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S
alable Computing: Pra
ti
e and Experien
eVolume 11, Number 3, p. i. http://www.s
pe.org ISSN 1895-1767© 2010 SCPEINTRODUCTION TO THE SPECIAL ISSUE: PARALLEL, DISTRIBUTED ANDNETWORK-BASED COMPUTING: AN APPLICATION PERSPECTIVEParallel, distributed and network-based 
omputing is a 
ontinuosly evolving �eld, driven by progress in mi
ro-pro
essor ar
hite
ture and inter
onne
tion te
hnology, as well as by the needs of 
omputing- and data-intensiveappli
ations in s
ien
e and engineering, and, more re
ently, in business. This �eld is 
urrently undergoinga signi�
ant 
hange, be
ause of the development of multi
ore and many
ore pro
essors, GPUs, and FPGAs,whi
h are the new building blo
ks of parallel ar
hite
tures. At the other end of the parallel and distributed
omputing s
enario, 
omputational grids are far from being a mature infrastru
ture and are evolving toward
loud 
omputing, to get a higher level of virtualization.The availability of programming models, algorithms and software tools 
apable of harnessing the pro
essingpower o�ered by the new te
hnologies is a key issue to make them usable by appli
ation developers. This spe
ialissue provides a view of the e�orts 
arried out in this dire
tion.
• Barlas introdu
es an optimization approa
h for redu
ing data 
ommuni
ation and load imbalan
e inmedi
al image mat
hing on Grids.
• Binzenhöfer et al. present a distributed and s
alable algorithm to monitor a p2p network.
• Cesario and Talia dis
uss the use of data mining models and servi
es on Grid systems for analysis oflarge data repositories.
• Danelutto et al. des
ribe a performan
e model for 
omponent-based appli
ations with stream 
ommu-ni
ation semanti
s running on Grids.
• Danese et al. des
ribe a FPGA-based 
opro
essor to a

elerate double pre
ision �oating point operationsin high-performan
e appli
ations.
• Gross and Marquardt introdu
e a graphi
al editor providing abstra
tions from base te
hnology foruser-friendly 
on�guration of Ubiquitous Computing environments.The papers 
olle
ted here are sele
ted extended versions of papers presented at PDP 2007, the FifteenthEuromi
ro Conferen
e on Parallel, Distributed and Network-based Pro
essing, held in Naples, Italy, in February2007. The 
onferen
e was organized by the Institute for High-Performan
e Computing and Networking (ICAR)of the Italian National Resear
h Coun
il (CNR) in 
ollaboration with the Se
ond University of Naples, theUniversity of Naples �Parthenope� and the University of Naples �Federi
o II.�We thank the editors of S
alable Computing: Pra
ti
e and Experien
e for providing us the opportunity ofpublishing this issue, the authors for their 
ontributions, and the referees for their pre
ious help in sele
tinggood-quality papers.Pasqua D'AmbraInstitute for High-Performan
e Computing and Networking (ICAR), CNRNaples, Italypasqua.dambra�
nr.itDaniela di Sera�noDepartment of Mathemati
s, Se
ond University of NaplesCaserta, Italydaniela.diserafino�unina2.itMario Rosario Guarra
inoInstitute for High-Performan
e Computing and Networking (ICAR), CNRNaples, Italymario.guarra
ino�
nr.itFran
es
a PerlaDepartment of Statisti
s and Mathemati
s for E
onomi
 Resear
h,University of Naples �Parthenope�Naples, Italyfran
es
a.perla�uniparthenope.it
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pe.org ISSN 1895-1767© 2010 SCPEOPTIMIZING IMAGE CONTENT-BASED QUERY APPLICATIONS OVER HIGHLATENCY COMMUNICATION MEDIA, USING SINGLE AND MULTIPLE PORTCOMMUNICATIONSGERASSIMOS BARLAS∗Abstra
t. One of the earliest appli
ations that explored the power and �exibility of the grid 
omputing paradigm was medi
alimage mat
hing. A typi
al 
hara
teristi
 of su
h appli
ations is the large 
ommuni
ation overheads due to the bulk of data thathave to be transferred to the 
ompute nodes.In this paper we study the problem of optimizing su
h appli
ations under a broad model that in
orporates not only 
ommu-ni
ation overheads but also the existen
e of lo
al data 
a
hes that 
ould exist as a result of previous queries. We study the 
asesof both 1- and N-port 
ommuni
ation setups. Our analyti
al approa
h is not only 
omplimented by a theorem that shows how toarrange the sequen
e of operations in order to minimize the overall 
ost, but also yields 
losed-form solutions to the partitioningproblem.For the 
ase where large load imbalan
es (due to big di�eren
es in 
a
he sizes) prevent the 
al
ulation of a 
losed-form solution,we propose an algorithm for optimizing load redistribution.The paper is 
on
luded by a simulation study that evaluates the impa
t of our analyti
al approa
h. The simulation, whi
hassumes a homogeneous parallel platform for easy interpretation of the results, 
ompares the 
hara
teristi
s of the 1- and N-portsetups.Key words: parallel image registration, divisible load, high performan
e1. Introdu
tion. In the past �ve years there has been a big drive towards harnessing the power of paralleland distributed systems to o�er improved medi
al servi
es in the domain of 2D and 3D modalities. Content-based queries are at the 
ore of these servi
es, allowing physi
ians to a
hieve higher-a

ura
y diagnoses, 
ondu
tepidemiologi
al studies or even a
quire better training among other things [1℄.In [2℄, the authors present a high-level overview of the methodologies used for medi
al image mat
hing. Theauthors identify two broad types of approa
hes: image retrieval that utilizes similarity metri
s to o�er suitable
andidate images and image registration that tries to �t the observed data onto �xed or deformable models.Finally, the authors suggest an integrated system ar
hite
ture that 
ould 
ombine the advantages of the twoapproa
hes. A 
omprehensive review and 
lassi�
ation of 
urrent medi
al image handling systems is publishedin [3℄.Apart from the 
lassi�
ation mentioned in [2℄, image registration te
hniques are also 
lassi�ed based onwhether:
• Image features are used (
ontrol-point based) or the whole (or an area of interest) image (global regis-tration).
• Work is done at the spatial or frequen
y domain.
• Global (rigid) or lo
al (non-rigid) geometri
al transformations are used.The key problem is determining the optimum geometri
al transformation. A brute-for
e approa
h entailshuge 
omputational requirements, leading resear
hers to either perform the sear
h in several re�nement steps[4, 5℄, or swit
h to heuristi
 te
hniques su
h as geneti
/evolutionary algorithms and simulated annealing [6, 7℄.Domain spe
i�
 te
hniques have been also suggested [8℄.A domain whi
h has been enjoying early su

ess is mammography [9, 1, 10℄. Many proje
ts that seek toharness the power of Grids [11℄ to o�er advan
ed medi
al servi
es have spawned over the last 8 years. A typi
alexample is the MammoGrid proje
t. Amendolia et.al present an overview of its servi
e ar
hite
ture design in [1℄.On the other side of the Atlanti
, the National Digital Mammography Ar
hive Grid is a similar initiative [10℄. AP2P system that seeks to address s
alability issues that arise with the operation of typi
al 
lient-server systemshas been also proposed in [12℄.While the problem of image registration is inherently `embarrassingly' parallel, the domain has seen littlework on performan
e optimization espe
ially over heterogeneous platforms. In [5℄ the authors use wavelets toperform global registration in in
reasing re�nement steps that allows them to redu
e the sear
h spa
e involved.Zhou et al. also evaluate four parallelization te
hniques and derive their 
omplexity in big-O notation by

∗Department of Computer S
ien
e & Engineering, Ameri
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222 G. Barlasimpli
itly assuming a homogeneous platform. However, they fail to take into a

ount the 
ommuni
ationoverheads involved and use their analysis to optimize the load partitioning of their strategies.Ino et al. propose a uniform inter-image 2D partitioning for performing 2D/3D registration, i. e. estimatethe spatial lo
ation of a 3D volume from its proje
tion on a 2D plane [13℄. While Ino et al. dis
uss otherpossible distributions, they do not use an appropriate model that would allow for optimization. Subsequently,in [14℄ the authors 
ompare very favourably a GPGPU approa
h with their parallel implementation on 2D/3Dregistration.De Fal
o et al. have employed a di�erential evolution me
hanism for estimating the parameters of an a�netransformation for global registration [6℄. The load distribution is performed on the population level, while atregular intervals, individuals are ex
hanged between neighboring nodes on the torus ar
hite
ture used.One of the early systems is the one des
ribed in [9℄. Montagnat et.al use an array of high run-time 
ost, pixel-based, image retrieval algorithms to answer image similarity queries. As des
ribed in [15℄, the homogeneoussystem that is used to run the queries employs equal size partitioning, e.g. the M images that need to be
ompared against a new one, are split into k jobs of size M
k . In [15℄ the authors develop empiri
al 
ost modelsfor ea
h of the similarity metri
s used to answer a 
ontent-based query. These are 
omplemented by a study ofthe s
heduling and data repli
ation 
osts that are in
urred upon submitting a job to a Grid platform.While the models shown in [15℄ 
apture mu
h of the inner workings of the algorithms used, they are not themost suitable for developing a strategy or 
riteria for optimizing the exe
ution of 
ontent-based queries. Instead,they fo
us on estimating the optimum number of jobs to spawn, given the high asso
iated 
ost of task/resour
es
heduling on Grids.A parti
ular problem in deriving an analyti
al partitioning solution is that upon performing a sequen
eof queries, the system is in a state where lo
al image 
a
hes 
an redu
e the 
ommuni
ation 
ost. This is of
ourse true as long as they refer to images of the same modality and type of 
ontent. To our knowledge, thispaper is the �rst attempt to treat this problem in an analyti
al fashion that in
orporates all the aforementionedsystem/problem parameters.Our analyti
al approa
h belongs to the domain of Divisible Load Theory [16℄, whi
h sin
e its in
eption inthe late 80s, has been su

essfully employed in a multitude of problems [17℄. In [17℄ the problem of optimallypartitioning and s
heduling operations for two 
lasses of problems identi�ed as query pro
essing and imagepro
essing respe
tively, has been studied. The problem 
hara
terizations were based on the 
ommuni
ation
hara
teristi
s and more spe
i�
ally, the relation between the 
ommuni
ation 
ost and the assigned load. Thispaper �lls a gap left by that work by proposing a model and an analyti
al solution to image-query pro
essingappli
ations.The 
ontribution of our work is that for the �rst time a fully analyti
al model is employed to devise anoptimizing strategy for the total exe
ution time, given 
ommuni
ation 
osts and the state (and not just the
apabilities) of the parallel platform. Our simulation study shows that the bene�ts of the proposed frameworkare signi�
ant, in both a single-shot and a series of queries s
enarios. Also, by isolating the spe
i�
s of themat
hing algorithms, our proposed solution is more adept to easy implementation and deployment, given thefew system parameters that need to be known/estimated.The organization of the paper goes as follows: in se
tion 2 the 
ost model used in our analysis is introdu
edand explained within a broader 
ontext. Se
tion 3.1 
ontains a study of the two-node s
enario that 
ultivates toTheorem 3.1 for the optimum sequen
e of operations. The 
losed-form solutions to the partitioning problem for

N nodes in 1-port 
on�guration, is given in 3.2, while the N-port problem is solved in Se
tion 4. An algorithmfor managing the 
a
he size of the 
ompute nodes towards minimizing the exe
ution time, is given in se
tion 5.Finally, the simulation study in Se
tion 6 highlights the bene�ts and drawba
ks of our analyti
al approa
h andbrings-up interesting fa
ts about the di�erent 
ommuni
ation setups.2. Model Formulation. The ar
hite
ture targeted in this paper 
onsists of N heterogeneous 
omputingnodes that re
eive image data from a load originating node and return the results of the image mat
hing pro
essto it. The network ar
hite
ture is a single-level tree or a bus-
onne
ted one. Be
ause this 
an be a repetitivepro
ess, ea
h node 
an build up a lo
al image 
a
he that 
an be reused for subsequent queries. Hen
e the loadoriginating node has to 
ommuni
ate to the 
omputing nodes only what they are missing, either be
ause of thein
orporation of new images or be
ause of the departure of nodes from the 
omputing pool.Our treatment of the problem is based on the formulation of an a�ne model that des
ribes the 
omputationand 
ommuni
ation overheads asso
iated with the query data distribution, the image mat
hing pro
ess and the



Optimizing Image Content-Based Query 223Table 2.1NotationsSymbol Des
ription Units
b is the 
onstant overhead asso
iated with load distribution. It 
onsists of theimage to be mat
hed in addition to any query spe
i�
 data (e.g. mat
hingthresholds). B

d is the 
onstant overhead asso
iated with result 
olle
tion. Typi
ally d < b. B
eX is the part of the load whi
h is resident at node X , i. e. a lo
al image 
a
he. B
I is the typi
al size of an image used for image mat
hing. B
L the load that is has to be 
ommuni
ated to the 
omputing nodes B
lX is inversely proportional to the speed of the link 
onne
ting X and its loadoriginating node. sec/B

pX is inversely proportional to the speed of X . sec/B
partX is the part of the load L assigned to X , hen
e 0 ≤ partX ≤ 1. The total loadassigned to X is partXL+ eX

NAresult 
olle
tion phase. These models are 
losely related with the ones introdu
ed in [17℄ although the semanti
sfor some of the 
onstants used here are di�erent. Given a node X that is 
onne
ted to a load originating nodewith a 
onne
tion of (inverse) speed lX , we assume that the load distribution tdistr, the 
omputation tcomp andthe result 
olle
tion tcoll 
osts are given by:
tdistr = lX (partXL+ b) (2.1)

tcomp = pX (partXL+ eX) (2.2)
tcoll = lXd (2.3)The symbols used above, along with all the remaining ones to be introdu
ed later in our analysis, are summarizedin Table 2.1.The total load to be pro
essed by N nodes is

N−1∑

i=0

(partiL+ ei) (2.4)and for the 
ommuni
ated load parts we have:
N−1∑

i=0

parti = 1 (2.5)The 
ontribution of the above 
omponents to the overall exe
ution time of node X depends on how 
om-muni
ation and 
omputation overlap. We 
an identify two 
ases:
• Blo
k-type 
omputation: no overlap between 
ommuni
ation and 
omputation. Node X 
an start
omputing only after all data are delivered:

tX = lX (partXL+ b+ d) + pX (partXL+ eX) (2.6)
• Stream-type 
omputation: node X 
an start using ea
h lo
al image 
a
he immediately after re
eivingthe query data. Computation 
an run 
on
urrently with the 
ommuni
ation of the extra data partXL.There are two 
ases depending on the relative speed between 
ommuni
ation and 
omputation:� Communi
ation speed is high enough to prevent X from going idle i. e.

pX (partXL+ eX − I) ≥ lXpartXL (2.7)where I is the size of the last image to be 
ompared against the required one. Then:
tX = lX (b+ d) + pX (partXL+ eX) (2.8)
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DFig. 3.1. The four possible 
on�gurations of pro
essing by two nodes when 1-port 
ommuni
ations are used. Result 
olle
tionis assumed to be separated by a 
onstant delay D.� Node X has to wait for the delivery of data through a slow link, i. e. 
ondition (2.7) is invalid.Then:
tX = lX (b+ d) + lXpartXL+ pXI (2.9)The additional parameter that 
ontrols the overall 
ost when N nodes are used, is whether single-port or

N -port 
ommuni
ations are employed, e.g. whether the load originating node 
an distribute L 
on
urrently tomultiple nodes.In the remaining se
tions we fo
us on blo
k-type tasks under both 1- and N-port 
ommuni
ation setups.Our derivations are based on the assumptions of uniform 
ommuni
ation media, i. e. li = l ∀i. A 
omparisonbetween the two 
ommuni
ation setups is performed in se
tion 6.It should be noted that the stati
 model proposed in this paper, while not apparently suitable for a grid
omputing s
enario, in whi
h 
omputation and 
ommuni
ation 
osts 
hange over time, it 
an form the basisfor an adaptive s
heduler that modi�es load distribution over time given 
ost estimates. This goes beyond thes
ope of this paper and should be the topi
 of further resear
h.3. The 1-port Communi
ation Case.3.1. The two-node s
enario. If we assume that there is a load originating node that distributes the loadto two nodes, then if single port 
ommuni
ations and a single installment [16℄ are used, the possible sequen
esof 
ommuni
ation and 
omputation operations are shown in Fig. 3.1, as imposed by the need to have no gapsbetween stages (otherwise, exe
ution time is not minimized). For reasons that will be
ome obvious in the restof the se
tion, we also assume that the two result 
olle
tion phases are separated by a 
onstant delay D.The total exe
ution time for 
on�guration #1 is given by:
t1 = l (part0L+ b) + p0 (part0L+ e0) + ld (3.1)where

p0(part0L+ e0) = l(part1L+ b) + p1(part1L+ e1) + l d+D (3.2)Eq. (3.2) 
oupled with the normalization equation part0 + part1 = 1 
an provide a solution for part0 and t1. Asimilar pro
edure 
an produ
e the times for the three remaining 
on�gurations. Thus we 
an form the pairwisedi�eren
es of running times:
t3 − t4 =

l (e1p1 − e0p0) + (dl − bl +D) (p1 − p0)

p0 + p1 + l
(3.3)

t3 − t2 =
l (e1p1 − e0p0 − b (p1 − p0)− dl −D)

p0 + p1 + l
(3.4)

t3 − t1 =
(dl +D)(p1 − p0 − l)

p0 + p1 + l
(3.5)
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t1 − t4 =

l (e1p1 − e0p0 − b (p1 − p0) + d l+D)

p0 + p1 + l
(3.6)

t1 − t2 =
l (e1p1 − e0p0 − (b+ d) (p1 − p0))

p0 + p1 + l
−

D (p1 − p0)

p0 + p1 + l
(3.7)

t4 − t2 = −
(d l +D) (p1 − p0 + l)

p0 + p1 + l
(3.8)Clearly, the problem is too 
omplex to have a single solution even for the simplest 
ase of two nodes. We
an however isolate a number of useful spe
ial 
ases that make a 
losed form solution to the N -node problemtra
table:

• No image 
a
hes (e0 = e1 = 0). If we assume than p0 ≤ p1 and given that b > d, we have:
t3 − t4 =

(dl − bl+D) (p1 − p0)

p0 + p1 + l
(3.9)

t3 − t2 =
l (−b (p1 − p0)− d l −D)

p0 + p1 + l
≤ 0 (3.10)

t3 − t1 =
(d l+D) (p1 − p0 − l)

p0 + p1 + l
(3.11)If dl−bl+D ≤ 0⇒ D ≤ l (b− d), then Eq. (3.11) di
tates that either 
on�guration #3 or 
on�guration#1 are optimum based on whether p1 − p0 − l is negative or not. If we assume that the di�eren
es inexe
ution speed are small relative to the 
ommuni
ation 
ost l (i. e. p1− p0 ≤ l) then 
on�guration #3is the optimum one.The exe
ution time is given by

t
(nc)
3 = l

(
part

(nc)
0 L+ b

)
+ p0part

(nc)
0 L+D + 2ld (3.12)where:

part
(nc)
0 =

p1L+ l(L− d+ b)−D

L (p0 + p1 + l)
(3.13)

• Homogeneous system (p0 = p1 = p). If we assume that e0 ≥ e1 then:
t3 − t4 =

pl (e1 − e0)

2p+ l
≤ 0 (3.14)

t3 − t1 = −
l (d l +D)

2p+ l
≤ 0 (3.15)

t1 − t2 =
pl (e1 − e0)

2p+ l
≤ 0 (3.16)whi
h again translates to having 
on�guration #3 as the optimum one. It should be noted that theoptimum order di
tates that load is sent �rst to the node with the biggest 
a
he, whi
h is a 
ounter-intuitive result! The exe
ution time is given by

t
(homo)
3 = l

(
part

(homo)
0 L+ b

)
+ p

(
part

(homo)
0 L+ e0

)
+D + 2ld (3.17)where:

part
(homo)
0 =

p(L+ e1− e0) + l(L− d+ b)−D

L (2p+ l)
(3.18)
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Fig. 3.2. (a) A possible ordering of load distribution and result 
olle
tion for N nodes. (b) Improving the exe
ution time byordering the operations of Pi and Pi+1 in non-de
reasing order of their speed (assuming pi ≤ pi+1). Note: the phase durationsare disproportionate to a
tual timings.The delay D that was introdu
ed above allows us to extend our analyti
al treatment from 2 nodes to N . Dis supposed to model the time taken by the result 
olle
tion operations of other nodes. Hen
e, D is a multipleof d · l with a maximum value of (N − 2) d · l. For the 
ase of no-
a
hes, as long as D ≤ l (b − d)⇒ N ≤ b
d + 1and the di�eren
es in 
omputation speed are smaller than the 
ommuni
ation speed, 
on�guration #3 is theoptimum one as stated by the following theorem. Given the 2-3 orders of magnitude di�eren
e expe
ted between

b and d, the range of N that the theorem applies is quite broad.Theorem 3.1. The optimum load distribution and result 
olle
tion order for an image query operationperformed by N nodes is given by:
• No image 
a
hes: distributing the load and 
olle
ting the results in non-in
reasing order of the nodes'speed (i. e. in non-de
reasing order of the pi parameters). The su�
ient but not ne
essary 
onditionsfor this to be true is N ≤ b

d + 1 and |pi − pj | ≤ l for any pair of nodes i, j.
• Homogeneous system: distributing the load and 
olle
ting the results in non-in
reasing order of thelo
al image 
a
he sizes.Proof. We will prove the above theorem for the no-
a
hes 
ase via 
ontradi
tion. The proof for thehomogeneous 
ase is identi
al. Let's assume that the optimum order is similar to the one shown in Fig. 3.2(a).Without loss of generality we assume that the distribution order is P0, P1, . . . PN−1For any two nodes Pi and Pi+1 that do not satisfy the order proposed by Theorem 3.1, we 
an rear-range the distribution and 
olle
tion phases so as the part of the load that is 
olle
tively assigned to them(L (parti + parti+1)) is pro
essed in a shorter time frame (as long as N ≤ b

d + 1), while o

upying in anidenti
al fashion the 
ommuni
ation medium (see Fig. 3.2(b)). Thus, the operation of the other nodes is notin�uen
ed. At the same time the shorter exe
ution time would allow additional load to be given to nodes Pi and
Pi+1 resulting in a shorter total exe
ution time. The out
ome is a 
ontradi
tion to having the original orderingbeing an optimum one. The only ordering that 
annot be improved upon by the pro
edure used in this proof,is the one proposed by Theorem 3.1.The above dis
ussion settles the ordering problem, allowing us to generate a 
losed-form solution to thepartitioning problem for N nodes.3.2. Closed-form solution for N nodes.3.2.1. No image 
a
hes. The following relation holds between every pair of nodes whi
h are 
onse
utivein the distribution and 
olle
tion phases (without loss of generality we will again assume that the nodes' orderis P0, P1, . . . , PN−1):

pipartiL+ ld = l (parti+1L+ b) + pi+1parti+1L⇒

parti+1 = parti
pi

pi+1 + l
+

l (d− b)

L (pi+1 + l)
(3.19)This 
an be extended to any pair of nodes Pi and Pj , where i > j:

parti = partj

i−1∏

k=j

pk
pk+1 + l

+
l (d− b)

L

i∑

k=j+1

[
(pk + l)

−1
i−1∏

m=k

pm
pm+1 + l

] (3.20)
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an asso
iate ea
h parti with part0 and use the normalization equation:
N−1∑

i=0

parti = 1 (3.21)to 
ompute a 
losed form solution for part0:
part0 =

1− l(d−b)
L

∑N−1
i=1

∑i
k=1

∏i−1

m=k

pm
pm+1+l

(pk+l)

1 +
∑N−1

i=1

∏i−1
k=0

pk

pk+1+l

(3.22)Equations (3.22) and (3.20) solve the partitioning problem. The total exe
ution time is:
t
(nc)
total = l (part0L+ b) + p0part0L+N l d (3.23)The above 
onstitute a 
losed form solution that 
an be 
omputed in time N2−N

2 + 3(N − 1) +Nlg(N) =
O
(
N2
), where Nlg(N) is the node-sorting 
ost.3.2.2. Homogeneous System. Following a similar pro
edure to the previous se
tion, it 
an be shownthat:

p (partiL+ ei) + l d = l (parti+1L+ b) + p (parti+1L+ ei+1)⇒

parti+1 = parti
p

p+ l
+

l (d− b) + p (ei − ei+1)

L (p+ l)
(3.24)This 
an be extended to any pair of nodes Pi and Pj , where i > j:

parti = partj

(
p

p+ l

)i−j

+

i−1∑

k=j

l (d− b) + p (ek − ek+1)

L (p+ l)

(
p

p+ l

)i−k−1 (3.25)Again, Eq. (3.25), and the normalization equation 
an produ
e a 
losed form solution for part0:
part0 =

d− b

L
+

l + l N(b−d)
L

p+ l − p
(

p
p+l

)N−1
−

l
∑N−1

i=1

∑i−1
k=0

(ek−ek+1)
L

(
p

p+l

)i−k

p+ l − p
(

p
p+l

)N−1
(3.26)The total exe
ution time 
an be then 
omputed as:

t
(homo)
total = l (part0L+ b) + p (part0L+ e0) +N l d (3.27)As with the previous 
ase, the solution requires an O

(
N2
) 
omputational 
ost.A spe
ial 
ase needs to be 
onsidered if L = 0 as the above equations 
annot be applied. The minimumexe
ution 
an be a
hieved only if the lo
al 
a
hes are appropriately sized to a

ommodate this. Similarly toEq. (3.25) for two nodes Pi and Pj , where i > j we would have:

piei + (j − i)ld = (j − i)lb+ pjej ⇒

ej = ei
pi
pj

+
(j − i)l(d− b)

pj
(3.28)If the 
a
hes do not satisfy 
ondition (3.28), the load must be reassigned/transferred between nodes. Inthis paper we assume that this is performed by the load originating node and not by a dire
t ex
hange betweenthe 
ompute nodes. Se
tion 5 elaborates more on how we 
an treat this 
ase.
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Fig. 4.1. Optimum s
heduling for a N-port 
ommuni
ation setup.4. The N-port Communi
ation Case.4.1. Closed-form solution for N nodes. The N-port 
ommuni
ation 
ase is mu
h simpler than the1-port one sin
e no expli
it node ordering is ne
essary. It 
an be easily shown in this 
ase that the optimumload partitioning has to produ
e identi
al running times on all the parti
ipating 
ompute nodes, i. e. all nodesmust start re
eiving data and �nish delivering results at the same instant. Sin
e all nodes must have the samestarting and ending times as shown in Fig.4.1, for any two nodes i and j, the following has to hold:
l (partiL+ b) + pi (partiL+ ei) + ld =

l (partjL+ b) + pji (partjL+ ej) + ld⇒

partiL (pi + l) + piei = partjL (pj + l) + pjej ⇒

parti = partj
pj + l

pi + l
+

pjej − piei
L (pi + l)

(4.1)The normalization equation (3.21) 
an then be used to produ
e a 
losed-form solution for part0 and subse-quently all parti:
N−1∑

i=0

parti = 1⇒

part0

N−1∑

i=0

p0 + l

pi + l
+

N−1∑

i=1

p0e0 − piei
L (pi + l)

= 1⇒

part0 =
1 +

∑N−1
i=1

piei−p0e0
L(pi+l)∑N−1

i=0
p0+l
pi+l

(4.2)The total exe
ution time is given by:
t
(Nport)
total = l (part0L+ b) + pi (part0L+ ei) + ld (4.3)4.2. Homogeneous System Solution. For a homogeneous system (∀pi ≡ p), the above equations aresimpli�ed to the following:

(4.1)⇒ parti = partj +
p (ej − ei)

L (p+ l)
(4.4)

(4.2)⇒ part0 = N−1

(
1 +

p

L

N−1∑

i=1

ei − e0
p+ l

) (4.5)whi
h translates to having di�eren
es in the lo
al 
a
hes as the single 
ause of any imbalan
es in the split ofthe new load L. Otherwise the load should be evenly split.
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he Management. Eq. (3.20), (3.25), (4.1) and (4.4) allow for negative values for partis.Su
h an event indi
ates that the 
orresponding node should not parti
ipate in the 
al
ulation, either be
auseit is too slow or be
ause the lo
al 
a
he size is too large for a node to pro
ess and keep up with the othernodes. In the latter 
ase it is obvious that a node should use only a part of its 
a
he. The load surplus shouldbe transferred to other nodes. This situation 
an arise when following the initial distribution of load to thenodes, subsequent queries are no longer a

ompanied by big 
hunks of data, making the initial distribution asuboptimal one.In this se
tion we address this problem by proposing a algorithm for estimating the proper 
a
he size thatshould be used, along with the 
orresponding load L that should be 
ommuni
ated to other nodes.The algorithm presented below, is based on the assumption that the interse
tion of all 
a
hes is ∅. The keypoint of the algorithm is a re-assignment of load from the nodes with an over-full 
a
he (identi�ed as set S in line8) to the nodes with little or no 
a
he. This pro
ess redu
es the total exe
ution time as long as 
ommuni
ationis faster than 
omputation.This algorithm has been also enhan
ed from the version presented in [18℄ to address the 
ase when L = 0,i. e. when pro
essing is based entirely on the nodes' lo
al data. In that 
ase, L 
an be initialized to a smallvalue, e.g. L = 1 (lines 2-5), whi
h would be subsequently subtra
ted on
e a redistribution is dimmed ne
essary(lines 32-36).Set S does not 
hange after line 8 as the subsequent in
rease in L due to a load shift (line 31) does notpermit any other node from having a negative assignment. The loop of lines 13-46 is exe
uted for as long asthere is a negative parti, or a load shift is ne
essary for balan
ing the node workload. In line 17 the size of the
a
he that should be used in a node with a negative assignment is estimated. Be
ause the load is reassigned
olle
tively in line 31, the 
a
he size of ea
h node in S 
an be under-estimated (by �bloating" the load L thatshould be 
ommuni
ated). This defeats the optimization pro
edure by for
ing the 
ommuni
ation of data thatare already present at the nodes, and in order to guard against this possibility, lines 21-28 re-adjust any previousoverestimation for nodes that subsequently got to have positive partj . Lines 12 and 41-44 serve as sentinelsagainst 
ases where the outer while loop does not 
onverge. In that 
ase, �xing the part assigned to the last nodein the distribution sequen
e (smallest e) to 0, allows the 
onvergen
e of the outer loop. A value for threshold
THRES that was found to yield good results in our experiments is 20. Threshold values that depend on thenumber of 
ompute nodes did not provide any visible di�eren
e.Lines 32-36 
an
el the addition of 1 load unit that is done when L = 0. Finally, if L remains 0 after loadredistribution is examined, 
a
he sizes satisfy 
ondition (3.28) for a homogeneous system and nothing moreneeds to be done (lines 37-40).A key point that should be made here is that Algorithm 1 produ
es a sub-optimum solution when a seriesof query operations are to be s
heduled. Designing an optimum algorithm for this s
enario is beyond the s
opeof this paper.6. Simulation Study. Single-port 
ommuni
ation is surely not a 
ontemporary te
hnology limitation. Itis rather a design feature whereas the load originating node dedi
ates its attention to a single node at a time,with the obje
tive of minimizing the message ex
hange 
ost between itself and the 
orresponding node. Inthis se
tion we explore the impa
t of the two alternative design 
hoi
es with the assistan
e of our analyti
alframework. Also, we evaluate the performan
e a
hieved by the use of Algorithm 1 for managing the image
a
hes through a battery of image queries.We base the bulk of our simulations on the assumption of a homogeneous platform. While the require-ment of a homogeneous system may seem unrealisti
, it 
an be typi
al of many large s
ale installations in bigorganizations.The key points of our simulation s
enario whi
h 
onsists of a series of image query operations, are thefollowing:

• The image DB1 
onsists originally of 10000 images of size 1MB ea
h. This is a small number relevantto the yearly �produ
tion" of mammograms generated at a national level. Additionally, the image sizemat
hes real data only in the order of magnitude as high resolution mammograms 
an be mu
h larger(e.g. 8MB).
• Ea
h new image that is mat
hed against the DB is also 1MB in size, hen
e b = 1MB.

1We use the term DB to loosely refer to the 
olle
tion of available, tagged, medi
al images, and not to an a
tual DBMS system.Storage servi
es are o�ered in MammoGrid [1℄ by MySQL and in NDMA by IBM's DB2 [10℄



230 G. BarlasAlgorithm 1 Estimating the lo
al image 
a
he sizes that yield the minimum exe
ution time for the next queryoperation1: load_shift← 02: if L = 0 then3: added← TRUE4: L← 15: end if6: In the 
ase of 1-port 
ommuni
ation and a homogeneous system, sort the nodes in des
ending order of their
ei parameters.7: Cal
ulate the load part for ea
h node Pi via Eq. (3.26), (3.25) or (4.2), (4.1)8: Let S be the set of nodes with partj < 09: if S 6= ∅ then10: Copy the 
a
he sizes of all nodes in temporary variables e(orig)i11: end if12: iter← 013: while S 6= ∅ OR load_shift 6= 0 OR added = TRUE do14: load_shift← 015: for ea
h Pj ∈ S do16: if partj < 0 then17: aux← partjL+ ej18: load_shift← load_shift+ ej − aux19: ej ← aux20: else21: aux← partjL+ ej22: if aux > e

(orig)
i then23: diff ← e
(orig)
j − ej24: else25: diff ← aux− ej26: end if27: load_shift← load_shift− diff28: ej ← ej + diff29: end if30: end for31: L← L+ load_shift32: if added = TRUE then33: added← FALSE34: L← L− 135: load_shift← 136: end if37: if L = 0 then38: Set for all nodes Pj , partj ← 039: BREAK40: end if41: iter← iter + 142: if iter > THRES then43: Fix the partk assigned to the node with the smallest ek to 044: end if45: Cal
ulate the load part for ea
h Pi, other than the nodes �xed in step 43.46: end while
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Fig. 6.1. Average sequential disk read speed per thread. The ideal 
urve represents the 
ase where the total bandwidth isevenly divided between the threads without losses.
• Every 100 queries, 100 appropriately tagged images are in
orporated in the image DB, hen
e the residentload in
reases gradually.
• The data 
olle
ted from ea
h node 
onsist of the best 10 mat
hes, along with the 
orresponding imageIDs and obje
tive fun
tion values, assumed in total to be of size d = 10 · (2 + 4) = 60B.
• The tioben
h utility [19℄ was used to estimate realisti
 values for the data rates between the load origi-nating nodes and the 
ompute nodes. A variable number of threads were used to represent simultaneousa

ess from multiple 
lients. The results whi
h were 
olle
ted on a Linux laptop ma
hine, equippedwith a ATA 100 100GB hard disk spinning at 4200rpm, formatted using the ReiserFS �lesystem, areshown in Fig. 6.1. The e�e
t of the disk 
a
he was minimized by using a 3GB �le size. These speedswere used in the 1- and N-port simulations that are reported in this paper. For 1-port 
ommuni
ationsin parti
ular, l was set equal to 0.00997sec/Mb, whi
h translates to 0.0837sec/image.The �rst question we would like to answer, is what would be the improvement of using our analyti
alapproa
h over an Equal load Distribution (ED) strategy that is traditionally used in homogeneous systems [15℄,in a single-shot s
enario, i. e. when only one query operation is performed. For this purpose, we tested both1- and N-port approa
hes, where the 
omputing speed of all nodes was set to be one of the following values

{0.08, 0.17, 0.33, 0.67, 1.34}sec/image, roughly 
orresponding to 1x, 2x, 4x, 8x and 16x the time required to
ommuni
ate a single image when 1-port 
ommuni
ation is used. In the remainder of this se
tion we will referto these pro
essing speeds as 1l, 2l, 4l , 8l and 16l respe
tively. Su
h a sele
tion of pro
essing speeds/
ostsmat
hes 
losely the running times reported in [15℄ for real-life tests and they are supposed to help us probe thee�e
ts of di�erent 
omputation/
ommuni
ation ratios and the use of di�erent image registration algorithms.The results for the 1-port 
ase are shown in Figure 6.2 in the form of the improvement a
hieved over theED approa
h. In all the 
omparative results reported in this se
tion, we use the exe
ution time provided bythe 1-port non-uniform proposed distribution strategy (as given by Eq.(3.27) and denoted below as tSP ) as thebaseline. The improvement is de�ned as:
tED − tSP

tSP
(6.1)whi
h is basi
ally the per
ent overhead that ED (tED) is 
ausing over the proposed analyti
al solution. Allinitial 
a
hes were set equal to 0 whi
h is a typi
al initialization s
enario. It should be noted that all the resultsreported in Fig. 6.2 and the remaining graphs of this se
tion, 
orrespond to 
ases where all available nodes 
anbe utilized, hen
e the la
k of data points for big values of N when p is relatively small. This quali�
ation wasimposed to avoid skewed results.As 
an be observed in Fig. 6.2, the improvement is even higher when the 
omputational 
ost is proportionallyhigher than the 
ommuni
ation, topping around 28% for the p = 16l 
ase. In the majority of the tested 
ases,the gain is above 10%.
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ution time improvement o�ered by the 1-port over the N-port approa
h, for a single-shot s
enario.Comparing the 1-port and N-port 
ases is less straightforward as there is a question of whether the N-port
ommuni
ation setup is a

omplished by sharing the same medium - as is usually the 
ase in non-dedi
atedplatforms su
h as Networks of Workstations (NoW) -, or the load originating node is having a dedi
ated linkfor ea
h worker. In the following paragraphs we assume that the former setup is appli
able.The improvement o�ered (!) by the 1-port over the N-port 
ase is shown in Figure 6.3, where improvementis now 
omputed by Eq. (6.1) by repla
ing tED with the exe
ution time of the N-port arrangement tNP . It
omes as a surprise that the N-port arrangement 
an be su
h a poor performer! The reasons 
an be summarizedas follows: (a) sharing the 
ommuni
ation medium 
auses the 
omputation phase to be overly delayed whiledata are being downloaded and (b) the 
ost of swit
hing is taking a heavy toll on the available bandwidth, asobserved in Figure 6.1 if one 
ompares the measured against the ideal 
urves. In summary, the 1-port setupallows -some of- the 
ompute nodes to start pro
essing the load a lot sooner. Of 
ourse this result has to beseen in the proper 
ontext, i. e. we have blo
k-type tasks and the nodes have no image 
a
he. As it will beshown below, this pi
ture is far from the truth for a sequen
e of query operations.



Optimizing Image Content-Based Query 233In order to test what would be the situation if a sequen
e of queries were performed, we simulated thesu

essive exe
ution of 1000 queries. The 
orresponding improvement for the 1-port s
heme is shown in Fig. 6.4(a). As 
an be observed, the ED strategy is not worst in every 
ase due to the 
ost of 
a
he redistribution thatAlgorithm 1 is 
ausing. A
tually for fast 
omputation (p = l) and a relatively small number of nodes, ED isfaster. For the majority of the other 
ases, the gains seems insigni�
ant (in the order of 1%) as the 
onstantshu�ing of the 
a
hes slows down the whole pro
ess. These e�e
ts 
an be minimized if queries are run in bat
hesas 
an be 
learly seen in Fig.6.4 (b) and (
), for moderate (10 queries) and extreme bat
h sizes (100 queries)respe
tively. For bat
h pro
essing the same analyti
al models 
an be applied, if we multiply the 
onstants b,
d and p by the bat
h size. Bat
hing requests together does not 
ome 
lose to optimizing a sequen
e of themas performed in [20℄, but as it is shown in Fig.6.4, boosts performan
e substantially. Under su
h 
onditionsthe proposed strategy is 
onsistently better than the ED one, although the a
tual gains depend on the ratiobetween 
omputation and 
ommuni
ation 
osts. If the former are dominant (e.g. as in the p = 16l 
ase), anybene�ts made by e�e
tively s
heduling the 
ommuni
ation operations is marginalized.Fig. 6.4 does not 
onvey the 
omplete pi
ture though, as the gains seem insigni�
ant. However, when therunning times are as high as shown in Fig. 6.5 even small gains translate to big savings in time.For the N-port 
ase, bat
hing requests produ
es small absolute savings as shown at the bottom of Fig. 6.5(b), (
). While the gain barely rea
hes 1 hour overall, the real bene�t 
omes from in
reased s
alability, i. e. theability to use bigger sets of pro
essors for the task. For example, for p = l bat
hes of 100 queries 
an run on100 nodes, while individually queries are limited to 13 nodes.The pi
ture is 
ompletely reversed for the N-port 
ase when multiple queries are 
onsidered, as 
an beobserved in Fig. 6.6. Even with the redu
ed bandwidth available to ea
h 
ompute node and the deteriorationof the total available bandwidth, the N-port approa
h is a hands-down winner. This is espe
ially true whenthe number of nodes grows beyond a limit, making this the most s
alable strategy, despite the bandwidth lossidenti�ed in Fig. 6.1. Additionally, bat
hing queries together bene�ts the N-port approa
h even more than the1-port, non-uniform one.7. Con
lusion. In this paper we present an analyti
al solution to the problem of optimizing 
ontent-based image query pro
essing over a parallel platform under 
ommuni
ation 
onstraints. We solve the problemanalyti
ally for both the single and N-port 
ases and we also prove an important theorem for the sequen
e ofoperations that minimize the exe
ution time. Our analyti
al solution is a

ompanied by an algorithm for the
a
he management of the nodes of a system, either 1-port homogeneous or N-port heterogeneous. Our 
losed-form solution for the 1-port heterogeneous 
ase with no image 
a
hes, 
an be employed when a single-shotoperation is preferred.The extensive simulations that were 
ondu
ted were able to reveal the following design prin
iples, as far ashomogeneous platforms are 
on
erned:

• If a single-shot exe
ution is desired, a 1-port non uniform distribution as highlighted in Se
tion 3.2.2 isthe best one.
• For a sequen
e of operations, the N-port strategy is the best performer, espe
ially if the 
omputational
ost is proportionally higher, or the number of nodes is high.Future resear
h dire
tions 
ould in
lude:
• Using the proposed methodology as a part of a Grid middleware s
heduler. It is possible that the highoverhead of typi
al grid s
hedulers 
ompromises the bene�ts shown in this paper, requiring furtheroptimizations.
• Devising a solution for a heterogeneous system with lo
al 
a
he.
• Examine the 
ase of multiple image sour
es instead of a single load originating node. Although 
urrentgeneration systems rely mostly on a single image repository, next generation ones are moving away fromthis paradigm [1℄. REFERENCES[1℄ S. R. Amendolia, F. Estrella, R. M
Clat
hey, D. Rogulin, and T. Solomonides, �Managing pan-european mammographyimages and data using a servi
e oriented ar
hite
ture,� in Pro
. IDEAS Workshop on Medi
al Information Systems: TheDigital Hospital (IDEAS-DH'04), September 2004, pp. 99�108.[2℄ M. M. Rahman, T. Wang, and B. C. Desai, �Medi
al image retrieval and registration: Towards 
omputer assisted diagnosti
approa
h,� in Pro
. IDEAS Workshop on Medi
al Information Systems: The Digital Hospital (IDEAS-DH'04), September2004, pp. 78�89.
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Fig. 6.4. Exe
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Fig. 6.5. Total exe
ution time o�ered by Algorithm 1 for a sequen
e of 1000 queries, under 1-port 
on�guration: (a) whenea
h query is run individually, (b) when queries are run in bat
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eVolume 11, Number 3, pp. 239�249. http://www.s
pe.org ISSN 1895-1767© 2010 SCPEDESIGN AND ANALYSIS OF A SCALABLE ALGORITHM TO MONITORCHORD-BASED P2P SYSTEMS AT RUNTIME∗ANDREAS BINZENHÖFER†, GERALD KUNZMANN‡, AND ROBERT HENJES†Abstra
t. Peer-to-peer (p2p) systems are a highly de
entralized, fault tolerant, and 
ost e�e
tive alternative to the 
lassi

lient-server ar
hite
ture. Yet 
ompanies hesitate to use p2p algorithms to build new appli
ations. Due to the de
entralized natureof su
h a p2p system the 
arrier does not know anything about the 
urrent size, performan
e, and stability of its appli
ation. Inthis paper we present an entirely distributed and s
alable algorithm to monitor a running p2p network. The snapshot of the systemenables a tele
ommuni
ation 
arrier to gather information about the 
urrent performan
e parameters of the running system as wellas to rea
t to dis
overed errors.1. Introdu
tion. In re
ent years peer-to-peer (p2p) algorithms have widely been used throughout theInternet. So far, the su

ess of the p2p paradigm was mainly driven by �le sharing appli
ations. However,despite their reputation p2p me
hanisms o�er the solution to many problems fa
ed by tele
ommuni
ation
arriers today [8℄. Compared to the 
lassi
 
lient-server ar
hite
ture they are de
entralized, fault tolerant, and
ost e�e
tive alternatives. Those systems are highly s
alable, do not su�er from a single point of failure, andrequire less administration overhead than existing solutions. In fa
t, there are more and more su

essful p2pbased appli
ations like Skype [14℄, a distributed VoIP solution, O
eanstore [4℄, a global persistent data store,and even p2p-based network management [10℄.One of the main reasons why tele
ommuni
ation 
arriers are still hesitant to build p2p appli
ations is thela
k of 
ontrol a provider has over the running system. At �rst, the system appears as a bla
k box to its operator.The 
arrier does not know anything about the 
urrent size, performan
e, and stability of its appli
ation. Thede
entralized nature of su
h a system makes it hard to �nd a s
alable way to gather information about therunning system at a 
entral unit. Operators, however, do not want to lose 
ontrol over their systems. They wantto know what their systems look like right now and where problems o

ur at the moment. The �rst problemsalready o

ur when testing and debugging a distributed appli
ation. Finding implementation errors in a highlydistributed system is a very 
omplex and time 
onsuming pro
ess [9℄. A provider also needs to know whetherhis newly deployed appli
ation 
an truly handle the task it was designed for.The latest generation of p2p algorithms is based on distributed hash tables (DHTs). The algorithm that
urrently attra
ts the most attention is Chord, whi
h uses a ring topology to realize the underlying DHT [12℄.DHTs are theoreti
ally understood in depth and proved to be a s
alable and robust basis for distributedappli
ations [7℄. However, the problem of monitoring su
h a system from a 
entral lo
ation is far from beingsolved. [11℄ gives a good overview of di�erent approa
hes to monitor and debug distributed systems in general.In the �eld of p2p, the pro
ess of measuring and monitoring a running system was so far limited to unstru
turedoverlays. [13℄, e.g., introdu
es a 
rawling-based approa
h to query Gnutella-like networks.In this paper, however, we exploit the spe
ial features of stru
tured p2p overlays and present an entirelynovel and s
alable approa
h to 
reate a snapshot of a running Chord-based network. Using our algorithm aprovider 
an either monitor the entire system or just survey a spe
i�
 part of the system. This way, he is ableto rea
t to errors more qui
kly and 
an verify if the taken 
ountermeasures are su

essful. On the basis of thegathered information it is, e.g., possible to take appropriate a
tion to relief a hotspot or to pinpoint the 
auseof a loss of the overlay ring stru
ture. The overhead involved in 
reating the snapshot is evenly distributedto the parti
ipating peers so that ea
h peer only has to 
ontribute a negligible amount of bandwidth. Mostimportantly, the snapshot algorithm is very easy to use for a provider. It only takes one parameter to adjustthe trade o� between duration of the snapshot and bandwidth needed at the 
entral unit whi
h 
olle
ts themeasurements.The remainder of this paper is stru
tured as follows. Se
tion 2 gives a brief overview of Chord with a fo
uson aspe
ts relevant to this paper. The snapshot algorithm as well as some areas of appli
ation are des
ribed inSe
tion 3. The fun
tionality of the algorithm is veri�ed analyti
ally in Se
tion 4 and by simulation in Se
tion 5.Se
tion 6 
on
ludes this paper.
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†University of Würzburg, Institute of Computer S
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peer z

peer yFig. 2.1. A simple sear
h.
peer z

f1
f2

f3

f4
peer yFig. 2.2. Sear
h using the �ngers.2. Chord Basi
s. This se
tion gives a brief overview of Chord with a fo
us on aspe
ts relevant to thispaper. A more detailed des
ription 
an be found in [12℄. The main purpose of p2p networks is to store datain a de
entralized overlay network. Parti
ipating peers will then be able to retrieve this data using some sortof sear
h algorithm. The Chord algorithm solves this problem by arranging the parti
ipating peers on a ringtopology. The position idz of a peer z on this overlay ring is determined by an m-bit identi�er generated bya hash fun
tion su
h as SHA-1 or MD5. In a Chord ring ea
h peer knows at least the id of its immediatesu

essor in a 
lo
kwise dire
tion on the ring. This way, a peer looking up another peer or a resour
e is able topass the query around the 
ir
le using its su

essor pointers. Figure 2.1 illustrates a simple sear
h of peer z foranother peer y using only the immediate su

essor. The sear
h has to be forwarded half-way around the ring.Obviously, the average sear
h would require n

2 overlay hops, where n is the 
urrent size of the Chord ring. Tospeed up sear
hes a peer z in a Chord ring also maintains pointers to other peers, whi
h are used as short
utsthrough the ring. Those pointers are 
alled �ngers, whereby the i-th �nger in a peer's �nger table 
ontains theidentity of the �rst peer that su

eeds z's own id by at least 2i−1 on the Chord ring. That is, peer z with hashvalue idz has its �ngers pointing to the �rst peers that su

eed (idz + 2i−1
) mod 2m for i = 1 to m, where 2mis the size of the identi�er spa
e.Figure 2.2 shows �ngers f1 to f4 for peer z. Using this �nger pointers, the same sear
h does only take twooverlay hops. For the �rst hop peer z uses its �nger f4. Peer y 
an then dire
tly be rea
hed using the su

essorof f4 as indi
ated by the small arrow. This way, a sear
h only requires 1

2 log2(n) overlay hops on average. Adetailed mathemati
al analysis of the sear
h delay in Chord rings 
an be found in [3℄. The snapshot algorithmpresented in Se
tion 3 makes use of the �nger tables of the peers.3. Design of the Snapshot Algorithm. In this se
tion we introdu
e a s
alable and distributed algorithmto 
reate a snapshot of a running Chord system. The algorithm is based on a very simple two step approa
h.In step one, the overlay is re
ursively divided into subparts of a prede�ned size. In step two, the desiredmeasurement is done for ea
h of these subparts and sent ba
k to a 
entral 
olle
ting point (CP ). In thefollowing, we des
ribe both steps in detail.3.1. Step 1: Divide Overlay into Subparts. The algorithm snapshot(Rs, Re, Smin, CP ) divides aspe
i�
 region of the overlay into subparts. This fun
tion is 
alled at an arbitrary peer p with idp. The peer thentries to divide the region from Rs = idp to Re into 
ontiguous subparts using its �ngers. The exa
t pro
edureis illustrated in Figure 3.1. In this example peer p has four �ngers f1 to f4. It sends a request to the �nger
losest to Re within [Rs;Re]. At �rst, �nger f4 is disregarded sin
e it does not fall into the region between Rsand Re (
f. a). This makes f3 the 
losest �nger to Re in our example. If this �nger does not respond to therequest, as illustrated by the bolt (
f. b), it is removed from the peer's �nger list and the peer tries to 
onta
tthe next 
losest �nger f2 (
f. 
). If this �nger a
knowledges the request, peer p re
ursively tries to divide theregion from Rs = idp to R̂e = idf2 − 1 into 
ontiguous subparts. Finger f2 partitions the region from R̂s = idf2to Re a

ordingly.As soon as a peer does not know any more �ngers in the region between the 
urrent Rs and the 
urrent
Re, the re
ursion is stopped. The peer 
hanges into step two of the algorithm and starts a measurement of thisspe
i�
 region. In this 
ontext, the parameter Smin 
an be used to determine the minimum size of the regions,whi
h will be measured in step two. Taking into a

ount Smin, a peer will already start the measurement if it
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Fig. 3.1. Visualization of the algorithm.does not know any more �ngers in the region between the 
urrent Rs + Smin and the 
urrent Re. In this 
ase�nger f1 would be disregarded, as illustrated by the dotted line (
f. d in Figure 3.1), sin
e it points into theminimum measurement region. Parameter Smin is designed to adjust the trade o� between the duration of thesnapshot and the bandwidth needed at the 
olle
ting point. The larger the regions in step two, the longer themeasurement will take. The smaller the regions, the more results are sent ba
k to the CP.Algorithm 2The snapshot algorithm (�rst 
all Rs = idp)snapshot(Rs, Re, Smin, CP )send a
knowledgment to the sender of the request
idfm = max({idf |idf ∈ �ngerlist ∧ idf < Re})while idfm > Rs + Smin dosend snapshot(idfm, Re, Smin, CP ) request to peer idfmif a
knowledgment from idfm then
all snapshot(idp, idfm − 1, Smin, CP ) at lo
al peerreturn //exit the fun
tionelseremove idfm from �ngerlist

idfm = max({idf |idf ∈ �ngerlist ∧ idf < Re})end ifend while
Ŝ = Re−Rs

⌈

Re−Rs
Smin

⌉ //explanation see step two
all 
ountingtoken(idp, Re, Smin, CP , ∅) at lo
al peerA detailed te
hni
al des
ription of the pro
edure is given in Algorithm 2. Peer p will 
onta
t the 
losest�nger to Re until it does not know any more �ngers in between Rs + Smin and Re. If so, it 
hanges into steptwo and starts a measurement of this region 
alling the fun
tion 
ountingtoken(idp, Re, Smin, CP , result) atthe lo
al peer.3.2. Step 2: Measure a Spe
i�
 Subpart. The basi
 idea behind the measurement of a spe
i�
 subpartfrom Rs to Re is very simple. The �rst peer 
reates a token, adds its lo
al statisti
s, and passes the token to itsimmediate su

essor. The su

essor pro
eeds re
ursively until the �rst peer with an id > Re is rea
hed. Thispeer sends the token ba
k to the 
olle
ting point, whose IP is given in the parameter CP.Ideally, ea
h of the regions measured in step two would be of size Smin as spe
i�ed by the user. The problem,however, is that the region from Rs to Re is slightly larger than Smin a

ording to step one of the algorithm.In fa
t, if the responsible peer did not know enough �ngers, the region might even be signi�
antly larger than
Smin. The solution to this problem is to introdu
e 
he
kpoints with a distan
e of Smin in the 
orrespondingregion. Results are sent to the CP every time the token passes a 
he
kpoint instead of sending only one answer



242 A. Binzenhoefer, G. Kunzmann, and R. Henjes
�������� �����

s
R

e
R

minS

min
Ŝ
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Fig. 3.2. Results sent after ea
h 
he
kpoint.at the end of the region. This is illustrated in the upper part of Figure 3.2. The 
ounting token is started at Rs.The �rst peer behind ea
h 
he
kpoint sends a result ba
k to the CP as illustrated by the large solid arrows.The �nal result is still sent by the �rst peer with id > Re.A drawba
k of this solution is that the 
he
kpoints might not be equally distributed in the region. Inparti
ular, the last two 
he
kpoints might be very 
lose to ea
h other. We therefore re
al
ulate the positions ofthe 
he
kpoints a

ording to the following equation:
Ŝmin =

Re −Rs⌈
Re−Rs

Smin

⌉ .The new 
he
kpoints 
an be seen in the lower part of Figure 3.2. The number of 
he
kpoints remains the same,while their positions are moved in su
h a way, that the results are now sent at equal distan
e.As 
an be seen at the end of Algorithm 2, the re
al
ulation of Smin is already done in the �rst step,just before the 
ounting token is started. A detailed des
ription of the 
ounting token me
hanism is given inAlgorithm 3. If a peer p re
eives a 
ounting token it makes sure that its identi�er is still within the measuredregion, i.e. Rs ≤ idp ≤ Re . If not, it sends a result ba
k to the CP and stops the token. Otherwise it addsits lo
al measurement to the token and tries to pass the token to its immediate su

essor. If it is the �rst peerbehind one of the 
he
kpoints, it sends an intermediate result ba
k to the CP and resets the token.As mentioned above the parameter Smin roughly determines the minimum size of the regions measured instep two. If Sid is the total size of the identi�er spa
e, there will be Nc 
ounting tokens arriving at the CP ,whereas:
2 ·

⌈
Sid

Smin

⌉
≥ Nc ≥

⌈
Sid

Smin

⌉
.A more detailed analysis of the snapshot algorithm is given in Se
tion 4 as well as in [1℄.3.3. Colle
t Statisti
s. Generally speaking, there are two di�erent kinds of statisti
s, whi
h 
an be
olle
ted using the 
ounting tokens. Either a simple mean value or a more detailed histogram. In the �rst 
asethe 
ounting token memorizes two variables, Va for the a

umulated value and Vn for the number of values. Ea
hpeer re
eiving the 
ounting token adds its measured value to Va and in
reases Vn by one. The sample mean 
anthen be 
al
ulated at the CP as ∑

Va
∑

Vn
. In 
ase of a histogram, the 
ounting token maintains a spe
i�
 numberof bins and their 
orresponding limits. Ea
h peer simply in
reases the bin mat
hing its measured value by one.If the measured value is outside the limits of the bins it simply in
reases the �rst or the last bin respe
tively.There are numerous things that 
an be measured using the above mentioned methods. Table 3.1 summarizessome exemplary statisti
s and the kind of information whi
h 
an be gained from them. The most obviousappli
ation is to 
ount the number of hops for ea
h 
ounting token. On the one hand, this is a dire
t measurefor the size of the overlay network. On the other hand, it also shows the distribution of the identi�ers in the
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ountingtoken algorithm (�rst 
all Rs = idp)
ountingtoken(Rs, Re, Smin, CP , result)send a
knowledgment to the sender of the requestif Rs ≤ idp ≤ Re thenif idp > Rs + Smin thensend result to CP
result = 0
Rs = Rs + Sminend ifadd lo
al measurement to result

ids = id of dire
t su

essorwhile 1 dosend 
ountingtoken(Rs, Re, Smin, CP , result) request to dire
t su

essor idsif a
knowledgment thenbreakelseremove ids from su

essor list
ids = id of new dire
t su

essorend ifend whileelsesend result to CPend if Table 3.1Possible statisti
s gathered during snapshotStatisti
 Information gainedNumber of hops per token Size of the network, Distribution of the identi�ersMean sear
h delay Performan
e of the algorithmSender ?

== prede
essor Overlay stabilityNumber of timeouts per token Churn rateNumber of resour
es per peer Fairness of the algorithmNumber of sear
hes answered User behaviorBandwidth used per time unit Maintenan
e overheadMissing resour
es Data integrityidenti�er spa
e. To gain information about the performan
e of the Chord algorithm, the mean sear
h delay ora histogram for the sear
h time distribution 
an be 
al
ulated and 
ompared to expe
ted values. Furthermore,Chord's stability 
an only be guaranteed as long as the su

essor and prede
essor pointers of the individual peersmat
h ea
h other 
orrespondingly. This invariant 
an be 
he
ked by 
ounting the per
entage of hops, where thesender of the 
ounting token did not mat
h the prede
essor of the re
eiving peer. Additionally, the number oftimeouts per token 
an be used to measure the 
urrent 
hurn rate in the overlay network. The more 
hurn thereis, the more timeouts are going to o

ur due to outdated su

essor pointers. Similarly, the number of resour
esstored at ea
h peer is a sign of the fairness of the Chord algorithm. The number of sear
hes answered at ea
hpeer 
an likewise be used to get an idea of the sear
h behavior of the end users. Finally, a peer 
an keep tra
kof the number of missing resour
es to verify the integrity of the stored data. This 
an, e.g., be done 
ountingthe number of sear
h requests whi
h 
ould not be answered by the peer.All of the above statisti
s 
an be 
olle
ted periodi
ally to survey the time dependent status of the overlay.Note, that it is also possible to monitor a spe
i�
 part of the overlay network by setting Rs and Re a

ordingly.This 
an, e.g., be helpful if there are problems in a 
ertain region of the overlay network and the operator needsto verify that his 
ountermeasures have been su

essful.



244 A. Binzenhoefer, G. Kunzmann, and R. Henjes4. Analysis and Optimizations. To analyze our algorithm we derive the duration of a snapshot (
f.Subse
tion 4.1) and the temporal distribution of the token arrival times at the CP (
f. Subse
tion 4.2).4.1. Duration of a Snapshot. To 
al
ulate an estimate of the duration of a snapshot, we assume as
enario without any peers joining or leaving the network. It is quite straightforward to estimate the durationof step one, the signaling step. The last 
ounting token whi
h will be started is the one 
overing the regiondire
tly following the initiating peer. This is due to the fa
t, that the initiating peer will start its 
ountingtoken no sooner than it divided the ring into separate regions. Before it initiates the 
ounting token, it 
onta
tsits �ngers until the �rst �nger is 
loser to itself than Smin. The initiating peer has at most log2(n) �ngers andea
h of the �ngers sends an a
knowledgment, before the peer 
an go on with the algorithm. If TO is the randomvariable des
ribing one overlay hop, then the duration of step one of the algorithm is at most
Dstep1 = 2 · log2(n) ·E[TO]. (4.1)The worst 
ase for step two would be that the initiating peer does not know any �ngers and dire
tly sendsthe 
ounting token. This would take n · E[TO], but is very unlikely to happen. In general, if there are n peersin the overlay, there are roughly Pr = n·Smin

Sid
peers per region. Furthermore, in the worst 
ase Smin is slightlylarger than a power of two and the region 
overed by a 
ounting token may be
ome almost twi
e as large as

Smin. Therefore a good estimate for the duration of the 
ounting step of the algorithm is:
Dstep2 = 2 · Pr · E[TO]. (4.2)This results in the following total duration of a snapshot:

D =

(
log2(n) +

n · Smin

Sid

)
· 2 · E[TO]. (4.3)4.2. Token Arrival Time Distribution. To get a rough estimate for the distribution of the arrival timesof the 
ounting tokens at the CP , we 
onsider the spe
ial 
ase where the size of the overlay n = 2g is a power oftwo and Smin is su
h that Nr = 2h with h < g. Furthermore, we assume that the individual peers are lo
atedat equal distan
es on the ring as shown in Figure 4.1.It 
an be shown, that in this 
ase h = log2(Nr) is the number of overlay hops it takes until the �rst 
ountingtoken is started during a snapshot. Similarly, it takes 2 ·h hops until the last 
ounting token is started a

ordingto our assumptions. The probability pi that a 
ounting token is started after exa
tly i hops for i = h, h+1, ..., 2·h
an be 
al
ulated as:

pi =

(
h

i−h

)
∑2·h

x=h

(
h

x−h

) . (4.4)The above 
onsiderations are nontrivial, but 
an ni
ely be explained using the simple example shown in Figure4.1, where g = 4, h = 2, and therefore n = 24 and Nr = 22. The solid arrows in the �gure show the messagesof the signaling step, the dotted arrows the 
orresponding a
knowledgments. The numbers next to the arrowsrepresent the number of overlay hops, whi
h have passed sin
e the beginning of the snapshot.In the example, peer A starts a snapshot of the entire ring. It sends a request to B to 
over the regionbetween B and A. Peer B sends an a
knowledgment ba
k to A and a simultaneous request to C to 
over theregion from C to A. C has no �ngers outside its minimum measurement region and starts the �rst 
ountingtoken after h = 2 overlay hops. Simultaneously, it sends an a
knowledgment ba
k to B. Peer B then starts its
ounting token after 3 overlay hops. In the meantime A signals D to 
over the region from D to B. Peer Dimmediately starts its 
ounting token after a total of 3 overlay hops. Peer A waits for the �nal a
knowledgmentand starts its 
ounting token after 4 = 2 ·h overlay hops. Summarizing the above, there are four 
ounting tokensstarted after 2, 3, 3, and 4 overlay hops respe
tively.A

ording to our assumptions, ea
h 
ounting token needs exa
tly Pr = 4 hops to travel the 
orrespondingregion and one �nal hop to arrive at the CP . A rough estimate for the distribution of the arrival times of the
ounting tokens at the CP is therefore given by the phase diagram shown in Figure 4.3. It indi
ates that thesignaling step takes i overlay hops with a probability pi for i = h, h + 1, ..., 2 · h, whi
h is followed by Pr hopsof the 
ounting token and the �nal hop to report the result ba
k to the CP .
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Fig. 4.3. Phase diagram of the token arrival time distribution.To validate our analyti
al results, we simulated a Chord ring of size n = 215 with Smin = 29 a

ordingto the above assumptions. Figure 4.2 shows the probability density fun
tion of the token arrival times at the
CP . Obviously, the 
urves mat
h very well and the binomial distribution of the duration of step one 
an bere
ognized. So far, in our example ea
h peer has a �nger at an exa
t distan
e of Smin. In reality, however,the �nger would sit at a slightly di�erent position, whi
h again would result in an additional 
he
kpoint atthe middle of the region. The 
urve labeled �Che
kpoints� 
orresponds to a slightly modi�ed phase diagram,whi
h adds an intermediate result in the middle of the measurement region. The �rst rise of the probabilitydensity fun
tion (pdf) therefore represents the intermediate results sent ba
k to the CP at the 
he
kpoint. These
ond rise still represents the regular results at the end of the region. In the following se
tion we will presentsimulations of more realisti
 s
enarios in
luding 
hurn and timeouts.5. Results. The results in this se
tion were obtained using our ANSI-C simulator, whi
h in
orporates adetailed yet slightly modi�ed Chord implementation. A good des
ription of the general simulation model 
anbe found in [5, 6℄. In this work an overlay hop is modeled using an exponentially distributed random variablewith a mean of 80ms. The results 
onsidering 
hurn are generated using peers, whi
h stay online and o�ine foran exponentially distributed period of time with a mean as indi
ated in the 
orresponding des
ription of the�gures.The snapshot algorithm takes one single input argument Smin whi
h dire
tly translates into Nr =

⌈
Sid

Smin

⌉,the number of areas the overlay will be divided into. This parameter in�uen
es the duration of the snapshot aswell as the number of results arriving at the 
entral 
olle
ting point. Figure 5.1 shows the distribution of the
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Fig. 5.2. In�uen
e of Nr for 20000 peers.arrival times of the results in an overlay of 40000 peers using Nr = 1000 and Nr = 100 areas in times of no
hurn. Obviously, the more areas the overlay is divided into, the faster the snapshot is 
ompleted. While thesnapshot using 1000 areas was �nished after about ten se
onds, the snapshot with 100 areas took about oneminute. In ex
hange the latter snapshot produ
es signi�
antly smaller bandwidth spikes at the CP. The twoelevations of the se
ond histogram 
orrespond to the intermediate results (�rst elevation) and the �nal resultsat the end of the measured subpart (se
ond elevation). Note that the �nal results arrive about twi
e as lateas the intermediate results. The �rst step of the algorithm uses the �ngers to divide the ring into subparts.Sin
e the distan
e between a peer and its �ngers is always slightly larger than a power of two it is usually notpossible to divide the ring exa
tly into the desired number of areas. In fa
t it is very likely, that a peer stopsthe re
ursion and starts its measurement on
e it 
onta
ted its xth �nger, where 2x−1 < Smin = Sid

Nr
≤ 2x. Thatis, the re
ursion stops at �nger x with idfx , whereas the distan
e between the peer and this spe
i�
 �nger mightalmost be twi
e as large as the desired Smin. It is therefore advisable to 
hoose Nr as a power of two itself inorder to ensure that idfx is only slightly larger than idp + Smin. Figure 5.2 shows the di�erent arrival times ofthe results for Nr = 512 and Nr = 500 in an overlay of 20000 peers without 
hurn. The skewed shape of thehistogram in the foreground results from the fa
t that 500 is slightly smaller than a power of two, whi
h in turnmakes Smin slightly larger than a power of two. In this 
ase it is likely that the peer has a �nger just beforethe end of the minimum measurement region idp + Smin. Thus, �nger x sits at a distan
e of about twi
e Sminfrom the peer. The resulting 
ounting token will therefore travel a distan
e of about twi
e Smin as well.A more detailed analysis of the in�uen
e of Nr 
an be found in Figure 5.3, whi
h shows the number ofresults re
eived at the CP in dependen
e of Nr. As shown in [1℄, Nc, the number of 
ounting tokens sent tothe CP , is limited by 2 · Nr > Nc ≥ Nr. The straight lines in the �gure show the 
orresponding limits. Thesolid and dotted 
urves represent the results obtained for 20000 and 10000 peers, respe
tively. The number ofresults sent to the CP is within the 
al
ulated limits and independent of the overlay size. The 
urves roughlyresemble the shape of a stair
ase, whereas the steps are lo
ated at powers of two. There are two main reasonsfor this behavior. First of all, the average 
ounting token sends two results ba
k to the CP , one intermediateresult and the �nal result at the end of the measurement region. Hen
e, the smaller the region 
overed by theaverage 
ounting token, the more results arrive at the CP . As explained above, the 
loser Nr gets to a powerof two, the smaller the region 
overed by the average 
ounting token. This a

ounts for the �rst part of the riseof the number of results re
eived at the CP .The distribution of the arrival times of the results is also in�uen
ed by the 
urrent size of the network. Thelarger the network, the more peers are within one region. However, the more peers are within one region, themore hops ea
h 
ounting token has to make, before it 
an send its results ba
k to the CP. Figure 5.4 shows thetoken arrival time distribution for three di�erent overlay sizes of 10000, 20000, and 40000 peers, respe
tively.We did not generate any 
hurn in this s
enario and set Nr = 512 areas. As expe
ted, the larger the overlaynetwork, the longer the snapshot is going to take. However, the 
urves are not only shifted to the right, butalso di�er in shape. This 
an again be explained by the in
reasing number of hops per 
ounting token.As mentioned above, the average 
ounting token sends two results ba
k to the CP, whereas the 
he
kpointsare equally spa
ed. Thus, the �nal result takes twi
e as many hops as the intermediate result. In a network of
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hurn on the tra�
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Fig. 5.6. Relative frequen
y of timeouts and pointer fail-ures.10000 peers there are approximately 20 peers in ea
h of the 512 regions. The intermediate results are thereforesent after about 10 hops, the �nal results after about 20 hops, respe
tively. The two 
orresponding elevationsin the histogram overlap in su
h a way, that they build a single elevation. In a network of 40000 peers, however,there are approximately 78 peers in ea
h of the 512 regions. The intermediate results are therefore sent afterabout 39 hops, the �nal results after about 78 hops, respe
tively. The di�eren
e between these two numbersis large enough to a

ount for the two elevations of the histogram in the foreground of Figure 5.4. Note, thatall 
urves are shifted to the right as 
ompared to the mere hop 
ount sin
e it takes some time for the signalingstep until the 
ounting tokens 
an be started. In pra
ti
e the 
urrent size of the overlay 
an be estimated to beable to 
hoose an appropriate value for Nr as suggested in [2℄.The arrival time of the results at the CP is also a�e
ted by the online/o�ine behavior of the individualpeers. To study the in�uen
e of 
hurn we 
onsider 80000 peers with an exponentially distributed online ando�ine time, ea
h with a mean of 60 minutes. This way, there are 40000 peers online on average, whi
h makesit possible to 
ompare the results to those obtained using 40000 peers without 
hurn. Figure 5.5 shows the
orresponding histograms.As a result of 
hurn in the system, the two elevations of the original histogram be
ome noti
eably blurredand the snapshot is slightly delayed. This is due to the in
onsisten
ies in the su

essor and �nger lists of thepeer as well as the timeouts whi
h o

ur during the forwarding of the 
ounting tokens. In return the spike inthe diagram and thus the required bandwidth at the CP be
omes smaller.It is easy to show, that the probability to lose a token is almost negligible [1℄. Therefore, a more meaningfulmethod to measure the in�uen
e of 
hurn is to regard the number of timeouts whi
h o

ur during a snapshot.Furthermore, the in�uen
e of 
hurn on the stability of the overlay network 
an be studied looking at the
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Fig. 5.7. Results of a snapshot 
ompared to the global view.frequen
y at whi
h the prede
essor pointer of a peer's su

essor does not mat
h the peer itself. Figure 5.6plots the relative frequen
y of timeouts and pointer failures against the mean online/o�ine time of a peer. Thesmaller the online/o�ine time of a peer, the more 
hurn is in the system.The results represent the mean of several simulation runs, whereas the error bars show the 95 per
ent 
on�-den
e intervals. The relatively small per
entage of both timeouts and failures is to some extent implementationspe
i�
. More interesting, however, is the exponential rise of the 
urves under higher 
hurn rates. The shapeof both 
urves is independent of the size of the overlay and only a�e
ted by the 
urrent 
hurn rate. The 
urve
an therefore be used to map the frequen
y of timeouts or failures measured in a running system to a spe
i�

hurn rate.Until now, we only regarded the tra�
 pattern at the 
entral 
olle
ting point. From an operator's pointof view, however, it is more important to know, whether the snapshot itself is meaningful. To validate thea

ura
y of the snapshot algorithm, we again simulated an overlay network with 80000 peers, ea
h with a meanonline/o�ine time of 60 minutes. Due to the properties of the hash fun
tion and the 
hurn behavior in thesystem the number of do
uments on a single peer 
an be regarded as a random variable. The measurement weare interested in is the 
orresponding pdf in order to see whether the distribution of the do
uments among thepeers is fair or not. The pdf was measured using our snapshot algorithm as explained in Se
tion 3.3. The resultof the snapshot is 
ompared to the a
tual pdf obtained using the global view of our dis
rete event simulator (
.f.Figure 5.7). The two 
urves are almost indistinguishable from ea
h other. The same is true for all the otherstatisti
s shown in Table 3.1, like the 
urrent size of the system or the average bandwidth used per time unit.That is, the snapshot provides the operator with a very a

urate pi
ture of the 
urrent state of its system. Thisni
ely demonstrates that the results obtained by the snapshot 
an be used to better understand the performan
eof the running p2p system. The multiple possibilities to interpret the 
olle
ted data are well beyond the s
opeof this paper.6. Con
lusion. One of the main reasons that tele
ommuni
ation 
arriers are still hesitant to build p2pappli
ations is the la
k of 
ontrol a provider has over the running system. In this paper we introdu
ed an entirelydistributed and s
alable algorithm to monitor a Chord based p2p network at runtime. The load generated duringthe snapshot is evenly distributed among the peers of the overlay and the algorithm itself is easy to 
on�gure.It only takes one input parameter, whi
h in�uen
es the trade-o� between the duration of the snapshot and thebandwidth required at the 
entral server whi
h 
olle
ts the results. In general it takes less than one minute to
reate a snapshot of a Chord ring 
onsisting of 40000 peers. We performed a mathemati
al analysis of the basi
me
hanisms and provided a simulative study 
onsidering realisti
 user behavior.The algorithm is resistant to instabilities in the overlay network (
hurn) and provides the operator with avery a

urate pi
ture of the 
urrent state of its system. It o�ers the possibility to monitor the entire overlaynetwork or to 
on
entrate on a spe
i�
 part of the system. The latter is espe
ially useful if a problem o
-
urred in a spe
i�
 part of the system and the operator wants to assure that his 
ountermeasures have beensu

essful.
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pe.org ISSN 1895-1767© 2010 SCPEUSING GRIDS FOR EXPLOITING THE ABUNDANCE OF DATA IN SCIENCEEUGENIO CESARIO∗AND DOMENICO TALIA∗,†Abstra
t. Digital data volumes are growing exponentially in all s
ien
es. To handle this abundan
e in data availability,s
ientists must use data analysis te
hniques in their s
ienti�
 pra
ti
es and solving environments to get the bene�ts 
omingfrom knowledge that 
an be extra
ted from large data sour
es. When data is maintained over geographi
ally remote sites the
omputational power of distributed and parallel systems 
an be exploited for knowledge dis
overy in s
ienti�
 data. In this s
enariothe Grid 
an provide an e�e
tive 
omputational support for distributed knowledge dis
overy on large datasets. In parti
ular, Gridservi
es for data integration and analysis 
an represent a primary 
omponent for e-s
ien
e appli
ations involving distributed massiveand 
omplex data sets. This paper des
ribes some resear
h a
tivities in data-intensive Grid 
omputing. In parti
ular we dis
ussthe use of data mining models and servi
es on Grid systems for the analysis of large data repositories.Key words: e-s
ien
e, knowledge dis
overy, grid, parallel data mining, distributed data mining, grid-based data mining1. Introdu
tion. The past two de
ades have been dominated by the advent of in
reasingly powerful andless expensive ubiquitous 
omputing, as well as the appearan
e of the World Wide Web and related te
h-nologies [12℄. Due to su
h advan
es in information te
hnology and high performan
e 
omputing, digital datavolumes are growing exponentially in many �elds of human a
tivities. This phenomenon 
on
erns s
ienti�
dis
iplines, as well as industry and 
ommer
e. Su
h te
hnologi
al development has also generated a whole newset of 
hallenges: the world is drowning in a huge quantity of data, whi
h is still growing very rapidly both inthe volume and 
omplexity.Jim Gray in some talks in 2006 identi�ed four 
hronologi
al steps for the methodologies employed bys
ientists for dis
overies. The �rst step o

urred thousand years ago, when s
ien
e was empiri
al and it wasoriented to just des
ribe natural phenomena. The se
ond one is temporally lo
ated around a few hundred yearsago, when a theoreti
al bran
h was born, aimed at formulating some general models des
ribing the empiri
alknowledge. The third step o

urred in the latest few de
ades, when a 
omputational bran
h started up and
omplex phenomena started to be simulated by the resour
es made available by the 
urrent te
hnology. Finally,the fourth step is run today, when s
ientists are working to unify theories, experiments and simulations withdata pro
essing and exploration to extra
t knowledge hidden in it.The abundan
e of digitally stored data require to 
onsider in detail this phenomenon. In parti
ular, thereare two important trends, te
hnologi
al and methodologi
al, whi
h seem to parti
ularly distinguish the new,information-ri
h s
ien
e from the past:
• Te
hnologi
al. There is a lot of data 
olle
ted and warehoused in various repositories distributed over theworld: data 
an be 
olle
ted and stored at high speeds in lo
al databases, from remote sour
es or fromthe our galaxy. Some examples in
lude data sets from the �elds of medi
al imaging, bio-informati
s,remote sensing and (as very innovative aspe
t) several digital sky surveys. This implies a need forreliable data storage, networking, and database-related te
hnologies, standards and proto
ols.
• Methodologi
al. Huge data sets are hard to understand, and in parti
ular data 
onstru
ts and patternspresent in them 
annot be 
omprehended by humans dire
tly. This is a dire
t 
onsequen
e of thegrowth in 
omplexity of information, and mainly its multi-dimensionality. For example, a 
omputationalsimulation 
an generate terabytes of data within a few hours, whereas human analysts may take severalweeks to analyze these data sets. For su
h a reason, most of data will never be read by humans, ratherthey are to be pro
essed and analyzed by 
omputers.We 
an summarize what we foresaid as follows: whereas some de
ades ago the main problem was the la
kof information, the 
hallenge now seems to be (i) the very large volume of information and (ii) the asso
iated
omplexity to pro
ess for extra
ting signi�
ant and useful parts or summaries.Nevertheless, the �rst aspe
t does not represent a limitation or a problem for the s
ienti�
 
ommunity:
urrent data storage, ar
hite
tural solutions and 
ommuni
ation proto
ols provide a reliable te
hnologi
al baseto 
olle
t and store su
h abundan
e of data in an e�
ient and e�e
tive way. Moreover, the availability ofhigh throughput s
ienti�
 instrumentation and very inexpensive digital te
hnologies fa
ilitated this trend fromboth te
hnologi
al and e
onomi
al view point. On the other hand, the 
omputational power of 
omputers is
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252 E. Cesario and D. Talianot growing as fast as the demand of su
h a data 
omputation requires, and this represents a limit for theknowledge that potentially 
ould be extra
ted. As an additional aspe
t, we have to 
onsider that storage 
ostsare 
urrently de
reasing faster than 
omputing 
osts, and this trend makes things worse.For example, the impa
t of foresaid issues in the biologi
al �eld is well des
ribed in [20℄. It points out thatthe emergen
e of genome and post-genome te
hnology has made huge amount of data available, demandinga proportional support of analysis. Nevertheless, an important fa
tor to be 
onsidered is that the numberof available 
omplete genomi
 sequen
es is doubling almost every 12 months, whereas a

ording to Moore'slaw available 
ompute 
y
les (i. e., 
omputational power) double every 18 months. Additionally, we have to
onsider that analysis of genomi
 sequen
es require binary 
omparisons of the genes involved in it. As a dire
t
onsequen
e of that, the 
omputational overhead is very very high. We 
an see the impa
t of su
h issuesin Figure 1.1 (sour
e: [20℄), whi
h 
ontrasts the number of geneti
 sequen
es obtained with the number ofannotations generated. The �gure shows that the knowledge (annotations, models, patterns) has a sub-linearrate with respe
t to the the available data sequen
es whi
h they are extra
ted from.

Fig. 1.1. Growth of sequen
es and annotations sin
e 1982 (Sour
e: [20℄)To handle this abundan
e in data availability (whose rate of produ
tion often far outstrips our abilityto analyze), appli
ations are emerging that explore, query, analyze, visualize, and in general, pro
ess verylarge-s
ale data sets: they are named data intensive appli
ations. Computational s
ien
e is evolving towarddata intensive appli
ations that in
lude data integration and analysis, information management, and knowledgedis
overy. In parti
ular, knowledge dis
overy in large data repositories 
an �nd what is interesting in them byusing data mining te
hniques. Data intensive appli
ations in s
ien
e help s
ientists in hypothesis formation andgive them a support on their s
ienti�
 pra
ti
es and solving environments, getting the bene�ts 
oming fromknowledge that 
an be extra
ted from large data sour
es.When data is maintained over geographi
ally distributed sites the 
omputational power of distributed andparallel systems 
an be exploited for knowledge dis
overy in s
ienti�
 data. Parallel and distributed datamining algorithms are suitable to su
h a purpose. Moreover, in this s
enario the Grid 
an provide an e�e
tive
omputational support for data intensive appli
ation and for knowledge dis
overy from large and distributeddatasets. Grid 
omputing is re
eiving an in
reasing attention from the resear
h 
ommunity, wat
hing at thisnew 
omputing infrastru
ture as a key te
hnology for solving 
omplex problems and implementing distributedhigh-performan
e appli
ations [14℄.Today many organizations, 
ompanies, and s
ienti�
 
enters produ
e and manage large amounts of 
omplexdata and information. Climate, astronomi
, and genomi
 data together with 
ompany transa
tion data are justsome examples of massive amounts of digital data that today must be stored and analyzed to �nd usefulknowledge in them. This data and information patrimony 
an be e�e
tively exploited if it is used as a sour
eto produ
e knowledge ne
essary to support de
ision making. This pro
ess is both 
omputationally intensive,
ollaborative, and distributed in nature. The development of data mining software for Grids o�ers tools andenvironments to support the pro
ess of analysis, inferen
e, and dis
overy over distributed data available inmany s
ienti�
 and business areas. The 
reation of frameworks on top of data and 
omputational Grids is the
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e 253enabling 
ondition for developing high-performan
e data mining tasks and knowledge dis
overy pro
esses, andit meets the 
hallenges posed by the in
reasing demand for power and abstra
tness 
oming from 
omplex datamining s
enarios in s
ien
e and engineering. For example, some proje
ts des
ribed in Se
tion 2 su
h as NASAInformation Grid, TeraGrid, and Open S
ien
e Grid use the 
omputational and storage fa
ilities in their Gridinfrastru
tures to mine data in a distributed way. Sometime in these proje
ts are used ad ho
 solutions for datamining, in other 
ases generi
 middleware is used on top of basi
 Grid toolkits. As pointed out by William E.Johnston in [19℄, the use of general purpose data mining tools may e�e
tively support the analysis of massiveand distributed data sets in large s
ale s
ien
e and engineering.The Grid allows to federate and share heterogeneous resour
es and servi
es su
h as software, 
omputers,storage, data, networks in a dynami
 way. Grid servi
es 
an be the basi
 element for 
omposing software and dataelements, and exe
uting 
omplex appli
ations on Grid and Web systems. Today the Grid is not just 
ompute
y
les, but it is also a distributed data management infrastru
ture. Integrating those two features with �smart"algorithms we 
an obtain a knowledge-intensive platform. The driving Grid appli
ations are traditionallyhigh-performan
e and data intensive appli
ations, su
h as high-energy parti
le physi
s, and astronomy andenvironmental modeling, in whi
h experimental devi
es 
reate large quantities of data that require s
ienti�
analysis.In the latest years many signi�
ant Grid-based data intensive appli
ations and infrastru
tures have beenimplemented. In parti
ular, the servi
e-based approa
h is allowing the integration of Grid and Web for handlingwith data. We will brie�y report some of these appli
ations in the �rst of the paper; then we dis
uss about theuse of high performan
e data mining te
hniques for s
ien
e in Grid platforms.The rest of the paper is organized as follows. Se
tion 2 des
ribes some Grid-based data intensive proje
ts andappli
ations. Se
tion 3 gives an overview of approa
hes for parallel, distributed and Grid-based data miningte
hniques. Se
tion 4 introdu
es the Knowledge Grid, a referen
e software ar
hite
ture for geographi
allydistributed knowledge dis
overy systems. The Se
tion 5 gives 
on
luding remarks.2. Grid Te
hnologies for dealing with S
ienti�
 data. Several s
ienti�
 teams and 
ommunities areusing Grid te
hnology for dealing with intensive appli
ations aimed at s
ienti�
 data pro
essing. As examplesof this approa
h, in the following we shortly des
ribe some of them.2.1. The DataGrid Proje
t: Grid for Physi
s. The European DataGrid [11℄ is a proje
t funded bythe European Union with the aim of setting up a 
omputational and data-intensive Grid of resour
es for theanalysis of data 
oming from s
ienti�
 exploration. The main goal of the proje
t is to 
oordinate resour
esharing, 
ollaborative pro
essing and analysis of huge amounts of data produ
ed and stored by many s
ien-ti�
 laboratories belonging to several institutions. It is made e�e
tive by the development of a te
hnologi
alinfrastru
ture enabling s
ienti�
 
ollaborations where resear
hers and s
ientists will perform their a
tivitiesregardless of geographi
al lo
ation. The proje
t develops s
alable software solutions in order to handle manyPBs1 of distributed data, tens of thousand of 
omputing resour
es (pro
essors, disks, et
.), and thousands ofsimultaneous users from multiple resear
h institutions. The three real data intensive 
omputing appli
ationsareas 
overed by the proje
t are biology/medi
al, earth observation and parti
le physi
s. In parti
ular, thelast one is oriented to answer longstanding questions about the fundamental parti
les of matter and the for
esa
ting between them. The goal is to understand why some parti
les are mu
h heavier than others, and whyparti
les have mass at all. To that end, CERN2 has built the Large Hadron Collider (LHC), the most powerfulparti
le a

elerator ever 
on
eived, that generates huge amounts of data. It is estimated that LHC generatesapproximately 1 GB/se
 and 10 PB/year of data. The DataGrid Proje
t provided the solution for storing andpro
essing this data, based on a multi-tiered, hierar
hi
al 
omputing model for sharing data and 
omputingpower among multiple institutions. In parti
ular, a Tier-0 
entre is lo
ated at CERN and is linked by highspeed networks to approximately ten major Tier-1 data pro
essing 
entres. These fan out the data to a largenumber of smaller ones (Tier-2).The DataGrid proje
t ended on Mar
h 2004, but many of the produ
ts (te
hnologies, infrastru
ture, et
.)are used and extended in the EGEE proje
t. The Enabling Grids for E-s
ien
E (EGEE) [13℄ proje
t bringstogether s
ientists and engineers from more than 240 institutions in 45 
ountries world-wide to provide a seamlessGrid infrastru
ture for e-S
ien
e that is available to s
ientists 24 hours/day. Expanding from originally two
1PetaByte = 106GigaBytes
2European Organization for Nu
lear Resear
h
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ienti�
 �elds, high energy physi
s and life s
ien
es, EGEE now integrates appli
ations from many others
ienti�
 �elds, ranging from geology to 
omputational 
hemistry. The EGEE Grid 
onsists of over 36,000CPUs available to users 24 hours a day, 7 days a week, in addition to about 5 PB disk of storage, and maintains30,000 
on
urrent jobs on average. Having su
h resour
es available 
hanges the way s
ienti�
 resear
h takespla
e. The end use depends on the users' needs: large storage 
apa
ity, the bandwidth that the infrastru
tureprovides, or the sheer 
omputing power available. Generally, the EGEE Grid infrastru
ture is ideal for anys
ienti�
 resear
h espe
ially where the time and resour
es needed for running the appli
ations are 
onsideredimpra
ti
al when using traditional IT infrastru
tures.2.2. The NASA Information Power Grid (IPG) Infrastru
ture. The NASA's Information PowerGrid (IPG) [18℄ is a high-performan
e 
omputing and data grid built primarily for use by NASA s
ientistsand engineers. The IPG has been 
onstru
ted by NASA between 1998 and the present making heavy use ofGlobus Toolkit 
omponents to provide Grid a

ess to heterogeneous 
omputational resour
es managed by severalindependent resear
h laboratories. S
ientists and engineers a

ess the IPG's 
omputational resour
es from anylo
ation with Grid interfa
es providing se
urity, uniformity, and 
ontrol. S
ientists beyond NASA 
an also usefamiliar Grid interfa
es to in
lude IPG resour
es in their appli
ations (with appropriate authorization). TheIPG infrastru
ture has been and is being used by numerous s
ienti�
 and engineering e�orts both within andbeyond NASA. Some of its most important appli
ations are 
omputational �uid dynami
s and meteorologi
aldata mining.2.3. TeraGrid. TeraGrid [29℄ is an open s
ienti�
 dis
overy infrastru
ture 
ombining leadership 
lassresour
es (in
luding super
omputers, storage, and s
ienti�
 visualization systems) at nine partner sites to 
reatean integrated, persistent 
omputational resour
e. It is 
oordinated by the Grid Infrastru
ture Group (GIG)at the University of Chi
ago. Using high-performan
e network 
onne
tions, the TeraGrid integrates high-performan
e 
omputers, data resour
es and tools, and high-end experimental fa
ilities around the 
ountry.Currently, TeraGrid resour
es in
lude more than 250 tera�ops of 
omputing 
apability and more than 30 PBsof online and ar
hival data storage, with rapid a

ess and retrieval over high-performan
e networks. Resear
hers
an also a

ess more than 100 dis
ipline-spe
i�
 databases. With this 
ombination of resour
es, the TeraGrid isone of the world's largest and most 
omprehensive distributed Grid infrastru
ture for open s
ienti�
 resear
h.2.4. NASA and Google. Re
ently NASA initiated a joint proje
t with Google, In
. for applying Googlesear
h te
hnology to help s
ientists to pro
ess, organize, and analyze the large-s
ale streams of data 
omingfrom the Large Synopti
 Survey Teles
ope (LSST), lo
ated in Chile. When 
ompleted, the LSST will generateover 30 terabytes of multiple 
olor images of visible sky ea
h night. Google will 
ollaborate with LSST todevelop sear
h and data a

ess te
hniques and servi
es that 
an pro
ess, organize and analyze the very largeamounts of data 
oming from the instrument's data streams in real time. The engine will 
reate �data images"for s
ientists to view signi�
ant spa
e events and extra
t important features from them. This joint proje
t willshow how 
omplex data management te
hniques generally used in sear
h engines 
an be exploited for s
ienti�
dis
overy.In the general framework of this 
ollaboration, the main NASA's goal is to make its huge stores of data
olle
ted during everything from spa
e
raft missions, moon landings to landings on Mars to orbits aroundJupiter�available to s
ientists and the publi
. Some of the data 
an already be found on NASA's Web site butexploiting Google te
hniques with high performan
e fa
ilities, this data will be a

essible in an easy way.2.5. Open S
ien
e Grid. The Open S
ien
e Grid [24℄ is a 
ollaboration of s
ien
e resear
hers, softwaredevelopers and 
omputing, storage and network providers. It gives a

ess to shared resour
es worldwide tos
ientists (from universities, national laboratories and 
omputing 
enters a
ross the United States). The OpenS
ien
e Grid links storage and 
omputing resour
es at more than 30 sites a
ross the United States. TheOSG works a
tively with many partners, in
luding Grid and network organizations and international, national,regional and 
ampus Grids, to 
reate a Grid infrastru
ture that spans the globe. S
ientists from many di�erent�elds use the OSG to advan
e their resear
h. Appli
ations of OSG proje
t are a
tive in various areas of s
ien
e,like parti
le and nu
lear physi
s, astrophysi
s, bioinformati
s, gravitational-wave s
ien
e, mathemati
s, medi
alimaging and nanote
hnology. OSG resour
es in
lude thousands of 
omputers and 10 of terabytes of ar
hivaldata storage.2.6. myExperiment. myExperiment [22℄ is a 
ollaborative resear
h environment whi
h enables s
ientiststo share, reuse and repurpose experiments. It is based on the idea that s
ientists usually prefer to share
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e 255experimental results than data. myExperiment has been in�uen
ed by so
ial networking programs su
h asWired and Fli
kr, and is based on the mySpa
e infrastru
ture. myExperiment enables s
ientists to share anduse work�ows and redu
e time-to-experiment, share expertise and avoid reinvention. myExperiment 
reates anenvironment for s
ientists to adopt Grid te
hnologies, where they 
an de�ne, when they share data, with whomthey share it and how mu
h of it 
an be a

essed. The myExperiment proje
t mainly fo
uses its appli
ationsat 
ase studies for the spe
i�
 areas of astronomy, bio-informati
s, 
hemistry and so
ial s
ien
e.2.7. National Virtual Observatory. The National Virtual Observatory [23℄ is a new resear
h proje
twhose goal is to make all the astronomi
al data in the world qui
kly and easily a

essible by anyone. Su
h aproje
t enables a new way of doing astronomy, moving from an era of observations of small, 
arefully sele
tedsamples of obje
ts in one or a few wavelength bands, to the use of multi-wavelength data for millions, or evenbillions of obje
ts. Su
h large 
olle
tion of data makes resear
hers able to dis
over subtle, but signi�
ant,patterns in statisti
ally ri
h and unbiased databases, and to understand 
omplex astrophysi
al systems throughthe 
omparison of data to numeri
al simulations. With the National Virtual Observatory (NVO), astronomersexplore data that others have already 
olle
ted, �nding new uses and new dis
overies in existing data. NVOenables astronomers to do a new type of resear
h that, 
ombined with traditional teles
ope observations, willlead to many new and interesting dis
overies. It is worth noti
ing that the NVO has proposed to exploit the
omputational resour
es of the TeraGrid proje
t (des
ribed in the Se
tion 2.3), in order to enable astronomersin the exploration and analysis of the physi
al pro
esses that drive the formation and evolution of our universe,and en
ouraging new ways to use super
omputing fa
ilities for s
ien
e.2.8. Southern California Earthquake Center. The Southern California Earthquake Center proje
t[26℄ is aimed at developing new 
omputing 
apabilities, that 
an lead to better fore
asts of when and whereearthquakes are likely to o

ur in Southern California, and how the ground will shake as a result. The �nalgoal is to improve mathemati
al models about the stru
ture of the Earth and how the ground moves duringearthquakes. The proje
t team in
ludes 
ollaborating resear
hers from Southern California Earthquake Center(SCEC), the Information S
ien
es Institute (ISI) at USC, the San Diego Super
omputing Center (SDSC), theIn
orporated Institutions for Seismology (IRIS), and the United States Geologi
al Survey (USGS). The proje
theavily exploits Grid te
hnologies, allowing s
ientists to organize and retrieve information stored throughoutthe 
ountry, and giving advantages of the pro
essing power of a network of many 
omputers.3. Data Mining and Knowledge Dis
overy. After dis
ussing signi�
ant data management issues andproje
ts, here we fo
us on data mining te
hniques for knowledge dis
overy in large s
ienti�
 data reposito-ries. Data Mining is the semi-automati
 dis
overy of patterns, models, asso
iations, anomalies and (statisti
allysigni�
ant) stru
tures hidden in data. Traditional data analysis is assumption-driven, that is the hypothesisis formed and validated against the data. Data mining, in 
ontrast, is dis
overy-driven, in the sense thatthe patterns (and models) are automati
ally extra
ted from data. Data mining founds its appli
ation to sev-eral s
ienti�
 and engineering domains, in
luding astrophysi
s, medi
al imaging, 
omputational �uid dynami
s,biology, stru
tural me
hani
s, and e
ology.From a s
ienti�
 viewpoint, data 
an be 
olle
ted by many sour
es: remote sensors on a satellite, teles
opes
anning the sky, mi
roarrays generating gene expression data, s
ienti�
 simulations, et
. Moreover, in su
hinfrastru
tures data are 
olle
ted and stored at enormous speeds (GBs/hour). Both su
h aspe
ts imply thats
ienti�
 appli
ation have to deal with massive volume of data.Mining large data sets requires powerful 
omputational resour
es. A major issue in data mining is s
alabilitywith respe
t to the very large size of 
urrent-generation and next-generation databases, given the ex
essivelylong pro
essing time taken by (sequential) data mining algorithms on realisti
 volumes of data. In fa
t, datamining algorithms working on very large data sets take a very long time on 
onventional 
omputers to getresults. In order to improve performan
es, some parallel and distributed approa
hes have been proposed.Parallel 
omputing is a viable solution for pro
essing and analyzing data sets in reasonable time by usingparallel algorithms. High performan
e 
omputers and parallel data mining algorithms 
an o�er a very e�
ientway to mine very large data sets [27℄, [28℄ by analyzing them in parallel. Under a data mining perspe
tive, su
ha �eld is known as parallel data mining (PDM ).Beyond the development of knowledge dis
overy systems based on parallel 
omputing platforms, a lot ofwork has been devoted to design systems able to handle and analyze multi-site data repositories. Mining knowl-edge from data 
aptured by instruments, s
ienti�
 analysis, simulation results that 
ould be distributed over theworld, questions the suitability of 
entralized ar
hite
tures for large-s
ale knowledge dis
overy in a networked
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h area named distributed data mining o�ers an alternative approa
h. It works byanalyzing data in a distributed fashion and pays parti
ular attention to the trade-o� between 
entralized 
ol-le
tion and distributed analysis of data. This te
hnology is parti
ularly suitable for appli
ations that typi
allydeal with very large amount of data (e.g., transa
tion data, s
ienti�
 simulation and tele
ommuni
ation data),whi
h 
annot be analyzed in a single site on traditional ma
hines in a

eptable times.Grid te
hnology integrates both distributed and parallel 
omputing, thus it represents a 
riti
al infrastru
-ture for high-performan
e distributed knowledge dis
overy. Grid 
omputing was designed as a new paradigm for
oordinated resour
e sharing and problem solving in advan
ed s
ien
e and engineering appli
ations. For thesereasons, Grids 
an o�er an e�e
tive support to the implementation and use of knowledge dis
overy systems byGrid-based Data Mining approa
hes.In the following parallel, distributed and Grid-based data mining are dis
ussed.3.1. Parallel Data Mining. Parallel Data Mining is 
on
erned with the study and appli
ation of datamining analysis done by parallel algorithms. The key idea underlying su
h a �eld is that parallel 
omputing
an give signi�
ant bene�ts in the implementation of data mining and knowledge dis
overy appli
ations, bymeans of the exploitation of inherent parallelism of data mining algorithms. Main goals of the use of parallel
omputing te
hnologies in the data mining �eld are: (i) performan
e improvements of existing te
hniques, (ii)implementation of new (parallel) te
hniques and algorithms, and (iii) 
on
urrent analysis using di�erent datamining te
hniques in parallel and result integration to get a better model (i. e., more a

urate results).As observed in [5℄, three main strategies 
an be identi�ed in the exploitation of parallelism algorithms:Independent Parallelism, Task Parallelism and Single Program Multiple Data (SPMD) Parallelism. We pointout that this is a well known 
lassi�
ation of general strategies for developing parallel algorithms, in fa
t theyare not ne
essarily related only to data mining purposes. Nevertheless, in the following we will des
ribe theunderlying idea of su
h strategies by 
ontextualizing them in data mining appli
ations. A short des
ription ofthe underlying idea of su
h strategies follows.Independent Parallelism. It is exploited when pro
esses are exe
uted in parallel in an independent way.Generally, ea
h pro
ess has a

ess to the whole data set and does not 
ommuni
ate or syn
hronize with otherpro
esses. Su
h a strategy, for example, is applied when p di�erent instan
es of the same algorithm are exe
utedon the whole data set, but ea
h one with a di�erent setting of input parameters. In this way, the 
omputation�nds out p di�erent models, ea
h one determined by a di�erent setting of input parameters. A validation stepshould learn whi
h one of the p predi
tive models is the most reliable for the topi
 under investigation. Thisstrategy often requires 
ommutations among the parallel a
tivities.Task Parallelism. It is known also as Control Parallelism. It supposes that ea
h pro
ess exe
utes di�erentoperations on (a di�erent partition of) the data set. The appli
ation of su
h a strategy in de
ision tree learning,for example, leads to have p di�erent pro
esses running, ea
h one asso
iated to a parti
ular subtree of thede
ision tree to be built. The sear
h goes parallely on in ea
h subtree and, as soon as all the p pro
esses�nish their exe
utions, the whole �nal de
ision tree is 
omposed by joining the various subtrees obtained by thepro
esses.SPMD Parallelism. The single program multiple data (SPMD) model [10℄ (also 
alled data parallelism) isexploited when a set of pro
esses exe
ute in parallel the same algorithm on di�erent partitions of a data set, andpro
esses 
ooperate to ex
hange partial results. A

ording to this strategy, the dataset is initially partitionedin p parts, if p is the apriori-�xed parallelism degree (i. e., the number of pro
esses running in parallel). Then,the p pro
esses sear
h in parallel a predi
tive model for the subset asso
iated to it. Finally, the global result isobtained by ex
hanging all the lo
al models information.These three strategies for parallelizing data mining algorithms are not ne
essarily alternative. In fa
t, they
an be 
ombined to improve both performan
e and a

ura
y of results. For 
ompleteness, we say also that in
ombination with strategies for parallelization, di�erent data partition strategies may be used : (i) sequentialpartitioning (separate partitions are de�ned without overlapping among them), (ii) 
over-based partitioning(some data 
an be repli
ated on di�erent partitions) and (iii) range-based query partitioning (partitions arede�ned on the basis of some queries that sele
t data a

ording to attribute values).Ar
hite
tural issues are a fundamental aspe
t for the goodness of a parallel data mining algorithm. In fa
t,inter
onne
tion topology of pro
essors, 
ommuni
ation strategies, memory usage, I/O impa
t on algorithmperforman
e, load balan
ing of the pro
essors are strongly related to the e�
ien
y and e�e
tiveness of theparallel algorithm. For la
k of spa
e, we 
an just 
ite those. The mentioned issues (and others) must be takeninto a

ount in the parallel implementation of data mining te
hniques. The ar
hite
tural issues are strongly
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e between knowledge extra
tion strategiesand ar
hite
tural features. For instan
e, in
reasing the parallelism degree in some 
ases 
orresponds to anin
rement of the 
ommuni
ation overhead among the pro
essors. However, 
ommuni
ation 
osts 
an be alsobalan
ed by the improved knowledge that a data mining algorithm 
an get from parallelization. At ea
h iterationthe pro
essors share the approximated models produ
ed by ea
h of them. Thus ea
h pro
essor exe
utes a nextiteration using its own previous work and also the knowledge produ
ed by the other pro
essors. This approa
h
an improve the rate at whi
h a data mining algorithm �nds a model for data (knowledge) and make up for losttime in 
ommuni
ation. Parallel exe
ution of di�erent data mining algorithms and te
hniques 
an be integratednot just to get high performan
e but also high a

ura
y.3.2. Distributed Data Mining. Traditional warehouse-based ar
hite
tures for data mining suppose tohave 
entralized data repository. Su
h a 
entralized approa
h is fundamentally inappropriate for most of thedistributed and ubiquitous data mining appli
ations. In fa
t, the long response time, la
k of proper use ofdistributed resour
e, and the fundamental 
hara
teristi
 of 
entralized data mining algorithms do not work wellin distributed environments. A s
alable solution for distributed appli
ations 
alls for distributed pro
essing ofdata, 
ontrolled by the available resour
es and human fa
tors. For example, let us 
onsider an ad ho
 wirelesssensor network where the di�erent sensor nodes are monitoring some time-
riti
al events. Central 
olle
tion ofdata from every sensor node may 
reate tra�
 over the limited bandwidth wireless 
hannels and this may alsodrain a lot of power from the devi
es.A distributed ar
hite
ture for data mining is likely aimed to redu
e the 
ommuni
ation load and also toredu
e the battery power more evenly a
ross the di�erent nodes in the sensor network. One 
an easily imaginesimilar needs for distributed 
omputation of data mining primitives in ad ho
 wireless networks of mobile devi
eslike PDAs, 
ellphones, and wearable 
omputers [25℄. The wireless domain is not the only example. In fa
t, mostof the appli
ations that deal with time-
riti
al distributed data are likely to bene�t by paying 
areful attentionto the distributed resour
es for 
omputation, storage, and the 
ost of 
ommuni
ation. As an other example,let us 
onsider the World Wide Web as it 
ontains distributed data and 
omputing resour
es. An in
reasingnumber of databases (e.g., weather databases, o
eanographi
 data, et
.) and data streams (e.g., �nan
ial data,emerging disease information, et
.) are 
urrently made on-line, and many of them 
hange frequently. It is easyto think of many appli
ations that require regular monitoring of these diverse and distributed sour
es of data.A distributed approa
h to analyze this data is likely to be more s
alable and pra
ti
al parti
ularly whenthe appli
ation involves a large number of data sites. Hen
e, in this 
ase we need data mining ar
hite
turesthat pay 
areful attention to the distribution of data, 
omputing and 
ommuni
ation, in order to a

ess and usethem in a near optimal fashion. Distributed data mining (DDM ) 
onsiders data mining in this broader 
ontext.DDM may also be useful in environments with multiple 
ompute nodes 
onne
ted over high speed networks.Even if the data 
an be qui
kly 
entralized using the relatively fast network, proper balan
ing of 
omputationalload among a 
luster of nodes may require a distributed approa
h. The priva
y issue is playing an in
reasinglyimportant role in the emerging data mining appli
ations. For example, let us suppose a 
onsortium of di�erentbanks 
ollaborating for dete
ting frauds. If a 
entralized solution was adopted, all the data from every bankshould be 
olle
ted in a single lo
ation, to be pro
essed by a data mining system. Nevertheless, in su
h a 
asea distributed data mining system should be the natural te
hnologi
al 
hoi
e: it is able to learn models fromdistributed data without ex
hanging the raw data among di�erent repositories, and it allows dete
tion of fraudby preserving the priva
y of every bank's 
ustomer transa
tion data.For what 
on
erns te
hniques and ar
hite
ture, it is worth noti
ing that many several other �elds in�uen
eDistributed Data Mining systems 
on
epts. First, many DDM systems adopt the multi-agent system (MAS)ar
hite
ture, whi
h �nds its root in the distributed arti�
ial intelligen
e (DAI). Se
ond, although parallel datamining often assumes the presen
e of high speed network 
onne
tions among the 
omputing nodes, the devel-opment of DDM has also been in�uen
ed by the PDM literature. Most DDM algorithms are designed upon thepotential parallelism they 
an apply over the given distributed data. Typi
ally, the same algorithm operates onea
h distributed data site 
on
urrently, produ
ing one lo
al model per site. Subsequently, all lo
al models areaggregated to produ
e the �nal model. In Figure 3.1 a general distributed data mining framework is presented.The su

ess of DDM algorithms lies in the aggregation. Ea
h lo
al model represents lo
ally 
oherent patterns,but la
ks details that may be required to indu
e globally meaningful knowledge. For this reason, many DDMalgorithms require a 
entralization of a subset of lo
al data to 
ompensate it. The ensemble approa
h hasbeen applied in various domains to in
rease the a

ura
y of the predi
tive model to be learnt. It produ
es
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ombines them to enhan
e a

ura
y. Typi
ally, voting (weighted or un-weighted) s
hemaare employed to aggregate base model for obtaining a global model. As we have dis
ussed above, minimumdata transfer is another key attribute of the su

essful DDM algorithm. As a �nal 
onsideration, the homo-geneity/heterogeneity of resour
es is another important aspe
t to be 
onsidered in the distributed data miningapproa
hes. In this s
enario, the term "resour
es" refers both to 
omputational resour
es (
omputers withsimilar/di�erent 
omputational power) and data resour
es (datasets with horizontally/verti
ally partitioningamong nodes). The �rst meaning a�e
ts only the algorithm exe
ution time, while data heterogeneity plays afundamental role in the algorithm design. That is, dealing with di�erent data formats it requires algorithmsdesigned in a

ordan
e to the di�erent data formats.
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Fig. 3.1. General Distributed Data Mining Framework.3.3. Grid-based Data Mining. In the last years, Grid 
omputing is re
eiving an in
reasing attentionboth from the resear
h 
ommunity and from industry and governments, wat
hing at this new 
omputing in-frastru
ture as a key te
hnology for solving 
omplex problems and implementing distributed high-performan
eappli
ations. Grid te
hnology integrates both distributed and parallel 
omputing, thus it represents a 
riti
alinfrastru
ture for high-performan
e distributed knowledge dis
overy. Grid 
omputing di�ers from 
onventionaldistributed 
omputing be
ause it fo
uses on large-s
ale dynami
 resour
e sharing, o�ers innovative appli
ations,and, in some 
ases, it is geared toward high-performan
e systems. The Grid emerged as a privileged 
omputinginfrastru
ture to develop appli
ations over geographi
ally distributed sites, providing for proto
ols and servi
esenabling the integrated and seamless use of remote 
omputing power, storage, software, and data, managed andshared by di�erent organizations.Basi
 Grid proto
ols and servi
es are provided by toolkits su
h as Globus Toolkit (www.globus.org/toolkit), Condor (www.
s.wis
.edu/
ondor), Glite, and Uni
ore. In parti
ular, the Globus Toolkit is themost widely used middleware in s
ienti�
 and data-intensive Grid appli
ations, and is be
oming a de fa
to stan-dard for implementing Grid systems. This toolkit addresses se
urity, information dis
overy, resour
e and datamanagement, 
ommuni
ation, fault-dete
tion, and portability issues. A wide set of appli
ations is being devel-oped for the exploitation of Grid platforms. Sin
e appli
ation areas range from s
ienti�
 
omputing to industryand business, spe
ialized servi
es are required to meet needs in di�erent appli
ation 
ontexts. In parti
ular,data Grids have been designed to easily store, move, and manage large data sets in distributed data-intensiveappli
ations. Besides 
ore data management servi
es, knowledge-based Grids, built on top of 
omputational anddata Grid environments, are needed to o�er higher-level servi
es for data analysis, inferen
e, and dis
overy ins
ienti�
 and business areas [21℄. In some papers, see for example [1℄, [19℄, and [7℄, it is 
laimed that the 
reationof knowledge Grids is the enabling 
ondition for developing high-performan
e knowledge dis
overy pro
essesand meeting the 
hallenges posed by the in
reasing demand of power and abstra
tness 
oming from 
omplexproblem solving environments.4. The Knowledge Grid. The Knowledge Grid [3℄ is an environment providing knowledge dis
overyservi
es for a wide range of high performan
e distributed appli
ations. Data sets and analysis tools used in su
h
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e 259appli
ations are in
reasingly be
oming available as stand-alone pa
kages and as remote servi
es on the Internet.Examples in
lude gene and DNA databases, network a

ess and intrusion data, drug features and e�e
ts datarepositories, astronomy data �les, and data about web usage, 
ontent, and stru
ture. Knowledge dis
overypro
edures in all these appli
ations typi
ally require the 
reation and management of 
omplex, dynami
, multi-step work�ows. At ea
h step, data from various sour
es 
an be moved, �ltered, and integrated and fed into a datamining tool. Based on the output results, the developer 
hooses whi
h other data sets and mining 
omponents
an be integrated in the work�ow, or how to iterate the pro
ess to get a knowledge model. Work�ows are mappedon a Grid by assigning nodes to the Grid hosts and using inter
onne
tions for implementing 
ommuni
ationamong the work�ow nodes.For 
ompleteness of treatment, we point out some other Grid-based knowledge dis
overy systems and a
-tivities that have been designed in re
ent years. Dis
overy Net [8℄ is an infrastru
ture for e�e
tively supports
ienti�
 knowledge dis
overy pro
ess, in parti
ular in the areas of life s
ien
e and geo-hazard predi
tion. DataS-pa
e [17℄ is a framework providing e�
ient data a

ess and transfer over the Grid that implements an ad-ho
proto
ol for working with remote and distributed data (named DataSpa
e transfer proto
ol, DSTP). Info-Grid [16℄ is a servi
e-based data integration middleware engine, designed to provide information a

ess andquerying servi
es not in an 'universal' way, but by a personalized view of the resour
es for ea
h parti
ular ap-pli
ation domain. DataCutter [2℄ is another Grid middleware framework aimed at providing spe
i�
 servi
es forthe support of multi-dimensional range-querying, data aggregation and user-de�ned �ltering over large s
ienti�
datasets in shared distributed environments. Finally, GATES [4℄ (Grid-based AdapTive Exe
ution on Streams)is an OGSA based system that provides support for pro
essing of data streams in a Grid environment. Thissystem is designed to support the distributed analysis of data streams arising from distributed sour
es (e.g.,data from large s
ale experiments/simulations). GATES provides automati
 resour
e dis
overy and an interfa
efor enabling self-adaptation to meet real-time 
onstraints.The Knowledge Grid ar
hite
ture is designed a

ording to the Servi
e Oriented Ar
hite
ture (SOA), thatis a model for building �exible, modular, and interoperable software appli
ations. The key aspe
t of SOAis the 
on
ept of servi
e, that is a software blo
k 
apable of performing a given task or business fun
tion.Ea
h servi
e operates by adhering to a well de�ned interfa
e, de�ning required parameters and the nature ofthe result. On
e de�ned and deployed, servi
es are like �bla
k boxes", that is, they work independently ofthe state of any other servi
e de�ned within the system, often 
ooperating with other servi
es to a
hieve a
ommon goal. The most important implementation of SOA is represented by Web Servi
es, whose popularity ismainly due to the adoption of universally a

epted te
hnologies su
h as XML, SOAP, and HTTP. Also the Gridprovides a framework whereby a great number of servi
es 
an be dynami
ally lo
ated, balan
ed, and managed,so that appli
ations are always guaranteed to be se
urely exe
uted, a

ording to the prin
iples of on-demand
omputing.The Grid 
ommunity has adopted the Open Grid Servi
es Ar
hite
ture (OGSA) as an implementation ofthe SOA model within the Grid 
ontext. In OGSA every resour
e is represented as a Web Servi
e that 
onformsto a set of 
onventions and supports standard interfa
es. OGSA provides a well-de�ned set of Web Servi
einterfa
es for the development of interoperable Grid systems and appli
ations [15℄. Re
ently the WS-Resour
eFramework (WSRF) has been adopted as an evolution of early OGSA implementations [9℄. WSRF de�nesa family of te
hni
al spe
i�
ations for a

essing and managing stateful resour
es using Web Servi
es. The
omposition of a Web Servi
e and a stateful resour
e is termed as WS-Resour
e. The possibility to de�ne aâ��stateâ�� asso
iated to a servi
e is the most important di�eren
e between WSRF-
ompliant Web Servi
es,and pre-WSRF ones. This is a key feature in designing Grid appli
ations, sin
e WS-Resour
es provide a wayto represent, advertise, and a

ess properties related to both 
omputational resour
es and appli
ations.The Knowledge Grid is a software for implementing knowledge dis
overy tasks in a wide range of high-performan
e distributed appli
ations. It o�ers to users high-level abstra
tions and a set of servi
es by whi
hthey 
an integrate Grid resour
es to support all the phases of the knowledge dis
overy pro
ess.The Knowledge Grid supports su
h a
tivities by providing me
hanisms and higher level servi
es for sear
hingresour
es, representing, 
reating, and managing knowledge dis
overy pro
esses, and for 
omposing existing dataservi
es and data mining servi
es in a stru
tured manner, allowing designers to plan, store, do
ument, verify,share and re-exe
ute their work�ows as well as manage their output results. The Knowledge Grid ar
hite
tureis 
omposed of a set of servi
es divided in two layers: the Core K-Grid layer and the High-level K-Grid layer.The �rst interfa
es the basi
 and generi
 Grid middleware servi
es, while the se
ond interfa
es the user byo�ering a set of servi
es for the design and exe
ution of knowledge dis
overy appli
ations. Both layers make
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e metadata, exe
ution plans, and knowledge obtainedas result of knowledge dis
overy appli
ations.In the Knowledge Grid environment, dis
overy pro
esses are represented as work�ows that a user may
ompose using both 
on
rete and abstra
t Grid resour
es. Knowledge dis
overy work�ows are de�ned using avisual interfa
e that shows resour
es (data, tools, and hosts) to the user and o�ers me
hanisms for integratingthem in a work�ow. Information about single resour
es and work�ows are stored using an XML-based notationthat represents a work�ow (
alled exe
ution plan in the Knowledge Grid terminology) as a data-�ow graph ofnodes, ea
h one representing either a data mining servi
e or a data transfer servi
e. The XML representationallows the work�ows for dis
overy pro
esses to be easily validated, shared, translated in exe
utable s
ripts, andstored for future exe
utions. It is worth noti
ing that when the user submits a knowledge dis
overy appli
ationto the Knowledge Grid, she has no knowledge about all the low level details needed by the exe
ution plan. Morepre
isely, the 
lient submits to the Knowledge Grid a high level des
ription of the KDD appli
ation, named
on
eptual model, more targeted to distributed knowledge dis
overy aspe
ts than to grid-related issues. TheKnowledge Grid in a �rst step 
reates an exe
ution plan on the basis of the 
on
eptual model re
eived from theuser, and then exe
utes it by using the resour
es e�e
tively available. To realize this logi
, it initially modelsan abstra
t exe
ution plan (where some spe
i�ed resour
e 
ould remain 'abstra
tly' de�ned, i. e. they 
ould notmat
h with a real resour
e), that in a se
ond step is resolved into a 
on
rete exe
ution plan (where a mat
hingbetween ea
h resour
e and someone really available on the Grid is found).The Knowledge Grid has been used in various real s
enarios, pointing out its suitability in several heteroge-neous appli
ations. For la
k of spa
e we are not able to dis
uss about them. For su
h a reason we give here justsome outlines, more details 
an be found in the 
ited papers. The goal of the example des
ribed in [6℄ was toobtain a 
lassi�er for an intrusion dete
tion system, performing a mining pro
ess on a (very large size) dataset
ontaining re
ords generated by network monitoring. The example reported in [5℄ was a simple meta-learningpro
ess, that exploits the Knowledge Grid to generate a number of independent 
lassi�ers by applying learningprograms to a 
olle
tion of distributed data sets in parallel.As a s
ienti�
 appli
ation s
enario, let us 
onsider the 
olle
tion of sky observations and the analysisof their 
hara
teristi
s. Let us suppose to have distin
t image data obtained by observations and simula-tions, from whi
h we want to extra
t signi�
ant metri
s. Generally, a signi�
ative set of astronomy data isvery large size (≈ 20 − 30 terabytes). In addition, su
h kind of observation are very high-dimensional, be-
ause ea
h point is usually des
ribed by ≈ 103 attributes (in
luding morphologi
al parameters, �ux ratios,et
.). Finally, they usually are full of missing values and noise. Then, the main issue here is to analyzea distribution of ≈ 20 − 30 terabytes of points in a parameter spa
e of ≈ 103 dimensions. Let us sup-pose that our e�ort is devoted to identify how many distin
t types of obje
ts are there (i. e., stars, galax-ies, quasars, bla
k holes, et
.), and grouping them with respe
t to their type. This 
an be obtained by a
lustering analysis, however it is a non-trivial task if we 
onsider the large size data and their high dimen-sionality. To su
h a purpose, a distributed framework 
an be suitable to get results in a reasonable time.Initially we have a data repository where all su
h an observed sky data is 
olle
ted (for example, an astro-nomi
 observatory). Then, su
h a data is pro
essed by a distributed 
lustering algorithm. In order to dothat, they are partitioned on many nodes and pro
essed on those nodes in parallel. The results of every
lustering algorithm are 
olle
ted and 
ombined to obtain a global 
lustering model. In addition, ea
h out-lier 
an represent a possible (rare) new obje
t. For su
h a reason, and in order to get more knowledge fromthem, all the dete
ted outliers are transferred to another node for a further 
lassi�
ation, i. e. by a de
isiontree.Figure 4.1 shows su
h a distributed meta-learning s
enario, in whi
h a global 
lustering model 
lassi�er CMis obtained on NodeC starting from the original data set DS stored on NodeA (i.e, where the observatory islo
ated). Moreover, all the outliers dete
ted are 
olle
ted in an outlier set OS and are pro
essed by a 
lassi�er
Cl on a NodeB. This pro
ess 
an be des
ribed through the following steps:1. On NodeA, data sets DS1, . . . , DSn are extra
ted from DS by the partitioner P . Then DS1, . . . , DSn,are respe
tively moved from NodeA to Node1, . . . , Noden.2. On ea
h Nodei(i = 1, . . . , n) the 
lusterer Ci applies a 
lustering algorithms on ea
h dataset DSi.Then, ea
h lo
al result is moved from Nodei to NodeC .3. On NodeC , lo
al models re
eived from Node1, . . . , Noden are 
ombined by the 
ombiner C to produ
ethe global 
lustering model CM . Moreover, outliers dete
ted are 
olle
ted in an outlier set OS, andmoved to the NodeB for further analysis.
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e 2614. On NodeB, the 
lassi�er Cl pro
esses the OS outlier data set and extra
ts a suitable 
lassi�
ationmodel (i. e., a de
ision tree) from it.Being the Knowledge Grid a servi
e oriented ar
hite
ture, the Knowledge Grid user intera
ts with some servi
esto design and exe
ute su
h an appli
ation.As an additional 
onsideration, we noti
e that a 
lient appli
ation, that wants to submit a knowledgedis
overy 
omputation to the Knowledge Grid, has to intera
t not with all of these servi
es, but just withsome of them; there are, in fa
t, two layers of servi
es: high-level servi
es (DAS, TAAS, EPMS and RPS ) and
ore-level servi
es (KDS and RAEMS ). The design idea is that user level appli
ations dire
tly intera
t withhigh-level servi
es that, in order to perform a 
lient request, invoke suitable operations exported by the 
ore-levelservi
es. In turn, 
ore-level servi
es perform their operations by invoking basi
 servi
es provided by availablegrid environments running on the spe
i�
 host, as well as by intera
ting with other 
ore-level servi
es. In otherwords, operations exported by high-level servi
es are designed to be invoked by user-level appli
ations, whereasoperations provided by 
ore-level servi
es are thought to be invoked both by high-level and 
ore-level servi
es.More in detail, the user 
an intera
ts with the DAS (Data A

ess Servi
e) and TAAS (Tools and AlgorithmsA

ess Servi
e) servi
es to �nd data and mining software and with the EPMS (Exe
ution Plan ManagementServi
e) servi
e to 
ompose a work�ow (exe
ution plan) des
ribing at a high level the needed a
tivities involvedin the overall data mining 
omputation. Through the exe
ution plan, 
omputing, software and data resour
esare spe
i�ed along with a set of requirements on them. The exe
ution plan is then pro
essed by the RAEMS(Resour
e Allo
ation and Exe
ution Management Servi
e), whi
h takes 
are of its allo
ation. In parti
ular, it�rst �nds appropriate resour
es mat
hing user requirements (i. e., a set of 
on
rete hosts Node1, . . . , Noden,o�ering the software C1, . . . , Cn, and a node NodeW providing the C 
ombiner software and a node NodeZexporting the 
lassi�er Cl), then manages the exe
ution of overall appli
ation, enfor
ing dependen
ies amongdata extra
tion, transfer, and mining steps. Finally, the RAEMS manages results retrieving, and visualizethem by the RPS (Results Presentation Servi
e) servi
e (that o�ers fa
ilities for presenting and visualizing theextra
ted knowledge models).
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4Fig. 4.1. A distributed meta-learning s
enario.5. Con
lusion. In this paper we have pointed out that digital data volumes are growing exponentiallyin s
ien
e and engineering. Often digital repositories and sour
es in
rease their size mu
h faster than the
omputational power o�ered by the 
urrent te
hnology. To handle this abundan
e in data availability, s
ientistsmust embody knowledge dis
overy tools to �nd what is interesting in them.When data is maintained over geographi
ally distributed sites, Grid 
omputing 
an be used as a distributedinfrastru
ture for servi
e-based intensive appli
ations. Various s
ienti�
 appli
ations based on Grid infrastru
-tures, des
ribed in the paper, 
on
retely show how it 
an be exploited for s
ienti�
 purposes. Moreover, the
omputational power of distributed and parallel systems 
an be exploited for knowledge dis
overy in s
ienti�
data. Parallel and distributed data mining suites and 
omputational Grid te
hnology are two 
riti
al elementsof future high-performan
e 
omputing environments for e-s
ien
e. In su
h a dire
tion, the Knowledge Grid
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e software ar
hite
ture for geographi
ally distributed knowledge dis
overy systems that allows toimplement 
omplex data analysis appli
ations as a 
olle
tion of distributed servi
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pe.org ISSN 1895-1767© 2010 SCPEMODELING STREAM COMMUNICATIONS IN COMPONENT-BASED APPLICATIONS ∗M. DANELUTTO†, D. LAFORENZA‡, N. TONELLOTTO‡, M. VANNESCHI†, AND C. ZOCCOLO†Abstra
t. Component te
hnology is a promising approa
h to develop Grid appli
ations, allowing to design very 
omplex appli-
ations by hierar
hi
al 
omposition of basi
 
omponents. Nevertheless, 
omponent appli
ations on Grids have 
omplex deploymentmodels. Performan
e-sensitive de
isions should be taken by automati
 tools, mat
hing developer knowledge about 
omponentperforman
e with QoS requirements on the appli
ations, in order to �nd deployment plans that satisfy a Servi
e Level Agreement(SLA).This paper presents a steady-state performan
e model for 
omponent-based appli
ations with stream 
ommuni
ation semanti
s.The model stri
tly adheres to the hierar
hi
al nature of 
omponent-based appli
ations, and is of pra
ti
al use in laun
h-timede
isions.Key words: grid 
omputing; heterogeneous environments; stream 
omputations; performan
e model; mapping.1. Introdu
tion. Grid 
omputing is an emerging te
hnology that enables the aggregation of heteroge-neous, distributed resour
es to solve 
omputational problems of ever in
reasing size and 
omplexity. Theappli
ations that best perform on Grid platforms are the ones requiring large 
omputational power, or thetreatment of large data sets, i. e. a sub
lass of High-Performan
e Appli
ations [17℄.Su
h appli
ations (e.g. data-mining [12℄, query pro
essing [3℄, image pro
essing and visualization [2℄ andmultimedia streaming [38℄) 
an be 
onveniently expressed using a formalism based on two fundamental notions:streams of data �owing between 
omponents, and 
omponents (either sequential or parallel) pro
essing them.Several programming languages are built on these 
on
epts. Skeleton-based languages (e.g. SkIE [4℄ andSBASCO [14℄) and skeleton libraries (e.g. eSkel [11℄ and Ku
hen's C++ skeleton library [21℄) exploit thenotion of streams for task-parallel skeletons (e.g. pipe and farm). More general languages like ASSIST [33℄ andData
utter [15℄ introdu
e modules and streams as primitive 
on
epts to stru
ture parallel appli
ations.Grid programming frameworks (e.g. GrADS [9℄, ASSIST [13℄) are in 
harge of the 
omplete automationof appli
ation exe
ution management, e�
iently exploiting Grid resour
es. Moreover, they should be able toexe
ute the appli
ation with user-required QoS, adapting the exe
ution to the dynami
 
hanges of Grid resour
es.The traditional 
omponent mapping strategy, in whi
h 
omponents are stati
ally deployed in a distributedenvironment by their developers, does not �t well in su
h s
enario. A broader deployment model is required,featuring(i) manual mapping, in whi
h the 
omponents are already paired with their resour
es (on whi
h they aredeployed),(ii) resour
es dis
overy and sele
tion at laun
h time, to guarantee the initial desired performan
e,(iii) adaptive 
omponents management, that at run-time adjust the set of 
omputing resour
es exploited[31, 1℄, in order to adapt to di�erent performan
e requirements (on-demand 
omputing) or to 
hanging resour
esavailability.A

ording to this model, the deployment framework must automati
ally manage the operations needed toenfor
e the appli
ation desired QoS. This 
an be obtained with the spe
i�
ation of a performan
e 
ontra
t [34℄.Our approa
h intends to automatise the tasks needed to start the exe
ution of HPC appli
ations. Our �nalgoal is to allow an as large as possible user 
ommunity to gain full bene�ts from the Grid, and at the same timeto give the maximum generality, appli
ability and easy of use.The main 
ontributions of this paper are as follows:(i) We propose an analyti
al model of the dynami
 behavior of sequential/parallel 
omponents, hierar-
hi
al 
omponents and 
omponent appli
ations, 
ommuni
ating through typed streams of data. It is suitedto be used in simulation environments, to syntheti
ally generate 
omponents and appli
ations to test map-ping/s
heduling solutions in a repeatable and 
ontrolled setting. Eventually, the proposed dynami
 model 
anbe exploited in the implementation of dynami
 re
on�guration poli
ies [1℄.
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hi, C. Zo

olo(ii) Starting from the dynami
 model we identify the set of variables that 
an be used to des
ribe theperforman
e behavior of an appli
ation, and we derive the set of relations among them whi
h hold at steady-state(performan
e model). In this way we abstra
t from parti
ular runtime platforms and we 
apture all possiblesteady-state behaviors of an appli
ation. Moreover, their formulation by means of linear algebra allows us tohierar
hi
ally 
ompose the performan
e models of several 
omponents to derive the steady-state model of new
omponents or appli
ations.(iii) We introdu
e a de�nition of performan
e model for stream appli
ations, whi
h is exploited in laun
h-time mapping and runtime re
on�guration de
isions.After a survey of related work (Se
t. 2), this paper presents a dynami
 model of stream-based 
omputations(Se
t. 3), and in Se
t. 4 su
h model is exploited to derive a steady-state performan
e model for stream-basedappli
ations. In Se
t. 5, su
h model is applied to a 
ase study, to predi
t the program behavior at run-time,and to devise a 
orre
t initial mapping for spe
i�ed QoS levels. Se
tion 6 
on
ludes the paper, dis
ussing thepresented approa
h and future work.2. Related Work. Performan
e spe
i�
ation of 
omponents and their intera
tions is a basi
 problemthat must be solved to enable software engineers to assemble e�
ient appli
ations [27℄. Moreover, performan
emodeling is one of the key aspe
ts that needs to be addressed to fa
e s
heduling/mapping problems in het-erogeneous platforms. It arises in automati
 
omponent pla
ement and re
on�guration. Several re
ent worksfo
us on performan
e modeling te
hniques to analyze the behavior of 
omponent-based parallel appli
ations ondistributed, heterogenous, dynami
 platforms.Analyti
 performan
e models in software engineering make extensive use of UML formalism to des
ribesoftware 
omponent behavioral models [35℄ and to derive models based on Queuing Networks [19℄ or Lay-ered Queueing Networks [36℄ to be exploited in design phase of the life
yle of software. The same holdsfor Sto
hasti
 Petri Nets [20℄ and Sto
hasti
 Pro
ess Algebras [18℄. Su
h models typi
ally translate a paral-lel appli
ation into an analyti
 representation of its exe
ution behavior and the target runtime system (a
-
ording to the Software Performan
e Engineering methodology [28℄). A detailed survey of su
h models isin [5℄. Su
h translation is usually not straightforward. It may require approximations to obtain mathemat-i
al models [29℄ for whi
h a 
losed-form solution is known. Sto
hasti
 models usually require the solutionof the underlying Markov 
hain whi
h 
an easily lead to numeri
al problems due to the spa
e state explo-sion [5℄. More 
omplex models 
an be solved by means of simulation, at the 
ost of a larger 
omputationtime.Symboli
 performan
e modeling [32℄ is a methodology that enables a rapid development of low 
omplexityand parametri
 performan
e models. Symboli
 performan
e models 
an be derived from simulation models,trading o� result a

ura
y for model evaluation 
ost. In [32℄ a symboli
 performan
e model for the Pamelamodeling language is introdu
ed. It derives lower bounds for steady-state performan
es of appli
ations startingfrom a model of the program and of the shared resour
es, 
ombining deterministi
 Dire
t A
y
li
 Graphs (DAGs)modeling with mutual ex
lusion. One of the strengths of the Pamela approa
h is that it is fast and easy totransform a regularly stru
tured appli
ation into a performan
e model. The main limitation of su
h approa
his that it 
omputes lower bounds of the performan
e of a program. Symboli
 performan
e models share severalproperties with the model we propose: both 
an be extra
ted from the stru
ture of programs, are parametri
,and 
an be e�
iently evaluated. The main di�eren
e is that the presented model does not 
ompute a lowerbound, but the asymptoti
 steady-state performan
e of an appli
ation, that is in general a better approximationof the real performan
e.The asymptoti
 steady-state analysis has been pioneered by Bertsimas and Gamarnik [10℄. This approa
hhas been re
ently applied to mapping and s
heduling problems of parallel appli
ations on heterogeneous plat-forms [23, 7, 6℄, in whi
h the analysis is applied to parti
ular 
lasses of parallel appli
ations (divisible load [23℄,master/slave [6℄, pipelined and s
atter operations [7℄), in the hypothesis that the set of resour
es is known inadvan
e. The existing steady-state approa
hes apply only to a restri
ted 
lass of stru
tured parallel appli
a-tions, assuming to know the runtime environment in su
h a way to derive optimal s
heduling of the appli
ation
omponents. In a dynami
 environment like a Grid an optimal initial pla
ement of the 
omponents may be-
ome useless very soon, be
ause the 
onditions of the exe
ution platform may vary dynami
ally. The presentedsteady-state analysis 
an be applied to a broader 
lass of stru
tured parallel appli
ations and tries to solve adi�erent problem, i. e. to build a 
on
rete model of 
omponents/appli
ations to be exploited in their mappingon previously-unknown target platforms.
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ations 265Stru
tural performan
e models [25℄ are the �rst e�ort to develop 
ompositional performan
e models for
omponent appli
ations. Most s
ienti�
 and Grid 
omponent models rely on the 
on
ept of algorithmi
 skeleton.Skeletons are 
ommon, reusable and e�
ient stru
tured parallelism exploitation patterns. One advantage ofthe skeletal approa
h is that parametri
 
ost models 
an be devised for the evaluation of runtime performan
eof skeleton 
ompositions. In [14, 8℄ di�erent 
ost models are asso
iated to ea
h skeleton of an appli
ationto enhan
e its runtime performan
e through parallelism/repli
ation degree adjustments and initial mappingsele
tion, respe
tively. The authors of [14℄ propose parametri
 
ost models for pipe, farm and multiblo
kskeletons, that 
an be arbitrarily 
omposed and nested. In [8℄, analyti
 
ost models for appli
ations 
omposed bypipes and deals are derived within a sto
hasti
 pro
ess algebra formulation. Stru
tural performan
e models areextended by the presented model by proposing a methodology well-suited for generi
 
omposition of skeletons,and by taking into a

ount the syn
hronization problems introdu
ed by using streamed 
ommuni
ations.Tra
e-based performan
e models [34, 26℄ are 
urrently exploited in parallel/Grid environments to model theperforman
e of sets of kernel appli
ations. Re
ording and analyzing exe
ution tra
es on referen
e ar
hite
turesof su
h appli
ation it is possible, with a 
ertain degree of pre
ision, to fore
ast the performan
e of the same orsimilar appli
ations on di�erent resour
es. Tra
e information is exploited in the presented model, but in di�erentway with respe
t to the existing approa
hes. Instead of pro�ling a whole appli
ation on a set of representativeresour
es, the appli
ation model is kept independent from resour
es. When the appli
ation will be mapped ona
tual resour
es, histori
al information will be used to model the runtime behavior of single 
omponents, andthen su
h information will be 
oupled with the 
omponent intera
tions information to obtain a predi
tion ofthe performan
e of the whole appli
ation.The problem of deriving a performan
e model for 
omponents has been addressed also in the 
ontextof 
omponent frameworks su
h as EJB [37℄, COM+/.NET [16℄ and CCA [24℄. Su
h works apply analyti
alperforman
e model (LQN) or tra
e-based performan
e model to derive a model for 
omponents. In [30℄, tra
e-based models are exploited to sele
t the most suitable 
omponents, when multiple 
hoi
es are available, to buildan optimal appli
ation, from the point of view of performan
e.3. Dynami
 Behavior. An appli
ation 
an be stru
tured as a hypergraph whose nodes represent primitive
omponents and whose (hyper)edges represent 
ommuni
ations or syn
hronizations between 
omponents. Nodesintera
t with input (server) interfa
es and output (
lient) interfa
es. Edges are dire
ted and 
an 
onne
t twoor more nodes through their interfa
es. Two nodes may be linked by more than a single edge.3.1. Communi
ations. Communi
ations between 
omponents are implemented through input/outputinterfa
es bindings. In this work data-�ow stream 
ommuni
ations are studied. Every 
omponent re
eives datathrough one or more input interfa
es, performs some 
omputations, and generates new data to be sent throughone or more output interfa
es.In this 
ontext, a stream represents a typed, unidire
tional 
ommuni
ation 
hannel between a non-empty,�nite set of 
omponents (produ
ers) and a non-empty, �nite set of 
omponents (
onsumers). The atomi
 pie
eof information transferred through a stream is 
alled item. A produ
er is 
onne
ted to a stream through anoutput interfa
e, while a 
onsumer is 
onne
ted to a stream through an input interfa
e. Every node 
an beprodu
er or 
onsumer of several streams, and it is possible to spe
ify 
y
li
 stru
tures (i. e. the 
ommuni
ationstru
ture is not restri
ted to be a DAG).Components 
an be 
onne
ted by streams a

ording to three di�erent patterns:(i) uni
ast: one-to-one 
onne
tion. Every item sent on the output stream interfa
e is re
eived in orderby the input stream interfa
e.(ii) merge: many-to-one 
onne
tion. Every item sent on the output stream interfa
es is re
eived by theinput stream interfa
e. The temporal ordering of the items 
oming from ea
h input interfa
e is preserved, butthe interleaving between the di�erent sour
es is non-deterministi
.(iii) broad
ast: one-to-many 
onne
tion. Every item sent on the output stream interfa
e is re
eived inorder by the input stream interfa
es. The re
eptions happening on di�erent input interfa
es are not syn
hronized.3.2. Computations. Components implement sequential as well as parallel 
omputations. A sequential
omponent exe
utes a single fun
tion in a single a
tive thread, pro
essing items as they are re
eived. For aparallel 
omponent, two s
enarios are possible:(i) data parallel: a single fun
tion is exe
uted in parallel on di�erent portions of the same data;(ii) task parallel: several fun
tions (or a
tivations of the same fun
tion) are exe
uted in parallel onindependent data.
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oloA primitive 
omponent, either sequential or parallel, at runtime repeatedly re
eives items from its inputstreams, performs some 
omputations and delivers result items to its output streams.A 
omponent 
an have several input streams. The set of input streams is partitioned between the 
omputa-tions asso
iated with the 
omponents. Ea
h input stream is asso
iated to only one 
omputation; nevertheless,spontaneous 
omputations may exist, that do not need input items to a
tivate, but follow own a
tivation poli
ies(e.g. periodi
ally).A 
omputation 
an be a
tivated if the following 
onditions hold:(i) the 
omponent 
an exe
ute a new fun
tion (this means that it is idle, or it is parallel and threads areavailable to exe
ute it),(ii) the asso
iated input items have been re
eived, or no item is ne
essary.A sequential 
omponent 
an a
tivate a new fun
tion only when it is idle. A parallel 
omponent 
an have atmost one a
tive data-parallel 
omputation at any given time (
omposed by a �xed number of threads), or severaltask-parallel 
omputations running in parallel (up to the maximum number of threads in the 
omponent).A 
omponent 
an have several output streams. One or more 
omputations of the 
omponent 
an dispat
hdata on ea
h output stream.3.3. Node Behavior. In order to des
ribe the behavior of a 
omputation at runtime, 
onsider Fig. 3.1.
Fig. 3.1. Sequential 
omponent at runtimeWithout loss of generality, a sequential 
omponent is 
onsidered; the displayed quantities represent:(i) ik(t): total number of re
eived items at time t from the kth input interfa
e;(ii) e(t): total number of 
omputations 
arried out at time t;(iii) oj(t): total number of sent items at time t through the jth output interfa
e.Continuous quantities are used to model partial evolution, e.g. e(t) = 3.5 means that the node rea
hed the halfway point in the fourth 
omputation.The a
tivation of a 
omputation 
an happen only when the number of items 
ompletely re
eived on ea
hasso
iated stream is greater than the number of partially 
omputed items:
∀k = 1, . . . , n

⌊
ik(t)

⌋
− e(t) > 0 (3.1)The node implementation will exploit �nite bu�ers to store re
eived items for ea
h input interfa
e, therefore forea
h input interfa
e and asso
iated 
omputation the following must hold:

∀k = 1, . . . , n ik(t)−
⌊
e(t)

⌋
≤ τ1k (3.2)where τ1k represents the maximum number of elements that 
an be re
eived on the kth input interfa
e beforethe stream blo
ks. Then the maximum admissible value for ik(t) at time t is:

imax
k (t) = τ1k +

⌊
e(t)

⌋ (3.3)Assuming that no sensible delays are present between the end of 
omputations and the beginning of the transmis-sion of the produ
ed items, the total number of transmitted items is related to the progress of the 
omputationsof the node. In the general 
ase of a node with s fun
tions, the following equation holds for ea
h output interfa
e:
∀j = 1, . . . ,m oj(t) = fj

(
e1(t), . . . , es(t)

) (3.4)where ei(t) represents the number of a
tivations 
arried out at time t for the i − th fun
tion. The transferfun
tion fj relates the number of data outputs oj(t) to the number of performed 
omputations e1(t), . . . , es(t).
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ations 2673.4. Edge Behavior. In order to des
ribe the behavior of a data transmission on a stream, 
onsider auni
ast stream. The involved variables are o(t), total number of items sent at time t from sour
e interfa
e, and
i(t), total number of items re
eived at time t by the destination interfa
e. A new transmission begins only aftera full item is produ
ed:

i(t) ≤ ⌊o(t)⌋ (3.5)The edge implementation will exploit �nite 
ommuni
ation bu�ers and the network layer transfers 
hunks ofdata. Let q−1 be the minimum fra
tion of item transferred atomi
ally. Then
o(t)−

⌊q · i(t)⌋

q
≤ τ2 (3.6)where τ2 represents the maximum number of items that 
an be bu�ered. Therefore the maximum admissiblevalue for o(t) at time t is:

omax(t) = τ2 +
⌊q · i(t)⌋

q
(3.7)Whenever an edge bu�er is full, a produ
er will blo
k as soon as it tries and sends a new item. From (3.4) weobtain:

omax(t)− f
(
e1(t), . . . , em(t)

)
≤ 0 (3.8)For merge streams with k sour
e interfa
es and broad
ast streams with k destination interfa
es, the general
onstraints (Eqs. (3.5) and (3.6) for the uni
ast stream) be
ome:merge: {i(t) ≤∑k ok(t)∑

k ok(t)− i(t) ≤ τ2k
(3.9)broad
ast: {∀k ik(t) ≤ o(t)

∀k o(t)− ik(t) ≤ τ2k
(3.10)For simpli
ity, in the previous equations the network quantization 
onstant q has been suppressed.3.5. Runtime Behavior. At runtime, a 
omponent 
an be seen as a dynami
 system. The system stateat time t is des
ribed by a set of state variables: i1,...,ni

(t), e1,...,ne
(t), o1,...,no

(t). Thus, the state spa
e P isa n = ni + ne + no dimension Eu
lidean spa
e. The dynami
 behavior of a 
omponent 
an be modeled by atraje
tory p(t) in su
h state spa
e.The runtime behavior of a 
omponent is fully spe
i�ed when it is 
oupled with hosting resour
es. A
omputing resour
e is modeled by w(t), the available 
omputing power at time t (measured in MFlop/s) anda 
ommuni
ation link is modeled by b(t), the instantaneous bandwidth at time t (measured in MByte/s).Moreover, a 
hara
terization of the items is required. It is assumed that an item pro
essed by a 
omponentrequires l units of 
omputing work to be pro
essed (measured in MFlop) and s units of 
ommuni
ation work tobe transmitted (measured in bytes).Introdu
ing the step fun
tion u(x), the number of performed (partial) 
omputations per time unit is:
de

dt
= u

(
min

(⌊
i1(t)

⌋
, . . . ,

⌊
in(t)

⌋)
− e(t)

)
·

· u
(
omax(t)− f

(
e1(t), . . . , em(t)

))
·
w(t)

L

(3.11)while the equations governing the number of pa
kets �owing in the uni
ast, merge and broad
ast streams pertime unit are, respe
tively:
di

dt
= u

(

⌊

o(t)
⌋

− i(t)
)

· u
(

imax(t) − i(t)
)

·
b(t)

s
(3.12a)

di

dt
= u

(

∑

k

⌊

ok(t)
⌋

− i(t)
)

· u
(

imax(t) − i(t)
)

·
b(t)

s
(3.12b)

dik

dt
= u

(

⌊

o(t)
⌋

− ik(t)
)

· u
(

imax(t) − ik(t)
)

·
b(t)

s
(3.12
)



268 M. Danelutto, D. Laforenza, N. Tonellotto, M. Vannes
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oloNote that an important assumption has been made. The work required to perform a 
omputation issupposed to be independent from the values of the in
oming items; their values are used just to perform
omputations. This is a 
ommon assumption in parallel data-�ow programming, but there are appli
ations (e.g.query pro
essing and data mining) that do not respe
t this assumption.The dynami
 equations provided by the model 
an be written in the general form:
ṗ(t) = U(p(t))α(t) (3.13)We denote with U : P →Mn,n the fun
tion that, for every point in the state spa
e, provides the 
ontrol partof the di�erential equations (the ones involving the step fun
tions), and with α(t) the resour
es part (involving

w(t) and b(t)).We observe that the 
ontrol matrix is pie
e-wise 
onstant over non-in�nitesimal time intervals: it des
endsfrom quantization in the general equations for the nodes (3.11), and in the equations for the streams (3.12).Then, the Cau
hy problem 
an be solved 
onstru
tively. Starting with t0 = 0, p0(t0) = 0, U0 = U(0), weindu
tively de�ne
pi(t) =

∫ t

ti

Uiα(τ)dτ

ti+1 = sup{t > ti|U(pi(t)) = Ui}

Ui+1 = lim
t→t+i

U(pi(t))In this way, p(t) is de�ned as the 
on
atenation of the pie
es pi|[ti,ti+1): it is a 
ontinuous fun
tion (pi(ti) =
pi+1(ti)) and pie
e-wise di�erentiable.4. STEADY STATE BEHAVIOR. The steady-state behavior of the system 
an be analysed by study-ing mean values p̄ for the rate of 
hange of the state variables:

p̄ = E[ṗ|[t0,∞)] =

∫ ∞

t0

ṗ(t)dt = lim
t→∞

p(t)− p(t0)

t− t0
(4.1)The 
hoi
e of t0 is arbitrary, in fa
t the weight of the transient phase fades away 
onsidering in�nite exe
utions.However, to ease the reasoning about these quantities, we 
an interpret t0 as the end of the transient phase,e.g. when the last stage 
onsumes the �rst data item in a pipeline.The essential aspe
t to point out is that for the steady-state model the fo
us is on relations among thesteady-state variables, rather than in their values. In this way it is possible to abstra
t from parti
ular targetplatforms, and 
apture the 
lass of all possible steady-state behaviors of an appli
ation.The steady-state behavior of a node 
an be modelled asso
iating to ea
h 
omputation ek(t) its a
tivationrate

ēk = lim
t→∞

ek(t)− ek(t0)

t− t0
(4.2)Spontaneous 
omputations are free variables in the steady-state model. Computations that are a
tivated bydata re
eption, instead, are subje
t to the following 
ondition.Proposition 4.1. The steady-state exe
ution rate of a 
omputation is bound to be equal to the input rateson the input interfa
es that a
tivate the 
omputation.Proof. Let k ∈ Ai, we will prove that ēi − ı̄k = 0

ēi − ı̄k = lim
t→∞

ei(t)− ei(t0)

t− t0
− lim

t→∞

ik(t)− ik(t0)

t− t0

= lim
t→∞

ei(t)− ei(t0)− ik(t) + ik(t0)

t− t0

= lim
t→∞

ei(t)− ik(t)

t− t0
−

ei(t0)− ik(t0)

t− t0
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onstants: (3.1) gives
ei(t)− ik(t) ≤ 0and (3.2) (noting that e(t) ≥ ⌊e(t)⌋) gives

ei(t)− ik(t) ≥ −τ1kwhile the numerator of the se
ond addend is 
onstant, so the limit tends to zero when the denominator tendsto in�nity.The data transmission rate ōk of an output stream will depend on the a
tivation rates of one or more
omputations of the node. In the previous se
tion, the number of data outputs has been related to the numberof performed 
omputations by means of a transfer fun
tion fk (Eqn. (3.4)).Proposition 4.2. If the transfer fun
tion is (asymptoti
ally) linear
ok = fk(e1, . . . , em) = α1

ke1 + . . . αm
k em + ck(e1, . . . , em)with

lim
‖e‖→∞

‖ck(e)‖

‖e‖
= 0then a steady-state is eventually rea
hed, in whi
h the output rate is a linear 
ombination of the 
omputationrates:

ōk =
m∑

i=1

αkiēi (4.3)Proof.
ōk = lim

t→∞

fk(e(t))− fk(e(t0))

t− t0
= lim

t→∞

αk · (e(t)− e(t0)) + c(e(t)) − c(e(t0))

t− t0
=

αk · lim
t→∞

e(t)− e(t0)

t− t0
+ lim

t→∞

c(e(t))− c(e(t0))

t− t0
= αk · ē+ 0 =

m∑

i=1

αm
k ēiThe steady-state behavior of streams 
an be modelled by asso
iating to ea
h endpoint its data transmissionrate. Balan
e equations relating input and output endpoints are derived.Proposition 4.3. The steady-state transmission rate at the endpoints of a stream are 
hara
terised by thefollowing balan
e equations: uni
ast: ōA = ı̄B (4.4a)merge: ōA + ōB = ı̄C (4.4b)broad
ast: ōA = ı̄B = ı̄C (4.4
)These equations are easily extended in the 
ase of more endpoints.Proof. The proof is similar to the one of Prop. 4.1, exploiting:(i) (3.5) and (3.6) for uni
ast,(ii) (3.9) for merge,(iii) (3.10) for broad
ast.The exe
ution rate for ea
h 
omputation, and the data transfer rate for ea
h input/output interfa
e 
om-pletely spe
ify the appli
ation state from the point of view of its performan
e, therefore we will 
all them theperforman
e features of our appli
ation.Proposition 4.2 allows us to express output rates as linear 
ombinations of exe
ution rates, provided thatwe know the related 
oe�
ients. These 
oe�
ients must be provided by developers of programs/
omponents
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oloby means of some performan
e annotations, in order to build a performan
e model. Proposition 4.1 allowsus to eliminate exe
ution rates asso
iated to data-dependent 
omputations. Proposition 4.3 allows us to relateoutput rates to input rates of linked modules.The performan
e model is therefore de�ned as an homogeneous system of simultaneous linear equations,that des
ribe the relations that hold in the steady-state among the performan
e features. The set of solutionsof the system is a ve
tor subspa
e of Rn (where n is the total number of variables, either input rates, outputrates or exe
ution rates); we 
all the dimension of the solution spa
e the number of degrees of freedom ofthe appli
ation. If this dimension is 1, then the system is 
ompletely determined as soon as a single value forany variable is imposed. The degenerate 
ase of a spa
e with dimension 0 implies that the only solution to thesystem is the null ve
tor (i. e. every variable must be zero): this means that the predi
ted steady-state is adeadlo
k state, in whi
h no 
omputation or 
ommuni
ation 
an pro
eed. The number of degrees of freedom ofthe system will impa
t on how many 
onstraints must be provided in order to derive the expe
ted values forevery variable.Clearly, only positive values of the rates are meaningful, so we 
an 
on
lude that every assignment of positivevalues for the ve
tor [i e o]T ∈ R
n that is a solution of the system is a possible �operation point� for the modeledappli
ation.The outlined approa
h is e�
ient, in fa
t the simpli�
ation of the simultaneous equations 
an be a
hievedusing well known te
hniques.5. Appli
ation of the Model. We show how the presented model 
an be applied to a real appli
ation(see Fig. 5.1), a rendering pipeline. The �rst stage requests the rendering of a sequen
e of s
enes while these
ond renders ea
h s
ene (exploiting the PovRay rendering engine), interpreting a s
ript des
ribing the 3Dmodel of obje
ts, their positions and motion. The third stage 
olle
ts images rendered by the se
ond one, andbuilds Groups Of Pi
tures (GOP), that are sent to the fourth stage, performing DivX 
ompression. The laststage 
olle
ts DivX 
ompressed pie
es and stores them in an AVI output �le.
Fig. 5.1. Graph of the render-en
ode appli
ationFor GOPs of 12 pi
tures, the performan
e model for our test appli
ation is (we eliminated exe
ution ratesfor data-dependent 
omputations):
C1e = C1o = C2i = C2o = C3i = 12 · C3o =

= 12 · C4i = 12 · C4o = 12 · C5iand has one degree of freedom.5.1. Convergen
e to Steady State. We start showing that the appli
ation behavior a
tually tends tosteady-state.Figure 5.2 shows performan
e features taken from a real exe
ution of the test appli
ation on a Blade 
luster
onsisting of 32 
omputing elements, ea
h equipped with an Intel Pentium III Mobile CPU at 800MHz and1GB of RAM, inter
onne
ted by a swit
hed Fast Ethernet dedi
ated network. The appli
ation was 
on�guredto exploit 20 ma
hines in the render 
omputation, and one ma
hine for ea
h remaining node.Performan
e features are measured as in (4.2), i. e. averaging the number of performed 
omputations onthe duration of the exe
ution. The top diagram shows the performan
e of the Render and the GOP Assemblernodes, whi
h operate on frames, while the bottom diagram shows the En
oder and Colle
tor nodes, whi
hoperate on GOPs. The similarity of the 
urves in the left and the right diagrams shows empiri
ally thatProp. 4.2 is satis�ed not only at the steady-state, but also during the �nite 
omputation, as soon as bu�ers are�lled (
urves in the same diagram are related by a fa
tor of 1, while between the two diagrams there is a s
alingfa
tor of 12).
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Fig. 5.2. Convergen
e to steady-state of averaged performan
e featuresMoreover, Fig. 5.2 shows that the averaged 
omputation rates stabilize during the 
omputation, allowingus to adopt a steady-state model to approximate the a
tual appli
ation run.5.2. From Desired Performan
e to Resour
e Requirements. Typi
ally, if someone is fa
ing a prob-lem by means of HPC tools, he has 
lear in mind some sort of performan
e requirement for his appli
ation.This 
an be expressed in di�erent forms, e.g. 
ompletion time, 
omputation rate, response time, et
. In ourframework we express requirements as bounds on 
omputation rates. That is the most natural way dealingwith stream parallelism. This means that, if the problem is expressed in di�erent terms, some sort of prelim-inary transformation should be applied (e.g. study the initial transient length to relate 
ompletion time to
omputation rate, or use the Little's Law to translate response time requirements in 
omputation rate ones).Suppose that we require 1 frame/s (the 
onstraint is expressed by C5i ≥
1

12
, be
ause ea
h input for C5 is
omposed by 12 frames). Applying the performan
e model we derive required 
omputation and transfer ratesfor ea
h 
omputation and 
ommuni
ation.These values, paired with program annotations (see Tab. 5.1) on the weight of 
omputation or 
ommuni-
ation (e.g. MFLOP per task/MB transferred to/from memory and message size, respe
tively) 
an be usedto derive requirements that the resour
es must ful�ll in order to meet the performan
e requirements on theappli
ation.For instan
e, we 
an show the requirement for stream S2 = C2o. Sin
e it is required to 
arry 1.19MBmessages with at least rate 1/s, a link of 9.5 Mbit/s is su�
ient. Likewise, the test appli
ation will nevers
ale above 10 frames/s with a 100 Mbit/s network, and needs to be redesigned, if we want to rea
h higherperforman
es.Computational requirements are handled in the same way. The performan
e model solution gives, forea
h 
omputation, the minimum required exe
ution rate. Then we need an invertible performan
e model for
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oloTable 5.1Deployment annotations for the example appli
ation.Component C1 C2 C3 C4 C5Pro
essor i686 i686 i686 i686 i686Memory (MB) 64 256 64CPU Work 3307 52Mem. Work 302 104Conne
tor S1 S2 S3 S4data type param pi
 GOP zipdata size 54B 1.19MB 14.24MB 2MBea
h atomi
 
omputation that, given the required exe
ution rate, produ
es the resour
e requirements. This isessential in an exe
ution environment in whi
h resour
es are not known in advan
e.The model presented in [22℄ suits our needs. We 
an asso
iate to ea
h 
omputation a weight, represented bya pair of values w = (wMFLOP , wMB), spe
ifying the number of �oating point operations (expressed in MFLOP)and the data transferred to/from main memory (expressed in MB) per a
tivation. Resour
e power is des
ribedby the pair p = (pMFLOP/s, pMB/s), and exe
ution time is therefore estimated as t(p, w) = wMFLOP

pMFLOP/s
+

wMB

pMB/s
.This model 
an be employed also to �nd appropriate parallelism degree for parallel 
omputation nodes.We, in fa
t, 
an relate t(p, w) for an aggregate resour
e p = [p1, . . . , pk] to the performan
e of the 
ode on singleresour
es t(pi, w).Assuming perfe
t speedup, we obtain:

t(p, w) =
(∑

i

t(pi, w)
−1
)−1In this way we 
an derive, for ea
h 
omputation node, mat
hing resour
e requirements. These will 
on
ernsingle resour
es for sequential nodes, and aggregate ones for parallel nodes.Results 
ommented. In Fig. 5.3, two mappings (top on an homogeneous 
luster, bottom with heterogeneousresour
es) for the same 
onstraint are displayed. The �rst thing to note is that, even if the heterogeneous runhas more varian
e in a
hieved bandwidth, the average bandwidth is 
omparable with the homogeneous one.This provides eviden
e that the employed performan
e model 
orre
tly handles heterogeneous sets of resour
es,determining the 
orre
t parallelism degree. The good performan
e in heterogeneous run (its 
ompletion time iseven shorter than the one for homogeneous run) is explained by the fa
t that the model 
an mat
h 
omputationrequirements with suitable resour
es, i. e. s
hedule memory bound 
omputations (e.g. en
oding) on ma
hineswith faster memory, and FPU bound ones (e.g. rendering) on ma
hines with faster FPU.The obtained results are as expe
ted: the mapping 
omputed using the performan
e model ful�lls the
onstraint, at the beginning and most of the time of the appli
ation run. This o

urs be
ause, in order to buildour model, we sampled the a
hieved performan
e on the �rst frames of the movie, but the appli
ation workloadslightly 
hanges with the evolution of the movie. This is eviden
ed by the smoothed bandwidth 
urve, that hasthe same 
ourse in the two experimental settings: the workload is heavier around 100s and 300s, while it islighter in the middle and at the end.6. Con
lusions and Future Work. In this work we des
ribed an analyti
al approa
h to map a 
lass ofappli
ations on a Grid. These appli
ations intera
t through streams of data, pro
essed by several autonomoussoftware 
omponents, either sequential or parallel. We presented a steady state performan
e model for theseappli
ations and we applied it to a 
ase study, a rendering pipeline of sequential and parallel 
omponents. Themodel was exploited to predi
t a program behavior at run-time. Then we showed a general methodology todevise a 
orre
t initial mapping for the appli
ation, driven by spe
i�ed QoS levels. At last, we showed the resultsof our mapping methodology with the presented appli
ation, and we dis
ussed the results of the mapping andthe exe
ution on homogeneous and heterogeneous sets of resour
es. We obtained good results in both 
ases.The appli
ation was 
orre
tly mapped and the QoS requirement respe
ted with a small error.Analyti
al [35, 19, 36, 20, 18, 29℄ and stru
tural performan
e models [25, 14, 8℄ dis
ussed in Se
t. 2need the full knowledge of the target platform to derive performan
e measures. Therefore, to 
ompare re-sults of di�erent mappings, they must be evaluated multiple times. Our approa
h de
ouples the modeling
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Fig. 5.3. Two exe
utions of the test appli
ation: top) homogeneous 
lusters of Athlons XP 2600+, down) set of heteroge-neous resour
es (9 P4�2GHz, 1 Athlon XP 2800+, 1 P4�2.8GHz).of the appli
ation performan
e from the target platform, allowing us to evaluate the model on
e to de-rive enough information to drive the mapping pro
ess. Tra
e-based approa
hes [34, 26℄ are used to over-
ome the limitations of previously dis
ussed approa
hes, but they are not 
ompositional. Therefore theymust be applied from s
rat
h to every new appli
ation, even if it is built from the same set of 
ompo-nents.All those models and the presented one share an assumption on the behavior of the appli
ations: 
ompu-tation exe
utions must be independent from the a
tual values of the input set. Otherwise, two exe
utions ofthe same appli
ation would be not 
omparable (this is 
alled ergodi
ity for sto
hasti
 models). For appli
ationsthat do not meet this requirements, the best solution is to resort to runtime adaptation.The presented approa
h is not perfe
t. The initial mapping 
an be 
onsidered a good �hint� to start theexe
ution of an appli
ation on a Grid. The dynami
 
hanges in resour
es during the exe
ution 
an not beeasily in
luded in laun
h-time strategies. Our approa
h must be 
oupled with res
heduling strategies at run-time to solve su
h problems. Our future work is going in this dire
tion. The presented steady state model
an be exploited at run-time to adapt the behavior of 
omponents to 
hanges in resour
e performan
es. Inthis way, it should be possible to ful�ll the QoS requirements during the whole exe
ution of the appli
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t. In this paper we des
ribe DPFPA (Double Pre
ision Floating Point A

elerator), a FPGA-based 
opro
essorinterfa
ed to the CPU through standard bus 
onne
tions; it is 
on
eived to a

elerate double pre
ision �oating point operations,featuring two double pre
ision �oating point units, a pipelined adder and a pipelined multiplier with a suitable number of stages.We tested its performan
e by implementing a Monte
arlo-Metropolis simulation of a dipolar system, using a proper softwaredevelopment environment designed and realized in our laboratory. DPFPA 
an provide a speed-up equal to 4, with respe
t lastgeneration PC, showing also a good s
alability in terms of 
lo
k frequen
y, memory 
apability and number of 
omputing units.Key words: FPGA; hardware a

elerator; high performan
e embedded system; parallel pro
essing.1. Introdu
tion. S
ienti�
 resear
h owes a lot to 
omputer systems whi
h allowed the a
hievement ofresults otherwise unthinkable [Marsh, 2005℄[Boghosian et al., 2005℄. A powerful 
omputing system permitsthe study of several phenomena through the employment of simulations like statisti
al ones into whi
h thesystem under analysis is made to evolve from a 
ertain initial 
ondition, by modifying a few of its 
hara
teristi
parameters and by evaluating the feasibility on the basis of a proper merit fun
tion. These operations areiterated thousands of times to bring the system in a new stable state.Several of these simulations perform double pre
ision �oating point operations sin
e they provide the a

u-ra
y required to appre
iate even the smallest �u
tuations in the typi
al variables of the simulated phenomena.On the other hand, this 
ould represent a hard task even for the most powerful pro
essors whi
h take a lot of
lo
k 
y
les to exe
ute a single �oating point operation.The la
k of 
omputing power is generally over
ome by resorting to super
omputers or 
lusters [Dongarra etal., 2005℄ but in the last years the use of a

elerators, i. e. dedi
ated hardware systems, is gradually establishingas a valid alternative, due to the feature of these devi
es whi
h allow to perform those operations in less timethan traditional pro
essors [Buell et al., 2007℄[Herbordt et al., 2007℄. Several resear
hers worked in these yearsnot only in this sense but also to improve �methodology, tools and pra
ti
es supporting the integration ofhardware and software 
omponents during system design and development� [Hankel et al., 2003℄[Wolf, 2003℄.At present a similar proje
t 
on
erning a Double Pre
ision Floating Point A

elerator (DPFPA) to pro
ess
omplex fun
tions has been 
arried out in the Mi
ro
omputer laboratory at the University of Pavia (Italy).This a
tivity suites well with the mission of the laboratory whi
h aims to design and develop spe
ial purposear
hite
ture for 
omputationally intensive appli
ations. The designed a

elerator is implemented onto a FPGAdevi
e lodged on a board inter
onne
ted with a Personal Computer and is able to exe
ute �oating point opera-tions faster than a traditional pro
essor [Danese et al, 2007℄. Moreover, a proper spe
i�
 programming languageand a suitable software development environment were realised allowing the user to write, translate and loadproper instru
tions sequen
es written in a spe
i�
 language.This paper des
ribes the implementation, onto the a

elerator, of a Monte
arlo-Metropolis simulation of adipolar system, a typi
al 
omputational 
hallenge for super
omputers.The Monte
arlo Metropolis algorithm is an ex
ellent ben
hmark to test performan
e of a spe
ial purpose
al
ulation system, sin
e its 
omputational 
ore 
onsists of few �oating point operations (double pre
ision)repeated over and over: this represents the ideal 
ondition to exploit an appli
ation spe
i�
 ar
hite
ture devotedto the a

eleration of only parti
ular instru
tions.Moreover, the algorithm features a SIMD fashion so it is suitable for a distributed implementation whi
h
an exploit more 
al
ulation units so in
reasing the overall a
hieved speed up.Finally, typi
al Monte
arlo simulations involve hundreds thousands parti
le systems and 
an run for weeksor months on the most performing 
omputers with a single CPU: the availability of powerful a

eleratingunits, in 
ase 
onne
ted into a 
luster 
on�guration, makes possible simulations 
urrently unfeasible or sim-ulations with more parti
les than now, a
hieving a better 
omprehension of the physi
al phenomena underanalysis.
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es
o Leporati et al.In the past other resear
h groups proposed a

elerators based on FPGA for Monte
arlo simulations:
• one of the �rst proposal is presented in [Postula et al., 1996℄ where is des
ribed a metallurgi
al sinteringsimulation implemented on a FPGA devi
e with a two orders of magnitude speed-up with respe
t to amid 90's workstation;
• in the same years, other authors 
on
eived a FPGA implementation of a parti
ular Monte
arlo te
hnique(Swendsen-Wang 
lustering) with a 
onsiderable a

eleration with respe
t to a 15 MHz DSP or makinguse of 
ellular automata [Cowen et al, 1994℄[Monaghan et al, 1992℄;
• more re
ently, a re
on�gurable 
omputer was designed devoted to heat transfer simulations, workingon single pre
ision �oating point data and a
hieving an order of magnitude speed-up relative to a 3GHz P4 pro
essor [Gokhale et al, 2003℄; the pe
uliarity of this 
ontribute is the idea of using widelyavailable �oating point libraries for implementing a 
al
ulation fun
tion onto FPGA, thus shorteningdesign time;
• �nally, in [Zhang et al, 2005℄ it is presented a simulation of a �nan
ial model implemented on a FPGAdevi
e to a

elerate double pre
ision �oating point 
al
ulations. The a
hieved speed-up is 26 relativeto a 1.5 GHz P4 pro
essor;
• with regard to FPGA based ar
hite
tures spe
i�
ally devoted to physi
s simulations, the re
ent lit-erature proposed the works of Cruz and Belletti [Cruz et al, 2001℄[Belletti et al, 2006℄; the �rst oneprovides interesting ar
hite
tural issues although using Altera Flex 10K30 
omponents limits the work-ing frequen
y to 48 MHz; the se
ond is a proje
t subsequent to our one, employing Altera Stratix family
omponents and aims to build a 
luster of a

elerators based on the most re
ent FPGA devi
es.For what 
on
erns a more general use of SoC for 
omputing intensive appli
ations there is a wide literature towhi
h the reader 
ould refer. The most part of the O
tober 2007 issue of IEEE Computer was devoted to thattopi
 [Wolf, 2007℄.In the next se
tion the ar
hite
tural features of the a

elerator, of the spe
i�
 language designed and ofits software development environment will be des
ribed. Then, the basi
 physi
al prin
iples of the simulationand its needed modi�
ations for optimizing the use of the a

elerator will be highlighted. Finally, we will seethe implementation of the algorithm on the a

elerator, taking advantage from the use of a `dedi
ated stage'pipeline and the 
omparison with a few 
ommer
ial and popular pro
essors showing a 
lear speed-up. Someremarks explaining the evolution of the proje
t will 
on
lude the paper.2. The A

elerator. We realized a FPGA-based a

elerator 
onne
ted to a host PC to a

elerate thehardest part of a 
al
ulus. Our idea refers to a board with a FPGA devi
e (Altera Stratix family) and a Flashmemory storing the 
on�guration 
ode; a JTAG port is used to send the program to the Flash memory fromthe PC. Re
ently, Altera has made available some boards with these features. These boards 
an 
ommuni
atewith PC through the network requiring a proper network manager. In this 
ase, both the a

elerators andthe network pro
essor 
an be loaded on the same FPGA. The board we bought is equipped with a Stratix1S40 FPGA 
omponent on whi
h a 32 bit RISC CPU, 
alled Nios, is implemented; this pro
essor 
an beprogrammed using C language and is supplied with basi
 libraries to easily handle the on board devi
es:2 MB Ram, 8 MB Flash Memory, 16 MB Compa
t Flash Memory, 100 Mb/s Ethernet Interfa
e, 2 Serialports.We designed an a

elerating unit that is able to implement di�erent fun
tions (also 
omplex like sin, 
os,log, . . . , through Taylor series). Thus, it 
an be used for several appli
ations, also very diversi�ed. Moreover,the instru
tion set is fully re-programmable a

ording to the parti
ular 
al
ulation to be performed.The designed unit (DPFPA) 
an exploit the parallelism present in the operations sin
e double pre
isionFloating Point MAC operations 
an be exe
uted at the same time in the sum and multiply pipelines presentonto it. The main part of DPFPA is DPFPP (double pre
ision �oating point pro
essor), whose ar
hite
ture
onsists of (�g. 2.1):
• 2 a

elerating units, independently working;
• a Ca
he Memory (4 banks), whi
h 
an store input data and results for the two a

elerating units;A suitable bus devoted to 
ommuni
ation between A

elerator and Nios pro
essor ("sub bus") has beenalso implemented. The Math Unit fun
tional 
ore is a double-pre
ision �oating-point ALU, whi
h integratesboth an adder and a multiplier operating in a parallel fashion. Both devi
es are pipelined (9 stages for theadder and 15 for the multiplier) so that high 
lo
k rates are a
hievable. Note that, in the expe
ted appli
ations,a

urate 
oding 
an minimize the negative e�e
ts of su
h laten
y.
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� �Fig. 2.1. Ar
hite
ture of the 
omputational unit implemented onto the FPGA devi
e.Together with the adder and the multiplier, the ALU also 
ontains 3 register banks, ea
h able to store 4double-pre
ision �oating point numbers. The banks are ea
h tied to a parti
ular purpose (one is for input data,one for adder results and one for multiplier results).Like in many similar appli
ations, to make 
omputing elements and storage spa
e independent, a FIFOmemory for both inputs and outputs is implemented (there are two FIFO queues on the output sin
e arithmeti
results are separated from logi
al ones).The ALU operations are en
oded in 37-bit words, able to simultaneously trigger either a sum or a 
om-parison, a multipli
ation, a data fet
h, 3 write operations to the internal register banks and the output of aresult.To a
hieve better performan
e with our spe
i�
 task, the operands of the adder 
an optionally be multipliedby [−2,−1, 2] for the �rst operand, and [−1,−0.5, 0.5] for the se
ond one. In a similar way, the multiplier result
an be doubled, halved or negated without extra 
lo
k 
y
les.Sin
e feeding the op-
odes would require a large and mostly wasted bandwidth (the 
ode is essentially 
y
li
,so that the same op-
odes are exe
uted over and over again) the 
ode sequen
es are stored in a Mi
ro
odeSequen
er. This devi
e stores the program sequen
es in an internal RAM and asso
iates to them a 6-bits op-
ode (this is mu
h like having a CPU with a mi
ro-programmed 
ontrol unit whose 
ode 
an be 
hanged by theappli
ation to de�ne a 
ustom instru
tion set).The Math Unit itself has no addressing 
apabilities toward either input or output 
hannels, so every memoryI/O operation must be managed by an external devi
e. A Memory Manager was deemed to that task and
on
eived for a spe
i�
 appli
ation 
lass: those where most 
omputations are performed on data logi
allyorganized in three-dimensional matri
es. De
oupling the allo
ation issues from the 
omputing algorithm, theMemory Manager 
omputes the memory addresses from semanti
-level inputs, su
h as addresses in the matrixdomain (X − Y − Z 
oordinates) or o�sets between elements (the matrix is supposed to be 
y
li
, so thate.g. the leftmost element in a row is adja
ent to the rightmost element in the same row). This is of extremeimportan
e, sin
e otherwise the same 
ode would require at least a re
ompilation to be exe
uted on matri
eswith di�erent sizes.The internal Control Unit (CU) de
odes instru
tions 
oming from the host 
omputer and drives the 
ontrolsignals implementing the requested fun
tion. It mainly 
onsists of 3 units:
• Instru
tion De
ode: sele
ts between data and instru
tions from host to the DPFPA. Only in the last
ase it generates proper 
ontrol signals;
• Jump Unit: sets the RAM address to the starting point of the next instru
tion sequen
e to be exe
uted;
• RAM: stores sequen
es 
orresponding to the instru
tion set for the parti
ular fun
tion to implement.
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tions are 64 bit wide exploiting part of the redundan
y present in the IEEE 754 standard of �oatingpoint representation, to distinguish them from double pre
ision numbers. Two kinds of instru
tions have beenimplemented:
• Programming instru
tions to store in the CU RAM exe
utive sequen
es.
• Exe
utive instru
tions to perform spe
i�
 
al
ulations, re
alling sequen
es already loaded.Programming instru
tions to store in the CU RAM exe
utive sequen
es. Exe
utive instru
tions to performspe
i�
 
al
ulations, re
alling sequen
es already loaded.A great advantage of our approa
h is that the sequen
es of an exe
utive instru
tion are performed in aniterative manner until a new exe
utive instru
tion will be re
eived by the CU. So, during the exe
ution of the
al
ulus, CU has to de
ode only few instru
tions and 
an save a great amount of time.3. Programming DPFPP. As previously stated, DPFPP 
an handle two types of instru
tions: pro-gramming instru
tions and exe
utive instru
tions. The former are used to store mi
ro
ode sequen
es into theCU RAM, making mi
ro
ode words to be loaded at the 
orre
t address into the RAM of CU. The word ofmi
ro
ode, allows the assertion of needed 
ontrol signals for ea
h 
lo
k 
y
le.Ea
h exe
utive instru
tion allows, on the other hand, the re
alling of sequen
es already stored.We realised soon, that the sequen
e development using binary mi
ro
ode was a very hard and ine�
ientwork. Thus, we 
hose to design and develop a pseudo-assembly dedi
ated language that simpli�es the sequen
ewriting. The instru
tions of the language are mapped dire
tly on the hardware and re�e
t the operation thatDPFPP 
an exe
ute. Table 3.1 shows the list of the instru
tions and their syntax.Table 3.1List and syntax of the language instru
tions.Instru
tion SyntaxMOV reg;SUM 
1 op 
2 op ; SUM 
1 op ; SUM 
1 op op SUM op 
2 op; SUM op opMUL 
 op op; MUL op op; MUL 
 op;OUT xx;INT;A proper translator was also developed, using standard Unix tools su
h as Lex and Ya

.Furthermore, we developed an allo
ator for an easy generation of the �le with the programming instru
tionsthat must be sent to the DPFPP. Finally, we designed a simulator, reprodu
ing exa
tly the DPFPP workingand enabling pipeline and register inspe
tion. The simulator also allows the visualisation of the 
lo
k 
y
lesneeded by a spe
i�
 sequen
e or by a set of sequen
es. Thanks to this tool, we 
an exe
ute mi
ro
ode sequen
eswithout loading them into the DPFPP; thus, we 
an simplify the sequen
e debug, verify the results' 
orre
tnessand 
he
k the performan
e.All these tools are integrated in a unique development environment, realised in the Mi
ro
omputer labora-tory to ease the sequen
e development. There are four main steps: �rst, we write and 
ompile sour
e 
ode usingan internal editor, then we test the 
ode using the simulator. Finally, we produ
e the programming �le thathas to be sent to the DPFPP by using the allo
ator. More details on the hardware and software for DPFPAare in [Danese et al., 2003℄.4. The Considered Problem. Liquid 
rystals and 
olloidal suspensions are two examples of systems forwhi
h the orientation order has been widely studied through simulations. In both 
ases intera
tions amongparti
les play a dominant role. In previous works, we realized a 
ubi
 latti
e model des
ribing the intera
tionse�e
ts in a dipolar system in presen
e of an external latti
e �eld [Bellini er al., 2001℄: simulations made withthis model identi�ed the presen
e of two phase transitions and the obtained results 
ould in part explain thephenomenon known as �anomalous bi-refringen
e� as analyzed in [O' Konski et al., 1950℄[Radeva et al., 1996℄.On the other hand, simulations take una

eptably long times even on the most re
ent and powerful 
om-puting systems ranging from a few days up to some weeks depending on the size of the simulated system. The
ore of the 
omputation is, in fa
t, the evaluation of the energy sin
e, a

ording to the implemented algorithm(Monte
arlo-Metropolis), equilibrium in a system with N parti
les is rea
hed through a sequen
e of moves,
arried out by randomly sele
ting a spin, 
hanging its orientation through a random angular displa
ement and
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essors 281evaluating the 
orresponding 
hange in energy. Ea
h move 
an be a

epted or reje
ted depending on the vari-ation of the energy asso
iated with it [Metropolis et al., 1953℄. We simulated latti
e systems with parti
lesranging from a few hundreds up to 100.000 
onsidering only �rst neighbor intera
tions, i. e. the intera
tionbetween ea
h spin and the six 
losest ones in the X+, X−, Y+, Y−, Z+, Z− dire
tions. Periodi
 boundary
onditions were applied [Frenkel et al., 1996℄. The asso
iated energy of ea
h dipole due to the presen
e of anexternal �eld oriented toward z axis is: (1) Edip = momz(dip)The terms due to the intera
tions between the 
onsidered dipole and ea
h of its �rst neighbours are:(2) EX+ = 2 ∗momx(dip) ∗momx(X+) +

−momy(dip) ∗momy(X+)−momz(dip) ∗momz(X+)(3) EX− = 2 ∗momx(dip) ∗momx(X−) +

−momy(dip) ∗momy(X−)−momz(dip) ∗momz(X−)(4) EY+ = −momx(dip) ∗momx(Y+) +

+2 ∗momy(dip) ∗momy(Y+)−momz(dip) ∗momz(Y+)(5) EY− = −momx(dip) ∗momx(Y−) +

+2 ∗momy(dip) ∗momy(Y−)−momz(dip) ∗momz(Y−)(6) EZ+ = −momx(dip) ∗momx(Z+) +

−momy(dip) ∗momy(Z+) + 2 ∗momz(dip) ∗momz(Z+)(7) EZ− = −momx(dip) ∗momx(Z−) +

−momy(dip) ∗momy(Z−) + 2 ∗momz(dip) ∗momz(Z−)where the 
omponents of the moments for ea
h dipole are:(8) momx(dip) = cos(θ) ∗ sin(θ) ∗ cos(ϕ)(9) momy(dip) = cos(θ) ∗ sin(θ) ∗ sin(ϕ)(10) momz(dip) = cos′(θ)and θ, ϕ are the angular 
o-ordinates of a generi
 dipole. The overall energy of the dipole is the sum of all these
ontributes: (11) ETOT [dip] = −0, 5 ∗ [Edip − k ∗ (EX+ + EX− + EY + + EY − + EZ+ + EZ−)]The global energy in the system is the sum extended on the whole dipolar set.The simulated system is 
hara
terised by an initial random parti
le distribution not 
orresponding to thata
hievable at the equilibrium. This means that the 
hange in the orientation of a dipole will modify themoments and the energy in the others, mainly in the neighbours. These ones, in turn, will in�uen
e theirrespe
tive neighbours and so on, propagating those variations in the moments throughout the latti
e. Thisre�e
ts in energy �u
tuations that disappear only after a su�
ient number of 
y
les into whi
h ETOT for ea
hdipole is 
al
ulated (equilibration). Only at this point, the Metropolis test on energy variation 
an be applied.This loop series 
orresponds to nearly the 85% of the 
al
ulation but it 
onsists of only few instru
tions, sojustifying the idea of an a

elerator spe
ialized in pro
essing only those operations. To do this, we employedthe FPGA te
hnology, whi
h is 
heaper and simpler than ASIC in terms of design and test.However, during the design phase, we 
onsidered 
onvenient to realise a more general 
hip able to a

eleratethose double pre
ision �oating point instru
tions whi
h 
an be often found in s
ienti�
 simulations. This extendsthe appli
ability of the DPFPA both to models di�erent to that used (i. e. hexagonal latti
es instead of 
ubi
ones) or to 
ompletely di�erent �elds where high performan
e 
omputing is mandatory.5. Energy Evaluation and Implementation. To simplify the readability of the energy 
al
ulation onthe DPFPA, as it will be des
ribed in the following, let's rewrite the expressions reported in se
tion 3. Theintera
tion energy of ea
h dipole 
an be written as − (CT∗CT )
2 and the sum on all the dipoles will return the
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o Leporati et al.global energy in the system. CT is the lo
al �eld generated by the neighbors of the 
onsidered dipole and 
anbe expressed as: (12) CT = CTX ∗ SC ∗ k + CTY ∗ SS ∗ k + CTZ ∗ C ∗ k + Cwhere k is a 
onstant depending on the system density and SC = sin(θ)cos(ϕ), SS = sin(θ)sin(ϕ), C = cos(θ),with θ, ϕ angular 
o-ordinates of the dipole. CTX, CTY e CTZ are the lo
al 
omponents of the �eld generatedby the neighbour dipoles. They are respe
tively equal to:(13) CTX = (MXX +MX ∗X +MYX +MY ∗X +MZX +MZ ∗X)(14) CTY = (MXY +MX ∗ Y +MY Y +MY ∗ Y +MZY +MZ ∗ Y )(15) CTZ = (MXZ +MX ∗ Z +MYZ +MY ∗ Z +MZZ +MZ ∗ Z)We identify with MXX , MXY , MXZ the lo
al �eld 
omponents generated by the �rst neighbor dipole in thedire
tion X−, and with MX ∗X , MX ∗ Y , MX ∗Z the lo
al �eld 
omponents generated by the �rst neighbordipole in the dire
tion X+. The other terms due to the e�e
t of dipoles in dire
tions Y +/Y− and Z+/Z− arede�ned a

ordingly to the same notation. Moreover the lo
al �eld, due to the neighbors, 
hanges the 
omponentsof the dipolar moment. These should be evaluated ea
h time a

ording to the following expressions:(16) momx(dip) = CT ∗ SC, momy(dip) = CT ∗ SS, momz(dip) = CT ∗ CWhile the SC, SS and C terms are evaluated at ea
h movement, the other terms should be re-
al
ulated for thenumber of 
y
les ne
essary to equilibrate the energy in the system. All these operations, �nally, are repeated
M ∗ N times with M =
y
le number (i. e. 10.000) and N = number of dipoles in the system. This a

ountsfor the high 
omputational weight of the elaboration.

Fig. 5.1. Diagonal s
anning.With 's
anning ' we mean the order through whi
h the dipoles are pro
essed during the simulation. Theidenti�
ation of a suitable order 
an signi�
antly a�e
t the algorithm e�
ien
y in terms of memory a

ess andreuse of data. If we would not use any parti
ular s
anning order but if we only would 
onsider dipoles in thesame order of memorization (1st, 2nd, 3rd, . . . ), their elaboration would need 21 input data (SC, SS and C ofthe moved dipole plus the moments of its six �rst neighbors), returning the 3 new 
omponents of the momentof the 
onsidered dipole.However, if the sele
tion order 
onsiders dipoles 
lose to ea
h other toward a diagonal dire
tion, these lastones share two �rst neighbors whose parameters are no more needed for the elaboration of the new dipole. Fig.5.1 shows an example of this, sin
e passing from dipole 1 to 2, dipoles 3 and 4 are preserved as �rst neighbors.This redu
es to 15 the number of input data needed, and a 
orrespondent saving in transfer time per ea
h dipoleis obtained. Another advantage yielded by the diagonal s
anning 
onsists in avoiding 
al
ulations. Considering
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essors 283again �g. 5.1 we note that dipoles 3 and 4 give the following 
ontributes to ea
h 
omponent of the lo
al �eld indipole 1: (17) MX ∗X +MY ∗ Y = 2 ∗momx(4)−momx(3)(18) MX ∗ Y +MY ∗ Y = −momy(4) + 2 ∗momy(3)(19) MX ∗ Z +MY ∗ Z = −momz(4)−momz(3)If we now 
onsider the 
ontribute of the same dipoles to dipole 2, the next rea
hed by the diagonal s
anning,we �nd: (20) MXX +MYX = 2 ∗momx(3)−momx(4)(21) MXY +MYX = −momy(3) + 2 ∗momy(4)(22) MXZ +MY Z = −momz(3)−momz(4)The values on the right are obtained by substituting at the terms on left, those values reported in equations inse
tion 3.Equations 19 and 22 are equal and 
an be 
al
ulated only on
e. The same 
onsiderations are appli
able in
ase of movements toward Y Z or XZ dire
tion with a 
onsistent sparing of operations.Finally, the moment 
omponents involved in equations 17�19 for the dipole 1 are also present (with di�erent
oe�
ients) in equations 20�22 and, again, they 
an be 
al
ulated only on
e (i. e. for dipole 1, storing them inregisters from whi
h they 
an be retrieved later for the next dipole) with a further saving of time.

Fig. 5.2. Diagonals for s
anning in XY fa
e.The diagonal s
anning basi
ally 
onsists of XY movements as shown in �g. 5.2.The 
ubi
 latti
e is 
onsidered as made by `sli
es' and when the last dipole is rea
hed on an XY fa
e, alittle movement toward the Y Z or XZ dire
tion allows to skip to the next XY sli
e. In ea
h sli
e, di�erentstarting points 
an be 
hosen depending on the odd/even number of dipoles present on the edge of the latti
e,but for sake of simpli
ity we don't want to ex
essively detail these simulation aspe
ts.6. Implementation on DPFPA. As previously said, a sequen
e 
onsists of a mi
roinstru
tion set and
ould be identi�ed as a Setup or a Loop sequen
e. The �rst problem to deal with is the de�nition of thoseoperations more frequently exe
uted whi
h should be inserted into the Loop sequen
e. In the diagonal s
anning,the most frequent operation regards the intera
tion between dipoles lo
ated on diagonals belonging to the XYside: thus, the Loop sequen
e should implement the energy 
al
ulation of these dipoles, while the Setup shouldexe
ute the movements in the XZ or Y Z fa
es of the latti
e, through whi
h the algorithm 
onsiders the �rstdipole of the next XY `sli
e' and another Loop sequen
e begins.A

ording to what said in the previous se
tion, the number of the needed sums is 14 for evaluating CTX ,
CTY e CTZ (one add is shared with the previous dipole), 3 for CT and 1 more to add these values to thepartial total energy obtained from the previous dipoles 
onsidered. Thus the adder pipeline is used as its best,if 18 
lo
k 
y
les are taken. For what 
on
erns multipli
ations, instead, 6 are needed to 
al
ulate CT , 3 for thenew moment 
omponents of the 
onsidered dipole and 1 more for its global energy. Thus, 10 multipli
ationsare required. Let's see how these operations 
ould be e�
iently implemented.
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Fig. 6.3. Stage 6 in the adder pipeline during the Loop phase6.1. Adder Unit. Ea
h stage is 
onsidered as an independent register 
ontaining the partial result whi
h
an be stored every L 
lo
k 
y
les (L is the pipeline length). The Loop sequen
e evaluates the energy of dipoles
onsidered in the XY dire
tion: 4 stages of adder pipeline were devoted to 
al
ulate CTX , CTY , CTZ and
CT . In �g. 6.1, the se
ond pipeline stage devoted to the 
al
ulation of CTX is shown, with the parti
ular
al
ulation highlighted in bold in ea
h of the four sums needed. In the �rst step, the term in parentheses is`shared' with the previous dipole 
onsidered and does not need to be re-
al
ulated (see previous se
tion). Ea
hpartial result is available only when it has run a
ross the whole pipeline i. e. after 9 
lo
k 
y
les and the
omplete value of CTX is available after 36 
lo
k 
y
les. Then the stage pro
eeds to evaluate the CTX for thenext dipole. The same 
onsiderations 
an be made for CTY and CTZ. The 
al
ulation of CT is implementedin the stage 4, whi
h works again for 36 
lo
k 
y
les. The CTX , CTY , CTZ values used in this 
ase are those
oming from the multiplier where they have been multiplied by SC, SS and C. Sin
e the 
al
ulation of CT takesless than 36 
y
les, the �rst stage is used to 
al
ulate that value shared with the next dipole:
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����������Fig. 6.4. Stage 6 in the adder pipeline during the Loop phase.Therefore the partial value of CT is saved in a register from whi
h it will be retrieved during stage 4B(�g. 6.2). To optimise the use of the pipeline the remaining stages are devoted to implement the same 
al
ulationsfor a se
ond dipole, so as to pro
ess 2 dipoles in 36 
lo
k 
y
les. This 
orresponds, as previously seen, to anoptimal use of the adder. Finally, stage 6 is devoted to add to the global energy value ETOT , those two energy
ontributes (ENEW ) 
al
ulated in the other stages of the pipeline up to this moment (�g. 6.3). Basi
ally itworks in the same way as stage 4, in
luding two sums shared with the su

essive elaborated dipoles (again tooptimise the pipeline use). Even though, during the 36 
lo
k 
y
les all the sums needed for the energy of twodipoles have been performed, the dipoles involved in the elaboration are more than 2. In fa
t, while the adderis evaluating CTX , CTY and CTZ for the two dipoles, it is not possible to determine at the same time the
orrespondent CT terms, sin
e the previous 
al
ulations (CTX , CTY and CY Z) should be 
ompleted and theyshould also be multiplied by SC1 ∗ k, SS1 ∗ k and C1 ∗ k (k is a suitable 
onstant depending on the systemdensity). Therefore the CT term really 
omputed refers to the previous Loop sequen
e. This means that while

CTX , CTY and CTZ for dipoles (n) and (n + 1) are evaluated, the CT terms refer to (n − 3) and (n − 4)dipoles and the ENEW 
orresponds to the 
ouple (n − 5) and (n − 6) previously started. Moreover, also the
ouple (n− 1, n− 2) is subje
ted to a partial elaboration making the pipeline always working.This 
on�guration brings a 
onsistent level of parallelisation in the exe
ution of the algorithm. Fig. 6.4shows the 
omplete set of operations 
al
ulated during the 36 
lo
k 
y
les of ea
h Loop sequen
e. Per ea
hstage and 
lo
k 
y
le, the e�e
tive sum performed is reported in bold.6.2. Multiplier Unit. This unit exe
utes the multipli
ations needed in the terms that must be added, i.e. 10 per ea
h of the two dipoles of the adder unit (globally 20) and in a sequential way. To syn
hronise theoperations in the multiplier pipeline with those of the adder, the length of the pipeline (15 stages) is extended to18 by adding three NOP (no operation) 
y
les: this means that in 36 
lo
k 
y
les the multiplier works e�e
tivelyfor 30 
y
les, a time su�
ient to exe
ute the required 20 produ
ts, without loosing the syn
hronisation with the
orrespondent terms in the adder unit. Fig. 6.5 des
ribes the operations performed together with the outputfrom the pipeline at that instant, per ea
h 
lo
k 
y
le. In parenthesis the order number is reported of the dipoleto whi
h the 
al
ulation refers: n is the dipole for whi
h the 
al
ulation of the energy is initiated in the 
urrentsequen
e. At the end of ea
h Loop sequen
e the pipeline outputs new moments and energy of the dipole 
ouplewhi
h started the evaluation 3 sequen
es before. Fi
titious produ
ts have been inserted when needed to for
ethe pipeline going one step beyond.7. Results. The whole system has been tested by exe
uting Monte
arlo simulations of di�erent size latti
es(4 < ND < 100, where ND is the number of dipoles on ea
h side of the 
ubi
 latti
e).
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��� �� ��� ��������� �� ���Fig. 6.5. Operations performed in the multipli
ation pipeline during 36 
lo
k 
y
les.Performan
e has been evaluated as speed-up respe
t to the exe
ution of the same simulation on an Intel P4pro
essor with 1GB Ram memory; also FPGA o

upation was used as a performan
e parameter. Simulation
ode was written in C language and optimized using Mi
rosoft Visual C++ environment. The A

eleratorelaboration times were measured by means of the 
lo
k 
ounters implemented in the interfa
e between Nios andthe 
opro
essor previously des
ribed.In �g. 7.1 we show the performan
e as speed-up fa
tor respe
t to two Intel P4 pro
essors with 3 GHz and1.7 GHz frequen
y respe
tively, 
al
ulating the dipolar energy of the simulated system. That 
omputational
ore is repeatedly exe
uted k∗N ∗10000 times where k is the 
oe�
ient responsible for the intera
tion settlement(equilibration) and N is the dipole number: this gives reason of the high 
omputational load whi
h 
an lead(for big parti
le systems, e. g. 100000 dipoles) to wait a lot for results, if the simulation should be performedon a PC. The speed-up fa
tor is in
reasing for the 1.7 GHz pro
essor due to 
a
he e�e
t, while for the mostperforming Intel pro
essor (3 GHz) sets around 2.Considering the size of the FPGA we used, other 2 a

elerating units 
ould be implemented, we 
anreasonably state that a speed-up fa
tor equal to 4 
an be a
hieved in 
ase of a �full� implementation on theFPGA 
omponent we 
hose (Stratix EP1S40). Further speed-up 
ould be obtained if other 
omponents of theAltera's family (Stratix2 or Stratix3 now available) should be employed.The 
ost of ea
h board we bought was nearly $1200: this represents an important indi
ation when predi
tingtrade-o� between a 
luster of workstations versus a 
luster of FPGA based a

elerators. In pra
ti
e, our workindi
ates that ea
h FPGA unit gives a 
omputational power 4 times greater, only doubling 
osts with respe
t
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Fig. 7.1. Speed-up of the FPGA based a

elerator with respe
t the P4 Intel pro
essors.to a 
omputational unit in a PC 
luster, providing the s
ientist with a COTS desktop 
omputing system onwhi
h he/she 
an run simulations.8. Con
lusions. Simulations allow the analysis of a physi
al system, even 
omplex, without experimentalmeasures or, sometimes, to 
on�rm what was experimentally observed. In 
ertain situations su
h as mi
ros
opi
systems, simulations represent the simplest if not the only way to qui
kly foresee the behaviour of a parti
lesystem in di�erent environmental 
onditions. The high number of variables involved together with 
omplexintera
tion laws often make simulation times una

eptably long. Finally, several of the requested 
al
ulationsask for double pre
ision �oating point arithmeti
, further in
reasing the 
omputational power needed.In this paper, we have shown how an appli
ation spe
i�
 ar
hite
ture (DPFPA) spe
i�
ally designed forthis kind of problems and based on FPGA te
hnology 
ould represent a good 
ompromise between pro
essing
apabilities and low 
osts. DPFPA 
an be programmed with a dedi
ated language to exe
ute 
omplex �oatingpoint fun
tions and it is equipped with a suitable software development environment. We exe
uted the dipoleenergy 
al
ulation through the simulator, a
hieving, thanks also to the new s
anning algorithm purposelydesigned and here des
ribed, a performan
e twi
e as that of a last generation Personal Computer but 
an beeasily �extended� to 4.A further improvement 
ould be a
hieved by a full 
ustom ASIC implementation of the A

elerator whi
his not justi�ed at a prototyping level while it allows a large s
ale manufa
turing with redu
ed 
osts. This wouldmake available several 
omputing units 
onne
ted in 
luster fashion by means of a point to point network,providing the user with a great 
omputing power.REFERENCES[BELLETTI F., et al.,℄ �An adaptive FPGA 
omputer�, IEEE Computing in S
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pe.org ISSN 1895-1767© 2010 SCPECREATING, EDITING, AND SHARING COMPLEX UBIQUITOUS COMPUTINGENVIRONMENT CONFIGURATIONS WITH COLLABORATIONBUSTOM GROSS∗AND NICOLAI MARQUARDT†Abstra
t. Early sensor-based infrastru
tures were often developed by experts with a thorough knowledge of base te
hnologyfor sensing information, for pro
essing the 
aptured data, and for adapting the system's behaviour a

ordingly. In this paper weargue that also end-users should be able to 
on�gure Ubiquitous Computing environments. We introdu
e the CollaborationBusappli
ation: a graphi
al editor that provides abstra
tions from base te
hnology and thereby allows multifarious users to 
on�gureUbiquitous Computing environments. By 
omposing pipelines users 
an easily spe
ify the information �ow from sele
ted sensorsvia optional �lters for pro
essing the sensor data to a
tuators 
hanging the system behaviour a

ording to their wishes. Users
an 
ompose pipelines for both home and work environments. An integrated sharing me
hanism allows them to share their own
ompositions, and to reuse and build upon others' 
ompositions. Real-time visualisations help them understand how the information�ows through their pipelines. In this paper we present the 
on
ept, implementation, and user interfa
e of the CollaborationBusappli
ation.Key words: ubiquitous 
omputing; editor; 
on�guration1. Introdu
tion. The development of early sensor-based infrastru
tures often required expert program-mers with a thorough knowledge of base te
hnology for sensing information, for pro
essing the 
aptured data,and for adapting the system's behaviour a

ordingly [10℄ [23℄ [24℄ [26℄. In this paper we argue that also end-usersshould be able to 
on�gure Ubiquitous Computing environments. There are some resear
h proje
ts providingeasy-to-use 
on�guration interfa
es for non-expert users to 
reate sensor-based Ubiquitous Computing appli-
ations, yet mostly only for the private home [4℄ [8℄ [15℄ [18℄ [25℄. Furthermore, most systems la
k integratedfa
ilities for the 
ollaborative ex
hange of users' 
on�gurations. Only some systems�typi
ally 
omplex 
on�gu-ration tools [2℄ [3℄ [5℄ [16℄�provide enhan
ed visualisations of the data �ow and sensor-network data to supportusers while 
reating or 
on�guring appli
ations.In this paper we introdu
e CollaborationBus: a graphi
al editor that provides adequate abstra
tionsfrom base te
hnology and thereby allows multifarious users�ranging from novi
e to experts�to easily 
on�gure
omplex Ubiquitous Computing environments.By 
omposing pipelines users 
an easily spe
ify the information �ows from sele
ted sensors via optional�lters for pro
essing the sensor data to a
tuators 
hanging the system behaviour a

ording to their wishes.Whenever the sensors 
apture values that are in the range indi
ated by the users, the a
tuators perform thespe
i�ed a
tions. All pipeline 
ompositions are stored in the respe
tive user's personal repository. A 
entralinterfa
e allows users to 
ontrol their respe
tive repository�they 
an 
reate new pipeline 
ompositions, or edit,a
tivate or dea
tivate existing ones.An integrated sharing me
hanism allows users to share their own pipeline 
ompositions with others users.In an analogous manner they 
an add others' 
ompositions to their own repository, and build new 
ompositionsbased on these 
ompositions. Real-time visualisations display relations between in
oming and outgoing eventsof the pipeline, and let the user intera
tively adjust and keep tra
k of the information �ow through theirpipelines. They help the users understand the information �ow through their 
ompositions, whi
h 
an be
omequite 
omplex 
onsisting of sets of sensors, �lters, and a
tuators.In this paper we present the 
on
ept, implementation, and user interfa
e of the CollaborationBusappli
ation. First, we develop s
enarios of 
on�gurations for Ubiquitous Computing environments and deriverequirements. Then we des
ribe the 
on
ept and implementation of CollaborationBus, and present its userinterfa
e. We 
ontinue with a dis
ussion of related work. Finally, we draw 
on
lusions and report on futurework.2. Requirements. In this se
tion we develop s
enarios of 
on�gurations for Ubiquitous Computing envi-ronments and derive requirements for the CollaborationBus editor.2.1. Appli
ation S
enarios. Users should be able to 
on�gure environments in their private homes aswell as in their workpla
es.
∗Fa
ulty of Media, Bauhaus-University Weimar, Germany (e-mail: tom.gross(at)medien.uni-weimar.de).
†Department of Computer S
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olai MarquardtSmart Telephone. In a �rst s
enario users wish to 
ontrol the sound volume of their musi
 players and starttheir 
alendar appli
ation in dependen
e of their o�
e telephones' state. A simple binary sensor atta
hed to thetelephone is the �rst input sour
e of this pipeline. The se
ond input sour
e 
he
ks whether the user is 
urrentlylogged in at the o�
e 
omputer. The 
ondition modules 
he
k the telephone sensor state as well as the logininformation. Finally, the user spe
i�es the desired information �ow: if the atta
hed sensor dete
ts that thephone is used, a s
ript is started (e.g., AppleS
ript on a Ma
 OS X 
omputer, or a shell s
ript on Windows)and mutes the volume of the 
omputer (e.g., Ma
, or PC), an infrared 
ontrol (e.g., on a sensor board) mutesthe sound system, and another s
ript starts the user's 
alendar appli
ation (e.g., iCal, or Outlook), so that theuser 
an input new appointments during the phone 
all. When the phone 
all ends, the appli
ation fades themusi
 ba
k in again after a few se
onds.Personal Noti�
ation Sele
tion. In a se
ond s
enario, users want to get information about the 
urrent a
-tivities of their remote 
o-workers and friends. Users 
an add a state sensor to the instant messaging appli
ationas well as movement and noise sensors as sour
es of their pipeline. Then users 
an spe
ify queries with keyword�lters that analyse the sensor data of the instant messaging sensor and 
he
k if they mat
h the names of theirremote 
o-workers or proje
t des
riptions. As a
tuators the users might wish to spe
ify that all events are
olle
ted and sent as a daily email summary on
e a day. Additionally, if the number of messages 
ontainingthe keywords rea
hes a spe
i�ed o

urren
e threshold, the system additionally sends the users an immediatesummary message to their mobile phones via an SMS gateway (a short message servi
e sending a message tothe mobile phone).Informal Group Awareness. In a �nal s
enario, the users of two remote labs want an information 
hannelof the lab a
tivities as RSS feed that 
an be integrated into ti
kertape displays or s
reensavers. They wishto re
eive information on the a
tivities at the other site. They 
reate a pipeline 
omposition and add thefollowing information sour
es as input sour
es: the 
urrent lab members logged in on the server and in theinstant messaging system, the 
urrent CVS submissions of the developers, the average values of the movementand noise sensors and the 
urrent temperature of the two labs and the 
o�ee lounge. As a
tuator 
omponentfor the output they add an RSS feed generator and publish the RSS �le to a server. Now, the lab members 
ana

ess this RSS feed and add it to their favourite noti�
ation display (e.g., a Web browser, or a s
reensaver).This summary of group events and a
tivities 
an help users to �nd out more about the whole developmentteam, and 
an fa
ilitate the informal and spontaneous 
ommuni
ation between the 
olleagues.2.2. Fun
tional Requirements. The following fun
tional requirements were derived from various appli-
ation s
enarios (we des
ribed three of them in the pre
eding sub-se
tion), and from a detailed study of relatedwork (we present some examples of related work in Se
tion 6 below).
• Provide adequate abstra
tion for various appli
ations domains: Con�guration editors should allow usersto integrate a variety of software and hardware sensors 
apturing information, and software and hard-ware a
tuators adapting the behaviour of the environment a

ordingly. The integration of existing andnew sensors and a
tuators should be easy. Various 
on�gurations should be possible�ranging from
on�gurations for home environments as well as for work environments.
• Support diverse users with heterogeneous knowledge, ranging from novi
e to experts: Con�guration ed-itors should fa
ilitate the immediate utilisation. For this purpose, they should provide a pre-de�nedlibrary of 
ommon 
on�gurations and 
on�guration assistants that allow the users�espe
ially novi
eusers�to use the editor immediately and to in
rementally explore its fun
tionality. Additionally, 
on-�guration editors should o�er guided 
ompositions. Therefore, the user interfa
e and the fun
tionalityprovided should be restri
ted to signi�
ant and needed fun
tions; fun
tions that are not adequate ornot needed should be disabled (e.g., if a sensor 
aptures data in the form of text strings, 
al
ulationssu
h as average should be disabled). Finally, 
on�guration editors should provide details on demand.For this purpose, espe
ially more experien
ed users should be able move from more abstra
t to more�ne-grained layers, and to see and manipulate details.
• Support the ex
hange of 
on�gurations among users: Con�guration editors should allow the sharing of
on�gurations among users. The sharing of 
on�gurations is useful for workgroups and friends, be
auseit allows users to build on the results of other users, and gives less experien
ed users the 
han
e to bene�tof the knowledge of more experien
ed users. Subsequently we present the 
on
ept and implementationof CollaborationBus addressing these fun
tional requirements.
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ations with sensors/a
tuators in home and work environments.Home a
tuators O�
e a
tuatorsHomesensors a) Smart Home Appli
ations: often 
on-ne
tions between hardware sensors and a
-tuators (e.g., to 
ontrol ele
tri
al devi
es(power plugs) in dependen
e of observedsensor values, or to 
ontrol multimediahome devi
es) b) Home Awareness Appli
ations: mixed useof software and hardware sensors and a
tua-tors (e.g., to observe the private home fromthe work o�
e, or to display state of familymembers at home)O�
esensors 
) O�
e Awareness Appli
ations: mixeduse of software and hardware sensors (e.g.,to summarise information of proje
ts andto inform people at home about the work-ing a
tivity) d) Collaborative Work Appli
ations: oftenappli
ations based on software sensors anda
tuators (e.g., to observe 
omputer logins,instant messenger presen
e, and other a
tiv-ities)3. Con
ept. In this se
tion we des
ribe CollaborationBus' key 
on
epts for a generi
 approa
h, forpipelines, for a diverse user experien
e, and for 
ollaborative sharing.3.1. Generi
 Approa
h. The approa
h of CollaborationBus is generi
�it works a
ross multipleappli
ations domains, temporal patterns, and 
omplexity patterns.3.1.1. Spanning Appli
ation Domains. Sensor- and a
tuator-based appli
ations in the private homedi�er from those in the 
ooperative work domain. While we try to integrate a 
ommon, universal user interfa
eand metaphors for users of both domains, these domains 
an vary in their use of hardware and software sensorsas illustrated in Table 3.1.Smart Home Appli
ations (
f. a in Table 3.1) are mainly built with hardware sensors and a
tuators, wherethe developed sensor-based appli
ations adapt the home environment automati
ally to the requirements of theprivate users. While 
omputer appli
ations provide appropriate fun
tionality for the 
on�guration and 
reationof these appli
ations, the 
omputer and its appli
ations should disappear during the everyday exe
ution ofthe sensor-based appli
ations. In order to support the development of appropriate appli
ations, the Collab-orationBus editor supports a variety of hardware sensors and a
tuators, and the editor is only needed for
omposing the setting.In 
ontrast to these mainly hardware-based appli
ations, most Collaborative Work Appli
ations are basedon both hardware and software sensors and a
tuators (
f. d in Table 3.1). Sin
e 
omputers are in general partof the workpla
e, software sensors and their events (e.g., appointments, emails, tasks, proje
t a
tivity) andsoftware a
tuators (e.g., for sending emails, displaying messages on the 
omputer s
reen) 
an be used to 
reatesensor-based appli
ations for awareness and information-�ow of workgroups. At the same time, the integrationof hardware�both sensors and a
tuators�and their physi
al user interfa
es 
an fa
ilitate the intera
tion withthese appli
ations. This results in tangible user interfa
es for appli
ations at the workpla
e (e.g., physi
al slidersso set the presen
e in an instant messaging systems; LCD displays for displaying important email messages;audio signals to inform about the 
urrent proje
t's state). CollaborationBus supports the 
reation and
on�guration of all these free 
ombinations of physi
al user interfa
es with software events as a main featureand allows users to 
reate their envisioned interfa
es themselves.In between these two domains are appli
ations that bridge the gap between the private home and thebusiness work (
f. b and 
 in Table 3.1). Home Awareness Appli
ations (
f. b in Table 3.1) support 
onne
tionsto family members and friends at the workpla
e. For instan
e, ambient displays let the users per
eive theinformation in multi-sensory ways. This in
ludes that users 
an 
on�gure their sensor-based appli
ations athome as well as at their o�
e; thus a universal appli
ation interfa
e is required.O�
e Awareness Appli
ations bridge the gap between the home and the work environment (
f. 
 in Ta-ble 3.1) by informing users about events from the o�
e while they are at home. Users de�ne their own infor-mation 
hannels that 
onne
t home environment with their work environment (e.g., proje
t report summariesthat are generated and delivered to the private home, important email or instant messages that are forwardedto the private home). Here, the 
on�guration editor requires in most 
ases a variety of software sensors in thework environment that are 
onne
ted to physi
al a
tuators in the private home.
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olai MarquardtOn a whole both environments�home and work�have be
ome in
reasingly intertwined in the re
ent years(e.g., telework). Therefore, utilities need to allow the building of universal sensor-based appli
ations spanningboth ambien
es and the integration of software sensors and a
tuators as well as hardware sensors are needed.3.1.2. Spanning Temporal Patterns. In any appli
ation domain various patterns with regard to 
ap-turing ongoing data and starting a
tuators 
an be identi�ed:
• Re
urrent, permanent (e.g., appli
ations with ongoing 
olle
tion of data)
• Re
urrent, o

asionally (e.g., appli
ations depending on day-time, during the holidays, at night)
• One-time (e.g., appli
ations with 
all-ba
k if the required person is rea
hable)The software needs adequate methods to support any of these temporal patterns, and should provide astru
tured overview of the 
urrent 
on�gurations of a user. Another important aspe
t is to enable the easyre-use of 
reated 
on�gurations in the past: a 
opy method and templates 
an speed up the 
reation pro
ess.Systems supporting all these temporal patterns are needed.3.1.3. Spanning Complexity Patterns. Ea
h setting 
an have a spe
i�
 
omplexity pattern rangingfrom simple sensor-a
tuator tuples to networks of sensors and a
tuators:
• One sensor, one a
tuator (e.g., one binary sensor 
ontrols one a
tuator)
• Sensor, �lters, a
tuator (e.g., only rea
t to 
ertain temperature values of a temperature sensor)
• Multiple parallel sensors, �lters and a
tuators (e.g., 
reate summaries of various sensor sour
es, 
ontrola set of a
tuators)
• Complex network of 
omponents (e.g., determine the 
urrent a
tivity or even mood of a person)The CollaborationBus editor supports any appli
ation domain, and any temporal pattern des
ribedabove. It supports any 
omplexity pattern, ex
ept for 
omplex networks. Complex networks are typi
allynot 
on�gured with a graphi
al editor, but rather developed with programming languages; therefore, here agraphi
al editor would not be used anyways.3.2. Pipelines. In CollaborationBus all relations between sensors and a
tuators are handled with apipeline metaphor.Pipelines are 
ompositions that in
lude several 
omponents: at least one sensor and one a
tuator 
omponent,and additionally further �lter 
omponents for pro
essing sensor values (e.g., to delimit the forwarded values,or to 
onvert data formats). All 
omponents inside of a 
omposition are 
onne
ted via pipelines that forwardevents between them. Pipelines 
an be nested in various ways: several parallel sub-pipelines 
an be added (thisrepresents the OR 
ondition); sequen
es of sensor sour
es 
an be 
reated (AND 
ondition); or negations 
an bespe
i�ed (NOT 
ondition).Sensors are the sour
es of any initial event in a pipeline. They 
an either be hardware sensors (e.g., sensorsfor temperature, movement, light intensity) or software sensors (e.g., sensors for unread emails, mouse a
tivity,shared workspa
e events, open appli
ations).A
tuators are at the sink-side of the pipeline 
omposition. Hardware a
tuators a�e
t the real environmentof the users (e.g., a
tivate light sour
es or devi
es), while software a
tuators only in�uen
e the 
omputer system(e.g., display s
reen messages, start appli
ations).Filters for pro
essing the 
aptured data are between sensors at the one side and a
tuators at the other. The�lter 
omponents 
an pro
ess all in
oming events of a sensor sour
e. Ea
h �lter 
omponent represents a single
ondition or transformation based on the in
oming event value. Filters typi
ally generate data of parti
ularformats (e.g., integer values, Boolean values, strings). There are universal �lter types that 
an be applied toany type of sensor data and spe
i�
 �lter types that 
an only be applied to parti
ular types of sensor data. Therespe
tive �lter types 
an do the following pro
essing:
• Universal (e.g., 
ount the event o

urren
e, 
reate event summary reports)
• Numeri
al pro
essing (e.g., numeri
 threshold, interpolation, average)
• String pro
essing (e.g., sear
h for spe
i�ed keywords)
• Binary pro
essing (e.g., negation, 
onjun
tion)
• Transformations (e.g., numeri
 value to string message, binary value to numeri
)Filters 
an be assembled in many di�erent 
ombinations. This in
ludes, for example, an adaptive behaviourto 
hanged 
onditions of the sensor sour
es (e.g., modi�ed upper or lower limit of a temperature sensor, or a
hanged s
ale of values) by transmitting these 
hanged 
onditions to all pipeline 
omponents. Ea
h 
omponent
an de
ide if a modi�
ation of its settings is ne
essary, and eventually display a 
on�rmation dialog. The
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omponents also in
lude a variety of transformation methods (e.g., for generating a short message to the mobilephone (SMS) a string message 
an be entered, and the values of the respe
tive sensors 
an be atta
hed).With CollaborationBus users 
an easily 
onne
t lo
al sensors and a
tuators or sensors and a
tuatorsfrom remote lo
ations and build new 
on�gurations in a few se
onds by visual programming though point-and-
li
k. Ea
h pipeline 
omposition in
ludes all these 
omponents�sensors, a
tuators, and �lters�and de�nesa 
omplete information �ow through them. Experts 
an program new pipeline 
omponents by deriving new
lasses from the PipelineComponent 
lass (
f. next se
tion for details). All 
ompositions of a user are storedin a personal repository. This repository in
ludes all data to dynami
ally instantiate the in
luded pipeline
ompositions.

Fig. 3.1. User experien
e levels, and adequate tools to support users.3.3. Experien
e for Diverse Users. The CollaborationBus editor 
an be used by users with diverselevels of te
hni
al ba
kground. Users' knowledge 
an range from no experien
e at all to very thorough te
hni
alknowledge. Figure 3.1 shows various user types ranging from novi
e users with no experien
e to more experien
edusers and to experts. It shows the methods that are available and 
an be used in dependen
e of the existingknowledge. It also shows the user interfa
es and support tools that are o�ered for the respe
tive user types (theuser interfa
es and supporting tools are des
ribed below).Novi
e users with no prior te
hni
al knowledge 
an start using CollaborationBus by loading and adapt-ing pre-
on�gured appli
ation 
on�gurations that are part of the CollaborationBus distribution. As theyprogress, they 
an use the integrated sharing tool to load other users' 
on�gurations and to use them as tem-plates for their own 
on�gurations. They 
an, furthermore, modify and enhan
e the appli
ation 
on�gurationsand templates.More experien
ed users 
an 
reate their own appli
ation 
on�gurations, and exe
ute them in order to learnmore about intra-pipeline event forwarding.Expert users 
an 
reate the envisioned system-behaviour by developing the required software in a high-levelprogramming language. Typi
ally, for these a
tivities they use toolkits, platforms, libraries, and developmentand debugging environments to fa
ilitate and speed up the development pro
ess.Taking these diverse user types into 
onsideration is a 
ore 
on
ept of CollaborationBus and its userinterfa
e (the latter is des
ribed below).3.4. Collaborative Sharing. Users 
an build their own personal pipeline 
ompositions from s
rat
h, orbuild on shared 
ompositions from 
olleagues and friends. Three types of sharing are possible:



294 Tom Gross, Ni
olai Marquardt
• Sensor and event sharing: users either share the events of their own sensors, or the pro
essed events oftheir sensors.
• A
tuator sharing: users share the 
ontrol of a personal a
tuator with other users, so that other users
an send 
ommands to the a
tuator and 
ontrol the system behaviour.
• Pipeline sharing: users share 
omplete more or less 
omplex pipeline 
ompositions with others.The �rst sharing method lets users 
reate their own 
on�guration in dependen
e of remote lo
ated sensorsof other users. The se
ond sharing method lets users 
ontrol the a
tuators of other users (leading to new
hallenges of potentially 
on
urrent a

ess to a
tuators). And the third sharing method lets users ex
hange andre-instantiate 
omplete pipeline 
ompositions, requiring a uni�ed des
ription format and ex
hange proto
ol forpipeline 
ompositions. In the latter 
ase the re
ipients of the 
ompositions 
an 
hange this released pipeline
omposition to �t to their requirements. Be
ause ea
h user 
reates a new instan
e of this pipeline 
omposition,the 
hanges of other users are not a�e
ting the original 
omposition.CollaborationBus supports se
urity and priva
y prote
tion thought adequate levels of abstra
tion and
ontrol over a

ess privileges of the own information sour
es are needed. In order to restri
t the shared infor-mation, users 
an 
hoose the sharing of abstra
t templates. In these shared pipeline 
ompositions, only theskeleton of a pipeline is shared, and the original sensors and a
tuators of a user are not in
luded in the sharingentry. Thus, the abstra
t template of a 
omposition 
ontains mainly the 
on�guration of all �lter 
omponentsbetween the sensors and a
tuators. Using this abstra
t template, other users 
an insert their own sensors in thepla
eholders at the beginning of the pipeline 
omposition, and their own a
tuators at the end. This let themuse the knowledge of the pro
essing �lter 
omponents of the 
omposition, while at the same the user who shareshis pipeline 
omposition does not share his own sensors and a
tuators.These integrated 
ollaborative sharing methods provide a powerful and easy-to-use method of knowledgeex
hange between di�erent users of the system. As prior des
ribed in Figure 3.1, a novi
e and inexperien
eduser 
an use pre-
on�gured pipeline 
ompositions of another user (if this user shares the 
omplete pipeline), orthe user 
an load an abstra
t pipeline template and �ll in his own sensors and a
tuators. At every time it isvery easy for the users to share their new pipeline 
ompositions again, and store them in the shared repository.The following example illustrates a situation where these abstra
t templates are appropriate. A user has
reated an ambient noti�
ation display of important in
oming email messages: all messages are s
anned foradequate keywords or sender addresses, and if the s
an was su

essful, a message will be displayed on anambient external LC display. The user de
ides to share this 
on�guration, while at the same time it stands toreason that the user do not want to share his personal email-sensor, or the exa
t 
on�guration of the keyword�lter. By using the abstra
t template, the user 
an share the basi
 
on
atenation of in
oming sensors, �lters,and the a
tuator display, without sharing his personal sensors.On the other hand, a user who has 
reated a SMS noti�
ation servi
e for the average temperature of aseries of temperature sensors may wish to share this 
omplete 
on�guration, and therefore shares the pipeline
ompositions with all the asso
iated sensors.4. Implementation. In this se
tion we des
ribe the implementation of CollaborationBus: softwarear
hite
ture and 
lass diagram.4.1. CollaborationBus Software Ar
hite
ture. Figure 4.1 provides an overview of the softwarear
hite
ture of CollaborationBus. All sensor and a
tuator 
omponents are 
onne
ted to the SensBaseinfrastru
ture, whi
h provides adapters for the 
onne
tion of sensors and a
tuators, a 
entral registry of all
onne
ted 
omponents and a database for persistent storage of sensor event data. SensBase was implementedwith the Sens-ation platform [13℄. SensBase provides inferen
e engines that 
an transform, interpret, andaggregate sensor values. A variety of gateways (e.g., Web Servi
e, XML-RPC, So
kets) provide interfa
es forthe retrieval of sensor des
riptions, event data, a
tuators, and so forth.The CBServer uses these gateways to register for the sensor values needed for the users' pipeline 
om-positions. Ea
h time when 
hanges o

ur at one of the 
onne
ted sensors, the SensBase server forwards a
hange event to the CBServer. These events are forwarded to the adequate 
omponents inside of ea
h pipeline
omposition. The 
ompositions are inside of the Personal Repository of ea
h user and in
lude the 
omplete de-s
ription of all assembled 
omponents (in serialised XML format, for platform independen
y and easy ex
hangeof pipeline 
omposition des
riptions). The CBServer 
an serialise and de-serialise these XML des
riptions, andvalidate and pro
ess these des
riptions. If a XML des
ription of a pipeline 
omposition is de-serialized, theCBServer 
reates instan
es of proxy obje
ts for ea
h of the pipeline 
omponents (sensors, �lter, a
tuators).
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Fig. 4.1. CollaborationBus software ar
hite
ture.Inside of these 
omponents we have multiple threads running to ensure rapid pro
essing of data as well as rapidforwarding of events to the subsequent 
omponent. While the sensor and a
tuator 
omponents inside of these
ompositions a
t as a proxy for the existing (and 
onne
ted) devi
es, the �lter obje
ts represent the pro
essingand transformation part inside of these 
ompositions. A pipeline 
omposition 
an in
lude multiple pro
essingpipelines simultaneously, and the users 
an run and stop as many of these 
ompositions as they like (by usingthe Control User Interfa
e).In the Shared Repository the published pipeline 
ompositions are stored. They are saved in the XML formatas well, and XML pro
essing is used to operate based on these des
riptions (e.g., to modify existing entries, orto 
reate an abstra
t pipeline 
omposition template). Furthermore, the CBServer manages a dire
tory of all thevarious sensor and a
tuator types, as well as �lter 
omponents, and submits them to the 
lient appli
ation. Thedynami
 dire
tory 
an be extended with new 
omponents at any time, and this ensures the easy extendibility ofCollaborationBus. If users want to integrate di�erent a
tuators or sensors, they need to implement a newadapter driver at the SensBase level; this is independent from the CollaborationBus ar
hite
ture. However,if new �lter 
omponents are needed for a di�erent data pro
essing, then a new 
lass (by deriving from anabstra
t base 
lass with the 
ore fun
tionality of ea
h �lter 
omponent) is needed to represent this pro
essingstep. While this 
an be done with minor e�ort by any software developer, it is not easy to add a new �lter fornon-programmers.The CBClient implements the GUIs des
ribed above. For 
reating, 
ontrolling and editing pipeline 
om-positions it is ne
essary to support all the XML operations of the server, and the methods for instantiatingpipeline 
ompositions as well (for the editor and testing tools).4.2. CollaborationBus Class Diagram. The 
lass stru
ture of the repositories and pipeline 
om-positions is illustrated in an UML 
lass diagram in Figure 4.2. The PersonalRepository 
lass provides methodsto add, remove, modify, and get PipelineComposition obje
ts. The SharedRepository 
ontains a 
olle
tionof SharedRepositoryEntries, whi
h wraps one PipelineComposition and spe
ify the sharing attributes of thisPipelineComposition (e.g., abstra
t or 
omplete template).The PipelineComposition obje
t is a 
omposite obje
t for a series of PipelineComponents. It en
apsulatesmethods for 
ontrolling pipeline 
ompositions (e.g., start and stop), and for adding and removing pipeline
omponents. PipelineComponent is the abstra
t base 
lass for the Sensor, Filter, and A
tuator base 
lasses.
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Fig. 4.2. CollaborationBus repository and pipeline UML 
lass diagram.It provides 
ommon methods for ea
h pipeline 
omponent (like pro
essing, forwarding and 
a
hing of events).Inside the PipelineComponents multiple threads (Pro
essingThread) are running to ensure rapid pro
essing ofdata as well as rapid forwarding of events to the subsequent 
omponent. Sensor, Filter, and A
tuator areabstra
t base 
lasses for the 
on
rete pipeline 
omponents allowing to respe
tively: retrieve sensor values fromany number of sensors from the SensBase infrastru
ture and push them into the pipeline pro
ess (e.g., sensorvalues from the Embedded Sensor Board or Phidgets hardware devi
es [11℄); pro
ess in
oming values (e.g.,keywords, average, or threshold �lter); and 
ontrol the a
tuator elements (e.g., generate an RSS feed, show amessage on a text display, or drive other appli
ations via AppleS
ript). CollaborationBus is implementedin Java with Swing libraries for the GUIs. Several libraries are used for XML [30℄ pro
essing (e.g., for theserialisation of pipeline 
ompositions [27℄, for parsing sensor des
riptions, for 
reating XPath expressions [29℄);and for remote 
onne
tions (e.g., XML-RPC [28℄, and SOAP [1℄).5. User Interfa
e. The CollaborationBus editor provides four major graphi
al user interfa
e (GUI)
omponents: the Login and Control GUI; the Editor GUI; the Shared Repository GUI; and the Real-TimeVisualisation GUI.5.1. Login and Control GUI. The Control GUI is the 
entral a

ess point for all users to their personalrepository of 
on�gurations. In order to get to their Control GUI, users have to login �rst. Figure 5.1 showsthe Login and the Control GUIs.After login, users 
an see the Control GUI with the listing of their pipeline 
ompositions, in
luding anindi
ator of the 
urrent state of ea
h pipeline 
omposition (re
tangle to the right of the pipeline name): O�(grey), Running (green), or In Edit Mode (orange).All fun
tions for modifying the repository and its 
ompositions are available from within this interfa
e:Add, Remove, Rename, and Clone pipeline 
ompositions (via the Commands button). Users 
an Start andStop the threaded exe
ution of ea
h 
omposition (via the Start/Stop button). And, they 
an use the Sharemethod to upload the sele
ted 
omposition dire
tly to the shared repository (via the Commands button).5.2. Editor GUI. While the basi
 fun
tions for the personal repository are available in the Control GUI,the underlying �lter 
omposition of ea
h of the pipelines is only available in the Editor GUI that 
an be openedfor ea
h of the pipeline 
ompositions. Figure 5.2 shows the Editor GUI. In the top area the user 
an 
hooseseveral buttons for loading the Pipelines (via the Pipelines button), 
hange the Preferen
es (via the Preferen
es
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Fig. 5.1. Login GUI and Control GUI.button), et
. In the middle area the respe
tive pipeline with its sensors, 
onditions, and a
tuators is shown(ea
h individual item is represented as a re
tangular box). In the bottom area the properties of the 
urrentlysele
ted pipeline part (re
tangular box) are shown and 
an be altered.In order to 
reate a new pipeline 
omposition, users 
an �rst dis
over the available sensor sour
es (e.g.,movement sensor, temperature, sensor telephone sensor, instant messenger status sensor) of the infrastru
turein a graphi
al sensor browser (the browser 
an be started by pressing the +-sign to the right of Sensors andConditions), and add the sensors they need to the pipeline. Then they 
an spe
ify rules and 
onditions (these
an also be viewed by pressing the +-sign to the right of Sensors and Conditions) for the sensor values byadding sets of �lters and operators. For ea
h sensor types with the a

ording sensor value type, spe
i�
 �ltersand operators 
an be sele
ted (e.g., an event value threshold, a 
ounter for number of o

urren
es). Finally,the a
tuators 
an be spe
i�ed by sele
ting them in the graphi
al a
tuator browser (the browser 
an be startedby pressing the +-sign to the right of A
tuators). Here, the editor provides the option to spe
ify the mappingbetween the pipeline output and the a
tuator 
ommands (e.g., if the pipeline output is a message, it 
an bedisplayed; if the pipeline output is a simple temperature value, the 
orresponding sound volume 
an be set).
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Fig. 5.2. Editor GUI.5.3. Shared Repository GUI. The 
ollaborative sharing me
hanism des
ribed above is integrated inthe Control GUI and in the Editor GUI. In order to make a pipeline 
omposition available for others, usershave two options. They 
an either sele
t the Share method in the Control GUI (via the Shared button; 
f.Figure 5.1). Here the default settings for sharing are used and no additional parameters are needed. Or they
an 
hoose the Sharing 
ommand in the Editor GUI (via the Sharing button; 
f. the top area in Figure 5.2) tospe
ify further settings for the shared 
omposition. Further settings in
lude des
ription, 
ategory, and type ofsharing (
f. three types of sharing above). Finally the users 
an upload the pipeline 
omposition.In order to use one of the shared pipeline 
ompositions, the user 
an a

ess the Shared Repository GUIfrom within the Control GUI. Figure 5.3 shows the Shared Repository GUI. By sele
ting one of the available
ompositions in the list at the left side, the information for this entry is displayed at the right side of the dialogue(des
ription, owner, 
ategory, type of sharing, used sensor sour
es and a
tuators). Users 
an then download therespe
tive 
omposition.5.4. Real-Time Visualisation GUI. In the assembly of pipeline 
ompositions with a variety of 
om-ponents it 
an be di�
ult to keep tra
k of the intra-pipeline 
ommuni
ation between the 
omponents and thepro
essing of the forwarded pipeline events. The Real-Time Visualisation GUI of the CollaborationBus
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Fig. 5.3. Shared Repository GUI.provides a variety of graph visualisations that 
an either display the forwarded values of ea
h 
omponent of thepipeline (e.g., useful for interpolation and threshold �lters) or the quantity of forwarded values (e.g., useful forgate �lters, 
ounters or timers).Figure 5.4 shows the Real-Time Visualisation GUI with a time plot visualisation on the left (showing theabsolute values of 4 temperature sensors), and an overview of the pipeline events on the right (showing thenumber of o

urren
es of events in a spe
i�
 pipeline).With these visualisations, the user obtains an inside view of the pipeline pro
essing. The 
ommand StartPipelines (via the Start Pipelines button) a
tivates all 
omponents of the respe
tive pipeline(s) and registersfor the respe
tive sensor events, starts the pro
essing of threads, prepares the a
tuator modules, and generatesand dynami
ally updates the visualisations. When any of the 
omponents of a pipeline is 
hanged (e.g., athreshold, or an interpolation settings), the impli
ation to the pro
essing 
an be re
ognised immediately. Thusthe adjustment and �ne-tuning of 
omponent parameters be
omes easier. In order to enable the testing ofpipeline 
omposition, we have, furthermore, integrated an input interfa
e for simulated sensor events. It allowsthe users to manually insert sensor values to test and verify the pipeline 
omposition without having to wait forreal sensor values from the sensors. So, the pro
essing of the data though the whole pipeline 
an be simulated.6. Related Work. This 
hapter gives an overview of resear
h related to the 
omposition of sensor- anda
tuator-based appli
ations. We introdu
e examples of programming tools for Ubiquitous Computing appli
a-tions, software for 
ontrolling sensor networks, and 
ollaborative sharing between users.6.1. Programming Ubiquitous Computing Appli
ations. Several resear
h proje
ts address the 
hal-lenge to allow end-users to 
reate and 
on�gure intelligent appli
ations for in-home environments. With iCAP,Sohn and Dey introdu
e an appli
ation that allows end-users to rapidly prototype Ubiquitous Computing ap-pli
ations [25℄. Similar to CollaborationBus, it uses rule-based 
onditions; espe
ially the disjun
tion and
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Fig. 5.4. Real-Time Visualisation GUI (with time plot visualization, and overview of the pipeline events).jun
tion of rules in their sheets is similar to our parallel and sequential pipelines (yet we think that work�ow-adapted pipelines stimulate a better understanding of rule 
ompositions than free arrangements). iCAP doesnot support sharing, or real-time visualisations.Irene Mavrommati et al. have introdu
ed an editing tool for 
reating devi
e asso
iations in an in-homeenvironment [18℄. Their editor 
onne
ts various 
omponents 
alled e-Gadgets to realise Ubiquitous Computings
enarios at home (similar to our 
onne
ted pro
essing 
omponents). Yet, it does not support workpla
eenvironments. The jigsaw editor of Jan Humble et al. [15℄ [22℄ demonstrates another appli
ation for getting
ontrol over the te
hnologi
al home environment. The metaphor of spe
ifying the appli
ations' behaviour byassembling pie
es of a jigsaw puzzle sounds intuitive. Yet, we would like to give the users more 
ontrol overtheir appli
ation than the en
apsulated jigsaw pie
es allow.Some systems are based on mobile devi
es to 
ontrol 
on�gurations from every lo
ation at every time. Thisin
ludes systems for PDAs [18℄, mobile phones [4℄, and TabletPCs [15℄. These mobile systems often provideonly limited a

ess to 
omplex 
on�guration methods. We have not 
reated a version for mobile devi
es yet, buta lightweight mobile version of CollaborationBus would 
ertainly be highly 
omplementary to the existingversion.Another approa
h for 
on�guring Ubiquitous Computing environments is programming by demonstration.This method requires an extended period of observation of relevant sensor values. In a later de�nition andlearning phase, the users spe
ify relevant sensor events in the event timeline, so that algorithms from arti�
ialintelligen
e 
an dete
t patterns in the observed sensor values and automati
ally exe
ute desired a
tuators [8℄.Programming by demonstration tools hide most spe
i�
 details of the underlying me
hanisms from the users. Onthe one hand this redu
es the barrier for non-te
hni
al users to 
on�gure Ubiquitous Computing environments,but on the other hand restri
ts the in�uen
e and 
ontrol methods for users.The related work appli
ations mentioned so far address the development of 
omplete sensor-based appli
a-tions in a rather abstra
t way. In the eBlo
ks proje
t [6℄ [7℄ a user interfa
e for building sensor-based appli
ationsand 
on�guring Boolean 
ondition tables is introdu
ed. As the authors show in their evaluation, users still needsupport in building these Boolean tables (e.g., support by di�erent 
olours or written text [6℄). Therefore,we introdu
ed pipelines to allow the easy 
ombination of Boolean AND, OR, and NOT 
onditions, simply byadding 
omponents to a pipeline pro
essing stream or by adding a new parallel pipeline.
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reated at the GroupLab by Greenberg and Fit
hett [11℄ fa
ilitates the developmentof physi
al user interfa
es. It provides a range of sensor and a
tuator elements as building blo
ks for lettingdevelopers rapidly prototype sensor-based appli
ations. The in
luded developers' toolkit allows easy a

essto these hardware 
omponents from within the software. This approa
h was further extended to distributedar
hite
tures by Marquardt and Greenberg [17℄. In summary, the use of Phidgets requires few hardware skills,but 
onsiderable programming knowledge and is therefore not suitable for end-users.6.2. Sensor Network Composition Software. A variety of appli
ations for the 
ompositions of sensor-based networks is available [3℄ [21℄. For instan
e, the VisualSense modelling and simulation framework as partof the PTOLEMY II proje
t [2℄ [3℄ is a toolkit for the 
ontrol over �ne granular sensor network 
ommuni
ationand pro
essing. The GUI in
ludes fun
tionality for pro
essing 
omponent assembly, and for graph visualisationsto display the pro
essed values of 
omponents.Sin
e the evaluation of the 
ommuni
ation in sensor networks 
an be di�
ult for newly 
reated appli
ations,several spe
ial 
omplex development environments have been presented (e.g., SensorSim [21℄, EmTOS [9℄,TinyDB [16℄, and J-Sim [24℄). These tools provide adequate development environments for expert users (be
ausethey in
lude programming languages, operator sets, mathemati
al pro
essing libraries, visualisation tools, et
.).The integration of visualisations for the event �ow inside of sensor-network arrangements is interesting forour purpose [5℄. However, users with a non-te
hni
al ba
kground probably have di�
ulties in using theseappli
ations. Furthermore, these latter environment do not support the sharing of development 
on�gurations.6.3. Collaborative Sharing. While in Computer-Supported Cooperative Work (CSCW) 
ollaborativesharing of lo
ation information, �les, workspa
es, software and patterns is wide-spread [12℄, an approa
h tosharing sensor- and a
tuator-based appli
ations among users is still missing. In [12℄ design issues of CSCWappli
ations that use data sharing are examined. This in
ludes proposals for a

ess 
ontrol, adding meta-information, version history, and methods for handling updates and 
on
urren
y di�
ulties. Further 
ommon
lassi�
ations of sharing between users are des
ribed in [19℄ [20℄. They have found 
ommon groups with similarsharing preferen
es, and patterns in the sharing behaviour of users. Integrating support for these 
lusteredgroups 
ould fa
ilitate the usage of sharing me
hanisms.Hilbert and Trevor des
ribe the importan
e of personalisation as well as shared devi
es for UbiquitousComputing appli
ations [14℄. With the modi�
ation of appli
ations to the personal needs, the use of theseappli
ations be
omes easier for users.7. Con
lusion. In this paper we have introdu
ed the CollaborationBus editor allowing any users to
reate sensor-a
tuator relations.7.1. Summary. Even novi
e users 
an easily spe
ify 
omplex Ubiquitous Computing environments withthe CollaborationBus editor, without having to deal with 
omplex 
on�guration settings or programmingdetails. The CollaborationBus editor provides novel abstra
tions by en
apsulating and hiding the details ofthe underlying base te
hnology (e.g., the sensor infrastru
ture, the sensor and a
tuator registration, the sensorevent registration). At the same time, more experien
ed users 
an 
ontrol the pipeline 
omposition 
on�gurationin any te
hni
al detail they need and get details on demand.Furthermore, users 
an share their pipeline 
ompositions with 
olleagues and friends via a shared repository.Users 
an also de
ide how a

urate they want to share (e.g., 
omplete 
ompositions, abstra
t template, only thepro
essed event value). With a minimum e�ort, ea
h user 
an browse the shared repository and download sharedpipeline 
ompositions and adapt the used shared repository template to �t to their needs (by spe
ifying theirown personal properties of the pipeline). This way the CollaborationBus features an in
rementally growinglibrary of ready-to-use pipeline 
ompositions that form a diverse network of 
ollaborative sensor-a
tuator-relations.7.2. Evaluation. While the evaluation of the CollaborationBus GUI and fun
tionality as well as theprodu
ed pipeline 
ompositions is of vital interest to us, a formal user evaluation is still missing. Nevertheless,we have 
olle
ted several user opinions at the publi
 demonstration of CollaborationBus to many visitorsat the Cooperative Media Lab Open House 2005 from 14 to 17 July 2005, where the visitors had the 
han
e totry out the CollaborationBus software in detail (with a huge set of 
onne
ted sensors and a
tuators).Most of the visitors qui
kly started to 
reate their own 
ompositions, and to sele
t desired sensors, a
tuatorsand �lters. At the same time, they hesitated to 
hange the 
on�guration of the �lter 
omponents, and weresomehow not 
ompletely 
on�dent about whether they 
hange the right parameters. A helpful support in this
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ase was the Real-Time Visualisation GUI; in parti
ular, the a
tivation of the graph views of all pipeline events.It supported users in understanding the e�e
t of parameter 
hanges.The most popular fun
tion of the tool was the integrated sharing me
hanism. Users enjoyed browsing thelarge set of ready-to-use pipeline 
ompositions in the shared repository. Often they used one of the shared
ompositions as template, modi�ed parameters in the 
ompositions or built a new 
on�guration on the basis ofthis 
omposition and sometimes shared this 
omposition again. They also liked the idea of sharing their own
ompositions with others.A typi
al barrier of users when 
reating sensor-based appli
ations with CollaborationBus was that theyworried about priva
y issues. Many of the visitors said that it is an important 
riterion in�uen
ing their de
isionto use su
h as systems was to exa
tly know all outgoing or shared personal data and to be able to qui
kly andeasily 
hange the settings.7.3. Future Work. Currently all 
omponents of the CollaborationBus system presented in this paperhave been implemented. In the future we would like to evaluate the 
reated pipeline 
ompositions of users(espe
ially those in the shared repository), and identify 
ommon patterns in the 
reated 
ompositions. Fromthat we would like to develop assistive fun
tions that provide users suggestions for reasonable 
ompositions.The 
on�guration interfa
e of the �lter 
omponents in the Editor GUI 
an also be improved to be
ome moreintuitive for the user. A graphi
al mapping 
ould allow users to drag and drop the desired input and output
ommands and the 
omponent 
on�guration.A �nal important aspe
t related to se
urity and priva
y is the introdu
tion of a system-wide authorisationand authenti
ation system in order to further se
ure the a

ess to the sensor values and pipeline 
ompositions.For this purpose the CollaborationBus repository storage and the sensor value a

ess 
ould be integratedin the se
urity system of the Sens-ation platform.8. A
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ti
e and Experien
eVolume 11, Number 3, pp. 305�325. http://www.s
pe.org ISSN 1895-1767© 2010 SCPEWIDE AREA DISTRIBUTED FILE SYSTEMS�A SCALABILITY AND PERFORMANCESURVEYKOVENDHAN PONNAVAIKKO∗AND JANAKIRAM DHARANIPRAGADA∗Abstra
t. Re
ent de
ades have witnessed an explosive growth in the amounts of digital data in various �elds of arts, s
ien
eand engineering. Su
h data is generally of interest to a large number of people spread over wide geographi
al areas. Over theyears, several Distributed File Systems (DFS) have, to varying degrees, addressed this requirement of sharing large amounts ofdata, stored in the form of �les, among several users and appli
ations. S
alability and performan
e are two important measuresthat determine the suitability of a �le system for the appli
ations exe
uting over them. We perform a detailed 
omparative analysisof popular distributed �le systems in terms of these measures in our survey.1. Introdu
tion. In re
ent de
ades, we have been witnessing in
reasingly large rates of data generationand growing numbers of widely spread 
ollaborative appli
ations. For example, data requirements of HighPerforman
e Computing (HPC) appli
ations have been 
ontinuously growing over the past few years and areexpe
ted to grow even more rapidly in the years to 
ome [23℄. Experimental setups, deployments of sensors,simulators, agents, et
. generate large amounts of data whi
h resear
hers world over 
an have use for. Otherexamples in
lude WikipediaFS [10℄, and large s
ale telemedi
ine [24℄.Organizing and sharing raw and pro
essed data �les owned by di�erent users and groups 
alls for the needof large s
ale Distributed File Systems (DFS) [46℄ [7℄ [8℄.Any �le system that allows �les to be pla
ed a
ross the network and yet make a

esses appear lo
al is adistributed �le system. Certain systems are Client-Server based (Asymmetri
) in that dedi
ated servers existto provide �le servi
es. In Peer-to-Peer (P2P) or Symmetri
 �le systems, data/metadata management load isdistributed among all the nodes. Clustered �le systems are those in whi
h the data/metadata server is repla
edby a 
luster of servers to better distribute load and handle failures. A Parallel �le system enables 
on
urrentreads and writes of the same �le and parallel I/O [22℄. Some parallel �le systems support the striping of a �lea
ross multiple storage devi
es.There exist several large s
ale distributed �le systems. For our survey, we 
onsider a set of popular produ
-tion systems and resear
h prototypes (table 1.1)1. This set has been 
hosen so as to 
over the major ar
hite
turalvariations of existing systems.These systems vary in terms of their typi
al appli
ation workloads and the geographi
al spread of theirtypi
al usage. For example, some of them are designed for desktop workloads and some for s
ienti�
 appli
ations.Some of the analyzed systems are not designed to be wide area �le systems, i. e., 
lients and servers are notdesigned to be geographi
ally spread a
ross Wide Area Networks (WAN). However, other features su
h as highs
alability have prompted resear
hers to adapt even su
h systems for use a
ross WANs. Some examples in
ludethe usage of Lustre �le system in [42℄ and Parallel Virtual File System 2 in [5℄.Keeping in mind the 
ommon nature of new generation appli
ations, we analyze the ar
hite
tures of thesesystems with respe
t to the following appli
ation requirements. The �rst requirement is that of s
alability withrespe
t to the number of nodes and �les. In other words, in
reasing the number of nodes and/or �les mustnot adversely a�e
t query/a

ess times. The other major requirement is that of maintaining high appli
ationperforman
e. For HPC appli
ations, performan
e 
an be measured in terms of makespan, 
omputation or I/Othroughput, et
. In �le systems maintained for home dire
tories and su
h, performan
e 
an be measured interms of query response laten
ies, �le a

ess/update times, and so on.Using a few system parameters, we attempt to 
hara
terize the e�e
ts of in
reasing query and I/O loadson individual �le system servers. We also study the support provided by the di�erent systems for sophisti
ateddata pla
ement and migration strategies, whi
h are 
riti
al for high appli
ation performan
e. In se
tion 2, wedis
uss some of the design 
onsiderations in the 
ontext of large s
ale DFSs. Se
tion 3 summarizes the systemar
hite
tures of the various DFSs analyzed in this survey. The 
omparative analysis is presented in se
tion 4.
∗Distributed and Obje
t Systems Lab, Department of Computer S
ien
e and Engineering, Indian Institute of Te
hnology Madras,Chennai, India
1An extensive list of 
omputer �le systems 
an be found at [3℄. Comparisons of general and te
hni
al features of a large numberof �le systems 
an be found at [2℄. 305



306 Kovendhan Ponnavaikko and Janakiram DharanipragadaTable 1.1Set of Analyzed File SystemsAndrew File SystemCephCommon Internet File SystemEdge Node File SystemFarsiteGoogle File SystemIvyLustre File SystemO
eanStorePanasas Parallel File SystemPangaeaParallel Virtual File System 2WheelFS Table 2.1Classi�
ation of the Analyzed File SystemsCategory Name SystemsI Traditional DistributedFile Systems Andrew File System, Common Internet File SystemII Asymmetri
 Cluster FileSystems Ceph, Google File System, Lustre File System, Panasas Par-allel File System, Parallel Virtual File System 2, WheelFSIII Self-OrganizingP2P File Systems Edge Node File System, Farsite, Ivy, O
eanStore, Pangaea2. Design Considerations. Traditionally, distributed �le system designers have adopted a 
lient-servermodel. In these asymmetri
 systems, dedi
ated servers exist to provide �le servi
es and 
lients only 
onsumethe servi
es. Typi
ally, the server exports hierar
hi
al namespa
es and 
lients mount the exported hierar
hiesin their lo
al namespa
es.A 
lient-server approa
h has several advantages su
h as ease of maintenan
e, e�
ient management of 
on-
urrent reads and writes of the same �le, and 
entralized se
urity 
ontrol. However, the presen
e of a 
entralizedserver presents signi�
ant s
alability 
onstraints. File system performan
e degrades with in
reasing �le sizes,and in
reasing numbers of �les and users.One of the early approa
hes to improve �le system performan
e is 
lient side 
a
hing. While 
a
hing helpsin redu
ing network tra�
, it also introdu
es 
onsisten
y issues. Ca
hed 
ontent 
an be
ome stale and write
ollisions 
an o

ur, espe
ially in �le systems with stateless servers.In later distributed �le system designs, a multitude of strategies have been employed to address issuesrelated to s
alability. Individual servers have been repla
ed by 
lusters of servers. Analogous to Sharding indatabases, in su
h �le systems, namespa
es are partitioned and distributed among the di�erent servers in the
luster. This helps in the distribution of load and hen
e better performan
e.Another e�e
tive strategy is to de
ouple data management from metadata management. While data refersto the a
tual 
ontent of �les, metadata in the 
ontext of �le systems refers to the data about �le 
ontents.Unlike data operations, metadata operations are usually small, random and non-sequential.De
oupling is a
hieved by using di�erent sets of servers for data and metadata management. In a typi
al �lesystem, a large proportion of queries are related to �le metadata. On the other hand, responses to data a

essqueries are mu
h more voluminous. Using di�erent sets of servers for managing data and metadata thereforehelps improve system performan
e. Clustering and de
oupling data and metadata have enabled other s
alabilityand performan
e optimizing strategies su
h as repli
ation and striping a �le's 
ontent a
ross multiple storagedevi
es.DFS features su
h as 
on
urrent a

ess, �le striping and repli
ation 
ompli
ate the task of presenting a
onsistent view of the �le system to all users. Con
urrent a

esses 
an be 
ontrolled by asso
iating data and
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Fig. 3.1. AFS System Ar
hite
turemetadata with di�erent kinds of lo
ks. In UNIX, the two 
ommon lo
king me
hanisms, f
ntl and �o
k, allowEx
lusive and Shared lo
ks to be applied to �les/blo
ks. All ex
lusive lo
ks must have been released beforeshared lo
ks 
an be obtained by 
lients and all kinds of lo
ks (shared and ex
lusive) must be released before anex
lusive lo
k 
an be obtained.While pessimisti
 approa
hes su
h as lo
king allow �le systems to support Stri
t Consisten
y Semanti
s2,they also a�e
t appli
ation performan
e by in
reasing messaging overheads and wait times. Certain �le systemssupport weaker 
onsisten
y semanti
s by allowing 
on
urrent a

esses in 
on�i
ting modes. In su
h systems,appli
ations either ensure that 
olliding a

esses do not o

ur, or have appropriate 
on�i
t resolution me
hanismsin pla
e.High availability of data and metadata is usually a 
ru
ial requirement of distributed �le systems. Severalapproa
hes exist to improve a �le system's availability, ea
h asso
iated with 
ertain overheads. Some of theapproa
hes are repli
ation, 
a
hing, versioning, logging, and anti
ipatory reads. Di�erent systems employdi�erent 
ombinations of these te
hniques to a
hieve the required levels of availability.Though 
lustered �le systems are more s
alable than traditional 
lient-server systems, their s
alability islimited be
ause of the manually maintained set of server 
lusters. A 
entral augmentable set of servers hasother drawba
ks too. Clusters are expensive to set up and maintain. Storage of entire �le systems in a limitednumber of sites makes a

ess from distant lo
ations ine�
ient as a result of high network laten
ies. Moreover,su
h setups 
reate single points of failure, and are prone to physi
al vulnerabilities.In
reasing rates of data generation and number of 
ollaborations among geographi
ally distributed groupsof users have 
reated the need for Global and P2P �le systems. P2P systems involve minimal or no 
entral
oordination. In P2P or symmetri
 �le systems, data and metadata management load is distributed among allthe nodes in the system. These systems are generally designed to be self-organizing due to the impra
ti
alityof manually administrating huge numbers of storage/
ompute resour
es.Based on the di�erent evolutionary stages of DFS design, we 
lassify the analyzed systems into the 
ategoriesof Traditional Distributed File Systems, Asymmetri
 Cluster File Systems and Self-Organizing P2P File Systems(table 2.1).3. System Ar
hite
tures. In this se
tion, we present brief independent reviews of the system ar
hite
-tures of the 
onsidered �le systems.3.1. Traditional Distributed File Systems. Though Network File System (NFS) [39℄ (up to version 3)is one of the most 
ommonly used distributed �le system proto
ols, it is usually used in a lo
al area networkor within a single administrative domain. We have therefore not in
luded NFS in this survey. In�uen
ed by
2A read returns the most re
ently written value.
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Fig. 3.2. CIFS System Ar
hite
tureAndrew File System [21℄ and Common Internet File System [28℄, version 4 of NFS [43℄ supports stateful serversand lo
ks, in
ludes other performan
e improvements and 
an be used in wide area networks.3.1.1. Andrew File System (AFS). Started at the Carnegie Mellon University, AFS [21℄ uses a set oftrusted servers for sharing a 
ommon dire
tory stru
ture among several thousand 
lient ma
hines. AFS relieson data 
a
hing to address the issue of s
alability. While earlier versions of AFS required 
lients to fet
h whole�les, versions sin
e AFS 3 support the transfer of smaller blo
ks of �les.Servers maintain state about 
lients whi
h have �les open. Callba
ks are used to maintain the 
onsisten
yof 
a
he 
ontents. Whenever �le 
ontents are altered, servers send invalidation messages to the 
orresponding
lients. A 
lient, on the other hand, informs the server about the 
hanges that it has made only at the timeof 
losing. As a result, AFS only supports Session Semanti
s3 and not One-Copy Update Semanti
s4, whi
h issupported by UNIX.The AFS model (�gure 3.1) 
omprises of a set of 
ells, ea
h 
ell usually being a set of hosts with the sameInternet domain name. Ea
h 
ell has servers exe
uting the Vi
e pro
ess and 
lients exe
uting the Venus pro
ess.AFS provides lo
ation independen
e by performing the mapping between �lenames and lo
ations at the servers.The hierar
hi
al dire
tory stru
ture is partitioned into Volumes, whi
h a
t as 
ontainers for related �les anddire
tories. Volumes 
an be transparently migrated between servers. Read-only 
loned 
opies of volumes mustbe 
reated by administrators to enable re
overy in the 
ase of failures. The Kerberos [44℄ proto
ol is used forthe mutual authenti
ation of 
lients and servers.3.1.2. Common Internet File System (CIFS). CIFS [28℄ is Mi
rosoft's version of the Server MessageBlo
k (SMB) proto
ol along with 
ertain other proto
ols. CIFS provides remote �le a

ess over the Internet(�gure 3.2) with features su
h as global naming, 
a
hing, volume repli
ation, remote sharing and lo
king. SMBuses �at namespa
es to address �les and CIFS makes use of the Internet naming system, Domain Name Servi
e(DNS). While 
hanges in �le addresses are di�
ult to propagate in SMB, CIFS uses the s
alable noti�
ationsystem of DNS to handles su
h 
hanges. Unlike several other wide area �le systems, Uni
ode �lenames aresupported.Parallelism is supported at the dire
tory level only and individual �les 
annot be split among multipleservers. Sin
e ea
h �le/dire
tory must be asso
iated with parti
ular servers and servers are manually adminis-tered, s
alability with respe
t to installations and query/data transfer loads in CIFS is limited.
3Changes made to a �le are visible to the other 
lients only after the writing 
lient 
loses the �le.
4In one-
opy update semanti
s, every read sees the e�e
t of all previous writes and a write is immediately visible to 
lients whohave the �le open for reading.
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Fig. 3.3. GoogleFS System Ar
hite
ture3.2. Asymmetri
 Cluster File Systems. There are di�erent kinds of storage ar
hite
tures that dis-tributed �le systems use. Traditional distributed �le systems dis
ussed in se
tion 3.1 su
h as NFS, AFS andCIFS adopt a Network-Atta
hed Storage (NAS) ar
hite
ture. Servers in these systems provide �le-based a

essto their dedi
ated storage devi
es, to 
lients a
ross networks.In the Storage Area Network (SAN) ar
hite
ture, large storage devi
es su
h as arrays of disks are sharedby a 
luster of nodes. Unlike NAS, data a

ess is blo
k-based (�ner granularity), whi
h results in in
reased�exibility in storing huge �les. SAN based �le systems translate �le-level operations to blo
k-level operations atthe 
lient. Metadata management is either handled by a 
entral server or distributed among the 
luster nodes.IBM's General Parallel File System (GPFS) [18℄ is an example for a 
lustered �le system that adopts theSAN ar
hite
ture. GPFS uses a distributed token management system to handle 
on
urrent �le a

esses among
luster nodes. It also supports data sharing among multiple GPFS 
lusters.Another storage ar
hite
ture employed by several 
lustered �le systems su
h as Lustre [40℄, Panasas [50℄and Ceph [48℄, uses Obje
t-based Storage Devi
es (OSD). OSDs are evolved disk drives that 
an dire
tly handlethe storage and serving of obje
ts as against normal disk drives whi
h work at the level of bits, tra
ks, andse
tors. In other words, an OSD handles lower level fun
tionalities related to obje
t management within thedevi
e and exposes obje
t a

ess interfa
es to appli
ations.In blo
k-based �le systems, �le metadata, whi
h in
ludes blo
k lo
ations, is managed by the �le system.As a result, performan
e is e�e
ted for large �les sin
e metadata sizes are also large. On the other hand, OSDbased �le systems manage obje
ts only. The lower level details about 
ontent striping are handled by the storagedevi
es themselves. This results in improved performan
e and throughput.Several 
lient appli
ations bene�t from moving 
omputation to where the data is, instead of getting the
ontent transferred to the 
lients [36℄ [47℄. For su
h appli
ations, performan
e depends on the intelligen
e ofOSDs [17℄, in terms of their ability to exe
ute user spe
i�ed 
omputations, as well as on their pro
essing power.3.2.1. Google File System (GoogleFS). GoogleFS [19℄ is a DFS for data intensive appli
ations, 
ustom-built for the appli
ation workload and te
hni
al environment at Google. A GoogleFS 
luster 
omprises of asingle Master and several Chunkservers, as shown in �gure 3.3.The master manages the metadata and the 
hunkservers store the data. The master uses Heartbeat messagesto periodi
ally monitor the 
hunkservers. A Shadow master is maintained in order to handle the failure of theprimary master. Files are split into �xed size 
hunks. A 
ertain number of repli
as (three is the default number)of the 
hunks are stored in the 
hunkservers. Chunk repli
as are spread a
ross ra
ks to maximize availability.The master maintains information about the lo
ation of ea
h 
hunk and a

ess 
ontrol information. Themaster performs periodi
 re-balan
ing of data to ensure that the 
hunkservers are uniformly loaded at all times.Clients obtain �le metadata from the master and perform all data related operations at the 
hunkservers.The datasets that appli
ations at Google work with are usually huge in size and the workload primarilyinvolves append operations. Hen
e, GoogleFS supports re
ord append operations only and not random writeoperations. Servers are stateless and 
lients do not 
a
he data in GoogleFS. That is be
ause appli
ations at
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Fig. 3.4. Lustre System Ar
hite
tureGoogle usually require 
ertain operations to be performed on �le 
ontents and only the result to be returned tothem. In fa
t, the predominant 
lass of appli
ation is MapRedu
e [16℄.The ar
hite
ture of GoogleFS makes it suitable for a spe
ialized set of workloads only. Also, its 
entralizedmaster 
an be
ome a performan
e bottlene
k, espe
ially for metadata intensive workloads. Hadoop DistributedFile System (HDFS) [13℄ is an open sour
e Java produ
t with almost the same ar
hite
ture as that of GoogleFS.3.2.2. Lustre File System. Lustre [40℄ is an obje
t based DFS used primarily for large s
ale 
luster
omputing. It is a produ
tion system used in several HPC 
lusters. The system ar
hite
ture of the Lustre �lesystem is shown in �gure 3.4. The system 
omprises of three main 
omponents, namely, �le system 
lients,Obje
t Storage Servers (OSS) whi
h provide �le I/O servi
es, and Metadata servers (MDS).Typi
ally, the above three 
omponents are on independent nodes whi
h 
ommuni
ate over the network.Using an intermediate network abstra
tion layer, Lustre supports multiple network types su
h as Ethernet andIn�niband. Redundan
y, in the form of an a
tive/passive pair of MDSs and a
tive/a
tive pairs of OSSs, helpsLustre maintain high availability.Lustre enfor
es stri
t 
onsisten
y semanti
s, using lo
ks to enfor
e serialization. It also uses the JournalingFile System Te
hnology5 to prevent data/metadata 
orruption due to system failures and to enable persistentstate re
overy.Sin
e metadata servers as well as obje
t storage servers need to be manually administered, Lustre does nots
ale transparently.3.2.3. Panasas Parallel File System. Panasas [50℄ uses parallel and redundant a

ess to OSDs toprovide a high performan
e DFS. At a high level, the system model of Panasas is similar to that of the Lustre(�gure 3.4).The Panasas obje
t storage nodes have a Blade ar
hite
ture, ea
h blade 
omprising of disks, a pro
essor,memory, and a network interfa
e. Thus, adding storage 
apa
ity in
ludes the addition of the required 
omputingpower to e�
iently manage the new disks. The storage blades use a spe
ialized �le system whi
h implementthe obje
t storage primitives. A per-�le RAID system [32℄ is used to provide for data integrity and s
alableperforman
e.The storage blades are managed by a set of Quorum-based 
luster managers. The set of managers maintainsthe repli
ated system state using a quorum-based voting proto
ol. Managers stripe �le 
ontents a
ross the OSDs.They also handle multi-user a

ess, 
onsistent metadata management, 
lient 
a
he 
oheren
e, and re
overy from
lient and OSD failures. Transa
tion Log Repli
ation proto
ol is used to tolerate metadata server 
rashes.3.2.4. Parallel Virtual File System, Version 2 (PVFS2). PVFS2 [4℄ is an open sour
e DFS thatprovides high performan
e and s
alable �le system servi
es for large node 
lusters. Ea
h 
luster node 
an be a
5Maintains logs of impending 
hanges before 
ommitting them to the �le system.
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hite
tureserver, a 
lient, or both. Like several other 
lustered �le systems, PVFS2 also supports the striping of a �le'sdata a
ross several storage nodes. PVFS2 allows for a subset of the servers to be 
on�gured as metadata servers.PVFS2 servers are stateless and as a result, lo
ks are not supported. Client failures thereby do not a�e
tthe system in anyway. While this lets the system s
ale to a large number of 
lients, it results in little support fordi�erent kinds of a

ess semanti
s. While PVFS2 provides atomi
ity guarantees for updates to non-overlappingportions of a �le, simultaneous writes to overlapping regions 
an result in in
onsistent �le states.New �le/dire
tory 
reation is performed by �rst 
reating the data obje
t and the 
orresponding metadataobje
t, and then making the metadata obje
t point to the data obje
t, and �nally 
reating a dire
tory entrypointing to the metadata obje
t. This way, the �le system remains in a 
onsistent state always. This me
hanism
an result in signi�
ant amounts of 
lean up load in 
ase of 
ollisions, i. e., in 
ase of simultaneous updates tothe same portions of the namespa
e.PVFS2 spe
ializes in supporting �exible data distribution as well as �exible data a

ess patterns. Forexample, it supports a

ess to non-
ontiguous portions of a �le in a single operation. In that sense, PVFS2implements MPI-IO Semanti
s 
losely.Like Lustre, PVFS2 uses an intermediate layered interfa
e to support multiple network types. Traditionalsolutions for high availability, su
h as those used by Lustre, 
an be used in PVFS2. An experimental 
omparisonof PVFS2 and Lustre for large s
ale data pro
essing is presented in [41℄.3.2.5. Ceph. Ceph [48℄ is an obje
t-based distributed �le system designed to provide high performan
e,reliability and s
alability. Dynami
 Subtree Partitioning and the distribution of obje
ts using a pseudo randomfun
tion, are a 
ouple of its unique features. The system (�gure 3.5) 
omprises of 
lients, OSDs and a metadataservers 
luster.Ceph 
ompletely does away with allo
ation lists and inode tables. Instead, a pseudo random fun
tion 
alledCRUSH [49℄ is used for the distribution of obje
ts among the OSDs. Clients 
an therefore 
al
ulate the lo
ationof �le obje
ts instead of performing a look-up.Some �le systems use stati
 subtree partitioning to delegate authority for di�erent subtrees of a hierar
hi
alnamespa
e to di�erent metadata servers. Another approa
h uses hash fun
tions to distribute metadata. Whilethe �rst approa
h 
annot handle dynami
 loads e�
iently, the later approa
h does away with metadata lo
ality.Ceph uses a dynami
 subtree partitioning strategy, in whi
h responsibilities for di�erent subtrees of the names-pa
e are dynami
ally distributed among the MDSs. The distribution ensures that server loads are kept balan
edwith 
hanging a

ess patterns. Popular portions of the namespa
e are also repli
ated on multiple servers.Ceph repli
ates data using a variant of the Primary-Copy Repli
ation6 te
hnique to maintain high avail-ability. The usage of CRUSH rules out the possibility of 
onsidering spe
i�
 node 
hara
teristi
s while making
6One of the repli
as, whi
h is made the primary 
opy, serializes transa
tions and sends updates to the se
ondary repli
as.
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Fig. 3.6. WheelFS System Ar
hite
tureobje
t pla
ement de
isions. In wide area installations, the average network laten
y between 
lients and Ceph'smetadata servers 
an be high, a�e
ting the performan
e of appli
ations involving large proportions of metadataoperations.3.2.6. WheelFS. WheelFS [46℄ provides appli
ations 
ontrol over repli
a pla
ement, 
onsisten
y andfailure handling me
hanisms using Semanti
 Cues. The system allows appli
ations to manage the trade-o�between the immedia
y of update visibility and the independen
e of 
lient sites to operate on the data. A setof WheelFS servers (�gure 3.6) store �le and dire
tory obje
ts. Ea
h �le/dire
tory has a primary server whi
hholds its latest 
ontent. Clients also maintain lo
al 
a
hes of the �les a

essed. By default, WheelFS uses stri
tClose-to-Open Consisten
y Semanti
s7, with the primary server being responsible for serializing operations.Semanti
 
ues 
an be used to spe
ify appli
ation poli
ies with respe
t to pla
ement, durability, 
onsisten
yand large reads. To redu
e the e�e
ts of network laten
y, data 
an be pla
ed 
lose to 
lients that are likely touse the data. Files 
an be 
lustered together to optimize the performan
e of operations that a

ess multiple�les, and repli
ation levels 
an be spe
i�ed.The system 
an be adjusted to wait for only a spe
i�ed number of repli
as to be 
reated or updated beforea
knowledging a 
lient's new �le or �le update request respe
tively. This helps in a
hieving qui
ker responsetimes even in the presen
e of slow servers. Consisten
y related 
ues allow 
lients to spe
ify time-out periodsfor remote 
ommuni
ations 
orresponding to �le system operations. Appli
ations 
an also use the EventualConsisten
y Semanti
s8 to improve availability.Also, a 
lient 
an prefer to read stale 
opies of �les when the primary servers are hard to rea
h. Whilereading large �les, 
lients 
an 
hoose to prefet
h entire �les into its lo
al 
a
he. Cues also enable 
lients toobtain �le 
ontents from multiple 
a
hed sour
es in parallel to redu
e the load on the primary server.A Con�guration Servi
e, maintained as a repli
ated state ma
hine at multiple sites, is used by 
lients tolearn about the servers responsible for the di�erent obje
ts. Based on the �rst S bits of the obje
t identi�er,the identi�er spa
e is split into 2S sli
es. The 
on�guration servi
e maintains a mapping between sli
es and theprimary and repli
a servers responsible for the sli
es.While resour
e lo
ation aware data pla
ement is supported, WheelFS does not provide resour
e 
hara
-teristi
s aware data pla
ement. The 
on�guration servi
e, maintained as a repli
ated state ma
hine, 
an be abottlene
k for large system sizes and heavy query loads.3.3. Self-Organizing P2P File Systems. In P2P systems, every node is both a supplier and 
onsumerof resour
es. Some of the bene�ts of su
h an ar
hite
ture are distribution of load among all the peers, in
reasedrobustness, and la
k of a single point of failure. On the other hand, high system dynami
s is one of its major
7When A opens a �le after B has modi�ed and 
losed it, A is guaranteed to see B 's updates.
8If no new updates are made, the latest updates will propagate through the system eventually and make all the repli
as 
onsistent.
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hite
turedrawba
ks. In P2P �le systems, peers share the load of �le storage and metadata management. Figure 3.7shows some of the system requirements of P2P �le systems. As dis
ussed earlier, s
alability and high appli
ationperforman
e are the two primary requirements under 
onsideration.It is well known that de
entralization of 
ontrol and autonomous system management are 
entral to thedesign of s
alable distributed systems. In su
h systems, load balan
ing and resour
e dis
overy are 
omplex tasksbe
ause of the la
k of any 
entral entity with knowledge about the entire system.However, awareness of resour
e 
hara
teristi
s and lo
ations while pla
ing �le repli
as is 
riti
al for a
hievinghigh appli
ation performan
e. That is be
ause network bandwidth and laten
y 
on
erns di
tate that data andmetadata be pla
ed in proximity to where they are 
onsumed. A
hieving a trade-o� between these 
on�i
tingrequirements of de
entralization and system awareness is an important design 
onsideration, espe
ially in the
ase of P2P �le systems. One of the approa
hes to a
hieve the trade-o� is to design the system as a federationof manageable 
lusters.3.3.1. Farsite. Farsite (Federated, Available, and Reliable Storage for an In
ompletely Trusted Environ-ment) [6℄ [12℄ is a DFS from Mi
rosoft Resear
h built over a network of unstru
tured desktop workstations.Farsite provides high �le availability and se
urity utilizing the unused storage spa
e and pro
essing power of alarge number of nodes. Issues of se
urity and trust are addressed using Publi
-Key Cryptographi
 Certi�
atessu
h as namespa
e, user and ma
hine 
erti�
ates. Users and dire
tory groups authenti
ate ea
h other beforeperforming �le system operations.File 
ontents are en
rypted and repli
ated and the 
orresponding metadata are managed by Byzantine-Repli
ated �nite state ma
hines [33℄. Farsite provides hierar
hi
al dire
tory namespa
es, ea
h namespa
e havingits own root. Roots are maintained by a designated group of nodes. Dire
tory groups 
an split to distributemetadata management load. Splitting 
an happen by randomly sele
ting a group of nodes and designating aportion of the namespa
e to them (�gure 3.8).Content hashes of �les are stored in the 
orresponding dire
tory groups to maintain �le integrity. Di�erentkinds of leases are issued on �les to 
lients. Ca
hing is used for improving a

ess times and redu
ing networkload. Updates made to �les are not immediately propagated to all the repli
as. Instead, a lazy propagationme
hanism is employed in order to improve performan
e.
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Fig. 3.9. O
eanStore System Ar
hite
tureAs with other hierar
hy traversal systems, lo
ating the dire
tory group for a �le deep in the hierar
hymay require several hops, thus making metadata a

ess expensive. In systems with high 
hurn rates, groupmembership 
an keep 
hanging, resulting in high group management overheads.3.3.2. O
eanStore. O
eanStore [26℄ is a global s
ale data storage utility that uses untrusted infrastru
-ture. The primary obje
tive is to provide 
ontinuous a

ess to persistent information.Ea
h obje
t in O
eanStore is assigned a unique global identi�er and is repli
ated and stored in a set ofservers. A few of the servers in the high 
onne
tivity and high bandwidth regions are made primary repli-
as and the rest are made se
ondary repli
as (�gure 3.9). Updates made to the obje
ts are ordered by theprimary repli
as using a Byzantine Fault Tolerant algorithm [14℄. Se
ondary repli
as 
ommuni
ate with theprimary repli
as and among themselves to propagate updates in an epidemi
 manner. Every update resultsin the 
reation of a new version whi
h is ar
hived in the system, making the system ine�
ient for large sized�les.Ea
h obje
t is asso
iated with a root node in the system whi
h holds information about the obje
t's repli
alo
ations. A variation of Plaxton's randomized hierar
hi
al distributed data stru
ture [34℄ is used by nodes torea
h the root of any obje
t in O(logN) hops, where N is the number of nodes in the system. A probabilisti
algorithm using attenuated Bloom Filters [11℄ is also used to rapidly lo
ate obje
ts if they are in the lo
alvi
inity.The poli
y of Promis
uous Ca
hing whi
h allows �les to be repli
ated in any node in the system makesO
eanStore highly s
alable. However, the overheads involved in the maintenan
e of two tiers of nodes and adissemination tree for ea
h data obje
t 
an be high. High 
hurn rates among the primary tier nodes 
an alsoresult in expensive maintenan
e overheads. Maintenan
e of Bloom �lters and the Plaxton data stru
ture atea
h node 
an result in high network usage.3.3.3. Ivy. Ivy [31℄ is a P2P read/write �le system based on logs. Ea
h parti
ipant maintains a log withinformation about all the 
hanges made to the �les in the system by the parti
ipant. The logs of all theparti
ipants need to be parsed to be able to get the 
urrent state of a �le. Updating a �le's 
ontents howeverrequires an append to the parti
ipant's log only. Ivy uses DHash [1℄ as the Distributed Hash Table (DHT) [45℄for storing all its logs and, as a result, all its data. The set of all logs in the �le system is referred to as View(�gure 3.10).A parti
ipant's log is a linked list of log re
ords. The log-head points to the most re
ent entry. Contenthashes are used as keys for storing log re
ords in DHash. The publi
 key of a parti
ipant is the key for alog-head. The log-head is digitally signed by the parti
ipant's private key. The digital signatures and 
ontenthashes help ensure the integrity of logs in Ivy.
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Fig. 3.11. Pangaea System Ar
hite
tureA private snapshot of the system is maintained by the parti
ipants in order not to have to s
an all the logsfor every read. Only the most re
ent log re
ords need to be s
anned. Sin
e Ivy avoids using shared mutabledata stru
tures, lo
king is not ne
essary. Ivy logs 
ontain version ve
tors and timestamps. These 
an helpappli
ations in dete
ting and resolving 
on�i
ts that may arise due to 
on
urrent updates.This strategy of maintaining per-parti
ipant logs makes Ivy suitable only for a small number of 
ooperatingusers. Moreover, high possibilities of 
on�i
ting 
on
urrent updates result in Ivy providing weak 
onsisten
ysemanti
s.3.3.4. Pangaea. The obje
tive of Pangaea [38℄ is to build a planetary-s
ale P2P �le system used by groupsof 
ollaborating users all over the world. The system attempts to a
hieve low a

ess laten
y and high availabilityusing Pervasive Repli
ation te
hniques. Whenever and wherever a �le is a

essed, a repli
a is 
reated. Popular�les therefore get heavily repli
ated and personal �les reside only on the nodes used by the owners.A random graph of all the repli
as is maintained for propagating updates and ensuring availability (�g-ure 3.11). The random graph is 
reated by making ea
h repli
a maintain links to k other repli
as 
hosenrandomly. A few of the repli
as are designated as Golden repli
as. The golden repli
as maintain links with ea
hother and ensure that their set always maintains spe
i�ed membership levels. Repli
as perform random walksstarting from one of the golden repli
as to 
reate random links. This way the graph stays 
onne
ted.Links to the golden repli
as are re
orded in the data obje
t's parent dire
tory (whi
h is also maintained asa �le). To a

ess and repli
ate a �le, its parent dire
tory must be a

essed and hen
e repli
ated. The re
ursiveoperation 
an pro
eed all the way to the �le system's root.By default, update propagation happens lazily. A strategy involving Harbinger messages is used to build aspanning tree whi
h is used for qui
k update propagation. Stri
t 
onsisten
y semanti
s are also supported by
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hite
turemaking the updating 
lient wait for a
knowledgments from the repli
as. A version ve
tor based algorithm [37℄is used for resolving 
on�i
ting updates.3.3.5. Edge Node File System (ENFS). ENFS [25℄ exploits the resour
es of Internet edge nodes toprovide s
alable DFS servi
es. Undedi
ated Internet edge nodes are enabled to fun
tion as both data andmetadata servers. The presen
e of a large number of edge nodes results in s
alable metadata a

ess and highI/O throughputs.ENFS uses proximity-based 
lustering of edge nodes (�gure 3.12) for the e�
ient management of resour
es,balan
ing of load (storage, 
omputational, query), and handling laten
y issues. A few reliable and 
apable edgenodes from ea
h 
luster are 
hosen to be the metadata servers (Supernodes) for that 
luster. These supernodesare 
hosen based on 
apabilities su
h as network bandwidth, pro
essor speed, storage spa
e, and memory
apa
ity. Ea
h supernode is asso
iated with a repli
a set 
onsisting of a �xed number of other supernodes fromthe same 
luster. The repli
a sets ensure high system availability.Supernodes from all the 
lusters form a single system-wide stru
tured P2P overlay network for use as a dis-tributed hash table. By 
onne
ting up all the 
lusters in the system, the overlay enables nodes of a 
luster to dis-
over supernodes (of other 
lusters) whi
h are responsible for spe
i�
 portions of the �le namespa
e. The stru
-tured overlay also helps in the e�
ient dis
overy of resour
es with spe
i�
 
hara
teristi
s in the entire system.Sin
e the sets of data and metadata servers 
hange autonomously and dynami
ally to suit prevalent work-loads, ENFS s
ales transparently. The ar
hite
ture of the system allows data pla
ement/a

ess de
isions to bebased on appli
ations' requirements of resour
e 
hara
teristi
s and lo
ations. The metadata of ea
h �le has asingle point of a

ess (one of the 
luster supernodes). This allows ENFS to support a large spe
trum of a

esssemanti
s.4. Comparative Analysis. In this se
tion, we analyze the above reviewed systems with respe
t to theirs
alability and the support they provide for high appli
ation performan
e only. We do not address other aspe
tsof distributed �le systems su
h as user/group management, se
urity and trust, et
. In [30℄, the authors providea survey of de
entralized a

ess 
ontrol me
hanisms in large s
ale distributed �le systems. An overview of I/Osystems (in
luding �le systems) dealing with massive data is presented in [22℄.The manner in whi
h the load on di�erent �le system servers vary with in
reasing numbers of users, andtherefore user �les, primarily determines the s
alability of a distributed �le system. In
rease in the number of�les results in an in
rease in the number of queries and in the amount of data I/O.The system parameters used in the analysis are shown in table 4.1. For the sake of simpli
ity, we assumeuniform server 
apabilities and that the �le system metadata and data are equally distributed among the servers.We also assume that the metadata queries and I/O requests are generated in an independent and 
ompletelyrandom manner.We study the dependen
e of metadata and data server loads on the query and I/O rates in tables 4.2 and4.3 respe
tively. The overheads of overlay network management also add to server loads, espe
ially in the P2P�le systems. The overheads are presented in table 4.4.
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sParameter Details
N Number of nodes (servers/
lients/peers) in the system
NM Number of metadata servers in the system
ND Number of storage nodes (data servers) in the system
F Number of data items (�les and dire
tories) in the system
R Average number of repli
as per data item
Q Number of metadata queries generated per unit of time in the system
D Data transfer demand to and from the data servers in the system per unitof time
lC Network laten
y between nodes within a 
luster/LAN (Intranet)
lW Network laten
y between nodes in di�erent 
lusters (Internet)
P (n) Cost of a
hieving 
onsensus (Paxos [27℄, Byzantine fault tolerant algo-rithm, quorum-based voting) among n nodes in terms of time and numberof messages
LMS Average query handling load on a metadata server
LDS Average I/O load on a data server
LOM Message, time and spa
e overheads of maintaining the di�erent overlaysIn GoogleFS, Lustre, Panasas, PVFS2, Ceph, O
eanStore and ENFS, support for �le striping and parallelI/O helps in distributing data server load at a �ner granularity. From table 4.3, we 
an see that, LDS , thedata server load, 
an be represented as f(D/ND) for 
ategory I and 
ategory II �le systems and as f(D/N) for
ategory III �le systems.The 
omponents that get overloaded in the �rst 
ategory of �le systems are 
learly the servers. In thesesystems, the NM metadata servers are usually the data servers also. The load on ea
h server therefore is

LMS + LDS . Both in
reasing query rates and I/O demands a�e
t the same set of servers.In the se
ond 
ategory of �le systems, de
oupling of data and metadata helps in splitting the load amongdi�erent sets of servers (LMS for metadata servers and LDS for data servers). However, due to rigid server
on�gurations whi
h require manual administration, the values of NM and ND are more or less �xed. Thisresults in these systems supporting only 
onstrained levels of metadata and I/O demands. Additionally, inWheelFS, the 
on�guration servi
e 
an potentially be
ome a bottlene
k with in
reasing query rates.Sin
e Farsite, O
eanStore, Ivy, Pangaea and ENFS are P2P �le systems (
ategory III), the load on ea
hnode is LMS + LDS + LOM . The number of nodes, N , is however virtually unlimited. Therefore, the loads arewell distributed.However, Ivy is a log-based �le system and so performan
e falls signi�
antly with in
reasing numbersof parti
ipants. Network usage is ex
essively high in O
eanStore and Pangaea due to overlay managementmessages, pervasive repli
ation and update propagations. Sin
e a 
onsiderable number of peers in a wide areainstallation may possess low bandwidth 
onne
tions, system performan
e 
an be a�e
ted by in
reasing loadlevels in these two systems.The performan
e of appli
ations exe
uting over �le systems depends mainly on the speed of metadata a

essand data I/O throughput. Metadata query and update times experien
ed by appli
ations depend on severalfa
tors su
h as metadata server load, query routing me
hanism, network laten
y, and 
onsisten
y managementstrategy. Table 4.5 analyzes these fa
tors in the various systems.Data I/O throughput depends on server load and network laten
y/bandwidth. Server loads are dis
ussedin table 4.3. The support provided by the �le systems to redu
e the e�e
ts of network laten
y and bandwidthon data transfer/pro
essing speed, and hen
e on appli
ation performan
e, is dis
ussed in table 4.6.
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tion of Query RateSystem Load/Server (LMS) CommentsAFS f(Q/NM ) The load is distributed among the NM servers. Sin
ethe number of servers is �xed and 
an be extended onlythrough administrator intervention, server load keeps in-
reasing with Q.CIFS f(Q/NM ) The load is distributed among the NM servers that aresharing 
ontent. Typi
ally, the number of servers inCIFS installations are mu
h larger than in AFS installa-tions. Query loads are therefore better distributed.GoogleFS f(Q) The master server handles all the queries. As a result,su
h an ar
hite
ture's s
alability is limited.Lustre/Panasas/PVFS2 f(Q/NM ) The query load is distributed among the NM metadataservers. Sin
e the number of MDSs is �xed and 
an beextended only by manual intervention, load on an MDSkeeps in
reasing with Q.Ceph f(α ·Q/NM ) The metadata query load is distributed among theservers in the MDS 
luster. The dynami
 subtree parti-tioning s
heme employed by Ceph distributes the queryload among the servers uniformly. Moreover, sin
e
lients 
an 
al
ulate obje
t lo
ations themselves, meta-data server loads are signi�
antly redu
ed (representedby α).WheelFS f(Q/NM ) The query load is distributed among the NM WheelFSprimary servers.
f(Q) Clients get information about the primary servers re-sponsible for �les from the 
on�guration servi
e. Theload on the 
on�guration servi
e therefore in
reasesalong with Q.Farsite f(Q/(κ ·N)) When query rates in
rease, dire
tory groups split anddistribute the load among more nodes. Sin
e any peer
an be a part of a dire
tory group, query loads are sharedby a signi�
ant fra
tion (κ) of all the nodes in the system.O
eanStore f(Q/N) Information about �les in O
eanStore are obtained us-ing pure P2P algorithms. The metadata query load istherefore distributed among all the peers.Ivy f(Q/N) Metadata queries result in getting the re
ent log re
ordsof all parti
ipants and s
anning the re
ords lo
ally atthe querying peer. Thus, the query load is distributedamong all the peers.Pangaea f(Q/N) Metadata a

esses happen using P2P routing proto
olsand result in repli
as getting 
reated at the queryingpeers. Thus the query load is shared by all the peers.ENFS f(Q/(κ ·N)) The number of supernodes in
reases with in
reasingquery loads (Q). Sin
e any node in the system 
an bemade a supernode, the load is shared by a signi�
antfra
tion (κ) of N , as in Farsite.
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tion of the I/O DemandSystem CommentsAFS Callba
k promises and invalidations, and whole �le 
a
hing help in redu
ing theload on the AFS servers. This is one of the main reasons for AFS s
aling betterthan NFS.CIFS Stateful servers, elaborate lo
king me
hanisms, 
a
hing, and read-aheads, help inredu
ing the load on the servers. A large number of servers sharing �les helpsdistribute the load better than in AFS.GoogleFS The data load is distributed among the ND 
hunkservers in the GoogleFS 
luster.GoogleFS does not support 
lient side 
a
hing, espe
ially be
ause the appli
ationsusually require 
omputations to be performed at the 
hunkservers itself.Lustre The load is shared among the ND obje
t storage servers. Server based distributed�le lo
king proto
ols and 
lient side 
a
hing in Lustre help redu
e data server loads.Panasas The data serving load is shared among the ND OSDs. File lo
king servi
es and
onsistent 
lient 
a
hing is supported in Panasas.PVFS2 PVFS2 does not 
a
he data on the 
lients and so the entire load is distributedamong the ND I/O servers.Ceph Client side 
a
hing absorbs some load o� the ND OSDs.WheelFS All 
lients maintain 
a
hes of �les read. Semanti
 
ues help in satisfying a 
lient'sdata needs with nearby 
a
hes as mu
h as possible. Su
h Cooperative Ca
hingme
hanisms help in redu
ing the loads on WheelFS servers signi�
antly.Farsite All the nodes in the system are 
apable of storing data. As data loads in
rease,more repli
as 
an be 
reated among the peers. Thus, data transfer loads are sharedby a large number of nodes (O(N)).O
eanStore Promis
uous 
a
hing and P2P data lo
ation algorithms enable data serving loadsto be distributed among the peers in the system.Ivy All the data obje
ts in Ivy are stored in the DHash DHT, whi
h 
omprises of allthe nodes in the system. Thus data transfer load is shared by the entire set ofnodes.Pangaea Pervasive 
a
hing results in �les and dire
tories getting repli
ated in a large numberof peers in the system. I/O load is therefore distributed widely.ENFS Supernodes ensure that �le 
ontents in ENFS are distributed uniformly a
ross allthe storage nodes in the system. Data transfer loads are therefore shared by a largenumber of nodes (O(N)).Apart from data server loads, appli
ation performan
e largely depends on the network distan
e betweenservers and 
lients. In most �le systems of 
ategory I and II, server lo
ations are �xed and so in wide areainstallations, data a

ess usually happens a
ross long distan
es. Data 
a
hing helps in redu
ing the distan
e tosome extent, espe
ially in AFS and WheelFS.File systems belonging to 
ategory III, however, do not have �xed servers. The peer-to-peer nature of thesesystems support the 
reation of new �le repli
as 
loser to their users. ENFS goes a step further and pro-a
tively
reates �le repli
as on nodes whi
h are likely to pro
ess the 
ontents, based on user spe
i�
ation or appli
ationtype.4.1. Observations. In summary, our analysis of these systems has led to the following observations:
• De
entralization Most of the produ
tion �le systems today use 
entral servers (or 
lusters of servers).While su
h an infrastru
ture 
an support a large number of users and �les, their s
alability is limited.Sin
e the digital data generation 
apabilities of the masses has in
reased tremendously, the next fewyears are expe
ted to witness huge rates of data 
reation. De
entralization is therefore essential tomanage the a

ompanying data management demands. De
entralization also has other bene�ts su
has not having to 
ompletely trust one 
entral entity, la
k of a single point of failure, robustness, andla
k of the need for expensive servers.
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e OverheadsSystem Overhead (LOM) CommentsWheelFS f(CRSM ) The 
on�guration servi
e is implemented as a repli
ated statema
hine with a 
ertain number of nodes. Maintaining thestate ma
hine involves operations su
h as handling member-ship 
hanges, and ele
ting a new leader. CRSM represents the
orresponding message and time overheads for the 
on�gura-tion servi
e nodes.Farsite f(CBFT ) All the nodes in Farsite whi
h are part of a dire
tory groupin
ur the overheads of maintaining a Byzantine fault tolerantgroup. The overhead asso
iated with Byzantine fault toleran
eis represented by CBFT .O
eanStore f(logN,CBF ) Every node in O
eanStore maintains a routing table asso
iatedwith the Plaxton s
heme for global data lo
ation. The size ofthe table is O(logN). Moreover, 
hanging obje
t 
ontents in anode and its lo
al vi
inity, results in 
hanges to its attenuatedBloom �lter. The network and 
omputational (multiple hash-ing) overheads of maintaining the �lters is also signi�
ant andis represented by CBF .Ivy f(logN) Nodes in Ivy are part of the DHash DHT and so maintainrouting tables with O(logN) entries.Pangaea f((F · R · k)/N) Every repli
a of a data item must maintain at least k links toother repli
as. This results in signi�
ant message, time andspa
e overheads.ENFS f(logNM) Supernodes from all the 
lusters form a stru
tured overlayin ENFS. Ea
h supernode maintains a routing table of size
O(logNM ).

• Autonomi
 System Management Sin
e de
entralized systems usually exploit the resour
es of unre-liable nodes, me
hanisms must be in pla
e to provide notions of reliability and availability to theusers/appli
ations. It is impra
ti
al for large distributed systems to be manually administered. Essen-tial tasks su
h as handling node failures, and load balan
ing must be autonomi
ally managed for betterresour
e utilization and appli
ation performan
e.
• Pervasive Repli
ation High levels of repli
ation, espe
ially of read-only �les, in
reases availability andbrings data 
loser to the users, thereby improving appli
ation performan
e. Repli
ation has the addedbene�t of enabling parallel a

ess to �les. Parallel a

ess enables 
omputations on di�erent parts of a �leto be performed simultaneously. In a well designed system, the bene�ts of repli
ation must over-weighthe overheads of additional data transfer and 
onsisten
y management.
• Flexible Consisten
y Semanti
s Often, the stronger the 
onsisten
y semanti
s supported by a system,the poorer the appli
ation performan
e. The 
onsisten
y requirements of di�erent appli
ations varywidely. Thus, �le systems must be 
apable of �exing their 
onsisten
y semanti
s in a

ordan
e toappli
ation requirements. This way, users/appli
ations 
an themselves adjust the required levels of
onsisten
y/performan
e trade-o�.
• Data A�nity Data a�nity refers to the 
on
ept of ensuring that �les are stored 
lose to the nodeswhi
h are most suited and likely to pro
ess their 
ontents. For example, in HPC appli
ations, dueto large data set sizes, s
hedulers attempt to s
hedule 
omputations on resour
es whi
h 
ontain therequired data [36℄ [47℄, thus redu
ing the amount of data movement. Therefore, �le systems whi
hsupport resour
e 
hara
teristi
s aware data pla
ement are highly useful. Data migration with 
hanginga

ess patterns is also bene�
ial.
• Proximity-based Node Clustering A large system whi
h 
annot be managed by a 
entral 
ontroller isbest managed by being partitioned into proximity-based node 
lusters of manageable sizes. In dis-
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tors a�e
ting Metadata Query Response TimesSystem CommentsAFS f(LMS + LDS , lC(or)lW )Servers are usually distributed a
ross wide areas. Servers in every 
ell possess informationabout the servers hosting di�erent data volumes a
ross the entire system. Therefore, thereare no query routing overheads. The e�e
t of network laten
y depends on whether queries aremade for �les served lo
ally or by a server in a di�erent 
ell. Data volumes are pla
ed 
loseto users/groups owning the 
orresponding data items and so laten
y e�e
ts are generally low.CIFS f(LMS + LDS , lC(or)lW )CIFS servers are usually distributed a
ross wide areas. Clients either possess informationabout servers hosting di�erent data items or 
an use browsing proto
ols to sear
h for servers.When a 
lient queries a distant CIFS server, high network laten
y is likely to a�e
t theresponse time.GoogleFS f(LMS , lC , P (2))Sin
e GoogleFS installations are usually 
luster based, network laten
y is lC . All metadataqueries are handled by the master server. Metadata updates must be serialized in the masterserver and its shadow.Lustre f(LMS , lW , P (2))The set of metadata servers are 
lustered in a single lo
ation and so most 
lient queries haveto travel a
ross the network in a wide area installation. Metadata updates must be serializedin the a
tive and passive metadata servers asso
iated with a data item.Panasas f(LMS , lW , P (NM ))Panasas uses a quorum-based voting proto
ol to 
ommit metadata operations in its metadataservers. As in Lustre, network laten
y is usually lW sin
e the servers are 
lustered in onelo
ation.PVFS2 f(LMS , lW )PVFS2 avoids serialization of independent metadata operations using an expli
it state ma-
hine, threads (to provide non-blo
king a

ess), and a 
omponent that monitors 
ompletionof operations a
ross devi
es. Avoiding serialization makes metadata a

ess faster.Ceph f(LMS , lW , P (k))Sin
e the metadata servers are 
lustered, far-o� 
lients experien
e high network laten
ies.Metadata updates must be syn
hronously journaled to a 
luster (of size k) of OSDs forsafety.WheelFS f(LMS , lW )A

essing the 
on�guration servi
e to determine the primary may involve a query to a far-o�node. Clients 
an spe
ify lo
ation preferen
es for the primary servers for their �les and dire
-tories based on expe
ted a

ess patterns and so laten
y overheads of a

essing the primaryservers are optimized.Farsite f(LMS + LOM , d · lW , P (k))Metadata a

ess may require traversal from the root to the dire
tory of interest. Ea
hdire
tory may be managed by a di�erent group. d represents the average number of hopsbetween dire
tory groups required to rea
h a data item. Metadata updates require Byzantinefault tolerant agreement among the k dire
tory group members.O
eanStore f(LMS + LDS + LOM , lW · logN,CARC)Lo
ating the root of an obje
t in O
eanStore 
an require O(logN) hops a
ross a wide areanetwork. Some �les, espe
ially popular ones, 
an however be lo
ated in the lo
al vi
inityof the 
lient. Every update (or group of updates) involves storing the obje
t in an ar
hivalform. CARC represents the 
orresponding 
osts of en
oding the �le using erasure 
oding anddistributing it a
ross hundreds of ma
hines.Ivy f(LMS + LOM , p · (logN) · lW )A

essing the metadata requires the gathering of the most re
ent log re
ords of all theparti
ipants (p). Metadata updates are performed in the lo
al log alone.Pangaea f(LMS + LOM , lC , CST )The pervasive repli
ation strategy results in most data items being available in 
lose prox-imity. Propagation of updates happens in two phases along the spanning tree for that dataitem rooted at the sour
e. The 
orresponding message and time 
osts are represented by
CST .ENFS f(LMS + LOM , lC(or)lW , P (k))Metadata of user �les are managed by supernodes in the same 
luster as that of the user.However, a

essing the metadata of �les in other 
lusters requires a
ross network querying.Metadata servers responsible for individual �les/dire
tories are identi�ed using index �lesstored in the system wide DHT and a
tively 
a
hed in the lo
al 
luster's supernodes. Dis-
overy 
an therefore usually happen within a 
ouple of hops. Metadata updates are serializedin the responsible supernode and its repli
a set. k represents the supernode repli
a set size.



322 Kovendhan Ponnavaikko and Janakiram DharanipragadaTable 4.6Support for Appli
ation Performan
eSystem SupportAFS/ CIFS Servers in these systems only perform �le I/O. Any other operation to be per-formed on the data must be performed at the 
lient site. Client side 
a
hingis supported to varying degrees. AFS, espe
ially, improves appli
ation perfor-man
e using whole �le 
a
hing. However, the bene�ts of 
a
hing 
ome at theexpense of 
onsisten
y management. AFS provides weak 
onsisten
y seman-ti
s. CIFS uses elaborate lo
king me
hanisms to provide strong 
onsisten
ysemanti
s. I/O throughputs are largely dependent on 
lient-server networkdistan
e.GoogleFS GoogleFS is optimized for the MapRedu
e 
lass of appli
ations. GoogleFS'ssupport for appending re
ords to existing datasets in a qui
k, atomi
 and ra
e-free manner is 
riti
al for MapRedu
e appli
ations. GoogleFS stores repli
as ofdata 
hunks on di�erent ma
hines. This in
reases the 
han
es of MapRedu
es
heduling mappers on nodes with the data or on nodes 
lose to the data.GoogleFS supports relaxed 
onsisten
y semanti
s, whi
h helps speed up dataappends.Lustre/Panasas/Ceph Sin
e obje
t-based storage devi
es support the storage and serving of obje
ts di-re
tly at the hardware level, better I/O throughputs 
an be a
hieved 
omparedto normal dis
 I/O. Appli
ation spe
i�
 pro
essing/
omputations however 
an-not be performed at the servers. These systems provide strong 
onsisten
ysemanti
s. I/O throughputs are largely dependent on 
lient-server networkdistan
e.PVFS2 Client side 
a
hing is not supported. Client server distan
e 
an therefore bedetrimental to appli
ation performan
e. PVFS2 implements Non-Con�i
tingWrite semanti
s, thus allowing 
lients to update non-
on�i
ting portions of thenamespa
e simultaneously without lo
ks.WheelFS Pla
ement semanti
 
ues su
h as .Site, .KeepTogether and .RepSites allow own-ers to pla
e their data 
lose to the users most likely to use the data. This helpsoptimize data throughputs. Cues 
an also be used to fet
h �le 
ontents fromthe 
a
he of other 
lients in parallel.Farsite Farsite does not attempt to redu
e laten
y. It is designed to support typi-
al user home dire
tory I/O instead of the high performan
e I/O of s
ienti�
appli
ations. Byzantine fault tolerant agreement proto
ols and leases help inproviding strong 
onsisten
y guarantees in Farsite.O
eanStore Users 
hoose primary and se
ondary tier storage nodes on whi
h to store their�les. Moreover, popular �les get widely 
a
hed. These measures help in im-proving data throughputs. Based on appli
ation requirements, O
eanStore 
anprovide a variety of 
onsisten
y semanti
s.Ivy Nodes maintain a private snapshot of all the logs and so �le reads only requirethe most re
ent re
ords to be obtained from the DHash DHT. Ivy providesweak 
onsisten
y semanti
s with appli
ation assisted 
on�i
t resolutions.Pangaea In Pangaea, repli
a lo
ations are determined by user a
tivities. Files 
an there-fore usually be lo
ated 
lose to the 
lients. By default, Pangaea implementsweak 
onsisten
y semanti
s. However, stronger guarantees 
an be provided bytrading o� performan
e.ENFS ENFS fo
uses on the prin
iple that awareness of the 
apabilities of stor-age nodes is 
riti
al for a �le system to be useful for appli
ations. Clustersupernodes 
an inexpensively dis
over resour
es with spe
i�
 
hara
teristi
sa
ross the entire system. File/Repli
a pla
ement de
isions are based on therequirements of the appli
ations expe
ted to operate on the �les. This helpsappli
ations a
hieve high performan
e. Home-based 
onsisten
y proto
ols al-low a wide variety of a

ess semanti
s to be supported.
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lustering supports the s
alable and e�
ient dis
overy of data and resour
es withspe
i�
 
hara
teristi
s from the entire system [35℄. Clustering also provides for e�
ient 
ommuni
ationme
hanisms among proximal and far-o� nodes in the system. Co-lo
ation of servers and their asso
iated
lients, whi
h helps in optimizing network laten
y, also be
omes simpler when the system is partitionedinto 
lusters. A lot of work, done on network distan
e measurement [15℄, topology dis
overy [20℄ [9℄and proximity-based node 
lustering [51℄ [29℄ [35℄, 
an be used for autonomous 
luster formation andmanagement.
• Capability-based Role Assignment Farsite and ENFS are examples of P2P �le systems in whi
h peers areassigned di�erent roles based on their 
urrent 
apability levels (CPU load, memory, network). Nodeswith relatively high levels of 
apability are made responsible for �le metadata servi
es. This helps inredu
ing the e�e
ts of system dynami
s on �le availability and a

ess. O
eanStore and Pangaea do notperform 
apability-based role assignment. These systems therefore use up a lot of network bandwidthand spa
e in maintaining per-�le overlays.5. Con
lusions. This survey analyzes popular wide area distributed �le systems for their s
alability andthe support they provide for high appli
ation performan
e. Several design de
isions a�e
t the way �le systemss
ale and appli
ations perform.We 
ategorize the systems as Traditional Distributed File Systems, Asymmetri
 Cluster File Systems andSelf-Organizing P2P File Systems, based on the extent of data/metadata distribution a
ross the system.We perform s
alability analysis by 
hara
terizing the loads on �le system servers as fun
tions of query ratesand data I/O demands. Appli
ation performan
e is studied by 
hara
terizing query response times as fun
tionsof the appropriate system parameters. Data I/O throughputs and support for data a�nity are also analyzed.The summarized observations are presented in se
tion 4.1.It is not possible to design a wide area distributed �le system that performs ideally for all kinds of appli-
ations. Often, providing support for one feature a�e
ts another negatively. For wider a

eptan
e, distributed�le systems must allow 
lient appli
ations to 
onveniently 
ontrol the di�erent trade-o�s amongst �le systemfeatures. REFERENCES[1℄ The Chord/DHash proje
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