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INTRODUCTION TO THE SPECIAL ISSUE: PARALLEL, DISTRIBUTED AND
NETWORK-BASED COMPUTING: AN APPLICATION PERSPECTIVE

Parallel, distributed and network-based computing is a continuosly evolving field, driven by progress in micro-
processor architecture and interconnection technology, as well as by the needs of computing- and data-intensive
applications in science and engineering, and, more recently, in business. This field is currently undergoing
a significant change, because of the development of multicore and manycore processors, GPUs, and FPGAs,
which are the new building blocks of parallel architectures. At the other end of the parallel and distributed
computing scenario, computational grids are far from being a mature infrastructure and are evolving toward
cloud computing, to get a higher level of virtualization.

The availability of programming models, algorithms and software tools capable of harnessing the processing
power offered by the new technologies is a key issue to make them usable by application developers. This special
issue provides a view of the efforts carried out in this direction.

e Barlas introduces an optimization approach for reducing data communication and load imbalance in
medical image matching on Grids.

e Binzenhofer et al. present a distributed and scalable algorithm to monitor a p2p network.

e Cesario and Talia discuss the use of data mining models and services on Grid systems for analysis of
large data repositories.

e Danelutto et al. describe a performance model for component-based applications with stream commu-
nication semantics running on Grids.

e Danese et al. describe a FPGA-based coprocessor to accelerate double precision floating point operations
in high-performance applications.

e Gross and Marquardt introduce a graphical editor providing abstractions from base technology for
user-friendly configuration of Ubiquitous Computing environments.

The papers collected here are selected extended versions of papers presented at PDP 2007, the Fifteenth
Euromicro Conference on Parallel, Distributed and Network-based Processing, held in Naples, Italy, in February
2007. The conference was organized by the Institute for High-Performance Computing and Networking (ICAR)
of the Ttalian National Research Council (CNR) in collaboration with the Second University of Naples, the
University of Naples “Parthenope” and the University of Naples “Federico I1.”

We thank the editors of Scalable Computing: Practice and Experience for providing us the opportunity of
publishing this issue, the authors for their contributions, and the referees for their precious help in selecting
good-quality papers.
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OPTIMIZING IMAGE CONTENT-BASED QUERY APPLICATIONS OVER HIGH
LATENCY COMMUNICATION MEDIA, USING SINGLE AND MULTIPLE PORT
COMMUNICATIONS

GERASSIMOS BARLAS*

Abstract. One of the earliest applications that explored the power and flexibility of the grid computing paradigm was medical
image matching. A typical characteristic of such applications is the large communication overheads due to the bulk of data that
have to be transferred to the compute nodes.

In this paper we study the problem of optimizing such applications under a broad model that incorporates not only commu-
nication overheads but also the existence of local data caches that could exist as a result of previous queries. We study the cases
of both 1- and N-port communication setups. Our analytical approach is not only complimented by a theorem that shows how to
arrange the sequence of operations in order to minimize the overall cost, but also yields closed-form solutions to the partitioning
problem.

For the case where large load imbalances (due to big differences in cache sizes) prevent the calculation of a closed-form solution,
we propose an algorithm for optimizing load redistribution.

The paper is concluded by a simulation study that evaluates the impact of our analytical approach. The simulation, which
assumes a homogeneous parallel platform for easy interpretation of the results, compares the characteristics of the 1- and N-port
setups.

Key words: parallel image registration, divisible load, high performance

1. Introduction. In the past five years there has been a big drive towards harnessing the power of parallel
and distributed systems to offer improved medical services in the domain of 2D and 3D modalities. Content-
based queries are at the core of these services, allowing physicians to achieve higher-accuracy diagnoses, conduct
epidemiological studies or even acquire better training among other things [1].

In [2], the authors present a high-level overview of the methodologies used for medical image matching. The
authors identify two broad types of approaches: image retrieval that utilizes similarity metrics to offer suitable
candidate images and image registration that tries to fit the observed data onto fixed or deformable models.
Finally, the authors suggest an integrated system architecture that could combine the advantages of the two
approaches. A comprehensive review and classification of current medical image handling systems is published
in [3].

Apart from the classification mentioned in [2], image registration techniques are also classified based on
whether:

e Image features are used (control-point based) or the whole (or an area of interest) image (global regis-
tration).

e Work is done at the spatial or frequency domain.

e Global (rigid) or local (non-rigid) geometrical transformations are used.

The key problem is determining the optimum geometrical transformation. A brute-force approach entails
huge computational requirements, leading researchers to either perform the search in several refinement steps
[4, 5], or switch to heuristic techniques such as genetic/evolutionary algorithms and simulated annealing [6, 7].
Domain specific techniques have been also suggested [8].

A domain which has been enjoying early success is mammography [9, 1, 10]. Many projects that seek to
harness the power of Grids [11] to offer advanced medical services have spawned over the last 8 years. A typical
example is the MammoGrid project. Amendolia et.al present an overview of its service architecture design in [1].
On the other side of the Atlantic, the National Digital Mammography Archive Grid is a similar initiative [10]. A
P2P system that seeks to address scalability issues that arise with the operation of typical client-server systems
has been also proposed in [12].

While the problem of image registration is inherently ‘embarrassingly’ parallel, the domain has seen little
work on performance optimization especially over heterogeneous platforms. In [5] the authors use wavelets to
perform global registration in increasing refinement steps that allows them to reduce the search space involved.
Zhou et al. also evaluate four parallelization techniques and derive their complexity in big-O notation by

*Department of Computer Science & Engineering, American University of Sharjah, P.O.B. 26666, Sharjah, UAE,
gbarlasQaus.edu
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implicitly assuming a homogeneous platform. However, they fail to take into account the communication
overheads involved and use their analysis to optimize the load partitioning of their strategies.

Ino et al. propose a uniform inter-image 2D partitioning for performing 2D /3D registration, i. e. estimate
the spatial location of a 3D volume from its projection on a 2D plane [13]. While Ino et al. discuss other
possible distributions, they do not use an appropriate model that would allow for optimization. Subsequently,
in [14] the authors compare very favourably a GPGPU approach with their parallel implementation on 2D /3D
registration.

De Falco et al. have employed a differential evolution mechanism for estimating the parameters of an affine
transformation for global registration [6]. The load distribution is performed on the population level, while at
regular intervals, individuals are exchanged between neighboring nodes on the torus architecture used.

One of the early systems is the one described in [9]. Montagnat et.al use an array of high run-time cost, pixel-
based, image retrieval algorithms to answer image similarity queries. As described in [15], the homogeneous
system that is used to run the queries employs equal size partitioning, e.g. the M images that need to be
compared against a new one, are split into k jobs of size % In [15] the authors develop empirical cost models
for each of the similarity metrics used to answer a content-based query. These are complemented by a study of
the scheduling and data replication costs that are incurred upon submitting a job to a Grid platform.

While the models shown in [15] capture much of the inner workings of the algorithms used, they are not the
most suitable for developing a strategy or criteria for optimizing the execution of content-based queries. Instead,
they focus on estimating the optimum number of jobs to spawn, given the high associated cost of task/resource
scheduling on Grids.

A particular problem in deriving an analytical partitioning solution is that upon performing a sequence
of queries, the system is in a state where local image caches can reduce the communication cost. This is of
course true as long as they refer to images of the same modality and type of content. To our knowledge, this
paper is the first attempt to treat this problem in an analytical fashion that incorporates all the aforementioned
system /problem parameters.

Our analytical approach belongs to the domain of Divisible Load Theory [16], which since its inception in
the late 80s, has been successfully employed in a multitude of problems [17]. In [17] the problem of optimally
partitioning and scheduling operations for two classes of problems identified as query processing and image
processing respectively, has been studied. The problem characterizations were based on the communication
characteristics and more specifically, the relation between the communication cost and the assigned load. This
paper fills a gap left by that work by proposing a model and an analytical solution to image-query processing
applications.

The contribution of our work is that for the first time a fully analytical model is employed to devise an
optimizing strategy for the total execution time, given communication costs and the state (and not just the
capabilities) of the parallel platform. Our simulation study shows that the benefits of the proposed framework
are significant, in both a single-shot and a series of queries scenarios. Also, by isolating the specifics of the
matching algorithms, our proposed solution is more adept to easy implementation and deployment, given the
few system parameters that need to be known/estimated.

The organization of the paper goes as follows: in section 2 the cost model used in our analysis is introduced
and explained within a broader context. Section 3.1 contains a study of the two-node scenario that cultivates to
Theorem 3.1 for the optimum sequence of operations. The closed-form solutions to the partitioning problem for
N nodes in 1-port configuration, is given in 3.2, while the N-port problem is solved in Section 4. An algorithm
for managing the cache size of the compute nodes towards minimizing the execution time, is given in section 5.
Finally, the simulation study in Section 6 highlights the benefits and drawbacks of our analytical approach and
brings-up interesting facts about the different communication setups.

2. Model Formulation. The architecture targeted in this paper consists of N heterogeneous computing
nodes that receive image data from a load originating node and return the results of the image matching process
to it. The network architecture is a single-level tree or a bus-connected one. Because this can be a repetitive
process, each node can build up a local image cache that can be reused for subsequent queries. Hence the load
originating node has to communicate to the computing nodes only what they are missing, either because of the
incorporation of new images or because of the departure of nodes from the computing pool.

Our treatment of the problem is based on the formulation of an affine model that describes the computation
and communication overheads associated with the query data distribution, the image matching process and the
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TABLE 2.1
Notations
| Symbol | Description | Units |
b is the constant overhead associated with load distribution. It consists of the | B
image to be matched in addition to any query specific data (e.g. matching
thresholds).
d is the constant overhead associated with result collection. Typically d < b. B
ex is the part of the load which is resident at node X, i. e. a local image cache. B
I is the typical size of an image used for image matching. B
L the load that is has to be communicated to the computing nodes B
Ix is inversely proportional to the speed of the link connecting X and its load | sec/B
originating node.
Px is inversely proportional to the speed of X. sec/B
part x is the part of the load L assigned to X, hence 0 < partx < 1. The total load | NA
assigned to X is partxL + ex

result collection phase. These models are closely related with the ones introduced in [17] although the semantics
for some of the constants used here are different. Given a node X that is connected to a load originating node
with a connection of (inverse) speed [x, we assume that the load distribution tg;s:r, the computation teomp and
the result collection t.,;; costs are given by:

tdistr = ZX (PanXL + b) (21)
tcomp = DPXx (pm’tXL + eX) (22)
teou = Ixd (2.3)

The symbols used above, along with all the remaining ones to be introduced later in our analysis, are summarized
in Table 2.1.
The total load to be processed by N nodes is

N—1
(part;L + €;) (2.4)
i=0
and for the communicated load parts we have:
N-1
Z part; =1 (2.5)
i=0

The contribution of the above components to the overall execution time of node X depends on how com-
munication and computation overlap. We can identify two cases:
e Block-type computation: no overlap between communication and computation. Node X can start
computing only after all data are delivered:

tx =lx (partxL+b+d) + px (partxL + ex) (2.6)

e Stream-type computation: node X can start using each local image cache immediately after receiving
the query data. Computation can run concurrently with the communication of the extra data partx L.
There are two cases depending on the relative speed between communication and computation:

— Communication speed is high enough to prevent X from going idle i. e.

px (partxL +ex —I) > lxpartx L (2.7)
where I is the size of the last image to be compared against the required one. Then:

tx =lx (b+d)+px (partXL—i—eX) (28)
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Fia. 3.1. The four possible configurations of processing by two nodes when 1-port communications are used. Result collection
is assumed to be separated by a constant delay D.

— Node X has to wait for the delivery of data through a slow link, i. e. condition (2.7) is invalid.
Then:

tx =lx (b+d)+lxpa7’th+pr (2.9)

The additional parameter that controls the overall cost when N nodes are used, is whether single-port or
N-port communications are employed, e.g. whether the load originating node can distribute L concurrently to
multiple nodes.

In the remaining sections we focus on block-type tasks under both 1- and N-port communication setups.
Our derivations are based on the assumptions of uniform communication media, i. e. I; = Vi. A comparison
between the two communication setups is performed in section 6.

It should be noted that the static model proposed in this paper, while not apparently suitable for a grid
computing scenario, in which computation and communication costs change over time, it can form the basis
for an adaptive scheduler that modifies load distribution over time given cost estimates. This goes beyond the
scope of this paper and should be the topic of further research.

3. The 1-port Communication Case.

3.1. The two-node scenario. If we assume that there is a load originating node that distributes the load
to two nodes, then if single port communications and a single installment [16] are used, the possible sequences
of communication and computation operations are shown in Fig. 3.1, as imposed by the need to have no gaps
between stages (otherwise, execution time is not minimized). For reasons that will become obvious in the rest
of the section, we also assume that the two result collection phases are separated by a constant delay D.

The total execution time for configuration #1 is given by:

t1 =l (partoL +b) + po (partoL + eg) + ld (3.1)
where
po(partoL + eg) = l(part1L + b) + p1(partiL +e1)+1 d+ D (3.2)

Eq. (3.2) coupled with the normalization equation party + part; = 1 can provide a solution for party and ¢1. A
similar procedure can produce the times for the three remaining configurations. Thus we can form the pairwise
differences of running times:

I (exp1 — eopo) + (dl — bl + D) (p1 — po)

t3 —ty = 3.3
o po+p1+1 (8:3)
l — -b — —dl—D
byt = (e1p1 — eopo — b (p1 — po) ) (3.4)
po+p1+1
tgftl _ (dl+D>(p17p0*l) (35)

po+p1+1
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l(e1p1 —eopo —b(p1 —po) +d 1+ D)

t1 —ta = 3.6
e po+p1+1 (3:6)
[ (e1pr — eopo — (b +d) (p1 — D(p1 —
bty — (exp1 — eopo — (b+d) (pr —po)) D (p1 —po) (3.7)
po+p1+1 po+p1+1
dl+ D — l
ty —ty = _( + ) (pl po + ) (38)

po+p1+1

Clearly, the problem is too complex to have a single solution even for the simplest case of two nodes. We
can however isolate a number of useful special cases that make a closed form solution to the N-node problem
tractable:

e No image caches (eg = ¢; = 0). If we assume than py < p; and given that b > d, we have:

(dl — bl + D) (p1 — po)

ty — by = 3.9
P po+p1+1 (39)
[(—b(py —po) —dl—D
by 1y = L0 1= PO) ) <o (3.10)
po+p1+1
d 1+ D) (py —po—1
by — = AL D)1 —po = D) (3.11)

po +p1+1

Ifdl—bl+D < 0= D <1I(b—d), then Eq. (3.11) dictates that either configuration #3 or configuration
#1 are optimum based on whether p; — pg — [ is negative or not. If we assume that the differences in
execution speed are small relative to the communication cost [ (i. e. p; —pp < [) then configuration #3
is the optimum one.

The execution time is given by

') =1 (part" L +b) + popart" L + D + 21d (3.12)
where:
(ne) p1L+l(L—d+b)—D
art = 3.13
parto L (po+p1+1) ( )
e Homogeneous system (pyp = p1 = p). If we assume that eg > e; then:
pl(e1—eo)
tg —ty=—— <0 3.14
g 2p+1  — ( )
I(dl+ D)
ts —t1 = 1
s 2p+1 (3.15)
pl(e1 —eo)
t —tg=————2<0 3.16
1 —t2 il S (3.16)

which again translates to having configuration #3 as the optimum one. It should be noted that the
optimum order dictates that load is sent first to the node with the biggest cache, which is a counter-
intuitive result! The execution time is given by

ghome) (partgh"m"’L + b) +p (partg’“’m")L + eo) +D+2ld (3.17)

where:

t(homo) o p(L+€1 760)+Z(L*d+b) — D
0 =

L(2p+1) (3.18)

par
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F1a. 3.2. (a) A possible ordering of load distribution and result collection for N nodes. (b) Improving the execution time by
ordering the operations of P; and P;+1 in non-decreasing order of their speed (assuming p; < p;1+1). Note: the phase durations
are disproportionate to actual timings.

The delay D that was introduced above allows us to extend our analytical treatment from 2 nodes to N. D
is supposed to model the time taken by the result collection operations of other nodes. Hence, D is a multiple
of d -1 with a maximum value of (N —2)d - . For the case of no-caches, as long as D <l (b—d) = N < & +1
and the differences in computation speed are smaller than the communication speed, configuration #3 is the
optimum one as stated by the following theorem. Given the 2-3 orders of magnitude difference expected between
b and d, the range of N that the theorem applies is quite broad.

THEOREM 3.1. The optimum load distribution and result collection order for an image query operation
performed by N nodes is given by:

e No image caches: distributing the load and collecting the results in non-increasing order of the nodes’
speed (i. e. in non-decreasing order of the p; parameters). The sufficient but not necessary conditions
for this to be true is N < % +1 and |p; — pj| <1 for any pair of nodes i, j.

e Homogeneous system: distributing the load and collecting the results in non-increasing order of the
local image cache sizes.

Proof. We will prove the above theorem for the no-caches case via contradiction. The proof for the
homogeneous case is identical. Let’s assume that the optimum order is similar to the one shown in Fig. 3.2(a).
Without loss of generality we assume that the distribution order is Py, P, ... Pnv—1

For any two nodes P; and P;;; that do not satisfy the order proposed by Theorem 3.1, we can rear-
range the distribution and collection phases so as the part of the load that is collectively assigned to them
(L (part; + part;41)) is processed in a shorter time frame (as long as N < 2 + 1), while occupying in an
identical fashion the communication medium (see Fig. 3.2(b)). Thus, the operation of the other nodes is not
influenced. At the same time the shorter execution time would allow additional load to be given to nodes P; and
P, 11 resulting in a shorter total execution time. The outcome is a contradiction to having the original ordering
being an optimum one. The only ordering that cannot be improved upon by the procedure used in this proof,
is the one proposed by Theorem 3.1. d

The above discussion settles the ordering problem, allowing us to generate a closed-form solution to the
partitioning problem for N nodes.

3.2. Closed-form solution for N nodes.

3.2.1. No image caches. The following relation holds between every pair of nodes which are consecutive
in the distribution and collection phases (without loss of generality we will again assume that the nodes’ order
is Po,Pl,...,PN_l)i

pipart; L + 1d =1 (part;y1L + b) + piy1parti1 L =
Pi 1(d—1)

partic = partipiﬂ +1 L(piyr+1) (3.19)
This can be extended to any pair of nodes P; and P;, where i > j:
i—1 o I(d—b) i B i—1 .
part; = part; S Yo i t—7 kz;_l (pr +1) gk pa—— (3.20)
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Equipped with Eq. (3.20), we can associate each part; with party and use the normalization equation:

N—-1
> part; =1 (3.21)
1=0

to compute a closed form solution for party:

i—1

l(d b) m=k PWL+1+1
1- Z Zk 1 (pe+0)

party = (3.22)
1+ Z Hk =0 Pk+1 +l
Equations (3.22) and (3.20) solve the partitioning problem. The total execution time is:
t1) = 1 (partoL + b) + popartoL + N 1 d (3.23)

The above constitute a closed form solution that can be computed in time Y=~ + 3(N — 1) + Nig(N) =

O (N?), where Nlg(N) is the node-sorting cost.

3.2.2. Homogeneous System. Following a similar procedure to the previous section, it can be shown
that:

p(part;L +e;) +1d=1(partis1L +b) + p (part;y1 L + eiy1) =
p  l(d=b)+p(ei—eit1)

art;+1 = part; + 3.24
This can be extended to any pair of nodes P; and P;, where i > j:
i—j -1 i—k—1
P L(d—b)+plex —ext+1) ( P )
art; = part; | —— + 3.25
ports = pors (557 2T L+ ey, (32
Again, Eq. (3.25), and the normalization equation can produce a closed form solution for party:
d—b |4 LN(b=d) IS S L) ( )i_k
- — L Pl
parto = I + Lp N-1 L\ (3.26)
p+i=»(3) p”*”(m)
The total execution time can be then computed as:
tomo) — | (partyL +b) + p (partoL + eg) + N 1 d (3.27)

As with the previous case, the solution requires an O (N?) computational cost.

A special case needs to be considered if L = 0 as the above equations cannot be applied. The minimum
execution can be achieved only if the local caches are appropriately sized to accommodate this. Similarly to
Eq. (3.25) for two nodes P; and P;, where ¢ > j we would have:

pie; + (5 —i)ld = (j — )b +pje; =
i j —i)l(d—b
e; = e (G —9)Ud—b) (3.28)
bpj bj
If the caches do not satisfy condition (3.28), the load must be reassigned/transferred between nodes. In
this paper we assume that this is performed by the load originating node and not by a direct exchange between
the compute nodes. Section 5 elaborates more on how we can treat this case.
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4. The N-port Communication Case.

4.1. Closed-form solution for N nodes. The N-port communication case is much simpler than the
1-port one since no explicit node ordering is necessary. It can be easily shown in this case that the optimum
load partitioning has to produce identical running times on all the participating compute nodes, i. e. all nodes
must start receiving data and finish delivering results at the same instant. Since all nodes must have the same
starting and ending times as shown in Fig.4.1, for any two nodes i and j, the following has to hold:

I (part;L + b) + p; (part;L + ¢;) + 1d =

I (part;L +b) + p;i (part;L + e;) + ld =

part;L (pi + 1) + pie; = part; L (p; + 1) + pje; =

pj+1  pjej —piei
_l’_

pi+l  L(pi+1)

part; = part; (4.1)

The normalization equation (3.21) can then be used to produce a closed-form solution for party, and subse-
quently all part;:

N-1
Z part; =1 =
i=0

N*lp +1 N71p€ pie
0 0C0 — Pitq
art g Jrg —_— =1=
g "Tpitl & Lpi+l)

N—1 piei—poeo
T+ 5500

party = N1 potl (4.2)
Ym0 pitl
The total execution time is given by:
(Nport) . '
tiotar =L (partoL +b) + pi (parto L + €;) + 1d (4.3)

4.2. Homogeneous System Solution. For a homogeneous system (Vp; = p), the above equations are
simplified to the following;:

plej —ei)
4.1) = part; = part; + ~2 "V 4.4
(4.1) = par pam+L(p+l) (4.4)
pN—le_ .
4.2) = parto= N"*[1+ L U 4.5
(4.2) = parto <+Li_1 p+z> (45)

which translates to having differences in the local caches as the single cause of any imbalances in the split of
the new load L. Otherwise the load should be evenly split.



Optimizing Image Content-Based Query 229

5. Image Cache Management. Eq. (3.20), (3.25), (4.1) and (4.4) allow for negative values for part;s.
Such an event indicates that the corresponding node should not participate in the calculation, either because
it is too slow or because the local cache size is too large for a node to process and keep up with the other
nodes. In the latter case it is obvious that a node should use only a part of its cache. The load surplus should
be transferred to other nodes. This situation can arise when following the initial distribution of load to the
nodes, subsequent queries are no longer accompanied by big chunks of data, making the initial distribution a
suboptimal one.

In this section we address this problem by proposing a algorithm for estimating the proper cache size that
should be used, along with the corresponding load L that should be communicated to other nodes.

The algorithm presented below, is based on the assumption that the intersection of all caches is . The key
point of the algorithm is a re-assignment of load from the nodes with an over-full cache (identified as set S in line
8) to the nodes with little or no cache. This process reduces the total execution time as long as communication
is faster than computation.

This algorithm has been also enhanced from the version presented in [18] to address the case when L = 0,
i. e. when processing is based entirely on the nodes’ local data. In that case, L can be initialized to a small
value, e.g. L =1 (lines 2-5), which would be subsequently subtracted once a redistribution is dimmed necessary
(lines 32-36).

Set S does not change after line 8 as the subsequent increase in L due to a load shift (line 31) does not
permit any other node from having a negative assignment. The loop of lines 13-46 is executed for as long as
there is a negative part;, or a load shift is necessary for balancing the node workload. In line 17 the size of the
cache that should be used in a node with a negative assignment is estimated. Because the load is reassigned
collectively in line 31, the cache size of each node in S can be under-estimated (by “bloating" the load L that
should be communicated). This defeats the optimization procedure by forcing the communication of data that
are already present at the nodes, and in order to guard against this possibility, lines 21-28 re-adjust any previous
overestimation for nodes that subsequently got to have positive part;. Lines 12 and 41-44 serve as sentinels
against cases where the outer while loop does not converge. In that case, fixing the part assigned to the last node
in the distribution sequence (smallest e) to 0, allows the convergence of the outer loop. A value for threshold
THRES that was found to yield good results in our experiments is 20. Threshold values that depend on the
number of compute nodes did not provide any visible difference.

Lines 32-36 cancel the addition of 1 load unit that is done when L = 0. Finally, if L remains 0 after load
redistribution is examined, cache sizes satisfy condition (3.28) for a homogeneous system and nothing more
needs to be done (lines 37-40).

A key point that should be made here is that Algorithm 1 produces a sub-optimum solution when a series
of query operations are to be scheduled. Designing an optimum algorithm for this scenario is beyond the scope
of this paper.

6. Simulation Study. Single-port communication is surely not a contemporary technology limitation. It
is rather a design feature whereas the load originating node dedicates its attention to a single node at a time,
with the objective of minimizing the message exchange cost between itself and the corresponding node. In
this section we explore the impact of the two alternative design choices with the assistance of our analytical
framework. Also, we evaluate the performance achieved by the use of Algorithm 1 for managing the image
caches through a battery of image queries.

We base the bulk of our simulations on the assumption of a homogeneous platform. While the require-
ment of a homogeneous system may seem unrealistic, it can be typical of many large scale installations in big
organizations.

The key points of our simulation scenario which consists of a series of image query operations, are the
following;:

e The image DB! consists originally of 10000 images of size 1MB each. This is a small number relevant
to the yearly “production" of mammograms generated at a national level. Additionally, the image size
matches real data only in the order of magnitude as high resolution mammograms can be much larger
(e.g. 8MB).

e Each new image that is matched against the DB is also 1MB in size, hence b = 1M B.

I'We use the term DB to loosely refer to the collection of available, tagged, medical images, and not to an actual DBMS system.
Storage services are offered in MammoGrid [1] by MySQL and in NDMA by IBM’s DB2 [10]
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Algorithm 1 Estimating the local image cache sizes that yield the minimum execution time for the next query
operation

1:
2:
3:

4
5:
6

45:
46:

load_shift « 0

if L =0 then
added <+ TRUE
L+ 1

end if

: In the case of 1-port communication and a homogeneous system, sort the nodes in descending order of their

e; parameters.

Calculate the load part for each node P; via Eq. (3.26), (3.25) or (4.2), (4.1)
Let S be the set of nodes with part; < 0

if S # () then

Copy the cache sizes of all nodes in temporary variables !

i

: end if
s iter <0
: while S # 0 OR load _shift # 0 OR added = TRUE do

load _shift + 0
for each P; € S do
if part; < 0 then
aur < part; L + e;
load_shift < load_shift+ e; — aux
ej + aux
else
aur < part; L + e;
if aux > egori‘q) then
dif f + 65-0”9) —e;
else
dif f < aux — e;
end if
load _shift < load _shift —dif f
ej—ej+diff
end if
end for
L < L+ load_shift
if added = TRUFE then
added < FALSFE
L+~ L-1
load_shift + 1
end if
if L =0 then
Set for all nodes P;, part; < 0
BREAK
end if
iter < iter +1
if iter > THRES then
Fix the part; assigned to the node with the smallest e to 0
end if
Calculate the load part for each P;, other than the nodes fixed in step 43.
end while
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e Every 100 queries, 100 appropriately tagged images are incorporated in the image DB, hence the resident
load increases gradually.

e The data collected from each node consist of the best 10 matches, along with the corresponding image
IDs and objective function values, assumed in total to be of size d = 10 (2 + 4) = 60B.

e The tiobench utility [19] was used to estimate realistic values for the data rates between the load origi-
nating nodes and the compute nodes. A variable number of threads were used to represent simultaneous
access from multiple clients. The results which were collected on a Linux laptop machine, equipped
with a ATA 100 100GB hard disk spinning at 4200rpm, formatted using the ReiserFS filesystem, are
shown in Fig. 6.1. The effect of the disk cache was minimized by using a 3GB file size. These speeds
were used in the 1- and N-port simulations that are reported in this paper. For 1-port communications
in particular, [ was set equal to 0.00997sec/Mb, which translates to 0.0837sec/image.

The first question we would like to answer, is what would be the improvement of using our analytical
approach over an Equal load Distribution (ED) strategy that is traditionally used in homogeneous systems [15],
in a single-shot scenario, i. e. when only one query operation is performed. For this purpose, we tested both
1- and N-port approaches, where the computing speed of all nodes was set to be one of the following values
{0.08,0.17,0.33,0.67,1.34} sec/image, roughly corresponding to 1x, 2x, 4x, 8x and 16x the time required to
communicate a single image when 1-port communication is used. In the remainder of this section we will refer
to these processing speeds as 11, 21, 41 , 8] and 16l respectively. Such a selection of processing speeds/costs
matches closely the running times reported in [15] for real-life tests and they are supposed to help us probe the
effects of different computation/communication ratios and the use of different image registration algorithms.

The results for the 1-port case are shown in Figure 6.2 in the form of the improvement achieved over the
ED approach. In all the comparative results reported in this section, we use the execution time provided by
the 1-port non-uniform proposed distribution strategy (as given by Eq.(3.27) and denoted below as tsp) as the
baseline. The improvement is defined as:

tgp —tsp

— (6.1)

which is basically the percent overhead that ED (tgp) is causing over the proposed analytical solution. All
initial caches were set equal to 0 which is a typical initialization scenario. It should be noted that all the results
reported in Fig. 6.2 and the remaining graphs of this section, correspond to cases where all available nodes can
be utilized, hence the lack of data points for big values of N when p is relatively small. This qualification was
imposed to avoid skewed results.

As can be observed in Fig. 6.2, the improvement is even higher when the computational cost is proportionally
higher than the communication, topping around 28% for the p = 161 case. In the majority of the tested cases,
the gain is above 10%.
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Comparing the 1-port and N-port cases is less straightforward as there is a question of whether the N-port
communication setup is accomplished by sharing the same medium - as is usually the case in non-dedicated
platforms such as Networks of Workstations (NoW) -, or the load originating node is having a dedicated link
for each worker. In the following paragraphs we assume that the former setup is applicable.

The improvement offered (!) by the 1-port over the N-port case is shown in Figure 6.3, where improvement,
is now computed by Eq. (6.1) by replacing tgp with the execution time of the N-port arrangement typ. It
comes as a surprise that the N-port arrangement can be such a poor performer! The reasons can be summarized
as follows: (a) sharing the communication medium causes the computation phase to be overly delayed while
data are being downloaded and (b) the cost of switching is taking a heavy toll on the available bandwidth, as
observed in Figure 6.1 if one compares the measured against the ideal curves. In summary, the 1-port setup
allows -some of- the compute nodes to start processing the load a lot sooner. Of course this result has to be
seen in the proper contezt, i. e. we have block-type tasks and the nodes have no image cache. As it will be
shown below, this picture is far from the truth for a sequence of query operations.
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In order to test what would be the situation if a sequence of queries were performed, we simulated the
successive execution of 1000 queries. The corresponding improvement, for the 1-port scheme is shown in Fig. 6.4
(a). As can be observed, the ED strategy is not worst in every case due to the cost of cache redistribution that
Algorithm 1 is causing. Actually for fast computation (p = [) and a relatively small number of nodes, ED is
faster. For the majority of the other cases, the gains seems insignificant (in the order of 1%) as the constant
shuffling of the caches slows down the whole process. These effects can be minimized if queries are run in batches
as can be clearly seen in Fig.6.4 (b) and (c), for moderate (10 queries) and extreme batch sizes (100 queries)
respectively. For batch processing the same analytical models can be applied, if we multiply the constants b,
d and p by the batch size. Batching requests together does not come close to optimizing a sequence of them
as performed in [20], but as it is shown in Fig.6.4, boosts performance substantially. Under such conditions
the proposed strategy is consistently better than the ED one, although the actual gains depend on the ratio
between computation and communication costs. If the former are dominant (e.g. as in the p = 16l case), any
benefits made by effectively scheduling the communication operations is marginalized.

Fig. 6.4 does not convey the complete picture though, as the gains seem insignificant. However, when the
running times are as high as shown in Fig. 6.5 even small gains translate to big savings in time.

For the N-port case, batching requests produces small absolute savings as shown at the bottom of Fig. 6.5
(b), (c). While the gain barely reaches 1 hour overall, the real benefit comes from increased scalability, i. e. the
ability to use bigger sets of processors for the task. For example, for p = [ batches of 100 queries can run on
100 nodes, while individually queries are limited to 13 nodes.

The picture is completely reversed for the N-port case when multiple queries are considered, as can be
observed in Fig. 6.6. Even with the reduced bandwidth available to each compute node and the deterioration
of the total available bandwidth, the N-port approach is a hands-down winner. This is especially true when
the number of nodes grows beyond a limit, making this the most scalable strategy, despite the bandwidth loss
identified in Fig. 6.1. Additionally, batching queries together benefits the N-port approach even more than the
1-port, non-uniform one.

7. Conclusion. In this paper we present an analytical solution to the problem of optimizing content-
based image query processing over a parallel platform under communication constraints. We solve the problem
analytically for both the single and N-port cases and we also prove an important theorem for the sequence of
operations that minimize the execution time. Our analytical solution is accompanied by an algorithm for the
cache management of the nodes of a system, either 1-port homogeneous or N-port heterogeneous. Our closed-
form solution for the 1-port heterogeneous case with no image caches, can be employed when a single-shot
operation is preferred.

The extensive simulations that were conducted were able to reveal the following design principles, as far as
homogeneous platforms are concerned:

o If a single-shot execution is desired, a 1-port non uniform distribution as highlighted in Section 3.2.2 is
the best one.

e For a sequence of operations, the N-port strategy is the best performer, especially if the computational
cost is proportionally higher, or the number of nodes is high.

Future research directions could include:

e Using the proposed methodology as a part of a Grid middleware scheduler. It is possible that the high
overhead of typical grid schedulers compromises the benefits shown in this paper, requiring further
optimizations.

e Devising a solution for a heterogeneous system with local cache.

e Examine the case of multiple image sources instead of a single load originating node. Although current
generation systems rely mostly on a single image repository, next generation ones are moving away from
this paradigm [1].
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DESIGN AND ANALYSIS OF A SCALABLE ALGORITHM TO MONITOR
CHORD-BASED P2P SYSTEMS AT RUNTIME*

ANDREAS BINZENHOFER] GERALD KUNZMANN${ AND ROBERT HENJEST

Abstract. Peer-to-peer (p2p) systems are a highly decentralized, fault tolerant, and cost effective alternative to the classic
client-server architecture. Yet companies hesitate to use p2p algorithms to build new applications. Due to the decentralized nature
of such a p2p system the carrier does not know anything about the current size, performance, and stability of its application. In
this paper we present an entirely distributed and scalable algorithm to monitor a running p2p network. The snapshot of the system
enables a telecommunication carrier to gather information about the current performance parameters of the running system as well
as to react to discovered errors.

1. Introduction. In recent years peer-to-peer (p2p) algorithms have widely been used throughout the
Internet. So far, the success of the p2p paradigm was mainly driven by file sharing applications. However,
despite their reputation p2p mechanisms offer the solution to many problems faced by telecommunication
carriers today [8]. Compared to the classic client-server architecture they are decentralized, fault tolerant, and
cost, effective alternatives. Those systems are highly scalable, do not suffer from a single point of failure, and
require less administration overhead than existing solutions. In fact, there are more and more successful p2p
based applications like Skype [14], a distributed VoIP solution, Oceanstore [4], a global persistent data store,
and even p2p-based network management [10].

One of the main reasons why telecommunication carriers are still hesitant to build p2p applications is the
lack of control a provider has over the running system. At first, the system appears as a black box to its operator.
The carrier does not know anything about the current size, performance, and stability of its application. The
decentralized nature of such a system makes it hard to find a scalable way to gather information about the
running system at a central unit. Operators, however, do not want to lose control over their systems. They want
to know what their systems look like right now and where problems occur at the moment. The first problems
already occur when testing and debugging a distributed application. Finding implementation errors in a highly
distributed system is a very complex and time consuming process [9]. A provider also needs to know whether
his newly deployed application can truly handle the task it was designed for.

The latest generation of p2p algorithms is based on distributed hash tables (DHTs). The algorithm that
currently attracts the most attention is Chord, which uses a ring topology to realize the underlying DHT [12].
DHTs are theoretically understood in depth and proved to be a scalable and robust basis for distributed
applications [7]. However, the problem of monitoring such a system from a central location is far from being
solved. [11] gives a good overview of different approaches to monitor and debug distributed systems in general.
In the field of p2p, the process of measuring and monitoring a running system was so far limited to unstructured
overlays. [13], e.g., introduces a crawling-based approach to query Gnutella-like networks.

In this paper, however, we exploit the special features of structured p2p overlays and present an entirely
novel and scalable approach to create a snapshot of a running Chord-based network. Using our algorithm a
provider can either monitor the entire system or just survey a specific part of the system. This way, he is able
to react to errors more quickly and can verify if the taken countermeasures are successful. On the basis of the
gathered information it is, e.g., possible to take appropriate action to relief a hotspot or to pinpoint the cause
of a loss of the overlay ring structure. The overhead involved in creating the snapshot is evenly distributed
to the participating peers so that each peer only has to contribute a negligible amount of bandwidth. Most
importantly, the snapshot algorithm is very easy to use for a provider. It only takes one parameter to adjust
the trade off between duration of the snapshot and bandwidth needed at the central unit which collects the
measurements.

The remainder of this paper is structured as follows. Section 2 gives a brief overview of Chord with a focus
on aspects relevant to this paper. The snapshot algorithm as well as some areas of application are described in
Section 3. The functionality of the algorithm is verified analytically in Section 4 and by simulation in Section 5.
Section 6 concludes this paper.
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2. Chord Basics. This section gives a brief overview of Chord with a focus on aspects relevant to this
paper. A more detailed description can be found in [12]. The main purpose of p2p networks is to store data
in a decentralized overlay network. Participating peers will then be able to retrieve this data using some sort
of search algorithm. The Chord algorithm solves this problem by arranging the participating peers on a ring
topology. The position id, of a peer z on this overlay ring is determined by an m-bit identifier generated by
a hash function such as SHA-1 or MD5. In a Chord ring each peer knows at least the id of its immediate
successor in a clockwise direction on the ring. This way, a peer looking up another peer or a resource is able to
pass the query around the circle using its successor pointers. Figure 2.1 illustrates a simple search of peer z for
another peer y using only the immediate successor. The search has to be forwarded half-way around the ring,.
Obviously, the average search would require 5 overlay hops, where n is the current size of the Chord ring. To
speed up searches a peer z in a Chord ring also maintains pointers to other peers, which are used as shortcuts
through the ring. Those pointers are called fingers, whereby the i-th finger in a peer’s finger table contains the
identity of the first peer that succeeds z’s own id by at least 2! on the Chord ring. That is, peer z with hash
value id, has its fingers pointing to the first peers that succeed (idz + 2“1) mod 2™ for i = 1 to m, where 2™
is the size of the identifier space.

Figure 2.2 shows fingers f; to f4 for peer z. Using this finger pointers, the same search does only take two
overlay hops. For the first hop peer z uses its finger f;. Peer y can then directly be reached using the successor
of f4 as indicated by the small arrow. This way, a search only requires %log2 (n) overlay hops on average. A
detailed mathematical analysis of the search delay in Chord rings can be found in [3]. The snapshot algorithm
presented in Section 3 makes use of the finger tables of the peers.

3. Design of the Snapshot Algorithm. In this section we introduce a scalable and distributed algorithm
to create a snapshot of a running Chord system. The algorithm is based on a very simple two step approach.
In step one, the overlay is recursively divided into subparts of a predefined size. In step two, the desired
measurement is done for each of these subparts and sent back to a central collecting point (CP). In the
following, we describe both steps in detail.

3.1. Step 1: Divide Overlay into Subparts. The algorithm snapshot(Rs, Re, Smin, CP) divides a
specific region of the overlay into subparts. This function is called at an arbitrary peer p with id,. The peer then
tries to divide the region from R, = id, to R, into contiguous subparts using its fingers. The exact procedure
is illustrated in Figure 3.1. In this example peer p has four fingers f; to fy. It sends a request to the finger
closest to R, within [Rs; R.]. At first, finger f, is disregarded since it does not fall into the region between R
and R, (cf. a). This makes f3 the closest finger to R, in our example. If this finger does not respond to the
request, as illustrated by the bolt (cf. b), it is removed from the peer’s finger list and the peer tries to contact
the next closest finger f (cf. c). If this finger acknowledges the request, peer p recursively tries to divide the
region from R, = id, to R. = idg, — 1 into contiguous subparts. Finger f, partitions the region from R, = idy,
to R, accordingly.

As soon as a peer does not know any more fingers in the region between the current Ry and the current
R., the recursion is stopped. The peer changes into step two of the algorithm and starts a measurement of this
specific region. In this context, the parameter S,,;, can be used to determine the minimum size of the regions,
which will be measured in step two. Taking into account S,,.;,, a peer will already start the measurement if it
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Fia. 3.1. Visualization of the algorithm.

does not know any more fingers in the region between the current Ry + Sy,;n, and the current R.. In this case
finger f; would be disregarded, as illustrated by the dotted line (cf. d in Figure 3.1), since it points into the
minimum measurement region. Parameter S,,;,, is designed to adjust the trade off between the duration of the
snapshot and the bandwidth needed at the collecting point. The larger the regions in step two, the longer the
measurement will take. The smaller the regions, the more results are sent back to the CP.

Algorithm 2
The snapshot algorithm (first call Ry = id))

SnapShOt(Rsa Rea Smina CP)
send acknowledgment to the sender of the request
idfm = maz({idy|id; € fingerlist A ids < R.})
while id¢,, > Ry + Spin do
send snapshot(id ., Re, Smin, CP) request to peer idspy,
if acknowledgment from idy,, then
call snapshot(idy, id¢m — 1, Smin, CP) at local peer
return //exit the function
else
remove idy,, from fingerlist
idfm = maz({idy|idy € fingerlist A idy < R.})
end if
end while

S = % / /explanation see step two

S

call countingtoken(idy, Re, Smin, CP, 0) at local peer

min

A detailed technical description of the procedure is given in Algorithm 2. Peer p will contact the closest
finger to R, until it does not know any more fingers in between Rs 4+ Sy and R.. If so, it changes into step
two and starts a measurement of this region calling the function countingtoken(id,, Re, Smin, CP, result) at
the local peer.

3.2. Step 2: Measure a Specific Subpart. The basic idea behind the measurement of a specific subpart
from Rs to R, is very simple. The first peer creates a token, adds its local statistics, and passes the token to its
immediate successor. The successor proceeds recursively until the first peer with an id > R, is reached. This
peer sends the token back to the collecting point, whose IP is given in the parameter CP.

Ideally, each of the regions measured in step two would be of size S,,.;,, as specified by the user. The problem,
however, is that the region from R, to R, is slightly larger than S,,;, according to step one of the algorithm.
In fact, if the responsible peer did not know enough fingers, the region might even be significantly larger than
Smin- The solution to this problem is to introduce checkpoints with a distance of Sy, in the corresponding
region. Results are sent to the C'P every time the token passes a checkpoint instead of sending only one answer
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at the end of the region. This is illustrated in the upper part of Figure 3.2. The counting token is started at R;.
The first peer behind each checkpoint sends a result back to the C'P as illustrated by the large solid arrows.
The final result is still sent by the first peer with id > R..

A drawback of this solution is that the checkpoints might not be equally distributed in the region. In
particular, the last two checkpoints might be very close to each other. We therefore recalculate the positions of
the checkpoints according to the following equation:

g _ Re—R,

man W
Smin
The new checkpoints can be seen in the lower part of Figure 3.2. The number of checkpoints remains the same,
while their positions are moved in such a way, that the results are now sent at equal distance.

As can be seen at the end of Algorithm 2, the recalculation of S,,;, is already done in the first step,
just before the counting token is started. A detailed description of the counting token mechanism is given in
Algorithm 3. If a peer p receives a counting token it makes sure that its identifier is still within the measured
region, i.e. Ry <id, < R. . If not, it sends a result back to the C'P and stops the token. Otherwise it adds
its local measurement to the token and tries to pass the token to its immediate successor. If it is the first peer
behind one of the checkpoints, it sends an intermediate result back to the C'P and resets the token.

As mentioned above the parameter S,,;, roughly determines the minimum size of the regions measured in
step two. If S;4 is the total size of the identifier space, there will be N, counting tokens arriving at the CP,

whereas:
Sid Sid
2. |—— | >N,.> .
[szn—‘ o - ’7577”71—‘

A more detailed analysis of the snapshot algorithm is given in Section 4 as well as in [1].

3.3. Collect Statistics. Generally speaking, there are two different kinds of statistics, which can be
collected using the counting tokens. Either a simple mean value or a more detailed histogram. In the first case
the counting token memorizes two variables, V, for the accumulated value and V,, for the number of values. Each
peer receiving the counting token adds its measured value to V, and increases V,, by one. The sample mean can
then be calculated at the CP as % 2 In case of a histogram, the counting token maintains a specific number
of bins and their corresponding limits. Each peer simply increases the bin matching its measured value by one.
If the measured value is outside the limits of the bins it simply increases the first or the last bin respectively.

There are numerous things that can be measured using the above mentioned methods. Table 3.1 summarizes
some exemplary statistics and the kind of information which can be gained from them. The most obvious
application is to count the number of hops for each counting token. On the one hand, this is a direct measure
for the size of the overlay network. On the other hand, it also shows the distribution of the identifiers in the
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Algorithm 3
The countingtoken algorithm (first call Ry = id))

countingtoken(Rs, Re, Smin, CP, result)
send acknowledgment to the sender of the request
if Ry <id, < R. then
if id, > Rs + Spin then
send result to CP

result =0
Rs = Rs + szn
end if

add local measurement to result
ids — id of direct successor
while 1 do
send countingtoken(Rs, Re, Smin, CP, result) request to direct successor ids
if acknowledgment then
break
else
remove id, from successor list
ids — id of new direct successor
end if
end while
else
send result to CP
end if

TaBLE 3.1
Possible statistics gathered during snapshot

| Statistic | Information gained |
Number of hops per token Size of the network, Distribution of the identifiers
Mean search delay Performance of the algorithm
Sender —— predecessor Overlay stability
Number of timeouts per token Churn rate
Number of resources per peer Fairness of the algorithm
Number of searches answered User behavior
Bandwidth used per time unit Maintenance overhead
Missing resources Data integrity

identifier space. To gain information about the performance of the Chord algorithm, the mean search delay or
a histogram for the search time distribution can be calculated and compared to expected values. Furthermore,
Chord’s stability can only be guaranteed as long as the successor and predecessor pointers of the individual peers
match each other correspondingly. This invariant can be checked by counting the percentage of hops, where the
sender of the counting token did not match the predecessor of the receiving peer. Additionally, the number of
timeouts per token can be used to measure the current churn rate in the overlay network. The more churn there
is, the more timeouts are going to occur due to outdated successor pointers. Similarly, the number of resources
stored at each peer is a sign of the fairness of the Chord algorithm. The number of searches answered at each
peer can likewise be used to get an idea of the search behavior of the end users. Finally, a peer can keep track
of the number of missing resources to verify the integrity of the stored data. This can, e.g., be done counting
the number of search requests which could not be answered by the peer.

All of the above statistics can be collected periodically to survey the time dependent status of the overlay.
Note, that it is also possible to monitor a specific part of the overlay network by setting R, and R, accordingly.
This can, e.g., be helpful if there are problems in a certain region of the overlay network and the operator needs
to verify that his countermeasures have been successful.
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4. Analysis and Optimizations. To analyze our algorithm we derive the duration of a snapshot (cf.
Subsection 4.1) and the temporal distribution of the token arrival times at the C'P (cf. Subsection 4.2).

4.1. Duration of a Snapshot. To calculate an estimate of the duration of a snapshot, we assume a
scenario without any peers joining or leaving the network. It is quite straightforward to estimate the duration
of step one, the signaling step. The last counting token which will be started is the one covering the region
directly following the initiating peer. This is due to the fact, that the initiating peer will start its counting
token no sooner than it divided the ring into separate regions. Before it initiates the counting token, it contacts
its fingers until the first finger is closer to itself than S,,;,. The initiating peer has at most log,(n) fingers and
each of the fingers sends an acknowledgment, before the peer can go on with the algorithm. If Ty is the random
variable describing one overlay hop, then the duration of step one of the algorithm is at most

Dgiepr = 2 -logy(n) - E[To). (4.1)

The worst case for step two would be that the initiating peer does not know any fingers and directly sends
the counting token. This would take n - E[Tp], but is very unlikely to happen. In general, if there are n peers
in the overlay, there are roughly P, = 2:Smin peers per region. Furthermore, in the worst case Sy,;, is slightly
larger than a power of two and the regioﬁ covered by a counting token may become almost twice as large as
Smin- Therefore a good estimate for the duration of the counting step of the algorithm is:

Dstep2 =2 Pr ' E[TO] (42)
This results in the following total duration of a snapshot:

n- Smin

D=1
(ng(”) + S

) -2+ E[To]. (4.3)

4.2. Token Arrival Time Distribution. To get a rough estimate for the distribution of the arrival times
of the counting tokens at the C'P, we consider the special case where the size of the overlay n = 29 is a power of
two and S,,ip is such that N, = 2" with h < g. Furthermore, we assume that the individual peers are located
at equal distances on the ring as shown in Figure 4.1.

It can be shown, that in this case h = logy(N,.) is the number of overlay hops it takes until the first counting
token is started during a snapshot. Similarly, it takes 2-h hops until the last counting token is started according
to our assumptions. The probability p; that a counting token is started after exactly ¢ hops fori = h, h+1,...,2-h
can be calculated as:

p; = (th) )
o ()

The above considerations are nontrivial, but can nicely be explained using the simple example shown in Figure
4.1, where g = 4, h = 2, and therefore n = 2% and N, = 22. The solid arrows in the figure show the messages
of the signaling step, the dotted arrows the corresponding acknowledgments. The numbers next to the arrows
represent the number of overlay hops, which have passed since the beginning of the snapshot.

In the example, peer A starts a snapshot of the entire ring. It sends a request to B to cover the region
between B and A. Peer B sends an acknowledgment back to A and a simultaneous request to C to cover the
region from C to A. C has no fingers outside its minimum measurement region and starts the first counting
token after h = 2 overlay hops. Simultaneously, it sends an acknowledgment back to B. Peer B then starts its
counting token after 3 overlay hops. In the meantime A signals D to cover the region from D to B. Peer D
immediately starts its counting token after a total of 3 overlay hops. Peer A waits for the final acknowledgment,
and starts its counting token after 4 = 2-h overlay hops. Summarizing the above, there are four counting tokens
started after 2, 3, 3, and 4 overlay hops respectively.

According to our assumptions, each counting token needs exactly P. = 4 hops to travel the corresponding
region and one final hop to arrive at the CP. A rough estimate for the distribution of the arrival times of the
counting tokens at the C'P is therefore given by the phase diagram shown in Figure 4.3. It indicates that the
signaling step takes i overlay hops with a probability p; for ¢ = h,h + 1,...,2 - h, which is followed by P, hops
of the counting token and the final hop to report the result back to the C'P.

(4.4)
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To validate our analytical results, we simulated a Chord ring of size n = 2'° with S,.;, = 2° according
to the above assumptions. Figure 4.2 shows the probability density function of the token arrival times at the
CP. Obviously, the curves match very well and the binomial distribution of the duration of step one can be
recognized. So far, in our example each peer has a finger at an exact distance of S,.;,. In reality, however,
the finger would sit at a slightly different position, which again would result in an additional checkpoint at
the middle of the region. The curve labeled “Checkpoints” corresponds to a slightly modified phase diagram,
which adds an intermediate result in the middle of the measurement region. The first rise of the probability
density function (pdf) therefore represents the intermediate results sent back to the C'P at the checkpoint. The
second rise still represents the regular results at the end of the region. In the following section we will present
simulations of more realistic scenarios including churn and timeouts.

5. Results. The results in this section were obtained using our ANSI-C simulator, which incorporates a
detailed yet slightly modified Chord implementation. A good description of the general simulation model can
be found in [5, 6]. In this work an overlay hop is modeled using an exponentially distributed random variable
with a mean of 80ms. The results considering churn are generated using peers, which stay online and offline for
an exponentially distributed period of time with a mean as indicated in the corresponding description of the
figures.

The snapshot algorithm takes one single input argument S,,,;, which directly translates into NV, = [—Sw——‘,

SWLi‘n,

the number of areas the overlay will be divided into. This parameter influences the duration of the snapshot as
well as the number of results arriving at the central collecting point. Figure 5.1 shows the distribution of the
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arrival times of the results in an overlay of 40000 peers using N, = 1000 and N, = 100 areas in times of no
churn. Obviously, the more areas the overlay is divided into, the faster the snapshot is completed. While the
snapshot using 1000 areas was finished after about ten seconds, the snapshot with 100 areas took about one
minute. In exchange the latter snapshot produces significantly smaller bandwidth spikes at the CP. The two
elevations of the second histogram correspond to the intermediate results (first elevation) and the final results
at the end of the measured subpart (second elevation). Note that the final results arrive about twice as late
as the intermediate results. The first step of the algorithm uses the fingers to divide the ring into subparts.
Since the distance between a peer and its fingers is always slightly larger than a power of two it is usually not
possible to divide the ring exactly into the desired number of areas. In fact it is very likely, that a peer stops
the recursion and starts its measurement once it contacted its zth finger, where 27! < S,,.;,, = f\;'d < 2%, That
is, the recursion stops at finger x with ids,, whereas the distance between the peer and this speciﬁcr finger might
almost be twice as large as the desired S,,;,. It is therefore advisable to choose N, as a power of two itself in
order to ensure that idy, is only slightly larger than id, + Spin. Figure 5.2 shows the different arrival times of
the results for N, = 512 and N,. = 500 in an overlay of 20000 peers without churn. The skewed shape of the
histogram in the foreground results from the fact that 500 is slightly smaller than a power of two, which in turn
makes Sy, slightly larger than a power of two. In this case it is likely that the peer has a finger just before
the end of the minimum measurement region idy, 4+ Sy, Thus, finger z sits at a distance of about twice Sp,ip
from the peer. The resulting counting token will therefore travel a distance of about twice S, as well.

A more detailed analysis of the influence of N, can be found in Figure 5.3, which shows the number of
results received at the C'P in dependence of N,.. As shown in [1], N., the number of counting tokens sent to
the C'P, is limited by 2+ N, > N, > N,. The straight lines in the figure show the corresponding limits. The
solid and dotted curves represent the results obtained for 20000 and 10000 peers, respectively. The number of
results sent to the C'P is within the calculated limits and independent of the overlay size. The curves roughly
resemble the shape of a staircase, whereas the steps are located at powers of two. There are two main reasons
for this behavior. First of all, the average counting token sends two results back to the C'P, one intermediate
result and the final result at the end of the measurement region. Hence, the smaller the region covered by the
average counting token, the more results arrive at the C'P. As explained above, the closer N, gets to a power
of two, the smaller the region covered by the average counting token. This accounts for the first part of the rise
of the number of results received at the C'P.

The distribution of the arrival times of the results is also influenced by the current size of the network. The
larger the network, the more peers are within one region. However, the more peers are within one region, the
more hops each counting token has to make, before it can send its results back to the CP. Figure 5.4 shows the
token arrival time distribution for three different overlay sizes of 10000, 20000, and 40000 peers, respectively.
We did not generate any churn in this scenario and set N, = 512 areas. As expected, the larger the overlay
network, the longer the snapshot is going to take. However, the curves are not only shifted to the right, but
also differ in shape. This can again be explained by the increasing number of hops per counting token.

As mentioned above, the average counting token sends two results back to the CP, whereas the checkpoints
are equally spaced. Thus, the final result takes twice as many hops as the intermediate result. In a network of
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10000 peers there are approximately 20 peers in each of the 512 regions. The intermediate results are therefore
sent after about 10 hops, the final results after about 20 hops, respectively. The two corresponding elevations
in the histogram overlap in such a way, that they build a single elevation. In a network of 40000 peers, however,
there are approximately 78 peers in each of the 512 regions. The intermediate results are therefore sent after
about 39 hops, the final results after about 78 hops, respectively. The difference between these two numbers
is large enough to account for the two elevations of the histogram in the foreground of Figure 5.4. Note, that
all curves are shifted to the right as compared to the mere hop count since it takes some time for the signaling
step until the counting tokens can be started. In practice the current size of the overlay can be estimated to be
able to choose an appropriate value for N, as suggested in [2].

The arrival time of the results at the C'P is also affected by the online/offline behavior of the individual
peers. To study the influence of churn we consider 80000 peers with an exponentially distributed online and
offline time, each with a mean of 60 minutes. This way, there are 40000 peers online on average, which makes
it possible to compare the results to those obtained using 40000 peers without churn. Figure 5.5 shows the
corresponding histograms.

As a result of churn in the system, the two elevations of the original histogram become noticeably blurred
and the snapshot is slightly delayed. This is due to the inconsistencies in the successor and finger lists of the
peer as well as the timeouts which occur during the forwarding of the counting tokens. In return the spike in
the diagram and thus the required bandwidth at the C'P becomes smaller.

It is easy to show, that the probability to lose a token is almost negligible [1]. Therefore, a more meaningful
method to measure the influence of churn is to regard the number of timeouts which occur during a snapshot.
Furthermore, the influence of churn on the stability of the overlay network can be studied looking at the
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frequency at which the predecessor pointer of a peer’s successor does not match the peer itself. Figure 5.6
plots the relative frequency of timeouts and pointer failures against the mean online/offline time of a peer. The
smaller the online/offline time of a peer, the more churn is in the system.

The results represent the mean of several simulation runs, whereas the error bars show the 95 percent confi-
dence intervals. The relatively small percentage of both timeouts and failures is to some extent implementation
specific. More interesting, however, is the exponential rise of the curves under higher churn rates. The shape
of both curves is independent of the size of the overlay and only affected by the current churn rate. The curve
can therefore be used to map the frequency of timeouts or failures measured in a running system to a specific
churn rate.

Until now, we only regarded the traffic pattern at the central collecting point. From an operator’s point
of view, however, it is more important to know, whether the snapshot itself is meaningful. To validate the
accuracy of the snapshot algorithm, we again simulated an overlay network with 80000 peers, each with a mean
online/offline time of 60 minutes. Due to the properties of the hash function and the churn behavior in the
system the number of documents on a single peer can be regarded as a random variable. The measurement we
are interested in is the corresponding pdf in order to see whether the distribution of the documents among the
peers is fair or not. The pdf was measured using our snapshot algorithm as explained in Section 3.3. The result
of the snapshot is compared to the actual pdf obtained using the global view of our discrete event simulator (c.f.
Figure 5.7). The two curves are almost indistinguishable from each other. The same is true for all the other
statistics shown in Table 3.1, like the current size of the system or the average bandwidth used per time unit.
That is, the snapshot provides the operator with a very accurate picture of the current state of its system. This
nicely demonstrates that the results obtained by the snapshot can be used to better understand the performance
of the running p2p system. The multiple possibilities to interpret the collected data are well beyond the scope
of this paper.

6. Conclusion. One of the main reasons that telecommunication carriers are still hesitant to build p2p
applications is the lack of control a provider has over the running system. In this paper we introduced an entirely
distributed and scalable algorithm to monitor a Chord based p2p network at runtime. The load generated during
the snapshot is evenly distributed among the peers of the overlay and the algorithm itself is easy to configure.
It only takes one input parameter, which influences the trade-off between the duration of the snapshot and the
bandwidth required at the central server which collects the results. In general it takes less than one minute to
create a snapshot of a Chord ring consisting of 40000 peers. We performed a mathematical analysis of the basic
mechanisms and provided a simulative study considering realistic user behavior.

The algorithm is resistant to instabilities in the overlay network (churn) and provides the operator with a
very accurate picture of the current state of its system. It offers the possibility to monitor the entire overlay
network or to concentrate on a specific part of the system. The latter is especially useful if a problem oc-
curred in a specific part of the system and the operator wants to assure that his countermeasures have been
successful.
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USING GRIDS FOR EXPLOITING THE ABUNDANCE OF DATA IN SCIENCE

EUGENIO CESARIO*AND DOMENICO TALIA* 1

Abstract. Digital data volumes are growing exponentially in all sciences. To handle this abundance in data availability,
scientists must use data analysis techniques in their scientific practices and solving environments to get the benefits coming
from knowledge that can be extracted from large data sources. When data is maintained over geographically remote sites the
computational power of distributed and parallel systems can be exploited for knowledge discovery in scientific data. In this scenario
the Grid can provide an effective computational support for distributed knowledge discovery on large datasets. In particular, Grid
services for data integration and analysis can represent a primary component for e-science applications involving distributed massive
and complex data sets. This paper describes some research activities in data-intensive Grid computing. In particular we discuss
the use of data mining models and services on Grid systems for the analysis of large data repositories.

Key words: e-science, knowledge discovery, grid, parallel data mining, distributed data mining, grid-based data mining

1. Introduction. The past two decades have been dominated by the advent of increasingly powerful and
less expensive ubiquitous computing, as well as the appearance of the World Wide Web and related tech-
nologies [12]. Due to such advances in information technology and high performance computing, digital data
volumes are growing exponentially in many fields of human activities. This phenomenon concerns scientific
disciplines, as well as industry and commerce. Such technological development has also generated a whole new
set of challenges: the world is drowning in a huge quantity of data, which is still growing very rapidly both in
the volume and complexity.

Jim Gray in some talks in 2006 identified four chronological steps for the methodologies employed by
scientists for discoveries. The first step occurred thousand years ago, when science was empirical and it was
oriented to just describe natural phenomena. The second one is temporally located around a few hundred years
ago, when a theoretical branch was born, aimed at formulating some general models describing the empirical
knowledge. The third step occurred in the latest few decades, when a computational branch started up and
complex phenomena started to be simulated by the resources made available by the current technology. Finally,
the fourth step is run today, when scientists are working to unify theories, experiments and simulations with
data processing and exploration to extract knowledge hidden in it.

The abundance of digitally stored data require to consider in detail this phenomenon. In particular, there
are two important trends, technological and methodological, which seem to particularly distinguish the new,
information-rich science from the past:

e Technological. There is a lot of data collected and warehoused in various repositories distributed over the
world: data can be collected and stored at high speeds in local databases, from remote sources or from
the our galaxy. Some examples include data sets from the fields of medical imaging, bio-informatics,
remote sensing and (as very innovative aspect) several digital sky surveys. This implies a need for
reliable data storage, networking, and database-related technologies, standards and protocols.

e Methodological. Huge data sets are hard to understand, and in particular data constructs and patterns
present in them cannot be comprehended by humans directly. This is a direct consequence of the
growth in complexity of information, and mainly its multi-dimensionality. For example, a computational
simulation can generate terabytes of data within a few hours, whereas human analysts may take several
weeks to analyze these data sets. For such a reason, most of data will never be read by humans, rather
they are to be processed and analyzed by computers.

We can summarize what we foresaid as follows: whereas some decades ago the main problem was the lack
of information, the challenge now seems to be (i) the very large volume of information and (i) the associated
complezity to process for extracting significant and useful parts or summaries.

Nevertheless, the first aspect does not represent a limitation or a problem for the scientific community:
current data storage, architectural solutions and communication protocols provide a reliable technological base
to collect and store such abundance of data in an efficient and effective way. Moreover, the availability of
high throughput scientific instrumentation and very inexpensive digital technologies facilitated this trend from
both technological and economical view point. On the other hand, the computational power of computers is
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not growing as fast as the demand of such a data computation requires, and this represents a limit for the
knowledge that potentially could be extracted. As an additional aspect, we have to consider that storage costs
are currently decreasing faster than computing costs, and this trend makes things worse.

For example, the impact of foresaid issues in the biological field is well described in [20]. It points out that
the emergence of genome and post-genome technology has made huge amount of data available, demanding
a proportional support of analysis. Nevertheless, an important factor to be considered is that the number
of available complete genomic sequences is doubling almost every 12 months, whereas according to Moore’s
law available compute cycles (i. e., computational power) double every 18 months. Additionally, we have to
consider that analysis of genomic sequences require binary comparisons of the genes involved in it. As a direct
consequence of that, the computational overhead is very very high. We can see the impact of such issues
in Figure 1.1 (source: [20]), which contrasts the number of genetic sequences obtained with the number of
annotations generated. The figure shows that the knowledge (annotations, models, patterns) has a sub-linear
rate with respect to the the available data sequences which they are extracted from.
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Fia. 1.1. Growth of sequences and annotations since 1982 (Source: [20])

To handle this abundance in data availability (whose rate of production often far outstrips our ability
to analyze), applications are emerging that explore, query, analyze, visualize, and in general, process very
large-scale data sets: they are named data intensive applications. Computational science is evolving toward
data intensive applications that include data integration and analysis, information management, and knowledge
discovery. In particular, knowledge discovery in large data repositories can find what is interesting in them by
using data mining techniques. Data intensive applications in science help scientists in hypothesis formation and
give them a support on their scientific practices and solving environments, getting the benefits coming from
knowledge that can be extracted from large data sources.

When data is maintained over geographically distributed sites the computational power of distributed and
parallel systems can be exploited for knowledge discovery in scientific data. Parallel and distributed data
mining algorithms are suitable to such a purpose. Moreover, in this scenario the Grid can provide an effective
computational support for data intensive application and for knowledge discovery from large and distributed
datasets. Grid computing is receiving an increasing attention from the research community, watching at this
new computing infrastructure as a key technology for solving complex problems and implementing distributed
high-performance applications [14].

Today many organizations, companies, and scientific centers produce and manage large amounts of complex
data and information. Climate, astronomic, and genomic data together with company transaction data are just
some examples of massive amounts of digital data that today must be stored and analyzed to find useful
knowledge in them. This data and information patrimony can be effectively exploited if it is used as a source
to produce knowledge necessary to support decision making. This process is both computationally intensive,
collaborative, and distributed in nature. The development of data mining software for Grids offers tools and
environments to support the process of analysis, inference, and discovery over distributed data available in
many scientific and business areas. The creation of frameworks on top of data and computational Grids is the
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enabling condition for developing high-performance data mining tasks and knowledge discovery processes, and
it meets the challenges posed by the increasing demand for power and abstractness coming from complex data
mining scenarios in science and engineering. For example, some projects described in Section 2 such as NASA
Information Grid, TeraGrid, and Open Science Grid use the computational and storage facilities in their Grid
infrastructures to mine data in a distributed way. Sometime in these projects are used ad hoc solutions for data
mining, in other cases generic middleware is used on top of basic Grid toolkits. As pointed out by William E.
Johnston in [19], the use of general purpose data mining tools may effectively support the analysis of massive
and distributed data sets in large scale science and engineering.

The Grid allows to federate and share heterogeneous resources and services such as software, computers,
storage, data, networks in a dynamic way. Grid services can be the basic element for composing software and data
elements, and executing complex applications on Grid and Web systems. Today the Grid is not just compute
cycles, but it is also a distributed data management infrastructure. Integrating those two features with “smart"
algorithms we can obtain a knowledge-intensive platform. The driving Grid applications are traditionally
high-performance and data intensive applications, such as high-energy particle physics, and astronomy and
environmental modeling, in which experimental devices create large quantities of data that require scientific
analysis.

In the latest years many significant Grid-based data intensive applications and infrastructures have been
implemented. In particular, the service-based approach is allowing the integration of Grid and Web for handling
with data. We will briefly report some of these applications in the first of the paper; then we discuss about the
use of high performance data mining techniques for science in Grid platforms.

The rest of the paper is organized as follows. Section 2 describes some Grid-based data intensive projects and
applications. Section 3 gives an overview of approaches for parallel, distributed and Grid-based data mining
techniques. Section 4 introduces the Knowledge Grid, a reference software architecture for geographically
distributed knowledge discovery systems. The Section 5 gives concluding remarks.

2. Grid Technologies for dealing with Scientific data. Several scientific teams and communities are
using Grid technology for dealing with intensive applications aimed at scientific data processing. As examples
of this approach, in the following we shortly describe some of them.

2.1. The DataGrid Project: Grid for Physics. The European DataGrid [11] is a project funded by
the European Union with the aim of setting up a computational and data-intensive Grid of resources for the
analysis of data coming from scientific exploration. The main goal of the project is to coordinate resource
sharing, collaborative processing and analysis of huge amounts of data produced and stored by many scien-
tific laboratories belonging to several institutions. It is made effective by the development of a technological
infrastructure enabling scientific collaborations where researchers and scientists will perform their activities
regardless of geographical location. The project develops scalable software solutions in order to handle many
PBs! of distributed data, tens of thousand of computing resources (processors, disks, etc.), and thousands of
simultaneous users from multiple research institutions. The three real data intensive computing applications
areas covered by the project are biology/medical, earth observation and particle physics. In particular, the
last one is oriented to answer longstanding questions about the fundamental particles of matter and the forces
acting between them. The goal is to understand why some particles are much heavier than others, and why
particles have mass at all. To that end, CERN? has built the Large Hadron Collider (LHC), the most powerful
particle accelerator ever conceived, that generates huge amounts of data. It is estimated that LHC generates
approximately 1 GB/sec and 10 PB/year of data. The DataGrid Project provided the solution for storing and
processing this data, based on a multi-tiered, hierarchical computing model for sharing data and computing
power among multiple institutions. In particular, a Tier-0 centre is located at CERN and is linked by high
speed networks to approximately ten major Tier-1 data processing centres. These fan out the data to a large
number of smaller ones (Tier-2).

The DataGrid project ended on March 2004, but many of the products (technologies, infrastructure, etc.)
are used and extended in the EGEE project. The Enabling Grids for E-sciencE (EGEE) [13] project brings
together scientists and engineers from more than 240 institutions in 45 countries world-wide to provide a seamless
Grid infrastructure for e-Science that is available to scientists 24 hours/day. Expanding from originally two
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scientific fields, high energy physics and life sciences, EGEE now integrates applications from many other
scientific fields, ranging from geology to computational chemistry. The EGEE Grid consists of over 36,000
CPUs available to users 24 hours a day, 7 days a week, in addition to about 5 PB disk of storage, and maintains
30,000 concurrent jobs on average. Having such resources available changes the way scientific research takes
place. The end use depends on the users’ needs: large storage capacity, the bandwidth that the infrastructure
provides, or the sheer computing power available. Generally, the EGEE Grid infrastructure is ideal for any
scientific research especially where the time and resources needed for running the applications are considered
impractical when using traditional IT infrastructures.

2.2. The NASA Information Power Grid (IPG) Infrastructure. The NASA’s Information Power
Grid (IPG) [18] is a high-performance computing and data grid built primarily for use by NASA scientists
and engineers. The IPG has been constructed by NASA between 1998 and the present making heavy use of
Globus Toolkit components to provide Grid access to heterogeneous computational resources managed by several
independent research laboratories. Scientists and engineers access the IPG’s computational resources from any
location with Grid interfaces providing security, uniformity, and control. Scientists beyond NASA can also use
familiar Grid interfaces to include IPG resources in their applications (with appropriate authorization). The
IPG infrastructure has been and is being used by numerous scientific and engineering efforts both within and
beyond NASA. Some of its most important applications are computational fluid dynamics and meteorological
data mining.

2.3. TeraGrid. TeraGrid [29] is an open scientific discovery infrastructure combining leadership class
resources (including supercomputers, storage, and scientific visualization systems) at nine partner sites to create
an integrated, persistent computational resource. It is coordinated by the Grid Infrastructure Group (GIG)
at the University of Chicago. Using high-performance network connections, the TeraGrid integrates high-
performance computers, data resources and tools, and high-end experimental facilities around the country.
Currently, TeraGrid resources include more than 250 teraflops of computing capability and more than 30 PBs
of online and archival data storage, with rapid access and retrieval over high-performance networks. Researchers
can also access more than 100 discipline-specific databases. With this combination of resources, the TeraGrid is
one of the world’s largest and most comprehensive distributed Grid infrastructure for open scientific research.

2.4. NASA and Google. Recently NASA initiated a joint project with Google, Inc. for applying Google
search technology to help scientists to process, organize, and analyze the large-scale streams of data coming
from the Large Synoptic Survey Telescope (LSST), located in Chile. When completed, the LSST will generate
over 30 terabytes of multiple color images of visible sky each night. Google will collaborate with LSST to
develop search and data access techniques and services that can process, organize and analyze the very large
amounts of data coming from the instrument’s data streams in real time. The engine will create “data images"
for scientists to view significant space events and extract important features from them. This joint project will
show how complex data management techniques generally used in search engines can be exploited for scientific
discovery.

In the general framework of this collaboration, the main NASA’s goal is to make its huge stores of data
collected during everything from spacecraft missions, moon landings to landings on Mars to orbits around
Jupiter—available to scientists and the public. Some of the data can already be found on NASA’s Web site but
exploiting Google techniques with high performance facilities, this data will be accessible in an easy way.

2.5. Open Science Grid. The Open Science Grid [24] is a collaboration of science researchers, software
developers and computing, storage and network providers. It gives access to shared resources worldwide to
scientists (from universities, national laboratories and computing centers across the United States). The Open
Science Grid links storage and computing resources at more than 30 sites across the United States. The
OSG works actively with many partners, including Grid and network organizations and international, national,
regional and campus Grids, to create a Grid infrastructure that spans the globe. Scientists from many different
fields use the OSG to advance their research. Applications of OSG project are active in various areas of science,
like particle and nuclear physics, astrophysics, bioinformatics, gravitational-wave science, mathematics, medical
imaging and nanotechnology. OSG resources include thousands of computers and 10 of terabytes of archival
data storage.

2.6. myExperiment. myFEzperiment [22] is a collaborative research environment which enables scientists
to share, reuse and repurpose experiments. It is based on the idea that scientists usually prefer to share
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experimental results than data. myExperiment has been influenced by social networking programs such as
Wired and Flickr, and is based on the mySpace infrastructure. myExperiment enables scientists to share and
use workflows and reduce time-to-experiment, share expertise and avoid reinvention. myExperiment creates an
environment for scientists to adopt Grid technologies, where they can define, when they share data, with whom
they share it and how much of it can be accessed. The myExperiment project mainly focuses its applications
at case studies for the specific areas of astronomy, bio-informatics, chemistry and social science.

2.7. National Virtual Observatory. The National Virtual Observatory [23] is a new research project
whose goal is to make all the astronomical data in the world quickly and easily accessible by anyone. Such a
project enables a new way of doing astronomy, moving from an era of observations of small, carefully selected
samples of objects in one or a few wavelength bands, to the use of multi-wavelength data for millions, or even
billions of objects. Such large collection of data makes researchers able to discover subtle, but significant,
patterns in statistically rich and unbiased databases, and to understand complex astrophysical systems through
the comparison of data to numerical simulations. With the National Virtual Observatory (NVO), astronomers
explore data that others have already collected, finding new uses and new discoveries in existing data. NVO
enables astronomers to do a new type of research that, combined with traditional telescope observations, will
lead to many new and interesting discoveries. It is worth noticing that the NVO has proposed to exploit the
computational resources of the TeraGrid project (described in the Section 2.3), in order to enable astronomers
in the exploration and analysis of the physical processes that drive the formation and evolution of our universe,
and encouraging new ways to use supercomputing facilities for science.

2.8. Southern California Earthquake Center. The Southern California Farthquake Center project
[26] is aimed at developing new computing capabilities, that can lead to better forecasts of when and where
earthquakes are likely to occur in Southern California, and how the ground will shake as a result. The final
goal is to improve mathematical models about the structure of the Earth and how the ground moves during
earthquakes. The project team includes collaborating researchers from Southern California Earthquake Center
(SCEC), the Information Sciences Institute (IST) at USC, the San Diego Supercomputing Center (SDSC), the
Incorporated Institutions for Seismology (IRIS), and the United States Geological Survey (USGS). The project
heavily exploits Grid technologies, allowing scientists to organize and retrieve information stored throughout
the country, and giving advantages of the processing power of a network of many computers.

3. Data Mining and Knowledge Discovery. After discussing significant data management issues and
projects, here we focus on data mining techniques for knowledge discovery in large scientific data reposito-
ries. Data Mining is the semi-automatic discovery of patterns, models, associations, anomalies and (statistically
significant) structures hidden in data. Traditional data analysis is assumption-driven, that is the hypothesis
is formed and validated against the data. Data mining, in contrast, is discovery-driven, in the sense that
the patterns (and models) are automatically extracted from data. Data mining founds its application to sev-
eral scientific and engineering domains, including astrophysics, medical imaging, computational fluid dynamics,
biology, structural mechanics, and ecology.

From a scientific viewpoint, data can be collected by many sources: remote sensors on a satellite, telescope
scanning the sky, microarrays generating gene expression data, scientific simulations, etc. Moreover, in such
infrastructures data are collected and stored at enormous speeds (GBs/hour). Both such aspects imply that
scientific application have to deal with massive volume of data.

Mining large data sets requires powerful computational resources. A major issue in data mining is scalability
with respect to the very large size of current-generation and next-generation databases, given the excessively
long processing time taken by (sequential) data mining algorithms on realistic volumes of data. In fact, data
mining algorithms working on very large data sets take a very long time on conventional computers to get
results. In order to improve performances, some parallel and distributed approaches have been proposed.

Parallel computing is a viable solution for processing and analyzing data sets in reasonable time by using
parallel algorithms. High performance computers and parallel data mining algorithms can offer a very efficient
way to mine very large data sets [27], [28] by analyzing them in parallel. Under a data mining perspective, such
a field is known as parallel data mining (PDM).

Beyond the development of knowledge discovery systems based on parallel computing platforms, a lot of
work has been devoted to design systems able to handle and analyze multi-site data repositories. Mining knowl-
edge from data captured by instruments, scientific analysis, simulation results that could be distributed over the
world, questions the suitability of centralized architectures for large-scale knowledge discovery in a networked
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environment. The research area named distributed data mining offers an alternative approach. It works by
analyzing data in a distributed fashion and pays particular attention to the trade-off between centralized col-
lection and distributed analysis of data. This technology is particularly suitable for applications that typically
deal with very large amount of data (e.g., transaction data, scientific simulation and telecommunication data),
which cannot be analyzed in a single site on traditional machines in acceptable times.

Grid technology integrates both distributed and parallel computing, thus it represents a critical infrastruc-
ture for high-performance distributed knowledge discovery. Grid computing was designed as a new paradigm for
coordinated resource sharing and problem solving in advanced science and engineering applications. For these
reasons, Grids can offer an effective support to the implementation and use of knowledge discovery systems by
Grid-based Data Mining approaches.

In the following parallel, distributed and Grid-based data mining are discussed.

3.1. Parallel Data Mining. Parallel Data Mining is concerned with the study and application of data
mining analysis done by parallel algorithms. The key idea underlying such a field is that parallel computing
can give significant benefits in the implementation of data mining and knowledge discovery applications, by
means of the exploitation of inherent parallelism of data mining algorithms. Main goals of the use of parallel
computing technologies in the data mining field are: (i) performance improvements of existing techniques, (%)
implementation of new (parallel) techniques and algorithms, and (7) concurrent analysis using different data
mining techniques in parallel and result integration to get a better model (i. e., more accurate results).

As observed in [5], three main strategies can be identified in the exploitation of parallelism algorithms:
Independent Parallelism, Task Parallelism and Single Program Multiple Data (SPMD) Parallelism. We point
out that this is a well known classification of general strategies for developing parallel algorithms, in fact they
are not necessarily related only to data mining purposes. Nevertheless, in the following we will describe the
underlying idea of such strategies by contextualizing them in data mining applications. A short description of
the underlying idea of such strategies follows.

Independent Parallelism. It is exploited when processes are executed in parallel in an independent way.
Generally, each process has access to the whole data set and does not communicate or synchronize with other
processes. Such a strategy, for example, is applied when p different instances of the same algorithm are executed
on the whole data set, but each one with a different setting of input parameters. In this way, the computation
finds out p different models, each one determined by a different setting of input parameters. A validation step
should learn which one of the p predictive models is the most reliable for the topic under investigation. This
strategy often requires commutations among the parallel activities.

Task Parallelism. It is known also as Control Parallelism. It supposes that each process executes different
operations on (a different partition of) the data set. The application of such a strategy in decision tree learning,
for example, leads to have p different processes running, each one associated to a particular subtree of the
decision tree to be built. The search goes parallely on in each subtree and, as soon as all the p processes
finish their executions, the whole final decision tree is composed by joining the various subtrees obtained by the
processes.

SPMD Parallelism. The single program multiple data (SPMD) model [10] (also called data parallelism) is
exploited when a set of processes execute in parallel the same algorithm on different partitions of a data set, and
processes cooperate to exchange partial results. According to this strategy, the dataset is initially partitioned
in p parts, if p is the apriori-fixed parallelism degree (i. e., the number of processes running in parallel). Then,
the p processes search in parallel a predictive model for the subset associated to it. Finally, the global result is
obtained by exchanging all the local models information.

These three strategies for parallelizing data mining algorithms are not necessarily alternative. In fact, they
can be combined to improve both performance and accuracy of results. For completeness, we say also that in
combination with strategies for parallelization, different data partition strategies may be used : (i) sequential
partitioning (separate partitions are defined without overlapping among them), (i7) cover-based partitioning
(some data can be replicated on different partitions) and (%) range-based query partitioning (partitions are
defined on the basis of some queries that select data according to attribute values).

Architectural issues are a fundamental aspect for the goodness of a parallel data mining algorithm. In fact,
interconnection topology of processors, communication strategies, memory usage, I/O impact on algorithm
performance, load balancing of the processors are strongly related to the efficiency and effectiveness of the
parallel algorithm. For lack of space, we can just cite those. The mentioned issues (and others) must be taken
into account in the parallel implementation of data mining techniques. The architectural issues are strongly
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related to the parallelization strategies and there is a mutual influence between knowledge extraction strategies
and architectural features. For instance, increasing the parallelism degree in some cases corresponds to an
increment of the communication overhead among the processors. However, communication costs can be also
balanced by the improved knowledge that a data mining algorithm can get from parallelization. At each iteration
the processors share the approximated models produced by each of them. Thus each processor executes a next
iteration using its own previous work and also the knowledge produced by the other processors. This approach
can improve the rate at which a data mining algorithm finds a model for data (knowledge) and make up for lost
time in communication. Parallel execution of different data mining algorithms and techniques can be integrated
not just to get high performance but also high accuracy.

3.2. Distributed Data Mining. Traditional warehouse-based architectures for data mining suppose to
have centralized data repository. Such a centralized approach is fundamentally inappropriate for most of the
distributed and ubiquitous data mining applications. In fact, the long response time, lack of proper use of
distributed resource, and the fundamental characteristic of centralized data mining algorithms do not work well
in distributed environments. A scalable solution for distributed applications calls for distributed processing of
data, controlled by the available resources and human factors. For example, let us consider an ad hoc wireless
sensor network where the different sensor nodes are monitoring some time-critical events. Central collection of
data from every sensor node may create traffic over the limited bandwidth wireless channels and this may also
drain a lot of power from the devices.

A distributed architecture for data mining is likely aimed to reduce the communication load and also to
reduce the battery power more evenly across the different nodes in the sensor network. One can easily imagine
similar needs for distributed computation of data mining primitives in ad hoc wireless networks of mobile devices
like PDAs, cellphones, and wearable computers [25]. The wireless domain is not the only example. In fact, most
of the applications that deal with time-critical distributed data are likely to benefit by paying careful attention
to the distributed resources for computation, storage, and the cost of communication. As an other example,
let us consider the World Wide Web as it contains distributed data and computing resources. An increasing
number of databases (e.g., weather databases, oceanographic data, etc.) and data streams (e.g., financial data,
emerging disease information, etc.) are currently made on-line, and many of them change frequently. It is easy
to think of many applications that require regular monitoring of these diverse and distributed sources of data.

A distributed approach to analyze this data is likely to be more scalable and practical particularly when
the application involves a large number of data sites. Hence, in this case we need data mining architectures
that pay careful attention to the distribution of data, computing and communication, in order to access and use
them in a near optimal fashion. Distributed data mining (DDM) considers data mining in this broader context.

DDM may also be useful in environments with multiple compute nodes connected over high speed networks.
Even if the data can be quickly centralized using the relatively fast network, proper balancing of computational
load among a cluster of nodes may require a distributed approach. The privacy issue is playing an increasingly
important role in the emerging data mining applications. For example, let us suppose a consortium of different
banks collaborating for detecting frauds. If a centralized solution was adopted, all the data from every bank
should be collected in a single location, to be processed by a data mining system. Nevertheless, in such a case
a distributed data mining system should be the natural technological choice: it is able to learn models from
distributed data without exchanging the raw data among different repositories, and it allows detection of fraud
by preserving the privacy of every bank’s customer transaction data.

For what concerns techniques and architecture, it is worth noticing that many several other fields influence
Distributed Data Mining systems concepts. First, many DDM systems adopt the multi-agent system (MAS)
architecture, which finds its root in the distributed artificial intelligence (DAT). Second, although parallel data
mining often assumes the presence of high speed network connections among the computing nodes, the devel-
opment of DDM has also been influenced by the PDM literature. Most DDM algorithms are designed upon the
potential parallelism they can apply over the given distributed data. Typically, the same algorithm operates on
each distributed data site concurrently, producing one local model per site. Subsequently, all local models are
aggregated to produce the final model. In Figure 3.1 a general distributed data mining framework is presented.
The success of DDM algorithms lies in the aggregation. Each local model represents locally coherent patterns,
but lacks details that may be required to induce globally meaningful knowledge. For this reason, many DDM
algorithms require a centralization of a subset of local data to compensate it. The ensemble approach has
been applied in various domains to increase the accuracy of the predictive model to be learnt. It produces
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multiple models and combines them to enhance accuracy. Typically, voting (weighted or un-weighted) schema
are employed to aggregate base model for obtaining a global model. As we have discussed above, minimum
data transfer is another key attribute of the successful DDM algorithm. As a final consideration, the homo-
geneity /heterogeneity of resources is another important aspect to be considered in the distributed data mining
approaches. In this scenario, the term "resources" refers both to computational resources (computers with
similar/different computational power) and data resources (datasets with horizontally/vertically partitioning
among nodes). The first meaning affects only the algorithm execution time, while data heterogeneity plays a
fundamental role in the algorithm design. That is, dealing with different data formats it requires algorithms
designed in accordance to the different data formats.

Global Model

Local Model 1 Local Model 2 ) { ™ (Local Model n

Data Mining Data Mining
Algorithm Algorithm

Data Mining
Algorithm

Fic. 3.1. General Distributed Data Mining Framework.

3.3. Grid-based Data Mining. In the last years, Grid computing is receiving an increasing attention
both from the research community and from industry and governments, watching at this new computing in-
frastructure as a key technology for solving complex problems and implementing distributed high-performance
applications. Grid technology integrates both distributed and parallel computing, thus it represents a critical
infrastructure for high-performance distributed knowledge discovery. Grid computing differs from conventional
distributed computing because it focuses on large-scale dynamic resource sharing, offers innovative applications,
and, in some cases, it is geared toward high-performance systems. The Grid emerged as a privileged computing
infrastructure to develop applications over geographically distributed sites, providing for protocols and services
enabling the integrated and seamless use of remote computing power, storage, software, and data, managed and
shared by different organizations.

Basic Grid protocols and services are provided by toolkits such as Globus Toolkit (www.globus.org/
toolkit), Condor (www.cs.wisc.edu/condor), Glite, and Unicore. In particular, the Globus Toolkit is the
most widely used middleware in scientific and data-intensive Grid applications, and is becoming a de facto stan-
dard for implementing Grid systems. This toolkit addresses security, information discovery, resource and data
management, communication, fault-detection, and portability issues. A wide set of applications is being devel-
oped for the exploitation of Grid platforms. Since application areas range from scientific computing to industry
and business, specialized services are required to meet needs in different application contexts. In particular,
data Grids have been designed to easily store, move, and manage large data sets in distributed data-intensive
applications. Besides core data management services, knowledge-based Grids, built on top of computational and
data Grid environments, are needed to offer higher-level services for data analysis, inference, and discovery in
scientific and business areas [21]. In some papers, see for example [1], [19], and [7], it is claimed that the creation
of knowledge Grids is the enabling condition for developing high-performance knowledge discovery processes
and meeting the challenges posed by the increasing demand of power and abstractness coming from complex
problem solving environments.

4. The Knowledge Grid. The Knowledge Grid [3] is an environment providing knowledge discovery
services for a wide range of high performance distributed applications. Data sets and analysis tools used in such
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applications are increasingly becoming available as stand-alone packages and as remote services on the Internet.
Examples include gene and DNA databases, network access and intrusion data, drug features and effects data
repositories, astronomy data files, and data about web usage, content, and structure. Knowledge discovery
procedures in all these applications typically require the creation and management of complex, dynamic, multi-
step workflows. At each step, data from various sources can be moved, filtered, and integrated and fed into a data
mining tool. Based on the output results, the developer chooses which other data sets and mining components
can be integrated in the workflow, or how to iterate the process to get a knowledge model. Workflows are mapped
on a Grid by assigning nodes to the Grid hosts and using interconnections for implementing communication
among the workflow nodes.

For completeness of treatment, we point out some other Grid-based knowledge discovery systems and ac-
tivities that have been designed in recent years. Discovery Net [8] is an infrastructure for effectively support
scientific knowledge discovery process, in particular in the areas of life science and geo-hazard prediction. DataS-
pace [17] is a framework providing efficient data access and transfer over the Grid that implements an ad-hoc
protocol for working with remote and distributed data (named DataSpace transfer protocol, DSTP). Info-
Grid [16] is a service-based data integration middleware engine, designed to provide information access and
querying services not in an ’universal’ way, but by a personalized view of the resources for each particular ap-
plication domain. DataCutter [2] is another Grid middleware framework aimed at providing specific services for
the support of multi-dimensional range-querying, data aggregation and user-defined filtering over large scientific
datasets in shared distributed environments. Finally, GATES [4] (Grid-based AdapTive Execution on Streams)
is an OGSA based system that provides support for processing of data streams in a Grid environment. This
system is designed to support the distributed analysis of data streams arising from distributed sources (e.g.,
data from large scale experiments/simulations). GATES provides automatic resource discovery and an interface
for enabling self-adaptation to meet real-time constraints.

The Knowledge Grid architecture is designed according to the Service Oriented Architecture (SOA), that
is a model for building flexible, modular, and interoperable software applications. The key aspect of SOA
is the concept of service, that is a software block capable of performing a given task or business function.
Each service operates by adhering to a well defined interface, defining required parameters and the nature of
the result. Once defined and deployed, services are like “black boxes", that is, they work independently of
the state of any other service defined within the system, often cooperating with other services to achieve a
common goal. The most important implementation of SOA is represented by Web Services, whose popularity is
mainly due to the adoption of universally accepted technologies such as XML, SOAP, and HTTP. Also the Grid
provides a framework whereby a great number of services can be dynamically located, balanced, and managed,
so that applications are always guaranteed to be securely executed, according to the principles of on-demand
computing.

The Grid community has adopted the Open Grid Services Architecture (OGSA) as an implementation of
the SOA model within the Grid context. In OGSA every resource is represented as a Web Service that conforms
to a set of conventions and supports standard interfaces. OGSA provides a well-defined set of Web Service
interfaces for the development of interoperable Grid systems and applications [15]. Recently the WS-Resource
Framework (WSRF) has been adopted as an evolution of early OGSA implementations [9]. WSRF defines
a family of technical specifications for accessing and managing stateful resources using Web Services. The
composition of a Web Service and a stateful resource is termed as WS-Resource. The possibility to define a
aAlJstateaAl associated to a service is the most important difference between WSRF-compliant Web Services,
and pre-WSRF ones. This is a key feature in designing Grid applications, since WS-Resources provide a way
to represent, advertise, and access properties related to both computational resources and applications.

The Knowledge Grid is a software for implementing knowledge discovery tasks in a wide range of high-
performance distributed applications. It offers to users high-level abstractions and a set of services by which
they can integrate Grid resources to support all the phases of the knowledge discovery process.

The Knowledge Grid supports such activities by providing mechanisms and higher level services for searching
resources, representing, creating, and managing knowledge discovery processes, and for composing existing data
services and data mining services in a structured manner, allowing designers to plan, store, document, verify,
share and re-execute their workflows as well as manage their output results. The Knowledge Grid architecture
is composed of a set of services divided in two layers: the Core K-Grid layer and the High-level K-Grid layer.
The first interfaces the basic and generic Grid middleware services, while the second interfaces the user by
offering a set of services for the design and execution of knowledge discovery applications. Both layers make
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use of repositories that provide information about resource metadata, execution plans, and knowledge obtained
as result of knowledge discovery applications.

In the Knowledge Grid environment, discovery processes are represented as workflows that a user may
compose using both concrete and abstract Grid resources. Knowledge discovery workflows are defined using a
visual interface that shows resources (data, tools, and hosts) to the user and offers mechanisms for integrating
them in a workflow. Information about single resources and workflows are stored using an XML-based notation
that represents a workflow (called execution plan in the Knowledge Grid terminology) as a data-flow graph of
nodes, each one representing either a data mining service or a data transfer service. The XML representation
allows the workflows for discovery processes to be easily validated, shared, translated in executable scripts, and
stored for future executions. It is worth noticing that when the user submits a knowledge discovery application
to the Knowledge Grid, she has no knowledge about all the low level details needed by the execution plan. More
precisely, the client submits to the Knowledge Grid a high level description of the KDD application, named
conceptual model, more targeted to distributed knowledge discovery aspects than to grid-related issues. The
Knowledge Grid in a first step creates an execution plan on the basis of the conceptual model received from the
user, and then executes it by using the resources effectively available. To realize this logic, it initially models
an abstract execution plan (where some specified resource could remain ’abstractly’ defined, i. e. they could not
match with a real resource), that in a second step is resolved into a concrete execution plan (where a matching
between each resource and someone really available on the Grid is found).

The Knowledge Grid has been used in various real scenarios, pointing out its suitability in several heteroge-
neous applications. For lack of space we are not able to discuss about them. For such a reason we give here just
some outlines, more details can be found in the cited papers. The goal of the example described in [6] was to
obtain a classifier for an intrusion detection system, performing a mining process on a (very large size) dataset
containing records generated by network monitoring. The example reported in [5] was a simple meta-learning
process, that exploits the Knowledge Grid to generate a number of independent classifiers by applying learning
programs to a collection of distributed data sets in parallel.

As a scientific application scenario, let us consider the collection of sky observations and the analysis
of their characteristics. Let us suppose to have distinct image data obtained by observations and simula-
tions, from which we want to extract significant metrics. Generally, a significative set of astronomy data is
very large size (=~ 20 — 30 terabytes). In addition, such kind of observation are very high-dimensional, be-
cause each point is usually described by a~ 103 attributes (including morphological parameters, flux ratios,
etc.). Finally, they usually are full of missing values and noise. Then, the main issue here is to analyze
a distribution of ~ 20 — 30 terabytes of points in a parameter space of ~ 10% dimensions. Let us sup-
pose that our effort is devoted to identify how many distinct types of objects are there (i. e., stars, galax-
ies, quasars, black holes, etc.), and grouping them with respect to their type. This can be obtained by a
clustering analysis, however it is a non-trivial task if we consider the large size data and their high dimen-
sionality. To such a purpose, a distributed framework can be suitable to get results in a reasonable time.
Initially we have a data repository where all such an observed sky data is collected (for example, an astro-
nomic observatory). Then, such a data is processed by a distributed clustering algorithm. In order to do
that, they are partitioned on many nodes and processed on those nodes in parallel. The results of every
clustering algorithm are collected and combined to obtain a global clustering model. In addition, each out-
lier can represent a possible (rare) new object. For such a reason, and in order to get more knowledge from
them, all the detected outliers are transferred to another node for a further classification, i. e. by a decision
tree.

Figure 4.1 shows such a distributed meta-learning scenario, in which a global clustering model classifier C M
is obtained on Nodec starting from the original data set DS stored on Node, (i.e, where the observatory is
located). Moreover, all the outliers detected are collected in an outlier set O.S and are processed by a classifier
Cl on a Nodep. This process can be described through the following steps:

1. On Nodey, data sets DSy, ..., DS, are extracted from DS by the partitioner P. Then DSy,..., DS,
are respectively moved from Nodey to Nodeq, ..., Node,.

2. On each Node;(i = 1,...,n) the clusterer C; applies a clustering algorithms on each dataset DS;.
Then, each local result is moved from Node; to Nodec.

3. On Nodeg, local models received from Nodey, ..., Node, are combined by the combiner C' to produce
the global clustering model CM. Moreover, outliers detected are collected in an outlier set OS, and
moved to the Nodeg for further analysis.
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4. On Nodegp, the classifier Cl processes the OS outlier data set and extracts a suitable classification
model (i. e., a decision tree) from it.
Being the Knowledge Grid a service oriented architecture, the Knowledge Grid user interacts with some services
to design and execute such an application.

As an additional consideration, we notice that a client application, that wants to submit a knowledge
discovery computation to the Knowledge Grid, has to interact not with all of these services, but just with
some of them; there are, in fact, two layers of services: high-level services (DAS, TAAS, EPMS and RPS) and
core-level services (KDS and RAEMS). The design idea is that user level applications directly interact with
high-level services that, in order to perform a client request, invoke suitable operations exported by the core-level
services. In turn, core-level services perform their operations by invoking basic services provided by available
grid environments running on the specific host, as well as by interacting with other core-level services. In other
words, operations exported by high-level services are designed to be invoked by user-level applications, whereas
operations provided by core-level services are thought to be invoked both by high-level and core-level services.
More in detail, the user can interacts with the DAS (Data Access Service) and TAAS (Tools and Algorithms
Access Service) services to find data and mining software and with the EPMS (Ezecution Plan Management
Service) service to compose a workflow (execution plan) describing at a high level the needed activities involved
in the overall data mining computation. Through the execution plan, computing, software and data resources
are specified along with a set of requirements on them. The execution plan is then processed by the RAEMS
(Resource Allocation and Ezecution Management Service), which takes care of its allocation. In particular, it
first finds appropriate resources matching user requirements (i. e., a set of concrete hosts Nodey, ..., Node,,
offering the software Ci,...,C},, and a node Nodey providing the C' combiner software and a node Nodez
exporting the classifier C1), then manages the execution of overall application, enforcing dependencies among
data extraction, transfer, and mining steps. Finally, the RAEMS manages results retrieving, and visualize
them by the RPS (Results Presentation Service) service (that offers facilities for presenting and visualizing the
extracted knowledge models).
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Fia. 4.1. A distributed meta-learning scenario.

5. Conclusion. In this paper we have pointed out that digital data volumes are growing exponentially
in science and engineering. Often digital repositories and sources increase their size much faster than the
computational power offered by the current technology. To handle this abundance in data availability, scientists
must embody knowledge discovery tools to find what is interesting in them.

When data is maintained over geographically distributed sites, Grid computing can be used as a distributed
infrastructure for service-based intensive applications. Various scientific applications based on Grid infrastruc-
tures, described in the paper, concretely show how it can be exploited for scientific purposes. Moreover, the
computational power of distributed and parallel systems can be exploited for knowledge discovery in scientific
data. Parallel and distributed data mining suites and computational Grid technology are two critical elements
of future high-performance computing environments for e-science. In such a direction, the Knowledge Grid
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is a reference software architecture for geographically distributed knowledge discovery systems that allows to
implement complex data analysis applications as a collection of distributed services.

[26]
[27]
28]

[29]
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MODELING STREAM COMMUNICATIONS IN COMPONENT-BASED APPLICATIONS *
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Abstract. Component technology is a promising approach to develop Grid applications, allowing to design very complex appli-
cations by hierarchical composition of basic components. Nevertheless, component applications on Grids have complex deployment
models. Performance-sensitive decisions should be taken by automatic tools, matching developer knowledge about component
performance with QoS requirements on the applications, in order to find deployment plans that satisfy a Service Level Agreement
(SLA).

This paper presents a steady-state performance model for component-based applications with stream communication semantics.
The model strictly adheres to the hierarchical nature of component-based applications, and is of practical use in launch-time
decisions.

Key words: grid computing; heterogeneous environments; stream computations; performance model; mapping.

1. Introduction. Grid computing is an emerging technology that enables the aggregation of heteroge-
neous, distributed resources to solve computational problems of ever increasing size and complexity. The
applications that best perform on Grid platforms are the ones requiring large computational power, or the
treatment of large data sets, i. e. a subclass of High-Performance Applications [17].

Such applications (e.g. data-mining [12], query processing [3], image processing and visualization [2] and
multimedia streaming [38]) can be conveniently expressed using a formalism based on two fundamental notions:
streams of data flowing between components, and components (either sequential or parallel) processing them.
Several programming languages are built on these concepts. Skeleton-based languages (e.g. SKIE [4] and
SBASCO [14]) and skeleton libraries (e.g. eSkel [11] and Kuchen’s C++ skeleton library [21]) exploit the
notion of streams for task-parallel skeletons (e.g. pipe and farm). More general languages like ASSIST [33] and
Datacutter [15] introduce modules and streams as primitive concepts to structure parallel applications.

Grid programming frameworks (e.g. GrADS [9], ASSIST [13]) are in charge of the complete automation
of application execution management, efficiently exploiting Grid resources. Moreover, they should be able to
execute the application with user-required QoS, adapting the execution to the dynamic changes of Grid resources.

The traditional component mapping strategy, in which components are statically deployed in a distributed
environment by their developers, does not fit well in such scenario. A broader deployment model is required,
featuring

(i) manual mapping, in which the components are already paired with their resources (on which they are
deployed),

(ii) resources discovery and selection at launch time, to guarantee the initial desired performance,

(iii) adaptive components management, that at run-time adjust the set of computing resources exploited
[31, 1], in order to adapt to different performance requirements (on-demand computing) or to changing resources
availability.

According to this model, the deployment framework must automatically manage the operations needed to
enforce the application desired QoS. This can be obtained with the specification of a performance contract [34].

Our approach intends to automatise the tasks needed to start the execution of HPC applications. Our final
goal is to allow an as large as possible user community to gain full benefits from the Grid, and at the same time
to give the maximum generality, applicability and easy of use.

The main contributions of this paper are as follows:

(i) We propose an analytical model of the dynamic behavior of sequential/parallel components, hierar-
chical components and component applications, communicating through typed streams of data. It is suited
to be used in simulation environments, to synthetically generate components and applications to test map-
ping/scheduling solutions in a repeatable and controlled setting. Eventually, the proposed dynamic model can
be exploited in the implementation of dynamic reconfiguration policies [1].

*This work has been supported by: the Italian MIUR FIRB Grid.it project, No. RBNE01IKNFP, on High-performance Grid
platforms and tools, and the European CoreGRID NoE (European Research Network on Foundations, Software Infrastructures and
Applications for Large Scale, Distributed, GRID and Peer-to-Peer Technologies, contract no. IST-2002-004265).
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(ii) Starting from the dynamic model we identify the set of variables that can be used to describe the
performance behavior of an application, and we derive the set of relations among them which hold at steady-state
(performance model). In this way we abstract from particular runtime platforms and we capture all possible
steady-state behaviors of an application. Moreover, their formulation by means of linear algebra allows us to
hierarchically compose the performance models of several components to derive the steady-state model of new
components or applications.

(iii) We introduce a definition of performance model for stream applications, which is exploited in launch-
time mapping and runtime reconfiguration decisions.

After a survey of related work (Sect. 2), this paper presents a dynamic model of stream-based computations
(Sect. 3), and in Sect. 4 such model is exploited to derive a steady-state performance model for stream-based
applications. In Sect. 5, such model is applied to a case study, to predict the program behavior at run-time,
and to devise a correct initial mapping for specified QoS levels. Section 6 concludes the paper, discussing the
presented approach and future work.

2. Related Work. Performance specification of components and their interactions is a basic problem
that must be solved to enable software engineers to assemble efficient applications [27]. Moreover, performance
modeling is one of the key aspects that needs to be addressed to face scheduling/mapping problems in het-
erogeneous platforms. It arises in automatic component placement and reconfiguration. Several recent works
focus on performance modeling techniques to analyze the behavior of component-based parallel applications on
distributed, heterogenous, dynamic platforms.

Analytic performance models in software engineering make extensive use of UML formalism to describe
software component behavioral models [35] and to derive models based on Queuing Networks [19] or Lay-
ered Queueing Networks [36] to be exploited in design phase of the lifecyle of software. The same holds
for Stochastic Petri Nets [20] and Stochastic Process Algebras [18]. Such models typically translate a paral-
lel application into an analytic representation of its execution behavior and the target runtime system (ac-
cording to the Software Performance Engineering methodology [28]). A detailed survey of such models is
in [5]. Such translation is usually not straightforward. It may require approximations to obtain mathemat-
ical models [29] for which a closed-form solution is known. Stochastic models usually require the solution
of the underlying Markov chain which can easily lead to numerical problems due to the space state explo-
sion [5]. More complex models can be solved by means of simulation, at the cost of a larger computation
time.

Symbolic performance modeling [32] is a methodology that enables a rapid development of low complexity
and parametric performance models. Symbolic performance models can be derived from simulation models,
trading off result accuracy for model evaluation cost. In [32] a symbolic performance model for the PAMELA
modeling language is introduced. It derives lower bounds for steady-state performances of applications starting
from a model of the program and of the shared resources, combining deterministic Direct Acyclic Graphs (DAGs)
modeling with mutual exclusion. One of the strengths of the PAMELA approach is that it is fast and easy to
transform a regularly structured application into a performance model. The main limitation of such approach
is that it computes lower bounds of the performance of a program. Symbolic performance models share several
properties with the model we propose: both can be extracted from the structure of programs, are parametric,
and can be efficiently evaluated. The main difference is that the presented model does not compute a lower
bound, but the asymptotic steady-state performance of an application, that is in general a better approximation
of the real performance.

The asymptotic steady-state analysis has been pioneered by Bertsimas and Gamarnik [10]. This approach
has been recently applied to mapping and scheduling problems of parallel applications on heterogeneous plat-
forms [23, 7, 6], in which the analysis is applied to particular classes of parallel applications (divisible load [23],
master/slave [6], pipelined and scatter operations [7]), in the hypothesis that the set of resources is known in
advance. The existing steady-state approaches apply only to a restricted class of structured parallel applica-
tions, assuming to know the runtime environment in such a way to derive optimal scheduling of the application
components. In a dynamic environment like a Grid an optimal initial placement of the components may be-
come useless very soon, because the conditions of the execution platform may vary dynamically. The presented
steady-state analysis can be applied to a broader class of structured parallel applications and tries to solve a
different problem, i. e. to build a concrete model of components/applications to be exploited in their mapping
on previously-unknown target platforms.
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Structural performance models [25] are the first effort to develop compositional performance models for
component applications. Most scientific and Grid component models rely on the concept of algorithmic skeleton.
Skeletons are common, reusable and efficient structured parallelism exploitation patterns. One advantage of
the skeletal approach is that parametric cost models can be devised for the evaluation of runtime performance
of skeleton compositions. In [14, 8] different cost models are associated to each skeleton of an application
to enhance its runtime performance through parallelism/replication degree adjustments and initial mapping
selection, respectively. The authors of [14] propose parametric cost models for PIPE, FARM and MULTIBLOCK
skeletons, that can be arbitrarily composed and nested. In [8], analytic cost models for applications composed by
PIPEs and DEALSs are derived within a stochastic process algebra formulation. Structural performance models are
extended by the presented model by proposing a methodology well-suited for generic composition of skeletons,
and by taking into account the synchronization problems introduced by using streamed communications.

Trace-based performance models [34, 26] are currently exploited in parallel/Grid environments to model the
performance of sets of kernel applications. Recording and analyzing execution traces on reference architectures
of such application it is possible, with a certain degree of precision, to forecast the performance of the same or
similar applications on different resources. Trace information is exploited in the presented model, but in different
way with respect to the existing approaches. Instead of profiling a whole application on a set of representative
resources, the application model is kept independent from resources. When the application will be mapped on
actual resources, historical information will be used to model the runtime behavior of single components, and
then such information will be coupled with the component interactions information to obtain a prediction of
the performance of the whole application.

The problem of deriving a performance model for components has been addressed also in the context
of component frameworks such as EJB [37], COM+/.NET [16] and CCA [24]. Such works apply analytical
performance model (LQN) or trace-based performance model to derive a model for components. In [30], trace-
based models are exploited to select the most suitable components, when multiple choices are available, to build
an optimal application, from the point of view of performance.

3. Dynamic Behavior. An application can be structured as a hypergraph whose nodes represent primitive
components and whose (hyper)edges represent communications or synchronizations between components. Nodes
interact with input (server) interfaces and output (client) interfaces. Edges are directed and can connect two
or more nodes through their interfaces. Two nodes may be linked by more than a single edge.

3.1. Communications. Communications between components are implemented through input/output
interfaces bindings. In this work data-flow stream communications are studied. Every component receives data
through one or more input interfaces, performs some computations, and generates new data to be sent through
one or more output interfaces.

In this context, a stream represents a typed, unidirectional communication channel between a non-empty,
finite set of components (producers) and a non-empty, finite set of components (consumers). The atomic piece
of information transferred through a stream is called item. A producer is connected to a stream through an
output interface, while a consumer is connected to a stream through an input interface. Every node can be
producer or consumer of several streams, and it is possible to specify cyclic structures (i. e. the communication
structure is not restricted to be a DAG).

Components can be connected by streams according to three different patterns:

(i) unicast: one-to-one connection. Every item sent on the output stream interface is received in order
by the input stream interface.

(ii) merge: many-to-one connection. Every item sent on the output stream interfaces is received by the
input stream interface. The temporal ordering of the items coming from each input interface is preserved, but
the interleaving between the different sources is non-deterministic.

(iii) broadcast: one-to-many connection. Every item sent on the output stream interface is received in
order by the input stream interfaces. The receptions happening on different input interfaces are not synchronized.

3.2. Computations. Components implement sequential as well as parallel computations. A sequential
component executes a single function in a single active thread, processing items as they are received. For a
parallel component, two scenarios are possible:

(i) data parallel: a single function is executed in parallel on different portions of the same data;
(ii) task parallel: several functions (or activations of the same function) are executed in parallel on
independent data.
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A primitive component, either sequential or parallel, at runtime repeatedly receives items from its input
streams, performs some computations and delivers result items to its output streams.

A component can have several input streams. The set of input streams is partitioned between the computa-
tions associated with the components. Each input stream is associated to only one computation; nevertheless,
spontaneous computations may exist, that do not need input items to activate, but follow own activation policies
(e.g. periodically).

A computation can be activated if the following conditions hold:

(i) the component can execute a new function (this means that it is idle, or it is parallel and threads are
available to execute it),
(ii) the associated input items have been received, or no item is necessary.

A sequential component can activate a new function only when it is idle. A parallel component can have at
most one active data-parallel computation at any given time (composed by a fixed number of threads), or several
task-parallel computations running in parallel (up to the maximum number of threads in the component).

A component can have several output streams. One or more computations of the component can dispatch
data on each output stream.

3.3. Node Behavior. In order to describe the behavior of a computation at runtime, consider Fig. 3.1.

Fia. 3.1. Sequential component at runtime

Without loss of generality, a sequential component is considered; the displayed quantities represent:
(i) ix(t): total number of received items at time ¢ from the k*" input interface;
(ii) e(t): total number of computations carried out at time ¢;
(iii) o0j(t): total number of sent items at time ¢ through the j** output interface.
Continuous quantities are used to model partial evolution, e.g. e(t) = 3.5 means that the node reached the half
way point in the fourth computation.
The activation of a computation can happen only when the number of items completely received on each
associated stream is greater than the number of partially computed items:

VE=1,....n  |ix(t)] —e(t) >0 (3.1)

The node implementation will exploit finite buffers to store received items for each input interface, therefore for
each input interface and associated computation the following must hold:

Ve=1,....n  ix(t) — |e(t)] < Tk (3.2)

where 7ij, represents the maximum number of elements that can be received on the k" input interface before
the stream blocks. Then the maximum admissible value for ix(t) at time ¢ is:

() = 11k + |e(t)] (3.3)

Assuming that no sensible delays are present between the end of computations and the beginning of the transmis-
sion of the produced items, the total number of transmitted items is related to the progress of the computations
of the node. In the general case of a node with s functions, the following equation holds for each output interface:

Vi=1,...,m oj(t):fj(el(t),...,es(t)) (3.4)

where e;(t) represents the number of activations carried out at time ¢ for the i — th function. The transfer
function f; relates the number of data outputs o;(t) to the number of performed computations e (t),. .., es(t).
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3.4. Edge Behavior. In order to describe the behavior of a data transmission on a stream, consider a
unicast stream. The involved variables are o(t), total number of items sent at time ¢ from source interface, and
i(t), total number of items received at time ¢ by the destination interface. A new transmission begins only after
a full item is produced:

i(t) < lo(t)] (3.5)

The edge implementation will exploit finite communication buffers and the network layer transfers chunks of
data. Let ¢~! be the minimum fraction of item transferred atomically. Then

Ci(t
o(t) — Lo /) <7 (3.6)
q
where 75 represents the maximum number of items that can be buffered. Therefore the maximum admissible
value for o(t) at time ¢ is:

0™ (1) = 15 + lg-i)] ';(t)J (3.7)

Whenever an edge buffer is full, a producer will block as soon as it tries and sends a new item. From (3.4) we
obtain:

o™ (t) — f(el(t)ﬂ s ;em(t)) <0 (3-8)

For merge streams with k source interfaces and broadcast streams with k destination interfaces, the general
constraints (Egs. (3.5) and (3.6) for the unicast stream) become:

i) < > ok(t)
merge: {Zk onlt )k (1) < (3.9)
Yk ig(t) < olt)

broadcast: {Vk o(t) — in(t) < Ton

For simplicity, in the previous equations the network quantization constant ¢ has been suppressed.

5. Runtime Behavior. At runtime, a component can be seen as a dynamic system. The system state
at time ¢ is described by a set of state variables: i1 n,(t), €1, n.(t), 01,..n,(t). Thus, the state space PP is
an = n; + ne + n, dimension Euclidean space. The dynamic behavior of a component can be modeled by a
trajectory p(t) in such state space.

The runtime behavior of a component is fully specified when it is coupled with hosting resources. A
computing resource is modeled by w(t), the available computing power at time ¢ (measured in MFlop/s) and
a communication link is modeled by b(¢), the instantaneous bandwidth at time ¢ (measured in MByte/s).
Moreover, a characterization of the items is required. It is assumed that an item processed by a component
requires [ units of computing work to be processed (measured in MFlop) and s units of communication work to
be transmitted (measured in bytes).

Introducing the step function u(x), the number of performed (partial) computations per time unit is:

de

= u(min (@)oo [in)]) = )

w(t)

.u(omam(t) - f(€1(t), ... ,em(t))) e

while the equations governing the number of packets flowing in the unicast, merge and broadcast streams per
time unit are, respectively:

(3.11)

% = (L ®)] - z(t)) ( ma () (t)) 5) (3.12a)
% - <Z Lox(®)] —itt) ) ( - ) A (3.12b)
CZ—f =u([o®] = ir®) -u(ime @) - zk(t)> 5) (3.12¢)
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Note that an important assumption has been made. The work required to perform a computation is
supposed to be independent from the values of the incoming items; their values are used just to perform
computations. This is a common assumption in parallel data-flow programming, but there are applications (e.g.
query processing and data mining) that do not respect this assumption.

The dynamic equations provided by the model can be written in the general form:

p(t) = U(p(t)) a(t) (3.13)

We denote with U : P — M,, ,, the function that, for every point in the state space, provides the control part
of the differential equations (the ones involving the step functions), and with a(t) the resources part (involving
w(t) and b(t)).

We observe that the control matrix is piece-wise constant over non-infinitesimal time intervals: it descends
from quantization in the general equations for the nodes (3.11), and in the equations for the streams (3.12).
Then, the Cauchy problem can be solved constructively. Starting with tg = 0,p(to) = 0,Uy = U(0), we
inductively define

pi(t) = /t Uia(T)dr

t;
tiyr = sup{t > t;|U(pi(t)) = Ui}
t—t]

In this way, p(t) is defined as the concatenation of the pieces p;
pi+1(t;)) and piece-wise differentiable.

4. STEADY STATE BEHAVIOR. The steady-state behavior of the system can be analysed by study-
ing mean values p for the rate of change of the state variables:

[ti,tira): it 18 @ continuous function (p;(t;) =

p= Bl = [ " p(tyde = lim 2O P (4.1)

to t—o0 t— tO

The choice of tg is arbitrary, in fact the weight of the transient phase fades away considering infinite executions.
However, to ease the reasoning about these quantities, we can interpret ¢y as the end of the transient phase,
e.g. when the last stage consumes the first data item in a pipeline.

The essential aspect to point out is that for the steady-state model the focus is on relations among the
steady-state variables, rather than in their values. In this way it is possible to abstract from particular target
platforms, and capture the class of all possible steady-state behaviors of an application.

The steady-state behavior of a node can be modelled associating to each computation e (t) its activation
rate

& = lim D) —exlfo)

4.2
t—o0 t—to ( )

Spontaneous computations are free variables in the steady-state model. Computations that are activated by
data reception, instead, are subject to the following condition.

PROPOSITION 4.1. The steady-state execution rate of a computation is bound to be equal to the input rates
on the input interfaces that activate the computation.

Proof. Let k € A;, we will prove that &; — 7, =0

o — 1 = lim S =eilt) gy k() — iklto)

t—o0 t— to t— o0 t— to
— lim ei(t) — 61'(150) — ’ik(t) + ik(to)
t—o0 t— to

ez(t) — Zk(t) ei(to) — ’Lk(to)

t—o0 t—to t—to

I
5
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The numerator of the first addend is limited by constants: (3.1) gives
e;(t) —ix(t) <0
and (3.2) (noting that e(t) > |e(t)]) gives
ei(t) —ik(t) > —Tik

while the numerator of the second addend is constant, so the limit tends to zero when the denominator tends
to infinity. O

The data transmission rate o, of an output stream will depend on the activation rates of one or more
computations of the node. In the previous section, the number of data outputs has been related to the number
of performed computations by means of a transfer function fi (Eqn. (3.4)).

PROPOSITION 4.2. If the transfer function is (asymptotically) linear

ok = fr(e1,. . em) =arer +...alen, +crler, ..., em)
with

lex (e

oo |le]]

then a steady-state is eventually reached, in which the output rate is a linear combination of the computation
rates:

o = Zakiéi (43)
1=1

Proof.
o i 2@ = fule(to)) _ o (e(t) — eto)) + cle(t) — cle(to)) _
o = lim = lim =
t—o0 t—to t—o0 t—to
. e(t) —e(t . c(e(t)) —cle(t _ = -
ou- g G50+ py SEOZEE) 0w e40= Y e

d

The steady-state behavior of streams can be modelled by associating to each endpoint its data transmission
rate. Balance equations relating input and output endpoints are derived.

PROPOSITION 4.3. The steady-state transmission rate at the endpoints of a stream are characterised by the
following balance equations:

unicast: 04 =1p (4.4a)
merge: 04 + o0p = ic (4.4b)
broadcast: 64 =g =1c (4.4c)

These equations are easily extended in the case of more endpoints.
Proof. The proof is similar to the one of Prop. 4.1, exploiting:
(i) (3.5) and (3.6) for unicast,
(ii) (3.9) for merge,
(iii) (3.10) for broadcast.
d
The ezecution rate for each computation, and the data transfer rate for each input/output interface com-
pletely specify the application state from the point of view of its performance, therefore we will call them the
performance features of our application.
Proposition 4.2 allows us to express output rates as linear combinations of execution rates, provided that
we know the related coefficients. These coefficients must be provided by developers of programs/components
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by means of some performance annotations, in order to build a performance model. Proposition 4.1 allows
us to eliminate execution rates associated to data-dependent computations. Proposition 4.3 allows us to relate
output rates to input rates of linked modules.

The performance model is therefore defined as an homogeneous system of simultaneous linear equations,
that describe the relations that hold in the steady-state among the performance features. The set of solutions
of the system is a vector subspace of R (where n is the total number of variables, either input rates, output
rates or execution rates); we call the dimension of the solution space the number of degrees of freedom of
the application. If this dimension is 1, then the system is completely determined as soon as a single value for
any variable is imposed. The degenerate case of a space with dimension 0 implies that the only solution to the
system is the null vector (i. e. every variable must be zero): this means that the predicted steady-state is a
deadlock state, in which no computation or communication can proceed. The number of degrees of freedom of
the system will impact on how many constraints must be provided in order to derive the expected values for
every variable.

Clearly, only positive values of the rates are meaningful, so we can conclude that every assignment of positive
values for the vector [ie o]T € R™ that is a solution of the system is a possible “operation point” for the modeled
application.

The outlined approach is efficient, in fact the simplification of the simultaneous equations can be achieved
using well known techniques.

5. Application of the Model. We show how the presented model can be applied to a real application
(see Fig. 5.1), a rendering pipeline. The first stage requests the rendering of a sequence of scenes while the
second renders each scene (exploiting the PovRay rendering engine), interpreting a script describing the 3D
model of objects, their positions and motion. The third stage collects images rendered by the second one, and
builds Groups Of Pictures (GOP), that are sent to the fourth stage, performing DivX compression. The last
stage collects DivX compressed pieces and stores them in an AVT output file.

Parallel DivX
Encoder Encoder

Frame A GOP Output
Sequencer Assembler Store

Fic. 5.1. Graph of the render-encode application

For GOPs of 12 pictures, the performance model for our test application is (we eliminated execution rates
for data-dependent computations):

Cre = Cro =04 = O3 = C3 =12 C30 =
=12.-Cy; =12-Cyo =12 - Cs;

and has one degree of freedom.

5.1. Convergence to Steady State. We start showing that the application behavior actually tends to
steady-state.

Figure 5.2 shows performance features taken from a real execution of the test application on a Blade cluster
consisting of 32 computing elements, each equipped with an Intel Pentium III Mobile CPU at 800MHz and
1GB of RAM, interconnected by a switched Fast Ethernet dedicated network. The application was configured
to exploit 20 machines in the render computation, and one machine for each remaining node.

Performance features are measured as in (4.2), i. e. averaging the number of performed computations on
the duration of the execution. The top diagram shows the performance of the Render and the GOP Assembler
nodes, which operate on frames, while the bottom diagram shows the Encoder and Collector nodes, which
operate on GOPs. The similarity of the curves in the left and the right diagrams shows empirically that
Prop. 4.2 is satisfied not only at the steady-state, but also during the finite computation, as soon as buffers are
filled (curves in the same diagram are related by a factor of 1, while between the two diagrams there is a scaling
factor of 12).
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Fia. 5.2. Convergence to steady-state of averaged performance features

Moreover, Fig. 5.2 shows that the averaged computation rates stabilize during the computation, allowing
us to adopt a steady-state model to approximate the actual application run.

5.2. From Desired Performance to Resource Requirements. Typically, if someone is facing a prob-
lem by means of HPC tools, he has clear in mind some sort of performance requirement for his application.
This can be expressed in different forms, e.g. completion time, computation rate, response time, etc. In our
framework we express requirements as bounds on computation rates. That is the most natural way dealing
with stream parallelism. This means that, if the problem is expressed in different terms, some sort of prelim-
inary transformation should be applied (e.g. study the initial transient length to relate completion time to
computation rate, or use the Little’s Law to translate response time requirements in computation rate ones).

1
Suppose that we require 1 frame/s (the constraint is expressed by C5; > 12’ because each input for Cs is

composed by 12 frames). Applying the performance model we derive required computation and transfer rates
for each computation and communication.

These values, paired with program annotations (see Tab. 5.1) on the weight of computation or communi-
cation (e.g. MFLOP per task/MB transferred to/from memory and message size, respectively) can be used
to derive requirements that the resources must fulfill in order to meet the performance requirements on the
application.

For instance, we can show the requirement for stream S = Cb5,. Since it is required to carry 1.19MB
messages with at least rate 1/s, a link of 9.5 Mbit/s is sufficient. Likewise, the test application will never
scale above 10 frames/s with a 100 Mbit/s network, and needs to be redesigned, if we want to reach higher
performances.

Computational requirements are handled in the same way. The performance model solution gives, for
each computation, the minimum required execution rate. Then we need an invertible performance model for
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TaBLE 5.1
Deployment annotations for the example application.

Component Cl Cg 03 04 05
Processor i686 1686 1686 1686 1686
Memory (MB) 64 256 64

CPU Work 3307 52

Mem. Work 302 104
Connector Sl SQ Sg S4
data type | param pic GOP zip
data size 54B 1.19MB 14.24MB 2MB

each atomic computation that, given the required execution rate, produces the resource requirements. This is
essential in an execution environment in which resources are not known in advance.

The model presented in [22] suits our needs. We can associate to each computation a weight, represented by
a pair of values w = (wy rprLop, Wy B), specifying the number of floating point operations (expressed in MFLOP)

and the data transferred to/from main memory (expressed in MB) per activation. Resource power is described

w w
by the pair p = (paprrLop/s, PrB)s), and execution time is therefore estimated as ¢(p, w) = MFPLOP | —MB

PMFLOP/s pMB/s.
This model can be employed also to find appropriate parallelism degree for parallel computation nodes.

We, in fact, can relate ¢t(p, w) for an aggregate resource p = [p1, ..., px| to the performance of the code on single
resources t(p;, w).
Assuming perfect speedup, we obtain:

tp.w) = (Dt w)™)

3

-1

In this way we can derive, for each computation node, matching resource requirements. These will concern
single resources for sequential nodes, and aggregate ones for parallel nodes.

Results commented. In Fig. 5.3, two mappings (top on an homogeneous cluster, bottom with heterogeneous
resources) for the same constraint are displayed. The first thing to note is that, even if the heterogeneous run
has more variance in achieved bandwidth, the average bandwidth is comparable with the homogeneous one.
This provides evidence that the employed performance model correctly handles heterogeneous sets of resources,
determining the correct parallelism degree. The good performance in heterogeneous run (its completion time is
even shorter than the one for homogeneous run) is explained by the fact that the model can match computation
requirements with suitable resources, i. e. schedule memory bound computations (e.g. encoding) on machines
with faster memory, and FPU bound ones (e.g. rendering) on machines with faster FPU.

The obtained results are as expected: the mapping computed using the performance model fulfills the
constraint, at the beginning and most of the time of the application run. This occurs because, in order to build
our model, we sampled the achieved performance on the first frames of the movie, but the application workload
slightly changes with the evolution of the movie. This is evidenced by the smoothed bandwidth curve, that has
the same course in the two experimental settings: the workload is heavier around 100s and 300s, while it is
lighter in the middle and at the end.

6. Conclusions and Future Work. In this work we described an analytical approach to map a class of
applications on a Grid. These applications interact through streams of data, processed by several autonomous
software components, either sequential or parallel. We presented a steady state performance model for these
applications and we applied it to a case study, a rendering pipeline of sequential and parallel components. The
model was exploited to predict a program behavior at run-time. Then we showed a general methodology to
devise a correct initial mapping for the application, driven by specified QoS levels. At last, we showed the results
of our mapping methodology with the presented application, and we discussed the results of the mapping and
the execution on homogeneous and heterogeneous sets of resources. We obtained good results in both cases.
The application was correctly mapped and the QoS requirement respected with a small error.

Analytical [35, 19, 36, 20, 18, 29] and structural performance models [25, 14, 8] discussed in Sect. 2
need the full knowledge of the target platform to derive performance measures. Therefore, to compare re-
sults of different mappings, they must be evaluated multiple times. Our approach decouples the modeling
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Fia. 5.3. Two executions of the test application: top) homogeneous clusters of Athlons XP 2600+, down) set of heteroge-
neous resources (9 P{@2GHz, 1 Athlon XP 2800+, 1 P/@2.8GHz).

of the application performance from the target platform, allowing us to evaluate the model once to de-
rive enough information to drive the mapping process. Trace-based approaches [34, 26] are used to over-
come the limitations of previously discussed approaches, but they are not compositional. Therefore they
must be applied from scratch to every new application, even if it is built from the same set of compo-
nents.

All those models and the presented one share an assumption on the behavior of the applications: compu-
tation executions must be independent from the actual values of the input set. Otherwise, two executions of
the same application would be not comparable (this is called ergodicity for stochastic models). For applications
that do not meet this requirements, the best solution is to resort to runtime adaptation.

The presented approach is not perfect. The initial mapping can be considered a good “hint” to start the
execution of an application on a Grid. The dynamic changes in resources during the execution can not be
easily included in launch-time strategies. Our approach must be coupled with rescheduling strategies at run-
time to solve such problems. Our future work is going in this direction. The presented steady state model
can be exploited at run-time to adapt the behavior of components to changes in resource performances. In
this way, it should be possible to fulfill the QoS requirements during the whole execution of the applica-
tion.
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Abstract. In this paper we describe DPFPA (Double Precision Floating Point Accelerator), a FPGA-based coprocessor
interfaced to the CPU through standard bus connections; it is conceived to accelerate double precision floating point operations,
featuring two double precision floating point units, a pipelined adder and a pipelined multiplier with a suitable number of stages.
We tested its performance by implementing a Montecarlo-Metropolis simulation of a dipolar system, using a proper software
development environment designed and realized in our laboratory. DPFPA can provide a speed-up equal to 4, with respect last
generation PC, showing also a good scalability in terms of clock frequency, memory capability and number of computing units.

Key words: FPGA; hardware accelerator; high performance embedded system; parallel processing.

1. Introduction. Scientific research owes a lot to computer systems which allowed the achievement of
results otherwise unthinkable [Marsh, 2005][Boghosian et al., 2005]. A powerful computing system permits
the study of several phenomena through the employment of simulations like statistical ones into which the
system under analysis is made to evolve from a certain initial condition, by modifying a few of its characteristic
parameters and by evaluating the feasibility on the basis of a proper merit function. These operations are
iterated thousands of times to bring the system in a new stable state.

Several of these simulations perform double precision floating point operations since they provide the accu-
racy required to appreciate even the smallest fluctuations in the typical variables of the simulated phenomena.
On the other hand, this could represent a hard task even for the most powerful processors which take a lot of
clock cycles to execute a single floating point operation.

The lack of computing power is generally overcome by resorting to supercomputers or clusters [Dongarra et
al., 2005] but in the last years the use of accelerators, i. e. dedicated hardware systems, is gradually establishing
as a valid alternative, due to the feature of these devices which allow to perform those operations in less time
than traditional processors [Buell et al., 2007][Herbordt et al., 2007]. Several researchers worked in these years
not only in this sense but also to improve “methodology, tools and practices supporting the integration of
hardware and software components during system design and development” [Hankel et al., 2003][Wolf, 2003].

At present a similar project concerning a Double Precision Floating Point Accelerator (DPFPA) to process
complex functions has been carried out in the Microcomputer laboratory at the University of Pavia (Italy).
This activity suites well with the mission of the laboratory which aims to design and develop special purpose
architecture for computationally intensive applications. The designed accelerator is implemented onto a FPGA
device lodged on a board interconnected with a Personal Computer and is able to execute floating point opera-
tions faster than a traditional processor [Danese et al, 2007]. Moreover, a proper specific programming language
and a suitable software development environment were realised allowing the user to write, translate and load
proper instructions sequences written in a specific language.

This paper describes the implementation, onto the accelerator, of a Montecarlo-Metropolis simulation of a
dipolar system, a typical computational challenge for supercomputers.

The Montecarlo Metropolis algorithm is an excellent benchmark to test performance of a special purpose
calculation system, since its computational core consists of few floating point operations (double precision)
repeated over and over: this represents the ideal condition to exploit an application specific architecture devoted
to the acceleration of only particular instructions.

Moreover, the algorithm features a SIMD fashion so it is suitable for a distributed implementation which
can exploit more calculation units so increasing the overall achieved speed up.

Finally, typical Montecarlo simulations involve hundreds thousands particle systems and can run for weeks
or months on the most performing computers with a single CPU: the availability of powerful accelerating
units, in case connected into a cluster configuration, makes possible simulations currently unfeasible or sim-
ulations with more particles than now, achieving a better comprehension of the physical phenomena under
analysis.

* Department of Informatica and Sistemistica, Pavia University, Italy, E-mail: francesco.leporati@unipv.it, Phone: +39
0382 985678
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In the past other research groups proposed accelerators based on FPGA for Montecarlo simulations:

e one of the first proposal is presented in [Postula et al., 1996] where is described a metallurgical sintering
simulation implemented on a FPGA device with a two orders of magnitude speed-up with respect to a
mid 90’s workstation;

e in the same years, other authors conceived a FPGA implementation of a particular Montecarlo technique
(Swendsen-Wang clustering) with a considerable acceleration with respect to a 15 MHz DSP or making
use of cellular automata [Cowen et al, 1994][Monaghan et al, 1992];

e more recently, a reconfigurable computer was designed devoted to heat transfer simulations, working
on single precision floating point data and achieving an order of magnitude speed-up relative to a 3
GHz P4 processor [Gokhale et al, 2003]; the peculiarity of this contribute is the idea of using widely
available floating point libraries for implementing a calculation function onto FPGA, thus shortening
design time;

e finally, in [Zhang et al, 2005] it is presented a simulation of a financial model implemented on a FPGA
device to accelerate double precision floating point calculations. The achieved speed-up is 26 relative
to a 1.5 GHz P4 processor;

e with regard to FPGA based architectures specifically devoted to physics simulations, the recent lit-
erature proposed the works of Cruz and Belletti [Cruz et al, 2001][Belletti et al, 2006]; the first one
provides interesting architectural issues although using Altera Flex 10K30 components limits the work-
ing frequency to 48 MHz; the second is a project subsequent to our one, employing Altera Stratix family
components and aims to build a cluster of accelerators based on the most recent FPGA devices.

For what concerns a more general use of SoC for computing intensive applications there is a wide literature to
which the reader could refer. The most part of the October 2007 issue of IEEE Computer was devoted to that
topic [Wolf, 2007].

In the next section the architectural features of the accelerator, of the specific language designed and of
its software development environment will be described. Then, the basic physical principles of the simulation
and its needed modifications for optimizing the use of the accelerator will be highlighted. Finally, we will see
the implementation of the algorithm on the accelerator, taking advantage from the use of a ‘dedicated stage’
pipeline and the comparison with a few commercial and popular processors showing a clear speed-up. Some
remarks explaining the evolution of the project will conclude the paper.

2. The Accelerator. We realized a FPGA-based accelerator connected to a host PC to accelerate the
hardest part of a calculus. Our idea refers to a board with a FPGA device (Altera Stratix family) and a Flash
memory storing the configuration code; a JTAG port is used to send the program to the Flash memory from
the PC. Recently, Altera has made available some boards with these features. These boards can communicate
with PC through the network requiring a proper network manager. In this case, both the accelerators and
the network processor can be loaded on the same FPGA. The board we bought is equipped with a Stratix
1540 FPGA component on which a 32 bit RISC CPU, called Nios, is implemented; this processor can be
programmed using C language and is supplied with basic libraries to easily handle the on board devices:
2 MB Ram, 8 MB Flash Memory, 16 MB Compact Flash Memory, 100 Mb/s Ethernet Interface, 2 Serial
ports.

We designed an accelerating unit that is able to implement different functions (also complex like sin, cos,
log, ..., through Taylor series). Thus, it can be used for several applications, also very diversified. Moreover,
the instruction set is fully re-programmable according to the particular calculation to be performed.

The designed unit (DPFPA) can exploit the parallelism present in the operations since double precision
Floating Point MAC operations can be executed at the same time in the sum and multiply pipelines present
onto it. The main part of DPFPA is DPFPP (double precision floating point processor), whose architecture
consists of (fig. 2.1):

e 2 accelerating units, independently working;
e a Cache Memory (4 banks), which can store input data and results for the two accelerating units;

A suitable bus devoted to communication between Accelerator and Nios processor ("sub bus") has been
also implemented. The Math Unit functional core is a double-precision floating-point ALU, which integrates
both an adder and a multiplier operating in a parallel fashion. Both devices are pipelined (9 stages for the
adder and 15 for the multiplier) so that high clock rates are achievable. Note that, in the expected applications,
accurate coding can minimize the negative effects of such latency.
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Fia. 2.1. Architecture of the computational unit implemented onto the FPGA device.

Together with the adder and the multiplier, the ALU also contains 3 register banks, each able to store 4
double-precision floating point numbers. The banks are each tied to a particular purpose (one is for input data,
one for adder results and one for multiplier results).

Like in many similar applications, to make computing elements and storage space independent, a FIFO
memory for both inputs and outputs is implemented (there are two FIFO queues on the output since arithmetic
results are separated from logical ones).

The ALU operations are encoded in 37-bit words, able to simultaneously trigger either a sum or a com-
parison, a multiplication, a data fetch, 3 write operations to the internal register banks and the output of a
result.

To achieve better performance with our specific task, the operands of the adder can optionally be multiplied
by [—2, —1, 2] for the first operand, and [—1, —0.5, 0.5] for the second one. In a similar way, the multiplier result
can be doubled, halved or negated without extra clock cycles.

Since feeding the op-codes would require a large and mostly wasted bandwidth (the code is essentially cyclic,
so that the same op-codes are executed over and over again) the code sequences are stored in a Microcode
Sequencer. This device stores the program sequences in an internal RAM and associates to them a 6-bits op-
code (this is much like having a CPU with a micro-programmed control unit whose code can be changed by the
application to define a custom instruction set).

The Math Unit itself has no addressing capabilities toward either input or output channels, so every memory
I/0O operation must be managed by an external device. A Memory Manager was deemed to that task and
conceived for a specific application class: those where most computations are performed on data logically
organized in three-dimensional matrices. Decoupling the allocation issues from the computing algorithm, the
Memory Manager computes the memory addresses from semantic-level inputs, such as addresses in the matrix
domain (X — Y — Z coordinates) or offsets between elements (the matrix is supposed to be cyclic, so that
e.g. the leftmost element in a row is adjacent to the rightmost element in the same row). This is of extreme
importance, since otherwise the same code would require at least a recompilation to be executed on matrices
with different sizes.

The internal Control Unit (CU) decodes instructions coming from the host computer and drives the control
signals implementing the requested function. It mainly consists of 3 units:

e Instruction Decode: selects between data and instructions from host to the DPFPA. Only in the last
case it generates proper control signals;

e Jump Unit: sets the RAM address to the starting point of the next instruction sequence to be executed;

e RAM: stores sequences corresponding to the instruction set for the particular function to implement.
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Instructions are 64 bit wide exploiting part of the redundancy present in the IEEE 754 standard of floating
point representation, to distinguish them from double precision numbers. Two kinds of instructions have been
implemented:

e Programming instructions to store in the CU RAM executive sequences.

e FEzxecutive instructions to perform specific calculations, recalling sequences already loaded.
Programming instructions to store in the CU RAM executive sequences. Executive instructions to perform
specific calculations, recalling sequences already loaded.

A great advantage of our approach is that the sequences of an executive instruction are performed in an
iterative manner until a new executive instruction will be received by the CU. So, during the execution of the
calculus, CU has to decode only few instructions and can save a great amount of time.

3. Programming DPFPP. As previously stated, DPFPP can handle two types of instructions: pro-
gramming instructions and executive instructions. The former are used to store microcode sequences into the
CU RAM, making microcode words to be loaded at the correct address into the RAM of CU. The word of
microcode, allows the assertion of needed control signals for each clock cycle.

Each executive instruction allows, on the other hand, the recalling of sequences already stored.

We realised soon, that the sequence development using binary microcode was a very hard and inefficient
work. Thus, we chose to design and develop a pseudo-assembly dedicated language that simplifies the sequence
writing. The instructions of the language are mapped directly on the hardware and reflect the operation that
DPFPP can execute. Table 3.1 shows the list of the instructions and their syntax.

TaBLE 3.1
List and syntaz of the language instructions.

| Instruction Syntax |
MOV reg;

SUM c1 op ¢2 op ; SUM cl op ; SUM c1 op op SUM op c2 op; SUM op op
MUL c op op; MUL op op; MUL c op;

OUT xx;

INT;

)

A proper translator was also developed, using standard Unix tools such as Lex and Yacc.

Furthermore, we developed an allocator for an easy generation of the file with the programming instructions
that must be sent to the DPFPP. Finally, we designed a simulator, reproducing exactly the DPFPP working
and enabling pipeline and register inspection. The simulator also allows the visualisation of the clock cycles
needed by a specific sequence or by a set of sequences. Thanks to this tool, we can execute microcode sequences
without loading them into the DPFPP; thus, we can simplify the sequence debug, verify the results’ correctness
and check the performance.

All these tools are integrated in a unique development environment, realised in the Microcomputer labora-
tory to ease the sequence development. There are four main steps: first, we write and compile source code using
an internal editor, then we test the code using the simulator. Finally, we produce the programming file that
has to be sent to the DPFPP by using the allocator. More details on the hardware and software for DPFPA
are in [Danese et al., 2003].

4. The Considered Problem. Liquid crystals and colloidal suspensions are two examples of systems for
which the orientation order has been widely studied through simulations. In both cases interactions among
particles play a dominant role. In previous works, we realized a cubic lattice model describing the interactions
effects in a dipolar system in presence of an external lattice field [Bellini er al., 2001]: simulations made with
this model identified the presence of two phase transitions and the obtained results could in part explain the
phenomenon known as “anomalous bi-refringence” as analyzed in [0’ Konski et al., 1950][Radeva et al., 1996].

On the other hand, simulations take unacceptably long times even on the most recent and powerful com-
puting systems ranging from a few days up to some weeks depending on the size of the simulated system. The
core of the computation is, in fact, the evaluation of the energy since, according to the implemented algorithm
(Montecarlo-Metropolis), equilibrium in a system with N particles is reached through a sequence of moves,
carried out by randomly selecting a spin, changing its orientation through a random angular displacement and
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evaluating the corresponding change in energy. Each move can be accepted or rejected depending on the vari-
ation of the energy associated with it [Metropolis et al., 1953]. We simulated lattice systems with particles
ranging from a few hundreds up to 100.000 considering only first neighbor interactions, i. e. the interaction
between each spin and the six closest ones in the X+, X—, Y+, Y—, Z+, Z— directions. Periodic boundary
conditions were applied [Frenkel et al., 1996]. The associated energy of each dipole due to the presence of an
external field oriented toward z axis is:

(1) Egip = mom;(dip)
The terms due to the interactions between the considered dipole and each of its first neighbours are:

(2) Ex4+ = 2% momy(dip) x mom,(X+) +

—momy, (dip) * momy(X+) — mom(dip) * mom.(X+)
(3) Ex_ =2 xmomg(dip) x mom,(X—) +

—momy, (dip) * mom,, (X —) — mom.(dip) * mom (X —)
(4) Eyy = —momg(dip) * mom,(Y+) +

+2 % momy (dip) * mom, (Y +) — mom (dip) * mom, (Y +)
(5) Ey_ = —mom,/(dip) * mom, (Y —) +

+2 % momy, (dip) * momy (Y —) — mom (dip) * mom, (Y —)
(6) Ez+ = —momy(dip) * mom,(Z+) +

—momy, (dip) * momy(Z+) + 2 * mom, (dip) * mom(Z+)
)+

( (
(7) Ez_ = —momg(dip) x momgy(Z—
( (Z—) + 2« mom(dip) * mom,(Z—)

—momy (dip) * momy (Z
where the components of the moments for each dipole are:

(8) mom,, (dip) = cos(6
(9) momy (dip) = cos(6
(10) mom,(dip) = cos’(6)

and 6, ¢ are the angular co-ordinates of a generic dipole. The overall energy of the dipole is the sum of all these
contributes:

(11)  Erorldip] = 0,5 [Egip — k* (Exy + Ex_ +Eyy + Ey_ + Ez + Ez_)]

The global energy in the system is the sum extended on the whole dipolar set.

The simulated system is characterised by an initial random particle distribution not corresponding to that
achievable at the equilibrium. This means that the change in the orientation of a dipole will modify the
moments and the energy in the others, mainly in the neighbours. These ones, in turn, will influence their
respective neighbours and so on, propagating those variations in the moments throughout the lattice. This
reflects in energy fluctuations that disappear only after a sufficient number of cycles into which ETOT for each
dipole is calculated (equilibration). Only at this point, the Metropolis test on energy variation can be applied.
This loop series corresponds to nearly the 85% of the calculation but it consists of only few instructions, so
justifying the idea of an accelerator specialized in processing only those operations. To do this, we employed
the FPGA technology, which is cheaper and simpler than ASIC in terms of design and test.

However, during the design phase, we considered convenient to realise a more general chip able to accelerate
those double precision floating point instructions which can be often found in scientific simulations. This extends
the applicability of the DPFPA both to models different to that used (i. e. hexagonal lattices instead of cubic
ones) or to completely different fields where high performance computing is mandatory.

5. Energy Evaluation and Implementation. To simplify the readability of the energy calculation on
the DPFPA, as it will be described in the following, let’s rewrite the expressions reported in section 3. The

interaction energy of each dipole can be written as 7% and the sum on all the dipoles will return the
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global energy in the system. CT is the local field generated by the neighbors of the considered dipole and can
be expressed as:

(12) CT=CTX«xSCxk+CTY «SS+xk+CTZxCxk+C

where k is a constant depending on the system density and SC = sin(6)cos(p), SS = sin(0)sin(p), C = cos(8),
with 0, ¢ angular co-ordinates of the dipole. CTX, CTY e CTZ are the local components of the field generated
by the neighbour dipoles. They are respectively equal to:

(13) CTX =(MXX+MX*«X+MYX+MY*«X+MZX +MZ«X)
(14)  OTY = (MXY + MX*Y + MYY + MY Y + MZY + MZ Y)
(15)  CTZ=(MXZ+MX*Z+MYZ+MY xZ+MZZ+MZxZ)

We identify with M X X, M XY, M XZ the local field components generated by the first neighbor dipole in the
direction X —, and with M X x X, M X «Y, M X x Z the local field components generated by the first neighbor
dipole in the direction X +. The other terms due to the effect of dipoles in directions Y+ /Y — and Z+ /Z— are
defined accordingly to the same notation. Moreover the local field, due to the neighbors, changes the components
of the dipolar moment. These should be evaluated each time according to the following expressions:

(16) momy(dip) = CT « SC, momy(dip) = CT x SS, mom,(dip) = CT xC

While the SC, SS and C terms are evaluated at each movement, the other terms should be re-calculated for the
number of cycles necessary to equilibrate the energy in the system. All these operations, finally, are repeated
M x N times with M =cycle number (i. e. 10.000) and N = number of dipoles in the system. This accounts
for the high computational weight of the elaboration.

v

Dipole 4 Dipole 1

Y

v

Fia. 5.1. Diagonal scanning.

With ’scanning’ we mean the order through which the dipoles are processed during the simulation. The
identification of a suitable order can significantly affect the algorithm efficiency in terms of memory access and
reuse of data. If we would not use any particular scanning order but if we only would consider dipoles in the
same order of memorization (1%¢, 2", 374, .. .), their elaboration would need 21 input data (SC, SS and C of
the moved dipole plus the moments of its six first neighbors), returning the 3 new components of the moment
of the considered dipole.

However, if the selection order considers dipoles close to each other toward a diagonal direction, these last
ones share two first neighbors whose parameters are no more needed for the elaboration of the new dipole. Fig.
5.1 shows an example of this, since passing from dipole 1 to 2, dipoles 3 and 4 are preserved as first neighbors.
This reduces to 15 the number of input data needed, and a correspondent saving in transfer time per each dipole
is obtained. Another advantage yielded by the diagonal scanning consists in avoiding calculations. Considering
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again fig. 5.1 we note that dipoles 3 and 4 give the following contributes to each component of the local field in
dipole 1:
(17) MX X + MY Y = 2% momy(4) — momy(3)
(18) MX «Y + MY %Y = —momy(4) + 2 x momy(3)
(19) MX «Z + MY x Z = —mom_(4) — mom(3)
If we now consider the contribute of the same dipoles to dipole 2, the next reached by the diagonal scanning,
we find:
(20) MXX + MYX =2xmom,(3) — momg,(4)
(21) MXY + MY X = —momy(3) + 2 x mom,(4)
(22) MXZ+ MY Z = —mom,(3) — mom(4)
The values on the right are obtained by substituting at the terms on left, those values reported in equations in
section 3.
Equations 19 and 22 are equal and can be calculated only once. The same considerations are applicable in
case of movements toward Y Z or X Z direction with a consistent sparing of operations.
Finally, the moment components involved in equations 17-19 for the dipole 1 are also present (with different

coefficients) in equations 20-22 and, again, they can be calculated only once (i. e. for dipole 1, storing them in
registers from which they can be retrieved later for the next dipole) with a further saving of time.
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Fic. 5.2. Diagonals for scanning in XY face.

The diagonal scanning basically consists of XY movements as shown in fig. 5.2.

The cubic lattice is considered as made by ‘slices’ and when the last dipole is reached on an XY face, a
little movement toward the YZ or X Z direction allows to skip to the next XY slice. In each slice, different
starting points can be chosen depending on the odd/even number of dipoles present on the edge of the lattice,
but for sake of simplicity we don’t want to excessively detail these simulation aspects.

6. Implementation on DPFPA. As previously said, a sequence consists of a microinstruction set and
could be identified as a Setup or a Loop sequence. The first problem to deal with is the definition of those
operations more frequently executed which should be inserted into the Loop sequence. In the diagonal scanning,
the most frequent operation regards the interaction between dipoles located on diagonals belonging to the XY
side: thus, the Loop sequence should implement the energy calculation of these dipoles, while the Setup should
execute the movements in the X Z or Y Z faces of the lattice, through which the algorithm considers the first
dipole of the next XY ‘slice’ and another Loop sequence begins.

According to what said in the previous section, the number of the needed sums is 14 for evaluating CT X,
CTY e CTZ (one add is shared with the previous dipole), 3 for CT and 1 more to add these values to the
partial total energy obtained from the previous dipoles considered. Thus the adder pipeline is used as its best,
if 18 clock cycles are taken. For what concerns multiplications, instead, 6 are needed to calculate CT, 3 for the
new moment components of the considered dipole and 1 more for its global energy. Thus, 10 multiplications
are required. Let’s see how these operations could be efficiently implemented.
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STAGE 2 (D)

MX*X + MXX + MYX +
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9 cycles MY*X
STAGE 2 (4) STAGE 2 (B)
9 cycles 9 cycles
MX*X + MXX + MYX + MX*X + MXX + MYX +
d
MY*X + MZX + MZ*X |\ MY*X + MZX M
9 cycles

STAGE 2 (C)

Fia. 6.1. Stage 2 in the adder pipeline during the Loop phase
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STAGE 4 () STAGE 4 (B)
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Fia. 6.2. Stage 4 in the adder pipeline during the Loop phase
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STAGE 6 (C)

ETOT
From register

Fia. 6.3. Stage 6 in the adder pipeline during the Loop phase

6.1. Adder Unit. Each stage is considered as an independent register containing the partial result which
can be stored every L clock cycles (L is the pipeline length). The Loop sequence evaluates the energy of dipoles
considered in the XY direction: 4 stages of adder pipeline were devoted to calculate CT X, CTY, CTZ and
CT. In fig. 6.1, the second pipeline stage devoted to the calculation of CTX is shown, with the particular
calculation highlighted in bold in each of the four sums needed. In the first step, the term in parentheses is
‘shared’ with the previous dipole considered and does not need to be re-calculated (see previous section). Each
partial result is available only when it has run across the whole pipeline i. e. after 9 clock cycles and the
complete value of C'T'X is available after 36 clock cycles. Then the stage proceeds to evaluate the CT X for the
next dipole. The same considerations can be made for CTY and CTZ. The calculation of CT is implemented
in the stage 4, which works again for 36 clock cycles. The CT X, CTY, CTZ values used in this case are those
coming from the multiplier where they have been multiplied by SC, SS and C. Since the calculation of CT takes
less than 36 cycles, the first stage is used to calculate that value shared with the next dipole:
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Stage Term Cycles 1-9 Cycles 10 - 18 Cycles 19 - 27 Cycles 28 - 36
9 CT2 CTX2+CTY2 (n-3) CTX2+CTY2+ mx*y + my*y CTX2+CTY2+CTZ2 +
CTZ2 (n-3) C2 (n-3)
8 CTZ2 mx*z+my*z + Mxz+myz+mx*z+ mxz+myz+mx*z+ mx*z + my*z (n+1)
(mxz + myz ) (n-1) my*z + mzz (n-1) my*z+mzz+
mz*z (n-1)
7 CTY2 mxy+myy+mx*y+ my*y + mzy mxy+myy+mx*+ (mxy+myy)+ mx*y+myy+mxy + my*y
(n-1) my"y+mzy+ mx*y (n-1) (n+1)
mz*y (n-1)
6 ETOT mx*y + my*y mx*x + my*x Etot+
Etot + Enew1 (n-6) EneW2 (n- 5)
5 CTX2 mxx+myx+mx*x+ mxx+myx+mx-*x+ (mx*x+mxx)+ mx*x+myx+mxx+ my*x
my*x + mzx (n-1) my*x+mzx + myx (n+1) (n+1)
mz*x (n- 1)
4 CT1 mx*x + my*x CTX1+CTY1+CT CTX1 + CTY1 (n-2) CTX+CTY+CTZ (n-2)
Z1+C1(n-4)
3 CTZ1 mx*z+my*z+mxz+ mx*z + my*z (n) mx*z+my*z+ mx*z+my*z+mxz+
myz+mz*z + mzz (n-2) (mxz + myz) (n) myz + mz*z (n)
2 CTX1 mx*x + (mxx+myx) (n) MX*X+mxx+myx mxX*x+my*x+mxx+ mX*x+my*x+mxx+
+ my*x (n) myx + mzx (n) myx+mzx+
mz*x (n)
1 CTY1 (mxy+myy) + mzy (n) mxy+myy+mzy + mxy+myy+mx*y+ mxy+myy+mx*y+
mx*y (n) my*y + mzy (n) my*y+mzy+ mz*y (n)
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Fic. 6.4. Stage 6 in the adder pipeline during the Loop phase.

Therefore the partial value of CT is saved in a register from which it will be retrieved during stage 4B
(fig. 6.2). To optimise the use of the pipeline the remaining stages are devoted to implement the same calculations
for a second dipole, so as to process 2 dipoles in 36 clock cycles. This corresponds, as previously seen, to an
optimal use of the adder. Finally, stage 6 is devoted to add to the global energy value Epor, those two energy
contributes (Enpw) calculated in the other stages of the pipeline up to this moment (fig. 6.3). Basically it
works in the same way as stage 4, including two sums shared with the successive elaborated dipoles (again to
optimise the pipeline use). Even though, during the 36 clock cycles all the sums needed for the energy of two
dipoles have been performed, the dipoles involved in the elaboration are more than 2. In fact, while the adder
is evaluating CT X, CTY and CTZ for the two dipoles, it is not possible to determine at the same time the
correspondent C'T terms, since the previous calculations (CT X, CTY and CY Z) should be completed and they
should also be multiplied by SC1 x k, SS1 x k and C1 x k (k is a suitable constant depending on the system
density). Therefore the CT term really computed refers to the previous Loop sequence. This means that while
CTX, CTY and CTZ for dipoles (n) and (n + 1) are evaluated, the CT terms refer to (n — 3) and (n — 4)
dipoles and the Enpgw corresponds to the couple (n — 5) and (n — 6) previously started. Moreover, also the
couple (n — 1,n — 2) is subjected to a partial elaboration making the pipeline always working,.

This configuration brings a consistent level of parallelisation in the execution of the algorithm. Fig. 6.4
shows the complete set of operations calculated during the 36 clock cycles of each Loop sequence. Per each
stage and clock cycle, the effective sum performed is reported in bold.

6.2. Multiplier Unit. This unit executes the multiplications needed in the terms that must be added, i.
e. 10 per each of the two dipoles of the adder unit (globally 20) and in a sequential way. To synchronise the
operations in the multiplier pipeline with those of the adder, the length of the pipeline (15 stages) is extended to
18 by adding three NOP (no operation) cycles: this means that in 36 clock cycles the multiplier works effectively
for 30 cycles, a time sufficient to execute the required 20 products, without loosing the synchronisation with the
correspondent terms in the adder unit. Fig. 6.5 describes the operations performed together with the output
from the pipeline at that instant, per each clock cycle. In parenthesis the order number is reported of the dipole
to which the calculation refers: n is the dipole for which the calculation of the energy is initiated in the current
sequence. At the end of each Loop sequence the pipeline outputs new moments and energy of the dipole couple
which started the evaluation 3 sequences before. Fictitious products have been inserted when needed to force
the pipeline going one step beyond.

7. Results. The whole system has been tested by executing Montecarlo simulations of different size lattices
(4 < ND < 100, where N D is the number of dipoles on each side of the cubic lattice).
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Output Cc OPERATION Output Cc OPERATION
SC1*K (n-2) 1 Fictitious product - 19 SC1*K (n)
C1*K (n-2) 2 Fictitious product - 20 C1*K (n)
SS1*K (n-2) 3 CTX1*(SC1*K) (n-2) CTX1*SC1*K (n-2) 21 SS1*K (n)
-1/2*CT172 (n-5) 4 CTY1* (SS1*K) (n-2) CTY1*SS1*K (n-2) 22 -1/2*CT142 (n-3)
CTX2*SC2*K (n-3) 5 SC2*K (n-1) SC2*K (n-1) 23 CTX2*(SC2*K) (n-1)
C1*1 (n-2) 6 NOP C1*1 (n-2) 24 NOP
C1*1 (n-2) 7 C1*1 (n-2) C1*1 (n-2) 25 C1*1 (n)
C1*1 (n-4) 8 Fictitious product - 26 C1*1 (n-2)
CTY2*SS2* K (n-3) 9 SS2*K (n-1) S$S82*K (n-1) 27 CTY2*(SS2*K) (n-1)
CT1*C1 (n-6) 10 CT2*SC2 (n-5) CT2*SC2 (n-5) 28 CT1*C1 (n-4)
CT1*SC1 (n-6) 1 CT2*SS2 (n-5) CT2*SS2 (n-5) 29 CT1*SC1 (n-4)
CT1*SS1 (n-6) 12 NOP CTZ1*C1*K (n-2) 30 NOP
CT1*SS1 (n-6) 13 CTZ1*(C1*K) (n-2) CTZ1*C1*K (n-2) 31 CT1*SS1 (n-4)
C2*1 (n-5) 14 CT2*C2 (n-5) CT2*C2 (n-5) 32 C2*1 (n-3)
- 15 -1/2*CT2A2 (n-5) -1/2*CT2"2 (n-5) 33 Fictitious product
C2*1 (n-3) 16 C2*1 (n-1) C2*1 (n-1) 34 C2*1 (n-1)
CTZ2*C2*K (n-3) 17 C2*K (n-1) C2*K (n-1) 35 CTZ2*(C2*K) (n-1)
- 18 NoOP SC1*K (n) 36 NOP

Fia. 6.5. Operations performed in the multiplication pipeline during 36 clock cycles.

Performance has been evaluated as speed-up respect to the execution of the same simulation on an Intel P4
processor with 1GB Ram memory; also FPGA occupation was used as a performance parameter. Simulation
code was written in C language and optimized using Microsoft Visual C++ environment. The Accelerator
elaboration times were measured by means of the clock counters implemented in the interface between Nios and
the coprocessor previously described.

In fig. 7.1 we show the performance as speed-up factor respect to two Intel P4 processors with 3 GHz and
1.7 GHz frequency respectively, calculating the dipolar energy of the simulated system. That computational
core is repeatedly executed k= N % 10000 times where k is the coefficient responsible for the interaction settlement
(equilibration) and N is the dipole number: this gives reason of the high computational load which can lead
(for big particle systems, e. g. 100000 dipoles) to wait a lot for results, if the simulation should be performed
on a PC. The speed-up factor is increasing for the 1.7 GHz processor due to cache effect, while for the most
performing Intel processor (3 GHz) sets around 2.

Considering the size of the FPGA we used, other 2 accelerating units could be implemented, we can
reasonably state that a speed-up factor equal to 4 can be achieved in case of a “full” implementation on the
FPGA component we chose (Stratix EP1540). Further speed-up could be obtained if other components of the
Altera’s family (Stratix2 or Stratix3 now available) should be employed.

The cost of each board we bought was nearly $1200: this represents an important indication when predicting
trade-off between a cluster of workstations versus a cluster of FPGA based accelerators. In practice, our work
indicates that each FPGA unit gives a computational power 4 times greater, only doubling costs with respect
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Fia. 7.1. Speed-up of the FPGA based accelerator with respect the Pj Intel processors.

to a computational unit in a PC cluster, providing the scientist with a COTS desktop computing system on
which he/she can run simulations.

8. Conclusions. Simulations allow the analysis of a physical system, even complex, without experimental
measures or, sometimes, to confirm what was experimentally observed. In certain situations such as microscopic
systems, simulations represent the simplest if not the only way to quickly foresee the behaviour of a particle
system in different environmental conditions. The high number of variables involved together with complex
interaction laws often make simulation times unacceptably long. Finally, several of the requested calculations
ask for double precision floating point arithmetic, further increasing the computational power needed.

In this paper, we have shown how an application specific architecture (DPFPA) specifically designed for
this kind of problems and based on FPGA technology could represent a good compromise between processing
capabilities and low costs. DPFPA can be programmed with a dedicated language to execute complex floating
point functions and it is equipped with a suitable software development environment. We executed the dipole
energy calculation through the simulator, achieving, thanks also to the new scanning algorithm purposely
designed and here described, a performance twice as that of a last generation Personal Computer but can be
easily “extended” to 4.

A further improvement could be achieved by a full custom ASIC implementation of the Accelerator which
is not justified at a prototyping level while it allows a large scale manufacturing with reduced costs. This would
make available several computing units connected in cluster fashion by means of a point to point network,
providing the user with a great computing power.
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CREATING, EDITING, AND SHARING COMPLEX UBIQUITOUS COMPUTING
ENVIRONMENT CONFIGURATIONS WITH COLLABORATIONBUS
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Abstract. Early sensor-based infrastructures were often developed by experts with a thorough knowledge of base technology
for sensing information, for processing the captured data, and for adapting the system’s behaviour accordingly. In this paper we
argue that also end-users should be able to configure Ubiquitous Computing environments. We introduce the CoLLABORATIONBUS
application: a graphical editor that provides abstractions from base technology and thereby allows multifarious users to configure
Ubiquitous Computing environments. By composing pipelines users can easily specify the information flow from selected sensors
via optional filters for processing the sensor data to actuators changing the system behaviour according to their wishes. Users
can compose pipelines for both home and work environments. An integrated sharing mechanism allows them to share their own
compositions, and to reuse and build upon others’ compositions. Real-time visualisations help them understand how the information
flows through their pipelines. In this paper we present the concept, implementation, and user interface of the CoLLABORATIONBUS
application.

Key words: ubiquitous computing; editor; configuration

1. Introduction. The development of early sensor-based infrastructures often required expert program-
mers with a thorough knowledge of base technology for sensing information, for processing the captured data,
and for adapting the system’s behaviour accordingly [10] [23] [24] [26]. In this paper we argue that also end-users
should be able to configure Ubiquitous Computing environments. There are some research projects providing
easy-to-use configuration interfaces for non-expert users to create sensor-based Ubiquitous Computing appli-
cations, yet mostly only for the private home [4] [8] [15] [18] [25]. Furthermore, most systems lack integrated
facilities for the collaborative exchange of users’ configurations. Only some systems—typically complex configu-
ration tools [2] [3] [5] [16]—provide enhanced visualisations of the data flow and sensor-network data to support
users while creating or configuring applications.

In this paper we introduce COLLABORATIONBUS: a graphical editor that provides adequate abstractions
from base technology and thereby allows multifarious users—ranging from novice to experts—to easily configure
complex Ubiquitous Computing environments.

By composing pipelines users can easily specify the information flows from selected sensors via optional
filters for processing the sensor data to actuators changing the system behaviour according to their wishes.
Whenever the sensors capture values that are in the range indicated by the users, the actuators perform the
specified actions. All pipeline compositions are stored in the respective user’s personal repository. A central
interface allows users to control their respective repository—they can create new pipeline compositions, or edit,
activate or deactivate existing ones.

An integrated sharing mechanism allows users to share their own pipeline compositions with others users.
In an analogous manner they can add others’ compositions to their own repository, and build new compositions
based on these compositions. Real-time visualisations display relations between incoming and outgoing events
of the pipeline, and let the user interactively adjust and keep track of the information flow through their
pipelines. They help the users understand the information flow through their compositions, which can become
quite complex consisting of sets of sensors, filters, and actuators.

In this paper we present the concept, implementation, and user interface of the COLLABORATIONBUS
application. First, we develop scenarios of configurations for Ubiquitous Computing environments and derive
requirements. Then we describe the concept and implementation of COLLABORATIONBUS, and present its user
interface. We continue with a discussion of related work. Finally, we draw conclusions and report on future
work.

2. Requirements. In this section we develop scenarios of configurations for Ubiquitous Computing envi-
ronments and derive requirements for the COLLABORATIONBUS editor.

2.1. Application Scenarios. Users should be able to configure environments in their private homes as
well as in their workplaces.

*Faculty of Media, Bauhaus-University Weimar, Germany (e-mail: tom.gross(at)medien.uni-weimar.de).
TDepartment of Computer Science, University of Calgary. Calgary, AB, CANADA, T2N 1N4. (e-mail: nicolai.marquardt
(at)ucalgary.ca).
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Smart Telephone. In a first scenario users wish to control the sound volume of their music players and start
their calendar application in dependence of their office telephones’ state. A simple binary sensor attached to the
telephone is the first input source of this pipeline. The second input source checks whether the user is currently
logged in at the office computer. The condition modules check the telephone sensor state as well as the login
information. Finally, the user specifies the desired information flow: if the attached sensor detects that the
phone is used, a script is started (e.g., AppleScript on a Mac OS X computer, or a shell script on Windows)
and mutes the volume of the computer (e.g., Mac, or PC), an infrared control (e.g., on a sensor board) mutes
the sound system, and another script starts the user’s calendar application (e.g., iCal, or Outlook), so that the
user can input new appointments during the phone call. When the phone call ends, the application fades the
music back in again after a few seconds.

Personal Notification Selection. In a second scenario, users want to get information about the current ac-
tivities of their remote co-workers and friends. Users can add a state sensor to the instant messaging application
as well as movement and noise sensors as sources of their pipeline. Then users can specify queries with keyword
filters that analyse the sensor data of the instant messaging sensor and check if they match the names of their
remote co-workers or project descriptions. As actuators the users might wish to specify that all events are
collected and sent as a daily email summary once a day. Additionally, if the number of messages containing
the keywords reaches a specified occurrence threshold, the system additionally sends the users an immediate
summary message to their mobile phones via an SMS gateway (a short message service sending a message to
the mobile phone).

Informal Group Awareness. In a final scenario, the users of two remote labs want an information channel
of the lab activities as RSS feed that can be integrated into tickertape displays or screensavers. They wish
to receive information on the activities at the other site. They create a pipeline composition and add the
following information sources as input sources: the current lab members logged in on the server and in the
instant messaging system, the current CVS submissions of the developers, the average values of the movement
and noise sensors and the current temperature of the two labs and the coffee lounge. As actuator component
for the output they add an RSS feed generator and publish the RSS file to a server. Now, the lab members can
access this RSS feed and add it to their favourite notification display (e.g., a Web browser, or a screensaver).
This summary of group events and activities can help users to find out more about the whole development
team, and can facilitate the informal and spontaneous communication between the colleagues.

2.2. Functional Requirements. The following functional requirements were derived from various appli-
cation scenarios (we described three of them in the preceding sub-section), and from a detailed study of related
work (we present some examples of related work in Section 6 below).

e Provide adequate abstraction for various applications domains: Configuration editors should allow users
to integrate a variety of software and hardware sensors capturing information, and software and hard-
ware actuators adapting the behaviour of the environment accordingly. The integration of existing and
new sensors and actuators should be easy. Various configurations should be possible—ranging from
configurations for home environments as well as for work environments.

o Support diverse users with heterogeneous knowledge, ranging from novice to experts: Configuration ed-
itors should facilitate the immediate utilisation. For this purpose, they should provide a pre-defined
library of common configurations and configuration assistants that allow the users—especially novice
users—to use the editor immediately and to incrementally explore its functionality. Additionally, con-
figuration editors should offer guided compositions. Therefore, the user interface and the functionality
provided should be restricted to significant and needed functions; functions that are not adequate or
not needed should be disabled (e.g., if a sensor captures data in the form of text strings, calculations
such as average should be disabled). Finally, configuration editors should provide details on demand.
For this purpose, especially more experienced users should be able move from more abstract to more
fine-grained layers, and to see and manipulate details.

e Support the exchange of configurations among users: Configuration editors should allow the sharing of
configurations among users. The sharing of configurations is useful for workgroups and friends, because
it allows users to build on the results of other users, and gives less experienced users the chance to benefit
of the knowledge of more experienced users. Subsequently we present the concept and implementation
of COLLABORATIONBUS addressing these functional requirements.
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3. Concept. In this section we describe COLLABORATIONBUS’ key concepts for a generic approach, for
pipelines, for a diverse user experience, and for collaborative sharing.

3.1. Generic Approach. The approach of COLLABORATIONBUS is generic—it works across multiple
applications domains, temporal patterns, and complexity patterns.

3.1.1. Spanning Application Domains. Sensor- and actuator-based applications in the private home
differ from those in the cooperative work domain. While we try to integrate a common, universal user interface
and metaphors for users of both domains, these domains can vary in their use of hardware and software sensors
as illustrated in Table 3.1.

Smart Home Applications (cf. a in Table 3.1) are mainly built with hardware sensors and actuators, where
the developed sensor-based applications adapt the home environment automatically to the requirements of the
private users. While computer applications provide appropriate functionality for the configuration and creation
of these applications, the computer and its applications should disappear during the everyday execution of
the sensor-based applications. In order to support the development of appropriate applications, the COLLAB-
ORATIONBUS editor supports a variety of hardware sensors and actuators, and the editor is only needed for
composing the setting.

In contrast to these mainly hardware-based applications, most Collaborative Work Applications are based
on both hardware and software sensors and actuators (cf. d in Table 3.1). Since computers are in general part
of the workplace, software sensors and their events (e.g., appointments, emails, tasks, project activity) and
software actuators (e.g., for sending emails, displaying messages on the computer screen) can be used to create
sensor-based applications for awareness and information-flow of workgroups. At the same time, the integration
of hardware—both sensors and actuators—and their physical user interfaces can facilitate the interaction with
these applications. This results in tangible user interfaces for applications at the workplace (e.g., physical sliders
so set the presence in an instant messaging systems; LCD displays for displaying important email messages;
audio signals to inform about the current project’s state). COLLABORATIONBUS supports the creation and
configuration of all these free combinations of physical user interfaces with software events as a main feature
and allows users to create their envisioned interfaces themselves.

In between these two domains are applications that bridge the gap between the private home and the
business work (cf. b and ¢ in Table 3.1). Home Awareness Applications (cf. b in Table 3.1) support connections
to family members and friends at the workplace. For instance, ambient displays let the users perceive the
information in multi-sensory ways. This includes that users can configure their sensor-based applications at
home as well as at their office; thus a universal application interface is required.

Office Awareness Applications bridge the gap between the home and the work environment (cf. ¢ in Ta-
ble 3.1) by informing users about events from the office while they are at home. Users define their own infor-
mation channels that connect home environment with their work environment (e.g., project report summaries
that are generated and delivered to the private home, important email or instant messages that are forwarded
to the private home). Here, the configuration editor requires in most cases a variety of software sensors in the
work environment that are connected to physical actuators in the private home.
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On a whole both environments—home and work—have become increasingly intertwined in the recent years
(e.g., telework). Therefore, utilities need to allow the building of universal sensor-based applications spanning
both ambiences and the integration of software sensors and actuators as well as hardware sensors are needed.

3.1.2. Spanning Temporal Patterns. In any application domain various patterns with regard to cap-

turing ongoing data and starting actuators can be identified:
e Recurrent, permanent (e.g., applications with ongoing collection of data)
e Recurrent, occasionally (e.g., applications depending on day-time, during the holidays, at night)
e One-time (e.g., applications with call-back if the required person is reachable)

The software needs adequate methods to support any of these temporal patterns, and should provide a
structured overview of the current configurations of a user. Another important aspect is to enable the easy
re-use of created configurations in the past: a copy method and templates can speed up the creation process.
Systems supporting all these temporal patterns are needed.

3.1.3. Spanning Complexity Patterns. Each setting can have a specific complexity pattern ranging
from simple sensor-actuator tuples to networks of sensors and actuators:
e One sensor, one actuator (e.g., one binary sensor controls one actuator)
e Sensor, filters, actuator (e.g., only react to certain temperature values of a temperature sensor)
e Multiple parallel sensors, filters and actuators (e.g., create summaries of various sensor sources, control
a set of actuators)
e Complex network of components (e.g., determine the current activity or even mood of a person)

The COLLABORATIONBUS editor supports any application domain, and any temporal pattern described
above. It supports any complexity pattern, except for complex networks. Complex networks are typically
not configured with a graphical editor, but rather developed with programming languages; therefore, here a
graphical editor would not be used anyways.

3.2. Pipelines. In COLLABORATIONBUS all relations between sensors and actuators are handled with a
pipeline metaphor.

Pipelines are compositions that include several components: at least one sensor and one actuator component,
and additionally further filter components for processing sensor values (e.g., to delimit the forwarded values,
or to convert data formats). All components inside of a composition are connected via pipelines that forward
events between them. Pipelines can be nested in various ways: several parallel sub-pipelines can be added (this
represents the OR condition); sequences of sensor sources can be created (AND condition); or negations can be
specified (NOT condition).

Sensors are the sources of any initial event in a pipeline. They can either be hardware sensors (e.g., sensors
for temperature, movement, light intensity) or software sensors (e.g., sensors for unread emails, mouse activity,
shared workspace events, open applications).

Actuators are at the sink-side of the pipeline composition. Hardware actuators affect the real environment
of the users (e.g., activate light sources or devices), while software actuators only influence the computer system
(e.g., display screen messages, start applications).

Filters for processing the captured data are between sensors at the one side and actuators at the other. The
filter components can process all incoming events of a sensor source. Each filter component represents a single
condition or transformation based on the incoming event value. Filters typically generate data of particular
formats (e.g., integer values, Boolean values, strings). There are universal filter types that can be applied to
any type of sensor data and specific filter types that can only be applied to particular types of sensor data. The
respective filter types can do the following processing:

e Universal (e.g., count the event occurrence, create event summary reports)

e Numerical processing (e.g., numeric threshold, interpolation, average)

e String processing (e.g., search for specified keywords)

e Binary processing (e.g., negation, conjunction)

e Transformations (e.g., numeric value to string message, binary value to numeric)

Filters can be assembled in many different combinations. This includes, for example, an adaptive behaviour
to changed conditions of the sensor sources (e.g., modified upper or lower limit of a temperature sensor, or a
changed scale of values) by transmitting these changed conditions to all pipeline components. Each component
can decide if a modification of its settings is necessary, and eventually display a confirmation dialog. The
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components also include a variety of transformation methods (e.g., for generating a short message to the mobile
phone (SMS) a string message can be entered, and the values of the respective sensors can be attached).

With COLLABORATIONBUS users can easily connect local sensors and actuators or sensors and actuators
from remote locations and build new configurations in a few seconds by visual programming though point-and-
click. Each pipeline composition includes all these components—sensors, actuators, and filters—and defines
a complete information flow through them. Experts can program new pipeline components by deriving new
classes from the PipelineComponent class (cf. next section for details). All compositions of a user are stored
in a personal repository. This repository includes all data to dynamically instantiate the included pipeline
compositions.

User Methods to Create Knowledge About User Interfaces and
Sensor-Based Applications Sensor-Based Applications Supporting Tools
0 a. Control pre-configured No previous knowledge needed
2 applications
IE . '
g b. Using shared knowledge L ina by observi
3% and templates earning by observing
=
2 c. Modify and enhance shared ) l’ ;
| applications and templates Leaming by doing _
— o ®
§ d. Create own applications, automatic g E Qm
S adaptive configuration o = 5
k) R L N
(] = =
24 e. Create own pipeline compositions, Understanding of sensor g = '_T =
= manual configuration based application logic g |g T c
L (0] ] ]
) =] o 0
— g 12 5 |8
f. Programming applications based on Sensor logic and 5 L c 2
i H i = & il
é toolkits, libraries programming € g = 2
= - — knowledge 5 <] N 4
w g. Programming complex applications TEEREn ‘E = s E
in high-level programminglanguages S 2 2 o)
- g prog glanguag 8 o < K

Fia. 3.1. User experience levels, and adequate tools to support users.

3.3. Experience for Diverse Users. The COLLABORATIONBUS editor can be used by users with diverse
levels of technical background. Users’ knowledge can range from no experience at all to very thorough technical
knowledge. Figure 3.1 shows various user types ranging from novice users with no experience to more experienced
users and to experts. It shows the methods that are available and can be used in dependence of the existing
knowledge. It also shows the user interfaces and support tools that are offered for the respective user types (the
user interfaces and supporting tools are described below).

Novice users with no prior technical knowledge can start using COLLABORATIONBUS by loading and adapt-
ing pre-configured application configurations that are part of the COLLABORATIONBUS distribution. As they
progress, they can use the integrated sharing tool to load other users’ configurations and to use them as tem-
plates for their own configurations. They can, furthermore, modify and enhance the application configurations
and templates.

More experienced users can create their own application configurations, and execute them in order to learn
more about intra-pipeline event forwarding.

Expert users can create the envisioned system-behaviour by developing the required software in a high-level
programming language. Typically, for these activities they use toolkits, platforms, libraries, and development
and debugging environments to facilitate and speed up the development process.

Taking these diverse user types into consideration is a core concept of COLLABORATIONBUS and its user
interface (the latter is described below).

3.4. Collaborative Sharing. Users can build their own personal pipeline compositions from scratch, or
build on shared compositions from colleagues and friends. Three types of sharing are possible:
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e Sensor and event sharing: users either share the events of their own sensors, or the processed events of
their sensors.

e Actuator sharing: users share the control of a personal actuator with other users, so that other users
can send commands to the actuator and control the system behaviour.

e Pipeline sharing: users share complete more or less complex pipeline compositions with others.

The first sharing method lets users create their own configuration in dependence of remote located sensors
of other users. The second sharing method lets users control the actuators of other users (leading to new
challenges of potentially concurrent access to actuators). And the third sharing method lets users exchange and
re-instantiate complete pipeline compositions, requiring a unified description format and exchange protocol for
pipeline compositions. In the latter case the recipients of the compositions can change this released pipeline
composition to fit to their requirements. Because each user creates a new instance of this pipeline composition,
the changes of other users are not affecting the original composition.

COLLABORATIONBUS supports security and privacy protection thought adequate levels of abstraction and
control over access privileges of the own information sources are needed. In order to restrict the shared infor-
mation, users can choose the sharing of abstract templates. In these shared pipeline compositions, only the
skeleton of a pipeline is shared, and the original sensors and actuators of a user are not included in the sharing
entry. Thus, the abstract template of a composition contains mainly the configuration of all filter components
between the sensors and actuators. Using this abstract template, other users can insert their own sensors in the
placeholders at the beginning of the pipeline composition, and their own actuators at the end. This let them
use the knowledge of the processing filter components of the composition, while at the same the user who shares
his pipeline composition does not share his own sensors and actuators.

These integrated collaborative sharing methods provide a powerful and easy-to-use method of knowledge
exchange between different users of the system. As prior described in Figure 3.1, a novice and inexperienced
user can use pre-configured pipeline compositions of another user (if this user shares the complete pipeline), or
the user can load an abstract pipeline template and fill in his own sensors and actuators. At every time it is
very easy for the users to share their new pipeline compositions again, and store them in the shared repository.

The following example illustrates a situation where these abstract templates are appropriate. A user has
created an ambient notification display of important incoming email messages: all messages are scanned for
adequate keywords or sender addresses, and if the scan was successful, a message will be displayed on an
ambient external LC display. The user decides to share this configuration, while at the same time it stands to
reason that the user do not want to share his personal email-sensor, or the exact configuration of the keyword
filter. By using the abstract template, the user can share the basic concatenation of incoming sensors, filters,
and the actuator display, without sharing his personal sensors.

On the other hand, a user who has created a SMS notification service for the average temperature of a
series of temperature sensors may wish to share this complete configuration, and therefore shares the pipeline
compositions with all the associated sensors.

4. Implementation. In this section we describe the implementation of COLLABORATIONBUS: software
architecture and class diagram.

4.1. COLLABORATIONBUS Software Architecture. Figure 4.1 provides an overview of the software
architecture of COLLABORATIONBUS. All sensor and actuator components are connected to the SensBase
infrastructure, which provides adapters for the connection of sensors and actuators, a central registry of all
connected components and a database for persistent storage of sensor event data. SensBase was implemented
with the Sens-ation platform [13]. SensBase provides inference engines that can transform, interpret, and
aggregate sensor values. A variety of gateways (e.g., Web Service, XML-RPC, Sockets) provide interfaces for
the retrieval of sensor descriptions, event data, actuators, and so forth.

The CBServer uses these gateways to register for the sensor values needed for the users’ pipeline com-
positions. Each time when changes occur at one of the connected sensors, the SensBase server forwards a
change event to the CBServer. These events are forwarded to the adequate components inside of each pipeline
composition. The compositions are inside of the Personal Repository of each user and include the complete de-
scription of all assembled components (in serialised XML format, for platform independency and easy exchange
of pipeline composition descriptions). The CBServer can serialise and de-serialise these XML descriptions, and
validate and process these descriptions. If a XML description of a pipeline composition is de-serialized, the
CBServer creates instances of proxy objects for each of the pipeline components (sensors, filter, actuators).
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Fic. 4.1. CoLLABORATIONBUS software architecture.

Inside of these components we have multiple threads running to ensure rapid processing of data as well as rapid
forwarding of events to the subsequent component. While the sensor and actuator components inside of these
compositions act as a proxy for the existing (and connected) devices, the filter objects represent the processing
and transformation part inside of these compositions. A pipeline composition can include multiple processing
pipelines simultaneously, and the users can run and stop as many of these compositions as they like (by using
the Control User Interface).

In the Shared Repository the published pipeline compositions are stored. They are saved in the XML format
as well, and XML processing is used to operate based on these descriptions (e.g., to modify existing entries, or
to create an abstract pipeline composition template). Furthermore, the CBServer manages a directory of all the
various sensor and actuator types, as well as filter components, and submits them to the client application. The
dynamic directory can be extended with new components at any time, and this ensures the easy extendibility of
COLLABORATIONBUS. If users want to integrate different actuators or sensors, they need to implement a new
adapter driver at the SensBase level; this is independent from the COLLABORATIONBUS architecture. However,
if new filter components are needed for a different data processing, then a new class (by deriving from an
abstract base class with the core functionality of each filter component) is needed to represent this processing
step. While this can be done with minor effort by any software developer, it is not easy to add a new filter for
non-programmers.

The CBClient implements the GUIs described above. For creating, controlling and editing pipeline com-
positions it is necessary to support all the XML operations of the server, and the methods for instantiating
pipeline compositions as well (for the editor and testing tools).

4.2. CoLLABORATIONBUS Class Diagram. The class structure of the repositories and pipeline com-
positions is illustrated in an UML class diagram in Figure 4.2. The PersonalRepository class provides methods
to add, remove, modify, and get PipelineComposition objects. The SharedRepository contains a collection
of SharedRepositoryEntries, which wraps one PipelineComposition and specify the sharing attributes of this
PipelineComposition (e.g., abstract or complete template).

The PipelineComposition object is a composite object for a series of PipelineComponents. It encapsulates
methods for controlling pipeline compositions (e.g., start and stop), and for adding and removing pipeline
components. PipelineComponent is the abstract base class for the Sensor, Filter, and Actuator base classes.
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Fic. 4.2. CoLLABORATIONBUS repository and pipeline UML class diagram.

It provides common methods for each pipeline component (like processing, forwarding and caching of events).
Inside the PipelineComponents multiple threads (ProcessingThread) are running to ensure rapid processing of
data as well as rapid forwarding of events to the subsequent component. Sensor, Filter, and Actuator are
abstract base classes for the concrete pipeline components allowing to respectively: retrieve sensor values from
any number of sensors from the SensBase infrastructure and push them into the pipeline process (e.g., sensor
values from the Embedded Sensor Board or Phidgets hardware devices [11]); process incoming values (e.g.,
keywords, average, or threshold filter); and control the actuator elements (e.g., generate an RSS feed, show a
message on a text display, or drive other applications via AppleScript). COLLABORATIONBUS is implemented
in Java with Swing libraries for the GUIs. Several libraries are used for XML [30] processing (e.g., for the
serialisation of pipeline compositions [27], for parsing sensor descriptions, for creating XPath expressions [29]);
and for remote connections (e.g., XML-RPC [28], and SOAP [1]).

5. User Interface. The COLLABORATIONBUS editor provides four major graphical user interface (GUT)
components: the Login and Control GUI; the Editor GUI; the Shared Repository GUI; and the Real-Time
Visualisation GUI.

5.1. Login and Control GUI. The Control GUI is the central access point for all users to their personal
repository of configurations. In order to get to their Control GUI, users have to login first. Figure 5.1 shows
the Login and the Control GUIs.

After login, users can see the Control GUI with the listing of their pipeline compositions, including an
indicator of the current state of each pipeline composition (rectangle to the right of the pipeline name): Off
(grey), Running (green), or In Edit Mode (orange).

All functions for modifying the repository and its compositions are available from within this interface:
Add, Remove, Rename, and Clone pipeline compositions (via the Commands button). Users can Start and
Stop the threaded execution of each composition (via the Start/Stop button). And, they can use the Share
method to upload the selected composition directly to the shared repository (via the Commands button).

5.2. Editor GUIL. While the basic functions for the personal repository are available in the Control GUI,
the underlying filter composition of each of the pipelines is only available in the Editor GUI that can be opened
for each of the pipeline compositions. Figure 5.2 shows the Editor GUI. In the top area the user can choose
several buttons for loading the Pipelines (via the Pipelines button), change the Preferences (via the Preferences
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button), etc. In the middle area the respective pipeline with its sensors, conditions, and actuators is shown
(each individual item is represented as a rectangular box). In the bottom area the properties of the currently
selected pipeline part (rectangular box) are shown and can be altered.

In order to create a new pipeline composition, users can first discover the available sensor sources (e.g.,
movement sensor, temperature, sensor telephone sensor, instant messenger status sensor) of the infrastructure
in a graphical sensor browser (the browser can be started by pressing the +-sign to the right of Sensors and
Conditions), and add the sensors they need to the pipeline. Then they can specify rules and conditions (these
can also be viewed by pressing the +-sign to the right of Sensors and Conditions) for the sensor values by
adding sets of filters and operators. For each sensor types with the according sensor value type, specific filters
and operators can be selected (e.g., an event value threshold, a counter for number of occurrences). Finally,
the actuators can be specified by selecting them in the graphical actuator browser (the browser can be started
by pressing the +-sign to the right of Actuators). Here, the editor provides the option to specify the mapping
between the pipeline output and the actuator commands (e.g., if the pipeline output is a message, it can be
displayed; if the pipeline output is a simple temperature value, the corresponding sound volume can be set).
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5.3. Shared Repository GUI. The collaborative sharing mechanism described above is integrated in
the Control GUI and in the Editor GUI In order to make a pipeline composition available for others, users
have two options. They can either select the Share method in the Control GUI (via the Shared button; cf.
Figure 5.1). Here the default settings for sharing are used and no additional parameters are needed. Or they
can choose the Sharing command in the Editor GUI (via the Sharing button; cf. the top area in Figure 5.2) to
specify further settings for the shared composition. Further settings include description, category, and type of
sharing (cf. three types of sharing above). Finally the users can upload the pipeline composition.

In order to use one of the shared pipeline compositions, the user can access the Shared Repository GUI
from within the Control GUI. Figure 5.3 shows the Shared Repository GUI. By selecting one of the available
compositions in the list at the left side, the information for this entry is displayed at the right side of the dialogue
(description, owner, category, type of sharing, used sensor sources and actuators). Users can then download the
respective composition.

5.4. Real-Time Visualisation GUI. In the assembly of pipeline compositions with a variety of com-
ponents it can be difficult to keep track of the intra-pipeline communication between the components and the
processing of the forwarded pipeline events. The Real-Time Visualisation GUI of the COLLABORATIONBUS
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provides a variety of graph visualisations that can either display the forwarded values of each component of the
pipeline (e.g., useful for interpolation and threshold filters) or the quantity of forwarded values (e.g., useful for
gate filters, counters or timers).

Figure 5.4 shows the Real-Time Visualisation GUI with a time plot visualisation on the left (showing the
absolute values of 4 temperature sensors), and an overview of the pipeline events on the right (showing the
number of occurrences of events in a specific pipeline).

With these visualisations, the user obtains an inside view of the pipeline processing. The command Start
Pipelines (via the Start Pipelines button) activates all components of the respective pipeline(s) and registers
for the respective sensor events, starts the processing of threads, prepares the actuator modules, and generates
and dynamically updates the visualisations. When any of the components of a pipeline is changed (e.g., a
threshold, or an interpolation settings), the implication to the processing can be recognised immediately. Thus
the adjustment and fine-tuning of component parameters becomes easier. In order to enable the testing of
pipeline composition, we have, furthermore, integrated an input interface for simulated sensor events. It allows
the users to manually insert sensor values to test and verify the pipeline composition without having to wait for
real sensor values from the sensors. So, the processing of the data though the whole pipeline can be simulated.

6. Related Work. This chapter gives an overview of research related to the composition of sensor- and
actuator-based applications. We introduce examples of programming tools for Ubiquitous Computing applica-
tions, software for controlling sensor networks, and collaborative sharing between users.

6.1. Programming Ubiquitous Computing Applications. Several research projects address the chal-
lenge to allow end-users to create and configure intelligent applications for in-home environments. With iCAP,
Sohn and Dey introduce an application that allows end-users to rapidly prototype Ubiquitous Computing ap-
plications [25]. Similar to COLLABORATIONBUS, it uses rule-based conditions; especially the disjunction and
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junction of rules in their sheets is similar to our parallel and sequential pipelines (yet we think that workflow-
adapted pipelines stimulate a better understanding of rule compositions than free arrangements). iCAP does
not support sharing, or real-time visualisations.

Irene Mavrommati et al. have introduced an editing tool for creating device associations in an in-home
environment [18]. Their editor connects various components called e-Gadgets to realise Ubiquitous Computing
scenarios at home (similar to our connected processing components). Yet, it does not support workplace
environments. The jigsaw editor of Jan Humble et al. [15] [22] demonstrates another application for getting
control over the technological home environment. The metaphor of specifying the applications’ behaviour by
assembling pieces of a jigsaw puzzle sounds intuitive. Yet, we would like to give the users more control over
their application than the encapsulated jigsaw pieces allow.

Some systems are based on mobile devices to control configurations from every location at every time. This
includes systems for PDAs [18], mobile phones [4], and TabletPCs [15]. These mobile systems often provide
only limited access to complex configuration methods. We have not created a version for mobile devices yet, but
a lightweight mobile version of COLLABORATIONBUS would certainly be highly complementary to the existing
version.

Another approach for configuring Ubiquitous Computing environments is programming by demonstration.
This method requires an extended period of observation of relevant sensor values. In a later definition and
learning phase, the users specify relevant sensor events in the event timeline, so that algorithms from artificial
intelligence can detect patterns in the observed sensor values and automatically execute desired actuators [8].
Programming by demonstration tools hide most specific details of the underlying mechanisms from the users. On
the one hand this reduces the barrier for non-technical users to configure Ubiquitous Computing environments,
but on the other hand restricts the influence and control methods for users.

The related work applications mentioned so far address the development of complete sensor-based applica-
tions in a rather abstract way. In the eBlocks project [6] [7] a user interface for building sensor-based applications
and configuring Boolean condition tables is introduced. As the authors show in their evaluation, users still need
support in building these Boolean tables (e.g., support by different colours or written text [6]). Therefore,
we introduced pipelines to allow the easy combination of Boolean AND, OR, and NOT conditions, simply by
adding components to a pipeline processing stream or by adding a new parallel pipeline.
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The Phidgets toolkit created at the GroupLab by Greenberg and Fitchett [11] facilitates the development
of physical user interfaces. It provides a range of sensor and actuator elements as building blocks for letting
developers rapidly prototype sensor-based applications. The included developers’ toolkit allows easy access
to these hardware components from within the software. This approach was further extended to distributed
architectures by Marquardt and Greenberg [17]. In summary, the use of Phidgets requires few hardware skills,
but considerable programming knowledge and is therefore not suitable for end-users.

6.2. Sensor Network Composition Software. A variety of applications for the compositions of sensor-
based networks is available [3] [21]. For instance, the VisualSense modelling and simulation framework as part
of the PTOLEMY II project [2] [3] is a toolkit for the control over fine granular sensor network communication
and processing. The GUI includes functionality for processing component assembly, and for graph visualisations
to display the processed values of components.

Since the evaluation of the communication in sensor networks can be difficult for newly created applications,
several special complex development environments have been presented (e.g., SensorSim [21], EmTOS [9],
TinyDB [16], and J-Sim [24]). These tools provide adequate development environments for expert users (because
they include programming languages, operator sets, mathematical processing libraries, visualisation tools, etc.).
The integration of visualisations for the event flow inside of sensor-network arrangements is interesting for
our purpose [5]. However, users with a non-technical background probably have difficulties in using these
applications. Furthermore, these latter environment do not support the sharing of development configurations.

6.3. Collaborative Sharing. While in Computer-Supported Cooperative Work (CSCW) collaborative
sharing of location information, files, workspaces, software and patterns is wide-spread [12], an approach to
sharing sensor- and actuator-based applications among users is still missing. In [12] design issues of CSCW
applications that use data sharing are examined. This includes proposals for access control, adding meta-
information, version history, and methods for handling updates and concurrency difficulties. Further common
classifications of sharing between users are described in [19] [20]. They have found common groups with similar
sharing preferences, and patterns in the sharing behaviour of users. Integrating support for these clustered
groups could facilitate the usage of sharing mechanisms.

Hilbert and Trevor describe the importance of personalisation as well as shared devices for Ubiquitous
Computing applications [14]. With the modification of applications to the personal needs, the use of these
applications becomes easier for users.

7. Conclusion. In this paper we have introduced the COLLABORATIONBUS editor allowing any users to
create sensor-actuator relations.

7.1. Summary. Even novice users can easily specify complex Ubiquitous Computing environments with
the COLLABORATIONBUS editor, without having to deal with complex configuration settings or programming
details. The COLLABORATIONBUS editor provides novel abstractions by encapsulating and hiding the details of
the underlying base technology (e.g., the sensor infrastructure, the sensor and actuator registration, the sensor
event registration). At the same time, more experienced users can control the pipeline composition configuration
in any technical detail they need and get details on demand.

Furthermore, users can share their pipeline compositions with colleagues and friends via a shared repository.
Users can also decide how accurate they want to share (e.g., complete compositions, abstract template, only the
processed event value). With a minimum effort, each user can browse the shared repository and download shared
pipeline compositions and adapt the used shared repository template to fit to their needs (by specifying their
own personal properties of the pipeline). This way the COLLABORATIONBUS features an incrementally growing
library of ready-to-use pipeline compositions that form a diverse network of collaborative sensor-actuator-
relations.

7.2. Evaluation. While the evaluation of the COLLABORATIONBUS GUI and functionality as well as the
produced pipeline compositions is of vital interest to us, a formal user evaluation is still missing. Nevertheless,
we have collected several user opinions at the public demonstration of COLLABORATIONBUS to many visitors
at the Cooperative Media Lab Open House 2005 from 14 to 17 July 2005, where the visitors had the chance to
try out the COLLABORATIONBUS software in detail (with a huge set of connected sensors and actuators).

Most of the visitors quickly started to create their own compositions, and to select desired sensors, actuators
and filters. At the same time, they hesitated to change the configuration of the filter components, and were
somehow not completely confident about whether they change the right parameters. A helpful support in this
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case was the Real-Time Visualisation GUI; in particular, the activation of the graph views of all pipeline events.
It supported users in understanding the effect of parameter changes.

The most popular function of the tool was the integrated sharing mechanism. Users enjoyed browsing the
large set of ready-to-use pipeline compositions in the shared repository. Often they used one of the shared
compositions as template, modified parameters in the compositions or built a new configuration on the basis of
this composition and sometimes shared this composition again. They also liked the idea of sharing their own
compositions with others.

A typical barrier of users when creating sensor-based applications with COLLABORATIONBUS was that they
worried about privacy issues. Many of the visitors said that it is an important criterion influencing their decision
to use such as systems was to exactly know all outgoing or shared personal data and to be able to quickly and
easily change the settings.

7.3. Future Work. Currently all components of the COLLABORATIONBUS system presented in this paper
have been implemented. In the future we would like to evaluate the created pipeline compositions of users
(especially those in the shared repository), and identify common patterns in the created compositions. From
that we would like to develop assistive functions that provide users suggestions for reasonable compositions.
The configuration interface of the filter components in the Editor GUI can also be improved to become more
intuitive for the user. A graphical mapping could allow users to drag and drop the desired input and output
commands and the component configuration.

A final important aspect related to security and privacy is the introduction of a system-wide authorisation
and authentication system in order to further secure the access to the sensor values and pipeline compositions.
For this purpose the COLLABORATIONBUS repository storage and the sensor value access could be integrated
in the security system of the Sens-ation platform.
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WIDE AREA DISTRIBUTED FILE SYSTEMS—A SCALABILITY AND PERFORMANCE
SURVEY

KOVENDHAN PONNAVAIKKO*AND JANAKIRAM DHARANIPRAGADA*

Abstract. Recent decades have witnessed an explosive growth in the amounts of digital data in various fields of arts, science
and engineering. Such data is generally of interest to a large number of people spread over wide geographical areas. Over the
years, several Distributed File Systems (DFS) have, to varying degrees, addressed this requirement of sharing large amounts of
data, stored in the form of files, among several users and applications. Scalability and performance are two important measures
that determine the suitability of a file system for the applications executing over them. We perform a detailed comparative analysis
of popular distributed file systems in terms of these measures in our survey.

1. Introduction. In recent decades, we have been witnessing increasingly large rates of data generation
and growing numbers of widely spread collaborative applications. For example, data requirements of High
Performance Computing (HPC) applications have been continuously growing over the past few years and are
expected to grow even more rapidly in the years to come [23]. Experimental setups, deployments of sensors,
simulators, agents, etc. generate large amounts of data which researchers world over can have use for. Other
examples include WikipediaFS [10], and large scale telemedicine [24].

Organizing and sharing raw and processed data files owned by different users and groups calls for the need
of large scale Distributed File Systems (DFS) [46] [7] [8]-

Any file system that allows files to be placed across the network and yet make accesses appear local is a
distributed file system. Certain systems are Client-Server based (Asymmetric) in that dedicated servers exist
to provide file services. In Peer-to-Peer (P2P) or Symmetric file systems, data/metadata management load is
distributed among all the nodes. Clustered file systems are those in which the data/metadata server is replaced
by a cluster of servers to better distribute load and handle failures. A Parallel file system enables concurrent
reads and writes of the same file and parallel I/O [22]. Some parallel file systems support the striping of a file
across multiple storage devices.

There exist several large scale distributed file systems. For our survey, we consider a set, of popular produc-
tion systems and research prototypes (table 1.1)!. This set has been chosen so as to cover the major architectural
variations of existing systems.

These systems vary in terms of their typical application workloads and the geographical spread of their
typical usage. For example, some of them are designed for desktop workloads and some for scientific applications.
Some of the analyzed systems are not designed to be wide area file systems, i. e., clients and servers are not
designed to be geographically spread across Wide Area Networks (WAN). However, other features such as high
scalability have prompted researchers to adapt even such systems for use across WANs. Some examples include
the usage of Lustre file system in [42] and Parallel Virtual File System 2 in [5].

Keeping in mind the common nature of new generation applications, we analyze the architectures of these
systems with respect to the following application requirements. The first requirement is that of scalability with
respect to the number of nodes and files. In other words, increasing the number of nodes and/or files must
not adversely affect query/access times. The other major requirement is that of maintaining high application
performance. For HPC applications, performance can be measured in terms of makespan, computation or I/O
throughput, etc. In file systems maintained for home directories and such, performance can be measured in
terms of query response latencies, file access/update times, and so on.

Using a few system parameters, we attempt to characterize the effects of increasing query and I/0 loads
on individual file system servers. We also study the support provided by the different systems for sophisticated
data placement and migration strategies, which are critical for high application performance. In section 2, we
discuss some of the design considerations in the context of large scale DFSs. Section 3 summarizes the system
architectures of the various DFSs analyzed in this survey. The comparative analysis is presented in section 4.

*Distributed and Object Systems Lab, Department of Computer Science and Engineering, Indian Institute of Technology Madras,
Chennai, India

L An extensive list of computer file systems can be found at [3]. Comparisons of general and technical features of a large number
of file systems can be found at [2].
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TaBLE 1.1
Set of Analyzed File Systems

Andrew File System

Ceph

Common Internet File System
Edge Node File System
Farsite

Google File System

Ivy

Lustre File System
OceanStore

Panasas Parallel File System
Pangaea

Parallel Virtual File System 2
WheelFS

TABLE 2.1
Classification of the Analyzed File Systems

Category Name Systems
I Traditional  Distributed Andrew File System, Common Internet File System
File Systems
IT Asymmetric Cluster File Ceph, Google File System, Lustre File System, Panasas Par-
Systems allel File System, Parallel Virtual File System 2, WheelFS
11T Self-Organizing Edge Node File System, Farsite, Ivy, OceanStore, Pangaea

P2P File Systems

2. Design Considerations. Traditionally, distributed file system designers have adopted a client-server
model. In these asymmetric systems, dedicated servers exist to provide file services and clients only consume
the services. Typically, the server exports hierarchical namespaces and clients mount the exported hierarchies
in their local namespaces.

A client-server approach has several advantages such as ease of maintenance, efficient management of con-
current reads and writes of the same file, and centralized security control. However, the presence of a centralized
server presents significant scalability constraints. File system performance degrades with increasing file sizes,
and increasing numbers of files and users.

One of the early approaches to improve file system performance is client side caching. While caching helps
in reducing network traffic, it also introduces consistency issues. Cached content can become stale and write
collisions can occur, especially in file systems with stateless servers.

In later distributed file system designs, a multitude of strategies have been employed to address issues
related to scalability. Individual servers have been replaced by clusters of servers. Analogous to Sharding in
databases, in such file systems, namespaces are partitioned and distributed among the different servers in the
cluster. This helps in the distribution of load and hence better performance.

Another effective strategy is to decouple data management from metadata management. While data refers
to the actual content of files, metadata in the context of file systems refers to the data about file contents.
Unlike data operations, metadata operations are usually small, random and non-sequential.

Decoupling is achieved by using different sets of servers for data and metadata management. In a typical file
system, a large proportion of queries are related to file metadata. On the other hand, responses to data access
queries are much more voluminous. Using different sets of servers for managing data and metadata therefore
helps improve system performance. Clustering and decoupling data and metadata have enabled other scalability
and performance optimizing strategies such as replication and striping a file’s content across multiple storage
devices.

DFS features such as concurrent access, file striping and replication complicate the task of presenting a
consistent view of the file system to all users. Concurrent accesses can be controlled by associating data and
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metadata with different kinds of locks. In UNIX, the two common locking mechanisms, fentl and flock, allow
FEzclusive and Shared locks to be applied to files/blocks. All exclusive locks must have been released before
shared locks can be obtained by clients and all kinds of locks (shared and exclusive) must be released before an
exclusive lock can be obtained.

While pessimistic approaches such as locking allow file systems to support Strict Consistency Semantics?,
they also affect application performance by increasing messaging overheads and wait times. Certain file systems
support weaker consistency semantics by allowing concurrent accesses in conflicting modes. In such systems,
applications either ensure that colliding accesses do not occur, or have appropriate conflict resolution mechanisms
in place.

High availability of data and metadata is usually a crucial requirement of distributed file systems. Several
approaches exist to improve a file system’s availability, each associated with certain overheads. Some of the
approaches are replication, caching, versioning, logging, and anticipatory reads. Different systems employ
different combinations of these techniques to achieve the required levels of availability.

Though clustered file systems are more scalable than traditional client-server systems, their scalability is
limited because of the manually maintained set of server clusters. A central augmentable set of servers has
other drawbacks too. Clusters are expensive to set up and maintain. Storage of entire file systems in a limited
number of sites makes access from distant locations inefficient as a result of high network latencies. Moreover,
such setups create single points of failure, and are prone to physical vulnerabilities.

Increasing rates of data generation and number of collaborations among geographically distributed groups
of users have created the need for Global and P2P file systems. P2P systems involve minimal or no central
coordination. In P2P or symmetric file systems, data and metadata management load is distributed among all
the nodes in the system. These systems are generally designed to be self-organizing due to the impracticality
of manually administrating huge numbers of storage/compute resources.

Based on the different evolutionary stages of DFS design, we classify the analyzed systems into the categories
of Traditional Distributed File Systems, Asymmetric Cluster File Systems and Self-Organizing P2P File Systems
(table 2.1).

3. System Architectures. In this section, we present brief independent reviews of the system architec-
tures of the considered file systems.

3.1. Traditional Distributed File Systems. Though Network File System (NFS) [39] (up to version 3)
is one of the most commonly used distributed file system protocols, it is usually used in a local area network
or within a single administrative domain. We have therefore not included NFS in this survey. Influenced by

2A read returns the most recently written value.
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Andrew File System [21] and Common Internet File System [28], version 4 of NFS [43] supports stateful servers
and locks, includes other performance improvements and can be used in wide area networks.

3.1.1. Andrew File System (AFS). Started at the Carnegie Mellon University, AFS [21] uses a set of
trusted servers for sharing a common directory structure among several thousand client machines. AFS relies
on data caching to address the issue of scalability. While earlier versions of AFS required clients to fetch whole
files, versions since AFS 3 support the transfer of smaller blocks of files.

Servers maintain state about clients which have files open. Callbacks are used to maintain the consistency
of cache contents. Whenever file contents are altered, servers send invalidation messages to the corresponding
clients. A client, on the other hand, informs the server about the changes that it has made only at the time
of closing. As a result, AFS only supports Session Semantics® and not One-Copy Update Semantics*, which is
supported by UNIX.

The AFS model (figure 3.1) comprises of a set of cells, each cell usually being a set of hosts with the same
Internet domain name. Each cell has servers executing the Vice process and clients executing the Venus process.
AFS provides location independence by performing the mapping between filenames and locations at the servers.
The hierarchical directory structure is partitioned into Volumes, which act as containers for related files and
directories. Volumes can be transparently migrated between servers. Read-only cloned copies of volumes must
be created by administrators to enable recovery in the case of failures. The Kerberos [44] protocol is used for
the mutual authentication of clients and servers.

3.1.2. Common Internet File System (CIFS). CIFS [28] is Microsoft’s version of the Server Message
Block (SMB) protocol along with certain other protocols. CIFS provides remote file access over the Internet
(figure 3.2) with features such as global naming, caching, volume replication, remote sharing and locking. SMB
uses flat namespaces to address files and CIFS makes use of the Internet naming system, Domain Name Service
(DNS). While changes in file addresses are difficult to propagate in SMB, CIFS uses the scalable notification
system of DNS to handles such changes. Unlike several other wide area file systems, Unicode filenames are
supported.

Parallelism is supported at the directory level only and individual files cannot be split among multiple
servers. Since each file/directory must be associated with particular servers and servers are manually adminis-
tered, scalability with respect to installations and query/data transfer loads in CIFS is limited.

3Changes made to a file are visible to the other clients only after the writing client closes the file.
4In one-copy update semantics, every read sees the effect of all previous writes and a write is immediately visible to clients who
have the file open for reading.
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3.2. Asymmetric Cluster File Systems. There are different kinds of storage architectures that dis-
tributed file systems use. Traditional distributed file systems discussed in section 3.1 such as NFS, AFS and
CIFS adopt a Network-Attached Storage (NAS) architecture. Servers in these systems provide file-based access
to their dedicated storage devices, to clients across networks.

In the Storage Area Network (SAN) architecture, large storage devices such as arrays of disks are shared
by a cluster of nodes. Unlike NAS, data access is block-based (finer granularity), which results in increased
flexibility in storing huge files. SAN based file systems translate file-level operations to block-level operations at
the client. Metadata management is either handled by a central server or distributed among the cluster nodes.

IBM’s General Parallel File System (GPFS) [18] is an example for a clustered file system that adopts the
SAN architecture. GPFS uses a distributed token management system to handle concurrent file accesses among
cluster nodes. It also supports data sharing among multiple GPFS clusters.

Another storage architecture employed by several clustered file systems such as Lustre [40], Panasas [50]
and Ceph [48], uses Object-based Storage Devices (OSD). OSDs are evolved disk drives that can directly handle
the storage and serving of objects as against normal disk drives which work at the level of bits, tracks, and
sectors. In other words, an OSD handles lower level functionalities related to object management within the
device and exposes object access interfaces to applications.

In block-based file systems, file metadata, which includes block locations, is managed by the file system.
As a result, performance is effected for large files since metadata sizes are also large. On the other hand, OSD
based file systems manage objects only. The lower level details about content striping are handled by the storage
devices themselves. This results in improved performance and throughput.

Several client applications benefit from moving computation to where the data is, instead of getting the
content transferred to the clients [36] [47]. For such applications, performance depends on the intelligence of
OSDs [17], in terms of their ability to execute user specified computations, as well as on their processing power.

3.2.1. Google File System (GoogleFS). GoogleFS [19] is a DFS for data intensive applications, custom-
built for the application workload and technical environment at Google. A GoogleFS cluster comprises of a
single Master and several Chunkservers, as shown in figure 3.3.

The master manages the metadata and the chunkservers store the data. The master uses Heartbeat messages
to periodically monitor the chunkservers. A Shadow master is maintained in order to handle the failure of the
primary master. Files are split into fixed size chunks. A certain number of replicas (three is the default number)
of the chunks are stored in the chunkservers. Chunk replicas are spread across racks to maximize availability.

The master maintains information about the location of each chunk and access control information. The
master performs periodic re-balancing of data to ensure that the chunkservers are uniformly loaded at all times.
Clients obtain file metadata from the master and perform all data related operations at the chunkservers.

The datasets that applications at Google work with are usually huge in size and the workload primarily
involves append operations. Hence, GoogleFS supports record append operations only and not random write
operations. Servers are stateless and clients do not cache data in GoogleFS. That is because applications at
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Google usually require certain operations to be performed on file contents and only the result to be returned to
them. In fact, the predominant class of application is MapReduce [16].

The architecture of GoogleFS makes it suitable for a specialized set of workloads only. Also, its centralized
master can become a performance bottleneck, especially for metadata intensive workloads. Hadoop Distributed
File System (HDFS) [13] is an open source Java product with almost the same architecture as that of GoogleFS.

3.2.2. Lustre File System. Lustre [40] is an object based DFS used primarily for large scale cluster
computing. It is a production system used in several HPC clusters. The system architecture of the Lustre file
system is shown in figure 3.4. The system comprises of three main components, namely, file system clients,
Object Storage Servers (OSS) which provide file I/O services, and Metadata servers (MDS).

Typically, the above three components are on independent nodes which communicate over the network.
Using an intermediate network abstraction layer, Lustre supports multiple network types such as Ethernet and
Infiniband. Redundancy, in the form of an active/passive pair of MDSs and active/active pairs of OSSs, helps
Lustre maintain high availability.

Lustre enforces strict consistency semantics, using locks to enforce serialization. It also uses the Journaling
File System Technology® to prevent data/metadata corruption due to system failures and to enable persistent,
state recovery.

Since metadata servers as well as object storage servers need to be manually administered, Lustre does not
scale transparently.

3.2.3. Panasas Parallel File System. Panasas [50] uses parallel and redundant access to OSDs to
provide a high performance DFS. At a high level, the system model of Panasas is similar to that of the Lustre
(figure 3.4).

The Panasas object storage nodes have a Blade architecture, each blade comprising of disks, a processor,
memory, and a network interface. Thus, adding storage capacity includes the addition of the required computing
power to efficiently manage the new disks. The storage blades use a specialized file system which implement
the object storage primitives. A per-file RAID system [32] is used to provide for data integrity and scalable
performance.

The storage blades are managed by a set of Quorum-based cluster managers. The set of managers maintains
the replicated system state using a quorum-based voting protocol. Managers stripe file contents across the OSDs.
They also handle multi-user access, consistent metadata management, client cache coherence, and recovery from
client and OSD failures. Transaction Log Replication protocol is used to tolerate metadata server crashes.

3.2.4. Parallel Virtual File System, Version 2 (PVFS2). PVFS2 [4] is an open source DFS that
provides high performance and scalable file system services for large node clusters. Each cluster node can be a

5Maintains logs of impending changes before committing them to the file system.
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server, a client, or both. Like several other clustered file systems, PVFS2 also supports the striping of a file’s
data across several storage nodes. PVFS2 allows for a subset of the servers to be configured as metadata servers.

PVFS2 servers are stateless and as a result, locks are not supported. Client failures thereby do not affect
the system in anyway. While this lets the system scale to a large number of clients, it results in little support for
different kinds of access semantics. While PVFS2 provides atomicity guarantees for updates to non-overlapping
portions of a file, simultaneous writes to overlapping regions can result in inconsistent file states.

New file/directory creation is performed by first creating the data object and the corresponding metadata
object, and then making the metadata object point to the data object, and finally creating a directory entry
pointing to the metadata object. This way, the file system remains in a consistent state always. This mechanism
can result in significant amounts of clean up load in case of collisions, i. e., in case of simultaneous updates to
the same portions of the namespace.

PVFS2 specializes in supporting flexible data distribution as well as flexible data access patterns. For
example, it supports access to non-contiguous portions of a file in a single operation. In that sense, PVFS2
implements MPI-I0 Semantics closely.

Like Lustre, PVFS2 uses an intermediate layered interface to support multiple network types. Traditional
solutions for high availability, such as those used by Lustre, can be used in PVFS2. An experimental comparison
of PVFS2 and Lustre for large scale data processing is presented in [41].

3.2.5. Ceph. Ceph [48] is an object-based distributed file system designed to provide high performance,
reliability and scalability. Dynamic Subtree Partitioning and the distribution of objects using a pseudo random
function, are a couple of its unique features. The system (figure 3.5) comprises of clients, OSDs and a metadata
servers cluster.

Ceph completely does away with allocation lists and inode tables. Instead, a pseudo random function called
CRUSH [49] is used for the distribution of objects among the OSDs. Clients can therefore calculate the location
of file objects instead of performing a look-up.

Some file systems use static subtree partitioning to delegate authority for different subtrees of a hierarchical
namespace to different metadata servers. Another approach uses hash functions to distribute metadata. While
the first approach cannot handle dynamic loads efficiently, the later approach does away with metadata locality.
Ceph uses a dynamic subtree partitioning strategy, in which responsibilities for different subtrees of the names-
pace are dynamically distributed among the MDSs. The distribution ensures that server loads are kept balanced
with changing access patterns. Popular portions of the namespace are also replicated on multiple servers.

Ceph replicates data using a variant of the Primary-Copy Replication® technique to maintain high avail-
ability. The usage of CRUSH rules out the possibility of considering specific node characteristics while making

60ne of the replicas, which is made the primary copy, serializes transactions and sends updates to the secondary replicas.
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object placement decisions. In wide area installations, the average network latency between clients and Ceph’s
metadata servers can be high, affecting the performance of applications involving large proportions of metadata
operations.

3.2.6. WheelFS. WheelFS [46] provides applications control over replica placement, consistency and
failure handling mechanisms using Semantic Cues. The system allows applications to manage the trade-off
between the immediacy of update visibility and the independence of client sites to operate on the data. A set
of WheelFS servers (figure 3.6) store file and directory objects. Each file/directory has a primary server which
holds its latest content. Clients also maintain local caches of the files accessed. By default, WheelFS uses strict
Close-to-Open Consistency Semantics”, with the primary server being responsible for serializing operations.

Semantic cues can be used to specify application policies with respect to placement, durability, consistency
and large reads. To reduce the effects of network latency, data can be placed close to clients that are likely to
use the data. Files can be clustered together to optimize the performance of operations that access multiple
files, and replication levels can be specified.

The system can be adjusted to wait for only a specified number of replicas to be created or updated before
acknowledging a client’s new file or file update request respectively. This helps in achieving quicker response
times even in the presence of slow servers. Consistency related cues allow clients to specify time-out periods
for remote communications corresponding to file system operations. Applications can also use the Ewventual
Consistency Semantics® to improve availability.

Also, a client can prefer to read stale copies of files when the primary servers are hard to reach. While
reading large files, clients can choose to prefetch entire files into its local cache. Cues also enable clients to
obtain file contents from multiple cached sources in parallel to reduce the load on the primary server.

A Configuration Service, maintained as a replicated state machine at multiple sites, is used by clients to
learn about the servers responsible for the different objects. Based on the first .S bits of the object identifier,
the identifier space is split into 2° slices. The configuration service maintains a mapping between slices and the
primary and replica servers responsible for the slices.

While resource location aware data placement is supported, WheelFS does not provide resource charac-
teristics aware data placement. The configuration service, maintained as a replicated state machine, can be a
bottleneck for large system sizes and heavy query loads.

3.3. Self-Organizing P2P File Systems. In P2P systems, every node is both a supplier and consumer
of resources. Some of the benefits of such an architecture are distribution of load among all the peers, increased
robustness, and lack of a single point of failure. On the other hand, high system dynamics is one of its major

"When A opens a file after B has modified and closed it, A is guaranteed to see B’s updates.
81f no new updates are made, the latest updates will propagate through the system eventually and make all the replicas consistent.
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drawbacks. In P2P file systems, peers share the load of file storage and metadata management. Figure 3.7
shows some of the system requirements of P2P file systems. As discussed earlier, scalability and high application
performance are the two primary requirements under consideration.

It is well known that decentralization of control and autonomous system management are central to the
design of scalable distributed systems. In such systems, load balancing and resource discovery are complex tasks
because of the lack of any central entity with knowledge about the entire system.

However, awareness of resource characteristics and locations while placing file replicas is critical for achieving
high application performance. That is because network bandwidth and latency concerns dictate that data and
metadata be placed in proximity to where they are consumed. Achieving a trade-off between these conflicting
requirements of decentralization and system awareness is an important design consideration, especially in the
case of P2P file systems. One of the approaches to achieve the trade-off is to design the system as a federation
of manageable clusters.

3.3.1. Farsite. Farsite (Federated, Available, and Reliable Storage for an Incompletely Trusted Environ-
ment) [6] [12] is a DFS from Microsoft Research built over a network of unstructured desktop workstations.
Farsite provides high file availability and security utilizing the unused storage space and processing power of a
large number of nodes. Issues of security and trust are addressed using Public-Key Cryptographic Certificates
such as namespace, user and machine certificates. Users and directory groups authenticate each other before
performing file system operations.

File contents are encrypted and replicated and the corresponding metadata are managed by Byzantine-
Replicated finite state machines [33]. Farsite provides hierarchical directory namespaces, each namespace having
its own root. Roots are maintained by a designated group of nodes. Directory groups can split to distribute
metadata management load. Splitting can happen by randomly selecting a group of nodes and designating a
portion of the namespace to them (figure 3.8).

Content hashes of files are stored in the corresponding directory groups to maintain file integrity. Different
kinds of leases are issued on files to clients. Caching is used for improving access times and reducing network
load. Updates made to files are not immediately propagated to all the replicas. Instead, a lazy propagation
mechanism is employed in order to improve performance.
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As with other hierarchy traversal systems, locating the directory group for a file deep in the hierarchy
may require several hops, thus making metadata access expensive. In systems with high churn rates, group
membership can keep changing, resulting in high group management overheads.

3.3.2. OceanStore. OceanStore [26] is a global scale data storage utility that uses untrusted infrastruc-
ture. The primary objective is to provide continuous access to persistent information.

Each object in OceanStore is assigned a unique global identifier and is replicated and stored in a set of
servers. A few of the servers in the high connectivity and high bandwidth regions are made primary repli-
cas and the rest are made secondary replicas (figure 3.9). Updates made to the objects are ordered by the
primary replicas using a Byzantine Fault Tolerant algorithm [14]. Secondary replicas communicate with the
primary replicas and among themselves to propagate updates in an epidemic manner. Every update results
in the creation of a new version which is archived in the system, making the system inefficient for large sized
files.

Each object is associated with a root node in the system which holds information about the object’s replica
locations. A variation of Plazton’s randomized hierarchical distributed data structure [34] is used by nodes to
reach the root of any object in O(logN) hops, where N is the number of nodes in the system. A probabilistic
algorithm using attenuated Bloom Filters [11] is also used to rapidly locate objects if they are in the local
vicinity.

The policy of Promiscuous Caching which allows files to be replicated in any node in the system makes
OceanStore highly scalable. However, the overheads involved in the maintenance of two tiers of nodes and a
dissemination tree for each data object can be high. High churn rates among the primary tier nodes can also
result in expensive maintenance overheads. Maintenance of Bloom filters and the Plaxton data structure at
each node can result in high network usage.

3.3.3. Ivy. Ivy [31] is a P2P read/write file system based on logs. Each participant maintains a log with
information about all the changes made to the files in the system by the participant. The logs of all the
participants need to be parsed to be able to get the current state of a file. Updating a file’s contents however
requires an append to the participant’s log only. Ivy uses DHash [1] as the Distributed Hash Table (DHT) [45]
for storing all its logs and, as a result, all its data. The set of all logs in the file system is referred to as View
(figure 3.10).

A participant’s log is a linked list of log records. The log-head points to the most recent entry. Content
hashes are used as keys for storing log records in DHash. The public key of a participant is the key for a
log-head. The log-head is digitally signed by the participant’s private key. The digital signatures and content
hashes help ensure the integrity of logs in Ivy.
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A private snapshot of the system is maintained by the participants in order not to have to scan all the logs
for every read. Only the most recent log records need to be scanned. Since Ivy avoids using shared mutable
data structures, locking is not necessary. Ivy logs contain version vectors and timestamps. These can help
applications in detecting and resolving conflicts that may arise due to concurrent updates.

This strategy of maintaining per-participant logs makes Ivy suitable only for a small number of cooperating
users. Moreover, high possibilities of conflicting concurrent updates result in Ivy providing weak consistency
semantics.

3.3.4. Pangaea. The objective of Pangaea [38] is to build a planetary-scale P2P file system used by groups
of collaborating users all over the world. The system attempts to achieve low access latency and high availability
using Pervasive Replication techniques. Whenever and wherever a file is accessed, a replica is created. Popular
files therefore get heavily replicated and personal files reside only on the nodes used by the owners.

A random graph of all the replicas is maintained for propagating updates and ensuring availability (fig-
ure 3.11). The random graph is created by making each replica maintain links to k other replicas chosen
randomly. A few of the replicas are designated as Golden replicas. The golden replicas maintain links with each
other and ensure that their set always maintains specified membership levels. Replicas perform random walks
starting from one of the golden replicas to create random links. This way the graph stays connected.

Links to the golden replicas are recorded in the data object’s parent directory (which is also maintained as
a file). To access and replicate a file, its parent directory must be accessed and hence replicated. The recursive
operation can proceed all the way to the file system’s root.

By default, update propagation happens lazily. A strategy involving Harbinger messages is used to build a
spanning tree which is used for quick update propagation. Strict consistency semantics are also supported by
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making the updating client wait for acknowledgments from the replicas. A version vector based algorithm [37]
is used for resolving conflicting updates.

3.3.5. Edge Node File System (ENFS). ENFS [25] exploits the resources of Internet edge nodes to
provide scalable DFS services. Undedicated Internet edge nodes are enabled to function as both data and
metadata servers. The presence of a large number of edge nodes results in scalable metadata access and high
I/0 throughputs.

ENFS uses proximity-based clustering of edge nodes (figure 3.12) for the efficient management of resources,
balancing of load (storage, computational, query), and handling latency issues. A few reliable and capable edge
nodes from each cluster are chosen to be the metadata servers (Supernodes) for that cluster. These supernodes
are chosen based on capabilities such as network bandwidth, processor speed, storage space, and memory
capacity. Each supernode is associated with a replica set consisting of a fixed number of other supernodes from
the same cluster. The replica sets ensure high system availability.

Supernodes from all the clusters form a single system-wide structured P2P overlay network for use as a dis-
tributed hash table. By connecting up all the clusters in the system, the overlay enables nodes of a cluster to dis-
cover supernodes (of other clusters) which are responsible for specific portions of the file namespace. The struc-
tured overlay also helps in the efficient discovery of resources with specific characteristics in the entire system.

Since the sets of data and metadata servers change autonomously and dynamically to suit prevalent work-
loads, ENFS scales transparently. The architecture of the system allows data placement/access decisions to be
based on applications’ requirements of resource characteristics and locations. The metadata of each file has a
single point of access (one of the cluster supernodes). This allows ENFS to support a large spectrum of access
semantics.

4. Comparative Analysis. In this section, we analyze the above reviewed systems with respect to their
scalability and the support they provide for high application performance only. We do not address other aspects
of distributed file systems such as user/group management, security and trust, etc. In [30], the authors provide
a survey of decentralized access control mechanisms in large scale distributed file systems. An overview of I/0O
systems (including file systems) dealing with massive data is presented in [22].

The manner in which the load on different file system servers vary with increasing numbers of users, and
therefore user files, primarily determines the scalability of a distributed file system. Increase in the number of
files results in an increase in the number of queries and in the amount of data I/0.

The system parameters used in the analysis are shown in table 4.1. For the sake of simplicity, we assume
uniform server capabilities and that the file system metadata and data are equally distributed among the servers.
We also assume that the metadata queries and I/O requests are generated in an independent and completely
random manner.

We study the dependence of metadata and data server loads on the query and I/0 rates in tables 4.2 and
4.3 respectively. The overheads of overlay network management also add to server loads, especially in the P2P
file systems. The overheads are presented in table 4.4.
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TABLE 4.1
System Parameters and Metrics

Parameter Details

N Number of nodes (servers/clients/peers) in the system

Nys Number of metadata servers in the system

Np Number of storage nodes (data servers) in the system

F Number of data items (files and directories) in the system

R Average number of replicas per data item

Q Number of metadata queries generated per unit of time in the system

D Data transfer demand to and from the data servers in the system per unit
of time

le Network latency between nodes within a cluster/LAN (Intranet)

Iw Network latency between nodes in different clusters (Internet)

P(n) Cost of achieving consensus (Paxos [27], Byzantine fault tolerant algo-

rithm, quorum-based voting) among n nodes in terms of time and number
of messages

Lys Average query handling load on a metadata server
Lps Average I/0 load on a data server
Lom Message, time and space overheads of maintaining the different overlays

In GoogleFS, Lustre, Panasas, PVFS2, Ceph, OceanStore and ENFS, support for file striping and parallel
I/0 helps in distributing data server load at a finer granularity. From table 4.3, we can see that, Lpg, the
data server load, can be represented as f(D/Np) for category I and category II file systems and as f(D/N) for
category III file systems.

The components that get overloaded in the first category of file systems are clearly the servers. In these
systems, the Nj; metadata servers are usually the data servers also. The load on each server therefore is
Lys + Lps. Both increasing query rates and I/O demands affect the same set of servers.

In the second category of file systems, decoupling of data and metadata helps in splitting the load among
different sets of servers (Ljss for metadata servers and Lpg for data servers). However, due to rigid server
configurations which require manual administration, the values of N; and Np are more or less fixed. This
results in these systems supporting only constrained levels of metadata and I/O demands. Additionally, in
WheelFS, the configuration service can potentially become a bottleneck with increasing query rates.

Since Farsite, OceanStore, Ivy, Pangaea and ENFS are P2P file systems (category III), the load on each
node is Ly;s + Lps + Lopas- The number of nodes, N, is however virtually unlimited. Therefore, the loads are
well distributed.

However, Ivy is a log-based file system and so performance falls significantly with increasing numbers
of participants. Network usage is excessively high in OceanStore and Pangaea due to overlay management
messages, pervasive replication and update propagations. Since a considerable number of peers in a wide area
installation may possess low bandwidth connections, system performance can be affected by increasing load
levels in these two systems.

The performance of applications executing over file systems depends mainly on the speed of metadata access
and data I/O throughput. Metadata query and update times experienced by applications depend on several
factors such as metadata server load, query routing mechanism, network latency, and consistency management
strategy. Table 4.5 analyzes these factors in the various systems.

Data I/O throughput depends on server load and network latency/bandwidth. Server loads are discussed
in table 4.3. The support provided by the file systems to reduce the effects of network latency and bandwidth
on data transfer/processing speed, and hence on application performance, is discussed in table 4.6.
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TABLE 4.2

Metadata Server Load as a Function of Query Rate

Comments

System Load/Server (Ljss)

AFS f(Q/Nw)

CIFS f(Q/Nw)

GoogleFS f (@)

Lustre/ f(Q/Nur)

Panasas/

PVFS2

Ceph fla-Q/Nu)

WheelFS F(Q/Nu)
(%)

Farsite f(@Q/(k-N))

OceanStore f(Q/N)

Ivy f(Q/N)

Pangaea f(Q/N)

ENFS f(Q/(k-N))

The load is distributed among the N, servers. Since
the number of servers is fixed and can be extended only
through administrator intervention, server load keeps in-
creasing with @.

The load is distributed among the N, servers that are
sharing content. Typically, the number of servers in
CIFS installations are much larger than in AFS installa-
tions. Query loads are therefore better distributed.

The master server handles all the queries. As a result,
such an architecture’s scalability is limited.

The query load is distributed among the Nj;; metadata
servers. Since the number of MDSs is fixed and can be
extended only by manual intervention, load on an MDS
keeps increasing with Q.

The metadata query load is distributed among the
servers in the MDS cluster. The dynamic subtree parti-
tioning scheme employed by Ceph distributes the query
load among the servers uniformly. Moreover, since
clients can calculate object locations themselves, meta-
data server loads are significantly reduced (represented
by «).

The query load is distributed among the Nj; WheelFS
primary servers.

Clients get information about the primary servers re-
sponsible for files from the configuration service. The
load on the configuration service therefore increases
along with Q.

When query rates increase, directory groups split and
distribute the load among more nodes. Since any peer
can be a part of a directory group, query loads are shared
by a significant fraction (x) of all the nodes in the system.

Information about files in OceanStore are obtained us-
ing pure P2P algorithms. The metadata query load is
therefore distributed among all the peers.

Metadata queries result in getting the recent log records
of all participants and scanning the records locally at
the querying peer. Thus, the query load is distributed
among all the peers.

Metadata accesses happen using P2P routing protocols
and result in replicas getting created at the querying
peers. Thus the query load is shared by all the peers.

The number of supernodes increases with increasing
query loads (Q). Since any node in the system can be
made a supernode, the load is shared by a significant
fraction (k) of N, as in Farsite.
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TABLE 4.3
Data Server Load as a Function of the I/O Demand

System Comments

AFS Callback promises and invalidations, and whole file caching help in reducing the
load on the AFS servers. This is one of the main reasons for AFS scaling better
than NFS.

CIFS Stateful servers, elaborate locking mechanisms, caching, and read-aheads, help in

reducing the load on the servers. A large number of servers sharing files helps
distribute the load better than in AFS.

GoogleFS The data load is distributed among the Np chunkservers in the GoogleFS cluster.
GoogleFS does not support client side caching, especially because the applications
usually require computations to be performed at the chunkservers itself.

Lustre The load is shared among the Np object storage servers. Server based distributed
file locking protocols and client side caching in Lustre help reduce data server loads.

Panasas The data serving load is shared among the Np OSDs. File locking services and
consistent client caching is supported in Panasas.

PVFS2 PVFS2 does not cache data on the clients and so the entire load is distributed
among the Np I/0 servers.

Ceph Client side caching absorbs some load off the Np OSDs.

WheelFS All clients maintain caches of files read. Semantic cues help in satisfying a client’s

data needs with nearby caches as much as possible. Such Cooperative Caching
mechanisms help in reducing the loads on WheelFS servers significantly.

Farsite All the nodes in the system are capable of storing data. As data loads increase,
more replicas can be created among the peers. Thus, data transfer loads are shared
by a large number of nodes (O(N)).

OceanStore Promiscuous caching and P2P data location algorithms enable data serving loads
to be distributed among the peers in the system.

Ivy All the data objects in Ivy are stored in the DHash DHT, which comprises of all
the nodes in the system. Thus data transfer load is shared by the entire set of
nodes.

Pangaea Pervasive caching results in files and directories getting replicated in a large number
of peers in the system. I/0 load is therefore distributed widely.

ENFS Supernodes ensure that file contents in ENFS are distributed uniformly across all

the storage nodes in the system. Data transfer loads are therefore shared by a large
number of nodes (O(N)).

Apart from data server loads, application performance largely depends on the network distance between
servers and clients. In most file systems of category I and II, server locations are fixed and so in wide area
installations, data access usually happens across long distances. Data caching helps in reducing the distance to
some extent, especially in AFS and WheelF'S.

File systems belonging to category III, however, do not have fixed servers. The peer-to-peer nature of these
systems support the creation of new file replicas closer to their users. ENFS goes a step further and pro-actively
creates file replicas on nodes which are likely to process the contents, based on user specification or application

type.

4.1. Observations. In summary, our analysis of these systems has led to the following observations:

e Decentralization Most of the production file systems today use central servers (or clusters of servers).
While such an infrastructure can support a large number of users and files, their scalability is limited.
Since the digital data generation capabilities of the masses has increased tremendously, the next few
years are expected to witness huge rates of data creation. Decentralization is therefore essential to
manage the accompanying data management demands. Decentralization also has other benefits such
as not having to completely trust one central entity, lack of a single point of failure, robustness, and
lack of the need for expensive servers.
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TaBLE 4.4
Owverlay Maintenance Overheads

System Overhead (Loy) Comments

WheelFS f(Crsnm) The configuration service is implemented as a replicated state

machine with a certain number of nodes. Maintaining the
state machine involves operations such as handling member-
ship changes, and electing a new leader. Crgs represents the
corresponding message and time overheads for the configura-
tion service nodes.

Farsite f(Csrr) All the nodes in Farsite which are part of a directory group

incur the overheads of maintaining a Byzantine fault tolerant
group. The overhead associated with Byzantine fault tolerance
is represented by Cppr.

OceanStore f(logN,Cpr) Every node in OceanStore maintains a routing table associated

with the Plaxton scheme for global data location. The size of
the table is O(logN). Moreover, changing object contents in a
node and its local vicinity, results in changes to its attenuated
Bloom filter. The network and computational (multiple hash-
ing) overheads of maintaining the filters is also significant and
is represented by Cpp.

f(logN) Nodes in Ivy are part of the DHash DHT and so maintain
routing tables with O(logN') entries.

Pangaea f(F-R-k)/N) Every replica of a data item must maintain at least k links to

other replicas. This results in significant message, time and
space overheads.

ENFS f(logNnr) Supernodes from all the clusters form a structured overlay

in ENFS. Each supernode maintains a routing table of size
O(logNyy).

Autonomic System Management Since decentralized systems usually exploit the resources of unre-
liable nodes, mechanisms must be in place to provide notions of reliability and availability to the
users/applications. It is impractical for large distributed systems to be manually administered. Essen-
tial tasks such as handling node failures, and load balancing must be autonomically managed for better
resource utilization and application performance.

Pervasive Replication High levels of replication, especially of read-only files, increases availability and
brings data closer to the users, thereby improving application performance. Replication has the added
benefit of enabling parallel access to files. Parallel access enables computations on different parts of a file
to be performed simultaneously. In a well designed system, the benefits of replication must over-weigh
the overheads of additional data transfer and consistency management.

Flexible Consistency Semantics Often, the stronger the consistency semantics supported by a system,
the poorer the application performance. The consistency requirements of different applications vary
widely. Thus, file systems must be capable of flexing their consistency semantics in accordance to
application requirements. This way, users/applications can themselves adjust the required levels of
consistency /performance trade-off.

Data Affinity Data affinity refers to the concept of ensuring that files are stored close to the nodes
which are most suited and likely to process their contents. For example, in HPC applications, due
to large data set sizes, schedulers attempt to schedule computations on resources which contain the
required data [36] [47], thus reducing the amount of data movement. Therefore, file systems which
support resource characteristics aware data placement are highly useful. Data migration with changing
access patterns is also beneficial.

Prozimity-based Node Clustering A large system which cannot be managed by a central controller is
best managed by being partitioned into proximity-based node clusters of manageable sizes. In dis-
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TABLE 4.5
Factors affecting Metadata Query Response Times

System

Comments

AFS

CIFS

GoogleFS

Lustre

Panasas

PVFS2

Ceph

WheelF'S

Farsite

OceanStore

Ivy

Pangaea

ENFS

f(Lms + Lps,lc(or)lw)

Servers are usually distributed across wide areas. Servers in every cell possess information
about the servers hosting different data volumes across the entire system. Therefore, there
are no query routing overheads. The effect of network latency depends on whether queries are
made for files served locally or by a server in a different cell. Data volumes are placed close
to users/groups owning the corresponding data items and so latency effects are generally low.
f(Las + Lps,lc(or)lw)

CIFS servers are usually distributed across wide areas. Clients either possess information
about servers hosting different data items or can use browsing protocols to search for servers.
When a client queries a distant CIFS server, high network latency is likely to affect the
response time.

f(Lms,lc, P(2))

Since GoogleFS installations are usually cluster based, network latency is [c. All metadata
queries are handled by the master server. Metadata updates must be serialized in the master
server and its shadow.

f(Lms,lw, P(2))

The set of metadata servers are clustered in a single location and so most client queries have
to travel across the network in a wide area installation. Metadata updates must be serialized
in the active and passive metadata servers associated with a data item.

F(Lms,lw, P(Nar))

Panasas uses a quorum-based voting protocol to commit metadata operations in its metadata
servers. As in Lustre, network latency is usually Iy since the servers are clustered in one
location.

f(Lms,lw)

PVFS2 avoids serialization of independent metadata operations using an explicit state ma-
chine, threads (to provide non-blocking access), and a component that monitors completion
of operations across devices. Avoiding serialization makes metadata access faster.
F(Lms,lw, P(k))

Since the metadata servers are clustered, far-off clients experience high network latencies.
Metadata updates must be synchronously journaled to a cluster (of size k) of OSDs for
safety.

f(Las,lw)

Accessing the configuration service to determine the primary may involve a query to a far-off
node. Clients can specify location preferences for the primary servers for their files and direc-
tories based on expected access patterns and so latency overheads of accessing the primary
servers are optimized.

f(Las + Low,d - lw, P(k))

Metadata access may require traversal from the root to the directory of interest. FEach
directory may be managed by a different group. d represents the average number of hops
between directory groups required to reach a data item. Metadata updates require Byzantine
fault tolerant agreement among the k directory group members.

f(Lms + Lps + Lowm,lw - logN,Carc)

Locating the root of an object in OceanStore can require O(logN) hops across a wide area
network. Some files, especially popular ones, can however be located in the local vicinity
of the client. Every update (or group of updates) involves storing the object in an archival
form. C'4prc represents the corresponding costs of encoding the file using erasure coding and
distributing it across hundreds of machines.

f(Las + Low,p - (logN) - lw)

Accessing the metadata requires the gathering of the most recent log records of all the
participants (p). Metadata updates are performed in the local log alone.

f(Las + Lo, le, Cst)

The pervasive replication strategy results in most data items being available in close prox-
imity. Propagation of updates happens in two phases along the spanning tree for that data
item rooted at the source. The corresponding message and time costs are represented by
Csr.

f(Lms + Lo, lo(or)lw, P(k))

Metadata of user files are managed by supernodes in the same cluster as that of the user.
However, accessing the metadata of files in other clusters requires across network querying.
Metadata servers responsible for individual files/directories are identified using index files
stored in the system wide DHT and actively cached in the local cluster’s supernodes. Dis-
covery can therefore usually happen within a couple of hops. Metadata updates are serialized
in the responsible supernode and its replica set. k represents the supernode replica set size.
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Servers in these systems only perform file I/O. Any other operation to be per-
formed on the data must be performed at the client site. Client side caching
is supported to varying degrees. AFS, especially, improves application perfor-
mance using whole file caching. However, the benefits of caching come at the
expense of consistency management. AFS provides weak consistency seman-
tics. CIFS uses elaborate locking mechanisms to provide strong consistency
semantics. I/O throughputs are largely dependent on client-server network
distance.

GoogleFS is optimized for the MapReduce class of applications. GoogleFS’s
support for appending records to existing datasets in a quick, atomic and race-
free manner is critical for MapReduce applications. GoogleFS stores replicas of
data chunks on different machines. This increases the chances of MapReduce
scheduling mappers on nodes with the data or on nodes close to the data.
GoogleFS supports relaxed consistency semantics, which helps speed up data
appends.

Since object-based storage devices support the storage and serving of objects di-
rectly at the hardware level, better I/O throughputs can be achieved compared
to normal disc I/O. Application specific processing/computations however can-
not be performed at the servers. These systems provide strong consistency
semantics. I/O throughputs are largely dependent on client-server network
distance.

Client side caching is not supported. Client server distance can therefore be
detrimental to application performance. PVFS2 implements Non-Conflicting
Write semantics, thus allowing clients to update non-conflicting portions of the
namespace simultaneously without locks.

Placement semantic cues such as .Site, . Keep Together and . RepSites allow own-
ers to place their data close to the users most likely to use the data. This helps
optimize data throughputs. Cues can also be used to fetch file contents from
the cache of other clients in parallel.

Farsite does not attempt to reduce latency. It is designed to support typi-
cal user home directory I/O instead of the high performance I/O of scientific
applications. Byzantine fault tolerant agreement protocols and leases help in
providing strong consistency guarantees in Farsite.

Users choose primary and secondary tier storage nodes on which to store their
files. Moreover, popular files get widely cached. These measures help in im-
proving data throughputs. Based on application requirements, OceanStore can
provide a variety of consistency semantics.

Nodes maintain a private snapshot of all the logs and so file reads only require
the most recent records to be obtained from the DHash DHT. Ivy provides
weak consistency semantics with application assisted conflict resolutions.

In Pangaea, replica locations are determined by user activities. Files can there-
fore usually be located close to the clients. By default, Pangaea implements
weak consistency semantics. However, stronger guarantees can be provided by
trading off performance.

ENFS focuses on the principle that awareness of the capabilities of stor-
age nodes is critical for a file system to be useful for applications. Cluster
supernodes can inexpensively discover resources with specific characteristics
across the entire system. File/Replica placement decisions are based on the
requirements of the applications expected to operate on the files. This helps
applications achieve high performance. Home-based consistency protocols al-
low a wide variety of access semantics to be supported.
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tributed systems, clustering supports the scalable and efficient discovery of data and resources with
specific characteristics from the entire system [35]. Clustering also provides for efficient communication
mechanisms among proximal and far-off nodes in the system. Co-location of servers and their associated
clients, which helps in optimizing network latency, also becomes simpler when the system is partitioned
into clusters. A lot of work, done on network distance measurement [15], topology discovery [20] [9]
and proximity-based node clustering [51] [29] [35], can be used for autonomous cluster formation and
management.

e Capability-based Role Assignment Farsite and ENFS are examples of P2P file systems in which peers are
assigned different roles based on their current capability levels (CPU load, memory, network). Nodes
with relatively high levels of capability are made responsible for file metadata services. This helps in
reducing the effects of system dynamics on file availability and access. OceanStore and Pangaea do not
perform capability-based role assignment. These systems therefore use up a lot of network bandwidth
and space in maintaining per-file overlays.

5. Conclusions. This survey analyzes popular wide area distributed file systems for their scalability and
the support they provide for high application performance. Several design decisions affect the way file systems
scale and applications perform.

We categorize the systems as Traditional Distributed File Systems, Asymmetric Cluster File Systems and
Self-Organizing P2P File Systems, based on the extent of data/metadata distribution across the system.

We perform scalability analysis by characterizing the loads on file system servers as functions of query rates
and data I/O demands. Application performance is studied by characterizing query response times as functions
of the appropriate system parameters. Data I/O throughputs and support for data affinity are also analyzed.
The summarized observations are presented in section 4.1.

It is not possible to design a wide area distributed file system that performs ideally for all kinds of appli-
cations. Often, providing support for one feature affects another negatively. For wider acceptance, distributed
file systems must allow client applications to conveniently control the different trade-offs amongst file system
features.
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Introduction. This book is designed for graduate/undergraduate students and practitioners from any
science and engineering discipline who use computational power to further their field of research. This compre-
hensive test /reference provides a foundation for the understanding and implementation of parallel programming
skills which are needed to achieve breakthrough results by developing parallel applications that perform well
on certain classes of Graphic Processor Units (GPUs). The book guides the reader to experience programming
by using an extension to C language, in CUDA which is a parallel programming environment supported on
NVIDIA GPUs, and emulated on less parallel CPUs. Given the fact that parallel programming on any High
Performance Computer is complex and requires knowledge about the underlying hardware in order to write an
efficient program, it becomes an advantage of this book over others to be specific toward a particular hardware.
The book takes the readers through a series of techniques for writing and optimizing parallel programming for
several real-world applications. Such experience opens the door for the reader to learn parallel programming in
depth.

Outline of the Book. Kirk and Hwu effectively organize and link a wide spectrum of parallel programming
concepts by focusing on the practical applications in contrast to most general parallel programming texts that
are mostly conceptual and theoretical. The authors are both affiliated with NVIDIA; Kirk is an NVIDIA
Fellow and Hwu is principle investigator for the first NVIDIA CUDA Center of Excellence at the University
of Illinois at Urbana-Champaign. Their coverage in the book can be divided into four sections. The first
part (Chapters 1-3) starts by defining GPUs and their modern architectures and later providing a history of
Graphics Pipelines and GPU computing. It also covers data parallelism, the basics of CUDA memory /threading
models, the CUDA extensions to the C language, and the basic programming/debugging tools. The second part
(Chapters 4-7) enhances student programming skills by explaining the CUDA memory model and its types,
strategies for reducing global memory traffic, the CUDA threading model and granularity which include thread
scheduling and basic latency hiding techniques, GPU hardware performance features, techniques to hide latency
in memory accesses, floating point arithmetic, modern computer system architecture, and the common data-
parallel programming patterns needed to develop a high-performance parallel application. The third part
(Chapters 8-11) provides a broad range of parallel execution models and parallel programming principles, in
addition to a brief introduction to OpenCL. They also include a wide range of application case studies, such
as advanced MRI reconstruction, molecular visualization and analysis. The last chapter (Chapter 12) discusses
the great potential for future architectures of GPUs. It provides commentary on the evolution of memory
architecture, Kernel Execution Control Evolution, and programming environments.

Summary. In general, this book is well-written and well-organized. A lot of difficult concepts related to
parallel computing areas are easily explained, from which beginners or even advanced parallel programmers
will benefit greatly. It provides a good starting point for beginning parallel programmers who can access a
Tesla GPU. The book targets specific hardware and evaluates performance based on this specific hardware. As
mentioned in this book, approximately 200 million CUDA-capable GPUs have been actively in use. Therefore,
the chances are that a lot of beginning parallel programmers can have access to Telsa GPU. Also, this book
gives clear descriptions of Tesla GPU architecture, which lays a solid foundation for both beginning parallel
programmers and experienced parallel programmers. The book can also serve as a good reference book for
advanced parallel computing courses.

Jie Cheng,
University of Hawaii Hilo
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