in the cutoff method that
calculates electrostatic potential energy. The reciprocal sum is a major part of the electrostatic energy that
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Table 2.1
Time spent in the direct and reciprocal Ewald calculations as a percentage of total execution time.

Number of atoms Direct Ewald Time (%) Reciprocal Ewald Time (%)
23558 82.61 16.66
61641 86.88 12.56
143784 87.12 12.34
194262 86.47 12.92

the direct sum misses due to the correction factor. The reciprocal sum is approximated using Fast Fourier
Transform (FFT) with convolutions on the grid where charges are interpolated on the grid points. Table 2.1
provides the percentage of execution time (for 10000 time steps or production-level simulations) for four different
protein experiments on an Intel dual 2.8 GHz Xeon system. The direct sum accounts for over 80% of execution
time. The reciprocal Ewald calculation takes less than 13% of the total execution time. Taken together, these
calculations account for over 95% of total execution time on a single processor system.

3. Related Work. A number of related efforts to develop MD codes on reconfigurable hardware plat-
forms have been reported in the literature. In [26], the authors implement a basic MD system focused on the
motion updates and the O(N 2) force terms (both Coulombic and L-J forces and multiple atom types) using
hardware design techniques. The authors study the relationship between precision and quality of MD simula-
tions and report that it is possible with reconfigurable devices to trade off unneeded precision for computing
resources. Implementation on a COTS system yielded accelerations ranging from 31x to 88x with respect to a
microprocessor-only implementation, depending on the size of the FPGA and the simulation accuracy. Simi-
larly, in [19], the authors implemented a novel single atom type MD system with VHDL on a Transmogrifier 3
(TM3) system. This implementation focuses on the L-J force calculator with problem specific implementations.
To reduce complexity, the implementation uses fixed-point representations varying between 22 and 76 bits for
all values within the MD system. The author’s results show that this implementation closely tracked the higher
precision software implementation with an error of less than 1% between consecutive time steps. The authors
extrapolate that with better FPGA memory organization and faster FPGAs, a speedup of 40x to 100x over a
microprocessor implementation can be achieved.

In [38], the authors use the SRC development suite Carte® to implement a tightly coupled MD simulation
kernel (not a complete MD software package such as AMBER) on the SRC-6E MAPstation. Like our approach,
the important tasks of an MD simulation are analyzed and partitioned such that the most intensive are executed
in the reconfigurable hardware and the rest are executed on the general-purpose processor. Even though only a
portion of the simulation is accelerated in the MAP, the single-precision implementation achieves a 2x speedup
over the software baseline running on the MAPstation host.

Neither [19, 6], nor [38] are concerned with the problem of accelerating existing, production-level, MD
simulation software nor have they been tested with more than a few thousand particles. The most closely
related work comes from [30] where the authors implement a simplified version of an MD algorithm in NAMD
[29], an MD simulation package, on the SRC-6 MAPstation. While their implementation does trace the steps
involved in porting a large-scale scientific code to FPGA-enabled systems, they do not cover memory analysis
and characterization or the performance modeling work presented in this article.

4. Implementation. Based on the percentages of execution times, the direct PME calculations are a
candidate for the FPGA acceleration since an acceleration of this method is likely to result in an overall
application speedup or a reduction in the time-to-solution. Figure 4.1 shows the call tree for the direct Ewald
calculation, which is composed of two calculations: coordinate mapping and non-bond energy calculations. The
coordinate mapping calculations (f1 and f2) are also invoked from the reciprocal Ewald calculations; therefore,
we only map the non-bond energy calculation function (f3) within the direct PME calculations onto the FPGA.

Since the logic capacities of the FPGA devices are limited for floating-point calculations, we initially port
only the most expensive (time-consuming) parts of the calculations into the FPGA. Table 4.1 lists the percentage
of execution time for the functions listed in Figure 4.1. Using the gprof runtime profiling tool, we calculated
the contributions of the individual functions. Functions f1, f2 and f3 are called once every time step iteration
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Fig. 4.1. Call tree for the direct Ewald calculations in sander. Calls to functions f1, f2, and f3 are made once every time
step; calls to f4 depend on the number of atoms in the system; f5 is called twice as many times as f4.

but the number of calls to f4 depends on the number of atoms in the system. For instance, when the number
of atoms is 143784, f1, f2 and f3 are called once but f4 is called 143784 times and f5 is called 143784*2 times.
This knowledge about the number of invocations plays a very important role in the decision making process,
because there is a substantial call overhead (∼ 0.3 sec on SRC-6E) involved in calling a function that is mapped
on the FPGA devices from the host processor.

Table 4.1
Contribution of individual functions in the direct PME execution times.

Number of atoms 23558 61641 143784 194262
f1 (% of total) 0.1% 0.1% 0.2% 0.2%
f2 (% of total) 0.4% 0.5% 0.5% 0.5%
f3 (% of total) 82.1% 86.2% 86.4% 85.8%
f4 (% of f3) 86.1% 85.9% 88.4% 88.4%
f5 (% of f4) 18.8% 20.9% 17.9% 17.9%

After analyzing the call tree and contributions of individual functions in the direct Ewald calculations, we
decided to map the branch functions f3, f4 and f5, onto the FPGA devices. First, we analyzed the loop structure
within each of the three functions (Figure 4.1 and Figure 4.2). Function f4 has two nested loops that iterate
through all atoms in the system. The outermost loop has a fixed count, which depends on the unit cell grid
dimensions (a unit cell grid is shown in Figure 4.3), while the two inner loops are calculated at runtime.

The size of the unit cell grid depends on a number of factors including the size of the protein, number of
atoms, density and types of atoms. The unit cell is divided in subcells, and each subcell contains a different
number of atoms. Note that biological systems do not have a uniform density. Hence, the subcell iterations
depend on the number of atoms in the currently selected subcell, which can range from 0 to a maximum density.
Furthermore, the number of atoms in a subcell changes as the simulation progresses because the positions of
atoms are not fixed.

Function f3
Do loop1=1, indexhi (fixed)

Do loop2=1, subcell(loop1) (variable)
Call f4

Function f4
Do loop3=1, icount (variable)

Fig. 4.2. A pseudo-code for the three nested loop in the
direct PME calculations.

Fig. 4.3. A schematic representation of a biomolecule in
a unit cell.

In addition to the two nested loops of function f3, function f4 contains several small loops with similar loop
index values. Like the loop index of the inner loop in function f3, the loop index in function f4 is determined
at runtime. It depends on the number of neighbor atoms a given atom interacts with inside the cutoff limit.
This value in turn depends on the number of atoms in the system, density of the system and the cutoff limit.
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Nevertheless, this value is not constant for individual atoms since the atoms move around during the simulation.
A pair list, that contains pairing information of individual atoms with all other atoms in the system is, therefore,
updated throughout the simulation run.

Application of the Performance Enhancing Features. Deep pipelining, concurrent execution capa-
bilities and data streaming are the main performance advantages of FPGA devices for computing applications.
These features are exploited during implementation to achieve a higher speedup for the direct Ewald calculation.
Since our FPGA implementation is developed using Fortran, the three loops mentioned earlier are not different
from the original implementation. The nested calls to functions f3, f4 and f5 in the original code are replaced
by a single invocation to a SRC MAP (FPGA implementation) function that performs the calculations of the
three functions on the FPGA devices.

The only differences between the original and FPGA implementation are the additional calls for data
transfers between the host processor and the on-board memory of the MAP and the FPGA-specific constructs
for parallel execution of the code blocks. A schematic of the process is shown in Figure 4.4. The control lines
are shown in arrows (from source to target) and the data lines are shown in dotted lines. The host processor
oversees the control and data movement between the host and the FPGA devices. However, once the devices
are setup, the primary FPGA manages the DMA operations and the data transfers between the FPGAs. Note
that all control and data transfer calls shown in Figure 4.4 can be active simultaneously. In addition, the SRC
systems have multiple data ports; for instance, three 64-bit elements can be transferred between the two FPGAs
in a single clock cycle.

Fig. 4.4. Control and data paths between the host and FPGA devices.

Deep pipelining allows a user to describe the parallelism in terms of a producer-consumer programming
paradigm. A producer-consumer relationship can be between: (1) host and primary FPGA; (2) primary and sec-
ondary FPGA; and (3) parallel sections within an FPGA. A ‘parallel section’ construct in the SRC programming
permits task parallelism, i. e., multiple computation and data transfer tasks executing simultaneously. Typi-
cally, streaming data is transferred between the producer and consumer devices. A deep pipelining example
may include the following tasks executing in parallel:

1. DMA in a large array a1
2. DMA in two small arrays b1 and c1
3. Setup two communication ports with the sec-

ondary FPGA
4. Send a1 to the secondary FPGA
5. Send c1 to the secondary FPGA
6. Compute within loop using b1 and a1, one el-

ement at a time

7. Setup two communication ports with
the primary FPGA

8. Receive a1
9. Receive c1

10. Continue the innermost loop of the
primary FPGA and compute re-
sult c1

Parallel section (Primary FPGA) Parallel section (Secondary FPGA)
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The data transfer overheads and latencies in most cases, therefore, can be concealed using the deep pipelining
and streaming techniques as long as there is sufficient work (computation) available to hide these latencies.
The performance of the above pipeline will be the latency of the longest parallel section. Every effort is
made to remove or reduce pipeline stalls, if the producer stream data element is not ready, the consumer
stalls; likewise, if the consumer is not ready to accept the incoming data, the producer stalls. Additional
performance improvements can be achieved with traditional loop optimization techniques like loop unrolling
and flattening.

Algorithm Mapping onto the FPGA. To map the direct PME algorithm onto the FPGA devices, we
characterized the data and control requirements of the algorithm implementation in the AMBER framework.
For data requirements, we identified the local and non-local data elements, particularly the large arrays in the
functions that are to be mapped onto the FPGA devices. These arrays include those containing the complete cell
image coordinates, the force coordinates, pair information, Ewald tables, and indices to non-bond interactions.
The sizes of the arrays depend on a number of parameters, primarily the number of atoms and dimensions of the
unit cell grid. For example, for the 23558 atoms experiment, the indices arrays contain over 30K, floating-point
data elements.

For control operations, we identified the loops that are potential targets for exploiting parallelism. The
outermost PME loop has a fixed (constant) index, which depends on the dimension of the unit cell grid. The
indices of the two nested loops within the outermost loop are determined at runtime. In addition, there are
some smaller loops with a few tens of iterations that determine the runtime indices of the innermost loop. The
calculations in the innermost loop are distributed between the two FPGA devices to exploit the concurrency
that the two FPGAs offer. Moreover, the innermost loop is flattened creating the longest calculation in the
pipeline and maximizing the throughput. We anticipate that the outermost loops can be flattened on FPGAs
with larger logic capacities.

Fig. 4.5. Control flow of the direct PME calculation on the two FPGA devices.

Figure 4.5 shows a flow chart of the direct PME calculations on the two FPGA devices. After invoking
the FPGA-resident function, the primary FPGA DMAs the data from the host processor. It then streams in
the large arrays; a subset of which are concurrently streamed to the secondary FPGA over the bridge ports.
Then the outermost loop starts on the primary FPGA, which computes and subsequently starts loop 2 in the
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primary FPGA. After computing and transferring the index of loop 3 to the secondary FPGA, partial nested
loop calculations are performed on the primary FPGA. Since the bridge ports are already configured with the
secondary FPGA, as soon as the data is generated on the first FPGA it is available to the second FPGA where
the streaming calculations continue. The gray area in the diagram shows the deep pipeline that spans across
two FPGA devices. The 3× 3 virial arrays computed on the secondary FPGA are stored in intermediate arrays
and are transferred to the primary FPGA after the three loops have concluded. The primary FPGA then makes
this data available to the host processor.

5. Performance Analysis. We use two metrics to compare performance of the FPGA-accelerated code
with the microprocessor-only execution times. The first metric is traditional speedup:

Speedup = Runtimemicroprocessor/RuntimeFPGA-accelerated code

The second metric (used by the application scientists) is the science-based metric: pico-seconds (10-12) per
simulation day (psec/day). This metric determines the time to simulate a biological system at the required time
scales and is useful when comparing simulations of various sizes across different computing systems.

We measured the performance of the FPGA-accelerated code for two test cases namely jac (joint amber-
charmm) and HhaI. The jac benchmark is part of the AMBER version 8.0 release and it contains 23558 atoms.
HhaI is a protein-DNA system that contains 61641 atoms. The microprocessor-based performance is measured
on the SRC host processor system, which is an Intel dual 2.8 GHz Xeon system. The SRC-6E FPGA devices
run at 100 MHz, a clock frequency restriction imposed by the SRC system (current-generation FPGA devices
have more logic and memory capacity and are capable of operating at higher frequencies). Nevertheless, we
demonstrate the potential for FPGA acceleration for an important class of applications on these devices. The
results from the FPGA-accelerated code are compared with the microprocessor-only implementation for both
performance and accuracy to verify the correctness of the design.

To analyze the performance behavior, we used the SRC-6E performance analysis and debugging tools to
measure the runtime contributions of key sections of the accelerated code. Runtimes for three sections are
measured separately: (1) time to setup the MAP (calling overhead); (2) compute time; and (3) data transfer
times. The time to setup the MAP has an additional cost (∼0.3 milliseconds) for the first invocation; in
subsequent invocations this cost is comparable to regular Fortran function calls. The data transfer time includes
the time to receive data from the host and to send results back to the host. Compute time is the computation
time spent on the two FPGA devices including the time to transfer data between the two devices. As expected,
the data transfer overheads offset the performance gains in a näıve implementation and the penalties are higher
for the larger problem, HhaI. The compute only speedup increases with the problem size or the number of
atoms, 3.3x and ∼4x, respectively. However, since the data transfer overheads also increase with the problem
size, the overall application speedup is reduced to less than one. At this stage, we concluded that the memory
access requirements needed further characterization in order to achieve sustained performance on the FPGA
devices.

Table 5.1
Speedup of the PME calculations before and after memory characterization over the 2.8 GHz host microprocessor system

jac (23558 atoms) HhaI (61641 atoms)
Speedup (initial
implementation)

Speedup (after
memory charac-

terization)

Speedup (initial
implementation)

Speedup (after
memory charac-

terization)
Computation only 3.3 3.3 3.97 3.97
Setup+compute 3.29 3.29 3.96 3.96

Compute+data transfer 0.64 3.21 0.69 3.83
Overall 0.6 3.19 0.6 3.82

We considered and evaluated a number of techniques to reduce the data transfer times. First, data can
be pre-fetched and post-stored to hide the data transfer latencies. Additionally, pthreads or OpenMP multi-
threading techniques allow the transfer of large arrays while the compute thread is processing and before
the accelerated function is invoked. Second, data transfers to the FPGA can be pipelined and overlapped
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using the streaming directives provided in the SRC programming environment. Although these are partially
done in the first implementation, carefully overlapping and pipelining additional data transfers can further
improve performance. Finally, algorithm-specific optimizations are exploited by characterizing the memory
access behavior and patterns in the accelerated code. We employed the last approach since it also leverages the
other optimization techniques.

Implementation of the accelerated PME calculation is further modified according to memory access classifi-
cation and characterization. This implementation, however, does not include any modification to the AMBER
source code on the host to exploit additional benefits from multithreading with pthreads or OpenMP. Only
the Fortran code for the FPGA-accelerated calculations is modified to reduce the unnecessary data transfer
overheads. Amazingly, the modified code resulted in a very significant reduction in the data transfer costs;
the data transfer costs that previously accounted for over 70% of the total execution time, are now less that
5% of the total execution time resulting in sustained accelerated performance with the FPGA devices. Ta-
ble 5.1 summarizes the performance improvements for jac and HhaI experiments.The time-to-solution metric
is calculated for a nano-second scale simulation (106 time steps) and is presented for the jac benchmark in
Table 5.2. We also measure and include time for the non-accelerated calculations; a constant for both host
processor and FPGA-accelerated code because they are always executed on the host processor. We calculate
the performance improvement achieved by overlapping the ‘direct’ and ‘reciprocal’ PME calculations on FPGA
and host respectively (OpenMP constructs in the PME-AMBER source code enable the overlap).

Table 5.2
Time-to-solution for the SRC 6E FPGA-accelerated code for the jac benchmark

Time-to-solution (after me-
mory characterization)

Time-to-solution
(after overlapping)

Computation only 4793 days 3208 days
Setup+compute 4801 days 3214 days
Compute+data transfer 4868 days 3282 days
Overall 4876 days 3290 days
Host 10417 days

From the values in Table 4, we estimate time for a nano-second scale simulation instead of our target micro-
second scale simulation. A nano-second simulation will take over 10 days on the microprocessor system with
dual 2.8 GHz Xeon system, about 5 days on an FPGA accelerated code, and just over 3 days by overlapping
FPGA and host execution. (Note: these computations are for the older-generation FPGAs on the SRC-6E.)

6. Modeling and Projections. In order to analyze the performance of the current system and predict
the performance potential of future FPGA-enabled systems, we developed parameterized performance models
of our current FPGA implementation. The models are parameterized with application parameters and system
parameters allowing for the analysis of a variety of FPGA systems as well as larger biological simulations.
The application parameters include the number of atoms, dimensions of the box, types of atoms, and number
of residues. From the application parameters, we can generate the size of data transfers, physical memory
requirements, and loop indices for the main computation loops. The FPGA system parameters are the FPGA
clock frequency, bandwidth to the host processor, and bandwidth between the FPGA devices. Our modeling
scheme is conservative because we do not take into account the characteristics of future FPGA devices that
contain special features for double-precision floating-point calculations and logic capacities. Furthermore, we
do not consider the performance advantages that can be achieved by flattening the three direct PME loops,
which we anticipate will also be possible on larger FPGAs.

For simplicity, we consider a cubic box in which all three dimensions are equal, i. e. a = b = c. Moreover,
we consider a NTYPE (types of atoms) to be a constant (= 20), and the numbers of residues are fixed as
(NATOMS/3.25). The problem size is therefore controlled by the NATOMS parameter. The performance model
has two elements: computation cost and data transfer overheads. There is a fixed, single time startup-overhead
cost not included in the model because these biological simulations are expected to run tens of thousands of
time steps. Hence, the single startup-overhead cost is amortized for these simulation runs. In the computation
time, represented below, we take into account the latency (in clock cycles to perform sequence of serialized
operations within a loop) for the three main loops that are shown in Figure 8. In addition, we include the loop
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counts (variable and fixed) that are calculated from the application input parameters. Similarly, we calculate
the number of data transfer bytes using the input parameters and apply the available memory bandwidth to
determine the data transfer times. Since the sizes of data transfers do not depend on runtime values, the data
transfer overheads are precisely measured for our current implementation. The workload requirement model
and the runtime performance projection model are validated with the current SRC-6E implementations.

Fig. 6.1. Figure 12: Percentage of total execution time spent in MPI communication routines.

To develop a model for the parallel version of the application, we profiled MPI message sizes and timings on
the Cray XT3 system, which has a high communication bandwidth compared to contemporary cluster systems.
Figure 6.1 shows the fraction of total execution time spent in MPI communications for three test cases. We
notice that the percentage of communication time increases with the number of parallel MPI tasks, and beyond
128 tasks it accounts for over 50% of total execution time. Although the fraction of MPI time decreases with
the increase in the number of atoms, the reduction rate is much slower than the increase in number of atoms.

In addition to aggregate data collection, we investigated the runtime behavior of MPI messages and sizes.
We note that the number and sizes of communication operations per simulation time step per processor is
not constant. Also, AMBER does not use an MPI Cartesian topology; moreover, sizes for the MPI collective
operations per processor do not change with the problem size or number of atoms. AMBER has a collection of
programs that can run different MD simulations. In this study, we focused on the most widely used simulation
method—explicit solvent simulations in sander.

We developed symbolic models for the communication phases with a fixed message size—an average of the
smallest and largest message sizes exchanged in these phases. The largest message size does not change with
processor count, while the smallest one scales linearly. These sizes are validated at runtime using the MPI
profiling tool. The MPI Allreduce message sizes do not depend on the problem size, therefore, the collective
message volume grows linearly with the problem size.

Our findings about the scaling behavior of the explicit solvent calculations in AMBER explain the perfor-
mance results presented in earlier studies [16, 18]. Scaling results for the explicit solvent method in AMBER on
parallel systems do not scale beyond 128 processors—not even on systems with very high bandwidth intercon-
nects, like IBM Blue Gene/L [35] and Cray XT3 [5]. On SMP cluster systems, these calculations only scale to up
to 16–32 processors. Using symbolic models, we quantified the growth rate in volume and distribution of MPI
messages, which enable us to identify that the force sum, and coordinate distribution phases of calculation limit
application scaling. These factors in turn limit the scaling beyond 64-128 MPI tasks on distributed memory
parallel systems.
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Fig. 6.2. Performance projections with varying FPGA performance metrics.

Projections on Future FPGA Devices. We use our validated performance models to carry out a num-
ber of performance projection experiments. Figure 6.2 shows the performance projection results on a single-node
FPGA accelerated system. We altered two FPGA-enabled system parameters for our experiments: the clock
frequency and data bandwidth between the FPGA device and the host processor. The clock frequency of our
current FPGA implementation is 100 MHz and the sustained payload bandwidth is 2.8 GB/s (utilizing input
and output 1.4 GB/s bandwidth). The clock speed and data transfer rates have different performance impli-
cations on small and large biological systems (Figure 6.2). Overall, the clock speed influences the performance
gains of the PME calculations. For smaller biological systems, the change in the data transfer rates influences
the runtime performance of the application. By contrast, the performance of the larger systems (100K and more
atoms) nearly doubles by doubling the clock speed of the FPGA devices, while the data transfer rates alone do
not significantly impact the runtime performance. Note that a ∼150K atoms system only achieves ∼12 psec/day
on a dual 2.8 GHz Xeon system today. An FPGA-enabled system using our current PME implementation can
sustain over 75 psec/day with a 200 MHz FPGA and over 180 psec/day with a 500 MHz FPGA and a host
bandwidth of 5.6 GB/s.

Parallel Efficiency. Based on the parameterized model of our FPGA implementation and a detailed
analysis and modeling of MPI implementation of sander, we carry out performance projection studies on parallel
systems with multiple FPGA accelerator devices. The FPGA-accelerated implementation of direct PME does
not involve MPI communication; therefore, we can port the accelerated code without any modification to
a parallel platform. However, we cannot take into account the contribution of overlapping the reciprocal
and direct Ewald calculations because the reciprocal calculations do involve MPI communication. Hence, we
consider a blocking implementation of the accelerated code; in other words, our performance estimates are highly
conservative since the overlapping of calculations can result in significant performance benefits not only on small
processor counts but also on 64–128 processor runs. We anticipate that simulations with 32 or more processors,
the reciprocal Ewald calculation will contribute to a larger fraction of the runtime and the accelerated direct
PME will have negligible runtime contributions.

Due to the inherent scaling limit of the sander implementation [16, 22], we target a cluster with 8–16
processors, each populated with an FPGA device. Note that this configuration is different from the existing
Cray XD1 having six FPGA devices connected to a chassis and these devices communicate with one another
only through their host Opteron processor. The Maxwell system recently developed at the Edinburgh Parallel
Computing Center is similar to our target configuration. The system consists of a 32-way IBM BladeCentre
chassis hosting 64 Xilinx Virtex-4 FPGAs directly connected over high-speed RocketIO. This allows codes to
be parallelized across the collection of FPGAs and encourages algorithms to be written such that once the data
and program are loaded onto the accelerator cards the processing occurs without transferring data across the
PCI-X bus again.
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We project runtime on a FPGA accelerated parallel system using the following expression:

Computationtime = l1count ∗ (latencyl1 + l2count ∗ (latencyl2 + latencyl3 + l3count)/clockfrequency.

Time on the host is the time that is not spent in communication and overlapped calculations. Considering a
high-bandwidth communication network similar to Cray XT3 distributed memory system [5], we project perfor-
mance in terms of psec/day for the 3 test systems with approximately 24K, 62K and 144K atoms respectively.
We compare these results with the runtime measured on the XT3 system. For parallel performance projections,
we conservatively targeted an FPGA with double the clock frequency, 200MHz, of the SRC-6E 100MHz. Cur-
rently available FPGA devices are capable of operating at clock speeds higher than 200 MHz although they are
only now becoming available in leading edge reconfigurable computing platforms. In addition, we consider no im-
provement in the FPGA and host bandwidth, which is expected to be significantly higher for new production and
future systems especially those connected via HyperTransport links. Figure 14 and Figure 15 show the through-
put of an FPGA-accelerated system and the Cray XT3 in terms of psec/day. We note that speedup is sustained
for simulation runs up to 16 MPI tasks in the FPGA accelerated system. For the 62K atoms experiment, a 32-
processor FPGA-accelerated system could be as efficient as the largest configuration of the Cray XT3 and time
to solution on a 2-node FPGA-accelerated system could be equivalent to large-scale Blue Gene L configurations.

Fig. 7.1. Parallel efficiency on the FPGA-accelerated
system

Fig. 7.2. Parallel Efficiency on the Cray XT3 system

7. Conclusions and Future Plans. We have demonstrated that production FPGA-enabled systems
can achieve sustained application speedup for a production-level scientific simulation framework, and that the
co-processor accelerated systems with few tens of processing units can surpass performance of Teraflops-scale
supercomputing systems. Using our task-based implementation approach, scientific application developers can
exploit extremely powerful yet flexible devices to perform a diverse range of scientific calculations by using a
familiar high-level programming interface all without significantly compromising achievable performance. Our
results for the direct PME method show that the time-to-solution of medium-scale biological system simulations
are reduced by a factor of 3x on an SRC-6E MAPstation, which contains two-generation old FPGA devices,
compared to the microprocessor-only runtimes. Trends indicate that the capabilities of FPGA devices are grow-
ing at a faster rate than those of microprocessors and parallel systems have been developed and deployed with
co-processor accelerators. Using accurate models of our current implementation and communication overheads
measured on a contemporary high-bandwidth supercomputer, we estimate that systems with later generation
FPGA devices will reduce the time-to-solution by a factor greater than 15x for large-scale biological systems—a
speedup that is greater than currently available on many contemporary parallel cluster systems. Furthermore,
for applications with inherent scaling limits, a small-scale parallel system with co-processor accelerators could
attain performance of a high-end supercomputing system. Since these reconfigurable devices offer an ideal
combination of performance, concurrency, and flexibility for a diverse range of numerical algorithms, we antici-
pate that many scientific applications will dramatically benefit from the increased support for double-precision
floating-point operations and HLL languages now available for these reconfigurable systems. In future work we
plan to implement other production-level applications and conduct similar modeling and analysis efforts. Fur-
thermore, we plan to enhance the models to include characteristics of the FPGAs such as their logic capacities
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which are not accounted for in the current model. As new generations of these RC systems become available,
we plan to collect performance data and validate our models in single-node and multi-node RC systems.
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COMPLEXITY ANALYSIS FOR 4-INPUT/1-OUTPUT FPGAS APPLIED TO MULTIPLIER
DESIGNS
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Abstract. Some algorithms are more efficient than others. The complexity of an algorithm is a function describing the efficiency
of the algorithm which has two measures: Space Complexity and Time Complexity. In this paper, we present complexity analysis
for FPGA based designs which is based on 4-input and 1-output LUT structure followed by the majority of FPGA manufacturers.
The same procedure is then applied to Karatsuba-Offman Multiplier (KOM) because of two reasons. Firstly, due to the increased
use of FPGAs especially for security applications, it seems logical to compare various architectures for their efficiencies in FPGAs.
Secondly, for diverse security applications, it provides a prior estimation to hardware resources and achievable timing. We consider
a 4-input and 1-output structure as a basic building block available in majority of FPGAs by different FPGA manufacturers. We
then compare our theoretical and experimental results for KOM in FPGAs which are fairly convincible.

Key words. complexity analysis, field programmable gate arrays (FPGAs), Karatsuba-Ofman multiplier, cryptography,
hardware implementations

1. Introduction. The use of internet for financial applications and electronic commerce has been tremen-
dously increased which has made security a major concern. Public key cryptography [6] provides adequate
security solution to those applications. First introduced in 1976, many algorithms were designed and im-
plemented. The most popular schemes are due to RSA [31], ElGamal [9] and Elliptic Curve Cryptosystems
(ECCs) [17, 23]. The security of these system is based on computational difficulty for solving some mathematical
problems in modular arithmetic, multiplication being the most commonly used and costly operation.

Several quadratic and sub-quadratic space complexity multipliers have been reported in literature. Examples
of quadratic multipliers can be found in [20, 18, 41, 42, 37, 13, 38, 35, 13, 28, 43, 11, 19, 32, 29, 30, 22, 7, 15].
On the other hand, some examples of sub-quadratic multipliers can be found in [24, 3, 25, 26, 12, 33, 36, 5,
10, 8, 40, 21]. The latter category offers low complexity especially for large values of n and therefore they are
principally attractive for cryptographic applications.

The space and time complexities are the two measures for describing the efficiency of an algorithm. Space
complexity is a function describing the amount of memory (space) an algorithm takes in terms of the amount
of input to the algorithm. In FPGAs, it refers to the hardware resources (configurable logic blocks, memory,
etc) on the chip. Time complexity is a function describing the amount of time an algorithm takes in terms of
the amount of input to the algorithm. In FPGAs, it refers to all path delays including gate delays as well as
routing overheads. A prior estimation of these two parameters has considerable importance for cost and speed
estimations.

In VLSI designs, the estimation for both space and time complexities is relatively straightforward. If two
pair of inputs A&B and C&D are XORed and their two outputs are ANDed, the space complexity is simply
expressed as: #XORs = 2, #ANDs = 1. Similarly, if Tx is the delay for a single gate, time complexity for our
example is 2Tx, One Tx for XORing plus One Tx for ANDing. This is however not the case of an FPGA design.
As the basic building block in majority of FPGAs has 4-inputs/1-output structure and also it acts like a Look
Up Table (LUT), that is, the whole logic which bounds two, three or four inputs and produces one output, can
be accommodated in just a single Look Up Table (LUT). Space complexity is therefore a single basic unit (a
single LUT). In contrast to VLSI designs, Time complexity is not 1.Tx but it is 1.Tx plus path delays due to
routing overheads in FPGAs. It has been observed that almost 70% of the total path delays is due to routing
overheads in FPGAs. It is therefore difficult to link theoretical results to actual path delays in an FPGA based
design. However certain optimizing techniques can be applied to reduce path delays by placing several registers
at different stages of the design. At each move, the data travels from one stage to the next stage and hence the
net path delay is the maximum delay between any two stages.

Recently, there is an emerging trend for implementing cryptographic primitives in hardware due to improved
timing performances and also due to some security reasons. In contrast to software, hardware solutions offer high
timing performances which is becoming critical at high speed links. On the other hand for security applications,
it is more than that. The secret parameters ( digital keys) in cryptographic primitives are stored in hardware
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and they are not easily accessible which enhances security. Another attractive features of FPGA based designs
especially for security applications is due to ease in updating security algorithms as well as secret keys. The focus
of this article is to devise a methodology for manipulating space and time complexities for various cryptographic
primitives. We have selected Karatsuba-Ofman Multiplier (KOM) as our case study example.

The rest of this paper is organized as follows: Section 2 explains the procedure to perform complexity
analysis in FPGAs. Section 3 demonstrate the same procedure for classical multipliers. In Section 4, Karatsuba-
Ofman algorithm is explained for its space and time complexities in FPGAs. Section 5 shows the space-
time benefits by combining the Karatsuba-Ofman multiplier and other multiplication schemes like classical
multipliers. A comparison of all three multiplication schemes has been presented in Section 6. Conclusions are
finally drawn in Section 7.

2. Complexity Analysis for FPGAs based Designs. FPGAs are being manufactured by many ven-
dors like Xilinx [44], Altera [2], Atmel [4], Quick Logic [27], Actel [1], etc. All manufactures adopt different
nomenclature for the hardware resources available on the chip. However the basic structure of almost all the
FPGAs is the same. The basic building block in Xilinx FPGAs is called Configurable Logic Block (CLB). Each
CLB has two slices and each slice contains one Look Up Table (LUT) other than additional logic. And each LUT
has a 4-input and 1-output structure. Similarly, the basic building block in Altera FPGAs is called Logic Array
Blocks (LAB). Each LAB contains ten logic elements (LEs) and each LE contains 4-input and 1-output LUT
other than additional logic. However modern FPGAs even offer a 6-input and 1-output LUT [39]. Those build-
ing blocks are abundantly available in FPGAs. They can be configured into memory as well as into logic mode.
Currently, FPGAs offer an integrated environment containing LUTs, Memory blocks, multipliers, transceivers,
etc. In this article we focus on the smallest programmable unit in FPGAs, a LUT. We are considering FPGAs
with 4-input and 1-output LUT structure for realizing complexity analysis. However the same procedure can
be extended to advanced FPGAs with 6-input and 1-output LUTs.

First, in the context of 4-input and 1-output, we discuss two scenarios when number of inputs (IPs) are less
than or equal to 4 and when they are greater than four.

When number of inputs ≤ 4 :. Let the output bit Z be the function of four input bits a, b, c, and d,
then the significance of a LUT with 4-input and 1-output is that it would occupy just a single LUT in all the
cases when Z is the function of two, three or four input bits. Also it does not matter what kind of Boolean
logic is involved with those bits, that is,

• When Z is the function of two bits i.e, Z= F(a,b)
Examples

Z = a⊕ a.b;
(One multiplication and one addition)

or
Z = a⊕ b⊕ a.b;

(One multiplication and two additions)
• When Z is the function of three bits i.e Z= F(a,b,c)

Examples
Z = a⊕ b⊕ c⊕ a.b.c;

(Two multiplications and three additions)
or

Z = a.b⊕ a.c⊕ b.c⊕ a.b.c;
(Four multiplications and three additions)

• When Z is the function of four bits i-e Z= F(a,b,c,d)
Examples

Z = a.b⊕ a.c⊕ a.d⊕ b.c⊕ b.d⊕ a.b.c⊕ a.c.d⊕ b.c.d⊕ d;
(Eleven multiplications and eight additions)

or
Z = a⊕ b⊕ c⊕ d⊕ a.b⊕ a.c⊕ a.d⊕ b.c⊕ b.d⊕ a.b.c⊕ b.c.d;

(Nine multiplications and ten additions)

When number of inputs > 4 :. When Z is the function of more than four bits, it occupies more
than one LUTs. For number of inputs from five to seven, Z utilizes two LUTs as four inputs go to the
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Fig. 2.1. Seven input bits to occupy two LUTs

1st LUT and then its output is fed to the second one acting as an input for the 2nd LUT as shown in
Fig. 2.1.
As a rule of thumb, for Z as a function of k input bits, it uses some k/3 (nearest rounding) LUTs.
e.g. The Z as a function of 10 and 11 inputs can be accommodated with 10/3 = 3.33 ∼= 3 and
11/3 = 3.66 ∼= 4 respectively.
The discussed results in this subsection can be applied to perform complexity analysis for any FPGAs
based design. We apply this simple procedure to our two case studies for a classical multiplier and a
Karatsuba-Ofman multiplier.

3. Complexity Analysis for a Classical Multiplier. We start with an example of a classical 4× 4 bit
multiplier as shown in Table 3.1.

Table 3.1
4-bit classical multiplier

a3 a2 a1 a0

b3 b2 b1 b0

a3b0 a2b0 a1b0 a0b0

a3b1 a2b1 a1b1 a0b1

a3b2 a2b2 a1b2 a0b2

a3b3 a2b3 a1b3 a0b3

z6 z5 z4 z3 z2 z1 z0

From Table 3.1, one can quickly calculate the value of k and also the number of LUTs (dividing k by 3) for
any zj where j=0 to 6 as shown in Table 3.2.

Table 3.2
Complexity analysis for 4-bit classical multiplier

zj FunctionF Partial Products kj LUTs
z0 = F (a0, b0) = a0b0 2 1
z1 = F (a0, b0, a1, b1) = a1b0 ⊕ a0b1 4 1
z2 = F (a0, b0, a1, b1, a2, b2) = a2b0 ⊕ a1b1 ⊕ a0b2 6 2
z3 = F (a0, b0, a1, b1, a2, b2, a3, b3) = a3b0 ⊕ a2b1 ⊕ a1b2 ⊕ a0b3 8 3
z4 = F (a1, b1, a2, b2, a3, b3) = a3b1 ⊕ a2b2 ⊕ a1b3 6 2
z5 = F (a2, b2, a3, b3) = a3b2 ⊕ a2b3 4 1
z6 = F (a3, b3) = a3b3 2 1

Total 11

Hence, a 4-bit classical multiplier can be realized with no less than eleven 4-input and 1-output LUTs as
shown in Fig. 3.1.

The procedure for performing complexity analysis of a 4-bit multiplier can be generalized to any n-bit
multiplier which consists of three steps:

Step 1: Write down the number of inputs kj for all partial sums zj . It can be obtained first by writing n in the
middle and then by writing all of its values from (n− 1) to 1 on its both sides. That gives the number
of partial products for any partial sum zj , that is,

1 . . . . . . (n− 2) (n− 1) n (n− 1) (n− 2) . . . . . . 1 (3.1)
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Fig. 3.1. 4-bit classical multiplier implementation using 4-input and 1-output LUTs

For n = 4 (4-bit multiplier),

1 2 3 4 3 2 1 (3.2)

As a single partial product contributes to two inputs, multiplying it by two, it give the number of inputs
kj for all partial sums zj , that is,

2 . . . . . . 2(n− 2) 2(n− 1) 2n 2(n− 1) 2(n− 2) . . . . . . 2 (3.3)

For n = 4 (4-bit multiplier),

2 4 6 8 6 4 2 (3.4)

2n 4(n− 1) 4(n− 2) . . . . . . 4 (3.5)

Step 2: The number of LUTs for all partial sums zj are manipulated by dividing each kj by 3 and rounding it
to the nearest integer value, that is,

2

3
. . . .

2(n− 2)

3

2(n− 1)

3

2n

3

2(n− 1)

3

2(n− 2)

3
. . . ..

2

3
(3.6)

For n = 4 (4-bit multiplier),

2

3

4

3

6

3

8

3

6

3

4

3

2

3
(3.7)

Step 3: The number of LUTs for all partial sums zj are added to calculate total number of LUTs for any n-bit
classical multiplier,

2

3
+ · · ·+

2(n− 2)

3
+

2(n− 1)

3
+

2n

3
+

2(n− 1)

3
+

2(n− 2)

3
+ . . . . +

2

3
(3.8)

By simplifying,

2n

3
+ 2

2(n− 1)

3
+ 2

2(n− 2

3
+ . . . . . . + 2.

2

3
(3.9)

2n

3
+

4

3
{(n− 1) + (n− 2) + . . . . . . + 1} (3.10)
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The terms in brackets in Eq. 3.10 forms an arithmetic series for which the sum is equal to n(n−1)
2 , by

substituting:

2n

3
+

4

3

{
n(n− 1)

2

}
=

2

3
n2 (3.11)

For 4-bit multiplier

2

3
+

4

3
+

6

3
+

8

3
+

6

3
+

4

3
+

2

3
(3.12)

By simplifying,

8

3
+ 2.

6

3
+ 2.

4

3
+ 2.

2

3
(3.13)

3 + 4 + 2 + 2 = 11

By using this formula, one can calculate the gate complexity for any n-bit classical multiplier. Table 3.3 provides
LUTs (cal) using the derived expression in Eq. 3.11 and also the number of LUTs (exp) experimented for first
40 values of n. The calculated LUTs exactly match with the experimental LUTs as we have instantiated LUT

Table 3.3
Gate complexities for first 40 values of n using classical multiplier

n LUTs (cal) LUTs (Exp) n LUTs (cal) LUTs (Exp)
1 1 1 21 294 294
2 3 3 22 323 323
3 6 6 23 353 353
4 11 11 24 384 384
5 17 17 25 417 417
6 24 24 26 451 451
7 33 33 27 486 486
8 43 43 28 523 523
9 54 54 29 561 561
10 67 67 30 600 600
11 81 81 31 641 641
12 96 96 32 683 683
13 113 113 33 726 726
14 131 131 34 771 771
15 150 150 35 817 817
16 171 171 36 864 864
17 193 193 37 913 913
18 216 216 38 963 963
19 241 241 39 1014 1014
20 267 267 40 1067 1067

module implicitly in our VHDL code.

4. Complexity Analysis for Karatsuba-Ofman Multiplier. Discovered in 1962, a divide-and-conquer
algorithm due to Karatsuba and Ofman was the first algorithm [16] to accomplish polynomial multiplication in

under O(m2) operations and reduces the complexity to O(nlog3
2 ). Suppose that n = 2l and A = AH2l +AL and

B = BH2l + BL are 2l-bit integers.
Then
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AB = (AH2l + AL)(BH2l + BL)
= AHBH22l + [(AH + AL)(BH + BL)−AHBH −ALBL]2l + ALBL

The product AB can be computed by performing three multiplications of l-bit integers along with two
additions and two subtractions. More details about Karatsuba-Ofman multiplication can be seen in [14, 34].

Let we take again the example of a 4× 4 multiplier using Karatsuba-Ofman multiplication scheme.
Let A and B the two multiplicands with,

A = a3a2a1a0 and B = b3b2b1b0 (4.1)

Both A and B are divided into lower AL&BL and higher parts AH&BH :

AH = a3a2 and BH = b3b2 (4.2)

AL = a1a0 and BL = b1b0 (4.3)

Then three multiplications are required to be performed:

1. First multiplication between AH and BH

AHBH = (a3a2)(b3b2) = H2H1H0 (4.4)

2. Second multiplication between AL and BL

ALBL = (a1a0)(b1b0) = L2L1L0 (4.5)

For third multiplication the higher and the lower parts of both the operands are XORed.

MA = AH ⊕AL = (a3a2)⊕ (a1a0) = ma1ma0 (4.6)

MB = BH ⊕BL = (b3b2)⊕ (b1b0) = mb1mb0 (4.7)

3. Third multiplication between MA and MB

MAMB = (ma1ma0)(mb1mb0) = M2M1M0 (4.8)

Finally the overlapping of the three partial products is performed:

Table 4.1
Overlapping Function for a 4-bit Karatsuba-Ofman Multiplier

H2 H1 H0

L2 L1 L0 ⊕
M2 M1 M0 ⊕

H2 H1 H0 L3 L1 L0 ⊕
z6 z5 z4 z3 z2 z1 z0

By looking at the above expressions one can estimate the resource utilization as follows:
1. Three n/2 multiplications are always performed by using Karatsuba-Ofman multiplication scheme.

For a 4 × 4 Karatsuba-Ofman multiplier, it therefore requires three 2-bit multipliers as it is shown in
Eqs. 4.4,4.5, and 4.8. A 2- bit multiplier using Karatsuba-Ofman multiplication scheme costs 3 LUTs,
hence a total of 9 LUTs are being used.
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2. For third multiplication the two inputs of the multiplier are to be XORed as it has been shown in
Eqs. 4.6 and 4.7. They always require some 2 × n/2 XOR operations, and the same amount of LUTS
i-e n LUTs. For n = 4, four LUTs are therefore utilized.

3. Finally the overlapping part is concluded with 3n− 4 XORs thus consuming (3n− 4)/3 = n− 1 LUTs.
For a 4-bit multiplier it is evident the utilization of three LUTs in obtaining z3, z4 and z5, we call them
as output XORs.

The total number of LUTs for a 4-bit Karatsuba-Ofman multiplier can be obtained by adding all LUTs from
the above three steps which are 15. Some other results can also be deduced:

• LUTs due to input XORs = 2(n/2) = n
• LUTs due to output XORs = n− 1
• LUTs due to both input & output XORs = n + (n− 1) = 2n− 1
• LUTs due to three multipliers= 3× LUTs used by the base multiplier

The above procedure can be extended to generalize the expression for the estimation of number of LUTs
for any n-bit Karatsuba-Ofman multiplier. We select a 4-bit Karatsuba-Ofman multiplier as a base multiplier,
then,

For a 4-bit Karatsuba-Ofman multiplier (n = 4) :
Total number of LUTs = 15

For an 8-bit Karatsuba-Ofman multiplier (n = 8) :
Total number of LUTs

= LUTs due to input/output XORs + 3× LUTs used by the 4-bit multiplier
= (2n− 1) + 14(3)1

= 15 + 15(3)1 = 15(3)0 + 15(3)1 = K1

For a 16-bit Karatsuba-Ofman multiplier (n = 16) :
Total number of LUTs

= LUTs due to input/output XORs + 3× LUTs used by the 8-bit multiplier
= (2n− 1) + 3×K1

= 31 + 3
{
15(3)0 + 15(3)1)

}
= 31 + 15(3)1 + 15(3)2 = K2

For a 32-bit Karatsuba-Ofman multiplier (n = 32) :
Total number of LUTs

= LUTs due to input/output XORs + 3× LUTs used by the 16-bit multiplier
= (2n− 1) + 3×K2

= 63 + 3
{
31 + 15(3)1 + 15(3)2

}
= 63 + 31(3)1 + 15(3)2 + 15(3)3 = K3

For a 64-bit Karatsuba-Ofman multiplier (n = 64) :
Total number of LUTs

= LUTs due to input/output XORs + 3× LUTs used by the 32-bit multiplier
= (2n− 1) + 3×K3

= 127 + 3
{
63 + 31(3)1 + 15(3)2 + 15(3)3

}

= 127 + 63(3)0 + 31(3)2 + 15(3)3 + 15(3)4

On continuing in a similar way, we can generalize the above expressions for any n:

15(3)k +

{
2n− 1

1
30 + (

2n

2
− 1)31 + (

n

2
− 1)32 + (

n

4
− 1)33 + · · · (

n

k − 1
− 1)3k−1

}
(4.9)

where k is the number of iterations and it is calculated as: k = log2(n) − 2. The subtraction of factor of
2 is due to the selection of 4-bit multiplier as a base multiplier which removes two iterations for 2 and 4 bit
multiplications.

Rewriting Eq. 4.9,
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15(3)k +

{
2n

1
30 +

2n

2
31 +

n

2
32 + · · ·+

n

k − 1
3k−1

}
−
{
30 + 31 + 32 + · · ·+ 3k−1

}
(4.10)

The terms in brackets in Eq. 4.10 form a geometric series similar to a + ar + ar2 + ar3 + · · · where ’a’
represents the initial value and ’r’ is the ratio which can be obtained by dividing a value to its previous one.
The sum of nth terms for that series can be calculated by the formula:

Sn = a(1− rn)/(1− r) (4.11)

The sum of nth series for the two geometric expressions in Eq. 4.10 can be manipulated by using the formula
in Eq. 4.11.

For the first series,

{
2n

1
30 +

2n

2
31 +

n

2
32 + · · ·+

n

k − 1
3k−1

}
(4.12)

Initial value = a = 2n & ratio = r = 3/2
Therefore the sum of nth terms is:

= 4n
[
(3/2)k − 1

]
(4.13)

For the second series,

{
30 + 31 + 32 + · · ·+ 3k−1

}
(4.14)

Initial value = a = 1 & ratio=r= 3
Therefore the sum of the nth terms is:

= 1/2
[
3k − 1

]
(4.15)

Substituting Eqs. 4.13 and 4.13 into Eq. 4.10,

15(3)k + 4n
[
(3/2)k − 1

]
− 1/2

[
(3)k − 1

]
(4.16)

Eq. 4.16 can be written in terms of just ’n’ by substituting the value of ’k’

15(3)log2(n)−2 + 4n
[
(3/2)log2(n)−2 − 1

]
− 1/2

[
(3)log2(n)−2 − 1

]
(4.17)

where k = log2(n)− 2
By using the formula in Eq. 4.17, we can calculate the space complexity for several n = 2k-bit Karatsuba-

Ofman multipliers as shown in Table 4.2. Table 4.2 also provides our experimental results for the same values
which shows minor difference to the calculated values to non-optimal behavior of HDL (Hardware Description
Language) compilers.

5. Complexity Analysis for Karatsuba-Ofman multiplier using Hybrid approach. In order to
construct a bigger multiplier for any larger value ’m’, we can use Karatsuba-Ofman multiplication approach
by using a smaller multiplier recursively. The smaller multiplier represents the end point where recursion
process exactly starts and it is termed as a base multiplier. A base multiplier can be constructed by any other
multiplication approach like classical multiplication scheme as well. For example, we can construct an 8-bit
multiplier from three 4-bit multipliers. Similarly a 16-bit multiplier can be constructed by using three 8-bit
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Table 4.2
Space complexity for n = 2k-bit Karatsuba-Ofman multiplier in terms of LUTs

n LUTs (cal) LUTs (Exp)
2 3 3
4 15 14
8 60 60
16 211 212
32 696 698
64 2215 2221
128 6900 6918
256 21211 21265
512 64656 64818

Fig. 5.1. 4-bit classical multiplier implementation using 4-input and 1-output LUTs

mutipliers and so on. A block diagram representation of this hierarchical setup by selecting a 4-bit multiplier
as a base multiplier is shown in Fig. 5.1.

Karatsuba-Ofman multiplier therefore can be viewed as a long array of base multipliers in middle and a
logic mapping required for input and output (overlapping) XOR operations as it has been depicted in Fig. 5.2.

The selection of the base multiplier is therefore critical to save the hardware resources. The saving of
few LUTs in the base multiplier helps in saving significant number of LUTs for large values of n. A hybrid
approach is therefore used which dictates the use of other multiplication schemes along with Karatsuba-Ofman
multiplication. We have implemented 4-bit Karatsuba-Ofman multiplier using the classical approach (school
method) which seems to be economical as compared to 4-bit Karatsuba-Ofman multiplier as it occupies 11
LUTs instead of 15 LUTs. The change of only base multiplier does not require any change in the formula for
complexity analysis, the factor of 15 is simply replaced with 11. The formula for an hybrid Karatsuba-Ofman
multiplier using a 4-bit classical multiplier as a base multiplier is shown in Eq. 5.1.

11(3)logn
2 −2 + 4n

[
(3/2)logn

2 −2 − 1
]
− 1/2

[
3logn

2 −1 − 1
]

(5.1)

By using Eq. 5.1, the space complexity for hybrid Karatsuba-Ofman multiplier can be manipulated as shown
in Table 5.1.

Table 5.1
Space complexity for n = 2k-bit Hybrid Karatsuba-Ofman multiplier in terms of LUTs

n LUTs (cal) LUTs (Exp)
2 3 3
4 11 11
8 48 45
16 175 168
32 588 567
64 1891 1828
128 5928 5739
256 18295 17728
512 55908 54207
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Fig. 5.2. Flattend Image of Karatsuba-Ofman multiplier using a MUL(2)4 as a base multiplier

6. Performance Results. The achieved results for the space complexities of classical, Karatsuba-Ofman
and hybrid Karatsuba-Ofman multiplication schemes can be combined for comparison purposes as shown in
Table 6.1.

Table 6.1
Space complexity for n = 2k-bit Classical, Karatsuba-Ofman, and Hybrid Karatsuba-Ofman multiplication schemes in terms

of LUTs

LUTs (cal) LUTs (cal) LUTs (cal)
n Classical Karatsuba-Ofman H. Karatsuba-Ofman

multiplier multiplier multiplier
2 3 3 3
4 11 15 11
8 43 60 48
16 171 211 175
32 683 696 588
64 2731 2215 1891
128 10923 6900 5928
256 43691 21211 18295
512 174763 64656 55908

It can be seen from Table 6.1 that classical multiplication schemes proves to be more economical for n < 32
when complexity analysis is performed for FPGAs based designs. For n > 32, however, hybrid Karatsuba-Ofman
multiplication approach proves to be more economical.

7. Conclusion. In this paper, we explained in detail how to perform complexity analysis for an FPGA
based design. We applied that procedure for manipulating space complexities for a classical Karatsuba-Ofman
multiplier, Karatsuba-Ofman multiplier and an Hybrid Karatsuba-Ofman multiplier. It has been shown that
obtained experimental results are exactly in match with those of theoretical manipulations in all three cases.
The similar procedure can be extended to realize complexity analysis for other cryptographic primitives. The
comparison tables for all three multiplication schemes can be utilized for selecting a base multiplier to construct
a bigger multiplier as it is required in cryptographic applications. Our future work includes the construction of
a low cost multiplier in FPGAs on the basis of the results obtained in this paper. Also we used a 4-input and
1-output structure for a LUT as the basic building block to perform complexity analysis for an FPGA based
design. Modern FPGAs however offer a 6-input and 1-output structure for their basic building block. We have
also planned to extend our manipulations for those FPGA devices.
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[18] Ç. K. Koç and T. Acar, Montgomery Multiplication in GF(2k)., Designs, Codes and Cryptography, 14 (1998), pp. 57–69.
[19] S. O. Lee, S. W. Jung, C. H. Kim, J. Yoon, J. Y. Koh, and D. Kim, Design of Bit Parallel Multiplier with Lower Time

Complexity, in Information Security and Cryptology - ICISC 2003, 6th International Conference, Seoul, Korea, November
27-28, 2003, Revised Papers, vol. 2971 of Lecture Notes in Computer Science, Springer-Verlag, 2004, pp. 127–139.

[20] E. D. Mastrovito, VLSI Designs for Multiplication over Finite Fields f (2m)., in Applied Algebra, Algebraic Algorithms
and Error-Correcting Codes, 6th International Conference, AAECC-6, Rome, Italy, July 4-8, 1988, Proceedings, vol. 357
of Lecture Notes in Computer Science, Springer-Verlag, 1989, pp. 297–309.

[21] P. L. Montgomery, Five, Six, and Seven-Term Karatsuba-Like Formulae, IEEE Trans. Comput., 54 (2005), pp. 362–369.
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TIME QUANTUM GVT: A SCALABLE COMPUTATION OF THE GLOBAL VIRTUAL
TIME IN PARALLEL DISCRETE EVENT SIMULATIONS

GILBERT G. CHEN∗ AND BOLESLAW K. SZYMANSKI†

Abstract. This paper presents a new Global Virtual Time (GVT) algorithm, called TQ-GVT that is at the heart of a new high
performance Time Warp simulator designed for large-scale clusters. Starting with a survey of numerous existing GVT algorithms,
the paper discusses how other GVT solutions, especially Mattern’s GVT algorithm, influenced the design of TQ-GVT, as well as
how it avoided several types of overheads that arise in clusters executing parallel discrete simulations. The algorithm is presented
in details, with a proof of its correctness. Its effectiveness is then verified by experimental results obtained on more than 1,000
processors for two applications, one synthetic workload and the other a spiking neuron network simulation.

Key words. global virtual time, time warp, parallel discrete event simulation, scalability

1. Introduction. Parallel discrete event simulators [1] are perhaps among the most sophisticated dis-
tributed systems developed. A Parallel Discrete Event Simulation (PDES) must execute events according to
their inherent timestamp order which may differ from the order in which they are created. Historically, two
main methods have been introduced to deal with this problem, one called conservative [2, 3] and the other
optimistic (or Time Warp) [4].

The notion of Global Virtual Time (or GVT) [4] was first introduced by Jefferson to track the earliest
unprocessed events in the entire simulation. By definition, GVT at any given instance of the simulation execution
is the minimum value among the local virtual times of all processors and the timestamps of all messages in
transit. Any processed event with a timestamp earlier than the current GVT will not be rolled back under
any circumstances, and therefore the memory associated with it can be safely released. Without the notion of
GVT, the Time Warp mechanism would be impractical because of its huge memory consumption. However, it
is impossible to compute the exact GVT as it would require collecting information on distributed processors at
exactly the same wall-clock time. Fortunately, a lower bound on GVT is also useful as events earlier than such
a bound can be safely removed. Although events with a timestamp larger than the GVT estimate but smaller
than the true GVT value cannot be removed, those events should not have a significant impact on memory
usage, as long as the GVT estimate is sufficiently close to the true GVT value.

GVT computation is perhaps the only global operation in Time Warp. All others, such as rollbacks, state
saving, and sending and handling of anti-messages, can be carried out locally. Therefore, GVT computation is
known to be the least scalable component of Time Warp and it is no surprise that the accuracy and overhead
of the GVT computation may dominate the overall performance of Time Warp.

GVT is useful not for Time Warp only. A few variants of conservative protocols, such as the conditional
event approach [5] and the LBTS approach [6], which largely depend on the amount of lookahead, also need to
compute Lower Bound on Time Step (LBTS) which computationally is equivalent to GVT. In our future work,
we will evaluate performance of TQ-GVT for such software platforms. The less-known third class of PDES
protocols is based on lookback [7, 8] and some of its variants (see [9] for details) rely on prompt GVT estimates
as well. A good GVT algorithm is the key to the efficiency of these protocols.

Numerous GVT algorithms [10]–[24] have been devised. Many papers introducing them [10, 11, 14, 16, 20,
22] focused on feasibility and correctness of GVT computation but did not provide performance data. Those
that did, gave the results of runs with quite limited number of processors. The largest Time Warp simulation
that has been described in the literature, in terms of the processor count, was presented in [25], which, however,
did not employ a general GVT algorithm. The largest Time Warp simulation with a general GVT algorithm was
reported in [26] with runs on 104 processors. The first Time Warp simulator, Time Warp Operating System,
had to limit GVT computation frequency to less than one execution per every 5 seconds on 32 processors,
because of its overhead [27].

This paper presents a new GVT algorithm, called Time Quantum GVT (TQ-GVT), which, although con-
ceptually simple, is efficient and scalable. TQ-GVT has proven to be able to deliver GVT estimates every tenth
of a second on as many as 1,024 processors. The associated overhead is small: each GVT message is either 16
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or 48 bytes long. In addition, the total number of GVT messages needed for each GVT computation is always
twice the number of processors. Hence, the number of GVT messages per processor is constant, independent of
the number of processors used. As a result, the aggregate network bandwidth consumed by GVT computation
alone is less than 1 Mbytes per second on a parallel computer with 1,024 processors.

The paper first surveys other GVT algorithms. It then describes how TQ-GVT works, proves its correctness,
and provides concrete evidence that TQ-GVT works as expected on two applications, one synthetic and the
other realistic. Finally, it concludes by summarizing the properties of TQ-GVT and by outlining an additional
research that can be done on this topic.

2. Related Work. Designs of GVT algorithms focus on either shared-memory or distributed computers.
Shared-memory GVT algorithms assume that certain variables are accessible by all processors [28, 29], so
they perform well on Symmetric Multi-Processing machines, but their performance is unclear on Non-Uniform
Memory Access ones in which dependence on global variables limits scalability of any algorithm.

Distributed GVT algorithms do not use global variables and therefore are more scalable. By definition,
GVT at a wall-clock time is either the smallest local virtual time or the smallest timestamp of all messages in
transit. As it is impossible to measure local virtual times at the same wall-clock time on different processors,
techniques were needed to make the measurements look like they were taken simultaneously. Most of these
techniques are in general based on overlapping intervals [10, 12, 14, 16, 19], two cuts [13, 17], or global reduction
[18, 20, 21].

Overlapping Intervals. The overlapping interval technique selects an interval of wall-clock time for each
processor, such that the intersection of all intervals is nonempty. Any point in wall-clock time within this
intersection can be viewed as an instant at which the GVT measurement was taken. The smallest local virtual
time at any such instant is guaranteed to be no smaller than the smallest local virtual time within the intersection
of all intervals.

Two methods are normally used for building these overlapping intervals. The first method, widely used in
early GVT algorithms, consists of broadcasting two messages from an initiator [12, 14, 19], a START message
to begin the process, and then, after receiving responses from all processors, a STOP message, after which the
initiator waits for responses again. The times of receiving of START and STOP messages on each processor
(and the last response on the initiator) define the interval. The second method of building overlapping intervals
involves circulation of a special token between processors, normally in a predefined topology, and the interval
starts with one arrival of the token, and ends with its next arrival [10].

However, the overlapping intervals technique presents only a partial solution. Another problem that needs
to be addressed by GVT algorithms is how to account for transient messages, the second part of the GVT
definition. Transient messages are those that have been sent but have not been yet received. They must be
accounted for by either the sender processor or the receiver processor, or both. The simplest solution is to use
message acknowledgments, so that any message whose acknowledgments has not been received is deemed to be
transient and its timestamps must be included in the GVT computation.

It is no coincidence that earlier GVT algorithms [12, 14, 19] often implemented the message acknowledgment
scheme, for it is a simple solution. However, its primary drawback is that it almost doubles the total number
of messages sent in the simulation, so the performance may deteriorate. A natural optimization is not to use
separate acknowledgment messages, but to piggy-back acknowledgments in normal messages that carry events
[10]. Still, such an optimization does not completely alleviate the problem.

Lin and Lazowska [16] proposed to use sequence numbers to reduce acknowledgment overhead. Messages
sent from one processor to another are marked with consecutive, increasing sequence numbers. When GVT
related information is needed, processors will notify neighbors of the latest sequence numbers they have seen.
These sequence numbers tell which messages have been received, and which have not.

Another drawback of the message acknowledgment scheme is quite subtle. It is not a trivial task to find
out the earliest timestamp among unacknowledged messages. Such an operation is not of constant time and
may require the use of a priority queue.

Two Cuts. Mattern [17] realized that it is not necessary to select a common wall-clock time to compute
GVT. The GVT value can be determined from a snapshot of a consistent global state on all processors. He
proposed the notion of “cuts”, which consist of points, one per processor, dividing the time line into the “past”
and the “future”. A consistent cut is the one in which no message travels from the future to the past. The
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GVT can be computed from the local virtual times at cut points of a consistent cut and the set of transient
messages (which are now defined as messages traveling from the past to the future).

Another, simpler solution, widely known as Mattern’s GVT algorithm, attempts to construct two cuts.
Luckily, neither cut needs to be consistent. The only requirement is that all messages sent before the first cut
must be received before the second cut. The GVT estimate is now the minimum of the local virtual times at
the cut points on the second cut, or the smallest timestamp of the messages sent after the first cut, whichever
is smaller. Messages crossing the second cut from the future to the past can be ignored, since these messages
are guaranteed to have a timestamp larger than the GVT value.

In its original form, Mattern’s GVT algorithm uses token passing to construct the two cuts [17]. A vector
clock, contained in the token being passed between processors, monitors the number of transient messages sent
to every processor. The token can leave the current processor only after all messages destined to it have been
received. Thus, the second cut can be built with only one round of token passing, but its creation may incur a
delay on each processor.

Mattern proposed several variants to remove the vector clock or the delay on every processor [17]. In one,
a scalar counter replaces the vector clock. However, now the second cut is not guaranteed to be done with one
round of token passing; several rounds may be necessary. Mattern also presented another variant in which a
single round is sufficient without the use of vector clock. However, it still requires tokens to be delayed on each
processor.

Choes and Tropper [13] improved the original Mattern’s GVT algorithm by using a scalar counter to track
the number of messages sent before the first cut. When this counter reaches zero, no more messages originating
from before the first cut are in transit, which signals the completion of the second cut. Even though multiple
rounds may be needed, the authors observed that two rounds are sufficient in most cases.

There are two other GVT algorithms which do not appear similar to Mattern’s GVT algorithm but in fact
are based on the idea of constructing consistent cuts. In Tomlinson and Garg’s GVT algorithm [22], simulation
times instead of wall-clock times are used to schedule GVT computations. A cut point is the point at which
a processor reaches a scheduled simulation time, and extra consideration must be taken to ensure a consistent
cut. Bauer and Sporrer’s GVT algorithm [11] identifies reports that form a consistent cut, and then uses these
reports to derive a GVT estimate.

Global Reduction. Global Reduction is a simplification of Mattern’s GVT algorithm. When all processors
arrive at a synchronization point, a global reduction is performed on the number of transient messages that
were sent and not received before the synchronization point. When this number becomes zero, it is apparent
that no transient messages exist so that the information collected at the synchronization point can be used to
compute the GVT estimate.

Perumalla and Fujomoto [18] presented a global reduction GVT algorithm which divides the time lines into
bands. Bands are constructed in such a way that the messages sent during one band are guaranteed to be
received in the current or next band. Thus, the boundaries of a band form two consecutive cuts, as in Mattern’s
GVT algorithm.

Steinman et al [21] described a synchronous GVT algorithm also based on global reduction. Srinivasan
and Reynolds [20] developed yet another GVT algorithm that relies upon global reduction, but their algorithm
requires hardware support.

Other Algorithms. There are some GVT algorithms that cannot be easily grouped into any of the three
categories discussed so far. The pGVT algorithm [15] uses a GVT manager to monitor the progress of every
processor and to compute the GVT based on information collected from processors. Processors are required
to report to the GVT manager whenever they receive a straggler message. The Seven O’clock algorithm [23]
assumes that the underlying network can always deliver events within a certain time window. Based on this
assumption, a new notion called Network Atomic Operation is introduced which then extends Fujimoto and
Hybinette’s shared-memory GVT algorithm [28] to the distributed memory domain. A similar idea that enables
bypassing message acknowledgment if the maximum transmission delay is known has been introduced in [14].

The Continuously Monitored GVT (CMGVT) algorithm allows processors to calculate GVT based on
the local information constantly available to each processor. supplemented with the global information, such
as the local virtual time of each processor and information about messages in transit, that is appended to
simulation messages [24]. Hence, the algorithm works well when there is a lot of simulation message traffic
and the communication is local, as was the case of the spatially explicit simulations considered in [24]. The
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Table 2.1
Comparison of Various GVT Algorithms

Authors Idea Ack Vector Channel Scalability 

Samadi 
[19]

 Broadcast START and 

STOP messages to form 

overlapping intervals 

Yes No Any N/A 

Bellenot 
[12]

 Use message routing graph 

instead of broadcast 

Yes No Any 104 
[26]

 

Das and Sarkar 
[14]

 Optimize the computation 

for hypercube topology 

No No Maximum 

Delay 

N/A 

Baldwin, Chung and 

Chung 
[10]

 

Pass a token to form 

overlapping intervals 

Yes No FCFS N/A 

Lin and Lazowska 
[16]

 

Send valley messages to 

reduce acknowledgement 

traffic 

Implicit No Any N/A 

Mattern 
[17]

 Construct two cuts such that 

no transient messages sent 

before the first cut exist 

No Yes Any 12 
[13]

 

Choe and Tropper 
[13]

 

Create multiple rounds of 

token passing to form the 

two cuts 

No No Any 12 
[13]

 

Tomlinson and Garg 
[22]

 

Build consistent cuts by 

using TGVT events 

No Yes Any N/A 

Bauer and Sporrer 
[11]

 

Identify pairs of reports that 

form a consistent cut 

No No FCFS N/A 

Srinivasan and 

Reynolds 
[20]

 

Use hardware-based global 

reduction 

No No Any N/A 

Steinman, Lee, 

Wilson, and Nicol 
[21]

 

Use global reduction No No Any 64 
[21]

 

Perumalla and 

Fujimoto 
[18]

 

Use global reduction No No Any 16 
[18]

 

D’Souza, Fan, and 

Wilsey 
[15]

 

Report stragglers to a GVT 

manager 

Yes No Any 2 
[15]

 

Bauer, Yuan, 

Carothers, Yuksel, 

and Kalyanaraman 
[23]

 

Extend Fujimoto’s shared-

memory GVT algorithm 

with the notion of network 

atomic operations 

No No Maximum 

Delay 

16 
[23]

 

Deelman and 

Szymanski [24] 

Use vector and matrix clocks 

to keep track of messages in 

transit 

No Yes Any 16 
[24]

 

 

disadvantage of this algorithm is the need of communicating a matrix of processor knowledge about messages
in transit that is of the rank of the number of direct outgoing connections. Hence, this algorithm is scalable
only in applications in which the out-degree of all nodes in the processor communication graph is independent
of the graph size.

Summary of Existing GVT Algorithms. Table 1 summarizes the key ideas behind various GVT
algorithms and their requirements, such as the need of acknowledgments, the use of vector clocks, and the type
of the communication channels required. It also lists the highest number of processors on which each of them
has been run and reported in the literature.

When considering requirements for a highly scalable GVT algorithm, we identified several properties that
should be avoided as they limit scalability. First of those is the need for message acknowledgments that increase
the network traffic and interfere with the transmission of normal messages. Lin and Lazowska’s idea [16]
eliminates the necessity of explicit acknowledgments, but at the expense of larger latency of GVT computation
and of complex data structures to store messages. Second such property is the use of any vector whose size
is linear with the number of processors. Finally, a truly scalable algorithm should not impose any special
requirements on the communication channel except two basic ones, the First-Come-First-Served order of delivery
and reliable (no-loss) delivery. These two requirements are satisfied by many popular communication libraries,
such as MPI or TCP/IP.

Only a handful of existing algorithms meets all three requirements. Among them, Bauer and Sporrer’s
algorithm [11] has to determine pairs of consistent reports for every pair of processors that may communicate,
making it rather difficult to scale. Hence, the two cut techniques, introduced in [13, 17] and global reduction
[18, 21], are the only plausible candidates. However, all these approaches introduce scalability challenge in the
way the second cut is constructed. Either some delay is incurred while processors wait for a certain condition
to be satisfied, or multiple communication rounds are needed to complete the second cut. The origin of the
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problem is that they all attempt to determine the completion of the second cut collectively by all processors.
Motivated by this analysis, we propose an alternative, which constructs the second cut in a centralized way,
thus avoiding the scalability problems that may arise when these approaches are used on a very large number
of processors.

3. Overview of Time Quantum GVT. Two essential features distinguish Time Quantum GVT (TQ-
GVT) from other GVT algorithms. First, TQ-GVT assigns the task of GVT computation to one processor,
which is then referred to as the GVT master. The GVT master does not perform any simulation; its responsi-
bilities include only collecting GVT reports, as well as calculating and distributing GVT. All other processors,
called simulating processors, on the other hand, are not directly involved in the GVT computation. This ap-
proach is basically a centralized one; however, it differs from other centralized approaches in that the GVT
master never initiates GVT calculations. Instead, the GVT master passively listens to GVT messages and takes
actions only when they come. In this respect, TQ-GVT is similar to the pGVT algorithm [15], which, however,
requires that simulating processors report to a dedicated processor every time a straggler arrives.

Second, TQ-GVT divides the wall-clock time into a continuous sequence of time quanta with equal width.
Time quanta need not be precisely synchronized on different processors. Each processor maintains a counter
indicating the index of the current time quantum and increases the counter at the end of the time quantum
defined by its own hardware clock. Every message is marked with the index of the time quantum from which it
is sent. The purpose of time quantum is to group messages, so if there is a way to track the number of transient
messages from each time quantum, then, in computing GVT, only time quanta with messages in transit need
to be taken into account.

Time quanta are similar to bands described in [18] in which, however, the division of the wall-clock time
into bands is driven by the completion of the corresponding GVT computation. As a result, in the algorithm
proposed in [18], processors cannot proceed to the next band if the GVT computation has not finished. In
contrast, in TQ-GVT, the results or status of GVT computation have no impact on the division of wall-clock
into time quanta.

 

Processor 1 

Processor 2 

Processor 3 

Processor 4 

Time Quantum 0 1 2 3 4 

Reports 

Completed Cuts 

First Cut 

Second Cut 

Wall-clock 

Time 

Fig. 3.1. An Illustration of the Time Quantum GVT Algorithm

Figure 1 illustrates the basic idea of TQ-GVT. Small circles indicate the wall-clock times at which processors
advance to next time quantum and send out GVT reports. The GVT master constructs cuts from the reports
stamped with the same time quantum index. If, for a particular time quantum, the reports from all processor
have been received, then the cut is regarded as completed. The GVT master monitors the number of sent as
well as the number of received messages within each time quantum, based on information carried in the GVT
reports. If the two numbers associated with a given time quantum are equal, then all messages sent during this
time quantum must have already been received. Hence, the algorithm is based on the Mattern’s idea of two
cut [17]: the first cut consists of reports for the latest time quantum that contains no transient messages, and
the second cut consists of latest reports from every processor.

The use of an exclusive processor for GVT computation may appear an obstacle to scalability, since cen-
tralized approaches are usually difficult to scale. Nevertheless, one or more levels of intermediate GVT masters
can be introduced, each of which keeps track of the number of transient messages in each time quantum for a
subset of processors. These numbers must then be reported to the root GVT master, which in turn determines
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whether or not there are still messages in transit from each time quantum and calculates the GVT accordingly.
Empirically, in current hardware platforms, one GVT master can drive as many as 128 simulating processors,
so an extra level of intermediate masters is needed to increase the number of simulating processors to 16,384. If
this is not sufficient, more levels of GVT masters can be added. A very small percentage of processors, 129 out
of 16,513, or merely 0.78 percent, will not be directly participating in the simulation. Hence, such a solution
is suitable for clusters in which the numbers of processors involved in a computation are large. It should be
noted that the use of such reduction network for conservative parallel discrete simulation was introduced already
(see [6]), however, the reduction was applied to all simulation processors, unlike in our solution in which only
GVT masters participate in reduction.

Two factors contribute to the low overhead of TQ-GVT. First, in TQ-GVT, GVT computation does not
interfere with other simulation activities. Simulating processors are only engaged in processing events and
transmitting and receiving messages. To support GVT computation, they just need to send report messages
periodically, and to receive GVT messages as they come. If GVT messages do not come on time, simulating
processors are never delayed or blocked, as in the case of some other algorithms, unless the delay is so large
that it begins to interfere with fossil collection. As a result, only the GVT masters are involved in a significant
amount of GVT computation. Since this is their sole task, the GVT masters can respond to incoming messages
more swiftly than simulating processors which would have to switch between checking and receiving incoming
messages and processing events. The cost of GVT computation for simulating processors is a non-blocking send
of a report message at the end of each quantum and a non-blocking receive of the new GVT value if there is a
GVT message.

Second, in TQ-GVT, different rounds of GVT computation are overlapped. One round does not need to
be completed before the next round starts. For example, a processor can keep sending the GVT master a
report message at the end of each time quantum, even if the reports from previous quanta have not reached the
GVT master yet. The GVT master decides which reports to use based on the number of transient messages
in each time quantum. Thus, this solution is insensitive to the large latency of the interconnection network
often found in clusters, as well as to the local clock asynchrony that results in different processors reaching the
synchronization point at different wall-clock times.

4. Detailed Description of TQ-GVT. TQ-GVT uses three types of messages. An event message,
denoted by E(tq, ts), is the carrier of a positive event or an anti-event, where ts is the timestamp and tq is the
index of the time quantum from which the event was sent. A GVT message G(gvt) simply contains the value of
the new GVT estimate. A report message has the format of R(i, tq, LV T, MV T, send, RECV []), where i is the
processor id, tq is the index of the current time quantum, LV T is the local virtual time, MV T is the earliest
event sent during the current time quantum, send is the count of messages sent out during the current time
quantum, and RECV [] is a vector of integers, each of which denotes the number of events received that were
sent from the corresponding time quantum.

In Figure 2, lines 1-22 show the procedure executed on simulating processors and lines 23-37 the procedure
of the GVT master. Lines 1-5 initialize variables needed by report messages. Lines 6-22 are the main loop of
the simulation. Among them, lines 7-11 process one or more events and update MVT and LVT accordingly.
Lines 12-13 check if a new GVT estimate is available. Lines 14-16 receive any incoming messages, and update
RECV [] and LVT accordingly. Lines 17-22 send a new report to the GVT master, reset variables and then
advance to next time quantum.

For GVT master, lines 23-26 initialize several variables needed to compute the GVT. TRANSIT [] represents
the number of transient event messages for every time quantum, LV T [] stores the local virtual time for each
processor, and MV T [] stores the smallest timestamp sent during each time quantum. The main simulation
loop keeps receiving report messages until the end of simulation. For every received report, at lines 29-33, the
GVT master updates the corresponding elements in LV T [], MV T [], and TRANSIT []. At lines 34-35, the GVT
master attempts to calculate a new GVT estimate as the minimum of the LVT of all processors and the MVT
of all time quanta that still have event messages in transit. If the new GVT estimate is different from the old
one, it will be broadcasted to every simulating processor.

In the above version of the TQ-GVT algorithm, the report message contains a vector of integers each of
which denotes the number of received event messages indexed with the corresponding time quantum. At the
minimum, received messages have to be reported only for the oldest time quantum active at this processor (i. e.,
the smallest k such that RECV [k] > 0). With this solution, a delay once accumulated could not be decreased.
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 Simulating processor i: 

1. tq=0 

2. send=0 

3. RECV[]=0 

4. MVT=∞ 

5. LVT=0.0 

6. while not end of simulation 

7.   process one or more events 

8.   for any message E(tq,ts) sent 

9.       MVT=min(MVT,ts) 
10. send++ 

11.   update LVT 
12.   if a GVT message G(gvt) is received 
13.     update the GVT value 
14.   if an event message E(tq',ts) is received 
15.     RECV[tq']++ 
16.     if(ts<LVT)LVT=ts 
17.   if time for next quantum 
18.     send R(i,tq,LVT,MVT,send,RECV[]) 
19.     send=0 
20.     RECV[]=0 

21.     MVT=∞ 

22.     tq++; 
GVT master: 

23. gvt=0.0 
24. TRANSIT[]=0 
25. LVT[]=0.0 

26. MVT[]=∞ 

27. while not end of simulation 
28.   if R(i,tq,lvt,mvt,send,RECV[]) is received 
29.     LVT[i]=lvt 
30.     MVT[tq]=min(MVT[tq],mvt) 
31.     TRANSIT[i]+=send 
32.     for each j in RECV[] 
33.       TRANSIT[j]-=RECV[j] 
34.     gvt=min(LVT[i] for any i,  
35.           MVT[j] for any j such that TRANSIT[j]!=0) 
36.     if gvt changes 
37.       broadcast G(gvt) 

Fig. 4.1. TQ-GVT: Program for Simulating Processors and GVT Master

Hence, in the actual implementation, we use a maximum length k on this vector, so messages received from
k oldest active time quanta are reported. By doing so, the correctness of the algorithm is not changed; the
only effect may be that the GVT will be more conservatively computed. This happens because at most k time
quanta can be removed from consideration at the end of each time quantum by the GVT master. In our limited
experiments, k set to 2 or 4 gave the best performance. In summary, only a vector of size k with each entry
containing a number of received messages in the corresponding time quantum needs to be sent to the GVT
master, making the length of report messages constant, regardless of how many processors are being used.

The code for intermediate level GVT masters is not presented here. The reason is simple: these GVT masters
act as messengers that merely forward any messages they receive. They may perform some optimization, such as
combing multiple report messages coming from different processors but with the same time quantum index into
a single report message. The only effect of using intermediate GVT masters is the prolonged communication
delay. However, as evident in the next section, TQ-GVT does not impose any limitation on message transmission
delay, so the discussion on intermediate GVT masters is omitted.

5. Correctness of TQ-GVT. To prove the correctness of a GVT algorithm, a usual approach is to show
that neither the transient message problem nor the simultaneous reporting problem exists [16, 30]. Here, a
different approach will be used. Instead of proving that what TQ-GVT computes is a lower bound estimate of
the GVT value according to the authentic definition of GVT, we will prove the correctness of TQ-GVT based
on a “utilitarian” definition of GVT (similar technique was used in [28] for a different GVT algorithm). That
is, we will show that the following Lemma holds.

Lemma. If an event message m1 with timestamp ts(m1) is received after a GVT value gvt is received,
then ts(m1) ≥ gvt.
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Proof. We prove this property by contradiction using induction. Hence, we assume that a processor i1 sent
at time quantum s1 a message m1 such that ts(m1) < gvt. Let j1 be the time quantum from which the last
report message was sent by processor i1 and received by the GVT master before the current gvt was obtained.
Let LV Ti,j denote the local virtual time reported by processor i at the end of time quantum j.

It cannot be that ts(m1) ≥ LV Ti1,j1 , since LV Ti1,j1 is taken into account in computing gvt, so LV Ti1,j1 ≥
gvt. Neither it could be that s1 ≤ j1, since then ts(m1) would be reflected in the MVT value corresponding to
s1, contradicting our assumption that ts(m1) < gvt. Hence, s1 > j1 and ts(m1) < LV Ti1,j1 , so there must be
another message m2, sent by a different processor i2, which caused a rollback on processor i1, and this message
timestamp satisfies the inequality gvt > ts(m1) > ts(m2), as a rollback never affects the events with the same
or earlier timestamps than the timestamp of the rollback message itself. From that it follows that message m2

also satisfies s2 > j2, where s2, j2 are analogs of s1, j1.

By induction, let’s assume that there is a message mk, sent by processor ik, such that ts(mk) < gvt and
sk > jk, where jk denotes the latest time quantum on processor ik that is included in the current value of
gvt and sk is the time quantum at which message mk was sent. It cannot be that ts(mk) ≥ LV Tik,jk

, since
LV Tik,jk

is taken into account in computing gvt, so LV Tik,jk
≥ gvt. Hence, ts(mk) < LV Tik,jk

, so there must
be another message mk+1, sent by a different processor ik+1, which caused a rollback on processor ik, and
this message timestamp satisfies the inequality gvt > ts(mk) > ts(mk+1). We define sk+1, jk+1 as analogs of
sk, jk. For message mk+1, it cannot be that sk+1 ≤ jk+1, since then ts(mk+1) would be reflected in MVT value
corresponding to sk+1, contradicting our conclusion that gvt > ts(mk+1).

Hence, by induction we conclude that our assumption that ts(m1) < gvt implies that there is an infinite
sequence of messages with timestamps smaller than gvt, which contradicts the basic premise that each simulation
can generate only a finite number of messages in the finite simulation time gvt.[]

The above proof makes no assumption on the delay of massage passing. Therefore, the use of intermediate
GVT masters will not affect the correctness of TQ-GVT.

6. Experimental Results. TQ-GVT has been implemented in DSIM [31], a new distributed Time Warp
simulator available freely at http://www.cs.rpi.edu/ cheng3/dsim. Although DSIM features several novel
techniques that effectively reduce the overhead of Time Warp operations, we are convinced that TQ-GVT is
the main thrust that enables DSIM to scale to at least 1,024 processors without any sign of loss of efficiency.

Two applications have been built on top of DSIM to test the scalability of the simulator, as well as of the
new GVT algorithm. The first application is a simulation of the PHOLD benchmark, a synthetic workload
generator proposed by Fujimoto [32]. In our version of the PHOLD benchmark, each event stays at an LP
(Logical Process) for a time randomly chosen from the exponential distribution and then departs to one of four
nearest neighbors randomly chosen. LPs are organized into a two dimensional grid. Strip partitioning is utilized,
which allocates a continuous set of columns of LPs to the same processor. Although simple, the PHOLD model
is difficult to parallelize for two reasons. First, there is no lookahead in it, so conservative protocols do not
apply. Second, the event granularity is low, so the efficiency of parallelization is very sensitive to its overhead.

All the experiments were run on the Lemieux cluster at Pittsburgh Supercomputing Center consisting of
750 nodes, each with 4 AlphaServer processors, connected by a Quadrics interconnection network. The top part
of Figure 3 shows the committed event processing rates of DSIM running the PHOLD benchmark on up to 1024
processors for about 50 sec of simulation time. Each simulating processor simulated 8 columns of LPs, with
8,192 LPs in each column, regardless of the total number of processors used, so the workloads on each processor
remained constant, while the size of grid increased linearly with the number of processors. A number associated
with each data point indicates the number of extra processors allocated exclusively to executing the TQ-GVT
algorithm. It was determined empirically that each GVT master can drive as many as 128 processors. Starting
from 256 processors, an extra level of up to 8 intermediate GVT masters were introduced.

When moving from a sequential simulator to a parallel one, there is a significant drop in the event rate for
this and the other application shown at the lower part of Figure 3. It takes two to three parallel processors to
match the performance of one sequential processor. This is caused by three factors. First, there is an overhead
of memory and time used for storing and releasing the processed events in the parallel processor for use in case
of rollbacks (but there cannot be any rollbacks with one parallel processors). Then, there is a larger footprint of
the parallel program compared with the sequential one as the former contains code for rollbacks, communication
with peers and the GVT master. Both of those factors limit the size of the simulation that a single parallel
processor can run to a fraction of what the sequential processor can. Finally, there are (superfluous in this
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 Fig. 6.1. Event Processing Rates with the PHOLD (top) and Spiking Neural Network (bottom)

case) interactions with the GVT master slowing the progress of a parallel processor. However, all these factors
contribute a constant overhead per each parallel processor, so the parallel performance grows practically linearly
with the number of parallel processors used.

For the largest simulation with 1024 processors, over 11 billion committed events were processed, over 3
million rollbacks executed and 250 GVT computations performed that required sending more than 250,000 GVT
reports.

The top of Figure 4 depicts the numbers of remote (i. e. those sent between different processors) and
GVT messages on a logarithmic scale. The number of remote messages increased linearly with the number
of processors, since the amount of workload on each processor was fixed. The remote messages constituted
6.6% of all messages generated in the simulation. The number of GVT messages increased linearly too, except
that changing from 32 processors to 64 processors caused a sudden drop because we changed the width of
time quanta from 0.1 to 0.2 second at this point. This parameter controls how frequently GVT computation
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 Fig. 6.2. GVT and Remote Messages for PHOLD (top) and Spiking Neural Network (bottom)

is executed, so it impacts overall performance. A large time quantum increases memory consumption of the
simulation. A small value increases the bandwidth needed for GVT reports and messages. The best value for our
simulations was estimated empirically and justified by the following reasoning. The peak event rate per Lemieux
node approaches one million events per second, so in a time quantum of 0.1 second a processor accumulates 0.1
million events. Each event occupies between 100 and 1000 bytes, so the total accumulated memory per quantum
is anywhere from 10MB to 100MB, well below the memory limit of the machine. Further studies are needed on
techniques for optimally selecting this parameter in more general cases. However, the general analysis is simple
and points out that the overhead of the TQ-GVT is practically linear with the number of processors used.

Let a be the factor that defines the memory occupied by the events processed in a time unit. For each
application, a is a constant defined by the event processing rate and an average event size. Let tintergvt denote
the time between two subsequent GVT computations. Then, the memory consumed by the application is
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m0 + a ∗ tintergvt, where m0 is the footprint of the parallel program and its static data at each processor.
Consequently, if each processor has the available memory M , then tmax

intergvt is limited to tmax
intergvt = (M −m0)/a.

On the other hand, the overhead of the TQ-GVT is constant in time for each GVT computation round and
for each processor, as it requires sending and receiving a message of a constant size. We will denote it by tgvt.
However, for simulation we can use only n−nm processors, where n denotes the total number of processors and

nm denotes the number of processors used as GVT masters. By definition, nm =
∑⌈logp(n−nm)⌉

i=1 ⌈n−nm

pi ⌉, where

p is the maximum number of processors that a single GVT master can handle (so, p = 128 in our experiments).

Hence, the number of GVT masters is bounded by nm ≤
∑⌈logp(n)⌉

i=1
n−nm

pi + ⌈logp(n)⌉ < n−nm

p−1 + ⌈logp(n)⌉.
Hence, the overall overhead of TQ-GVT is less than

nm

n

tgvt

tintergvt + tgvt
≤

(
1

p
+

logp(n) + 1

n

)
a ∗ tgvt

M −m0
. (6.1)

Since (logp(n) + 1)/n tends to zero as n tends to infinity, this overhead bound is nearly constant, slowly

decreasing with an increase of n to a constant
tgvt

p
a

M−m0
. In this expression, the first fraction is dependent on

the communication subsystem of the parallel machine used (tgvt is defined by the time it takes to sent a GVT
report and p is limited by the number of simultaneous GVT reports which a single processor can process) while
the second fraction represents the computational capabilities of each processor (a is defined by the speed of
event processing and M −m0 is limited by the size of the memory available on each processor).

The bottom parts of Figures 3 and 4 show that DSIM, as well as TQ-GVT within it, worked equally well
for a realistic application, the simulation of Spiking Neural Networks. In this simulation, a network of artificial
spiking neurons serves as a computationally efficient model of a network of neurons with membrane currents
governed by voltage-gated ionic conductances. In our simulation, all the state variables of a model neuron are
computed analytically from a new set of initial conditions. Computations are performed only when an event is
executed, so the total computation time is proportional to the number of events generated and independent of
the number of neurons simulated. Each spike event in a neuron creates weighted synaptic input events for all
neurons connected with the spiking one, each event scheduled with its specific time delay.

The simplest model of this kind, called IntFire1 [33], is a leaky integrator that treats input events as weighted
delta functions. When executing an input event of weight w, an IntFire1 neuron increases its “membrane
potential” state m instantaneously by an amount equal to w and thereafter resumes its state decay toward 0
with time constant τm.

We have implemented a model modeling the behavior of a biological neuron more closely than IntFire1 that
is known as the IntFire2 mechanism [33]. Unlike IntFire1 model, its “membrane potential” state m integrates
a net synaptic current i. An event executed on an IntFire2 neuron makes the synaptic current jump by an
amount equal to the synaptic weight, after which i continues to decay toward a steady level ib with its own time
constant τs, where τs > τm. Thus a single input event produces a gradual change in m with a delayed peak,
and neuron firing does not obliterate all traces of prior synaptic activation.

In our simulations, we set τs = 2τm to simplify the calculation of the solution. It should be noted that
this change lowered the event granularity which in turn made the parallelization more difficult. Again, the
workloads on individual processors were constant by allocating 512 ∗ 512 = 262, 144 neurons to each processor.
Neurons were also organized into a two-dimensional grid and each pair of neurons with a distance no greater
than 4 has a dendrite connecting them. Therefore, each neuron was connected to 50 other neurons. On 1,024
processors there were totally 262, 144 ∗ 1, 024 = 268, 435, 456 neurons simulated, with an event processing rate
of more than 3 hundred million committed events per second. The performance curve was similar to that of
PHOLD simulation. The only difference was that parallel execution on two processors exhibited smaller drop
in performance when compared to the sequential execution, thanks to a technique used to dramatically reduce
the number of remote messages for spiking neural network simulation. The technique is based on a simple
observation that if a firing neuron is connected to many neurons that belong to a different processor, it can
use a proxy neuron placed at the remote processor and communicate just with the proxy neuron which then
communicate to all neurons connected at the remote processor that are connected to the firing neuron. This
technique does not reduce the number of events processed, but does effectively reduce the inter-processor traffic
by compressing many remote messages into one.

For the largest simulation with 1024 processors, over 53 billions committed events were processed in 151
seconds of the running time. There were over a million rollbacks executed and over 1,500 GVT computations
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performed that required sending more than 1,500,000 GVT reports. The bottom of Figure 4 again confirms the
low communication overhead of TQ-GVT.

7. Conclusion and Future Work. TQ-GVT demonstrated strong performance on more than one thou-
sand processors and its design does not contain any scalability obstacles. With the invention of TQ-GVT, we
believe that one major obstacle to the general applicability of Time Warp to large supercomputers and clusters
has been solved. We plan to apply Time Warp to current modern super-scale parallel computers consisting of
tens or hundreds of thousands of processors, to simulate realistically complex models of great interest to science,
such as spiking neural networks.
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Third Edition
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Addison Wesley

This is a textbook that introduces computer science theory, using formal abstract mathematics, for Junior
and Senior computer science students. The third edition, to summarize the author, adds examples, expands the
selection of topics, and provides more flexibility to the instructor in the design of a course.

The book is in five parts: (I) Foundations; (II) Grammars, Automata, and Languages; (III) Computability;
(IV) Computational Complexity; and, (V) Deterministic Parsing. Many exercises are provided throughout to
assist the student in understanding the material.

Chet Langin

Reconfigurable Computing. Accelerating Computation with Field-Programmable Gate Arrays
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Reconfigurable Computing Accelerating Computation with Field-Programmable Gate Arrays is an expos-
itory and easy to digest book. The authors are recognized leaders with many years of experience on the field
of reconfigurable computing. The book is written so that non-specialists can understand the principles, tech-
niques and algorithms. Each chapter has many excellent references for interested readers. It surveys methods,
algorithms, programming languages and applications targeted to reconfigurable computing.

Automatic generation of parallel code from a sequential program on conventional micro-processor archi-
tectures remains an open problem. Nevertheless, a wide range of computationally intensive applications have
benefited from many tools developed to tackle such a problem. For RC, it is even a much harder problem
(perhaps 10x and up) and intense research is being devoted to make RC a common-place practical tool. The
aim of the authors is threefold. First, guide the readers to know current issues on HLL for RC. Second, help the
readers understand the intricate process of algorithmic-to-hardware compilation. And third, show that, even
though this process is painful, if the application is suitable for RC the gains in performance are huge.

The book is divided into two parts. The first part contains four chapters about reconfigurable computing
and languages. Chapter 1 presents an introduction of RC, contrasting conventional fixed instruction micropro-
cessors with RC architectures. This chapter also contains comprehensive reference material for further reading.
Chapter 2 introduces reconfigurable logic devices by explaining the basic architecture and configuration of FP-
GAs. Chapter 3 deals with RC systems by discussing how parallel processing is achieved on reconfigurable
computers and also gives a survey of RC systems today. Then, in chapter 4, languages, compilation, debugging
and their related manual vs. automatic issues are discussed.

The second part of the book comprises five chapters about applications of RC. Chapter 5 and 6 discuss
digital signal and image processing applications. Chapter 7 covers the application of RC to secure network
communications. The aim of Chapter 8 is to discuss some important bioinformatics applications for which RC
is a good candidate, their algorithmic problems and hardware implementations. Finally, Chapter 9 covers two
applications of reconfigurable supercomputers. The first one is a simulation of radiative heat transfer and the
second one models large urban road traffic.

This book is neither a technical nor a text book, but in the opinion of this reviewer, it is an excellent
state-of-the-art review of RC and would be a worthwhile acquisition by anyone seriously considering speeding
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up a specific application. On the downside, it is somewhat disappointing that the book does not contain more
information about HLL tools that could be used to help close the gap between traditional HPC community and
the raw computing power of RC.

Edusmildo Orozco,
Department of Computer Science,
University Of Puerto Rico at Rio
Piedras.
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