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Salable Computing: Pratie and ExperieneVolume 11, Number 3, p. i. http://www.spe.org ISSN 1895-1767© 2010 SCPEINTRODUCTION TO THE SPECIAL ISSUE: PARALLEL, DISTRIBUTED ANDNETWORK-BASED COMPUTING: AN APPLICATION PERSPECTIVEParallel, distributed and network-based omputing is a ontinuosly evolving �eld, driven by progress in miro-proessor arhiteture and interonnetion tehnology, as well as by the needs of omputing- and data-intensiveappliations in siene and engineering, and, more reently, in business. This �eld is urrently undergoinga signi�ant hange, beause of the development of multiore and manyore proessors, GPUs, and FPGAs,whih are the new building bloks of parallel arhitetures. At the other end of the parallel and distributedomputing senario, omputational grids are far from being a mature infrastruture and are evolving towardloud omputing, to get a higher level of virtualization.The availability of programming models, algorithms and software tools apable of harnessing the proessingpower o�ered by the new tehnologies is a key issue to make them usable by appliation developers. This speialissue provides a view of the e�orts arried out in this diretion.
• Barlas introdues an optimization approah for reduing data ommuniation and load imbalane inmedial image mathing on Grids.
• Binzenhöfer et al. present a distributed and salable algorithm to monitor a p2p network.
• Cesario and Talia disuss the use of data mining models and servies on Grid systems for analysis oflarge data repositories.
• Danelutto et al. desribe a performane model for omponent-based appliations with stream ommu-niation semantis running on Grids.
• Danese et al. desribe a FPGA-based oproessor to aelerate double preision �oating point operationsin high-performane appliations.
• Gross and Marquardt introdue a graphial editor providing abstrations from base tehnology foruser-friendly on�guration of Ubiquitous Computing environments.The papers olleted here are seleted extended versions of papers presented at PDP 2007, the FifteenthEuromiro Conferene on Parallel, Distributed and Network-based Proessing, held in Naples, Italy, in February2007. The onferene was organized by the Institute for High-Performane Computing and Networking (ICAR)of the Italian National Researh Counil (CNR) in ollaboration with the Seond University of Naples, theUniversity of Naples �Parthenope� and the University of Naples �Federio II.�We thank the editors of Salable Computing: Pratie and Experiene for providing us the opportunity ofpublishing this issue, the authors for their ontributions, and the referees for their preious help in seletinggood-quality papers.Pasqua D'AmbraInstitute for High-Performane Computing and Networking (ICAR), CNRNaples, Italypasqua.dambra�nr.itDaniela di Sera�noDepartment of Mathematis, Seond University of NaplesCaserta, Italydaniela.diserafino�unina2.itMario Rosario GuarrainoInstitute for High-Performane Computing and Networking (ICAR), CNRNaples, Italymario.guarraino�nr.itFranesa PerlaDepartment of Statistis and Mathematis for Eonomi Researh,University of Naples �Parthenope�Naples, Italyfranesa.perla�uniparthenope.it
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Salable Computing: Pratie and ExperieneVolume 11, Number 3, pp. 221�237. http://www.spe.org ISSN 1895-1767© 2010 SCPEOPTIMIZING IMAGE CONTENT-BASED QUERY APPLICATIONS OVER HIGHLATENCY COMMUNICATION MEDIA, USING SINGLE AND MULTIPLE PORTCOMMUNICATIONSGERASSIMOS BARLAS∗Abstrat. One of the earliest appliations that explored the power and �exibility of the grid omputing paradigm was medialimage mathing. A typial harateristi of suh appliations is the large ommuniation overheads due to the bulk of data thathave to be transferred to the ompute nodes.In this paper we study the problem of optimizing suh appliations under a broad model that inorporates not only ommu-niation overheads but also the existene of loal data ahes that ould exist as a result of previous queries. We study the asesof both 1- and N-port ommuniation setups. Our analytial approah is not only omplimented by a theorem that shows how toarrange the sequene of operations in order to minimize the overall ost, but also yields losed-form solutions to the partitioningproblem.For the ase where large load imbalanes (due to big di�erenes in ahe sizes) prevent the alulation of a losed-form solution,we propose an algorithm for optimizing load redistribution.The paper is onluded by a simulation study that evaluates the impat of our analytial approah. The simulation, whihassumes a homogeneous parallel platform for easy interpretation of the results, ompares the harateristis of the 1- and N-portsetups.Key words: parallel image registration, divisible load, high performane1. Introdution. In the past �ve years there has been a big drive towards harnessing the power of paralleland distributed systems to o�er improved medial servies in the domain of 2D and 3D modalities. Content-based queries are at the ore of these servies, allowing physiians to ahieve higher-auray diagnoses, ondutepidemiologial studies or even aquire better training among other things [1℄.In [2℄, the authors present a high-level overview of the methodologies used for medial image mathing. Theauthors identify two broad types of approahes: image retrieval that utilizes similarity metris to o�er suitableandidate images and image registration that tries to �t the observed data onto �xed or deformable models.Finally, the authors suggest an integrated system arhiteture that ould ombine the advantages of the twoapproahes. A omprehensive review and lassi�ation of urrent medial image handling systems is publishedin [3℄.Apart from the lassi�ation mentioned in [2℄, image registration tehniques are also lassi�ed based onwhether:
• Image features are used (ontrol-point based) or the whole (or an area of interest) image (global regis-tration).
• Work is done at the spatial or frequeny domain.
• Global (rigid) or loal (non-rigid) geometrial transformations are used.The key problem is determining the optimum geometrial transformation. A brute-fore approah entailshuge omputational requirements, leading researhers to either perform the searh in several re�nement steps[4, 5℄, or swith to heuristi tehniques suh as geneti/evolutionary algorithms and simulated annealing [6, 7℄.Domain spei� tehniques have been also suggested [8℄.A domain whih has been enjoying early suess is mammography [9, 1, 10℄. Many projets that seek toharness the power of Grids [11℄ to o�er advaned medial servies have spawned over the last 8 years. A typialexample is the MammoGrid projet. Amendolia et.al present an overview of its servie arhiteture design in [1℄.On the other side of the Atlanti, the National Digital Mammography Arhive Grid is a similar initiative [10℄. AP2P system that seeks to address salability issues that arise with the operation of typial lient-server systemshas been also proposed in [12℄.While the problem of image registration is inherently `embarrassingly' parallel, the domain has seen littlework on performane optimization espeially over heterogeneous platforms. In [5℄ the authors use wavelets toperform global registration in inreasing re�nement steps that allows them to redue the searh spae involved.Zhou et al. also evaluate four parallelization tehniques and derive their omplexity in big-O notation by
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222 G. Barlasimpliitly assuming a homogeneous platform. However, they fail to take into aount the ommuniationoverheads involved and use their analysis to optimize the load partitioning of their strategies.Ino et al. propose a uniform inter-image 2D partitioning for performing 2D/3D registration, i. e. estimatethe spatial loation of a 3D volume from its projetion on a 2D plane [13℄. While Ino et al. disuss otherpossible distributions, they do not use an appropriate model that would allow for optimization. Subsequently,in [14℄ the authors ompare very favourably a GPGPU approah with their parallel implementation on 2D/3Dregistration.De Falo et al. have employed a di�erential evolution mehanism for estimating the parameters of an a�netransformation for global registration [6℄. The load distribution is performed on the population level, while atregular intervals, individuals are exhanged between neighboring nodes on the torus arhiteture used.One of the early systems is the one desribed in [9℄. Montagnat et.al use an array of high run-time ost, pixel-based, image retrieval algorithms to answer image similarity queries. As desribed in [15℄, the homogeneoussystem that is used to run the queries employs equal size partitioning, e.g. the M images that need to beompared against a new one, are split into k jobs of size M
k . In [15℄ the authors develop empirial ost modelsfor eah of the similarity metris used to answer a ontent-based query. These are omplemented by a study ofthe sheduling and data repliation osts that are inurred upon submitting a job to a Grid platform.While the models shown in [15℄ apture muh of the inner workings of the algorithms used, they are not themost suitable for developing a strategy or riteria for optimizing the exeution of ontent-based queries. Instead,they fous on estimating the optimum number of jobs to spawn, given the high assoiated ost of task/resouresheduling on Grids.A partiular problem in deriving an analytial partitioning solution is that upon performing a sequeneof queries, the system is in a state where loal image ahes an redue the ommuniation ost. This is ofourse true as long as they refer to images of the same modality and type of ontent. To our knowledge, thispaper is the �rst attempt to treat this problem in an analytial fashion that inorporates all the aforementionedsystem/problem parameters.Our analytial approah belongs to the domain of Divisible Load Theory [16℄, whih sine its ineption inthe late 80s, has been suessfully employed in a multitude of problems [17℄. In [17℄ the problem of optimallypartitioning and sheduling operations for two lasses of problems identi�ed as query proessing and imageproessing respetively, has been studied. The problem haraterizations were based on the ommuniationharateristis and more spei�ally, the relation between the ommuniation ost and the assigned load. Thispaper �lls a gap left by that work by proposing a model and an analytial solution to image-query proessingappliations.The ontribution of our work is that for the �rst time a fully analytial model is employed to devise anoptimizing strategy for the total exeution time, given ommuniation osts and the state (and not just theapabilities) of the parallel platform. Our simulation study shows that the bene�ts of the proposed frameworkare signi�ant, in both a single-shot and a series of queries senarios. Also, by isolating the spei�s of themathing algorithms, our proposed solution is more adept to easy implementation and deployment, given thefew system parameters that need to be known/estimated.The organization of the paper goes as follows: in setion 2 the ost model used in our analysis is introduedand explained within a broader ontext. Setion 3.1 ontains a study of the two-node senario that ultivates toTheorem 3.1 for the optimum sequene of operations. The losed-form solutions to the partitioning problem for

N nodes in 1-port on�guration, is given in 3.2, while the N-port problem is solved in Setion 4. An algorithmfor managing the ahe size of the ompute nodes towards minimizing the exeution time, is given in setion 5.Finally, the simulation study in Setion 6 highlights the bene�ts and drawbaks of our analytial approah andbrings-up interesting fats about the di�erent ommuniation setups.2. Model Formulation. The arhiteture targeted in this paper onsists of N heterogeneous omputingnodes that reeive image data from a load originating node and return the results of the image mathing proessto it. The network arhiteture is a single-level tree or a bus-onneted one. Beause this an be a repetitiveproess, eah node an build up a loal image ahe that an be reused for subsequent queries. Hene the loadoriginating node has to ommuniate to the omputing nodes only what they are missing, either beause of theinorporation of new images or beause of the departure of nodes from the omputing pool.Our treatment of the problem is based on the formulation of an a�ne model that desribes the omputationand ommuniation overheads assoiated with the query data distribution, the image mathing proess and the



Optimizing Image Content-Based Query 223Table 2.1NotationsSymbol Desription Units
b is the onstant overhead assoiated with load distribution. It onsists of theimage to be mathed in addition to any query spei� data (e.g. mathingthresholds). B

d is the onstant overhead assoiated with result olletion. Typially d < b. B
eX is the part of the load whih is resident at node X , i. e. a loal image ahe. B
I is the typial size of an image used for image mathing. B
L the load that is has to be ommuniated to the omputing nodes B
lX is inversely proportional to the speed of the link onneting X and its loadoriginating node. sec/B

pX is inversely proportional to the speed of X . sec/B
partX is the part of the load L assigned to X , hene 0 ≤ partX ≤ 1. The total loadassigned to X is partXL+ eX

NAresult olletion phase. These models are losely related with the ones introdued in [17℄ although the semantisfor some of the onstants used here are di�erent. Given a node X that is onneted to a load originating nodewith a onnetion of (inverse) speed lX , we assume that the load distribution tdistr, the omputation tcomp andthe result olletion tcoll osts are given by:
tdistr = lX (partXL+ b) (2.1)

tcomp = pX (partXL+ eX) (2.2)
tcoll = lXd (2.3)The symbols used above, along with all the remaining ones to be introdued later in our analysis, are summarizedin Table 2.1.The total load to be proessed by N nodes is

N−1∑

i=0

(partiL+ ei) (2.4)and for the ommuniated load parts we have:
N−1∑

i=0

parti = 1 (2.5)The ontribution of the above omponents to the overall exeution time of node X depends on how om-muniation and omputation overlap. We an identify two ases:
• Blok-type omputation: no overlap between ommuniation and omputation. Node X an startomputing only after all data are delivered:

tX = lX (partXL+ b+ d) + pX (partXL+ eX) (2.6)
• Stream-type omputation: node X an start using eah loal image ahe immediately after reeivingthe query data. Computation an run onurrently with the ommuniation of the extra data partXL.There are two ases depending on the relative speed between ommuniation and omputation:� Communiation speed is high enough to prevent X from going idle i. e.

pX (partXL+ eX − I) ≥ lXpartXL (2.7)where I is the size of the last image to be ompared against the required one. Then:
tX = lX (b+ d) + pX (partXL+ eX) (2.8)
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DFig. 3.1. The four possible on�gurations of proessing by two nodes when 1-port ommuniations are used. Result olletionis assumed to be separated by a onstant delay D.� Node X has to wait for the delivery of data through a slow link, i. e. ondition (2.7) is invalid.Then:
tX = lX (b+ d) + lXpartXL+ pXI (2.9)The additional parameter that ontrols the overall ost when N nodes are used, is whether single-port or

N -port ommuniations are employed, e.g. whether the load originating node an distribute L onurrently tomultiple nodes.In the remaining setions we fous on blok-type tasks under both 1- and N-port ommuniation setups.Our derivations are based on the assumptions of uniform ommuniation media, i. e. li = l ∀i. A omparisonbetween the two ommuniation setups is performed in setion 6.It should be noted that the stati model proposed in this paper, while not apparently suitable for a gridomputing senario, in whih omputation and ommuniation osts hange over time, it an form the basisfor an adaptive sheduler that modi�es load distribution over time given ost estimates. This goes beyond thesope of this paper and should be the topi of further researh.3. The 1-port Communiation Case.3.1. The two-node senario. If we assume that there is a load originating node that distributes the loadto two nodes, then if single port ommuniations and a single installment [16℄ are used, the possible sequenesof ommuniation and omputation operations are shown in Fig. 3.1, as imposed by the need to have no gapsbetween stages (otherwise, exeution time is not minimized). For reasons that will beome obvious in the restof the setion, we also assume that the two result olletion phases are separated by a onstant delay D.The total exeution time for on�guration #1 is given by:
t1 = l (part0L+ b) + p0 (part0L+ e0) + ld (3.1)where

p0(part0L+ e0) = l(part1L+ b) + p1(part1L+ e1) + l d+D (3.2)Eq. (3.2) oupled with the normalization equation part0 + part1 = 1 an provide a solution for part0 and t1. Asimilar proedure an produe the times for the three remaining on�gurations. Thus we an form the pairwisedi�erenes of running times:
t3 − t4 =

l (e1p1 − e0p0) + (dl − bl +D) (p1 − p0)

p0 + p1 + l
(3.3)

t3 − t2 =
l (e1p1 − e0p0 − b (p1 − p0)− dl −D)

p0 + p1 + l
(3.4)

t3 − t1 =
(dl +D)(p1 − p0 − l)

p0 + p1 + l
(3.5)
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t1 − t4 =

l (e1p1 − e0p0 − b (p1 − p0) + d l+D)

p0 + p1 + l
(3.6)

t1 − t2 =
l (e1p1 − e0p0 − (b+ d) (p1 − p0))

p0 + p1 + l
−

D (p1 − p0)

p0 + p1 + l
(3.7)

t4 − t2 = −
(d l +D) (p1 − p0 + l)

p0 + p1 + l
(3.8)Clearly, the problem is too omplex to have a single solution even for the simplest ase of two nodes. Wean however isolate a number of useful speial ases that make a losed form solution to the N -node problemtratable:

• No image ahes (e0 = e1 = 0). If we assume than p0 ≤ p1 and given that b > d, we have:
t3 − t4 =

(dl − bl+D) (p1 − p0)

p0 + p1 + l
(3.9)

t3 − t2 =
l (−b (p1 − p0)− d l −D)

p0 + p1 + l
≤ 0 (3.10)

t3 − t1 =
(d l+D) (p1 − p0 − l)

p0 + p1 + l
(3.11)If dl−bl+D ≤ 0⇒ D ≤ l (b− d), then Eq. (3.11) ditates that either on�guration #3 or on�guration#1 are optimum based on whether p1 − p0 − l is negative or not. If we assume that the di�erenes inexeution speed are small relative to the ommuniation ost l (i. e. p1− p0 ≤ l) then on�guration #3is the optimum one.The exeution time is given by

t
(nc)
3 = l

(
part

(nc)
0 L+ b

)
+ p0part

(nc)
0 L+D + 2ld (3.12)where:

part
(nc)
0 =

p1L+ l(L− d+ b)−D

L (p0 + p1 + l)
(3.13)

• Homogeneous system (p0 = p1 = p). If we assume that e0 ≥ e1 then:
t3 − t4 =

pl (e1 − e0)

2p+ l
≤ 0 (3.14)

t3 − t1 = −
l (d l +D)

2p+ l
≤ 0 (3.15)

t1 − t2 =
pl (e1 − e0)

2p+ l
≤ 0 (3.16)whih again translates to having on�guration #3 as the optimum one. It should be noted that theoptimum order ditates that load is sent �rst to the node with the biggest ahe, whih is a ounter-intuitive result! The exeution time is given by

t
(homo)
3 = l

(
part

(homo)
0 L+ b

)
+ p

(
part

(homo)
0 L+ e0

)
+D + 2ld (3.17)where:

part
(homo)
0 =

p(L+ e1− e0) + l(L− d+ b)−D

L (2p+ l)
(3.18)
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Fig. 3.2. (a) A possible ordering of load distribution and result olletion for N nodes. (b) Improving the exeution time byordering the operations of Pi and Pi+1 in non-dereasing order of their speed (assuming pi ≤ pi+1). Note: the phase durationsare disproportionate to atual timings.The delay D that was introdued above allows us to extend our analytial treatment from 2 nodes to N . Dis supposed to model the time taken by the result olletion operations of other nodes. Hene, D is a multipleof d · l with a maximum value of (N − 2) d · l. For the ase of no-ahes, as long as D ≤ l (b − d)⇒ N ≤ b
d + 1and the di�erenes in omputation speed are smaller than the ommuniation speed, on�guration #3 is theoptimum one as stated by the following theorem. Given the 2-3 orders of magnitude di�erene expeted between

b and d, the range of N that the theorem applies is quite broad.Theorem 3.1. The optimum load distribution and result olletion order for an image query operationperformed by N nodes is given by:
• No image ahes: distributing the load and olleting the results in non-inreasing order of the nodes'speed (i. e. in non-dereasing order of the pi parameters). The su�ient but not neessary onditionsfor this to be true is N ≤ b

d + 1 and |pi − pj | ≤ l for any pair of nodes i, j.
• Homogeneous system: distributing the load and olleting the results in non-inreasing order of theloal image ahe sizes.Proof. We will prove the above theorem for the no-ahes ase via ontradition. The proof for thehomogeneous ase is idential. Let's assume that the optimum order is similar to the one shown in Fig. 3.2(a).Without loss of generality we assume that the distribution order is P0, P1, . . . PN−1For any two nodes Pi and Pi+1 that do not satisfy the order proposed by Theorem 3.1, we an rear-range the distribution and olletion phases so as the part of the load that is olletively assigned to them(L (parti + parti+1)) is proessed in a shorter time frame (as long as N ≤ b

d + 1), while oupying in anidential fashion the ommuniation medium (see Fig. 3.2(b)). Thus, the operation of the other nodes is notin�uened. At the same time the shorter exeution time would allow additional load to be given to nodes Pi and
Pi+1 resulting in a shorter total exeution time. The outome is a ontradition to having the original orderingbeing an optimum one. The only ordering that annot be improved upon by the proedure used in this proof,is the one proposed by Theorem 3.1.The above disussion settles the ordering problem, allowing us to generate a losed-form solution to thepartitioning problem for N nodes.3.2. Closed-form solution for N nodes.3.2.1. No image ahes. The following relation holds between every pair of nodes whih are onseutivein the distribution and olletion phases (without loss of generality we will again assume that the nodes' orderis P0, P1, . . . , PN−1):

pipartiL+ ld = l (parti+1L+ b) + pi+1parti+1L⇒

parti+1 = parti
pi

pi+1 + l
+

l (d− b)

L (pi+1 + l)
(3.19)This an be extended to any pair of nodes Pi and Pj , where i > j:

parti = partj

i−1∏

k=j

pk
pk+1 + l

+
l (d− b)

L

i∑

k=j+1

[
(pk + l)

−1
i−1∏

m=k

pm
pm+1 + l

] (3.20)



Optimizing Image Content-Based Query 227Equipped with Eq. (3.20), we an assoiate eah parti with part0 and use the normalization equation:
N−1∑

i=0

parti = 1 (3.21)to ompute a losed form solution for part0:
part0 =

1− l(d−b)
L

∑N−1
i=1

∑i
k=1

∏i−1

m=k

pm
pm+1+l

(pk+l)

1 +
∑N−1

i=1

∏i−1
k=0

pk

pk+1+l

(3.22)Equations (3.22) and (3.20) solve the partitioning problem. The total exeution time is:
t
(nc)
total = l (part0L+ b) + p0part0L+N l d (3.23)The above onstitute a losed form solution that an be omputed in time N2−N

2 + 3(N − 1) +Nlg(N) =
O
(
N2
), where Nlg(N) is the node-sorting ost.3.2.2. Homogeneous System. Following a similar proedure to the previous setion, it an be shownthat:

p (partiL+ ei) + l d = l (parti+1L+ b) + p (parti+1L+ ei+1)⇒

parti+1 = parti
p

p+ l
+

l (d− b) + p (ei − ei+1)

L (p+ l)
(3.24)This an be extended to any pair of nodes Pi and Pj , where i > j:

parti = partj

(
p

p+ l

)i−j

+

i−1∑

k=j

l (d− b) + p (ek − ek+1)

L (p+ l)

(
p

p+ l

)i−k−1 (3.25)Again, Eq. (3.25), and the normalization equation an produe a losed form solution for part0:
part0 =

d− b

L
+

l + l N(b−d)
L

p+ l − p
(

p
p+l

)N−1
−

l
∑N−1

i=1

∑i−1
k=0

(ek−ek+1)
L

(
p

p+l

)i−k

p+ l − p
(

p
p+l

)N−1
(3.26)The total exeution time an be then omputed as:

t
(homo)
total = l (part0L+ b) + p (part0L+ e0) +N l d (3.27)As with the previous ase, the solution requires an O

(
N2
) omputational ost.A speial ase needs to be onsidered if L = 0 as the above equations annot be applied. The minimumexeution an be ahieved only if the loal ahes are appropriately sized to aommodate this. Similarly toEq. (3.25) for two nodes Pi and Pj , where i > j we would have:

piei + (j − i)ld = (j − i)lb+ pjej ⇒

ej = ei
pi
pj

+
(j − i)l(d− b)

pj
(3.28)If the ahes do not satisfy ondition (3.28), the load must be reassigned/transferred between nodes. Inthis paper we assume that this is performed by the load originating node and not by a diret exhange betweenthe ompute nodes. Setion 5 elaborates more on how we an treat this ase.
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Fig. 4.1. Optimum sheduling for a N-port ommuniation setup.4. The N-port Communiation Case.4.1. Closed-form solution for N nodes. The N-port ommuniation ase is muh simpler than the1-port one sine no expliit node ordering is neessary. It an be easily shown in this ase that the optimumload partitioning has to produe idential running times on all the partiipating ompute nodes, i. e. all nodesmust start reeiving data and �nish delivering results at the same instant. Sine all nodes must have the samestarting and ending times as shown in Fig.4.1, for any two nodes i and j, the following has to hold:
l (partiL+ b) + pi (partiL+ ei) + ld =

l (partjL+ b) + pji (partjL+ ej) + ld⇒

partiL (pi + l) + piei = partjL (pj + l) + pjej ⇒

parti = partj
pj + l

pi + l
+

pjej − piei
L (pi + l)

(4.1)The normalization equation (3.21) an then be used to produe a losed-form solution for part0 and subse-quently all parti:
N−1∑

i=0

parti = 1⇒

part0

N−1∑

i=0

p0 + l

pi + l
+

N−1∑

i=1

p0e0 − piei
L (pi + l)

= 1⇒

part0 =
1 +

∑N−1
i=1

piei−p0e0
L(pi+l)∑N−1

i=0
p0+l
pi+l

(4.2)The total exeution time is given by:
t
(Nport)
total = l (part0L+ b) + pi (part0L+ ei) + ld (4.3)4.2. Homogeneous System Solution. For a homogeneous system (∀pi ≡ p), the above equations aresimpli�ed to the following:

(4.1)⇒ parti = partj +
p (ej − ei)

L (p+ l)
(4.4)

(4.2)⇒ part0 = N−1

(
1 +

p

L

N−1∑

i=1

ei − e0
p+ l

) (4.5)whih translates to having di�erenes in the loal ahes as the single ause of any imbalanes in the split ofthe new load L. Otherwise the load should be evenly split.



Optimizing Image Content-Based Query 2295. Image Cahe Management. Eq. (3.20), (3.25), (4.1) and (4.4) allow for negative values for partis.Suh an event indiates that the orresponding node should not partiipate in the alulation, either beauseit is too slow or beause the loal ahe size is too large for a node to proess and keep up with the othernodes. In the latter ase it is obvious that a node should use only a part of its ahe. The load surplus shouldbe transferred to other nodes. This situation an arise when following the initial distribution of load to thenodes, subsequent queries are no longer aompanied by big hunks of data, making the initial distribution asuboptimal one.In this setion we address this problem by proposing a algorithm for estimating the proper ahe size thatshould be used, along with the orresponding load L that should be ommuniated to other nodes.The algorithm presented below, is based on the assumption that the intersetion of all ahes is ∅. The keypoint of the algorithm is a re-assignment of load from the nodes with an over-full ahe (identi�ed as set S in line8) to the nodes with little or no ahe. This proess redues the total exeution time as long as ommuniationis faster than omputation.This algorithm has been also enhaned from the version presented in [18℄ to address the ase when L = 0,i. e. when proessing is based entirely on the nodes' loal data. In that ase, L an be initialized to a smallvalue, e.g. L = 1 (lines 2-5), whih would be subsequently subtrated one a redistribution is dimmed neessary(lines 32-36).Set S does not hange after line 8 as the subsequent inrease in L due to a load shift (line 31) does notpermit any other node from having a negative assignment. The loop of lines 13-46 is exeuted for as long asthere is a negative parti, or a load shift is neessary for balaning the node workload. In line 17 the size of theahe that should be used in a node with a negative assignment is estimated. Beause the load is reassignedolletively in line 31, the ahe size of eah node in S an be under-estimated (by �bloating" the load L thatshould be ommuniated). This defeats the optimization proedure by foring the ommuniation of data thatare already present at the nodes, and in order to guard against this possibility, lines 21-28 re-adjust any previousoverestimation for nodes that subsequently got to have positive partj . Lines 12 and 41-44 serve as sentinelsagainst ases where the outer while loop does not onverge. In that ase, �xing the part assigned to the last nodein the distribution sequene (smallest e) to 0, allows the onvergene of the outer loop. A value for threshold
THRES that was found to yield good results in our experiments is 20. Threshold values that depend on thenumber of ompute nodes did not provide any visible di�erene.Lines 32-36 anel the addition of 1 load unit that is done when L = 0. Finally, if L remains 0 after loadredistribution is examined, ahe sizes satisfy ondition (3.28) for a homogeneous system and nothing moreneeds to be done (lines 37-40).A key point that should be made here is that Algorithm 1 produes a sub-optimum solution when a seriesof query operations are to be sheduled. Designing an optimum algorithm for this senario is beyond the sopeof this paper.6. Simulation Study. Single-port ommuniation is surely not a ontemporary tehnology limitation. Itis rather a design feature whereas the load originating node dediates its attention to a single node at a time,with the objetive of minimizing the message exhange ost between itself and the orresponding node. Inthis setion we explore the impat of the two alternative design hoies with the assistane of our analytialframework. Also, we evaluate the performane ahieved by the use of Algorithm 1 for managing the imageahes through a battery of image queries.We base the bulk of our simulations on the assumption of a homogeneous platform. While the require-ment of a homogeneous system may seem unrealisti, it an be typial of many large sale installations in bigorganizations.The key points of our simulation senario whih onsists of a series of image query operations, are thefollowing:

• The image DB1 onsists originally of 10000 images of size 1MB eah. This is a small number relevantto the yearly �prodution" of mammograms generated at a national level. Additionally, the image sizemathes real data only in the order of magnitude as high resolution mammograms an be muh larger(e.g. 8MB).
• Eah new image that is mathed against the DB is also 1MB in size, hene b = 1MB.

1We use the term DB to loosely refer to the olletion of available, tagged, medial images, and not to an atual DBMS system.Storage servies are o�ered in MammoGrid [1℄ by MySQL and in NDMA by IBM's DB2 [10℄



230 G. BarlasAlgorithm 1 Estimating the loal image ahe sizes that yield the minimum exeution time for the next queryoperation1: load_shift← 02: if L = 0 then3: added← TRUE4: L← 15: end if6: In the ase of 1-port ommuniation and a homogeneous system, sort the nodes in desending order of their
ei parameters.7: Calulate the load part for eah node Pi via Eq. (3.26), (3.25) or (4.2), (4.1)8: Let S be the set of nodes with partj < 09: if S 6= ∅ then10: Copy the ahe sizes of all nodes in temporary variables e(orig)i11: end if12: iter← 013: while S 6= ∅ OR load_shift 6= 0 OR added = TRUE do14: load_shift← 015: for eah Pj ∈ S do16: if partj < 0 then17: aux← partjL+ ej18: load_shift← load_shift+ ej − aux19: ej ← aux20: else21: aux← partjL+ ej22: if aux > e

(orig)
i then23: diff ← e
(orig)
j − ej24: else25: diff ← aux− ej26: end if27: load_shift← load_shift− diff28: ej ← ej + diff29: end if30: end for31: L← L+ load_shift32: if added = TRUE then33: added← FALSE34: L← L− 135: load_shift← 136: end if37: if L = 0 then38: Set for all nodes Pj , partj ← 039: BREAK40: end if41: iter← iter + 142: if iter > THRES then43: Fix the partk assigned to the node with the smallest ek to 044: end if45: Calulate the load part for eah Pi, other than the nodes �xed in step 43.46: end while
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Fig. 6.1. Average sequential disk read speed per thread. The ideal urve represents the ase where the total bandwidth isevenly divided between the threads without losses.
• Every 100 queries, 100 appropriately tagged images are inorporated in the image DB, hene the residentload inreases gradually.
• The data olleted from eah node onsist of the best 10 mathes, along with the orresponding imageIDs and objetive funtion values, assumed in total to be of size d = 10 · (2 + 4) = 60B.
• The tiobenh utility [19℄ was used to estimate realisti values for the data rates between the load origi-nating nodes and the ompute nodes. A variable number of threads were used to represent simultaneousaess from multiple lients. The results whih were olleted on a Linux laptop mahine, equippedwith a ATA 100 100GB hard disk spinning at 4200rpm, formatted using the ReiserFS �lesystem, areshown in Fig. 6.1. The e�et of the disk ahe was minimized by using a 3GB �le size. These speedswere used in the 1- and N-port simulations that are reported in this paper. For 1-port ommuniationsin partiular, l was set equal to 0.00997sec/Mb, whih translates to 0.0837sec/image.The �rst question we would like to answer, is what would be the improvement of using our analytialapproah over an Equal load Distribution (ED) strategy that is traditionally used in homogeneous systems [15℄,in a single-shot senario, i. e. when only one query operation is performed. For this purpose, we tested both1- and N-port approahes, where the omputing speed of all nodes was set to be one of the following values

{0.08, 0.17, 0.33, 0.67, 1.34}sec/image, roughly orresponding to 1x, 2x, 4x, 8x and 16x the time required toommuniate a single image when 1-port ommuniation is used. In the remainder of this setion we will referto these proessing speeds as 1l, 2l, 4l , 8l and 16l respetively. Suh a seletion of proessing speeds/ostsmathes losely the running times reported in [15℄ for real-life tests and they are supposed to help us probe thee�ets of di�erent omputation/ommuniation ratios and the use of di�erent image registration algorithms.The results for the 1-port ase are shown in Figure 6.2 in the form of the improvement ahieved over theED approah. In all the omparative results reported in this setion, we use the exeution time provided bythe 1-port non-uniform proposed distribution strategy (as given by Eq.(3.27) and denoted below as tSP ) as thebaseline. The improvement is de�ned as:
tED − tSP

tSP
(6.1)whih is basially the perent overhead that ED (tED) is ausing over the proposed analytial solution. Allinitial ahes were set equal to 0 whih is a typial initialization senario. It should be noted that all the resultsreported in Fig. 6.2 and the remaining graphs of this setion, orrespond to ases where all available nodes anbe utilized, hene the lak of data points for big values of N when p is relatively small. This quali�ation wasimposed to avoid skewed results.As an be observed in Fig. 6.2, the improvement is even higher when the omputational ost is proportionallyhigher than the ommuniation, topping around 28% for the p = 16l ase. In the majority of the tested ases,the gain is above 10%.
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p=16lFig. 6.3. Exeution time improvement o�ered by the 1-port over the N-port approah, for a single-shot senario.Comparing the 1-port and N-port ases is less straightforward as there is a question of whether the N-portommuniation setup is aomplished by sharing the same medium - as is usually the ase in non-dediatedplatforms suh as Networks of Workstations (NoW) -, or the load originating node is having a dediated linkfor eah worker. In the following paragraphs we assume that the former setup is appliable.The improvement o�ered (!) by the 1-port over the N-port ase is shown in Figure 6.3, where improvementis now omputed by Eq. (6.1) by replaing tED with the exeution time of the N-port arrangement tNP . Itomes as a surprise that the N-port arrangement an be suh a poor performer! The reasons an be summarizedas follows: (a) sharing the ommuniation medium auses the omputation phase to be overly delayed whiledata are being downloaded and (b) the ost of swithing is taking a heavy toll on the available bandwidth, asobserved in Figure 6.1 if one ompares the measured against the ideal urves. In summary, the 1-port setupallows -some of- the ompute nodes to start proessing the load a lot sooner. Of ourse this result has to beseen in the proper ontext, i. e. we have blok-type tasks and the nodes have no image ahe. As it will beshown below, this piture is far from the truth for a sequene of query operations.



Optimizing Image Content-Based Query 233In order to test what would be the situation if a sequene of queries were performed, we simulated thesuessive exeution of 1000 queries. The orresponding improvement for the 1-port sheme is shown in Fig. 6.4(a). As an be observed, the ED strategy is not worst in every ase due to the ost of ahe redistribution thatAlgorithm 1 is ausing. Atually for fast omputation (p = l) and a relatively small number of nodes, ED isfaster. For the majority of the other ases, the gains seems insigni�ant (in the order of 1%) as the onstantshu�ing of the ahes slows down the whole proess. These e�ets an be minimized if queries are run in bathesas an be learly seen in Fig.6.4 (b) and (), for moderate (10 queries) and extreme bath sizes (100 queries)respetively. For bath proessing the same analytial models an be applied, if we multiply the onstants b,
d and p by the bath size. Bathing requests together does not ome lose to optimizing a sequene of themas performed in [20℄, but as it is shown in Fig.6.4, boosts performane substantially. Under suh onditionsthe proposed strategy is onsistently better than the ED one, although the atual gains depend on the ratiobetween omputation and ommuniation osts. If the former are dominant (e.g. as in the p = 16l ase), anybene�ts made by e�etively sheduling the ommuniation operations is marginalized.Fig. 6.4 does not onvey the omplete piture though, as the gains seem insigni�ant. However, when therunning times are as high as shown in Fig. 6.5 even small gains translate to big savings in time.For the N-port ase, bathing requests produes small absolute savings as shown at the bottom of Fig. 6.5(b), (). While the gain barely reahes 1 hour overall, the real bene�t omes from inreased salability, i. e. theability to use bigger sets of proessors for the task. For example, for p = l bathes of 100 queries an run on100 nodes, while individually queries are limited to 13 nodes.The piture is ompletely reversed for the N-port ase when multiple queries are onsidered, as an beobserved in Fig. 6.6. Even with the redued bandwidth available to eah ompute node and the deteriorationof the total available bandwidth, the N-port approah is a hands-down winner. This is espeially true whenthe number of nodes grows beyond a limit, making this the most salable strategy, despite the bandwidth lossidenti�ed in Fig. 6.1. Additionally, bathing queries together bene�ts the N-port approah even more than the1-port, non-uniform one.7. Conlusion. In this paper we present an analytial solution to the problem of optimizing ontent-based image query proessing over a parallel platform under ommuniation onstraints. We solve the problemanalytially for both the single and N-port ases and we also prove an important theorem for the sequene ofoperations that minimize the exeution time. Our analytial solution is aompanied by an algorithm for theahe management of the nodes of a system, either 1-port homogeneous or N-port heterogeneous. Our losed-form solution for the 1-port heterogeneous ase with no image ahes, an be employed when a single-shotoperation is preferred.The extensive simulations that were onduted were able to reveal the following design priniples, as far ashomogeneous platforms are onerned:

• If a single-shot exeution is desired, a 1-port non uniform distribution as highlighted in Setion 3.2.2 isthe best one.
• For a sequene of operations, the N-port strategy is the best performer, espeially if the omputationalost is proportionally higher, or the number of nodes is high.Future researh diretions ould inlude:
• Using the proposed methodology as a part of a Grid middleware sheduler. It is possible that the highoverhead of typial grid shedulers ompromises the bene�ts shown in this paper, requiring furtheroptimizations.
• Devising a solution for a heterogeneous system with loal ahe.
• Examine the ase of multiple image soures instead of a single load originating node. Although urrentgeneration systems rely mostly on a single image repository, next generation ones are moving away fromthis paradigm [1℄. REFERENCES[1℄ S. R. Amendolia, F. Estrella, R. MClathey, D. Rogulin, and T. Solomonides, �Managing pan-european mammographyimages and data using a servie oriented arhiteture,� in Pro. IDEAS Workshop on Medial Information Systems: TheDigital Hospital (IDEAS-DH'04), September 2004, pp. 99�108.[2℄ M. M. Rahman, T. Wang, and B. C. Desai, �Medial image retrieval and registration: Towards omputer assisted diagnostiapproah,� in Pro. IDEAS Workshop on Medial Information Systems: The Digital Hospital (IDEAS-DH'04), September2004, pp. 78�89.
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Fig. 6.4. Exeution time improvement o�ered by the 1-port sheme over the ED strategy, for a sequene of 1000 queries: (a)when eah query is run individually, (b) when queries are run in bathes of 10, and () when queries are run in bathes of 100.[3℄ S. Sneha and A. Dulipovii, �Strategies for working with digital medial images,� in Pro. 39th Annual Hawaii InternationalConferene on System Sienes (HICSS'06), January 2006, p. 100a.[4℄ Y. Kawasaki, F. Ino, Y. Sato, S. Tamura, and K. Hagihara, �Parallel adaptive estimation of range of motion simulation fortotal hip replaement surgery,� IEICE Transations on Information and Systems, vol. E90-D, no. 1, pp. 30�39, 2007.[5℄ H. Zhou, X. Yang, H. Liu, and Y. Tang, �First evaluation of parallel methods of automati global image registration basedon wavelets,� in 2005 International Conferene on Parallel Proessing (ICPP'05), July 2005, pp. 129�136.[6℄ I. D. Falo, D. Maisto, U. Safuri, E. Tarantino, and A. D. Cioppa, �Distributed di�erential evolution for the registrationof remotely sensed images,� in 15th Euromiro International Conferene on Parallel, Distributed and Network-BasedProessing (PDP'07), February 2007, pp. 358�362.[7℄ S. Ait-Aoudia and R. Mahiou, �Medial image registration by simulated annealing and geneti algorithms,� in GeometriModelling and Imaging (GMAI '07), July 2007, pp. 145�148.[8℄ Y. Bentoutou, N. Taleb, K. Kpalma, , and J. Ronsin, �An automati image registration for appliations in remote sensing,�IEEE Trans. on Geosiene and Remote Sensing, vol. 43, no. 9, pp. 2127�2137, September 2005.[9℄ J. Montagnat, H. Duque1, J. Pierson, V. Breton, L. Brunie, and I. E. Magnin, �Medial image ontent-based queries usingthe grid,� in Pro. of HealthGrid 03, 2003.
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Fig. 6.5. Total exeution time o�ered by Algorithm 1 for a sequene of 1000 queries, under 1-port on�guration: (a) wheneah query is run individually, (b) when queries are run in bathes of 10, and () when queries are run in bathes of 100. Theplain lines at the bottom of (b) and () show the orresponding absolute time gain over (a).[10℄ University of Pennsylvania Consortium and National Digital Mammography Arhive Grid: http://www.ibm.om/e-business/ondemand/us/innovation/univofpa.shtml [Online℄. Available: http://www.ibm.om/e-business/ondemand/us/innovation/univofpa.shtml[11℄ I. Foster, C. Kesselman, J. M. Nik, and S. Tueke, �The physiology of the grid: An open grid servies arhiteturefor distributed systems integration,� DRAFT doument available at http://www.globus.org/researh/papers/ogsa.pdf.[Online℄. Available: http://www.globus.org/researh/papers/ogsa.pdf[12℄ I. Blanquer, V. Hernandez, and F. Mas, �A peer-to-peer environment to share medial images and diagnoses providing ontext-based searhing,� in 13th Euromiro Conferene on Parallel, Distributed and Network-Based Proessing (PDP'05), Febru-ary 2005, pp. 42�48.[13℄ F. Ino, Y. Kawasaki, T. Tashiro, Y. Nakajima, Y. Sato, S. Tamura, and K. Hagihara, �A parallel implementation of 2-d/3-dimage registration for omputer-assisted surgery,� in 11th International Conferene on Parallel and Distributed Systems- Workshops (ICPADS'05), July 2005, pp. 316�320.
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Salable Computing: Pratie and ExperieneVolume 11, Number 3, pp. 239�249. http://www.spe.org ISSN 1895-1767© 2010 SCPEDESIGN AND ANALYSIS OF A SCALABLE ALGORITHM TO MONITORCHORD-BASED P2P SYSTEMS AT RUNTIME∗ANDREAS BINZENHÖFER†, GERALD KUNZMANN‡, AND ROBERT HENJES†Abstrat. Peer-to-peer (p2p) systems are a highly deentralized, fault tolerant, and ost e�etive alternative to the lassilient-server arhiteture. Yet ompanies hesitate to use p2p algorithms to build new appliations. Due to the deentralized natureof suh a p2p system the arrier does not know anything about the urrent size, performane, and stability of its appliation. Inthis paper we present an entirely distributed and salable algorithm to monitor a running p2p network. The snapshot of the systemenables a teleommuniation arrier to gather information about the urrent performane parameters of the running system as wellas to reat to disovered errors.1. Introdution. In reent years peer-to-peer (p2p) algorithms have widely been used throughout theInternet. So far, the suess of the p2p paradigm was mainly driven by �le sharing appliations. However,despite their reputation p2p mehanisms o�er the solution to many problems faed by teleommuniationarriers today [8℄. Compared to the lassi lient-server arhiteture they are deentralized, fault tolerant, andost e�etive alternatives. Those systems are highly salable, do not su�er from a single point of failure, andrequire less administration overhead than existing solutions. In fat, there are more and more suessful p2pbased appliations like Skype [14℄, a distributed VoIP solution, Oeanstore [4℄, a global persistent data store,and even p2p-based network management [10℄.One of the main reasons why teleommuniation arriers are still hesitant to build p2p appliations is thelak of ontrol a provider has over the running system. At �rst, the system appears as a blak box to its operator.The arrier does not know anything about the urrent size, performane, and stability of its appliation. Thedeentralized nature of suh a system makes it hard to �nd a salable way to gather information about therunning system at a entral unit. Operators, however, do not want to lose ontrol over their systems. They wantto know what their systems look like right now and where problems our at the moment. The �rst problemsalready our when testing and debugging a distributed appliation. Finding implementation errors in a highlydistributed system is a very omplex and time onsuming proess [9℄. A provider also needs to know whetherhis newly deployed appliation an truly handle the task it was designed for.The latest generation of p2p algorithms is based on distributed hash tables (DHTs). The algorithm thaturrently attrats the most attention is Chord, whih uses a ring topology to realize the underlying DHT [12℄.DHTs are theoretially understood in depth and proved to be a salable and robust basis for distributedappliations [7℄. However, the problem of monitoring suh a system from a entral loation is far from beingsolved. [11℄ gives a good overview of di�erent approahes to monitor and debug distributed systems in general.In the �eld of p2p, the proess of measuring and monitoring a running system was so far limited to unstruturedoverlays. [13℄, e.g., introdues a rawling-based approah to query Gnutella-like networks.In this paper, however, we exploit the speial features of strutured p2p overlays and present an entirelynovel and salable approah to reate a snapshot of a running Chord-based network. Using our algorithm aprovider an either monitor the entire system or just survey a spei� part of the system. This way, he is ableto reat to errors more quikly and an verify if the taken ountermeasures are suessful. On the basis of thegathered information it is, e.g., possible to take appropriate ation to relief a hotspot or to pinpoint the auseof a loss of the overlay ring struture. The overhead involved in reating the snapshot is evenly distributedto the partiipating peers so that eah peer only has to ontribute a negligible amount of bandwidth. Mostimportantly, the snapshot algorithm is very easy to use for a provider. It only takes one parameter to adjustthe trade o� between duration of the snapshot and bandwidth needed at the entral unit whih ollets themeasurements.The remainder of this paper is strutured as follows. Setion 2 gives a brief overview of Chord with a fouson aspets relevant to this paper. The snapshot algorithm as well as some areas of appliation are desribed inSetion 3. The funtionality of the algorithm is veri�ed analytially in Setion 4 and by simulation in Setion 5.Setion 6 onludes this paper.
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peer yFig. 2.1. A simple searh.
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peer yFig. 2.2. Searh using the �ngers.2. Chord Basis. This setion gives a brief overview of Chord with a fous on aspets relevant to thispaper. A more detailed desription an be found in [12℄. The main purpose of p2p networks is to store datain a deentralized overlay network. Partiipating peers will then be able to retrieve this data using some sortof searh algorithm. The Chord algorithm solves this problem by arranging the partiipating peers on a ringtopology. The position idz of a peer z on this overlay ring is determined by an m-bit identi�er generated bya hash funtion suh as SHA-1 or MD5. In a Chord ring eah peer knows at least the id of its immediatesuessor in a lokwise diretion on the ring. This way, a peer looking up another peer or a resoure is able topass the query around the irle using its suessor pointers. Figure 2.1 illustrates a simple searh of peer z foranother peer y using only the immediate suessor. The searh has to be forwarded half-way around the ring.Obviously, the average searh would require n

2 overlay hops, where n is the urrent size of the Chord ring. Tospeed up searhes a peer z in a Chord ring also maintains pointers to other peers, whih are used as shortutsthrough the ring. Those pointers are alled �ngers, whereby the i-th �nger in a peer's �nger table ontains theidentity of the �rst peer that sueeds z's own id by at least 2i−1 on the Chord ring. That is, peer z with hashvalue idz has its �ngers pointing to the �rst peers that sueed (idz + 2i−1
) mod 2m for i = 1 to m, where 2mis the size of the identi�er spae.Figure 2.2 shows �ngers f1 to f4 for peer z. Using this �nger pointers, the same searh does only take twooverlay hops. For the �rst hop peer z uses its �nger f4. Peer y an then diretly be reahed using the suessorof f4 as indiated by the small arrow. This way, a searh only requires 1

2 log2(n) overlay hops on average. Adetailed mathematial analysis of the searh delay in Chord rings an be found in [3℄. The snapshot algorithmpresented in Setion 3 makes use of the �nger tables of the peers.3. Design of the Snapshot Algorithm. In this setion we introdue a salable and distributed algorithmto reate a snapshot of a running Chord system. The algorithm is based on a very simple two step approah.In step one, the overlay is reursively divided into subparts of a prede�ned size. In step two, the desiredmeasurement is done for eah of these subparts and sent bak to a entral olleting point (CP ). In thefollowing, we desribe both steps in detail.3.1. Step 1: Divide Overlay into Subparts. The algorithm snapshot(Rs, Re, Smin, CP ) divides aspei� region of the overlay into subparts. This funtion is alled at an arbitrary peer p with idp. The peer thentries to divide the region from Rs = idp to Re into ontiguous subparts using its �ngers. The exat proedureis illustrated in Figure 3.1. In this example peer p has four �ngers f1 to f4. It sends a request to the �ngerlosest to Re within [Rs;Re]. At �rst, �nger f4 is disregarded sine it does not fall into the region between Rsand Re (f. a). This makes f3 the losest �nger to Re in our example. If this �nger does not respond to therequest, as illustrated by the bolt (f. b), it is removed from the peer's �nger list and the peer tries to ontatthe next losest �nger f2 (f. ). If this �nger aknowledges the request, peer p reursively tries to divide theregion from Rs = idp to R̂e = idf2 − 1 into ontiguous subparts. Finger f2 partitions the region from R̂s = idf2to Re aordingly.As soon as a peer does not know any more �ngers in the region between the urrent Rs and the urrent
Re, the reursion is stopped. The peer hanges into step two of the algorithm and starts a measurement of thisspei� region. In this ontext, the parameter Smin an be used to determine the minimum size of the regions,whih will be measured in step two. Taking into aount Smin, a peer will already start the measurement if it
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Fig. 3.1. Visualization of the algorithm.does not know any more �ngers in the region between the urrent Rs + Smin and the urrent Re. In this ase�nger f1 would be disregarded, as illustrated by the dotted line (f. d in Figure 3.1), sine it points into theminimum measurement region. Parameter Smin is designed to adjust the trade o� between the duration of thesnapshot and the bandwidth needed at the olleting point. The larger the regions in step two, the longer themeasurement will take. The smaller the regions, the more results are sent bak to the CP.Algorithm 2The snapshot algorithm (�rst all Rs = idp)snapshot(Rs, Re, Smin, CP )send aknowledgment to the sender of the request
idfm = max({idf |idf ∈ �ngerlist ∧ idf < Re})while idfm > Rs + Smin dosend snapshot(idfm, Re, Smin, CP ) request to peer idfmif aknowledgment from idfm thenall snapshot(idp, idfm − 1, Smin, CP ) at loal peerreturn //exit the funtionelseremove idfm from �ngerlist

idfm = max({idf |idf ∈ �ngerlist ∧ idf < Re})end ifend while
Ŝ = Re−Rs

⌈

Re−Rs
Smin

⌉ //explanation see step twoall ountingtoken(idp, Re, Smin, CP , ∅) at loal peerA detailed tehnial desription of the proedure is given in Algorithm 2. Peer p will ontat the losest�nger to Re until it does not know any more �ngers in between Rs + Smin and Re. If so, it hanges into steptwo and starts a measurement of this region alling the funtion ountingtoken(idp, Re, Smin, CP , result) atthe loal peer.3.2. Step 2: Measure a Spei� Subpart. The basi idea behind the measurement of a spei� subpartfrom Rs to Re is very simple. The �rst peer reates a token, adds its loal statistis, and passes the token to itsimmediate suessor. The suessor proeeds reursively until the �rst peer with an id > Re is reahed. Thispeer sends the token bak to the olleting point, whose IP is given in the parameter CP.Ideally, eah of the regions measured in step two would be of size Smin as spei�ed by the user. The problem,however, is that the region from Rs to Re is slightly larger than Smin aording to step one of the algorithm.In fat, if the responsible peer did not know enough �ngers, the region might even be signi�antly larger than
Smin. The solution to this problem is to introdue hekpoints with a distane of Smin in the orrespondingregion. Results are sent to the CP every time the token passes a hekpoint instead of sending only one answer
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Fig. 3.2. Results sent after eah hekpoint.at the end of the region. This is illustrated in the upper part of Figure 3.2. The ounting token is started at Rs.The �rst peer behind eah hekpoint sends a result bak to the CP as illustrated by the large solid arrows.The �nal result is still sent by the �rst peer with id > Re.A drawbak of this solution is that the hekpoints might not be equally distributed in the region. Inpartiular, the last two hekpoints might be very lose to eah other. We therefore realulate the positions ofthe hekpoints aording to the following equation:
Ŝmin =

Re −Rs⌈
Re−Rs

Smin

⌉ .The new hekpoints an be seen in the lower part of Figure 3.2. The number of hekpoints remains the same,while their positions are moved in suh a way, that the results are now sent at equal distane.As an be seen at the end of Algorithm 2, the realulation of Smin is already done in the �rst step,just before the ounting token is started. A detailed desription of the ounting token mehanism is given inAlgorithm 3. If a peer p reeives a ounting token it makes sure that its identi�er is still within the measuredregion, i.e. Rs ≤ idp ≤ Re . If not, it sends a result bak to the CP and stops the token. Otherwise it addsits loal measurement to the token and tries to pass the token to its immediate suessor. If it is the �rst peerbehind one of the hekpoints, it sends an intermediate result bak to the CP and resets the token.As mentioned above the parameter Smin roughly determines the minimum size of the regions measured instep two. If Sid is the total size of the identi�er spae, there will be Nc ounting tokens arriving at the CP ,whereas:
2 ·

⌈
Sid

Smin

⌉
≥ Nc ≥

⌈
Sid

Smin

⌉
.A more detailed analysis of the snapshot algorithm is given in Setion 4 as well as in [1℄.3.3. Collet Statistis. Generally speaking, there are two di�erent kinds of statistis, whih an beolleted using the ounting tokens. Either a simple mean value or a more detailed histogram. In the �rst asethe ounting token memorizes two variables, Va for the aumulated value and Vn for the number of values. Eahpeer reeiving the ounting token adds its measured value to Va and inreases Vn by one. The sample mean anthen be alulated at the CP as ∑

Va
∑

Vn
. In ase of a histogram, the ounting token maintains a spei� numberof bins and their orresponding limits. Eah peer simply inreases the bin mathing its measured value by one.If the measured value is outside the limits of the bins it simply inreases the �rst or the last bin respetively.There are numerous things that an be measured using the above mentioned methods. Table 3.1 summarizessome exemplary statistis and the kind of information whih an be gained from them. The most obviousappliation is to ount the number of hops for eah ounting token. On the one hand, this is a diret measurefor the size of the overlay network. On the other hand, it also shows the distribution of the identi�ers in the



Monitoring P2P Systems 243Algorithm 3The ountingtoken algorithm (�rst all Rs = idp)ountingtoken(Rs, Re, Smin, CP , result)send aknowledgment to the sender of the requestif Rs ≤ idp ≤ Re thenif idp > Rs + Smin thensend result to CP
result = 0
Rs = Rs + Sminend ifadd loal measurement to result

ids = id of diret suessorwhile 1 dosend ountingtoken(Rs, Re, Smin, CP , result) request to diret suessor idsif aknowledgment thenbreakelseremove ids from suessor list
ids = id of new diret suessorend ifend whileelsesend result to CPend if Table 3.1Possible statistis gathered during snapshotStatisti Information gainedNumber of hops per token Size of the network, Distribution of the identi�ersMean searh delay Performane of the algorithmSender ?

== predeessor Overlay stabilityNumber of timeouts per token Churn rateNumber of resoures per peer Fairness of the algorithmNumber of searhes answered User behaviorBandwidth used per time unit Maintenane overheadMissing resoures Data integrityidenti�er spae. To gain information about the performane of the Chord algorithm, the mean searh delay ora histogram for the searh time distribution an be alulated and ompared to expeted values. Furthermore,Chord's stability an only be guaranteed as long as the suessor and predeessor pointers of the individual peersmath eah other orrespondingly. This invariant an be heked by ounting the perentage of hops, where thesender of the ounting token did not math the predeessor of the reeiving peer. Additionally, the number oftimeouts per token an be used to measure the urrent hurn rate in the overlay network. The more hurn thereis, the more timeouts are going to our due to outdated suessor pointers. Similarly, the number of resouresstored at eah peer is a sign of the fairness of the Chord algorithm. The number of searhes answered at eahpeer an likewise be used to get an idea of the searh behavior of the end users. Finally, a peer an keep trakof the number of missing resoures to verify the integrity of the stored data. This an, e.g., be done ountingthe number of searh requests whih ould not be answered by the peer.All of the above statistis an be olleted periodially to survey the time dependent status of the overlay.Note, that it is also possible to monitor a spei� part of the overlay network by setting Rs and Re aordingly.This an, e.g., be helpful if there are problems in a ertain region of the overlay network and the operator needsto verify that his ountermeasures have been suessful.



244 A. Binzenhoefer, G. Kunzmann, and R. Henjes4. Analysis and Optimizations. To analyze our algorithm we derive the duration of a snapshot (f.Subsetion 4.1) and the temporal distribution of the token arrival times at the CP (f. Subsetion 4.2).4.1. Duration of a Snapshot. To alulate an estimate of the duration of a snapshot, we assume asenario without any peers joining or leaving the network. It is quite straightforward to estimate the durationof step one, the signaling step. The last ounting token whih will be started is the one overing the regiondiretly following the initiating peer. This is due to the fat, that the initiating peer will start its ountingtoken no sooner than it divided the ring into separate regions. Before it initiates the ounting token, it ontatsits �ngers until the �rst �nger is loser to itself than Smin. The initiating peer has at most log2(n) �ngers andeah of the �ngers sends an aknowledgment, before the peer an go on with the algorithm. If TO is the randomvariable desribing one overlay hop, then the duration of step one of the algorithm is at most
Dstep1 = 2 · log2(n) ·E[TO]. (4.1)The worst ase for step two would be that the initiating peer does not know any �ngers and diretly sendsthe ounting token. This would take n · E[TO], but is very unlikely to happen. In general, if there are n peersin the overlay, there are roughly Pr = n·Smin

Sid
peers per region. Furthermore, in the worst ase Smin is slightlylarger than a power of two and the region overed by a ounting token may beome almost twie as large as

Smin. Therefore a good estimate for the duration of the ounting step of the algorithm is:
Dstep2 = 2 · Pr · E[TO]. (4.2)This results in the following total duration of a snapshot:

D =

(
log2(n) +

n · Smin

Sid

)
· 2 · E[TO]. (4.3)4.2. Token Arrival Time Distribution. To get a rough estimate for the distribution of the arrival timesof the ounting tokens at the CP , we onsider the speial ase where the size of the overlay n = 2g is a power oftwo and Smin is suh that Nr = 2h with h < g. Furthermore, we assume that the individual peers are loatedat equal distanes on the ring as shown in Figure 4.1.It an be shown, that in this ase h = log2(Nr) is the number of overlay hops it takes until the �rst ountingtoken is started during a snapshot. Similarly, it takes 2 ·h hops until the last ounting token is started aordingto our assumptions. The probability pi that a ounting token is started after exatly i hops for i = h, h+1, ..., 2·han be alulated as:

pi =

(
h

i−h

)
∑2·h

x=h

(
h

x−h

) . (4.4)The above onsiderations are nontrivial, but an niely be explained using the simple example shown in Figure4.1, where g = 4, h = 2, and therefore n = 24 and Nr = 22. The solid arrows in the �gure show the messagesof the signaling step, the dotted arrows the orresponding aknowledgments. The numbers next to the arrowsrepresent the number of overlay hops, whih have passed sine the beginning of the snapshot.In the example, peer A starts a snapshot of the entire ring. It sends a request to B to over the regionbetween B and A. Peer B sends an aknowledgment bak to A and a simultaneous request to C to over theregion from C to A. C has no �ngers outside its minimum measurement region and starts the �rst ountingtoken after h = 2 overlay hops. Simultaneously, it sends an aknowledgment bak to B. Peer B then starts itsounting token after 3 overlay hops. In the meantime A signals D to over the region from D to B. Peer Dimmediately starts its ounting token after a total of 3 overlay hops. Peer A waits for the �nal aknowledgmentand starts its ounting token after 4 = 2 ·h overlay hops. Summarizing the above, there are four ounting tokensstarted after 2, 3, 3, and 4 overlay hops respetively.Aording to our assumptions, eah ounting token needs exatly Pr = 4 hops to travel the orrespondingregion and one �nal hop to arrive at the CP . A rough estimate for the distribution of the arrival times of theounting tokens at the CP is therefore given by the phase diagram shown in Figure 4.3. It indiates that thesignaling step takes i overlay hops with a probability pi for i = h, h + 1, ..., 2 · h, whih is followed by Pr hopsof the ounting token and the �nal hop to report the result bak to the CP .
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Fig. 4.3. Phase diagram of the token arrival time distribution.To validate our analytial results, we simulated a Chord ring of size n = 215 with Smin = 29 aordingto the above assumptions. Figure 4.2 shows the probability density funtion of the token arrival times at the
CP . Obviously, the urves math very well and the binomial distribution of the duration of step one an bereognized. So far, in our example eah peer has a �nger at an exat distane of Smin. In reality, however,the �nger would sit at a slightly di�erent position, whih again would result in an additional hekpoint atthe middle of the region. The urve labeled �Chekpoints� orresponds to a slightly modi�ed phase diagram,whih adds an intermediate result in the middle of the measurement region. The �rst rise of the probabilitydensity funtion (pdf) therefore represents the intermediate results sent bak to the CP at the hekpoint. Theseond rise still represents the regular results at the end of the region. In the following setion we will presentsimulations of more realisti senarios inluding hurn and timeouts.5. Results. The results in this setion were obtained using our ANSI-C simulator, whih inorporates adetailed yet slightly modi�ed Chord implementation. A good desription of the general simulation model anbe found in [5, 6℄. In this work an overlay hop is modeled using an exponentially distributed random variablewith a mean of 80ms. The results onsidering hurn are generated using peers, whih stay online and o�ine foran exponentially distributed period of time with a mean as indiated in the orresponding desription of the�gures.The snapshot algorithm takes one single input argument Smin whih diretly translates into Nr =

⌈
Sid

Smin

⌉,the number of areas the overlay will be divided into. This parameter in�uenes the duration of the snapshot aswell as the number of results arriving at the entral olleting point. Figure 5.1 shows the distribution of the
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Fig. 5.2. In�uene of Nr for 20000 peers.arrival times of the results in an overlay of 40000 peers using Nr = 1000 and Nr = 100 areas in times of nohurn. Obviously, the more areas the overlay is divided into, the faster the snapshot is ompleted. While thesnapshot using 1000 areas was �nished after about ten seonds, the snapshot with 100 areas took about oneminute. In exhange the latter snapshot produes signi�antly smaller bandwidth spikes at the CP. The twoelevations of the seond histogram orrespond to the intermediate results (�rst elevation) and the �nal resultsat the end of the measured subpart (seond elevation). Note that the �nal results arrive about twie as lateas the intermediate results. The �rst step of the algorithm uses the �ngers to divide the ring into subparts.Sine the distane between a peer and its �ngers is always slightly larger than a power of two it is usually notpossible to divide the ring exatly into the desired number of areas. In fat it is very likely, that a peer stopsthe reursion and starts its measurement one it ontated its xth �nger, where 2x−1 < Smin = Sid

Nr
≤ 2x. Thatis, the reursion stops at �nger x with idfx , whereas the distane between the peer and this spei� �nger mightalmost be twie as large as the desired Smin. It is therefore advisable to hoose Nr as a power of two itself inorder to ensure that idfx is only slightly larger than idp + Smin. Figure 5.2 shows the di�erent arrival times ofthe results for Nr = 512 and Nr = 500 in an overlay of 20000 peers without hurn. The skewed shape of thehistogram in the foreground results from the fat that 500 is slightly smaller than a power of two, whih in turnmakes Smin slightly larger than a power of two. In this ase it is likely that the peer has a �nger just beforethe end of the minimum measurement region idp + Smin. Thus, �nger x sits at a distane of about twie Sminfrom the peer. The resulting ounting token will therefore travel a distane of about twie Smin as well.A more detailed analysis of the in�uene of Nr an be found in Figure 5.3, whih shows the number ofresults reeived at the CP in dependene of Nr. As shown in [1℄, Nc, the number of ounting tokens sent tothe CP , is limited by 2 · Nr > Nc ≥ Nr. The straight lines in the �gure show the orresponding limits. Thesolid and dotted urves represent the results obtained for 20000 and 10000 peers, respetively. The number ofresults sent to the CP is within the alulated limits and independent of the overlay size. The urves roughlyresemble the shape of a stairase, whereas the steps are loated at powers of two. There are two main reasonsfor this behavior. First of all, the average ounting token sends two results bak to the CP , one intermediateresult and the �nal result at the end of the measurement region. Hene, the smaller the region overed by theaverage ounting token, the more results arrive at the CP . As explained above, the loser Nr gets to a powerof two, the smaller the region overed by the average ounting token. This aounts for the �rst part of the riseof the number of results reeived at the CP .The distribution of the arrival times of the results is also in�uened by the urrent size of the network. Thelarger the network, the more peers are within one region. However, the more peers are within one region, themore hops eah ounting token has to make, before it an send its results bak to the CP. Figure 5.4 shows thetoken arrival time distribution for three di�erent overlay sizes of 10000, 20000, and 40000 peers, respetively.We did not generate any hurn in this senario and set Nr = 512 areas. As expeted, the larger the overlaynetwork, the longer the snapshot is going to take. However, the urves are not only shifted to the right, butalso di�er in shape. This an again be explained by the inreasing number of hops per ounting token.As mentioned above, the average ounting token sends two results bak to the CP, whereas the hekpointsare equally spaed. Thus, the �nal result takes twie as many hops as the intermediate result. In a network of
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Fig. 5.4. Arrival times of the results at the CP .
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Fig. 5.6. Relative frequeny of timeouts and pointer fail-ures.10000 peers there are approximately 20 peers in eah of the 512 regions. The intermediate results are thereforesent after about 10 hops, the �nal results after about 20 hops, respetively. The two orresponding elevationsin the histogram overlap in suh a way, that they build a single elevation. In a network of 40000 peers, however,there are approximately 78 peers in eah of the 512 regions. The intermediate results are therefore sent afterabout 39 hops, the �nal results after about 78 hops, respetively. The di�erene between these two numbersis large enough to aount for the two elevations of the histogram in the foreground of Figure 5.4. Note, thatall urves are shifted to the right as ompared to the mere hop ount sine it takes some time for the signalingstep until the ounting tokens an be started. In pratie the urrent size of the overlay an be estimated to beable to hoose an appropriate value for Nr as suggested in [2℄.The arrival time of the results at the CP is also a�eted by the online/o�ine behavior of the individualpeers. To study the in�uene of hurn we onsider 80000 peers with an exponentially distributed online ando�ine time, eah with a mean of 60 minutes. This way, there are 40000 peers online on average, whih makesit possible to ompare the results to those obtained using 40000 peers without hurn. Figure 5.5 shows theorresponding histograms.As a result of hurn in the system, the two elevations of the original histogram beome notieably blurredand the snapshot is slightly delayed. This is due to the inonsistenies in the suessor and �nger lists of thepeer as well as the timeouts whih our during the forwarding of the ounting tokens. In return the spike inthe diagram and thus the required bandwidth at the CP beomes smaller.It is easy to show, that the probability to lose a token is almost negligible [1℄. Therefore, a more meaningfulmethod to measure the in�uene of hurn is to regard the number of timeouts whih our during a snapshot.Furthermore, the in�uene of hurn on the stability of the overlay network an be studied looking at the
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Fig. 5.7. Results of a snapshot ompared to the global view.frequeny at whih the predeessor pointer of a peer's suessor does not math the peer itself. Figure 5.6plots the relative frequeny of timeouts and pointer failures against the mean online/o�ine time of a peer. Thesmaller the online/o�ine time of a peer, the more hurn is in the system.The results represent the mean of several simulation runs, whereas the error bars show the 95 perent on�-dene intervals. The relatively small perentage of both timeouts and failures is to some extent implementationspei�. More interesting, however, is the exponential rise of the urves under higher hurn rates. The shapeof both urves is independent of the size of the overlay and only a�eted by the urrent hurn rate. The urvean therefore be used to map the frequeny of timeouts or failures measured in a running system to a spei�hurn rate.Until now, we only regarded the tra� pattern at the entral olleting point. From an operator's pointof view, however, it is more important to know, whether the snapshot itself is meaningful. To validate theauray of the snapshot algorithm, we again simulated an overlay network with 80000 peers, eah with a meanonline/o�ine time of 60 minutes. Due to the properties of the hash funtion and the hurn behavior in thesystem the number of douments on a single peer an be regarded as a random variable. The measurement weare interested in is the orresponding pdf in order to see whether the distribution of the douments among thepeers is fair or not. The pdf was measured using our snapshot algorithm as explained in Setion 3.3. The resultof the snapshot is ompared to the atual pdf obtained using the global view of our disrete event simulator (.f.Figure 5.7). The two urves are almost indistinguishable from eah other. The same is true for all the otherstatistis shown in Table 3.1, like the urrent size of the system or the average bandwidth used per time unit.That is, the snapshot provides the operator with a very aurate piture of the urrent state of its system. Thisniely demonstrates that the results obtained by the snapshot an be used to better understand the performaneof the running p2p system. The multiple possibilities to interpret the olleted data are well beyond the sopeof this paper.6. Conlusion. One of the main reasons that teleommuniation arriers are still hesitant to build p2pappliations is the lak of ontrol a provider has over the running system. In this paper we introdued an entirelydistributed and salable algorithm to monitor a Chord based p2p network at runtime. The load generated duringthe snapshot is evenly distributed among the peers of the overlay and the algorithm itself is easy to on�gure.It only takes one input parameter, whih in�uenes the trade-o� between the duration of the snapshot and thebandwidth required at the entral server whih ollets the results. In general it takes less than one minute toreate a snapshot of a Chord ring onsisting of 40000 peers. We performed a mathematial analysis of the basimehanisms and provided a simulative study onsidering realisti user behavior.The algorithm is resistant to instabilities in the overlay network (hurn) and provides the operator with avery aurate piture of the urrent state of its system. It o�ers the possibility to monitor the entire overlaynetwork or to onentrate on a spei� part of the system. The latter is espeially useful if a problem o-urred in a spei� part of the system and the operator wants to assure that his ountermeasures have beensuessful.
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Salable Computing: Pratie and ExperieneVolume 11, Number 3, pp. 251�262. http://www.spe.org ISSN 1895-1767© 2010 SCPEUSING GRIDS FOR EXPLOITING THE ABUNDANCE OF DATA IN SCIENCEEUGENIO CESARIO∗AND DOMENICO TALIA∗,†Abstrat. Digital data volumes are growing exponentially in all sienes. To handle this abundane in data availability,sientists must use data analysis tehniques in their sienti� praties and solving environments to get the bene�ts omingfrom knowledge that an be extrated from large data soures. When data is maintained over geographially remote sites theomputational power of distributed and parallel systems an be exploited for knowledge disovery in sienti� data. In this senariothe Grid an provide an e�etive omputational support for distributed knowledge disovery on large datasets. In partiular, Gridservies for data integration and analysis an represent a primary omponent for e-siene appliations involving distributed massiveand omplex data sets. This paper desribes some researh ativities in data-intensive Grid omputing. In partiular we disussthe use of data mining models and servies on Grid systems for the analysis of large data repositories.Key words: e-siene, knowledge disovery, grid, parallel data mining, distributed data mining, grid-based data mining1. Introdution. The past two deades have been dominated by the advent of inreasingly powerful andless expensive ubiquitous omputing, as well as the appearane of the World Wide Web and related teh-nologies [12℄. Due to suh advanes in information tehnology and high performane omputing, digital datavolumes are growing exponentially in many �elds of human ativities. This phenomenon onerns sienti�disiplines, as well as industry and ommere. Suh tehnologial development has also generated a whole newset of hallenges: the world is drowning in a huge quantity of data, whih is still growing very rapidly both inthe volume and omplexity.Jim Gray in some talks in 2006 identi�ed four hronologial steps for the methodologies employed bysientists for disoveries. The �rst step ourred thousand years ago, when siene was empirial and it wasoriented to just desribe natural phenomena. The seond one is temporally loated around a few hundred yearsago, when a theoretial branh was born, aimed at formulating some general models desribing the empirialknowledge. The third step ourred in the latest few deades, when a omputational branh started up andomplex phenomena started to be simulated by the resoures made available by the urrent tehnology. Finally,the fourth step is run today, when sientists are working to unify theories, experiments and simulations withdata proessing and exploration to extrat knowledge hidden in it.The abundane of digitally stored data require to onsider in detail this phenomenon. In partiular, thereare two important trends, tehnologial and methodologial, whih seem to partiularly distinguish the new,information-rih siene from the past:
• Tehnologial. There is a lot of data olleted and warehoused in various repositories distributed over theworld: data an be olleted and stored at high speeds in loal databases, from remote soures or fromthe our galaxy. Some examples inlude data sets from the �elds of medial imaging, bio-informatis,remote sensing and (as very innovative aspet) several digital sky surveys. This implies a need forreliable data storage, networking, and database-related tehnologies, standards and protools.
• Methodologial. Huge data sets are hard to understand, and in partiular data onstruts and patternspresent in them annot be omprehended by humans diretly. This is a diret onsequene of thegrowth in omplexity of information, and mainly its multi-dimensionality. For example, a omputationalsimulation an generate terabytes of data within a few hours, whereas human analysts may take severalweeks to analyze these data sets. For suh a reason, most of data will never be read by humans, ratherthey are to be proessed and analyzed by omputers.We an summarize what we foresaid as follows: whereas some deades ago the main problem was the lakof information, the hallenge now seems to be (i) the very large volume of information and (ii) the assoiatedomplexity to proess for extrating signi�ant and useful parts or summaries.Nevertheless, the �rst aspet does not represent a limitation or a problem for the sienti� ommunity:urrent data storage, arhitetural solutions and ommuniation protools provide a reliable tehnologial baseto ollet and store suh abundane of data in an e�ient and e�etive way. Moreover, the availability ofhigh throughput sienti� instrumentation and very inexpensive digital tehnologies failitated this trend fromboth tehnologial and eonomial view point. On the other hand, the omputational power of omputers is
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252 E. Cesario and D. Talianot growing as fast as the demand of suh a data omputation requires, and this represents a limit for theknowledge that potentially ould be extrated. As an additional aspet, we have to onsider that storage ostsare urrently dereasing faster than omputing osts, and this trend makes things worse.For example, the impat of foresaid issues in the biologial �eld is well desribed in [20℄. It points out thatthe emergene of genome and post-genome tehnology has made huge amount of data available, demandinga proportional support of analysis. Nevertheless, an important fator to be onsidered is that the numberof available omplete genomi sequenes is doubling almost every 12 months, whereas aording to Moore'slaw available ompute yles (i. e., omputational power) double every 18 months. Additionally, we have toonsider that analysis of genomi sequenes require binary omparisons of the genes involved in it. As a diretonsequene of that, the omputational overhead is very very high. We an see the impat of suh issuesin Figure 1.1 (soure: [20℄), whih ontrasts the number of geneti sequenes obtained with the number ofannotations generated. The �gure shows that the knowledge (annotations, models, patterns) has a sub-linearrate with respet to the the available data sequenes whih they are extrated from.

Fig. 1.1. Growth of sequenes and annotations sine 1982 (Soure: [20℄)To handle this abundane in data availability (whose rate of prodution often far outstrips our abilityto analyze), appliations are emerging that explore, query, analyze, visualize, and in general, proess verylarge-sale data sets: they are named data intensive appliations. Computational siene is evolving towarddata intensive appliations that inlude data integration and analysis, information management, and knowledgedisovery. In partiular, knowledge disovery in large data repositories an �nd what is interesting in them byusing data mining tehniques. Data intensive appliations in siene help sientists in hypothesis formation andgive them a support on their sienti� praties and solving environments, getting the bene�ts oming fromknowledge that an be extrated from large data soures.When data is maintained over geographially distributed sites the omputational power of distributed andparallel systems an be exploited for knowledge disovery in sienti� data. Parallel and distributed datamining algorithms are suitable to suh a purpose. Moreover, in this senario the Grid an provide an e�etiveomputational support for data intensive appliation and for knowledge disovery from large and distributeddatasets. Grid omputing is reeiving an inreasing attention from the researh ommunity, wathing at thisnew omputing infrastruture as a key tehnology for solving omplex problems and implementing distributedhigh-performane appliations [14℄.Today many organizations, ompanies, and sienti� enters produe and manage large amounts of omplexdata and information. Climate, astronomi, and genomi data together with ompany transation data are justsome examples of massive amounts of digital data that today must be stored and analyzed to �nd usefulknowledge in them. This data and information patrimony an be e�etively exploited if it is used as a soureto produe knowledge neessary to support deision making. This proess is both omputationally intensive,ollaborative, and distributed in nature. The development of data mining software for Grids o�ers tools andenvironments to support the proess of analysis, inferene, and disovery over distributed data available inmany sienti� and business areas. The reation of frameworks on top of data and omputational Grids is the



Using Grids for Exploiting the Abundane of Data in Siene 253enabling ondition for developing high-performane data mining tasks and knowledge disovery proesses, andit meets the hallenges posed by the inreasing demand for power and abstratness oming from omplex datamining senarios in siene and engineering. For example, some projets desribed in Setion 2 suh as NASAInformation Grid, TeraGrid, and Open Siene Grid use the omputational and storage failities in their Gridinfrastrutures to mine data in a distributed way. Sometime in these projets are used ad ho solutions for datamining, in other ases generi middleware is used on top of basi Grid toolkits. As pointed out by William E.Johnston in [19℄, the use of general purpose data mining tools may e�etively support the analysis of massiveand distributed data sets in large sale siene and engineering.The Grid allows to federate and share heterogeneous resoures and servies suh as software, omputers,storage, data, networks in a dynami way. Grid servies an be the basi element for omposing software and dataelements, and exeuting omplex appliations on Grid and Web systems. Today the Grid is not just omputeyles, but it is also a distributed data management infrastruture. Integrating those two features with �smart"algorithms we an obtain a knowledge-intensive platform. The driving Grid appliations are traditionallyhigh-performane and data intensive appliations, suh as high-energy partile physis, and astronomy andenvironmental modeling, in whih experimental devies reate large quantities of data that require sienti�analysis.In the latest years many signi�ant Grid-based data intensive appliations and infrastrutures have beenimplemented. In partiular, the servie-based approah is allowing the integration of Grid and Web for handlingwith data. We will brie�y report some of these appliations in the �rst of the paper; then we disuss about theuse of high performane data mining tehniques for siene in Grid platforms.The rest of the paper is organized as follows. Setion 2 desribes some Grid-based data intensive projets andappliations. Setion 3 gives an overview of approahes for parallel, distributed and Grid-based data miningtehniques. Setion 4 introdues the Knowledge Grid, a referene software arhiteture for geographiallydistributed knowledge disovery systems. The Setion 5 gives onluding remarks.2. Grid Tehnologies for dealing with Sienti� data. Several sienti� teams and ommunities areusing Grid tehnology for dealing with intensive appliations aimed at sienti� data proessing. As examplesof this approah, in the following we shortly desribe some of them.2.1. The DataGrid Projet: Grid for Physis. The European DataGrid [11℄ is a projet funded bythe European Union with the aim of setting up a omputational and data-intensive Grid of resoures for theanalysis of data oming from sienti� exploration. The main goal of the projet is to oordinate resouresharing, ollaborative proessing and analysis of huge amounts of data produed and stored by many sien-ti� laboratories belonging to several institutions. It is made e�etive by the development of a tehnologialinfrastruture enabling sienti� ollaborations where researhers and sientists will perform their ativitiesregardless of geographial loation. The projet develops salable software solutions in order to handle manyPBs1 of distributed data, tens of thousand of omputing resoures (proessors, disks, et.), and thousands ofsimultaneous users from multiple researh institutions. The three real data intensive omputing appliationsareas overed by the projet are biology/medial, earth observation and partile physis. In partiular, thelast one is oriented to answer longstanding questions about the fundamental partiles of matter and the foresating between them. The goal is to understand why some partiles are muh heavier than others, and whypartiles have mass at all. To that end, CERN2 has built the Large Hadron Collider (LHC), the most powerfulpartile aelerator ever oneived, that generates huge amounts of data. It is estimated that LHC generatesapproximately 1 GB/se and 10 PB/year of data. The DataGrid Projet provided the solution for storing andproessing this data, based on a multi-tiered, hierarhial omputing model for sharing data and omputingpower among multiple institutions. In partiular, a Tier-0 entre is loated at CERN and is linked by highspeed networks to approximately ten major Tier-1 data proessing entres. These fan out the data to a largenumber of smaller ones (Tier-2).The DataGrid projet ended on Marh 2004, but many of the produts (tehnologies, infrastruture, et.)are used and extended in the EGEE projet. The Enabling Grids for E-sienE (EGEE) [13℄ projet bringstogether sientists and engineers from more than 240 institutions in 45 ountries world-wide to provide a seamlessGrid infrastruture for e-Siene that is available to sientists 24 hours/day. Expanding from originally two
1PetaByte = 106GigaBytes
2European Organization for Nulear Researh



254 E. Cesario and D. Taliasienti� �elds, high energy physis and life sienes, EGEE now integrates appliations from many othersienti� �elds, ranging from geology to omputational hemistry. The EGEE Grid onsists of over 36,000CPUs available to users 24 hours a day, 7 days a week, in addition to about 5 PB disk of storage, and maintains30,000 onurrent jobs on average. Having suh resoures available hanges the way sienti� researh takesplae. The end use depends on the users' needs: large storage apaity, the bandwidth that the infrastrutureprovides, or the sheer omputing power available. Generally, the EGEE Grid infrastruture is ideal for anysienti� researh espeially where the time and resoures needed for running the appliations are onsideredimpratial when using traditional IT infrastrutures.2.2. The NASA Information Power Grid (IPG) Infrastruture. The NASA's Information PowerGrid (IPG) [18℄ is a high-performane omputing and data grid built primarily for use by NASA sientistsand engineers. The IPG has been onstruted by NASA between 1998 and the present making heavy use ofGlobus Toolkit omponents to provide Grid aess to heterogeneous omputational resoures managed by severalindependent researh laboratories. Sientists and engineers aess the IPG's omputational resoures from anyloation with Grid interfaes providing seurity, uniformity, and ontrol. Sientists beyond NASA an also usefamiliar Grid interfaes to inlude IPG resoures in their appliations (with appropriate authorization). TheIPG infrastruture has been and is being used by numerous sienti� and engineering e�orts both within andbeyond NASA. Some of its most important appliations are omputational �uid dynamis and meteorologialdata mining.2.3. TeraGrid. TeraGrid [29℄ is an open sienti� disovery infrastruture ombining leadership lassresoures (inluding superomputers, storage, and sienti� visualization systems) at nine partner sites to reatean integrated, persistent omputational resoure. It is oordinated by the Grid Infrastruture Group (GIG)at the University of Chiago. Using high-performane network onnetions, the TeraGrid integrates high-performane omputers, data resoures and tools, and high-end experimental failities around the ountry.Currently, TeraGrid resoures inlude more than 250 tera�ops of omputing apability and more than 30 PBsof online and arhival data storage, with rapid aess and retrieval over high-performane networks. Researhersan also aess more than 100 disipline-spei� databases. With this ombination of resoures, the TeraGrid isone of the world's largest and most omprehensive distributed Grid infrastruture for open sienti� researh.2.4. NASA and Google. Reently NASA initiated a joint projet with Google, In. for applying Googlesearh tehnology to help sientists to proess, organize, and analyze the large-sale streams of data omingfrom the Large Synopti Survey Telesope (LSST), loated in Chile. When ompleted, the LSST will generateover 30 terabytes of multiple olor images of visible sky eah night. Google will ollaborate with LSST todevelop searh and data aess tehniques and servies that an proess, organize and analyze the very largeamounts of data oming from the instrument's data streams in real time. The engine will reate �data images"for sientists to view signi�ant spae events and extrat important features from them. This joint projet willshow how omplex data management tehniques generally used in searh engines an be exploited for sienti�disovery.In the general framework of this ollaboration, the main NASA's goal is to make its huge stores of dataolleted during everything from spaeraft missions, moon landings to landings on Mars to orbits aroundJupiter�available to sientists and the publi. Some of the data an already be found on NASA's Web site butexploiting Google tehniques with high performane failities, this data will be aessible in an easy way.2.5. Open Siene Grid. The Open Siene Grid [24℄ is a ollaboration of siene researhers, softwaredevelopers and omputing, storage and network providers. It gives aess to shared resoures worldwide tosientists (from universities, national laboratories and omputing enters aross the United States). The OpenSiene Grid links storage and omputing resoures at more than 30 sites aross the United States. TheOSG works atively with many partners, inluding Grid and network organizations and international, national,regional and ampus Grids, to reate a Grid infrastruture that spans the globe. Sientists from many di�erent�elds use the OSG to advane their researh. Appliations of OSG projet are ative in various areas of siene,like partile and nulear physis, astrophysis, bioinformatis, gravitational-wave siene, mathematis, medialimaging and nanotehnology. OSG resoures inlude thousands of omputers and 10 of terabytes of arhivaldata storage.2.6. myExperiment. myExperiment [22℄ is a ollaborative researh environment whih enables sientiststo share, reuse and repurpose experiments. It is based on the idea that sientists usually prefer to share



Using Grids for Exploiting the Abundane of Data in Siene 255experimental results than data. myExperiment has been in�uened by soial networking programs suh asWired and Flikr, and is based on the mySpae infrastruture. myExperiment enables sientists to share anduse work�ows and redue time-to-experiment, share expertise and avoid reinvention. myExperiment reates anenvironment for sientists to adopt Grid tehnologies, where they an de�ne, when they share data, with whomthey share it and how muh of it an be aessed. The myExperiment projet mainly fouses its appliationsat ase studies for the spei� areas of astronomy, bio-informatis, hemistry and soial siene.2.7. National Virtual Observatory. The National Virtual Observatory [23℄ is a new researh projetwhose goal is to make all the astronomial data in the world quikly and easily aessible by anyone. Suh aprojet enables a new way of doing astronomy, moving from an era of observations of small, arefully seletedsamples of objets in one or a few wavelength bands, to the use of multi-wavelength data for millions, or evenbillions of objets. Suh large olletion of data makes researhers able to disover subtle, but signi�ant,patterns in statistially rih and unbiased databases, and to understand omplex astrophysial systems throughthe omparison of data to numerial simulations. With the National Virtual Observatory (NVO), astronomersexplore data that others have already olleted, �nding new uses and new disoveries in existing data. NVOenables astronomers to do a new type of researh that, ombined with traditional telesope observations, willlead to many new and interesting disoveries. It is worth notiing that the NVO has proposed to exploit theomputational resoures of the TeraGrid projet (desribed in the Setion 2.3), in order to enable astronomersin the exploration and analysis of the physial proesses that drive the formation and evolution of our universe,and enouraging new ways to use superomputing failities for siene.2.8. Southern California Earthquake Center. The Southern California Earthquake Center projet[26℄ is aimed at developing new omputing apabilities, that an lead to better foreasts of when and whereearthquakes are likely to our in Southern California, and how the ground will shake as a result. The �nalgoal is to improve mathematial models about the struture of the Earth and how the ground moves duringearthquakes. The projet team inludes ollaborating researhers from Southern California Earthquake Center(SCEC), the Information Sienes Institute (ISI) at USC, the San Diego Superomputing Center (SDSC), theInorporated Institutions for Seismology (IRIS), and the United States Geologial Survey (USGS). The projetheavily exploits Grid tehnologies, allowing sientists to organize and retrieve information stored throughoutthe ountry, and giving advantages of the proessing power of a network of many omputers.3. Data Mining and Knowledge Disovery. After disussing signi�ant data management issues andprojets, here we fous on data mining tehniques for knowledge disovery in large sienti� data reposito-ries. Data Mining is the semi-automati disovery of patterns, models, assoiations, anomalies and (statistiallysigni�ant) strutures hidden in data. Traditional data analysis is assumption-driven, that is the hypothesisis formed and validated against the data. Data mining, in ontrast, is disovery-driven, in the sense thatthe patterns (and models) are automatially extrated from data. Data mining founds its appliation to sev-eral sienti� and engineering domains, inluding astrophysis, medial imaging, omputational �uid dynamis,biology, strutural mehanis, and eology.From a sienti� viewpoint, data an be olleted by many soures: remote sensors on a satellite, telesopesanning the sky, miroarrays generating gene expression data, sienti� simulations, et. Moreover, in suhinfrastrutures data are olleted and stored at enormous speeds (GBs/hour). Both suh aspets imply thatsienti� appliation have to deal with massive volume of data.Mining large data sets requires powerful omputational resoures. A major issue in data mining is salabilitywith respet to the very large size of urrent-generation and next-generation databases, given the exessivelylong proessing time taken by (sequential) data mining algorithms on realisti volumes of data. In fat, datamining algorithms working on very large data sets take a very long time on onventional omputers to getresults. In order to improve performanes, some parallel and distributed approahes have been proposed.Parallel omputing is a viable solution for proessing and analyzing data sets in reasonable time by usingparallel algorithms. High performane omputers and parallel data mining algorithms an o�er a very e�ientway to mine very large data sets [27℄, [28℄ by analyzing them in parallel. Under a data mining perspetive, suha �eld is known as parallel data mining (PDM ).Beyond the development of knowledge disovery systems based on parallel omputing platforms, a lot ofwork has been devoted to design systems able to handle and analyze multi-site data repositories. Mining knowl-edge from data aptured by instruments, sienti� analysis, simulation results that ould be distributed over theworld, questions the suitability of entralized arhitetures for large-sale knowledge disovery in a networked



256 E. Cesario and D. Taliaenvironment. The researh area named distributed data mining o�ers an alternative approah. It works byanalyzing data in a distributed fashion and pays partiular attention to the trade-o� between entralized ol-letion and distributed analysis of data. This tehnology is partiularly suitable for appliations that typiallydeal with very large amount of data (e.g., transation data, sienti� simulation and teleommuniation data),whih annot be analyzed in a single site on traditional mahines in aeptable times.Grid tehnology integrates both distributed and parallel omputing, thus it represents a ritial infrastru-ture for high-performane distributed knowledge disovery. Grid omputing was designed as a new paradigm foroordinated resoure sharing and problem solving in advaned siene and engineering appliations. For thesereasons, Grids an o�er an e�etive support to the implementation and use of knowledge disovery systems byGrid-based Data Mining approahes.In the following parallel, distributed and Grid-based data mining are disussed.3.1. Parallel Data Mining. Parallel Data Mining is onerned with the study and appliation of datamining analysis done by parallel algorithms. The key idea underlying suh a �eld is that parallel omputingan give signi�ant bene�ts in the implementation of data mining and knowledge disovery appliations, bymeans of the exploitation of inherent parallelism of data mining algorithms. Main goals of the use of parallelomputing tehnologies in the data mining �eld are: (i) performane improvements of existing tehniques, (ii)implementation of new (parallel) tehniques and algorithms, and (iii) onurrent analysis using di�erent datamining tehniques in parallel and result integration to get a better model (i. e., more aurate results).As observed in [5℄, three main strategies an be identi�ed in the exploitation of parallelism algorithms:Independent Parallelism, Task Parallelism and Single Program Multiple Data (SPMD) Parallelism. We pointout that this is a well known lassi�ation of general strategies for developing parallel algorithms, in fat theyare not neessarily related only to data mining purposes. Nevertheless, in the following we will desribe theunderlying idea of suh strategies by ontextualizing them in data mining appliations. A short desription ofthe underlying idea of suh strategies follows.Independent Parallelism. It is exploited when proesses are exeuted in parallel in an independent way.Generally, eah proess has aess to the whole data set and does not ommuniate or synhronize with otherproesses. Suh a strategy, for example, is applied when p di�erent instanes of the same algorithm are exeutedon the whole data set, but eah one with a di�erent setting of input parameters. In this way, the omputation�nds out p di�erent models, eah one determined by a di�erent setting of input parameters. A validation stepshould learn whih one of the p preditive models is the most reliable for the topi under investigation. Thisstrategy often requires ommutations among the parallel ativities.Task Parallelism. It is known also as Control Parallelism. It supposes that eah proess exeutes di�erentoperations on (a di�erent partition of) the data set. The appliation of suh a strategy in deision tree learning,for example, leads to have p di�erent proesses running, eah one assoiated to a partiular subtree of thedeision tree to be built. The searh goes parallely on in eah subtree and, as soon as all the p proesses�nish their exeutions, the whole �nal deision tree is omposed by joining the various subtrees obtained by theproesses.SPMD Parallelism. The single program multiple data (SPMD) model [10℄ (also alled data parallelism) isexploited when a set of proesses exeute in parallel the same algorithm on di�erent partitions of a data set, andproesses ooperate to exhange partial results. Aording to this strategy, the dataset is initially partitionedin p parts, if p is the apriori-�xed parallelism degree (i. e., the number of proesses running in parallel). Then,the p proesses searh in parallel a preditive model for the subset assoiated to it. Finally, the global result isobtained by exhanging all the loal models information.These three strategies for parallelizing data mining algorithms are not neessarily alternative. In fat, theyan be ombined to improve both performane and auray of results. For ompleteness, we say also that inombination with strategies for parallelization, di�erent data partition strategies may be used : (i) sequentialpartitioning (separate partitions are de�ned without overlapping among them), (ii) over-based partitioning(some data an be repliated on di�erent partitions) and (iii) range-based query partitioning (partitions arede�ned on the basis of some queries that selet data aording to attribute values).Arhitetural issues are a fundamental aspet for the goodness of a parallel data mining algorithm. In fat,interonnetion topology of proessors, ommuniation strategies, memory usage, I/O impat on algorithmperformane, load balaning of the proessors are strongly related to the e�ieny and e�etiveness of theparallel algorithm. For lak of spae, we an just ite those. The mentioned issues (and others) must be takeninto aount in the parallel implementation of data mining tehniques. The arhitetural issues are strongly



Using Grids for Exploiting the Abundane of Data in Siene 257related to the parallelization strategies and there is a mutual in�uene between knowledge extration strategiesand arhitetural features. For instane, inreasing the parallelism degree in some ases orresponds to aninrement of the ommuniation overhead among the proessors. However, ommuniation osts an be alsobalaned by the improved knowledge that a data mining algorithm an get from parallelization. At eah iterationthe proessors share the approximated models produed by eah of them. Thus eah proessor exeutes a nextiteration using its own previous work and also the knowledge produed by the other proessors. This approahan improve the rate at whih a data mining algorithm �nds a model for data (knowledge) and make up for losttime in ommuniation. Parallel exeution of di�erent data mining algorithms and tehniques an be integratednot just to get high performane but also high auray.3.2. Distributed Data Mining. Traditional warehouse-based arhitetures for data mining suppose tohave entralized data repository. Suh a entralized approah is fundamentally inappropriate for most of thedistributed and ubiquitous data mining appliations. In fat, the long response time, lak of proper use ofdistributed resoure, and the fundamental harateristi of entralized data mining algorithms do not work wellin distributed environments. A salable solution for distributed appliations alls for distributed proessing ofdata, ontrolled by the available resoures and human fators. For example, let us onsider an ad ho wirelesssensor network where the di�erent sensor nodes are monitoring some time-ritial events. Central olletion ofdata from every sensor node may reate tra� over the limited bandwidth wireless hannels and this may alsodrain a lot of power from the devies.A distributed arhiteture for data mining is likely aimed to redue the ommuniation load and also toredue the battery power more evenly aross the di�erent nodes in the sensor network. One an easily imaginesimilar needs for distributed omputation of data mining primitives in ad ho wireless networks of mobile devieslike PDAs, ellphones, and wearable omputers [25℄. The wireless domain is not the only example. In fat, mostof the appliations that deal with time-ritial distributed data are likely to bene�t by paying areful attentionto the distributed resoures for omputation, storage, and the ost of ommuniation. As an other example,let us onsider the World Wide Web as it ontains distributed data and omputing resoures. An inreasingnumber of databases (e.g., weather databases, oeanographi data, et.) and data streams (e.g., �nanial data,emerging disease information, et.) are urrently made on-line, and many of them hange frequently. It is easyto think of many appliations that require regular monitoring of these diverse and distributed soures of data.A distributed approah to analyze this data is likely to be more salable and pratial partiularly whenthe appliation involves a large number of data sites. Hene, in this ase we need data mining arhiteturesthat pay areful attention to the distribution of data, omputing and ommuniation, in order to aess and usethem in a near optimal fashion. Distributed data mining (DDM ) onsiders data mining in this broader ontext.DDM may also be useful in environments with multiple ompute nodes onneted over high speed networks.Even if the data an be quikly entralized using the relatively fast network, proper balaning of omputationalload among a luster of nodes may require a distributed approah. The privay issue is playing an inreasinglyimportant role in the emerging data mining appliations. For example, let us suppose a onsortium of di�erentbanks ollaborating for deteting frauds. If a entralized solution was adopted, all the data from every bankshould be olleted in a single loation, to be proessed by a data mining system. Nevertheless, in suh a asea distributed data mining system should be the natural tehnologial hoie: it is able to learn models fromdistributed data without exhanging the raw data among di�erent repositories, and it allows detetion of fraudby preserving the privay of every bank's ustomer transation data.For what onerns tehniques and arhiteture, it is worth notiing that many several other �elds in�ueneDistributed Data Mining systems onepts. First, many DDM systems adopt the multi-agent system (MAS)arhiteture, whih �nds its root in the distributed arti�ial intelligene (DAI). Seond, although parallel datamining often assumes the presene of high speed network onnetions among the omputing nodes, the devel-opment of DDM has also been in�uened by the PDM literature. Most DDM algorithms are designed upon thepotential parallelism they an apply over the given distributed data. Typially, the same algorithm operates oneah distributed data site onurrently, produing one loal model per site. Subsequently, all loal models areaggregated to produe the �nal model. In Figure 3.1 a general distributed data mining framework is presented.The suess of DDM algorithms lies in the aggregation. Eah loal model represents loally oherent patterns,but laks details that may be required to indue globally meaningful knowledge. For this reason, many DDMalgorithms require a entralization of a subset of loal data to ompensate it. The ensemble approah hasbeen applied in various domains to inrease the auray of the preditive model to be learnt. It produes



258 E. Cesario and D. Taliamultiple models and ombines them to enhane auray. Typially, voting (weighted or un-weighted) shemaare employed to aggregate base model for obtaining a global model. As we have disussed above, minimumdata transfer is another key attribute of the suessful DDM algorithm. As a �nal onsideration, the homo-geneity/heterogeneity of resoures is another important aspet to be onsidered in the distributed data miningapproahes. In this senario, the term "resoures" refers both to omputational resoures (omputers withsimilar/di�erent omputational power) and data resoures (datasets with horizontally/vertially partitioningamong nodes). The �rst meaning a�ets only the algorithm exeution time, while data heterogeneity plays afundamental role in the algorithm design. That is, dealing with di�erent data formats it requires algorithmsdesigned in aordane to the di�erent data formats.
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Fig. 3.1. General Distributed Data Mining Framework.3.3. Grid-based Data Mining. In the last years, Grid omputing is reeiving an inreasing attentionboth from the researh ommunity and from industry and governments, wathing at this new omputing in-frastruture as a key tehnology for solving omplex problems and implementing distributed high-performaneappliations. Grid tehnology integrates both distributed and parallel omputing, thus it represents a ritialinfrastruture for high-performane distributed knowledge disovery. Grid omputing di�ers from onventionaldistributed omputing beause it fouses on large-sale dynami resoure sharing, o�ers innovative appliations,and, in some ases, it is geared toward high-performane systems. The Grid emerged as a privileged omputinginfrastruture to develop appliations over geographially distributed sites, providing for protools and serviesenabling the integrated and seamless use of remote omputing power, storage, software, and data, managed andshared by di�erent organizations.Basi Grid protools and servies are provided by toolkits suh as Globus Toolkit (www.globus.org/toolkit), Condor (www.s.wis.edu/ondor), Glite, and Uniore. In partiular, the Globus Toolkit is themost widely used middleware in sienti� and data-intensive Grid appliations, and is beoming a de fato stan-dard for implementing Grid systems. This toolkit addresses seurity, information disovery, resoure and datamanagement, ommuniation, fault-detetion, and portability issues. A wide set of appliations is being devel-oped for the exploitation of Grid platforms. Sine appliation areas range from sienti� omputing to industryand business, speialized servies are required to meet needs in di�erent appliation ontexts. In partiular,data Grids have been designed to easily store, move, and manage large data sets in distributed data-intensiveappliations. Besides ore data management servies, knowledge-based Grids, built on top of omputational anddata Grid environments, are needed to o�er higher-level servies for data analysis, inferene, and disovery insienti� and business areas [21℄. In some papers, see for example [1℄, [19℄, and [7℄, it is laimed that the reationof knowledge Grids is the enabling ondition for developing high-performane knowledge disovery proessesand meeting the hallenges posed by the inreasing demand of power and abstratness oming from omplexproblem solving environments.4. The Knowledge Grid. The Knowledge Grid [3℄ is an environment providing knowledge disoveryservies for a wide range of high performane distributed appliations. Data sets and analysis tools used in suh



Using Grids for Exploiting the Abundane of Data in Siene 259appliations are inreasingly beoming available as stand-alone pakages and as remote servies on the Internet.Examples inlude gene and DNA databases, network aess and intrusion data, drug features and e�ets datarepositories, astronomy data �les, and data about web usage, ontent, and struture. Knowledge disoveryproedures in all these appliations typially require the reation and management of omplex, dynami, multi-step work�ows. At eah step, data from various soures an be moved, �ltered, and integrated and fed into a datamining tool. Based on the output results, the developer hooses whih other data sets and mining omponentsan be integrated in the work�ow, or how to iterate the proess to get a knowledge model. Work�ows are mappedon a Grid by assigning nodes to the Grid hosts and using interonnetions for implementing ommuniationamong the work�ow nodes.For ompleteness of treatment, we point out some other Grid-based knowledge disovery systems and a-tivities that have been designed in reent years. Disovery Net [8℄ is an infrastruture for e�etively supportsienti� knowledge disovery proess, in partiular in the areas of life siene and geo-hazard predition. DataS-pae [17℄ is a framework providing e�ient data aess and transfer over the Grid that implements an ad-hoprotool for working with remote and distributed data (named DataSpae transfer protool, DSTP). Info-Grid [16℄ is a servie-based data integration middleware engine, designed to provide information aess andquerying servies not in an 'universal' way, but by a personalized view of the resoures for eah partiular ap-pliation domain. DataCutter [2℄ is another Grid middleware framework aimed at providing spei� servies forthe support of multi-dimensional range-querying, data aggregation and user-de�ned �ltering over large sienti�datasets in shared distributed environments. Finally, GATES [4℄ (Grid-based AdapTive Exeution on Streams)is an OGSA based system that provides support for proessing of data streams in a Grid environment. Thissystem is designed to support the distributed analysis of data streams arising from distributed soures (e.g.,data from large sale experiments/simulations). GATES provides automati resoure disovery and an interfaefor enabling self-adaptation to meet real-time onstraints.The Knowledge Grid arhiteture is designed aording to the Servie Oriented Arhiteture (SOA), thatis a model for building �exible, modular, and interoperable software appliations. The key aspet of SOAis the onept of servie, that is a software blok apable of performing a given task or business funtion.Eah servie operates by adhering to a well de�ned interfae, de�ning required parameters and the nature ofthe result. One de�ned and deployed, servies are like �blak boxes", that is, they work independently ofthe state of any other servie de�ned within the system, often ooperating with other servies to ahieve aommon goal. The most important implementation of SOA is represented by Web Servies, whose popularity ismainly due to the adoption of universally aepted tehnologies suh as XML, SOAP, and HTTP. Also the Gridprovides a framework whereby a great number of servies an be dynamially loated, balaned, and managed,so that appliations are always guaranteed to be seurely exeuted, aording to the priniples of on-demandomputing.The Grid ommunity has adopted the Open Grid Servies Arhiteture (OGSA) as an implementation ofthe SOA model within the Grid ontext. In OGSA every resoure is represented as a Web Servie that onformsto a set of onventions and supports standard interfaes. OGSA provides a well-de�ned set of Web Servieinterfaes for the development of interoperable Grid systems and appliations [15℄. Reently the WS-ResoureFramework (WSRF) has been adopted as an evolution of early OGSA implementations [9℄. WSRF de�nesa family of tehnial spei�ations for aessing and managing stateful resoures using Web Servies. Theomposition of a Web Servie and a stateful resoure is termed as WS-Resoure. The possibility to de�ne aâ��stateâ�� assoiated to a servie is the most important di�erene between WSRF-ompliant Web Servies,and pre-WSRF ones. This is a key feature in designing Grid appliations, sine WS-Resoures provide a wayto represent, advertise, and aess properties related to both omputational resoures and appliations.The Knowledge Grid is a software for implementing knowledge disovery tasks in a wide range of high-performane distributed appliations. It o�ers to users high-level abstrations and a set of servies by whihthey an integrate Grid resoures to support all the phases of the knowledge disovery proess.The Knowledge Grid supports suh ativities by providing mehanisms and higher level servies for searhingresoures, representing, reating, and managing knowledge disovery proesses, and for omposing existing dataservies and data mining servies in a strutured manner, allowing designers to plan, store, doument, verify,share and re-exeute their work�ows as well as manage their output results. The Knowledge Grid arhitetureis omposed of a set of servies divided in two layers: the Core K-Grid layer and the High-level K-Grid layer.The �rst interfaes the basi and generi Grid middleware servies, while the seond interfaes the user byo�ering a set of servies for the design and exeution of knowledge disovery appliations. Both layers make



260 E. Cesario and D. Taliause of repositories that provide information about resoure metadata, exeution plans, and knowledge obtainedas result of knowledge disovery appliations.In the Knowledge Grid environment, disovery proesses are represented as work�ows that a user mayompose using both onrete and abstrat Grid resoures. Knowledge disovery work�ows are de�ned using avisual interfae that shows resoures (data, tools, and hosts) to the user and o�ers mehanisms for integratingthem in a work�ow. Information about single resoures and work�ows are stored using an XML-based notationthat represents a work�ow (alled exeution plan in the Knowledge Grid terminology) as a data-�ow graph ofnodes, eah one representing either a data mining servie or a data transfer servie. The XML representationallows the work�ows for disovery proesses to be easily validated, shared, translated in exeutable sripts, andstored for future exeutions. It is worth notiing that when the user submits a knowledge disovery appliationto the Knowledge Grid, she has no knowledge about all the low level details needed by the exeution plan. Morepreisely, the lient submits to the Knowledge Grid a high level desription of the KDD appliation, namedoneptual model, more targeted to distributed knowledge disovery aspets than to grid-related issues. TheKnowledge Grid in a �rst step reates an exeution plan on the basis of the oneptual model reeived from theuser, and then exeutes it by using the resoures e�etively available. To realize this logi, it initially modelsan abstrat exeution plan (where some spei�ed resoure ould remain 'abstratly' de�ned, i. e. they ould notmath with a real resoure), that in a seond step is resolved into a onrete exeution plan (where a mathingbetween eah resoure and someone really available on the Grid is found).The Knowledge Grid has been used in various real senarios, pointing out its suitability in several heteroge-neous appliations. For lak of spae we are not able to disuss about them. For suh a reason we give here justsome outlines, more details an be found in the ited papers. The goal of the example desribed in [6℄ was toobtain a lassi�er for an intrusion detetion system, performing a mining proess on a (very large size) datasetontaining reords generated by network monitoring. The example reported in [5℄ was a simple meta-learningproess, that exploits the Knowledge Grid to generate a number of independent lassi�ers by applying learningprograms to a olletion of distributed data sets in parallel.As a sienti� appliation senario, let us onsider the olletion of sky observations and the analysisof their harateristis. Let us suppose to have distint image data obtained by observations and simula-tions, from whih we want to extrat signi�ant metris. Generally, a signi�ative set of astronomy data isvery large size (≈ 20 − 30 terabytes). In addition, suh kind of observation are very high-dimensional, be-ause eah point is usually desribed by ≈ 103 attributes (inluding morphologial parameters, �ux ratios,et.). Finally, they usually are full of missing values and noise. Then, the main issue here is to analyzea distribution of ≈ 20 − 30 terabytes of points in a parameter spae of ≈ 103 dimensions. Let us sup-pose that our e�ort is devoted to identify how many distint types of objets are there (i. e., stars, galax-ies, quasars, blak holes, et.), and grouping them with respet to their type. This an be obtained by alustering analysis, however it is a non-trivial task if we onsider the large size data and their high dimen-sionality. To suh a purpose, a distributed framework an be suitable to get results in a reasonable time.Initially we have a data repository where all suh an observed sky data is olleted (for example, an astro-nomi observatory). Then, suh a data is proessed by a distributed lustering algorithm. In order to dothat, they are partitioned on many nodes and proessed on those nodes in parallel. The results of everylustering algorithm are olleted and ombined to obtain a global lustering model. In addition, eah out-lier an represent a possible (rare) new objet. For suh a reason, and in order to get more knowledge fromthem, all the deteted outliers are transferred to another node for a further lassi�ation, i. e. by a deisiontree.Figure 4.1 shows suh a distributed meta-learning senario, in whih a global lustering model lassi�er CMis obtained on NodeC starting from the original data set DS stored on NodeA (i.e, where the observatory isloated). Moreover, all the outliers deteted are olleted in an outlier set OS and are proessed by a lassi�er
Cl on a NodeB. This proess an be desribed through the following steps:1. On NodeA, data sets DS1, . . . , DSn are extrated from DS by the partitioner P . Then DS1, . . . , DSn,are respetively moved from NodeA to Node1, . . . , Noden.2. On eah Nodei(i = 1, . . . , n) the lusterer Ci applies a lustering algorithms on eah dataset DSi.Then, eah loal result is moved from Nodei to NodeC .3. On NodeC , loal models reeived from Node1, . . . , Noden are ombined by the ombiner C to produethe global lustering model CM . Moreover, outliers deteted are olleted in an outlier set OS, andmoved to the NodeB for further analysis.



Using Grids for Exploiting the Abundane of Data in Siene 2614. On NodeB, the lassi�er Cl proesses the OS outlier data set and extrats a suitable lassi�ationmodel (i. e., a deision tree) from it.Being the Knowledge Grid a servie oriented arhiteture, the Knowledge Grid user interats with some serviesto design and exeute suh an appliation.As an additional onsideration, we notie that a lient appliation, that wants to submit a knowledgedisovery omputation to the Knowledge Grid, has to interat not with all of these servies, but just withsome of them; there are, in fat, two layers of servies: high-level servies (DAS, TAAS, EPMS and RPS ) andore-level servies (KDS and RAEMS ). The design idea is that user level appliations diretly interat withhigh-level servies that, in order to perform a lient request, invoke suitable operations exported by the ore-levelservies. In turn, ore-level servies perform their operations by invoking basi servies provided by availablegrid environments running on the spei� host, as well as by interating with other ore-level servies. In otherwords, operations exported by high-level servies are designed to be invoked by user-level appliations, whereasoperations provided by ore-level servies are thought to be invoked both by high-level and ore-level servies.More in detail, the user an interats with the DAS (Data Aess Servie) and TAAS (Tools and AlgorithmsAess Servie) servies to �nd data and mining software and with the EPMS (Exeution Plan ManagementServie) servie to ompose a work�ow (exeution plan) desribing at a high level the needed ativities involvedin the overall data mining omputation. Through the exeution plan, omputing, software and data resouresare spei�ed along with a set of requirements on them. The exeution plan is then proessed by the RAEMS(Resoure Alloation and Exeution Management Servie), whih takes are of its alloation. In partiular, it�rst �nds appropriate resoures mathing user requirements (i. e., a set of onrete hosts Node1, . . . , Noden,o�ering the software C1, . . . , Cn, and a node NodeW providing the C ombiner software and a node NodeZexporting the lassi�er Cl), then manages the exeution of overall appliation, enforing dependenies amongdata extration, transfer, and mining steps. Finally, the RAEMS manages results retrieving, and visualizethem by the RPS (Results Presentation Servie) servie (that o�ers failities for presenting and visualizing theextrated knowledge models).
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4Fig. 4.1. A distributed meta-learning senario.5. Conlusion. In this paper we have pointed out that digital data volumes are growing exponentiallyin siene and engineering. Often digital repositories and soures inrease their size muh faster than theomputational power o�ered by the urrent tehnology. To handle this abundane in data availability, sientistsmust embody knowledge disovery tools to �nd what is interesting in them.When data is maintained over geographially distributed sites, Grid omputing an be used as a distributedinfrastruture for servie-based intensive appliations. Various sienti� appliations based on Grid infrastru-tures, desribed in the paper, onretely show how it an be exploited for sienti� purposes. Moreover, theomputational power of distributed and parallel systems an be exploited for knowledge disovery in sienti�data. Parallel and distributed data mining suites and omputational Grid tehnology are two ritial elementsof future high-performane omputing environments for e-siene. In suh a diretion, the Knowledge Grid
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264 M. Danelutto, D. Laforenza, N. Tonellotto, M. Vanneshi, C. Zoolo(ii) Starting from the dynami model we identify the set of variables that an be used to desribe theperformane behavior of an appliation, and we derive the set of relations among them whih hold at steady-state(performane model). In this way we abstrat from partiular runtime platforms and we apture all possiblesteady-state behaviors of an appliation. Moreover, their formulation by means of linear algebra allows us tohierarhially ompose the performane models of several omponents to derive the steady-state model of newomponents or appliations.(iii) We introdue a de�nition of performane model for stream appliations, whih is exploited in launh-time mapping and runtime reon�guration deisions.After a survey of related work (Set. 2), this paper presents a dynami model of stream-based omputations(Set. 3), and in Set. 4 suh model is exploited to derive a steady-state performane model for stream-basedappliations. In Set. 5, suh model is applied to a ase study, to predit the program behavior at run-time,and to devise a orret initial mapping for spei�ed QoS levels. Setion 6 onludes the paper, disussing thepresented approah and future work.2. Related Work. Performane spei�ation of omponents and their interations is a basi problemthat must be solved to enable software engineers to assemble e�ient appliations [27℄. Moreover, performanemodeling is one of the key aspets that needs to be addressed to fae sheduling/mapping problems in het-erogeneous platforms. It arises in automati omponent plaement and reon�guration. Several reent worksfous on performane modeling tehniques to analyze the behavior of omponent-based parallel appliations ondistributed, heterogenous, dynami platforms.Analyti performane models in software engineering make extensive use of UML formalism to desribesoftware omponent behavioral models [35℄ and to derive models based on Queuing Networks [19℄ or Lay-ered Queueing Networks [36℄ to be exploited in design phase of the lifeyle of software. The same holdsfor Stohasti Petri Nets [20℄ and Stohasti Proess Algebras [18℄. Suh models typially translate a paral-lel appliation into an analyti representation of its exeution behavior and the target runtime system (a-ording to the Software Performane Engineering methodology [28℄). A detailed survey of suh models isin [5℄. Suh translation is usually not straightforward. It may require approximations to obtain mathemat-ial models [29℄ for whih a losed-form solution is known. Stohasti models usually require the solutionof the underlying Markov hain whih an easily lead to numerial problems due to the spae state explo-sion [5℄. More omplex models an be solved by means of simulation, at the ost of a larger omputationtime.Symboli performane modeling [32℄ is a methodology that enables a rapid development of low omplexityand parametri performane models. Symboli performane models an be derived from simulation models,trading o� result auray for model evaluation ost. In [32℄ a symboli performane model for the Pamelamodeling language is introdued. It derives lower bounds for steady-state performanes of appliations startingfrom a model of the program and of the shared resoures, ombining deterministi Diret Ayli Graphs (DAGs)modeling with mutual exlusion. One of the strengths of the Pamela approah is that it is fast and easy totransform a regularly strutured appliation into a performane model. The main limitation of suh approahis that it omputes lower bounds of the performane of a program. Symboli performane models share severalproperties with the model we propose: both an be extrated from the struture of programs, are parametri,and an be e�iently evaluated. The main di�erene is that the presented model does not ompute a lowerbound, but the asymptoti steady-state performane of an appliation, that is in general a better approximationof the real performane.The asymptoti steady-state analysis has been pioneered by Bertsimas and Gamarnik [10℄. This approahhas been reently applied to mapping and sheduling problems of parallel appliations on heterogeneous plat-forms [23, 7, 6℄, in whih the analysis is applied to partiular lasses of parallel appliations (divisible load [23℄,master/slave [6℄, pipelined and satter operations [7℄), in the hypothesis that the set of resoures is known inadvane. The existing steady-state approahes apply only to a restrited lass of strutured parallel applia-tions, assuming to know the runtime environment in suh a way to derive optimal sheduling of the appliationomponents. In a dynami environment like a Grid an optimal initial plaement of the omponents may be-ome useless very soon, beause the onditions of the exeution platform may vary dynamially. The presentedsteady-state analysis an be applied to a broader lass of strutured parallel appliations and tries to solve adi�erent problem, i. e. to build a onrete model of omponents/appliations to be exploited in their mappingon previously-unknown target platforms.



Modeling Stream Communiations in Component-based Appliations 265Strutural performane models [25℄ are the �rst e�ort to develop ompositional performane models foromponent appliations. Most sienti� and Grid omponent models rely on the onept of algorithmi skeleton.Skeletons are ommon, reusable and e�ient strutured parallelism exploitation patterns. One advantage ofthe skeletal approah is that parametri ost models an be devised for the evaluation of runtime performaneof skeleton ompositions. In [14, 8℄ di�erent ost models are assoiated to eah skeleton of an appliationto enhane its runtime performane through parallelism/repliation degree adjustments and initial mappingseletion, respetively. The authors of [14℄ propose parametri ost models for pipe, farm and multiblokskeletons, that an be arbitrarily omposed and nested. In [8℄, analyti ost models for appliations omposed bypipes and deals are derived within a stohasti proess algebra formulation. Strutural performane models areextended by the presented model by proposing a methodology well-suited for generi omposition of skeletons,and by taking into aount the synhronization problems introdued by using streamed ommuniations.Trae-based performane models [34, 26℄ are urrently exploited in parallel/Grid environments to model theperformane of sets of kernel appliations. Reording and analyzing exeution traes on referene arhiteturesof suh appliation it is possible, with a ertain degree of preision, to foreast the performane of the same orsimilar appliations on di�erent resoures. Trae information is exploited in the presented model, but in di�erentway with respet to the existing approahes. Instead of pro�ling a whole appliation on a set of representativeresoures, the appliation model is kept independent from resoures. When the appliation will be mapped onatual resoures, historial information will be used to model the runtime behavior of single omponents, andthen suh information will be oupled with the omponent interations information to obtain a predition ofthe performane of the whole appliation.The problem of deriving a performane model for omponents has been addressed also in the ontextof omponent frameworks suh as EJB [37℄, COM+/.NET [16℄ and CCA [24℄. Suh works apply analytialperformane model (LQN) or trae-based performane model to derive a model for omponents. In [30℄, trae-based models are exploited to selet the most suitable omponents, when multiple hoies are available, to buildan optimal appliation, from the point of view of performane.3. Dynami Behavior. An appliation an be strutured as a hypergraph whose nodes represent primitiveomponents and whose (hyper)edges represent ommuniations or synhronizations between omponents. Nodesinterat with input (server) interfaes and output (lient) interfaes. Edges are direted and an onnet twoor more nodes through their interfaes. Two nodes may be linked by more than a single edge.3.1. Communiations. Communiations between omponents are implemented through input/outputinterfaes bindings. In this work data-�ow stream ommuniations are studied. Every omponent reeives datathrough one or more input interfaes, performs some omputations, and generates new data to be sent throughone or more output interfaes.In this ontext, a stream represents a typed, unidiretional ommuniation hannel between a non-empty,�nite set of omponents (produers) and a non-empty, �nite set of omponents (onsumers). The atomi pieeof information transferred through a stream is alled item. A produer is onneted to a stream through anoutput interfae, while a onsumer is onneted to a stream through an input interfae. Every node an beproduer or onsumer of several streams, and it is possible to speify yli strutures (i. e. the ommuniationstruture is not restrited to be a DAG).Components an be onneted by streams aording to three di�erent patterns:(i) uniast: one-to-one onnetion. Every item sent on the output stream interfae is reeived in orderby the input stream interfae.(ii) merge: many-to-one onnetion. Every item sent on the output stream interfaes is reeived by theinput stream interfae. The temporal ordering of the items oming from eah input interfae is preserved, butthe interleaving between the di�erent soures is non-deterministi.(iii) broadast: one-to-many onnetion. Every item sent on the output stream interfae is reeived inorder by the input stream interfaes. The reeptions happening on di�erent input interfaes are not synhronized.3.2. Computations. Components implement sequential as well as parallel omputations. A sequentialomponent exeutes a single funtion in a single ative thread, proessing items as they are reeived. For aparallel omponent, two senarios are possible:(i) data parallel: a single funtion is exeuted in parallel on di�erent portions of the same data;(ii) task parallel: several funtions (or ativations of the same funtion) are exeuted in parallel onindependent data.



266 M. Danelutto, D. Laforenza, N. Tonellotto, M. Vanneshi, C. ZooloA primitive omponent, either sequential or parallel, at runtime repeatedly reeives items from its inputstreams, performs some omputations and delivers result items to its output streams.A omponent an have several input streams. The set of input streams is partitioned between the omputa-tions assoiated with the omponents. Eah input stream is assoiated to only one omputation; nevertheless,spontaneous omputations may exist, that do not need input items to ativate, but follow own ativation poliies(e.g. periodially).A omputation an be ativated if the following onditions hold:(i) the omponent an exeute a new funtion (this means that it is idle, or it is parallel and threads areavailable to exeute it),(ii) the assoiated input items have been reeived, or no item is neessary.A sequential omponent an ativate a new funtion only when it is idle. A parallel omponent an have atmost one ative data-parallel omputation at any given time (omposed by a �xed number of threads), or severaltask-parallel omputations running in parallel (up to the maximum number of threads in the omponent).A omponent an have several output streams. One or more omputations of the omponent an dispathdata on eah output stream.3.3. Node Behavior. In order to desribe the behavior of a omputation at runtime, onsider Fig. 3.1.
Fig. 3.1. Sequential omponent at runtimeWithout loss of generality, a sequential omponent is onsidered; the displayed quantities represent:(i) ik(t): total number of reeived items at time t from the kth input interfae;(ii) e(t): total number of omputations arried out at time t;(iii) oj(t): total number of sent items at time t through the jth output interfae.Continuous quantities are used to model partial evolution, e.g. e(t) = 3.5 means that the node reahed the halfway point in the fourth omputation.The ativation of a omputation an happen only when the number of items ompletely reeived on eahassoiated stream is greater than the number of partially omputed items:
∀k = 1, . . . , n

⌊
ik(t)

⌋
− e(t) > 0 (3.1)The node implementation will exploit �nite bu�ers to store reeived items for eah input interfae, therefore foreah input interfae and assoiated omputation the following must hold:

∀k = 1, . . . , n ik(t)−
⌊
e(t)

⌋
≤ τ1k (3.2)where τ1k represents the maximum number of elements that an be reeived on the kth input interfae beforethe stream bloks. Then the maximum admissible value for ik(t) at time t is:

imax
k (t) = τ1k +

⌊
e(t)

⌋ (3.3)Assuming that no sensible delays are present between the end of omputations and the beginning of the transmis-sion of the produed items, the total number of transmitted items is related to the progress of the omputationsof the node. In the general ase of a node with s funtions, the following equation holds for eah output interfae:
∀j = 1, . . . ,m oj(t) = fj

(
e1(t), . . . , es(t)

) (3.4)where ei(t) represents the number of ativations arried out at time t for the i − th funtion. The transferfuntion fj relates the number of data outputs oj(t) to the number of performed omputations e1(t), . . . , es(t).



Modeling Stream Communiations in Component-based Appliations 2673.4. Edge Behavior. In order to desribe the behavior of a data transmission on a stream, onsider auniast stream. The involved variables are o(t), total number of items sent at time t from soure interfae, and
i(t), total number of items reeived at time t by the destination interfae. A new transmission begins only aftera full item is produed:

i(t) ≤ ⌊o(t)⌋ (3.5)The edge implementation will exploit �nite ommuniation bu�ers and the network layer transfers hunks ofdata. Let q−1 be the minimum fration of item transferred atomially. Then
o(t)−

⌊q · i(t)⌋

q
≤ τ2 (3.6)where τ2 represents the maximum number of items that an be bu�ered. Therefore the maximum admissiblevalue for o(t) at time t is:

omax(t) = τ2 +
⌊q · i(t)⌋

q
(3.7)Whenever an edge bu�er is full, a produer will blok as soon as it tries and sends a new item. From (3.4) weobtain:

omax(t)− f
(
e1(t), . . . , em(t)

)
≤ 0 (3.8)For merge streams with k soure interfaes and broadast streams with k destination interfaes, the generalonstraints (Eqs. (3.5) and (3.6) for the uniast stream) beome:merge: {i(t) ≤∑k ok(t)∑

k ok(t)− i(t) ≤ τ2k
(3.9)broadast: {∀k ik(t) ≤ o(t)

∀k o(t)− ik(t) ≤ τ2k
(3.10)For simpliity, in the previous equations the network quantization onstant q has been suppressed.3.5. Runtime Behavior. At runtime, a omponent an be seen as a dynami system. The system stateat time t is desribed by a set of state variables: i1,...,ni

(t), e1,...,ne
(t), o1,...,no

(t). Thus, the state spae P isa n = ni + ne + no dimension Eulidean spae. The dynami behavior of a omponent an be modeled by atrajetory p(t) in suh state spae.The runtime behavior of a omponent is fully spei�ed when it is oupled with hosting resoures. Aomputing resoure is modeled by w(t), the available omputing power at time t (measured in MFlop/s) anda ommuniation link is modeled by b(t), the instantaneous bandwidth at time t (measured in MByte/s).Moreover, a haraterization of the items is required. It is assumed that an item proessed by a omponentrequires l units of omputing work to be proessed (measured in MFlop) and s units of ommuniation work tobe transmitted (measured in bytes).Introduing the step funtion u(x), the number of performed (partial) omputations per time unit is:
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(3.11)while the equations governing the number of pakets �owing in the uniast, merge and broadast streams pertime unit are, respetively:
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o(t)
⌋

− i(t)
)

· u
(

imax(t) − i(t)
)

·
b(t)

s
(3.12a)

di

dt
= u

(

∑

k

⌊

ok(t)
⌋

− i(t)
)

· u
(

imax(t) − i(t)
)

·
b(t)

s
(3.12b)

dik

dt
= u

(

⌊

o(t)
⌋

− ik(t)
)

· u
(

imax(t) − ik(t)
)

·
b(t)

s
(3.12)



268 M. Danelutto, D. Laforenza, N. Tonellotto, M. Vanneshi, C. ZooloNote that an important assumption has been made. The work required to perform a omputation issupposed to be independent from the values of the inoming items; their values are used just to performomputations. This is a ommon assumption in parallel data-�ow programming, but there are appliations (e.g.query proessing and data mining) that do not respet this assumption.The dynami equations provided by the model an be written in the general form:
ṗ(t) = U(p(t))α(t) (3.13)We denote with U : P →Mn,n the funtion that, for every point in the state spae, provides the ontrol partof the di�erential equations (the ones involving the step funtions), and with α(t) the resoures part (involving

w(t) and b(t)).We observe that the ontrol matrix is piee-wise onstant over non-in�nitesimal time intervals: it desendsfrom quantization in the general equations for the nodes (3.11), and in the equations for the streams (3.12).Then, the Cauhy problem an be solved onstrutively. Starting with t0 = 0, p0(t0) = 0, U0 = U(0), weindutively de�ne
pi(t) =

∫ t

ti

Uiα(τ)dτ

ti+1 = sup{t > ti|U(pi(t)) = Ui}

Ui+1 = lim
t→t+i

U(pi(t))In this way, p(t) is de�ned as the onatenation of the piees pi|[ti,ti+1): it is a ontinuous funtion (pi(ti) =
pi+1(ti)) and piee-wise di�erentiable.4. STEADY STATE BEHAVIOR. The steady-state behavior of the system an be analysed by study-ing mean values p̄ for the rate of hange of the state variables:

p̄ = E[ṗ|[t0,∞)] =

∫ ∞

t0

ṗ(t)dt = lim
t→∞

p(t)− p(t0)

t− t0
(4.1)The hoie of t0 is arbitrary, in fat the weight of the transient phase fades away onsidering in�nite exeutions.However, to ease the reasoning about these quantities, we an interpret t0 as the end of the transient phase,e.g. when the last stage onsumes the �rst data item in a pipeline.The essential aspet to point out is that for the steady-state model the fous is on relations among thesteady-state variables, rather than in their values. In this way it is possible to abstrat from partiular targetplatforms, and apture the lass of all possible steady-state behaviors of an appliation.The steady-state behavior of a node an be modelled assoiating to eah omputation ek(t) its ativationrate

ēk = lim
t→∞

ek(t)− ek(t0)

t− t0
(4.2)Spontaneous omputations are free variables in the steady-state model. Computations that are ativated bydata reeption, instead, are subjet to the following ondition.Proposition 4.1. The steady-state exeution rate of a omputation is bound to be equal to the input rateson the input interfaes that ativate the omputation.Proof. Let k ∈ Ai, we will prove that ēi − ı̄k = 0

ēi − ı̄k = lim
t→∞

ei(t)− ei(t0)

t− t0
− lim

t→∞

ik(t)− ik(t0)

t− t0

= lim
t→∞

ei(t)− ei(t0)− ik(t) + ik(t0)

t− t0

= lim
t→∞

ei(t)− ik(t)

t− t0
−

ei(t0)− ik(t0)

t− t0



Modeling Stream Communiations in Component-based Appliations 269The numerator of the �rst addend is limited by onstants: (3.1) gives
ei(t)− ik(t) ≤ 0and (3.2) (noting that e(t) ≥ ⌊e(t)⌋) gives

ei(t)− ik(t) ≥ −τ1kwhile the numerator of the seond addend is onstant, so the limit tends to zero when the denominator tendsto in�nity.The data transmission rate ōk of an output stream will depend on the ativation rates of one or moreomputations of the node. In the previous setion, the number of data outputs has been related to the numberof performed omputations by means of a transfer funtion fk (Eqn. (3.4)).Proposition 4.2. If the transfer funtion is (asymptotially) linear
ok = fk(e1, . . . , em) = α1

ke1 + . . . αm
k em + ck(e1, . . . , em)with

lim
‖e‖→∞

‖ck(e)‖

‖e‖
= 0then a steady-state is eventually reahed, in whih the output rate is a linear ombination of the omputationrates:

ōk =
m∑

i=1

αkiēi (4.3)Proof.
ōk = lim

t→∞

fk(e(t))− fk(e(t0))

t− t0
= lim

t→∞

αk · (e(t)− e(t0)) + c(e(t)) − c(e(t0))

t− t0
=

αk · lim
t→∞

e(t)− e(t0)

t− t0
+ lim

t→∞

c(e(t))− c(e(t0))

t− t0
= αk · ē+ 0 =

m∑

i=1

αm
k ēiThe steady-state behavior of streams an be modelled by assoiating to eah endpoint its data transmissionrate. Balane equations relating input and output endpoints are derived.Proposition 4.3. The steady-state transmission rate at the endpoints of a stream are haraterised by thefollowing balane equations: uniast: ōA = ı̄B (4.4a)merge: ōA + ōB = ı̄C (4.4b)broadast: ōA = ı̄B = ı̄C (4.4)These equations are easily extended in the ase of more endpoints.Proof. The proof is similar to the one of Prop. 4.1, exploiting:(i) (3.5) and (3.6) for uniast,(ii) (3.9) for merge,(iii) (3.10) for broadast.The exeution rate for eah omputation, and the data transfer rate for eah input/output interfae om-pletely speify the appliation state from the point of view of its performane, therefore we will all them theperformane features of our appliation.Proposition 4.2 allows us to express output rates as linear ombinations of exeution rates, provided thatwe know the related oe�ients. These oe�ients must be provided by developers of programs/omponents



270 M. Danelutto, D. Laforenza, N. Tonellotto, M. Vanneshi, C. Zooloby means of some performane annotations, in order to build a performane model. Proposition 4.1 allowsus to eliminate exeution rates assoiated to data-dependent omputations. Proposition 4.3 allows us to relateoutput rates to input rates of linked modules.The performane model is therefore de�ned as an homogeneous system of simultaneous linear equations,that desribe the relations that hold in the steady-state among the performane features. The set of solutionsof the system is a vetor subspae of Rn (where n is the total number of variables, either input rates, outputrates or exeution rates); we all the dimension of the solution spae the number of degrees of freedom ofthe appliation. If this dimension is 1, then the system is ompletely determined as soon as a single value forany variable is imposed. The degenerate ase of a spae with dimension 0 implies that the only solution to thesystem is the null vetor (i. e. every variable must be zero): this means that the predited steady-state is adeadlok state, in whih no omputation or ommuniation an proeed. The number of degrees of freedom ofthe system will impat on how many onstraints must be provided in order to derive the expeted values forevery variable.Clearly, only positive values of the rates are meaningful, so we an onlude that every assignment of positivevalues for the vetor [i e o]T ∈ R
n that is a solution of the system is a possible �operation point� for the modeledappliation.The outlined approah is e�ient, in fat the simpli�ation of the simultaneous equations an be ahievedusing well known tehniques.5. Appliation of the Model. We show how the presented model an be applied to a real appliation(see Fig. 5.1), a rendering pipeline. The �rst stage requests the rendering of a sequene of senes while theseond renders eah sene (exploiting the PovRay rendering engine), interpreting a sript desribing the 3Dmodel of objets, their positions and motion. The third stage ollets images rendered by the seond one, andbuilds Groups Of Pitures (GOP), that are sent to the fourth stage, performing DivX ompression. The laststage ollets DivX ompressed piees and stores them in an AVI output �le.
Fig. 5.1. Graph of the render-enode appliationFor GOPs of 12 pitures, the performane model for our test appliation is (we eliminated exeution ratesfor data-dependent omputations):
C1e = C1o = C2i = C2o = C3i = 12 · C3o =

= 12 · C4i = 12 · C4o = 12 · C5iand has one degree of freedom.5.1. Convergene to Steady State. We start showing that the appliation behavior atually tends tosteady-state.Figure 5.2 shows performane features taken from a real exeution of the test appliation on a Blade lusteronsisting of 32 omputing elements, eah equipped with an Intel Pentium III Mobile CPU at 800MHz and1GB of RAM, interonneted by a swithed Fast Ethernet dediated network. The appliation was on�guredto exploit 20 mahines in the render omputation, and one mahine for eah remaining node.Performane features are measured as in (4.2), i. e. averaging the number of performed omputations onthe duration of the exeution. The top diagram shows the performane of the Render and the GOP Assemblernodes, whih operate on frames, while the bottom diagram shows the Enoder and Colletor nodes, whihoperate on GOPs. The similarity of the urves in the left and the right diagrams shows empirially thatProp. 4.2 is satis�ed not only at the steady-state, but also during the �nite omputation, as soon as bu�ers are�lled (urves in the same diagram are related by a fator of 1, while between the two diagrams there is a salingfator of 12).



Modeling Stream Communiations in Component-based Appliations 271

 0

 1

 2

 3

 4

 5

 0  100  200  300  400  500  600  700  800

b
a

n
d

w
id

th
 (

a
c
ti
v
a

ti
o

n
/s

)

frame

Rendering engine
GOP Assembler

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  10  20  30  40  50  60

b
a
n
d
w

id
th

 (
a
c
ti
v
a
ti
o
n
/s

)

GOP

Encoder
Collector

Fig. 5.2. Convergene to steady-state of averaged performane featuresMoreover, Fig. 5.2 shows that the averaged omputation rates stabilize during the omputation, allowingus to adopt a steady-state model to approximate the atual appliation run.5.2. From Desired Performane to Resoure Requirements. Typially, if someone is faing a prob-lem by means of HPC tools, he has lear in mind some sort of performane requirement for his appliation.This an be expressed in di�erent forms, e.g. ompletion time, omputation rate, response time, et. In ourframework we express requirements as bounds on omputation rates. That is the most natural way dealingwith stream parallelism. This means that, if the problem is expressed in di�erent terms, some sort of prelim-inary transformation should be applied (e.g. study the initial transient length to relate ompletion time toomputation rate, or use the Little's Law to translate response time requirements in omputation rate ones).Suppose that we require 1 frame/s (the onstraint is expressed by C5i ≥
1

12
, beause eah input for C5 isomposed by 12 frames). Applying the performane model we derive required omputation and transfer ratesfor eah omputation and ommuniation.These values, paired with program annotations (see Tab. 5.1) on the weight of omputation or ommuni-ation (e.g. MFLOP per task/MB transferred to/from memory and message size, respetively) an be usedto derive requirements that the resoures must ful�ll in order to meet the performane requirements on theappliation.For instane, we an show the requirement for stream S2 = C2o. Sine it is required to arry 1.19MBmessages with at least rate 1/s, a link of 9.5 Mbit/s is su�ient. Likewise, the test appliation will neversale above 10 frames/s with a 100 Mbit/s network, and needs to be redesigned, if we want to reah higherperformanes.Computational requirements are handled in the same way. The performane model solution gives, foreah omputation, the minimum required exeution rate. Then we need an invertible performane model for



272 M. Danelutto, D. Laforenza, N. Tonellotto, M. Vanneshi, C. ZooloTable 5.1Deployment annotations for the example appliation.Component C1 C2 C3 C4 C5Proessor i686 i686 i686 i686 i686Memory (MB) 64 256 64CPU Work 3307 52Mem. Work 302 104Connetor S1 S2 S3 S4data type param pi GOP zipdata size 54B 1.19MB 14.24MB 2MBeah atomi omputation that, given the required exeution rate, produes the resoure requirements. This isessential in an exeution environment in whih resoures are not known in advane.The model presented in [22℄ suits our needs. We an assoiate to eah omputation a weight, represented bya pair of values w = (wMFLOP , wMB), speifying the number of �oating point operations (expressed in MFLOP)and the data transferred to/from main memory (expressed in MB) per ativation. Resoure power is desribedby the pair p = (pMFLOP/s, pMB/s), and exeution time is therefore estimated as t(p, w) = wMFLOP

pMFLOP/s
+

wMB

pMB/s
.This model an be employed also to �nd appropriate parallelism degree for parallel omputation nodes.We, in fat, an relate t(p, w) for an aggregate resoure p = [p1, . . . , pk] to the performane of the ode on singleresoures t(pi, w).Assuming perfet speedup, we obtain:

t(p, w) =
(∑

i

t(pi, w)
−1
)−1In this way we an derive, for eah omputation node, mathing resoure requirements. These will onernsingle resoures for sequential nodes, and aggregate ones for parallel nodes.Results ommented. In Fig. 5.3, two mappings (top on an homogeneous luster, bottom with heterogeneousresoures) for the same onstraint are displayed. The �rst thing to note is that, even if the heterogeneous runhas more variane in ahieved bandwidth, the average bandwidth is omparable with the homogeneous one.This provides evidene that the employed performane model orretly handles heterogeneous sets of resoures,determining the orret parallelism degree. The good performane in heterogeneous run (its ompletion time iseven shorter than the one for homogeneous run) is explained by the fat that the model an math omputationrequirements with suitable resoures, i. e. shedule memory bound omputations (e.g. enoding) on mahineswith faster memory, and FPU bound ones (e.g. rendering) on mahines with faster FPU.The obtained results are as expeted: the mapping omputed using the performane model ful�lls theonstraint, at the beginning and most of the time of the appliation run. This ours beause, in order to buildour model, we sampled the ahieved performane on the �rst frames of the movie, but the appliation workloadslightly hanges with the evolution of the movie. This is evidened by the smoothed bandwidth urve, that hasthe same ourse in the two experimental settings: the workload is heavier around 100s and 300s, while it islighter in the middle and at the end.6. Conlusions and Future Work. In this work we desribed an analytial approah to map a lass ofappliations on a Grid. These appliations interat through streams of data, proessed by several autonomoussoftware omponents, either sequential or parallel. We presented a steady state performane model for theseappliations and we applied it to a ase study, a rendering pipeline of sequential and parallel omponents. Themodel was exploited to predit a program behavior at run-time. Then we showed a general methodology todevise a orret initial mapping for the appliation, driven by spei�ed QoS levels. At last, we showed the resultsof our mapping methodology with the presented appliation, and we disussed the results of the mapping andthe exeution on homogeneous and heterogeneous sets of resoures. We obtained good results in both ases.The appliation was orretly mapped and the QoS requirement respeted with a small error.Analytial [35, 19, 36, 20, 18, 29℄ and strutural performane models [25, 14, 8℄ disussed in Set. 2need the full knowledge of the target platform to derive performane measures. Therefore, to ompare re-sults of di�erent mappings, they must be evaluated multiple times. Our approah deouples the modeling
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Fig. 5.3. Two exeutions of the test appliation: top) homogeneous lusters of Athlons XP 2600+, down) set of heteroge-neous resoures (9 P4�2GHz, 1 Athlon XP 2800+, 1 P4�2.8GHz).of the appliation performane from the target platform, allowing us to evaluate the model one to de-rive enough information to drive the mapping proess. Trae-based approahes [34, 26℄ are used to over-ome the limitations of previously disussed approahes, but they are not ompositional. Therefore theymust be applied from srath to every new appliation, even if it is built from the same set of ompo-nents.All those models and the presented one share an assumption on the behavior of the appliations: ompu-tation exeutions must be independent from the atual values of the input set. Otherwise, two exeutions ofthe same appliation would be not omparable (this is alled ergodiity for stohasti models). For appliationsthat do not meet this requirements, the best solution is to resort to runtime adaptation.The presented approah is not perfet. The initial mapping an be onsidered a good �hint� to start theexeution of an appliation on a Grid. The dynami hanges in resoures during the exeution an not beeasily inluded in launh-time strategies. Our approah must be oupled with resheduling strategies at run-time to solve suh problems. Our future work is going in this diretion. The presented steady state modelan be exploited at run-time to adapt the behavior of omponents to hanges in resoure performanes. Inthis way, it should be possible to ful�ll the QoS requirements during the whole exeution of the applia-tion. REFERENCES[1℄ M. Aldinui, A. Petroelli, E. Pistoletti, M. Torquati, M. Vanneshi, L. Veraldi, and C. Zoolo, Dynamireon�guration of grid-aware appliations in ASSIST, in Pro. 11th Euro-Par Conferene, Lisboa, Portugal, Aug. 2005.[2℄ P. Ammirati, A. Clematis, D. D'Agostino, and V. Gianuzzi, Using a strutured programming environment for parallelremote visualization., in Pro. 10th Euro-Par Conferene, Pisa, Italy, Sept. 2004.
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Salable Computing: Pratie and ExperieneVolume 11, Number 3, pp. 277�288. http://www.spe.org ISSN 1895-1767© 2010 SCPEHIGH PERFORMANCE COMPUTING THROUGH SOC COPROCESSORSGIANNI DANESE, FRANCESCO LEPORATI, MARCO BERA, MAURO GIACHERO, NELSON NAZZICARI, ANDALVARO SPELGATTI∗Abstrat. In this paper we desribe DPFPA (Double Preision Floating Point Aelerator), a FPGA-based oproessorinterfaed to the CPU through standard bus onnetions; it is oneived to aelerate double preision �oating point operations,featuring two double preision �oating point units, a pipelined adder and a pipelined multiplier with a suitable number of stages.We tested its performane by implementing a Montearlo-Metropolis simulation of a dipolar system, using a proper softwaredevelopment environment designed and realized in our laboratory. DPFPA an provide a speed-up equal to 4, with respet lastgeneration PC, showing also a good salability in terms of lok frequeny, memory apability and number of omputing units.Key words: FPGA; hardware aelerator; high performane embedded system; parallel proessing.1. Introdution. Sienti� researh owes a lot to omputer systems whih allowed the ahievement ofresults otherwise unthinkable [Marsh, 2005℄[Boghosian et al., 2005℄. A powerful omputing system permitsthe study of several phenomena through the employment of simulations like statistial ones into whih thesystem under analysis is made to evolve from a ertain initial ondition, by modifying a few of its harateristiparameters and by evaluating the feasibility on the basis of a proper merit funtion. These operations areiterated thousands of times to bring the system in a new stable state.Several of these simulations perform double preision �oating point operations sine they provide the au-ray required to appreiate even the smallest �utuations in the typial variables of the simulated phenomena.On the other hand, this ould represent a hard task even for the most powerful proessors whih take a lot oflok yles to exeute a single �oating point operation.The lak of omputing power is generally overome by resorting to superomputers or lusters [Dongarra etal., 2005℄ but in the last years the use of aelerators, i. e. dediated hardware systems, is gradually establishingas a valid alternative, due to the feature of these devies whih allow to perform those operations in less timethan traditional proessors [Buell et al., 2007℄[Herbordt et al., 2007℄. Several researhers worked in these yearsnot only in this sense but also to improve �methodology, tools and praties supporting the integration ofhardware and software omponents during system design and development� [Hankel et al., 2003℄[Wolf, 2003℄.At present a similar projet onerning a Double Preision Floating Point Aelerator (DPFPA) to proessomplex funtions has been arried out in the Miroomputer laboratory at the University of Pavia (Italy).This ativity suites well with the mission of the laboratory whih aims to design and develop speial purposearhiteture for omputationally intensive appliations. The designed aelerator is implemented onto a FPGAdevie lodged on a board interonneted with a Personal Computer and is able to exeute �oating point opera-tions faster than a traditional proessor [Danese et al, 2007℄. Moreover, a proper spei� programming languageand a suitable software development environment were realised allowing the user to write, translate and loadproper instrutions sequenes written in a spei� language.This paper desribes the implementation, onto the aelerator, of a Montearlo-Metropolis simulation of adipolar system, a typial omputational hallenge for superomputers.The Montearlo Metropolis algorithm is an exellent benhmark to test performane of a speial purposealulation system, sine its omputational ore onsists of few �oating point operations (double preision)repeated over and over: this represents the ideal ondition to exploit an appliation spei� arhiteture devotedto the aeleration of only partiular instrutions.Moreover, the algorithm features a SIMD fashion so it is suitable for a distributed implementation whihan exploit more alulation units so inreasing the overall ahieved speed up.Finally, typial Montearlo simulations involve hundreds thousands partile systems and an run for weeksor months on the most performing omputers with a single CPU: the availability of powerful aeleratingunits, in ase onneted into a luster on�guration, makes possible simulations urrently unfeasible or sim-ulations with more partiles than now, ahieving a better omprehension of the physial phenomena underanalysis.
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278 Gianni Danese, Franeso Leporati et al.In the past other researh groups proposed aelerators based on FPGA for Montearlo simulations:
• one of the �rst proposal is presented in [Postula et al., 1996℄ where is desribed a metallurgial sinteringsimulation implemented on a FPGA devie with a two orders of magnitude speed-up with respet to amid 90's workstation;
• in the same years, other authors oneived a FPGA implementation of a partiular Montearlo tehnique(Swendsen-Wang lustering) with a onsiderable aeleration with respet to a 15 MHz DSP or makinguse of ellular automata [Cowen et al, 1994℄[Monaghan et al, 1992℄;
• more reently, a reon�gurable omputer was designed devoted to heat transfer simulations, workingon single preision �oating point data and ahieving an order of magnitude speed-up relative to a 3GHz P4 proessor [Gokhale et al, 2003℄; the peuliarity of this ontribute is the idea of using widelyavailable �oating point libraries for implementing a alulation funtion onto FPGA, thus shorteningdesign time;
• �nally, in [Zhang et al, 2005℄ it is presented a simulation of a �nanial model implemented on a FPGAdevie to aelerate double preision �oating point alulations. The ahieved speed-up is 26 relativeto a 1.5 GHz P4 proessor;
• with regard to FPGA based arhitetures spei�ally devoted to physis simulations, the reent lit-erature proposed the works of Cruz and Belletti [Cruz et al, 2001℄[Belletti et al, 2006℄; the �rst oneprovides interesting arhitetural issues although using Altera Flex 10K30 omponents limits the work-ing frequeny to 48 MHz; the seond is a projet subsequent to our one, employing Altera Stratix familyomponents and aims to build a luster of aelerators based on the most reent FPGA devies.For what onerns a more general use of SoC for omputing intensive appliations there is a wide literature towhih the reader ould refer. The most part of the Otober 2007 issue of IEEE Computer was devoted to thattopi [Wolf, 2007℄.In the next setion the arhitetural features of the aelerator, of the spei� language designed and ofits software development environment will be desribed. Then, the basi physial priniples of the simulationand its needed modi�ations for optimizing the use of the aelerator will be highlighted. Finally, we will seethe implementation of the algorithm on the aelerator, taking advantage from the use of a `dediated stage'pipeline and the omparison with a few ommerial and popular proessors showing a lear speed-up. Someremarks explaining the evolution of the projet will onlude the paper.2. The Aelerator. We realized a FPGA-based aelerator onneted to a host PC to aelerate thehardest part of a alulus. Our idea refers to a board with a FPGA devie (Altera Stratix family) and a Flashmemory storing the on�guration ode; a JTAG port is used to send the program to the Flash memory fromthe PC. Reently, Altera has made available some boards with these features. These boards an ommuniatewith PC through the network requiring a proper network manager. In this ase, both the aelerators andthe network proessor an be loaded on the same FPGA. The board we bought is equipped with a Stratix1S40 FPGA omponent on whih a 32 bit RISC CPU, alled Nios, is implemented; this proessor an beprogrammed using C language and is supplied with basi libraries to easily handle the on board devies:2 MB Ram, 8 MB Flash Memory, 16 MB Compat Flash Memory, 100 Mb/s Ethernet Interfae, 2 Serialports.We designed an aelerating unit that is able to implement di�erent funtions (also omplex like sin, os,log, . . . , through Taylor series). Thus, it an be used for several appliations, also very diversi�ed. Moreover,the instrution set is fully re-programmable aording to the partiular alulation to be performed.The designed unit (DPFPA) an exploit the parallelism present in the operations sine double preisionFloating Point MAC operations an be exeuted at the same time in the sum and multiply pipelines presentonto it. The main part of DPFPA is DPFPP (double preision �oating point proessor), whose arhitetureonsists of (�g. 2.1):
• 2 aelerating units, independently working;
• a Cahe Memory (4 banks), whih an store input data and results for the two aelerating units;A suitable bus devoted to ommuniation between Aelerator and Nios proessor ("sub bus") has beenalso implemented. The Math Unit funtional ore is a double-preision �oating-point ALU, whih integratesboth an adder and a multiplier operating in a parallel fashion. Both devies are pipelined (9 stages for theadder and 15 for the multiplier) so that high lok rates are ahievable. Note that, in the expeted appliations,aurate oding an minimize the negative e�ets of suh lateny.
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� �Fig. 2.1. Arhiteture of the omputational unit implemented onto the FPGA devie.Together with the adder and the multiplier, the ALU also ontains 3 register banks, eah able to store 4double-preision �oating point numbers. The banks are eah tied to a partiular purpose (one is for input data,one for adder results and one for multiplier results).Like in many similar appliations, to make omputing elements and storage spae independent, a FIFOmemory for both inputs and outputs is implemented (there are two FIFO queues on the output sine arithmetiresults are separated from logial ones).The ALU operations are enoded in 37-bit words, able to simultaneously trigger either a sum or a om-parison, a multipliation, a data feth, 3 write operations to the internal register banks and the output of aresult.To ahieve better performane with our spei� task, the operands of the adder an optionally be multipliedby [−2,−1, 2] for the �rst operand, and [−1,−0.5, 0.5] for the seond one. In a similar way, the multiplier resultan be doubled, halved or negated without extra lok yles.Sine feeding the op-odes would require a large and mostly wasted bandwidth (the ode is essentially yli,so that the same op-odes are exeuted over and over again) the ode sequenes are stored in a MiroodeSequener. This devie stores the program sequenes in an internal RAM and assoiates to them a 6-bits op-ode (this is muh like having a CPU with a miro-programmed ontrol unit whose ode an be hanged by theappliation to de�ne a ustom instrution set).The Math Unit itself has no addressing apabilities toward either input or output hannels, so every memoryI/O operation must be managed by an external devie. A Memory Manager was deemed to that task andoneived for a spei� appliation lass: those where most omputations are performed on data logiallyorganized in three-dimensional matries. Deoupling the alloation issues from the omputing algorithm, theMemory Manager omputes the memory addresses from semanti-level inputs, suh as addresses in the matrixdomain (X − Y − Z oordinates) or o�sets between elements (the matrix is supposed to be yli, so thate.g. the leftmost element in a row is adjaent to the rightmost element in the same row). This is of extremeimportane, sine otherwise the same ode would require at least a reompilation to be exeuted on matrieswith di�erent sizes.The internal Control Unit (CU) deodes instrutions oming from the host omputer and drives the ontrolsignals implementing the requested funtion. It mainly onsists of 3 units:
• Instrution Deode: selets between data and instrutions from host to the DPFPA. Only in the lastase it generates proper ontrol signals;
• Jump Unit: sets the RAM address to the starting point of the next instrution sequene to be exeuted;
• RAM: stores sequenes orresponding to the instrution set for the partiular funtion to implement.



280 Gianni Danese, Franeso Leporati et al.Instrutions are 64 bit wide exploiting part of the redundany present in the IEEE 754 standard of �oatingpoint representation, to distinguish them from double preision numbers. Two kinds of instrutions have beenimplemented:
• Programming instrutions to store in the CU RAM exeutive sequenes.
• Exeutive instrutions to perform spei� alulations, realling sequenes already loaded.Programming instrutions to store in the CU RAM exeutive sequenes. Exeutive instrutions to performspei� alulations, realling sequenes already loaded.A great advantage of our approah is that the sequenes of an exeutive instrution are performed in aniterative manner until a new exeutive instrution will be reeived by the CU. So, during the exeution of thealulus, CU has to deode only few instrutions and an save a great amount of time.3. Programming DPFPP. As previously stated, DPFPP an handle two types of instrutions: pro-gramming instrutions and exeutive instrutions. The former are used to store miroode sequenes into theCU RAM, making miroode words to be loaded at the orret address into the RAM of CU. The word ofmiroode, allows the assertion of needed ontrol signals for eah lok yle.Eah exeutive instrution allows, on the other hand, the realling of sequenes already stored.We realised soon, that the sequene development using binary miroode was a very hard and ine�ientwork. Thus, we hose to design and develop a pseudo-assembly dediated language that simpli�es the sequenewriting. The instrutions of the language are mapped diretly on the hardware and re�et the operation thatDPFPP an exeute. Table 3.1 shows the list of the instrutions and their syntax.Table 3.1List and syntax of the language instrutions.Instrution SyntaxMOV reg;SUM 1 op 2 op ; SUM 1 op ; SUM 1 op op SUM op 2 op; SUM op opMUL  op op; MUL op op; MUL  op;OUT xx;INT;A proper translator was also developed, using standard Unix tools suh as Lex and Ya.Furthermore, we developed an alloator for an easy generation of the �le with the programming instrutionsthat must be sent to the DPFPP. Finally, we designed a simulator, reproduing exatly the DPFPP workingand enabling pipeline and register inspetion. The simulator also allows the visualisation of the lok ylesneeded by a spei� sequene or by a set of sequenes. Thanks to this tool, we an exeute miroode sequeneswithout loading them into the DPFPP; thus, we an simplify the sequene debug, verify the results' orretnessand hek the performane.All these tools are integrated in a unique development environment, realised in the Miroomputer labora-tory to ease the sequene development. There are four main steps: �rst, we write and ompile soure ode usingan internal editor, then we test the ode using the simulator. Finally, we produe the programming �le thathas to be sent to the DPFPP by using the alloator. More details on the hardware and software for DPFPAare in [Danese et al., 2003℄.4. The Considered Problem. Liquid rystals and olloidal suspensions are two examples of systems forwhih the orientation order has been widely studied through simulations. In both ases interations amongpartiles play a dominant role. In previous works, we realized a ubi lattie model desribing the interationse�ets in a dipolar system in presene of an external lattie �eld [Bellini er al., 2001℄: simulations made withthis model identi�ed the presene of two phase transitions and the obtained results ould in part explain thephenomenon known as �anomalous bi-refringene� as analyzed in [O' Konski et al., 1950℄[Radeva et al., 1996℄.On the other hand, simulations take unaeptably long times even on the most reent and powerful om-puting systems ranging from a few days up to some weeks depending on the size of the simulated system. Theore of the omputation is, in fat, the evaluation of the energy sine, aording to the implemented algorithm(Montearlo-Metropolis), equilibrium in a system with N partiles is reahed through a sequene of moves,arried out by randomly seleting a spin, hanging its orientation through a random angular displaement and



High performane omputing through SoC oproessors 281evaluating the orresponding hange in energy. Eah move an be aepted or rejeted depending on the vari-ation of the energy assoiated with it [Metropolis et al., 1953℄. We simulated lattie systems with partilesranging from a few hundreds up to 100.000 onsidering only �rst neighbor interations, i. e. the interationbetween eah spin and the six losest ones in the X+, X−, Y+, Y−, Z+, Z− diretions. Periodi boundaryonditions were applied [Frenkel et al., 1996℄. The assoiated energy of eah dipole due to the presene of anexternal �eld oriented toward z axis is: (1) Edip = momz(dip)The terms due to the interations between the onsidered dipole and eah of its �rst neighbours are:(2) EX+ = 2 ∗momx(dip) ∗momx(X+) +

−momy(dip) ∗momy(X+)−momz(dip) ∗momz(X+)(3) EX− = 2 ∗momx(dip) ∗momx(X−) +

−momy(dip) ∗momy(X−)−momz(dip) ∗momz(X−)(4) EY+ = −momx(dip) ∗momx(Y+) +

+2 ∗momy(dip) ∗momy(Y+)−momz(dip) ∗momz(Y+)(5) EY− = −momx(dip) ∗momx(Y−) +

+2 ∗momy(dip) ∗momy(Y−)−momz(dip) ∗momz(Y−)(6) EZ+ = −momx(dip) ∗momx(Z+) +

−momy(dip) ∗momy(Z+) + 2 ∗momz(dip) ∗momz(Z+)(7) EZ− = −momx(dip) ∗momx(Z−) +

−momy(dip) ∗momy(Z−) + 2 ∗momz(dip) ∗momz(Z−)where the omponents of the moments for eah dipole are:(8) momx(dip) = cos(θ) ∗ sin(θ) ∗ cos(ϕ)(9) momy(dip) = cos(θ) ∗ sin(θ) ∗ sin(ϕ)(10) momz(dip) = cos′(θ)and θ, ϕ are the angular o-ordinates of a generi dipole. The overall energy of the dipole is the sum of all theseontributes: (11) ETOT [dip] = −0, 5 ∗ [Edip − k ∗ (EX+ + EX− + EY + + EY − + EZ+ + EZ−)]The global energy in the system is the sum extended on the whole dipolar set.The simulated system is haraterised by an initial random partile distribution not orresponding to thatahievable at the equilibrium. This means that the hange in the orientation of a dipole will modify themoments and the energy in the others, mainly in the neighbours. These ones, in turn, will in�uene theirrespetive neighbours and so on, propagating those variations in the moments throughout the lattie. Thisre�ets in energy �utuations that disappear only after a su�ient number of yles into whih ETOT for eahdipole is alulated (equilibration). Only at this point, the Metropolis test on energy variation an be applied.This loop series orresponds to nearly the 85% of the alulation but it onsists of only few instrutions, sojustifying the idea of an aelerator speialized in proessing only those operations. To do this, we employedthe FPGA tehnology, whih is heaper and simpler than ASIC in terms of design and test.However, during the design phase, we onsidered onvenient to realise a more general hip able to aeleratethose double preision �oating point instrutions whih an be often found in sienti� simulations. This extendsthe appliability of the DPFPA both to models di�erent to that used (i. e. hexagonal latties instead of ubiones) or to ompletely di�erent �elds where high performane omputing is mandatory.5. Energy Evaluation and Implementation. To simplify the readability of the energy alulation onthe DPFPA, as it will be desribed in the following, let's rewrite the expressions reported in setion 3. Theinteration energy of eah dipole an be written as − (CT∗CT )
2 and the sum on all the dipoles will return the



282 Gianni Danese, Franeso Leporati et al.global energy in the system. CT is the loal �eld generated by the neighbors of the onsidered dipole and anbe expressed as: (12) CT = CTX ∗ SC ∗ k + CTY ∗ SS ∗ k + CTZ ∗ C ∗ k + Cwhere k is a onstant depending on the system density and SC = sin(θ)cos(ϕ), SS = sin(θ)sin(ϕ), C = cos(θ),with θ, ϕ angular o-ordinates of the dipole. CTX, CTY e CTZ are the loal omponents of the �eld generatedby the neighbour dipoles. They are respetively equal to:(13) CTX = (MXX +MX ∗X +MYX +MY ∗X +MZX +MZ ∗X)(14) CTY = (MXY +MX ∗ Y +MY Y +MY ∗ Y +MZY +MZ ∗ Y )(15) CTZ = (MXZ +MX ∗ Z +MYZ +MY ∗ Z +MZZ +MZ ∗ Z)We identify with MXX , MXY , MXZ the loal �eld omponents generated by the �rst neighbor dipole in thediretion X−, and with MX ∗X , MX ∗ Y , MX ∗Z the loal �eld omponents generated by the �rst neighbordipole in the diretion X+. The other terms due to the e�et of dipoles in diretions Y +/Y− and Z+/Z− arede�ned aordingly to the same notation. Moreover the loal �eld, due to the neighbors, hanges the omponentsof the dipolar moment. These should be evaluated eah time aording to the following expressions:(16) momx(dip) = CT ∗ SC, momy(dip) = CT ∗ SS, momz(dip) = CT ∗ CWhile the SC, SS and C terms are evaluated at eah movement, the other terms should be re-alulated for thenumber of yles neessary to equilibrate the energy in the system. All these operations, �nally, are repeated
M ∗ N times with M =yle number (i. e. 10.000) and N = number of dipoles in the system. This aountsfor the high omputational weight of the elaboration.

Fig. 5.1. Diagonal sanning.With 'sanning ' we mean the order through whih the dipoles are proessed during the simulation. Theidenti�ation of a suitable order an signi�antly a�et the algorithm e�ieny in terms of memory aess andreuse of data. If we would not use any partiular sanning order but if we only would onsider dipoles in thesame order of memorization (1st, 2nd, 3rd, . . . ), their elaboration would need 21 input data (SC, SS and C ofthe moved dipole plus the moments of its six �rst neighbors), returning the 3 new omponents of the momentof the onsidered dipole.However, if the seletion order onsiders dipoles lose to eah other toward a diagonal diretion, these lastones share two �rst neighbors whose parameters are no more needed for the elaboration of the new dipole. Fig.5.1 shows an example of this, sine passing from dipole 1 to 2, dipoles 3 and 4 are preserved as �rst neighbors.This redues to 15 the number of input data needed, and a orrespondent saving in transfer time per eah dipoleis obtained. Another advantage yielded by the diagonal sanning onsists in avoiding alulations. Considering



High performane omputing through SoC oproessors 283again �g. 5.1 we note that dipoles 3 and 4 give the following ontributes to eah omponent of the loal �eld indipole 1: (17) MX ∗X +MY ∗ Y = 2 ∗momx(4)−momx(3)(18) MX ∗ Y +MY ∗ Y = −momy(4) + 2 ∗momy(3)(19) MX ∗ Z +MY ∗ Z = −momz(4)−momz(3)If we now onsider the ontribute of the same dipoles to dipole 2, the next reahed by the diagonal sanning,we �nd: (20) MXX +MYX = 2 ∗momx(3)−momx(4)(21) MXY +MYX = −momy(3) + 2 ∗momy(4)(22) MXZ +MY Z = −momz(3)−momz(4)The values on the right are obtained by substituting at the terms on left, those values reported in equations insetion 3.Equations 19 and 22 are equal and an be alulated only one. The same onsiderations are appliable inase of movements toward Y Z or XZ diretion with a onsistent sparing of operations.Finally, the moment omponents involved in equations 17�19 for the dipole 1 are also present (with di�erentoe�ients) in equations 20�22 and, again, they an be alulated only one (i. e. for dipole 1, storing them inregisters from whih they an be retrieved later for the next dipole) with a further saving of time.

Fig. 5.2. Diagonals for sanning in XY fae.The diagonal sanning basially onsists of XY movements as shown in �g. 5.2.The ubi lattie is onsidered as made by `slies' and when the last dipole is reahed on an XY fae, alittle movement toward the Y Z or XZ diretion allows to skip to the next XY slie. In eah slie, di�erentstarting points an be hosen depending on the odd/even number of dipoles present on the edge of the lattie,but for sake of simpliity we don't want to exessively detail these simulation aspets.6. Implementation on DPFPA. As previously said, a sequene onsists of a miroinstrution set andould be identi�ed as a Setup or a Loop sequene. The �rst problem to deal with is the de�nition of thoseoperations more frequently exeuted whih should be inserted into the Loop sequene. In the diagonal sanning,the most frequent operation regards the interation between dipoles loated on diagonals belonging to the XYside: thus, the Loop sequene should implement the energy alulation of these dipoles, while the Setup shouldexeute the movements in the XZ or Y Z faes of the lattie, through whih the algorithm onsiders the �rstdipole of the next XY `slie' and another Loop sequene begins.Aording to what said in the previous setion, the number of the needed sums is 14 for evaluating CTX ,
CTY e CTZ (one add is shared with the previous dipole), 3 for CT and 1 more to add these values to thepartial total energy obtained from the previous dipoles onsidered. Thus the adder pipeline is used as its best,if 18 lok yles are taken. For what onerns multipliations, instead, 6 are needed to alulate CT , 3 for thenew moment omponents of the onsidered dipole and 1 more for its global energy. Thus, 10 multipliationsare required. Let's see how these operations ould be e�iently implemented.
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�Fig. 6.1. Stage 2 in the adder pipeline during the Loop phase
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Fig. 6.2. Stage 4 in the adder pipeline during the Loop phase
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Fig. 6.3. Stage 6 in the adder pipeline during the Loop phase6.1. Adder Unit. Eah stage is onsidered as an independent register ontaining the partial result whihan be stored every L lok yles (L is the pipeline length). The Loop sequene evaluates the energy of dipolesonsidered in the XY diretion: 4 stages of adder pipeline were devoted to alulate CTX , CTY , CTZ and
CT . In �g. 6.1, the seond pipeline stage devoted to the alulation of CTX is shown, with the partiularalulation highlighted in bold in eah of the four sums needed. In the �rst step, the term in parentheses is`shared' with the previous dipole onsidered and does not need to be re-alulated (see previous setion). Eahpartial result is available only when it has run aross the whole pipeline i. e. after 9 lok yles and theomplete value of CTX is available after 36 lok yles. Then the stage proeeds to evaluate the CTX for thenext dipole. The same onsiderations an be made for CTY and CTZ. The alulation of CT is implementedin the stage 4, whih works again for 36 lok yles. The CTX , CTY , CTZ values used in this ase are thoseoming from the multiplier where they have been multiplied by SC, SS and C. Sine the alulation of CT takesless than 36 yles, the �rst stage is used to alulate that value shared with the next dipole:
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	��	�����������Fig. 6.4. Stage 6 in the adder pipeline during the Loop phase.Therefore the partial value of CT is saved in a register from whih it will be retrieved during stage 4B(�g. 6.2). To optimise the use of the pipeline the remaining stages are devoted to implement the same alulationsfor a seond dipole, so as to proess 2 dipoles in 36 lok yles. This orresponds, as previously seen, to anoptimal use of the adder. Finally, stage 6 is devoted to add to the global energy value ETOT , those two energyontributes (ENEW ) alulated in the other stages of the pipeline up to this moment (�g. 6.3). Basially itworks in the same way as stage 4, inluding two sums shared with the suessive elaborated dipoles (again tooptimise the pipeline use). Even though, during the 36 lok yles all the sums needed for the energy of twodipoles have been performed, the dipoles involved in the elaboration are more than 2. In fat, while the adderis evaluating CTX , CTY and CTZ for the two dipoles, it is not possible to determine at the same time theorrespondent CT terms, sine the previous alulations (CTX , CTY and CY Z) should be ompleted and theyshould also be multiplied by SC1 ∗ k, SS1 ∗ k and C1 ∗ k (k is a suitable onstant depending on the systemdensity). Therefore the CT term really omputed refers to the previous Loop sequene. This means that while

CTX , CTY and CTZ for dipoles (n) and (n + 1) are evaluated, the CT terms refer to (n − 3) and (n − 4)dipoles and the ENEW orresponds to the ouple (n − 5) and (n − 6) previously started. Moreover, also theouple (n− 1, n− 2) is subjeted to a partial elaboration making the pipeline always working.This on�guration brings a onsistent level of parallelisation in the exeution of the algorithm. Fig. 6.4shows the omplete set of operations alulated during the 36 lok yles of eah Loop sequene. Per eahstage and lok yle, the e�etive sum performed is reported in bold.6.2. Multiplier Unit. This unit exeutes the multipliations needed in the terms that must be added, i.e. 10 per eah of the two dipoles of the adder unit (globally 20) and in a sequential way. To synhronise theoperations in the multiplier pipeline with those of the adder, the length of the pipeline (15 stages) is extended to18 by adding three NOP (no operation) yles: this means that in 36 lok yles the multiplier works e�etivelyfor 30 yles, a time su�ient to exeute the required 20 produts, without loosing the synhronisation with theorrespondent terms in the adder unit. Fig. 6.5 desribes the operations performed together with the outputfrom the pipeline at that instant, per eah lok yle. In parenthesis the order number is reported of the dipoleto whih the alulation refers: n is the dipole for whih the alulation of the energy is initiated in the urrentsequene. At the end of eah Loop sequene the pipeline outputs new moments and energy of the dipole ouplewhih started the evaluation 3 sequenes before. Fititious produts have been inserted when needed to forethe pipeline going one step beyond.7. Results. The whole system has been tested by exeuting Montearlo simulations of di�erent size latties(4 < ND < 100, where ND is the number of dipoles on eah side of the ubi lattie).
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��� �� ��� ��������� �� ���Fig. 6.5. Operations performed in the multipliation pipeline during 36 lok yles.Performane has been evaluated as speed-up respet to the exeution of the same simulation on an Intel P4proessor with 1GB Ram memory; also FPGA oupation was used as a performane parameter. Simulationode was written in C language and optimized using Mirosoft Visual C++ environment. The Aeleratorelaboration times were measured by means of the lok ounters implemented in the interfae between Nios andthe oproessor previously desribed.In �g. 7.1 we show the performane as speed-up fator respet to two Intel P4 proessors with 3 GHz and1.7 GHz frequeny respetively, alulating the dipolar energy of the simulated system. That omputationalore is repeatedly exeuted k∗N ∗10000 times where k is the oe�ient responsible for the interation settlement(equilibration) and N is the dipole number: this gives reason of the high omputational load whih an lead(for big partile systems, e. g. 100000 dipoles) to wait a lot for results, if the simulation should be performedon a PC. The speed-up fator is inreasing for the 1.7 GHz proessor due to ahe e�et, while for the mostperforming Intel proessor (3 GHz) sets around 2.Considering the size of the FPGA we used, other 2 aelerating units ould be implemented, we anreasonably state that a speed-up fator equal to 4 an be ahieved in ase of a �full� implementation on theFPGA omponent we hose (Stratix EP1S40). Further speed-up ould be obtained if other omponents of theAltera's family (Stratix2 or Stratix3 now available) should be employed.The ost of eah board we bought was nearly $1200: this represents an important indiation when preditingtrade-o� between a luster of workstations versus a luster of FPGA based aelerators. In pratie, our workindiates that eah FPGA unit gives a omputational power 4 times greater, only doubling osts with respet
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Fig. 7.1. Speed-up of the FPGA based aelerator with respet the P4 Intel proessors.to a omputational unit in a PC luster, providing the sientist with a COTS desktop omputing system onwhih he/she an run simulations.8. Conlusions. Simulations allow the analysis of a physial system, even omplex, without experimentalmeasures or, sometimes, to on�rm what was experimentally observed. In ertain situations suh as mirosopisystems, simulations represent the simplest if not the only way to quikly foresee the behaviour of a partilesystem in di�erent environmental onditions. The high number of variables involved together with omplexinteration laws often make simulation times unaeptably long. Finally, several of the requested alulationsask for double preision �oating point arithmeti, further inreasing the omputational power needed.In this paper, we have shown how an appliation spei� arhiteture (DPFPA) spei�ally designed forthis kind of problems and based on FPGA tehnology ould represent a good ompromise between proessingapabilities and low osts. DPFPA an be programmed with a dediated language to exeute omplex �oatingpoint funtions and it is equipped with a suitable software development environment. We exeuted the dipoleenergy alulation through the simulator, ahieving, thanks also to the new sanning algorithm purposelydesigned and here desribed, a performane twie as that of a last generation Personal Computer but an beeasily �extended� to 4.A further improvement ould be ahieved by a full ustom ASIC implementation of the Aelerator whihis not justi�ed at a prototyping level while it allows a large sale manufaturing with redued osts. This wouldmake available several omputing units onneted in luster fashion by means of a point to point network,providing the user with a great omputing power.REFERENCES[BELLETTI F., et al.,℄ �An adaptive FPGA omputer�, IEEE Computing in Siene & Engineering, vol. 8(1), January-February2006, pp. 41-49.[BOGHOSIAN B., et al.℄ �Sienti� appliations of grid omputing�, IEEE Comp. in Siene & Engin., vol. 7(5), Sept.-Ot. 2005,pp. 10-13.[BUELL D., et al℄ �High Performane Reon�gurable Computing�, IEEE Computer. Marh 2007, pp. 23�26.[COWEN C. P. et al.℄ �A reon�gurable Montearlo lustering proessor (MCCP)�, FPGAs for Custom Computing Mahines,1994. Proeedings. IEEE Workshop on 10�13 April 1994, pp. 59 � 65.[CRUZ A., et al.℄ �A Speial Purpose Computer for spin glass models�, Computer Physis Communiations, vol. 133, n° 2-3, 2001,pp. 165�176[DANESE G., et al.℄ �A development and simulation environment for a �oating point operations FPGA based aelerator�, Pro.of DSD '03 � 3rd Euromiro Symposium on Digital System Design, Belek (Turkey), September 2003, pp. 173-179.[DANESE G., et al.℄ �An appliation spei� proessor for Montearlo simulations�, IEEE onferene on Parallel and DistributedProessing (PDP07), Naples, February 2007, pp. 262-269.[DANESE G., et al.℄ �Field indued anti-nemati ordering in assemblies of anisotropially polarizable spins�, Europhysis Letters55(3), pp. 362-368, 2001.[DONGARRA J., et al.℄ �High-Performane Computing: Clusters, Constellations, MPPs, and Future Diretions�, IEEE Comp. inSiene & Engin., vol. 7(2), Mar�Apr 05, pp. 51�59.[FRENKEL D., et al.℄ �Understanding omputer simulations�, Aad. Press New York, pp. 28�30, 1996.
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Salable Computing: Pratie and ExperieneVolume 11, Number 3, pp. 289�303. http://www.spe.org ISSN 1895-1767© 2010 SCPECREATING, EDITING, AND SHARING COMPLEX UBIQUITOUS COMPUTINGENVIRONMENT CONFIGURATIONS WITH COLLABORATIONBUSTOM GROSS∗AND NICOLAI MARQUARDT†Abstrat. Early sensor-based infrastrutures were often developed by experts with a thorough knowledge of base tehnologyfor sensing information, for proessing the aptured data, and for adapting the system's behaviour aordingly. In this paper weargue that also end-users should be able to on�gure Ubiquitous Computing environments. We introdue the CollaborationBusappliation: a graphial editor that provides abstrations from base tehnology and thereby allows multifarious users to on�gureUbiquitous Computing environments. By omposing pipelines users an easily speify the information �ow from seleted sensorsvia optional �lters for proessing the sensor data to atuators hanging the system behaviour aording to their wishes. Usersan ompose pipelines for both home and work environments. An integrated sharing mehanism allows them to share their ownompositions, and to reuse and build upon others' ompositions. Real-time visualisations help them understand how the information�ows through their pipelines. In this paper we present the onept, implementation, and user interfae of the CollaborationBusappliation.Key words: ubiquitous omputing; editor; on�guration1. Introdution. The development of early sensor-based infrastrutures often required expert program-mers with a thorough knowledge of base tehnology for sensing information, for proessing the aptured data,and for adapting the system's behaviour aordingly [10℄ [23℄ [24℄ [26℄. In this paper we argue that also end-usersshould be able to on�gure Ubiquitous Computing environments. There are some researh projets providingeasy-to-use on�guration interfaes for non-expert users to reate sensor-based Ubiquitous Computing appli-ations, yet mostly only for the private home [4℄ [8℄ [15℄ [18℄ [25℄. Furthermore, most systems lak integratedfailities for the ollaborative exhange of users' on�gurations. Only some systems�typially omplex on�gu-ration tools [2℄ [3℄ [5℄ [16℄�provide enhaned visualisations of the data �ow and sensor-network data to supportusers while reating or on�guring appliations.In this paper we introdue CollaborationBus: a graphial editor that provides adequate abstrationsfrom base tehnology and thereby allows multifarious users�ranging from novie to experts�to easily on�gureomplex Ubiquitous Computing environments.By omposing pipelines users an easily speify the information �ows from seleted sensors via optional�lters for proessing the sensor data to atuators hanging the system behaviour aording to their wishes.Whenever the sensors apture values that are in the range indiated by the users, the atuators perform thespei�ed ations. All pipeline ompositions are stored in the respetive user's personal repository. A entralinterfae allows users to ontrol their respetive repository�they an reate new pipeline ompositions, or edit,ativate or deativate existing ones.An integrated sharing mehanism allows users to share their own pipeline ompositions with others users.In an analogous manner they an add others' ompositions to their own repository, and build new ompositionsbased on these ompositions. Real-time visualisations display relations between inoming and outgoing eventsof the pipeline, and let the user interatively adjust and keep trak of the information �ow through theirpipelines. They help the users understand the information �ow through their ompositions, whih an beomequite omplex onsisting of sets of sensors, �lters, and atuators.In this paper we present the onept, implementation, and user interfae of the CollaborationBusappliation. First, we develop senarios of on�gurations for Ubiquitous Computing environments and deriverequirements. Then we desribe the onept and implementation of CollaborationBus, and present its userinterfae. We ontinue with a disussion of related work. Finally, we draw onlusions and report on futurework.2. Requirements. In this setion we develop senarios of on�gurations for Ubiquitous Computing envi-ronments and derive requirements for the CollaborationBus editor.2.1. Appliation Senarios. Users should be able to on�gure environments in their private homes aswell as in their workplaes.
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290 Tom Gross, Niolai MarquardtSmart Telephone. In a �rst senario users wish to ontrol the sound volume of their musi players and starttheir alendar appliation in dependene of their o�e telephones' state. A simple binary sensor attahed to thetelephone is the �rst input soure of this pipeline. The seond input soure heks whether the user is urrentlylogged in at the o�e omputer. The ondition modules hek the telephone sensor state as well as the logininformation. Finally, the user spei�es the desired information �ow: if the attahed sensor detets that thephone is used, a sript is started (e.g., AppleSript on a Ma OS X omputer, or a shell sript on Windows)and mutes the volume of the omputer (e.g., Ma, or PC), an infrared ontrol (e.g., on a sensor board) mutesthe sound system, and another sript starts the user's alendar appliation (e.g., iCal, or Outlook), so that theuser an input new appointments during the phone all. When the phone all ends, the appliation fades themusi bak in again after a few seonds.Personal Noti�ation Seletion. In a seond senario, users want to get information about the urrent a-tivities of their remote o-workers and friends. Users an add a state sensor to the instant messaging appliationas well as movement and noise sensors as soures of their pipeline. Then users an speify queries with keyword�lters that analyse the sensor data of the instant messaging sensor and hek if they math the names of theirremote o-workers or projet desriptions. As atuators the users might wish to speify that all events areolleted and sent as a daily email summary one a day. Additionally, if the number of messages ontainingthe keywords reahes a spei�ed ourrene threshold, the system additionally sends the users an immediatesummary message to their mobile phones via an SMS gateway (a short message servie sending a message tothe mobile phone).Informal Group Awareness. In a �nal senario, the users of two remote labs want an information hannelof the lab ativities as RSS feed that an be integrated into tikertape displays or sreensavers. They wishto reeive information on the ativities at the other site. They reate a pipeline omposition and add thefollowing information soures as input soures: the urrent lab members logged in on the server and in theinstant messaging system, the urrent CVS submissions of the developers, the average values of the movementand noise sensors and the urrent temperature of the two labs and the o�ee lounge. As atuator omponentfor the output they add an RSS feed generator and publish the RSS �le to a server. Now, the lab members anaess this RSS feed and add it to their favourite noti�ation display (e.g., a Web browser, or a sreensaver).This summary of group events and ativities an help users to �nd out more about the whole developmentteam, and an failitate the informal and spontaneous ommuniation between the olleagues.2.2. Funtional Requirements. The following funtional requirements were derived from various appli-ation senarios (we desribed three of them in the preeding sub-setion), and from a detailed study of relatedwork (we present some examples of related work in Setion 6 below).
• Provide adequate abstration for various appliations domains: Con�guration editors should allow usersto integrate a variety of software and hardware sensors apturing information, and software and hard-ware atuators adapting the behaviour of the environment aordingly. The integration of existing andnew sensors and atuators should be easy. Various on�gurations should be possible�ranging fromon�gurations for home environments as well as for work environments.
• Support diverse users with heterogeneous knowledge, ranging from novie to experts: Con�guration ed-itors should failitate the immediate utilisation. For this purpose, they should provide a pre-de�nedlibrary of ommon on�gurations and on�guration assistants that allow the users�espeially novieusers�to use the editor immediately and to inrementally explore its funtionality. Additionally, on-�guration editors should o�er guided ompositions. Therefore, the user interfae and the funtionalityprovided should be restrited to signi�ant and needed funtions; funtions that are not adequate ornot needed should be disabled (e.g., if a sensor aptures data in the form of text strings, alulationssuh as average should be disabled). Finally, on�guration editors should provide details on demand.For this purpose, espeially more experiened users should be able move from more abstrat to more�ne-grained layers, and to see and manipulate details.
• Support the exhange of on�gurations among users: Con�guration editors should allow the sharing ofon�gurations among users. The sharing of on�gurations is useful for workgroups and friends, beauseit allows users to build on the results of other users, and gives less experiened users the hane to bene�tof the knowledge of more experiened users. Subsequently we present the onept and implementationof CollaborationBus addressing these funtional requirements.



CollaborationBus 291Table 3.1Appliations with sensors/atuators in home and work environments.Home atuators O�e atuatorsHomesensors a) Smart Home Appliations: often on-netions between hardware sensors and a-tuators (e.g., to ontrol eletrial devies(power plugs) in dependene of observedsensor values, or to ontrol multimediahome devies) b) Home Awareness Appliations: mixed useof software and hardware sensors and atua-tors (e.g., to observe the private home fromthe work o�e, or to display state of familymembers at home)O�esensors ) O�e Awareness Appliations: mixeduse of software and hardware sensors (e.g.,to summarise information of projets andto inform people at home about the work-ing ativity) d) Collaborative Work Appliations: oftenappliations based on software sensors andatuators (e.g., to observe omputer logins,instant messenger presene, and other ativ-ities)3. Conept. In this setion we desribe CollaborationBus' key onepts for a generi approah, forpipelines, for a diverse user experiene, and for ollaborative sharing.3.1. Generi Approah. The approah of CollaborationBus is generi�it works aross multipleappliations domains, temporal patterns, and omplexity patterns.3.1.1. Spanning Appliation Domains. Sensor- and atuator-based appliations in the private homedi�er from those in the ooperative work domain. While we try to integrate a ommon, universal user interfaeand metaphors for users of both domains, these domains an vary in their use of hardware and software sensorsas illustrated in Table 3.1.Smart Home Appliations (f. a in Table 3.1) are mainly built with hardware sensors and atuators, wherethe developed sensor-based appliations adapt the home environment automatially to the requirements of theprivate users. While omputer appliations provide appropriate funtionality for the on�guration and reationof these appliations, the omputer and its appliations should disappear during the everyday exeution ofthe sensor-based appliations. In order to support the development of appropriate appliations, the Collab-orationBus editor supports a variety of hardware sensors and atuators, and the editor is only needed foromposing the setting.In ontrast to these mainly hardware-based appliations, most Collaborative Work Appliations are basedon both hardware and software sensors and atuators (f. d in Table 3.1). Sine omputers are in general partof the workplae, software sensors and their events (e.g., appointments, emails, tasks, projet ativity) andsoftware atuators (e.g., for sending emails, displaying messages on the omputer sreen) an be used to reatesensor-based appliations for awareness and information-�ow of workgroups. At the same time, the integrationof hardware�both sensors and atuators�and their physial user interfaes an failitate the interation withthese appliations. This results in tangible user interfaes for appliations at the workplae (e.g., physial slidersso set the presene in an instant messaging systems; LCD displays for displaying important email messages;audio signals to inform about the urrent projet's state). CollaborationBus supports the reation andon�guration of all these free ombinations of physial user interfaes with software events as a main featureand allows users to reate their envisioned interfaes themselves.In between these two domains are appliations that bridge the gap between the private home and thebusiness work (f. b and  in Table 3.1). Home Awareness Appliations (f. b in Table 3.1) support onnetionsto family members and friends at the workplae. For instane, ambient displays let the users pereive theinformation in multi-sensory ways. This inludes that users an on�gure their sensor-based appliations athome as well as at their o�e; thus a universal appliation interfae is required.O�e Awareness Appliations bridge the gap between the home and the work environment (f.  in Ta-ble 3.1) by informing users about events from the o�e while they are at home. Users de�ne their own infor-mation hannels that onnet home environment with their work environment (e.g., projet report summariesthat are generated and delivered to the private home, important email or instant messages that are forwardedto the private home). Here, the on�guration editor requires in most ases a variety of software sensors in thework environment that are onneted to physial atuators in the private home.



292 Tom Gross, Niolai MarquardtOn a whole both environments�home and work�have beome inreasingly intertwined in the reent years(e.g., telework). Therefore, utilities need to allow the building of universal sensor-based appliations spanningboth ambienes and the integration of software sensors and atuators as well as hardware sensors are needed.3.1.2. Spanning Temporal Patterns. In any appliation domain various patterns with regard to ap-turing ongoing data and starting atuators an be identi�ed:
• Reurrent, permanent (e.g., appliations with ongoing olletion of data)
• Reurrent, oasionally (e.g., appliations depending on day-time, during the holidays, at night)
• One-time (e.g., appliations with all-bak if the required person is reahable)The software needs adequate methods to support any of these temporal patterns, and should provide astrutured overview of the urrent on�gurations of a user. Another important aspet is to enable the easyre-use of reated on�gurations in the past: a opy method and templates an speed up the reation proess.Systems supporting all these temporal patterns are needed.3.1.3. Spanning Complexity Patterns. Eah setting an have a spei� omplexity pattern rangingfrom simple sensor-atuator tuples to networks of sensors and atuators:
• One sensor, one atuator (e.g., one binary sensor ontrols one atuator)
• Sensor, �lters, atuator (e.g., only reat to ertain temperature values of a temperature sensor)
• Multiple parallel sensors, �lters and atuators (e.g., reate summaries of various sensor soures, ontrola set of atuators)
• Complex network of omponents (e.g., determine the urrent ativity or even mood of a person)The CollaborationBus editor supports any appliation domain, and any temporal pattern desribedabove. It supports any omplexity pattern, exept for omplex networks. Complex networks are typiallynot on�gured with a graphial editor, but rather developed with programming languages; therefore, here agraphial editor would not be used anyways.3.2. Pipelines. In CollaborationBus all relations between sensors and atuators are handled with apipeline metaphor.Pipelines are ompositions that inlude several omponents: at least one sensor and one atuator omponent,and additionally further �lter omponents for proessing sensor values (e.g., to delimit the forwarded values,or to onvert data formats). All omponents inside of a omposition are onneted via pipelines that forwardevents between them. Pipelines an be nested in various ways: several parallel sub-pipelines an be added (thisrepresents the OR ondition); sequenes of sensor soures an be reated (AND ondition); or negations an bespei�ed (NOT ondition).Sensors are the soures of any initial event in a pipeline. They an either be hardware sensors (e.g., sensorsfor temperature, movement, light intensity) or software sensors (e.g., sensors for unread emails, mouse ativity,shared workspae events, open appliations).Atuators are at the sink-side of the pipeline omposition. Hardware atuators a�et the real environmentof the users (e.g., ativate light soures or devies), while software atuators only in�uene the omputer system(e.g., display sreen messages, start appliations).Filters for proessing the aptured data are between sensors at the one side and atuators at the other. The�lter omponents an proess all inoming events of a sensor soure. Eah �lter omponent represents a singleondition or transformation based on the inoming event value. Filters typially generate data of partiularformats (e.g., integer values, Boolean values, strings). There are universal �lter types that an be applied toany type of sensor data and spei� �lter types that an only be applied to partiular types of sensor data. Therespetive �lter types an do the following proessing:
• Universal (e.g., ount the event ourrene, reate event summary reports)
• Numerial proessing (e.g., numeri threshold, interpolation, average)
• String proessing (e.g., searh for spei�ed keywords)
• Binary proessing (e.g., negation, onjuntion)
• Transformations (e.g., numeri value to string message, binary value to numeri)Filters an be assembled in many di�erent ombinations. This inludes, for example, an adaptive behaviourto hanged onditions of the sensor soures (e.g., modi�ed upper or lower limit of a temperature sensor, or ahanged sale of values) by transmitting these hanged onditions to all pipeline omponents. Eah omponentan deide if a modi�ation of its settings is neessary, and eventually display a on�rmation dialog. The



CollaborationBus 293omponents also inlude a variety of transformation methods (e.g., for generating a short message to the mobilephone (SMS) a string message an be entered, and the values of the respetive sensors an be attahed).With CollaborationBus users an easily onnet loal sensors and atuators or sensors and atuatorsfrom remote loations and build new on�gurations in a few seonds by visual programming though point-and-lik. Eah pipeline omposition inludes all these omponents�sensors, atuators, and �lters�and de�nesa omplete information �ow through them. Experts an program new pipeline omponents by deriving newlasses from the PipelineComponent lass (f. next setion for details). All ompositions of a user are storedin a personal repository. This repository inludes all data to dynamially instantiate the inluded pipelineompositions.

Fig. 3.1. User experiene levels, and adequate tools to support users.3.3. Experiene for Diverse Users. The CollaborationBus editor an be used by users with diverselevels of tehnial bakground. Users' knowledge an range from no experiene at all to very thorough tehnialknowledge. Figure 3.1 shows various user types ranging from novie users with no experiene to more experienedusers and to experts. It shows the methods that are available and an be used in dependene of the existingknowledge. It also shows the user interfaes and support tools that are o�ered for the respetive user types (theuser interfaes and supporting tools are desribed below).Novie users with no prior tehnial knowledge an start using CollaborationBus by loading and adapt-ing pre-on�gured appliation on�gurations that are part of the CollaborationBus distribution. As theyprogress, they an use the integrated sharing tool to load other users' on�gurations and to use them as tem-plates for their own on�gurations. They an, furthermore, modify and enhane the appliation on�gurationsand templates.More experiened users an reate their own appliation on�gurations, and exeute them in order to learnmore about intra-pipeline event forwarding.Expert users an reate the envisioned system-behaviour by developing the required software in a high-levelprogramming language. Typially, for these ativities they use toolkits, platforms, libraries, and developmentand debugging environments to failitate and speed up the development proess.Taking these diverse user types into onsideration is a ore onept of CollaborationBus and its userinterfae (the latter is desribed below).3.4. Collaborative Sharing. Users an build their own personal pipeline ompositions from srath, orbuild on shared ompositions from olleagues and friends. Three types of sharing are possible:
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• Sensor and event sharing: users either share the events of their own sensors, or the proessed events oftheir sensors.
• Atuator sharing: users share the ontrol of a personal atuator with other users, so that other usersan send ommands to the atuator and ontrol the system behaviour.
• Pipeline sharing: users share omplete more or less omplex pipeline ompositions with others.The �rst sharing method lets users reate their own on�guration in dependene of remote loated sensorsof other users. The seond sharing method lets users ontrol the atuators of other users (leading to newhallenges of potentially onurrent aess to atuators). And the third sharing method lets users exhange andre-instantiate omplete pipeline ompositions, requiring a uni�ed desription format and exhange protool forpipeline ompositions. In the latter ase the reipients of the ompositions an hange this released pipelineomposition to �t to their requirements. Beause eah user reates a new instane of this pipeline omposition,the hanges of other users are not a�eting the original omposition.CollaborationBus supports seurity and privay protetion thought adequate levels of abstration andontrol over aess privileges of the own information soures are needed. In order to restrit the shared infor-mation, users an hoose the sharing of abstrat templates. In these shared pipeline ompositions, only theskeleton of a pipeline is shared, and the original sensors and atuators of a user are not inluded in the sharingentry. Thus, the abstrat template of a omposition ontains mainly the on�guration of all �lter omponentsbetween the sensors and atuators. Using this abstrat template, other users an insert their own sensors in theplaeholders at the beginning of the pipeline omposition, and their own atuators at the end. This let themuse the knowledge of the proessing �lter omponents of the omposition, while at the same the user who shareshis pipeline omposition does not share his own sensors and atuators.These integrated ollaborative sharing methods provide a powerful and easy-to-use method of knowledgeexhange between di�erent users of the system. As prior desribed in Figure 3.1, a novie and inexperieneduser an use pre-on�gured pipeline ompositions of another user (if this user shares the omplete pipeline), orthe user an load an abstrat pipeline template and �ll in his own sensors and atuators. At every time it isvery easy for the users to share their new pipeline ompositions again, and store them in the shared repository.The following example illustrates a situation where these abstrat templates are appropriate. A user hasreated an ambient noti�ation display of important inoming email messages: all messages are sanned foradequate keywords or sender addresses, and if the san was suessful, a message will be displayed on anambient external LC display. The user deides to share this on�guration, while at the same time it stands toreason that the user do not want to share his personal email-sensor, or the exat on�guration of the keyword�lter. By using the abstrat template, the user an share the basi onatenation of inoming sensors, �lters,and the atuator display, without sharing his personal sensors.On the other hand, a user who has reated a SMS noti�ation servie for the average temperature of aseries of temperature sensors may wish to share this omplete on�guration, and therefore shares the pipelineompositions with all the assoiated sensors.4. Implementation. In this setion we desribe the implementation of CollaborationBus: softwarearhiteture and lass diagram.4.1. CollaborationBus Software Arhiteture. Figure 4.1 provides an overview of the softwarearhiteture of CollaborationBus. All sensor and atuator omponents are onneted to the SensBaseinfrastruture, whih provides adapters for the onnetion of sensors and atuators, a entral registry of allonneted omponents and a database for persistent storage of sensor event data. SensBase was implementedwith the Sens-ation platform [13℄. SensBase provides inferene engines that an transform, interpret, andaggregate sensor values. A variety of gateways (e.g., Web Servie, XML-RPC, Sokets) provide interfaes forthe retrieval of sensor desriptions, event data, atuators, and so forth.The CBServer uses these gateways to register for the sensor values needed for the users' pipeline om-positions. Eah time when hanges our at one of the onneted sensors, the SensBase server forwards ahange event to the CBServer. These events are forwarded to the adequate omponents inside of eah pipelineomposition. The ompositions are inside of the Personal Repository of eah user and inlude the omplete de-sription of all assembled omponents (in serialised XML format, for platform independeny and easy exhangeof pipeline omposition desriptions). The CBServer an serialise and de-serialise these XML desriptions, andvalidate and proess these desriptions. If a XML desription of a pipeline omposition is de-serialized, theCBServer reates instanes of proxy objets for eah of the pipeline omponents (sensors, �lter, atuators).
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Fig. 4.1. CollaborationBus software arhiteture.Inside of these omponents we have multiple threads running to ensure rapid proessing of data as well as rapidforwarding of events to the subsequent omponent. While the sensor and atuator omponents inside of theseompositions at as a proxy for the existing (and onneted) devies, the �lter objets represent the proessingand transformation part inside of these ompositions. A pipeline omposition an inlude multiple proessingpipelines simultaneously, and the users an run and stop as many of these ompositions as they like (by usingthe Control User Interfae).In the Shared Repository the published pipeline ompositions are stored. They are saved in the XML formatas well, and XML proessing is used to operate based on these desriptions (e.g., to modify existing entries, orto reate an abstrat pipeline omposition template). Furthermore, the CBServer manages a diretory of all thevarious sensor and atuator types, as well as �lter omponents, and submits them to the lient appliation. Thedynami diretory an be extended with new omponents at any time, and this ensures the easy extendibility ofCollaborationBus. If users want to integrate di�erent atuators or sensors, they need to implement a newadapter driver at the SensBase level; this is independent from the CollaborationBus arhiteture. However,if new �lter omponents are needed for a di�erent data proessing, then a new lass (by deriving from anabstrat base lass with the ore funtionality of eah �lter omponent) is needed to represent this proessingstep. While this an be done with minor e�ort by any software developer, it is not easy to add a new �lter fornon-programmers.The CBClient implements the GUIs desribed above. For reating, ontrolling and editing pipeline om-positions it is neessary to support all the XML operations of the server, and the methods for instantiatingpipeline ompositions as well (for the editor and testing tools).4.2. CollaborationBus Class Diagram. The lass struture of the repositories and pipeline om-positions is illustrated in an UML lass diagram in Figure 4.2. The PersonalRepository lass provides methodsto add, remove, modify, and get PipelineComposition objets. The SharedRepository ontains a olletionof SharedRepositoryEntries, whih wraps one PipelineComposition and speify the sharing attributes of thisPipelineComposition (e.g., abstrat or omplete template).The PipelineComposition objet is a omposite objet for a series of PipelineComponents. It enapsulatesmethods for ontrolling pipeline ompositions (e.g., start and stop), and for adding and removing pipelineomponents. PipelineComponent is the abstrat base lass for the Sensor, Filter, and Atuator base lasses.
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Fig. 4.2. CollaborationBus repository and pipeline UML lass diagram.It provides ommon methods for eah pipeline omponent (like proessing, forwarding and ahing of events).Inside the PipelineComponents multiple threads (ProessingThread) are running to ensure rapid proessing ofdata as well as rapid forwarding of events to the subsequent omponent. Sensor, Filter, and Atuator areabstrat base lasses for the onrete pipeline omponents allowing to respetively: retrieve sensor values fromany number of sensors from the SensBase infrastruture and push them into the pipeline proess (e.g., sensorvalues from the Embedded Sensor Board or Phidgets hardware devies [11℄); proess inoming values (e.g.,keywords, average, or threshold �lter); and ontrol the atuator elements (e.g., generate an RSS feed, show amessage on a text display, or drive other appliations via AppleSript). CollaborationBus is implementedin Java with Swing libraries for the GUIs. Several libraries are used for XML [30℄ proessing (e.g., for theserialisation of pipeline ompositions [27℄, for parsing sensor desriptions, for reating XPath expressions [29℄);and for remote onnetions (e.g., XML-RPC [28℄, and SOAP [1℄).5. User Interfae. The CollaborationBus editor provides four major graphial user interfae (GUI)omponents: the Login and Control GUI; the Editor GUI; the Shared Repository GUI; and the Real-TimeVisualisation GUI.5.1. Login and Control GUI. The Control GUI is the entral aess point for all users to their personalrepository of on�gurations. In order to get to their Control GUI, users have to login �rst. Figure 5.1 showsthe Login and the Control GUIs.After login, users an see the Control GUI with the listing of their pipeline ompositions, inluding anindiator of the urrent state of eah pipeline omposition (retangle to the right of the pipeline name): O�(grey), Running (green), or In Edit Mode (orange).All funtions for modifying the repository and its ompositions are available from within this interfae:Add, Remove, Rename, and Clone pipeline ompositions (via the Commands button). Users an Start andStop the threaded exeution of eah omposition (via the Start/Stop button). And, they an use the Sharemethod to upload the seleted omposition diretly to the shared repository (via the Commands button).5.2. Editor GUI. While the basi funtions for the personal repository are available in the Control GUI,the underlying �lter omposition of eah of the pipelines is only available in the Editor GUI that an be openedfor eah of the pipeline ompositions. Figure 5.2 shows the Editor GUI. In the top area the user an hooseseveral buttons for loading the Pipelines (via the Pipelines button), hange the Preferenes (via the Preferenes
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Fig. 5.1. Login GUI and Control GUI.button), et. In the middle area the respetive pipeline with its sensors, onditions, and atuators is shown(eah individual item is represented as a retangular box). In the bottom area the properties of the urrentlyseleted pipeline part (retangular box) are shown and an be altered.In order to reate a new pipeline omposition, users an �rst disover the available sensor soures (e.g.,movement sensor, temperature, sensor telephone sensor, instant messenger status sensor) of the infrastruturein a graphial sensor browser (the browser an be started by pressing the +-sign to the right of Sensors andConditions), and add the sensors they need to the pipeline. Then they an speify rules and onditions (thesean also be viewed by pressing the +-sign to the right of Sensors and Conditions) for the sensor values byadding sets of �lters and operators. For eah sensor types with the aording sensor value type, spei� �ltersand operators an be seleted (e.g., an event value threshold, a ounter for number of ourrenes). Finally,the atuators an be spei�ed by seleting them in the graphial atuator browser (the browser an be startedby pressing the +-sign to the right of Atuators). Here, the editor provides the option to speify the mappingbetween the pipeline output and the atuator ommands (e.g., if the pipeline output is a message, it an bedisplayed; if the pipeline output is a simple temperature value, the orresponding sound volume an be set).
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Fig. 5.2. Editor GUI.5.3. Shared Repository GUI. The ollaborative sharing mehanism desribed above is integrated inthe Control GUI and in the Editor GUI. In order to make a pipeline omposition available for others, usershave two options. They an either selet the Share method in the Control GUI (via the Shared button; f.Figure 5.1). Here the default settings for sharing are used and no additional parameters are needed. Or theyan hoose the Sharing ommand in the Editor GUI (via the Sharing button; f. the top area in Figure 5.2) tospeify further settings for the shared omposition. Further settings inlude desription, ategory, and type ofsharing (f. three types of sharing above). Finally the users an upload the pipeline omposition.In order to use one of the shared pipeline ompositions, the user an aess the Shared Repository GUIfrom within the Control GUI. Figure 5.3 shows the Shared Repository GUI. By seleting one of the availableompositions in the list at the left side, the information for this entry is displayed at the right side of the dialogue(desription, owner, ategory, type of sharing, used sensor soures and atuators). Users an then download therespetive omposition.5.4. Real-Time Visualisation GUI. In the assembly of pipeline ompositions with a variety of om-ponents it an be di�ult to keep trak of the intra-pipeline ommuniation between the omponents and theproessing of the forwarded pipeline events. The Real-Time Visualisation GUI of the CollaborationBus
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Fig. 5.3. Shared Repository GUI.provides a variety of graph visualisations that an either display the forwarded values of eah omponent of thepipeline (e.g., useful for interpolation and threshold �lters) or the quantity of forwarded values (e.g., useful forgate �lters, ounters or timers).Figure 5.4 shows the Real-Time Visualisation GUI with a time plot visualisation on the left (showing theabsolute values of 4 temperature sensors), and an overview of the pipeline events on the right (showing thenumber of ourrenes of events in a spei� pipeline).With these visualisations, the user obtains an inside view of the pipeline proessing. The ommand StartPipelines (via the Start Pipelines button) ativates all omponents of the respetive pipeline(s) and registersfor the respetive sensor events, starts the proessing of threads, prepares the atuator modules, and generatesand dynamially updates the visualisations. When any of the omponents of a pipeline is hanged (e.g., athreshold, or an interpolation settings), the impliation to the proessing an be reognised immediately. Thusthe adjustment and �ne-tuning of omponent parameters beomes easier. In order to enable the testing ofpipeline omposition, we have, furthermore, integrated an input interfae for simulated sensor events. It allowsthe users to manually insert sensor values to test and verify the pipeline omposition without having to wait forreal sensor values from the sensors. So, the proessing of the data though the whole pipeline an be simulated.6. Related Work. This hapter gives an overview of researh related to the omposition of sensor- andatuator-based appliations. We introdue examples of programming tools for Ubiquitous Computing applia-tions, software for ontrolling sensor networks, and ollaborative sharing between users.6.1. Programming Ubiquitous Computing Appliations. Several researh projets address the hal-lenge to allow end-users to reate and on�gure intelligent appliations for in-home environments. With iCAP,Sohn and Dey introdue an appliation that allows end-users to rapidly prototype Ubiquitous Computing ap-pliations [25℄. Similar to CollaborationBus, it uses rule-based onditions; espeially the disjuntion and
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Fig. 5.4. Real-Time Visualisation GUI (with time plot visualization, and overview of the pipeline events).juntion of rules in their sheets is similar to our parallel and sequential pipelines (yet we think that work�ow-adapted pipelines stimulate a better understanding of rule ompositions than free arrangements). iCAP doesnot support sharing, or real-time visualisations.Irene Mavrommati et al. have introdued an editing tool for reating devie assoiations in an in-homeenvironment [18℄. Their editor onnets various omponents alled e-Gadgets to realise Ubiquitous Computingsenarios at home (similar to our onneted proessing omponents). Yet, it does not support workplaeenvironments. The jigsaw editor of Jan Humble et al. [15℄ [22℄ demonstrates another appliation for gettingontrol over the tehnologial home environment. The metaphor of speifying the appliations' behaviour byassembling piees of a jigsaw puzzle sounds intuitive. Yet, we would like to give the users more ontrol overtheir appliation than the enapsulated jigsaw piees allow.Some systems are based on mobile devies to ontrol on�gurations from every loation at every time. Thisinludes systems for PDAs [18℄, mobile phones [4℄, and TabletPCs [15℄. These mobile systems often provideonly limited aess to omplex on�guration methods. We have not reated a version for mobile devies yet, buta lightweight mobile version of CollaborationBus would ertainly be highly omplementary to the existingversion.Another approah for on�guring Ubiquitous Computing environments is programming by demonstration.This method requires an extended period of observation of relevant sensor values. In a later de�nition andlearning phase, the users speify relevant sensor events in the event timeline, so that algorithms from arti�ialintelligene an detet patterns in the observed sensor values and automatially exeute desired atuators [8℄.Programming by demonstration tools hide most spei� details of the underlying mehanisms from the users. Onthe one hand this redues the barrier for non-tehnial users to on�gure Ubiquitous Computing environments,but on the other hand restrits the in�uene and ontrol methods for users.The related work appliations mentioned so far address the development of omplete sensor-based applia-tions in a rather abstrat way. In the eBloks projet [6℄ [7℄ a user interfae for building sensor-based appliationsand on�guring Boolean ondition tables is introdued. As the authors show in their evaluation, users still needsupport in building these Boolean tables (e.g., support by di�erent olours or written text [6℄). Therefore,we introdued pipelines to allow the easy ombination of Boolean AND, OR, and NOT onditions, simply byadding omponents to a pipeline proessing stream or by adding a new parallel pipeline.



CollaborationBus 301The Phidgets toolkit reated at the GroupLab by Greenberg and Fithett [11℄ failitates the developmentof physial user interfaes. It provides a range of sensor and atuator elements as building bloks for lettingdevelopers rapidly prototype sensor-based appliations. The inluded developers' toolkit allows easy aessto these hardware omponents from within the software. This approah was further extended to distributedarhitetures by Marquardt and Greenberg [17℄. In summary, the use of Phidgets requires few hardware skills,but onsiderable programming knowledge and is therefore not suitable for end-users.6.2. Sensor Network Composition Software. A variety of appliations for the ompositions of sensor-based networks is available [3℄ [21℄. For instane, the VisualSense modelling and simulation framework as partof the PTOLEMY II projet [2℄ [3℄ is a toolkit for the ontrol over �ne granular sensor network ommuniationand proessing. The GUI inludes funtionality for proessing omponent assembly, and for graph visualisationsto display the proessed values of omponents.Sine the evaluation of the ommuniation in sensor networks an be di�ult for newly reated appliations,several speial omplex development environments have been presented (e.g., SensorSim [21℄, EmTOS [9℄,TinyDB [16℄, and J-Sim [24℄). These tools provide adequate development environments for expert users (beausethey inlude programming languages, operator sets, mathematial proessing libraries, visualisation tools, et.).The integration of visualisations for the event �ow inside of sensor-network arrangements is interesting forour purpose [5℄. However, users with a non-tehnial bakground probably have di�ulties in using theseappliations. Furthermore, these latter environment do not support the sharing of development on�gurations.6.3. Collaborative Sharing. While in Computer-Supported Cooperative Work (CSCW) ollaborativesharing of loation information, �les, workspaes, software and patterns is wide-spread [12℄, an approah tosharing sensor- and atuator-based appliations among users is still missing. In [12℄ design issues of CSCWappliations that use data sharing are examined. This inludes proposals for aess ontrol, adding meta-information, version history, and methods for handling updates and onurreny di�ulties. Further ommonlassi�ations of sharing between users are desribed in [19℄ [20℄. They have found ommon groups with similarsharing preferenes, and patterns in the sharing behaviour of users. Integrating support for these lusteredgroups ould failitate the usage of sharing mehanisms.Hilbert and Trevor desribe the importane of personalisation as well as shared devies for UbiquitousComputing appliations [14℄. With the modi�ation of appliations to the personal needs, the use of theseappliations beomes easier for users.7. Conlusion. In this paper we have introdued the CollaborationBus editor allowing any users toreate sensor-atuator relations.7.1. Summary. Even novie users an easily speify omplex Ubiquitous Computing environments withthe CollaborationBus editor, without having to deal with omplex on�guration settings or programmingdetails. The CollaborationBus editor provides novel abstrations by enapsulating and hiding the details ofthe underlying base tehnology (e.g., the sensor infrastruture, the sensor and atuator registration, the sensorevent registration). At the same time, more experiened users an ontrol the pipeline omposition on�gurationin any tehnial detail they need and get details on demand.Furthermore, users an share their pipeline ompositions with olleagues and friends via a shared repository.Users an also deide how aurate they want to share (e.g., omplete ompositions, abstrat template, only theproessed event value). With a minimum e�ort, eah user an browse the shared repository and download sharedpipeline ompositions and adapt the used shared repository template to �t to their needs (by speifying theirown personal properties of the pipeline). This way the CollaborationBus features an inrementally growinglibrary of ready-to-use pipeline ompositions that form a diverse network of ollaborative sensor-atuator-relations.7.2. Evaluation. While the evaluation of the CollaborationBus GUI and funtionality as well as theprodued pipeline ompositions is of vital interest to us, a formal user evaluation is still missing. Nevertheless,we have olleted several user opinions at the publi demonstration of CollaborationBus to many visitorsat the Cooperative Media Lab Open House 2005 from 14 to 17 July 2005, where the visitors had the hane totry out the CollaborationBus software in detail (with a huge set of onneted sensors and atuators).Most of the visitors quikly started to reate their own ompositions, and to selet desired sensors, atuatorsand �lters. At the same time, they hesitated to hange the on�guration of the �lter omponents, and weresomehow not ompletely on�dent about whether they hange the right parameters. A helpful support in this
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Salable Computing: Pratie and ExperieneVolume 11, Number 3, pp. 305�325. http://www.spe.org ISSN 1895-1767© 2010 SCPEWIDE AREA DISTRIBUTED FILE SYSTEMS�A SCALABILITY AND PERFORMANCESURVEYKOVENDHAN PONNAVAIKKO∗AND JANAKIRAM DHARANIPRAGADA∗Abstrat. Reent deades have witnessed an explosive growth in the amounts of digital data in various �elds of arts, sieneand engineering. Suh data is generally of interest to a large number of people spread over wide geographial areas. Over theyears, several Distributed File Systems (DFS) have, to varying degrees, addressed this requirement of sharing large amounts ofdata, stored in the form of �les, among several users and appliations. Salability and performane are two important measuresthat determine the suitability of a �le system for the appliations exeuting over them. We perform a detailed omparative analysisof popular distributed �le systems in terms of these measures in our survey.1. Introdution. In reent deades, we have been witnessing inreasingly large rates of data generationand growing numbers of widely spread ollaborative appliations. For example, data requirements of HighPerformane Computing (HPC) appliations have been ontinuously growing over the past few years and areexpeted to grow even more rapidly in the years to ome [23℄. Experimental setups, deployments of sensors,simulators, agents, et. generate large amounts of data whih researhers world over an have use for. Otherexamples inlude WikipediaFS [10℄, and large sale telemediine [24℄.Organizing and sharing raw and proessed data �les owned by di�erent users and groups alls for the needof large sale Distributed File Systems (DFS) [46℄ [7℄ [8℄.Any �le system that allows �les to be plaed aross the network and yet make aesses appear loal is adistributed �le system. Certain systems are Client-Server based (Asymmetri) in that dediated servers existto provide �le servies. In Peer-to-Peer (P2P) or Symmetri �le systems, data/metadata management load isdistributed among all the nodes. Clustered �le systems are those in whih the data/metadata server is replaedby a luster of servers to better distribute load and handle failures. A Parallel �le system enables onurrentreads and writes of the same �le and parallel I/O [22℄. Some parallel �le systems support the striping of a �leaross multiple storage devies.There exist several large sale distributed �le systems. For our survey, we onsider a set of popular produ-tion systems and researh prototypes (table 1.1)1. This set has been hosen so as to over the major arhiteturalvariations of existing systems.These systems vary in terms of their typial appliation workloads and the geographial spread of theirtypial usage. For example, some of them are designed for desktop workloads and some for sienti� appliations.Some of the analyzed systems are not designed to be wide area �le systems, i. e., lients and servers are notdesigned to be geographially spread aross Wide Area Networks (WAN). However, other features suh as highsalability have prompted researhers to adapt even suh systems for use aross WANs. Some examples inludethe usage of Lustre �le system in [42℄ and Parallel Virtual File System 2 in [5℄.Keeping in mind the ommon nature of new generation appliations, we analyze the arhitetures of thesesystems with respet to the following appliation requirements. The �rst requirement is that of salability withrespet to the number of nodes and �les. In other words, inreasing the number of nodes and/or �les mustnot adversely a�et query/aess times. The other major requirement is that of maintaining high appliationperformane. For HPC appliations, performane an be measured in terms of makespan, omputation or I/Othroughput, et. In �le systems maintained for home diretories and suh, performane an be measured interms of query response latenies, �le aess/update times, and so on.Using a few system parameters, we attempt to haraterize the e�ets of inreasing query and I/O loadson individual �le system servers. We also study the support provided by the di�erent systems for sophistiateddata plaement and migration strategies, whih are ritial for high appliation performane. In setion 2, wedisuss some of the design onsiderations in the ontext of large sale DFSs. Setion 3 summarizes the systemarhitetures of the various DFSs analyzed in this survey. The omparative analysis is presented in setion 4.
∗Distributed and Objet Systems Lab, Department of Computer Siene and Engineering, Indian Institute of Tehnology Madras,Chennai, India
1An extensive list of omputer �le systems an be found at [3℄. Comparisons of general and tehnial features of a large numberof �le systems an be found at [2℄. 305



306 Kovendhan Ponnavaikko and Janakiram DharanipragadaTable 1.1Set of Analyzed File SystemsAndrew File SystemCephCommon Internet File SystemEdge Node File SystemFarsiteGoogle File SystemIvyLustre File SystemOeanStorePanasas Parallel File SystemPangaeaParallel Virtual File System 2WheelFS Table 2.1Classi�ation of the Analyzed File SystemsCategory Name SystemsI Traditional DistributedFile Systems Andrew File System, Common Internet File SystemII Asymmetri Cluster FileSystems Ceph, Google File System, Lustre File System, Panasas Par-allel File System, Parallel Virtual File System 2, WheelFSIII Self-OrganizingP2P File Systems Edge Node File System, Farsite, Ivy, OeanStore, Pangaea2. Design Considerations. Traditionally, distributed �le system designers have adopted a lient-servermodel. In these asymmetri systems, dediated servers exist to provide �le servies and lients only onsumethe servies. Typially, the server exports hierarhial namespaes and lients mount the exported hierarhiesin their loal namespaes.A lient-server approah has several advantages suh as ease of maintenane, e�ient management of on-urrent reads and writes of the same �le, and entralized seurity ontrol. However, the presene of a entralizedserver presents signi�ant salability onstraints. File system performane degrades with inreasing �le sizes,and inreasing numbers of �les and users.One of the early approahes to improve �le system performane is lient side ahing. While ahing helpsin reduing network tra�, it also introdues onsisteny issues. Cahed ontent an beome stale and writeollisions an our, espeially in �le systems with stateless servers.In later distributed �le system designs, a multitude of strategies have been employed to address issuesrelated to salability. Individual servers have been replaed by lusters of servers. Analogous to Sharding indatabases, in suh �le systems, namespaes are partitioned and distributed among the di�erent servers in theluster. This helps in the distribution of load and hene better performane.Another e�etive strategy is to deouple data management from metadata management. While data refersto the atual ontent of �les, metadata in the ontext of �le systems refers to the data about �le ontents.Unlike data operations, metadata operations are usually small, random and non-sequential.Deoupling is ahieved by using di�erent sets of servers for data and metadata management. In a typial �lesystem, a large proportion of queries are related to �le metadata. On the other hand, responses to data aessqueries are muh more voluminous. Using di�erent sets of servers for managing data and metadata thereforehelps improve system performane. Clustering and deoupling data and metadata have enabled other salabilityand performane optimizing strategies suh as repliation and striping a �le's ontent aross multiple storagedevies.DFS features suh as onurrent aess, �le striping and repliation ompliate the task of presenting aonsistent view of the �le system to all users. Conurrent aesses an be ontrolled by assoiating data and
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Fig. 3.1. AFS System Arhiteturemetadata with di�erent kinds of loks. In UNIX, the two ommon loking mehanisms, fntl and �ok, allowExlusive and Shared loks to be applied to �les/bloks. All exlusive loks must have been released beforeshared loks an be obtained by lients and all kinds of loks (shared and exlusive) must be released before anexlusive lok an be obtained.While pessimisti approahes suh as loking allow �le systems to support Strit Consisteny Semantis2,they also a�et appliation performane by inreasing messaging overheads and wait times. Certain �le systemssupport weaker onsisteny semantis by allowing onurrent aesses in on�iting modes. In suh systems,appliations either ensure that olliding aesses do not our, or have appropriate on�it resolution mehanismsin plae.High availability of data and metadata is usually a ruial requirement of distributed �le systems. Severalapproahes exist to improve a �le system's availability, eah assoiated with ertain overheads. Some of theapproahes are repliation, ahing, versioning, logging, and antiipatory reads. Di�erent systems employdi�erent ombinations of these tehniques to ahieve the required levels of availability.Though lustered �le systems are more salable than traditional lient-server systems, their salability islimited beause of the manually maintained set of server lusters. A entral augmentable set of servers hasother drawbaks too. Clusters are expensive to set up and maintain. Storage of entire �le systems in a limitednumber of sites makes aess from distant loations ine�ient as a result of high network latenies. Moreover,suh setups reate single points of failure, and are prone to physial vulnerabilities.Inreasing rates of data generation and number of ollaborations among geographially distributed groupsof users have reated the need for Global and P2P �le systems. P2P systems involve minimal or no entraloordination. In P2P or symmetri �le systems, data and metadata management load is distributed among allthe nodes in the system. These systems are generally designed to be self-organizing due to the impratialityof manually administrating huge numbers of storage/ompute resoures.Based on the di�erent evolutionary stages of DFS design, we lassify the analyzed systems into the ategoriesof Traditional Distributed File Systems, Asymmetri Cluster File Systems and Self-Organizing P2P File Systems(table 2.1).3. System Arhitetures. In this setion, we present brief independent reviews of the system arhite-tures of the onsidered �le systems.3.1. Traditional Distributed File Systems. Though Network File System (NFS) [39℄ (up to version 3)is one of the most ommonly used distributed �le system protools, it is usually used in a loal area networkor within a single administrative domain. We have therefore not inluded NFS in this survey. In�uened by
2A read returns the most reently written value.
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Fig. 3.2. CIFS System ArhitetureAndrew File System [21℄ and Common Internet File System [28℄, version 4 of NFS [43℄ supports stateful serversand loks, inludes other performane improvements and an be used in wide area networks.3.1.1. Andrew File System (AFS). Started at the Carnegie Mellon University, AFS [21℄ uses a set oftrusted servers for sharing a ommon diretory struture among several thousand lient mahines. AFS relieson data ahing to address the issue of salability. While earlier versions of AFS required lients to feth whole�les, versions sine AFS 3 support the transfer of smaller bloks of �les.Servers maintain state about lients whih have �les open. Callbaks are used to maintain the onsistenyof ahe ontents. Whenever �le ontents are altered, servers send invalidation messages to the orrespondinglients. A lient, on the other hand, informs the server about the hanges that it has made only at the timeof losing. As a result, AFS only supports Session Semantis3 and not One-Copy Update Semantis4, whih issupported by UNIX.The AFS model (�gure 3.1) omprises of a set of ells, eah ell usually being a set of hosts with the sameInternet domain name. Eah ell has servers exeuting the Vie proess and lients exeuting the Venus proess.AFS provides loation independene by performing the mapping between �lenames and loations at the servers.The hierarhial diretory struture is partitioned into Volumes, whih at as ontainers for related �les anddiretories. Volumes an be transparently migrated between servers. Read-only loned opies of volumes mustbe reated by administrators to enable reovery in the ase of failures. The Kerberos [44℄ protool is used forthe mutual authentiation of lients and servers.3.1.2. Common Internet File System (CIFS). CIFS [28℄ is Mirosoft's version of the Server MessageBlok (SMB) protool along with ertain other protools. CIFS provides remote �le aess over the Internet(�gure 3.2) with features suh as global naming, ahing, volume repliation, remote sharing and loking. SMBuses �at namespaes to address �les and CIFS makes use of the Internet naming system, Domain Name Servie(DNS). While hanges in �le addresses are di�ult to propagate in SMB, CIFS uses the salable noti�ationsystem of DNS to handles suh hanges. Unlike several other wide area �le systems, Uniode �lenames aresupported.Parallelism is supported at the diretory level only and individual �les annot be split among multipleservers. Sine eah �le/diretory must be assoiated with partiular servers and servers are manually adminis-tered, salability with respet to installations and query/data transfer loads in CIFS is limited.
3Changes made to a �le are visible to the other lients only after the writing lient loses the �le.
4In one-opy update semantis, every read sees the e�et of all previous writes and a write is immediately visible to lients whohave the �le open for reading.
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Fig. 3.3. GoogleFS System Arhiteture3.2. Asymmetri Cluster File Systems. There are di�erent kinds of storage arhitetures that dis-tributed �le systems use. Traditional distributed �le systems disussed in setion 3.1 suh as NFS, AFS andCIFS adopt a Network-Attahed Storage (NAS) arhiteture. Servers in these systems provide �le-based aessto their dediated storage devies, to lients aross networks.In the Storage Area Network (SAN) arhiteture, large storage devies suh as arrays of disks are sharedby a luster of nodes. Unlike NAS, data aess is blok-based (�ner granularity), whih results in inreased�exibility in storing huge �les. SAN based �le systems translate �le-level operations to blok-level operations atthe lient. Metadata management is either handled by a entral server or distributed among the luster nodes.IBM's General Parallel File System (GPFS) [18℄ is an example for a lustered �le system that adopts theSAN arhiteture. GPFS uses a distributed token management system to handle onurrent �le aesses amongluster nodes. It also supports data sharing among multiple GPFS lusters.Another storage arhiteture employed by several lustered �le systems suh as Lustre [40℄, Panasas [50℄and Ceph [48℄, uses Objet-based Storage Devies (OSD). OSDs are evolved disk drives that an diretly handlethe storage and serving of objets as against normal disk drives whih work at the level of bits, traks, andsetors. In other words, an OSD handles lower level funtionalities related to objet management within thedevie and exposes objet aess interfaes to appliations.In blok-based �le systems, �le metadata, whih inludes blok loations, is managed by the �le system.As a result, performane is e�eted for large �les sine metadata sizes are also large. On the other hand, OSDbased �le systems manage objets only. The lower level details about ontent striping are handled by the storagedevies themselves. This results in improved performane and throughput.Several lient appliations bene�t from moving omputation to where the data is, instead of getting theontent transferred to the lients [36℄ [47℄. For suh appliations, performane depends on the intelligene ofOSDs [17℄, in terms of their ability to exeute user spei�ed omputations, as well as on their proessing power.3.2.1. Google File System (GoogleFS). GoogleFS [19℄ is a DFS for data intensive appliations, ustom-built for the appliation workload and tehnial environment at Google. A GoogleFS luster omprises of asingle Master and several Chunkservers, as shown in �gure 3.3.The master manages the metadata and the hunkservers store the data. The master uses Heartbeat messagesto periodially monitor the hunkservers. A Shadow master is maintained in order to handle the failure of theprimary master. Files are split into �xed size hunks. A ertain number of replias (three is the default number)of the hunks are stored in the hunkservers. Chunk replias are spread aross raks to maximize availability.The master maintains information about the loation of eah hunk and aess ontrol information. Themaster performs periodi re-balaning of data to ensure that the hunkservers are uniformly loaded at all times.Clients obtain �le metadata from the master and perform all data related operations at the hunkservers.The datasets that appliations at Google work with are usually huge in size and the workload primarilyinvolves append operations. Hene, GoogleFS supports reord append operations only and not random writeoperations. Servers are stateless and lients do not ahe data in GoogleFS. That is beause appliations at
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Fig. 3.4. Lustre System ArhitetureGoogle usually require ertain operations to be performed on �le ontents and only the result to be returned tothem. In fat, the predominant lass of appliation is MapRedue [16℄.The arhiteture of GoogleFS makes it suitable for a speialized set of workloads only. Also, its entralizedmaster an beome a performane bottlenek, espeially for metadata intensive workloads. Hadoop DistributedFile System (HDFS) [13℄ is an open soure Java produt with almost the same arhiteture as that of GoogleFS.3.2.2. Lustre File System. Lustre [40℄ is an objet based DFS used primarily for large sale lusteromputing. It is a prodution system used in several HPC lusters. The system arhiteture of the Lustre �lesystem is shown in �gure 3.4. The system omprises of three main omponents, namely, �le system lients,Objet Storage Servers (OSS) whih provide �le I/O servies, and Metadata servers (MDS).Typially, the above three omponents are on independent nodes whih ommuniate over the network.Using an intermediate network abstration layer, Lustre supports multiple network types suh as Ethernet andIn�niband. Redundany, in the form of an ative/passive pair of MDSs and ative/ative pairs of OSSs, helpsLustre maintain high availability.Lustre enfores strit onsisteny semantis, using loks to enfore serialization. It also uses the JournalingFile System Tehnology5 to prevent data/metadata orruption due to system failures and to enable persistentstate reovery.Sine metadata servers as well as objet storage servers need to be manually administered, Lustre does notsale transparently.3.2.3. Panasas Parallel File System. Panasas [50℄ uses parallel and redundant aess to OSDs toprovide a high performane DFS. At a high level, the system model of Panasas is similar to that of the Lustre(�gure 3.4).The Panasas objet storage nodes have a Blade arhiteture, eah blade omprising of disks, a proessor,memory, and a network interfae. Thus, adding storage apaity inludes the addition of the required omputingpower to e�iently manage the new disks. The storage blades use a speialized �le system whih implementthe objet storage primitives. A per-�le RAID system [32℄ is used to provide for data integrity and salableperformane.The storage blades are managed by a set of Quorum-based luster managers. The set of managers maintainsthe repliated system state using a quorum-based voting protool. Managers stripe �le ontents aross the OSDs.They also handle multi-user aess, onsistent metadata management, lient ahe oherene, and reovery fromlient and OSD failures. Transation Log Repliation protool is used to tolerate metadata server rashes.3.2.4. Parallel Virtual File System, Version 2 (PVFS2). PVFS2 [4℄ is an open soure DFS thatprovides high performane and salable �le system servies for large node lusters. Eah luster node an be a
5Maintains logs of impending hanges before ommitting them to the �le system.
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Fig. 3.5. Ceph System Arhitetureserver, a lient, or both. Like several other lustered �le systems, PVFS2 also supports the striping of a �le'sdata aross several storage nodes. PVFS2 allows for a subset of the servers to be on�gured as metadata servers.PVFS2 servers are stateless and as a result, loks are not supported. Client failures thereby do not a�etthe system in anyway. While this lets the system sale to a large number of lients, it results in little support fordi�erent kinds of aess semantis. While PVFS2 provides atomiity guarantees for updates to non-overlappingportions of a �le, simultaneous writes to overlapping regions an result in inonsistent �le states.New �le/diretory reation is performed by �rst reating the data objet and the orresponding metadataobjet, and then making the metadata objet point to the data objet, and �nally reating a diretory entrypointing to the metadata objet. This way, the �le system remains in a onsistent state always. This mehanisman result in signi�ant amounts of lean up load in ase of ollisions, i. e., in ase of simultaneous updates tothe same portions of the namespae.PVFS2 speializes in supporting �exible data distribution as well as �exible data aess patterns. Forexample, it supports aess to non-ontiguous portions of a �le in a single operation. In that sense, PVFS2implements MPI-IO Semantis losely.Like Lustre, PVFS2 uses an intermediate layered interfae to support multiple network types. Traditionalsolutions for high availability, suh as those used by Lustre, an be used in PVFS2. An experimental omparisonof PVFS2 and Lustre for large sale data proessing is presented in [41℄.3.2.5. Ceph. Ceph [48℄ is an objet-based distributed �le system designed to provide high performane,reliability and salability. Dynami Subtree Partitioning and the distribution of objets using a pseudo randomfuntion, are a ouple of its unique features. The system (�gure 3.5) omprises of lients, OSDs and a metadataservers luster.Ceph ompletely does away with alloation lists and inode tables. Instead, a pseudo random funtion alledCRUSH [49℄ is used for the distribution of objets among the OSDs. Clients an therefore alulate the loationof �le objets instead of performing a look-up.Some �le systems use stati subtree partitioning to delegate authority for di�erent subtrees of a hierarhialnamespae to di�erent metadata servers. Another approah uses hash funtions to distribute metadata. Whilethe �rst approah annot handle dynami loads e�iently, the later approah does away with metadata loality.Ceph uses a dynami subtree partitioning strategy, in whih responsibilities for di�erent subtrees of the names-pae are dynamially distributed among the MDSs. The distribution ensures that server loads are kept balanedwith hanging aess patterns. Popular portions of the namespae are also repliated on multiple servers.Ceph repliates data using a variant of the Primary-Copy Repliation6 tehnique to maintain high avail-ability. The usage of CRUSH rules out the possibility of onsidering spei� node harateristis while making
6One of the replias, whih is made the primary opy, serializes transations and sends updates to the seondary replias.
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Fig. 3.6. WheelFS System Arhitetureobjet plaement deisions. In wide area installations, the average network lateny between lients and Ceph'smetadata servers an be high, a�eting the performane of appliations involving large proportions of metadataoperations.3.2.6. WheelFS. WheelFS [46℄ provides appliations ontrol over replia plaement, onsisteny andfailure handling mehanisms using Semanti Cues. The system allows appliations to manage the trade-o�between the immediay of update visibility and the independene of lient sites to operate on the data. A setof WheelFS servers (�gure 3.6) store �le and diretory objets. Eah �le/diretory has a primary server whihholds its latest ontent. Clients also maintain loal ahes of the �les aessed. By default, WheelFS uses stritClose-to-Open Consisteny Semantis7, with the primary server being responsible for serializing operations.Semanti ues an be used to speify appliation poliies with respet to plaement, durability, onsistenyand large reads. To redue the e�ets of network lateny, data an be plaed lose to lients that are likely touse the data. Files an be lustered together to optimize the performane of operations that aess multiple�les, and repliation levels an be spei�ed.The system an be adjusted to wait for only a spei�ed number of replias to be reated or updated beforeaknowledging a lient's new �le or �le update request respetively. This helps in ahieving quiker responsetimes even in the presene of slow servers. Consisteny related ues allow lients to speify time-out periodsfor remote ommuniations orresponding to �le system operations. Appliations an also use the EventualConsisteny Semantis8 to improve availability.Also, a lient an prefer to read stale opies of �les when the primary servers are hard to reah. Whilereading large �les, lients an hoose to prefeth entire �les into its loal ahe. Cues also enable lients toobtain �le ontents from multiple ahed soures in parallel to redue the load on the primary server.A Con�guration Servie, maintained as a repliated state mahine at multiple sites, is used by lients tolearn about the servers responsible for the di�erent objets. Based on the �rst S bits of the objet identi�er,the identi�er spae is split into 2S slies. The on�guration servie maintains a mapping between slies and theprimary and replia servers responsible for the slies.While resoure loation aware data plaement is supported, WheelFS does not provide resoure hara-teristis aware data plaement. The on�guration servie, maintained as a repliated state mahine, an be abottlenek for large system sizes and heavy query loads.3.3. Self-Organizing P2P File Systems. In P2P systems, every node is both a supplier and onsumerof resoures. Some of the bene�ts of suh an arhiteture are distribution of load among all the peers, inreasedrobustness, and lak of a single point of failure. On the other hand, high system dynamis is one of its major
7When A opens a �le after B has modi�ed and losed it, A is guaranteed to see B 's updates.
8If no new updates are made, the latest updates will propagate through the system eventually and make all the replias onsistent.
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Directory GroupFig. 3.8. Farsite System Arhiteturedrawbaks. In P2P �le systems, peers share the load of �le storage and metadata management. Figure 3.7shows some of the system requirements of P2P �le systems. As disussed earlier, salability and high appliationperformane are the two primary requirements under onsideration.It is well known that deentralization of ontrol and autonomous system management are entral to thedesign of salable distributed systems. In suh systems, load balaning and resoure disovery are omplex tasksbeause of the lak of any entral entity with knowledge about the entire system.However, awareness of resoure harateristis and loations while plaing �le replias is ritial for ahievinghigh appliation performane. That is beause network bandwidth and lateny onerns ditate that data andmetadata be plaed in proximity to where they are onsumed. Ahieving a trade-o� between these on�itingrequirements of deentralization and system awareness is an important design onsideration, espeially in thease of P2P �le systems. One of the approahes to ahieve the trade-o� is to design the system as a federationof manageable lusters.3.3.1. Farsite. Farsite (Federated, Available, and Reliable Storage for an Inompletely Trusted Environ-ment) [6℄ [12℄ is a DFS from Mirosoft Researh built over a network of unstrutured desktop workstations.Farsite provides high �le availability and seurity utilizing the unused storage spae and proessing power of alarge number of nodes. Issues of seurity and trust are addressed using Publi-Key Cryptographi Certi�atessuh as namespae, user and mahine erti�ates. Users and diretory groups authentiate eah other beforeperforming �le system operations.File ontents are enrypted and repliated and the orresponding metadata are managed by Byzantine-Repliated �nite state mahines [33℄. Farsite provides hierarhial diretory namespaes, eah namespae havingits own root. Roots are maintained by a designated group of nodes. Diretory groups an split to distributemetadata management load. Splitting an happen by randomly seleting a group of nodes and designating aportion of the namespae to them (�gure 3.8).Content hashes of �les are stored in the orresponding diretory groups to maintain �le integrity. Di�erentkinds of leases are issued on �les to lients. Cahing is used for improving aess times and reduing networkload. Updates made to �les are not immediately propagated to all the replias. Instead, a lazy propagationmehanism is employed in order to improve performane.



314 Kovendhan Ponnavaikko and Janakiram Dharanipragada

Plaxton  

Primary Replicas

of Object A

Secondary Replicas

Dissemination 

Tree

Untrusted Node

Neighbor Link

of Object A

Fig. 3.9. OeanStore System ArhitetureAs with other hierarhy traversal systems, loating the diretory group for a �le deep in the hierarhymay require several hops, thus making metadata aess expensive. In systems with high hurn rates, groupmembership an keep hanging, resulting in high group management overheads.3.3.2. OeanStore. OeanStore [26℄ is a global sale data storage utility that uses untrusted infrastru-ture. The primary objetive is to provide ontinuous aess to persistent information.Eah objet in OeanStore is assigned a unique global identi�er and is repliated and stored in a set ofservers. A few of the servers in the high onnetivity and high bandwidth regions are made primary repli-as and the rest are made seondary replias (�gure 3.9). Updates made to the objets are ordered by theprimary replias using a Byzantine Fault Tolerant algorithm [14℄. Seondary replias ommuniate with theprimary replias and among themselves to propagate updates in an epidemi manner. Every update resultsin the reation of a new version whih is arhived in the system, making the system ine�ient for large sized�les.Eah objet is assoiated with a root node in the system whih holds information about the objet's replialoations. A variation of Plaxton's randomized hierarhial distributed data struture [34℄ is used by nodes toreah the root of any objet in O(logN) hops, where N is the number of nodes in the system. A probabilistialgorithm using attenuated Bloom Filters [11℄ is also used to rapidly loate objets if they are in the loalviinity.The poliy of Promisuous Cahing whih allows �les to be repliated in any node in the system makesOeanStore highly salable. However, the overheads involved in the maintenane of two tiers of nodes and adissemination tree for eah data objet an be high. High hurn rates among the primary tier nodes an alsoresult in expensive maintenane overheads. Maintenane of Bloom �lters and the Plaxton data struture ateah node an result in high network usage.3.3.3. Ivy. Ivy [31℄ is a P2P read/write �le system based on logs. Eah partiipant maintains a log withinformation about all the hanges made to the �les in the system by the partiipant. The logs of all thepartiipants need to be parsed to be able to get the urrent state of a �le. Updating a �le's ontents howeverrequires an append to the partiipant's log only. Ivy uses DHash [1℄ as the Distributed Hash Table (DHT) [45℄for storing all its logs and, as a result, all its data. The set of all logs in the �le system is referred to as View(�gure 3.10).A partiipant's log is a linked list of log reords. The log-head points to the most reent entry. Contenthashes are used as keys for storing log reords in DHash. The publi key of a partiipant is the key for alog-head. The log-head is digitally signed by the partiipant's private key. The digital signatures and ontenthashes help ensure the integrity of logs in Ivy.
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Fig. 3.11. Pangaea System ArhitetureA private snapshot of the system is maintained by the partiipants in order not to have to san all the logsfor every read. Only the most reent log reords need to be sanned. Sine Ivy avoids using shared mutabledata strutures, loking is not neessary. Ivy logs ontain version vetors and timestamps. These an helpappliations in deteting and resolving on�its that may arise due to onurrent updates.This strategy of maintaining per-partiipant logs makes Ivy suitable only for a small number of ooperatingusers. Moreover, high possibilities of on�iting onurrent updates result in Ivy providing weak onsistenysemantis.3.3.4. Pangaea. The objetive of Pangaea [38℄ is to build a planetary-sale P2P �le system used by groupsof ollaborating users all over the world. The system attempts to ahieve low aess lateny and high availabilityusing Pervasive Repliation tehniques. Whenever and wherever a �le is aessed, a replia is reated. Popular�les therefore get heavily repliated and personal �les reside only on the nodes used by the owners.A random graph of all the replias is maintained for propagating updates and ensuring availability (�g-ure 3.11). The random graph is reated by making eah replia maintain links to k other replias hosenrandomly. A few of the replias are designated as Golden replias. The golden replias maintain links with eahother and ensure that their set always maintains spei�ed membership levels. Replias perform random walksstarting from one of the golden replias to reate random links. This way the graph stays onneted.Links to the golden replias are reorded in the data objet's parent diretory (whih is also maintained asa �le). To aess and repliate a �le, its parent diretory must be aessed and hene repliated. The reursiveoperation an proeed all the way to the �le system's root.By default, update propagation happens lazily. A strategy involving Harbinger messages is used to build aspanning tree whih is used for quik update propagation. Strit onsisteny semantis are also supported by



316 Kovendhan Ponnavaikko and Janakiram Dharanipragada
Supernode

Structured P2P Overlay
Replicas

File

Cluster

maintained at
Metadata

a supernode

Edge NodeFig. 3.12. ENFS System Arhiteturemaking the updating lient wait for aknowledgments from the replias. A version vetor based algorithm [37℄is used for resolving on�iting updates.3.3.5. Edge Node File System (ENFS). ENFS [25℄ exploits the resoures of Internet edge nodes toprovide salable DFS servies. Undediated Internet edge nodes are enabled to funtion as both data andmetadata servers. The presene of a large number of edge nodes results in salable metadata aess and highI/O throughputs.ENFS uses proximity-based lustering of edge nodes (�gure 3.12) for the e�ient management of resoures,balaning of load (storage, omputational, query), and handling lateny issues. A few reliable and apable edgenodes from eah luster are hosen to be the metadata servers (Supernodes) for that luster. These supernodesare hosen based on apabilities suh as network bandwidth, proessor speed, storage spae, and memoryapaity. Eah supernode is assoiated with a replia set onsisting of a �xed number of other supernodes fromthe same luster. The replia sets ensure high system availability.Supernodes from all the lusters form a single system-wide strutured P2P overlay network for use as a dis-tributed hash table. By onneting up all the lusters in the system, the overlay enables nodes of a luster to dis-over supernodes (of other lusters) whih are responsible for spei� portions of the �le namespae. The stru-tured overlay also helps in the e�ient disovery of resoures with spei� harateristis in the entire system.Sine the sets of data and metadata servers hange autonomously and dynamially to suit prevalent work-loads, ENFS sales transparently. The arhiteture of the system allows data plaement/aess deisions to bebased on appliations' requirements of resoure harateristis and loations. The metadata of eah �le has asingle point of aess (one of the luster supernodes). This allows ENFS to support a large spetrum of aesssemantis.4. Comparative Analysis. In this setion, we analyze the above reviewed systems with respet to theirsalability and the support they provide for high appliation performane only. We do not address other aspetsof distributed �le systems suh as user/group management, seurity and trust, et. In [30℄, the authors providea survey of deentralized aess ontrol mehanisms in large sale distributed �le systems. An overview of I/Osystems (inluding �le systems) dealing with massive data is presented in [22℄.The manner in whih the load on di�erent �le system servers vary with inreasing numbers of users, andtherefore user �les, primarily determines the salability of a distributed �le system. Inrease in the number of�les results in an inrease in the number of queries and in the amount of data I/O.The system parameters used in the analysis are shown in table 4.1. For the sake of simpliity, we assumeuniform server apabilities and that the �le system metadata and data are equally distributed among the servers.We also assume that the metadata queries and I/O requests are generated in an independent and ompletelyrandom manner.We study the dependene of metadata and data server loads on the query and I/O rates in tables 4.2 and4.3 respetively. The overheads of overlay network management also add to server loads, espeially in the P2P�le systems. The overheads are presented in table 4.4.



Wide Area Distributed File Systems 317Table 4.1System Parameters and MetrisParameter Details
N Number of nodes (servers/lients/peers) in the system
NM Number of metadata servers in the system
ND Number of storage nodes (data servers) in the system
F Number of data items (�les and diretories) in the system
R Average number of replias per data item
Q Number of metadata queries generated per unit of time in the system
D Data transfer demand to and from the data servers in the system per unitof time
lC Network lateny between nodes within a luster/LAN (Intranet)
lW Network lateny between nodes in di�erent lusters (Internet)
P (n) Cost of ahieving onsensus (Paxos [27℄, Byzantine fault tolerant algo-rithm, quorum-based voting) among n nodes in terms of time and numberof messages
LMS Average query handling load on a metadata server
LDS Average I/O load on a data server
LOM Message, time and spae overheads of maintaining the di�erent overlaysIn GoogleFS, Lustre, Panasas, PVFS2, Ceph, OeanStore and ENFS, support for �le striping and parallelI/O helps in distributing data server load at a �ner granularity. From table 4.3, we an see that, LDS , thedata server load, an be represented as f(D/ND) for ategory I and ategory II �le systems and as f(D/N) forategory III �le systems.The omponents that get overloaded in the �rst ategory of �le systems are learly the servers. In thesesystems, the NM metadata servers are usually the data servers also. The load on eah server therefore is

LMS + LDS . Both inreasing query rates and I/O demands a�et the same set of servers.In the seond ategory of �le systems, deoupling of data and metadata helps in splitting the load amongdi�erent sets of servers (LMS for metadata servers and LDS for data servers). However, due to rigid serveron�gurations whih require manual administration, the values of NM and ND are more or less �xed. Thisresults in these systems supporting only onstrained levels of metadata and I/O demands. Additionally, inWheelFS, the on�guration servie an potentially beome a bottlenek with inreasing query rates.Sine Farsite, OeanStore, Ivy, Pangaea and ENFS are P2P �le systems (ategory III), the load on eahnode is LMS + LDS + LOM . The number of nodes, N , is however virtually unlimited. Therefore, the loads arewell distributed.However, Ivy is a log-based �le system and so performane falls signi�antly with inreasing numbersof partiipants. Network usage is exessively high in OeanStore and Pangaea due to overlay managementmessages, pervasive repliation and update propagations. Sine a onsiderable number of peers in a wide areainstallation may possess low bandwidth onnetions, system performane an be a�eted by inreasing loadlevels in these two systems.The performane of appliations exeuting over �le systems depends mainly on the speed of metadata aessand data I/O throughput. Metadata query and update times experiened by appliations depend on severalfators suh as metadata server load, query routing mehanism, network lateny, and onsisteny managementstrategy. Table 4.5 analyzes these fators in the various systems.Data I/O throughput depends on server load and network lateny/bandwidth. Server loads are disussedin table 4.3. The support provided by the �le systems to redue the e�ets of network lateny and bandwidthon data transfer/proessing speed, and hene on appliation performane, is disussed in table 4.6.



318 Kovendhan Ponnavaikko and Janakiram DharanipragadaTable 4.2Metadata Server Load as a Funtion of Query RateSystem Load/Server (LMS) CommentsAFS f(Q/NM ) The load is distributed among the NM servers. Sinethe number of servers is �xed and an be extended onlythrough administrator intervention, server load keeps in-reasing with Q.CIFS f(Q/NM ) The load is distributed among the NM servers that aresharing ontent. Typially, the number of servers inCIFS installations are muh larger than in AFS installa-tions. Query loads are therefore better distributed.GoogleFS f(Q) The master server handles all the queries. As a result,suh an arhiteture's salability is limited.Lustre/Panasas/PVFS2 f(Q/NM ) The query load is distributed among the NM metadataservers. Sine the number of MDSs is �xed and an beextended only by manual intervention, load on an MDSkeeps inreasing with Q.Ceph f(α ·Q/NM ) The metadata query load is distributed among theservers in the MDS luster. The dynami subtree parti-tioning sheme employed by Ceph distributes the queryload among the servers uniformly. Moreover, sinelients an alulate objet loations themselves, meta-data server loads are signi�antly redued (representedby α).WheelFS f(Q/NM ) The query load is distributed among the NM WheelFSprimary servers.
f(Q) Clients get information about the primary servers re-sponsible for �les from the on�guration servie. Theload on the on�guration servie therefore inreasesalong with Q.Farsite f(Q/(κ ·N)) When query rates inrease, diretory groups split anddistribute the load among more nodes. Sine any peeran be a part of a diretory group, query loads are sharedby a signi�ant fration (κ) of all the nodes in the system.OeanStore f(Q/N) Information about �les in OeanStore are obtained us-ing pure P2P algorithms. The metadata query load istherefore distributed among all the peers.Ivy f(Q/N) Metadata queries result in getting the reent log reordsof all partiipants and sanning the reords loally atthe querying peer. Thus, the query load is distributedamong all the peers.Pangaea f(Q/N) Metadata aesses happen using P2P routing protoolsand result in replias getting reated at the queryingpeers. Thus the query load is shared by all the peers.ENFS f(Q/(κ ·N)) The number of supernodes inreases with inreasingquery loads (Q). Sine any node in the system an bemade a supernode, the load is shared by a signi�antfration (κ) of N , as in Farsite.



Wide Area Distributed File Systems 319Table 4.3Data Server Load as a Funtion of the I/O DemandSystem CommentsAFS Callbak promises and invalidations, and whole �le ahing help in reduing theload on the AFS servers. This is one of the main reasons for AFS saling betterthan NFS.CIFS Stateful servers, elaborate loking mehanisms, ahing, and read-aheads, help inreduing the load on the servers. A large number of servers sharing �les helpsdistribute the load better than in AFS.GoogleFS The data load is distributed among the ND hunkservers in the GoogleFS luster.GoogleFS does not support lient side ahing, espeially beause the appliationsusually require omputations to be performed at the hunkservers itself.Lustre The load is shared among the ND objet storage servers. Server based distributed�le loking protools and lient side ahing in Lustre help redue data server loads.Panasas The data serving load is shared among the ND OSDs. File loking servies andonsistent lient ahing is supported in Panasas.PVFS2 PVFS2 does not ahe data on the lients and so the entire load is distributedamong the ND I/O servers.Ceph Client side ahing absorbs some load o� the ND OSDs.WheelFS All lients maintain ahes of �les read. Semanti ues help in satisfying a lient'sdata needs with nearby ahes as muh as possible. Suh Cooperative Cahingmehanisms help in reduing the loads on WheelFS servers signi�antly.Farsite All the nodes in the system are apable of storing data. As data loads inrease,more replias an be reated among the peers. Thus, data transfer loads are sharedby a large number of nodes (O(N)).OeanStore Promisuous ahing and P2P data loation algorithms enable data serving loadsto be distributed among the peers in the system.Ivy All the data objets in Ivy are stored in the DHash DHT, whih omprises of allthe nodes in the system. Thus data transfer load is shared by the entire set ofnodes.Pangaea Pervasive ahing results in �les and diretories getting repliated in a large numberof peers in the system. I/O load is therefore distributed widely.ENFS Supernodes ensure that �le ontents in ENFS are distributed uniformly aross allthe storage nodes in the system. Data transfer loads are therefore shared by a largenumber of nodes (O(N)).Apart from data server loads, appliation performane largely depends on the network distane betweenservers and lients. In most �le systems of ategory I and II, server loations are �xed and so in wide areainstallations, data aess usually happens aross long distanes. Data ahing helps in reduing the distane tosome extent, espeially in AFS and WheelFS.File systems belonging to ategory III, however, do not have �xed servers. The peer-to-peer nature of thesesystems support the reation of new �le replias loser to their users. ENFS goes a step further and pro-ativelyreates �le replias on nodes whih are likely to proess the ontents, based on user spei�ation or appliationtype.4.1. Observations. In summary, our analysis of these systems has led to the following observations:
• Deentralization Most of the prodution �le systems today use entral servers (or lusters of servers).While suh an infrastruture an support a large number of users and �les, their salability is limited.Sine the digital data generation apabilities of the masses has inreased tremendously, the next fewyears are expeted to witness huge rates of data reation. Deentralization is therefore essential tomanage the aompanying data management demands. Deentralization also has other bene�ts suhas not having to ompletely trust one entral entity, lak of a single point of failure, robustness, andlak of the need for expensive servers.



320 Kovendhan Ponnavaikko and Janakiram DharanipragadaTable 4.4Overlay Maintenane OverheadsSystem Overhead (LOM) CommentsWheelFS f(CRSM ) The on�guration servie is implemented as a repliated statemahine with a ertain number of nodes. Maintaining thestate mahine involves operations suh as handling member-ship hanges, and eleting a new leader. CRSM represents theorresponding message and time overheads for the on�gura-tion servie nodes.Farsite f(CBFT ) All the nodes in Farsite whih are part of a diretory groupinur the overheads of maintaining a Byzantine fault tolerantgroup. The overhead assoiated with Byzantine fault toleraneis represented by CBFT .OeanStore f(logN,CBF ) Every node in OeanStore maintains a routing table assoiatedwith the Plaxton sheme for global data loation. The size ofthe table is O(logN). Moreover, hanging objet ontents in anode and its loal viinity, results in hanges to its attenuatedBloom �lter. The network and omputational (multiple hash-ing) overheads of maintaining the �lters is also signi�ant andis represented by CBF .Ivy f(logN) Nodes in Ivy are part of the DHash DHT and so maintainrouting tables with O(logN) entries.Pangaea f((F · R · k)/N) Every replia of a data item must maintain at least k links toother replias. This results in signi�ant message, time andspae overheads.ENFS f(logNM) Supernodes from all the lusters form a strutured overlayin ENFS. Eah supernode maintains a routing table of size
O(logNM ).

• Autonomi System Management Sine deentralized systems usually exploit the resoures of unre-liable nodes, mehanisms must be in plae to provide notions of reliability and availability to theusers/appliations. It is impratial for large distributed systems to be manually administered. Essen-tial tasks suh as handling node failures, and load balaning must be autonomially managed for betterresoure utilization and appliation performane.
• Pervasive Repliation High levels of repliation, espeially of read-only �les, inreases availability andbrings data loser to the users, thereby improving appliation performane. Repliation has the addedbene�t of enabling parallel aess to �les. Parallel aess enables omputations on di�erent parts of a �leto be performed simultaneously. In a well designed system, the bene�ts of repliation must over-weighthe overheads of additional data transfer and onsisteny management.
• Flexible Consisteny Semantis Often, the stronger the onsisteny semantis supported by a system,the poorer the appliation performane. The onsisteny requirements of di�erent appliations varywidely. Thus, �le systems must be apable of �exing their onsisteny semantis in aordane toappliation requirements. This way, users/appliations an themselves adjust the required levels ofonsisteny/performane trade-o�.
• Data A�nity Data a�nity refers to the onept of ensuring that �les are stored lose to the nodeswhih are most suited and likely to proess their ontents. For example, in HPC appliations, dueto large data set sizes, shedulers attempt to shedule omputations on resoures whih ontain therequired data [36℄ [47℄, thus reduing the amount of data movement. Therefore, �le systems whihsupport resoure harateristis aware data plaement are highly useful. Data migration with hangingaess patterns is also bene�ial.
• Proximity-based Node Clustering A large system whih annot be managed by a entral ontroller isbest managed by being partitioned into proximity-based node lusters of manageable sizes. In dis-



Wide Area Distributed File Systems 321Table 4.5Fators a�eting Metadata Query Response TimesSystem CommentsAFS f(LMS + LDS , lC(or)lW )Servers are usually distributed aross wide areas. Servers in every ell possess informationabout the servers hosting di�erent data volumes aross the entire system. Therefore, thereare no query routing overheads. The e�et of network lateny depends on whether queries aremade for �les served loally or by a server in a di�erent ell. Data volumes are plaed loseto users/groups owning the orresponding data items and so lateny e�ets are generally low.CIFS f(LMS + LDS , lC(or)lW )CIFS servers are usually distributed aross wide areas. Clients either possess informationabout servers hosting di�erent data items or an use browsing protools to searh for servers.When a lient queries a distant CIFS server, high network lateny is likely to a�et theresponse time.GoogleFS f(LMS , lC , P (2))Sine GoogleFS installations are usually luster based, network lateny is lC . All metadataqueries are handled by the master server. Metadata updates must be serialized in the masterserver and its shadow.Lustre f(LMS , lW , P (2))The set of metadata servers are lustered in a single loation and so most lient queries haveto travel aross the network in a wide area installation. Metadata updates must be serializedin the ative and passive metadata servers assoiated with a data item.Panasas f(LMS , lW , P (NM ))Panasas uses a quorum-based voting protool to ommit metadata operations in its metadataservers. As in Lustre, network lateny is usually lW sine the servers are lustered in oneloation.PVFS2 f(LMS , lW )PVFS2 avoids serialization of independent metadata operations using an expliit state ma-hine, threads (to provide non-bloking aess), and a omponent that monitors ompletionof operations aross devies. Avoiding serialization makes metadata aess faster.Ceph f(LMS , lW , P (k))Sine the metadata servers are lustered, far-o� lients experiene high network latenies.Metadata updates must be synhronously journaled to a luster (of size k) of OSDs forsafety.WheelFS f(LMS , lW )Aessing the on�guration servie to determine the primary may involve a query to a far-o�node. Clients an speify loation preferenes for the primary servers for their �les and dire-tories based on expeted aess patterns and so lateny overheads of aessing the primaryservers are optimized.Farsite f(LMS + LOM , d · lW , P (k))Metadata aess may require traversal from the root to the diretory of interest. Eahdiretory may be managed by a di�erent group. d represents the average number of hopsbetween diretory groups required to reah a data item. Metadata updates require Byzantinefault tolerant agreement among the k diretory group members.OeanStore f(LMS + LDS + LOM , lW · logN,CARC)Loating the root of an objet in OeanStore an require O(logN) hops aross a wide areanetwork. Some �les, espeially popular ones, an however be loated in the loal viinityof the lient. Every update (or group of updates) involves storing the objet in an arhivalform. CARC represents the orresponding osts of enoding the �le using erasure oding anddistributing it aross hundreds of mahines.Ivy f(LMS + LOM , p · (logN) · lW )Aessing the metadata requires the gathering of the most reent log reords of all thepartiipants (p). Metadata updates are performed in the loal log alone.Pangaea f(LMS + LOM , lC , CST )The pervasive repliation strategy results in most data items being available in lose prox-imity. Propagation of updates happens in two phases along the spanning tree for that dataitem rooted at the soure. The orresponding message and time osts are represented by
CST .ENFS f(LMS + LOM , lC(or)lW , P (k))Metadata of user �les are managed by supernodes in the same luster as that of the user.However, aessing the metadata of �les in other lusters requires aross network querying.Metadata servers responsible for individual �les/diretories are identi�ed using index �lesstored in the system wide DHT and atively ahed in the loal luster's supernodes. Dis-overy an therefore usually happen within a ouple of hops. Metadata updates are serializedin the responsible supernode and its replia set. k represents the supernode replia set size.



322 Kovendhan Ponnavaikko and Janakiram DharanipragadaTable 4.6Support for Appliation PerformaneSystem SupportAFS/ CIFS Servers in these systems only perform �le I/O. Any other operation to be per-formed on the data must be performed at the lient site. Client side ahingis supported to varying degrees. AFS, espeially, improves appliation perfor-mane using whole �le ahing. However, the bene�ts of ahing ome at theexpense of onsisteny management. AFS provides weak onsisteny seman-tis. CIFS uses elaborate loking mehanisms to provide strong onsistenysemantis. I/O throughputs are largely dependent on lient-server networkdistane.GoogleFS GoogleFS is optimized for the MapRedue lass of appliations. GoogleFS'ssupport for appending reords to existing datasets in a quik, atomi and rae-free manner is ritial for MapRedue appliations. GoogleFS stores replias ofdata hunks on di�erent mahines. This inreases the hanes of MapReduesheduling mappers on nodes with the data or on nodes lose to the data.GoogleFS supports relaxed onsisteny semantis, whih helps speed up dataappends.Lustre/Panasas/Ceph Sine objet-based storage devies support the storage and serving of objets di-retly at the hardware level, better I/O throughputs an be ahieved omparedto normal dis I/O. Appliation spei� proessing/omputations however an-not be performed at the servers. These systems provide strong onsistenysemantis. I/O throughputs are largely dependent on lient-server networkdistane.PVFS2 Client side ahing is not supported. Client server distane an therefore bedetrimental to appliation performane. PVFS2 implements Non-Con�itingWrite semantis, thus allowing lients to update non-on�iting portions of thenamespae simultaneously without loks.WheelFS Plaement semanti ues suh as .Site, .KeepTogether and .RepSites allow own-ers to plae their data lose to the users most likely to use the data. This helpsoptimize data throughputs. Cues an also be used to feth �le ontents fromthe ahe of other lients in parallel.Farsite Farsite does not attempt to redue lateny. It is designed to support typi-al user home diretory I/O instead of the high performane I/O of sienti�appliations. Byzantine fault tolerant agreement protools and leases help inproviding strong onsisteny guarantees in Farsite.OeanStore Users hoose primary and seondary tier storage nodes on whih to store their�les. Moreover, popular �les get widely ahed. These measures help in im-proving data throughputs. Based on appliation requirements, OeanStore anprovide a variety of onsisteny semantis.Ivy Nodes maintain a private snapshot of all the logs and so �le reads only requirethe most reent reords to be obtained from the DHash DHT. Ivy providesweak onsisteny semantis with appliation assisted on�it resolutions.Pangaea In Pangaea, replia loations are determined by user ativities. Files an there-fore usually be loated lose to the lients. By default, Pangaea implementsweak onsisteny semantis. However, stronger guarantees an be provided bytrading o� performane.ENFS ENFS fouses on the priniple that awareness of the apabilities of stor-age nodes is ritial for a �le system to be useful for appliations. Clustersupernodes an inexpensively disover resoures with spei� harateristisaross the entire system. File/Replia plaement deisions are based on therequirements of the appliations expeted to operate on the �les. This helpsappliations ahieve high performane. Home-based onsisteny protools al-low a wide variety of aess semantis to be supported.



Wide Area Distributed File Systems 323tributed systems, lustering supports the salable and e�ient disovery of data and resoures withspei� harateristis from the entire system [35℄. Clustering also provides for e�ient ommuniationmehanisms among proximal and far-o� nodes in the system. Co-loation of servers and their assoiatedlients, whih helps in optimizing network lateny, also beomes simpler when the system is partitionedinto lusters. A lot of work, done on network distane measurement [15℄, topology disovery [20℄ [9℄and proximity-based node lustering [51℄ [29℄ [35℄, an be used for autonomous luster formation andmanagement.
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