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INTRODUCTION TO THE SPECIAL ISSUE: REAL-TIME DISTRIBUTED SYSTEMS AND
NETWORKS

1. Introduction. The contents of this Special Issue is composed of extended versions of eight papers
presented at the 2008 edition of the Real-Time Software Workshop (RTS "08), held in October 2008, in Wisla,
Poland, as a part of the IMCSIT 2008 (International Multi-conference on Computer Science and Information
Technology). The papers included in this issue all focus on Real-Time Distributed Systems and Networks.
Papers from other focus areas of the RTS "08 workshop were submitted for publication elsewhere, and some od
them have recently appeared [1].

2. Contents of This Issue. The area of real-time distributed systems and networks is very broad, which
is reflected by the types of papers included here. However, the papers can be categorized based on the systems
development perspective. In this view, one can group papers in three essential categories, regarding whether
they deal with the methods, techniques, or tools for system development.

Papers in the methods category vary from more theoretical to practical aspects of distributed system design
and development. At the theoretical end, Le Berre et al. present a state-based modeling approach to analyzing
distributed embedded systems, based on the Temporal Logic of Actions, TLA+. More practical approaches are
presented in two other papers. Galdun et al. discuss a method for increasing reliability in networked control
systems via redundancy, and demonstrate it in a case study of a 4-rotor helicopter. Gonnord and Babau, in turn,
discuss resource management in embedded systems, by handling resource constraints using quality-of-service
criteria, and demonstrate it for an image processing example using their framework named Qinna.

Furthermore, Moritz et al. propose a method for handling real-time capable embedded web services, and
apply it in a mobile robot case study, while Binotto et al. offer a new method of dynamic task reconfiguration,
in an aspect oriented framework, and apply it in a UAV based surveillance system.

Regarding more specific techniques for real-time distributed system development, two papers are included
here. Martinez et al. give an application perspective on two case studies in wireless sensor networks: a healthcare
system and a networked control system. Finally, Song discusses a variety of localization techniques for mobile
sensor networks. The only paper related to tools, by Rzorca et al., discussing a development environment, for
programming small controllers, based on the IEC Std 61131-3, concludes this special issue.

3. Conclusion. In this Editor ‘s opinion, the eight papers presented here provide a good, although se-
lective, overview of the subject area, and offer an interesting perspective on problems and related solutions in
real-time distributed systems and networks.

For preparation of the RTS "08 Workshop thanks are due to the Workshop Program Committee co-chairs,
Professors Wojciech Grega from AGH University of Science and Technology, in Krakow, Poland, and Andrew
Kornecki from Embry-Riddle Aeronautical University, in Daytona Beach, Florida, USA.

Janusz Zalewski,

SCPE Editorial Board Member and RTS’08 Workshop Co-Chair,
Dept. of Computer Science,

Florida Gulf Coast University,

Fort Myers, FL 33965,

USA,

zalewski@fgcu.edu
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REAL TIME BEHAVIOR OF DATA
IN DISTRIBUTED EMBEDDED SYSTEMS*

TANGUY LE BERRE, PHILIPPE MAURAN, GERARD PADIOU, PHILIPPE QUEINNEC

Abstract. Nowadays, embedded systems appear more and more as distributed systems structured as a set of communicating
components. Therefore, they show a less deterministic global behavior than centralized systems and their design and analysis
must address both computation and communication scheduling in more complex configurations. We propose a modeling framework
centered on data. More precisely, the interactions between the data located in components are expressed in terms of a so-called
observation relation. This abstraction is a relation between the values taken by two variables, a source and an image, where the
image gets past values of the source. We extend this abstraction with time constraints in order to specify and analyze the availability
of timely sound values.

The formal description of the observation-based computation model is stated using the formalism of transition systems, where
real time is handled as a dedicated variable. As a first result, this approach allows to focus on specifying time constraints attached
to data and to postpone task and communication scheduling matters. At this level of abstraction, the designer has to specify
time properties about the timeline of data such as their freshness, stability, latency...As a second result, a verification of the
global consistency of the specified system can be automatically performed. The verification process can start either from the timed
properties (e.g. the period) of data inputs or from the timed requirements of data outputs (e.g. the latency). Lastly, communication
protocols and task scheduling strategies can be derived as a refinement towards an actual implementation.

Key words: real time data, distributed systems, verification

1. Introduction. Distributed Real Time Embedded (DRE) systems are increasingly widespread and com-
plex. In this context, we propose a modeling framework centered on data to specify and analyze the real time
behavior of these DRE systems. More precisely, such systems are structured as time-triggered communicating
components. Instead of focusing on the specification and verification of time constraints upon computations
structured as a set of tasks, we choose to consider data interactions between components. These interactions
are expressed in terms of an abstraction called observation, which aims at expressing the impossibility for a site
to maintain an instant knowledge of other sites. In this paper, we extend this observation with time constraints
limiting the time shift induced by distribution. Starting from this modeling framework, the specification and
verification of real time data behaviors can be carried out.

In a first step, we outline some related works which have adopted similar approaches but in different contexts
and/or different formal frameworks.

Then, we describe the underlying formal system used to develop our distributed real time computation
model, namely state transition systems. In this formal framework, we define a dedicated relation called obser-
vation to describe data interactions. An observation relation describes an invariant property between so-called
source and image variables. Informally, at any execution point, the history of the image variable is a sub-history
of the source variable. Actually, the source is an arbitrary state expression. An observation abstracts the rela-
tion between the inputs and the outputs of a communication protocol or between the arguments and the results
of a computation.

To express timed properties on the variables and their relation, we extend the framework so as to be able
to describe the timeline of state variables. Therefore, for each state variable z, its timeline, an abstraction of
its time behavior, is introduced in terms of an auxiliary variable & which records its update instants. Then,
real time constraints on data, for instance periodicity or steadiness, are expressed by relating these dedicated
variables and the current time. These auxiliary variables are also used to restrict the time shift between the
source and the image of an observation: the semantics of the observation relation is extended to allow to relate
the time behavior of a source and of an image by expressing different properties, such as the time lag between
the current value of the image and its corresponding source value.

The real time constraints about data behavior can be specified by means of these timed observations as
illustrated in an automotive speed control example.

Lastly, we discuss the possibility to check the consistency of a specification stated in terms of timed ob-
servations. A specification is consistent if and only if the verification process can construct correct executions.

* An earlier version of this paper was presented at the 3rd Real-Time Software Workshop, RT'S2008, in Wisla, Poland, October 20,
2008.

TUniversité de Toulouse—IRIT, 2, rue Charles Camichel, 31071 TouLouse, FRANCE {tleberre, mauran, padiou,
queinnec}@enseeiht.fr
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However, the target systems are potentially infinite and an equivalent finite state transition system must be
derived from the initial one before verification. The feasibility of this transformation is based upon assumptions
about finite bounds of the time constraints.

2. State of the Art. We are interested in systems such as sensors networks. Our goal is to guarantee that
the input data dispatched to processing units are timely sound despite the time shift introduced by the transit of
data. Most approaches taken to check timed properties of distributed systems are based on studying the timed
behavior of tasks. For example, works such as [10] propose to include the timed properties of communication
in classical scheduling analysis.

Our approach is state-based and not event-based. We express the timed requirements as safety properties
that must be satisfied in all states. The definition of these properties do not refer to the events of the system
and is only based on the values of the system variables. We depart from scheduling analysis by focusing on the
variables behavior and not considering the tasks and related system events. Our intent is to allow the developer
to give a more declarative statement of the system properties, easier to write and less error-prone. Indeed,
reasoning about state predicates is usually simpler than reasoning about a set of valid sequences of events.

Others approaches based on variables are mainly related to the field of databases. For example, the variables
semantics and their timed validity domain are used in [12] to optimize transaction scheduling in databases. Our
work stands at a higher level since we propose to give an abstract description of the system in terms of a
specification of relations between data. For instance, our framework can be used to check the correctness of an
algorithm with regards to the aging of the variables values. It can also be used to specify a system without
knowing its implementation.

Similar works use temporal logic to specify the system. For example, in [2], OCL constraints are used to
define the temporal validity domain of variables. A variation of TCTL is used to check the system synchroniza-
tion and prevent a value from being used out of its validity domain. This work also defines timed constraints on
the behavior and the relations between application variables, but these relations are defined using events such
as message sending whereas our definitions are based on the variable values.

In [9], constraints between intervals during which state variables remain stable are defined by means of
Allen’s linear temporal logic. In other words, this approach also uses an abstraction of the data timelines in
terms of stability intervals. However, the constraints remain logical and do not relate to real time. Nevertheless,
the authors expect to apply this approach in the context of autonomous embedded systems.

Using a semantics based on state transition system, we give a framework which aims at describing the
relations between the data in a system, and specifying the required timed properties of the system.

3. Theoretical settings.

3.1. State Transition System. Models used in this paper are based on state transition systems. Our
work uses the TLA+ formalism [7], but this paper does not require any prior knowledge of TLA+. A state is
an assignment of values to variables. A transition relation is a predicate on pairs of states. A transition system
is a couple (set of states, transition relation). A step is a pair of states which satisfies the transition relation.
An execution o is any infinite sequence of states ogoy ...0; ... such that two consecutive states form a step. We
note o; — 0,41 the step between the two consecutive states o; and ;1.

A temporal predicate is a predicate on executions; we note o = P when the execution o satisfies the predicate
P. Such a predicate is generally written in linear temporal logic. A state expression e (in short, an expression)
is a formula on variables; the value of e in a state o; is noted e.o;. The sequence of values taken by e during an
execution o is noted e.o. A state predicate is a boolean-valued expression on states.

3.2. Introducing Time. We consider real time properties of the system data. To distinguish them from
(logical) temporal properties, such properties are called timed properties. Time is integrated in our transition
system in a simple way, as described in [1]: time is represented by a variable T taking values in an infinite
totally ordered set, such as N or RT. T is an increasing and unbound variable. There is no condition on the
density of time, and moreover, it makes no difference whether time is continuous or discrete (see discussion
in [8]). However, as an execution is a sequence of states, the actual sequence of values taken by T during a
given execution is necessarily discrete. This is the digital clock view of the real world. Note that we refer to
the variable T' to study time and that we do not use the usual timed traces notation.
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An execution can be seen as a sequence of snapshots of the system, each taken at some instant of time. We
require that there are “enough” snapshots, that is that no variable can have different values at the same time
and so in the same snapshot. Any change in the system implies time passing.

Definition 3.1 (Separation) An ezecution o is separated if and only if for any variable x:
Vi,j:T.0; =T.0; = x.0y = 2.0

In the following, we consider only separated executions. This allows to timestamp changes of variables and
ensures a consistent computation model.

3.3. Clocks. Let us consider a totally ordered set of values D, such as N or R*. A clock is a (sub-)appro-
ximation of a sequence of D values. We note [X — Y] the set of all functions whose domain is X and whose
range is any subset of Y.

Definition 3.2 (Clock) A clock ¢ is a function in [D — D] such that:
e it never outgrows its argument value:
VieD:e(t) <t
e it is monotonously increasing:
Vi, t' e Dt <t = c(t) < c(t)
o [t is lively:
VteD: 3t €D:c(t') > c(t)
The predicate clock(c) is true if the function c is a clock.

In the following, clocks are used to characterize the timed behavior of variables. They are defined on the
values taken by the time variable T, to express a time delayed behavior, as well as on the indices of the sequence
of states, to express a logical precedence.

4. Specification of Data Timed Behavior. We introduce here the relation and properties used in our
framework to describe the properties that must be satisfied by a system. Our approach is state-based and gives
the relation that must be satisfied in all states. We define the observation relation to describe the relation
between variables. A way to describe the timed behavior of variables, that is properties of the history of data,
is introduced. We then extend the observation relation to enable the expression of timed constraints on the
behavior of system variables linked by observations. For that purpose we define predicates which bind and
constraint relevant instants of the timeline of the source and the image of an observation. These predicates are
expressed as bounds on the difference between two relevant instants.

4.1. The Observation Relation. We define an observation relation on state transition systems as in [5].
The observation relation is used to abstract a value correlation between variables. Namely, the observation
relation states that the values taken by one variable are values previously taken by another variable or state
expression.

In the basic case, the observation relation binds two variables, the source x and the image ‘x, and denotes
that the history of the variable ‘x is a sub-history of the variable z. The relation is defined by a couple
< source,image > and the existence of at least a clock that defines for each state which one of the previous
values of the source is taken by the image. This definition is actually given to allow any state expression (a
formula on variables) as the source!. The formal definition is:

Definition 4.1 (Observation) The variable ‘z is an observation of the state expression e in execution o:
ocE‘z= e iff:

Jce [N = NJ]:clock(c) A Vi: ‘w0 =e.o.n

LAs we could introduce a new variable aliased to this expression, we often talk, in the following, of the source variable. This is
to simplify the wording and the description.
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5

This relation states that any value of ‘x is a previous value of e. Due to the properties of the observation
clock ¢, ‘x is assigned e values in accordance with the chronological order. Moreover, ¢ always eventually
increases, so ‘x is always eventually updated with a new value of e. Figure 4.1 shows an example of an
observation relation binding two variables x and ‘z.

The observation can be used to abstract communication in a distributed system, as well as to abstract
computations:

e Communication consists in transferring the value of a local variable to a remote one. Communication
time and lack of synchronization create a lag between the source and the image, which is modeled by
remote < local.

e In state transition systems, an expression f(X) models an instantaneous computation. By writing
y =< f(X), we model the fact that a computation takes time and that the value of y is based on the
value of X at the beginning of the computation. Here X can be a tuple of variables, according to
the arity of f: given X = (x1,...,x,), the observation o = ‘z < f(X) means that 3 c € [N — NJ] :
clock(c) A Vi : ‘w.o; = f(21.0c(3), -+ Tn.Oc(s))- As the same clock is used, all values of the inputs (X)
are read at the same time, implying a synchronous behavior.

Additional observation relations can be introduced to model an asynchronous reading of the inputs. For
instance, ‘a < a, ‘b= b,c< f(‘a,‘d) models a system where a and b are independently read (the first
two observations), and then ¢ is computed through a function f.

Note that the observation definition does not refer to real time and only models an arbitrary delay in terms

of state sequences. Real time properties will now be introduced.

4.2. The Timeline of Variables. In order to state properties about the timed behavior of a variable x,
we want to be able to refer to the last time z was updated. These are called the update instants and form its
timeline . The definition of % is based on the history of the values taken by x and captures the instants when
each value of x appeared, e.g. the beginning of each occurrence.

Definition 4.2 (timeline) For a separated execution o and a variable x, the variable & is the timeline of x
and is defined by:

Vi:Z.op= T-O-min{j\VkG[j.,i]: z.0;,=T.0%}

The timeline & is built from the history of x values and is a sequence of update instants. For a variable x
and a state o;, the update instant of x in o; is defined as the value taken by the time T at the earliest state
when the value x.0; appeared and continuously remained unchanged until state o;.

Note that the developer may provide an explicit definition of &, without having to describe the actual values
of z, e.g. by stating that z is periodically updated.
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When z is updated and its value changes then the value of % is also updated. Conversely if & changes then
x is updated. This property allows us to rely exclusively on the values of Z to study the timed properties of x.

We also define the instant Next(Z) that returns, at each state, the next value of Z and thus the next instant
when the value of x is updated, i. e. the instant when the current value disappears. If x is stable at a state o;
(no new update), then Next(Z).0; = +o0.

As in the case of source variable versus source expression, the definition of a timeline &, which is given for a
variable z, is actually valid for a state expression. For the sake of clarity, we will once again talk of “variables”
where “state expressions” could equally be used in the remainder of this section.

4.3. Behavior of Variables. The timeline & is used to describe the timed behavior of a variable z. In
this paper, we focus on specific kinds of variables. We expect each value of each variable to remain unchanged
for a bounded number of time units. We want to be able to express the minimum and the maximum duration
between two consecutive updates. This allows to describe two basic behaviors: a sporadic variable keeps each
value for a minimum duration, and on the contrary, a lively variable has to be updated often, no value can be
kept longer than a given duration. These properties are formulated by bounds on the difference between & and
Next(), using a property called Steadiness applied to a variable. These bounds denote how long each value
of = can be kept.

Definition 4.3 (Steadiness) The steadiness of a variable x in the range [5, A] is defined by:

o F x {Steadiness(5,A)} £
Vi:d§ < Next().0; — .0y < A

A — 0 is the jitter on z updates. More elaborate properties can be derived from the steadiness property.
For example, we can introduce a stronger property, periodicity, where no time drift is allowed.
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Definition 4.4 (Periodicity) A wvariable x is periodic of period P with jitter J and phase ¢ iff:

o Ex {Periodic(P,J,®)} =
x {Steadiness(P — 2J, P+ 2J)}A
Vi:IneN:z.0; €[p+nP—J ¢+nP+J]

Such a variable is updated around all instants ¢ + nP. Note that J must verify J < P/4 to ensure that the
variable is updated once and only once per period.

4.4. Timed Observation. We use the concept of timeline to extend the observation relation with timed
characteristics. The timed constraints that extend the observation must capture the latency introduced by the
observation and the timeline of the source to produce the timeline of the image. We define a set of predicates
on the instants characterizing the source and the image timelines and the observation clock. Formally, a timed
observation is defined as follows:

Definition 4.5 (Timed Observation) A timed observation is defined as an observation satisfying a set of
predicates.

Predicate (61, A1),
oF‘w= el Predicates(d, Ay), » =

Jde € [N — NJ : clock(c) A
Vi:‘z.o; = e.oqq) A
Predicates (¢, 01, A1)A
Predicates(c, d2, As) . ..

The predicates that can be used to describe the timed properties of the relation between two variables are the
following ones:

Definition 4.6 Given a variable ‘x and a state expression e such that o E ‘x < e with a clock ¢ € [N — N, the
predicates are:

Lag(c, 8, A)
Stability(c, 6, A)
Latency(c, §, A)
Medium(c, §, A)
Freshness(c, 6, A)
Fitness(c, 8, A)

6 < ‘Zo; — é-”c(i) <A

3 < Next(€).0c(s) — €.0c31) < A
6 <T.o;— é.ac(i) <A
6<T.o;— T-Uc(i) <A

) S T-O'c(i) — é-ac(i) < A

0 < Newt(€).o.4) — T.oc) < A

(1> 11> 11> > > >

When no lower (resp. upper) bound is significant, 0 (resp. +00) should be used.

These predicates have to be true at every state and every instant. The definition of an observation is
done by stating which predicates must be satisfied. So far, this set has been sufficient to express the different
behaviors that we had to analyze, but it can be extended.

e Predicate Lag is used to bound the duration between an update of the source and an update of the
image. An upper bound states that, when the image is updated, it must be updated with an expression
of source that was updated in a recent time. A lower bound states that when there is an update of the
source, the new value cannot be used to update the image before the lower bound has elapsed.

e Predicate Latency bound in each state the time elapsed since the assignment of the image’s current
value on the source.

e Predicate Stability is used to filter sources values depending on their duration. For example we can
eliminate transient values and keep sporadic ones, or the contrary.

e The observation clock and the difference i — ¢(i) give the logical delay introduced by the observation.
Predicate Medium bounds the temporal delay related to this logical delay. So the bounds state that
there must exist a logical delay inducing a temporal delay satisfying the bounds, i. e. in each state,
there must be one previous state so that the time elapsed since that state is below this upper bound
and above the lower bound and so that the image’s current value was assigned on the source. A lower
bound can be used to state that a value of the source cannot appear on the source before this lower
bound has elapsed and so this bounds denotes a communication or computation time.
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“throttle
—» throttle
throttle
speed = control
speed speed
brake
—» brake
brake

Fia. 5.1. Cruise Control System

e Predicates Freshness and Fitness are used to define intervals of time, relative to the update instants, that
the observation clock is prevented to refer. So the logical delay that satisfies the predicate Medium must
refer to an instant that satisfies the Freshness and Fitness predicates. An upper bound on Freshness
prevents states where the value of the source is not fresh anymore to be referred. For example, a
conjunction of Medium and Freshness predicates states that the current value of the image must have
been available on the source recently and that it was still fresh at these instants. On the contrary, a
lower bound on Freshness denotes an impossibility to access a value just after its assignment. Fitness
allows or forbids the states depending on the time remaining until the source value is updated. A lower
bound prevents to refer to a state where the value is about to be updated.

Note that, at the beginning of an execution, some predicates such as Medium cannot be satisfied. In order
to address this problem, the timed predicates do not have to be satisfied in initial states. The image values are
replaced by a given default value. This extension is similar to the “followed by” operator — in Lustre [6].

5. Specifying a System in Terms of Timed Observations.

5.1. A Brief Description. As an example, we consider a simplified car cruise control system. The goal
of such a system is to control the throttle and the brakes in order to reach and keep a given target speed. The
system is composed of several interacting components (see Figure 5.1):

a speed monitor, which computes the current speed, based on a sensor counting wheel turns;
the throttle actuator, which controls the engine;
the brakes, which slow down the car;
the control system which handles the speed depending on the current and the chosen speed;

e a communication bus which links the devices and the control system.
The environment, the driver, and the engine influence the speed of the car. Once the cruise control is activated
and a target speed is chosen, the control system can choose either to accelerate by increasing the voltage of the
throttle actuator or to decelerate by decreasing this voltage and by using brakes. In order to ensure a reactive
behavior, each command issued by the cruise control system must be carried out within a given time limit.

Each component uses and/or produces data. We use observations to specify the system and characterize
correct executions.

5.2. Data and Observations. Firstly, we define the state variables of the cruise control system, and we
bind these variables using observation relations.

The speed monitor computes the values of a variable speed, and these values are sent to the control system
as a variable ‘speed. We express this as an observation ‘speed < speed.

The choices of the control system are based on the current speed and more precisely on the value of ‘speed.
Two functions are used to compute the values used as inputs by the brakes and by the throttle actuator. Using the
speed values, we compute the values of two variables: throttle < controll(‘speed) and brake < control2(‘speed).

Lastly, the values of throttle and brake are delivered to dedicated devices into variables ‘throttle and ‘brake,
such that ‘throttle < throttle and ‘brake < brake.
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- variables behaviors:
speed {Steadiness(d1,+00)}
throttle {Steadiness(d2, +00)}
brake {Steadiness(ds, +00)}

- communications:
‘speed < speed {Medium(dy, +00)}
‘throttle < throttle { Medium(d4, +00)}
‘brake < brake {Medium(d4, +00)}
- computations:

throttle < controll(‘speed) { Medium(d5,+00)}
brake < control2(‘speed) { Medium(ds, +00)}
- complete processing chains:
‘throttle < controll(speed) {Latency(0,A)}
‘brake < control2(speed) {Latency(0,A)}

Fia. 5.2. System Specification

5.3. Requirements and Properties. We express the requirements and known timed properties of the
system, and we state them as characteristics of the system variables and observations. These characteristics are
given in Figure 5.2.

The speed is computed using the ratio of the number of wheel turns to the elapsed time. A minimum time
is required to produce a significant result. Thus, there must be a minimum time §; between each update of
speed. Also, due to scheduling constraints, there must be a minimum time d (respectively d3) between each
computation and update, of throttle (respectively brake).

Each communication on the bus takes a minimum transit time, regardless of the communicating protocol
that is chosen. Predicate Medium (see Definition 4.6) is used to define a lower bound on the observations
expressing communication. Similarly, we represent the minimum computation time of functions controll and
control2, by means of predicate Medium.

We expect each data to be used soon enough after each update. More precisely, we want each command
issued to the brake or to the throttle to be based on fresh values of the speed. Thus, we require the complete
processing chain to be completed in a short enough time.

A composition of observations is an observation, for example if y < z and z < f(y) then z < f(x) [5]. We use
this property to define the processing chains relating ‘throttle and ‘brake to speed, via 'speed as observations,
which enables us to express the requirements on the duration of the processing chains as upper bounds of
Latency predicates (see Definition 4.6) on these observations. Note that, although the Latency upper bound
(A) is the only upper bound given in the system specification, it implicitly sets upper bounds on the Medium
and Steadiness characteristics of the other observations and variables of valid executions.

5.4. Case Study Analysis. The goal of the analysis is to prove that the specification is consistent and that
there is at least one execution satisfying the requirements. In our example, a nonempty set of valid executions
ensures the availability of timely sound values. From this set, we can deduce the required update frequency of
the speed variable. For example, we check the existence of a maximum time acceptable between each update.
We analyze the admissible values of the Medium to deduce the communication and computation times that
are permitted. Then, we determine the possible values of the observation clocks in the states corresponding to
the timeline of the image. These values give the instants at which the values of the source are caught and so,
for example the instants when a message must be sent or when a computation must start.

For all these properties, a choice must be done. For example, choosing a set of executions may alleviate the
bounds on communication time but then reduce the instants when the message must be sent.

6. System Analysis. We give here properties of our framework based on observations in order to carry
out an analysis. A system specified with observation relations must be analyzed to check the consistency of the
specification, i. e. if there exists an execution satisfying the specification.

We discuss the analysis method in a discrete context. The semantics of the specification is restricted by
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discretizing time: i. e. the values taken by time 7T are in N. For discussion about the loss of information using
discrete time instead of dense time and defending our choice, see [8] for example.

6.1. Feasibility of a Specification. Given a specification based on our framework, the value of T is
unbounded and we have no restriction on the values that can be taken by variables. Therefore the system
defined by the specification is infinite. Nevertheless, we can build a finite system equivalent to the specification
for the timed properties studied with this framework. This allows us to model-check the consistency of the
specification in a finite time. Here are the main principles of this proof. The definition of a finite system
bisimilar to the original one is based on two equivalence relations.

Since the scope of this framework is to check the satisfaction of timed requirements, we focus on the auxiliary
variables used to describe the timeline of each application variable. We define a system where only variables
denoting instants are kept, i. e. the variable describing the timelines and the observation clocks. The states
and transitions of the system are defined by the values of these variables and the satisfaction of observations
and variables properties. Allowed states and transitions do not depend on the values that can be taken by
each variable but on the instants describing their timeline and on the observation clocks. Thus, when we build
a system where only these instants are considered, we do not lose or add any characteristics about the timed
behavior of the system. We define an equivalence where two states are equivalent if and only if the observation
clocks and the timeline variables are equal. This equivalence is used to build a bisimilarity relation between the
specified system and the one built upon only the instants.

The second reason preventing to consider a bounded number of states is the lack of bound on time. The
values of the timelines and observation clocks are also unbounded. In order to reduce the possible values that
can be taken by the system variables denoting instants, we define a system where all values of the instants are
stored modulo the length of an analysis interval. We denote this number as L. L must be carefully chosen,
greater than the upper bounds on the variables Steadiness and the observations Latency characteristics and it
has to be a multiple of the variable periods.

Such a number L only exists if all variables and observations have upper bounded characteristics. When the
source of an observation is bounded and so is the observation, such a bound is deduced for the image. Restricting
the behavior by expecting variables to be frequently updated and the shift introduced by distribution to be
bounded seems consistent for such real time systems.

In the system defined by the specification, transitions are based on differences between the instants charac-
terizing the variable timelines. These differences cannot exceed the chosen length L. Thus, for each state, if the
value of the time 7" is known and if the values of the other variables are known modulo L, then for each variable
there is only one possible real value that can be computed using the value of T'. Consequently, considering
the clock values modulo this length does not add or remove any behavior of the original system. We define an
equivalence where two states are equivalent if the timelines and the observation clocks are equal modulo L. A
system built by considering all values modulo L is bisimilar with the original system using this equivalence.

Based on these two equivalences, we build a system by removing variables which do not denote timelines
or observation clocks and by considering the values modulo L. This system is bisimilar to the specification and
preserves the timed properties. Since all values are bounded by the length of the analysis interval and there
is a bounded number of values, it defines a system with a bounded number of states. This result proves the
decidability of the framework for the verification of safety properties that can be done using the finite system.

6.2. Complexity. We have proved the existence of a finite system equivalent to our system. We give here
the complexity of a process to effectively build this equivalent finite system. In order to build a transition from a
state to a new state, we build a set of inequalities deduced from the properties of the previous state and from the
observations and variables properties. To solve this set of inequalities and deduce the possible values of instant
variables in the new state, we use difference bound matrices [4]. Considering a system where n variables are
studied, the size of each matrix is O(n?), and the complexity for reducing it to its canonical form and building
the new state is O(n?®) [4]. The maximum number of states to build depends on all possible combinations of
values taken by variables. Each timed variable can take values between 0 and L and the number of instant
variables is a multiple of n, so we have O(L") states. Lastly, the complexity to build the system is O(n3 * L™).
Considering the memory, we have to store O(L") states and O(L?") transitions. Therefore this direct approach
is technically feasible only with small enough systems. The complexity is more heavily impacted by the number
of variables (n) than by the analysis interval (L).
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6.3. Verification of an Implementation. A second goal is to check that an implementation is correct
with regard to a specification based on observations. This approach is fully described in [13] and is only hinted
here.

As all timed properties are safety properties, an implementation is correct if no execution deadlocks (so as
to ensure liveness) and all its executions are included in the executions defined by the specification.

In order to check the satisfaction of the specification by an implementation, we give a model of the spec-
ification in the same semantics we use to model an implementation. Such a model is described by defining
elementary transitions. An elementary transition relation models the evolution of the values states of avail-
ability in the observation relations of the system. These elementary transition relations are used to build the
variable transition relation of the image of an observation. The variable transition relations are then used to
build the global transition relation.

Once both the specification and the implementations have been translated into such transition relations, we
must verify that the model of the specification simulates the implementation. In order to check this property, we
build a state transition system similar to the synchronized product of labelled transition systems. The actions
are used as labels on the transitions of the systems.

6.4. Other Approaches. Since our approach relies on the TLA+ formalism, we could have used the
dedicated tool TLC, the TLA+ model checker. A logical definition of the observation requires the temporal
existential quantifier 3, which is not implemented in TLC. Therefore a concrete definition of the observation
based on an explicit observation clock has been used. It is only after we have reduced the system to a finite one
that a model checker such as TLC could be used.

To be able to more precisely characterize executions satisfying the specification, we currently explore meth-
ods to build these executions more easily. A first proposal is to reduce the complexity of such a process by
relying on proofs on system properties. The proof approach can easily be used only under certain conditions
and in order to proceed to some system simplifications. For example, a periodic source induces properties for
its image through an observation. Using these properties reduces the number of states we have to build by
forecasting some impossible cases. Proving the full correctness of the system is possible but it is complex and
it has not been automatized yet.

Another way is to use controller synthesis methods [3]. Properties of the observation can be expressed as
safety properties using LTL and be derived as Biichi automata [11]. Two automata describe the behavior of
the source and the image of an observation, exchanging values through a queue. Restrictions can be added
to introduce the used implementation and its compatibility with executions defined by the specification. The
complexity of controller synthesis methods has still to be explored.

7. Conclusion. We propose an approach focused on variables instead of tasks and processes, to model
and analyze distributed real time systems. We specify an abstract model postponing task and communication
scheduling. Based on the state transition system semantics extended by a timed referential, we express relations
between variables and the timed properties of variables and communications. These properties are used to check
the freshness of values, their stability, and the consistency of requirements. A possible analysis is to build a
finite system bisimilar to the specified one. The results are used to help implementation choices.

Perspectives are to search other methods that decrease the complexity of the analysis of a specification
and to use this approach with different examples to expand the number of available properties and increase
expressiveness. We also work on using analysis results to help generating an implementation satisfying the
specification.
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STUDY OF DIFFERENT LOAD DEPENDENCIES AMONG SHARED REDUNDANT
SYSTEMS

JAN GALDUN*, JEAN-MARC THIRIET*, AND JAN LIGUSt

Abstract. The paper presents features and implementation of a shared redundant approach to increase the reliability of
networked control systems. Common approaches based on redundant components in control system use passive or active redundancy.
We deal with quasi-redundant subsystems (shared redundancy) whereas basic features are introduced in the paper. This type of
redundancy offers several important advantages such as minimizing the number of components as well as increasing the reliability.
The example of a four-rotor mini-helicopter is presented in order to show reliability improving without using any additional
redundant components. The main aim of this paper is to show the influence of the load increasing following different scenarios. The
results could help to determine the applications where quasi-redundant subsystems are a good solution to remain in a significant
reliability level even if critical failure appears.

Key words: shared redundancy, dependability, networked control systems

1. Introduction. To be able to obtain relevant results of reliability evaluations for complex systems, it
is necessary to describe the maximum of specific dependencies within the studied system and their influences
on the system reliability. Different methods or approaches for control systems’ reliability improvement are
developed in order to be applied to specific subsystems or to deal with dependencies among subsystems. A
classical technique consists in designing a fault-tolerant control [1] where the main aim is to propose a robust
control algorithm. Guenab and others in [2] deal with this approach and reconfiguration strategy in complex
systems, too.

On the other side is the design of reliable control architectures. Probably the most used technique is
to consider the redundant components which enlarge the system structure and its complexity too. Active
and passive redundancy is the simplest way how to improve dependability attributes of the systems such as
reliability, maintainability, availability, etc [3]. However, as it was mentioned the control structure turns to
be more complex due to an increasing number of components as well as the number of possible dependencies
among components, it is in particular the case for Networked Control Systems [4] [5].

The paper introduces complex networked control architecture based on cascade control structure. The
cascade structure was chosen purposely due to its advantages. This structure is widely used in industrial
applications thanks to positive results for quality of control which are already described and generally known [6].
On the other side it offers some possibilities of system reliability improvement. There are potentially redundant
components such as controllers (primary, secondary). If more than one network is implemented we could consider
them as potentially redundant subsystems too. Finally if the physical system allows it, it is possible to take
profit from sensors. The cascade structure and other features are introduced in more details in the third part.

The paper is organised as follows. After bringing closer the research background, the shared redundancy is
introduced. The controllers and networks are presented in more details in order to show some dependencies which
could be appeared when a shared redundancy approach is implemented. In the next part are presented networked
topologies considered as cascade control (CC) structure of the 4-rotor mini-helicopter (drone) model [7]. Using
Petri nets were prepared the models of the introduced quasi-redundant components as well as drone’s control
structure. A simple model of the two quasi-redundant subsystems is evaluated. Finally, are proposed the
simulation results of the mentioned simple two components model as well as the model of the complex drone’s
structure with short conclusion.

2. Research Background. Control architecture design approach was taken into account by Wysocki,
Debouk and Nouri [8]. They present shared redundancy as parts of systems (subsystems) which could replace
another subsystem in case of its failure. This feature is conditioned with the same or similar function of the
subsystem. Wysocki et al. introduce the shared redundant architecture in four different examples illustrated
on “X-by-Wire" systems used in automotive applications. Presented results shown advantages of this approach
in control architecture design.

The shared redundancy approach involves the problematic of a Load Sharing [9]. Thus, some of the
components take part of the load of the failed components in order to let the system in functional mode.
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Consideration of the load sharing in mechanical components is presented by Pozsgai and others in [10]. Pozsgai
and others analyze this type of systems and offer mathematical formalism for simple system 1-out-of-2 and 1-
out-of-3. Also there are some mathematical studies [9] of several phenomena appeared on this field of research.
Bebbington and others in [9] analyze several parameters of systems such as survival probability of load shared
subsystems.

3. Shared Redundancy. Specific kind of redundant subsystems which have similar features such as active
redundancy however gives us some additional advantages which will be introduced in further text. This kind of
spares represents another type of redundant components which are not primary determined as redundant but
they are able to replace some other subsystems if it is urgently required. This type of redundancy is referred
as shared redundancy [8] or quasi-redundancy [11]. Due to its important advantages it is useful to describe this
kind of spares in order to show several non-considered and non-evaluated dependencies which could have an
influence to the system reliability. Identification and description of this influence should not be ignored in order
to obtain relevant results of the reliability estimation of the systems which involve this kind of spares.

As it was mentioned above, the shared redundancy (SR) mentioned by Wysocki and others in [8] is in
further text taken into account in the same meaning as a quasi-redundant (QR) component. Thus, quasi-
redundant components are the parts of the system which follow their primary mission when the entire system
is in functional state. However, when some parts of the system fail then this function could be replaced by
another part which follows the same or a similar mission, thus by quasi-redundant part. The quasi-redundant
components are not primary determined as active redundant subsystem because each one has its own mission
which must be accomplished. Only in case of failure it could be used. In NCS appears the question of logical
reconfiguration of the system when the data flow must be changed in order to replace the functionality of a
subsystem by another one. For example, some new nodes will lose the network connection and the system has
to avoid the state when packets are sent to a node which does not exist. Thus, the main features of the shared
redundancy could be summarized as follows:

"Quasi-redundant component is not considered as primary redundant component such as the active or the passive
redundant components.”

Generally in networked control systems, three kinds of quasi-redundant components (subsystems) could be
considered:

e QR controllers.
¢ QR networks.
e QR sensors.

Hence, a necessary but not sufficient condition is that a control structure where SR could be considered has
to be composed at least of two abovementioned subsystems (controllers, networks, actuators). The subsystems
should have similar functionality or construction in order to be able to replace the mission of another component.
In case of quasi-redundant components there are several limitations. In order to take profit of quasi-redundant
networks, it is necessary to connect all nodes in all considered QR networks. Thus, in case of different networks
the components should have implemented all necessary communication interfaces. In case of QR controllers the
hardware performance has to allow implementing more than one control task.

Third mentioned components are sensors. Consideration of the sensors as QR components has important
physical limitations. In order to be able to replace a sensor for measuring a physical value X by another one
for measuring Y it is necessary to use “multi-functional" smart sensors. We can suppose that some combination
of the physical values can not be measured by using one sensor due to the inability to implement the required
functionality in one hardware component.

Other limitation is the distance between failed sensor and its QR sensor which could have a significant
influence to the possibility of its replacing. Generally, implementation of the QR sensors within control system
structure could be more difficult than the application of the SR approach on controllers or networks.

There are several naturally suitable control structures which could implement the shared redundancy ap-
proach without other modifications such as cascade control structure (Fig. 3.1). This structure is often used
in industrial applications thanks to its important features which improve the quality of control. With using
cascade a control structure there are several constraints [8]. The main condition requires that the controlled
system must contain a subsystem (secondary subsystem FS(s)—Fig. 3.1) that directly affect to the primary
system FP(s). Thus, the cascade structure composes of two independent controllers which can be used in order
to implement the shared redundant approach.
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Usually for secondary subsystems there is a condition of faster dynamics than primary process. This
condition must not be fulfilled [8]; in this case, some modifications of conventional cascade structure (Fig. 3.1)
and control laws must be provided.

3.1. Quasi-redundant controllers. In the previous text, several suitable control structures were briefly
introduced. As it was shown the controllers covered by these structures could be considered as quasi-redundant
components by default. Thus, the hardware of both components could be shared in order to implement a shared
redundant approach.

Let’s consider the networked cascade control system shown in figure 3.2. The system is composed of five
main components (Sensor Si, S3, controllers C, Cy and actuator A) and two networks. The communication
flow among components is determined by its cascade control structure. Thus, sensor S; sends a measured
value to controller C; (Master), the controller Cy (Slave) receives the values from the sensor Sy as well as the
controller C; in order to compute an actuating value for the actuator A.

Each part of the system (components and networks) presents independent subsystem. However, when quasi-
redundant components are studied, the system is not considered as composed of independent components.
Depending on the performance parameters of the used hardware equipment in the control loop, a specific
influence on the system reliability should be taken into account. Thus some dependencies should not be ignored
in the dependability analysis. In the NCCS shown in Fig. 3.2 we could consider controllers C; and Cy as
the quasi redundant subsystems (components). Both QR controllers have a primary mission which should
be followed. Thus, a controller C; controls outer control loop and controller C5 stabilizes inner control loop.
However in case of failure of one of them, we could consider the second one as a kind of spare.

As it was mentioned previously, the controllers follow their primary mission stabilization or performance
optimization of the controlled system. Therefore, in regards to the similar hardware, it allows sharing the
computing capacity and executing different tasks. Thus, in order to implement the SR approach, both controllers
have to encapsulate both control tasks—for the outer and the inner control loop (see the cascade control structure
in figure 3.1).

In non-failure mode the primary task is executed in both controllers. However, in case of controller’s failure
(primary or secondary) non-failed controller starts execute both tasks and computes actuating value for primary
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Fia. 3.3. Possible scenarios for quasi-redundant controllers

as well as secondary subsystems. In this case we can suppose two scenarios.

The first one supposes that the controller is able to execute all the necessary tasks within the required
sample periods (Fig. 3.3a). Thus, no delays or other undesirable consequences are expected. In this case the
behavior of the quasi-redundant component is similar as in the case of active redundant components. Thus, in
the case of failure of one of the components, the second takes care about its mission until its failure.

Figure 3.3b shows a second case when time to execute both necessary tasks is greater than the required
sampling period. Thus, the controller will cause the delays which have significant influence to the system
stability [12] [13]. Therefore, this delay could be known which allows its partially compensating by using several
methods [14]. Thus, we can suppose that the system destabilization will not occur immediately after the first
delay and we are able to compensate it for some time interval. Thus, quasi-redundant controller does not fail
immediately but its reliability decreased.

There are several situations when this scenario could be considered. In critical systems where the failure of an
important component could cause undesired damages or other dangerous consequences, the shared redundancy
approach could help to allocate some time interval in order to maintain the system in a safe state. Thus, the
SR approach can be a significant technique to secure the system before a damage risk.

3.2. Quasi-redundant networks. The second part of the NCS which could be taken into account as
SR subsystems are networks. Let’s suppose a system with two networks (Fig. 3.2) where all components could
communicate (connect) on these networks (N and No) if it is needed. In this case we can apply the SR approach
on this system.

Considered functionality of the quasi redundant networks is as follows. Both networks transmit required
data—network N7 transmit data from S; to C7 and from C7 to Cy such as network Ny from S5 to Cy and from
Cs to A. Thus both networks are active and allocated during the system mission. The same as in the case of
QR controllers: when a network failed, the second one can take its load after a system reconfiguration. Thus,
all required data are sent through the second network. Hence, two similar scenarios as with the controller task
execution could be described. The amount of transmitted data on the network with a specified bit rate has
logically influence on the probability of failure of the network (of course this depends on the network type and
other parameters mentioned). This influence could be ignored when the network performance parameters are
sufficient. However, we can suppose that the probability of network failure is increasing simultaneously when
the network load increases.

The characteristic between network loading and its bit rate depends on the network type and have to be
measured in real network conditions in order to determine the type of dependency—linear or nonlinear.

Not only the network bit rate can be important however other network limitations such as maximal number
of nodes connected to the network, etc. All limits of the QR subsystems can create dependencies with direct
influence on the system reliability. Primary, we could consider these dependencies as undesirable but in case of
critical failures this SR approach gives some time to save the system.

When NCS with an SR approach are analyzed, this characteristic should be included in the prepared model
and further evaluated in order to determine its influence to the reliability of the whole NCS.

3.3. Different scenarios in shared redundancy. When certain dependencies are ignored we could
regard on the control system with QR components as a control structure with active redundant components.
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However, there are several important scenarios when the reliability of the system could be decreased in order
to prevent dangerous consequences or other undesirable events.

These scenarios could appear when some conditions could not be fulfilled (insufficient execution time or
network bit rate) but the system need some time in order to take a safe state. Hence, it is necessary to identify
and describe the influence of these dependencies which leads to more relevant results. Thus, prevent from too
pessimistic or too optimistic results of the reliability analysis of the considered systems. The dependencies could
be distinguished as follows:

e active redundant dependency,
e single step change of the nominal failure rate A,, € (0;1) increased once by a constant value—step load
change,
e time depend change of the nominal failure rate \,, -functional dependency- the load of the subsystem
is changed with time passed from speared subsystem failure,
1. linear,
2. nonlinear.

Let’s assume that the destabilization of the system does not occur immediately after the first delay on
the network caused by insufficient controller’s hardware or network’s parameters. Thus, the quasi-redundant
controller does not fail immediately but in this case its failure rate increases which correspond consequently to
a decreased reliability.

Thus, in case of the active redundant dependency we suppose that a quasi-redundant subsystem has sufficient
capacities in order to follow its primary mission as well as the mission of the failed subsystem (or subsystems).

A single step change of the nominal failure rate of the subsystem is considered in the case of subsystems
where the failure rate of the quasi-redundant subsystem is changed (increased) once by a constant value (Fig. 3.4)
during its life time. Thus, the new increased failure rate A" remains constant during further life time of the
subsystem. For example, let’s suppose a NCS with two Ethernet networks where one of them has failed and
consequently the system is reconfigured and all nodes (components) start to communicate through the non-
failed network which has a sufficient bit rate capacity in order to transmit all the required data. However, the
amount of data has been increased which consequently increases the probability of packets’ collisions (under
the assumption of a classical CSMA /CD protocol, for instance). Thus, the probability of failure (failure rate)
has been increased up to the new value N

A third case considers the change of the nominal failure rate A,, which depends on the time passed from the
moment of the failure until current time of the working of the quasi-redundant subsystem which encapsulates the
executing necessary tasks (own tasks as well as tasks of the failed subsystem). Thus, a functional dependency
has to be considered. This dependency of the change of the failure rate A, could be described by a linear
or nonlinear dependency / function. We could study the previous example of the system with two networks.
However, in this case the bit rate of the second (non-failed) network is not sufficient. Consequently delays in
data transmission as well as other consequential undesirable problems such as system destabilization might be
caused. We can suppose that the non-failed network will fail in some time. Thus, the nominal failure rate A,
of the second network is now time dependent and is linearly or nonlinearly increased until the system failure.
Mentioned examples with related equations are further discussed in more details.

Let’s suppose that the reliability of the system R(t), probability of the failure during time interval (0;¢),
is characterized by a nominal failure rate A, € (0;1). Let’s suppose a system with two subsystems S7 and S,
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(such as the networks in the previous examples) whereas the subsystem S; will fail at first and then the quasi-
redundant subsystem Sy will follow both missions (S; and S3). In figure 3.4 are shown two above mentioned
scenarios when the nominal failure rate \,, of the subsystem is increased by a constant value or by a value which
could be described as a linear or nonlinear function (functional dependencies).

At first increasing the failure rate \,, one time by a constant value (see Fig. 3.4) will be dealt. It corresponds
to the reliability reduction of the quasi-redundant subsystem S, by increasing the failure rate, during its mission,
from its nominal value \,, up to new N Consequently, the system will follow its primary mission thanks to
the QR subsystem Sy but its failure rate is already increased and consequently the probability of failure of Sy
is higher. The difference between nominal ),, and increased X failure rate will be called decrease factor dg.
Thus, the mentioned constant value is characterized by the decrease factor dr of the QR subsystem and a new
changed failure rate X" at the fail time ¢ ¢ is given by the followed simple formula:

The failure rate increases only one time by the specified value and the QR subsystem Ss with a new constant
failure rate A" will follow both missions of its own mission and mission of the failed subsystem 5.

The second case shown in figure 3.3 considers the reliability reduction where the failure rate A, is increased
during the working of the subsystem Sy by a specified decrease factor. This change of the nominal failure rate
depends on time whereas with time extending the failure rate of the Ss is got near to 1 (system failed). Thus, a
decrease function f4,(t) is represented by a linear or nonlinear characteristic and depends on the real subsystem
which is considered as quasi-redundant. Thus, an increased failure rate A of the subsystem Ss depends on time
t and is given by the following formula:

N(8) = Ao + fan(t) (3.2)

As it was mentioned, the decrease function fy,(t) can be represented by a simple linear function, for
example,

N () = Ay +drl03(t+1 —tf) (3.3)

where ¢ + 1 allows changing the nominal failure rate A,, at the moment of the failure at time ¢y.
On the other side a nonlinear exponential function can be considered as follows:

A () = Ay + edrt=ts) (3.4)

where )" is the value of the increased failure rate, A, is the nominal failure rate of the component, ¢ ¢ is
the time of the failure of the component, dpy is the decrease factor which has a direct influence on the increased
failure rate.

3.4. Application to a mini-drone helicopter. The NCC structure is applied for the control of a four
rotors mini-helicopter (Drone, Fig. 3.5). The proposed control structure for this real model is as follows. The
NCC architecture is composed of one primary controller (Master) and one secondary controller (Slave), thirteen
sensors, four actuators and two communication networks.

The Master is designed for attitude stabilization (control) through Slave controller for angular velocity
control for each propeller. The aim of the control is to stabilize coordinates of the helicopter [10].

The controllers are used as quasi-redundant components within the presented networked cascade control
system (further only NCCS). They use the same control algorithm (propeller’s angular velocity control) but
with different input data (set point, system output, etc.)

Hence, in case of failure, one of them could retransmit all the required data to another one, whereas pre-
programmed control algorithm should compute the actuating value. Thus, the failed controller is replaced by a
second one which starts to compute the actuating value.

Other quasi-redundant parts of this control structure are networks (Fig. 3.6). As in the case of controllers,
one of the networks can compensate another one after a system reconfiguration. Usually, two networks are
primary designed due to reduction amount of transmitted data. However, in case of network failure all data
could be retransmitted through the second one.

The described approach for subsystem’s failure compensation by using the shared redundancy requires a
logical reconfiguration of the NCCS. Thus, in case of failure the hardware configuration is non-touched but
communication ways must be changed in order to transmit the data to a non-failed component or through a
non-failed network.
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4. Simulation and results. All the presented networked control architectures (Fig. 3.5, 3.6) were mod-
elled by using Petri nets. This tool was chosen thanks to its ability to model different types of complex systems
and dependencies within them. To provide the reliability analysis, the Monte Carlo simulation (further only
MCS) method was used. The multiple simulations of the modelled architecture [1] are provided to obtain the
reliability behavior of the basic two quasi-redundant components (for example two controllers in CCS structure).

Model of the system covers the simulation of the random events of the basic components of the system such as
sensors, controllers and actuators as well as the network’s random failures. Software used for model preparation
is CPN Tools which allow multiple simulation of the model in order to obtain statistically representative sample
of the necessary data to determine the reliability behavior of the studied model.

As it was mentioned, the simulation of the simple two quasi-redundant components with all considered
changes of the failure rate (single, linear, nonlinear) was provided. Thus, new failure rate A" of the non-failed
component is computed by using equation (3.1), (3.3) and (3.4).

This change could be called as single change because the component’s failure rate is changed only once
during the QR component’s life time. Both components have equal nominal failure rate A,, = 0.001.

Few examples of the influence of the single step change of the failure rate by the specified decrease factor dr
to the reliability behavior are shown in figure 4.1. We can see there are five curves. Two non-dashed curves show
the studied system as a system with two active redundant components (thus, dg is equal to zero—first curve
from the top) and as system without redundant components (thus, the system composes of two independent
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TaBLE 4.1

MTTFF of Simulated Control Structures With Different Decrease Factors

Decrease factor—dr | MTTFF - Drone (Fig. 3.5) | MTTFF - Drone (Fig. 3.6)
0 55(+11%) 53(+22%)
2%1073 54(+9%) 56(+17%)
10—2 53(+7%) 54(+13%)
59 % 102 50.5(4+2%) 49(+3%)
0.999 49.6 47.6

components without redundant relation—first curve from the bottom). These two curves determine borders
where the reliability of the studied system can be changed depending on the value of the decrease factor dg.

As we can see from figure 4.1, a single increasing of the nominal failure rate A, of the non-failed components
by the same value as was nominal failure rate \, up to A\ = 0.002 (dr = 0.001) cause a significant reduction of
the reliability.

Table 4.1 show several values of the life time (parameter MTTFF) for the studied system. Each table (Table
4.1, 4.2, 4.3) shows the life time of the studied components as active redundant subsystems (dg = 0) and as
independent subsystems (dr = 0.999). From the value of the decrease factor dp = 0.01 the life time of the
system significantly improves (18% and more). The results of the linear and nonlinear failure rate increasing are
shown in tables 4.2 and 4.3. In all tables are noted the percentual value of the increased life time corresponding
to the decrease factor.

Table 4.1 shows the MTTFF parameters of both complex mini-helicopter structures. In the first drone
structure (Fig. 3.5) two quasi-redundant controllers are considered. In the second structure (Fig. 3.6) two
groups of quasi-redundant subsystems are considered and simulated—the controllers and the networks.

In all simulated systems was observed the influence of the single step of the failure rate by a value specified
by the decrease factor dr. The same as in tables 4.1-4.3, there are shown the life time of system corresponding
to different decrease factors 2.1073, 1072, 59.1073. We can see that increasing the component’s nominal failure
rate A, by a decrease factor equal to 59.103, which represents approximately 59 times higher the failure rate,
has a significant influence to decreasing the life time of the system. The results are a little bit better than in
the case of the system without redundant components (dg = 0.999), but we could see that they are almost the
same.

The drone’s structure composes of twenty (twenty-one—structure with two networks) components—thirteen
sensors (3 gyro-meters, 3 magneto-meters, 3 accelerometers, 4 rotors’ angular velocity sensors), two controllers,
four actuators and one (two) networks. Due to the high ratio of independent components and shared redundant
components within the drone’s structure (18 independent and 2 quasi-redundant—Fig. 3.5) there is a difference
between life times for minimal and maximal dg is significantly smaller (about 11% and 22%) than in the case
of a basic two components subsystem (Table 4.1, 4.2, 4.3).

The Mean Time Before First system’s Failure is significantly longer in the case of a basic two component
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TABLE 4.2
MTTFF of the Two Quasi-Redundant With Single Step Change of the Failure Rate

An = 1073 Act. red. dr =0 dr = 0.001 dr = 0.005 dr = 0.01 dr = 0.1
(N =1073) (N =0.002) (M =0.006) | (\=0.011) | (M =0.101)
MTTFF|[Tu] 1503 (4 300%) 1002 (+200%) | 667(+34%) 589(+18%) 509(+2%)
An = 10"3 | No red. dr = 0.999
W=1
MTTFF[Tu] 499
TABLE 4.3

MTTFF of the Two Quasi-Redundant With Linear Increasing of the Failure Rate

Ap = 1073 Act. red. drp = 103 dr =102 | dg = 10~ T | No redundancy
(dr =0
MTTFF[Tu] | 1503 (+ 300%) | 1153 (1231%) | 812(163%) | 611(122%) 199

subsystem than in the drone’s case. As it was mentioned above this is caused by the difference in complexity
between basic and drone’s NCC architecture. In case of comparison between two drones structures (Fig. 3.5, 3.6)
the results are better for architecture with two networks which is composed of two quasi-redundant subsystems—
controllers (Master, Slave) and networks when the decrease factor is smaller than 59.1072. The increasing of the
nominal failure rate by the decrease factor greater than 59.10~2 significantly decreases the life time of the drone.
On the other side, even if the controller loading will change its failure rate approximately ten times (dg = 1072)
the system’s life time is about 7% longer than in the case of the system without a shared redundant approach
implementation.

4.1. Reliability approximation. In previous article states we focused on the description of the depen-
dencies among QR components and their influence to the final reliability of the systems. The aim of this
research is to propose a simple analytical method which describes the reliability behavior of the shared re-
dundant subsystems with dynamically changed failure rate. Hence, in next states we introduce an analytical
equation which allows approximating the reliability of the two component system. Of course, a quasi-redundant
approach is considered. Thus, a finally simple method for the dependability analysis is proposed as an extension
of the common known methods for the dependability analysis. The proposed method for reliability behavior
approximation supposes that both quasi-redundant components have the same or similar nominal failure rate
where differences are small and could be ignored. As it was mentioned above, the system composed of two QR
components is considered. In this case study, we introduce only the results for reliability approximation where
a single step change of the failure rate (further only FR) is considered. This FR behavior is described in the
previous part of the article (3.3) by equation 3.1. Thus, let’s suppose two QR components with the nominal
failure rate A, and define the decrease factor dg, then the reliability Rag-(t) behavior of the QR subsystem
composed of both components can be described as follows:

2
Rage(t) = 1= [[(1 — &= Ottt (4.1)

i=1

where k; is the approximated coefficient.

The parameter decrease factor dr and approximated coefficients of equation 4.1 are shown in table 4.5.
In each row of the table is shown the decrease factor with the corresponding value of the coefficients k; and
ko. The table shows several different values of the decrease factor whereas non-mentioned values can be easily
approximated by using an appropriate method.

The maximal error of the approximation given by the parameters of the equation 4.2 is less than 1

Rox, (1) = 1= J[(1 — e~ Oty (4.2)

i=1

where dp is the decrease factor and A, the nominal failure rate of the QR components. It is necessary to explain
that the error of all the approximations converge to the highest mentioned limits (1% for table’s coefficients)
in the bottom part of the reliability curves where the reliability of the system is smaller than 0.4. Thus, in live
period when a component replacement could be already too delayed.



250 J. Galdun, J-M Thiriet And J. Ligus

TaBLE 4.4
MTTFF of the Two Quasi-Redundant With Exponential Increasing of the Failure Rate

n=10"3 Act. red. (dg =0) | dg=10"3 [ dg =10"2 | dgr = 10~ ! | No redundancy
MTTFF|[Tu] 1503 (+ 300%) 902 (+80%) | 676(+35%) | 537(+8%) 499

TaBLE 4.5
Parameters of Equation 4.1 for a Single Step FR Change

Decrease factor—dg k1 ko
An 0.44 0.52
2\n 0.39 0.395
3\n 0.28 0.393
ANy, 0.198 0.434
5An 0.154 0.46
6\p, 0.13 0.4653
TAn 0.11 0.46
8An 0.099 0.471
9, 0.09 0.46
10\, 0.081 0.463

20\, 0.0445 0.38
30\, 0.0296 0.377
40\, 0.0225 0.385
50\n, 0.0182 0.3518
T0An 0.0133 0.3284
80An, 0.011625 | 0.32475
100, 0.0094 0.3332

4.2. MTTF parameter approximation. Each quasi-redundant subsystem does not exceed the limits of
the bound of the minimal (MTT F,;,) and maximal time life (MTT Fy,ax) of the quasi-redundant subsystem.
The parameter MTT F,.x represents the maximal time life of the QR subsystem which could be obtained
when the conditions are equal to the conditions of the subsystem with active redundant components. Thus,
the nominal failure rate of the non-failed component is not changed when its load has been increased—the
case when the decrease factor is equal to zero. The lowest life time limit could be defined by the parameter
MTT Fy;, which characterizes the subsystem composed of the independent components. Thus, when one of
the components fails the system is considered as failed. In term of the decrease factor, it is equal to 1 or
(1 — \p) for a single step FR change. Let’s suppose the system life time limited by the bound defined by the
MTTF parameter such as (MTT Fyin; MTT Finax). These two parameters could be found by solving the simple
following equations [15]:

MTT Fpin = /O [[Ri(t)dt (4.3)
and
MTT Fpax = /00(1 - ﬁa — Ri(t)))dt (4.4)
0 =1

where R;(t) is the reliability of each component.

In the final part of the results presentation we described the life time increasing of the two component QR
subsystem with regard to the life time parameter MTTF,,;, whereas various values of the decrease factor dr
are considered. We consider it as a simple and fast method for life time approximation. The results are shown in
table 4.5. As in the previous part of this case study, we consider only the influence of the single step increasing
of the nominal failure rate to the final life time of the two components QR system characterized by its MTTF
parameter. In the first line, the failure rate of the non-failed QR component characterized by the multiple of
the nominal failure rate \,. The second line shows the corresponding MTTF parameter percentage reduction
within the limits defined by the abovementioned interval of the maximal and minimal life times (MTTF). The
MTTF values introduced in table 4.5 are rounded, hence the method error is about 4/ — 2 for the multiple of
the nominal failure rate smaller or equal to 40.),, (decrease factor dg < 40). For higher value of the decrease
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TABLE 4.6
Approzimated Values of the MTTF Reduction of the Two-Component QR Subsystem With Different Single Step Change of
the Nominal Failure Rate \p,

Single step 2 A\n 3 A\n
change (dp = An) (dp =2xn) | 4 An 5 A\n 7 An 10 \p, 20 A\, | 40 A\, 100 A\,
of An
Extended 50% 35% 25% 20% 15% 10% 5% 2% 1%
MTT Fppim,

factor, the approximated error is about +/ — 1 of values shown in the table. Thus, in the case of very similar
analysis result of considered complex structures it is necessary to prepare the exact model in order to obtain
a more exact MTTF parameter reduction. This method could be used for the QR subsystems with the same
failure rate or for the system when difference among the nominal failure rate \,, of the components is very small
and can be ignored. In the case of a nominal FR smaller than 1072, the increased value 100.),, should represent
approximately 0.1 whereas the error could be higher. Then, it could be useful that the value of nominal FR
determined for a time interval T transforms to the greater value for a shorter time interval (unit).

5. Conclusion. The paper shows the influence of additional reliability decreasing of the quasi-redundant
component to entire reliability of the studied system. The description of this dependency is getting closer to
show the behavior of the system reliability when a shared redundancy approach is implemented. The results
shown in tables 4.1-4.3 could be very helpful in order to approximate the life time of the quasi-redundant
subsystems under different conditions of the failure rate increasing. The presented cascade control architecture
is suitable for a shared redundancy approach implementation and could be applied to similar systems. For
example, Steer-by-Wire control [16] of two front wheels in a car, etc. In addition the paper has shown the
conventional cascade control structure within conditions of networked control systems as naturally suitable to
profit from quasi-redundant subsystems as networks, controllers and potentially sensors if the physical process
allows it. Despite of some constraints for using this type of control, the cascade architecture is widely used in
industrial control applications. Hence, only the reconfiguration algorithm should be implemented to take profit
from quasi-redundant subsystems.

The case study presented in parts 4.1 and 4.2 (results section) extends the field of common methods for
reliability approximation. Equations (4.1, 4.2) are considered as simple and fast analytical method in order to
evaluate the reliability of the systems which covers two-component QR subsystems with single step FR change.

The main advantages of the quasi-redundant components could be summarized as follows:

e The system is composed only of necessary components (parts) for following the primary mission of
the system whereas higher system reliability is ensured without using any additional active redundant
components.

e Following the first point we could suppose less number of components used for saving the control
mission. Thus, the economic aspect could be significant.

e Prevention of the system’s critical failure when a QR subsystem has no sufficient hardware capacities.
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QINNA: A COMPONENT-BASED FRAMEWORK FOR RUNTIME SAFE RESOURCE
ADAPTATION OF EMBEDDED SYSTEMS

LAURE GONNORD*AND JEAN-PHILIPPE BABAUT

Abstract. Even if hardware improvements have increased the performance of embedded systems in the last years, resource
problems are still acute. The persisting problem is the constantly growing complexity of systems, which increase the need for
reusable developement framework and pieces of code. In the case of PDAs and smartphones, in addition to classical needs (safety,
security), developers must deal with quality of service (QoS) constraints, such as resource management.

Qinna was designed to face with these problems. In this paper, we propose a complete framework to express ressource constraints
during the developpement process. We propose a component-based architecture, which generic components and algorithms, and a
developpement methodology, to manage QoS issues while developing an embedded software. The obtained software is then able to
automatically adapt its behaviour to the physical resources, thanks to “degraded modes”. We illustrate the methodology and the
use of Qinna within a case study.

Key words: component, software architecture, resource dynamic management, case study.

1. Introduction. When faced to the problem of designing handled embedded systems, the developer must
be aware of the management of limited physical resources (CPU, Memory).

In order to develop multimedia software on such systems where the quality of the resource (network, battery)
can vary during use, the developer needs tools to:

e casily add/remove functionality (services) during compilation or at runtime;
e adapt component functionality to resources, namely propose “degraded” modes where resources are low;
e evaluate the software’s performances: quality of provided services, consumption rate for some scenarios.

In this context, component-based software engineering appears as a promising solution for the development
of such kinds of systems. Indeed it offers an easier way to build complex systems from base components ( [9]),
and the management of physical resource can be done by embedding the system calls in high level components.
The main advantages thus appear to be the re-usability of code and also the flexibility of such systems.

The Qinna framework ( [11, 12, 3]) was designed to handle the specification and management of resource
constraints problems during the component-based system development. Variability is encoded into discrete
implementation levels and links between them. Quantity of resource constraints can also be encoded. Qinna
provides algorithms to ensure resource constraints and dynamically adapt the implementation levels according
to resource availability at runtime. The main advantage of the method is then the reusability of the resource
components and the generic adaptation algorithms.

In this journal paper, we propose a complete formalization of Qinna framework (algorithms and compo-
nents), and as proof of concept, a case study consisting of the development of a remote viewer application with
the help of Qinna’s implementation in C++. In Section 2 we recall Qinna’s main concepts, as introduced in [11]
and formalized later in [3]. In Section 3, we give an overview of Qinna’s C++ implementation, and then provide
the general implementation steps to develop a resource-aware application with Qinna in Section 4. Finally we
illustrate the whole framework on the viewer case study (Section 5).

2. Description of the Qinna framework.

2.1. Qinna’s main concepts. The framework designed in [11] and [12], and further formalized in [3] has
the following characteristics:

e Both the application pieces of code and the resource are components. The resource services are enclosed
in components like Memory, CPU, Thread.

e The variation of quality of the provided services are encoded by the notion of implementation level.
The code used to provide the service is thus different according to the current implementation level.

e The link between the implementation levels is made through an explicit relation between the imple-
mentation level of the provided service and the implementation levels of the services it requires. For
instance, the developer can express that a video component provides an image with highest quality
when it has enough memory and sufficient bandwidth.

*Université of Lille, LIFL Laure.Gonnord@lifl.fr
TUBO, LISyC, Université Européenne de Bretagne Jean.Philippe.Babau@univ-brest.fr This work has been partially supported
by the REVE project of the French National Agency for Research (ANR)
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e All the calls to a “variable function” are made through an existing contract that is negotiated. This
negotiation is made automatically through the Qinna components. A contract for a service at some
objective implementation level is made only if all its requirements can be reserved at the corresponding
implementation levels and also satisfy some constraints called Quality of resource constraints (QoR). If
it not the case, the negotiation fails.

QoSComponent €;

functional part
QoSComponentBrokerl
admission, reservatio

QoSComponentManagerl :
contract maintenance |:

_ QoSDomain gestion part P,

Fic. 2.1. Architecture example

These characteristics are implemented through new components which are illustrated in Figure 2.1: to
each application component (or group of components) which provide one or more variable service Qinna asso-
ciates a QoSComponent €;. The variability of a variable service is made through the use of a corresponding
implementation level variable. Then, two new components are introduced by Qinna to manage the resource
issues of the instances of this QoSComponent:

e a QoSComponentBroker which goal is to realize the admission of a component. The Broker decides
whether or not a new instance can be created, and if a service call can be performed w.r.t. the quantity
of resource constraints (QoR).

e a QoSComponentManager which manages the adaptation for the services provided by the component.
It contains a mapping table which encode the relationship between the implementation levels of each
of these services and their requirements.

At last, Qinna provides a single component named QoSDomain for the whole architecture. It manages all the
service requests inside and outside the application. The client of a service asks the Domain for reservation of
some implementation level and is eventually returned a contract if all constraints are satisfied. Then, after each
service request, the Domain makes an acknowledgment only of the corresponding contract is still valid.

2.2. Quantity of Resource constraints in Qinna. A Quantity of resource constraint (QRC) is a
quantitative constraint on a component € and the service (s;) it proposes. QRCs are for instance formula on
the total instance of a given component type, of the total amount of resource (memory, CPU) allocated to a
given component. They are two types of constraints, depending on their purpose:

e Component type constraints (CTC) express properties of components of the same type and their pro-
vided services.

e Component instance constraints (CIC) express properties of a particular instance of a component.

The management of these constraints is automatically done at runtime, if the developer implements them
in the following way:

e In the QoSComponent, for each service, implement the two functions: testCIC and updateCIC. The
former decides whether or not the call to the service can be performed, and the later updates variables
after the function call. In addition, there must be an initialization of the CICs formulas at the creation
of each instance.

e Similarly, in the QoSComponentBroker, for each provided service, implement the two functions testCTC
and updateCTC.

Then, Qinna maintains resource constraints at runtime through the following procedure:

e When the Broker for € is created, the parameters used in testCTC are set.

e The creation of an instance of € is made by the Broker iff CTCeompo(€) is true. During the creation,
the CIC parameters are set.
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e The CIC(s;) and CT'C(s;) decision procedures are invoked at each function call. A negative answer to
one of these decision procedures will cause the failure of the current contract. We will detail the notion
of contract in Section 2.4.

Example The Memory component provides only one service malloc, which has only one parameter, the
number of blocks to allocate. It has an integer attribute, memory, which denotes the global memory size and
is set at the creation of each instance. We also suppose that we have no garbage collector, so the blocks are
allocated only once. Figure 2.2 illustrates the difference between type and instance constraints.

;17 (arg(occy(malloc) < 1000

N/

Cl C2
CIC : memory < 1000 CIC : memory < 24
€ —Global Memory CTC : memory < 1024

Fia. 2.2. Type vs Instance constraints

e CTC for € = Memory: the formula CTCeompo(€) = 3_; memory(€7) < 1024 expresses that the global
memory quantity for the whole application is 1024 kilobytes. A new instance will not be created if its
memory constant is set to a too big number. Then CTCyepy(malloc) = 3, arg(ocer(malloc)) < 1024
forces the calls to malloc stop when all the 1024 kilobytes have been allocated.

e CIC for Memory: if we want to allocate some Memory for a particular (group of) component(s), we
can express similar properties in one particular instance (see €' on the Figure).

Expression of resource constraints and code generation

Qinna also provides a way to describe the resource constraints into a higher-lever language called gMEDL, a
variant of MEDL event logic described in [6], and whose precise syntax and semantics is described in [3]. Roughly
speaking, the logic can express boolean formulae on occurences of events. Atoms are of the form Q <1 K, with
K constant and <€ {<,=,<,...}, and @ is a quantity. The quantity are obtained by the use of auxiliary
variables and calls to value and time special functions: to each event e (or newg), time(e) and valuey(e) give
respectively the date of the last occurrence of the event and the k" argument of the function call when it occurs.

The Memory constraint for the whole application then can be encoded by N < 1024 where N counts the
total amount of malloc’s arguments: malloc -> N:=N+value_1(malloc). The translation is then made by the
gMEDL2 to C++ translator, and gives the following procedures (the identifiers have been changed for lisibility,
usedmen is a local variable to count the global amount of memory used yet):

bool testCIC_malloc(int nbblocks){
return (usedmem + nbblocks <= 1024)}

bool updateCIC_malloc(int nbblocks){
usedmem = usedmem + nbblocks; }

2.3. QoS Linking constraints. Unlike quality of resource constraints, linking constraints express the
relationship between components, in terms of quality of service. For instance, the following property is a linking
constraint: “ to provide the getImages at a “good” level of quality, the ImageBuffer component requires a
“big” amount of memory and a “fast” network”. This relationship between the different QoS of client and server
services are called QoS Linking Service Constraints (QLSC).

Implementation Level To all provided services that can vary according to the desired QoS we associate
an implementation level. This implementation level (IL) encodes which part of implementation to choose
when supplying the service. These implementation levels are totally ordered for a given service. As these
implementation levels are finitely many, we can restrict ourselves to the case of positive integers and suppose
that implementation level 0 is the “best” level, 1 gives a lesser quality of service, and so on.

We assume that required services for a given service doesn’t change according to the implementation level,
that is, the call graph of a given service is always the same. However, the arguments of the required services
calls may change.
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Linking constraints expression Let us consider a component € which provides a service s that requires
r1 and rq services. Qinna permits to link the different implementation levels between callers and callees. The
relationship between the different implementation levels can be viewed as a function which associates to each
implementation level of s an implementation level for r; and for ro:

QLSC,:| N — N?
IL — (ILy,ILs)

This function is statically encoded by the developer within the application. For instance, it can easily be
implemented in the QoSManager through a “mapping” table whose lines encode the tuples of linked implemen-
tation levels: (ILs,,IL,,,IL,,). The natural order of the lines of the table is used to determine which tuple to
consider if the current negotiation fails.

5
ry = == F—
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- =
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Fia. 2.3. Implementation levels and linking constraints

Thus, as soon as an implementation level is set for the s; service, the implementation levels of all required
services (and all the implementation levels in the call tree) are set (Figure 2.3). This has a consequence not
only on the executed code of all the involved services (and also internal functions) but also on the arguments
of the service calls.

Therefore, if a user asks for the service s; at some implementation level, the demand may fail due to some
resource constraint. That’s why every demand for a service must be negotiated and the notion of contract will
be accurate to implement a set of a satisfactory implementation levels for (a set of) future calls.

Implementation of linking constraints in Qinna The links between the provided QoS and the QoS of
the required services are made through a table whose lines encode the tuples of linked implementation levels:
(ILs,IL,,,IL,,). This “mapping” table is encoded in the QoSManager. The natural order of the lines of the
table is used to determine which tuple to consider if the current negotiation fails.

Now we have all the elements to define the notion of contract.

2.4. Qinna’s contracts. Qinna provides the notion of contract to ensure both behavioral constraints
(Type Constraints and Intance Constraints of services, as described in Section 2.2) and linking constraints.

When a service call is made at some implementation level, all the subservices implementation level are fixed
implicitly through the linking constraints. As all the implementation levels for a same service are ordered, the
objective is to find the best implementation level that is feasible (w.r.t. the behavioral constraints of all the
components and service involved in the call tree).

Contract Negotiation All service calls in Qinna are made after negotiation. The user (at toplevel) of
the service asks for the service at some interval of “satisfactory” implementation levels. Qinna then is able
to find the best implementation level in this interval that respects all the behavioral constraints (CICs and
CTCs of all the services involved in the call tree). If there is no intersection between feasible and satisfactory
implementation levels, no contract is built. In the other case, a contract is made for the specific service. A
contract is thus a tuple (id, s;, IL, [I Liin, I Limaz], imp) denoting respectively its identifiant number, the referred
service, the current implementation level, the interval of satisfactory implementation levels, and the importance
of the contract. This last variable is used to sort the list of all current contracts and is used for degradation (see
next paragraph). The importance value is statically set by the developer each time he asks for a new contract.

After contract initialization, all the service calls must respect the terms of the contract. In the other case,
there will be some renegotiation.

Contract Maintenance and Degradation After each service call the decision procedure for behavioral

constraints are updated. After that, a contract may not be valid anymore. As all service calls are made
through the Brokers by the Domain, the Domain is automatically notified of a contract failure. In this case, the
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Domain tries to degrade the contract of least importance (which may be not the same as the current one). This
degradation has consequences on the resource and thus can permit other service calls inside the first contract.
Basically, degrading a contract consists in setting a lesser implementation level among the satisfactory ones,
but which is still feasible. If it is not possible, the contract is stopped.
It is important to notice that contract degradation is effective only at toplevel, and thus is performed by
the Domain. It means that there is no degradation of implementation level outside toplevel. That is why we
only speak of contract for service at toplevel.

Use of services Each call to a service at toplevel as consequences on the contract which has been negociated
for him. We suppose that a contract is made before the first invocation of the desired service. The verification
could automatically be done with Qinna, but is not not yet implemented. All the notifications of failures are
logged for the developer.

3. Qinna’s components implementation in C++4. We implemented in C++ the Qinna components
and algorithms. These components are provided through classes which we detail in this section.

3.1. Qinna’s components for the management of services. QoSComponent The QoSComponent
class provides generic constructors and destructors, and contains a private structure to save the current imple-
mentation levels of the component provided service. All QoS components will inherit from this class.

QoSBroker The QoSBroker class contains a private structure to save the references to all the corresponding
components it is responsible for. It provides the two functions Free (QoSComponent* refQc) and Reserve(...).
As testCIC and updateCIC functions signature depends of each component/service, these functions will be
provided in each instance of QoSBroker.

QoSManager The QoSManager class contains all information for the service provided by its associated
component. It provide the following public functions:

e bool SetServiceInfos(int idserv, QoSComponent *compo, int nbreq, int nbmap) initializes
the manager for the idserv service, provided by *compo, with nbreq required services and nbmap different
implementation levels. Return true if successful, false otherwise.

e bool AddLevQoSReq(int idserv, int lv, int irq, int lrq) adds the tuple (lv,irg,lrq) (the lv
implementation level for idserv is linked to the Irq implementation level for irq service) in the mapping
table for idserv.

e int Reserve(int idserv, int 1v) is used for the reservation of the idserv service at level il. It
returns the local number of (sub) contract of the Manager or 0 if the reservation has failed (due to
resource constraints).

QoSDomain The QoSDomain class provides functions for managing contracts at toplevel:

e bool AddService(int service, int nbRq, int nbMp, QoSManager *qm) adds the service service
with nbRq required services and nbMp implementation levels, with associated manager xgm.

e int Reserve(QoSComponent *compo,int ns , int lv, int imp) is used for reservation of the ser-
vice ns provided by the component xcompo at level [v and importance imp. it returns the number of
contract (in domain) if successful, 0 otherwise.

e bool Free(int id) frees the contract number id (of domain).

ManagerContract This class provides a generic structure for a subcontract which encodes a tuple of the
form < id,lv, *rq,v > where id is the contract number, [v the current level, rq is the component that provides
the service and v is a C++-vector that encode the levels of the required services. This class provides access
functions to these variables and a function to change the implementation level.

DomainContract This class provides a structure for contracts at toplevel. A Domain contract is a tuple
of the form < di,i,lv,*rq > where di is the global identifier of the contract, *rq is the manager associated to
the component that provides the service, ¢ is the local number of subcontract for the manager, and [v is the
current level of the service.

Remark 1 All services and contracts have global identifiers used in toplevel. However, it is important to notice
that service and (sub) contracts have local identifiers in their respective managers.
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3.2. Basic resource components. In the call graph of one service, leaves are physical resources (Memory,
CPU, Network). As all resources must be encapsulated inside components, we need to encapsulate the base
functions into QoSComponents. For instance, the Memory component must be encoded as a wrapper around the
malloc function, and the associated broker basically implements the CIC functions which decide if the global
amount of allocated memory is reached or not.

Sometimes, the basic functions are encapsulated in higher level components. For instance, a high level
library might provide a DisplayImage function which makes an explicit call to malloc, but this call is hidden
by the use of the library. In this particular case, the management of basic resource functions can be done in
two different but equivalent ways:

e the creation of a “phantom” Memory component which provides the two services amalloc (for abstract
malloc) and afree. Each time the developer makes a call to an “implicit” resource function (i. e.
when the called function needs a significant amount of memory, like DisplayImage), he has to call
Memory.amallloc. The Qinna’s C++ implementation provides some basic components like Memory,
Network and CPU and their associated brokers.

e the creation of QoSComponent around the library function DisplayImage which is responsible (through
its broker) for the global amount of “quantity of resource” used for the DisplayImage function.

Both solutions need a precise knowledge of the libraries functions w.r.t the resource consumption. We
assume that the developer has this knowledge since he designs a resource-aware application. In our case study
we used the first solution.

4. Methodology to use Qinna. We suppose that in the application all resources, including hardware
resources (Memory, CPU) or software ones (viewer, buffer), are encoded by components. Here are the main
steps for integrating Qinna into an existing application designed in C++:

1. Identify the variable services which are functions whose call may fail due to some resource reasons.

They are of two types:

e simple functions like Memory.malloc whose code does not vary. They have a unique implementa-

tion level.

e “adaptive” functions whose code can vary according to implementation levels.
The first step is thus to identify the services whose quality vary and associate to each of this services a
unique key, and if the code vary, clearly identify the variant code through a code of the form:
switch(implLevel)

{

case 0 :

}
where implLevel is the associated (variable) attribute of the host component for this service. We must
identify which variable services are required for each provided service, and the relationship between the
different implementation levels.

2. Create Qinna components. First, cut the source code into QoSComponents that can provide one
or more QoSservices. As the QoS negotiation will only be made between QoSComponents of different
types, this split will have many consequences on the QoS management. For each QoSComponentC
(which inherits from the QoSComponent class), the designer must encode two classes: QoSBrokerC and
QoSManagerC which respectively inherit from the QoSBroker and QoSManager generic classes. For the
whole application, the designer will directly use the QoSDomain generic class.

3. Implement Quality of Resource constraints. These constraints are set in two different ways:

e The type constraints (CTC) for component C' implementation is composed of additional functions
in QoSBrokerC : initCTC which is executed at the creation of the Broker, and which sets the
decision procedures parameters ; a testCTC function to determine whether a new instance can be
created or not ; an updateCTC to save modifications of the resources after the creation. For each
provided QoS service s;, we add to new functions: testCTC(idsi) which is executed before the
call of a service and tells if the service can be done, and updateCTC(idsi) to be executed after
the call.

e The instance constraints (CIC) for C' are also composed of three functions to encode in the
QoSComponentC: setCIC to set the resources constants, testCTC(idsi) which is used to de-
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cide if a service of identifiant ids can be called, and updateCTC(idsi) to update the resource

constraints after a call to the s; function.

4. Implement the linking constraints. The links between required services and provided service via
implementation levels are set by the invocation of the SetService and AddLevQoSReq functions of the
managers. These functions will be invoked at toplevel.

5. Modify the main file to initialize Qinna components at toplevel. Here are the main steps:

e For each base resource (CPU, Memory, ...)

(a) Invoke the constructor for the associated Broker. The constructor’s arguments must contain
the initialization of internal variables for type constraints (the total amount of memory for
example).

(b) Create the associated Manager with the Broker as argument.

c) Register the QoS services inside the Manager through the use of SetServiceInfos function.

Create QoSComponents instances via the Broker.reserve(...) function. The arguments

can be a certain amount of resource used by the component.

e For all the other QoSComponents, the required components first:

a
b

S~
o
~

) Create the associated Broker and Manager.

) Set the services information.

) If a service requires another service of another component, use the function Manager.AddReq
to link the required manager. Then use Manager.AddLevQoSReq to set the linking constraints.
(d) Create QoSComponent instances by invoking the corresponding reservation function

(Broker .Reserve).
e Create the QoSDomain and add the services that are used at toplevel (Domain.AddService)
e Reserve services via the QoSDomain and save the contracts’ numbers.

5. Viewer Implementation using Qinna.

5.1. Specification. Our case study is a remote viewer application whose high level specification follows:

e The system is composed of a mobile phone and a remote server. The application allows the downloading
and the visualization of remote images via a wireless link.

e The remote directory is reached via a ftp connection. After connection, two buttons “Next” and “Pre-
vious” are used to display images one by one. Locally, some images are stored in a buffer. To provide
a better quality of service, some images are downloaded in advance, while the oldest ones are removed
from the photo memory.

e The application must manage different qualities of services for the resources: shortage of bandwidth
and memory, or disconnections of the ftp server. When needed it can download images in lower quality
(in size or image compression rate).

e Different storage policies are possible, and there are many parameters which can be modified; like the
size of the buffer, or the number of images that are downloaded each time. We want to evaluate which
policy is the best according to a given scenario.

We want to use Qinna for two objectives:

e the maintenance of the application with respect to the different qualities of service,

e the evaluation of the influence of the parameters, on the non-functional behavior (timing performance
and resource usage).

5.2. The functional part. The functional part of the viewer is developed with Qt! (a C++ library which
provides graphical components and implementations of the ftp protocol). Figure 5.2 describes the main parts
of the standalone application. We chose to make the downloading part via the ftp protocol. The wireless part
is not encoded.

e The FtpClient class makes a connection to an existing ftp server and has a list of all distant images.
It provides a getSome function to enable the downloading of many files at once.

e The ImageBuffer class is responsible for the management of downloaded files in a local directory. As
the specification says, this buffer has a limited size and different policy for downloading images. The
class provides the two functions donext and doprevious which are asynchronous functions. A signal

Lhttp:/ /trolltech.com /products/qt/
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is thrown if/when the desired image is ready to be displayed. It eventually downloads future images in
current directory.

e The ImageViewer class is a high level component to make the interface between the ftp and buffer
classes to the graphics components.

e The ImageScreen class is responsible for the display of the image in a graphic component named
QPixmap.

e The main class provides all the graphics components for the Graphical User Interface.

5.3. Integration of Qinna. Now that we have the functional part of the application, we add the following
resource components: Memory, and Network which are QoSComponents that provide variable services. We only
focus on these two basic resources. The Network component is only linked to the FtpClient, whereas Memory
will be shared between all components. For Memory, the only variable service is amalloc which can fail if the
global amount of dedicated memory is reached ; this function has only one implementation level. For Network,
the provided function get can fail if there is too much activity on network (notion of bandwidth).

Then we follow the above methodology in the particular case of our remote viewer.
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Identification of the variable services (step 1)
Now as the variable services for low level components have been identified, we list the following adaptive
services for the functional part:

e ImageScreen.displayImage varies among memory, it has three implementation levels which correspond
to the quality of the displayed image. We add calls to Memory.amalloc function to simulate the use of
Memory.

e Ftpclient.getsome’s implementation varies among available memory and the current bandwidth of
network. If there is not enough memory or network, it adapts the policy of the downloads. It has three
implementation levels. We add calls to Network.bandwidth to simulate the network resources that are
needed to download files.

e ImageBuffer.donext/previous varies among available memory: if there is not enough memory the
image is saved with high compression.

Creation of the QoSComponents (step 2)

The resource components are QoSComponents. Then, the three components ImageScreen, FtpClient
and ImageBuffer are QoSComponents which provide each one variable service. Imageviewer and Main are
QoSComponents as well. Figure 5.3 represents now the structure of the application at this step.

For the sake of simplicity, we only share Memory into two parts, a part for ImageBuffer and the other part
for imageBuffer. That means that each of these components have their own amount of memory.

Resource constraints (steps 3 and 4)

The quantity of resource constraints we have fixed are classical ones (bounds for the memory instances,
unique instantiation for the imageScreen component, no more than 80 percent of bandwidth for the ftpClient,
etc). The QLSC are very similar to those described in [11] for a videogame application. Here we show how we
have implemented some of these constraints in our application.

o Quantity of resource constraints The imageScreen component is responsible for the unique service
display_image (display the image on the graphic video widget). Here are some behavioral constraints
we implemented for this component:

— There is only one instance of the component once.

— The display function can only display images with size lesser or equal to 1200 * 800.

— There is only one call to the display function once.
These type constraints are easily implemented in the associated Broker (imageScreenBroker) in the
following way: the constraint “maximum of instance” requires two private attributes nbinstance and
nbinstancemax which are declared and initialized at the creation of the Broker with values 0 and 1.
Then the reservation of a new imageScreen by the Broker is done after checking whether or not
nbinstance + 1 < nbinstancemazx. If all checks are true, it reserves the instance and increments
nbinstance.
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The checking of memory is done by setting the global amount of memory for ImageBuffer and
imageBuffer in local variables which are set to 0 at the beginning of each contract, and updated
each time the function amalloc is called.
These constraints are rather simple but we can imagine more complex ones, provided they can be
checked with bounded complexity (this is a constraint coming from the fact the Qinna components will
also be embedded).

e (oS Linking constraints
To illustrate the difference between quality of resource constraints and linking constraints, we show
here the constraints for the FtpClient.getSome:

— The implementation level 0 corresponds to 3 successive downloads with the Network.get function.
The function has a unique implementation level but each call to it is made with 60 as argument,
to model the fact it requires 60% of the total bandwidth. These three calls are made through the
use of the Thread.thread with implementation level 0 (quick thread, no active wait).

— The implementation level 1 corresponds to 2 calls to the get function with 40% of bandwidth each
time. These two calls are made through the use of the Thread.thread with implementation level
1 (middle thread, few active wait).

— The implementation level 2 corresponds to 1 call to the get function with 20% bandwidth. This
call is made through the use of the Thread.thread with implementation level 2 (more active wait).

Thus if the available bandwidth is too low, a negotiation or an existing contract will fail because of the
resource constraints. The creation of the contract may fail because a thread cannot be provided at the desired
implementation level.

Modification of toplevel (step 5) This part is straightforward. The only choices we have to make are
the relative amount of resource (Memory, Network) which are allocated to each QoSComponents. The test
scenario is detailed in section 5.5.

5.4. Some statistics. The viewer is written in 4350 lines of code, the functional part taking roughly 1800
lines. The other lines are Qinna’s generic components (1650 loc.), 600 lines of code for the new components
(imagescreenBroker, imageScreenManager etc.) and 300 lines of code for the test scenarios. The binary is also
much bigger 4.7Mbytes versus 2Mbytes without Qinna.

Thus Qinna is costly, but all the supplementary lines of code do not need to be rewritten, because:

e Generic Qinna components, algorithms, and the basic resource components are provided with Qinna.

e The decision functions for Quality of service constraints could be automatically generated or be provided
as a “library of common constraints”.

e The initialization at toplevel could be computed-aided through user-friendly tables.

We think that the cost of Qinna in terms of binary code can be strongly reduced by avoiding the existing
redundancy in our current implementation.

Moreover, Qinna’s implementation can be viewed as a prototype to evaluate the resource use and the quality
of service management. After a preliminary phase with the whole implementation used to find the best linking
constraints, we can imagine an optimized compilation through glue code which neither includes brokers nor
managers.

5.5. Results. We realized a scenario with a new component whose only objective is to use the basic re-
sources Memory and Network. This TestC component provides only the foobar function at toplevel. This func-
tion has two implementation levels, and requires two functions: ScreenMemory.amalloc and Network.get. The
whole application provides four functions at toplevel: TestC.foobar, ImageViewer.donext (and doprevious)
and ImageScreen.displayimage. Three contracts are negotiated, in the following importance order: foobar
first, then donext and doprevious, then displayimage. We made the three contracts and download and visual-
ize images at the highest qualities, but at some point the foobar function causes the degradation of the contract
for displayimage, and the images are then shown in a degraded version, like the Eiffel tower on Figure 5.1.

The gap between the characteristics of the contract and the effective resource usage can be make through
the use of log functions provided by the Qinna implementation. Figure 5.4 shows for instance the memory usage
for another played scenario.
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6. Related works. Other works also propose to use a development framework to handle resource vari-
ability. In [10] and [6], the author propose a model-based framework for developping self-adaptative programs.
This approach uses high-level specifications based on temporal logic formula to generate program monitors. At
runtime, these monitors catch the system events and activates the reconfiguration. This approach is similar to
us except that it mainly deals with hybrid automata and there is no notion of contract degradation nor generic
algorithm for negociation.

The expression and maintenance of resource constraints is also considered as a fundamental issue, so much
work deals with this subject. In [5], the author use a probabilistic approach to evaluate the resource consumed
by the program paths. Some other works in the domain of verification try to prove conformance of one program
to some specification: in [7], for instance, the authors use synchronous observers to encode and verify logical
time contracts. At last, the QML language ( [2], [1]) is now well used to express QoS properties. This last
approach is complementary to our one since it provides a language which could be compiled into source code
for QoSComponents or Brokers.

7. Conclusion and future work. In this paper, we have presented a case study using the software
architecture Qinna which was designed to handle resource constraints during the development and the execution
of embedded programs. We focused mainly on the development part, by giving a general development scheme to
use Qinna, and illustrating it on a case study. The resulting application is a resource-aware application, whose
resources constraints are guaranteed at runtime, and whose adaptation to variability of service is automatically
done by the Qinna components, through the notion of contracts. At last, we are able to evaluate at runtime
the threshold between contractualised resource and the real amount of resource effectively used.

This work has shown the effectivity of Qinna with respect to the programming effort, and the performance
of the modified application.

Future work include some improvements of Qinna’s C++ components, mainly on data structures, in order
to decrease the global cost of Qinna in terms of binary size, and more specific and detailed resource components,
in order to better fit to the platform specifications. Integrating Qinna into a model driven development tools,
such as Gaspard ( [8]), can be a way to improve this efficiency.

From the theoretical point of view, there is also a need for a way to manage the linking constraints. The
developer has still to link the implementation levels of required and provided services, and the order between all
implementations levels is fixed by him as well. The tuning of all these links can only be done though simulation
yet. We think that some methods like controller synthesis ( [4]) could be used to discover the/a optimal order

and linking relations w.r.t. some constraints such as “minimal variability”, “best reactivity” etc..

Finally, some theoretical work would be necessary in order to use Qinna as a prediction tool, and provide
an efficient compilation into “glue code”.
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DEPLOYMENT OF EMBEDDED WEB SERVICES IN REAL-TIME SYSTEMS

GUIDO MORITZ, STEFFEN PRUETER, DIRK TIMMERMANN*AND FRANK GOLATOWSKI'

Abstract. Service-oriented architectures (SOA) become more and more important in networked embedded systems. The main
advantages of Service-oriented architectures are a higher abstraction level and interoperability of devices. In this area, Web services
have become an important standard for communication between devices. However, this upcoming technology is only available on
devices with sufficient resources. Therefore, embedded devices are often excluded from the deployment of Web services due to a
lack of computing power, insufficient memory space and limited bandwidth. Furthermore, embedded devices often require real-time
capabilities for communication and process control. This paper presents a new table driven approach to handle real-time capable
Web services communication, on embedded hardware through the Devices Profile for Web Services.

Key words: service-oriented device architecture, devices profile for Web services, Web service for devices

1. Introduction. High research efforts are made to develop cross domain communication middleware
basing on architectural concepts like REST (Representational state transfer) and Service-oriented Device Ar-
chitectures (SODA) [25] and on technologies like UPnP (Universal Plug and Play), JINI, and DPWS (Devices
Profile for Web Services). While UPnP, DLNA and related technologies are established in networked home and
small office environments, DPWS is widely used in the automation industry at device level [26] and it has been
shown that they are also applicable for Enterprise integration [24, 27]. Barisic et al. [33] outline the potential
of SOA to become a key factor in embedded software development. Embedded development process can be
improved significantly if the SOA paradigm is used in each development stage. However, to make this happen
it is necessary to establish the grounding for deeply embedded systems and real-time system

Besides the advantages of SODA, additional resources are required to host a necessary software stack. There
are SODA toolkits available for resource-constrained devices like UPnP stacks [28] or DPWS toolkits [8, 9].
However, additional effort is necessary for deployment on deeply embedded devices and especially for embedded
real-time systems. Deeply embedded devices are small microcontrollers with only a few kB of memory and
RAM (e.g. MSP430, ARM7). These devices cannot be applied with comprehensive operating systems. But
they are essential because as they combine price, low power properties, size and build-in hardware modules.

This work presents a new approach, which can be applied to deeply embedded devices and serve real-time
and specification compliant DPWS communication.

2. Services in Device Controlling Systems. The World Wide Web Consortium (W3C) specifies the
Web services standard [13]. UPnP is a popular specification in the home domain. Due to the lack of security
mechanisms and the missing service proxy it is limited to small networks (see [2]). Furthermore, UPnP based
communication scales not with the arising high number of future coming wireless smart cooperating objects due
to its usage of Simple Service Discovery Protocol (SSDP) for device discovery at run-time. Web services are
already widely used in large networks and the internet for business processes and server-to-server communication
mainly. This client-to-server interaction uses SOAP [12] for the transport layer and Extensible Markup Language
(XML) for the data representation [1, 15]. On the other hand, the Web services protocols need much computing
power and memory, in order to enable a device-to-device communication with more constraint resources as
servers. Therefore, a consortium lead by Microsoft has defined the Devices Profile for Web services (DPWS) [4].
DPWS uses several Web services protocols, while keeping aspect of resource constraint devices. In comparison to
standard Web services, DPWS is able to discover devices at run time dynamically based on WS-Discovery, WS-
MetadataExchange and WS-Transfer, without a global service registry (UDDI). The included WS-Eventing [6]
specification also enables clients to subscribe for events on a device to get notified by state changes. Thus,
pull messaging is avoided in favor of push messaging, which is a significant advantage for resource constraint
devices and networks. DPWS is integrated in Microsofts operating systems Windows Vista and Windows 7
and furthermore in miscellaneous frameworks like e.g. .net Micro Framework. Additionally, open source stacks
are available [8]. In August 2008 a technical committee (TC) at OASIS was formed for the “Web Services
Discovery and Web Services Devices Profile” (WS-DD) [5]. WS-DD defines a lightweight subset of the Web
Services protocol suite that makes it easy to find, share, and control devices on a network. The work of this
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TC is based on the former DPWS, WS-Discovery and SOAP-over-UDP specification. In July 2009 version 1.1
of named specifications were published by the OASIS WS-DD TC. For many companies, this is the reason for
developing new interfaces for their products based on these protocols.

Using service gateways is the predominating approach to bridge between different communication layers or
between embedded systems and enterprise systems. Our approach aims at lowering the efforts for integration
and interaction and to set on standards instead of re-develop new protocols. Buckl et al. [32] assume a data
centric processing model is used in embedded systems. Authors differentiate between embedded Services (called
as eServices ) and Web Services. Both worlds are integrated by a service gateway. In [34] Web Services
on Universal Networks (WSUN) is described. The presented SOA based platform (environment) which is
composed of broker, registry and universal adaptor and is able to bridge between different SOA technologies,
like Jini and DPWS. This work concentrates on interoperability between different subnets and uses DPWS to
integrate devices. Some work has been done to integrate DPWS into OSGi. While UPnP support has already
been standardized within OSGi, today some initial work and proposals have been done to extend OSGi with
DPWS [35, 36]. Fiehe et al. [36] describe a distributed architecture which uses DPWS to extend OSGi and
make OSGi a distributed system. This approach is similar to actual work on distributed OSGi inside OSGi
initiative. However, there still exists the lack to integrate DPWS capable device into OSGi.

Less work has been done to bring DPWS on deeply embedded systems and sensor networks and especially
real-time systems. With the new approach, presented in this paper, Web services become also available on
deeply embedded devices. Both, deeply embedded devices and devices that are more powerful will be enabled
to communicate and interact with each other. This substitutes the application layer proxies.

Through linking the devices to a higher level of communication, devices no longer rely on specific transfer
technologies like Ethernet. All devices in an infrastructure are connected via services. This services based
architecture is already used in upper layers. Services based communication becomes available on lower layers
nearest to the physical tier. This allows a higher abstraction level of process structures. The first step to allow
this is the creation of a SODA framework that fulfills the requirements of deeply embedded devices.

3. Requirements for a light weight SODA. High-level communication on resource constrained embed-
ded devices can result in an overall performance degradation. In a previous paper [7] Prueter et. al presented
different challenges which have to be met in order to realize DPWS communication with real-time characteristics.

Firstly, as a basis an underlying real-time operating system must exist, ensuring the scheduling of the
different, tasks in the right order and in specific time slots. Secondly, the physical network has to provide
real-time characteristics. The major challenge in DPWS with respect to the underlying network, is the binding
of DPWS and SOAP. SOAP is bound to the Hypertext Transfer Protocol (HTTP) for transmission. HTTP
is bound to the Transmission Control Protocol (TCP) [10] (see Figure 3.1). The TCP-standard includes non-
deterministic parts concerning a resend algorithm in case of an error. Furthermore, the Medium Access Control
(MAC) to the physical tier has to grant access to the data channel for predictable time slots. For example,
Ethernet cannot fulfill this requirement.

As shown in Figure 3.1, it is possible to use SOAP-over-UDP. But in accordance to the DPWS specification,
a device must support at least one HTTP interface [4].

In [7] Prueter et al. Xenomai [11] is used as operating system and RTNet [14] to grant network access
with real-time characteristics. RTNet relies on the User Datagram Protocol (UDP) instead of TCP and uses
Time Division Multiple Access (TDMA) for Medium Access Control (MAC). The usage of UDP demands
SOAP-over-UDP at the same time. At least two interfaces have to be implemented: A non real-time, DPWS
compliant HTTP/TCP interface and a real-time UDP interface. The disadvantage of using a special network
stack including a special MAC, also implies building up a separate network. In this network, all participating
notes have to conform to the MAC and used protocols.

For deeply embedded devices, various real-time operating systems exist. FreeRTOS [21] is a mini real-time
kernel for miscellaneous hardware platforms like ARM7, ARM9, AVR, x86, MSP430 etc. Unfortunately, no
useful real-time network stack and operating system combination is currently available for these kinds of deeply
embedded devices. Therefore, this paper concentrates on the possibilities to provide real-time characteristics in
the upper layers being on the top of TCP/IP.

The binding of DPWS and TCP through HTTP causes different challenges in granting real-time charac-
teristic for DPWS communication and is still an ongoing work in our research group. It is not possible to
reach deterministic characteristics without specific real-time operating systems and network stacks. A real-time
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operating system grants access to peripheries for predictable time slots and execution of tasks in the right order.
The arising high level communication may not interfere with the real-time process controlling. The underlying
real-time operating system takes care of correct thread management and correct scheduling of the real-time
and non real-time tasks. Tasks on the controller, competing with the communication, are prioritized by the
operating system.

In order to provide Web services on microcontrollers, different challenges have to be met. Figure 3.2 shows
the particular parts, which have to be realized.

3.1. Network Stack. The network stack, responsible for the right addressing and the way of exchanging
data, is the first module, which have to be realized and meet the resource requirements. Dunkels has developed
ulP and IwIP, two standard compliant TCP/IP stacks for 8 Bit controller architectures ( [15, 16, 17]). ulP
fulfills all minimum requirements for TCP/IP data transmissions. The major focuses are minimal code size,
memory and computing power usage on the controller, without losing standard conformance. lwIP also fulfills
non mandatory features of TCP/IP. Both implementations are designed to run on 8-bit architectures with and
without an operating system. The differences between both stacks are shown in the following Table 3.1.

DPWS bases on WS-Discovery for automatic discovery of devices and is based on IP Multicast. Multicast
applications use the connectionless and unreliable User Datagram Protocol (UDP) in order to achieve multicast
communications. ulP is able to send UDP Multicast messages, but is not able to join multicast groups and
receive multicast messages [17]. In contrast to ulP, the IwIP implementation supports all necessary UDP and
Multicast features. The above mentioned FreeRTOS can use the lwIP stack for networking. This combines
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TaBLE 3.1
ulP vs. lwIP
Feature ulP IwIP
IP and TCP checksums X
IP fragment reassembly
IP options
Multiple Interfaces

UDP
Multiple TCP connections
Variable TCP MSS
RTT estimation
TCP flow control
Sliding TCP window
TCP congestion control Not needed
Out-of-sequence TCP data
TCP urgent data X
Data buffered for rexmit

slisltaslls

ittt Pl Pl Pl e

the advantages of a compatible, lightweight network stack and the usage of an embedded real-time operating
system.

3.2. SOAP. Upon the network stack, HTTP communication protocol is used for transport of unicast
messages. The payload is embedded in XML structures and sent via HTTP. All messages utilize the POST
method of HTTP for SOAP envelope delivery. Most addressing information in the HTTP header is redundant
because they are included in the SOAP message itself with a higher service abstraction. Significant HTTP
header information is the Content-Length filed to identify ending of messages in the TCP data stream. Because
DPWS requires a small part of the HTTP functionality only, it is not necessary to implement a full functional
HTTP stack.

In contrast, the XML processing and parsing draws more attention. On deeply embedded devices, with only
few kB of memory, the code size and the RAM usage have to be reduced. The WS-Discovery and WS-Metadata
messages exceed the Maximum Transmission Unit (MTU) of most network technologies, including Ethernet.
This supports the decision for IwIP in favour of ulP. The ulP implementation only uses one single global buffer
for sending and receiving messages. The application first has to process the message in the buffer, before it can
be overwritten [17]. In case of a complete XML message, the whole file has to be available before a useful parsing
can be processed. Additional, computing power is restricted to resource constrained devices. With respect to
the overall performance of the communication task, it is difficult to work through and parse the whole message
as a nested XML file. Therefore, our research group has developed and implemented a new approach to handle
HTTP and XML analysis. This new approach is described in the next section.

4. New Table Driven Approach. A complete implementation of SODA for deeply embedded systems,
like wireless sensor network nodes with limited processing power and memory, is a significant challenge. All
modules that are mentioned in section III like network stack, SOAP, HTTP and DPWS have to be implemented.

Due to dedicated characteristics and functionalities of sensors and actors in resource constraint environ-
ments, most of the exchanged information are discovery messages for the lose coupling of the devices during
run-time and basic service invocations with non-complex data types. We have analyzed different setups with
DPWS compliant implementations to identify which parts of DPWS could be omitted or adopted to reduce
necessary resources. In most scenarios, only few types of messages have to be processed. After discovery and
metadata exchange, the devices and their addresses are known and the services can be invoked. Only a few
parts change within the exchanged messages. Major parts of the messages stay unchanged. Every time a service
is called, almost the same message has to be parsed and almost the same message has to be build.

With all exchanged messages from the analysis of different scenarios, tables can be generated. The tables
contain all appropriated incoming and outgoing messages. The new implemented table driven approach is able
to response every request by referring to these tables.

This new table driven implementation is not based on SOAP and HTTP. Instead, we are using an approach
basing on a simple string comparison of incoming messages in this new implementation. The SOAP-Envelope
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containing the service invocations are simple structured and there is no need for complex parsing of messaging
including e.g. heavy weight XML namespace support. The messages are interpreted as simple text messages
and not as SOAP Envelopes being embedded in HTTP. The relevance of the received strings from HTTP and
SOAP protocols are unknown for the table driven device. Certainly, the table driven device can analyze the
incoming requests and filter required information. The device is able to send specific response with the correctly
adapted dynamic changing sections. The overhead for parsing and building always the same message is reduced
by this approach. Thereby memory usage and computation time are decreased in comparison to a traditional
implementation.

With respect to a real-time capable communication, the treatment of the messages as strings and not as
specific protocols is significant. The parsing as a string is independent of the depth of the nesting of XML
structures and defined by the length of the SOAP-Envelope only. The necessary time, to parse the message as
a string, is predictable. XML Schema, which is required by DPWS, cannot fulfill these requirements by default.

5. Mobile Robot Scenario. We verified our solution in a real world scenario. An external PC and an
overhead camera control a team of five autonomous robots. The robots are coordinated via DPWS interfaces.
The robots receive commands from a central server. The commands have to be executed in predicted timeslots
to prevent collisions and enable accurate movement of the robots. The whole setup is shown in Figure 5.1.

The team behavior of the robots is controlled by a central server which uses one or more cameras mounted
above the ground. Image processing software on the PC extracts the position of all robots in the field. On
the PC even the commands for the robots are calculated. These commands consist of global coordinates of the
robot positions and the target positions. These commands are sent with a high transmission rate to the robots.
The robots use global coordinates to update their own local and imprecise coordinate tracking. The robots
need this global updates in regular periods, otherwise a correct controlling cannot be granted. These real-time
requirements for controlling the robots with a parallel running communication system make the robot scenario
an ideal test bench for our implementations.

5.1. Robot Hardware. To control the robots we use two controller boards alternatively: an embedded
Linux board and an ARMY7 controller board. The embedded Linux board is the Cool Mote Master (CMM) from
LiPPERT. It is equipped with an AMD Alchemy AU 1550 processor [19]. This board is designed as a gateway
node for sensor networks. The CMM is already equipped with an 802.15.4 compliant transceiver. We have
extended the board with additional Bluetooth and Wi-Fi (IEEE 802.11) interfaces [20]. Thereby, the board has
three different radio technologies for networking beside Ethernet.

The ARM7 board is a SAM7-EX256 evaluation board from Olimex [23]. This board is applied with an Atmel
ARMYT controller with 256 kB memory and 64 kB RAM. The board already provides an Ethernet interface,
which was used for testing. The controller is running with a clock rate of 55MHz. It is possible to schedule the
IwIP stack and the implemented table driven device in different prioritized tasks with the help of FreeRTOS.

The implementations are evaluated on a standard PC and on these boards. An overview of used hardware
is provided in Table 5.1. The network devices are configured in a way, that all of them can handle IP traffic.

6. Implementation. Our research group has implemented the WS4D-gSOAP toolkit [8]. This is a soft-
ware solution, which includes a DPWS stack and software tools for creating of own Web services based on
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TABLE 5.1
Used hardware for testing the new table driven approach

x86 PC CMM SAM-7
CPU Intel Pentium 4 Alchemy AU 1550 Atmel ARM7

Clock Rate 3,4 GHz 500 MHz 55 MHz

ROM 500 GB 512 MB 256 kB

RAM 1024 MB 256 MB 64 kB
Operating System | Linux (2.6.24/Ubuntu) | Linux (2.6.17/Debian) | FreeRTOS 5.0

Network interfaces Ethernet Ethernet, 802.11g, Ethernet

802.15.4, Bluetooth

DPWS. This toolkit uses gSOAP [22] for SOAP functionalities and extends gSOAP with an implementation of
the DPWS specification. This traditional implementation will be used as benchmark for the new table driven
approach.

In the first step a service is created with the existing WS4D toolkit that provides all necessary commands
for the robots in our mobile robot scenario. The external PC calls a hosted service on the robots. The service
is called every time when new commands have to be send to the robots. The new commands are embedded in
the request. The service answers with a response, including a performance parameter of the robot.

In the second step, the exchanged messages are analyzed according to the DPWS specification. All possible
outgoing and incoming messages for the mobile robot scenario are generated. In the third step, a completely
new DPWS device is implemented. The structures and contents of the possible messages are deposited in the
new implemented device as strings. This device does not support any dynamic SOAP or HTTP functionalities.
The new table driven approach does not parse the whole incoming message as XML file. Every received
message is analyzed with an elementary string compare. Thereby the type of the message is figured out. If the
message type is known, the device answers with the related message. The answer is already deposited in the
implemented device as a string also. In the answer, only parts required by the DPWS specification and the
payload are changed. With respect to available resources of the target hardware platform, the implementation
can be optimized concerning the Flash and RAM memory usage. On the one hand, the generated tables can be
loaded in RAM at start time of the binary. This requires more available main memory, but can fasten the data
access during run time. On the other hand, the generated tables can also be stored in non-volatile memory like
Flash. This reduces footprint of the binary but may cause higher execution times during service invocation and
message processing. To meet real-time requirements, the choice between both options correlates to real-time
features of the underlying management of volatile and non-volatile memory access.

During the implementation of the table driven device, we have taken care that system functions are not
called in critical sections. For example, the main memory management is provided by the task itself. The task
allocates a pool of main memory when it is started and then organizes the main memory itself. Furthermore,
the different threads for the network stack and the threads handling the messages are analyzed to be scheduled
in the right order and with correct priorities.

6.1. Message Exchange. Figure 6.1 gives an overview of exchanged messages in the mobile robot sce-
nario. When starting the device, it announces itself with a Hello SOAP Envelope. Within this message only
the MessagelD and the transport specific address, are dynamically and has to be adapted. Furthermore, the
MessageNumber and the InstancelD has to be correct.

When a client was not started, as the device announces itself with a Hello, the client asks with a Probe
for available devices. The answer is a Probe Match, where the RelatesTo has to fit to the MessageID of the
Probe and the MessageID has to be dynamic. Here, also the MessageNumber and the InstanceID has to be
incremented.

When the devices and their addresses are known, the client will ask for the hosted services on the device in
the next step. Therefore, a GetMetadata Device is send to the hosting service, which is at least a hosted service
that announces representative the available hosted services. The GetMetadata message is the first one that is
sent via HTTP. Within the HTTP header, the Content-Length header field, the length of the message, and the IP
address has to be adopted. The address only has to be changed, if it was not known at compile time. This applies
to all IP addresses in the scenario. In the GetMetadata Device message SOAP-Envelope, the To XML tag has to
match to the address of the device, detected through the Probe. The device answers with a GetMetadata Device
Response message. In this message the RelatesTo has to match the MessageID of the GetMetadata Device.
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When the client knows available hosted services, the specific hosted service, that the client is looking for,
is asked for the usage interface with a GetMetadata Service. The GetMetadata Service Response refers to the
GetMetadata Service through the RelatesTo XML tag.

After the metadata exchange is complete, the client knows how to interact with the specific service and the
service usage starts. The client invokes the service with a message, where To and MessagelD has to be correct.
In the Service Usage Request, the coordinates of the mobile robot scenario are integrated. The service answers
with the Service Usage Response. Therein, the reference to the request is given through the RelatesTo tag.
In our special mobile robot scenario, the response also contains the ProcessingTime tag. In this section, the
service informs the service user about the time, the application needs to process the new coordinates and is a
performance parameter for the mobile robot.

An overview about the dynamic parts of the different messages is given in Table 6.1. The overall size for
the exchanged messages is 12.839 Bytes. The overall number of Bytes that can change is 588. Only 4.6% of the
overall exchanged bytes are dynamic in the mobile robot scenario.

6.2. Devices Footprint. The memory optimized WS4D toolkit implementation of the DPWS device
needs 360 kB of disk space when compiled for Linux on a x86 architecture. The table driven device implemen-
tation has a 16 kB footprint when compiled for a standard x86 PC running with Linux. Both versions do not
contain networking stacks in these x86 implementations. Both implementations for an x86 PC running with
Linux are using the BSD Socket API and corresponding network stacks included in Linux to handle the network
traffic. The same implementation of the new table driven approach ported to the SAM7-EX256 board running
with FreeRTOS 5.0 has a 13 kB footprint without network stack and interface drivers. As network stack the
independent IwIP stack in Version 1.3 is applied to the board. Therefore, the stack was ported to FreeRTOS 5.0.

The required disk space for the different parts on the SAMY7 board is shown in Table 6.2. The overall
memory being used on the board, including FreeRTOS, IwIP and the device needs 146 kB.

The heap and stack usages of both implementations are given in Table 6.3. The maximum stack and
heap usage of the table driven approach is much lower, because exchanged messages and their sizes are known
at compile-time and no non-required memory has to be allocated during run-time. Due to the soft resource
requirements of the used hardware platforms, the implementation of the table driven approach is still not full
optimized concerning heap and sack usage. It depends on the specific scenario, if the message tables are kept
into RAM during run-time or are loaded separately into RAM from non-volatile memory like flash on demand.
Keeping the contents of the tables in flash reduces heap and stack usage, but may cause a gain in responds time
due to higher access time to flash compared to RAM. For highly energy constrained devices with flash memory
for data storage on external hardware modules, swapping the tables to flash can have an influence on the overall
power consumption also. The flash hardware component can be switched of while keeping the tables without
consuming any energy, but have to be switched on every time when access to the tables is required. Thus,
depending on the specific scenario, a hybrid solution for table storage might be optimal. Often required tables
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and content are kept into RAM with low access times and no additional energy consumption, while infrequent
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TaBLE 6.1

Overview Exchanged Messages

Message Type

Changing parts

Dynamic Bytes

Hello MessagelD 36
XAddrs (IP) max. 17
AppSequence MessageNumber approx. 2
AppSequence Instanceld 10
Probe MessagelD 36
Probe Match MessageID 36
RelatesTo 36
AppSequence MessageNumber approx. 2
AppSequence Instanceld 10
GetMetada Device HTTP Content-Length max. b
HTTP Host 175, max. c.f. [10]
MessageID 36
To 36
GetMetadata Device Response HTTP Content-Length max. b
RelatesTo 36
Address 175, max. c.f. [10]
GetMetadata Service HTTP Content-Length max. 5
HTTP Host 175, max. c.f. [10]
MessageID 36
To 175, max. c.f. [10]
GetMetadata Service Response HTTP Content-Length max. 5
RelatesTo 36
Service Invocation Request HTTP Content-Length max. b
HTTP Host 175, max. c.f. [10]
MessagelD 36
To 36
Payload 16
Service Invocation Response HTTP Content-Length max. 5
RelatesTo 36
Payload 3
TABLE 6.2
Footprint of SAM7 Implementation with FreeRTOS and lwIP
Module Footprint
static DPWS device 13 kB
lwIP 1.3 77 kB
FreeRTOS including Debug Tasks 56 kB

used tables are kept into flash to reduce heap and stack usage while run-time.

6.3. Time Responds. Also some timing measurements have been done in order to have an objective
comparison for the new static approach. Therefore, the round trip time was measured that is required from
sending the message to receiving the response on the client side. Through this method the overall performance
and the maximum number of service invocations per second can be determined which can be served.

These measurements are done for a standard x86 PC and the SAM7 board. On both devices a 100 MB/s
Ethernet interface is applied, which has been used for the measurements. On the SAMT boards, an independent
thread simulated an additional CPU load. This CPU load thread was scheduled with different priorities. As

requesting client a standard PC (2x3,5 GHz with 1 GB RAM) was used in all cases.

The values are the average over 1000 requests, send back-to-back.

The following Table 6.3 shows the times measured for the different implementations of DPWS server/device.
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Round Trip Time and Memory Usage
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Device Round Trip Time | Requests per sec | Max Heap Usage | Max Stack usage
x86 PC 1,05 ms 952 112,76 Bytes 97,64 Bytes
WS4D toolkit
x86 PC 0,9 ms 1111 8,928 Bytes 15,324 Bytes
Table Driven DPWS
SAMT7-EX256 18,6 ms 53 N.A. N.A.
Table Driven DPWS
SAMT7-EX256 18,6 ms 53 N.A. N.A.
Table Driven DPWS
SAMT7-EX256 30,2 ms 33 N.A. N.A.
Table Driven DPWS

On the PC, the new implemented approach provides a faster overall processing. The time responds on the
real-time operating system of the SAMT7 board, depend on given priorities for the different competing tasks. As
long as the CPU load task has a lower priority than the DPWS and the lwIP tasks, no effect to the average
times could be measured.

7. Message structure optimizations. All messages in DPWS make use of XML for data representa-
tion. The application of XML in DPWS and Web Services has multiple advantages considering independency
of programming language, operating system, communication channel, data representation, and character set.
Certainly, XML implies a message overhead. Hence, this subsection describes several concepts for optimized
data encodings of SOAP messages.

Fast Web Services [30] are using ASN to compress the XML files into a resource optimized binary represen-
tation and to overcome performance issues for complex string operations in message processing. Sandoz et al.
developed a solution to convert Web Services specific XML Schema into ASN. The proposed approach reduces
the size of the XML data by more than factor four and “performance is nearly 10 times that of XML literal.
In other words, Fast Web Services will perform better as the size of the content increases." Nevertheless, this
approach leads to isolated applications and is incompatible with DPWS devices and clients that do not support
the ASN data representation.

The Efficient XML Interchange Working Group [29] develops an encoding format for XML, “that allows
efficient interchange of the XML Information Set and allows effective processor implementations". The main
focus is high data compression even of big and deep structures completely compliant to XML. Analyses have
shown that the binary documents can be up to 90% smaller than the original XML document.

In comparison to Efficient XML and Fast Web Services, A-SOAP [31] describes concepts for XML encod-
ing, which can be easily implemented in hardware and thereby much more energy efficient then in software.
Additionally, this approach provides real-time parsing characteristics.

A-SOAP (Adaptive SOAP) uses hash functions, to encapsulate complex XML structures. Constantly re-
current XML structures are represented by hash values (see example in Figure 7.1). For the transmission only
changing parts of the XML files are transmitted as proper XML tags. All tags known by sender and receiver
are transmitted by using hash values. Especially A-SOAP can be integrated in DPWS and assure compliance
to clients and devices which not support A-SOAP. An endpoint that cannot understand a SOAP message,
responds with a SOAP Fault message. In the case when an endpoint is not A-SOAP enabled, the overhead is
one additional request and one additional SOAP Fault. The sender then has to retransmit the message as a
compliant XML message. Certainly, this generic A-SOAP support detection mechanism is completely DPWS
compliant.

A-SOAP is a proper addition to the table driven approach. The contents of the generated tables can be
attached to hash values for identification. Not the contents have to be transmitted but only the dedicated hash
values. On the one hand, this reduces parsing efforts as hash values can be parsed in hardware and in software
fast and easily. On the other hand, the integration of the A-SOAP approach in toolkits for the implementation of
the table driven approach reduces footprints and memory consumption significantly. If possible communication
partners are already known at compile-time and thus all clients invoking the table driven device comply the
DPWS extended with A-SOAP functionalities, the tables might be omitted completely in the binaries. Only
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Device A
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Vs

Hash Table:
1:<soapenv:Envelope...>
2:<soapenv:Body>
21:<ns1:add...>
22:<ns1:in0>

-4— VALUE A
19:</ns1:in0>
0:<nst:in1>

-4+— VALUE B
20:</ns1:in1>
3:</ns1:add>
4:</soapenv:Body>
5:</soapenv:Envelope>

-

Device B

Vs

Hash Table:
1:<soapenv:Envelope...>
2:<soapenv:Body>
21:<ns1:add...>
22:<ns1:in0>

—» VALUE A
19:</ns1:in0>
0:<nst:in1>

—» VALUEB
20:</nst:in1>
3:</ns1:add>
4:</soapenv:Body>
5:</soapenv:Envelope>

-

*

Fig. 7.1. A-SOAP

the associated hash values have to be included. This results in real-time DPWS based communication even for
highly resource constrained platforms.

The disadvantage of A-SAOP is that it recently was granted as patent. Hence, there is no proposal for a
data compression to apply DPWS in WSNW.

8. Conclusion. The new table driven approach allows the usage of Web services on deeply embedded
devices. Furthermore, the implemented services can grant real-time capabilities. Thus, the deeply embedded
devices can be integrated in enterprise service structures. The created service interfaces can be reused in different
application. The connectivity between such large numbers of embedded devices normally needs proxy concepts
with static structures. Now, these proxies are no longer required. The devices can be directly accessed by
a high level process logic. Furthermore, the validation and certification become cheaper because of the slim
implementation and reusability of the interfaces.

The measurements show that the binary size of a device can be reduced by the factor of more than 20. At
the same time, the time responds can be improved. Heap and stack usages do not depend on specific dependent
values but on specific message exchange patterns of dedicated scenarios Through the implementation in different
threads, the time responds of the new implemented static approach is independent from other competing tasks.
However, this assumes an underlying real-time operating system.

Further optimization of the footprint and dynamic memory usage are a main focuses for the future work.
Future work will also research on a completely specification compliant implementation including optimized
message structuring for real-time parsing.
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TOWARDS TASK DYNAMIC RECONFIGURATION OVER ASYMMETRIC COMPUTING
PLATFORMS FOR UAVS SURVEILLANCE SYSTEMS
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Abstract. High-performance platforms are required by modern applications that make use of massive calculations. Actually,
low-cost and high-performance specific hardware (e.g. GPU) can be a good alternative along with CPUs, which turned to multiple
cores, forming powerful heterogeneous desktop execution platforms. Therefore, self-adaptive computing is a promising paradigm
as it can provide flexibility to explore different computing resources, on which heterogeneous cluster can be created to improve
performance on different execution scenarios. One approach is to explore run-time tasks migration among node’s hardware towards
an optimal system load-balancing aiming at performance gains. This way, time requirements and its crosscutting behavior play
an important role for task (re)allocation decisions. This paper presents a self-rescheduling task strategy that makes use of aspect-
oriented paradigms to address non-functional application timing constraints from earlier design phases. A case study exploring
Radar Image Processing tasks is presented to demonstrate the proposed approach. Simulations results for this case study are
provided in the context of a surveillance system based on Unmanned Aerial Vehicles (UAVs).

Key words: reconfigurable computing, dynamic scheduling, aspect-oriented paradigm, unmanned aerial vehicles

1. Introduction. In addition to timing constraints, modern applications usually require high performance
platforms to deal with distinct algorithms and massive calculations. The development of low-cost powerful and
application specific hardware (e.g., GPU—Graphics Processing Unit, the Cell processor, PPU—Physics Pro-
cessing Unit, DSP—Digital Signal Processor, PCICC—PCI Cryptographic Co-processor, FPGA—Field Pro-
grammable Gate Array, among others) offers several alternatives for execution platforms and application im-
plementation, aiming at better performance, programmability and data control. The resulting heterogeneity in
the execution platform can be considered as an asymmetric multi-core cluster. This cluster’s processing power
is intensified with the new generation of multi-core CPUs, being a challenge to program applications that use
efficiently all available resources and Processing Units (PU).

In this sense, low-cost hybrid hardware architectures are becoming attractive to compose adaptable exe-
cution platforms. Thus software applications must benefit from that powerfulness. This leads to the creation
of new strategies to distribute applications’ workload (tasks, algorithms, or even full applications that must
run concurrently) to execute in asymmetric PUs in order to better meet application’s requirements, such as
performance and timeliness, without loosing flexibility. Dynamic and reconfigurable load-balancing computing
(by means of task allocation reconfiguration, i. e., rescheduling) is a potential paradigm for those scenarios,
providing flexibility, improving efficiency, and offering simplicity to program an (balanced) application on het-
erogeneous and multi-core architectures. Fig. 1.1 shows such a theoretical scenario of a desktop-based platform
composed of several devices.

An important step towards the usage of the above mentioned hybrid platforms is to create a real-time work-
load self-rescheduling framework to balance the resource usage by applications composed of different algorithms
(graphics, massive mathematical calculations, sensor data processing, artificial intelligence, cryptography, etc.),
executing on top of such hybrid platforms under time constraints, in order to achieve a minimal Quality of
Service. In addition, it has to be predicted that during execution time, new tasks can arise and influence the
whole system. In this manner, such framework must keep monitoring the tasks’ performance to provide online
information for a possible new allocation balance, indicating that task rescheduling may be necessary to promote
a better performance for the overall current scenario.

In this paper, the focus is on the very first step in the reconfiguration framework: application requirements
handling (rescheduling) in a high-level design phase. The approach is based on application requirements, like
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Reconfigurable Hybrid Processing Platform

Fia. 1.1. System overview.

task/application deadlines, in order to find the current allocation balance that minimizes the whole application(s)
execution time. This information is used by the framework to balance the computation over the execution
platform. For its accomplishment, crosscutting concerns related to real-time non-functional requirements are
taken into account. Handling these concerns by specific design elements called “aspects” (from aspect-oriented
paradigm [11]) plays an important role for understandability and maintainability of the system design, as those
concerns may influence different parts of the system in different ways. Then, based on the support offered
by the aspects to monitor and control the resource usage (profiling), a strategy to assign tasks dynamically is
presented, which is submitted to a run-time rescheduling when it is needed.

The paper is organized as follows. Section 2 starts with a previous work on aspects and requirements
identification, modeled using UML. Section 3 follows with the dynamic workload strategy implemented by the
created aspects. Composing these two concepts, Section 4 outlines an UAV surveillance system as case study,
focusing on RIP (Radar Image Processing) tasks, which are dynamically created at run-time. Finalizing, related
work, conclusions and future directions are exposed.

2. Handling Timing Concerns Using Aspects. In order to achieve dynamic rescheduling to improve
tasks load-balancing, we investigate the use of aspect-oriented paradigms to cope with the modern system’s
crosscutting concerns, which are usually related to Non-Functional Requirements (NFR). Such requirements
must be effectively handled already from requirements analysis to implementation phases to enhance system
understandability during design. The context addressed by this work is similar to the one presented in the design
of Distributed Real-time Embedded (DRE) systems, i. e. performance and timing NFR are very important
during all application development phases. In this sense, we have adopted the taxonomy published in [6].

Traditional approaches, such as object-orientation, do not provide adequate means to deal with NFR, han-
dling. It occurs due to the inefficient modularization for NFR handling elements (timing requirements probes,
serialization mechanisms, task migration mechanisms, among others), i. e. they are not modularized in a single
or few system elements, but spread allover the system. Any change in one of these elements requires changes in
different parts of the system, leading to a tedious and error-prone task that does not scale in the development
of large and complex applications. The observation of these drawbacks motivates the use of an aspect-oriented
approach, which makes possible to address such concerns in a modularized way. It separates the handling of
the non-functional concerns in specific elements, increasing the system modularity, diminishing the coupling
among elements, and though affecting positively the system maintainability, reuse and evolution [19]. Moreover
specifically, the advantages of an aspect-oriented approach became clearer when applied to the task allocation
strategies using heterogeneous platforms due to the need of profiling each task in different hardware, affecting
several elements of the application. The use of aspects to address this concern represents an improvement since
it helps to cope with the complexity in managing this concern spread through the whole system.
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The next subsection presents a brief description of the NFR taxonomy presented in [6]. Following, a brief
description of some aspects from an aspect framework, called DERAF [7], are presented to demonstrate how to
deal with time-related NFR. Afterwards, an extension to DERAF, in terms of new aspects to deal with dynamic
reconfigurable load-balancing, are is presented.

2.1. Non-functional Requirements. DRE systems domain presents a large set of NFR. Depending on
the application domain, some requirements are more important than others. The same can be said about
NFR handling: some of NFR are mandatory handled, while others are not. In this sense, Fig. 2.1 shows NFR
taxonomy presented in [6], which focus on some of these very important requirements of DRE systems domain.

Deadline
Period
“Timing o COSt
Release Time
Activation Latency
= Start and End
Time = =
Jitter
Tolerated Delay
Precision = Laxity
= Freshness
Resolution
_Drift

Non-Functional } performance Response Time
Requirements Throughput

Tasks Allocation
Hosts

Distribution L
Communication
Synchronization

Area
Embedded < LoWer Consumption

Total Energy
Memory Allocation

Generic M Specific

Fia. 2.1. NFR requirements for DRE systems.

The real-time concerns are captured by the requirements within the T'ime classification, which is divided
in Timing and Precision requirements. The former presents time-related characteristics of system’s tasks,
activities, and/or action, e.g. deadlines or periodic executions. The later denotes constraints that affect the
temporal behavior of the system in a “fine-grained” way, determining whether a system has hard or soft time
constraints. An example is the Freshness requirement, which denotes the time interval within which a value
of a sampled data is considered updated. Another key requirement is the Jitter, which directly affects system
predictability since large variance in timing characteristics affects system determinism.

Per formance requirements are not only tightly related to those presented in the T'ime classification, but
also to those concentrated in the Distribution classification. They usually represent requirements employed to
express a global need of performance, like the end-to-end response time for a certain activity performed by the
system, or the required throughput rate in term of sending/receiving messages.

Distribution classification presents requirements related to the distribution of DRE system’s activities,
which usually execute concurrently. For instance, these concerns address problems such as task allocation over
different PUs, as well as the synchronization and communication needs and constraints. Concerns related to
embedded systems generally present requirements related to memory usage, energy consumption, and required
hardware area size. Embedded classification gathers these concerns.
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In this paper, the interest is to provide a runtime reconfigurable solution aiming at meeting time-related
requirements. All mechanisms related to tasks migration among different PUs are non-functional crosscutting
concerns, which are tightly related to system reconfiguration. In this sense, tasks migration is not only an
expected final behavior of any system, but it also affects several functional elements in different ways and in
different parts of the system.

2.2. Time-related Aspects. In order to address the mentioned T'ime and Precision requirements, this
work (re)uses aspects from the Distributed Embedded Real-time Aspects Framework (DERAF) [7]. DERAF’s
Timing and Precision packages are presented in Fig. 2.2. A short description of each aspect is provided in the
following paragraphs. Interested readers are pointed also to [7] for more details about DERAF.

TimingAttributes: adds timing attributes to active objects (e.g. deadline, priority, WCET, start/end
time, among others), and also the corresponding behavior to initialize these attributes.

PeriodicTiming: controls execution of active objects by means of a periodic activation mechanism. This
improvement requires the addition of an attribute representing the activation period and a way to control the
execution frequency according to this period.

SchedulingSupport: inserts a scheduling mechanism to control the execution of active objects. Addition-
ally, this aspect handles the inclusion of active objects into the scheduling list, as well as the execution of the
feasibility test to verify if the active objects list is schedulable.

TimeBoundedActivity: limits the execution of an activity in terms of a deadline for finishing this activity,
i. e. it adds a mechanism to restrict the maximum execution time for an activity, e.g. it limits the time which a
shared resource can be locked by an active task. Jitter: measures the variance of activities’ timing characteristics
by means of measuring their start/end time, and calculating the variation of these metrics. If the tolerated
variance was overran, corrective actions can be performed.

ToleratedDelay: restricts maximum latency for the beginning of an activity execution, e.g. limits the
maximal duration in which a task can wait to acquire a lock on a shared resource.

DataFreshness: controls system data’s expiration by means of associating timestamps to them, and also
by verifying data validity before using them. Every time controlled data are written, their associated timestamps
must be updated. Similarly, before reading these data, their timestamps must be checked [2].

ClockDrift: controls deviation of clock references in different PUs. It measures the time at which an
activity starts, comparing it with the expected time for the beginning of this activity; it also checks if the
accumulated difference among successive checks exceeds the maximum tolerated clock drift. If this is the case,
some corrective action is performed.

<<Non-Functional>> |
Timing <<Non-Functional>>
A Precision
<<Aspect>> <<Aspect>> A ; —<Aspects
imi i <<ASpect>>
TimingAttributes 2 <<use>> PeriodicTiming p p
Jitter DataFreshness
N R 7
<<use>>
<<Aspect>> RN [ <<use>> <<Aspect>> <<Aspect>>
TimeBoundedActivity <<Aspect>> ToleratedDelay ClockDrift
SchedulingSupport

Fia. 2.2. Timing and Precision packages from DERAF.

2.3. Aspects to Support Tasks Self-Rescheduling. As mentioned before, task migration support
characterizes a non-functional crosscutting concern in dynamic tasks rescheduling, spreading its handling
mechanisms over several system’s elements in a non-standard way. Therefore, we propose to use aspects to
deal with this concern, and hence, two new aspects have been incorporated in DERAF: TimingVerifier,
TaskAllocationSolver.



Towards Task Dynamic Reconfiguration Over Asymetric Computing Platforms. 281

TimingVerifier and TaskAllocationSolver aspects use time parameters inserted by Timing package’s
aspects, and also services provided by aspects from the Precision package. To keep DERAF logical organization,
both aspects have been included in an additional package, named TaskAllocation package, is included. Fig. 2.3
depicts the rescheduling-related package.

<<Non-Functional>>
Reconfiguration

<<Aspect>> <<use>> <<Aspect>>
TimingVerifier | — — — | TaskAllocationSolver

AN 7MY

<use>> / \ / \

—| / \<<USG>> / \

<<N0/1—Functional?>

, Precision \ \
<<Aspect>> <<Aspect>> / \

Jitter ClockDrift <<Non-Functional>>

TaskAIIocatior{

<<use>> |/ \ <<use>>

/
<<Aspect>> <<Aspect>> <<Aspect>> <<Aspect>>
ToleratedDelay | | DataFreshness TaskMigration NodeStatusRetrieval

Fia. 2.3. Aspects for Reconfiguration included in DERAF.

TimingVerifier aspect is responsible for checking if PUs are being able to fulfill with timing require-
ments specified by TimingAttributes, PeriodicT'iming, ToleratedDelay and TimeBoundedActivity aspects.
In addition, TimingVerifier uses services provided by Jitter and ClockDrift.

To perform this checking, a mechanism, which controls if timing attributes are being respected, is inserted
in the beginning and in the end of each task. More specifically, this mechanism consists in measuring the
current time, comparing it with requirements specified by the correspondent attributes. For example, tasks
deadlines’ accomplishment can be checked by measuring the time in which a task actually finishes its com-
putation, comparing this value with the time in which this task was supposed to finish. TimingVerifier
uses the service of the Jitter aspects to gather information about the jitter related to analyzed require-
ment (in the mentioned example, the task’s deadline). Moreover, considering the deadline again as example,
TimingVerifier checks if the non-accomplishment of a task’s deadline is constant, or if it varies in different
executions or in the changing the platform scenario. In this sense, TimingVerifier can be used as base infor-
mation, for instance, to know if the interaction among task is the responsible for the variance in tasks execution
time.

ClockDrift aspect is used by TimingVerifier to gather information about synchronization among the
different PUs, which is used, in addition to the time spent for task migration between PUs, to calculate the
overall migration cost. To illustrate this idea, let’s consider a task that has been migrated from a PU “A” to a
PU “B", which is faster than PU “A” and potentially more capable of executing this task. The difference in the
clock reference between these PUs could lead to an additional delay for this task’s outcome (coming from PU
“B") that would not be worth in comparison with letting the task to run in the PU “A".

The second key aspect for tasks dynamic rescheduling is the T'askAllocationSolver. It is responsible for
deciding if a task will be migrated or not, and also for selecting to which PU this task is migrated. For
that, TaskAllocationSolver checks the overload status of all destination PUs and the time spend for task
migration, in order to decide if it is worthwhile to perform the migration. Hence, TaskAllocationSolver
uses the measurements provided by TimingVerifier aspect. Based on these data, the reasoning about task
reconfiguration feasibility is performed, as explained in the next section.
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The reconfiguration itself and the retrieval of PUs status are performed by two other aspects from DERAF:
TaskMigration and NodeStatusRetrieval. This way, reasoning and execution of tasks reconfiguration are
decoupled, allowing that changes performed by one aspect do not affect the other one. A brief summary of the
TaskMigration and NodeStatusRetrieval aspects is provided in the following.

TaskMigration: provides a mechanism to migrate active objects (tasks) from one PU to another one. It
was originally used by aspects that control embedded concerns and, in the present work, is extended to provide
services needed by TaskAllocationSolver aspect.

NodeStatusRetrieval: inserts a mechanism to retrieve information about processing load, send/receive
messages rate, and/or the PU availability (i. e. “I’'m alive” message). Before/after every execution of affected
active objects (tasks), the processing load is calculated. Before/after every sent/received message, the message
rate is computed. Additionally, PU availability message is sent at every “n” message or periodically with an
interval of “n” time units. All of these information are taken into account by T'askAllocationSolver during the
tasks migration decision process.

3. Dynamic Tasks Self-Scheduling. A task-based approach is then used, in which each task is designed
to be an independent algorithm. They are grouped according derivation of the same high-level class, simplifying
the managing of possible dependencies. Besides, it is coherent to assume that a group of tasks will have similar
characteristics and hence would be desirable to execute in the same PU. However, this can lead to a non-optimal
execution performance and must also be considered in the dynamic strategy discussed in the next sub-sections.

3.1. First Assignment of Tasks. For the first assignment of tasks, we do not use the modeled aspects,
since tasks’ real time measurements are unknown on first execution. One possibility is to perform the first
schedule as a common assignment problem using Integer Linear Programming (ILP) and application timing
requirements, similar to the approach used by [9]. This way, a set of tasks ¢ = 1 to n have an implementation
z and an execution cost estimation ¢ on each PU j; and the allocation was following designed: the task ¢ is not
allocated on the processor j when x; ; = 0 and the task ¢ is allocated on the processor j when the x; ; = 1. The
constraints for the model were the maximum workload for the PUs. Bellow, the constraint of each processing
unit j (U max), based on [9]:

n
Uj= wijcij < Ujp (3.1)
=1

The best allocation was, then, found using the objective function that minimizes the resource utilization
(percentage of occupancy for the PUs), defined as:

{zn:zn:xi,jci,j} (3.2)

j=11i=1

being the assignment variables z; ; the solution for the modeled ILP, m the number of computing units and n
the number of considered tasks.

The mentioned ILP problem is of NP-hard complexity and become more complex in the scope of this work
when dealing with more than two computing units and several tasks. To optimize the assignment calculation,
some approaches concentrate on heuristics, as presented on [13].

However, this direction of estimating costs neither considers real execution times nor could represent the
best assignment since a great number of estimations is used. This way, a second step of assignment allows taking
into account real execution measurements extracted from the processors as well as dealing with the constraints
presented by the NFRs. Based on that, the following dynamic module deals with real performance execution
variables and possibly leads to a further better task assignment.

3.2. Task Scheduling Reconfiguration. After the first assignment, information provided by the pro-
filing aspects is consideredconsidered. Based on involved estimated costs (previously calculated using the pre-
processing approach of the first guess) and possible “interferences” of runtime conditions and new loaded tasks,
one task can be rescheduled to run in other processing unit just if the estimated time to be executed in the new
hardware will be less than the time in the actual unit, i. e., just if there is a gain. Simply, this relationship can
be modeled in terms of the costs:

T’r‘econfigPUnew < TremainingPUold - TestimatedPUnew — Loverhead (33)
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where the remaining time (T emainingPUoid) and the estimated time (TesiimatedPUnew) are calculated, respec-
tively, for the current PU and for the candidate unit based on previous measurements (or on the first assignment
in the case of first rescheduling invocation). An overhead (Toyernead) is considered to calculate the execution
time of the reconfiguration itself. The relationship between Ty emainingProld and TestimatedPUnew 1S, then, the
partial gain.

The information to calculate the rescheduling will be then provided by the TimingVerifier aspect and can
be modeled as:

TreconfigPUnew = TsetupReconfigPUnew + TtemporaryStorage + (3 4)
TtransferRate + TexecutionPUnew +L

where TsctupReconfigPUnew represents the time for setting up a new configuration on the new processor;
TiemporaryStorage 1S the time spent to save temporal data (considering shared and global memory access);
TtransferRate Measures the cost for sending/receiving data from/to the CPU to/from the new processing unit,
which can be a bottleneck on the whole calculation; Ty ecution PURew Symbolizes the measured or estimated cost
of the task processed in the new unit; and L denotes a constant to represent possible system latency.

Reinforcing the concepts, this approach deals with runtime conditions, like input emphdata type and amount
to be processed, tasks assignment, and instantiation of new tasks “on the fly”. All these runtime parameters
that could not be known a priori can influence the execution of the system and must be evaluated periodically,
leading to a large number of reconfiguration analysis and decisions. Then, supposing that a determined task is
going to be executed n times in a determined time window, the strategy bellow reschedules the formed queue
of task instantiations, giving a new relation of gain, just if the following assumption occurs:

n
TreconfigPUnew < Z (TtaskPUoldi + TtransferPUoldi - TtaskPUnewi - TtransferPUnewi) (35)
i=1
where TreconfigPUnew is the time to perform the reconfiguration (mainly data transfer from the current
processing unit to the new one if the task needs the calculated data done until the time of rescheduling),
TtaskPUold is the time performance of the task in the current unit, TtransferPUold is the time for trans-
ferring data from CPU to the current computing unit (via bus), TtaskPUnew is the assumed time performance
of the task in the candidate processing unit, and TtransferPUnew is the time for transferring data from CPU
to the candidate unit (via bus).
Algorithm 1, bellow, describes the task reallocation module. It is also important to mention that the
heuristic needs improvements along future works.

Algorithm 1 Task Reallocation Heuristic.

1: Acquire Timing Data (Performance) about Previous Tasks Execution, storing them in a performance
Database (Initialized according to First Assignment Phase and Regularly Updated);
Acquire information about PUs;
if Task has never been not executed then
Allocate it to a PUs according to First Assignment, storing it on the Database;
end if
Calculate Equation 3.5 according to Performance Data;
Execute Load-Balancing Algorithm;
Perform Reconfiguration Decision;
Reschedule Task to perform the Reconfiguration when applicable;
Store Performance Data in the Database;

_.
=

4., Case Study: UAV-based Area Surveillance System. The use of the presented ideas is illustrated
by a case study that consists of a fleet of Unmanned Aerial Vehicles (UAVs) in the context of area surveillance
missions. This kind of system has several kinds of applications, such as military surveillance, borderline pa-
trolling, and civilian rescue support in cases of natural disasters, among others. Fig. 4.1 illustrates a military
surveillance usage scenario where the UAVs can also communicate with each other.

Such UAVs can be equipped with different kinds of sensors that can be applied, depending on the weather
conditions, time of the day and goals of the surveillance mission [16]. In this case study, it is considered a fleet
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Fia. 4.1. UAV-based Area Surveillance System.

of UAVs that might accomplish missions during all the day and under whatever weather condition. UAVs must
be able to provide different levels of information definition and detail, depending on the required data.

The UAVs receive a mission to survey a certain area, providing required data according to mission directions.
Their movements are coordinated with the other UAVs in the fleet to avoid collisions and also to provide optimum
coverage of the target area.

Each UAV is composed by six subsystems, making it capable to accomplish its mission and alto to coordi-
nate with the others UAVs. These subsystems are: Collision Avoidance, Movement Control, Communication,
Navigation, Image Processing, and Mission Management.

At this point, it is important to highlight the trade-off regarding cost, weight and size, and effectiveness
of each UAV. The device, as a whole, may not be too big nor too heavy, in order to avoid unnecessary fuel
consumption, as well as to be less susceptible of detection by counter forces sensors. Additionally, it may not
have an enormous cost that could forbids the project. However, the UAV must be effective enough to provide
the required data within an affordable cost and time budget. For more details about this trade-off discussion
we address the readers to [16].

Another UAV’s interesting feature is the possibility to apply different policies to missions, depending on user
final intentions and specific requirements. There are two extremes for these policies: (i) Device Preservation
Anyhow and (ii) Mission Accomplishment Anyhow. The first one consists of preserving UAVs even if the
mission is not accomplished. It is especially applied in cases in which the devices can be destroyed and the
information gathered by it is not worth compared to the cost of its destruction. On the other hand, in Mission
Accomplishment Anyhow policy, the information gathered by the UAVs (and transmitted to the base station)
is highly critical and overcomes the value of device loss. Within these policies, there are a variety of other
factors that imposes different constraints to mission accomplishment and device preservation. Depending on
the mission policy adopted, more resources can be (re)directed to tasks related to the movement control (when
the UAV is escaping from a dangerous situation) or data gathering and processing (when information gathering
has the highest priority).

In order to run the tasks described above, meeting the highlighted requirements and constrains modeled on
the previous sections, we consider UAVs equipped with the following sensors: Visible Light Camera (VLC); SAR
Radar (SARR) and Infra-Red Camera (IRC). To support the movement control and devices communication,
each UAV is equipped with a hybrid “desktop”™based target platform which is used according to specific needs
during the accomplishment of a certain mission, as detailed on section 4.2.

In this sense, each mentioned subsystem has a number of tasks to perform specialized activities related to
a specific functionality, as depicted in the use cases diagram presented in Fig. 4.2. Based on the analyses of the
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UAV functionalities, a summary of these tasks is provided in the following paragraphs.
Collisi <<include>> Collision
oision - — - = Detection
Avoidance

Movement
Control Short-Range
<<include>> Communication
Unmanned L -
- = Long-Range

\ <<include>>
Image < <<include>> — Target
Processing ~ Persuit O
Route j:
Control Enground

> <<include>> _ Station

Fic. 4.2. UAV Use Cases Diagram.

Mission
Management

Navigation guides the UAV movements, sending control information to the Movement Control subsystem.
It is composed by the RouteControl and TargetPersuit tasks. The first task makes the necessary computation
to guide the UAV through established waypoints, while the second one performs the same, but for dynamic
waypoints that can be modified according to a moving object.

Image Processing gathers analog images, digitalizing them for further processing. It is composed by
five tasks: (i) CameraController, which is responsible for camera movement, zoom and focus control of IRC
and VLC, and antenna direction of SARR; (ii) Coder, which codifies the analog input into digital data; (iii)
Compressor, which compresses the digital images; (iv) Reflectificator, which is responsible for the reflection in
X and Y axis of radar image, as well as the rectification, that are necessary to avoid distortions in gathered
images; (v) Filter, which filters radar images to eliminate the noise due to speckle effect [14].

Communication it has two main tasks: LongRangeCom and ShortRangeCom. The first task provides
connectivity with pair communication nodes in long distances (of the order of kilometers), while the second one
provides connectivity in short range distances (of the order of meters). These two tasks uses a third one, called
Codec, which code and decode data transmissions.

Mission Management has also two tasks: MissionManager and Coordinator. The first one manages
the information about the mission, such as required data, mission policy and resource autonomy control (e.g.
remaining fuel). On the other hand, the second one drives the coordination with the other UAVs to avoid
overlapping in the surveillance area.

Collision Avoidance is composed by two tasks: CollisionDetector, which detects possible collisions with
other UAVs of the fleet or non cooperative flying objects; and CollisionAvoider, which calculates UAV’s collision
escape directions, sending them to the Movement Control subsystem.

4.1. Execution Platform. The target architecture of each UAV is composed of a four heterogeneous
PUs platform: one host (the CPU), two GPUs, a PPU, and a PCICC. Fig. 4.3 shows the desired platform,
where the Profiling gathers information from PUs (tasks performance) and the Recon figuration distributes
the tasks along them (intra allocation) according to the presented algorithms. It also consider sending data to
be processed by other UAVs (inter allocation).

4.2. Reconfiguration Approach. Starting the mission, the UAVs have an initial task allocation through-
out the CPU and the PU devices according to sub-section 3.1. In the current experimentation, it was considered
to use the ILP approach for the first distribution using the GLPK toolkit [8]. Table 1 exhibits estimated costs
(based on [3]) and first tasks’ priorities that feed the GLPK-based simulation of task scheduling.

During execution, the mechanisms injected by TimingVerifier and the aspects Jitter and ClockDrift will
start to generate information related to timing measurements. The TimingVerifier aspect will provide data to
TaskAllocationSolver, which will get data from NodeStatusRetrieval. With the reasoning mechanisms, it will
periodically analyze the provided information according to the algorithm introduced in 3.2.
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Fia. 4.3. Ezecution platform.

TaBLE 4.1
Task Estimation Costs.

Task Estimated Cost (scale: 1 to 6) | First Priority
GPU | PPU | CPU | PCICC | (scale: 1 to 6)

Image Processing 1 4 6 — 1

Collision Avoidance 3 2 5 — 2

Movement Control 2 2 3 — 1

Navigation 1 1 2 — 3

Communication 4/6 — 3/5 1/2 4

Short/Long range

Mission = Manage- ) — 1 — 6

ment

Emphasis is given to the RIP subsystem, which is considered to be the group that requires more processing
due to the handling of large data and new instantiations created dynamically. The RIP workflow is depicted
on Fig. 4.4. Theoretically, tasks associated to RIP should execute with better performance on a GPU device
when the application is not aware about the context of the whole execution scenario, i. e. executing stand
alone. Thus, initial demands of all tasks should be executed in the GPU. Shortly, the captured data (raw
scalar image) must be “adjusted” regarding the SAR, position parameters (range and azimuth), followed by Fast
Fourier Transform (FFT), image rotation, and other corrections to produce the final image. This process can
be performed individually in the range and azimuth directions and it consists basically in a data compression on
both directions using filters that maximize the relation between the signal and the noisy. Readers are addressed
to [5] to get refined explanations about the workflow.

Afterwards, in the explored surveillance system, the final image is submitted to a pos-processing in order
to identify regions of interest that could contain objects specified in the mission directions as a “pattern to
be found” or a “target”. In this case, more resolution on specific areas will be needed and new data will be
generated, demanding more processing from the assigned PU(s) in order to produce new images and extract
relevant information (patterns).

Based on that description, this dynamic scenario clearly influences the tasks’ priority since, at a moment, the
new high-resolution images will have higher priorities if compared to others that became more “generic". These
events cannot be predicted a priory and the verification of such situation require a smart, context-aware, and
dynamic reconfiguration support to balance the workload, accomplishing the timing requirements and budget.

4.3. Results. Considering 2 UAVs in the case study, Table 4.2 denotes the behavior of the dynamic
reschedule load-balancer simulator. The “first guess” represents one instantiation of each group of tasks assigned
to a PU; and with dynamic creation of new groups (4, 8, and 12) of RIP tasks, the assignment is changed and
optimized to minimize the total execution time. Note that these values cannot represent the best assignment
since the version of the simulator did not consider all parameters that influence the whole system. As it is an
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TABLE 4.2

Task Assignment.

Task 15* Gess | Dynamic Image Processing
Created Tasks
4 8 12

GPU1 GPU1 | GPU1 GPU1

Image Processing GPU2 | GPU2 GPU2
PPU UAV2-GPU1

Collision Avoidance GPU2 PPU CPU CPU
Movement Control PPU PPU CPU CPU
Navigation PPU PPU | PPU CPU
Communication CPU CPU CPU PCICC
Mission Management CPU CPU | CPU CPU
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ongoing work, more accurate data about the reschedule must be provided along the simulator’s refinement in

order to represent the scenario as realistic as possible.

5. Related Work. VEST (Virginia Embedded System Toolkit) [15] is a set of tools that uses aspects to
compose a distributed embedded system based on a component library. Those aspects check the possibility
of composing components with the information taken from system models. It provides analysis such as task
schedule feasibility. However, it performs statically analysis at compiling time. In our proposal, aspects are used
dynamically to change the system configuration at runtime, adapting its behavior to new operating conditions.
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Although there are some related works concerning dynamic reconfiguration in cluster computing, like for
example ( [18]; [12]; [1]), our approach concentrates on single desktop platforms composed by different process-
ing units where the reconfiguration is performed within these devices. In this way, the work presented by [9]
implements dynamic reconfiguration methods for Real-Time Operating System services running on a Reconfig-
urable System-on-Chip platform based on CPU and FPGA. The method, based on heuristics, take into account
the idleness percentage of the computing units and unused FPGA area (calculated as pre-processing) to per-
form the load-balancing and to decide about a reconfiguration of tasks in runtime by means of task migration.
Our approach complements this related work, developing generically methods that comprise more than two
processing units and that work with dynamic performance data.

Targeting GPUs, the work of [17] presented a programming framework to achieve energy-aware computing.
On the proposed strategy, the compiler translates the framework code to a C++ code for CPU and a CUDA
code for GPU. Then, a runtime module dynamically selects the appropriate processor to run the code taking
into account the difference in energy efficiency between CPU and GPU based on energy consumption estimation
models. However, it does not take into account runtime energy measurements (runtime profiling), which is an
important module of our work.

Another approach, focusing performance improvement of spheres collision detection simulation, was pro-
posed by [10], in which some strategies have been presented to perform data balancing over CPU and GPU,
both in an automatically and manually options. That work takes into account the performance of a kernel
implemented on the CPU and GPU. After the execution starts, both versions of the programs are executed
with equally input data and time performance is verified. More data are then dynamically assigned to the
processor that executed faster the previous data, indicating that the approach uses data decomposition instead
of task decomposition. Our work concentrates on task decomposition and its dynamic assignment according to
estimated or profiled performance.

The work presented in [4] published a study to accelerate compute-intensive applications using GPUs and
FPGAgs, listing some of their pros and cons. The work performed a qualitative comparison of application behav-
ior on both computing units taking into account hardware features, application performance, code complexity,
and overhead. Although GPUs can offer a considerable performance gain for certain application, that work’s
results showed that FPGAs can be an interesting computing unit and could promote a higher performance
compared to GPU when applications require flexibility to deal with large input data sets. However, using FP-
GAs comes with cost of hardware configuration before using it as a computing unit, a task usually oriented to
experienced users. Thus, task reconfiguration frameworks, as the one presented in this work, could provide a
higher abstraction layer to assist developers during system design.

6. Conclusions and Future Work. This paper presents a methodology to address the problem of efficient
task assignment in runtime targeting hybrid computing platforms. It allows the use of resources offered by
an asymmetric computer platform, providing compliance with dynamic changes in timing requirements and
constraints, and also runtime conditions. In order to achieve the proposed goals, our proposal uses an aspect-
oriented framework in conjunction with a dynamic task self-rescheduling strategy, in order to address the
dynamic runtime scenarios under concern.

A UAV-based surveillance system simulation has been used to show the need for workload adaptation
required by sophisticated applications, running on top of hybrid computers, which face dynamic execution sce-
narios. Real-time task rescheduling was applied on UAV PUs, focusing on RIP. Results indicate that reschedul-
ing contributes to a more appropriate system resource usage, and hence towards performance improvement.
Sending/receiving data between UAVs was also considered, but details about specific problems related to these
interactions, such as delays in the communication between the UAVs, have not been focused by this text.

Future directions lead to refine the scheduling strategy to provide complete simulations, considering a
larger range of runtime parameters, including the reconfiguration costs itself; and real algorithms for UAV’s
subsystems, emphasizing RIP dynamicity. Heuristics to predict the future allocation of tasks based on its recent
use seems to be a good strategy, and will possibly avoid unnecessary reconfigurations in a specific time-window.
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Abstract. Nowadays developments in Wireless Sensor and Actuators Networks (WSAN) applications are determined by the
fulfillment of constraints imposed by the application. For this reason, in this work a characterization of WSAN applications in
health, environmental, agricultural and industrial sectors are presented. Two cases study are presented, in the first a system
for detecting heart arrhythmias in non-critical patients during rehabilitation sessions in confined spaces is presented, as well as
an architecture for the network and nodes in these applications is proposed; while the second case presents experimental and
theoretical results of the effect produced by communication networks in a Networks Control System (NCS), specifically by the use
of the Medium Access Control (MAC) algorithm implemented in IEEE 802.15.4.

Key words: real-time systems, wireless sensor and actuator networks, embedded systems, real-time monitoring and control

1. Introduction. Currently, there is a great interest in developing applications for monitoring, diagnosis
and control in the medical, environmental, agricultural and industrial sectors, to improve social and environ-
mental conditions of society, and increasing quality and productivity in industrial processes. The development
of Wireless Sensor and Actuators Networks (WSAN) applications will contribute significantly to solve these
problems, and facilitate the creation of new applications.

Some applications which can be developed using WSAN are:

e Medical Sector: economic and portable systems, to monitoring, recording and analyzing physiological
variables, from which it is possible to indicate the status of a patient and detect the presence or risk of
developing a disease. As well, developing systems for the detection and analysis of trends in the daily
behavior of patients, contributing to timely detect the presence of a health problem, and providing an
economically viable solution to patient care in societies where the old population is great.

e Environmental Sector: continuous systems monitoring of species in dangerous extinction, monitoring
and detection of forest fire systems, etc.

e Agricultural sector: detection systems, microclimates monitoring and pest control, to reduce the use of
agrochemicals and make an optimal control of pests; optimal use of water in irrigation systems, etc.

e Industry: economic systems and easy installation for monitoring, diagnosis and control of plants and
industrial processes.

Some of the currently technological challenges in WSAN development are [1], [2], [3], [4], [5]:

e It is necessary to develop detailed models of the system components (hardware and software tasks, task
scheduler, medium access control and routing protocols), in languages that allow correct specifications
and the subsequent analysis of information processing, reachability, security, and minimum response
time application, enabling analysis of end to end deadline in real time applications.

e Task scheduler and medium access control and routing protocols proposed in this area are mostly focused
on the optimization of a single critical parameter of the application, which often affects considerably
the performance of the others. Therefore it is necessary to create new cooperation forms between these
levels of the application architecture, in order to take the most appropriate decisions for the system
reconfiguration in relation to the application’s quality of service (QoS). Additionally, current proposals
consider QoS parameters directly linked to conventional parameters of the operation and communication
between computers but not to particular application requirements, so do not allow achieving optimal
performance in applications.

e It is necessary to develop analysis strategies for performance and stability of signal processing and
control algorithms in this area, in order to guide the design towards a co-design methodology to develop
the processing algorithm and the implementation of computer architecture, allowing to compensate the
sampling period changes and jitter effects, and optimize other parameters such as power consumption.

*This work has been partially supported by the project D2ARS (CYTED)

TDepartamento de Automatica y Electronica, Universidad Autéonoma de Occidente. Cali, Colombia (dmartinezQuao.edu.co)

IDepartamento de Informatica de Sistemas y Computadores, Universidad Politécnica de Valencia. Valencia, Espafia ({patricia,
pblanes, jsimo, acrespo}@disca.upv.es)
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The previous paragraphs show how these developments are determined by the fulfillment of constraints
imposed by the application, such as energy consumption, limited computing power, coverage of large areas and
real time deadlines, etc. For these reasons, in this work a characterization of WSAN applications for health,
environmental, agricultural and industrial sectors is presented, then two cases study are presented; in the first a
system for detecting heart arrhythmias in non-critical patients during rehabilitation sessions in confined spaces
is presented, as well as an architecture for the network and nodes in these applications is proposed; while the
second case presents experimental and theoretical results of the effect produced by communication networks to
the Networks Control Systems (NCS), specifically by the use of the Medium Access Control (MAC) algorithm
implemented in IEEE 802.15.4.

The article is organized as follows, section 2 shows a classification and characterization of applications in
health, environmental, agricultural and industrial sectors, section 3 presents the case analyzed, in section 4 a
proposal for the nodes architecture is presented, the network architecture and its simulation results are presented
in section 5, finally in section 6 the conclusions and future work are presented.

2. Classification of Applications. During the classification was detected that different application sec-
tors share similar characteristics from a technological point of view, for this reason the classification and char-
acterization was developed in five types of application rather by sectors [6], [7], [8], [9], [10], [11], [12], [13], [14].

e Type 1 applications are characterized by measuring sampling periods from one second to few hours,
and no strict deadlines for the generation of the algorithms results. Additionally, these applications,
developed in open spaces, must cover large areas and it is necessary to synchronize measurements
in different nodes. Agricultural and environmental applications, designated to measure, record and
to analyze environmental variables, primarily belong to this category. The energy sensors autonomy
expects for each node varies from days to months; in some applications, in places without access to
conventional energy sources, nodes are equipped with energy transducers like solar cells, which supply
energy to the nodes batteries.

e Type 2 applications are developed in confined spaces and have greater computing capacity demanding
than applications type 1, although there is not strict response time, either. Because they are in con-
fined spaces and nodes are fixed, there are no restrictions on energy consumption since they can use
conventional energy sources; however, the use of wireless networks is justified since it facilitates the
installation, adaptability and portability of implementation, in addition to the lower costs of implemen-
tation. Such applications are fined mainly in industrial and agricultural sectors. The sampling periods
range from one millisecond, for implementation of diagnostic algorithms, until a second for monitoring
and supervision tasks. The diagnostic algorithms do not require continuous operation; therefore the
samples can be stored before being processed.

e Type 3 applications. In this category, in addition to measuring and processing data requirements
similar to those in applications type 2, grouped applications are required to process images and they
are developed in open spaces, some of which are in the agricultural sector for the detection of pests,
and environmental sector aimed at detecting fires. Some of the nodes are mobile and require few
hours’ energy autonomy, and then restrictions in terms of power consumption are large. At the same
time it is also necessary for synchronization of the nodes. While, because of the algorithms used for
image processing, the computing capacity, memory size and communication bandwidth requirements
are greater than applications type 2.

e Type 4 applications. These applications differ from applications type 3 because they are developed in
confined spaces, then the network’s coverage is not demanding; energy sensors autonomy expected are
also higher, becoming close to one week. Grouped healthcare applications to the detection of diseases
are in this category with body area networks (BAN).

e Type 5 applications. In these applications a sample data should be sent every sampling period, and then
sampling periods are limited by the minimum interframes time space of data communication protocols.
For this category, a range of sampling periods between 50 milliseconds and a few seconds has been
selected. In this category are the applications of industrial control process, which are developed in
confined spaces, so the distance between nodes is not big, and there are not restrictions on energy
consumption. The deadlines for generating actions are less than or equal to a sampling period, and it
is necessary to guarantee end to end deadline. If these constraints are not fulfilled, the control system
performance can be degraded significantly, even generating instability in the system, therefore, it is
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important to synchronize the activities of the nodes that are integrated in the control loop. In addition,
to improve the control system performance, it is important to limit the variability in the task jitter.
Table 2.1 summarizes the characteristics of the applications described. As a strategy to increase reliability
in the presence of faults, and optimizing the applications QoS, this proposal also has considered the migration
of components between the nodes, which will be reflected in the architecture of the network and nodes.

TABLE 2.1
Analysis of requirements for each application type.
Application Computing | Memory | Communication | Location Node Real-Time Networks's Energy Syncro-
capacity size bandwidth mobility coverage autonomy nization
Type 1 Tow Tow < 256kbps Tes No Only Open space Months Yes
performance measurement 10 km
Type 2 Low Medium < 256kbps Yes No Only Confine There Yes
performance measurement space 100 m | isn’t restriction
Type 3 High High 1Mbps Tes Tes Only Open Hours Yes
performance measurement space 10 km
Type 4 High Medium < 256kbps Yes Yes Only Confine Days Yes
performance measurement space 1 km
Type b Tow Tow < 256kbps No No Fnd-to-end Confine There Yes
performance and minimum space 100 m isn’t restriction
jitter variability

3. Arrhythmia Detection Algorithm. Actually cardiovascular problems have the highest mortality rate
from natural causes in the world. The great interest in developing devices for clinical detection and continuous
monitoring of such diseases, is based on these activities are limited by the information type and the moment
that it is caught, so transitional abnormalities can not be always monitored. However, many of the symptoms
associated with cardiovascular diseases are related to transient episodes rather than continuing abnormalities,
such as transient surges in blood pressure, arrhythmias, and so on. These abnormalities can not be predicted
therefore a controlled supervision analysis is discarded. The reliable and timely detection of these episodes can
improve the quality of life of patients and reduce the therapies cost. For this reason in this work a WSAN
architecture to address such problems is proposed, this application belongs to type 4 described in paragraph 2.

As an example, the detection of arrhythmias using data from electrocardiogram (ECG) measure, in patients
who are moving during a rehabilitation activity in a confined space of 100m x 100m, as a rehabilitation center,
was analyzed. The sampling period was selected from the ECG frequency spectrum, which, according to the
American Heart Association, has 100Hz harmonics. The greatest amount of relevant information for monitoring
and detection of arrhythmias is between 0.5Hz and 50Hz.

When analyzing the ECG frequency spectrum can be established that the relevant components of the signal
(QRS complex and waves P and T) are up to 35Hz. Applying the sampling theorem a minimum sampling
period of 14ms approximately is necessary, but for practical purposes a period of 3ms was selected.

For the detection and analysis of ECG the Pan and Tompkins algorithm was selected, [15]. The results of
this algorithm are used by a maximums detection algorithm, which identifies the time when segments of the
ECG wave were presented, figure 3.1. Subsequently the analysis of the separation time between two R waves,
the duration of the QRS segment and the energy of the wave R is developed, which allows detecting the presence
of arrhythmias [16].

0.1 T

0.0s
0.06 .
0.04 .

002 .

a

a a00 1000 1500 2000 2500

Fic. 3.1. Results of mazximums detection algorithm.

4. Architecture Node. The proposed generic architecture for the network nodes in applications type 4
is presented in figure 4.1. Its characteristics are:
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e The architecture enables the hardware and software components co-design. This feature will allow
optimizing the development of distributed application components required for its implementation in
hardware and software, getting a balance between cost, power consumption and processing time.

e There are fixed and mobile nodes. The latter are linked to the sub-network that guarantees them the
best QoS (QoSsn) during its movement (less saturated sub-networks).

e Communication between the nodes and local coordinators is done through wireless networks.

e Use an EDF scheduler and dynamic scaling voltage and frequency techniques of the processor to optimize
the power consumption [17]. This allows fulfilling the application deadlines, which is supported on
statics utilization rate tables for each operating frequency, and periods of execution for each task.

e Update its QoS indexes (QoSn); using these indexes and its neighboring ones it is possible to request to
another node in its sub-network the migration, creation or destruction of components (some of which
are clones of others).

SOFTWARE APPLICATIONS
DSP - Control

SPECIFICS l

APPLICATIONS MIDDLEWARE

PROCESSOR « If mobile node, looks for the sub-network with the best QoSsnindex.
* Depending on its QoSn, develops components migration.

DSP - Control

0.8. KERNEL

+ System synchronization (SNTP).

« Task Scheduler EDF.

* Depending on the processor architecture, implements Dynamic
Voltage Scaling using fixed tables to optimize its QoSn. COMMUNICATION PROTOCOL

Coprocessor implemented in
hardware to increase the
computation speed. (will be

implemented depending on I Coprocessor: Physic and MAC
hardware - software co-

design analysis). —(GEI\—ER&L PURPOSE PROCESSOR '— layers

Fic. 4.1. Nodes architecture.

To select a set of architectures for an adequate performance of these applications, the performance of the
arrhythmia detection algorithm, presented in section 3, was analyzed on four types of processors currently used
to implement nodes in sensor networks: ARM7TDMI, MSP430, PIC18 and MC9S08GB60. For the analysis,
the same operation velocity for each processor was used, 8MIPS. The time necessary to develop the Pan and
Tompkins algorithm is presented in Table 4.1, which was estimated considering the sum of the values of individual
functions (derivative, quadratic function and integrator window) in each architecture.

TABLE 4.1
Computing time to develop the Pan and Tompkins algorithm.

Processor Derivative | Quadratic function | Integrator window | Total computing time | Period | Percentage of utilization (U)
LPC2124-ARM 70.2us 142pus 280.5us 492.7us 3000 s 16.4%
MSP430F1611 191.9us 162.5us 697.8us 1052.2us 3000us 35%

PIC18F458 406.2us 209us 1083.7us 1698.9us 3000ps 56.6%
MCOS08GB60 497 215 33215 707.35u5 1536.55u5 300015 51.3%

The results show that the ARM architecture requires a lower percentage of utilization, while the PIC
architecture needs the highest utilization percentage.

It also was related consumed power by each architecture in active mode (P4) with the respective percentage
of utilization during the implementation of the algorithm, table 4.2. It can be seen as the ARM7 architecture
has a closer performance to the architecture MC9S08GB60; then these two architectures are appropriate for the
implementation of the case proposed. The MSP430 architecture presented the best indicator.

TABLE 4.2
Indicator PA*U.
Utilization percentage (U) | Active Power (P4) [mW] | Pax U

LPC2124-ARM 16.4% 180 29.52
MSP430F1611 35% 19.2 6.72
PIC18F458 56.6% 220 124.52

MC9S08GB60 51.3% 51.6 26.47
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5. Network Architecture for Confined Spaces Healthcare Applications. In figure 5.1, a generic
architecture for network applications type 4, which integrates different types of nodes, is proposed. The approach
of a cooperation plan between architecture levels of the application, in order to take the most appropriate
decisions for the reconfiguration of the system in relation to the application QoS, can be appreciated. General
goals of the architecture are:

e Minimize latencies.
e Optimize power consumption.

Main Cordinator

Local
Cordinator 2

Sub-Networ 2

Sub-Networ 1

Local
Cordinator n

Sub-Networ n

Fia. 5.1. Network architecture.

The Main Coordinator is responsible for coordinating the complete application. It will have a fixed location,
and communication with local coordinators will be supported through wireless or wired links. It develops the
following functions:

e Send synchronization signals to the local coordinators of the sub-networks.

Local Coordinator controls the activity inside the sub-network and develops some information processing

activities, whose architecture is presented in figure 5.2 and its features are:
e It has a fixed location.

Sends synchronization signals to nodes in its sub-network.
Develops routing packets between sub-networks using multihop techniques.
Distributes QoS indexes of nodes which belong to its sub-network (QoSn).
Calculates its sub-network QoS index (QoSsn— f(quantity of information to be transmitted)), and
distributes this value and its neighboring sub-networks indexes (those reached in a single communication
hop) between nodes in its sub-network. Depending on which:

— Accepts linking new nodes to sub-network.

— Updates best routes in the routing tables of data (which will be function of hops and the utilization

percentage—information transmitting—of each router node).

As a first approximation to the proposed architecture, we examined the performance of the case analyzed
on the IEEE 802.15.4 protocol. Considerations for the proposed solution to the case are:

e Transmission of the analysis results, from nodes located on each patient to a main node, every 3 s. The
data frame consists of 2 Bytes, which contain patient codes and the type of arrhythmia detected.

e After each sending the sender node waits for an acknowledgement (ACK) from next node in the routing
path. If there isn’t an answer before 100ms the node sends again the information. If after 25 attempts
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SOFTWARE APPLICATIONS
DSP - Control

MIDDLEWARE
* Depending onits QoSn, develops components migration.
= Calculates QoSsn , depending on which accepts linking new nodes to

sub-network.
SPECIFICS
APPLICATIONS 0.8. KERNEL
PROCESSOR * Routing packets between sub-networks: Multihop techniques
* Uses its QoSsn and its neighbouring sub-networks indexes to
update best routes in the routing tables of data (which will be
DSP - Control function of hops and information ¢ itting hy each c
node).
* System synchronization (SNTP).
* Task Scheduler EDF.
Coprocessor implemented in « Implements Dynamic Voltage Scaling using fixed tables to optimize
hardware to increase the its QoSn. COMMUNICATION PROTOCOL
computation speed. (will be - - -
inplenieuted deppuding ion | Coprocessor: Physic and MAC
hardware - software co- %
et anstei). —fGENERxL PURPOSE PROCESSOR {— layers

Fia. 5.2. Sub-network coordinator architecture.

there is no answer this node changes to a mistake state.

e The communication protocol selected is IEEE 802.15.4. The node distribution is shown in figure 5.3,
which allows covering all possible locations of patients considering the specifications of the devices
selected to implement the physical layer, CC2420, whose characteristics are:

— Coverage radio of 30m, and 100m without obstacles.
— Frequency range of 2.4-2.4835 GHz.
— Supports data transfer rates of 250 kbps.

NN

d Main node

= Routing node
£ Coverage radio

Fia. 5.3. Distribution nodes for case and their coverage.

In the case a network as presented in figure 5.4 was proposed. It consists of 3 fixed nodes which have no
restrictions on power consumption, will receive reports from five patients and route the messages to the main
node. The fixed devices have fixed identifiers 0, 1 and 2; the main node has the 0 identifier, and devices on
every patient have identifiers from 3 to 7. The routing is developed through 1, 2 and 0 nodes, 0 is the network
coordinator, each of these nodes forming a sub-network together with patients, figure 5.4. The mobile nodes
leave and enter the sub-networks continuously changing the configuration and network structures.
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h 4

Fia. 5.4. Network structure for case.

The simulation was developed in the TOSSIM tool, and the TelosB platform was selected, including the
CC2420 transceiver. Because the characteristics given of the case, with fixed nodes to implement the routing
protocols, a routing fixed table algorithm was implemented, it is presented in table 5.1.

TABLE 5.1
Routing Table.

Source node | Destination node
2 1
1 0
0

In the simulation was considered the most critical case, where all mobiles nodes are connected all time to
the farthest sub-network from the main node.

Times obtained in sending 2 Bytes from all patients to the main node (node 0), are presented in table 5.2.
The data; indicate that transmitting the message from a mobile node to the main node was over; the datas
indicate that the corresponding node has not received the ACK. Times obtained demonstrated that it is possible
to fulfill the constraint of 3s, for the transmission of patient status from a mobile node to the main node, which
was imposed by the case analyzed.

6. Temporal Behavior of Networked Control Systems Over IEEE 802.15.4. Consequence to the
increasing complexity of control systems most of activities have been distributed over different nodes, which
control loops are closed through a communication network, these systems are called Networked Control Systems
(NCS). The implementation of NCS also reduces the impact of failures in a system component and facilitates
the diagnosis, maintenance and traceability processes.

Since the mobility of the elements that constitute the nodes in industrial processes is very low, the appli-
cations in this sector do not demand the strict use of wireless networks, for this reason in most cases wired
networks are used, this is also consequence of reliability of wired networks and the ability to support transmis-
sion periods smaller than wireless networks. However, the development of new applications on wireless sensors
and actuators networks (WSAN) will allow integrating wired and wireless networks to increase the applications
flexibility and reliability, at the same time its impact on implementation reduction cost is significant.

This section presents the performance analysis of a NCS, using the MAC algorithm CSMA /CA implemented
in IEEE 802.15.4 protocol. The generic diagram of the NCS considered in this work is presented in figure 6.1,
which regulates the output signal in a second order system implemented with operational amplifiers. It has
three types of nodes:
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TABLE 5.2
Time in sending 2 Bytes from all patients to the main node.
Source Receiver node Time (s) Source Receiver node Time (s)
node node
6 2 78.309 0 1(ack)y - 5 ends .613
4 2 .320 7 2 Rtxo .684
7 2 333 3 2 Rtxs .684
2 6(ack) .344 2 1 Rtx moving 4 .684
5 2 Rbxa 355 1 2 (ack) 701
2 1 (moving frame from 6) .380 7 2 Rtxa 714
3 2 Rtxo .380 1 0 (moving frame from 4) .740
1 2(ack) 397 2 7 (ack) .746
1 0 (moving frame from 6) 421 0 1 (ack); - 4 ends .764
5 2 Rixo 421 2 1 (moving frame from 7) .780
3 2 Rtxo 463 3 2 Rtxa .780
2 1 (moving frame from 5) .486 1 2 (ack) 792
7 2 Rtxo .486 3 2 Rtxo .807
2 5(ack) .488 2 3 (ack)s .825
0 1(ack)y - 6 ends 488 2 1 (moving frame from 3) .860
1 2(ack) .500 2 1 Rtx moving 3 877
4 2 Ritxo 513 1 0 (moving frame from 7) 877
3 2 Rtxo 524 0 1 (ack); - 7 ends 913
7 2 Rtxo .35 2 1 Rtx moving 34 .929
2 4(ack) .547 1 2 (ack) .949
2 1 (moving frame from 4) 581 1 0 (moving frame from 3) 979
1 0 (moving frame from 5) .589 0 1 (ack); - 3 ends 79.013

e Sensor, performs the measurement of the controlled signal and sends a frame with this information by
the network.

e Controller-Actuator, receives a measure of the signal controlled, calculates the control action and acts
over the manipulated signal in the system.

e Noise generator, generates network traffic.

Moise Generator

Sensor k T # Controller — Actuator
Communication neiwork

Second order
system

Signal conirolled Manipulated signal

Fia. 6.1. Generic diagram of the NCS considered.

At the moment of design a high performance NCS is not always obtained similarity between experimental
results and simulation, this is because imprecise models for analyzing and designing these systems are used,
and for to make use of inadequate validation methods and platforms that not support the models used. There
are several authors who have analyzed the performance and stability in NCS assuming network protocols with
constant and variable delays, this shall also have made proposals to modified the control algorithms in order
to respond to these effects, [18], [19], [20], [21]. An analysis of the performance of wired networks for control
process is presented in [22]. In [23] the analysis of use 802.11b and Bluetooth networks in control systems is
presented.
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The transmission period in NCS is defined as the time between two consecutive transmissions, and is
measured on- line for each communication segment. In NCS the transmission time between sensor and controller
nodes can be periodic or aperiodic, being affected by delays depending on the Medium Access Control (MAC)
protocol of the communication network, communication errors, Jitters and tasks scheduler.

The difficulty in the analysis and design of NCS is consequence of delays in the feedback control loops,
because the behaviour of each component can affect the performance of control algorithms. Depending on the
magnitude and variability of delays the performance of control systems can be degrade and can even present
stability problems.

In the case study considered in this work, figure 6.1, the controller and actuator are in the same node
(Controller-Actuator), so a single delay in the feedback control loop is considered, 7, which includes the process-
ing time in the Sensor node, the network transmission time and the processing time in the Controller-Actuator
node. The system was modelled by:

20.3759
Gy = 6.1
P(8) T $2 1734975 + 21.73 (6.1)

The regulator algorithm was designed as a PID algorithm using the Ziegler-Nichols closed-loop method,
whose transfer function is:

o 0.8909s2 + 3.2322s + 20.201
e(s) =

(6.2)
s
It’s representation in discrete time is: up = ugp—1 + qoer + qrex—1 + go€x—2; qo = kp+ %; ql = —kp— % +
kiTy,; q2 = jlfd
As a first approximation to analyzing the case study 7 was considered constant. Using a Pade second order
polynomial to model the delay, an approximation to the stability region for the feedback control system was
found [24], [25], figure 6.2. It gives information of sampling period (7},,) and 7 values for the system stability.

This information can be used to choose the periods and deadlines to implement the control system.

Stability region

08

08

07

06

05

04r-

Delay [percent of sampling period]

03F

02

01

| | I I t t : —
o 0.02 0.04 0.06 0.05 0.1 012 014 0.16 0.18 0.z
Sampling period

Fic. 6.2. Stability region.

Figures 6.3, 6.4 presents the control system output for different values of T, and 7. and . It is possible to
see how increasing the sampling period the system is more sensitive to delays, and although the system is stable
to the considered values there is a large degradation in the performance of the control system, which could not
ensure the desired performance in some cases.



300 D. Martinez et al.

06—

]
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Fia. 6.3. Control system output in continuous and discrete time for Ty, = 23ms, 7 = Ty,

0 1 1 1 | 1 1 1
(] 1 2 3 4 5 3 7 8

Fia. 6.4. Control system oulput in continuous and discrete time for T, = 57ms, 7 = 0.5T), .

To analyze the NCS considered the Truetime simulator was used [26]. Only the effect of MAC protocol was
considered and the time processing in the nodes was ignored. The simulation parameters were:
e Sampling periods for the controlled signal: 50ms.
e Synchronization by events between nodes Sensor and Controller-Actuator.
e Data rate: 250 kbps.
e Frame size of 82 bits. Enough to send the measure of a variable.
e Two Noise generator nodes were implemented, with periods of 700 p s and 900 p s, and frame size of
82 bits each one.
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The simulation results are presented in figure 6.5. It is possible to see how the time for sending information
by CSMA/CA is variable and unbounded. Delays in the feedback control loop do not affect significantly the
performance of the system, figure 6.6.

Sensor

Controller -
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Fic. 6.6. System response.

The network was saturated by using transmission periods smaller than previous cases in the Noise gener-
ator nodes, figure 6.7, which was noted than despite loss of information transmitted by the Sensor node as a
consequence of collisions with noise frames, the Sensor can retransmit several times before next transmission
period, then the Controller-Actuator node get the measure before a critical 7 (according to the stability region)

and the system is stable, but the performance of control systems is degraded, figure 6.8.

7. Implementation of NCS. The implementation of the NCS was developed on IEEE 802.15.4 mode
CSMA /CA. To develop the Sensor and Controller-Actuator nodes boards with the CC2430 processor were used,
also the abstraction levels HAL and OSAL from Texas Instruments were used to access the hardware and to
implement tasks. Two Noise generator nodes were implemented by MACdongle devices. The configuration was

as follows:

e The Sensor node sends a frame every 60 ms. This period was selected because it was experimentally
observed that lower values for the period was not stable as a consequence of computing in the node.

e In the Controller-Actuator node an event is generated for every message received from the Sensor node.
During its attention the control output is calculated and acts on the system. Experimentally an interval
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time between 12 ms and 16 ms was obtained from the time start measurement in the Sensor node until
Controller-Actuator node acts on the system.

e The Noise generators nodes send a frame every 30ms.

e The size of the frame is 256 bits and the data rate is 250 kbs. Then the time of sending a frame is
1.024 ms.

e The nodes were distributed in an area of 1 m?.

The Truetime simulations and experimental results are shown in figures 7.1, 7.2, 7.3 and 7.4.

As a result to the delay generated to frames from Sensor node, as a consequence of collisions in the network
with frames sending from Noise generators nodes, in figure 7b can be seen than the transmission period is
variable and it is not bounded. Moreover, the feedback delay is small compared to the dynamics of the system,
and therefore the system is not significantly disturbed.

Experimental results are close to those gotten by simulation in Truetime.

8. Conclusions. From the study it can be concluded that developments on specific technologies and
applications in this area are still emerging, and developing them will enable the growing of great social impact
new applications.

About the system for detecting heart arrhythmias:
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e The proposed architecture considers the constraints of application field, allowing to find optimal solu-
tions to the challenges in network and nodes designing, and will facilitate the development and validation
of applications. It makes possible too the cooperation between levels of the network architecture to
choose between different operations modes depending on QoS indexes.

e It is noted as the routing algorithm based on fixed tables supported by IEEE 802.15.4, fulfils the time
requirements of these applications. Also as MSP430 architecture presents a good performance for the
implementation of the case considered.

The impact of delays in the feedback loop of NCS was analyzed with formal methods, simulation and
experimental results, which concludes:

e The technology considered in this paper can be used in control applications, where transmission times
are not very demanding, particularly we propose use in cases with transmission periods upper then
100 ms.
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Fia. 7.4. Ezperimental values of control system output.

e For big sampling periods the system is more sensitive to delays in the feedback loop, so it is important
to maintain delays bounded.

e To control systems with transmission period less than 100 ms is recommended the use of wired networks,
which is possible to get transmission periods smaller and stable than IEEE 802.15.4 mode CSMA / CA.

e There is a great similarity between the results using formal methods, simulation and physical imple-
mentation of the system. Then is possible to conclude than the analysis methods (stability region) used
and simulation environments as Truetime, allow a fast analysis and reliable of such applications, which
facilitates the design process of real NCS.

The future work proposed is the performance analysis of different task schedulers and routing protocols on
the presented architecture, and a cooperation strategy between them to minimize power consumption.
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COMBINATION OF LOCALIZATION TECHNIQUES FOR MOBILE SENSOR NETWORK
FOR PRECISE LOCALIZATION*

HA YOON SONGT

Abstract. A precise localization is required in order to maximize the usage of Mobile Sensor Network. As well, mobile robots
also need a precise localization mechanism for the same reason. In this paper, we showed a combination of various localization
mechanisms for precise localization in three different levels. Localization can be classified in three big categories: wide area and
long distance localization with low accuracy, medium area and distance localization with medium accuracy, and small area short
distance localization with high accuracy. In order to present localization methods, traditional map building technologies such as
grid maps or topological maps can be used. We implemented mobile sensor vehicles and composed mobile sensor network with three
levels of localization techniques. Each mobile sensor vehicles act as a mobile sensor node with the facilities such as autonomous
driving, obstacle detection and avoidance, map building, communication via wireless network, image processing, extensibility of
multiple heterogeneous sensors, and so on. For localization, each mobile sensor vehicle has abilities of the location awareness by
mobility trajectory based localization, RSSI based localization and computer vision based localization. With this set of mobile
sensor network, we have the possibility to demonstrate various localization mechanisms and their effectiveness. In this paper, the
result of computer vision based localization, sensor mobility trail based localization and RSSI based localization will be presented.

Key words: localization, mobile sensor network, RSSI, dead-reckoning, computer vision

1. Introduction. The researches on Mobile Sensor Network (MSN) have been plenty worldwide. For MSN;
there could be a lot of valuable application with attached sensors as well as capabilities such as locomotion,
environmental information sensing, dead-reckoning, and so on. For such applications, usual requirements have
been acknowledged with localization of each sensor node and formation of the whole sensor network. In this
research we are going to discuss about localization techniques for Mobile Sensor Vehicle (MSV) which can
compose MSN. In addition, we will discuss a construction of MSN as well as required functionalities of each
MSN. For the precise localization we may analyze human actions for localization. For long distance and huge area
localization, humans call to their counterpart and identify counterpart’s location by talking each other. From
the conversation, only a rough location can be identified. Thus we guess long distance localization only allows
rough, inaccurate information of location but it is sufficient to confine a region for more precise localization.
For medium distance and medium area localization, human moves by transportation methods but eventually
walks in order to localize. While walking, humans build a conceptual map for the local geographic information
or they already have knowledge around the area, i. e. they already built maps. This sort of medium distance
localization requires relatively more precise localization information than long distance localization as precise
as, at least, for walking, i. e. autonomous driving.

For short distance and small area localization, humans detect counterparts by use of visual or aural infor-
mation, i. e. they find their friends by their eyes. This sort of localization deduces precise information than
other two sort of localization.

Thus, we can conclude and mimic the human localization with mobile sensor networks. Even though it
depends on techniques and environments of the usage of MSN, we can categorize the localization technique
according to its area or distance.

There have been variety forms of Mobile Sensor Nodes which utilizes various techniques of localizations
such as RSSI, GPS, Raider, Laser, Camera, and so on [1] [2]. One of the most prominent one, an RSSI based
localization, usually measures radio signal strength and it works well with popular network devices. Moreover,
an 802.11 device based software approach can be realize easily as we did in this paper. However, RSST method
is prone to be fragile with a presence of obstacles or so which will diminish or attenuate radio signal strength.
In a short distance, RSSI signals usually is too high that nullify accurate localization thus it is good for long
distance, low accurate localization.

By mimicking human actions for localization we can choose RSSI for mobile sensors while wireless telephones
for human and trajectory based tracking, so called INS (Inertial Nautical System), as human walking. Of course,
map building techniques are required for MSV as well as humans. For human visual localization, we can choose

*This work was supported by the 2008 Hongik University Research Fund.

fDepartment of Computer Engineering, Hongik University, Seoul, Korea (hayoonQwow.hongik.ac.kr). This paper had been
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Vienna, Austria (song@ict.tuwien.ac.at).
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Fia. 1.2. Relative Techniques for Localization

a localization technique based on computer vision. Thus we conclude and categorize localization techniques in
three big categories as shown in figure 1.1 so that we can choose proper localization mechanisms for its usage.
And in order to fulfill the localization, not only localization techniques but also techniques of cognition,
motion control, and perception are tightly related as shown in figure 1.2. We must express idea of this paper in
terms of these concepts of cognition, motion control, perception and localization.
This paper is organized as follows. In section 2 we will discuss localization method that have been researched.
The following section 3 we will analyze the requirement for MSV, the hardware design of MSV, and equipments
for localization, and we will discuss software capabilities of MSV software and will show software components
to fully control our MSV including software for MSN itself, monitoring program, map building features, and
other related topics. Then section 4 will shows the approaches of computer vision based localization for small
area, short distance precise localization. In section 5, our approach and methodology for mobility trajectory
based localization for medium distance localization will be discussed. In Section 6 RSSI (Radio Signal Strength
Identification) based localization will be presented based on 802.11 devices with software modification. Finally

section 7 will conclude this paper with possible future research topics.

2. Related Works. There have been a lot of researches regarding mobile sensor localization. In this
section, we will discuss past researches and our idea concentrating techniques with RSSI, vision and trajectory-
tracking. This works are not restricted on mobile sensors only but also related to robot technology.
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2.1. RSSI based Localization. Radio Signal Strength Identification is one of the known solutions for
distance measure. It requires wireless network device for mobile sensors and extra features.

We use 802. 11 network devices which have wide popularity. In addition we need communication between
mobile sensors thus 802.11 networking devices are popular solutions for us. RSSI features for 802.11 device
networks are required features in order to implement physical layer of CSMA/CA networking [14]. However
RSSI based distance measure is very prone to radio signal attenuation and thus has low accuracy. And it has
some restriction that once it is a data transfer modes, it cannot switched to API mode instantly. It implies
the restricted realtimeness for RSSI based localization. Manufactures of 802.11 devices usually provide their
arbitrary method for RSSI [11]. In this paper, we will demonstrate our MSV successfully does long distance,
low accurate localization only with commercial 802.11 devices and networking software embedded on MSVs.

2.2. Computer Vision based Approach. There are very few researches on localizations by use of
computer vision technology. There have been the previous results regarding mobile sensor vehicle control,
obstacle detection and so on.

Matsummoto et al. [15] used multiple cameras in order to control mobile robots. In their research, cameras
are installed on their working space instead of mobile vehicle itself. Their whole system is consisted of mobile
robots and multiple cameras and this helps the search of proper path of robots. Keyes et al. [16] researched
various camera options such as lens type, camera type, camera locations and so on. They also used multiple
cameras to obtain more precise information.

In this paper we will provide MSV with multiple cameras in order to accomplish short distance, high
accurate localization. However, a single MSV cannot locate its location precisely. The ultimate localization can
only be done with the cooperation of nodes in MSN.

The first requirement for localization is to identify the location of colleague MSV as a base point. For this
purpose, we prepared three facilities for each MSV. Each MSV can estimate its location by trajectory trail.
Moreover, each MSV can identify other colleague MSV with their infrared LED signal. In addition, this location
information can be communicated by wireless network device equipped with each MSV.

Of course, a camera or a set of cameras are installed on an MSV in order to identify colleague MSVs. This
set of cameras has infrared filters in order to diminish the effect of extra light noise in operating environment.

2.2.1. Location Determination Problem. With a set of camera, the required information for local-
ization is collected from the view of cameras. For example, an infrared LED light can be a parameter to
calculate the colleague’s location. In this research, we applied two previous results. The first one is Sample
Consensus(RANSAC) Method [5] and the second one is PnP Method [6] [7].

For RANSAC method, because of least square method, there is no possibility of wrong computation with
gross error value. This is the major reason why we applied RANSAC method. In order to solve the problem
of converting 3-dimensional view to 2-dimensional camera image, which has lost distance problem, we applied
perspective-3-point (P3P) problem.

Figure 2.1 shows the basic principle of P3P problem. The gray triangle is composed by infrared LED
installed on each MSV. Points A, B, C stand for each infrared LEDs and these vertices compose a triangle.
The distance Rgp, Rpc, Rac is known constants. From figure 2.1 we can drive the following very well-known
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mathematical equation as shown in equation 2.1. The equation 2.1 is in closed form. The number of solutions
from these equations will be up to eight. However, there are up to four positive roots.

Rap? = a® +b% — 2ab - cos Oy
Ru.2 = a? + % — 2ac - cos b, (2.1)
Rye? = b + ¢* — 2bc - cos Oy

With this P3P based method, we can only measure distances between observer and observed. For precise
localization, we must identify angle of MSVs as well. Our MSV is equipped with digital compass in order to
identify the angle of MSV based on magnetic poles. As predicted, digital compass also has its own error in
angle measurement but is tolerable.

2.3. Autonomous Driving Robot and Dead-Reckoning. This sort of localization is usually due to
military area. For example DARPA, USA invests on unmanned vehicle, and their aim is about 30% of army
vehicle without human on board controller. Stanley by Stanford university [17], which earned first prize in
competitions, are equipped with GPS, 6 DOF gyroscope and can calculate the speed of driving wheels. Those
sensors information can be combined to locate the position of their unmanned vehicle. They used computer
vision system with stereo camera and single camera, and laser distance meter, radar in order to get environmental
information. Sandstorm from CMU [18] is equipped with laser distance meter as a major sensor. Topographical
model can be obtained by laser lines and the speed of car can be calculated by the density of laser line. Gimbal
on their vehicle can install long distance laser scanner with seven laser sensors. Shoulder-mounted sensors can
calculate height information of topography. Two scanners on bumpers can obtain obstacle information. Long
distance obstacles can be identified by radar.

Our MSV are equipped with RSSI devices, stereo cameras and other sensors for dead-reckoning. Apart
from the examples of locomotive robots, these equipments are for accurate localization.

3. Mobile Sensor Vehicle. We developed MSV in order to experiment our localization method in real
environment. Various versions of MSV are designed and implemented. The localization functions implemented
on MSV are as follows:

e Long distance low accuracy localization by RSSI

e Medium distance medium accuracy localization by dead-reckoning tracking

e Short distance high accuracy localization by Stereo camera with computer vision.
In the following subsection we will discuss hardware and software of MSV respectively.

3.1. Hardware. MSV is actually a mobile sensor node for MSN. Each MSV can move autonomously
and can identify obstacles. They can communicate each other by 802.11 networking devices. The chassis of
MSV are composed of aluminum composite with high durability and lightweight. The main driving mechanism
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is caterpillar composed of three wheels, L-type rubber belt, gears as shown in figure 3.1. The adoption of
caterpillar is for minimization of driving errors. There are a lot of rooms to install additional sensor hardware.
With digital compass equipped on the top of MSV, the accurate vehicle location can be sensed. This angular
information can help exact localization of MSVs. The design concepts of MSV are as follows.

e Autonomous mobility

e Extensibility of equipped sensors

e Precise movement and mobility trail

And MSV characteristics as a node of mobile sensor network are as follows:

e Self identification and colleague identification with various methods

e Wireless communication

e Digital Compass

For autonomous driving, MSV must identify obstacles and avoid them. We use an infrared laser and cameras
with infrared filter. IR laser is constantly lighting in parallel to round. Camera looks down grounds in a degree
of 30 which is determined by experiments. The concept of this obstacle detection is depicted in figure 3.2.
Obstacle reflects IR laser and sensed by camera [5, 7]. The obstacles with reflected IR will be detected as white
lines. This obstacle detection will be used by local map building as shown in section 5.1.

For short distance obstacles within the dead angle of camera, ultrasonic sensors are located under the MSV
and in front of MSV. For computer vision based localization, MSVs are equipped with stereo eyes as shown in
figure 3.3. Three servo motors can control two cameras independently. This stereo camera system can be used
not only for localization but also for obstacle detection with diminished dead angle. There are three infrared
LEDs mounted in the front of MSV. These LEDs are for computer vision based localization.
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For hardware construction, we need micro controller unit, a serial communication port, a PWM port, an
interrupt port in order to control motors and communicate with sensors. Figure 3.4 shows the conceptual
structure of MSV hardware.

3.2. Software. Software for MSV operations is required in a form of embedded software. Figure 3.5 shows
required facility and their structure for MSV software.

Total part of software can be divided into five categories. One of the roles of software is to convert sensor
information into driving information. Information for driving can be obtained via serial communication from
T-board (MCU) with driving information and angular information.

The location of MSV is constantly updated with the moving distance and updated angle. Camera class
provides obstacle information as well as basic information for map building. Map building class builds a map
with the information from T-board class and camera class. These maps are required for autonomous locomotion
and localization. Network class provides networking functionalities between MSVs.

We implement core software based on multi threads. There is document class, which provides organic data
flow between classes. Thus the major role of MSV software is as follows.

e Autonomous driving
e Motor control and driving distance identification
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Monitoring program is a user interface between MSV and user. Monitoring program shows MSV condition,
camera view, driving information, map built, and other sensor information. It also provides manual operation
functionality of MSV.

4. Computer Vision based Accurate Localization.

4.1. Sensor Equipment and Experimental Environment. Each MSV has a set of Infrared LED (IR-
LED) in a form of triangle and the lengths of edges are all 30 centimeters. The IR lights from these LEDs can
be viewed by stereo camera system from other colleague MSV. The stereo eye system as shown in figure 3.3 has
two cameras. Three servo motors controls two stereo eyes vertically and horizontally.
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TaBLE 4.1
IR-LED specifications
MODEL NO. | Half Angle | Peak Wavelegnth
SI5315-H +30° 950nm
OPE5685 +22° 850nm
OPE5194WK +10° 940nm
TLN201 +7° 880nm
EL-1KL5 +5° 940nm

The stereo cameras are equipped with IR filters. The front view of MSV for these equipments is as shown
in figure 4.2. Three IR-LEDs forms a triangle and a stereo camera system are also presented.

With fixed length of triangle edges, i. e. interval between IR-LED, is fixed by 30 centimeters. Therefore by
using P3P method, the distance between camera and MSVs with IR-LED triangle can be calculated. Embedded
software for each MSV has a realtime part for P3P solution. The software also shows the image from stereo
camera as a part of P3P solution.

The ideal situation starts by estimating the angle between two cameras. Once camera direction is fixed, we
can estimate angles between tracked object and cameras, however, MSV can move every direction which causes
difficulties to measure that angle. Moreover, if these cameras have pan-tilt functionalities, it is impossible to
measure such an angle in real time.

Another method with P3P technique is to assume the distance to the object. The distance to object and
the scale of triangle in camera view is proportional inversely thus the size of LED triangle can be a starting
point to estimate the distance to obstacles. We decided to standardize the reduced scale of LED triangle in
order to estimate distance to objects. The basic concept of this method is depicted in figure 4.1 and will be
discussed further in the subsection 4.3.

This approach has limits of camera visibility, i. e. objects beyond visibility cannot be identified. However,
two other localization methods will be presented in the following sections for beyond sight localization. In
addition with the help of digital compass, we can measure the direction of each MSV. The combination of this
information can achieve short distance accuracy for localization.

4.2. Preliminary Experiment for Equipment Setup. We conduct preliminary experiment in order
to choose optimal device for computer vision based localization. The first purpose of this experiment is to
select the best LED in order to increase the range of localization. Our past result showed 250 centimeter of
localization range however our aim is to enlarge the range to 400 centimeters or farther.

We choose five infrared light emitting diodes with typical characteristics. We first concentrated on the
visible angle of LED lights since we assumed wider visible angle guarantees the clearer identification of LED
light and more precise localization.

Table 4.1 shows the specifications of various IR-LEDs with visible angle and peak wavelength. The major
reason why we choose those IR-LEDs are as follows:

e Smaller half angle of LED enables long distance tracking however increases invisibility from the side.
e Larger half angle of LED enables tracking from the side however decreases tracking distance.

With infrared filter equipped cameras we planned experiments to evaluate the LEDs for vision based local-
ization. Table 4.2 show the result of visible distance and visibility of IR-LEDs. Twelve experiments have been
made and average values are shown. From the specifications of IR-LEDs, 5 volts DC voltage is supplied for the
experiment.

Among five IR-LEDs, two showed stable visibility and acceptable visibility distance. Between these two
candidates, we finally choose the best LED of MODEL NO.SI5313-H since it has the widest half angle as well
with reasonable visibility distance.

4.3. Main Experiments for Computer Vision based Localization. Figure 4.1 shows the relationship
between LED triangle size (d) and distance from camera to LED triangle (h). The relation between d and h
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TABLE 4.2
IR-LED Visibility Experiments
MODEL NO. | Max Length | Visible Angle Visibility
S15315-H 500cm +60° Stable
OPE5685 490cm +45° Somewhat Unstable
OPE5194WK 520cm +35° Most Stable
TLN201 510cm +20° Unstable
EL-1KL5 450cm +10° Indiscriminable

can be directly drawn from the following equation 4.1

d
tanf = ——
v =gy

(4.1)

d
0 = arctan —
arctan -

Most of cameras has angle of view in 54° ~ 60°. Since we used camera with angle of view in 60°, from the
equation 4.1 we can solve ratio about h : d = 1 : 1.08. The actual value of d is 30 centimeter for our experiment.

Thus we can summarize the following:

e High angle of view camera can increase minimum measure distance.
e With narrow LED pattern interval, we can decrease actual distance h but practically meaningless.
e With wider LED pattern interval, we can increase actual distance but dependent on MSV size.

From the experiments, we can identify the vision based localization is effective within the range from 30
centimeters to 520 centimeters with our LogiTech CAM camera. The 30 centimeter lower bound is due to
the 30 centimeter interval of LED triangle edges. The 520 centimeter upper bound is due to the visible sight
capability of LogiTech CAM camera. Thus 520 centimeter would be a maximum distance of computer vision
based localization. However it is still meaningful since we can achieve very high accuracy in localization with
these cheap, low grade cameras. The other idea for more localization distance is to use cameras with higher
resolution.

From our experiments, we identified the correlation between actual distance from camera to colleague MSV
and size of LED triangles in camera view. The results can be translated into graphical form as shown in
figure 4.3.

From figure 4.3 the result shows the fluctuation of results with more than 500 centimeters which makes
localization unstable. For applications which require the error range of 20 centimeters, we can use the results
to 520 centimeters. Since our aim is to keep localization errors within the range of 10 centimeters, we decided
to discard results more than 400 centimeters.

4.4. Experimental Result. From our experiment in the previous subsections we will provide the final
result of computer vision based localization in this subsection. Figure 4.4 shows graphical version of final result.

Apart from the results in previous section, this figure shows actual distance up to 500 centimeters. From
figure 4.3 we can observe errors in calculated values of P3P for more than 500 centimeter distance. These errors
is due to the resolution limit of CAM camera which is 640 x 480. Even a small noise can vary actual distance
of ten centimeters in the distance more than 500 centimeters.

Thus we conclude the accurate localization by computer vision can be done in the range of 70 centimeters
to 500 centimeters with our camera equipments. For the localization in more than 500 centimeters, localization
based on MSV trajectory tracking will be effective. In addition, for the localization in more than 30 meters,
localization based on RSSI will be effective 6. Of course, the location information can be broadcasted and be
used by the members of MSN in order to build maps, to correct location errors and so on.

5. Mobility Trail based Localization.

5.1. Map Building. Map building is one of the core parts of medium distance localization as well as
for other distances and areas. The result of localization must be presented on local map and therefore be
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Coordinate of MSV

Fia. 5.1. Relative Coordinate

Absolute cooltdinate of MAP

Current Position of
the MSV

6“‘%

Current Position of
the Obstacle

Fia. 5.2. Absolute Coordinate

transferred to global map. MSVs communicate with each other in order to combine local maps into global
maps. The following information will be shown on a map.

Untapped territory
Territory with obstacle
Territory with MSV
Tapped territory

Totally unknown territory

For map building we must consider relative coordinate and absolute coordinate. For example, obstacle
information identified by MSV is in a form of relative coordinate. In relative coordinates, the very front of MSV
is in angle 0 as shown in figure 5.1. This coordinate must be transformed into absolute coordinate as shown in
figure 5.2 and therefore can be a part of map.
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TABLE 5.1
COMPARISON BETWEEN GRID MAP AND TOPOLOGICAL MAP

MAPS Grid MAP Topological MAP
Precise presentation of geography of Simple presentation of environment
environment and simple path planning
Advs. Ease of algorithm design: environ- Tolerance of low accuracy mobile
mental modeling, path finding, local- sensors
ization by map-matching Natural interface to users
Impossibility of large map building
Difficulty in path planning with inaccurate, partial information
Requirement of large memory and Difficulties in map-matching: diffi-
Disadvs. | computation culties in calculation of pivot sensor
Poor interface to symbolic problem value
solver Difficulties in dealing complex envi-
ronment,

Local map is usually in a form of grid map. However in case of global map with huge capacities, grid map
is very inefficient. Therefore we will use topological map for global map as presented by Kuipers and Bynn [6].
Thrun [8] presented a hybrid approach of both maps and we will consider it as our ultimate format of global
map. Table 5.1 compares advantages and disadvantages of grid and topological map.

With mobility trajectory tracking, medium range localization can be implemented by use of local map.
Each MSV moves autonomously and build its own local map. In the following subsection, we will discuss error
corrections of mobility tracking based approach which is essential to guarantee the accuracy of localization.

5.2. Dead-Reckoning. For the medium distance localization, we decided to utilize mobility trail. We
define the range of medium distance between 4 meters and 40 meters since our vision based short distance
localization covers within the range of 5 meters and RSSI based long distance localization is effective outside
the range of 30 meters. Our aim is to trail the mobility of MSV and to record the trail on the local map with
reasonable accuracy for medium distance localization. Every driving mechanism for mobile sensors or even
mobile robots has mechanical errors and it is impossible to avoid such errors practically. We can summarize
the cause of driving errors as followings:

e The difference between the sizes of two (left and right) wheels
e The distortion of wheel radius, i. e. the distance between average radius and nominal radius
e The wheel misalignment
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e The uncertainty about the effective wheelbase

e The restricted resolution of driving motors (usually step motors)
Usually those errors are cumulated and final result will be void without proper error correction technique.
However, in order to cope with those location errors due to mechanical errors, a method of dead-reckoning have
been widely used and we also adopt such technique as well. Dead-reckoning is a methodology that calculates
the moving distance of two wheels of MSV and derives the relative location from the origin of MSV.

Among the various versions of Dead-reckoning techniques, we used UMBmark technique from University
of Michigan [4]. UMBmark analyzes driving mechanism errors and minimized the effect of driving errors.
UMBmark analyzes the result of MSV driving in a certain distance and compensates mechanical errors of
MSV driving mechanism. The driving results of rectangular course, both in clockwise(CW) and counter-
clockwise(CCW), and then analyzed.

Two error characteristics are classified in Rotation angle error and Wheel mismatch error. Rotational angle
errors are for the difference between actual wheel sizes and theoretical design sizes of wheels. Due to rotational
angle errors, CCW driving after CW driving shows larger errors as usual. For example, actual wheel size bigger
than designed wheel size results in insufficient rotation at corners and then rotational angle errors are cumulated
for the whole driving. The following equation summarizes the rotational angle error which is depicted in [4].

Dpg

E, =
d D,

where Dp is diameter of left wheel and Dpg is diameter of right wheel. In short, F, is a ration between diameters
of left wheel and right wheel.

Wheel mismatch errors are from wheelbase mismatch. This error causes skews in straight driving. With
wheel mismatch error, the error characteristic of CW driving is opposite to CCW driving. The following equation
summarizes the wheel size error which is depicted in [4].

90°

By=——
T 90° — o

where « is a value of rotational angle error. Ej stands for a ration between ideal and practical errors in rotation,
i. e. wheel base error.

Mechanical errors are systematical errors and therefore can be predicted and analyzed, while non-mechanical
errors cannot be predicted because non-mechanical errors are due to the driving environment. Non-mechanical
errors are classified as follows:

e Uneven driving floor or ground
e Unpredicted obstacle on driving course
e Slipping while driving
We applied UMBmark to our MSV and the following subsection shows the result.

5.3. Driving Error Correction of MSV. We composed a set of experiment for MSV driving in order
to apply UMBmark. The driving experiments have been made on the flat and usual floor with the rectangular
driving course of 4 x 4 meters. As shown in [4] both CW and CCW driving have been made and error values
have been measured. These error values are incorporated in our software system and MPU controllers.

With the following equations from [4] we can find the error value for error correction.

bactual = Eb X bnominal
where byciuqr 1S an actual wheelbase and b,,0mina 1S & measured wheelbase.
AUL,R = CL,R X Cm X NL,R

Where U is actual driving distance, N is the number of pulses of the encoder, and ¢,, is the coefficient to convert
pulse per centimeters.

Our experimental result with driving location correction by UMBmark dead-reckoning mechanism is shown
in figure 5.3. Circled dotes are result from CCW driving and rectangular dotes are from CW driving. Empty
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dotes are of uncorrected driving results while filled dotes are of driving results with UMBmark in 16 meter
driving experiment. Note that the origin of MSV (starting point) at the coordinate (0,0) are at the upper right
part of the figure. Without dead-reckoning technology, MSV returns to erroneous point than the origin point,
at the left part of the figure. This MSV tends to show more errors with CW driving. With the application
of UMBmark technique, we achieved faithful result within 10 centimeters of error range in total. Directional
errors are within the range of 3 centimeters from the origin. Since our approach is for mechanical driving errors,
non-mechanical errors can be avoided and thus we will introduce real-time correction of driving with the help of
digital compass for the future researches. Thus it is possible to mention that the trail of MSV is in the correct
location within the errors of 10cm in our experimental environments.

6. RSSI based Long Distance and Wide Area Localization. Our MSV are equipped with homoge-
neous 802.11 networking devices with RSSI facilities. With distance information we can do triangulation with
at least three nodes and one anchor. Our monitoring station with monitoring program can act as an anchor.
The 802.11 networking devices can be switched to AP (Access Point) mode so that each MSN can act as AP.
With software modification that utilizes 802.11 device RSSI features, we can achieve RSSI based localization
for our MSN.
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The unit of RSSI is in dBm (-50dBm ~ -100dBm) and it designates distances between specified MSVs. As
already mentioned, the RSSI value is very affective by environments, and we obtain error rate of 10 ~ 15%
in specific distance. The RSSI value is very sensitive with hardware vendor and the direction of AP [9]. Our
experimental environment is as follows.

e Wide open area

e Intel Wireless LAN 2100 3B Mini PC Adapter
o WRAPI software model [11]

e One fixed anchor as monitoring station

For the calibration of our RSSI device, a set of experiment has been conducted and the results are shown
in figure 5.5.

We can find within the distance of 20 meter, RSSI is no more useful for distance measure since the signal
strength is too high. Our experiments shows RSSI based localization is useful more than 35m distance. The
values are within error range of 15% by experiment. This is the main reason why we choose RSSI based
localization for long distance, low accuracy localization.

From the distance information from RSSI sensing, we can do triangulation as shown in figure 5.4. For actual
implementation, we have one fixed anchor and can do more precise localization with a known anchor coordinate
as shown in figure 5.6. The figures show three mobile nodes one anchor node. The distance obtained from circle
r1,72,73 can be obtained from RSSI values. Thus with this environment we can triangulate the coordinate
node X from the intersection of circles drawn by node 1, node 2, and node 3 [12] [13].

Thus from the distance which can be obtained from RSSI values, let the distance be di from radius of
circle ri The following algorithm 2 shows a procedure to find coordinates of each MSV with provided distance
information by RSSI.

Figure 6.1 shows a final result in RSSI based localization. The x-axis stands for actual distance between
MSVs and y-axis shows a distance calculated by algorithm 2. As we predicted the RSSI based localization is
useful with the distance more than 30 meters. On the range where RSSI based localization is effective, we can
see errors between actual distance and calculated distance. We believe it is tolerable since we have another
method of localization with more accuracy within the distance of 30 meters. Of course, the distance information
is not a sufficient condition for localization. The other information of direction of MSV can be obtained by
digital compass on each MSV. Thus we implemented long distance, low accuracy localization.
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Algorithm 2 Localization of Sensor Nodes with RSSI Measurement,

Input : d1, d2, d3, rl, r2, r3
//Distance dI, d2, d3

//Circle r1, r2, r8

Output : SolutionList
LinkedList SolutionList
//Mobile Sensor Node Coordinates

for (each (x1,yl) on Circle rl)

{

for (each (x2,y2) on Circle r2)

if (d1 —
distance between (x1,yl) and (x2,y2))

{

for (each (x3,y3) on Circle r3)

if (d2 =
distance between (x2,y2) and (x3,x3))

if (d3 =
distance between (x3,y3) and (x1,yl))
{
SolutionList =
Coordinate (x1,yl),(x2,y2),(x3,y3)
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7. Conclusions. Of the localization methodologies for mobile sensor network, we combined three different
categories of localization methodology. In addition for the experiment, we implemented mobile sensor vehicle as
a node of mobile sensor network. We showed brief description of our mobile sensor vehicle including hardware
and software functionalities. A computer vision based approach has been presented for the small area localization
with a considerable range of preciseness. The driving mechanism hardware and software cooperate with each
other and naturally achieve localization based on trajectory-tracking with the help of local map building, which
is a medium distance and medium accuracy localization. The result of localization can be presented on local
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maps and eventually be merger into global maps. In addition we showed RSSI based localization. The long
distance, low accuracy localization can be implemented by commercial 802.11 networking devices only with
software but without any other specific hardware device..

From these three levels of localization, we believe that we implemented useful localization system and will do
more research using this platform. For example multiple MSV can cooperate and communicate each other and
then a formation based on localization can be made. A smooth transition between these localization information
for specific environment or application with probability model is our next goal to achieve.
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Mr. Jaeyoung Park and many other colleagues. Their contributions and allowances lead to this paper with
united results.
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OPEN ENVIRONMENT FOR PROGRAMMING SMALL CONTROLLERS ACCORDING
TO IEC 61131-3 STANDARD
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Abstract. A control engineering environment called CPDev for programming small controllers in ST, FBD and IL languages
of IEC 61131-3 standard is presented. The environment consists of a compiler, simulator and hardware configurer. It is open in the
sense that: (1) code generated by the compiler can be executed by different processors, (2) low-level components of the controller
runtime program are developed by hardware designers, (3) control programmers can define libraries with functions, function blocks
and programs.

Of the three TEC languages, ST Structured Text is a basis for CPDev. FBD diagrams are translated to ST. IL compiler uses
the same code generator. The runtime program has the form of virtual machine which executes universal code generated by the
compiler. The machine is an ANSI C program with some platform-dependent components. The machines for AVR, ARM, MCS51
and x86 processors have been developed so far. Applications include two controllers for small DCS systems and PC equipped with
1/0 boards. CPDev may be downloaded from http://cpdev.prz-rzeszow.pl/demo.

Key words: control engineering tool, IEC 61131-3 standard, ST language compiler, multi-platform virtual processor

1. Introduction. Remarkable number of small-and-medium-scale companies in Europe manufacture tran-
smitters, actuators, drives, PID and PLC controllers, and other control-and-measurement equipment. Engi-
neering tools for programming such devices are often fairly simple and do not correspond to IEC 61131-3
standard [4], required by growing number of customers. The problem may be solved to some extent by devel-
oping open engineering environments for programming small control devices based on AVR, ARM, MCS51 or
other microcontrollers according to TEC languages (61131-3 will be dropped for brevity). Development of such
environment called CPDev (Control Program Developer) was initiated by the authors at the end of 2006.

The CPDev is open in the following sense:

e code generated by the compiler can be executed by different processors,

e low-level components of runtime program are provided by hardware designers,

e control programmers create their own libraries with reusable program units.
The CPDev compiler generates an intermediate, universal code executed by runtime interpreter at the controller
side. Different processors require different interpreters. This resembles somewhat the concept of Java virtual
machines [7] capable of executing programs on different platforms. Hence the interpreters of the CPDev universal
code are also called virtual machines.

The same approach was adapted earlier in ISAGRAF package from ISC Triplex [5] (now in Rockwell). IS-
aGRAF universal code is called TIC (Target Independent Code) and may be executed on platforms supporting
Windows, Linux, VxWorks, QNX and RTX. Much simpler CPDev does not impose such requirements, how-
ever. Another open environment called Beremiz [11] compiles IEC language code into C/C++ program, to be
translated further into processor code. In this case commercial restrictions on the use of C/C++ compilers may
matter sometimes.

This paper follows a few earlier publications, e.g. [9, 10], which reported on CPDev development. The
content, is organized as follows. For the reader not familiar with IEC standard, Sec. 2 provides some information
on programming in high-level ST language. Components of CPDev, user interface, standard functions and
libraries with function blocks are described in Sec. 3. Section 4 characterizes scanner, parser and code generator
of ST compiler, written in C# at Ms .NET platform. Some instructions of the universal code called VMASM
(Virtual Machine Assembler) are also presented. Section 5 describes operation and structure of the virtual
machine. The machine is written in industry standard C and consists of universal and platform-dependent
modules. Platform-dependent modules are written by hardware designers. Section 6 characterizes development
of user function blocks, both in ST and C languages. Blocks written in C become components of the virtual
machine. Programming in graphical FBD and textual IL languages is described in Sec. 7. FBD diagram is
translated to ST and then compiled. Applications of CPDev for programming a small control-and-measurement,

*Department of Computer and Control Engineering, Faculty of Electrical and Computer Engineering, Rzeszow University of
Technology, 35-959 Rzeszow, ul. W. Pola 2, Poland, ({drzonca, js, astec, swiderzb, btrybus, ltrybus}Qprz-rzeszow.pl).
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distributed system, controllers of ship control-and-positioning system and a softcontroller based on PC with
I/0 boards are presented in Sec. 8.

2. A few notes on IEC 61131-3. The IEC 61131-3 standard [4] defines five programming languages,
LD, IL, FBD, ST and SFC, allowing the user to choose the one suitable for particular application. Instruction
list IL and Structured Text ST are text languages, whereas Ladder Diagram LD, Function Block Diagram
FBD and Sequential Function Chart SFC are graphical ones (SFC is not an independent language, since it
requires components written in the other languages). Relatively simple languages LD and IL are used for
small applications. FBD, ST and SFC are appropriate for medium-scale and large applications. John and
Tiegelkamp’s book [6] is a good source to learn IEC programming.

ST is a high-level language originated from Pascal, especially suitable for complicated algorithms. Equivalent
code for a program written in any of the other four languages can be developed in ST, but not vice versa. Hence
most of engineering packages use ST as a default language for programming user function blocks. Due to such
reasons, ST has been selected as a base language for the CPDev environment.

2.1. Data types. Data types, literals (constants) and variables are common components of IEC languages.
Names (identifiers) are typical, although there is no distinction between capital and small characters. The
standard defines twenty elementary data types, several of which are listed in Table 2.1 together with memory
sizes and ranges (in CPDev). BOOL, INT, REAL and TIME are most common. FALSE, 13, -4.1415 and T#1m25s
are examples of corresponding constants.

TaBLE 2.1

Several elementary IEC data types
Type Size (range) Type Size (range)
BOOL 1B (0, 1) LREAL 8B IEEE-754 format
BYTE 1B (0 ... 255) TIME 4B (-T#24d20h31m23s648ms ...
WORD 2B (0 ... 65535) T#24d20h31m23s647ms)
INT 2B (—32768 ... 32767) 4B (00:00:00.00 ...
REAL 4B IEEE-754 format TIME_OF_DAY 23:59:59.99)

The standard defines three levels for accessing variables, LOCAL, GLOBAL and ACCESS. LOCALs are available
in the program, function block or function. GLOBALS can be used in the whole project, but programs, function
blocks or functions must declare them as EXTERNAL. ACCESS variables exchange data between different systems.

2.2. POU units. Programs, function blocks and functions, called jointly Program Organization Units
(POUs), are components of IEC projects. Function blocks, designed for reuse in different parts of program,
are of crucial importance. A block involves inputs, outputs and memory for data from previous executions.
Therefore the blocks must be declared as instances. The IEC defines small set of standard blocks, such as
flip-flops, edge detectors, timers and counters. Three of them are shown in Fig. 2.1.

RS R_TRIG TON
BOOL— S Q1+—BooL BOOL— IN Q—BOOL
BOOL— CLK Ql—BOOL
BOOL —| R1 TIME — PT ET— TIME
S CLK i Li IN_|
R [L Q_ QP
a1 L 1 cycle ET—1 L1

Fic. 2.1. Examples of standard function blocks: RS flip-flop, R_TRIG rising edge detector, TON on-delay timer

2.3. Programming. Programs written in ST or other languages begin with declarations of variables and
instances of function blocks placed between VAR_EXTERNAL or VAR and END_VAR keywords. GLOBAL variables are
declared before programs or separately. The declarations are followed by list of statements. The statements
involve expressions which, when evaluated, yield results in one of defined data types, i. e. elementary (Table 2.1)
or derived, such as alias, array or structure. The following operators are available (in descending priority):
parenthesis, function evaluation, negation, power, arithmetic operators, Boolean operators.
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ST language provides five types of statements:

e assignment := (Pascal symbol),

e selections IF, CASE,

e loops FOR, WHILE, REPEAT,

e carly exits RETURN, EXIT,

e function and function block invocations.
Simple examples are presented in the following sections. Typical program looks like a sequence of function and
function block invocations (calls).

3. CPDev environment. The CPDev consists of three programs executed by PC and one by the con-

troller (Fig 3.1). The PC programs are as follows:

e CPDev compiler of ST language,

e CPSim simulator,

e CPCon configurer of hardware resources.
The programs have dedicated interfaces and exchange data through files in appropriate formats. The CPDev
compiler (the same name as the package) generates universal code executed by virtual machine (VM) run by the
controller. The VM operates as an interpreter. The universal code is a list of instructions of VM language called
VMASM assembler. VMASM is not related to any particular processor, but close to typical assemblers. The
compiler employs ST syntax rules, list of VMASM instructions and POUs from libraries. Besides the universal
code the compiler generates some information for debugging and simulation by CPSim.

Configurer of
hardware resources
CPCon

Virtual machine
VM

Simulator
CPSim

Compiler
CPDev

Fic. 3.1. Components of CPDev environment

Configuration of hardware resources by means of CPCon involves memory, input/output and communication
interfaces. User specifications define memory types and sizes, numbers and types of I/Os and communication
channels, validity flags, etc. Allocation of hardware resources has the form of a map that assigns symbolic
addresses from ST programs to physical ones. By using it, the compiled code can be assembled for a particular
platform to create final, universal executable code. From CPDev viewpoint, hardware platforms differ only in
hardware allocation maps, whereas the compiled code is identical.

The CPDev environment has been recently extended by graphic editor of FBD diagrams and compiler of
IL language. FBD diagram is automatically converted into ST code and compiled as above. Compilers of ST
and IL differ in details only.

3.1. User interface. Main window of CPDev ST compiler is shown in Fig. 3.2. The window consists of
three areas:
e tree of project structure, on the left,
e program in ST language, center,
e message list, bottom.
Frames of the areas can be adjusted and the contents scrolled.

Tree of the START_STOP project shown in the figure includes POU unit with the program PRG_START_STOP,
five global variables from START to PUMP, task TSK_START_STOP, and two standard function blocks TON and
TOF from IEC_61131 library. The program is written according to ST language rules. The first part involves
declarations VAR_EXTERNAL of the use of global variables. Local declarations of the instances ON_DELAY and
OFF _DELAY of the blocks TON, TOF are the second part. Program body consists of four statements. The first one
turns a MOTOR on if START is pressed, provided that STOP or ALARM are not. Next three statements turn a PUMP
on and off five seconds after the MOTOR (FBD diagram corresponding to this project is shown in Fig 7.1).

Global variables and the task are defined using separate windows (not shown). According to IEC standard
the variables can be assigned CONSTANT and RETAIN attributes, and logical addresses. Task can be executed
once, cyclically with a given period, or as soon as previous execution is completed. There is no limit on the
number of programs assigned to a task.

Text of the project represented by the tree is kept in an XML file. Compilation is executed by calling
Project->Build from the main menu. Messages appear in the lower area of the interface window. If there
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Fia. 3.2. User interface of ST compiler (START_STOP project)

are no mistakes, the compiled project is stored in two files. The first one contains universal executable code in
binary format for the virtual machine. The second one stores mnemonic code, together with some information
for simulator and hardware configurer (variable names, etc.).

3.2. Functions and function blocks. The CPDev compiler provides most of standard functions defined
in IEC. Five groups of them followed by examples are listed below:
type conversions: INT_TO_REAL, TIME_TO_DINT, TRUNC,
numerical functions: ADD, SUB, MUL, DIV, SQRT, ABS, LN,
Boolean and bit shift functions: AND, OR, NOT, SHL, ROR,
selection and comparison functions: SEL, MAX, LIMIT, MUX, GE, EQ, LT,

e functions of time data types: ADD, SUB, MUL, DIV (IEC uses the same names as for numerical functions).

Selector SEL, limiter LIMIT and multiplexer MUX from selection and comparision group are particularly useful.
Variables of any numerical type, i. e. INT, DINT, REAL and LREAL are arguments in most of relevant functions.

Two libraries of function block are available, namely:
e IEC_61131 standard library,
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e Basic_blocks library with simple blocks supplementing the standard.

The first one involves: (1) flip-flops and semaphore RS, SR, SEMA, (2) rising and falling edge detectors R_TRIG,

F_TRIG, (3) up, down, up-down counters CTU, CTD, CTUD, (4) pulse, on-delay, off-delay timers TP, TON, TOF.

Blocks typical for small multifunction controllers are in the second library, i. e. integrator, filters, max/min over

time, memories, time measurement, etc.

4. ST language compiler. The task of the compiler is to convert XML source file with the project in ST
language into a file with universal code in binary format. General diagram of the compiler operation involving
scanner, parser and code generator is shown in Fig. 4.1.

Character SCANNER . PARSER ) CODE Executable
Token list Mnemonic code | —————>
stream GENERATOR format
Sequence of ST Sequence of .
. Portable b
S;I'Ofrr;%ufige tokens and their VMASM ULt fi(lee Lk=Ly7
categories instructions

Fia. 4.1. ST compiler components

4.1. Scanner, parser and code generator. The scanner (lexical analyser) analyses character stream
from ST source file and decomposes it into lexical units, i. e. tokens. The tokens are classified into categories
such as identifiers, keywords, operators, constants (a few categories), delimiters, directives, comments, white
spaces and invalid characters. The tokens with categories are collected on a list passed to the parser.

The parser operates according to top-down scheme with syntax directed translation [3]. By employing
the ST syntax the parser recognizes consecutive token constructions from the scanner list. White spaces and
comments are dropped. When correct construction is recognized the parser replaces it by a set of mnemonic
instructions of the VMASM assembler. To do so, the parser employs built in elementary data types (Table 2.1)
and list of VMASM instructions. Examples of these instructions are presented in Table 4.1.

TABLE 4.1
Ezamples of VMASM assembler instructions
Instruction Meaning Instruction Meaning

MCD Constant initialization GE Greater or equal

MEMCP Assignment SHL Bit shift to the left
ADD Addition JMP Unconditional jump
SUB Subtraction JZ Conditional jump
AND Logic product MEMCP Memory copy
NOT Negation RETURN Return from function

Normally a single ST statement is translated into several VMASM instructions. Some translations require
introduction of auxiliary variables and labels. Derived data types and POUs from libraries (functions, function
blocks and programs) are also parsed. The mnemonic code is written in a special text format. The code can be
consolidated with other mnemonic codes.

In the third step the code generator converts the consolidated mnemonic code into universal executable
code in binary format. Mnemonics of the VMASM instructions, names of the variables and labels are replaced
by corresponding number identifiers. To do so, the generator employs a Library Configuration File (LCF)
with the identifiers of the instructions, numbers and types of the operands, and information how the operands
are acquired (operand identifier may be an index to variable or a direct value). Each implementation of
virtual machine is defined by specific LCF configuration file. Besides binary file with the executable code
the compiler generates a text file with mnemonic code, some additional information for CPSim simulator and
CPCon configurer (variable names, etc.) and compilation report (HTML).

4.2. Parser and code generator classes. Essential components of the compiler are designed as classes
in C# language [1, 2]. Each token of ST language is encapsulated into an object of corresponding class. The
classes inherit from an abstract STIdentificator class. During compilation, identifiers are collected into lists.
The lists employ predicates for finding appropriate identifiers, what eliminates the need for hash tables. There
is a list of global identifiers and local lists which store identifiers of functions, function blocks, programs, etc.
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Identifiers in a list are checked for uniqueness. When identical names are found compilation is stopped and
error reported. If local identifier hides a global one, the compiler produces a warning.

The parser generates text sequence of VMASM instructions for the code generator. Each instruction is
represented by a mnemonic followed by operand names. Code generator replaces mnemonics and variable
names with appropriate number identifiers (indexes). While processing an instruction, the generator extracts
some information from libraries, e.g. operand size, type and passing method. The number identifier can
be interpreted as a pointer to variable or as immediate value. Instructions resulting from compilation are
represented by instances of VMInstruction class. The operand list VMOperand is also stored as a member of
this class. By using lists of operands typical problems with fixed-size operand tables are avoided.

5. Multi-platform virtual machine. Binary file with the universal code and hardware allocation map
from the CPCon configurer are downloaded into the controller, to be processed by virtual machine. Main
features of the processing are characterized below.

A
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Internal memory Code segment Data segment
Read inputs
r  Instruction .00e8
selection 0510 0700 0700
_ 1C1F OE00 0C00 €0020
Execution Cycle 0100 0095 9809 0000 803E 0000
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(Real, Real):Bool 0800
3000
020

2400 0129
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@0044
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Next cycle \/ Address register.
a) Operation of VM b) Memory organization

Fic. 5.1. Virtual Machine

5.1. Operation cycle. Virtual machine is an automaton operating according to Fig. 5.1a. As indicated
before, the machine is specific for a particular processor and works as an interpreter. The task consists of
programs executed consecutively. The binary code involves number identifiers of the instructions and addresses
of operands. The machine, similarly as a real processor, maintains program counter with the address of in-
struction to be executed, and base address of the data area with operands (specified for each POU). Given
the instruction address, the machine fetches the identifier, decodes it, fetches the operands, and executes the
instruction. Stack emulation and update of the base addresses permit multiple, concurrent calls of functions
and function blocks. The machine monitors time cycle of the task and sets alarm flag if timeout appears. It
also triggers input/output procedures responsible for external variables.

Allocation of software to memory segments is shown in Fig. 5.1b. The instructions and their operands are
in the code segment (read only). Data segment contains global, local and auxiliary variables, some of them
with constant values. The data segment can be accessed directly or indirectly by special virtual registers. The
machine’s internal memory keeps code of the interpreter, stacks and registers. There is no way of accessing
internal memory from the program level. The machine is able to execute multiple instances of programs.

As shown in Fig. 5.2, the virtual machine consists of a few universal and platform-dependent modules to
simplify implementation. The universal modules remain unchanged (if one neglects compilation of the source
code for a given processor). The platform-dependent modules interface the machine to particular hardware,
executing VM requests to low-level procedures. For instance, the module Time&Clock is associated with hard-
ware, as it employs time interrupts to handle TIME data. DATE_AND_TIME data require real-time clock (RTC) on
board. I/0 functions provide interface to analog and binary inputs and outputs, and to communication fieldbus
or network. The multitasking module is optional (not implemented yet), since it employs mechanisms of the
host operating system.
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Fia. 5.2. Universal and platform-dependent VM software modules

The universal part of the virtual machine has been written in ANSI C, so it can be directly applied to
different processors. As indicated in Sec. 4.1, the number of data types and the way in which the machine
instructions are executed are defined by the LCF configuration file. For example, one can limit the number
of elementary data types or define a subset of VMASM instruction to be used. A set of general specifications
has been developed in CPDev for handling processor components (interrupt system, RTC) and external in-
terfaces (I/O, communications). The specifications are in the form of prototypes of corresponding procedures
(names, types of inputs and returned outputs). The prototypes do not depend on processor and hardware
solutions.

The file with the prototypes is compiled together with the universal modules of the virtual machine. The
contents (bodies) of the specification procedures can be prepared by hardware designers and, as a binary file,
consolidated with the compiled universal modules. This gives the complete code of the virtual machine for given
platform. Till now, the machines for AVR, ARM, MCS-51 and PC platforms have been developed.

We stress that the contents of low-level procedures dependent on hardware solutions may be written by
designers themselves. This makes the CPDev package open in the hardware sense.

6. User defined function blocks. The CPDev environment allows the user to define function blocks
both at PC side and at controller side, i. e. as components of virtual machine. The PC side blocks are written
in ST, whereas the VM side ones are in C. However, the C blocks are still invoked in the main ST program
compiled and downloaded from PC. So, as far as invocations are concerned, there is no difference between ST
and C blocks.

6.1. ST blocks. User libraries are created in CPDev as typical projects which may include all kinds
of POU units of IEC standard, i. e. programs, functions and function blocks. Declarations VAR_INPUT and
VAR_OUTPUT determine input/output structure of functions and function blocks. There is no difference between
programming of a project directly for controller implementation and programming a library. However, the
library project is semi-compiled to VMASM mnemonics and not to binary form. So the last component of ST
compiler, code generator (Fig. 4.1), is not needed. The file with mnemonics becomes user-defined library and
is exported to Libraries folder.

Example of user function block FB_PULSE is shown in Fig. 6.1. The block generates single pulse at the
output Q after time T, since rising edge has appeared at the input IN. The program of the block may implement
FBD diagram of Fig. 6.1b, with standard blocks R_TRIG, RS and TON from CPDev IEC_61131 library (Fig. 2.1).
Corresponding ST code is shown in Fig. 6.1c, with FB_PULSE belonging to the project PROJ_MY_BLOCK (top of
Fig. 6.1c). XML file with PROJ_MY_BLOCKS source code should be saved for future extensions and modifications.
Semi-compilation of the project yields a file with VMASM mnemonics, called, for instance, My_Library. This
file must be exported to Libraries. If FB_PULSE is needed in a new project, both My_Library and IEC_61131
must be imported (the latter to support the former).

6.2. C-language blocks. Such blocks are needed at hardware level to handle I/O and communication
channels. Inputs and outputs are declared in ST, but the block body is implemented in C, at virtual machine
side (declarations are also repeated). Directive (*$HARDWARE_BODY_CALL. . .x*) informs CPDev compiler that
the block is a component of VM.

Table 6.1 presents initial parts of the code of GPS_GGA block which provides serial communication with a GPS
device according to NMEA protocol (GGA is a command in NMEA). Identifier ID: 0003 in the (*$HARDWARE. . .)
directive means that GPS_GGA is the third of C language blocks at VM side. Align:4 tells the compiler to locate
the variables at addresses divided by 4.
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Fia. 6.1. Function block FB_PULSE

TaBLE 6.1

Declaration of C language block for GPS interfacing

ST declaration

C declaration in VM

FUNCTION_BLOCK GPS_GGA
(*$HARDWARE_BODY_CALL
ID:0003; Align:4 *)

VAR_INPUT

PORT : BYTE; END_VAR
VAR_QUTPUT

UTC : TIME_OF_DAY;

LAT : LREAL;

LON : LREAL;

ALT : LREAL;

QUALITY : BYTE; END_VAR

END_FUNCTION_BLOCK

typedef struct
__declspec(align(4))
tagI0_GPS_GGA

{

/*inputs*/ VM_BYTE Port;
/*outputsx/
VM_TIME_QOF_DAY Utc;
VM_LREAL Lat;

VM_LREAL Lon;

VM_LREAL Alt;

VM_BYTE Quality;
} I0_GPS_GGA, *PIQ_GPS_GGA;

Structure of the body

switch(ID) {...
case 0x0003: {

PIO_GPS_GGA arg = (PIO_GPS_GGA)GET_PARAM_POINTER();...}...}

RS _B:
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R3;

The block’s PORT input specifies communication channel. The outputs determine UTC time, LATitude,
LONgitude and ALTitude of actual position, together with QUALITY of GPS reading. We stress that besides the
declarations there is no body in ST component of the block.

Structure tagI0O_GPS_GGA defined at VM side repeats ST declarations with alignment, specifies type name
and pointer type. Executions of C blocks are implemented by switch(ID) statement with bodies entered at
successive cases. So the body of GPS_GGA is entered at case 0x0003. Function GET_PARAM_POINTER() returns
pointer to the structure determined for the blocks instance in declaration VAR ... END_VAR in the main ST
program. The pointer is of general type void*, so must be converted to the type PI0O_GPS_GGA. The resulting
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pointer is saved in arg variable, sufficient for further processing. Other C language blocks are implemented in
the same way. Given such template, hardware designers can prepare C blocks themselves.

7. FBD and IL compiler. The CPDev environment has been extended recently with simple graphic
editor of FBD diagrams and compiler of IL textual language, mainly for teaching purposes. ST compiler
remains basic platform of the environment.

7.1. Programming in FBD. The graphic editor, called Blockers (Fig. 7.1), provides basic editing func-
tions, i. e. inserting blocks into diagram, connecting inputs and outputs of the blocks, selecting and removing
objects, zooming, etc. The blocks are chosen from CPDev libraries. Global input/output variables and constant
values are also placed in the diagram. Built-in syntax checker verifies correctness. Resulting FBD diagram is
saved in XML text file whose structure follows recommendations of PLCopen [13]. The XML file is then con-
verted into ST language by means of FBD2CPDev translator. Connections between the blocks and instances
of the blocks are represented by automatically created local variables of corresponding types. Convention of
variable names is based on types of blocks in the diagram and on execution order.

File  Edit Elements Blocks Options Help

NEH kR

L

START L _| =

AND I MOTOR |

.

9
STOP NOT

10 11
°
ALARM NOT IN oy Q N o Q PUME
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N < | 1l | [E3 ]

1111; 528

Fic. 7.1. FBD diagram of the START_STOP system

Figure 7.1 shows FBD diagram of the START_STOP system drawn using the Blockers editor. Numbers in the
upper left corners of the blocks indicate execution order. Notice that in case of the function blocks TON, TOF
the numbers may be used to distinguish instances. The variables placed in narrow rectangles on the left and
right are interpreted as global. Equivalent ST code generated by FBD2CPDev translator is shown in Table 7.1
(compare Fig. 3.2).

TABLE 7.1

ST program converted from FBD
PROGRAM START_STOP

TON10 : TON;
VAR_EXTERNAL TOF11 : TOF;
START : BOOL; END_VAR
STOP : BOOL;
ALARM : BOOL; var_AND6_0 := AND(var_0R7_0,var_NOT9_0,var_NOT8_0);
MOTOR : BOOL; var_0OR7_0 := OR(var_AND6_0,START);
PUMP : BOOL; var_NOT8_0 := NOT(ALARM);
END_VAR var_NOT9_0 := NOT(STOP);

TON10(IN := var_AND6_0, PT := t#5s);
VAR TOF11(IN := TON10.Q, PT := t#5s);
var_0R7_0 : BOOL; MOTOR := var_AND6_0;
var_NOT9_0 : BOOL; PUMP := TOF11.Q;
var_NOT8_0 : BOOL;
var_AND6_0 : BOOL; END_PROGRAM
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It is seen that:
e connections between the blocks are represented by local variables var_OR7_0 to var_AND6_0; name of
a variable indicates source block of that variable,
e two instances TON10, TOF11 are created, with names involving the block type and execution order.
Outputs of the instances, i. e. TON10.Q and TOF11.Q, are denoted in the standard way (compare Fig. 3.2).

7.2. Programming in IL. Since declaration parts of programs written in ST and IL are the same, and
outcome of each compilation is a file with VMASM code, the compiler of IL language has been developed by
extending the original ST compiler. The ST compiler generates the VMASM code from expression trees built
of tokens acquired from ST code. By analysing a sequence of IL instructions one can create similar trees and
employ them in succesive stages of compilation, in the same way as while compiling ST. This gives more efficient
VMASM code than direct translation of IL instructions into VMASM, since VMASM, unlike IL, does not rely
on the notion of accumulator. Accumulator is not needed in expression trees, typical for high-level languages.

TABLE 7.2
IL program for START_STOP project
PROGRAM PRG_START_STOP
LD START
VAR_EXTERNAL OR MOTOR

START : BOOL; ANDN STOP

STOP : BOOL; ANDN ALARM

ALARM : BOOL; ST MOTOR

MOTOR : BOOL;

PUMP : BOOL; CAL ON_DELAY(IN:=MOTOR, PT:=t#b5s)
END_VAR CAL OFF_DELAY(IN:=0N_DELAY.Q, PT:=t#5s)
VAR LD OFF_DELAY.Q

ON_DELAY : TON; ST PUMP

OFF_DELAY: TOF;

END_VAR END_PROGRAM

The PRG_START_STOP program of Fig 3.2 is rewritten in IL in Table 7.2. The instruction LD START loads
CR register (Current Result; accumulator in IEC) with the value of START. Next the CR is ORed with MOTOR, with
the result in CR. The following ANDN negates STOP, ANDs it with CR, always with the result in CR. Similarly for
another ANDN. ST MOTOR saves CR in the variable MOTOR. CAL instructions invoke function blocks.

8. CPDev applications. The CPDev package is currently applied for programming new SMC controller
from LUMEL, Zielona Gora, Poland. SMC operates as a central unit in small DCS systems involving dis-
tributed I/O modules, intelligent transmitters, PID controllers, etc. [12]. Development of another application in
forthcoming version of MINI-GUARD Ship Control & Positioning System from Praxis Automation Technology,
Leiden, The Netherlands, is in progress [8]. For lab and teaching applications PC-based softcontrollers can be
used.

8.1. SMC controller. The SMC shown in Fig. 8.1a is based on Atmel AVR 8-bit microcontroller.
Platform-dependent modules of virtual machine, i. e. interrupts, RTC and communication interfaces, have
been written by LUMEL engineers, and sent to the authors in binary format. Consolidation of universal and
LUMEL modules has resulted in a VM-SMC machine which, as SMC firmware, executes ST program compiled
and downloaded from PC. The controller is equipped with two serial ports, one (master) for distributed I/Os and
field devices, another (slave) for host PC or HMI panel. Modbus RTU protocol is applied (up to 230.4 kbaud).
Third Complex_blocks library to implement self-tuning PID control loops is provided.

8.2. MINI-GUARD controllers. The MINI-GUARD system consists of seven types of controllers
(Fig. 8.1b) involving NXP ARM7 16/32-bit microcontrollers. The controllers have application dedicated face-
plates. Virtual machine for Atmel ARMT has been sent to Praxis A.T., to be adapted for the NXP ARM?7. The
software to handle C language blocks described in Sec 6.2 has been developed especially for MINI-GUARD. The
controllers communicate over Ethernet, external devices are connected via universal serial interface or OPC.

8.3. Softcontrollers with NI and InTeCo boards. A PC equipped with I/O board and executing
a control program is called softcontroller. Two such boards can be used so far, namely NI-DAQ USB 6008
from National Instruments and RT-DAC/USB from InTeCo, Cracow, Poland (Fig. 8.1c,d). A common interface
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Fic. 8.1. Applications of CPDev package

CPDev.CPCom. ICommDev has been developed, with provision for other types. Softcontroller is configured in two
steps. First a board is selected from menu and I/O channels defined. Then global variables of the project are
linked to the channels. Binary channels become BOOLs and analog one REALs. Softcontrollers can be connected
into DCS system by means of Modbus TCP protocol.

9. Conclusions and future work. CPDev environment for programming small controllers in ST, FBD
and IL languages of IEC 61131-3 standard has been presented. The environment is considered open because
compiled code can be executed by different processors, low-level software components are provided by hardware
designers, and control programmers can create their own libraries with reusable program units. The compiler
produces universal executable code processed by runtime virtual machine operating as interpreter. The machine
is an ANSI C program composed of universal and platform-dependent modules. The machines for AVR, ARM,
MCS51 (core) and x86 processors have been developed so far. User function blocks can be programmed in ST
and C. The ST blocks are kept in CPDev libraries, whereas C blocks become components of virtual machine.
FBD diagram is translated to ST and then compiled. CPDev has been used for programming controllers in two
small DCS systems and for PC-based softcontroller with I/O boards.

Future work on CPDev will be motivated primarily by needs of the users. Next version will include
structured data types and global arrays, at least two-dimensional (local arrays are available now). Current
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simple FBD editor should be upgraded to more professional level. Depending on ST statements the compiled
code is longer or shorter, as in the expression x1 AND x2 vs. function AND(x1, x2). Templates indicating more
efficient solutions are important for the users. Virtual machine for FPGA platform with simple multitasking
mechanism is currently under development.

1]

[10]
[11]

[12]
[13]
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